Mastering Parallel
Programming with R

Master the robust features of R parallel programming
to accelerate your data science computations

PACKT

.ebook3000.co

http://www.ebook3000.org

Mastering Parallel
Programming with R

Master the robust features of R parallel programming
to accelerate your data science computations

Simon R. Chapple
Eilidh Troup
Thorsten Forster
Terence Sloan

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

Mastering Parallel Programming with R

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016
Production reference: 1240516

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-400-4

www . packtpub.com

[vww .ebook3000.con}

www.packtpub.com
http://www.ebook3000.org

Credits

Authors
Simon R. Chapple

Eilidh Troup
Thorsten Forster

Terence Sloan

Reviewers
Steven Paul Sanderson Il

Joseph McKavanagh
Willem Ligtenberg

Commissioning Editor
Kunal Parikh

Acquisition Editor
Subho Gupta

Content Development Editor
Siddhesh Salvi

Technical Editor
Kunal Chaudhari

Copy Editor
Shruti lyer

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

About the Authors

Simon R. Chapple is a highly experienced solution architect and lead software
engineer with more than 25 years of developing innovative solutions and applications
in data analysis and healthcare informatics. He is also an expert in supercomputer
HPC and big data processing.

Simon is the chief technology officer and a managing partner of Datalytics Technology
Ltd, where he leads a team building the next generation of a large scale data analysis
platform, based on a customizable set of high performance tools, frameworks, and
systems, which enables the entire life cycle of data processing for real-time analytics
from capture through analysis to presentation, to be encapsulated for easy deployment
into any existing operational IT environment.

Previously, he was director of Product Innovation at Aridhia Informatics,

where he built a number of novel systems for healthcare providers in Scotland,
including a unified patient pathway tracking system that utilized ten separate data
system integrations for both 18-weeks Referral To Treatment and cancer patient
management (enabling the provider to deliver best performance on patient waiting
times in Scotland). He also built a unique real-time chemotherapy patient mobile-
based public cloud-hosted monitoring system undergoing clinical trial in Australia,
which is highly praised by nurses and patients, "its like having a nurse in your living
room... hopefully all chemo patients will one day know the security and comfort of
having an around-the-clock angel of their own."

[vww .ebook3000.con}

http://www.ebook3000.org

Simon is also a coauthor of the ROpenCL open source package —enabling statistics
programs written in R to exploit the parallel computation within graphics
accelerator chips.

I would particularly like to thank my fellow authors at Edinburgh
Parallel Computing Centre for the SPRINT chapter, and the book
reviewers, Willem Ligtenberg, Joe McKavanagh, and Steven
Sanderson, for their diligent feedback in the preparation of this
book. I would also like to thank the editorial team at Packt for their
unending patience in getting this book over the finish line, and

my wife and son for their understanding in allowing me to steal
precious time away from them to be an author - it is to my loved
ones, Heather and Adam, that I dedicate this book.

Eilidh Troup is an Applications Consultant employed by EPCC at the University
of Edinburgh. She has a degree in Genetics from the University of Glasgow and she
now focuses on making high-performance computing accessible to a wider range
of users, in particular biologists. Eilidh works on a variety of software projects,
including the Simple Parallel R INTerface (SPRINT) and the SEEK for Science
web-based data repository.

Thorsten Forster is a data science researcher at University of Edinburgh. With a
background in statistics and computer science, he has obtained a PhD in biomedical
sciences and has over 10 years of experience in this interdisciplinary research.

Conducting research on the data analysis approach to biomedical big data rooted in
statistics and machine learning (such as microarrays and next-generation sequencing),
Thorsten has been a project manager on the SPRINT project, which is targeted at
allowing lay users to make use of parallelized analysis solutions for large biological
datasets within the R statistical programming language. He is also a co-founder of
Fios Genomics Ltd, a university spun-out company providing biomedical big data
research with data-analytical services.

Thorsten's current work includes devising a gene transcription classifier for the
diagnosis of bacterial infections in newborn babies, transcriptional profiling of
interferon gamma activation of macrophages, investigating the role of cholesterol
in immune responses to infections, and investigating the genomic factors that cause
childhood wheezing to progress to asthma.

Thorsten's complete profile is available at http://tinyurl.com/ThorstenForster-
UEDIN.

Terence Sloan is a software development group manager at EPCC, the High
Performance Computing Centre at the University of Edinburgh. He has more than 25
years of experience in managing and participating in data science and HPC projects
with Scottish SMEs, UK corporations, and European and global collaborations.

Terry, was the co-principal investigator on the Wellcome Trust (Award no.

086696/ 2/08/Z), the BBSRC (Award no. BB/J019283/1), and the three EPSRC-
distributed computational science awards that have helped develop the SPRINT
package for R. He has also held awards from the ESRC (Award nos. RES-189-25-
0066, RES-149-25-0005) that investigated the use of operational big data for customer
behavior analysis.

Terry is a coordinator for the Data Analytics with HPC, Project Preparation, and
Dissertation courses on the University of Edinburgh's MSc programme, in HPC
with Data Science.

He also plays the drums.

I would like to thank Dr. Alan Simpson, EPCC's technical director
and the computational science and engineering director for the
ARCHER supercomputer, for supporting the development of
SPRINT and its use on UK's national supercomputers.

[vww .ebook3000.con}

http://tinyurl.com/ThorstenForster-UEDIN
http://tinyurl.com/ThorstenForster-UEDIN
http://www.ebook3000.org

About the Reviewers

Steven Paul Sanderson II is currently in the last year of his MPH (Masters in
Public Health Program) at Stony Brook University School of Medicine's Graduate
Program in Public Health. He has a decade of experience in working in an acute care
hospital setting. Steven is an active user of the StackExchange sites, and his aim is to
self-learn several topics, including SQL, R, VB, and Python.

He is currently employed as a decision support analyst III, supporting both financial
and clinical programs.

He has had the privilege to work on other titles from Packt Publishing, including,
Gephi Cookbook by Devangana Khokhar, Network Graph Analysis and Visualization
with Gephi, and Mastering Gephi Network Visualization, both by Ken Cherven. He has
also coauthored a book with former professor Phillip Baldwin, called The Pleistocene
Re-Wilding of Johnny Paycheck, which can be found as a self-published book at
http://www.lulu.com/shop/phillip-baldwin/the-pleistocene-re-wilding-
of - johnny-paycheck/paperback/product-21204148 . html.

I would like to thank my parents for always pushing me to try new
things and continue learning. I'd like to thank my wife for being

my support system. I would also like to thank Nidhi Joshi at Packt
Publishing for continuing to keep me involved in the learning process
by keeping me in the review process of new and interesting books.

http://www.lulu.com/shop/phillip-baldwin/the-pleistocene-re-wilding-of-johnny-paycheck/paperback/product-21204148.html
http://www.lulu.com/shop/phillip-baldwin/the-pleistocene-re-wilding-of-johnny-paycheck/paperback/product-21204148.html

Willem Ligtenberg first started using R at Eindhoven University of Technology
for his master's thesis in biomedical engineering. At this time, he used R from Python
through Rpy. Although not a true computer scientist, Willem found himself attracted
to distributed computing (the bioinformatics field often requires this) by first using

a computer cluster of the Computational Biology group. Reading interesting articles
on GPGPU computing, he convinced his professor to buy a high-end graphics card
for initial experimentation.

Willem currently works as a bioinformatics/ statistics consultant at Open

Analytics and has a passion for speed enhancement through either Rcpp or
OpenCL. He developed the ROopencL package, which he first presented at UseR!
2011. The RopenCL package will be used later in this book. Willem also teaches
parallel computing in R (using both the GPU and CPU). Another interest of his is
in how to optimally use databases in workflows, and from this followed another R
package (Rango) that he presented at UseR! 2015. Rango allows R users to interact
with databases using S4 objects and abstracts differences between various database
backends, allowing users to focus on what they want to achieve.

Joseph McKavanagh is a divisional CTO in Kainos and is responsible for
technology strategy and leadership. He works with customers in the public and
private sectors to deliver and support high-impact digital transformation and
managed cloud and big data solutions. Joseph has delivered Digital Transformation
projects for central and regional UK governments and spent 18 months as a
transformation architect in Government Digital Service, helping to deliver the GDS
Exemplar programme. He has an LLB degree in law and accountancy and a master's
degree in computer science and applications, both from Queen's University, Belfast.

[vww .ebook3000.con}

http://www.ebook3000.org

www.PacktPub.com

eBooks, discount offers, and more

For support files and downloads related to your book, please visit www . PacktPub . com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www . PacktPub. com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

@ PACKT ©°

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content
* On demand and accessible via a web browser

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[vww.ebook3000.con)

http://www.ebook3000.org

Table of Contents

Preface \4
Chapter 1: Simple Parallelism with R 1
Aristotle's Number Puzzle 2
Solver implementation 2
Refining the solver 7
Measuring the execution time 8
Splitting the problem into multiple tasks 11
Executing multiple tasks with lapply() 13

The R parallel package 15
Using mclapply() 16
Options for mclapply() 19
Using parLapply() 21
Parallel load balancing 23
The segue package 25
Installing segue 26
Setting up your AWS account 27
Running segue 29
Options for createCluster() 30

AWS console views 32
Solving Aristotle's Number Puzzle 34
Analyzing the results 36
Summary 37
Chapter 2: Introduction to Message Passing 39
Setting up your system environment for MPI 40
Choice of R packages for MPI 40
Choice of MPI subsystems 41
Installing OpenMPI 41

[il

Table of Contents

The MPI standard 42
The MPI universe 43
Installing Rmpi 43
Installing pbdMPI 45

The MPI API 46
Point-to-point blocking communications 48

MPI intracommunicators 57
Point-to-point non-blocking communications 63
Collective communications 68

Summary 76

Chapter 3: Advanced Message Passing 77

Grid parallelism 77
Creating the grid cluster 80
Boundary data exchange 82
The median filter 86
Distributing the image as tiles 87
Median filter grid program 89

Performance 97

Inspecting and managing communications 98

Variants on lapply() 102
parLapply() with Rmpi 102

Summary 104

Chapter 4: Developing SPRINT, an MPI-Based R Package
for Supercomputers 105

About ARCHER 106

Calling MPI code from R 107
MPI Hello World 108
Calling C from R 109

Modifying C code to make it callable from R 109

Compiling MPI code into an R shared object 111

Calling the MPI Hello World example from R 111

Building an MPI R package — SPRINT 112
The Simple Parallel R Interface (SPRINT) package 113

Using a prebuilt SPRINT routine in an R script 113
The architecture of the SPRINT package 114

Adding a new function to the SPRINT package 116
Downloading the SPRINT source code 116
Creating a stub in R — phello.R 117
Adding the interface function — phello.c 118
Adding the implementation function — hello.c 120

Lii]

[vww .ebook3000.con}

http://www.ebook3000.org

Table of Contents

Connecting the stub, interface, and implementation 121
functions.h 122
functions.c 122
Namespace 123
Makefile 124
Compiling and running the SPRINT code 125
Genomics analysis case study 128
Genomics 129
Genomic data 131
Genomics with a supercomputer 132
The goal 133
The ARCHER supercomputer 133
Random Forests 137
Data for the genomics analysis case study 139
Random Forests performance on ARCHER 140
Rank product 145
Rank product performance on ARCHER 147
Conclusions 151
Summary 151
Chapter 5: The Supercomputer in Your Laptop 153
OpenCL 154
Querying the OpenCL capabilities of your system 156

The ROpenCL package 163

The ROpenCL programming model 164
A simple vector addition example 171
The kernel function 173

Distance matrix example 178
Index of Multiple Deprivation 179
GPU out-of-core memory processing 182

Summary 187

Chapter 6: The Art of Parallel Programming 189

Understanding parallel efficiency 190
SpeedUp 190
Amdahl's law 191
To parallelize or not to parallelize 193

Numerical approximation 195

Random numbers 198

Deadlock 200
Avoiding deadlock 202

Reducing the parallel overhead 203

Adaptive load balancing 207
The task farm 207
Efficient grid processing 208

[iii]

Table of Contents

Three steps to successful parallelization 210
What does the future hold? 212
Hybrid parallelism 214
Summary 215
Index 217

[iv]

[vww.ebook3000.con)

http://www.ebook3000.org

Preface

We are in the midst of an information explosion. Everything in our lives is becoming
instrumented and connected in real-time with the Internet of Things, from our own
biology to the world's environment. By some measures, it is projected that by 2020,
world data will have grown by more than a factor of 10 from today to a staggering
44 Zettabytes —just one Zettabyte is the equivalent of 250 billion DVDs. In order to
process this volume and velocity of big data, we need to harness a vast amount of
compute, memory, and disk resources, and to do this, we need parallelism.

Despite its age, R —the open source statistical programming language, continues
to grow in popularity as one of the key cornerstone technologies to analyze data,
and is used by an ever-expanding community of, dare I say the currently in-vogue
designation of, "data scientists".

There are of course many other tools that a data scientist may deploy in taming

the beast of big data. You may also be a Python, SAS, SPSS, or MATLAB guru.
However, R, with its long open source heritage since 1997, remains pervasive, and
with the extraordinarily wide variety of additional CRAN-hosted plug-in library
packages that were developed over the intervening 20 years, it is highly capable of
almost all forms of data analysis, from small numeric matrices to very large symbolic
datasets, such as bio-molecular DNA. Indeed, I am tempted to go as far as to suggest
that R is becoming the de facto data science scripting language, which is capable of
orchestrating highly complex analytics pipelines that involve many different types
of data.

R, in itself, has always been a single-threaded implementation, and it is not
designed to exploit parallelism within its own language primitives. Instead, it relies
on specifically implemented external package libraries to achieve this for certain
accelerated functions and to enable the use of parallel processing frameworks. We
will focus on a select number of these that represent the best implementations that
are available today to develop parallel algorithms across a range of technologies.

[v]

Preface

In this book, we will cover many different aspects of parallelism, from Single Program
Multiple Data (SPMD) to Single Instruction Multiple Data (SIMD) vector processing,
including utilizing R's built-in multicore capabilities with its parallel package,
message passing using the Message Passing Interface (MPI) standard, and General
Purpose GPU (GPGPU)-based parallelism with OpenCL. We will also explore
different framework approaches to parallelism, from load balancing through task
farming to spatial processing with grids. We will touch on more general purpose
batch-data processing in the cloud with Hadoop and (as a bonus) the hot new tech

in cluster computing, Apache Spark, which is much better suited to real-time data
processing at scale.

We will even explore how to use a real bona fide multi-million pound supercomputer.
Yes, I know that you may not own one of these, but in this book, we'll show you what
its like to use one and how much performance parallelism can achieve. Who knows,
with your new found knowledge, maybe you can rock up at your local Supercomputer
Center and convince them to let you spin up some massively parallel computing!

All of the coding examples that are presented in this book are original work and have
been chosen partly so as not to duplicate the kind of example you might otherwise
encounter in other books of this nature. They are also chosen to hopefully engage
you, dear reader, with something a little bit different to the run-of-the-mill. We, the
authors, very much hope you enjoy the journey that you are about to undertake
through Mastering Parallel Programming in R.

What this book covers

Chapter 1, Simple Parallelism with R, starts our journey by quickly showing you
how to exploit the multicore processing capability of your own laptop using core
R's parallelized versions of lapply (). We also briefly reach out and touch the
immense computing capacity of the cloud through Amazon Web Services.

Chapter 2, Introduction to Message Passing, covers the standard Message Passing
Interface (MPI), which is a key technology that implements advanced parallel
algorithms. In this chapter, you will learn how to use two different R MPI packages,
Rmpi and pbdMPI, together with the OpenMPI implementation of the underlying
communications subsystem.

Chapter 3, Advanced Message Passing, will complete our tour of MPI by developing a
detailed rmpi worked example, illustrating the use of nonblocking communications
and localized patterns of interprocess message exchange, which is required to
implement spatial Grid parallelism.

[vil

[vww .ebook3000.con}

http://www.ebook3000.org

Preface

Chapter 4, Developing SPRINT, an MPI-based R Package for Supercomputers, introduces
you to the experience of running parallel code on a real supercomputer. This chapter
also provides a detailed exposition of developing SPRINT, an R package written in

C for parallel computation that can run on laptops, as well as supercomputers. We'll
also show you how you can extend this package with your own natively-coded high
performance parallel algorithms and make them accessible to R.

Chapter 5, The Supercomputer in Your Laptop, will show how to unlock the massive
parallel and vector processing capability of the Graphics Processing Unit (GPU)
inside your very own laptop direct from R using the RopencL package, an R wrapper
for the Open Computing Language (OpenCL).

Chapter 6, The Art of Parallel Programming, concludes this book by providing the basic
science behind parallel programming and its performance, the art of best practice by
highlighting a number of potential pitfalls you'll want to avoid, and taking a glimpse
into the future of parallel computing systems.

Online Chapter, Apache Spa-R-k, is an introduction to Apache Spark, which now
succeeds Hadoop as the most popular distributed memory big data parallel
computing environment. You will learn how to setup and install a Spark cluster
and how to utilize Spark's own DataFrame abstraction direct from R. This chapter
can be downloaded from Packt's website at https://www.packtpub.com/sites/
default/files/downloads/B03974 BonusChapter.pdf

You don't need to read this book in order from beginning to end, although you

will find this easiest with respect to the introduction of concepts, and the increasing
technical depth of programming knowledge applied. For the most part, each chapter
has been written to be understandable when read on it's own.

What you need for this book

To run the code in this book, you will require a multicore modern specification
laptop or desktop computer. You will also require a decent bandwidth Internet
connection to download R and the various R code libraries from CRAN, the main
online repository for R packages.

The examples in this book have largely been developed using RStudio version
0.98.1062, with the 64-bit R version 3.1.0 (CRAN distribution), running on a mid-2014
generation Apple MacBook Pro OS X 10.9.4, with a 2.6 GHz Intel Core i5 processor
and 16 GB of memory. However, all of these examples should also work with the
latest version of R.

[vii]

https://www.packtpub.com/sites/default/files/downloads/B03974_BonusChapter.pdf
https://www.packtpub.com/sites/default/files/downloads/B03974_BonusChapter.pdf

Preface

Some of the examples in this book will not be able to run with Microsoft Windows,
but they should run without problem on variants of Linux. Each chapter will detail
any required additional external libraries or runtime system requirements, and
provide you with information on how to access and install them. This book's errata
section will highlight any issues discovered post publication.

Who this book is for

This book is for the intermediate to advanced-level R developer who wants to
understand how to harness the power of parallel computing to perform long
running computations and analyze large quantities of data. You will require a
reasonable knowledge and understanding of R programming. You should be a
sufficiently capable programmer so that you can read and understand lower-level
languages, such as C/C++, and be familiar with the process of code compilation.
You may consider yourself to be the new breed of data scientist—a skilled
programmer as well as a mathematician.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"You'll note the use of mpi.cart.create (), which constructs a Cartesian rank/ grid
mapping from a group of existing MPI processes."

A block of code is set as follows:

Worker makeSquareGrid <- function (comm,dim) {
grid <- 1000 + dim # assign comm handle for this size grid
dims <- c(dim,dim) # dimensions are 2D, size: dim X dim
periods <- c(FALSE,FALSE) # no wraparound at outermost edges
if (mpi.cart.create(commold=comm,dims, periods, commcart=grid))

{

return (grid)

}

return(-1) # An MPI error occurred

[viii]

[vww .ebook3000.con}

http://www.ebook3000.org

Preface

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

Namespace file for sprint
useDynLib (sprint)

export (phello)
export (ptest)
export (pcor)

Any command-line input or output is written as follows:

$ mpicc -o mpihello.o mpihello.c

$ mpiexec -n 4 ./mpihello.o
New terms and important words are shown in bold.

& Warnings or important notes appear in a box like this.
i

a1

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[ix]

www.packtpub.com/authors

Preface

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NS Gk

You can also download the code files by clicking on the Code Files button on

the book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

* WIinRAR / 7-Zip for Windows
* Zipeg / iZip / UnRarX for Mac
» 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.
com/PacktPublishing/repository-name. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http: //www.packtpub.
com/sites/default/files/downloads/MasteringParallelProgrammingwithR
ColorImages.pdf.

[x]

[vww .ebook3000.con}

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/repository-name
https://github.com/PacktPublishing/repository-name
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/MasteringParallelProgrammingwithR_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringParallelProgrammingwithR_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringParallelProgrammingwithR_ColorImages.pdf
http://www.ebook3000.org

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[xi]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[vww.ebook3000.con)

http://www.ebook3000.org

Simple Parallelism with R

In this chapter, you will start your journey toward mastery of parallelism in R by
quickly learning to exploit the multicore processing capability of your own laptop
and travel onward to our first look at how you can most simply exploit the vast
computing capacity of the cloud.

You will learn about 1apply () and its variations supported by R's core parallel
package as well as about the segue package that enables us to utilize Amazon Web
Services (AWS) and the Elastic Map Reduce (EMR) service. For the latter, you will
need to have an account set up with AWS.

Our worked example throughout this chapter will be an iterative solver for an
ancient puzzle known as Aristotle's Number Puzzle. Hopefully, this will be
something new to you and pique your interest. It has been specifically chosen

to demonstrate an important issue that can arise when running code in parallel,
namely imbalanced computation. It will also serve to help develop our performance
benchmarking skills —an important consideration in parallelism —measuring overall
computational effectiveness.

The examples in this chapter are developed using RStudio version 0.98.1062 with the
64-bit R version 3.1.0 (CRAN distribution) running on a mid-2014 generation Apple
MacBook Pro OS X 10.9.4 with a 2.6 GHz Intel Core i5 processor and 16 GB memory.
Some of the examples in this chapter will not be able to run with Microsoft Windows,
but should run without problem on all variants of Linux.

[11]

Simple Parallelism with R

Aristotle's Number Puzzle

The puzzle we will solve is known as Aristotle's Number Puzzle, and this is a magic
hexagon. The puzzle requires us to place 19 tiles, numbered 1 to 19, on a hexagonal
grid such that each horizontal row and each diagonal across the board adds up to 38
when summing each of the numbers on each of the tiles in the corresponding line.
The following, on the left-hand side, is a pictorial representation of the unsolved
puzzle showing the hexagonal grid layout of the board with the tiles placed in order
from the upper-left to the lower-right. Next to this, a partial solution to the puzzle is
shown, where the two rows (starting with the tiles 16 and 11) and the four diagonals
all add up to 38, with empty board cells in the positions 1, 3, 8, 10, 12, 17, and 19 and
seven remaining unplaced tiles, 2, 8, 9, 12, 13, 15, and 17:

Arrange the Only a partial
tiles so each solution; each
line sums to

line sums to

The mathematically minded among you will already have noticed that the
number of possible tile layouts is the factorial 19; that is, there is a total of
121,645,100,408,832,000 unique combinations (ignoring rotational and mirror
symmetry). Even when utilizing a modern microprocessor, it will clearly take a
considerable period of time to find which of these 121 quadrillion combinations
constitute a valid solution.

The algorithm we will use to solve the puzzle is a depth-first iterative search,
allowing us to trade off limited memory for compute cycles; we could not feasibly
store every possible board configuration without incurring huge expense.

Solver implementation

Let's start our implementation by considering how to represent the board. The
simplest way is to use a one-dimensional R vector of length 19, where the index i of
the vector represents the corresponding i cell on the board. Where a tile is not yet
placed, the value of the board vector's "cell" will be the numeric 0.

[2]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 1

empty board <- ¢(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
partial_board <- ¢(0,19,0,16,3,1,18,0,5,0,4,0,11,7,6,14,0,10,0)

Next, let's define a function to evaluate whether the layout of tiles on the board
represents a valid solution. As part of this, we need to specify the various
combinations of board cells or "lines" that must add up to the target value 38, as

follows:
all lines <- list(
c(1,2,3), c(1,4,8), c(1,5,10,15,19),
c(2,5,9,13), c(2,6,11,16), c(3,7,12),
c(3,6,10,14,17), c(4,5,6,7), c(4,9,14,18),
c(7,11,15,18), c(8,9,10,11,12), c(8,13,17),
c(12,16,19), c(13,14,15,16), c(17,18,19)

)

evaluateBoard <- function (board)

{

for (line in all lines) {

}

total <- 0
for (cell in line) {
total <- total + board[celll]

}

if (total != 38) return (FALSE)

return (TRUE) # We have a winner!

}

In order to implement the depth-first solver, we need to manage the list of remaining
tiles for the next tile placement. For this, we will utilize a variation on a simple stack
by providing push and pop functions for both the first and last item within a vector.
To make this distinct, we will implement it as a class and call it sequence.

Here is a simple S3-style class sequence that implements a double-ended head/tail
stack by internally maintaining the stack's state within a vector:

sequence <- function/()

{

sequence <- new.env () # Shared state for class instance
sequence$.vec <- vector() # Internal state of the stack
sequences$getVector <- function() return (.vec)
sequences$pushHead <- function(val) .vec <<- c(val, .vec)
sequences$pushTail <- function(val) .vec <<- c(.vec, val)
sequence$popHead <- function() ({

val <- .vec[1]

.vec <<- .vec[-1] # Update must apply to shared state

return (val)

[31]

Simple Parallelism with R

}

sequence$popTail <- function() {
val <- .vec[length(.vec)]
.vec <<- .vec[-length(.vec)]
return (val)
}
sequences$size <- function() return(length(.vec))
Each sequence method needs to use the shared state of the
class instance, rather than its own function environment

environment (sequences$size) <- as.environment (sequence
environment (sequences$popHead) <- as.environment (sequence
environment (sequences$popTail) <- as.environment (sequence

environment (sequences$pushHead) <- as.environment (sequence
environment (sequences$pushTail) <- as.environment (sequence

)
)
)
)
)
)

environment (sequences$getVector) <- as.environment (sequence
class (sequence) <- "sequence"
return (sequence)

}

The implementation of the sequence should be easy to understand from some
example usage, as in the following;:

> s <- sequence() ## Create an instance s of sequence
> s$pushHead(c(1:5)) ## Initialize s with numbers 1 to 5

> s$getVector()
[1] 1 2 3 4 5

> s$popHead() ## Take the first element from s

[1] 1

> s$getVector () ## The number 1 has been removed from s
[1] 2 3 45

> s$pushTail (1) ## Add number 1 as the last element in s

> s$getVector()
[1] 2 3 451

We are almost there. Here is the implementation of the placeTiles () function to
perform the depth-first search:

01 placeTiles <- function(cells,board,tilesRemaining)

02 {

03 for (cell in cells) {

04 if (board[cell] != 0) next # Skip cell if not empty
05 maxTries <- tilesRemaining$size ()

06 for (t in 1:maxTries)

[4]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 1

07 board[cell] = tilesRemaining$popHead ()

08 retval <- placeTiles(cells,board,tilesRemaining)
09 if (retvals$Success) return(retval)

10 tilesRemaining$pushTail (board[celll])

11 }

12 board[cell] = 0 # Mark this cell as empty

13 # All available tiles for this cell tried without success
14 return(list (Success = FALSE, Board = board))
15}

16 success <- evaluateBoard (board)

17 return(list (Success = success, Board = board))

18 }

The function exploits recursion to place each subsequent tile on the next available cell.
As there are a maximum of 19 tiles to place, recursion will descend to a maximum of
19 levels (Line 08). The recursion will bottom out when no tiles remain to be placed on
the board, and the board will then be evaluated (Line 16). A successful evaluation will
immediately unroll the recursion stack (Line 09), propagating the final completed state
of the board to the caller (Line 17). An unsuccessful evaluation will recurse one step
back up the calling stack and cause the next remaining tile to be tried instead. Once all
the tiles are exhausted for a given cell, the recursion will unroll to the previous cell, the
next tile in the sequence will be tried, the recursion will progress again, and so on.

Usefully, the placeTiles () function enables us to test a partial solution, so let's
try out the partial tile placement from the beginning of this chapter. Execute the
following code:

> board <- ¢(0,19,0,16,3,1,18,0,5,0,4,0,11,7,6,14,0,10,0)

> tiles <- sequence()

> tiles$pushHead(c(2,8,9,12,13,15,17))

> cells <- ¢(1,3,8,10,12,17,19)

> placeTiles(cells,board, tiles)

$Success

[1] FALSE

$Board

[1] 019 016 3 118 0 5 0O 4 011 7 6 14 010 O

[51]

Simple Parallelism with R

Downloading the example code

You can download the example code files for this book
from your account at http: //www.packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the files
e-mailed directly to you.

You can download the code files by following these steps:

* Login or register to our website using your e-mail
address and password.

* Hover the mouse pointer on the SUPPORT tab at the
top.

* Click on Code Downloads & Errata.

* Enter the name of the book in the Search box.

* Select the book for which you're looking to download
the code files.

* Choose from the drop-down menu where you
purchased this book from.

e (lick on Code Download.

You can also download the code files by clicking on the Code
Files button on the book's webpage at the Packt Publishing
website. This page can be accessed by entering the book's name
in the Search box. Please note that you need to be logged in to
your Packt account.

Once the file is downloaded, please make sure that you unzip
or extract the folder using the latest version of:

* WinRAR / 7-Zip for Windows

* Zipeg / iZip / UnRarX for Mac

» 7-Zip / PeaZip for Linux
The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/repository-
name. We also have other code bundles from our rich catalog

of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Unfortunately, our partial solution does not yield a complete solution.

We'll clearly have to try a lot harder.

[6]

[vww .ebook3000.con}

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/repository-name
https://github.com/PacktPublishing/repository-name
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.ebook3000.org

Chapter 1

Refining the solver

Before we jump into parallelizing our solver, let's first examine the efficiency of our
current serial implementation. With the existing placeTiles () implementation,
the tiles are laid until the board is complete, and then it is evaluated. The partial
solution we tested previously, with seven cells unassigned, required 7! = 5,040 calls
to evaluateBoard () and a total of 13,699 tile placements.

The most obvious refinement we can make is to test each tile as we place it and check
whether the partial solution up to this point is correct rather than waiting until all
the tiles are placed. Intuitively, this should significantly reduce the number of tile
layouts that we have to explore. Let's implement this change and then compare the
difference in performance so that we understand the real benefit from doing this
extra implementation work:

cell lines <- list(

list(c¢(1,2,3), c(1,4,8), c(1,5,10,15,19)), #Cell 1
. # Cell lines 2 to 18 removed for brevity
list(¢(12,16,19), <¢(17,18,19), c(1,5,10,15,19)) #Cell 19

)
evaluateCell <- function (board,cellplaced)
{
for (lines in cell lines[cellplaced]) ({
for (line in lines) {
total <- 0
checkExact <- TRUE
for (cell in line) {
if (board[cell] == 0) checkExact <- FALSE
else total <- total + board[cell]
}
if ((checkExact && (total != 38)) || total > 38)
return (FALSE)
}
}

return (TRUE)

}

For efficiency, the evaluatecell () function determines which lines need to be
checked based on the cell that is just placed by performing direct lookup against

cell lines. The cell lines data structure is easily compiled from all_lines (you
could even write some simple code to generate this). Each cell on the board requires
three specific lines to be tested. As any given line being tested may not be filled with
tiles, evaluatecCell () includes a check to ensure that it only applies the 38 sum test
when a line is complete. For a partial line, a check is made to ensure that the sum
does not exceed 38.

[71

Simple Parallelism with R

We can now augment placeTiles () to call evaluateCell () as follows:

01 placeTiles <- function(cells,board,tilesRemaining)

06 for (t in 1:maxTries)

07 board([cell] = tilesRemaining$popHead ()

++ if (evaluateCell (board, cell)) {

08 retval <- placeTiles(cells,board,tilesRemaining)
09 if (retval$Success) return(retval)

++ 3}

10 tilesRemaining$pushTail (board[cell])

11 }

Measuring the execution time

Before we apply this change, we need to first benchmark the current placeTiles ()
function so that we can determine the resulting performance improvement. To

do this, we'll introduce a simple timing function, teval (), that will enable us to
measure accurately how much work the processor does when executing a given R
function. Take a look at the following:

teval <- function(...) {
gc(); # Perform a garbage collection before timing R function
start <- proc.time ()
result <- eval(...)
finish <- proc.time ()
return (list (Duration=finish-start, Result=result))

}

The teval () function makes use of an internal system function, proc. time (), to
record the current consumed user and system cycles as well as the wall clock time
for the R process [unfortunately, this information is not available when R is running
on Windows]. It captures this state both before and after the R expression being
measured is evaluated and computes the overall duration. To help ensure that
there is a level of consistency in timing, a preemptive garbage collection is invoked,
though it should be noted that this does not preclude R from performing a garbage
collection at any further point during the timing period.

So, let's run teval () on the existing placeTiles () as follows:

> teval (placeTiles(cells,board, tiles))
$Duration

user system elapsed

0.421 0.005 0.519
$Result

[8]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 1

Now, let's make the changes in placeTiles () to call evaluatecCell () and run it
again via the following code:

> teval (placeTiles(cells,board, tiles))
$Duration

user system elapsed

0.002 0.000 0.002
$Result

This is a nice result! This one change has significantly reduced our execution time
by a factor of 200. Obviously, your own absolute timings may vary based on the
machine you use.

Benchmarking code

For true comparative benchmarking, we should run tests multiple
times and from a full system startup for each run to ensure there are no
caching effects or system resource contention issues taking place that
~ might skew our results. For our specific simple example code, which
Q does not perform file I/O or network communications, handle user
input, or use large amounts of memory, we should not encounter these
issues. Such issues will typically be indicated by significant variation
in time taken over multiple runs, a high percentage of system time or
the elapsed time being substantively greater than the user + system
time.

This kind of performance profiling and enhancement is important as later in this
chapter, we will pay directly for our CPU cycles in the cloud; therefore, we want our
code to be as cost effective as possible.

Instrumenting code

For a little deeper understanding of the behavior of our code, such as how many
times a function is called during program execution, we either need to add explicit
instrumentation, such as counters and print statements, or use external tools such
as Rprof. For now, though, we will take a quick look at how we can apply the base
R function trace () to provide a generic mechanism to profile the number of times a
function is called, as follows:

profileFn <- function(fn) ## Turn on tracing for "fn"

{

assign ("profile.counter",0,envir=globalenv ())
trace (fn, quote (assign ("profile.counter",

[o]

Simple Parallelism with R

get ("profile.counter",envir=globalenv()) + 1,
envir=globalenv())), print=FALSE)

}

profileFnStats <- function(fn) ## Get collected stats
{
count <- get ("profile.counter",envir=globalenv())
return(list (Function=fn, Count=count))

}
unprofileFn <- function (fn) ## Turn off tracing and tidy up
{

remove (list="profile.counter",envir=globalenv())

untrace (fn)

}

The trace () function enables us to execute a piece of code each time the function
being traced is called. We will exploit this to update a specific counter we create
(profile.counter) in the global environment to track each invocation.

trace ()

This function is only available when the tracing is explicitly compiled
* into Ritself. If you are using the CRAN distribution of R for either Mac
%j%»\ OS X or Microsoft Windows, then this facility will be turned on. Tracing
’ introduces a modicum of overhead even when not being used directly
within code and therefore tends not to be compiled into R production
environments.

We can demonstrate profileFn () working in our running example as follows:

> profile.counter

Error: object 'profile.counter' not found
> profileFn("evaluateCell")

[1] "evaluateCell™

> profile.counter

[1]1 o

> placeTiles(cells,board, tiles)

> profileFnStats("evaluateCell")
$Function
[1] "evaluateCell™

$Count

[10]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 1

[1] 59
> unprofileFn("evaluateCell")
> profile.counter

Error: object 'profile.counter' not found

What this result shows is that evaluatecell () is called 59 times as compared to our
previous evaluateBoard () function, which was called 5,096 times. This accounts
for the significantly reduced runtime and combinatorial search space that must be
explored.

Splitting the problem into multiple tasks

Parallelism relies on being able to split a problem into separate units of work.

Trivial —or as it is sometimes referred to, naive parallelism —treats each separate
unit of work as entirely independent of one another. Under this scheme, while a unit
of work, or task, is being processed, there is no requirement for the computation

to interact with or share information with other tasks being computed, either now,
previously, or subsequently.

For our number puzzle, an obvious approach would be to split the problem into 19
separate tasks, where each task is a different-numbered tile placed at cell 1 on the
board, and the task is to explore the search space to find a solution stemming from
the single tile starting position. However, this only gives us a maximum parallelism
of 19, meaning we can explore our search space a maximum of 19 times faster than
in serial. We also need to consider our overall efficiency. Does each of the starting
positions result in the same amount of required computation? In short, no; as we will
use a depth-first algorithm in which a correct solution found will immediately end
the task in contrast to an incorrect starting position that will likely result in a much
larger, variable, and inevitably fruitless search space being explored. Our tasks are
therefore not balanced and will require differing amounts of computational effort to
complete. We also cannot predict which of the tasks will take longer to compute as
we do not know which starting position will lead to the correct solution a priori.

[11]

Simple Parallelism with R

Imbalanced computation
This type of scenario is typical of a whole host of real-world problems
where we search for an optimal or near-optimal solution in a complex
search space —for example, finding the most efficient route and means
. of travel around a set of destinations or planning the most efficient use
% of human and building resources when timetabling a set of activities.
~ Imbalanced computation can be a significant problem where we have
a fully committed compute resource and are effectively waiting for the
slowest task to be performed before the overall computation can complete.
This reduces our parallel speed-up in comparison to running in serial, and
it may also mean that the compute resource we are paying for spends a
significant period of time idle rather than doing useful work.

To increase our overall efficiency and opportunity for parallelism, we will split the
problem into a larger number of smaller computational tasks, and we will exploit a
particular feature of the puzzle to significantly reduce our overall search space.

We will generate the starting triple of tiles for the first (top) line of the board, cells
1 to 3. We might expect that this will give us 19x18x17 = 5,814 tile combinations.
However, only a subset of these tile combinations will sum to 38; 1+2+3 and
17+18+19 clearly are not valid. We can also filter out combinations that are a mirror
image; for example, for the first line of the board, 1+18+19 will yield an equivalent
search space to 19+18+1, so we only need to explore one of them.

Here is the code for generateTriples (). You will notice that we are making use of
a 6-character string representation of a tile-triple to simplify the mirror image test,
and it also happens to be a reasonably compact and efficient implementation:

generateTriples <- function()
{
triples <- 1list()
for (x in 1:19) {
for (y in 1:19) {
if (y == x) next
(z in 1:19) {
if (z == x || z ==y || x+y+z != 38) next
mirror <- FALSE
reversed <- sprintf ("$02d%02d%024d",z,y,x)
for (t in triples) ({

for

if (reversed == t)
mirror <- TRUE
break

[12]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 1

if (!mirror) ({
triples[length(triples) +1] <-
sprintf ("%$02d%02d%024d",x,Vy, 2)
}
}
}
}

return (triples)

}

If we run this, we will generate just 90 unique triples, a significant saving over 5,814
starting positions:

> teval (generateTriples())
$Duration
user system elapsed
0.025 0.001 0.105
$Result[[1]]
[1] "011819"

$Result[[90]]
[1] "180119"

Executing multiple tasks with lapply()

Now that we have an efficiently defined set of board starting positions, we can look
at how we can manage the set of tasks for distributed computation. Our starting
point will be lapply () as this enables us to test out our task execution and formulate
it into a program structure, for which we can do a simple drop-in replacement to run
in parallel.

The lapply () function takes two arguments, the first is a list of objects that act as
input to a user-defined function, and the second is the user-defined function to be
called, once for each separate input object; it will return the collection of results from
each function invocation as a single list. We will repackage our solver implementation
to make it simpler to use with lapply () by wrapping up the various functions and
data structures we developed thus far in an overall solver () function, as follows (the
complete source code for the solver is available on the book's website):

solver <- function(triple)

{

all lines <- list(..
cell lines <- list(..

[13]

Simple Parallelism with R

sequence <- function(..
evaluateBoard <- function(..
evaluateCell <- function(..
placeTiles <- function(..
teval <- function(..

The main body of the solver

)

)

tile3 <- as.integer(substr(triple,5,6))

board <- c(tilel,tile2,tile3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

cells <- c(4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)

tiles <- sequence ()

for (t in 1:19) {
if (t == tilel || t == tile2 || t == tile3) next
tilesS$pushHead (t)

tilel <- as.integer(substr(triple,1,2)
)

tile2 <- as.integer(substr(triple, 3,4

}

result <- teval(placeTiles(cells,board, tiles))
return(list (Triple = triple, Result = result$Result,
Duration= result$Duration))

}
Let's run our solver with a selection of four of the tile-triples:

> tri <- generateTriples()
> tasks <- list(tri[[1]],tri[[21]],tri[[41]],trill[61]1])
> teval (lapply(tasks,solver))
$Duration ## Overall
user system elapsed
171.934 0.216 172.257
$Result[[1]] $Duration ## Triple "011819"
user system elapsed
1.113 0.001 1.114
$Result[[2]] $Duration ## Triple "061517"
user system elapsed
39.536 0.054 39.615
$Result[[3]] $Duration ## Triple "091019"
user system elapsed
65.541 0.089 65.689
$Result[[4]] $Duration ## Triple "111215"
user system elapsed
65.609 0.072 65.704

[14]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 1

The preceding output has been trimmed and commented for brevity and clarity. The
key thing to note is that there is significant variation in the time (the elapsed time) it
takes on my laptop to run through the search space for each of the four starting tile-
triples, none of which happen to result in a solution to the puzzle. We can (perhaps)
project from this that it will take at least 90 minutes to run through the complete set
of triples if running in serial. However, we can solve the puzzle much faster if we
run our code in parallel; so, without further ado....

The R parallel package

The R parallel package is now part of the core distribution of R. It includes a
number of different mechanisms to enable you to exploit parallelism utilizing the
multiple cores in your processor(s) as well as compute the resources distributed
across a network as a cluster of machines. However, as our theme in this chapter is
one of simplicity, we will stick to making the most of the resources available on the
machine on which you are running R.

The first thing you need to do is to enable the parallelism package. You can either
just use R's 1ibrary () function to load it, or if you are using RStudio, you can just
tick the corresponding entry in the User Library list in the Packages tab. The second
thing we need to do is determine just how much parallelism we can utilize by calling
the parallel package function detectCores (), as follows:

> library("parallel")
> detectCores|()

[1] 4

As we can immediately note, on my MacBook device, I have four cores available
across which I can run R programs in parallel. It's easy to verify this using Mac's
Activity Monitor app and selecting the CPU History option from the Window
menu. You should see something similar to the following, with one timeline graph
per core:

[15]

Simple Parallelism with R

=] O CPU History

The green elements of the plotted bars indicate the proportion of CPU spent in user
code, and the red elements indicate the proportion of time spent in system code. You
can vary the frequency of graph update to a maximum of once a second. A similar
multicore CPU history is available in Microsoft Windows. It is useful to have this
type of view open when running code in parallel as you can immediately see when
your code is utilizing multiple cores. You can also see what other activity is taking
place on your machine that might impact your R code running in parallel.

Using mclapply()

The simplest mechanism to achieve parallelism in R is to use parallel's multicore
variant of lapply () called (logically) mclapply ().

[16]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 1

The mclapply() function is Unix-only

The mclapply () function is only available when you are running R
on Mac OS X or Linux or other variants of Unix. It is implemented with
the Unix fork () system call and therefore cannot be used on Microsoft
Windows; rest assured, we will come to a Microsoft Windows compatible
solution shortly. The Unix fork () system call operates by replicating
the currently running process (including its entire memory state, open
file descriptors, and other process resources, and importantly, from an R
perspective, any currently loaded libraries) as a set of independent child
processes that will each continue separate execution until they make the
exit () system call, at which point the parent process will collect their

exit state. Once all children terminate, the fork will be completed. All

L~ of this behavior is wrapped up inside the call to mclapply (). If you

view your running processes in Activity Monitor on Mac OS X, you will
see mc . cores number of spawned rsession processes with high CPU
utilization when mclapply () is called.

® 006 Activity Monitor (All Processes)

1© | 8 | & v" m Memory | Energy | Disk | Network |

| Process Name | %CPU w CPUTime Threads Idle WakeUps = PID User |
rsession 95.6 26:37.97 1 0 38883 simon
rsession 95.6 26:38.67 1 0 38881 simon
rsession 95.5 26:38.02 1 0 38884 simon
rsession 94.2 26:38.29 1 0 38882 simon
B8 Activity Monitor 4.1 46:30.57 4 3 7694 simon

- L

Similar to lapply (), the first argument is the list of function inputs corresponding
to independent tasks, and the second argument is the function to be executed for
each task. An optional argument, mc. cores, allows us to specify how many cores we
want to make use of —that is, the degree of parallelism we want to use. If when you
ran detectCores () and the result was 1, then mclapply () will resort to just calling
lapply () internally —that is, the computation will just run serially.

Let's initially run mclapply () through a small subset of the triple tile board starting
positions using the same set we tried previously with lapply () for comparison, as
follows:

> tri <- generateTriples()
> tasks <- list(tril[1]],tril[[21]1]1,tril[[41]],trill[61]])
> teval (mclapply(tasks, solver,mc.cores=detectCores()))
$Duration ## Overall

user system elapsed
146.412 0.433 87.621
S$Result[[1]] $Duration ## Triple "011819"

user system elapsed

[17]

Simple Parallelism with R

2.182 0.010 2.274

$Result[[2]] $Duration ## Triple "061517"
user system elapsed

58.686 0.108 59.391

$Result[[3]] $Duration ## Triple "091019"
user system elapsed

85.353 0.147 86.198

$Result[[4]] $Duration ## Triple "111215"
user system elapsed

86.604 0.152 87.498

The preceding output is again trimmed and commented for brevity and clarity. What
you should immediately notice is that the overall elapsed time for executing all of
the tasks is no greater than the length of time it took to compute the longest running
of the four tasks. Voila! We have managed to significantly reduce our running time
from 178 seconds running in serial to just 87 seconds by making simultaneous use

of all the four cores available. However, 87 seconds is only half of 178 seconds,

and you may have expected that we would have seen a four-times speedup over
running in serial. You may also notice that our individual runtime increased for each
individual task compared to running in serial —for example, for tile-triple 111215
from 65 seconds to 87 seconds. Part of this difference is due to the overhead from the
forking mechanism and the time it takes to spin up a new child process, apportion it
tasks, collect its results, and tear it down. The good news is that this overhead can be
amortized by having each parallel process compute a large number of tasks.

Another consideration is that my particular MacBook laptop uses an Intel Core i5
processor, which, in practice, is more the equivalent of 2 x 1.5 cores as it exploits
hyperthreading across two full processor cores to increase performance and

has certain limitations but is still treated by the operating system as four fully
independent cores. If I run the preceding example on two of my laptop cores, then
the overall runtime is just 107 seconds. Two times hyperthreading, therefore, gains
me an extra 20% on performance, which although good, is still much less than the
desired 50% performance improvement.

I'm sure at this point, if you haven't already done so, then you will have the urge to

run the solver in parallel across all 90 of the starting tile-triples and find the solution
to Aristotle's Number Puzzle, though you might want to take a long coffee break or

have lunch while it runs....

[18]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 1

Options for mclapply()

The mclapply () function has more capability than we have so far touched upon. The
following table summarizes these extended capabilities and briefly discusses when
they are most appropriately applied:

mclapply (X, FUN, ..., mc.preschedule=TRUE, mc.set.seed=TRUE,
mc.silent=FALSE, mc.cores=getOption("mc.cores",2L),
mc.cleanup=TRUE, mc.allow.recursive=TRUE)

returns: list of FUN results, where length(returns)=1length (X)

Option Description
[default=value]

X This is the list (or vector) of items that represent tasks to be computed by the user-
defined FUN function.

FUN This is the user-defined function to execute on each task. FUN will be called multiple
times: FUN (x, ...), where x is one of the remaining task items in X to be computed on
and ... matches the extra arguments passed into mclapply ().

Any extra non-mclapply arguments are passed directly into FUN on each task
execution.

mc.preschedule | If this is TRUE, then one child process is forked for each core requested, the tasks are
[default=TRUE] split as evenly as possible between cores in the "round-robin" order, and each child
executes its allotted set of tasks. For most parallel workloads, this is normally the best
choice.

If this is FALSE, then a new child process is forked afresh for each task executed. This
option is useful where tasks are relatively long running but have significant variance

in compute time as it enables a level of adaptive load balancing to be employed at the
cost of increased overhead of a fork per task, as opposed to a fork per core.

In either case, there will be a maximum of mc . cores child processes running at any
given time while mcapply () is executed.

mc.set.seed The behavior of this option is governed by the type of random number generator
[default=TRUE] (RNG) in use for the current R session.

If this is TRUE and an appropriate RNG is selected, then the child process will be

launched with a specific RNG sequence selected, such that a subsequent invocation of
mclapply () with the same arguments set will produce the same result (assuming the
computation makes use of the specific RNG). Otherwise, the behavior is as for FALSE.

If this is FALSE, then the child process inherits the random number state at the start
of its execution from the parent R session, and it is likely that it will be difficult to
generate reproducible results.

Having consistent random number generation for parallel code is a topic we will cover
in the online chapter.

mc.silent If this is TRUE, then any output generated to the standard output stream will be
[default=FALSE] suppressed (such as the print statement output).

If this is FALSE, then standard output is unaffected. However, also refer to the tip
following this table.

In either case, the output to the standard error stream is unaffected.

[19]

Simple Parallelism with R

Option
[default=value]

Description

mc.cores

[default=2
or if defined

getOption ("mec.

cores")]

This option sets the degree of parallelism to use and is arguably misnamed as it
actually controls the number of simultaneous processes running that execute tasks, and
this can well exceed the number of physical processor cores should you so desire. For
some types of parallel workload, such as a small number of long-running but variable
compute tasks where intermediate results can be generated (such as to the filesystem
or by messaging). This may even be helpful as it enables the operating system time
slicing of processes to ensure fair progress on a set of tasks. Of course, the downside is
increased overhead of constant switching between running processes.

Constraints on the upper bound for this are dependent on the operating system and
machine resource, but in general, it will be in the 100s as opposed to 1000s.

mc.cleanup

[default=TRUE]

If this is TRUE, then the child processes will forcibly be terminated by the parent.

If this is FALSE, then child processes may be left running after they complete the
mclapply () operation. The latter is potentially useful for post-compute debugging by
attaching to the still-running process.

In either case, mclapply () waits until all the children complete their tasks and then
returns the combined set of computed results.

mc.allow.
recursive

[default=TRUE]

If this is TRUE, then FUN can itself make calls to mclapply () or call code that also
invokes mclapply (). On the whole, such recursion is only used in exotic forms of
parallel programming.

If this is FALSE, then a recursive attempt to call mclapply () will simply result in an
internal call to 1apply (), enforcing serial execution within the child process.

Lets have a look at a tip:

The print() function in parallel

In Rstudio, the output is not directed to the screen when running in
parallel with mclapply (). If you wish to generate print messages or
other console output, you should run your program directly from the
command shell rather than from within RStudio. In general, the authors

of mclapply () donotrecommend running parallel R code from a GUI
console editor because it can cause a number of complications, with
multiple processes attempting to interact with the GUI. It is not suitable,
for example, to attempt to plot to the GUI's graphics display when running
in parallel. With our solver code, though, you should not experience any
specific issue. It's also worth noting that having multiple processes writing
messages to the same shared output stream can become very confusing

as messages can potentially be interleaved and unreadable, depending

on how the output stream buffers I/O. We will come back to the topic of
parallel I/O in a later chapter.

[20]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 1

Using parLapply()

The mclapply () function is closely related to the more generic parallel package
function parLapply (). The key difference is that we separately create a cluster

of parallel R processes using makeCluster (), and parLapply () then utilizes this
cluster when executing a function in parallel. There are two key advantages to

this approach. Firstly, with makeCluster (), we can create different underlying
implementations of a parallel processing pool, including a forked process cluster
(FORK) similar to that used internally within mclapply (), a socket-based cluster
(PSOCK) that will operate on Microsoft Windows as well as OS X and Linux, and a
message-passing-based cluster (MPI), whichever is best suited to our circumstances.
Secondly, the overhead of creating and configuring the cluster (we will visit the R
configuration of the cluster in a later chapter) is amortized as it can be continually
reused within our session.

The PSOCK and MPI types of cluster also enable R to utilize multiple machines within
a network and perform true distributed computing (the machines may also be running
different operating systems). However, for now, we will focus on the PSOCK cluster
type and how this can be utilized within a single machine context. We will explore
MPI in detail in Chapter 2, Introduction to MessagePassing, Chapter 3, Advanced Message
Passing, Chapter 4, Developing SPRINT an MPI-based Package for Supercomputers.

Let's jump right in; run the following;:

> cluster <- makeCluster (detectCores(), "PSOCK")

> tri <- generateTriples()
> tasks <- list(tril[1]],tril[[21]1]1,tril[[41]],trill[61]])
> teval (parLapply(cluster, tasks, solver))
$Duration ## Overall
user system elapsed
0.119 0.148 83.820
S$Result[[1]] $Duration ## Triple "011819"
user system elapsed
2.055 0.008 2.118
S$Result[[2]] $Duration ## Triple "061517"
user system elapsed
55.603 0.156 56.749
SResult[[3]]$Duration ## Triple "091019"

user system elapsed

[21]

Simple Parallelism with R

81.949 0.208 83.195
$Result[[4]] $Duration ## Triple "111215"
user system elapsed

82.591 0.196 83.788

> stopCluster (cluster) ## Shutdown the cluster (reap processes)

What you may immediately notice from the timing results generated before is that
the overall user time is recorded as negligible. This is because in the launching
process, your main R session (referred to as the master) does not perform any of the
computation, and all of the computation is carried out by the cluster. The master
merely has to send out the tasks to the cluster and wait for the results to return.

What's also particularly apparent when running a cluster in this mode is the
imbalance in computation across the processes in the cluster (referred to as workers).
As the following image demonstrates very clearly, each R worker process in the
cluster computed a single task in variable time, and the PID 41527 process sat idle
after just two seconds while the PID 41551 process was busy still computing its task
for a further 1m 20s:

Activity Monitor (My Processes)

Memory @ Energy | Disk = Network]

® 06
EENERD

Process Name % CPU CPU Time | Thr... & Idle Wake Ups PID User
R 0.0 2.25 1 0 41527 simon
R 0.0 1:22.98 1 0 41551 simon
R 0.0 1:22.33 1 0 41543 simon
R 0.0 55.94 1 0 41535 simon

While increasing the number of tasks for the cluster to perform and assuming a
random assignment of tasks to workers should increase efficiency, we still could
end up with a less-than optimal overall utilization of resource. What we need is
something more adaptive that hands out tasks dynamically to worker processes
whenever they are next free to do more work. Luckily for us, there is a variation on
parLapply () that does just this....

[22]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 1

Other parApply functions

There is a whole family of cluster functions to suit different types
of workload, such as processing R matrices in parallel. These are
summarized briefly here:

* parSapply (): This is the parallel variant of sapply () that
simplifies the return type (if possible) to a choice of vector,
matrix, or array.

* parCapply (), parRapply (): These are the parallel operations
that respectively apply to the columns and rows of a matrix.

* parLapplyLB (), parSapplyLB (): These are the load-
%‘i\ balancing versions of their similarly named cousins. Load
balancing is discussed in the next section.

* clusterApply (), clusterApplyLB (): These are generic
apply and load-balanced apply that are utilized by all the
parApply functions. These are discussed in the next section.

* clusterMap (): This is a parallel variant of mapply () /map ()
enabling a function to be invoked with separate parameter
values for each task, with an optional simplification of the return
type (such as sapply ()).

More information is available by typing help (clusterApply) inR.
Our focus in this chapter will remain on processing a list of tasks.

Parallel load balancing

The parLapplyLB () function is a load-balancing variant of parLapply (). Both
these functions are essentially lightweight wrappers that internally make use
of the directly callable parallel package functions clusterApplyLB () and
clusterApply (), respectively. However, it is important to understand that the
parLapply functions split the list of tasks into a number of equal-sized subsets
matching the number of workers in the cluster before invoking the associated
clusterapply function.

If you call clusterapply () directly, it will simply process the list of tasks presented
in blocks of cluster size —that is, the number of workers in the cluster. It does this

in a sequential order, so assuming there are four workers, then task 1 will go to
worker 1, task 2 to worker 2, task 3 to worker 3, and task 4 to worker 4 and then 5
will go to worker 1, task 6 to worker 2, and so on. However, it is worth noting that
clusterhpply () also waits between each block of tasks for all the tasks in this block
to complete before moving on to the next block.

[23]

Simple Parallelism with R

This has important performance implications, as we can note in the following code
snippet. In this example, we will use a particular subset (16) of the 90 tile-triples to
demonstrate the point:

> cluster <- makeCluster (4, "PSOCK")
> tri <- generateTriples()
> triples <- list(tril[[1]],tri[[20]],tri[[70]],tril[[85]11,
tril[2]],tril[[21]],txri[[71]],tri[[8611],
tril[3]1]1,tril[22]],txri[[72]],tri[[8711],
tril[4]1],tri[[23]],tri[[73]],tril([88]])
> teval (clusterApply(cluster, triples, solver))
$Duration
user system elapsed
0.613 0.778 449.873

> stopCluster (cluster)

Process Name % CPU CPU Time | Thr... & Idle Wake Ups PID User
R 0.0 6:34.15 1 0 42720 simon
R 0.0 3:34.99 1 0 42712 simon
R 0.0 8.36 1 0 42704 simon
R 0.0 7:26.65 1 0 42728 simon

What the preceding results illustrate is that because of the variation in compute time
per task, workers are left waiting for the longest task in a block to complete before
they are all assigned their next task to compute. If you watch the process utilization
during execution, you will see this behavior as the lightest loaded process, in
particular, briefly bursts into life at the start of each of the four blocks. This scenario
is particularly inefficient and can lead to significantly extended runtimes and, in
the worst case, potentially no particular advantage running in parallel compared

to running in serial. Notably, parLapply () avoids invoking this behavior because
it first splits the available tasks into exactly cluster-sized lapply () metatasks, and
clusterApply () only operates on a single block of tasks then. However, a poor
balance of work across this initial split will still affect the parLapply function's
overall performance.

By comparison, clusterApplyLB () distributes one task at a time per worker, and
whenever a worker completes its task, it immediately hands out the next task to the
first available worker. There is some extra overhead to manage this procedure due to
increased communication and workers still potentially queuing to wait on their next
task to be assigned if they collectively finish their previous task at the same point

in time. It is only, therefore, appropriate where there is considerable variation in
computation for each task, and most of the tasks take some nontrivial period of time
to compute.

[24]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 1

Using clusterApplyLB () in our running example leads to an improvement in
overall runtime (around 10%), with significantly improved utilization across all
worker processes, as follows:
> cluster <- makeCluster (4, "PSOCK")
> teval (clusterApplyLB (cluster, triples, solver))
$Duration
user system elapsed
0.586 0.841 421.859

> stopCluster (cluster)

Process Name % CPU CPU Time | Thr... A Idle Wake Ups PID User
R 0.0 6:51.47 1 0 43092 simon
R 0.0 6:14.22 1 0 43084 simon
R 0.0 6:12.69 1 0 43076 simon
R 0.0 5:14.08 1 0 43100 simon

The final point to highlight here is that the a priori balancing of a distributed
workload is the most efficient option when it is possible to do so. For our running
example, executing the selected 16 triples in the order they are listed in with
parLapply () results in the shortest overall runtime, beating clusterApplyLB () by
10 seconds and indicating that the load balancing equates to around a 3% overhead.
The order of the selected triples happens to align perfectly with the parLapply
function's packaging of tasks across the four-worker cluster. However, this is an
artificially constructed scenario, and for the full tile-triple variable task workload,
employing dynamic load balancing is the best option.

The segue package

Up until now, we looked at how we can employ parallelism in the context of our
own computer running R. However, our own machine can only take us so far in
terms of its resources. To access the essentially unlimited compute, we need to look
further afield, and to those of us mere mortals who don't have our own private data
center available, we need to look to the cloud. The market leader in providing cloud
services is Amazon with their AWS offering and of particular interest is their EMR
service based on Hadoop that provides reliable and scalable parallel compute.

[25]

Simple Parallelism with R

Luckily for us, there is a specific R package, segue, written by James "JD" Long

and designed to simplify the whole experience of setting up an AWS EMR Hadoop
cluster and utilizing it directly from an R session running on our own computer.
The segue package is most applicable to run large-scale simulations or optimization
problems — that is, problems that require large amounts of compute but only small
amounts of data—and hence is suitable for our puzzle solver.

Before we can start to make use of segue, there are a couple of prerequisites we need
to deal with: firstly, installing the segue package and its dependencies, and secondly,
ensuring that we have an appropriately set-up AWS account.

Warning: credit card required!

As we work through the segue example, it is important to note that
we will incur expenses. AWS is a paid service, and while there may
be some free AWS service offerings that you are entitled to and the
example we will run will only cost a few dollars, you need to be very
aware of any ongoing billing charges you may be incurring for the
various aspects of AWS that you use. It is critical that you are familiar
~ with the AWS console and how to navigate your way around your
Q account settings, your monthly billing statements, and, in particular,
EMR, Elastic Compute Cloud (EC2), and Simple Storage Service (S3)
(these are elements as they will all be invoked when running the segue
example in this chapter. For introductory information about these
services, refer to the following links:

http://docs.aws.amazon.com/awsconsolehelpdocs/latest/
gsg/getting-started.html

https://aws.amazon.com/elasticmapreduce/

So, with our bank manager duly alerted, let's get started.

Installing segue

The segue package is not currently available as a CRAN package; you need to
download it from the following location: https://code.google.com/p/segue/
downloads/detail?name=segue 0.05.tar.gz&can=2&g=

The segue package depends on two other packages: rgava and caTools. If these are
not already available within your R environment, you can install them directly from
CRAN. In RStudio, this can simply be done from the Packages tab by clicking on
the Install button. This will present you with a popup into which you can type the
names rdava and caTools to install.

[26]

[vww .ebook3000.con}

http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html
https://aws.amazon.com/elasticmapreduce/
https://code.google.com/p/segue/downloads/detail?name=segue_0.05.tar.gz&can=2&q=
https://code.google.com/p/segue/downloads/detail?name=segue_0.05.tar.gz&can=2&q=
http://www.ebook3000.org

Chapter 1

Once you download segue, you can install it in a similar manner in RStudio; the
Install Packages popup has an option by which you can switch from Repository
(CRAN, CRANextra) to Package Archive File and can then browse to the location of
your downloaded segue package and install it. Simply loading the segue library in
R will then load its dependencies as follows:

> library (segue)
Loading required package: rJava
Loading required package: caTools

Segue did not find your AWS credentials. Please run the
setCredentials () function.

The segue package interacts with AWS via its secure API, and this, in turn, is only
accessible through your own unique AWS credentials — that is, your AWS Access
Key ID and Secret Access Key. This pair of keys must be supplied to segue through
its setCredentials () function. In the next section, we will take a look at how to set
up your AWS account in order to obtain your root API keys.

Setting up your AWS account

Our assumption at this point is that you have successfully signed up for an AWS
account at http://aws.amazon.com, having provided your credit card details and
so on and gone through the e-mail verification procedure. If so, then the next step is
to obtain your AWS security credentials. When you are logged into the AWS console,
click on your name (in the upper-right corner of the screen) and select Security
Credentials from the drop-down menu.

« L https:/ /console.aws.amazon.com/elasticmapreduce /home?region=us-east-1 —
Services v Edit ~ Simon N. Virginia v Help ~
Elastic MapReduce v Cluster List EMR Help
My Account

Billing & Cost Management

Security Credentials
Filter: | All clusters s | Filter clusters 13 clusters (all loaded)

Name [s] Status Sign Out 1) Elapsed t

In the preceding screenshot, you can note that I have logged into the AWS console
(accessible at the web URL https://console.aws.amazon.com) and have
previously browsed to my EMR clusters (accessed via the Services drop-down menu
to the upper-left) within the Amazon US-East-1 region in North Virginia.

[27]

http://aws.amazon.com
https://console.aws.amazon.com

Simple Parallelism with R

This is the Amazon data center region used by segue to launch its EMR clusters.
Having selected Security Credentials from your account name's drop-down menu,
you will be taken to the following page:

= c https:/ /console.aws.amazon.com/iam/home?#security_credential

Simon~ Global + Help ~

Dashboard g :
« Your Security Credentials
Use this page to manage the credentials for your AWS account. To manage credentials for AWS Identity and Access
Management (IAM) users, use the IAM Console.
Groups
To learn more about the types of AWS credentials and how they're used, see AWS Security Credentials in AWS
Users General Reference
Roles

+ Password
Identity Providers

Multi-Factor Authentication (MFA)
Password Policy
Credential Report Access Keys (Access Key ID and Secret Access Key)

CloudFront Key Pairs

X.509 Certificates

+ + + + +

Account Identifiers

On this page, simply expand the Access Keys tab (click on +) and then click on the
revealed Create New Access Key button (note that this button will not be enabled if
you already have two existing sets of security keys still active). This will present you
with the following popup with new keys created, which you should immediately
download and keep safe:

Create Access Key x

Your access key (access key ID and secret access key) has been created successfully.

Download your key file now, which contains your new access key ID and secret access key. If you do not
download the key file now, you will not be able to retrieve your secret access key again.

To help protect your security, store your secret access key securely and do not share it.

» Show Access Key
Download Key File = Close

[28]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 1

Let's have a look at a tip:

Warning: Keep your credentials secure at all times!

You must keep your AWS access keys secure at all times. If at any
point you think that these keys may have become known to someone,
Ky you should immediately log in to your AWS account, access this
Q page, and disable your keys. It is a simple process to create a new key

pair, and in any case, Amazon's recommended security practice is to
periodically reset your keys. It hopefully goes without saying that you
should keep the R script where you make a call to the segue package
setCredentials () particularly secure within your own computer.

Running segue
The basic operation of segue follows a similar pattern and has similar names to the
parallel package's cluster functions we looked at in the previous section, namely:

> setCredentials("<Access Key ID>","<Secret Access Key>")

> cluster <- createCluster (numInstances=<number of EC2 nodes>)
> results <- emrlapply(cluster, tasks, FUN,

taskTimeout=<10 mins default>)

> stopCluster (cluster) ## Remember to save your bank balance!

A key thing to note is that as soon as the cluster is created, Amazon will charge you
in dollars until you successfully call stopCluster (), even if you never actually
invoke the emrlapply () parallel compute function.

The createcCluster () function has a large number of options (detailed in the
following table), but our main focus is the numInstances option as this determines
the degree of parallelism used in the underlying EMR Hadoop cluster — that is, the
number of independent EC2 compute nodes employed in the cluster. However, as
we are using Hadoop as the cloud cluster framework, one of the instances in the
cluster must act as the dedicated master process responsible for assigning tasks to
workers and marshaling the results of the parallel MapReduce operation. Therefore,
if we want to deploy a 15-way parallelism, then we would need to create a cluster
with 16 instances.

[29]

Simple Parallelism with R

Another key thing to note with emrlapply () is that you can optionally specify a
task timeout option (the default is 10 minutes). The Hadoop master process will
consider any task that does not deliver a result (or generate a file I/ O) within the
timeout period as having failed, the task execution will then be cancelled (and will
not be retried by another worker), and a null result will be generated for the task
and returned eventually by emrlapply (). If you have individual tasks (such as
simulation runs) that you know are likely to exceed the default timeout, then you
should set the timeout option to an appropriate higher value (the units are minutes).
Be aware though that you do want to avoid generating an infinitely running worker
process that will rapidly chew through your credit balance.

Options for createCluster()

The createCluster () function has a large number of options to select resources

for use and to configure the R environment running within AWS EMR Hadoop. The
following table summarizes these configuration options. Take a look at the following
code:

createCluster (numInstances=2, cranPackages=NULL,
customPackages=NULL, filesOnNodes=NULL,
rObjectsOnNodes=NULL, enableDebugging=FALSE,
instancesPerNode=NULL, masterInstanceType="ml.large",
slaveInstanceType="ml.large", location="us-east-1lc",
ec2KeyName=NULL, copy.image=FALSE, otherBootstrapActions=NULL,
sourcePackagesToInstall=NULL, masterBidPrice=NULL,
slaveBidPrice=NULL)

returns: reference object for the remote AWS EMR Hadoop cluster

Option [default=value] Description
numInstances This is the degree of parallelism (-1) to employ and equates to
[default=2] 1xMaster and (numInstances-1)xWorker EC2 nodes to have in the

cluster. The valid range is minimum=2 and (current) maximum=20.

cranPackages This option is a vector of the CRAN package names to be loaded

[default=NULL] into each node's R session during the cluster startup phase.

customPackages This option is a vector of locally held package filenames to be loaded
into each node's R session during the cluster startup phase. The
segue package will copy these package files from localhost up to
the remote AWS cluster using the AWS APL

filesOnNodes This option is a vector of local filenames, typically holding data to
be explicitly read in by the parallel function as part of its execution
during emrlapply (). Segue will copy these files from localhost
up to the remote AWS cluster using the AWS API. They will then
be located relative to the current working directory of the node and
accessible as ". /filename".

[default=NULL]

[default=NULL]

[30]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 1

Option [default=value]

Description

rObjectsOnNodes
[default=NULL]

This option is a list of named R objects to be attached to the R
sessions on each of the worker nodes. Take a look at help (attach)
in R for more information.

enableDebugging
[default=FALSE]

Turn on/off AWS debugging for this EMR cluster. If set to TRUE, it
will enable additional AWS log files to be generated by the nodes,
which can help in diagnosing particular problems. You will need to
be able to use the AWS console and potentially enable the SSH login
to the nodes in order to view the log files and carry out debugging.

instancesPerNode

[default=NULL]

This is the number of R session instances running per EC2 compute
node. The default is set by AWS. Currently, the default is one R
session per worker — that is, one per EC2 compute node.

masterInstanceType

[default="m1.large"]

This is the AWS EC2 instance type to be launched for the master
node. For segue to operate correctly, this has to be a 64-bit instance
type. Valid instance types are described at: link.

slaveInstanceType

[default="m1.large"]

This is the AWS EC2 instance type to be launched for the worker
node. For segue to operate correctly, this has to be a 64-bit instance
type. Valid instance types are described at: link

location

[default="us-east-1c"]

This is the AWS region and availability zone in which to run your
Hadoop cluster.

At the time of writing, this value cannot be changed successfully to
launch an EMR cluster in a different AWS region.

ec2KeyName

[default=NULL]

This is the EC2 key to be used to log in to the Master node in the
EMR cluster. The associated username will be "hadoop."

copy . image

[default=FALSE]

If this is TRUE, then the entire current local R session state will be
saved, copied, and then loaded into each of the worker's R sessions.
Use this with caution.

otherBootstrapActions

[default=NULL]

This option is a list of lists of bootstrap actions to be performed on
the cluster nodes.

sourcePackagesToInstall

[default=NULL]

This option is a vector of full file paths to source the packages to be
installed in each worker's R session in the cluster.

masterBidPrice

[default=NULL]

This is AWS' desired price to pay for a spot instance master node
if available. By default, a standard on-demand EC2 node of the
specified masterInstanceType parameter will be deployed and
charged for.

slaveBidPrice

[default=NULL]

This is AWS' desired price to pay for spot instance worker nodes
if available. By default, a standard on-demand EC2 node of the
specified slaveInstanceType parameter will be deployed and
charged for.

[31]

Simple Parallelism with R

AWS console views

In operation, segue has to perform a considerable amount of work to start up a
remotely hosted EMR cluster. This includes requesting EC2 resources and utilizing
S3 storage areas for the file transfer of the startup configuration and result collection.
It's useful to look at the resources that are configured by segue using the AWS API
through the AWS console that operates in the web browser. Using the AWS console
can be critical to sorting out any problems that occur during the provisioning and
running of the cluster. Ultimately, the AWS console is the last resort for releasing
resources (and therefore limiting further expense) whenever segue processes go
wrong, and occasionally, this does happen for many different reasons.

The following is the AWS console view of an EMR cluster that was created by segue.
It just finished the emrlapply () parallel compute phase (you can see the step it just
carried out , which took 34 minutes, in the center of the screen) and is now in the
Waiting state, ready for more tasks to be submitted. You can note, to the lower-left,
that it has one master and 15 core workers running as m1. large instances. You can
also see that segue carried out two bootstrap actions on the cluster when it was
created, installing the latest version of R and ensuring that all the R packages are up
to date. Bootstrap actions obviously create extra overhead in readying the cluster for
compute operations:

Simon ~ N. Virginia ~ Help ~

Elastic MapReduce ~ Cluster List EMR Help

View details Clone Terminate

Filter: | Al clusters s]r : 13 clusters (all loaded)

Name ([v] Status Creation time (UTC+1) « Elapsed time Normalized
instance hours
Lob-Sun Oct 19 20:50:11 ;
" -0 :u:’»t SN Qo 19 20 2 JTTPFOMAPYHF Waiting 2014-10-18 20:50 (UTC+1) 41 minutes B4
Summary Stops Add Step Bootstrap Actions

Master ec? 64-238-82 compute-

public DNS: 1.amazonan
Terminatio
n

Status Start time (UTC+1) Elapsed time Narms

2014-10-19 20:56 (UTC+1) 34 minutes

Note that it is from this screen that you can select an individual cluster and terminate
it manually, freeing up the resources and preventing further charges, by clicking on
the Terminate button.

[32]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 1

EMR resources are made up of EC2 instances, and the following view shows the
equivalent view of "Hardware" in terms of the individual EC2 running instances.
They are still running, clocking up AWS chargeable CPU hours, even though they
are idling and waiting for more tasks to be assigned. Although EMR makes use of
EC2 instances, you should never normally terminate an individual EC2 instance
within the EMR cluster from this screen; you should only use the Terminate cluster
operation from the main EMR Cluster List option from the preceding screen.

Simon ~ N.Virginia » Help ~

Console Hame |
Events 1 < @
Tags } 2] 11036 of 36
Reports
Limits Instance ID Instance Type Availability Zone - Instance State - Status Checks Alarm Status Public DNS < Pub
= i-2d8466c7 m1.Jarge & 272 chocks None % ©c2-54-172-170-84.c0 5
Instances i-3a846600 m1 large & 22checks... None % ec2-54-172-176-213.00 5
Spot Requests -388466d2 mi.large us-east-1c & 272 checks .. None % ec2-54-172-181-141.c0. 5¢
Reserved Instances |-39846643 m1.large us-past-1c & 22 checks None % 8c2-54-172-180-23.c0. 5
- 1-31B466dS m1.large us-east-1c & 22 checks Nane % ec2-54-172-171-205.c0... 5
AMis I-3cBABEAE m1 large us-east-1c & 2checks.. None % ec2-54-172-181-41.co 5
Bundie Tasks 34846647 midarge (s-east-1c © 22 chocks Nano % 0c254-172-165-246.c0... 54
- 1-32846608 m1.large us-sast-1c @ running & 22checks... None % ec2B4-1T2-187-188c0.. 5
Volumes 133848849 m1.larga us-east-1c @ running & 22checks... None %% ©c2-54-172-187-230.co. 5
Snapshots \-308466da mi.large us-aast-1e & 22 checks None "% ec2-54-172-188-219.c0. 54
-318466db m1.large us-east-1c & 212 checks .. None % ec2-54-172-174-130.co, 5
Security Groups qmmnn + i o A - B e
Elastic IPs
= Select an instance above _N_N=
Placement Groups
2008 - 201 Privacy Policy Terms of Use Feedback
ttps. | /console. aws. 1

The final AWS console screen worth viewing is the S3 storage screen. The segue
package creates three separate storage buckets (the name is prefixed with a unique
random string), which, to all intents and purposes, can be thought of as three
separate top-level directories in which various different types of files are held. These
include a cluster-specific log directory (postfix: seque-1logs), configuration directory
(postfix: segue), and task results directory (postfix: segueout).

[33]

Simple Parallelism with R

The following is a view of the results subdirectory within the segueout postfix
folder associated with the cluster in the previous screens, showing the individual
"part-XXXXX" result files being generated by the Hadoop worker nodes as they
process the individual tasks:

Simon = Global ~ Help =

m Create Folder Actions v None Properties Transfers
All Buckets / rtmphcnz7ibngkgljora-segueout / results

Name Storage Class Size Last Modified

D pan-00000 Standard 25KB Sun Oct 18 21:07:58 GMT+100 2014

D pan-00001 Standard 2KB Sun Oct 18 21:04:11 GMT+100 2014

D part-00003 Standard 31KkB Sun Oct 19 21:12:44 GMT+100 2014

D pant-00004 Standard 14 KB Sun Oct 19 21:03:25 GMT+100 2014

[pan-o000s Standard 31K8 Sun Oct 18 21:08:50 GMT+100 2014

D pan-00007 Standard 1.4 KB Sun Oct 19 21:04:13 GMT+100 2014

D pan-00009 Standard 28KB Sun Oct 18 21:09:04 GMT+100 2014

D pan-00010 Standard 2K8 Sun Oct 19 21:08:58 GMT+100 2014

D part-00011 Standard 25KB Sun Oct 19 21:11:45 GMT+100 2014

[3 part-0001a Standard 31KB Sun Oct 19 21:11:13 GMT+100 2014

D part-00014 Standard 26KB Sun Oct 18 21:13:42 GMT+100 2014

D pan-00017 Standard 0 bytes Sun Oct 10 21:04:20 GMT+100 2014

D pant-00018 Standard 26KB Sun Oct 19 21:11:07 GMT+100 2014

D pant-00022 Standard 28KB Sun Oct 19 21:13:37 GMT+100 2014

Solving Aristotle's Number Puzzle

At long last, we can now finally run our puzzle solver fully in parallel. Here, we
chose to run the EMR cluster with 16 EC2 nodes, equating to one master node and

15 core worker nodes (all m1.large instances). It should be noted that there is
significant overhead in both starting up the remote AWS EMR Hadoop cluster and in
shutting it down again. Run the following code:

> setCredentials("<Access Key ID>","<Secret Access Key>")
>

> cluster <- createCluster (numInstances=16)

STARTING - 2014-10-19 19:25:48

STARTING messages are repeated ~every 30 seconds until
the cluster enters BOOTSTRAPPING phase.

STARTING - 2014-10-19 19:29:55

BOOTSTRAPPING - 2014-10-19 19:30:26

BOOTSTRAPPING - 2014-10-19 19:30:57

WAITING - 2014-10-19 19:31:28

Your Amazon EMR Hadoop Cluster is ready for action.

Remember to terminate your cluster with stopCluster().

[34]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 1

Amazon is billing you!

Note that the process of bringing the cluster up is complex
and can take several minutes depending on size of cluster,
amount of data/files/packages to be transferred/installed,
and how busy the EC2/EMR services may be at time of request.

> results <- emrlapply(cluster, tasks, FUN, taskTimeout=10)
RUNNING - 2014-10-19 19:32:45

RUNNING messages are repeated ~every 30 seconds until the
cluster has completed all of the tasks.

RUNNING - 2014-10-19 20:06:46

WAITING - 2014-10-19 20:17:16

> stopCluster (cluster) ## Remember to save your bank balance!
stopCluster does not generate any messages. If you are unable
to run this successfully then you will need to shut the

cluster down manually from within the AWS console (EMR).

Overall, the emrlapply () compute phase took around 34 minutes —not bad!
However, the startup and shutdown phases took many minutes to run, making this
aspect of overhead considerable. We could, of course, run more node instances (up
to a maximum of 20 on AWS EMR currently), and we could use a more powerful
instance type rather than just m1.large to speed up the compute phase further.
However, such further experimentation I will leave to you, dear reader!

The AWS error in emrapply()

Very occasionally, the call to emrlapply () may fail with an error
message of the following type:
* Status Code: 404, AWS Service: Amazon S3, AWS Request
s“ ID: 5156824COBE09D70, AWS Error Code: NoSuchBucket,
AWS Error Message: The specified bucket does not exist...

This is a known problem with segue. The workaround is to disable
your existing AWS credentials and generate a new pair of root security
keys, manually terminate the AWS EMR cluster that was created by
segue, restart your R session afresh, update your AWS keys in the call
to setCredentials (), and then try again.

[35]

Simple Parallelism with R

Analyzing the results

If we plot the respective elapsed time to compute the potential solution for each of
the 90 starting tile-triples using R's built-in barplot () function, as can be noted
in the following figure, then we will see some interesting features of the problem
domain. Correct solutions found are indicated by the dark colored bars, and the
rest are all fails.

AWS EMR Solver Execution Profile

111512 130916 150518

First Three Tiles

011819 041618 061319 071516 O0B1614 091514 101513

° 7 11!|||

50 100 150 200 250 300 350

Elapsed Time (s)
Boards=90 -- Min=0m4s Max=6m8s Avg=3m13s - Fastest solution 031718 in 125

Firstly, we can note that we identified only six board-starting tile-triple configurations
that result in a correct solution; I won't spoil the surprise by showing the solution

here. Secondly, there is considerable variation in the time taken to explore the search
space for each tile-triple with the extremes of 4 seconds and 6 minutes, with the fastest
complete solution to the puzzle found in just 12 seconds. The computation is, therefore,
very imbalanced, confirming what our earlier sample runs showed. There also appears
to be a tendency for the time taken to increase the higher the value of the very first tile
placed, something that warrants further investigation if, for example, we were keen to
introduce heuristics to improve our solver's ability to choose the next best tile to place.

[36]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 1

The cumulative computational time to solve all 90 board configurations was 4 hours
and 50 minutes. In interpreting these results, we need to verify that the elapsed
time is not adrift of user and system time combined. For the results obtained in this
execution, there is a maximum of one percent difference in elapsed time compared
to the user + system time. We would of course expect this as we are paying for
dedicated resources in the AWS EMR Hadoop cluster spun up through segue.

Summary

In this chapter, you were introduced to three simple yet different techniques of
utilizing parallelism in R, operating both FORK and PSOCK implemented clusters
with the base R parallel package, which exploit the multicore processing capability
of your own computer, and using larger-scale AWS EMR Hadoop clusters hosted
remotely in the cloud directly from your computer through the segue package.

Along the way, you learned how to split a problem efficiently into independent
parallelizable tasks and how imbalanced computation can be dealt with through
dynamic load-balancing task management. You also saw how to effectively
instrument, benchmark, and measure the runtime of your code in order to identify
areas for both serial and parallel performance improvement. In fact, as an extra
challenge, the current implementation of evaluateCell () can itself be improved
upon and sped up....

You have also now solved Aristotle's Number Puzzle(!), and if this piqued
your interest, then you can find out more about the magic hexagon at
http://en.wikipedia.org/wiki/Magic_ hexagon.

Who knows, you may even be able to apply your new parallel R skills to discover a
new magic hexagon solution....

This chapter gave you a significant grounding in the simplest methods of parallelism
using R. You should now be able to apply this knowledge directly to your own context
and accelerate your own R code. In the remainder of this book, we will look at other
forms of parallelism and frameworks that can be used to approach more data-intensive
problems on a larger scale. You can either read the book linearly from here to the
concluding one, Chapter 6, The Art of Parallel Programming, which summarizes the key
learning for successful parallel programming, or you can drop into specific chapters
for particular technologies, such as Chapter 2, Introduction to Message Passing, Chapter 3,
Advanced Message Passing, and Chapter 4, Developing SPRINT an MPI-based R package for
Supercomputers for explicit message-passing-based parallelism using MPI and Chapter 5,
The Supercomputer in your Laptop for GPU-accelerated parallelism using OpenCL.

[37]

http://en.wikipedia.org/wiki/Magic_hexagon

Simple Parallelism with R

There is also a bonus chapter that will introduce you to Apache Spark, one of
the newest and most popular frameworks implementing distributed parallel
computation that supports complex analytics and is arguably the successor
to the established, Hadoop-based Map/Reduce, which can also be applied to
real-time data analysis.

[38]

[vww.ebook3000.con)

http://www.ebook3000.org

Introduction to
Message Passing

In this chapter, we will take our first look at a lower level of parallelism: explicit
message passing between multiple communicating R processes. We will utilize the
standard Message Passing Interface (MPI) API available to us in a number of forms
on laptops, cloud clusters, and supercomputers.

In this chapter, you will learn about:

* The MPI API and how to use this via the two different R packages, Rmpi and
pbdMPI, together with the OpenMPI implementation of the communications
subsystem

* Blocking and non-blocking point-to-point communications

* Group-based collective communications

In the next two chapters, we will explore a more advanced use of MPI, including
grid-based parallel processing and running R to scale on a real-life supercomputer;
however, for now, we will take an introductory tour of MPI and once again focus on
our own Mac computer as the target compute environment; the information required
to get you up and running with MPI on Microsoft Windows is also provided.

[39]

Introduction to Message Passing

Setting up your system environment for
MPI

In order to use MPI with R, there are a number of prerequisites we need to install.
The picture is a little more complicated for setting up MPI as compared to other R
packages as we require both an R interface to MPI and an implementation of MPI
that it will call into. We also have a number of options available to us, both for the R
package and for the underlying MPI subsystem.

Choice of R packages for MPI

There are two MPI-based R-interfacing packages available that we can make use of,
namely Rmpi and pbdMPI:

Rmp1i is available from CRAN at the following link: https://
cran.r-project.org/web/packages/Rmpi/index.html

The main Rmpi website is http://www.stats.uwo.ca/faculty/
yu/Rmpi/.

Instructions for installing Rmpi on Mac OS X are provided at http://
www.stats.uwo.ca/faculty/yu/Rmpi/mac_os_x.htm

Instructions for installing Rmpi on Windows are provided at http://
www.stats.uwo.ca/faculty/yu/Rmpi/windows.htm.

. The pbdMPI package is available from CRAN at https://cran.r-
% project.org/web/packages/pbdMPI/index.html.
S

The main Programming with Big Data (pbd) website isat http://r-
pbd.org/.

Detailed instructions for installing pbdMPI on Mac OS X with
screenshots are provided at https://rawgit.com/wrathematics/
installation-instructions/master/output/with
screenshots/html/index mac.html.

Detailed instructions for installing pbdMPI on Windows with
screenshots are provided at https://rawgit.com/wrathematics/
installation-instructions/master/output/with
screenshots/html/index windows.html.

While each of these packages provides an interface for standard MPI implementations,
they operate in slightly different ways and provide their own specific additional
functionality. One particular difference is that Rmpi is able to run directly within an
interactive R session, whereas pbdMPI must be run through the standard MPI-specific
launch program (mpiexec) from your computer system's command-line shell.

[40]

[vww .ebook3000.con}

https://cran.r-project.org/web/packages/Rmpi/index.html
https://cran.r-project.org/web/packages/Rmpi/index.html
http://www.stats.uwo.ca/faculty/yu/Rmpi/
http://www.stats.uwo.ca/faculty/yu/Rmpi/
http://www.stats.uwo.ca/faculty/yu/Rmpi/mac_os_x.htm
http://www.stats.uwo.ca/faculty/yu/Rmpi/mac_os_x.htm
http://www.stats.uwo.ca/faculty/yu/Rmpi/windows.htm
http://www.stats.uwo.ca/faculty/yu/Rmpi/windows.htm
https://cran.r-project.org/web/packages/pbdMPI/index.html
https://cran.r-project.org/web/packages/pbdMPI/index.html
http://r-pbd.org/
http://r-pbd.org/
https://rawgit.com/wrathematics/installation-instructions/master/output/with_screenshots/html/index_mac.html
https://rawgit.com/wrathematics/installation-instructions/master/output/with_screenshots/html/index_mac.html
https://rawgit.com/wrathematics/installation-instructions/master/output/with_screenshots/html/index_mac.html
https://rawgit.com/wrathematics/installation-instructions/master/output/with_screenshots/html/index_mac.html
https://rawgit.com/wrathematics/installation-instructions/master/output/with_screenshots/html/index_mac.html
https://rawgit.com/wrathematics/installation-instructions/master/output/with_screenshots/html/index_mac.html
http://www.ebook3000.org

Chapter 2

Choice of MPI subsystems

We also have the option of selecting from a number of underlying MPI subsystems
to use with either of these R packages. In this chapter, we will use the most popular
open source MPI implementation compatible with Mac OS X, namely OpenMP],
although alternatives do exist, including MPICH and MS-MPI], all of which are
compatible with version 3.0 of the MPI standard.

* OpenMPI: OpenMPI started in 2004 with the goal of building
a modular and portable high-performance implementation.
OpenMP1 is supported across a range of platforms and used to
be shipped built-in with Mac OS X prior to 10.7 (Lion). For more
information, refer to http://www.open-mpi.org/.

* MPICH: MPICH (MPI over Chameleon) originated as the
reference implementation for MPI when the standard was first
formed in 1992. Since then, it has seen wide adoption among

. the supercomputer community. For more information, refer to
% http://www.mpich.org/. We will use MPICH on the UK's
VS ARCHER supercomputer in a following chapter.

e MS-MPI: While it is technically possible to build OpenMPI
and MPICH for Windows, ongoing development and support
for both has recently been discontinued for the Windows
platform. However, all is not lost! Take a look at the following
link for information about Microsoft's own distribution of
MPI for Windows (MS-MPI), including downloadable and
installable libraries that can be used with both Rmpi and
pbdMPI: https://msdn.microsoft.com/en-us/library/
bb524831 (v=vs.85) .aspx.

Installing OpenMPI

The basic installation of OpenMPI on OS X is straightforward if using the excellent
Homebrew installer. Run the following command:

mac:~ brew install openmpi

Homebrew
. The brew command is a package manager for OS X, itself written in
% Ruby, and is widely used by the OS X development community. Refer
~o tohttp://brew.sh/ and https://github.com/Homebrew/
homebrew/tree/master/share/doc/homebrew#readme for the
latest information and instructions on how to install.

[41]

http://www.open-mpi.org/
http://www.mpich.org/
https://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
http://brew.sh/
https://github.com/Homebrew/homebrew/tree/master/share/doc/homebrew#readme
https://github.com/Homebrew/homebrew/tree/master/share/doc/homebrew#readme

Introduction to Message Passing

This will take a little while to run and pull in a number of dependencies, including
Gnu C Compiler (GCC). You can then type the following sequence of shell
commands in your terminal window to check whether the install is successful:

mac:~ simon$ which mpiexec

/usr/local/bin/mpiexec

mac:~ simon$ ls -la /usr/local/bin/mpiexec

lrwxr-xr-x 1 simon admin 37 7 Sep 15:54 /usr/local/bin/mpiexec -> ../
Cellar/open-mpi/1.10.0/bin/mpiexec

mac:~ simon$ mpiexec --version

mpiexec (OpenRTE) 1.10.0

Report bugs to http://www.open-mpi.org/community/help/

This shows that I have version 1.10 of OpenMPI installed and placed in the standard
system directory on 'nixes — that is, symbolically linked from homebrew's default
"cellar" location to /usr/local.

The MPI standard

You can view the complete version 3.0 MPI standard, which runs to a desk-walloping
822 pages in the form of a PDF Report at (MPI Ref) http://www.mpi-forum.org/
docs/mpi-3.0/mpi30-report.pdf.

At the time of writing, version 3.1 of the MPI standard is published (June 2015).
Although we will be focusing on the previous version, that is 3.0, the differences are
not material for our purposes. MPI version 3.0 is both mature and comprehensive.

Due to some of the limitations of R and, in particular, its inherent single-threaded
nature, only a subset of the MPI standard is implemented in either Rmpi or pbdMPI.
However, all the basics for point-to-point and collective group communications are
available, and we shall explore these through the remainder of this chapter. To begin,
we need to understand some basic concepts that apply to the world of MPL

[42]

[vww .ebook3000.con}

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.ebook3000.org

Chapter 2

The MPI universe

MPI considers each separate thread of computation to be a process, and each
process is assigned a unique rank, which is a number from 0 to N-1 where N is

the total number of independent processes that we create in the MPI universe. A
communicator defines the scope for communications between processes in the
universe. A process can send a message to another process or a group of processes
to receive within the context of a specific communicator. MPI provides options for
whether the sending and/ or receiving process should wait for a communication
to/from them to be completed or can proceed with other activities and check later
for its completion. An MPI program may utilize multiple communicators in order
to separate out patterns of communication between processes so that they are not
confused. Consider, for example, a library function that utilizes MPI internally for its
parallel implementation. It's important that its communications are kept completely
separate from any other MPI-enabled code within your program.

In essence, the preceding paragraph described the basic capabilities of MPI;
everything else provides additional programming convenience or follows as a
necessary consequence of managing parallelism based on message passing. Of
course, in reality, we also need to add a healthy pinch of salt to this declaration.

Without further ado, having installed OpenMP], let's jump in and get both Rmpi and
pbdMPI up and running...

Installing Rmpi

From your R session, type the following to download and build the current Rmpi
package from a CRAN mirror of your choice:

> install.packages (""Rmpi"", type=""source"")
Then, load the built library into your active R session:
> library (Rmpi)

To test whether everything is working correctly, we will start up the rmpi package's
default configuration of master/workers, execute a simple print statement, and
immediately shut the workers down. You should see output similar to the following:

> mpi.spawn.Rslaves() # Set up Workers
4 slaves are spawned successfully. 0 failed.
master (rank 0, comm 1) of size 5 is running on: Simons-Mac-mini

slavel (rank 1, comm 1) of size 5 is running on: Simons-Mac-mini

[43]

Introduction to Message Passing

slave2 (rank 2, comm 1) of size 5 is running on: Simons-Mac-mini
slave3 (rank 3, comm 1) of size 5 is running on: Simons-Mac-mini
slave4 (rank 4, comm 1) of size 5 is running on: Simons-Mac-mini

> mpi.remote.exec (paste(""Worker"", mpi.comm.rank(),""of"", mpi.comm.
size()))

$slavel
[1] ""Worker 1 of 5""
$slave2
[1] ""Worker 2 of 5""
$slave3l
[1] ""Worker 3 of 5""
$slaved
[1] ""Worker 4 of 5""

> mpi.close.Rslaves() # Tear down Workers

You will note that on my system, which has four cores, five MPI processes were
created, one master and four workers, with MPI ranks assigned 0 through 4 and a
default communicator context identifiable through the API calls as the number 1. The
master is the interactive session, while the four workers are launched as additional
external R processes, as you can note from the following screenshot of Activity
Monitor (after mpi.spawn.Rslaves () and before mpi.close.Rslaves()):

[NON Activity Monitor (All Processes)
o 06 &~ CPU Memory Energy Disk QR %]
Process Name Sent Bytes~ Hcvd B... Sent Pac... Recvd Packets PID User
R 3 KB 9 KB 44 54 12780 simon
R 3 KB 9 KB 23 32 12782 simon
R 3 KB 9 KB 23 34 12785 simon
R 3 KB 8 KB 21 28 12784 simon

Figure 1: Activity Monitor view of the R Worker MPI processes launched by Rmpi.

You may notice as you watch the Network tab on Activity Monitor that the number
of Revd packets increases even though you may not be executing any parallel code;
this is just the internal background OpenMPI "heartbeat" system communications
making sure all MPI processes are still running correctly.

[44]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 2

Installing pbdMPI

Installing pbdMPI is also straightforward. However, I would recommend installing
from the system shell command line rather than an interactive R session because at
the time of writing, you may run into a dynamic library issue on OS X that requires
a slight tweak (refer to the following "Yosemite" breakout box for a workaround).

Download the latest pbdMPI package source from https://cran.r-project.org/
web/packages/pbdMPI/index.html.

Open a terminal window, change to the directory with the downloaded package (in
this case, I downloaded pbdMPI_0.2-5.tar.gz and pre-extracted it to expose all the
files within) and type the following;:

mac:~ simon$ R CMD INSTALL pbdMPI --configure-args='"'--with-mpi-
type=OPENMPI''

This will compile pbdMPI to use OpenMPI, which we installed previously. Assuming
this step is successful, I recommend running one of the package's demo test
programs to confirm that all is well.

For pbdMPI, we always need to run our R code using a special command, mpiexec,
which comes as part of the OpenMPI installation, as follows:

mac:~ simon$ cd pbdMPI/inst/examples/test spmd

mac:~ simon$ mpiexec -np 2 Rscript --vanilla allgather.r

COMM.RANK = 0
[11 112
COMM.RANK = 0
[11 112

If you run the allgather. r test script successfully, then you should see the tail end
of the coMM. RANK output as shown previously. The required command line options
for running a pbdMPI test script is commented at the top of the given R script file;

in this case, -np 2 means to run with two MPI processes in the universe (this will
launch two processes regardless of whether you only have a single-core machine).

[45]

https://cran.r-project.org/web/packages/pbdMPI/index.html
https://cran.r-project.org/web/packages/pbdMPI/index.html

Introduction to Message Passing

The pbdMPI package on OS X Yosemite

It's possible that you may run into a specific compilation issue with
pbdMPI on the Mac; I certainly did for OS X 10.10 Yosemite. The standard
options for compiling the pbdMPI package may fail with an output
similar to the following (note that the output is stripped for brevity):

mca: base: component_ find: unable to open /usr/local/
Cellar/open-mpi/1.10.0/1ib/openmpi/mca osc_sm: dlopen(/
usr/local/Cellar/open-mpi/1.10.0/1ib/openmpi/mca osc_
sm.so, 9): Symbol not found: ompi info t class

in /usr/local/Cellar/open-mpi/1.10.0/1lib/openmpi/mca_
osc_sm.so (ignored)

No available pml components were found!

This is a fatal error; your MPI process is likely to
\l abort.

~

Q A workaround for this is to make use of the OS X operating system's
mechanism to inject dynamic libraries at runtime to ensure the core
OpenMP1 library is loaded to resolve the missing symbols. First, rebuild
the pbdMPI package without the failing load test step, as follows:
mac:~ simon$ R CMD INSTALL pbdMPI --configure-args='"'--
with-mpi-type=OPENMPI'' --no-test-load
This should now build successfully and install the pbdMPI package into
the standard R library location on your system. Now, whenever you run
mpiexec, ensure that the dynamic loader shell environment variable
DYLD INSERT LIBRARIES is set as follows (OpenMPI is installed to the
standard /usr/local system directory on my system) via the following
command:
mac:~ simon$ export
DYLD INSERT LIBRARIES=/usr/local/lib/libmpi.dylib

You can also add this setting to your shell's start-up script in your home
directory (~/ .bashrc) so that it is automatically set up whenever you
open a new terminal window.

The MPI API

We will divide our coverage of the MPI API into two: firstly, point-to-point
communications followed by group-wise collective communications. Additional
functionality beyond the core communication is described later in the advanced
MPI APT section.

[46]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 2

First however, we need to explain some differences in the approaches to parallelism
adopted by Rmpi and pbdMPI. We have already discussed that Rmpi can run within
an interactive R session, whereas the pbdMPI R programs can only be run using
mpiexec from a command shell (Rmpi programs can also be run with mpiexec).

rRmpi adopts the master/worker paradigm and dynamically launches worker
processes internally using MPI_Comm_spawn (), where the launching R session is
the master and the workers form the computational cluster. Code blocks that may
include MPI communication are then issued by the master for remote execution
by the worker cluster, which each execute an Rmpi daemon-style R script actively
waiting for the next command to be broadcast to them with MPI_Bcast (). Upon
completion, the results will be collectively returned back to the waiting master.

The pbdMPI package adopts the Single Program Multiple Data (SPMD) approach,
whereby all parallel processes have equal billing and run the same code and MPI
communications apply uniformly across all the processes in the MPI universe (unless
explicitly programmed around). The pbdMPI R programs must be run via mpiexec

to invoke the R runtime and for the MPI infrastructure to create the initial group of
parallel processes.

Rmpi or pbdMPI - which is the best?
As ever with this type of question, the answer is: it depends.

Rmp1i enables you to immediately spin up a cluster of master and
workers on a single node from RStudio and run R functions effectively
in parallel across split data on small clusters. Without some changes to
the internals of Rmpi, which we will cover later, its default configuration
makes it difficult to exploit communications between worker processes.
Rmp1 is compatible with R's core parallel package and can be used as

%%‘ the underlying framework for makeCluster (""MPI""). Refer to the
Using parLapply() section in Chapter 1, Simple Parallelism with R.

Programming with Big Data MPI (pbdMPI): R programs can only

be launched through the external MPI runtime framework with the
mpiexec command. It has greater flexibility in operating parallel
processes, such as SPMD, and enabling larger-scale parallelism and does
not impose restrictions on interprocess communication. The pdbMPI
package is also part of a larger Big Data package that includes dense
linear algebra libraries and distributed matrix classes.

[47]

Introduction to Message Passing

The following sections include tables detailing the basic MPI functionality supported
by Rmpi and pbdMPI, with reference to the corresponding MPI 3.0 standard's API
call — the page reference in the PDF report is also given in case you want to look up
the standard's definition for the C/Fortran language variant of the call (The MPI
reference can be found at http://www.mpi-forum.org/docs/mpi-3.0/mpi30-
report .pdf).

As you might expect, the naming conventions in the R packages are very similar. In
essence, pbdMPI overloads a single API call name to work with multiple types of data,
whereas Rupi requires you to be more explicit and provides additional functions

to support the different types of data. You'll also notice that Rmpi uses "mpi." as a
standard function name prefix, whereas pbdMPI has no prefix. Unfortunately, this
means that we cannot write a single program that is easily portable between these two
package interfaces; we have to write separate code for each.

Point-to-point blocking communications

Let's jump straight in with a very simple test program that sends a message from
the last ranked MPI process to its ranked predecessor. You'll need a machine with
at least two cores for this example to work. When we start with Rmpi, a pbdMPI
implementation also follows. Recall that Rmpi can be run in an interactive R session,
as follows:

> library (Rmpi)
> mpi.spawn.Rslaves() # Spawn at least 2 workers
> rmpi lastsend <- function() {
myrank <- mpi.comm.rank(comm=1) # which MPI rank am I?
sender <- mpi.comm.size(comm=1)-1 # msg is sent from last
receiver <- mpi.comm.size(comm=1)-2 # to last''s predecessor
buf <- ""long enough""
if (myrank == sender) ({
msg <- paste(""Hi from:"", sender)
mpi.send(msg,3,receiver, 0, comm=1)
} else if (myrank == receiver) {
buf <- mpi.recv(buf, 3,sender,mpi.any.tag(),comm=1)

}

return (buf)

}

> mpi.bcast.Rfun2slave (comm=1) # Master shares all its function
definitions with the Workers

[48]

[vww .ebook3000.con}

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.ebook3000.org

Chapter 2

> mpi.remote.exec(rmpi lastsend()) # Workers (only) execute specific
function

$slavel
[1] ""long enough""
$slave2
[1] ""long enough""
$slave3l
[1] ""Hi from: 4""
$slave4d

[1] ""long enough""

You should see an output similar to the preceding. On my system, I have four cores,
so mpi.spawn.Rslaves (), by default, creates a cluster of four workers. Rmpi creates
the default communicator identified as "1," and this includes all the workers and the
master —here, the master is at rank 0, and the last worker is at rank 4. As you can
note from the previous code, we used mpi . comm. rank () to obtain the unique rank
number of the calling process in the default communicator and mpi . comm. size ()

to determine how many processes there are in total in the default communicator,
which in this case is the entire MPI universe. We also used the special rmpi function,
mpi.bcast.Rfun2slave (), to transmit our lastsend () function definition (and
any other user-defined functions on the master) to all the workers so that they can
subsequently execute it remotely. If at any time we change our function definition,
we would need to retransmit it to the workers before we execute it again.

Let's focus on the mpi . send call, as follows:

mpi.send(msg, 3, receiver, 0, comm=1)
The rRmpi package's mpi . send () method has four mandatory arguments, which are:

* The R object you are sending, msg.

* A value that determines what (simple) type of data the R object is [3] (Rmpi
defines 1=integer, 2=numeric, and 3=character string). Shortly, we will take a
look at how to send and receive complex R objects.

* The rank of the MPI process you are sending to [receiver].

* The tag to label the send [0]. The receiver can choose to make its matching
mpi.recv () selective on the value of tag. The tag is only typically used when
different types of messages or a sequencing of messages received from a
given sender is important to determine. It tends to be more applicable for the
disambiguation of non-blocking communication, which we will come to later.

[49]

Introduction to Message Passing

Optionally, you can define which communicator will be the scope for the send. In
this case, we explicitly set it to the default "1" just for the purpose of clarity.

Now, let's examine the mpi . recv call:
buf <- mpi.recv(buf, 3, sender, mpi.any.tag(), comm=1)
The rRmpi package's mpi.recv () method also has four mandatory arguments:

* An R object of the same type as the one being sent and of sufficient size to
accommodate the sent object [buf]. The next example will illustrate this
aspect further.

* A value that determines what (simple) type of data the R object is [3], in
which 3 indicates a character string.

* The rank of the MPI process you are receiving from [sender].

* The tag to match with the [mpi.any.tag ()] send. We chose to use the special
value defined by mpi .any. tag (), which means that this receive will match
any tagged send from the specified sender.

Again, for this receive, we chose to explicitly set the communicator scope to its
default value, "1".

To illustrate the mpi.recv () function's first "buffer" argument, it is instructed to
modify the lastsend () function and then rerun it as follows:

> rmpi lastsend <- function() {

receiver <- mpi.comm.size(comm=1)-2 # to last''s predecessor
buf <- ""too short""

if (myrank == sender) ({

return (buf)
}
> mpi.bcast.Rfun2slave (comm=1) # Distribute updated function
> mpi.remote.exec(rmpi lastsend()) # Workers execute function
$slavel
[1] ""too short""
sslave2

[1] ""too short""

[50]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 2

$slave3l
[1] n "Hi from: nn
$slave4d

[1] ""too short""

As you can note, Rmpi reuses the object's memory supplied as the first argument

to receive the value transmitted in the send, and in this case, it is one character too
short. However, for this case, we do know how large we need to make the receiving
buffer in order for us to get the complete message, so it is simple to fix. In the next
chapter, when we review the more advanced MPI API, we will take a look at how
to query the size of a message we are about to receive before we actually receive it
using MPI_Probe.

For now, we can easily bypass this particular problem by choosing to use the Rmpi
pair of send/ recv functions that enable complex R objects to be communicated,
namely mpi.send.Robj () and mpi.recv.Robj (), as follows:

rmpi_lastsend2 <- function() {

myrank <- mpi.comm.rank (comm=1)

sender <- mpi.comm.size(comm=1) - 1

receiver <- mpi.comm.size(comm=1) - 2

buf <- ""N/A""

if (myrank == sender) {
msg <- paste(""Hi from:"", sender)
mpi.send.Robj (msg, receiver, 0, comm=1)

} else if (myrank == receiver) ({
buf <- mpi.recv.Robj(sender, mpi.any.tag(), comm=1)

}

return (buf)

}

Note how with these functions, we do not need to specify the type of the R object we
are sending/receiving and also how with mpi.recv.Robj (), we do not need to set a
receive buffer object because the received object is created for us and returned from
the function call directly. While mpi . send.Robj () and mpi.recv.Robj () are a little
less performant for R data that is simply numeric or string, they are in general easier
to use, and you are less likely to program it incorrectly.

[51]

Introduction to Message Passing

As promised, here is the pbdMPI implementation of the "lastsend" example.
Remember that pbdMPI must be run with mpiexec from a command shell —for
example, from an OS X terminal, as follows:

File: chapter2 pbdMPI.R
library (pbdMPI, quietly=TRUE)
init ()
pbdmpi lastsend <- function() {
myrank <- comm.rank ()
sender <- comm.size() - 1
receiver <- comm.size() - 2
if (myrank == sender)
msg <- paste(""Hi from:"", sender)
send (msg, rank.dest=receiver)
} else if (myrank == receiver) ({
buf <- recv(rank.source=sender)
}
comm.print (buf, rank.print=receiver)
}
pbdmpi lastsend() # This is SPMD so all processes execute the same
finalize ()

The output from running this command will be displayed in the terminal window,
as follows:

mac$ mpiexec -np 4 Rscript chapter2 pbdMPI.R
COMM.RANK = 2
[1] ""Hi from: 3""

Note how the last process is at rank 3; there is no separate master process as we are
running SPMD. Also, note that the pbdvMPI package's send () and recv () functions
have default argument settings for both the tag and communicator. Nor is any
explicit typing required as pbdMPI checks the argument type of the sent data and
internally switches to the most efficient MPI call to use. We also chose to not set the
communicator explicitly, so the default MPI_cOMM_WORLD communicator is used,
which contains all of the MPI processes that started up and returned successfully
from their init () calls.

[52]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 2

pbdMPI comm.print ():In the preceding pbdMPI example, we used
the comm.print () function to display the message string as received by
the receiver only by setting the rank.print argument to the receiver's
rank number. It is important to recognize that all MPI processes in the
particular communicator must call comm.print () even if they are not

M going to print anything themselves; otherwise, a deadlock will result
(internally, comm.print () would call MPI Barrier. Refer to the
Collective Communications section later in the chapter). It's quite easy to
forget this, place comm.print () inside a conditional statement, and then
wonder why your program hangs forever.

If you do want all the MPI processes in the same communicator to print
something with comm. print (), simply call it with the argument setting
all.rank=TRUE; this overrides rank .print if also set.

MPI_Init and MPI_Finalize: All MPI programs require an
initialization and termination phase in order to set up and tear down

the MPI communications subsystem. Unsurprisingly, pbdMPI calls

MPI Init withinits init () function and MPI Finalize within its
finalize () function. However, as Rmpi is designed to work within the
context of an interactive R session, it runs MPI_Init when the library is
loaded and provides distinct MPI termination functions to handle three
specific circumstances:

% Rmpi: :mpi.finalize (): This cleanly terminates the MPL. Rmpi
remains available in the R session, so you can decide to launch more MPI
workers and run in parallel again.

Rmpi: :mpi.exit (): This executes mpi.finalize () but also detaches
the Rmp1 library, so you cannot use MPI again. R continues to run, and
you could decide to reload the Rmp1i library in the session and carry on.

Rmpi: :mpi.quit (): This executes mpi.exit () butalso terminates the
R session entirely; it is final!

The MPI point-to-point send and receive routines that we used are known as
blocking, which means that the send operation routine may not complete until the
data being sent is transferred to the intended receiving process, implying that the
process has executed a matching receive operation. From the sender's perspective,
once the send function call returns, it is safe for the sender to modify the object that
was just sent. If no matching receive operation for a given send occurs, then the
sender may block and never return from the send function call. Consequently, the
sending process will hang indefinitely. This is a situation known as deadlock and is
discussed in more detail in Chapter 6, The Art of Parallel Programming. For now, it is
enough for us to know that we must have a matching receive executed for each send
from across all the MPI parallel processes in our program.

[53]

Introduction to Message Passing

The point-to-point blocking communications are summarized in the following table:

BLOCKING COMMUNICATIONS

the sending process

¢ count: This is the

¢ datatype: This is the
enum defining type of
the object from which
the size of object is
inferred

¢ dest: This is the rank

in the communicator
sending to

e tag: This is a non-
negative integer that
to the caller

e comm: This is the
communicator within

be transferred)

number of objects in the
memory buffer to send

of destination processes

only means something

which this message will

)
returns: NULL
The default argument values
for pbdMPI : : send are

defined in $SPMD. CT and
can be changed there.

MPI V3.0 API Call pbdMPI equivalent Rmpi equivalent
MPI_Send (MPI Ref: p.24 send (mpi.send (
* buf: This is the address Robject, x, type, dest, tag,
pointer to the first rank.dest=1, comm=1
object in the buffer of tag=0,)
contiguous memory, in comm=0 returns: NULL

mpi.send.Robj (
Robject, dest, tag,
comm=1

)
returns: NULL

The valid values for type
are:

¢ 1=integer
e 2 =numeric

¢ 3 = character

only.

MPI_Send is a blocking operation; there must be a matching MPI_Recv or MPI_Irecv;
otherwise, the process executing MPI_Send will deadlock.

Both pdbMP1I: : send and Rmpi : :mpi. send.Robj are higher-level functions that internally
compute the quantity of data that is to be transferred.

Rmpi: :mpi.send is used to send integer / int, numeric / double or character / char vectors

[54]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 2

BLOCKING COMMUNICATIONS

MPI_Recv (MPI Ref: p.28 recv (mpi.recv(
e buf: This is an address x.buffer=NULL, x, type, srce, tag,
pointer to the first rank.srce=0, comm=1,
object in the buffer of tag=0, status=0
contiguous memory in comm=0,)
the receiving process status=0 returns: NULL
* count: This is the)
number of objects in returns: Robject mpi . recv.Robj (
the memory buffer to
. srce, tag,
receive
. comm=1,
* datatype: This is the The default argument values ctatus—0
enum defining type of for pbdMPI: : recv are B
the object from which defined in $SPMD.CT and)
the size of the object is can be changed there. returns: Robject
inferred

¢ srce: This is the rank

of source process in the The valid values for type

communicator receiving are:
from * 1=integer
¢ tag: This is a non- * 2 =numeric

negative integer that
only has meaning for
the caller

e 3 = character

¢ comm: This is the
communicator within
which this message will
be transferred

* status:Thisisan
MPI_Status object that
can be queried after the
receive for details such
as srce and tag)

[55]

Introduction to Message Passing

BLOCKING COMMUNICATIONS

the received data.

pbdMPI: :recv (rank.srce=anysource (),

st[l]l=sender''s rank,

st <- pbdMPI::get.sourcetag(status=0)
st <- Rmpi::mpi.get.sourcetag(status=0)
st[2]=tag value sent

anytag())
Rmpi: :mpi.recv.Robj (mpi.any.source(), mpi.any.tag())

MPI_Recv is a blocking operation; there must be a matching MPI_Send or MPI_Isend,
otherwise the process executing MPI_Recv will deadlock.

The pbdMP1I : : recv method can optionally be provided with an empty presized R object to
receive the equivalent format of data from the sender. It always returns the received object.

Rmpi: :mpi.recv requires you to provide it with a presized R vector of the correct type to
match the one being sent. Once it is completed, the vector supplied to the call will be filled with

To make a wildcard receive that will capture an R object sent to the receiving process from any

other in the same communicator with any tag value, use the following;:

You can then query the status object used for the receive (default=0) to find out who the
sender was and which tag was used:

sendbuf, sendcount,
sendtype,

dest, sendtag,

recvbuf, recvcount,
recvtype,

srce, recvtag,

comm, Status

)

MPI_Sendrecv_replace(
MPI Ref: p.80

buf, count, datatype,
dest, sendtag,
srce, recvtag,

comm, Status

)

See MPI_Send/MPI_Recv
previously in this table for

used by these functions.

MPI_Sendrecv (MPI Ref: p.79

explanation of the arguments

sendrecv (
Robject,
x.buffer=NULL,
rank.dest=see
below,
send.tag=0,
rank.srce=see
below,
recv.tag=0,
comm=0,
status=0

)

returns: Robject

sendrecv.replace (
Robject,
rank.dest=see
below,
send.tag=0,
rank.srce=see
below,
recv.tag=0,
comm=0,

status=0

)

returns: Robject

mpi.sendrecv (

senddata, sendtype,
dest, sendtag,

recvdata, recvtype,
srce, recvtag,
comm=1,

status=0

)

returns: recvdata

mpi.sendrecv.
replace (

x, type, dest,
sendtag,

srce, recvtag,
comm=1,
status=0

)

returns: x

[56]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 2

BLOCKING COMMUNICATIONS

Unsurprisingly, MPI_Sendrecv combines both a send and a receive by the calling process in a
single call. Its equivalent to doing separate independent send and receive, such that each aspect
can be with different processes and for different types of data, except that both the send and the
receive must complete, before control is returned back to the program and the next R statement
can be executed. MPI_Sendrecv is therefore a blocking operation; there must be matching
MPI_Sendrecv or asetof MPI_Send/MPI_Isendand MPI_Recv/MPI_Irecv called by other
processes.

The pdbMPI library sets the defaults for rank.dest and rank. srce such that each process
sends to its immediate ranked successor and receives from its immediate ranked predecessor,
enabling a single-step-forward chain exchange among all the processes in the communicator to
be trivially implemented. For a related code example using MPI_Sendrecv, refer to Chapter 6,
The Art of Parallel Programming.

If you have loaded either the Rmpi library or the pbdMPI library into
M your R session (you can load pbdMPI but not actually run it this way),
Q then typing ? ?sendrecv (the standard R help syntax) will bring up the
corresponding help page including a simple example; there are many
more brief MPI examples you can access this way.

MPI intracommunicators

We have already touched on the concept of a matched send and receive. There are
four key attributes of a communication on which we can be selective, namely:

* Communicator: This is the communicator that will be used to convey the
message. If it helps, you can think analogously of the communicator being
the equivalent of a radio channel. You have to be tuned into the correct
channel if you want to hear a specific message broadcast to you (and as with
most analogies, we can only take it so far...).

* Source: This is the rank of the process sending the message (that is, who is
"transmitting").

* Tag: This is the tag label for the message, a program-defined interpretation of
what is being sent.

* Destination: The sender also gets to choose the rank of the process that is the
recipient for the message (that is, who is "listening").

[57]

Introduction to Message Passing

The type of communicator we are using is an intracommunicator, meaning only
processes that are members of this communicator — that is, have a rank within it—can
communicate with one another. Within the context of a specific intracommunicator,
all communication is private. The MPI standard provides a rich interface to support
exotic process group hierarchies, enabling the overlapping, intersecting, and

creating of combined process membership communicators and allowing processes

in different groups to communicate via the construction of an intercommunicator.
However, both Rmpi and pbdMPI are designed to serve more straightforward use
cases, so both packages limit their exposure of this MPI_Comm family of API functions
essentially to the duplication of an existing communicator with MPI_Comm_dup.

Duplicating an MPI communicator is a fundamental requirement enabling different
parallelized functions to keep their own pattern of communications entirely separate
from any other code (an analogy of this would be two different radio stations that
are not permitted to broadcast on the same channel). Out of the box, Rmpi does not
make it possible to create a workers-only communicator, and this can limit or at least
complicate some of our programming options (refer to the following breakout box).
However, it is instructive to show how we can make Rmpi a little more flexible in this
regard, so this is what we will explore next.

The Rmpi workerdaemon.R script

We will implement an Rmpi MPI_Comm_dup fix by creating a new behind-the-scenes
rmpi worker daemon script. When Rmpi spawns a new set of worker processes, by
default, it makes use of a special process launch script called slavedaemon.R. We
will make a copy of this and edit it to introduce a duplicated communicator that
spans just the set of worker processes and excludes the master. This will enable us
to safely separate our own worker communications from what rmpi does internally
between the master and workers. It will also provide us with a communicator that
we can use for the special MPI Collective Communications API calls just among the
spawned workers.

First, identify the location of your Rmpi installation. From an R session, type the
following:

> .libPaths()

[1] ""/Library/Frameworks/R.framework/Versions/3.2/Resources/library""

[58]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 2

You should see an output similar to the previous one, particularly if you are running
on a Mac device. Next, open a terminal window and type the following at the
console prompt:

mac$ cd /Library/Frameworks/R.framework/Versions/3.2/Resources/library/
Rmpi

mac$ cp slavedaemon.R workerdaemon.R

Then, open a text editor on the new workerdaemon.R file and modify it to add in
some additional lines as highlighted in the following code snippet. Your file may
look a little different depending on the version of Rmpi:

#File: workerdaemon.R

Copied from slavedaemon.R and modified to create workers'' Wcomm
communicator

if (!library(Rmpi,logical.return = TRUE)){
warning (""Rmpi cannot be loaded"")
g(save = ""no"")
}
options (error=quote (assign("".mpi.err"", TRUE, envir = .GlobalEnv)))
.comm <- 1
.intercomm <- 2
Wcomm <- 3 ### 1
invisible (mpi.comm.dup (0, Wcomm)) ### 2
invisible (mpi.comm.set.errhandler (Wcomm)) ### 3
print (paste(""Worker rank:"",mpi.comm.rank (comm=Wcomm) , ""of"",mpi.
comm. size (comm=Wcomm) , ""on Wcomm[=3]"")) ### 4
invisible (mpi.comm.get.parent (.intercomm))
invisible (mpi.intercomm.merge (.intercomm, 1, .comm))
invisible (mpi.comm. set.errhandler (.comm))
mpi.hostinfo (.comm)
invisible (mpi.comm.disconnect (.intercomm))
.nonblock <- as.logical (mpi.bcast (integer (1), type=1,rank=0,comm=.
comm))
.sleep <- mpi.bcast (double(1l),type=2,rank=0, comm=.comm)
repeat
try(eval (mpi.bcast.cmd (rank=0, comm=.comm, nonblock=.nonblock,
sleep=.sleep) ,envir=.GlobalEnv) , TRUE)
print (""Done"")
invisible (mpi.comm.disconnect (Wcomm)) ### 5
invisible (mpi.comm.disconnect (.comm))
invisible (mpi.comm.set.errhandler (0))
mpi.quit ()

[59]

Introduction to Message Passing

As you can note in the preceding script, at [### 2], all the workers (but not the master)
duplicate the special communicator value 0. This is interpreted by Rmpi : :mpi . comm.
dup () as representing MPI_coMM_WORLD. When MPI processes are spawned by a
parent process, MPI_COMM_WORLD references the group of child processes that have
been spawned but excludes the parent. We created a duplicate communicator of MPI_
COMM_WORLD, attached it to the internal Rmpi reference handle number 3, and recorded
this handle index in the global Wcomm variable so that it can be clearly referenced in
any Rmpi function we wish to call within the broadcast commands, which each worker
receives from the master in their near-perpetual repeat loop. Note how we introduced
code to set the error handler for this new worker communicator [### 3] and to
generate some additional debugging output to the workers' log files [### 4]. Note also
that to be tidy and release resources correctly, we explicitly disconnected from Wwcomm
prior to the worker process exiting [### 5]. The exit itself is triggered from the master
when it calls mpi .close.Rslaves ().

Having done all of the previous work, we can now go back to our R session and
make a specific call to Rmpi: :mpi.spawn.Rslaves () to use our modified launch

script, as follows:
> mpi.spawn.Rslaves (Rscript=system.file(""workerdaemon.R"",
package=""Rmpi""))

4 slaves are spawned successfully. 0 failed.
master (rank 0, comm 1) of size 5 is running on: Simons-Mac-mini
slavel (rank 1, comm 1) of size 5 is running on: Simons-Mac-mini
slave2 (rank 2, comm 1) of size 5 is running on: Simons-Mac-mini
slave3 (rank 3, comm 1) of size 5 is running on: Simons-Mac-mini
slave4 (rank 4, comm 1) of size 5 is running on: Simons-Mac-mini
> tailslave.log(nlines=2)

==> Simons-Mac-mini.28857+1.32231.log <==

[1] ""Worker rank: 0 of 4 on Wcomm[=3]""
Host: Simons-Mac-mini Rank(ID): 1 of Size: 5 on comm 1
[60]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 2

==> Simons-Mac-mini.28857+1.32232.l0og <==
[1] ""Worker rank: 1 of 4 on Wcomm[=3]""

Host: Simons-Mac-mini Rank (ID): 2 of Size: 5 on comm 1
==> Simons-Mac-mini.28857+1.32234.l0og <==
[1] ""Worker rank: 2 of 4 on Wcomm[=3]""

Host: Simons-Mac-mini Rank (ID): 3 of Size: 5 on comm 1
==> Simons-Mac-mini.28857+1.32237.log <==
[1] ""Worker rank: 3 of 4 on Wcomm[=3]""

Host: Simons-Mac-mini Rank (ID): 4 of Size: 5 on comm 1

Note that we can view the most recent entries made by workers in their respective
log files using Rmpi : :tailslave.log (). As a final step, to test, let's invoke a
collective operation across just the workers as broadcast from the master and
terminate the workers cleanly via the following code:

> mpi.remote.exec (mpi.barrier (comm=Wcomm))
X1 X2 X3 X4

1 1 1 1 1

> mpi.close.Rslaves()

[1] 1

Voila! Here, we executed the simplest of all collective operations, MPI_Barrier,
which causes all the processes in the Wcomm communicator — that is, all the workers —
to effectively synchronize to the same point of program execution. Later in this
chapter, we will explore the full set of MPI collective communications.

[61]

Introduction to Message Passing

Rmpi: mpi.bcast.cmd() versus mpi.remote.exec()

As we discussed, Rmpi utilizes a master/worker cluster. It provides two
alternate means of executing a specific function in parallel across the
workers, as follows:

* mpi.bcast.cmd(cmd=NULL, ..., rank=0, comm=1,
nonblock=FALSE, sleep=0.1): This Rmpi call is typically
only used when all the workers are quiescent and are (or will be)
waiting for their next R function to execute (cmd), which is issued
by the master. With the default setup for Rmpi, each worker calls
this repeatedly with nonblock=TRUE and a short idle sleep of
0.1 seconds in order to reduce the CPU overhead. However, mpi .
bcast.cmd () does not incorporate the return of results from the
workers to the master; for this, you need mpi . remote.exec ().

* mpi.remote.exec(cmd, ..., simplify=TRUE, comm=1,

ret=TRUE) : This Rmpi call will collect the computed function
(cmd) results (if ret =TRUE) as its return value from all of the
workers either as a list (simplify=FALSE) or, if possible, as an R
dataframe (simplify=TRUE).

For both these Rmp1 calls, the master's current settings for variables to

be used in the computed function can be passed directly as optional

arguments (...) for transmission to the workers. For example, to execute

fn(x=a,y=b) in parallel across the workers, you would call mpi.bcast.

cmd (cmd=£fn, x=a, y=b) ormpi.remote.exec (fn,x=a,y=b).

It should be noted, also, that in neither of these calls does the master
execute the parallel function itself, and in fact, it could not do so with mpi .
remote.exec (cmd, ret=TRUE) as it must wait until it has gathered all
the results from each of the workers. If you do need to do this, then the
usual pattern is for the master to execute the parallel function immediately
after it calls mpi .bcast . cmd (). Be aware of this requirement in particular
where the parallel function internally includes a call to an MPI collective
communication across the default communicator as the master will have to
participate in order to prevent a deadlock from occurring.

[62]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 2

Point-to-point non-blocking communications

In the previous section, you learned about MPI_Send and MPI_Recv. These are
blocking communications and present us with a couple of issues. Firstly, if we
don't have a matching receive for a given send, then our program will hang; it will
be in a state of deadlock (for a discussion of the issue of deadlock that can arise

in the context of blocking communications, refer to Chapter 6, The Art of Parallel
Programming). Secondly, the two processes involved in a data transfer have to
wait for each other to be ready in order to make the transfer happen. This can be
very inefficient if the processes are not closely synchronized —if, for example, they
have imbalanced workloads or functionally perform different types of calculation.
Thankfully, MPI's non-blocking communications can help alleviate some of these
issues, and this is what we will explore next.

MPI_Isend and MPI_Irecv are the non-blocking send and receive variants. The

"1" prefix stands for "Immediate", which means that the program flow of control is
immediately returned to the calling process once the send or receive is initiated
within the MPI communications subsystem. However, it is important to understand
that even though MPI_Isend or MPI_Irecv is returned, this does not mean that the
data is transferred; we need to make a separate MPI API call, MPI_wait (or one of its
variants), to determine when a specific non-blocking send or receive is completed.
Until we determine that the non-blocking send is completed, we cannot change the
state of the object we are sending;; it is essentially off-limits. Likewise, until a non-
blocking receive is completed, we cannot read the state of the object that we set aside
to be modified by a matching send. Note that a non-blocking receive can be matched
with a blocking send, and likewise, a blocking receive can be matched with a non-
blocking send.

The following code snippets present the basic pattern for two processes engaging

in non-blocking communications for both Rmpi (rmpi_vectorSum) and pbdMpPI
(pdbmpi_vectorsum). The example calculates a combined vector sum on the data
held locally with the data received from the ranked predecessor MPI process.

The key thing to note is that we will assign a unique request number to each non-
blocking send and receive we launch so that we have a way of referring to it in order
to be able check it later for completion:

Run these code snippets with at least two MPI processes
For Rmpi you must use the workers-only communicator: Wcomm
rmpi_vectorSum <- function(com) {

np <- comm.size (comm=com)

myrank <- comm.rank (com)

succ <- (myrank+1l) %% np

[63]

Introduction to Message Passing

pred <- (myrank-1) %% np
dataOut <- as.integer(1:10 + (myrank * 10))
dataIn <- vector (mode=""integer"", length=10)

mpi.isend(dataOut, 1, succ, 0, comm=com, request=1)
mpi.irecv(dataIn, 1, pred, 0, comm=com, request=2)

mpi.wait (2, status=2) # wait on receive
dataSum <- dataOut + dataln

mpi.wait (1, status=1) # wait on send
return (dataSum)

pbdmpi vectorSum <- function (com) {
np <- comm.size (comm=com)
myrank <- comm.rank (com)
np
pred <- (myrank-1) np
dataOut <- as.integer(1:10 + (myrank * 10))
datalIn <- vector (mode=""integer"", length=10)

succ <- (myrank+1)

)
L)
)

isend(dataOut, rank.dest=succ, comm=com, request=1)
irecv(x.buffer=dataln, rank.source=pred ,comm=com,

wait (2, status=2) # wait on receive
dataSum <- dataOut + dataln

wait (1, status=1) # wait on send
return (dataSum)

}

request=2)

By now, you have all the knowledge to embed the preceding functions in the
necessary code structure to make them run and display the output. The complete

working code examples are available at the book's website.

In the following reference table, all of the non-blocking communications and

additional MPT_wWait variants are described in detail:

[64]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 2

NON-BLOCKING COMMUNICATIONS

MPI API Call pbdMPI equivalent Rmpi equivalent
MPI_Isend(MPI Ref: p.49 isend (mpi.isend(
* buf: This is the address pointer Robject, x, type, dest,
to the first object in the buffer of rank.dest=1, tag,
comm=1,

contiguous memory local to sender

count: This is the number of
objects in the memory bulffer to
send

datatype: This is the enum
defining the type of object from
which the size of the object is
inferred

dest: This is the rank of the
destination process the in
communicator that is being sent to

tag: This is the a non-negative
integer that only has meaning for
the caller

comm: This is the communicator
within which this message will be
transferred

request: This is the handle for a
communication request that will
be associated with this immediate
send)

tag=0,
comm=0,
request=0
)

returns: NULL

The default
argument values for
pbdMPI: :isend are
defined in $SPMD.CT
and can be changed
there.

request=0
)
returns: NULL

mpi.isend.Robj (
Robject, dest,
tag,
comm=1,
request=0
)

returns: NULL

The valid values for
type are:

* 1=integer
e 2 =numeric

e 3 = character

MPI_Isend is a non-blocking send operation that returns to the caller immediately. It requires
either a matching blocking MPI_Recv or non-blocking MPI_Irecv operation. The completion
of an MPI_Isend operation is determined by calling MPI_Wait or MPI_Test on the request
handle that was associated with the send. It is only safe to change the state of the object being

transmitted once the non-blocking send is known to be completed.

Refer to MPI_Send described in the previous table. For pbdMPI and Rmpi, their Isend
functions are equivalent to their blocking variants with the addition of the integer request handle

that is uniquely associated with the non-blocking communication.

[65]

Introduction to Message Passing

NON-BLOCKING COMMUNICATIONS

MPI_Irecv(MPI Ref: p.51 irecv (mpi.irecv(

* buf: This is the address pointer x.buffer=NULL, x, type, srce,
to the first object in the buffer of rank.srce=0, tag,
contiguous memory local to receiver tag=0, comm=1,

* count: This is the number of objects comm=0, request=0
in the memory buffer to receive request=0)

¢ datatype: This is the enum) . returns: NULL
defining the datatype of the object returns: Robject
from which the size of the object is
inferred

The default

* srce: This is the rank of source
process in the communicator that it
is receiving from

argument values for
pbdMPI: :recv are
defined in $SPMD.CT

* tag: This is the a non-negative and can be changed
integer that only has meaning to the | there.
caller

¢ comm: This is the communicator
within which this message will be
transferred

¢ request: This is the handle for a
communication request that will
be associated with this immediate
receive)

MPI_Irecv is a non-blocking receive operation that returns to the caller immediately. It requires
either a matching blocking MPI_Send or non-blocking MPI_Isend operation. The completion
of an MPI_Irecv operation is determined by calling MPI_Wait or MPI_Test on the request
handle that was associated with the send. It is only safe to read the state of the object being
received once the non-blocking receive is known to be completed.

Refer to MPI_Recv described in the previous table. For pbdMPI and Rmpi, their Irecv
functions are equivalent to their blocking variants with the addition of the integer request handle
that will be uniquely associated with the non-blocking communication. Note that Rmpi does not
implement an mpi . isend.Robj () method equivalent for mpi.irecv.Robj ().

[66]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 2

NON-BLOCKING COMMUNICATIONS

MPI Wait (MPI Ref: p.53
¢ request: This is the handle for the
Isend/IRecv communication to
wait for completion
* status: This is the information
about the completed
communication)
MPI Waitall (MPI Ref: p.59
count: This is the number of requests to
wait on
requests: This is the array of handles for
the Isend/IRecv communications to wait
on completing
statuses: This is the information about
each of the corresponding requests'
completion)
MPI_Waitany (MPI Ref: p.57
* count: This is the number of
requests to wait on
* requests: This is the array of
handles for the Isend/IRecv
communications to wait on
completing the count
* index: This is the an array index
of a request in requests that is
completed
* status - information about the
completed communication)
MPI_Waitsome (MPI Ref: p.60
* count: This is the number of
requests to wait on
* requests This is the array of
handles for the Isend/IRecv
communications to wait on
completing the count
e countComplete This is the
number of requests completed
* requestsComplete: This is the
array of completed request handles
* statuses: This is the information
about each of the corresponding
requests' completion

wait (
request=0,
status=0
)

returns: NULL

waitall (count)
returns: NULL

waitany (
count,
status=0
)

returns: NULL

waitsome (count)
returns:
list(countComplete,

indices[count
Complete])

The default argument
values are defined in
$SPMD. CT and can be
changed there.

mpi.wait (
request=0,
status=0
)

returns: NULL

mpi.waitall (count)

returns: NULL

mpi.waitany (
count,
status=0
)
returns: NULL

mpi.waitsome (count)
returns:
list(countComplete,
indices[countComplete])

[67]

Introduction to Message Passing

NON-BLOCKING COMMUNICATIONS

MPI_Wait comes in several flavors. The basic mpi.wait () function enables you to wait for

a single specific non-blocking communication request and optionally set the supplied status
handle with information about the completed communication (source and tag), which you can
subsequently access with MPI_Probe.

You are free to create as many outstanding non-blocking communications as you want (within
resource limits, of course), so your code can choose to wait for any single or subset of the
outstanding communications to complete.

Rmpi and pbdMPI simplify the use of wait by maintaining their own per MPI process internal
arrays of the MPI_Request and MPI_Status objects, which (at the time of writing) are the
compile time limits for Rmpi of 2,000 each, and for pbdMP1, it is 10,000 and 5,000, respectively.
Be aware that when using the bulk wait functions, the count parameter effectively determines
the range of request handles that will be scanned from 0 up to count -1. With this in mind

and assuming you assign the request handle numbers incrementally in your own R code, the
collective wait functions will operate as follows:

The mpi.waitany () function will wait for the first of the supplied count parameter of the
currently outstanding non-blocking sends/recvs to be completed and set the supplied status
parameter to enable you to inspect the information about the communication that is completed
(with MPI_Probe).

The mpi.waitsome () function will wait on the supplied count parameter of the outstanding
communications and return a list of the number of requests and a vector of the request handles
for those that are completed.

The mpi.waitall () function simply waits for all of the supplied count parameter of the
outstanding communications to be completed.

Collective communications

We already encountered the simplest of the MPI collective communication calls,
namely MPI_Barrier. The remaining MPI collective communications are explained
visually in the following figure illustrating a communicator with three processes —
that is, which rank(s) send which data and which rank(s) receive which data. In the
following figure, rank zero is colored red, rank one is colored blue, and rank two

is green:

[68]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 2

Received Received
Received Received Received . Received
o o -
MPI_Bcast MPI_Scatter
(root=0) (root=1)
Received
(2]
Received Received Received
o o
MPI_Gather
Rank 1 (root=2) Rank 2 MPI_Allgather / Rank 2
1 2 2
Sent Sent Sent

J

Figure 2: A diagram depicting the MPI collective operations Bcast, Scatter, Gather, and Allgather for
a communicator with three processes. Using these operations, data can be distributed and combined in
a number of different patterns to support a wide variety of algorithms.

In many of the collective communications, one of the participating processes is
designated as the root and will have a special role within the operation as the overall
message source or destination, distributing and combining data according to a

specific pattern.

[69]

Introduction to Message Passing

The set of MPI collective communications exposed by pbdMpPI and Rmpi are detailed
in the following table:

GROUP-WISE COMMUNICATIONS (refer to the preceding figure)

MPI API Call pbdMPI equivalent | Rmpi equivalent

MPI_Barrier (MPI Ref: p.147 barrier mpi.barrier (comm
(comm= 0) =1)

comm: This is the Communicator across returns: NULL returns: NULL

which the barrier will

be executed.) The default

argument values are
defined in $SPMD.
CT and can be
changed there.

MPI_ Barrier is the simplest of the collective communication calls. It blocks all the processes
in the given communicator from proceeding until all processes call MPI_Barrier. It is used to
create a shared code execution synchronization point among all the processes. If any one of the
processes in the communicator fails to call MPI_Barrier, then all processes that called
MPI_Barrier will be blocked indefinitely.

[70]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 2

GROUP-WISE COMMUNICATIONS (refer to the preceding figure)

MPI_Bcast(MPI Ref: p.148

buf: This is the base address of
the first object in the contiguous
memory local to caller

count: This is the number of
objects in the memory buffer to
send or receive
datatype: This is the enum
defining the type of the object
from which the size of the object
is inferred

root: This is the rank of the
source process transmitting

its data to all the others in the
communicator

comm: This is the communicator
within which this message will be
broadcast

becast (
Robject,
rank.
source=0,

comm=0
)

returns: Robject

mpi.bcast (x, type,

rank=0,

comm=1,

buffunit=100)
returns: NULL on root and x
vector on other processes

mpi.bcast.

Robj (Robject,

rank=0, comm=1)
returns: NULL on root and
Robject on other processes

mpi.bcast.
Rfun2slave (
comm=1)
mpi.bcast.
Robj2slave (
Robject=null,
comm=1,
all=FALSE)
mpi.bcast.
data2slave (
R matrix or
vector of type
double,
buffunit=100)

comm=1,

The valid values for type
are:

* 1=integer
e 2 =numeric
e 3 =character

[71]

Introduction to Message Passing

GROUP-WISE COMMUNICATIONS (refer to the preceding figure)

All the processes must call MPI_Bcast with the same value for root and communicator;
otherwise, a deadlock may occur. The root process transmits its data to each of the other
processes, each of which must have sufficient memory buffer space to receive the data
being sent.

In pbdMPI, rank. source is the root. In Rmpi, rank is the root, and buf funit is the number
of type data items in the vector to be broadcast.

The Rmpi.bcast call is used to transfer simple vector data of the integer, numeric, or
character type.

The Rmpi Robj2slave (which transfers all the master objects to the slave if al1=TRUE),
Rfun2slave (which transmits all of the master's R function definitions to the slaves), and
Rdata2slave (which transmits a double-type array held on the master fast) convenience
functions are part of the built-in Rmpi cluster framework and always transmit data from the
master to the workers. As we discussed earlier in this chapter, the workers, when not processing
a task, always wait for the next broadcast message from the master.

[72]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 2

GROUP-WISE COMMUNICATIONS (refer to the preceding figure)

MPI_Scatter (MPI Ref: p.159 scatter (x, mpi.scatter (x,
. . = type, rdata,
¢ Sendbuf: This is the base address x.buffer=NULL, rggi— Or 20:1’(1’1—1)
of objects in the contiguous *.count=NULL, T -
memory local to caller displs=NULL,
* sendcount: This is the number of rank.source=0, mpi.scatterv(x,
objects to send comm=0) scounts, type,
.. rdata, root=0
¢ sendtype: This is the datatype of ! !
YP yp comm=1)

the objects being sent

e recvbuf: This is the address
pointer for the buffer to receive
data into

e recvcount: This is the number
of objects that can be received into
the buffer e 2 =numeric

* recvtype: This is the datatype of
the objects being received

e root: This is the rank of source
process transmitting data

e comm: This is the communicator
for this scatter operation

The valid values for type
are:

* 1 =integer

e 3 = character

)

Similarly, take a look at the following:
MPI_Scatterv (MPI Ref: p.161
sendbuf,

sendcounts [comm. size]: This is the
array of counts of data to send to the
associated ranked process

displs [comm.size]: Thisis the
displacement offsets applied to sendbuf
from which to send i data to i ranked
process

sendtype, recvbuf, recvcount,
recvtype, root, comm

)

MPI_Scatter is essentially a more complex form of MPI_Bcast, in which each receiving
process is sent its own separate subset of the broadcast data. Essentially, where there are N
processes in the MPI communicator, the root's data is segmented sequentially into i=1..N equal-
sized parts (the size of each part is defined by sendcount and type), and the i part is sent to
the matching i* ranked process.

MPI_Scatterv extends the basic scatter operation to enable the root to send differently sized
segments of data to each of the other processes. The displs displacement offsets array also
enables noncontiguous segments of data to be distributed from the send buffer.

In R, the scatter operations are normally used with numeric vectors and matrices.

[73]

Introduction to Message Passing

GROUP-WISE COMMUNICATIONS (refer to the preceding figure)

MPI_Gather (

* sendbuf: This is the base address
of objects in the contiguous
memory local to caller

* sendcount: This is the number of
objects to send

* sendtype: This is the datatype of
the objects being sent

e recvbuf: This is the base address
of the buffer to receive data into

* recvcount: This is the number
of objects that can be received into
the buffer

e recvtype: This is the datatype of
the objects being received

e root: This is the rank of the
destination process receiving the
data

e comm: This is the communicator
for this gather operation

)

Similarly, take a look at the following:
MPI_Allgather(

sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, comm
)
MPI_Gatherv (

sendbuf, sendcount, sendtype,
recvbuf,

recvcounts [comm. size]: This is the
array of counts of the data to receive from
to the associated ranked process

displs [comm.size]: Thisis the
displacement offsets applied to recvbuf
from which to receive the ith data from
the ith ranked process

recvtype, root, comm

)
Similarly, take a look at the following:
MPI Allgatherv (

sendbuf, sendcount, sendtype,
recvcounts, displs, recvtype, comm

)

gather (x ,
x.buffer
=NULL,
X .count=
NULL,
displs=N
ULL,
rank.des
t=0,
comm=1,
unlist=F
ALSE)
returns: NULL

allgather (x,
x.buffer
=NULL,

X .count
=NULL,
displs
=NULL,
comm=1,
unlist
=FALSE)

returns: NULL

mpi.gather (x,
rdata, root=0,
comm=1)
mpi.gatherv(x,
type, rdata,
rcounts, root=0,
comm=1)

mpi.allgather (x,
type, rdata,
comm=1)

mpi.allgatherv(x
, type, rdata,
rcounts, comm=1)

The valid values for type
are:

* 1 =integer
e 2 =numeric

e 3 = character

[74]

[vww.ebook3000.con)

type,

http://www.ebook3000.org

Chapter 2

GROUP-WISE COMMUNICATIONS (refer to the preceding figure)

MPI_Gather is the inverse of MPI_Scatter, and likewise, MPI_Gatherv is the inverse of
MPI_Scatterv.MPI_Gather collects an identical quantity of data from all the processes
in the communicator to the designated root process. MPI_Gatherv extends this to enable
different amounts of data to be collected from each process and for the data to be placed at
noncontiguous offsets within the aggregate receive buffer.

In R, gather operations are normally used with numeric vectors and matrices.

MPI_Reduce (MPI ref p.174 reduce (x, mpi.reduce (x,
¢ sendbuf: This is the data x.buffer type=2, op,
. =NULL, dest=0, comm=1)
elements being sent
op= nn Sum" n ,

e recvbuf: This is the buffer into rank.dest=0,

which the aggregated reduced comm=1) mpi.allreduce (

data will be placed x, type=2, op,

¢ count: This is the total number
of data elements

comm=1

)

The valid values for type
are:

* datatype: This is the type of
data element

¢ op: This is the reduction 1=i
. o = integer
operation to apply to the data

° 2 = 1
e root: This is the rank of the numeric

process receiving the reduced allreduce (
data x, x.buffer
e comm: This is the communicator =NULL,
for this reduction - .
op=""sum"",
) comm=1

Similarly, take a look at the following;:)
MPI_Allreduce (MPI refp.187

sendbuf, recvbuf, count, datatype,
op, comm)

MPI_Reduce may be considered an extension of MPI_Gather. It additionally performs a
reduction on the data sent by all the processes to the root according to one of the following
mathematical operations: sum, prod, max, min, maxloc, and minloc. In R, the reduce operations
are intended for use with numerical data. The summation, product, maximum, and minimum
operations should be self-explanatory. The maxloc operation returns a sequence of pairs in the
reduced vector with the maximum value and the rank of the process that hold the maximum
value. Similarly, minloc returns the minimum value and rank of the process that holds the
value.

MPI_Allreduce extends the behavior such that all the processes in the communicator receive
the final result rather than just a single process.

[75]

Introduction to Message Passing

PBD: This is a higher-level abstraction for Programming with Big Data
in R. For even more information about message passing with R, refer
to the excellent pbdR book Speaking Serial R with a Parallel Accent. This
gives a very thorough exposition of the additional useful higher-level
L Programming Big Data packages that are designed specifically to work
with pbdMP1I. It's available online for free from this CRAN link:

https://cran.r-project.org/web/packages/pbdDEMO/
vignettes/pbdDEMO-guide.pdf.

Summary

Right, it's time to take a wee breather. In this chapter, we covered the basic concepts
and the API for MPL. You learned how to utilize both the Rmpi and pbdMPI packages
in conjunction with OpenMPI. We explored a number of simple examples of both
blocking and non-blocking communications in R and also introduced the collective
communications operations in MPI. We looked into the low-level implementation

of Rmpi package's own master/worker scheme to manage the execution of R code

in parallel. You now have sufficient grounding to write a wide variety of highly
scalable MPI programs in R.

In the next chapter, we will complete our discussion on MPI, work through a
particular MPI example that introduces spatial grid-style parallelism, and cover
the remaining slightly more esoteric MPI API functions available to us in R.

[76]

[vww .ebook3000.con}

https://cran.r-project.org/web/packages/pbdDEMO/vignettes/pbdDEMO-guide.pdf
https://cran.r-project.org/web/packages/pbdDEMO/vignettes/pbdDEMO-guide.pdf
http://www.ebook3000.org

Advanced Message Passing

We continue our tour of MPI in this chapter by focusing on the more advanced
aspects of message passing. In particular, we explore a specific structured approach
to distributed computing for efficiently processing spatially organized data, known
as Grid Parallelism. We will work through a detailed example of image processing
that will illustrate the use of non-blocking communications, including localized
patterns of inter-process message exchange, based on appropriately configuring

an Rmpi master/worker cluster.

In this chapter, we will cover additional MPI API calls, including MPI_Cart_
create(),MPI_Cart_rank (), MPI_Probe, and MPI_Test, and briefly revisit
parLapply () which we first encountered in Chapter 1, Simple Parallelism with R
(and even snow gets a mention).

So, without further ado, let's discover how to perform spatially oriented parallel
processing using MPI in R.

Grid parallelism

Grid parallelism is naturally aligned to image processing, where operations can be
cast in a form that acts on a specific localized region for each and every individual
cell value of data. Commonly, the cell value is referred to as a pixel in the case of
2D image data, and voxel in the case of 3D image data. Grids can, of course, be
N-dimensional matrix structures, but as human beings, it's somewhat difficult for
us to wrap our heads around more than 4D.

[77]

Advanced Message Passing

The key to efficient grid parallelism is the distribution mapping of data across the
set of parallel processes, and the interactions between each process, as they may
exchange data with one another to accommodate iterative operations that require
access to more of the data than each process holds locally. Consider a simple

but very large square 2D image, and that we have a cluster of nine independent
computational cores available. To illustrate the point, we will add the constraint
that each of the computational nodes only has sufficient data memory to hold a little
more than one-ninth of the total image. There are now two obvious ways in which
we can decompose the image amongst the nine MPI processes in the cluster. Either
we can distribute the data as nine equal-sized tiled squares where the cluster acts as
a 3x3 grid, or as nine equal-sized abutting stripes (effectively, a 1x9 grid). These two
options are depicted in the following diagrams:

A
MNorth
Rank 8
West
Rank 7
East
Rank 6
South
Rank 5 A
. [7 Rank 4 must
Y-axis Rank 4 exchange data
North and South
Rank 3
Rank 2
Rank 1
Rank 0
X-axis

Figure 1: Image split into 9 equal stripes.

As can be seen, the striped option implies fewer communication exchanges between
processes at the stripe boundaries as compared to the tiled approach. In the former
case, rank 4 must exchange with its two neighbors (3 and 5), and in the latter case,
rank 4 may need to exchange with all of the other eight processes, assuming that
exchange is required on the diagonal, and not just with the cardinal neighbors:

[78]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 3

A
North
Rank 6 Rank 7 Rank 8 West
(y2,x0) (y2,x1) (y2,x2) East
‘\l : - South
Y-axis Rank 3 - Rank 4 - Rank 5 e?g::ﬂ‘;:g:;
(y1,x0) (y1,x1) (y1,x2) with all others
e a—
Rank 0 Rank 1 Rank 2
(y0,x0) (y0,x1) (y0,x2)
X-axis

Figure 2: Image split into nine equal square tiles. The co-ordinate order is (y, x) to reflect R code.

We should also recognize that there is an imbalance in the amount of communication
required between processes in these two different approaches. In the striped

case, only rank 0 and rank 8 have one exchange to perform, the rest all have two
exchanges. In the tiled case, ranks 0, 2, 6, and 8 (the corners) have three exchanges;
ranks 1, 3, 5, and 7 (the cardinals) have five exchanges, and rank 4 alone has eight
exchanges. This implies that in the tiled case, the overall efficiency of the processing
is dictated by rank 4, which has twice as many exchanges to perform compared to
the average, and therefore, the other processes will inevitably end up waiting on it to
exchange their data.

This is indeed likely to be the case at this scale. However, one should also note that
the amount of data being exchanged is less between neighbors in the tiled case as
compared to the striped case. The differential in volume of data exchanged between
neighbors also favors the tiled case, since as we increase the number of processes

in the grid, the average number of exchanges increases (there are more inner tiles).
Additionally, the volume of data exchanged decreases in the tiled case (tile size
reduces and edge perimeter decreases), whereas in the striped case, the length of
the stripe edge remains constant. Also, if the type of data processing requires data
exchange to wrap around at the boundaries of the grid, then all the processes in

the grid will need to engage in the same number of exchanges with its neighbors.
This example highlights why it is important to consider how data is distributed and
mapped for a given scale of parallelism, and how this may affect the efficiency of
communication, and therefore, impact the overall runtime.

Now that you have a pretty good idea about grid parallelism, let's get some code
running.

[79]

Advanced Message Passing

Creating the grid cluster

Usually, MPI includes a variety of utility functions to help configure the MPI
universe as a grid. Essentially, what this boils down to is mapping a linear set
of MPI process ranks to a multidimensional coordinate system.

The following Rumpi -based code sets up a square grid of the given dimension. It
also associates a specific new comm handle with this grid in order to isolate the grid
communications from other comms, in particular to isolate those comms from the
Rmpi master which have no role to play in the grid computation itself:

Worker makeSquareGrid <- function (comm,dim) {
grid <- 1000 + dim # assign comm handle for this size grid
dims <- c(dim,dim) # dimensions are 2D, size: dim X dim
periods <- ¢ (FALSE,FALSE) # no wraparound at outermost edges
if (mpi.cart.create(commold=comm,dims,periods, commcart=grid))

{

return (grid)

}

return(-1) # An MPI error occurred

}

You'll note the use of mpi.cart.create () that constructs a Cartesian rank/grid
mapping from a group of existing MPI processes, and associates a new specific
communicator handle with the grid. Recall that Rmpi maintains its own internal
arrays of MPI handle references, and the handle reference we are using for the
communicator association must be a currently unused index within this array
(hence, the 1000 offset). Though this is not ideal coding on our part, it is pragmatic
given the nature of the interface exposed by rRmpi.

Now that we have a grid association set up through rRmpi, we can use its mpi.cart.
coords () and mpi.cart.rank () functions on each process to figure out which cell
of the grid it is, and the ranks of its neighbors. Without this information, we could
not determine with which other ranked processes we should be exchanging image
boundary information. It is not a given that a specific rank will be automatically
assigned a specific coordinate in the grid, so instead, we need to explicitly query
what association has been created.

worker initSpatialGrid <- function (dim, comm=Wcomm)
{
Gcomm <- worker makeSquareGrid(dim, comm)
myRank <- mpi.comm.rank (Gcomm)
myUniverseRank <- mpi.comm.rank (1) # Lookup rank in cluster
myCoords <- mpi.cart.coords (Gcomm,myRank, 2)

[80]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 3

myY <- myCoords[1l]; myX <- myCoords[2]; # (y*,x>)
coords <- vector (mode="1list", length=8)
neighbors <- rep(-1,8)
if (myY¥+1 < dim)
neighbors [N] <- mpi.cart.rank (Gcomm,c (myY+1l,myX))
}
if (myX+1l < dim && myY¥+1l < dim)
neighbors [NE] <- mpi.cart.rank (Gcomm, c (myY+1l,myX+1))
}
if (myX+1 < dim)
neighbors[E] <- mpi.cart.rank (Gcomm,c (myY, myX+1))
}
if (myX+1l < dim && myY¥-1 >= 0) {
neighbors [SE] <- mpi.cart.rank (Gcomm,c (myY-1,myX+1))
}
if (myY-1 >= 0) {
neighbors([S] <- mpi.cart.rank (Gcomm,c (myY-1,myX))
}
if (myX-1 >= 0 && myY-1 >= 0) {
neighbors [SW] <- mpi.cart.rank (Gcomm,c(myY-1,myX-1))
}
if (myX-1 >= 0) {
neighbors [W] <- mpi.cart.rank (Gcomm,c (myY,myX-1))
}
if (myX-1 >= 0 && my¥+1 < dim)
neighbors [NW] <- mpi.cart.rank (Gcomm, c (myY+1l,myX-1))
}
Store reference for neighbor comms
assign ("Neighbors", neighbors, envir=.GlobalEnv)
Store reference for grid communicator
assign ("Gcomm", Gcomm, envir=.GlobalEnv)
return (list (myY, myX, myUniverseRank))

}

The preceding initSpatialGrid () function determines the calling MPI process,

its rank, grid coordinates, and the ranks of each of its eight neighbors. Where it does
not have a neighbor, its neighbor's rank will be set to -1, because the calling MPI
process is located at the edge of the grid. We return the coordinate to rank mapping
in the MPI universe back to the master so that it can determine which image tile is to
be sent to which ranked worker. We also store the neighbor and grid communicator
as globals for ease of reference in the worker's separate processing loop when that is

subsequently invoked by the master.

[81]

Advanced Message Passing

Boundary data exchange

The pattern of data exchange is depicted in the following Figure 3. Each individual
process has its own section of image to operate over with an additional external
one pixel boundary that is populated with the inner one pixel boundary of its
neighboring process's section of the image. The coloration in Figure 3 is designed to
show how each process contributes data to the overlap with each of its neighbors.
The processes which own a region of the image that is at the real edge of the
complete image —in this case, all processes except rank 4 —have an artificial overlap
boundary at this edge (colored gray) that is populated with values that are out of
range of the normal pixel image values (in our grayscale image, the normal valid
range of pixel value is 0 to 255). This simplifies the coding of the median filter
function without interfering with the filter results generated:

6 7 8
® | Light Light
Green Blue
L]
Y
A
o []
4 -
1®
Orange Red
1 2
Yellow Green Pink

Figure 3: Pattern of boundary data exchange between processes, with some of the exchanges highlighted with
arrows for clarity.

The median filter is a 3x3 window operator. If we used a larger window operator,
then we would have to enlarge our overlap boundaries by the requisite number
of pixels.

As can be seen in the preceding image, there is a little bit of complexity in setting up
the pattern of data access to enable the set of exchanges.

[82]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 3

The following is an implementation that executes the boundary exchange based on
a local square image array (img) that directly includes the single pixel overlap. Here
we present the series of non-blocking sends:

% local image tile has one pixel shared border
edge <- ncol(img)-1 # image is square: ncol=nrow
sbuf <- vector(mode="list", length=8) # 8 send buffers
req <- 0
non-block send my tile data boundaries to my neighbors
if (neighbors[N]>=0) { # north
sbuf [[N]] <- img[2,2:edgel
mpi.isend (sbuf[[N]],1,neighbors[N],N, comm=comm, request=req)
req <- req + 1
}
if (neighbors[NE]>=0) { # ne
sbuf [NE] <- img[2,edge] # top-right inner cell
mpi.isend(sbuf[[NE]],1,neighbors[NE],NE,
comm=comm, request=req)
req <- req + 1

Sends to East, South-East and South not shown
if (neighbors[SW]>=0) { # sw
sbuf [[SW]] <- img[edge,2] # bottom-left inner cell
mpi.isend (sbuf[[SW]],1,neighbors[SW], SW,
comm=comm, request=req)
req <- req + 1
}
if (neighbors([W]>=0) { # west
sbuf [[W]] <- img[2:edge,2] # leftmost inner col
mpi.isend (sbuf[[W]],1,neighbors[W], W, comm=comm, request=req)
req <- req + 1
}
if (neighbors [NW]>=0) { # nw
sbuf [[NW]] <- img[2,2] # top-left inner cell
mpi.isend (sbuf [[NW]],1,neighbors [NW] 6 NW,
comm=comm, request=req)
req <- req + 1

}

Each non-blocking send is associated with a separate request handle from 0 to 7,
numbered similarly as 1 to 8 from north, clockwise round to northwest. We also
set the tag associated with the sends to 1 to 8 as an explicit direction marker.

[83]

Advanced Message Passing

Next we present the non-blocking receives, although note that the data we receive
from our neighbor in the north, for example, is its innermost sent south data. We
need to ensure that we match up these opposite placements correctly for each
direction pairing, but since we only have a single message coming in from each
compass cardinal and inter-cardinal neighbor, then it is not necessary to set the
tag on the receive, that is, we can just use mpi.any.tag():

Set-up non-blocking receives for incoming boundary data
Local image tile has one pixel shared border
len <- ncol(img) -2
rbuf <- vector (mode="list", length=8) # 8 receive buffers
for (i in 1:8) {
if (neighbors[i]>=0) ({
rbuf [[i]] <- integer (length=len)
tag <- mpi.any.tag()
mpi.irecv(rbuf [[i]],1,neighbors[i], tag,
comm=comm, request=req)
req <- req + 1

}

Receive buffer sizes

Note that we have simplified the code by not bothering to size each
<" receive buffer precisely, but making each of them as large as the
maximum amount of data we'll receive from any sender.

The next step in an image processing iteration is to complete the boundary exchange.
This requires us to simply wait on all of the outstanding communication requests we
have created and have effectively kept count of with the value of the req variable:

mpi.waitall (req)

Nice and simple —we just have to wait on the total number of outstanding requests
(both sends and receives), which we assigned to the request handle range 0 to 15, to
complete.

[84]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 3

All we are left with to do now is to remap the data received into the various buffers
back into our image array, ready for the next processing iteration:

Unpack received boundary data into my image tile
n <- ncol (img)
if (neighbors[N]>=0) { # north
img[1l,2:edge]l <- rbuf[[N]] # top row
}
if (neighbors[NE]>=0) { # ne
img[1l,n] <- rbuf[[NE]] [1] # top-right cell
}
if (neighbors[E]l>=0) { # east
img[2:edge,n] <- rbuf[[E]] # rightmost column
}
if (neighbors[SE]>=0) { # se
img[n,n] <- rbuf[[SE]] [1] # bottom-right cell
}
if (neighbors[S]>=0) { # south
img[n,2:edge]l <- rbuf[[S]] # bottom row
}
if (neighbors[SW]>=0) { # sw
img[n,1] <- rbuf[[SW]] [1] # bottom-left cell
}
if (neighbors[W]l>=0) { # west
img[2:edge,1] <- rbuf[[W]] # leftmost column
}
if (neighbors [NW]>=0) { # nw
img[1,1] <- rbuf[[NW]] [1] # top-left cell

}

To put all of this together, we now need to implement the operator to be applied to
the section of the image held on each process. In our example, we are going to use a
median filter, so let us explore what that is next.

[85]

Advanced Message Passing

The median filter

There are a large number of localized, neighborhood-oriented processing operators
used in image processing. For our example, we will use a median filter: a smoothing
operator that is classically used to remove noise in images. It's a relatively
straightforward operation to implement, and can be applied in multiple passes over
an image, so it is ideal for our pedagogical purposes. As you may well be able to
intuit, the operation sets the target pixel value in the output to the middle value of

the ordered ranking of the pixel and its surrounding pixel values in the input (see:
https://en.wikipedia.org/wiki/Median filter). The Following Figure 4 depicts
the operation in terms of a 3x3 neighborhood window, centered on the target pixel:

The median replacement

|

i 100 101 102 102 102 value for pixel 121 is 101
1

i

98, 99, 100, 101,
101,

i 98 99 121 98 99
: 102,102,103,121

100 100 101 103 103

....................................

Figure 4: The median filter with a 3x3 pixel window applied to a single pixel in a larger grayscale image

Our simple implementation of the median filter is given as follows:

medianFilterPixel3 <- function(y,x,img) {
v <- vector("integer",9) # bottom-left to top-right
v[1l]l<-img[y-1,x-1]1; vI[2]<-imgly-1,x]; vI[3]<-img[y-1,x+1];
v[4]l<-imgly, x-11; vI[5]l<-imgly, x]; v[6l<-imgly, =x+1];
v[7]<-img[y+1,x-1]1; vI[8]<-imgly+1,x]; v[9]<-img[y+1,x+1];
s <- sort(v); # sort by pixel value (default ascending)
return (s[5]) # return the middle value of the nine

}

This should be easy to understand: the nine pixel values for the window are placed
in a vector, which is then sorted, and the value positioned in the middle is selected.

[86]

[vww.ebook3000.con)

https://en.wikipedia.org/wiki/Median_filter
http://www.ebook3000.org

Chapter 3

Distributing the image as tiles

The final part of the picture, excuse the pun, is the image itself. For testing purposes,
we create a large example square grayscale image, and then apply some random
noise for the median filter to smooth. This large image is then distributed in P equal-
sized tiles from the master, across the rmpi grid of P worker processes, to form

local tile arrays. The picture boundary data is then initialized with out-of-range

data values in preparation for processing on the worker. The following is the code
executed by the master:

We create large B/W image array with values in range 101-111

height <- Height; width <- Width;

imagel <- matrix(sample(101:111,height*width,replace=TRUE),
height,width)

We add a bit of white saturation noise (pixel value=255)

imagel [height/6,width/6] <- 255

imagel [height/1.5,width/1.5] <- 255

Tell the workers to process the image (3 pass MedianFilter)

The Workers first wait to receive their local tile from the

Master,then do their multi-pass image processing, then finally
send their processed tiles back to the Master.
mpi.bcast.cmd (worker gridApplyMedianFilter(3))

Start <- proc.time ()

We split the image into non-overlapping square grid tiles
and distribute one per Worker
twidth <- width/dim # tile width
theight <- height/dim # tile height
for (ty in 0:(dim-1)) { # bottom-left to top-right
sy <- (ty * theight) +1
for (tx in 0:(dim-1))
sx <- (tx * twidth) +1
tile <- imagel([sy: (sy+theight-1),sx: (sx+twidth-1)]
Send tile to the appropriate Worker
worker <- workerRanks [ty+1,tx+1]
mpi.send.Robj (tile,worker,1l,comm=1)

[87]

Advanced Message Passing

The master then simply waits to receive the processed tiles back from the grid
workers, and places them to reform the image:

Master receives output tiles in sequence and unpacks
each into its correct place to form the output image
for (ty in 0:(dim-1)) { # bottom-left to top-right
sy <- (ty * theight) +1
for (tx in 0:(dim-1)) {
sx <- (tx * twidth) +1
Receive tile from the appropriate Worker
worker <- workerRanks[ty+1,tx+1]
tile <- mpi.recv.Robj (worker,2,comm=1)
image2 [sy: (sy+theight-1) ,sx: (sx+twidth-1)] <- tile

}

Processing the image tiles

The following is the code executed by the grid workers —in the complete code,
this is wrapped in a function that the master executes across the worker grid with
mpi.bcast.cmd():

Worker Grid Function: worker gridApplyMedianFilter ()
Receive tile from Master on Rmpi default comm
tile <- mpi.recv.Robj(0,1,comm=1,status=1)

Create local image with extra pixel boundary
theight <- nrow(tile); iheight <- theight+2;
twidth <- ncol(tile); iwidth <- twidth+2;

img <- matrix (0L,nrow=iheight,ncol=iwidth)

Initialize borders with out-of-bound pixel values

These values will be sorted to the ends of the set of 9
and so will not interfere with the real image values
img[1l,1:iwidth] <- rep(c(-1,256),times=iwidth/2)
img[l:iheight, 1] <- rep(c(-1,256),times=iheight/2)
img[iheight, 1:iwidth] <- rep(c(256,-1),times=iwidth/2)
img[l:iheight, iwidth] <- rep(c(256,-1),times=iheight/2)

Set internal bounded area to the received tile
img[2: (theight+1),2: (twidth+1)] <- tile

[88]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 3

Once the image has been constructed, each worker enters its processing sequence,
using the code snippets described previously. The processing sequence is as follows:

1. Each worker exchanges boundary data, consisting of the set of non-blocking
sends and non-blocking receives, with its neighbors:

2. It then applies the Median filter operator to all pixels within the inner tile
square.

3. Steps1and 2 are repeated for some chosen number of iterations.

4. The resultant filtered tile data is then back to the master.

The full commented code for the entire grid-based median filter processing program
is provided in the following section.

Median filter grid program

The code listing in the next few pages describes the entire program for implementing
the grid-based Median filter with rmpi, and is broken into sections reflecting the
various steps through which we developed the code previously in this chapter:

##

Copyright 2016 Simon Chapple

##

Packt: "Mastering Parallelism with R"

Chapter 3 - Advanced MPI Grid Parallelism Median Filter
##

library (Rmpi)

Useful constants

Height<-200; Width<-200; # Size of image

Dim<-2; # Square size of grid

N<-1; NE<-2; E<-3; SE<-4; # Neighbor compass directions
S<-5; SW<-6; W<-7; NW<-8;

Creating the grid cluster:

worker makeSquareGrid <- function (dim, comm)

{
print (pastel ("Base grid comm=",comm," dim=",dim))
grid <- 1000 + dim # assign comm handle for this size grid
dims <- c(dim,dim) # dimensions are 2D, size: dim X dim
periods <- c(FALSE,FALSE) # no wraparound at outermost edges

[89]

Advanced Message Passing

if (mpi.cart.create(commold=comm,dims, periods, commcart=grid))

{

return (grid)

}

return(-1) # An MPI error occurred

worker initSpatialGrid <- function(dim, comm=Wcomm)
{
Gcomm <- worker makeSquareGrid(dim, comm)
myRank <- mpi.comm.rank (Gcomm)
myUniverseRank <- mpi.comm.rank(l) # Lookup rank in cluster
print (paste ("myRank: ", myRank))
myCoords <- mpi.cart.coords (Gcomm,myRank, 2)
print (paste ("myCoords: ", myCoords))
(y*,x>) co-ordinate system
myY <- myCoords[1l]; myX <- myCoords[2];
coords <- vector (mode="1list", length=8)
neighbors <- rep(-1,8)
if (myY¥+1 < dim)
neighbors [N] <- mpi.cart.rank (Gcomm,c (myY+1l,myX))
}
if (myX+1l < dim && myY¥+1l < dim)
neighbors [NE] <- mpi.cart.rank (Gcomm, c (myY+1l,myX+1))
}
if (myX+1 < dim)
neighbors[E] <- mpi.cart.rank (Gcomm,c (myY,myX+1))
}
if (myX+1l < dim && myY¥-1 >= 0) {
neighbors [SE] <- mpi.cart.rank (Gcomm, c (myY-1,myX+1))
}
if (myY-1 >= 0) {
neighbors([S] <- mpi.cart.rank (Gcomm,c (myY-1,myX))
}
if (myX-1 >= 0 && myY-1 >= 0) {
neighbors [SW] <- mpi.cart.rank (Gcomm,c (myY-1,myX-1))
}
if (myX-1 >= 0) {
neighbors [W] <- mpi.cart.rank (Gcomm,c (myY,myX-1))
}
if (myX-1 >= 0 && my¥+1l < dim)
neighbors [NW] <- mpi.cart.rank (Gcomm, c (myY+1l,myX-1))

}

[90]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 3

}

Store reference for neighbor comms

assign ("Neighbors", neighbors, envir=.GlobalEnv)
Store reference for grid communicator

assign ("Gcomm", Gcomm, envir=.GlobalEnv)

return (list (myY, myX, myUniverseRank))

Boundary data exchange:

worker boundaryExchange <- function (img,neighbors, comm)

{

More efficient to set-up non-blocking receives then sends

neighbors <- Neighbors; comm <- Gcomm;

Set-up non-blocking receives for incoming boundary data
Local image tile has one pixel shared border
len <- ncol(img) -2
rbuf <- vector(mode="list", length=8) # 8 receive buffers
req <- 0
for (i in 1:8) {
if (neighbors[i]>=0) {
rbuf [[i]] <- integer (length=len)
tag <- mpi.any.tag()
mpi.irecv(rbuf[[i]],1,neighbors[i], tag,
comm=comm, request=req)
req <- req + 1

edge <- ncol(img)-1 # image is square: ncol=nrow
sbuf <- vector(mode="1list", length=8) # 8 send buffers
non-block send my tile data boundaries to my neighbours
if (neighbors[N]>=0) { # north
sbuf [[N]] <- img[2,2:edgel

mpi.isend (sbuf[[N]],1,neighbors[N],N, comm=comm, request=req)

req <- req + 1
}
if (neighbors[NE]>=0) { # ne
sbuf [NE] <- img[2,edge] # top-right inner cell
mpi.isend (sbuf[[NE]],1,neighbors[NE],NE,
comm=comm, request=req)
req <- req + 1

[91]

Advanced Message Passing

if (neighbors([E]>=0) { # east
sbuf [[E]] <- img[2:edge,edge] # rightmost inner col
mpi.isend(sbuf[[E]],1,neighbors[E], E, comm=comm, request=req)
req <- req + 1

}

if (neighbors[SE]>=0) { # se
sbuf [[SE]] <- imgledge,edge] # bottom-right inner cell
mpi.isend (sbuf[[SE]],1,neighbors[SE], SE,

comm=comm, request=req)
req <- req + 1

}

if (neighbors([S]>=0) { # south
sbuf [[S]] <- imgledge,2:edge] # bottom inner row
mpi.isend(sbuf[[S]],1,neighbors[S],S,comm=comm, request=req)
req <- req + 1

}

if (neighbors[SW]>=0) { # sw
sbuf [[SW]] <- imgledge,2] # bottom-left inner cell
mpi.isend (sbuf[[SW]],1,neighbors[SW], SW,

comm=comm, request=req)
req <- req + 1

}

if (neighbors([W]>=0) { # west
sbuf [[W]] <- img[2:edge,2] # leftmost inner col
mpi.isend (sbuf[[W]],1,neighbors[W], W, comm=comm, request=req)
req <- req + 1

}

if (neighbors [NW]>=0) { # nw
sbuf [[NW]] <- img[2,2] # top-left inner cell
mpi.isend (sbuf [[NW]],1,neighbors [NW] ,6 NW,

comm=comm, request=req)
req <- req + 1

mpi.waitall (req) # Wait for all boundary comms to complete

Unpack received boundary data into my image tile
n <- ncol (img)
if (neighbors[N]>=0) { # north
img[1l,2:edge]l <- rbuf[[N]] # top row
}
if (neighbors[NE]>=0) { # ne
img[1,n] <- rbuf[[NE]] [1] # top-right cell

[92]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 3

}
if (neighbors([E]>=0) { # east

img[2:edge,n] <- rbuf[[E]] # rightmost column
}
if (neighbors[SE]>=0) { # se

img[n,n] <- rbuf[[SE]][1] # bottom-right cell
}
if (neighbors([S]>=0) { # south

img[n,2:edge] <- rbuf[[S]] # bottom row
}
if (neighbors[SW]>=0) { # sw

img[n,1] <- rbuf[[SW]] [1] # bottom-left cell
}
if (neighbors([W]>=0) { # west

img[2:edge,1l] <- rbufl[[W]] # leftmost column
}
if (neighbors [NW]>=0) { # nw

img[1,1] <- rbuf [[NW]] [1] # top-left cell

}

return (img)

}
The median filter:

medianFilterPixel3 <- function(y,x,img)
v <- vector("integer",9) # bottom-left to top-right
v[ll<-img[y-1,x-1]1; vI[2]<-img[y-1,x]; v[3]<-img[y-1,x+1];
v[4]l<-imgly, x-11; vI[5]l<-imgly, x]; v[6l<-imgly, =x+1];
v[7]<-img[y+1,x-1]1; vI[8]<-img[y+1,x]; v[9]<-img[y+1,x+1];
s <- sort(v); # sort by pixel value (default ascending)
return (s[5]) # return the middle value of the nine

}
Processing the image tiles:

worker gridApplyMedianFilter <- function(niters)

{
Receive tile from Master on Rmpi default comm
tile <- mpi.recv.Robj(0,1,comm=1,status=1)

Create local image with extra pixel boundary
theight <- nrow(tile); iheight <- theight+2;
twidth <- ncol(tile); iwidth <- twidth+2;
print (paste ("Received tile:",theight, twidth))

[93]

Advanced Message Passing

img <- matrix (0L,nrow=iheight,ncol=iwidth)

Initialize borders with out-of-bound pixel values

These values will be sorted to the ends of the set of 9
and so will not interfere with the real image values
img[1l,1:iwidth] <- rep(c(-1,256),times=iwidth/2)
img[l:iheight,1] <- rep(c(-1,256),times=iheight/2)
img[iheight, 1:iwidth] <- rep(c(256,-1),times=iwidth/2)
img[l:iheight, iwidth] <- rep(c(256,-1),times=iheight/2)

Set internal bounded area to the received tile
img[2: (theight+1),2: (twidth+1)] <- tile

Apply multi-pass image operation
for (i in 1:niters) {
print (paste("Iteration",i))
img <- worker boundaryExchange (img)
for (y in 2:theight+1) {
for (x in 2:twidth+1)
img[y,x] <- medianFilterPixel3 (y,x,img)

Send processed tile to Master on default comm
tile <- img[2: (theight+1),2: (twidth+1)]
mpi.send.Robj (tile, 0,2, comm=1)

HHHHHAFHHAHH A HHAFH A HHAF RS H A RS RS SRS R R S AR
Master co-ordinates creation and operation of the grid,
but does not itself participate in any tile computation.

Launch the Rmpi based grid with (dimXdim) worker processes
dim <- Dim;
np <- dim * dim # number of MPI processes in grid
mpi.spawn.Rslaves (
Rscript=system.file ("workerdaemon.R", package="Rmpi"),
nslaves=np)

Send all Master defined globals/functions to Workers

[94]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 3

mpi.bcast.Robj2slave (all=TRUE)

Map grid co-ords to cluster rank assignment of the Workers
map <- mpi.remote.exec (worker initSpatialGrid(),dim,
simplify=FALSE, comm=1)
workerRanks <- matrix(-1,nrow=dim,ncol=dim)
for (p in 1:length(map)) ({
y <- map[[pl]l[[1]]
x <- map[[pl][[2]]
rank <- mapl[[pl] [[3]]
print (pasteO("Map ",p,": (",y,",",x,") => ",rank))
workerRanks [y+1,x+1] <- rank

We create large B/W image array with values in range 101-111

height <- Height; width <- Width;

imagel <- matrix(sample(101:111,height*width,replace=TRUE),
height,width)

We add a bit of white saturation noise (pixel value=255)

imagel [height/6,width/6] <- 255

imagel [height/5,width/5] <- 255

imagel [height/4,width/4] <- 255

imagel [height/3,width/3] <- 255

imagel [height/2.1,width/2.1] <- 255

imagel [height/1.1,width/1.1] <- 255

imagel [height/1.2,width/1.2] <- 255

imagel [height/1.3,width/1.3] <- 255

imagel [height/1.4,width/1.4] <- 255

imagel [height/1.5,width/1.5] <- 255

Tell the workers to process the image (3 pass MedianFilter)
The Workers first wait to receive their local tile from the

Master,then do their multi-pass image processing, then finally
send their processed tiles back to the Master.

mpi.bcast.cmd (worker gridApplyMedianFilter(3))
Start <- proc.time ()

Distributing the image as tiles:

We split the image into non-overlapping square grid tiles
and distribute one per Worker

twidth <- width/dim # tile width

theight <- height/dim # tile height

[95]

Advanced Message Passing

for (ty in 0:(dim-1)) { # bottom-left to top-right

sy <- (ty * theight) +1

for (tx in 0:(dim-1)) {
sx <- (tx * twidth) +1
tile <- imagel[sy: (sy+theight-1),sx: (sx+twidth-1)]
Send tile to the appropriate Worker
worker <- workerRanks[ty+1,tx+1]
mpi.send.Robj (tile,worker, 1, comm=1)
print (pastel ("Sent tile to ", worker,

" y=",sy,"-",sy+theight-1," x=",sx,"-",sx+twidth-1))

Create processed output image, initially blank
image2 <- matrix (0L,nrow=height,ncol=width)

Master receives output tiles in sequence and unpacks
each into its correct place to form the output image
for (ty in 0:(dim-1)) { # bottom-left to top-right
sy <- (ty * theight) +1
for (tx in 0:(dim-1)) {
sx <- (tx * twidth) +1
Receive tile from the appropriate Worker
worker <- workerRanks[ty+1,tx+1]
tile <- mpi.recv.Robj (worker,2,comm=1)
print (pastel ("Received tile from ", worker,
" y=",sy,"-",sy+theight-1," x=",sx,"-",sx+twidth-1))
image2 [sy: (sy+theight-1) ,sx: (sx+twidth-1)] <- tile

Ta da!

Finish <- proc.time()

print (paste ("Image size:",Height, "x",Width," processed
with",np, "Workers in",Finish[3]-Start[3],"elapsed seconds"))
Saturated image=255

print (paste ("Noisy image max pixel value",max(imagel)))

MedianFiltered image=111

print (paste ("Clean image max pixel value",max(image2)))

mpi.close.Rslaves ()

[96]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 3

Performance

The following is some sample output running this program on my four-core

MacBook laptop, with Dim set to 1, that is, on a grid with a single MPI process
(plus master), effectively running in serial versus Dim set to 2, that is, on a grid
with four MPI processes (plus master):

[1]
[1]
[1]
[1]

[1]
[1]

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

[1]
[1]

"Map 1: (0,0)

=> 1"

"Sent tile to 1 y=1-200 x=1-200"

"Received tile from 1 y=1-200 x=1-200"

"Image size: 200 x 200 processed with 1 Workers
seconds"

"Noisy image max

"Clean image max

"Map 1: (0,0)
"Map 2: (0,1)
"Map 3: (1,0)
"Map 4: (1,1)
"Sent tile to
"Sent tile to
"Sent tile to
"Sent tile to
"Received tile
"Received tile
"Received tile

"Received tile

=> 1"
=> 2"
=> 3"

=> 4"

pixel value 255"

pixel value 111"

1l y=1-100 x=1-100"

2 y=1-100 x=101-200"

3 y=101-200 x=1-100"

4 y=101-200 x=101-200"

from
from
from

from

1l y=1-100 x=1-100"

2 y=1-100 x=101-200"

3 y=101-200 x=1-100"

4 y=101-200 x=101-200"

"Image size: 200 x 200 processed with 4 Workers
seconds"

"Noisy image max pixel value 255"

"Clean image max pixel value 111"

in 29.485 elapsed

in 4.786 elapsed

We always need to run tests multiple times to ensure that we recognize any other
system resource effects influencing the timing figures. However, comparing the
given elapsed times clearly demonstrates how effective grid-based computation
can be for spatial/localized image/matrix operations.

[97]

Advanced Message Passing

Inspecting and managing
communications

For most types of parallel algorithms implemented in R, where the focus is mainly on
statistical numerical programming as opposed to more symbol-based processing or
implementing exotic system architectures with more unpredictable communication
patterns, the following "advanced" API calls are not often used. Nevertheless, they
enable the MPI processes to deal with out-of-bound communication, and to avoid
waiting unnecessarily for a communication to complete when other processing

may usefully be performed; so if your context permits, then it can certainly be

more efficient to make use of them. You may, for example, be able to interleave the
communication between successive iterations in a long-running computation.

The following table covers MPI_Probe for retrieving information about a completed
communication, MPI_Test to check for completion of a communication, and MPI_
cancel for enabling you to rescind an uncompleted communication:

INSPECTING / MANAGING COMMUNICATIONS - MPI_Probe

MPI API Call pbdMPI equivalent Rmpi equivalent
MPI_Probe (MPI Ref: p.64 probe (rank.srce, mpi.probe (source,
tag, comm=1, tag, comm=1,
source, tag, comm,
status=0) status = 0)
flag, status)
Similarly: iprobe (rank.srce, mpi.iprobe (source,
MPI_Iprobe (MPI Ref: tag, comm=1, tag, comm=1,
p.65 status=0) status = 0)
source, tag, comm,
flag, status) Wildcard values: Wildcard values:
anysource () mpi.any.source ()
anytag () mpi.any.tag()
[98]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 3

INSPECTING / MANAGING COMMUNICATIONS - MPI_Probe

MPI_Probe enables you to check for the presence of an incoming communication from a specific
sender, marked with a specific tag. Wildcards can also be used to match on any sender and tag.
This enables you to check for an incoming communication, work out its details, and then make a
specific MPI_Recv to complete the communication. In this mode of behavior, your program can
dynamically respond to incoming messages rather then being hard-coded with an explicit pattern
of communication.

However, MPI_Probe is a blocking operation, and therefore, will not return until a matching
communication has actually occurred —a qualifying message must have been sent.

MPI_Iprobe, on the other hand, is non-blocking, and therefore, will not wait to find a matching
communication, but can be used to determine if a matching communication is pending, that is,
waiting to be delivered to the caller as receiver at the specific moment in time.

Examples:

The following pbdMPI example illustrates a wildcard wait on the receiver until there is an incoming
message from any rank with any tag on the default communicator, the details of which are returned
in the default status handle:

Wait for any incoming message

probe (anysource () ,anytag())

Retrieve vector with sender and tag of incoming message
st <- get.sourcetag(0)

Selectively complete the pending communication

obj <- recv(rank.srce=st[1l],st[2])

The following Rmpi example demonstrates the use of MPI_Iprobe to periodically test for any
incoming communication (assumed here to be integer vectors) between iterations of background
work:

Computation is in the form of a series of subtasks
for (iter in 1:N) {
Check if a message is pending delivery to this process
if (mpi.iprobe (mpi.anysource(),mpi.anytag())) {
st <- mpi.get.sourcetag(0) # Default status: Who from?
count <- mpi.get.count (0) # How many integers?
datalIn <- vector (mode="integer", length=count)
receive the pending message with correct size buffer
mpi.recv(dataIn,l,st[1],st[2])
process the message

}

Continue to do background computational tasks
doIteration (iter)
}
In reality, you would want to handle out-of-bounds communication in a more structured and
engineered fashion than this — the preceding example is intended to explain how to use MPI
Iprobe in conjunction with other API calls.

[99]

Advanced Message Passing

INSPECTING / MANAGING COMMUNICATIONS - MPI_Status

MPI Get Count(

status, type, count)

MPI API Call pbdMPI equivalent Rmpi equivalent
MPI_Status-—AdPI get.sourcetag (mpi.get.sourcetag(
Ref: p.30 status status)
MPI_SOURCE)

MPI_TAG

mpi.get.count (
status

)

Probe given earlier for examples.

The MPI_Status object provides information about a completed communication. In

R, the message sender and message tag can be retrieved from a specific status handle
with [mpi.]get.sourcetag(status). The Rmpi package also provides mpi.get.
count (status) to determine the number of elements in a pending message, where the
message relates to a vector/array of typed data, and this enables you to size the receive
buffer appropriately when completing the communication. Refer to the section on MPI

INSPECTING / MANAGING COMMUNICATIONS - MPI_Test

MPI API Call

pbdMPI equivalent

Rmpi equivalent

MPI_Test (MPI Ref: p.54

request, flag, status)

MPI Testall (MPI Ref: p.60

flag, count, requests,
statuses)

MPI_ Testany (MPI Ref: p.58

flag, count, requests, index,
status)

MPI_ Testsome(MPI Ref: p.61

count, requests, count,
indices, statuses)

Not implemented

mpi.test (request,
status=0)

returns: flag (TRUE/FALSE)

mpi.testall (count)

returns: flag (TRUE/ FALSE)

mpi.testany (count,
wstatus=0)

returns: list (index, £lag)

mpi.testsome (count)

returns: list(count,
indices[])

[100]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 3

INSPECTING / MANAGING COMMUNICATIONS - MPI_Test

Notably, only Rmpi exposes this aspect of the MPI API. MPI_Test is essentially a non-
blocking variant of MPI_Wait (see Chapter 2, Introduction to Message Passing), and the entire
family of MPI_Test is otherwise similar in behavior to their MPI_Wait namesakes. So,
with this in mind, let's understand the following functions:

mpi.test () : This selectively tests for completion of a previously launched non-blocking
send or receive with reference to its specific request handle. When mpi . test () returns
TRUE, then the referenced status handle will provide the details on the completed
communication.

mpi.testall () : This tests all the outstanding, currently incomplete communications to
determine if they have all completed. Note that here, a1l refers to the internally held array
of Rmp1i request handles, up to the maximum number referred to by the supplied count
parameter. Recall that Rmpi request handles are indexes into this internal array, and are
numbered sequentially from 0. If any of the communications within the count range have
not completed, then this function will return FALSE.

mpi.testany () : This function checks by scanning for (but does not wait for) the first
of the supplied count of the currently outstanding non-blocking sends/recvs to have
completed, and sets the supplied status handle to enable you to inspect the information
about this communication (with MPI_Probe).

mpi.testsome () : It checks on the supplied count of outstanding communications,
and returns a list of the number of requests and a vector of the request handles for those
that have completed.

INSPECTING / MANAGING COMMUNICATIONS - MPI_Cancel

MPI API Call pbdMPI equivalent Rmpi equivalent
MPI_Cancel (MPI Ref: p.72 | Not implemented mpi.cancel (request)
request

)

As its name suggests, MPI_Cancel can be used to cancel a current non-blocking send or
receive operation that has not yet completed. In essence, you cannot know whether or not
the operation has been cancelled successfully: in terms of the limited API exposed by Rmp1i,
and because the cancellation itself operates only within the confines of the calling process.
In any case, you must subsequently call MPI_Wait (or MPI_Test repeatedly until it
succeeds) on the request handle that you have cancelled in order that the internal resources
within the underlying MPI subsystem are released correctly. The program logic associated
with the use of MPI_Cancel can be difficult to implement correctly. MPI_Cancel has
limited use in typical R programs.

[101]

Advanced Message Passing

Variants on lapply()

And finally, to end our tour of MPI, we come almost full circle in a sense. Just as
in Chapter 1, Simple Parallelism with R, where R's core parallel package provides
specific versions of 1apply () that make it very simple to run a function in parallel,
Rmpi and pbdMPI also provide their own lapply () variants.

parLapply() with Rmpi

Here we revisit the basic operation of parLapply () (Chapter 1, Simple Parallelism
with R) in conjunction with MPI. We hinted back then that an MPI cluster can

be used with parLapply (), and this indeed can be done by introducing an
additional package called snow, an abbreviation that stands for Simple Network Of
Workstations (SNOW). All that we need to do is to install the snow package from
CRAN, load the libraries in the correct order, and create the cluster using Rupi thus
(note that pbdMPI is not compatible with parLapply ()):

> library ("snow")

> library ("Rmpi")

> library("parallel")

Attaching package: 'parallel'

The following objects are masked from 'package:snow':

clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

> cl <- makeCluster (detectCores(), type="MPI")
> parLapply(...) # apply parallelized function
> stopCluster(cl)

> mpi.exit ()

Of course, the fact that you are using Rmpi to provide the underlying cluster means
you can run parallelized functions that themselves contain rmpi calls, such as the
collective communications operations.

As its name suggests, SNOW can also be used to leverage a disparate set of networked
computers that could all be very different machines, for example, a mix of networked
laptops, desktop computers, and servers, sited in multiple offices (see the breakout box
for more information on this aspect).

[102]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 3

Let it SNOW!

There's nothing to stop you from using SNOW by itself. The parallel
package effectively wraps the SNOW functionality, and this includes
SNOW's ability to run across a potentially heterogeneous network of
machines running various operating systems. For this, SNOW requires
the use of sockets, which are built-in and selected with the cluster
type="SOCK". Alternatively, you can use the nws package that operates
NetWorkSpaces and can be downloaded from CRAN:

For the R nws package, go to the following link:
https://cran.r-project.org/web/packages/nws.

The various systems in the network must be set up appropriately for
both SOCK and NWS. While SOCK does not require additional software,
NWS in its simplest form requires the lead computer running the R script
that calls parApply (), a running NetWorkSpace server (written in
Python), and R installed with the nws package in all other computers in
the network.

The following link can be used to download the NetWorkSpace server:
http://nws-r.sourceforge.net/.

For ease of use, all other aspects of configuration, such as directory paths,
version of R, and so on, should be common across all the computers,
irrespective of which operating systems they run on, although it will be
simpler if all computers are running some variant of UNIX. It is then
necessary to supply a list of network hosts, which can be IP addresses if
the local DNS host names are not resolvable, for the set of computers to
be included in the call to makeCluster (). For example, for a three-host
cluster, the following list can be provided:

> hosts <- c(list (host="charlie"),
list (host="192.168.9.4"), list(host="fred"))
> cl <- makeCluster (hosts, type="SOCK") # or type="NWS"

Since all the parallel processes run on completely separate computers,
it is important that stopCluster () is called at program termination.
Otherwise, stray processes will be left dangling, and manual clean-up
would have to be performed by logging into each separate machine.

Please refer to the snow package manual at the following link for more
information:

https://cran.r-project.org/web/packages/snow/snow.pdf.

[103]

https://cran.r-project.org/web/packages/nws
http://nws-r.sourceforge.net/
https://cran.r-project.org/web/packages/snow/snow.pdf

Advanced Message Passing

Summary

In this chapter, we explored several more advanced aspects of message passing
through its application to grid-based parallelism, including data segmentation and
distribution for spatial operations, use of non-blocking communications, localized
communication patterns between MPI processes, and how to map an SPMD style
grid on to a standard Rmpi master/worker cluster. Whilst the illustrative example
in image processing may not seem the most natural home for R programming, the
knowledge gained through this example will be applicable to a wide range of large
matrix-iterative algorithms.

We also covered MPI in detail by explaining the additional API routines geared to
inspecting and managing outstanding communications, including MPI_pProbe and
MPI_Test.

We finished the chapter by reviewing how Rmpi can be used in conjunction with
parLapply (), and touched on how you can run an MPI cluster across a simple
network of workstations.

The grid-based processing framework that we have constructed in this chapter is
applicable to a wide range of image processing operators, particularly if we were to
generalize the code to cope with larger-sized local pixel windows. The code is highly
amenable for this further development, and for extension to deal with arbitrary-sized
and non-square images. All of this I will leave as an exercise for you, dear reader.

In this chapter, our focus was on using Rmpi to implement grid-based image/matrix
parallel processing. In the next chapter, our focus switches to pbdvpI applied to
genome analysis on supercomputers for ultimate scalability, so buckle your seatbelts
for maximum acceleration in parallel processing!

[104]

[vww .ebook3000.con}

http://www.ebook3000.org

Developing SPRINT,
an MPI|-Based R Package
for Supercomputers

In this chapter, we will learn how to use a form of parallelism called message passing,
written in the widely adopted Message Passing Interface (MPI) standard, and how
to utilize MPI-based parallel routines written in other programming languages
directly from an R script.

We will start with a simple "Hello World" MPI program, and transform it into an
R library package. This will demonstrate how you can take an existing MPI code
written in C and make it directly callable from R.

We will then delve into the architecture of an MPI-based R package, commonly
known as Simple Parallel R Interface (SPRINT). SPRINT provides a suite of MPI-
parallel routines of particular use to bio-informaticians and life scientists for genomic
analysis. We will show how you can further extend its utility by adding your own
parallel functionality to the package.

Finally, we will explore the performance characteristics of a SPRINT-based genomics
analysis program running on a massive scale on ARCHER, the UK's largest academic
supercomputer.

[105]

Developing SPRINT, an MPI-Based R Package for Supercomputers

Software versions

In this chapter, the MPI examples were run on an Apple Mac Book Pro,
with a 2.4 GHz Intel Core i5 processor, 8 GB memory, running OS X
10.9.5, MPI mpich-3.1.2, C clang-600.0.57, and R version 3.1.1. For the
genomics analysis case study, the examples were run on ARCHER. At
* the time of writing (March 2015), the ARCHER compute nodes contain
%%‘ two 2.7 GHz, 12-core E5-2697 v2 Ivy Bridge series processors. Each of
the cores in these processors can support two hardware threads, also
known as Hyper-threads. Within the node, the two processors are
connected by two QuickPath Interconnect links. Each node has a total
of 64 GB of memory. ARCHER has 4,920 compute nodes. The software
versions used on ARCHER were: MPI cray-mpich version 7.1.1, C gcc
e version 4.9.2, and R version 3.1.0. -

About ARCHER

ARCHER has more than 100,000 cores (http://www.archer.ac.uk/about-
archer/). The following Figure 1 shows some of the physical cabinets that comprise
the ARCHER supercomputer, occupying an entire dedicated room in a purpose-built
facility.

Figure 1: The ARCHER supercomputer at Edinburgh Paralle] Computing Centre.

[106]

[vww.ebook3000.con)

http://www.archer.ac.uk/about-archer/
http://www.archer.ac.uk/about-archer/
http://www.ebook3000.org

Chapter 4

Figure 2 illustrates how these thousands of cores are organized across the individual
cabinets. Notice how each of the individual Intel-based compute node processors has
2x12 cores and 64 Gb of memory.

Blade

//("nmnufn Nade
/('nmml‘rp Node

Caomnute Node

Compute Node
32 GB 32 GB

12 core 12 core
processor processor

ARCHER has 4920 nodes in 26
cabinets giving a total of 118,080
cores

1 Cabinet
= 3 chassis

Chassis = Blade X 16

Figure 2: The composition of an ARCHER cabinet.

Calling MPI code from R

Let's look at how to call the existing MPI C code from R. What follows is an example
that will help when you already have some C or C++ MPI code that you want to
call from R. We will look at one simple way of doing this, but please note there

are a number of ways this can be done. The definitive guide to calling code in C or
other languages from R is the Writing R Extensions manual available from CRAN at
http://cran.r-project.org/doc/manuals/r-release/R-exts.html.

If you are writing the MPI C code that you want to call from R from scratch, then
you should consider using the rRcpp R package (see http://cran.r-project.org/
web/packages/Rcpp/index.html). This package provides C++ wrappers for R data
types, thus allowing easy data transfer between C++ and R. It also manages memory
for you, and provides other helper methods.

[107]

http://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://cran.r-project.org/web/packages/Rcpp/index.html
http://cran.r-project.org/web/packages/Rcpp/index.html

Developing SPRINT, an MPI-Based R Package for Supercomputers

MPI Hello World

Let's start with a simple "Hello World" MPI C program, where each separate process
prints hello and its MPI rank number.

#include <stdio.h>
#include <mpi.h>

int hello(void) ;

int main(void)

{

return hello() ;

}

int hello(void)

{

int rank, size;

// Standard MPI initialisation
MPI_Init(NULL, NULL) ;

MPI Comm size (MPI_COMM WORLD, &size);
MPI Comm rank (MPI_COMM WORLD, &rank) ;

// Prints out hello from each process
printf ("Hello from rank %d out of %d\n", rank, size);

MPI Finalize();
return 0O;

}

The preceding code contains a function hello () that:

¢ Initializes MPI

* Obtains the size (that is, the number of processes) in the default MpI_comm
WORLD communicator that has been initialized by calling MPI_Comm_size ()

* Gets the rank of the calling process in this MPI_COMM_WORLD communicator
by calling MPI_Comm_rank ()

* Prints out hello and the rank number of the calling process

* And finally, calls MPI_Finalize () to terminate the process

[108]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 4

Assuming you have previously installed the mpich-3.1.2 version of MPI, you can
save this program in a file called mpihello.c, then compile and run it (using four
MPI processes) from the OS command line as follows:

$ mpicc -o mpihello.o mpihello.c

$ mpiexec -n 4 ./mpihello.o
You will see the following output (not necessarily in this order):

Hello from rank 0 out of 4
Hello from rank 1 out of 4
Hello from rank 2 out of 4

Hello from rank 3 out of 4

Calling C from R

To call a C program from R, you must first build a shared object that contains the
compiled C code that you want to call. This shared object must be loaded into your
R session using the R dyn. load function. You can then use the R function, .call, to
call the compiled C code from an R script. To illustrate how to do this, let's build a
shared object for our MPI Hello World program, and then call it from within R.

Modifying C code to make it callable from R

First, let's make the necessary changes to the C code itself in order to make it callable
from R. These changes are highlighted in the code that follows:

#include <mpi.h>
#include <R.h>

#include <Rinternals.h>
#include <Rdefines.h>

SEXP hello(void);

SEXP hello(void)

{

int rank, size;
MPI Init (NULL, NULL) ;
MPI Comm size (MPI_COMM WORLD, &size);

MPI Comm rank (MPI_COMM WORLD, &rank) ;

Rprintf ("Hello from rank %d out of %d\n", rank, size);

[109]

Developing SPRINT, an MPI-Based R Package for Supercomputers

MPI Finalize();

// Create an R integer data type with value zero
SEXP result = PROTECT (result = NEW_INTEGER(1));
INTEGER (result) [0] = O;

UNPROTECT (1) ;

return result;

}

As you can see in the preceding code, the necessary R header files have to be
included, and the main routine has been removed. The various header files and their
purpose are explained in detail in the Writing R Extensions manual, but for your
convenience, here's a brief description. The R.h file is a header file that includes
many other necessary files, Rinternals.h contains the definitions for using R's
internal structures, and finally, Rdefines.h contains various useful macros.

The hello () function now returns an SEXP instead of int. As stated in the Writing
R Extensions manual, an SEXP is a pointer to a structure that can handle all the
usual types of R objects, that is, functions, vectors of various modes, environments,
language objects, and so on.

Our hello () function must return an SExp when it is called from the R .call ()
function for two reasons. The first is that R requires that any C code called in this
way must return a value. This means that even this simple example must return
something to R. The second reason is that R is implemented in C, and all R data types
are represented internally as SEXP data types in C. Therefore, when editing code to
make it callable from R, you need to convert the input and output data between R
and C.

Within the hello () function, the MPI calls are unchanged and printf () has been
replaced by Rprintf (). As explained in the Writing R Extensions manual, Rprint£ ()
is guaranteed to write to R's output whether that be a GUI console, a file, or a re-
direction. It can be used in the same way as printf (). More importantly, using
Rprintf () ensures that the output is redirected appropriately when using parallel
computations.

[110]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 4

After MPI_Finalize (), we create the value for hello () to return to R. This is an
SEXP pointer — result —that we make point to an R integer data type. The R objects
that you create in C are at a risk of being garbage-collected automatically by R. So,
we protect the object pointed to by result by calling the PROTECT () macro. We can
now set result to the value we wish the hello () function to return to R, in this
case, 0. Before returning this, we must use the UNPROTECT () macro to clear the stack
of variables that we have previously protected from garbage collection by R; we can
then return result. The PROTECT () /UNPROTECT () calls are not strictly necessary
here, as no R code or macros (which could trigger garbage collection) run in between
the calls. The PROTECT/UNPROTECT () calls are included here as an example.

Let's save our modified code into a file called mpihello fromR.c.

Compiling MPI code into an R shared object

Now that we have modified our C code to make it callable from R, the next step is
to compile it into an R shared object library that can be loaded into R. For this, we
will use the standard R command R ¢MD SHLIB at the OS command line. This code
should work with either the openMPI or the mpich implementations of MPI, but if
you have any problems with openMP]I, then you should try mpich instead.

Remember that the modified code for our MPI Hello World example is saved in a
file called mpihello_fromr.c. Let's compile this, and make it into an R shared object
library by executing the following at the OS command line:

$ MAKEFLAGS="CC=mpicc" R CMD SHLIB -o mpihello fromR.so
mpihello fromR.c --preclean

Since our code contains calls to MPI, we need to execute R cMD SHLIB with the
compiler set to mpicc rather than cc using the argument MAKEFLAGS="CC=mpicc"

in the preceding code. Executing the preceding code at the OS command line will
produce a file called mpihello_fromR.so. Note that in Microsoft Windows, a
dynamic link library needs to be produced, and so, the extension .d11 must be used
in place of . so.

Calling the MPI Hello World example from R

This is the final step. To call our modified MPI Hello World code from R, we must
now load our shared object library mpihello_ fromR.so that contains it, into R. We
can then use .call to call the hello () function contained in this shared object. The
following is the R code to load the shared object into R and then call our modified
hello () function:

dyn.load("mpihello fromR.so")
.Call("hello")

[111]

Developing SPRINT, an MPI-Based R Package for Supercomputers

Let's save these two lines of R code into a file called mpihello.R, and run it from the
OS command line as follows:

$ mpiexec -n 4 R -f mpihello.R

In the preceding line, the mpiexec -n 4 part specifies that four MPI processes

are to be instantiated. R -f mpihello.R specifies that the R file mpihello.Ris to
be executed on each of these processes. The following is some of the output from
executing this line at the OS command line. There will also be some output from R.

Hello from rank 0 out of 4
Hello from rank 1 out of 4
Hello from rank 2 out of 4

Hello from rank 3 out of 4

So you have now executed MPI C code from R, and you have learned how to write,
compile, and then call the MPI code (written in C) from R.

Building an MPI R package — SPRINT

Now that we have built an R shared object library that contains MPI code which is
callable from R, let's investigate how to create an R package that contains a number
of MPI-enabled functions, each callable from R.

Building a package for this can be useful for various reasons, including the
following:

* Maintainability: If each function has its own MPI setup and teardown, then
you could end up with a lot of duplicate code to maintain.

* Flexibility: From one invocation of MPI in your R script, you can easily call
multiple, different MPI-enabled functions according to your needs.

* Efficiency: If each function has its own separate shared object library, then
each will go through their own MPI_Init/MPI_Finalize stages when called,
thus adding to the runtime.

The SPRINT package provides an R user with just such a suite of parallelized
functions callable from R that exploit MPL. In the following sections, we will show
you how to add your own function to the SPRINT package, but first let's look at the
premise behind SPRINT and how it works.

[112]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 4

The Simple Parallel R Interface (SPRINT)
package

Many existing R packages allow developers or interested parties with sufficient
expertise and resources to make use of code parallelization in order to solve their
computational problems. The R SPRINT package is based on a different philosophy.
The SPRINT package is designed for big data processing, seamlessly exploiting both
multi-node and multi-core computing architectures, and efficiently utilizing disk
space as additional out-of-core memory. It has been developed specifically by expert
parallel programmers to provide prebuilt parallelized solutions to common analysis
problems for R users. SPRINT particularly focuses on solving problems that are
difficult for non-experts to parallelize. SPRINT is fully open source, and experienced
users can make use of SPRINT to develop their own parallelized functionality. The
SPRINT team welcomes contributions from the wider community back into the
project.

At the time of writing, the latest version of SPRINT, v1.0.7, is available from CRAN
athttp:// cran.r-project.org/web/packages/sprint/index.html. It is also
available directly from the SPRINT team's website at http://www.r-sprint.org/.

Using a prebuilt SPRINT routine in an R script

SPRINT contains a function called ptest () that is equivalent to our previous MPI
Hello World example. It checks if the SPRINT package has been installed correctly
by simply printing a message identifying each parallel process that has been
instantiated.

Assuming the SPRINT package has previously been installed on your local R
installation, the following sample R script can be used to call ptest ().

library("sprint") # load the sprint package
ptest ()
pterminate() # terminate the parallel processes

quit ()

The pterminate () function in this script is a SPRINT function that terminates all the
parallel processes. This internally calls MPI_Finalize to shut down the instantiated
parallel processes. All SPRINT-enabled scripts require that pterminate () is called
before the final quit () command.

[113]

http://
cran.r-project.org/web/packages/sprint/index.html
http://www.r-sprint.org/

Developing SPRINT, an MPI-Based R Package for Supercomputers

If this sample R script is stored in a file called sprint_test.R, then it can be run
from the OS command line as follows:

$ mpiexec -n 5 R -f sprint test.R

This will result in the following output (Note: the exact order may be different):

[1] "HELLO, FROM PROCESSOR: 0"
[2] "HELLO, FROM PROCESSOR: 2"
[3] "HELLO, FROM PROCESSOR: 1"
[4] "HELLO, FROM PROCESSOR: 3"
[5] "HELLO, FROM PROCESSOR: 4"

The architecture of the SPRINT package

The core of SPRINT is an MPI harness that manages a number of processes in the
Master/Worker paradigm, which can either be assigned different tasks to execute
or can be put to sleep while the sequential part of an R script runs, instead. It is
relatively straightforward to add your own parallel MPI function to SPRINT.
SPRINT is implemented in R and C. Figure 3 illustrates how SPRINT uses the
Master/Worker paradigm at runtime. Let's explain how this works using our
previous example execution of an R script containing the SPRINT ptest () function.

Master process |

R Runtime

Worker process |

R scnpt invokes
Parallel execution

Y

SPRINT takes
over execution

Shutdown R

Exit R

Results retum to R

Load SPRINT % Init

=

=<0 [

R Runtime
Init Load SPRINT
MPI Runtime ‘ { MPI Runtime
— ™ Broadcast function signature — Invoke SPRINT

]

i Optiona_lly
evaluate in R

function

- Compute function in parallel la —
Bt Broadcast shutdown |
Finalize

- Exit R

Figure 3: The flow of execution between Master and Worker processes when an R script uses SPRINT.

[114]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 4

When the following command is executed at the OS command line, this results in
all the instantiated processes initializing the R Runtime environment, as shown in
Figure 3:

$ mpiexec -n 5 R -f sprint test.R

Each of these processes then start executing the sprint_test.R script, the first line
of which is 1ibrary ("sprint"). This line loads the SPRINT package on each of
these processes, and more importantly, also initializes the MPI environment on each.
At this point, SPRINT uses the MPI rank of each process to determine if a process is
to be the Master process, or if it is to be one of the Worker processes. If a process is
designated as a Worker, then it effectively sits in a wait state until a command code is
sent from the Master process. Meanwhile, the Master process executes the remainder
of the sprint_test.R script.

When the Master process executes the SPRINT ptest () function, this results in a
command code representing the ptest () function (that is, the function signature)
being broadcast from the Master to all the Worker processes. All the processes can
then participate in the parallel execution of the function, and can interact with each
other via MPL

The fact that MPI is initialized in the R memory space (that is, via the

library ("sprint") line in the R script) means that the R runtime environment can
be accessed on all the processes. This allows the handling of native R objects in C,
and most importantly, it means that R expressions can be evaluated from C. This
feature provides flexibility when adding new functions to SPRINT — this means
that parallel SPRINT-enabled functions can either consist of a complete parallel re-
implementation of the function, or utilize the existing serial R implementation of a
function within a parallel harness.

After all the computation is completed on the Worker processes, results are sent back
to the Master process, which returns these to the R environment running on it. The
Worker processes return to their waiting state, and the Master process continues
execution of the remainder of our sprint_test.R script.

The next line in this is pterminate (). This shuts down the MPI environment by
broadcasting the appropriate command code to all the Worker processes, whereupon
each process calls MPI_Finalize and terminates. Within pterminate (), the Master
process also calls MPI_Finalize, and then continues executing the remainder of the
R script.

[115]

Developing SPRINT, an MPI-Based R Package for Supercomputers

Adding a new function to the SPRINT
package

Let's now add our own function to the SPRINT package. This new function will be

called phello (). We will use our earlier MPI Hello World example as the basis for
this. This will involve the following tasks:

* Downloading the SPRINT source code.

* Creating the R stub file: This enables the desired functionality to be
callable from R on the Master process. It calls the interface function for this
functionality.

* Adding the interface function: The interface function is the C equivalent
of the R stub. It is also executed on the Master process. It is responsible for
broadcasting the command code for the implementation function that the
Worker processes are to execute.

* Adding the implementation function: Each command code has a
corresponding implementation function. On receipt of the command code,
this function is executed on the Worker processes. Additionally, it is also
executed on the Master process.

* Connecting the stub and functions: Update the relevant SPRINT header
and configuration files to enable the stub, interface, and implementation
functions to interact properly.

Downloading the SPRINT source code

First of all we have to download the SPRINT source code. You can download
the latest version of the SPRINT source code from the CRAN website at http://
cran.r-project.org/web/packages/sprint/index.html. It is also available
directly from the SPRINT team at http://www.r-sprint.org/.

Use the following OS commands to download and unpack this source code:

$ Wget http://cran.r-project.org/src/contrib/sprint 1.0.7.tar.gz
$ tar -xvf sprint 1.0.7.tar.gz

The unpacked SPRINT source code has the following directory structure:

/sprint dir Contains configure scripts, etc
|- inst Documentation and tests
| - man R documentation

[116]

[vww .ebook3000.con}

http://cran.r-project.org/web/packages/sprint/index.html
http://cran.r-project.org/web/packages/sprint/index.html
http://www.r-sprint.org/
http://www.ebook3000.org

Chapter 4

|
|- R Contains the R stubs
|

|— src Functions header files, Makefile and sprint
itself.

| - algorithms

functions

| - common Functions used by all of the sprint

|
|- papply
|- implementation
|- interface
| - pboot
|- implementation
|- interface
|- . All of the sprint functions have their own
folder
with implementation and interface sub-
folders.

|- tools

Creating a stub in R — phello.R

This stub contains the actual R wrapper function called by a user in their R script.
This is executed on the SPRINT Master process, and this, in turn, uses the R .call ()
function to call the MPI C code on this Master process. This function can be used

to perform sanity checking on parameters and other programming housekeeping
before activating the MPI C code.

To create this stub, let's navigate to the R directory in the SPRINT source code
directory.

cd sprint/R

Now create a file called phello.R. The use of p in the filename is purely a SPRINT
convention to help distinguish this implementation from any other existing R
implementation of the function.

The following are the contents for phello.R:

phello <- function()

{

return val <- .Call("phello")
return (return val)

}

[117]

Developing SPRINT, an MPI-Based R Package for Supercomputers

In the preceding code, the R function phello () is defined. This function contains the
.Call ("phello") that will call our C MPI code.

Notice how phello.R differs from our earlier mpihello.R file for the MPI Hello
World shared object library example. This had the following contents:

dyn.load ("mpihello fromR.so")
.Call("hello")

With SPRINT, the dyn.1load () call to load the shared object is not necessary, because
as we will see later, the C code will be compiled as part of the SPRINT package, and
loaded into the user's R script with the 1ibrary ("sprint") command.

Adding the interface function — phello.c

In SPRINT, an interface function is the C function called by an R stub. It is executed
only by the SPRINT Master process. The purpose of the interface function is to
broadcast the command code for the parallel function that is to be executed to all
the SPRINT Worker processes. After broadcasting the command code, the interface
function then starts executing on the Master process itself, the parallel function
associated with the command code. Like the R stub that it mirrors, an interface
function can perform argument checking and general housekeeping.

Let's create the interface function corresponding to our phello.R stub. As per the
instructions given next, first we navigate to the sprint/src/algorithms directory,
where we create a phello directory. In this phello directory, we create two further
directories: the implementation directory and the interface directory.

$ cd sprint/src/algorithms

$ mkdir phello

$ mkdir phello/implementation
$ mkdir phello/interface

In the interface directory, let's create the file phello.c to hold our interface
function. In SPRINT, the interface functions are all quite similar. Let's add the
following contents to phello.c:

#include <Rdefines.h>
#include "../../../sprint.h"
#include "../../../functions.h"

extern int hello(int n, ...);

[118]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 4

* % F X X

//

R R o
The stub for the R side of a very simple hello world command
Simply issues the command and returns 0 for successful *

completion of command or -1 for failure.
**/

Note that all data from R is of type SEXP.

SEXP phello()

{

SEXP result;
int response, intCode;
enum commandCodes commandCode;

// Check MPI initialisation
MPI Initialized(&response) ;
if (response)
DEBUG ("MPI is init'ed in phello\n") ;
} else {
DEBUG ("MPI is NOT init'ed in phello\n") ;

// return -1 if MPI is not initialised.
PROTECT (result = NEW_INTEGER(1)) ;
INTEGER (result) [0] = -1;

UNPROTECT (1) ;

return result;

// broadcast command to other processes

commandCode = PHELLO;

intCode = (int)commandCode;

DEBUG ("commandCode in phello is %d \n", intCode) ;
MPI Bcast (&intCode, 1, MPI_INT, 0, MPI_COMM WORLD) ;

// Call the command on this process too.
response = hello(0); // We are passing no arguments.
// If we wanted to pass 2 arguments, we'd write

// response = hello(2, argl, arg2);

// Convert result into an R datatype (SEXP)
result = PROTECT (result = NEW_ INTEGER(1));
INTEGER (result) [0] = response;

UNPROTECT (1) ;
return result;

[119]

Developing SPRINT, an MPI-Based R Package for Supercomputers

Let's look at the preceding code in a little more detail.

At the top of the file, a number of header files are included, and the hello () function
is declared as an extern, that is, it will be resolved at the final step of compilation
during the linking phase.

#include <Rdefines.h>

#include "../../../sprint.h"
#include "../../../functions.h"
extern int hello(int n, ...);

As mentioned previously, Rdefines.h contains various macros. The next two header
files, sprint.h and functions.h, are SPRINT header files that include header

files and macros, respectively. These header files are required by SPRINT and the
command codes for the various functions available in the SPRINT package.

Following this is the code for the phello () function itself. This starts by sanity
checking that MPI is already initialized. Remember, in our SPRINT ptest () example
given earlier, MPI is initialized in the calling R script by 1ibrary ("sprint"). This
means that each call to a SPRINT function can use MPI without having to initialize it
each time.

After this sanity checking, the PHELL.O command code is broadcast via MPI, with
MPI_Bcast (), to all the SPRINT Worker processes. The Master can now itself execute
the parallel function associated with the broadcast command code. In this specific
case, it is the hello () function. Finally, its output is converted into a SEXP pointer

to an R integer data type so that it can be returned to the R stub phello.Rr, and the
various macros dealing with garbage collection are also called.

Adding the implementation function — hello.c

In SPRINT, the implementation function is the function called by the interface
function on the Master process after it has broadcast the command code to the
Worker processes. It is also the function called by the Worker processes on receiving
the command code for that function. So, for our phello example, this C code is
placed in a file in the sprint/src/algorithms/phello/implementation directory
that we have created.

Let's create a file called hello.c in this directory that will contain the
implementation of the actual parallel algorithm we want to perform. This will use
MPI for communication. As mentioned earlier, we are using our MPI C Hello World
example as the basis for this. The following code is to be added to hello.c:

#include <mpi.h>
#include <R.h>

[120]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 4

#include <Rinternals.h>
#include <Rdefines.h>
#include "../../../sprint.h"

int hello(int n, ...)

// ignore input args.We don't need them in this example.
int rank, size, result;

MPI Comm size (MPI_COMM WORLD, &size);
MPI Comm rank (MPI_COMM WORLD, &rank) ;

DEBUG ("MPI is initiated in phello rank %d \n", rank);
Rprintf ("Hello from rank %d out of %d\n", rank, size);

MPI Barrier (MPI_COMM WORLD) ;
result = 0; // successful execution

return result;

}

The code is almost exactly the same as in our mpihello.c example, but without
MPI_Init () and MPI_Finalize (). As mentioned previously, SPRINT now handles
the MPI initialization and termination. Note also the addition of an MPI_Barrier ()
function to ensure that the Master and all the Worker processes are synchronized to
the same point in execution before the result is returned.

Connecting the stub, interface, and
implementation

Now we get to the final steps to including our function in SPRINT. These involve
updating the various configurations and header files.

The files to be updated are as follows:

* functions.h
* functions.c
¢ NAMESPACE

* Makefile

* The man page, pHello.Rd, for our new function.

Let's deal with each in turn.

[121]

Developing SPRINT, an MPI-Based R Package for Supercomputers

functions.h

Let's navigate to sprint/src, where you will find this file. This is one of the files
included in the interface function (see the phello.c description given earlier). It
contains the command codes for the functions available in the SPRINT package.
These are the command codes sent by the SPRINT Master process to the Worker
processes to instruct them on which function to execute.

Let's add a command code for phello () to the command code list by adding PHELLO
to the enumerated list commandCodes in functions.h as follows:

enum commandCodes { TERMINATE = 0, PCOR, PMAXT, PPAM, PAPPLY,
PRANDOMFOREST, PBOOT, PSTRINGDIST, PTEST, INIT RNG, RESET RNG,
PBOOTRP, PBOOTRPMULTI, PHELLO, LAST} ;

Note that any new code must be added immediately prior to LAST. Internally,
SPRINT uses LAST as a marker to indicate the range of implemented command
codes for error checking.

functions.c

This file contains the declarations for the implementation functions corresponding to
the command codes in functions.h. It also contains the pointers for these functions.
These functions are declared as extern, and with a variable number of arguments.

Let's navigate to sprint /algorithms/common and edit functions. c. Firstly, let's
add the declaration of the hello () function highlighted as follows:

/*
* Declare the various command functions as external

*/

extern int test(int n,...);
//extern int svm call(int n,...);
extern int correlation(int n,...);
extern int permutation (int n,...)
extern int pamedoids(int n,...);
extern int apply(int n,...);
extern int random forest driver (int,...);
extern int boot (int,...);

extern int stringDist (int,...);

extern int init rng worker(int n, ...);

extern int reset rng worker (int n, ...);

extern int boot rank product (int n, ...);
extern int boot rank product multi(int n, ...);
extern int hello(int n, ...);

[122]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 4

Next, let's add the function pointer for hello to functions.c. This function pointer
is of type commandFunction. The typedef for this is located in sprint/src/
functions.h.

Please note that this function pointer must be added to the array of function pointers
in the position corresponding to its command code within the enumerated list
commandCodes in sprint/src/functions.h.

Let's add the function pointer for hello to functions.c, as highlighted next. Notice
how the function pointers are in the same order as the enumeration in functions.h.

/**
* This array of function pointers ties up with the commandCode

enumeration found in src/functions.h

**/

commandFunction commandLUT[] = {voidCommand,

// svm_call,
correlation,
permutation,
pamedoids,
apply,
random_forest_driver,
boot,
stringDist,
test,
init rng worker,
reset_rng_ worker,
boot_ rank product,
boot rank product multi,
hello,

voidCommand} ;

Namespace

As explained in the Writing R Extensions manual, R has a namespace management
system for code in packages. This allows the package writer to specify which
variables in the package are to be exported, and hence, made available to package
users. It also specifies the variables to be imported from other packages.

For all R packages, a namespace is specified by the NAMESPACE file located in the
top-level directory for a package. For SPRINT, this is the sprint directory in our
downloaded and unpacked source code.

[123]

Developing SPRINT, an MPI-Based R Package for Supercomputers

Let's now add phello() to this NAMESPACE file so that after loading SPRINT, an R
user can call phello () in order to execute the R code located in our phello.R file,
and hence, the corresponding interface and implementation function.

Highlighted in the following code snippet is the line to be added to the SPRINT
NAMESPACE for this:

Namespace file for sprint
useDynLib (sprint)

export (phello)
export (ptest)
export (pcor)

Makefile

This file is used to compile and link the SPRINT package. We need to update this for
our phello () function.

Let's navigate to the sprint/src directory, and add the text highlighted in the
following code to Makefile, in the positions indicated:

SHLIB OBJS = sprint.o

ALGORITHM DIRS = algorithms/phello algorithms/common ..

INTERFACE _OBJS = algorithms/phello/interface/phello.o algorithms/
papply/interface/papply.o ..

IMPLEMENTATION OBJS = algorithms/phello/implementation/hello.o
algorithms/papply/implementation/apply.o..

phello.Rd

The source code for an R package has a subdirectory, man, which contains the
documentation files for the user-level object contents of that package. Let's add
the man page for our new function. Navigate to sprint /man/, and create the file
phello.Rd in this directory. Now let's add the following contents to this file:

[124]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 4

\name{phello}
\alias{phello}
\title{SPRINT Hello World}
\description{

Simple example function demonstrating adding a method to the SPRINT
library.
Prints a 'hello from processor n' message.
}
\usage{
phello ()
}
\arguments {
None
}
\seealso
\code{\1ink{SPRINT} }
}
\author{
University of Edinburgh SPRINT Team
\email {sprint@ed.ac.uk}
\url{www.r-sprint.org}
}
\keyword{utilities}
\keyword{interface}

This file is written in the R documentation format. More information about this
format and how to write R documentation files can be found in the Writing R
Extensions manual.

Compiling and running the SPRINT code

Now that all the required files have been updated to include our new function, we
need to compile and install the SPRINT package so we can execute it.

The SPRINT library can be compiled and installed in R as follows:

$ cd sprint/src/

$ make clean

$ecd ../../

$ R CMD INSTALL sprint

[125]

Developing SPRINT, an MPI-Based R Package for Supercomputers

Let's now run our new function. The R code for running phello () from SPRINT

is very simple. The sprint library is loaded, phello () is called, and the SPRINT
worker processes are closed down with a call to pterminate (). Here's the R code to
do all this.

library (sprint)
phello()
pterminate ()

Save this R code in file called testHello.R and execute it as follows:

mpiexec -n 4 R -f testHello.R

You will see the following output.

Welcome to SPRINT

Please help us fund SPRINT by filling in

the form at http://www.r-sprint.org/

or emailing us at sprint@ed.ac.uk and letting
us know whether you use SPRINT for commercial
or academic use.

> phello()

Hello from rank 0 out of 4

Hello from rank 1 out of 4

Hello from rank 2 out of 4

Hello from rank 3 out of 4

[11 o

> pterminate()

[126]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 4

The following Figure 4 shows the flow of execution through the various files for
this on the SPRINT Master process in more detail. Notice how the Master initiates
commands, broadcasts them to the workers, and then waits for each of their results.

SPRINT hello world master

testhello.R sprint.c pterminate.R | functions.c | phello.R phello.c hello.c workers
library("sprint")
R _init sgrint;l.
MP1_init()
worker{) :
phellof) >
Call("phello” h
MPI_Beast(PHELLO) »
hello() »
prints hello from
the master
470
< SEXP value 0
pterminate() »

L
" .Call("sprint _shutdown™)

sprint_shutdown()

MPI Beast{TERMINATE)

>
MPI_Finalize()
>
<
testhello.R sprint.c pterminate.R functions.c phello.R phello.c hello.c workers

Figure 4: A sequence diagram showing the execution flow for pHello () on the Master process.

[127]

Developing SPRINT, an MPI-Based R Package for Supercomputers

The next figure, similarly shows the execution flow on a SPRINT Worker process.
Notice how the worker cycles through a loop, waiting for the next command from
the Master to execute and return a result, until it receives the explicit TERMINATE
command, at which point it exits.

SPRINT hello world worker

testhello.R sprintc sprint.ciworkers) pterminate® functionsc = phello.R phelloc helloc master
library("sprint”)
R_init_sprint() »
MPI_init()
mﬂ(ﬁ{}:l
wait for MPI_bcast() :l
" MPI_Bcast(PHELLO)
commandLUT[PHELLO](0) >
™ function pointer o hello
hella() o

>

prints hello from
each worker

0

<
<

wait for MPI_bcast() :l
<

+

MPI_Bcast(TERMINATE)

MPI_Finalize()

testhello.R | sprintc | | sprint.c{workers) pterminate.R | functions.c | phello.R | phelioc | hello.c | = master

Figure 5: A sequence diagram showing the execution flow for phello() on a Worker process.

Genomics analysis case study

So far in this chapter, you have learned how to write MPI parallel routines, access
these directly from your R scripts, and turn these routines into reusable R packages.
In the remainder of this chapter, we will show you how this capability has been used
to exploit supercomputers in the quest to identify signs of bacterial infection and
sepsis in blood samples of newborn babies.

Genomics helps us find those genes in a baby that have increased or decreased levels
of activity in response to a bacterial infection. By knowing which genes are involved
in the immune system's response to bacterial infection (or indeed, how the immune
system is subverted by bacteria), we can (a) look at how the activity of these genes
differ from baby to baby, and (b) use them to diagnose a bacterial infection from the
gene expression measurements in a blood sample.

[128]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 4

The remainder of this chapter, therefore, comprises a brief introduction to Genomics
followed by a description of how an MPI-based R package such as SPRINT,
discussed earlier in this chapter, allows R to exploit a supercomputer, and so assist
researchers in the fight against bacterial infection in newborn babies.

Genomics

Genomics is the collective term for the study of the structure and functions of the
genome. The genome is the totality of deoxyribonucleic acid, that is, DNA, in each
cell of most organisms. In humans, this DNA consists of a string of around 3.2 billion
organic molecules that are called nucleotides.

_ A nucleotide consists of a molecule of sugar, a molecule of phosphoric
% acid, and a chemical called a base. In DNA, there are four bases:
s Adenine (A), Guanine (G), Thymine (T), and Cytosine (C). A DNA
string is therefore represented by a sequence of these abbreviations.

Any stretch of DNA that is known to contain biological instructions for making

a particular protein is called a gene. The remaining stretches of the genome are
referred to as non-coding sequences, although many of these sequences do actually
have another biological function. In humans, the total number of genes in the
genome is currently thought to be around 19,000.

Genomics allows the monitoring of the activity, and in some cases the structure, of
all or a large number of these genes, or indeed any nucleotide sequences, for a given
biological tissue or cell. As a field and technology within the life sciences, genomics
has reached the stage whereby relatively large datasets, some potentially terabytes in
size, are routinely generated or obtained by non-specialists. This has resulted in an
explosion in both the size and volume of data to analyze.

As an example of this, the Gene Expression Omnibus (GEO) currently hosts a
repository of around 55,900 studies with a total of 1.36 million biological samples.
With file size for an individual sample ranging from approximately 20 Mb to 60 Mb
or higher, the size of the study data sets range from as little as 200 Mb to more than
100 GB.

[129]

Developing SPRINT, an MPI-Based R Package for Supercomputers

Genomics is often called post-genomics, in the sense that we
work in an era where full genomes are already sequenced, and
» we now simply measure under what circumstances a particular
% sequence (that is, a gene) is used to carry out a biological
~"" function.

A genome is said to be sequenced when the sequence of
nucleotides from the start to the end of the DNA is known.

Measuring the genome is important, because this gives a detailed view of how an
organism responds to a given circumstance like infection, injury, or treatments.

As part of this response, the biological instructions contained in a gene are read

by other components (ribosomes) in a biological cell. This process is referred to as
transcription, and is an intermediary step in the conversion of these instructions
into actions carried out by proteins, for example, chemical reactions, binding

and recognizing bacteria, building cell structures, or transporting molecules. The
presence of proteins could also be measured directly, but there are far more possible
proteins than genes in an organism, and the three dimensional structure of a protein
also plays a role in determining its function. Using the proteome to understand
biological processes is, therefore, far more complex compared to measuring the
genome.

In the same way that the totality of all the genes in a cell of an organism
is referred to as the genome, the totality of all the proteins in the cell of
e an organism is referred to as proteome.

Take a look at the following figure. It illustrates how the DNA of an organism is used
to produce proteins.

[130]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 4

Cell cytoplasm

“‘gene” ‘non-coding sequence” Cell nucleus

CI: T ;E,f A T. G: G G T A C A DNA (double stranded helix of nucleotides)

< — = .- =

N ~
l transcribed to iﬂr ,@ Transcription
(7 i) i ’«'7‘- 1
G A U U A C C C A' U G U P E e e)

R S —— AN e

G W o
/’ translated to @ Translation

v/ -
Protein (chain of amino acids; 3
DY nucleotide bases code for one
amino acid)

Figure 6: To produce a protein, a gene in the DNA of an organism first undergoes transcription into RNA and
then translation.

As you can see in the preceding diagram, a set of instructions is first transcribed from
a gene in the DNA to RNA, that is, a ribonucleic acid. DNA is a double-stranded
helix of nucleotides, whereas RNA is a single-sequence strand of nucleotides. This
single RNA strand, as opposed to DNA, can leave the cell nucleus. This means

the instructions contained in the gene on how to put together a protein, can be
transported to where they are needed.

In the second step in Figure 6, these instructions (comprising three RNA nucleotide
bases at a time) are used to string together the correct amino acids to make up a
protein. For example, the three bases (also called a 'codon') G-A-U are the instruction
to make amino acid 'D' in Figure 6. This step of stringing together the correct amino
acids is known as translation.

Genomic data

Currently, the genome is most frequently measured with two types of genomic
laboratory technology: Microarrays and Next-Generation Sequencing (NGS).

Microarrays measure the expression level of each gene in a given biological sample.
The expression level refers to the number of RNA strings present for a given

gene. For each biological sample, they can return the expression level of each of
approximately 19,000 or more genes, plus several hundreds or thousands of non-
coding sequences.

[131]

Developing SPRINT, an MPI-Based R Package for Supercomputers

NGS allows the counting of millions to billions of short nucleotide sequences that
are present in a given biological sample, that is, not just genes. These so-called "short
reads" can, in turn, provide data on other aspects of a biological sample, such as the
expression level of genes, alternative versions of genes, the interactions of DNA with
proteins, and the composition of previously unknown genomes.

With either type of technology, the dataset size obtained is the number of entities
(genes, short reads) measured, multiplied by the number of biological samples in
the study or experiment. Sample numbers usually range from a handful to several
hundred. For example, 19,000 genes measured by microarray on 100 biological
samples results in 1,900,000 data points. A large NGS study with many hundreds or
thousands of samples may produce terabytes of data.

Although this is not yet comparable to physics or imaging problems, the size and
volume of genomic data sets is sufficient to present analysts with many CPU speed
and memory allocation problems. This is particularly so because one of the driving
forces in genomic data analysis is the identification of potential relationships
between genes or between biological samples. This involves investigating all
possible pairs of individual observations (genes or samples), meaning that the
number of required computations and space is the square of the original data
dimension. For example, measuring the similarity between the 19,000 genes in the
previous microarray example, results in 19,000% that is, 361 million computations
of a correlation or other similarity metric. A further complication is that such
investigations do not easily lend themselves to simple "task farming" parallelization
solutions.

As these laboratory technologies develop further, not only will the dataset size increase
due to the number of sequences that can be measured, but so too will the sheer volume
of results produced as more research groups become adept at using these increasingly
inexpensive technologies. Next-generation sequencing, in particular, will likely

be responsible for much of these increases, and provide interesting computational
software parallelization problems for the foreseeable future.

Genomics with a supercomputer

Now that you have some knowledge about Genomics, let's look at how a
supercomputer can help an R user investigating bacterial infection in newborn babies.

[132]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 4

The goal

It is possible to use genomic data (like microarray gene expression data) to identify
sets of genes that, taken together, can predict if a new biological sample belongs to

a particular class sample (that is, a healthy sample or a diseased sample). In the case
study presented here, we will look at the research by the Division of Infection and
Pathway Medicine at The University of Edinburgh into diagnosing bacterial infection
in young infants by measuring gene expression in blood samples. We want to look

at how effectively a supercomputer can be used by R to process the large gene
expression datasets involved.

The ARCHER supercomputer

The supercomputer used is Cray XC30 MPP. This forms part of ARCHER, the UK's
academic national supercomputing service. At the time of writing, (March 2015), this
service consists of the Cray XC30 MPP supercomputer, external login nodes, post-
processing nodes, and associated file systems.

The supercomputer itself comprises 4,920 compute nodes, which each contain

two 12-core Intel Ivy Bridge series processors, giving a total of 118,080 processing
cores. 4,544 of these compute nodes each have a total of 64 GB of memory, with the
remaining 376 compute nodes having 128 GB of memory.

Running a program or script on a supercomputer is different from running it on a
laptop or personal computer. In the case of ARCHER, a user logs in to one of the
external login nodes, and creates a submission script that contains the instructions
for executing the desired program or application. The user then submits this script
for execution as a job on one or more of ARCHER's compute nodes using the

PBS batch job scheduling system. Few jobs, if any, make use of all of ARCHER's
thousands of compute nodes and tens of thousands cores. Instead, through PBS,
ARCHER is organized into queues consisting of various numbers of nodes. In this
way, multiple jobs can be executed simultaneously on ARCHER, with each of these
jobs having exclusive access to the subset of compute nodes associated with the
queue it has been submitted to.

[133]

Developing SPRINT, an MPI-Based R Package for Supercomputers

In order to make best use of their computational capacity,
supercomputers such as ARCHER often have access to their compute
nodes organized into a series of queues. Each queue will have
different constraints, for example, a queue might be restricted to jobs
that have an elapsed time of 10 minutes or less and have requested 2
nodes or less. Another queue might be restricted to jobs that have a

minimum elapsed time of 6 hours and require up to 150 nodes. Often,

L~ the queue configuration changes over 24 hours to reflect the different

usage profiles for the supercomputer. For example, only those queues
that utilize large numbers of nodes are active overnight.

In the case of ARCHER, the smallest queue consists of one node. This
means that even if a job uses only one core on that node, the whole
node is reserved for the user, and so no other job will run on that node
at the same time.

Let's submit the sprint_test.R script to ARCHER's compute nodes for executing
the SPRINT ptest () function. This script and the ptest () function were both
described earlier in this chapter.

library("sprint") # load the sprint package
ptest ()

pterminate () # terminate the parallel processes
quit ()

Here's the submission script for this. This contains a mixture of comments, directives
for PBS and shell script.

#!/bin/bash -login

! Edit the job name to identify separate job
#PBS -N ptest

! Edit number of nodes to fit your job

#PBS -1 select=2

! Edit time to fit your job

#PBS -1 walltime=00:09:00

Replace with your own budget

#PBS -A a0l

Load R & SPRINT library
module swap PrgEnv-cray PrgEnv-gnu

module load R

Change to the directory that the job was submitted from

[134]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 4

cd $PBS_O_WORKDIR

Replace $TMP with your own temporary directory.
export TMP=~/work/tmp

Launch the job
aprun -n 48 R -f sprint test.R

The first line of this script, #! /bin/bash -login, indicates the flavor of the Linux
shell to be used to execute the instructions in the submission script. In this case, it is
bash. Those lines beginning with #pBs are directives to PBS. All other lines beginning
with # are comments.

Line 3 of the submission script contains #pBs -N ptest. This is a directive that
instructs PBS to run the contents of this script as a batch job called ptest. The
directive in line 5, #PBS -1 select=2, instructs PBS that the job wants to use two of
ARCHER's compute nodes. On ARCHER, this will mean that the job has exclusive
access to these nodes; no other job will run concurrently on those nodes. The line

7 directive, #PBS -1 walltime=00:09:00, requests that the job have these nodes
exclusively for nine minutes of elapsed time, with the line 9 directive, #PBS -A a01,
indicating the cost of running this job on these nodes is to be charged to a budget
with the code a01. On ARCHER, like many supercomputers, a user has to pay for
executing their program or application. In ARCHER's case, this is managed by means
of budgets, whereby a user can be granted a certain amount of compute time. For a
successful submission, the budget code must be valid, and the budget must contain
sufficient time to fulfil the elapsed time requested in line 7. Look at lines 12 and 13:

module swap PrgEnv-cray PrgEnv-gnu
module load R

These contain shell commands to load the appropriate application development
environments to be used on the compute nodes. On ARCHER, these environments
are controlled by means of modules, which allow the loading and switching of
compilers, libraries, and software. In the case of our R script that uses the SPRINT
package, this means swapping from the Cray to the GNU programming environment
and loading the module for the R installation on ARCHER. Lines 15 and 18
respectively change the working directory to the one where the submission script

is submitted from, and set the temporary directory to be used during execution.
Finally, take a look at the last line of the file:

aprun -n 48 R -f sprint test.R

[135]

Developing SPRINT, an MPI-Based R Package for Supercomputers

It contains the ARCHER instruction equivalent to the following OS command line
instruction that we described earlier in this chapter when executing sprint_test.R:

$ mpiexec -n 5 R -f sprint test.R

On ARCHER, the submission script uses a call to aprun rather than mpiexec to
instantiate the MPI processes. Here the aprun call instantiates 48 processes, one for
each core on the two nodes that have been requested. There are 24 cores on each
ARCHER compute node.

If this submission script is saved in a file called ptest . pbs, typing the following

at the OS command line on an ARCHER login node instructs PBS to use the file to
create a job for execution on two ARCHER compute nodes. This job is placed by PBS
in a queue while it awaits execution.

$ gsub test.pbs

On the ARCHER, the PBS gstat command can be used to monitor the status of a
job in queue. The following is the output from running this for our submission. The
argument -u $USER instructs PBS to return a list of only those jobs for the current
user.

$ gstat -u $USER

sdb:

Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory
Time S Time

2761436.sdb user A 82755804 ptest -- 2

48 -- 00:09 Q -

Under gob 1D, the output shows the identifier PBS has given the job to, in this case
itis 2761436 .sdb. Under Username is the name of the user, user 2, who submitted
the job. The queue the job is waiting in is listed under Queue (s2755804). Under
Jobname is the name given to the job in the submission script, that is, ptest. Under
SessID is the identifier of the session if the job is running. In our preceding example,
the job is not yet running, so it contains - -. Under NDS is number of compute nodes
requested, that is, 2.

[136]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 4

Under TsK is listed the number of tasks or cores requested —48. The memory
requested and the elapsed time requested are listed under Req'd Memory and Req'd
Time; these are given as "--" to indicate that no specific amount of memory was
requested, and 00: 09 to indicate that up to 9 minutes of elapsed time was requested,
respectively. The job's current state is listed under s, and here it contains Q
indicating that the job is queued. Finally, Elap Time indicates the elapsed time used
thus far. Since the job is in the queued state, waiting to be executed, this contains
"—", which means that no elapsed time has been spent thus far.

After the job actually gets executed, its output and any errors encountered are listed
in two files in the directory from which the submission script was submitted. The
output is found in the file called ptest.02761436, and the file containing any errors
encountered during execution is called ptest.e2761436. As you can see, the names
of these are derived from the job name specified in the line #pBS -N ptest in the
submission script and the Job Identifier, as shown in the gstat output.

Opening the ptest.o02761436 reveals 48 R startup and library load messages as well
as the 48 ptest () output messages. The following is an extract from that file:

[1] "HELLO, FROM PROCESSOR: 0" "HELLO, FROM PROCESSOR: 22"
[3] "HELLO, FROM PROCESSOR: 17" "HELLO, FROM PROCESSOR: 24"..

Random Forests

There are several algorithms that can be used to classify blood samples as infected
or healthy. Random Forests is one such classification algorithm. Based on a set of
known sample classes, Random Forests will predict the class membership of a new
sample. With large data sets, Random Forests are not usually used as an applied
diagnostic test. Instead, it is used to identify those genes that best predict the class of
an unknown sample. These genes are of interest to biologists studying the immune
reaction to infection, and are also prime candidates for creating a diagnostic test.

The Random Forests algorithm is an ensemble tree classifier that constructs a forest
of classification trees from bootstrap resamples of a dataset. More information on
Random Forests can be found in Breiman's paper of the same title in Volume 5,
Issue 1 of the journal, Machine Learning.

[137]

Developing SPRINT, an MPI-Based R Package for Supercomputers

In Random Forests, a classification tree consists of nodes, each of
which splits the dataset based on the value of some variable (selected
at random). Once the tree is constructed, we can classify an observation
case by sending it down the tree from the root node. At each branching
of the tree, the decision is made by comparing the value of the variable
with the rule on that node of the tree. For example, at one node all of the
observations where variable A had a value greater than 1.4 would be
sent down the right-hand branch, and the other observations would be
sent down the left-hand branch. The predicted class of the observation
is the leaf node it ends up in. The Random Forests algorithm randomly
selects many observations from the original dataset to create a forest
of classification trees that can then classify the data. These also provide
- useful information on which variables are most significant in correctly
% classifying the data. Observations are classified by sending them down
~ each of these trees in the forest. If 1000 trees vote that observation X is of
class AB, whereas 200 trees vote that it is of class CD, then observation X
is classified as class AB. There is some debate about the minimum number
of trees to generate for a particular size of dataset, but the general view
is that subject to computational constraints, the more trees generated, the
greater the confidence in the classifications produced.

A bootstrap resample of a dataset is created by randomly selecting
observations from the dataset until the bootstrap dataset has the same
number of observations as the original dataset. Resampling with
replacement is where an observation can be selected more than once for
inclusion in the same bootstrap resample. That is, the observation remains
in the pool of possible observations that can be selected from the original
dataset for that bootstrap resample.

Mitchell's paper (see http://onlinelibrary.wiley.com/doi/10.1002/cpe.2928/
full), describes the two options for parallelizing Random Forest. You can either
parallelize the bootstrap phase or the generation of a single tree.

This latter option of parallelizing single tree growth is the more complicated of the
two. Even so, a number of existing algorithms for growing decision trees in parallel
do exist. All these approaches are, however, designed for the data encountered in the
social sciences where there are typically very many samples (hundreds of thousands
or millions) but only a small number of variables (tens or hundreds) describing each
sample. These algorithms exploit the parallelism available in the samples, dividing
them between parallel processes. Unfortunately, these algorithms do not map well
onto microarray or NGS data where the number of samples is low (typically tens or
hundreds) while the number of variables is large (typically thousands or millions).
Furthermore, since each split in a tree only considers a subset of all the variables, if we
were to parallelize across variables (rather than cases), the load balance would be poor.

[138]

[vww .ebook3000.con}

http://onlinelibrary.wiley.com/doi/10.1002/cpe.2928/full
http://onlinelibrary.wiley.com/doi/10.1002/cpe.2928/full
http://www.ebook3000.org

Chapter 4

Given the SPRINT R package's origins as a collaboration between life scientists
from the Division of Infection and Pathway Medicine and HPC experts from

the Edinburgh Parallel Computing Centre at the University of Edinburgh, its
implementation of Random Forest uses a task parallel approach. In this task parallel
approach, the bootstrap samples are distributed amongst the parallel processes, and
the results combined. This approach is, however, constrained in that the original
microarray or NGS data must fit in the memory of a single R process.

This task parallel nature of the SPRINT implementation of Random Forest means
it can reuse the existing R code for serial Random Forest generation. That is, it uses
Breiman and Cutler's randomForest R package available from CRAN (see http://
cran.r-project.org/web/packages/randomForest/randomForest .pdf). This
allows the user interface of the SPRINT implementation to exactly mimic the
calling conventions of the serial code. However, due to the nature of the random
bootstrapping, whilst the results in parallel may not be numerically identical to the
results from serial execution, they are within statistical norms.

Data for the genomics analysis case study

In this chapter, we will use the SPRINT parallel implementation of Random Forests
executing on the ARCHER supercomputer to test the hypothesis that bacterial
infection in newborn babies can be identified via gene transcription profiling.

Following image processing and initial data processing, an example of small
analysis-ready gene expression dataset may consist of a data matrix of size 25,000
genes by 20 samples. A large genotyping data set may consist of 2 million Single
Nucleotide Polymorphism (SNP) probes by 2,000 samples. Dimensionality is of
concern to most analysis approaches, with the number of variables (that is, the
numbers of genes, SNPs, or sequences) vastly outweighing the number of samples.
This differs from the sort of dataset that would be produced in social science, where
a typical dataset would be made up of a small number of variables with a large
number of samples. As mentioned previously, the SPRINT implementation of
Random Forests is designed to handle a biological dataset with a very large number
of variables.

To study bacterial infection, Division of Infection and Pathway Medicine collected
blood samples from 62 infants — 27 of these have a confirmed bacteriological
infection, and 35 are non-infected controls. The overall goal is to determine sets of
genes that can reliably identify an unknown blood sample as infected or not infected.

The blood samples were processed to RNA level, and each sample hybridized to
an [llumina human gene expression microarray. Each array contains 23,292 probe
sequences that measure the expression of all known genes in the human genome.

[139]

http://cran.r-project.org/web/packages/randomForest/randomForest.pdf
http://cran.r-project.org/web/packages/randomForest/randomForest.pdf

Developing SPRINT, an MPI-Based R Package for Supercomputers

Random Forests performance on ARCHER

Using a single core of the ARCHER supercomputer on a 64 GB memory node, the
serial Random Forests implementation took approximately 168 seconds of elapsed
time to generate a forest of 8,192 trees (64 * 128) on the data derived from the
collected blood samples.

Figure 7 shows the elapsed time for running the serial implementation on 1 core, and
the SPRINT implementation of Random Forests on 2, 4, §, 16, 32, 64, 128, 256, 512,
and 912 cores on the ARCHER 64 GB compute nodes on the same data.

RandemForest run times
Data: Standard size (23,292 genes, 62 samples), 8,192 trees

220 -
200 -
180 -
160 -
140
120 - 2
100 -

22 \'\ /

20 ~— "

— —"

Time (seconds)

1 2 4 8 16 32 64 128 256 512 1024

Number of cores

Figure 7: Elapsed (run) time of Random Forests generating 8,192 trees from data consisting of on 23,292 genes
and 62 samples. The x-axis is log-scaled to show the full sequence of cores used in each execution.

The next graph shows the speed-up of the SPRINT implementation relative to the
serial execution (Speed-Up and Amdahl's Law are explained in Chapter 6, The Art of
Parallel Programming.)

[140]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 4

RandomForest speedup factors
Data: Standard size (23,292 genes, 62 samples), 8,192 trees

14 - .

Speedup factor
-~

2 P / ‘\.\.

1 2 4 8 16 32 64 128 256 512 1024

Number of cores

Figure 8: Speed-up of SPRINT implementation of Random Forests relative to the serial code. The x-axis is
log-scaled to show the full sequence of cores used in each execution.

As can be seen in Figure 8, the speed-up is quite modest, reaching a peak of 14 at 32
cores and a fastest elapsed time of 12 seconds. Beyond 32 cores, for this size of data
set, the overhead of communicating partial results and recombining them outweighs
the gains from generating the trees in parallel. This effect is further illustrated in
Figure 9.

The SPRINT Random Forest implementation uses a task parallel approach, whereby
each core is tasked with executing random forest on a subset of the total bootstrap
samples (that is, trees) following which, these results are combined. Figure 9 shows
the elapsed time for executing SPRINT Random Forest on the same data, but this
time, varying the number of bootstrap samples (that is, trees) according to the
number of cores being used. When there is 1 core, only 128 trees are used, for 2 cores
it is 256 trees, and so on up to 512 cores, where 65,536 trees are used. That is, each
core used is always generating 128 trees. The figure shows the total elapsed time
divided by the number of cores for each run, that is, the time for calculating 128 trees
per core in each execution.

[141]

Developing SPRINT, an MPI-Based R Package for Supercomputers

This, therefore, helps show the impact of communicating the partial results
and recombining them. Above 32 cores, the overhead of communication and
recombination far outweighs the overall performance benefit on this size of dataset.

RandomForest speedup factors
Data: Standard size (23,292 genes, 62 samples), 128 trees per core
14,
13 1
12
11
10
5 9 ?
c
8 8
e 7)
@ 4
£
[5 .
4 L)
31 \
L
2 N o
1. ..______‘_____'/
1 2 4 8 16 32 64 128 256 512 1024
Number of cores

Figure 9: Executing SPRINT Random Forest with 128 trees per core (and a fixed dataset size of 23,292 genes and
62 samples). The x-axis is log-scaled to show the full sequence of cores used in each execution.

As mentioned earlier in this chapter, NGS datasets are significantly bigger, so let's
use the data from the study on bacterial infection in newborn babies to generate a

dataset of a size comparable to an NGS dataset. Figure 10 shows the elapsed times
for a dataset comprising 512,000 variables (when actually generated through NGS
technology, such a number could include non-coding sequences, single nucleotide
polymorphisms, gene splice variants, and so on) derived from our original 23,292

genes. Again 8,192 trees have been generated.

[142]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 4

Here, the serial elapsed time is over 100 minutes, but on running this with the
SPRINT parallel implementation on 128 cores, the elapsed time reduces to just over
a minute and a half. Again, these were executed on ARCHER's 64 GB memory
compute nodes.

RandomForest run times
Data: Large size (500,000 sequences, 62 samples), 128 trees per core
[]

6000
172}
2
8 5000
©
O
< 4000
£
=
c ®
—. 3000
w
©
c
3
S 2000 -
0 .
(Y] \
£ 1000 -
- '\

.‘--'-—.________. . ———8
0 T T T T T T T T
1 2 4 8 16 32 64 128 256 512 1024
Number of cores

Figure 10: Parallel Random Forest elapsed (run) times to generate 8,192 trees from a dataset of 512,000 variables
and 62 samples. The y-axis shows the elapsed time in seconds for each execution, while the x-axis is log-scaled
to show the full sequence of cores used in each execution.

In Figure 11 the speed-up relative to the serial implementation is shown. At 128
cores a speed-up of at least 64 is achieved. Beyond that number of cores, as with the
smaller dataset, the overhead of communicating partial results and recombining
them outweighs the gains from generating the trees in parallel.

[143]

Developing SPRINT, an MPI-Based R Package for Supercomputers

The smaller dataset achieved the maximum speed using 32 cores; the larger dataset
achieves the maximum speed using 128 cores. The ideal number of cores to use will

depend on your dataset.

RandomForest speedup factors
Data: Large size (500,000 sequences, 62 samples), 128 trees per core
[
60 I
50
]

S
3] 40 .
o
3 30
3 ¢
) J

20 /

[]
10 - yd
L
o/
ol —
1 2 4 8 16 32 64 128 256 512 1024
Number of cores

Figure 11: Speedup relative to the serial implementation for parallel random forest generating 8,192 trees from
a dataset of 512,000 variables and 62 samples. The x-axis is log-scaled to show the full sequence of cores used in
each execution.

The jobs run to produce Figure 12 are similar to those in Figure 9, that is 128 trees per
core, but this time with a larger dataset, containing 500,000 sequences. This confirms
how with this larger dataset, it is a higher number of cores at which the overhead of
communication and recombination of trees outweighs the benefits of parallelization.

[144]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 4

RandomForest run times
Data: Large size (500,000 sequences, 62 samples), 128 trees per core
e

70
(7]
L
S 60
G
o 50
Qo
E
g2 40 \
0)
S 30
Q
@
a2 20 .
g \
i 10 he

\.
\\._._-.
Y ®
o A T T T T T T T T
1 2 4 8 16 32 64 128 256 512 1024
Number of cores

Figure 12: Executing SPRINT Random Forest with 128 trees per core on a larger dataset of 500,000 sequences
and 62 samples. The x-axis is log-scaled to show the full sequence of cores used in each execution.

Rank product

Gene expression data is often used to simply identify which individual genes show
statistically significant changes of expression between groups, for example, between
healthy and diseased samples. Although in standard scenarios, the frequently

used 1limma package with its empirical Bayes moderated t test is sufficient for most
analyses, for some scenarios (non-parametric data assumptions, meta-analyses) the
rank product test is an alternative example of a statistically robust test with focus on
fold changes in gene expression (in essence, measuring the stability of fold changes
directly rather than a group-specific gene expression mean and associated gene
variability).

Rank product is therefore considered to be a feature selection method capable of
identifying important genes. (For more information on the details of rank product,
see Breitling et al's 2004 paper titled, "Rank products: a simple, yet powerful, new method
to detect differentially requlated genes in replicated microarray experiments." This is freely
available at http://www.ncbi.nlm.nih.gov/pubmed/15327980.)

[145]

http://www.ncbi.nlm.nih.gov/pubmed/15327980

Developing SPRINT, an MPI-Based R Package for Supercomputers

As explained by Mitchell et al refer to the URL mentioned in the Random Forests
section of this chapter, rank product is applicable to experiments comparing two
different experimental conditions, for example, class A and class B, and in effect,
comprises three steps:

1. For each gene, a rank product is calculated by:

o

Ranking the fold-change value of that gene in all pairwise

comparisons of class A against class B

° Taking the product of these ranks across all samples

2. A null distribution for the rank products is calculated. This is the expected
distribution if there is no differentiation between either genes or samples.
Unfortunately, it is not possible to construct an analytic form for the null
distribution; it is therefore constructed numerically, using a bootstrap
procedure. This involves creating a random experiment by independently
permuting each sample's gene expression vector, and calculating the rank
product of all the genes in this random data. This is repeated many times (
10,000 or 100,000 times) to build a distribution of rank products for the null
hypothesis.

3. The experimentally observed rank product for each gene is then compared
with the null distribution. By comparing how the actually measured value
compares to chance (that is, thousands of values measured on randomized
gene expression data), this allows accurate measures of the significance level
and estimation of cut-off values.

As observed by Mitchell et al, it is the second of these three steps, the generation of
the bootstrapped null distribution that is the computationally expensive part. The
SPRINT implementation of rank product takes a task parallel approach by dividing
up the requested number of bootstrap samples between available processes. This
requires the input dataset to be broadcast to all processes. The bootstraps are then
calculated independently, and the results collated and returned to the Master process
for further analysis. Similar to the SPRINT implementation of Random Forests, the
rank product implementation works well as long as the input dataset fits in the
available memory of a process.

[146]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 4

Rank product performance on ARCHER

Let's now run the SPRINT parallel implementation of rank product on the data from
the study of bacterial infection in newborn babies, that is, 23,292 genes, 62 samples.
Running this on a single core of an ARCHER 64 GB memory compute node for 1024
bootstrap samples (or permutations), the elapsed time is more than 2.5 hours, on
512 cores of ARCHER 64 GB compute nodes — this has been dramatically reduced

to just over half a minute. This is a speed-up of close to 290, relative to the single
core elapsed time. At greater core numbers, the speed-up starts to diminish. Figure
13 shows the elapsed times on 1,24 8, 16, 32, 64, 128 , 256, 512, and 960 cores with
Figure 14 showing the speed-up relative to the elapsed time on a single core.

Rank Product run times
Data: Standard size (23,292 genes, 62 samples), 1024 bootstrap samples

9000
8000
7000 -
6000 -
5000
4000

Time (seconds)

3000 -
2000 - ‘\\\‘
1000 ‘\\‘
‘--.___._-___
0 *

1 2 4 8 16 32 64 128 256 512 1024

Number of cores

Figure 13: Elapsed (run) times for rank product with 1024 bootstrap samples (i.e. permutations) on a dataset of
23,292 genes and 62 samples. The x-axis is log-scaled to show the full sequence of cores used in each execution.

[147]

Developing SPRINT, an MPI-Based R Package for Supercomputers

In Figure 14, it can be seen that the speed-up is close to optimal on smaller core
numbers, but gradually tails off so that by 512 cores the speed-up is 289, and at 960
cores, the speed-up has started to decrease.

Rank Product speedup factors
Data: Standard size (23,292 genes, 62 samples), 1024 bootstrap samples

300
.-._____.
250
200

150 1

Speedup factor

100 .

50 4
/./

.jl

—0— "

0— []
1 2 4 8 16 32 64 128 256 512 1024

Number of cores

Figure 14: Speed-up of rank product relative to the elapsed time on a single core. The x-axis is log-scaled to
show the full sequence of cores used in each execution.

As noted earlier in this section, in an ideal situation, somewhere between 10,000 and
100,000 permutations would be used when executing rank product. Figure 15 shows
the elapsed time for this same data when 16,384 permutations are used instead of
1024. The elapsed time on a single core and two cores were not collected since these
were going to be longer than 12 hours.

[148]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 4

The elapsed time for 4 cores was over 11 hours, while on 912 cores, this has been
reduced to less than 3.5 minutes.

Rank Product run time
Data: Standard size (23,292 genes, 62 samples), 16,384 bootstrap samples

40000 - 1

35000

30000 -
»
2 25000
[@]
(8] L]
£ 20000 -
[}
£ 15000 -
-

10000 - '\

5000 - b

\.\
L]
0 - — o
1 2 4 8 16 32 64 128 256 512 1024
Number of cores

Figure 15: Elapsed time for Rank Product with 16,384 bootstrap samples (i.e. permutations) on a dataset of
23,292 genes and 62 samples. The x-axis is log-scaled to show the full sequence of cores used in each execution.
A 256 core job was not executed this time hence the gap between 128 and 512 cores.

[149]

Developing SPRINT, an MPI-Based R Package for Supercomputers

Looking at the speed-up of these latest results, relative to the elapsed time for the 4
core result, reveals more about the performance when executing rank product on the
data with more bootstrap samples. Figure 16 shows that the speed-up at 912 cores is
200, which is not far off the optimal speed-up of 228, relative to the 4 core elapsed time.

Rank Product speedup factors
Data: Standard size (23,292 genes, 62 samples), 16,384 bootstrap samples

200 .

150 -
5]
S
&
S 100
=]
Q
@
[«
w

50 -
.
—-—-—"/

u []
1 2 4 8 16 32 64 128 256 512 1024

Number of cores

Figure 16: Speed-up relative to elapsed time for 4 cores for Rank Product with 16,384 bootstrap samples (i.e.

permutations) on a dataset of 23292 genes and 62 samples. The x-axis is log-scaled to show the full sequence

of cores used in each execution. A 256 core job was not executed this time hence the gap between 128 and 512
cores.

Finally, deriving from our original 23,292 genes a dataset consisting of 500,000
variables provides a size comparable to the NGS datasets. Running rank product on
this with 16,384 bootstrap samples, the elapsed times are excessive for single core
and small numbers of cores. In fact on ARCHER, 256 cores are needed before the
elapsed time falls below 12 hours. At 912 cores, the elapsed time falls to just under
2 hours, and has a speed-up of 3.44, relative to the elapsed time at 256 cores — this

is close to the optimal of 3.56. Clearly, these results demonstrate that for the larger
datasets and large numbers of bootstrap samples, access to the large numbers of
cores on a supercomputer can have a dramatic effect on execution times, but this

is obviously algorithm-dependent.

[150]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 4

Conclusions

It is perhaps stating the obvious, but worth repeating, that while on a supercomputer
you have access to thousands of cores, whether you can actually exploit a significant
number of these to any great effect depends not just on the size of your problem

but also on the algorithm you wish to apply to it, and more importantly, its actual
implementation.

The performance results for Random Forests and rank product provide an example
of the first two of these factors, problem size and algorithm. In the Random Forests
example, the quickest elapsed time for the smaller of the two datasets used was at 32
cores, while with the larger dataset, this was achieved at 128 cores. Comparing the
performance of Random Forests with rank product, the latter achieved its quickest
elapsed time and greatest speed-up at 512 cores on the smaller dataset with a small
number of bootstrap samples. However, when first the number of bootstrap samples
and then the data size were increased, dramatic reductions in elapsed time were
obtained with speed-ups remaining close to optimal at high core counts.

Moreover, the reduction in elapsed times achievable on a supercomputer, such as
ARCHER, are generally at their most useful when frequent reruns are necessary

for parameter optimization or problem solving. For one-off analyses, the potential
reduction in run-time and the size of the problem that can be tackled, needs to be
weighed up against the need to create submission scripts and possible waits in a job
queue. However, reusing existing, highly optimized packages such as SPRINT, that
also enable a priori testing of your code on your laptop, can significantly reduce the
effort needed to implement parallel code that can effectively exploit supercomputer
architectures.

Summary

In this chapter, you have been shown how to write your own parallel routines and
make them callable directly from R programs. You have also learnt how to create
your own suite of such parallel routines, and turn them into an R package that you
can then reuse in other R programs. The SPRINT package has been introduced, and
its architecture examined to show how you can organize your own such package,
or instead, use the SPRINT package itself and include your own parallel routines
within it.

Finally, the chapter has demonstrated how you can use such an MPI-based R
package on a supercomputer to exploit hundreds, and potentially thousands,
of cores to dramatically increase the performance of your R programs.

[151]

Developing SPRINT, an MPI-Based R Package for Supercomputers

In the next chapter, we switch our attention from exploiting the world's most
expensive supercomputers, to the admittedly much easier-to-access supercomputer
lurking in your own laptop and desktop, the Graphics Processing Unit (GPU). We
will explore how to make use of the GPU's particular parallel and vector processing
architecture through the portable high performance Open Computing Language
(OpenCL).You will learn how to harness the thousands of much simpler processors
within the GPU from R, which are normally only available for system accelerated
graphics rendering, to obtain Gigaflops of performance for more general highly
numerical based computation.

[152]

[vww .ebook3000.con}

http://www.ebook3000.org

The Supercomputer in
Your Laptop

In this chapter, we will unlock the parallel processing capacity of Graphics Processing
Unit (GPU) from R, giving us access to, potentially, gigaflops and teraflops of
performance for certain types of vector calculations. To do this, we need to roll up our
sleeves, get technical, and step well beyond our comfort zone in R.

In this chapter, we will encounter new concepts, frameworks, and languages,
including:

OpenCL

ROpenCL - The R package that provides an interface abstraction for OpenCL
Single Instruction Multiple Data (SIMD) vector parallelism

Writing code in C (C99) for execution directly from within R

Developing an ROpenCL implementation of the distance measured as
typically used in clustering algorithms

It's time to don your lab coat and your tin foil hat...

[153]

The Supercomputer in Your Laptop

OpenCL

Open Computing Language (OpenCL) is an industry-standard framework for
writing portable high-performance programs that are executed across heterogeneous
computing platforms consisting of a mix of devices including CPU, GPU, Digital
Signal Processors (DSP), and Field-Programmable Gate Arrays (FPGA). OpenCL
platforms operate across laptops, desktops, supercomputers, and even mobile devices.

OpenCL was originally developed by Apple back in 2008, but has since migrated to
an open standard API under the auspices of Khronos Group, of which Apple, Intel,
NVIDIA, AMD, Google, Amazon, IBM, Microsoft, and many significant others in the
computing industry are members.

In addition to OpenCL, Khronos oversees a set of related standards, most notably,
the long-established Open Graphics Library (OpenGL), which defines a well-
adopted API for high-performance 3D graphics rendering. Indeed, both OpenCL
and OpenGL are designed to interoperate, enabling both efficient, generalized
computation and the image rendering of the results within the same GPU device.

The latest version of OpenCL is version 2.0, publicly released towards the end of
2013, but many of the computing platforms you will encounter today may still
reference earlier versions of OpenCL, typically version 1.2. It is this version that I
have available on my mid-2014 Apple MacBook Pro device running OS X 10.9.4. For
our purposes in this chapter, there is no material difference in API calls or feature
support between version 1.2 and version 2.0 of OpenCL.

[154]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 5

OpenCL resources

There are a number of free online resources for OpenCL that provide a
useful reference and technical detail beyond what we can cover in this
chapter:

* https://www.khronos.org/registry/cl/specs/
opencl-1.2.pdf: This contains a full description of the OpenCL
1.2 API specification, including the glossary and conceptual
underpinning. Other versions of the OpenCL API specification are
similarly available on the Khronos website.

* https://www.khronos.org/registry/cl/sdk/1.2/docs/
man/xhtml/: This contains an online version of the API manual
with easy web navigation.

% * https://www.khronos.org/registry/cl/sdk/1.2/docs/
~ OpenCL-1.2-refcard.pdf: This contains a summary reference
card for the APl in a quick-look reminder format.

* https://www.khronos.org/conformance/adopters/
conformant -products/#opencl: Khronos maintains a listing
of devices that support OpenCL across all manufacturers.

* http://support.apple.com/en-gb/HT5942: Apple also
provides a list of their own hardware that supports OpenCL.

* https://developer.apple.com/library/mac/
documentation/Performance/Conceptual/OpenCL
MacProgGuide/Introduction/Introduction.html#//
apple ref/doc/uid/TP40008312-CH1-SW1: This contains
an excellent exposition of how to program OpenCL and tune its
performance, particularly on the OS X platform.

There are a lot of concepts to learn and low-level understanding we need to develop
in order to get the best out of OpenCL and our GPU. However, we will start by first

finding out exactly what we have running on our own system, and we will then peel
back the various conceptual layers as we go along.

[155]

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/
https://www.khronos.org/registry/cl/sdk/1.2/docs/OpenCL-1.2-refcard.pdf
https://www.khronos.org/registry/cl/sdk/1.2/docs/OpenCL-1.2-refcard.pdf
https://www.khronos.org/conformance/adopters/conformant-products/#opencl
https://www.khronos.org/conformance/adopters/conformant-products/#opencl
http://support.apple.com/en-gb/HT5942
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008312-CH1-SW1
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008312-CH1-SW1
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008312-CH1-SW1
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008312-CH1-SW1

The Supercomputer in Your Laptop

Querying the OpenCL capabilities of your
system

Our interaction with OpenCL will initially be through the interface it exposes to
the C programming language. This enables us to directly query the system we
are running R on to determine its support for OpenCL with the minimum set of

dependencies on nonstandard R packages, while also providing a gentle introduction

to C before we tackle the complexities of writing OpenCL kernel functions later.
In the next section, we will switch to using the dedicated RopencL package that
provides us with an easy interaction with native OpenCL from R with minimum
code written in C, namely, the OpenCL Kernel functions themselves.

About C

Don't worry if this is your first encounter with this low-level

programming language. C has been around since the days when the

Unix operating system was first created (OS X itself is a derivative of

Unix), and while it may look a little alien to start with, much of its basic

control structure and logical/expression syntax is similar to R (R itself

is largely implemented in C). A key difference is that in C, we have to

directly allocate and manage the memory for any data items or objects

that we create in our program ourselves. R, by comparison, manages

memory on our behalf; we don't have to be concerned with the number

of bytes of memory that a numeric value requires, neither do we have

to be concerned about when memory is released for reuse within our

program as it is automatically garbage collected. C is also a strongly typed

compiled language (ignoring C's castable memory pointers), whereas R is

a polytype-interpreted language.

Simple-to-follow online tutorials for C are available at the following links:
* http://www.learn-c.org/

* http://www.cprogramming.com/tutorial/c-tutorial.
html

A more in-depth free resource is The C Book (which is now slightly dated),
which can be found at the following link: http://publications.
gbdirect.co.uk/c_book/

Although it predates C99 and C11, which is the later development of the
C standard used as the basis for OpenCL, The C Book is still relevant and
gives you a complete grounding in syntax and how to program in C.

[156]

[vww .ebook3000.con}

http://www.learn-c.org/ http://www.cprogramming.com/tutorial/c-tutorial.html
http://www.learn-c.org/ http://www.cprogramming.com/tutorial/c-tutorial.html
http://www.learn-c.org/ http://www.cprogramming.com/tutorial/c-tutorial.html
http://publications.gbdirect.co.uk/c_book/
http://publications.gbdirect.co.uk/c_book/
http://www.ebook3000.org

Chapter 5

Ris a very capable programming environment in its own right and already
integrates a number of packages written in other languages, including C, C++,
and Java. We will make use of a specific package, inline, available from CRAN
(http://cran.r-project.org/web/packages/inline/index.html), which will
allow us to directly run a snippet of C code as an R function. We will make use of
this facility in the following to define a function that uses a number of the OpenCL
API calls to query the configuration of the platform and devices that are available:
> library("inline")
> cbody <- 'cl platform id pfm[1l]; cl uint np;
clGetPlatformIDs (1,p£fm, &np) ;
for (int p = 0; p < np; p++) {/* Outer: Loop over platforms */
char cbl1[128]; char cb2[128]; cl device id dev[2];
cl uint nd; size t siz;
clGetPlatformInfo (pfm[p],CL PLATFORM VENDOR,128,cbl,NULL);
clGetPlatformInfo (pfm[p] ,CL PLATFORM NAME,128,cb2,NULL) ;
printf ("### Platforms[%d]l: %s-%s\\n",p+1l,cbl,cb2);
clGetPlatformInfo (pfm[p],CL PLATFORM VERSION,128,cbl,NULL) ;
printf ("CL_PLATFORM VERSION: %s\\n",cbl);
clGetDeviceIDs (pfm[p],CL DEVICE TYPE GPU|CL_DEVICE TYPE CPU,
2,dev, &nd) ;
for (int d = 0; d < nd; d++) {/* Inner: Loop over devices */
cl uint uival; cl ulong ulval; cl device type dt;
size t szs[10]; cl device fp config £fp;
clGetDevicelInfo(dev[d] ,CL DEVICE VENDOR,128,cbl,NULL);
clGetDevicelInfo(dev([d] ,CL DEVICE NAME,128,cb2,NULL);
printf ("*** Devices[%d]l: %s-%s\\n",d+1,cbl,cb2);
clGetDevicelInfo(dev([d] ,CL DEVICE TYPE,
sizeof (cl device type),&dt,NULL) ;
printf ("CL_DEVICE TYPE: %s\\n",
dt & CL DEVICE TYPE GPU ? "GPU" : "CPU");
clGetDeviceInfo(dev[d],CL DEVICE VERSION,128,cbl,NULL) ;
printf ("CL_DEVICE VERSION: %s\\n",cbl);
clGetDeviceInfo (dev[d],CL DEVICE MAX COMPUTE UNITS,
sizeof (cl uint), &uival,NULL) ;

printf ("CL_DEVICE MAX COMPUTE UNITS: %u\\n",uival);

[157]

http://cran.r-project.org/web/packages/inline/index.html

The Supercomputer in Your Laptop

clGetDeviceInfo(dev([d],CL_DEVICE_MAX CLOCK FREQUENCY,
sizeof (cl uint),&uival,NULL) ;
printf ("CL_DEVICE_MAX CLOCK_FREQUENCY: %u MHz\\n",uival);
clGetDeviceInfo(dev([d],CL_DEVICE_ GLOBAL MEM SIZE,
sizeof (cl ulong), &ulval, NULL) ;
printf ("CL_DEVICE_GLOBAL MEM SIZE: %llu Mb\\n",
ulval/ (1024L*1024L)) ;
clGetDeviceInfo(dev([d],CL_DEVICE_ LOCAL MEM SIZE,
sizeof (cl ulong), &ulval, NULL) ;
printf ("CL_DEVICE_LOCAL_MEM SIZE: %1lu Kb\\n",ulval/1024L);
clGetDeviceInfo(dev[d],CL DEVICE DOUBLE FP CONFIG,
sizeof (cl device fp config), &fp,NULL) ;
printf ("Supports double precision floating-point? %s\\n",
fp != 0 ? "yes" : "no");
}
} '
The C code may look a little daunting, so let's review what, exactly, it does. The
code is presented as the body of a C function definition without its enclosing
braces as a quoted string in R (cbody). The code makes calls to four OpenCL API
query functions: c1GetPlatformIDs, clGetPlatformInfo, clGetDeviceIDs, and
clGetDeviceInfo. The outer for loop iterates over the number of OpenCL platforms
defined in the system, and the inner for loop iterates over the number of OpenCL
devices defined in each platform. In fact, the first loop is bound to just be one element
as we limited the call to c1GetPlatformIDs () to return a C one-dimensional array
of size 1; most systems we will run on only have a single OpenCL platform defined.
The second loop is also limited by a selection parameter to c1GetDeviceIDs () to
return information only for CPU- and GPU-type devices. The remaining code makes
a sequence of calls to clGetPlatformInfo and clGetDeviceInfo, each call to query

a specific OpenCL configuration parameter, and the returned configuration value is
then printed to the console.

[158]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 5

More about C

There are a number of observations to make about OpenCL in the
preceding code presented.

Firstly, the indexing of arrays in C is from zero to N-1, as opposed to R, in
which it is 1 to N. The individual pieces of code are described as follows:

clGetPlatformIDs (1, pfm, &np): C enables an explicit passing of
variables by reference by prefixing them with an ampersand (&), meaning
"address of". Variables that themselves refer to arrays are always passed
by reference; in this example, pfm is equivalent to &pfm [0].

for (int d=0; d<nd; d++):Thisis an iterative loop construct that
% declares an integer loop variable d initialized to zero on the first iteration,
= has a d<nd-terminating if-false condition that is tested at the start of each
iteration, and increments d by 1 at the end of each iteration using the ++
operator.

char cbil[128]: This allocates a character buffer named cb1 of size 128
chars. As this is a local variable, the memory is allocated from the process
stack, and therefore, its unassigned contents could be any random values.

In C, we generate formatted output to the console using printf (), which
is a little similar to print () and paste () combined to print in R. As the C
code is placed inside an R string, we need to escape any control characters,
such as newline (for example, "\n" becomes "\\n"), so that they are
preserved by the definition and compilation process through R to C.

Take a look at the following code:

> clfn <- cfunction(signature(), cbody, convention=".C",
+ includes=1list ("#include <stdio.h>",

+ "#include <OpenCL/opencl.h>"))

Using cfunction () of the inline packages creates the R equivalent of the function
by wrapping the C body with extra boiler plate, cross-calling code and compiling

it with the system's built-in C compiler. We will pass cfunction (), the calling
signature that identifies any parameters our function expects (in our case, there are
no parameters to pass in) and any header, which includes files for C library functions
that the C code may call (in our case, we will make calls to printf () declared in
stdio.h and the cIX API calls defined in opencl.h).

[159]

The Supercomputer in Your Laptop

OpenCL on other operating systems

] Helpfully, OS X comes with OpenCL preinstalled. However, for other
<~ operating systems, such as Windows or Linux, you need to install
Q OpenCL yourself. The following FAQ link from Intel provides all the
pointers you need to get OpenCL set up on an Intel processor-based
system: https://software.intel.com/en-us/intel-opencl/
- fag

Now that we understand what the code does, let's run it:

> clfn()

list()

Platforms[l]: Apple-Apple

CL PLATFORM VERSION: OpenCL 1.2 (Apr 25 2014 22:04:25)
*** Devices[1l]: Intel-Intel(R) Core(TM) i5-4288U CPU @ 2.60GHz
CL_DEVICE TYPE: CPU

CL DEVICE VERSION: OpenCL 1.2
CL_DEVICE MAX COMPUTE UNITS: 4
CL_DEVICE MAX CLOCK FREQUENCY: 2600 MHz
CL_DEVICE GLOBAL MEM SIZE: 16384 Mb

CL _DEVICE LOCAL MEM SIZE: 32 Kb

Supports double precision floating-point? yes

*** Devices[2]: Intel-Iris

CL_DEVICE TYPE: GPU

CL DEVICE VERSION: OpenCL 1.2
CL_DEVICE MAX COMPUTE UNITS: 280
CL_DEVICE MAX CLOCK FREQUENCY: 1200 MHz
CL_DEVICE GLOBAL MEM SIZE: 1536 Mb

CL _DEVICE LOCAL MEM SIZE: 64 Kb

Supports double precision floating-point? no

We can note from the output that my MacBook Pro laptop is an Apple OpenCL
platform with one Intel i5 CPU device and one Intel Iris GPU device; obviously,
your particular output may differ.

The platform and devices all support OpenCL version 1.2. The CPU has four
OpenCL Compute Units (CUs), which, if you recall from Chapter 1, Simple Parallelism
with R, matches its number of independent instruction-processing threads; however,
the GPU has a much larger number of CUs, namely, 280. We can determine from the
manufacturer's information for the Iris GPU that there are 40 SIMD Kernel Execution
Units (EUs) split into four subslices of 10 EUs each, where each EU is capable of
running seven simultaneous threads (280 CUs=40 EUs x 7 threads).

[160]

[vww .ebook3000.con}

https://software.intel.com/en-us/intel-opencl/faq
https://software.intel.com/en-us/intel-opencl/faq
http://www.ebook3000.org

Chapter 5

OpenCL reports that the CPU has access to 16 GB of the main memory, while the
GPU has 1.5 GB of memory from which it can directly process data. The distinctions
in memory between OpenCL devices within a platform are important for both
overall capability and performance. The movement of data in R between CPUs
(referred to as the "host" in OpenCL), where our R session will execute, and the
GPU device, which requires specific OpenCL C functions (referred to as "Kernels"
in OpenCL) to perform calculations on the transferred data, are key aspects of the
OpenCL programming model.

The following diagram represents the key architectural features of the OpenCL
platform on my MacBook Pro device and also illustrates the basic RopencL
programming model introduced in the next section:

ROpenCL Platform: MacBook Pro

1. gerPfatform!DsoI 2. getDevicelDs()

3. getDevicelnfo() 4. createContext() I
Fmmmmmmmmmmmmmmmmmmmam _‘.'-'; B e Ta T Context IR smmommmmo- -_
Host: CPU # "> Device: GPU
(Intel i5 : double precision) (Intel Iris : single precision)
Kernel Execution Unit

(7x SIMD Threads) .
4lcus Ti|T2|T3| T4 +—— TT::"
2.6/GHz = Private
T5 | T6 | T7 | wok Memory
Items LI |

128
x8 x4

32Kb Local Memory D Y byte
(shared) E e

5. createBuffer()

TTTTTT

280JCUs|
1.2|GHZ]

| kernel function (

6. buildKernel() | —seal noa s,

- g!cbal float “out) {...}
7. createCommandQueue() I

1 2 3 4

16Gb Global Memory | | r---------- Queue --------

1.5Gb Global Memory

\J

10. enqueueReadBuffer()

A

Q.enqueueNDRangeKemeI{)i e E

[161]

The Supercomputer in Your Laptop

While the CPU has far fewer CUs, it can run at 2.6 GHz, whereas the GPU runs
slower, at a peak of 1.2 GHz. Based on the Intel product data, the CPU has a
maximum floating point performance of 166.4 GFLOPS, whereas the GPU has
a significantly faster peak performance of 768 GFLOPS. These are, of course,
theoretical peak GFLOPS that are not usually achieved in practice.

B GFLOPS 7
GFLOPS refers to gigaflops or 1000s of millions of single precision
"floating-point operations per second". It used to be the classic measure
of performance for supercomputers, but as technology advanced in
the recent years, single microprocessors became capable of GFLOPS

_ of performance (10 FLOPS), as we can note in my own laptop. Now,
% supercomputers are measured in terms of PetaFLOPS (10® FLOPS).

L Currently at the top of the world's rankings is the Chinese Tianhe-2
supercomputer, with a measured peak performance of 33.86 PFLOPS,
utilizing more than 3 million cores and requiring 24 megawatts of
electricity (more than enough to power 20,000 homes!). It is also notable
that the top supercomputers in the world all achieve their rankings by
utilizing additional GPU coprocessors; refer to http: //www.top500.

org/lists/2015/11/.

Another distinction to highlight between the CPU and GPU is that the former has
support for double-precision floating-point arithmetic (64 bits), whereas the latter

only has support for single-precision floating-point (32 bits). Most current-generation
consumer-level GPUs perform optimally at single-precision floating-point. However,
the more expensive scientific computing-oriented GPUs will support double precision.

) L
Double- versus single-precision floating point arithmetic

R itself stores noninteger numeric values as double-precision floating-
point. Sharing floating-point data between our host-based R session and
a single-precision-only-capable GPU means that we have to copy and
transform floating-point data in both directions and that we also lose
arithmetic precision. Depending on the numeric value domain range of
%%‘ our data, single-precision floating-point is typically only accurate between
two and four decimal places when compared to double precision. While
many forms of scientific computing may require the extra precision
afforded by a 64-bit floating point, there are various approximation-based
analyses for which single precision is acceptable. Later in this chapter,
we will explore using the GPU to calculate the distance matrix for a large
number of observations and variables as input to cluster analysis.

[162]

[vww .ebook3000.con}

http://www.top500. org/lists/2015/11/
http://www.top500. org/lists/2015/11/
http://www.ebook3000.org

Chapter 5

As already hinted at earlier, OpenCL has a large number of concepts and API calls,
many of which describe capabilities beyond what we require, including multiprogram,
multikernel, or multidevice scenarios and behaviors, image processing, and interaction
with graphics rendering. OpenCL is a complex interface and arguably could have an
entire book dedicated to it.

OpenCL further reading

you look through the Khronos resources highlighted earlier. You may
also like to consider the excellent — if slightly dated —book OpenCL in
Action by Matthew Scarpino, published by Manning.

.\‘Q If you wish to understand all of OpenCL's capabilities, I recommend that

Our exploration of OpenCL will therefore focus on what we need to know in order
to exploit the GPU from R. To this end, we will make use of a specific R package,
ROpenCL, which exposes just the set of OpenCL API calls we need to perform
accelerated R vector processing on the GPU.

The ROpenCL package

The rOpencL package developed by Willem Ligtenberg together with this book's
author, is essentially a collection of limited-scope R convenience functions that wrap
the OpenCL C API and simplify many aspects of its complexity. ROpenCL wrappers
are implemented in C++ and are dependent on the Rcpp package, which is available
from the CRAN package repository. ROpencL is not yet part of CRAN (though this
may change by the time this book is published) and must be installed from source.
You can do this directly from within your R session, as follows:

> install.packages ("ROpenCL", type="source",

repos="http://repos.openanalytics.eu")

[163]

The Supercomputer in Your Laptop

The ROpenCL programming model

The rRopencL API functions we will make use of in this chapter, their supporting
concepts, and how they will be used, are summarized in the following table and
presented in the sequence order in which they would normally be expected to be
called in a typical OpenCL program — the numbered sequence of API calls 1 to 10 is
also depicted in the diagram from earlier in this chapter. If, however, you prefer to
look at the real code first, then do skip forward a few pages to the following section
for the simple vector addition example and refer back to this table for a detailed
explanation of each of the ROopencL functions used.

ROpenCL API Function

Description

getPlatformIDs ()
This returns a list of platform IDs

PlatformID is an opaque
reference that cannot be

We already encountered the CL API equivalent of this in
the previous section.

We require a platform ID in order to look up the available
devices. Normally, this function returns a list containing

interpreted by the host. only one PlatformID.

getDevicelDs (We already encountered the CL API equivalent of this in
the previous section.

PlatformID)

This returns a list of device IDs.

DevicelD is an opaque reference
that cannot be interpreted by the
host.

We require a device ID to reference the GPU; to create an
associated Context, command queue, and memory buffers;
and to execute our kernels.

The ROpencCL API variant of this call sorts the returned list
of device IDs such that the GPU device IDs are listed first.

ROpenCL also provides a convenience function to test

the type of a device from its DeviceID; for example,
getDeviceType (DevicelD) returns the "GPU" string for
a GPU device and "cPU" for a CPU device.

[164]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 5

ROpenCL API Function Description

getDevicelInfo(We already encountered the CL API equivalent of this in
the previous section.

DevicelID)

This returns a list of named items.

The complete list of the available
named item information about
parameters is documented in

the online OpenCL specification,
currently at version 2.0: http://
www .khronos.org/registry/
cl/sdk/2.0/docs/man/
xhtml/clGetDeviceInfo.
html.

The ROpenCL variant of getDeviceInfo is a convenience
function returning all the available information about

the device in a single call. There are more than 70 device
information parameters, and in standard OpenCL, these
must each be queried separately.

You can access the specific query parameter using R's
named item list syntax. The names match the equivalent
OpenCL parameter constant; for example, to determine the
amount of local and global memory available on a device,
simply execute the following;:

dinfo <- getDevicelInfo(

gpulD

)

locMem <- dinfo$CL_DEVICE LOCAL_MEM SIZE

gloMem <- dinfo$CL_DEVICE_GLOBAL MEM SIZE

deviceSupportsDouble
Precision

deviceSupportsSingle
Precision

deviceSupportsHalf
Precision (

DevicelD,
list)

This returns either True or
False.

If the function returns True and
the 1ist parameter is provided,
then 1ist will be a set of named
items detailing the precision
rounding, inf, NaN, and so on
supported by the device.

ROpenCL provides the deviceSupportsPrecision
family of functions to make it simpler to switch
configuration paths appropriately in the host code.

The usual model in ROpenCL programming requires calling
getDeviceInfo () to determine the capabilities of the
device in order to choose an appropriate implementation

of the kernel function to execute. For example, many

GPU devices do not support a double-precision floating
point, whereas CPUs do. Different implementations of the
OpenCL kernel function are required in order to work with
the single as opposed to double precision as this requires
different function parameter types to be used.

An optional empty R list may be passed into this
function, and if the precision is supported, it will be
filled in with the precision capabilities as defined in the
device information parameters, as follows: CL. DEVICE
[DOUBLE | SINGLE | HALF] FP_CONFIG.

Half precision corresponds to the 16-bit floating-point
arithmetic and is only supported by a minority of GPU
devices at the current time, mainly those from NVIDIA.

[165]

http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clGetDeviceInfo.html
http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clGetDeviceInfo.html
http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clGetDeviceInfo.html
http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clGetDeviceInfo.html
http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clGetDeviceInfo.html

The Supercomputer in Your Laptop

ROpenCL API Function Description
createContext (This function creates an OpenCL Context type, a transient
DeviceID) container, similar in some ways to an R session.

This returns context

Context is an opaque reference
that cannot be interpreted by the
host.

Context establishes a set of selected devices from within

a platform that will interoperate —in our case, the CPU

that calls this function (as host) and the GPU (identified by
the supplied DeviceID)—and through other API calls, it
allows us to associate buffers to manage device memory and
CommandQueue to pass information (data to/from buffers)
and instructions (compiled kernels) between devices.

createBuffer (
Context,
MemoryFlag,
GlobalWorkSize,
RObject)

This returns a buffer.

The return value is an opaque
reference to the device buffer that
cannot be interpreted by the host.

This function creates a specific global memory buffer on
the device associated with Context (as opposed to on the
host) to hold the GlobalWorkSize number of data items
of C language type defined by the supplied RObject. If
RObject is of the class integer, then this function will itself
call createBufferIntegerVector () (as described
here); otherwise, if RObject is of a class numeric, then this
function will call createBufferFloatVector () (also
described here).

Context is the return value from createContext ().

MemoryFlag defines how the buffer may be accessed by
the device to read or write. The permitted values are "CL
MEM READ ONLY"or"CL MEM WRITE ONLY".

GlobalWorkSize refers to the total number of data
items within RObject. For example, if RObject is an R
vector, then set GlobalWorkSize=1length (RObject),
although as we shall discuss later, for the call to
enqueueNDRangeKernel () itself, its GlobalWorkSize
parameter must be an integer multiple of the
LocalWorkSize value.

[166]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 5

ROpenCL API Function

Description

createBufferFloatVector (
Context,

MemoryFlag,
GlobalWorkSize)

This returns a buffer.

This function creates a specific global memory buffer on
the device to hold GlobalWorkSize number of data items
of C language type c1_float (the 32-bit-wide single-
precision floating-point values).

Context: Refer to createBuffer () from the previous
code snippet.

MemoryFlag: Refer to createBuffer () from the
previous code snippet.

The return value is an opaque reference to the device buffer
that cannot be interpreted by the host.

createBufferInteger
Vector (

Context,
MemoryFlag,
GlobalWorkSize)
This returns a buffer.

This function creates a specific global memory buffer on the
device to hold GlobalWorkSize number of data items of
C language type c1_int (the 32-bit-wide integer values).

Context: Refer to createBuffer () from the previous
code snippet.

MemoryFlag: Refer to createBuffer () from the
previous code snippet.

The return value is an opaque reference to the device buffer
that cannot be interpreted by the host.

[167]

The Supercomputer in Your Laptop

ROpenCL API Function Description

buildKernel (As a simplification, the ROpenCL package's

Context, buildKernel () function combines the behavior of
clCreateProgram, clBuildProgram, clCreateKernel,

KernelSource, and c1SetKernelArg; the program object that is created

KernelName, is not exposed, only the subsequent compiled kernel is.

)
This returns a kernel

The return value is an opaque
reference to the compiled kernel
that cannot be interpreted by the
host.

Effectively, this means that a separate program object is
created for each kernel. The full OpenCL API allows any
number of kernels to be associated with a single Program
container.

Context is the return value from createContext ().

This function takes an R string containing the OpenCL C
source code (provided in KernelSource) that defines

a specialized kernel function (the name is declared in
KernelName) and compiles it into a form that can be
executed by the compute units within an OpenCL device.

This compilation process is similar to that invoked by
cfunction () from the inline package's we used earlier in
the chapter. However, the OpenCL compilation process for
kernel functions is more involved as it uses a specific tailored
C99 compiler and has to target the generation of code for
execution on the specific device. Compiled GPU code is
generally quite different to that compiled for execution on
the host CPU.

The compiled kernel is a set of instructions that can be
executed by each of the CUs in the device applied to their
(notionally assigned) portion of buffer data. There are
specific requirements for how a kernel function should be
coded, including the c1_types that are used to refer to data
available in different areas of memory (global, local, and
private) and how a kernel function determines which work
items it should operate on. kernel functions are discussed in
detail further on in this chapter.

Any additional R arguments passed into buildKernel ()
will be captured and passed as additional parameters to the
kernel function (in matching order) when it is executed on
the device. These arguments will be mapped internally to the
OpenCL C equivalents such that the integers will be mapped
tocl_int (with clSetKernelArgInt), the numerics will
be mapped to c1_float (with clSetKernelArgFloat),
and all the other types of Robject will be copied and passed
into the kernel function as a C memory pointer reference
(with c1SetKernelArgMem).

The compiled kernel can subsequently be transmitted to a
device for execution by adding it to the device's associated
command queue using enqueueNDRangeKernel ().

[168]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 5

ROpenCL API Function

Description

createCommandQueue (
Context,

DevicelID)

This returns Queue.

The return value is an opaque
reference to Queue, which

cannot be interpreted by the host.

A command queue is the mechanism by which both data

and compiled kernels are transferred between the host and
device. Queue is associated with a specific device within a
given Context. A device can have multiple active queues.

In RopenCL, the queue is always created as "in order",
meaning operations are executed in the order that they
were applied to the queue, and this is fine for our purposes.
In full OpenCL, a queue can be created as "out of order",
meaning that the device is free to execute operations on the
queue in whatever order it deems for optimal efficiency.

enqueueWriteBuffer (
Queue,

Buffer,
GlobalWorkSize,
RObject)

This returns void.

This function operates from the host perspective and
should be called prior to a kernel execution (that is, it
should be queued before enqueueNDRangeKernel)
to copy input values from the given RObject into the
referenced device bulffer.

GlobalWorksSize defines the number of data items that
will be copied from the R object into the device buffer
which, for an R vector, for example, would normally be its
length.

In full OpenCL, this function can operate either
nonblocking or blocking. In ROpenCL, the latter behavior is
enforced, meaning that the device will have read the host R
object into its buffer before the function call returns.

[169]

The Supercomputer in Your Laptop

ROpenCL API Function

Description

enqueueNDRangeKernel (
Queue,

Kernel,
GlobalWorkSize,
LocalWorkSize)

This returns void.

This function operates from the host perspective and is
called to queue the execution of a kernel.

Each execution of Kernel on a data item is referred to as a
WorkItem. Kernel operates on the data made available in
the previously created device buffers, to which host data is
copied by previous enqueueWriteBuffer calls.

The GlobalWorkSize parameter defines the number
(range) of work/data items over which Kernel will be
executed. GlobalWorkSize can be a scalar, in which case
the work item space is simply one-dimensional; that is,
the value of "N" in "NDRange" is 1. GlobalWorkSize can
also be a one-, two-, or three-element vector, defining the
range of the work item space in terms of one, two, or three
dimensions.

LocalWorkSize is an optional argument, and if not

set or defined as zero, it will be chosen automatically by
the system. LocalWorksSize splits the complete global
range of WorkItems into distinct workgroups, each of the
number of LocalWorkSize. WorkGroup is executed by
a single device compute unit. A compute unit can launch
a large number of threads of execution to most efficiently
execute the WorkItems locally in WorkGroup. The
precise number of threads (or processing elements) that
can execute simultaneously in a compute unit is specific to
the architecture of the GPU device. Choosing the optimal
number for LocalWorkSize is discussed further on in
this chapter.

In full OpenCL, this function can operate either in a
nonblocking or blocking way. In RopenCL, the latter
behavior is enforced (primarily because R itself is
essentially single-threaded in its implementation), meaning
that the device will execute Kernel across all work/data
items before the function call returns.

[170]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 5

ROpenCL API Function

Description

enqueueReadBuffer (
Queue,

Buffer,
GlobalWorkSize,
RObject)

This returns Robject.

This function operates from the host perspective and should
be called after a kernel is executed (that is, it is queued after
enueueNDRangeKernel) to copy computed values from
the referenced device buffer into the appropriate Host R
object—for example, a presized vector.

GlobalWorksSize defines the number of data items to be
copied from the device buffer to the R object, which for an
R vector, for example, must be at least GlobalWorkSize
in length.

In full OpenCL, this function can operate in either a
nonblocking or blocking way. In RopenCL, the latter
behavior is enforced, meaning that the device will copy the
data from Buf fer into the host R object before the function
call returns.

releaseResources (

o)

This returns void.

This function operates from the host perspective and
should be called after all of the ROpenCL computation is
completed in order to release all of the underlying system-
allocated resources.

Optional arguments may be passed to define a subset

of resources to be released rather than all the allocated
resources. For example, previously allocated memory
buffers can be released explicitly, leaving contexts, queues,
and kernels intact to be reused for further computation.

A simple vector addition example

Let's apply the RopencL programming model described in the previous table to a
simple example: an element-wise addition of two vectors, ¢ = a + b. To make the
example slightly more interesting, the vectors will each have more than 12 million
elements. Take a look at the following code:

First look-up the GPU and create the OpenCL Context
platformIDs <- getPlatformIDs ()

gpulD <- getDevicelIDs (platformIDs[[1]]) [[1]]

dinfo <- getDevicelInfo (gpulD)

context <- createContext (gpulD)

Initialise the input data in R on the CPU (Host)
and pre-allocate the output result

aVector <- seq(l.0,

12345678.0, by=1.0) # Long numeric vector

bVector <- seq(12345678.0, 1.0, by=-1.0) # Same but in reverse

cVector <- rep (0.0,

LocalWorkSize =

length (aVector)) # Similar result vector

GPU/kernel dependent (explained later)

[171]

The Supercomputer in Your Laptop

globalWorkSize must be integer multiple of localWorkSize
GlobalWorkSize = ceiling(length(avVector) / LocalWorkSize) *
LocalWorkSize

Allocate the Device's global memory Buffers: 2x input, 1x output
aBuffer <- createBuffer(context,"CL MEM READ ONLY",
length (aVector) ,aVector)
bBuffer <- createBuffer(context,"CL MEM READ ONLY",
length (bVector) ,bVector)
cBuffer <- createBufferFloatVector (context,"CL MEM WRITE ONLY",
length (cVector))

Create the OpenCL C Kernel function to add two vectors

kernelSource <- '

__kernel void vectorAdd(global float *a, _ global float *b,
__global float *c, int numDataItems)

int gid = get_global id(0); // WorkItem index in 1D global range
if (gid >= numDataltems) return; // Exit fn if beyond data range
clgid] = algid] + blgidl; // Perform addition for this WorkItem
)
vecAddKernel <- buildKernel (context,kernelSource, 'vectorAdd',
aBuffer,bBuffer, cBuffer, length (avector))

Create a device command gqueue
queue <- createCommandQueue (context,gpulD)
Prime the two input Buffers
enqueueWriteBuffer (queue, aBuffer, length (avVector) ,aVector)
enqueueWriteBuffer (queue,bBuffer, length (bVector) ,bVector)
Execute the Kernel
enqueueNDRangeKernel (queue, vecAddKernel,

GlobalWorkSize, LocalWorkSize)
Retrieve the calculated result
enqueueReadBuffer (queue, cBuffer, length (cVector) , cVector)

Finish up by relinquishing all the ROpenCL objects we created
releaseResources ()

If you run the preceding R script code, which takes less than a second on my
MacBook Pro device, you should find that the resultant value of each element
in vector c is set to 12345679. If so, then congratulations! You have successfully
executed data-parallel code on your system's graphics processor from within R!

[172]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 5

There are a number of aspects to the preceding code that require further
explanation —in particular, GlobalWorkSize versus LocalWorkSize and the kernel
function definition itself, its use of get_global_id (), and how it utilizes memory.
These are the subject of the next section.

The kernel function

The kernel function we used in the previous vector addition example had the
following definition:

__kernel void vectorAdd(global float *a, _ global float *b,
__global float *c, int numDataItems)
{
// WorkItem index in 1D global range
1 int gid = get _global id(0);
// Exit fn if beyond data range
2 if (gid >= numDataltems) return;
3 c[gid]l = algid] + blgidl;

}

The first thing to note is the use of the __kernel qualifier to the function signature.
This tells the OpenCL compiler to compile the function specifically for execution as a
device kernel function.

Line 1

Inside the kernel function, the first line executed determines which of the global

set of work items this function invocation is intended to process. The call to get_
global id(0) returns the index of this kernel invocation within the total number
of global work items to process (GlobalWorksize). (For single dimension, refer to
the Understanding NDRange section of this chapter.) It helps to consider OpenCL as
executing N separate invocations of vectoradd (), one for each of the global work
items. In our case, N is set to be the size of the vectors being added (but rounded up
to be an integer multiple of LocalWorksize; take a look at the following), and each
work item corresponds to an addition performed on each distinct element of the
input vectors: a and b. Behind-the-scenes OpenCL, in effect, executes many for loop
iterations on the device, as follows:

OpenCL NDRangeKernel pseudo-code device for-loop
for (id in 0:globalWorkSize-1) ({
invokeKernel (get _global id(0)=id, vectorAdd(a,b,c,length(a)))

}

[173]

The Supercomputer in Your Laptop

The key feature of OpenCL is that this notional for loop executes all iterations
simultaneously in parallel. The reality is, of course, not quite as straightforward
as this. OpenCL may need to compute subsets of the iteration space as sequences
of parallel execution in order to fit the available device resources, but helpfully,
OpenCL manages many such aspects of device utilization on our behalf.

GlobalWorkSize versus LocalWorkSize: There is a requirement,
now thankfully largely historical, that the GlobalWorkSize parameter
supplied to enqueueNDRangeKernel () for kernel invocation is an
integer multiple of LocalWorksSize. In particular, under OpenCL
version 2.0, this requirement is relaxed. However, the existing OpenCL
driver implementations lag behind the latest published standard and
will remain in use for some time after this book is published. Some of
these driver implementations are poor at calculating the appropriate
LocalWorksSize value when this is not provided explicitly in the call
to enqueueNDRangeKernel (). Therefore, it may be advisable to
adopt a defensive programming approach on your particular system,
explicitly set LocalWorkSize, and ensure that GlobalWorkSize is an
exact integer multiple.

Experimentation may be required to obtain the best performing
LocalWorksSize value for your particular computation as this is
. dependent on the amount of resources consumed internally on the
% device by the specific function for local and private memory and internal
/=" registers. The more resources a single invocation of a kernel requires,

the smaller the optimal size for its WorkGroup in general, because fewer
resources will be available to support as many separate simultaneous
threads of execution. GPUs are typically much more limited in resources
for thread execution compared to a CPU, reflecting their specific design
bias for accelerated graphics-related SIMD calculations.

For the Intel Iris GPU device on my MacBook Pro device, a
LocalWorkSize value of 16 seems to work well for the vectorAdd ()
kernel function. Once you have a built kernel and prior to calling
enqueueNDRangeKernel (), it is possible to query the preferred setting
for LocalWorkSize using getKernelWorkGroupInfo (), though
again, what this reveals is subject to the quality of your system's OpenCL
driver implementation, for example. Take a look at the following code:

> kinfo <- getKernelWorkGroupInfo (vecAddKernel,devicelD)
> kinfo$CL KERNEL PREFERRED WORK GROUP SIZE MULTIPLE
[1] 16

[174]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 5

Line 2

On the second line of vectoradd (), the global index assigned to this invocation is
tested to check whether it is beyond the domain of work items to process (the limit,
which is less than GlobalWorksSize, is indicated separately by the numbataItems
parameter), and if so, the kernel invocation exits immediately as there is no work to
do. Even more importantly, we must not attempt to access memory beyond the end
of the a, b, and c vectors as this will most likely cause the kernel function to bomb
and possibly our R session too.

C memory address pointer warning

C s far less forgiving of out-of-bounds memory access errors in code,
M something that is much easier to miscode, given C's inherent freedom of
access to memory through the address pointer calculation syntax. Such
Q errors in kernel functions running in the context of a GPU device are quite
capable of causing your entire system to crash without warning, and this
can even happen on what might otherwise be considered extremely stable
operating systems, including OS X!

Line 3

Finally, on the third line of vectoradd (), the single vector element addition
statement is executed: c =a + b.

Memory qualifiers

One of the four distinct qualifiers can be applied to kernel function parameters and
variable declarations, as follows:

* _ global: This indicates to the compiler that the associated address pointer
refers to the memory within the device's global area (as for the *a, *b, and *c
memory pointers in our example) and is, therefore, equally accessible to all
of the device's compute units. Under certain circumstances, and if supported
by the device, this qualifier may also refer to the memory within the host's
global area.

* _ constant: This indicates that the memory will be read only; that is, the
corresponding OpenCL Buffer object was created with the CI. MEM_READ
ONLY memory flag (not used in our example). Such memory is apportioned
from within the global memory and can confer a performance advantage on
some GPU architectures.

[175]

The Supercomputer in Your Laptop

* _ local: This indicates that the memory referenced is held in local memory,
meaning that it is only accessible to the threads of execution within the
specific WorkGroup (not used in our example).

* _ private: This indicates that the value is held within the private memory
area accessible only to the specific CU thread that will execute a WworkItem
with this kernel. If a qualifier is omitted (as for numbataItems in our
example), then this is also equivalent to __ private.

Global memory is the slowest to access, local memory is quicker, and private
memory is the fastest of all to access. On some systems, private memory can be more
than 100 times faster to access than global memory. However, the trade-off is that
the data still has to be transferred between memory subsystems, and there is much
less memory capacity available as the speed of access increases; it requires significant
microchip real estate to implement fast memory, and it is more costly to produce.
Faster memory should ideally be reserved for those data values that are computed
and/or reused within the computation.

Understanding NDRange

The call to enqueueNDRangeKernel () invokes the execution of a specific kernel
function across the compute resource of a device for a given set of work items.
OpenCL allows us to specify how large the range of work items is to be processed
with the GlobalWorksize parameter. OpenCL also allows us to specify the work
item domain in up to three dimensions reflecting the graphics processing heritage

of GPUs. ND, therefore, refers to either 1D, 2D, or 3D. OpenCL further divides

the global work item space into separate local work groups in order to utilize the
device's compute resources most effectively, and allows us to optionally specify how
large a local work group is with the LocalWorksSize parameter.

Why bother with local work groups and 2D/3D?

For many situations, we need not be concerned about how OpenCL
processes kernel executions within smaller localized work groups; our
vectorAdd () example is a case in point that also operates simply in
. 1D. However, kernel executions within a work group can share their
% own local memory resource, and across a work group, local and global
A~ memory synchronization points can also be enforced (by all kernel

function invocations calling the OpenCL kernel function barrier, CLK
LOCAL MEM_FENCE | CLK GLOBAL_ MEM FENCE), enabling a more
efficient implementation for some types of algorithms. It can also be much
more convenient to implement a matrix multiply in 2D work item space
as opposed to being forced to map such indices onto 1D.

[176]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 5

Documented in the following table are the ranges of functions that OpenCL makes
available to kernels, enabling all aspects of the global/local work item space under
which kernels are invoked at runtime to be queried and for kernel functions to
therefore be able to dynamically adjust their behavior in response:

Kernel OpenCL Function

Description

get_work dim()
This returns uint.

The value returned is an
integer of the C type uint
and is in the range 1 to 3.

This function returns the dimensionality of
GlobalWorkSize — that is, the number of elements in
the R vector passed to enqueueNDRangeKernel() as the
GlobalWorkSize parameter for this kernel execution.

As OpenCL maximally supports three-dimensional arrays,
the value returned will either be 1, 2, or 3.

If the GlobalWorkSize parameter value in the call to
enqueueNDRangeKernel() was a scalar, then this function
will return 1.

get _global_ id(uint
dim)

This returns size t.

The value returned is an
integer of the C type size t

and will be in the range 0 to
get_global size(dim)-1.

This function can be called separately to return the global
work item index for the kernel execution for each of the
available dimensions of the global work space domain.
Each kernel invocation will therefore have a unique global
index coordinate.

Remember that this is a C function call accessible only

to the kernel function itself, and that the valid values for
the dim parameter are indexes based on 0 to get work
dim()-1and notonR's1toget work dim().

get _global size(uint
dim)

This returns size t.

The value returned is an
integer of the C type size t
=GlobalWorkSize [dim].

This function can be called separately to return the number
of global work items in each of the available global work
space dimensions as defined by the GlobalWorkSize
parameter in the call to enqueueNDRangeKernel () for
this kernel invocation.

OpenCL maximally supports up to three-dimensional
arrays, so valid values for the dim parameter are therefore
0,1, or 2.

get_local_id(uint dim)
This returns size t.

The value returned is an
integer of the C type size t

and will be in the range 0 to
get local size (dim)-1.

This function can be called separately with different values
of dim (either 0, 1, or 2) to return the local work item

index for the kernel execution for each of the available
dimensions of the local work group domain.

Each kernel invocation has a unique local index coordinate
only within their specific work group.

[177]

The Supercomputer in Your Laptop

Kernel OpenCL Function Description

get_local_size(uint This function can be called separately with different values
dim) of dim (either 0, 1, or 2) to return the total number of work
This returns size t. items in the corresponding dimension of the local work

group.

The value returned will either match the value of the
LocalWorkSize (dim+1) enqueueNDRangeKernel ()
parameter, or if this was not defined, it will be selected
automatically by the OpenCL framework.

The value returned is an
integer of the C type size t
= LocalWorkSize [dim].

get_group_id(uint dim) | This function can be called separately with different
values of dim (either 0, 1, or 2) to return the corresponding
dimension index of the local work group in the overall set
of work groups.

This returns size t.

The value returned is an
integer of the C type size t
and will be in the range 0 to
get _num_groups (dim)-1.

Work group assignment is dictated by the OpenCL
framework itself.

get _num groups (uint This function can be called separately with different values
dim) of dim (either 0, 1, or 2) to return the total number of work

This returns size t groups in the corresponding dimension.

The value returned is an The number of local work groups is determined by the
integer of the C type size t OpenCL framework itself but does not exceed the number
and will be > 1. - of global work items.

By now, you should have a firm understanding of the concepts underlying OpenCL,
the ROpenCL programming model, how kernel functions can be written in C, and
how the OpenCL framework executes kernels on devices. In the remainder of

this chapter, we will explore a much more complex ROpenCL example that will
demonstrate how to process datasets that do not fit within core GPU memory, and
how to further accelerate the kernel function processing by exploiting the OpenCL
device's internal support for SIMD vector instructions.

Distance matrix example

In R, we can compute a simple Euclidean distance measured between two observation
vectors A and B of N variables, where the following equation applies:

Euclidean distance = \/Z:I(A [i]- B[i])2

For a matrix of [Observations] * [Variables] using the core built-in R function,
dist (), is used.

[178]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 5

Computing a distance matrix for a set of observations is computationally expensive
with the time complexity O(n2). In addition, a distance value must be computed for
every combination of the observation and variable.

In the following RopencL example, we will take a look at how to code a distance
matrix calculation for maximum performance utilizing the GPU. First, though, we
need a reasonably large amount of interesting data.

Index of Multiple Deprivation

In the United Kingdom, a standard set of government social demographics is
computed in terms of Index of Multiple Deprivation (IMD). This index is resolved
to the level of geographical administration areas of between 1,000 to 2,000 people,
and using a set of measures, including economic-, crime-, and health-related ones, a
ranking is generated of the most to the least deprived areas. In total, there are some
32,000 such administrative areas, known as Lower Super Output Areas (LSOAs),
covering the whole of England. The dataset that is used as the basis of IMD is
available as Open Data from Data.Gov.UK at http://data.gov.uk/dataset/
index-of-multiple-deprivation. We will use a reduced variant of this dataset
(which is itself available for download from the associated book website) to generate
a distance matrix for all LSOAs as input to a clustering analysis, which will enable us
to stratify the regions of England into similar bands of social demography.

Let's have a quick glimpse at the data (note that output is trimmed for brevity):

> filepath <- "./chapter5 IMD data.csv"
> data <- read.table(file = filepath, header=TRUE, sep=",", row.names=1)
> head(data)

INCOME.SCORE EMPLOYMENT.SCORE

E01000001 0.01 0.01
E01000002 0.01 0.01
E01000003 0.07 0.05
E01000004 0.04 0.04
E01000005 0.16 0.07
E01000006 0.12 0.06

> tail (data)
Skills.Sub.domain.Score IDACI.score IDAOPI.score

E01032477 10.96 0.07 0.06
E01032478 48.72 0.20 0.31
E01032479 16.32 0.09 0.18

[179]

http://data.gov.uk/dataset/index-of-multiple-deprivation
http://data.gov.uk/dataset/index-of-multiple-deprivation

The Supercomputer in Your Laptop

E01032480 14.63 0.11 0.08
E01032481 23.42 0.19 0.25
E01032482 2.85 0.03 0.11

> summary (data)

INCOME. SCORE EMPLOYMENT . SCORE
Min. :0.0000 Min. :0.0000
Max. :0.7700 Max. :0.7500

HEALTH.DEPRIVATION.AND.DISABILITY.SCORE
Min. :-3.100000

Max. : 3.790000
EDUCATION.SKILLS.AND.TRAINING.SCORE
Min. : 0.01

Max. :99.34
BARRIERS.TO.HOUSING.AND.SERVICES.SCORE
Min. : 0.34

Max. :70.14

CRIME.AND.DISORDER.SCORE LIVING.ENVIRONMENT.SCORE
Min. :-3.280000 Min. : 0.06
Max. : 3.810000 Max. :92.99
Indoors.Sub.domain.Score Outdoors.Sub.domain.Score
Min. : 0.00 Min. : 0.00
Max. :100.00 Max. :100.00
Geographical.Barriers.Sub.domain.Score
Min. : 0.00

Max. :100.00
Wider.Barriers.Sub.domain.Score

Min. : 0.00

Max. :100.00

Children.Young.People.Sub.domain.Score Skills.Sub.domain.Score

Min. : 0.00 Min. : 0.00
Max. :100.00 Max. :100.00
IDACI.score IDAOPI.score
Min. :0.0000 Min. :0.000
Max. :0.9900 Max. :0.980

[180]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 5

> length(data) # number of variables
[1] 15
> length(row.names (data)) # number of observations

[1] 32482

As we can note, there are 32, 482 observations * 15 variables in the IMD dataset.
Each observation is uniquely labeled with its LSOA identifier in the range of
E01000001 to E01032482. The variables cover income, employment, health,
disability, education, and many more, as measured for each LSOA. (You can find out
more about each of these measures at http://data.gov.uk/dataset/index-of-
multiple-deprivation.) The summary shows that the numeric range of data values
for each variable, though different, is all within a small magnitude of 100. While we
could adjust all of the variables to be in the same numeric domain range, for our
parallel pedagogical purposes, we will work with the data as is.

Memory requirements

As we are working with a reasonably large amount of data, we need to ensure

we have sufficient memory capacity available on the GPU. We therefore need to
understand the memory requirements for both the observation variables matrices as
the input and the computed distance measures as the output.

On the host, the observations data requires 8 bytes per variable, because each value
will be stored as a 64-bit double-precision floating-point.

The observations data (host) is 8§ * 15 * 32,482 = 3.7 Mb.

To hold this observations data on the Iris GPU requires half as much memory, as the
device only supports 32-bit single-precision floating-points — that is, 1.85 MB.

The distance measures are a different story, however; we need to compute the
distinct results of (n2/2) - n, and we only need to compute a triangular matrix as
a distance measure between two observations is commutative, and we can also
exclude the distance measure of an observation with itself.

The distance measures (host) are 8 * ((32,4822 /2) — 32482) = 4 GB.

To hold all of this data on the Iris GPU as a 32-bit single-precision floating point
would require 2 GB of memory, and here is where we have a slight problem; our Iris
GPU has maximally only 1.5 GB of global memory available. To resolve this issue,
and for instructional purposes, we will adopt an out-of-core processing approach in
conjunction with calculating the distance measure using the GPU.

[181]

http://data.gov.uk/dataset/index-of-multiple-deprivation
http://data.gov.uk/dataset/index-of-multiple-deprivation

The Supercomputer in Your Laptop

GPU out-of-core memory processing

The GPU has a large amount of memory, sufficient to hold a complete copy of

the observation data (the input) but not sufficient to hold a complete copy of the
calculated distance measures (the output). The approach taken in the following

code is to split the computation of the results into subsets of the global workspace

of observations, which we will refer to as blocks of work, whereby each block
performed requires a separate enqueued kernel invocation. Subsequent blocks of
work will take progressively less time to execute as the number of distance measures
to calculate decreases linearly. There are N-1 distance measures to compute for the
first observation in the dataset, which monotonically decreases to zero for the last
observation in the dataset.

The setup

The initialization code in which we obtain the GPU deviceID and create the context
is the same as we used previously in the vector addition example, so it is omitted
here. The first block of code in the following sets up the workspace domain and
creates the input and output buffers and the distance measures array indexes. The
latter we can create in order to save on the extra lines of code within the kernel
function itself; the GPU kernel resources are limited, so we don't want to include
extra overhead such as this within the kernel function if we can avoid it. Of course,
there is always a balancing act between computing a value on demand and caching a
value for reuse; in this specific case, it's a marginal call:

distOffset (i,N)

Function to map an observation sequence index to its resultant
distance matrix offset. Each observation i will have N-i
entries, one for each of the remaining observations for which a
distance measure must be calculated. The distance matrix is a

H HF H HF H HF

triangular array realised as a compact 1D vector.
distOffset <- function (obsIndex,numObs) {

offset <- numObs* (obsIndex-1) - obsIndex* (obsIndex-1)/2
return(as.integer (offset))

}

maxWorkSize <- 32482 # total number of observations

LocalWorkSize <- 16

GlobalWorkSize <- 32768 # closest multiple of LocalWorkSize
blockWorkSize <- 2048 # num obs to process per kernel invocation

distSizeBlock is max num results per invocation (=first block)
distSizeBlock <- distOffset (blockWorkSize+1l,maxWorkSize)

distSizeMax is the maximum extent of the distance results vector

[182]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 5

distSizeMax <- distOffset (maxWorkSize,maxWorkSize)

Precalculate distance array indices for the kernel function
outIndexes <- integer (maxWorkSize+1)

for (i in 1:maxWorkSize) outIndexes[i] = distOffset (i, maxWorkSize)
outIndexes [maxWorkSize+1l] = outIndexes[maxWorkSize]

Create a 1D vector of observations X variables from the data
dvec <- as.vector (t(data))

Create the input, distance array offsets and output buffers
Note that we add an extra element (uninitialised) to dvec to
support our later use of SIMD vector processing.
inBuffer <- createBuffer (context,"CL MEM READ ONLY",
length (dvec) +1,dvec)
indexBuffer <- createBuffer (context,"CL MEM READ ONLY",
length (outIndexes) ,outIndexes)

outBuffer <- createBufferFloatVector (context,"CL MEM WRITE ONLY",

distSizeBlock)

Kernel function dist1

The kernel function to calculate the distance measure is given here. For raw speed,
this implementation utilizes C's pointer arithmetic on the input data, with sptr
marking the starting observation for this kernel invocation to calculate the distance
measures for aptr, which is used to repeatedly iterate through the variables for the
starting observation; bptr, which iterates through all the remaining observations and
their variables; and optr, which iterates through the block of results being processed
by the kernel invocation:

__kernel void distl(/*1*/ global const float *input,
/*2*/ global const int *indexes, /*3*/ global float *output,
/*4*/int numObs, /*5*/int numVars,
/*6%*/int startObs, /*7*/int stopObs)

// This kernel invocation is assigned the work item offset by

// the start of the observation window for this block

int startIndex = get _global id(0) + startObs;

if (startIndex >= stopObs) return;

__global float *sptr = &input [startIndex * numVars]; // startObs
__global float *aptr;

__global float *bptr = sptr + numVars; // bptr is startObs+1l

int distIndex = indexes[startIndex] - indexes[startObs];
__global float *optr = &output [distIndex];

[183]

The Supercomputer in Your Laptop

int obsIndex; int i;

float sum; float diff;

// Loop iterates through ALL observations that follow startObs

for (obsIndex = startIndex+1l; obsIndex < numObs; obsIndex++,
optr++) // on each iter optr advances to next result slot

aptr = sptr; // aptr is reset to first variable in startObs
sum = 0.0;
// Loop through all variables for this pairing of observations
for (i = 0; i < numVars; i++, aptr++, bptr++)
{

diff = *aptr - *bptr;

sum += diff * diff;
}

*optr = sgrt(sum); // store the calculated result

Work block control loop

The final portion of the following code provides the control loop to process the
observations in the data in blocked subsets. As configured, a sliding window of
2048 observations is processed on each kernel invocation, and the block of results is
copied over from the GPU on each iteration for accumulation in the results vector:

kernelCodel <- ' kernel void distl(...'
kernel <- buildKernel (context,kernelCodel, 'distl’,
inBuffer, indexBuffer, outBuffer,
as.integer (maxWorkSize) ,as.integer (15),
as.integer (0) ,as.integer (blockWorkSize))
enqueueWriteBuffer (queue, inBuffer, length (dvec) ,dvec)
enqueueWriteBuffer (queue, indexBuffer,
length (outIndexes) , outIndexes)
result <- numeric (distSizeMax)

numBlocks <- GlobalWorkSize / blockWorkSize

remainingWork = maxWorkSize

obsIndex <- 1

for (b in 1:numBlocks)

{
On last block iteration adjust workSize to what remains
workSize <- blockWorkSize

[184]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 5

if (remainingWork < workSize) workSize <- remainingWork

We use ROpenCL's assignKernelArg() to modify the startObs
and stopObs kernel arguments to move the observations

window on to the next block of work

kernelStartObs <- obsIndex-1 # R:1..n maps to C:0..n-1
kernelStopObs <- kernelStartObs + workSize
assignKernelArg(kernel, 6,as.integer (kernelStartObs))
assignKernelArg (kernel, 7,as.integer (kernelStopOQObs))

block/GlobalWorkSize must be a multiple of LocalWorkSize
enqueueNDRangeKernel (queue, kernel, blockWorkSize, LocalWorkSize)

Copy the block of results computed into the host's distance
measures array +offset for the observations window processed
distOffset <- outIndexes [obsIndex]

distSize <- outIndexes[obsIndex + workSize] - distOffset
enqueueReadBuffer (queue, outBuffer,distSize, result,distOffset)

Update observations window and remainingWork for next iter
obsIndex <- obsIndex + workSize
remainingWork <- remainingWork - workSize

}

In the preceding code, it is important to highlight the use of the R as. integer ()

type converter to pass numeric values that the kernel function will interpret as the

C type int. It is all too easy to attempt to pass a numeric integer constant to a kernel
function from R only to have R quietly convert it to a double-precision floating-point
numeric behind the scenes, with unpredictable and difficult-to-debug side effects. It
is also worth noting the use of the RopenCL package's assignKernelArg () function
to change the value of the compiled kernel's startobs and stopObs parameters prior
to calling enqueueNDRangeKernel for each block iteration.

Running this GPU-enhanced dist1 () function on my MacBook Pro device takes
around seven seconds. By comparison, R's built-in dist () function running on

my laptop utilizing just the CPU takes around 25 seconds to process the same
observations dataset. In summary, we achieved a performance improvement using
the GPU, but it is not quite such a dramatic result as we might have hoped for. Part of
the issue is the extra copying and transferring of data required between the host and
GPU, but there is one aspect of GPU programming that we have not yet exploited,
which should help accelerate the kernel function, namely, SIMD vector processing.

[185]

The Supercomputer in Your Laptop

The kernel function dist2

Presented in the following is a second variant of the GPU dist kernel function that is
rewritten to utilize OpenCL SIMD vector operations:

__kernel void dist2(/*1*/ global const float *input,
/*2*/ global const int *indexes, /*3*/ global float *output,
/*4*/int numObs, /*5%*/int numVars,
/*6*/int startObs, /*7*/int stopObs)

int startIndex = get global id(0) + startObs;

if (startIndex >= stopObs) return;

__global float *sptr = &input[startIndex * numVars];

__global float *bptr = sptr + numVars;

int distIndex = indexes[startIndex] - indexes[startObs];

__global float *optr = &output [distIndex];

int obsIndex; float sum;

floatl6 a, b, 4, 42; // Allocate private SIMD vector registers

a = vloadl6 (0, sptr) ; // Load start obs into SIMD vectorlé

for (obsIndex = startIndex+1l; obsIndex < numObs;
obsIndex++, optr++, bptr += numVars)

b = vloadl6 (0,bptr); // Load next obs into SIMD vectorlé
d =a - b; // fast vector element wise subtraction
d2 = d * d; // fast vector element wise multiplication

// Use vector element accessors to sum first 15 elements only
sum = d2.s0 + d2.sl + d2.s2 + d2.s3 + d2.s4 +

d2.s5 + d2.s6 + d2.s7 + d2.s8 + d2.s89 +

d2.sA + d2.sB + d2.sC + d2.sD + d2.sE;
*optr = sqgrt (sum) ;

}

To support SIMD vector processing, OpenCL compilers accept a wider range of C
syntax, as highlighted in the preceding code. I think it's worth noting how much
simpler and easier to read the resultant C code is (tending towards R!); we have
been able to remove the inner loop entirely and unroll the summation.

OpenCL can support single vectors of 2, 3, 4, 8, and maximally, 16 elements, which
are simply defined by specifying the C type, such as float, with the numeric vector
width, for example. The float4 type defines a vector of four floats. The OpenCL
compiler will convert simple mathematical expressions applied to vectors into SIMD
instructions that can operate on multiple values within a single processor cycle,
depending on the capability of the underlying compute unit.

[186]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 5

OpenCL provides special functions to load SIMD vectors from and to store SIMD
vectors in global or local memory. Our dist2 kernel function makes use of OpenCL's
vload () function to bring an entire observation (16 floats of data) from the global
memory into one of the compute unit's private vector registers. The final summation of
the first 15 elements of the differences in vector illustrates the use of the OpenCL vector
element accessor ".hexadecimal_digit" syntax. Recall that we added an extra unused
element to the input buffer, and this allows us to safely execute 16 element vector-wise
operations without overrunning the memory bounds on the last observation.

The capacity of a device to execute SIMD vector instructions can be queried with
getDevicelInfo (). For the Iris GPU in my MacBook Pro device, the following is
returned:

> dinfo$CL_DEVICE PREFERRED VECTOR WIDTH FLOAT
11 1

> dinfo$CL DEVICE NATIVE VECTOR WIDTH FLOAT
11 1

On the face of it, a supported vector width of 1 implies that SIMD vector processing
will not yield us any benefit on this device. However, in practice, running the out-
of-core GPU processing code with the dist2 kernel achieves a sub three second
performance, so at the very least, by virtue of the compiler being smarter at
optimizing the declared vector code, we now have an 8x performance advantage
over R's standard core dist () implementation running on the host.

As the last word on the subject, one of the many neat features of OpenCL is its
support for heterogeneous computing. We can trivially change the device we are
targeting to that of the host CPU and compare the runtime of our optimized dist2 ()
example between GPU and CPU. On my MacBook Pro 4xCU host CPU, I can achieve
a runtime of around five seconds. Arguably, then, I have not just one supercomputer
lurking in my laptop but two: my GPU and CPU!

Summary

In this chapter, we looked in detail at how to exploit the capability of the GPU in
your laptop to perform computation on behalf of R programs through the use of
the RopencCL package. Along the way, you also learned a little about programming
highly efficient kernel function code in the C programming language, with loop
unrolling and a careful use of high speed memory.

[187]

The Supercomputer in Your Laptop

As we noted, while the goal for OpenCL is one of heterogeneous portability, in
which the same code can run on a variety of devices (including the CPU itself),
the reality is that with GPUs in particular, there is room for code optimization
that is tailored to the characteristics of the underlying device hardware to extract
the maximum possible performance. Obtaining the best performance for a kernel
function is about balancing memory access and exploiting vector processing, and
ultimately requires your own experimentation.

In the next and final chapter, we will distill the essential lessons from the various
different approaches to successful parallel programming that we explored throughout
this book. We will also take a more scientific approach to evaluating and achieving
maximum parallel efficiency. We will end the book with a glimpse into the future at
the up-and-coming technology developments that are set to massively increase the
amount of compute available for us to exploit, including directly from the palm of
your hand.

[188]

[vww .ebook3000.con}

http://www.ebook3000.org

The Art of Parallel
Programming

This chapter has the somewhat grandiose and unusual title "The Art of Parallel
Programming" as adding the word "art" to the engineering discipline of
"programming" may seem odd. While good programming is reflected in good design
and good design is often an expression of beauty that exhibits some elemental
symmetry —and in the world of the abstract, a recognition of regained inherent
simplicity —my intention is to also capture the Harry Potter notion of "Dark Arts":
those areas where danger lies. Perhaps an alternate title for this chapter may
therefore be "Here, there be dragons!"....

There are many pitfalls that can catch the unwary in the world of parallel
programming, and this chapter will alert you to these:

* Deadlock - How message passing, in particular, can result in unpredictable
program behavior

* Numerical instability - The variation in results that can arise when
computing in parallel

* Random numbers - Ensuring that each processor has its own unique random
sequence when running in parallel

In this chapter, we will also discuss the concept of SpeedUp, the limitations of
Amdahl's law, and how to achieve parallel efficiency in different situations, including
task farm, grid, and MapReduce contexts. We will finish by distilling the lessons you
learned along our journey from the previous chapters, lessons that will hopefully
enable you to become a true practitioner of the art of parallel programming. Finally,
we will take a look into "Delores' Crystal Ball" at what the future holds for massively
parallel computation that will likely have a significant impact on the world of R
programming, particularly when applied to big data.

[189]

The Art of Parallel Programming

Understanding parallel efficiency

Let's first go right back to the very beginning and consider why we might choose to
write a parallel program in the first place.

The simple answer, of course, is that we want to speed up our algorithm and want
to compute the answer much faster than we can do simply by running in serial, in
which only a single thread of program execution can be utilized.

In this day and age of big data, we will extend this view to cover the otherwise
incomputable, where the resources of a single machine architecture make it
intractable to compute a complex algorithm across a massive scale of data; therefore,
we have to employ thousands upon thousands of computational cores, terabytes

of memory, petabytes of storage, and a supporting management infrastructure that
can cope with the inevitable runtime failure of individual components during the
aggregate lifetime of the computation of potentially millions of hours.

Another approach to utilizing parallelization, and arguably its simplest exposition,
is to improve overall throughput. Perhaps you are running a simulation and want
to evaluate a wide spectrum of variance on the inputs; in this case, with a large
cluster of N machines, you can simultaneously evaluate N different simulations.
Each simulation is completely independent of one another, so there is no additional
overhead or management of the shared state for each simulation run. This form of
the embarrassingly parallel problem is often referred to as naive parallelism, where the
workload is simple to apportion among a group of fully independent acting agents.

SpeedUp

It is important to examine the efficiency of a parallel implementation compared to

an equivalent serial implementation of an algorithm. The simplest measure we use
for this is SpeedUp, the ratio of time taken in serial to the time taken in parallel for the
execution of the algorithm applied to a specific input, as follows:

Tserial

SpeedUp =
pee P Tparal!el

As we increase the amount of parallelism applied, the time taken for parallel execution
T,y Should reduce, and so it follows that SpeedUp will increase. Assuming that
optimal serial implementation is equivalent to a parallel implementation executing

on a single processor with no overheads as it scales — that is, exhibiting perfect
parallelism—, one can define T, as the equivalentof T divided by however

much parallelism is being used (N), as follows:

[190]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 6

T
1 . _ !parallel_1
Perfect parallelism: Tp4rq11e1 8 = —

It is often the case that we start from the basis of a serial computation and seek

to improve its performance incrementally through progressive parallelization.
Acknowledging that this is a gross simplification for now, consider that for a given
algorithm execution for a specific input, there is a nonparallel component and a
parallel component, as in the following equation:

Total time: Toverall_N = Tnon—parallel + Tparallel_N

The overall time for algorithm execution is the sum of the time taken for the serial
(nonparallel) component plus the time taken to execute the parallel component. We
can reduce the time taken for the parallel component by adding more processing
elements — that is, by increasing N. Eventually, though, no matter how many

more parallel processing elements we may be able to add, the overall time will be
dominated by T

non-parallel”

Any measureable T . component fundamentally limits the scalability
of the overall algorithm. For example, imagine you were to start out with the

sonparatie COMPONENt being 10% of overall execution time compared to T, , when
both the components are run on a single-processor machine. Assuming a perfect
implementation for the T, component and then rerunning this component with 10
processors will immediately make T, |, the dominant runtime component, rising
to 53%. Increasing the T cOmponent to 100 processsors may speed its aspect up a
further tenfold. However, because of the relative dominance of Tnon—parallel’ the overall
runtime will be in the order of only twice as fast and unable to show any further
meaningful improvement even with a thousand processors or beyond.

Amdahl's law

We can recast the preceding formula in terms of SpeedUp with Amdahl's law, which
states the maximum achievable SpeedUp for N processors, where the proportion of
the algorithm that can be made parallel is designated as P (0.0 to 1.0).

[191]

The Art of Parallel Programming

Amdahl's law is represented as follows:

1
P
(1-P)+

SpeedUp(N) =

For our example where 90% of the runtime can be parallelized, it will be:
SpeedUp(10) =1/(1-0.9) +0.9/10 SpeedUp(1000) =1/(1-0.9) + 0.9/1000
=5.26 =9.91

SpeedUp(100) =9.17 SpeedUp(10000) = 9.99

The following figure depicts a graph of SpeedUp, in which we parallelized 90% of
the algorithm:

SpeedUp
12 7

10 7

sm==SpeedUp

10 procs 100 procs 1000 procs 10000 procs

Figure 1: SpeedUp graph where parallelizable component of algorithm is 90%.

As we can see our maximum achievable SpeedUp tails off very quickly at just 10,
despite employing thousands of processors.

[192]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 6

Estimating P

Interestingly, a recasting of Amdahl's law can be applied to estimate the
proportion of the algorithm that is parallel (P) based on a single parallel
runtime measurement, as follows:

1
__ SpeedUp -1

’ Pestim ated — 1
QQ‘L» N1
Mo

If we apply this to our example, in which we had 10 processors and a
SpeedUp value of 5.26, our estimate of P is calculated as 0.898 ~ 0.9. Thus,
from a single parallel runtime and comparison with the serial runtime,
we can determine what the maximum scalability will be without having
to make further (potentially costly) runs with more parallelism in order
to evaluate the effectiveness of our implementation.

To parallelize or not to parallelize

What is important to recognize is that we need to minimize the serial component
associated with any parallel algorithm in order to achieve high scalability. Even

if just 5% of the program is nonparallel Amdahl's LAW shows we can achieve

a maximum SpeedUp of only 20. It is certainly not worth incurring the cost of
maintaining a cluster of hundreds of processors on standby if we can only effectively
utilize a small proportion of them in our parallel algorithm implementation.

Algorithm overhead is therefore a critical consideration. More complex
parallelization implies a level of overhead, either in setting up separate input
configurations for each independent computation and collecting and combining the
generated results or in terms of the computation itself, in which the intermediate
shared state among independent processing elements must be maintained. Both of
these overhead costs may also combine for a specific algorithm implementation.

Its not all doom and gloom, though; Amdahl's law is tied to a fixed specification
of input and is based on the premise that the parallel component has no other
advantage than N threads of simultaneous execution to confer to the algorithm
for a given nonparallel overhead. In practice, there are many applications where
this is not true.

[193]

The Art of Parallel Programming

The nonparallel overhead may be constant or increase marginally for a range of
problem sizes being solved. Certain parallel algorithms may be able to achieve a
greater level of detailed analysis of data or operate on a larger dataset within the
same time window. The parallel system being used may scale not just in terms

of compute but also, importantly, in terms of the core memory and other aspects
of system resources, such as communications bandwidth or local disk storage,
massively increasing the capacity for the caching of large datasets for accelerated
access when compared to the equivalent single processor serial execution. This can
lead to superlinear SpeedUp, where N-way parallelism achieves more than N times
factor of comparable serial performance.

Parallelism can be incredibly effective when applied to the kind of problem that

is embarrassingly parallel. In general, though, most types of computational problem
can gain some level of benefit from parallelism. Some applications may be uniquely
time-critical; consider an analysis of bio-imagery in a critical patient care context, for
example. Absolute efficiency may give way to any level of accelerated performance
that can be gained.

Chapple's law

However, one further word of caution. One must always make due consideration of
the time and effort required to construct a parallel implementation of an algorithm.
Here's Chapple's law (tongue firmly in cheek) that highlights that it's only worth
putting effort into parallelizing code if you will execute your new parallel code

a sufficient number of times (N) to offset the time you spent developing it, as
demonstrated by this formula:

Chapple’s Law: (Tparallel X N) + Tparal]el_algorithm_development << Tgerit X N

There are many things that can impact you when building a parallel implementation
of an algorithm, and therefore, parallelization may require a substantially greater
effort on your part compared to developing a serial implementation.

For a start, scaling immediately adds an extra dimension to your test matrix. Further,
if you seek to use direct message passing in your implementation, then this lower
level of programming is subject to more opportunity for errors and, in particular,
ones that are timing-dependent and may not manifest themselves until they operate
at specific levels of parallelism.

You also need to take into account the potential for the results generated by a parallel
implementation to be marginally different to serial execution or numerically less
repeatable; we will explore some examples of these later in this chapter.

[194]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 6

It should be particularly noted that you may find differences in behavior where
serial execution uses a machine environment entirely separate from that of the
parallel execution platform due to variation in the versions of system libraries or the
arithmetic behavior of the different underlying computational FPU hardware.

Of course, if you plan to share the fruits of your labor with others who can benefit
from using your parallelized algorithm then great, go for it—just be aware that
technology continues to advance at an accelerating pace with increases in core
processor speed, cache, memory capacity, and data transfer bandwidth. The
architecture you implement and test for "today" may well change considerably by
"tomorrow". Parallel code, therefore, comes with an ongoing maintenance overhead
to at least ensure that it is tuned for optimum efficiency.

Numerical approximation

Let's have a little fun!

Question: What do you get in R if you sum 1 with successive fractions 1/2,1/3,1/4,
and so on all the way up to 1/500000*? Well, let's take a look....

Here's some simple code that sets up the vector of fractions:

v <- 1:500000
for (i in 1l:length(v))
{

v[i] = 1/i
}
> v[1]
11 1
> v[2]
[1] 0.5
> v[3]
[1] 0.3333333
> v[500000]
[1] 2e-06

And now, let's explicitly sum all the elements in the vector:

suma <- 0.0
for (i in 1l:length(v))

{

suma = suma + v[i]

[195]

The Art of Parallel Programming

}

> suma

[1] 13.69958

This seems fine. So, let's take a look at what happens if we add the numbers up
in reverse:

sumz <- 0.0

for (i in length(wv):1)

{

sumz = sumz + v[il
}
> sumz

[1] 13.69958
Great, the same answer; it's all good, move along, nothing to see here....

Um, yeah, actually; let's take a closer look:

> print (suma,digits=15)
[1] 13.6995800423056
> print (sumz,digits=15)

[1] 13.6995800423055
Err- Houston...?

What happens if we try with fractions up to 1/5 millionth? Take a look:

> print (suma,digits=15)
[1] 16.0021642352986
> print (sumz,digits=15)

[1] 16.0021642353001
Yikes! Now we have difference in the results from the tenth decimal place!

So, the answer to our question is: it depends on the order in which you add up the
numbers. Hmm, perhaps this is not what you were expecting?

What gives? Something must be wrong, surely; how come the results are different
and keep getting worse?

[196]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 6

Well, it all comes down to the numerical precision of floating-point numbers and

the cumulative error carried over between mathematical operations. For example,
one-third of course cannot be represented precisely with any form of floating-

point precision and neither can many other fractions; the computer has a finite
amount of memory in which to represent such numbers and therefore has to

make an approximation. Resultant arithmetic on such numbers is also, therefore,
approximate, and the approximation varies depending on which numbers are being
combined. So, even though we combine the same set of numbers, the different orders
in which we apply our approximate arithmetic means we carry a different pattern of
error and end up with slightly different approximate results.

This observation has important implications to comparing parallel with serial
execution for correctness and, indeed, parallel execution on N processors with
parallel execution on N+1 processors. If such numerical data is presented and
processed in a different order —and parallelism typically leads to exactly this
happening — then the results may differ. As we increase the amount of numerical
data involved so it is likely that the compound error will increase, and the difference
in results will drift further apart.

Integers are fallible too

It's not just the approximately represented noninteger numbers that we
have to be concerned about; we have issues with the exact representational
integers too. When running in parallel and at scale on datasets larger than
we are able to achieve running in serial, we need to be even more aware
of the bounds of value representation. A 32-bit signed integer —R's native
integer type is a 32-bit signed integer — can represent a value ceiling of
2,147,483,647. Let's say the algorithm keeps track of the total number of
% data items it processes. When running in serial, the number of data items
may never be expected to reach the limits of such an integer, but when
running a parallel version of the algorithm, such assumptions may no
longer apply. While R can automatically carry out the promotion of value
representation from an integer to double, where double usually employs
64-bit representation, when utilizing R packages built using C/C++ or
Fortran, such value representation is much more hardwired; therefore, you
need to be aware of how values may be truncated or NA-ed when passed
back and forth through the package's functional interface.

Even when utilizing 64-bit double precision, arithmetic overflow can cause unusual
behavior in a program with the side effect of generating nonsensical output and yet
be difficult to determine and resolve; worse, it may even go unnoticed.

[197]

The Art of Parallel Programming

Of course, for some applications such as simulation or near optimal solution search,
everything is approximate in any case, so this may be less of an issue. On the flip
side, the most extreme algorithms may choose to sort the data or use more accurate
number representations and explicit non-FPU arithmetic, although both these
approaches will introduce significant overhead and arguably may negate some of the
rationale for parallelization.

Ultimately, what we have to realize is that our numerical results are only ever
accurate within the constraints of the machine representation for numbers we
choose to employ. When running serial code, people often overlook this aspect as
such code invariably generates the same result for a given input. However, running
parallel code brings issues such as this fully to the front and square; even a repeated
execution of the same parallel code on the same input with the same amount of
parallelism could produce a slightly different result from a previous execution,
particularly where the code may involve time-variant communication for message
exchange. These effects are difficult to predict and are, in essence, random. And that,
dear reader, is the perfect segue into our next topic, random numbers.

Random numbers

Random numbers take on a new significance in parallel programs, given that
usually, you want to have different random number sequences in use across a set
of cooperating parallel processes; simulation and optimum search type workloads
being prime examples.

The default random number generator in R is Mersenne Twister and is generally
recognized to be a good quality pseudorandom number generator, though it's not
cryptographically very secure.

B Mersenne Twister 7
_ To find out more about the properties of the Mersenne Twister random
& number generator (RNG) you can refer to:
S https://en.wikipedia.org/wiki/Mersenne Twister

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ent.
html

You can, of course, select alternate generators from the set of built-ins as well as
supply your own using the base R random package function RNGKind ().

[198]

[vww .ebook3000.con}

https://en.wikipedia.org/wiki/Mersenne_Twister http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
https://en.wikipedia.org/wiki/Mersenne_Twister http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
https://en.wikipedia.org/wiki/Mersenne_Twister http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.ebook3000.org

Chapter 6

R in itself has always been a single-threaded implementation and is not designed

to exploit parallelism within its own language primitives; it relies on specifically
implemented external package libraries to achieve this for certain accelerated
functions and to enable the use of parallel processing frameworks. As we discussed,
the general implementation for these parallel frameworks is based on Single
Program Multiple Data (SPMD), meaning that one program executable or a
sequence of computational instructions is replicated across a number of parallel
processes, but each maintains its own individual state — that is, has independent
memory for its R objects and variables.

If we were to blithely ask for a random number on each parallel process, then all the
processes will return the same random number sequence. What we need to do is set
the seed explicitly to a different value for each parallel process.

Depending on the type of parallelism being used, we could choose to generate a
sequence of unique seeds from a master process and hand out the next unused seed,
as part of the parallel task description, to the next free worker to execute a task.
Here's an example:

master process initializes a set of ten random numbers
between 1 and 10 to distribute to workers
x_real <- runif(10,1.0,10.0) # 1.0 < x < 10.0

x integer <- sample(1:10,10) # 1 <= x <= 10

Alternatively, we could use the unique identifier of the process or, where tasks
outnumber parallel processes, the unique task number as part of the seed. One can
also use the current time in milliseconds to help manufacture a unique seed and
combine this with all of the previously listed options to generate a well-differentiated
seed value that is suitable for your chosen RNG:

worker processes each set their own unique seed based

on their process id and seconds time in milliseconds accuracy
and (if applicable) the unique id for the task itself

task <- getNextTask() # illustrative pseudocode call

seed <- Sys.getpid() * as.numeric(format(Sys.time(),"%0S6"))
set.seed(seed * getTaskId(task))

The key requirement is that it must be the parallel process itself that makes the call
to set.seed () with its unique seed value and that this be done for each parallel task
to be executed because you should never assume that each process will be given the
same set of tasks to process in sequence, as could happen with an adaptive load-
balancing task farm, for example.

[199]

The Art of Parallel Programming

MPI random numbers

If you use the pdbR MP], then you are in luck as this package provides a
simple mechanism to create separate streams of random numbers across
the parallel processes with the following;:

library (pbdMPI, quiet = TRUE)

Wl init ()

~ comm. set.seed (dif£=TRUE)
X real <- runif(1,1.0,10.0)
This function can also be used to create an identical stream of random

numbers across all parallel processes should you so wish by calling it
with the dif£=FALSE parameter.

The pdbR multistream random number generation utilizes the
rlecuyer package internally at https://cran.r-project.org/
web/packages/rlecuyer/index.html.

Whatever scheme you use to set random seeds, it is important to record what seed
value each parallel process uses. Without this, you will not be able to set the seed
again to the same explicit value when you want to reproduce the results generated
or to trigger identical computational behavior in order to track down a bug. It is also
important to consider that you may be using functions in your code from other R
packages, which themselves, internally make use of the standard random number
stream.

Deadlock

Deadlock is a classic problem that affects parallel code built on explicit message
passing. It arises when a process or thread of execution waits to receive a message
that is never sent or to send a message but the intended recipient isn't listening and
never will be.

In computing, deadlock as a concept arose from the context where a number of
agents compete for mutually exclusive access to a shared resource —for example,
a portion of memory representing a value that is to be updated via a locking
mechanism that singularizes access to the resource; think simultaneous ATM
transactions applied to a shared bank account. In this case, if the lock is not freed
by the previous agent, then no other agent can gain access to the lock and may be
queued indefinitely.

[200]

[vww .ebook3000.con}

https://cran.r-project.org/web/packages/rlecuyer/index.html
https://cran.r-project.org/web/packages/rlecuyer/index.html
http://www.ebook3000.org

Chapter 6

A classic deadlock scenario is where Agent A has gained access to resource 1, Agent
B has gained access to resource 2, Agent A is waiting to gain access to resource 2
(which B now exclusively holds), and likewise, Agent B is waiting to gain access to
resource 1 (which A now exclusively holds). Neither agent can proceed and have
therefore reached deadlock.

It is simple to construct a deadlock example using blocking communications between
MPI processes; init () and finalize () are omitted from the following pbdr
example, which simply passes the MPI process' rank identity to its next numerically
higher ranked neighbor — that is, from the predecessor to successor with wraparound
from the last process to the first process. Take a look at the following code:

r <- .comm.rank
succ <- (r + 1) %% .comm.size

pred <- (r - 1) %% .comm.size

v <- 1:1000 # dimension vector v

v[l] <- r # set first element to my MPI communicator rank
w <- 1:1000 # receive into vector w

send (v, rank.dest=succ) # Send v to my next in rank

recv (w, rank.source=pred) # Recv w from my previous in rank

comm.print (sprintf ("%$d received message from
%d",r,w[l]),all.rank=TRUE)

You can run this example with two, or however many processes you like, and it will
deadlock; all the processes will be stuck in their send calls... or not!

Exactly what happens in this case depends on the behavior of your MPI
implementation. We utilized blocking sends and receives in this example, and
you might therefore be wondering how it is possible to send data when there is
no prior matching receive for it. Well, MPI has some subtleties that are designed
to improve performance.

In MP], the blocking send can be implemented to dispatch a message to the
designated receiver and be held within the MPI communications subsystem at either
the sender or intended receiver until a matching receive is executed to complete it. In
fact, this mode of behavior is very much part of the MPI standard. A blocking send
is only defined to be blocking in the sense that the system will not return control
from a blocking send until it is free to enable the program to reuse the send buffer

or R object; that is, the program is free to change its contents or state. In this sense,
the data may be considered sent but not yet received. However, this behavior is of
course dependent on there being sufficient memory resources to temporarily cache

a copy of the sent message (pending a matching receive), thereby freeing up the R
program-level send buffer.

[201]

The Art of Parallel Programming

On my own laptop, if I now increase the size of the vectors being sent to 10,000 —
your own cutoff point may vary — then the MPI subsystem's internal cache is
exceeded, and it will be unable to maintain a separate cached copy of the sent data;
the MPI send call will subsequently block indefinitely as it needs a matching receive
call to be invoked, along with adequate assigned buffer memory, to enable the
larger-than cache transfer of data to take place. As all the processes execute sends
without matching receives, a deadlock will result.

Testing, testing, testing!

As we noted, it is critically important not to make assumptions about
how MPI systems are implemented or how such implementations may
or may not perform preemptive partial message delivery. This type of
implementation behavior is another reason why it is so important to test
your code at scale, not just in terms of varying the amount of parallelism
but also of the amount of data. As an absolute minimum, I find that it is
* Dbest to test with one through nine processes to give a coverage of the low

% numbers, including the degenerated single-processor case, prime, square,
and rectangular numbers, which typically expose edge cases for most
communication patterns. For 2D-grid-based parallelism, I would also test
at 25 processes. Remember that for MP], in particular, you can create as
many processes as you like (within system memory constraints) even if
you have just a single core machine; your code will run slowly, of course,
but this can be helpful to expose time-window-dependent behavior as a
process count exceeding the core count means that the processes are not
able to execute all simultaneously in real time.

Avoiding deadlock

There are three simple alternate ways to recode the deadlock example to ensure that
a deadlock will not result regardless of how much data is exchanged. Firstly, we can
ensure that only some of the processes send while the others receive. The following
code snippet ensures that even ranked processes send while odd ranked processes
receive and then flips to odd sending and even receiving:
if (r %% 2 == 0) { # even

send (v, rank.dest=succ)

w <- recv(w,rank.source = pred)
} else { # odd

w <- recv(w,rank.source = pred)

send (v, rank.dest = succ)

[202]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 6

Alternately, we can utilize the ppdr MPI's nonblocking iSend method so that all
processes progress directly into their receive rather than wait to send. Note that for
completeness and good practice, we also wait on the send request (the number 1)
after the receive to ensure the send is finished, but in this example, it's not strictly
necessary. Take a look at the following:

isend (v, rank,dest=succ, request=1)# Send non-blocking
w <- recv(w,rank, source=pred) # Recv blocks

wait (request=1)# Wait for nb-send to complete (it must have)

Finally, we can also use MPI's higher-level combined sendrecv function thus:
sendrecv (v, x.buffer=w, rank.dest=succ, rank.source=pred)

Exactly which alternate form you choose depends on the nature of your algorithm.
When each process executes the same program sequence in the near-lock step,
then sendrecv is a good choice, or even SendRecvReplace if you want to receive
new content in the same object as you send. When each process is loosely coupled
with variable work to process, then the nonblocking mode of communication may
be more efficient but with the additional overhead of extra code to manage the
outstanding comms. When you need to carry out a more complex but regularized
pattern of communication and the processing load is evenly distributed, then you
might choose the first alternative with a rank-specific sequencing of send and
matching recv functions

Reducing the parallel overhead

Each parallel algorithm comes with its own overhead, particularly in terms of setup,
in apportioning the work among a set of processors and tear-down in compiling the
aggregated results from the set of processors.

To get a handle on how we can approach reducing these overheads, let's first
examine the process of result aggregation.

The following figure shows a very typical master-worker task farm-style approach
utilizing 15 independent worker nodes. In this case, each separate task undertaken
by the workers contributes to an overall result.

[203]

The Art of Parallel Programming

Each worker transmits the partial result it generates back to the master, and the
master then processes all the partial results to generate the final accumulated result.

Worker
Worker Mode Worker
Mode 2 Mode
15 3
Worker Worker
Node MNode
14 4

Distribution of Tasks
Worker
MNode
5

Worker
MNode
6

Worker
Mode
7

Worker
MNode
13

Worker
MNode
12

Collection of Results

Worker Worker Worker Worker
Node Worker Node Node Worker Node
10 MNode 8 10 Node 8
g 9

Figure 2: Master-Worker flower style arrangement.

Let's also consider that each worker task takes the same amount of computational
effort, and thus, each worker finishes its task at approximately the same moment in
time.

It's not difficult to see from the flower arrangement in the figure that such a
circumstance generates maximum communication contention for the master to
service simultaneous result messages from every worker. The master will also
have to process N partial results to generate the final combined result. For certain
algorithms, this final step may in itself require significant computation.

If the tasks being undertaken by the workers are fully independent —that is, the
workers do not need to communicate with one another while undertaking their

task —and there is a sufficiently large number of tasks or a constant stream of tasks to
be undertaken —that is, several factors more tasks than workers —then the overhead
of setup and tear-down can effectively be amortized by the master ensuring that

it sends out a new task to a worker immediately, and that the worker returns the
previous task's result. It may then be possible to adjust the task sizes and numbers of
workers such that the system can settle into an efficient state, whereby there are few,
if any, waiting periods and all processors achieve near-100% utilization.

[204]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 6

However, for those problems not amenable to such treatment, such as those in which
all processors are involved either synchronously or asynchronously in each other's
tasks, a different approach is required.

The following figure shows the master and worker result communications
rearranged as a binary tree structure. Here, we are able to spread the computation of
the partial results among the workers rather than relying on the master to perform
all result aggregation.

Results Master
Collection Node
Stage 3 i

Results Worker
Collection Node
Stage 2

Results Worker Worker Worker
Collection MNode Node Node
Stage 1 4 > !
Worker Worker Worker Worker Worker Worker Worker Worker
Node MNode Node Node Node Node Node Node
8 9 10 11 12 13 14 15

Figure 3: Master-Worker tree style arrangement.

The process of result aggregation starts with the bottom layer of pairs of workers,
such as 8 and 9, 10 and 11, and so on, sending their partial results to their single
designated parent—for example, workers 4 to 7. Workers 4 to 7 (blue) then aggregate
the results they received in stage 1. They feed their partial aggregated results to
workers 2 and 3 for stage 2 (yellow), and then finally, the master node (orange)
receives the further partial aggregated results in stage 3. In this tree arrangement,

the master only has two sets of results to process, rather than all fifteen as in the
previous flower arrangement.

[205]

The Art of Parallel Programming

If we assume that all the other aspects of result processing are equal, then we have
reduced the result aggregation overhead from the flower arrangement of O(N),
where N is the number of processors, to O(log2 N) for the tree arrangement.

log N

3 m—|og N

10 20 30 40 50 60 70 80 90 100

Figure 4: Time complexity of log N for tree based result aggregation.

What we did is parallelize the result processing by constructing a more sophisticated
multistage implementation applicable to generalized task farms as well as Map/
Reduce contexts. While we should not forget Chapple's law, this is a significant
improvement, with this particular O(log2 N) approach becoming even more effective
and minimizing the overhead cost as we utilize higher orders of parallelism.

The tree approach can also be applied to the initial task assignment process. Input
data may require preprocessing to segment it into smaller tasks (Map). This effort
can be spread across a tree arrangement in reverse flow compared to the aggregation
operation (Reduce).

Of course, the frequency and size of communication impacts on parallel overhead
too. Data transfer costs can be minimized, where input data can be localized at the
point of its consumption. It may even be worth holding some level of duplicate or
overlapping data within the local storage of processing nodes in order to reduce the
number of communications required during the execution of the parallel algorithm.
In most forms of communication, both end points are tied up for the duration of the
data exchange. In certain cases, it may even be worth exchanging compressed data
and using processor cycles to compress/decompress messages in order to minimize
the duration of transfer.

[206]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 6

Adaptive load balancing

Previously, we noted how important it is to create balanced workloads, where the
compute time for each task is equal.

The task farm

When the nature of the problem is such that there are many more tasks available
than workers and each task is truly independent, then a task farm is a simple parallel
processing scheme that ensures 100% utilization of workers by the master feeding
the next available task to the next free worker, as depicted in the following diagram:

Worker
Node Worker
2 Node [|
3

Worker
Node | |
4
Q f Task KEY
ueue of lasks
Worker Worker .
. Node oo D l:l Node [] [0 Lghttask
13 5
D Medium task
- Master Node 1
Worker Worker Waorker |:| Heavy task
completed Node Collected Results Node [|
task 12 EEEERE (5] ™ Result
Worker

Worker Worker
. Node Worker Node []
10 MNode 8
9

MNext free Worker

Figure 5: Task farm operating with mixed independent variable compute tasks.

In this case, it does not matter that each task varies as to the amount of compute it
requires as there is no intertask dependency during the compute phase (at least).

[207]

The Art of Parallel Programming

Efficient grid processing

When the nature of the problem is such that the workers must cooperate during the
execution of their tasks, then workload variance across the workers can lead to poor
utilization, with some workers having to wait for the others to complete intermediate
processing steps within their tasks.

Let's take image processing, specifically edge detection, as an example. We have a
grid of 5x5 processors that each work on a separate subregion of a single large 10k
x 10k pixel image, and each of the 25 processors handles a 2k x 2k pixel tile. The
nature of the edge detection algorithm is such that its time complexity is a function
of the number of edges present within the image. The parallel edge detection
algorithm also requires periodic boundary exchange of derived data between each
processing node's eight spatial neighbors. Let's consider that the types of images
being processed have a nonuniform density of edges across their area, and in fact,
the density can vary substantially across small subregions of the image. Take a look
at the following example of a generated fractal image where edge complexity varies
enormously across different zones within the image:

Figure 6: Fractal image exhibiting dense and sparse edge regions.

[208]

[vww.ebook3000.con)

http://www.ebook3000.org

Chapter 6

Let's also assume that the first phase of edge detection performs a pixel-by-pixel
analysis, has the same time complexity regardless of tile edge density, and is able to
estimate the number of edge transitions. From this, we can create a cost profile map
of subsequent processing for the collection of individual tiles, as in the following
diagram:

2 s 4 s 2 s 4 s
lolojo|1|o0| +/|2[4[83[1]|3
2/ 0|0[1|/0|0| /f2/8|2|4|5|4
s/0[1|0|/0|4| /2/6|5|4|3|4
«/1]/0(0|9|51|/ «/5|4|6|6|5
s/ 0]0[83|49/98| /8|2|4 |55

" 3% gl ation 55% i uigation

Figure 7: Example cost profile for edge processing of image tiles.

We can use the cost profile to determine the level of utilization that will be achieved
across the processor grid and critically whether it is more optimal to take an
individual tile (or tiles) and interject an additional task to process it using the entire
grid, such that each processor would now handle a 400 x 400 pixel subtile before
going on to complete the processing of the larger-scale image as full-sized 2k x 2k
tiles.

In the example given in the preceding figure, the full image cost profile is shown (to
the left) and expanded for the bottom corner tile (to the right). A separate processing
of the dense corner tile (red) by the whole processor grid leads to a much better
overall utilization and efficient use of parallelism.

[209]

The Art of Parallel Programming

Three steps to successful parallelization

The following three-step distilled guidance is intended to help you decide what
form of parallelism might be best suited for your particular algorithm/problem and
summarizes what you learned throughout this book. Necessarily, it applies a level of
generalization, so approach these guidelines with due consideration:

1.

Determine the type of parallelism that may best apply to your algorithm.

Is the problem you are solving more computationally bound or data bound?
If the former, your problem may be amenable to GPUs (refer to Chapter 5, The
Supercomputer in your Laptop, on OpenCL). If the latter, then your problem
may be more amenable to cluster-based computing (refer to Chapter 1, Simple
Parallelism with R), and if your problem requires a complex processing chain,
then consider using the Spark framework (described in the bonus chapter).

Can you divide the problem data/space to achieve a balanced workload
across all processes, or do you need to employ an adaptive load-balancing
scheme — for example, a task farm-based approach?

Does your problem/algorithm naturally divide spatially? If so, consider
whether a Grid-based parallel approach can be used (refer to Chapter 3,
Advanced Message Passing, on MPI).

Perhaps your problem is on an epic scale? If so, maybe develop your
message-passing-based code and run it on a supercomputer (refer to Chapter
4, Developing SPRINT, an MPI-Based R Package for Supercomputers).

Is there an implied sequential dependency between tasks? Do processes need
to cooperate and share data during their computation or can each separate
divided task be executed entirely independently from one another?

A large proportion of parallel algorithms will typically have a work
distribution phase, a parallel computation phase, and a result aggregation
phase. To reduce the overhead of the startup and close down phases,
consider whether a Tree-based approach to work distribution and result
aggregation may be appropriate in your case.

Ensure the basis of the compute in your algorithm has optimal
implementation.

Profile your code in serial to determine whether there are any bottlenecks,
and target these for improvement.

Is there an existing parallel implementation similar to your algorithm that
you can use directly or adopt?

[210]

[vww .ebook3000.con}

http://www.ebook3000.org

Chapter 6

Review CRAN Task View: High-Performance and Parallel Computing with R at
https://cran.r-project.org/web/views/HighPerformanceComputing.
html; in particular, take a look at the subsection entitled Parallel Computing:
Applications, a snapshot of which at the time of writing can be seen in the
following figure:

Parallel computing: Applications

The caret package by Kuhn can use various frameworks (MPI, NWS etc) to parallelized cross-validation and bootstrap
characterizations of predictive models.

The maanova package on Bioconductor by Wu can use snow and Rmpi for the analysis of micro-array experiments.

The pvelust package by Suzuki and Shimodaira can use snow and Rmpi for hierarchical clustering via multiscale bootstraps.
The tm package by Feinerer can use snow and Rmpi for parallelized text mining.

The varSelRF package by Diaz-Uriarte can use snow and Rmpi for parallelized use of variable selection via random forests.
The bep package by Erdman and Emerson for the Bayesian analysis of change points can use foreach for parallelized

operations.
The multiest package by Pollard et al. on Bioconductor can use snow, Rmpi or rpvm for resampling-based testing of multiple
hypothesis.

The GAMBoost package by Binder for glm and gam model fitting via boosting using b-splines, the Geneland package by
Estoup, Guillot and Santos for structure detection from multilocus genetic data, the Matching package by Sekhon for
multivariate and propensity score matching, the STAR package by Pouzat for spike train analysis, the bnlearn package by
Scutari for bayesian network structure learning, the latentnet package by Krivitsky and Handcock for latent position and cluster
models, the 1ga package by Harrington for linear grouping analysis, the peperr package by Porzelius and Binder for parallised
estimation of prediction error, the orloca package by Fernandez-Palacin and Munoz-Marquez for operations research locational
analysis, the rgenoud package by Mebane and Sekhon for genetic optimization using derivatives the affyPara package by
Schmidberger, Vicedo and Mansmann for parallel normalization of Affymetrix microarrays, and the puma package by Pearson
et al. which propagates uncertainty into standard microarray analyses such as differential expression all can use snow for
parallelized operations using either one of the MPL, PVM, NWS5 or socket protocols supported by snow.

The bugsparallel package uses Rmpi for distributed computing of multiple MCMC chains using WinBUGS.

The partDSA package uses nws for generating a piecewise constant estimation list of increasingly complex predictors based on
an intensive and comprehensive search over the entire covariate space.

The declone package provides a global optimization approach and a variant of simulated annealing which exploits Bayesian
MCMLC tools to get MLE point estimates and standard errors using low level functions for implementing maximum likelihood
estimating procedures for complex models using data cloning and Bayesian Markov chain Monte Carlo methods with support
for JAGS, WinBUGS and OpenBUGS; parallel computing is supported via the snow package.

The pmclust package utilizes unsupervised model-based clustering for high dimensional (ultra) large data. The package uses
pbdMPI to perform a parallel version of the EM algorithm for finite mixture Gaussian models.

The harvestr package provides helper functions for (reproducible) simulations.

Nowadays, many packages can use the facilities offered by the parallel package. One example is pls, another is PGICA which
can run ICA analysis in parallel on SGE or multicore platforms.

Figure 8: CRAN provides various parallelized packages you can use in your own program.

3. Test and evaluate the parallel efficiency of your implementation.

Usethe P form of Amdahl's law presented earlier in this chapter to
predict the level of scalability you can achieve.

Test your algorithm at varying amounts of parallelism, particularly odd
numbers that trigger edge-case behaviors. Don't forget to run with just a
single process. Running with more processes than processors will trigger
lurking deadlock/race conditions (this is most applicable to message-
passing-based implementations).

Where possible, to reduce overhead, ensure that your method of deployment/
initialization places the data being consumed locally to each parallel process.

[211]

https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://cran.r-project.org/web/views/HighPerformanceComputing.html

The Art of Parallel Programming

What does the future hold?

Obviously, this final section is at a considerable risk of "crystal ball gazing" and
getting it wrong. However, there is a number of clear directions in which we

can see how both hardware and software will develop that make it clear that
parallel programming will play an ever more important and increasing role in our
computational future. Besides, it has now become critical for us to be able to process
vast amounts of information within a short window of time in order to ensure our
own individual and collective safety. For example, we are experiencing an increased
momentum toward significant climate change and extreme weather events and will,
therefore, require increasingly accurate weather prediction to help us deal with this;
this will only be possible with highly efficient parallel algorithms.

In order to gaze into the future, we need to look back at the past. The hardware
technology available to parallel computing has evolved at a phenomenal pace
through the years. The levels of performance that can be achieved today by single-
chip designs are truly staggering in terms of recent history.

The history of HPC
For an excellent infographic review of the development of computing
performance, I would urge you to visit the following web page:

* http://pages.experts-exchange.com/processing-power-
% compared/

This beautifully illustrates how, for example, iPhone 4 released in
2010 has near-equivalent performance to the Cray 2 supercomputer
from 1985 of around 1.5 gigaflops, and the Apple Watch released in
2015 has around twice the performance of iPhone 4 and Cray 2!

While chip manufacturers have managed to maintain the famous Moore's law that
predicts transistor count doubling every two years, we are now at 14 nanometers
(nm) in chip production, giving us around 100 complex processing cores in a single
chip. In July 2015, IBM announced a prototype chip at 7 nm (1/10,000th the width of
a human hair). Some scientists suggest that quantum tunneling effects will start to
impact at 5 nm (which Intel expects to bring to market by 2020), although a number
of research groups have shown individual transistor construction as small as 1 nm
in the lab using materials such as graphene. What all of this suggests is that the
placement of 1,000 independent high-performance computational cores, together
with sufficient amounts of high-speed cache memory, inside a single chip package
comparable to the size of today's chips could potentially be possible within the next
10 years.

[212]

[vww .ebook3000.con}

http://pages.experts-exchange.com/processing-power-compared/
http://pages.experts-exchange.com/processing-power-compared/
http://www.ebook3000.org

Chapter 6

NIVIDA and Intel are arguably at the forefront of dedicated HPC chip development
with their respective offerings used in the world's fastest supercomputers, which can
also be embedded in your desktop computer. NVIDIA produces Tesla, the K80 GPU-
based accelerator available now that peaks at 1.87 teraflops double precision and

5.6 teraflops single precision utilizing 4,992 cores (dual processor) and 24 GB of on-
board RAM. Intel produces Xeon Phi, the collective family brand name for its Many
Integrated Core (MIC) architecture; Knights Landing, which is new, is expected

to peak at 3 teraflops double precision and 6 teraflops single precision, utilizing 72
cores (single processor) and 16 GB of highly integrated on-chip fast memory when it
is released, in 2016.

The successors to these chips, namely Volta by NVIDIA and Knights Hill by Intel,
will be the foundation for the next generation of American $200-million-dollar
supercomputers in 2018, delivering around 150 to 300 petaflops peak performance
(around 150 million iPhone 4s) as compared to China's TIANHE-2, ranked as the
fastest supercomputer in the world in 2015, with peak performance of around 50
Petaflops from 3.1 million cores.

At the other extreme, within the somewhat smaller and less expensive world of
mobile devices, most currently use between two and four cores, though mixed
multicore capability such as ARM's big.LITTLE octacore makes eight cores available.
However, this is already on the increase with, for example, MediaTek's new
MT6797, which has 10 main processing cores split into a pair and two groups of four
cores with different clock speeds and power requirements to serve as the basis for
next-generation mobile phones. Top-end mobile devices, therefore, exhibit a rich
heterogeneous architecture with mixed power cores, separate sensor chips, GPUs, and
Digital Signal Processors (DSP) to direct different aspects of workload to the most
power-efficient component. Mobile phones increasingly act as the communication
hubs and signal processing gateways for a plethora of additional devices, such as
biometric wearables and the rapidly expanding number of ultra-low power Internet
of Things (IoT) sensing devices, smartening all aspects of our local environment.

While we are a little bit away from running R itself natively on mobile devices, the
time will come when we seek to harness the distributed computing power of all our
mobile devices. In 2014 alone, around 1.25 billion smartphones were sold. That's a
lot of crowd-sourced compute power and potentially far outstrips any dedicated
supercomputer on the planet either existing or planned.

[213]

The Art of Parallel Programming

The software that enables us to utilize parallel systems, which as we noted are
increasingly heterogeneous, continues to evolve. In this book, we examined how
you can utilize OpenCL from R to gain access to both the GPU and CPU, making it
possible to perform mixed computation across both components and exploiting the
particular strengths of each for certain types of processing. Indeed, another related
initiative, Heterogeneous System Architecture (HSA), that enables even lower-
level access to the spectrum of processor capabilities may well gain traction over the
coming years and help promote the uptake of OpenCL and its counterparts.

HSA Foundation
HSA Foundation was founded by a cross-industry group led by
AMD, ARM, Imagination, MediaTek, Qualcomm, Samsung, and
Texas Instruments. Its stated goal is to help support the creation of
applications that seamlessly blend scalar processing on the CPU,
parallel processing on the GPU, and optimized processing on the DSP
via high bandwidth shared memory access, enabling greater application
% performance at low power consumption. To enable this, HSA

e . .
Foundation is defining key interfaces for parallel computation utilizing
CPUs, GPUs, DSPs, and other programmable and fixed-function
devices, thus supporting a diverse set of high-level programming
languages and creating the next generation in general-purpose
computing. You can find the recently released version 1.0 of the HSA
specification at the following link:

http://www.hsafoundation.com/html/HSA Library.htm

Hybrid parallelism

As a final wrapping up, I thought I would show how you can overcome some of
the inherent single-threaded nature of R even further and demonstrate a hybrid
approach to parallelism that combines two of the different techniques we covered
previously within a single R program. We also discussed how heterogeneous
computing is potentially the way of the future.

This example refers back to the code we developed in Chapter 5, The Supercomputer in
your Laptop, and will utilize MPI through pbdMPI together with ROpencCL to enable us
to exploit both the CPU and GPU simultaneously. While this is a slightly contrived
example and both devices compute the same dist () function, the intention is to
show you just how far you can take things with R to get the most out of all your
available compute resource.

[214]

[vww .ebook3000.con}

http://www.hsafoundation.com/html/HSA_Library.htm
http://www.ebook3000.org

Chapter 6

Basically, all we need to do is to top and tail our implementation of the dist ()
function in OpenCL with the appropriate pbdMPpI initialization and termination
and run the script with mpiexec on two processes (for example, mpiexec -np 2
Rscript chapteré6_hybrid.R). Take alook at the following code:

Initialise both ROpenCL and pdbMPI
require (ROpencCL)

library (pbdMPI, quietly = TRUE)

init ()

Select device based on my MPI rank
r <- comm.rank()

if (r == 0) { # use gpu

device <- 1

} else { # use cpu

device <- 2

}

Main body of OpenCL code from chapter 6

Execute the OpenCL dist() function on my assigned device

comm.print (sprintf ("%$d executing on device %s", r,

getDeviceType (deviceID)), all.rank = TRUE)

res <- teval (openclDist (kernel))

comm.print (sprintf ("%$d done in %f secs",r,res$Duration), all.rank = TRUE)

finalize()

This is simple and very effective!

Summary

In this book, we covered many different aspects of parallelism, including R's
built-in multicore capabilities with its parallel package, message passing using
the MPI standard, and parallelism based on General Purpose GPU (GPGPU) with
OpenCL. We also explored different framework approaches to parallelism from
load balancing, through task farming to spatial processing with grid layout and
more general purpose batch data processing in the cloud using Hadoop through
the segue package as well as the hot new tech in cluster computing, Apache Spark,
that is much better suited for real-time data processing at scale.

[215]

The Art of Parallel Programming

You should now have a broad coverage and understanding of these different
approaches to parallelism, their particular suitability for different types of workload,
how to deal with both balanced and unbalanced workloads to ensure maximum
efficiency, and how to use the technologies that underpin them from R to exploit
multiple cores on your PC/GPU using SPMD and SIMD vector processing.

We also looked into the Crystal Ball and saw the prospects for the combination of
heterogeneous compute hardware that is here today and will expand in capability
even further in the future both in our supercomputers and laptops but also our
personal devices. Parallelism is the only way these systems can be utilized effectively.

As the volume of new, quantified, self- and environmentally-derived data increases,
and the number of cores in our compute architectures continues to rise so does the
importance of being able to write parallel programs to make use of it all; job security
for parallel programmers looks good for many years to come!

Well, that's almost the last word. We hope this book has helped you begin a very
fruitful journey on bringing parallelism to bear on your tackling of the most difficult
problems in data science with R—go forth and distribute your computation!

[216]

[vww .ebook3000.con}

http://www.ebook3000.org

A

adaptive load balancing
about 207
grid processing 208, 209
task farm 207
Adenine (A) 129
Amazon Web Services (AWS)
about 1
AWS account, setting up 27
URL 27
Amdahl's law 191-193
ARCHER
about 106, 107
Random Forests, performance
output 140-144
rank product, performance output 147-150
URL 106
using 133-136
Aristotle's Number Puzzle
about 2
code, instrumenting 9-11
execution time, measuring 8, 9
multiple tasks executing, lapply()
used 13-15
problem, splitting into multiple
tasks 11-13
solver, implementing 2-5
solver, refining 7
solving 34, 35

base 129
benchmarking
code 9

Index

boundary data exchange 82-85

Cc

C
about 156-159
references 156
C code
calling, from R 109
modifying 109-111
MPI code, compiling to R shared object 111
MPI Hello World program, calling
from R 111, 112
Chapple's law 194
classification tree 138
communications
inspecting 98-101
managing 98-101
Compute Units (CUs) 160
createCluster() function
options 30, 31
custom function, Simple Parallel R
Interface (SPRINT)
adding 116
code, compiling 125-128
code, executing 125-128
functions.c file, updating 122, 123
functions.h file, updating 122
implementation function, adding 120, 121
interface, connecting 121
interface function, adding 118-120
Makefile, updating 124, 125
Namespace file, updating 123, 124
SPRINT source code, downloading 116
stub, connecting 121

[217]

stub, creating 117, 118
Cytosine (C) 129

D

deadlock
about 200-202
avoiding 202, 203
Digital Signal Processors (DSP) 154, 213
distance matrix example
about 178
GPU out-of-core memory, processing 182
Index of Multiple Deprivation
(IMD) 179-181
double-precision floating point arithmetic
versus single-precision floating point
arithmetic 162

E

Elastic Compute Cloud (EC2) 26
Elastic Map Reduce (EMR) service 1
Execution Units (EUs) 160

F

Field-Programmable Gate Arrays
(FPGA) 154

G

Gene Expression Omnibus (GEO) 129
genome 129
Genomics analysis case study
about 128,129
Genomics 129-132
Genomics, with Supercomputer
about 132
ARCHER, using 133-136
conclusion 151
data, obtaining 139
goal 133
Random Forests, implementing 137, 138
Random Forests, performance
output 140-144

getDeviceInfo() method
URL 165
GFLOPS
about 162
URL 162
GlobalWorkSize parameter
versus LocalWorkSize parameter 174
Graphics Processing Unit (GPU)
about 153
control loop 184, 185
dist kernel function, modifying 186, 187
kernel function, using 183
out-of-core memory, processing 182
setup 182
grid cluster
creating 80, 81
grid parallelism
about 77-79
boundary data exchange 82-85
grid cluster, creating 80, 81
image, distributing as tiles 87-89
median filter 86
median filter grid program 89-95
grid processing 208, 209
Guanine (G) 129

H

Heterogeneous System Architecture
(HSA) 214
HPC
history 212
HSA Foundation
about 214
URL 214
hybrid parallelism 214, 215

image
distributing, as tiles 87-89

Index of Multiple Deprivation (IMD)
about 179-181
memory requirements 181

rank product, implementing 145, 146 . IIJ.RL 17912181
rank product, performance output 147-150 mine package
URL 157
[218]

[vww .ebook3000.con}

http://www.ebook3000.org

Internet of Things (IoT) 213
iPhone 4
computing performance, URL 212

K

kernel function
memory qualifiers 175, 176
NDRange 176-178
vector addition example 173-175
kernel OpenCL function
get_global_id(uint dim) 177
get_global_size(uint dim) 177
get_group_id(uint dim) 178
get_local_id(uint dim) 177
get_local_size(uint dim) 178
get_num_groups(uint dim) 178
get_work_dim() 177

L

lapply() function

about 102

used, for executing multiple tasks 13-15
LocalWorkSize parameter

versus GlobalWorkSize parameter 174
Lower Super Output Areas (LSOAs) 179

magic hexagon

URL 37
Many Integrated Core (MIC) 213
mclapply() function

options for 19, 20

using 16-18
median filter

about 86

reference link 86
median filter grid program

about 89-95

performance output 97
Mersenne Twister

about 198

URL 198
message passing 105
Message Passing Interface (MPI) 105
Microarrays 131

MPI_Cancel object 101
MPI C code

calling, from R 107

C code, calling from R 109

MPI Hello World program 108, 109
MPI_Probe 98, 99
MPI random numbers 200
MPI_Status object 100
MPI_Test object 101

N

naive parallelism 190
NetWorkSpace server
URL 103
Next-Generation Sequencing (NGS) 131
nucleotide 129
numerical approximation 195-197
nws package
about 103
URL 103

(0

Open Computing Language (OpenCL)
about 154, 155
capabilities, querying 156-163
on Intel processor-based system 160
on Intel processor-based system, URL 160
resources 155

Open Graphics Library (OpenGL) 154

P

parallel load balancing 23-25
parallel overhead
reducing 203-206
parallel programming
Amdahl's law 191-193
Chapple's law 194
considerations 193, 194
efficiency 190
future enhancements 212-214
guidelines 210, 211
SpeedUp 190, 191
parLapply() function
about 102, 103
using 21, 22

[219]

post-genomics 130
proteome 130

Q

qualifiers
__constant 175
__global 175
__local 176
__private 176

queues 134

R

R
C code, calling 109
MPI C code, calling 107
MPI Hello World program, calling 111, 112

randomForest R package
URL 139

Random Forests
about 138
implementing 137, 138
reference link 138

random number generator (RNG) 198

random numbers 198-200

rank product
about 145
implementing 145, 146
performance output, on ARCHER 147-150
reference link 145

Rcpp R package
URL 107

R Extensions
reference link 107

rlecuyer package
URL 200

ROpenCL API function
buildKernel() 168
createBuffer() 166
createBufferFloatVector() 167
createBufferIntegerVector() 167
createCommandQueue() 169
createContext() 166
deviceSupportsPrecision() 165
enqueueNDRangeKernel() 170
enqueueReadBuffer() 171
enqueueWriteBuffer() 169

getDevicelDs() 164
getDevicelnfo() 165
getPlatformIDs() 164
releaseResources() 171
ROpenCL package
about 156, 163
distance matrix example 178
ROpenCL programming model
about 164-171
example 171,172
kernel function 173
R parallel package
about 15, 16
mclapply() function, options 19, 20
mclapply() function, using 16-18
parallel load balancing 23-25
parLapply() function, using 21, 22
print() function 20
R shared object
MPI code, compiling 111

S

segue package
about 25, 26
Aristotle's Number Puzzle, solving 34, 35
AWS account, setting up 27-29
AWS, console views 32, 33
createCluster() function, options 30, 31
installing 26
results, analyzing 36, 37
running 29, 30
URL, for downloading 26
sequenced genome 130
services
URL 26
Simple Network Of Workstations
(SNOW) 102
Simple Parallel R Interface (SPRINT)
about 105, 113
advantages 112
architecture 114, 115
building 112
custom function, adding 116
prebuilt SPRINT routine, using 113
reference link 116
URL 113

[220]

[vww .ebook3000.con}

http://www.ebook3000.org

Simple Storage Service (S3) 26
Single Instruction Multiple Data
(SIMD) 153
Single Nucleotide Polymorphism
(SNP) 139
single-precision floating point arithmetic
versus double-precision floating point
arithmetic 162
Single Program Multiple Data (SPMD) 199
snow package
URL 103
SpeedUp 190, 191

T

task farm 207
Thymine (T) 129

[221]

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Simple Parallelism with R
	Aristotle's Number Puzzle
	Solver implementation
	Refining the solver
	Measuring the execution time

	Splitting the problem into multiple tasks
	Executing multiple tasks with lapply()

	The R parallel package
	Using mclapply()
	Options for mclapply()

	Using parLapply()
	Parallel load balancing

	The segue package
	Installing segue
	Setting up your AWS account
	Running segue
	Options for createCluster()
	AWS console views

	Solving Aristotle's Number Puzzle
	Analyzing the results

	Summary

	Chapter 2: Introduction to
Message Passing
	Setting up your system environment for MPI
	Choice of R packages for MPI
	Choice of MPI subsystems
	Installing OpenMPI

	The MPI standard
	The MPI universe
	Installing Rmpi
	Installing pbdMPI

	The MPI API
	Point-to-point blocking communications
	MPI intracommunicators

	Point-to-point non-blocking communications
	Collective communications

	Summary

	Chapter 3: Advanced Message Passing
	Grid parallelism
	Creating the grid cluster
	Boundary data exchange
	The median filter
	Distributing the image as tiles
	Median filter grid program
	Performance

	Inspecting and managing communications
	Variants on lapply()
	parLapply() with Rmpi

	Summary

	Chapter 4: Developing SPRINT, an MPI-Based R Package for Supercomputers
	About ARCHER
	Calling MPI code from R
	MPI Hello World
	Calling C from R
	Modifying C code to make it callable from R
	Compiling MPI code into an R shared object
	Calling the MPI Hello World example from R

	Building an MPI R package – SPRINT
	The Simple Parallel R Interface (SPRINT) package
	Using a prebuilt SPRINT routine in an R script

	The architecture of the SPRINT package

	Adding a new function to the SPRINT package
	Downloading the SPRINT source code
	Creating a stub in R – phello.R
	Adding the interface function – phello.c
	Adding the implementation function – hello.c
	Connecting the stub, interface, and implementation
	functions.h
	functions.c
	Namespace
	Makefile

	Compiling and running the SPRINT code

	Genomics analysis case study
	Genomics
	Genomic data

	Genomics with a supercomputer
	The goal
	The ARCHER supercomputer
	Random Forests
	Data for the genomics analysis case study
	Random Forests performance on ARCHER
	Rank product
	Rank product performance on ARCHER
	Conclusions

	Summary

	Chapter 5: The Supercomputer in
Your Laptop
	OpenCL
	Querying the OpenCL capabilities of your system

	The ROpenCL package
	The ROpenCL programming model
	A simple vector addition example
	The kernel function

	Distance matrix example
	Index of Multiple Deprivation
	GPU out-of-core memory processing

	Summary

	Chapter 6: The Art of Parallel Programming
	Understanding parallel efficiency
	SpeedUp
	Amdahl's law
	To parallelize or not to parallelize

	Numerical approximation
	Random numbers
	Deadlock
	Avoiding deadlock

	Reducing the parallel overhead
	Adaptive load balancing
	The task farm
	Efficient grid processing

	Three steps to successful parallelization
	What does the future hold?
	Hybrid parallelism

	Summary

	Index

