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Preface
Welcome to the PostgreSQL 9 High Availability Cookbook! As a database engine, PostgreSQL is
settling into its place as a reliable bastion of high-transaction rates and very large data
installations. DB-Engines recently listed PostgreSQL as the third most popular database software
in the world! With such notoriety comes increasing demand for PostgreSQL to act as a critical
piece of infrastructure. System outages in these environments can be spectacularly costly and
require a higher caliber of management and tooling.

It is the job of a DBA to ensure that the database is always available for application demands and
client needs. Yet this is extremely difficult to accomplish without the necessary skills and
experience with common operating-system and PostgreSQL tools. Installing, configuring, and
optimizing a PostgreSQL cluster is but a tiny fraction of the process. We also need to know how
to find and recognize problems, manage a swarm of logical and physical replicas, and scale to
increasing demands, all while preventing or mitigating system outages.

This book is something the author wishes existed 10 years ago. Back then, there were no recipes
to follow for building a fault-tolerant PostgreSQL cluster; we had to improvise. It is our aim to
prevent other DBAs from experiencing the kind of frustration borne of reinventing the wheel.
We've done all the hard work, taken notes, outlined everything we've ever learned about keeping
PostgreSQL available, and written it all down in here.

New to the second edition is a simpler but more elastic approach to building a highly available
PostgreSQL cluster. We’ve also incorporated updates to the recipes to make them compatible
with PostgreSQL versions 9.5 and 9.6. A lot can change in two years, and PostgreSQL is a
quickly moving target. We can only imagine what kind of features the future might bring.

We hope you find this book useful and relevant; it is the product of years of trial, error, testing,
and no small amount of input from the PostgreSQL community.



What this book covers
 Chapter 1 ,  Hardware Planning, sets the tone by covering the role that appropriate hardware
selection plays in a successful PostgreSQL cluster of any size.

Chapter 2, Handling and Avoiding Downtime, provides safe settings and defaults for a stable
cluster and explains basic techniques for responding to mishaps.

Chapter 3, Pooling Resources, presents PgBouncer and pgpool, two tools geared toward
controlling PostgreSQL connections. Together, these can provide an abstraction layer to reduce
the effect of outages and increase system performance.

Chapter 4, Troubleshooting, introduces a battery of common Unix and Linux tools and resources
that can collect valuable diagnostic information. It also includes a couple of PostgreSQL views
that can assist in finding database problems.

Chapter 5, Monitoring, further increases availability by adding Nagios, check_mk, collectd, and
Graphite to watch active PostgreSQL clusters. Find potential problems before they happen and
stay informed.

Chapter 6, Replication, discusses several PostgreSQL replication scenarios and techniques for
more durable data. This includes logical replication tools such as Slony, Bucardo, Londiste, and
the newly introduced pglogical.

Chapter 7, Replication Management Tools, brings WAL management to the forefront. Integrate
Barman, OmniPITR, repmgr, or walctl into PostgreSQL to further prevent data loss and control
complicated multi-server clusters. Or preserve your WAL data safely on the cloud with WAL-E.

Chapter 8, Simple Stack, proposes architecture comprised of HAProxy, Patroni, and etcd. This
three-layer stack produces a self-healing and expandable cluster that’s easy to manage.

Chapter 9, Advanced Stack, explains how to combine LVM, DRBD, and XFS to build a solid and
durable foundation. Keep data on two servers simultaneously to prevent costly outages. It's for
OLTP systems where even PostgreSQL replication isn’t fast enough.

Chapter 10, Cluster Control, incorporates Pacemaker into the advanced stack. We fully automate
PostgreSQL server migrations in case of impending maintenance or hardware failure. We add
intricate rulesets to control outage and recovery protocols.

Chapter 11, Data Distribution, shows how PostgreSQL features like foreign data wrappers and
materialized views can produce a scalable cluster. Included is a simple data sharding API
technique to reduce dependency on a single PostgreSQL server.



What you need for this book 
This book concentrates on Unix systems with a focus on Linux in particular. Such servers have
become increasingly popular for hosting databases for large and small companies. As such, we
highly recommend that you use a virtual machine or development system running a recent copy
of Debian, Ubuntu, Red Hat Enterprise Linux, or a variant such as CentOS or Scientific Linux.

You will also need a copy of PostgreSQL. If your chosen Linux distribution isn't keeping the
included PostgreSQL packages sufficiently up to date, the PostgreSQL website maintains
binaries for most popular distributions. You can find these at the following URL:

https://www.postgresql.org/download/

Users of Red Hat Enterprise Linux and its variants should refer to the following URL to add the
official PostgreSQL YUM repository to important database systems:

https://yum.postgresql.org/repopackages.php

Users of Debian, Ubuntu, Mint, and other related Linux systems should refer to the PostgreSQL
APT wiki page at this URL instead:

https://wiki.postgresql.org/wiki/Apt

Be sure to include any “contrib” packages in your installation. They include helpful utilities and
database extensions we will use in some recipes.

Users of BSD should still be able to follow along with these recipes. Some commands may
require slight alterations to run properly on BSD, so be sure to understand the intent before
executing them. Otherwise, all commands have been confirmed to work on BASH and recent
GNU tools.

https://www.postgresql.org/download/
https://yum.postgresql.org/repopackages.php
https://wiki.postgresql.org/wiki/Apt


Who this book is for 
This book is written for PostgreSQL DBAs who want an extremely fault-tolerant database
cluster. While PostgreSQL is suitable for enterprise environments, there are a lot of tertiary
details even a skilled DBA might not know. We're here to fill in those gaps.

There is a lot of material here for all levels of DBA. The primary assumption is that the reader is
comfortable with a Unix command line and maintains at least some regular exposure to
PostgreSQL as a DBA or system administrator.

If you've ever experienced a database outage, restored from a backup, or spent hours trying to
repair a malfunctioning cluster, we have material that covers all of these scenarios. This book
holds the key to managing a robust PostgreSQL cluster environment and should be of use to
anyone in charge of a critical piece of database infrastructure.



Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows.



Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.



How to do it...
This section contains the steps required to follow the recipe.



How it works...
This section usually consists of a detailed explanation of what happened in the previous section.



There's more...
This section consists of additional information about the recipe in order to make the reader more
knowledgeable about the recipe.



See also
This section provides helpful links to other useful information for the recipe.



Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: " By using the
pg_stat_statements view, we learn quite a bit about our PostgreSQL cluster."

A block of code is set as follows:

CREATE VIEW v_current_activity AS
SELECT *
  FROM pg_stat_activity
 WHERE state != 'idle';

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

CREATE VIEW v_running_queries AS
SELECT pid, now() - query_start AS duration, query
  FROM pg_stat_activity
 WHERE state != 'idle';

Any command-line input or output is written as follows:

rsync -av --progress --delete source-server:/db/pgdata/ \     
       /db/pgdata

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Clicking the Next button moves
you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.



Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and mention the
book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on https://www.packtpub.com/books/info/packt/authors.

https://www.packtpub.com/books/info/packt/authors


Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.



Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.pa
cktpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/PostgreSQL
-High-Availability-Cookbook. We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/PostgreSQL-High-Availability-Cookbook
https://github.com/PacktPublishing/


Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used in this
book. The color images will help you better understand the changes in the output. You can
download this file from: https://www.packtpub.com/sites/default/files/downloads/PostgreSQLHighAvailabilityCoo
kbook_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/PostgreSQLHighAvailabilityCookbook_ColorImages.pdf


Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would
be grateful if you would report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the
errata submission form link, and entering the details of your errata. Once your errata are verified,
your submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.
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Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we
take the protection of our copyright and licenses very seriously. If you come across any illegal
copies of our works, in any form, on the Internet, please provide us with the location address or
website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.



Questions
You can contact us at questions@packtpub.com if you are having a problem with any aspect of the
book, and we will do our best to address it.



Hardware Planning
In this chapter, we will learn about selection and provisioning of hardware necessary to build a
highly-available PostgreSQL database. We will cover the following recipes in this chapter:

Planning for redundancy
Having enough IOPS
Sizing storage
Investing in a RAID
Picking a processor
Making the most of memory
Exploring nimble networking
Managing motherboards
Selecting a chassis
Saddling up to a SAN
Tallying up
Protecting your eggs



Introduction
What does high availability mean? In the context of what we're trying to build, it means we want
our database to start and remain online for as long as possible. A critical component of this is the
hardware that hosts the database itself. No matter how perfect a machine and its parts may be,
failure or unexpected behavior of any element can result in an outage.

So how do we avoid these unwanted outages? Expect them. We must start by assuming
hardware can and will fail, and at the worst possible moment. If we start with that in mind, it
becomes much easier to make decisions regarding the composition of each server we are
building.

Make no mistake! Much of this planning will rely on worksheets, caveats, and compromise.
Some of our choices will have several expensive options, and we will have to weigh the benefits
offered against our total cost outlay. We want to build something stable, which is not always
easy. Depending on the size of our company, our purchasing power, and available hosting
choices, we may be in for a rather complicated path to that goal.

This chapter will attempt to paint a complete picture of a highly-available environment in such a
way that you can pick and choose the best solution without making too many detrimental
compromises. Of course, we'll offer advice to what we believe is the best overall solution, but
you don't always have to take our word for it.

For the purposes of this chapter, we will not cover cloud computing or other
elastic allocation options. Many of the concepts we introduce can be adapted to
those solutions, yet many are implementation-specific. If you want to use a
cloud vendor such as Amazon or Rackspace, you will need to obtain manuals
and appropriate materials for applying what you learn here.



Planning for redundancy
Redundancy means having a spare; but a spare for what? Everything. Every single part, from
motherboard to chassis, power supply to network cable, disk space to throughput, should have at
least one piece of excess equipment or capacity available for immediate use. Let's go through as
many of these as we can imagine, before we do anything that might depend on something we
bought.



Getting ready
Fire up your favorite spreadsheet program; we'll be using it to keep track of all the parts that go
into the server, and any capacity concerns. If you don't have one, Open Office and Libre Office
are good free alternatives for building these spreadsheets. Subsequent sections will help
determine most of the row contents.



How to do it...
We simply need to produce a hardware spreadsheet to track our purchase needs. We can do that
with the following steps:

1. Create a new spreadsheet for parts and details.
2. Create a heading row with the following columns:

Type
Capacity
Supplier
Price
Count
Total cost

3. Create a new row for each type of the following components:
Chassis
CPU
Hard Drive (3.5")
Hard Drive (2.5")
Hard Drive (SSD)
Motherboard
Network Card
Power Supply
RAID Controller
RAM
SAN

4. In the Chassis row, under the Total cost column, enter the following formula: =D2*E2
5. Copy and paste the formula into the Total Cost column for all the rows we created. The

end result should look something like the following screenshot:



How it works...
What we've done is prepare a spreadsheet that we can fill in with information collected from the
rest of this chapter. We will have very long discussions regarding each part of the server we want
to build, so we need a place to collect each decision we make along the way.

The heading column can include any other details you wish to retain about each part, but for the
sake of simplicity, we are stuck to the bare minimum. This also goes for the parts we chose for
each column. Depending on the vendor you select to supply your server, many of these
decisions will already be made. It's still a good idea to include each component in case you need
an emergency replacement.

The Total Cost column exists for one purpose: to itemize the cost of each part, multiplied by how
many we will need to complete the server.

To make sure we account for the redundancy element of the spreadsheet, we
strongly suggest inflating the number you use for the Count column, which will
also increase the price automatically. This ensures we automatically include
extra capacity in case something fails. If you would rather track this separately,
add a Spare Count column to the spreadsheet instead.

We'll have discussions later as to failure rates of different types of hardware, which will influence
how many excess components to allocate. Don't worry about that for now.



There's more...
It's also a very good idea to include a summary for all of our Total Cost columns, so we get an
aggregate cost estimate for the whole server. To do that with our spreadsheet example, keep in
mind that the Total Cost column is listed as column F.

To add a Sum Total column to your spreadsheet on row 15, column F, enter the formula
=SUM(F2:F12). If you've added more columns, substitute for column F whichever column now
represents the Total Cost. Likewise, if you have more than 13 rows of different parts, use a
different row to represent your summary price than row 15.



See also
There are a lot of spreadsheet options available. Many corporations supply a copy of Microsoft
Excel. However, if this is not the case, there are many alternatives as follows:

Google Docs: http://sheets.google.com/
Open Office: http://www.openoffice.org/
Libre Office: http://www.libreoffice.org/

All of these options are free to use and popular enough that support and documentation are
readily available.

http://sheets.google.com/
http://www.openoffice.org/
http://www.libreoffice.org/


Having enough IOPS
IOPS stands for Input/Output Operations Per Second. Essentially, this describes how many
operations a device can perform per second before it should be considered saturated. If a device
is saturated, further requests must wait until the device has spare bandwidth. A server
overwhelmed with requests can amount to seconds, minutes, or even hours of delayed results.

Depending on application timeout settings and user patience, a device with low IOPS appears as
a bottleneck that reduces both system responsiveness and the perception of quality. A database
with insufficient IOPS to service queries in a timely manner is unavailable for all intents and
purposes. It doesn't matter if PostgreSQL is still available and serving results in this scenario, as
its availability has already suffered. We are trying to build a highly-available database. To do so,
we need to build a server with enough performance to survive daily operation. In addition, we
must overprovision for unexpected surges in popularity, and account for future storage and
throughput needs based on monthly increases in storage utilization.



Getting ready
This process is more of a thought experiment. We will present some very rough estimates of IO
performance for many different disk types. For each, we should increment entries in our
hardware spreadsheet based on perceived need.

The main things we will need for this process are numbers. During development, applications
commonly have a goal, expected client count, table count, estimated growth rates, and so on.
Even if we have to guess for many of these, they will all contribute to our IOPS requirements.
Have these numbers ready, even if they're simply guesses.

If the application already exists on a development or stage environment, try to
get the development or QA team to run operational tests. This is a great
opportunity to gather statistics before choosing potential production hardware.



How to do it...
We need to figure out how many operations per second we can expect. We can estimate this by
using the following steps:

1. Increment the Count column in our hardware spreadsheet for one or more of the following,
and round up:

For 3.5" hard drives, divide by 200
For 2.5" hard drives, divide by 150
For SSD hard drives, divide by 50,000, then add two

2. Multiply these numbers together, and double the result. Then multiply the total by eight.
3. Count the amount of tables used in those queries. If this is unavailable, use three.
4. Obtain the average number of queries per page. If this is unavailable, use 10.
5. Collect the amount of simultaneous database connections. Start with the expected user

count, and divide by 50.
6. Add 10 percent to any count greater than 0 and then round up.



How it works...
Wow, that's a lot of work! There's a reason for everything, of course.

In the initial three steps, we're trying to figure out how many operations might touch an object
on disk. For every user that's actively loading a page, for every query in that page, and for every
table in that query, that's a potential disk read or write.

We double that number to account for the fact we're estimating all of this. It's a common
engineering trick to double or triple calculations to absorb unexpected capacity, variance in
materials, and so on. We can use that same technique here.

Why did we suggest dividing the user count by 50 to get the connection total?
Since we do not know the average query runtime, we assume 20 ms for each
query. For every query that's executing, a connection is in use. Assuming full
utilization, up to 50 queries can be active per second. If you have a production
system that can provide a better query runtime average, we suggest using that
value instead.

But why do we then multiply by eight? In a worst (or best) case scenario, it's not uncommon for
an application to double the amount of users or requests on a yearly basis. Doubled usage means
doubled hardware needs. If requirements double in one year, we would need a server three times
more powerful (1 + 2) than the original estimates to account for the second year. Another
doubling would mean a server seven times better (1 + 2 + 4). CPUs, RAM, and storage are
generally available as powers of two. Since it's fairly difficult to obtain storage seven times faster
than what we already have, we multiply the total by eight.

That gives a total IOPS value roughly necessary for our database to immediately serve every
request for the next three years, straight from the disk device. Several companies buy servers
every three or four years as a balance between cost and capacity, so these estimates are based
on that assumption.

In the next step, we get a rough estimate of the amount of disks necessary to serve the required
IOPS. Our numbers in these steps are based on hard drive performance. A 15,000 RPM hard
drive can serve under ideal conditions, roughly 200 operations per second. Likewise, a 10,000
RPM drive can provide about 150 operations per second. Current SSDs at the time of writing
commonly reach 200,000-300,000 IOPS, and some even regularly eclipse a cool million.
However, because they are so fast, we need far fewer of them, and thus the risk is not as evenly
distributed. We artificially increase the amount of these drives because, again, we are erring
toward availability.

Finally, we add a few extra devices for spares that will go in a closet somewhere, just in case one
or more drives fail. This also insulates us from the rare event that hardware is discontinued or
otherwise difficult to obtain.



There's more...
Figuring out the number of IOPS we need and the devices involved is only part of the story.



A working example
Sometimes these large lists of calculations make more sense if we see them in practice. So let's
make the assumption that 20,000 users will use our application each second. This is how that
would look:

20000 / 50 = 400
Default queries per page = 10
Default tables per query = 3
400 * 10 * 3 * 2 = 2400
2400 * 8 = 19200
19200 IOPS in drives:

3.5" drives: 19200 / 200 = 96
2.5" drives: 19200 / 150 = 128
SSDs: 2 + (19200 / 50000) = 2.38 ~ 3

Add 10 percent:
3.5" drives: 96 + 9.6 = 105.6 ~ 106
2.5" drives: 128 + 12.8 = 140.8 ~ 141
SSDs: 3 + 0.3 = 3.3 ~ 4

We are not taking space into account either, which would also increase our SSD count. We will
be discussing capacity soon.



Making concessions
Our calculations always assume worst-case scenarios. This is both expensive and in many cases,
overzealous. We ignore RAM caching of disk blocks, we don't account for application frontend
caches, and the PostgreSQL shared buffers are also not included.

Why? Crashes are always a concern. If a database crashes, buffers are forfeit. If the application
frontend cache gets emptied or has problems, reads will be served directly from the database.
Until caches are rebuilt, query results can be multiple orders of magnitude slower than normal
for minutes or hours. We will discuss methods of circumventing these effects, but these IOPS
numbers give us a baseline.

The number of necessary IOPS, and hence disk requirements, are subject to risk evaluation and
cost benefit analysis. Deciding between 100 percent coverage and an acceptable fraction is a
careful balancing act. Feel free to reduce these numbers; just consider the cost of an outage as
part of the total. If a delay is considered standard operating procedures, fractions up to 50
percent are relatively low risk. If possible, try to run tests for an ultimate decision before
purchase.



Sizing storage
Capacity planning for a database server involves a lot of variables. We must account for table
count, user activity, compliance storage requirements, indexes, object bloat, maintenance,
archival, and more. We may even have to consider application features that do not exist. New
functionality often brings new tables, new storage standards, and archival needs. Planning done
now may have little relevance to future usage.

So how do we produce functional estimates for disk space, with so many uncertain or fluctuating
elements? Primarily, we want to avoid a scenario where we do not have enough space. Running
out of disk space results in ignored queries at best, and a completely frozen and difficult to repair
database at worst. Neither are ingredients of a highly-available environment.

So we have a lower bound in this case, enough to avoid catastrophe, though it's in our best
interest to allocate more than the bare minimum.



Getting ready
Since there are a lot of variables that contribute to the volume of storage we want, we need
information about each of them. Gather as many data points as possible regarding things such as:
largest expected tables and indexes, row counts per day, indexes per table, desired excess, and
anything else imaginable. We'll use all of it.

This is much easier if we already have a database, and are now trying to ensure
it is highly-available. Even if the database is only in development or staging
environments at this moment, a few activity simulations at expected user counts
should provide a basis for many of our numbers. No matter the case, revisit
estimates as concrete details become available.



How to do it...
We can collect some of the information we want from PostgreSQL if we have a running instance
already. If not, we can use baseline numbers. Follow these steps if you already have a
PostgreSQL database available:

1. Submit this query to get the amount of space used by all databases:

        SELECT pg_size_pretty(sum(pg_database_size(oid))::BIGINT) 
          FROM pg_database; 

2. Wait one week.
3. Perform the preceding query again.
4. Subtract the first reading from the second.

Downloading the example code You can download the example code files for all
Packt books that you have purchased from your account at http://www.packtpub.co
m. If you purchased this book elsewhere, you can visit http://www.packtpub.com/supp
ort and register to have the files e-mailed directly to you.

If we don't have an existing install and are working with a project that has yet to start
development, we can substitute a few guesses instead. Without a running PostgreSQL instance,
use the following assumptions:

Our databases have a total size of 100 GB
After one week, our install grew by 1.5 GB

Of course, you don't have to start with these rather arbitrary numbers for your
own use case. Without a source database, we simply recommend starting with
medium-size growth values to avoid underestimating. If our estimates are too
low, the database could exceed our plans and require emergency resource
allocation. That's not something we want in a highly-available cluster!

Next, we can calculate our growth needs for the next three years. Perform the following steps:

1. Multiply the change in install size by four.
2. Apply the following formula, where x is the most recent size of the databases, and y is the

value from the previous step: x * (1 + y/x)^36.
3. Multiply the previous result by two.

http://www.packtpub.com
http://www.packtpub.com/support


How it works...
In the end, this is the magic of compounding interest. If we have an existing database installed, it
can tell us not only how much space it currently consumes, but also how quickly it's currently
growing. If not, we can start with a medium size and substitute a growth assumption that will
cause the cumulative total to double in size every year. Remember, we begin by working with
worst-case scenarios, and modify the numbers afterwards.

What if we don't need compounding interest because our expected growth is
linear? It's always easier to start with too much space than to add more later. If
you know your table count will rarely change, users will not increase in number,
or data streams are relatively consistent, feel free to drop the compounded
interest formula. Otherwise, we suggest using it anyway.

The PostgreSQL query we used takes advantage of the system catalog and known statistics
regarding the database contents. The pg_database_size function always returns the number of
bytes a database uses, so we must use the pg_size_pretty function to make it more human
readable.

Once we know the size of the database instance and its growth rate, we can apply a simple
compounding interest function to estimate the volume at any point in the future. This not only
accounts for the current growth rate, but also incorporates additional accumulation caused by
increases in clients, table counts, and other unspecified sources. It's extremely aggressive, since
we take the weekly growth rate, translate that to a monthly rate, and apply the compounding
monthly instead of yearly.

And then we use a standard engineering tactic and double the estimate, just in case. Using the
provided values--that of a 100 GB database that grows at 1.5 GB per week-we would have an
815 GB database install in three years. With a system that large, we should allocate at least 1630
GB. If we simply added the 1.5 GB weekly growth rate for three years, the final tally would
only be 334 GB, and we could get by with 668 GB.



There's more...
Don't let our formulas define your only path. Let's explore how they apply in a real-world
situation, and how we can modify them to better fit our systems.



Real-world example
There are quite a few very large databases using PostgreSQL. Whether or not they have
thousands of tables and indexes, billions of rows, or handle billions of queries per day, statistics
help us plan for the future. Let's apply the previous steps to an example database that actually
exists:

The database is currently 875 GB
The database was 865 GB last week
The database grows by 10 GB per week
Thus, the database grows by 40 GB every four weeks
Using the formula we discussed in step two of this recipe, the number become this: 875 *
(1 + 40/875)^36 = 4374 GB
Doubled, this is 8748 GB

Keep in mind that this estimation technique may grossly exaggerate the necessary space. If we
take the existing 40 GB monthly growth rate, the database would only be 2315 GB in three
years. Of course, 2.3 TB is still a very large database; it's just half as large as our estimate.



Adjusting the numbers
We already mentioned that the growth curve used here is extremely aggressive. We can't risk
ever running out of space in a production database and still consider ourselves highly-available.
However, there is probably a safe position between the current growth rate of the database, and
the compounded estimate, especially since we are doubling the allocation anyway.

In the preceding real-world example, the database is likely to have a size between 2315 GB and
4374 GB. If we split the difference, that's 3345 GB. Furthermore, we don't necessarily have to
double that number if we're comfortable having a disk device that's 70 percent full three years
from now instead of 50 percent. With that in mind, we would probably be safe with 5 TB of
space instead of 9 TB. That's a vast saving if we're willing to make those assumptions.



Incorporating the spreadsheet
At the beginning of this chapter, we created a hardware cost spreadsheet to estimate the total
cost of a highly-available server. If we were following the chapter, our spreadsheet already
accounts for the minimum number of devices necessary to provide the IOPS we want.

Suppose we needed 15,000 IOPS, and decided to use 2.5-inch drives. That would require over
40 drives. Even at only 300 GB each, that's 12 TB of total available space. Yet the case for
SSDs is the opposite. For our previous example, we would need at least five 1 GB SSD drives,
or one very large PCIe SSD to provide 5 TB of space for the adjusted sample.

Whichever solution we finally choose, we can take the advice from every section so far. At this
point, the spreadsheet should have a device count that should satisfy most, if not all, of our
space and IOPS requirements.



Investing in a RAID
RAID stands for Redundant Array of Independent (or Inexpensive) Disks, and often
requires a separate controller card for management. The primary purpose of a RAID is to
combine several physical devices into a single logical unit for the sake of redundancy and
performance.

This is especially relevant to our interests. Carnegie Mellon University published a study in 2007
on hard drive failure rates. They found that hard drives fail at about 3 percent per year.
Furthermore, they found that drive type and interface contributed little to disk longevity, and that
hard drives do not reflect a tendency to fail early, as was commonly accepted. These findings
were largely corroborated by a parallel study released the same year by Google.

What does this mean? For our purposes in building a highly-available server, it means hard drives
should be looked at with great disdain. Larger databases will depend on tens or hundreds of hard
drives in order to represent several terabytes of data. With a 3 percent failure rate per year, a
100-drive array would lose roughly nine devices after three years.

This is the primary reason that all of our calculations regarding disk devices automatically
assume a 10 percent excess inventory allotment. If a drive fails, we need an immediate
replacement. Vendors are not always capable of delivering a new drive quickly enough. Having a
spare on hand, ideally at the hosting facility or in the server itself, helps ensure continuous
uptime.

So how does RAID figure into this scenario? If we hosted our database on several bare hard
drives, knowing that around 10 percent of these drives will fail in three years, outages would be
inevitable. What we want is an abstraction layer, one that can present any amount of hard drives
as a single whole, keeping reserves for drive errors, handling checksums for integrity, and
mirroring for redundancy.

RAID provides all of that in several convenient configurations. Good controller cards often
include copious amounts of cache and other management capabilities. Instead of manually
assigning dozens of drives, split them into several usable array allocations that reflect much lower
operational risk.

Knowing all of this, databases have special needs when it comes to RAID and the performance
characteristics associated with each RAID type. Now we will explore the selection criteria for our
database, and how to simplify the process.



Getting ready
That was a long introduction, wasn't it? Well, we also strongly suggest taking a look at the
Having enough IOPS and Sizing storage recipes before continuing. Make sure the hardware
spreadsheet has a drive count for the type of drives going into the server we're designing. If
we're using PCIe instead of standard SSD drives, this section can be skipped.



How to do it...
Only a few RAID levels matter in a database context. Perform these steps to decide which one is
right for this server:

If this is an OLTP (Online Transaction Processing) database primarily for handling very
high speed queries, use RAID level 1+0
If this is a non-critical development or staging system, use RAID level 5
If this is a non-critical OLAP (Online Analytic Processing) reporting system, use RAID
level 5
If this is a critical OLAP reporting system, use RAID level 6
If this is a long-term storage OLAP warehouse, use RAID level 6



How it works...
We made a lot of snap decisions here. There are quite a few RAID levels that we simply ignored,
so there should be some discussion regarding the reasoning we used.

Let's begin with RAID level 0. Level 0 stripes data across all disks at once. It's certainly
convenient, but a single drive failure will lose all stored information in the array. What about
RAID level 1? Level 1 acts as a full mirror of all data stored. For every set of drives, a second
set of drives has an exact copy. If a drive fails in one set, the second set is still available.
However, if that set also experiences any failure, all data is lost.

When we talk about RAID 1+0, we actually combine the mirroring capability of RAID 1 with
the striping of RAID 0. How? Take a look at the following diagram for six disks:

In this RAID 1+0, we have three sets, each consisting of two disks. Each of the two disks mirror
each other, and the data is striped across all three sets. We could lose a disk from each set and
still have all of our data. We only have a problem if we lose two disks from the same set, since
they mirror each other. Overall, this is the most robust RAID level available, and the most
commonly used for OLTP systems.

RAID level 5 and 6 take a different approach. Again, let's look at six drives and see a very
simplified view of how RAID 5 would operate in that situation:

 

The solid line shows that the data is spread across all six drives. The dotted line is the parity
information. If a drive fails and the block can't be read directly from the necessary location, a
RAID 5 will use the remaining parity information from all drives to reconstruct the missing data.
The only real difference between a RAID 5 and a RAID 6 is that a RAID 6 contains a second
parity line, so up to two drives can fail before the array begins operating in a degraded manner.

Using a RAID 5 or 6 offers more protection than a RAID 0, with less cost than a RAID 1+0,
which requires double the amount of desired space. We selected these for non-critical OLAP
systems because they usually need space over performance, and are not as sensitive to
immediate availability pressures as an OLTP system.



There's more...
We mentioned controller cards earlier, and noted that they also offer on-board cache. RAID has
been around for a long time, and though disks are getting much larger, they haven't experienced
an equivalent increase in speed. In scenarios that use RAID 5 or 6, writes can also be slowed
since each write must be committed to several devices simultaneously in the form of parity.

To combat this, RAID controllers allow configuration of the cache itself, to buffer writes in favor
of reads, or vice versa. Don't be afraid to adjust this and run tests to determine the best cache
mix. If everything else fails, start with a 100 percent for writes, as they are the most in need of
caching. Keep a close eye on write performance, and give it priority. Generally, the OS cache
does a better job of caching reads, and has much more memory available to do so.



See also
Disk failures in the real world: http://www.cs.cmu.edu/~bianca/fast07.pdf
Failure Trends in a Large Disk Drive Population: http://research.google.com/pubs/pub32774.html
RAID: http://en.wikipedia.org/wiki/RAID

http://www.cs.cmu.edu/~bianca/fast07.pdf
http://research.google.com/pubs/pub32774.html
http://en.wikipedia.org/wiki/RAID


Picking a processor
In selecting a CPU for our server, we have a lot to consider. At the time of writing, the current
trend among processors in every space-including mobile-is toward multiple cores per chip. CPU
manufacturers have found that providing a large number of smaller processing units spreads
workload horizontally for better overall scalability.

As users of PostgreSQL, this benefits us tremendously. PostgreSQL is based on processes
instead of threads. This means each connected client is assigned to a process that can use a CPU
core when available. The host operating system can perform such allocations without any input
from the database software. Motherboards have limited space, so we need more cores on the
same limited real estate, which means more simultaneously active database clients.

Once again, our discussion veers toward capacity planning for a three or four year cycle. Limited
processing capability leads to slow or delayed queries, or a database that is incapable of
adequately handling increasing amounts of simultaneous users. Yet simply choosing the fastest
CPU with the most cores and filling the motherboard can be a staggering waste of resources. So
how, then, do we know what to buy?

That's what we're here to figure out.



Getting ready
Luckily, there are only really two manufacturers that produce commodity server-class CPUs.
Furthermore, each vendor has a line of CPU designed specifically for server use. AMD and Intel
both provide a similar price to performance curves, but that's where the comparison ends.

At the time of writing, the Intel Xeon CPUs benchmark is significantly higher than equivalently
priced AMD Opterons. This is true for both mid-range and high-end processors. Before going
through this recipe, it would be a good idea to visit AnandTech, Tom's Hardware, Intel, and
AMD, just to get a basic idea of the landscape. There are a lot of benchmarks that compare
various models of CPUs, so don't take our word for it.

Because of this current performance disparity, we'll focus exclusively on Intel processors for
now. This situation has changed in the past, and may do so again in the future.



How to do it...
We can collect some of the information we want from the database if we have one already. If we
already have a PostgreSQL database available, we can execute a query to start our calculations.
This works best if used at the most active time of day.

Execute this query as a superuser to get the count of simultaneous active users if you have
PostgreSQL 9.2 or higher:

SELECT count(1) FROM pg_stat_activity 
 WHERE state = 'active'; 

Use this query if you have an older version:

SELECT count(1) FROM pg_stat_activity 
 WHERE current_query NOT LIKE '<IDLE>%'; 

If we don't have a PostgreSQL server, we need to make an educated guess. Use these steps to
approximate:

1. Work with the application developers to obtain a count of expected clients active per
second.

2. Divide the previous number by 50 to remain consistent with our 20ms query assumption.

Once we have some idea of how many queries will be active simultaneously, we need to figure
out the processor count. Follow these steps:

1. If we already know how many disks will store our data, use this number. In the case of an
SSD base, use 0.

2. Subtract the previous number from our count of active users.
3. Divide the previous result by two.
4. Apply the following formula, where x is the value from the previous step: x * (1.4)^3.



How it works...
Before we can even begin to decide on a processor count, we need a baseline. With a working
PostgreSQL server to base our numbers on, we can just use the amount of existing users during
a busy period. Without that, we need to guess. This guess can actually be pretty close, depending
on how the application was targeted. If the intent is to service 1000 users per second, we should
start there since that's the same assumption the company is using to buy application and web
servers.

After that, we are applying a commonly accepted formula used by PostgreSQL administrators
for a very long time. The ideal number of active connections is equal to twice the amount of
available processor cores, plus the amount of disk spindles. Amusingly, the disk spindles increase
the ideal number of connections because they contribute seek time, which forces the processor
to wait for information. While a processor is waiting for input for one connection, the operating
system may decide to lend the processor to another until the data is retrieved.

So, we apply that accepted formula in reverse. First, we subtract the number of spindles, and
then divide by two to obtain how many CPUs we should have for our expected workload.

Afterwards, we assume a 40 percent increase in active clients on a yearly basis, and increase the
CPU core count accordingly for three years. Note that this is a very aggressive growth rate. If
we have historical growth data available, or the company is expecting a different value, we
should use that instead.

When purchasing CPUs, no matter how cores are distributed, the final total should be equal or
greater than the number we calculated. If it isn't, the application may require more aggressive
caching than expected, or we may need to horizontally scale the database. We're not ready to
introduce that yet, but keep it in mind for later.



There's more...
The processor count is only part of the story. Intel CPUs have a few added elements we need to
consider.



Hyperthreading
Newer generations of Intel processors often provide a feature called hyperthreading, which
splits each physical processor core into two virtual cores. Historically, this was not well received,
as benchmarks often illustrated performance degradation when the feature was enabled.

Since the introduction of Nehalem-based architecture in 2008, this is no longer the case. While
doubling the processor count does not result in a doubling of throughput, we've run several tests
that show up to 40 percent improvement over using physical cores alone. This may not be
universal, but it does apply to PostgreSQL performance tests. What this means is that the
commonly accepted formula for determining ideal connection count requires modification.

Current advice is to only multiply the physical core count by two. Assuming a 40 percent
increase by enabling hyperthreading, the new formula becomes: 2 * 1.4 * CPUs + spindles.
With that in mind, if we wanted to serve 1000 connections per second, and used SSDs to host
our data, our minimum CPU count would be: 1000 / 50 / 1.4, or 14. Half of that is seven, but no
CPU has seven physical cores, so we would need at least eight. If we used the physical cores
alone for our calculation, we would need 10.



Turbo Boost
Recent Intel processors also have something called Turbo Boost. Some vendor motherboards
disable this by default. Make sure to go through BIOS settings before performing acceptability
tests, as turbo mode can provide up to 25 percent better performance in isolated cases.

This is possible because the maximum speed of the core itself is increased when resources are
available. A 2.6 GHz core might operate temporarily at 3.0 GHz. For queries that are dependent
on nested loops or other CPU-intensive operations, this can drastically reduce query execution
times.



Power usage
Intel family chips often have low voltage versions of their high performance offerings. While
these processors require up to 30 percent less electricity, they also run up to 25 percent slower.
Low power name designations are not always consistent, so when choosing a processor, make
sure to compare specifications of all similarly named chips.

Beware of accidentally choosing a low power chip meant for a high performance database.
However, these chips may be ideal for warehouse or reporting database use, since those systems
are not meant for high throughput or vast amounts of simultaneous users. They often cost less
than their high-performance counterparts, making them perfect for systems expecting low
utilization.



See also
Intel Xeon CPUs: http://en.wikipedia.org/wiki/Xeon
AMD Opteron CPUs: http://en.wikipedia.org/wiki/Opteron
AnandTech: http://www.anandtech.com/
Tom's Hardware: http://www.tomshardware.com/

http://en.wikipedia.org/wiki/Xeon
http://en.wikipedia.org/wiki/Opteron
http://www.anandtech.com/
http://www.tomshardware.com/


Making the most of memory
The primary focus when selecting memory for a highly-available system is stability. It's no
accident that most, if not all, server-class RAM is of the error-correcting variety. There are a few
other things to consider, which may not appear obvious at first glance.

Due to the multi-core nature of our CPUs, the amount of addressable memory may depend on
the core count. In addition, speed, latency, and parity are all considerations. We also must
consider the number of channels reported by each CPU; failing to match this with an equal count
of memory sticks will drastically reduce performance.

Let's make our server fast and stable by considering our memory options.



Getting ready
Some of the decisions we will make depend on the capabilities of the CPU. Make sure to read
through the Picking a processor recipe before continuing. If we have a PostgreSQL database
available, there's also a query that can prepare us for selecting the most advantageous count of
memory modules. It's also a very good idea to complete the Sizing storage recipe to get a better
idea for choosing an amount of memory.



How to do it...
We can collect some of the information we want from PostgreSQL if we have an install already.
Follow these steps if there's an existing database install that we can use:

1. Execute the following query to obtain the size of all databases in the instance:

        SELECT pg_size_pretty(sum(pg_database_size(oid))::BIGINT) 
          FROM pg_database; 

2. Multiply the result by eight.

If we don't have an existing database, we should use a size estimate of the database install after
three years. Refer to the Sizing storage recipe to obtain this estimate. Then, perform the
following steps:

1. Divide the current or estimated database storage size by ten to obtain the minimum amount
of memory.

2. Multiply our ideal CPU chip count by four to get the memory module count.
3. Divide the minimum memory amount by the module count to get the minimum module

size.
4. Round up to the nearest available memory module size.



How it works...
The important part of this recipe is starting with a viable estimate of the database size. Since a
lack of RAM won't cause the database to crash or operate improperly, we can use looser
guidelines to obtain this number. Hence, three years down the road, an existing database install
could be eight times larger than its current size.

Why do we then divide that number by ten? Our goal here is to maximize the benefit of the OS-
level cache, which will consume a majority of our RAM. This estimate gives us a value that is
ten times smaller than the space our database consumes. At this scale, data that is frequently
fetched from disk is likely to be served from memory instead. The alternative is read latency due
to insufficient memory for disk caching.

Most current CPUs are quad-channel, and thus operate best when the number of modules per
processor is a multiple of four. Since we should have determined how many processor cores
would be ideal for our system in the Picking a processor recipe, we automatically know the
most efficient memory module count. Why do we multiply by four, regardless of how many
memory channels the CPU has? Adding more memory modules is not wasted on chips with
fewer channels, and provides a possible upgrade path.

Dividing the memory amount by the module count gives our minimum module size. RAM comes
in many dimensions, and our calculation is not likely to match any of the available dimensions
for purchase, so we need to round up. Why not round down? The operating system will utilize
all available RAM to cache and buffer important data. Unless the greater amount is extremely
expensive in comparison, any excess memory will not be wasted.



There's more...
We didn't focus on memory speed, timings, or latency here. Timing and latency can affect
performance, but our primary focus is stability. We're always free to order faster or better
memory as our budget allows.

Memory speed, on the other hand, is a more visible factor. Every memory speed works with a
multiplier to match the highest compatible motherboard bus speed. This directly controls how
quickly the CPU can utilize available RAM. Before buying memory, research the stated clock
speed and try to match it with one of the faster settings compatible with both the CPU and
motherboard.

For example, DDR3-1600 is twice as fast as DDR3-800 since it operates at 200 MHz, as
opposed to 100 MHz. Database benchmarks would be vastly different between these two
memory speeds, even with the same CPU. Fast memory means PostgreSQL can make more
immediate use of cached data, and produce results more quickly.



Exploring nimble networking
The network card enables the database server to exchange data with the outside world. This
includes far more than web servers, spreadsheets, loading jobs, application servers, and other
data consumers. The database server is part of a large continuum of activity, much of which will
center around maintenance, management, and even filesystem availability.

Little of this other traffic involves PostgreSQL directly. Much happens in the background
regardless of the database and its current workload. Yet even one mishandled network packet
across an otherwise normal driver can render the entire server invisible to the outside world, or
in extreme cases, even lead to a system panic and subsequent shutdown. On a busy database
server, network cards can handle several terabytes of traffic on a daily basis; the margin of error
for such a critical piece of hardware is exceptionally slim.

What's more, network bandwidth can easily be saturated by an aggressive backup strategy,
which is something critical to a highly-available database. For PostgreSQL systems utilizing
streaming replication or WAL archival, that traffic contributes quite a bit of bandwidth to the
overall picture. If our backups are delayed, or replicas sit idle waiting for network packets, our
exposure to risk is high indeed.

That's not to say everything is doom and gloom! With the right network setup and accompanying
hardware, there should be more than enough room for any and all traffic our database server
needs. Let's explore all the copious options for connecting our database to the outside world, and
making sure it stays there.



Getting ready
This is one of those times it pays to do research. At the time of writing, the current high-speed
network standards include 1 Gb/s, 10 Gb/s, 40 Gb/s, and even 100 Gb/s Ethernet. However, 40
Gb/s network cards are still extremely rare, and 100 Gb/s is generally reserved for fiber-based
switches and data center use.

This means we will be covering 1 Gb/s and 10 Gb/s interfaces. While we will do our best to
outline all of the important aspects of these technologies to simplify the process, we strongly
encourage using the Internet to validate current availability and performance characteristics.



How to do it...
Let's begin with a few basic calculations. Look at these following numbers that represent an
estimate of interface speed after accounting for overhead:

1000 Mb/s * B/10 b = 100 MB/s
10,000 Mb/s * B/10 b = 1,000 MB/s

 

Next, consider how many ways this will be distributed. If we have an existing PostgreSQL setup,
follow these steps:

1. Execute the following query to determine the number of existing replicas:

        SELECT count(1)+1 AS streams 
          FROM pg_stat_replication; 

2. Multiply streams by 160 for maximum MB/s needed by replication streams.
3. Execute the following queries together in a psql connection during a busy time of day on a

production database:

        SELECT SUM(pg_stat_get_db_tuples_fetched(oid)) AS count1 
          FROM pg_database; 
        SELECT pg_sleep(1); 
        SELECT SUM(pg_stat_get_db_tuples_fetched(oid)) AS count2 
          FROM pg_database; 

4. Subtract the results of count1 from count2 for the number of rows fetched from the database
per second.

5. Divide the number of rows per second by 10,000 for MB/s used by PostgreSQL
connections.

6. Add MB/s for streams to MB/s for connections.

Without an existing database, follow these steps for some basic bandwidth numbers:

1. Multiply the desired number of PostgreSQL replicas by 160 for the maximum MB/s
needed by replication streams.

2. Assume one WAL stream for an offsite disaster recovery database copy.
3. Start with at least one live hot streaming standby copy.
4. Include any additional database mirrors.
5. Estimate the active client count as discussed in the Picking a Processor recipe.
6. Multiply the active client count estimate by 5 for MB/s used by PostgreSQL connections.
7. Add MB/s for streams to MB/s for connections.

No matter which checklist we follow, we should double the final tally.



How it works...
If we have an existing database, there is a wealth of statistical information at our fingertips. The
first query we ran gave us a slightly inflated count of copies of our database. For each copy, data
must be transferred from the database to another server. This data is based on PostgreSQL WAL
output, and these files are 16 MB each. A busy server can produce more than ten of these per
second, so we multiply the count of streams by 160 to produce an aggressive amount of network
overhead used by database replicas. As usual, this may be overzealous; it's always best to
observe an actual system to measure maximum WAL segments generated during heavy write
loads.

In PostgreSQL 9.2 and higher, database replicas can stream from other
database replicas. This means network traffic can be distributed better among
streaming clients, reducing network bandwidth pressure on production systems.
PostgreSQL 9.2 also allows direct backup of streaming replicas. This means one
or two replicas may be the most the production database ever needs to supply
with WAL traffic.

For the next set of numbers, we need to know how much data database connections commonly
retrieve. PostgreSQL tracks the number of table rows fetched, but it's a cumulative total. By
waiting until a busy time of day and asking the database how many rows have been fetched
before and after a one-second wait, we know how many rows are fetched per second.

However, we still don't know how many bytes these rows consume. A good estimate of this is
100 bytes per row. Then we only have to multiply the number of rows by 100 to find the
amount of bandwidth we would need. So why do we divide by 10,000? What's 10,000
multiplied by 100? One million. On dividing by 10,000, we produce the number of megabytes
per second that those tuple fetches probably used.

If an average of 100 bytes per row isn't good enough, we can connect to one of
our primary databases and ask what the average is. Use this query: SELECT
sum(pg_relation_size(oid)) / sum(reltuples) FROM pg_class;

By adding the amount of streaming traffic to the amount of connection traffic, we have a good,
if slightly inflated, idea of how much bandwidth the server needs.

Without a working database to go by, we need to use a few guesses instead. Luckily, the number
of streams for a reliable database infrastructure starts at two: one for a live standby, and one for
an offsite archive. Each additional desired mirror should increase this total. Again, we multiply
by 160 to obtain the maximum megabytes per second that all these streams are likely to require.

The amount of bandwidth client connections use is slightly harder to estimate. However, if we
worked through previous chapter sections, we have a CPU estimate, which also tells us the
maximum number of database clients that the server can reliably support. If we take that value
and multiply by five, that provides a rough value in megabytes per second as well.

Again, we just add those two totals together, and we know the minimum speed of our network.



Finally, we multiply the final tally by two, to account for any unknown maintenance, backup,
and filesystem synchronization overhead.



There's more...
Besides producing an estimate through some simple calculations, we also want to make note of a
few other networking details.



A networking example
This may be easier to visualize with a real example. Let's start with a very active database that
has one streaming replica, and one offsite archive. Furthermore, connected clients regularly fetch
five million rows per second. Now, let's go through our steps:

1. 2 * 160 = 320 MB/s.
2. 5,000,000 / 10,000 = 50 MB/s.
3. 320 + 50 = 370 MB/s.
4. 370 * 2 = 740 MB/s.

That's a very high value! A 1 Gb/s interface can only supply 100 MB/s at most, so we would
need eight of those to produce the necessary bandwidth. Yet a 10 Gb/s interface can supply
1000 MB/s, so it can easily handle 740 MB/s, and have room to spare. Would we rather have
eight network cables coming out of our server, or one?



Remembering redundancy
One of the first things this chapter suggested was to consider extra inventory. What we haven't
really covered yet involves online backups. Most server-class motherboards include not just one,
but two on-board network modules. Each module commonly provides four Ethernet interfaces.

Usually each interface is considered separate, and two interfaces from each module are
connected to two switches in the data center. This allows server administrators to seamlessly
perform maintenance on either switch without disrupting our network traffic. Furthermore, if a
switch or network module fails, there's always a backup available.

In our working example, we would need eight 1 Gb/s interfaces to avoid experiencing network
congestion. However, we've already used four of our eight available interfaces simply to satisfy
basic server hosting requirements. That doesn't leave enough available capacity, and as a
consequence, this server would experience a network bottleneck.

This would not be the case with a 10 Gb/s interface. Each of the interfaces connected to
redundant switches can carry the entire network requirements of the server.



Saving the research
We suggested doing research on 1 Gb/s and 10 Gb/s network cards. Well, don't do too much. It's
very likely that the infrastructure department already has a standard server profile for high-
bandwidth systems. This is primarily due to the fact that 10 Gb/s is a very complicated standard
compared to 1 Gb/s or lower. There are several different cable types available along with
complimentary network modules, one or more of which are probably already deployed in the
data center.

Just make sure that the infrastructure knows to allocate high-bandwidth resources if our
calculations call for it.



See also
To read more about how 10-gigabit Ethernet works, please visit the following URL: http://en.
wikipedia.org/wiki/10-gigabit_Ethernet

http://en.wikipedia.org/wiki/10-gigabit_Ethernet


Managing motherboards
We have been working up to this for quite some time. None of our storage, memory, CPU, or
network matters if we have nothing to plug all of it into.

This could have been a long section dedicated to properly weighing the pros and cons of
selecting a motherboard manufacturer for maximum stability. It turns out that most server
vendors have already done all the hard work in that regard.

In fact, few vendors even disclose many details about the motherboard in their servers outside of
model documentation. We can't really read hundreds of pages of documentation about every
potential server we would like to consider, so what is the alternative?

No matter where we decide to purchase our server, vendors will not sell-or even present-
incompatible choices. If we approached this chapter as intended, we already have a long list of
parts, counts, and necessary details to exclude potential offerings very quickly. These choices
will often come in the form of drop-down lists for every component that the motherboard and
chassis will accept.

The chassis will come later. For now, let's focus on CPU, RAM, RAID, and network
compatibility.

Keep in mind that motherboards and the requisite case are almost exclusively a
package deal. This means we can't keep an extra motherboard available in case
of failure, unlike other swappable elements. This breaks our redundancy rule,
but there are ways of circumventing that problem.



Getting ready
This is one of the times when the hardware spreadsheet will show its true usefulness. So, as long
as we have been keeping track of our counts through each section, this segment of server
selection will be much simpler. By this point, our spreadsheet should look something like this:

We don't care about the total cost for each part yet. It might be a good idea to create a separate
tab or copy of the spreadsheet for each vendor we want to consider. This way, we can
comparison shop. Also remember that the counts are inflated by at least one replacement in case
of failure. So we want to look for two 10-core CPUs, eight 16 GB memory modules, and so on.



How to do it...
Now it's time to do some research. Follow these steps:

1. Make a list of desired server vendors. This list may even be available from the
infrastructure department, if our company has one.

2. For each vendor, check their available 1U and 2U products.
3. For each 1U or 2U server, remove from consideration any that can't fulfill minimum CPU

requirements.
4. Repeat for RAM.
5. Repeat for RAID controller cards.
6. Repeat for network interface cards.
7. Fill in actual selections where appropriate to obtain unit prices.
8. Make corrections to the spreadsheet.



How it works...
While this is straightforward, it requires a lot of time. The amount of server variants available,
even from a single vendor, can be staggering. This is one of the reasons we only consider 1U
and 2U servers. The other is that 4U servers and larger are often designed for much different
use patterns related to vertical scaling, incorporating more CPUs, hard drives, and even multiple
concurrent motherboards.

For our purposes, that is simply too powerful. When purchasing servers with the explicit
intention to obtain multiple, redundant, and compatible examples, this becomes more difficult as
the cost and complexity of the servers increase.

Although we have reduced our sample size, there is still more work to do. When considering the
compatible CPUs, if we want 10-core chips, and the motherboard only supports up to 8-core
chips, we can remove that from consideration. This also applies to available memory slots and
sizes. Yet there's an unwritten element to RAM: maximum amount. If the motherboard only
supports up to 384 GB, and our earlier calculations show we may eventually want 512 GB, we
can immediately cross it off our list.

Since RAID and network cards must be plugged directly into the motherboard or an expansion
daughter card, it's the amount of these available slots that directly concerns us. We need at least
two for both cards that should drastically reduce the size of our list, especially in the case of 1U
servers.

While doing this compatibility verification, it is difficult to ignore prices listed next to each choice,
or the total price changing with each selection. We might as well take advantage of that and fill in
the rest of the spreadsheet, and make a copy for each vendor or configuration. Some overall
choices are likely to be better complete matches, or offer better future expandability, or better
price points, so tracking all of this is beneficial.



There's more...
RAID controllers and network interfaces are somewhat special cases. Some servers, in order to
reduce size, integrate these directly into the motherboard. This is especially true when it comes
to network modules. If at all possible, try to resist integrated components.

If these fail, the entire server will require replacement. This makes it much more difficult and
expensive to fulfill our redundancy requirement. Server-class motherboards without integrated
network interfaces are rare, but we can use these as our backup path if their minimum speed
matches what we've configured.

For instance, if we want a 10 GbE card, and the motherboard has integrated a 10 GbE module,
we can reduce the amount of excess cards on our spreadsheet by one. It's very likely the
integrated version is of lower quality, but it can suffice until the bad card is replaced.

Redundancy doesn't have to be expensive.



See also
Here is a list of well-known server vendors that we could consider while completing this section:

Penguin Computing: http://www.penguincomputing.com/
Dell: http://www.dell.com
HP: http://www.hp.com

http://www.penguincomputing.com/
http://www.dell.com
http://www.hp.com


Selecting a chassis
To round out our hardware selection phase, it's time to decide just what kind of case to order
from our server vendor. This is the final protective element that hosts the motherboard, drives,
and power supplies necessary to keep everything running. And like always, we place heavy
emphasis on redundancy.

For the purposes of this section, we will concentrate primarily on 1U and 2U rack-mounted
servers. Why not 4U or larger? Our goal is to obtain at least two of everything, with similar or
matching specifications in every possible scenario. The idea is to scale horizontally, in order to
more easily replace a failed component or server. As the size of the chassis increases, its cost,
complexity, and resource consumption also rise. In this delicate balancing act, it's safer to err
toward two smaller systems with respectable capabilities than one giant server that's twice as
powerful.



Getting ready
Since the server chassis and motherboard are generally a package deal, it's a good idea to refer to
the Managing motherboards recipe. We will be using a very similar process to choose a server
case. This time, we will focus on adequate room for hard drives and redundant power supplies.



How to do it...
Now it's time to do some more research. Follow these steps:

1. For our ideal count of active (not replacement) hard drives, remove any choice that doesn't
have enough drive slots. Use this list if it's not immediately obvious:

Maximum 2.5" drives in a 2U server is 24
Maximum 3.5" drives in a 2U server is 8
Maximum 2.5" drives in a 1U server is 8
Maximum 3.5" drives in a 1U server is 4

2. Refer to the final list of servers from our motherboard selection.
3. Remove from consideration any chassis that does not support dual power supplies. This

should rarely happen in server-class systems.
4. As the list dwindles, give higher priority to cases with more fans or lower average operating

temperatures.



How it works...
This time, our job was much easier than considering motherboard constraints. This time, drives
determine most of our decision.

Hot-swappable hard drives are slightly larger than their standard brethren, due to the swap
enclosure. Yet cases exist than can hold up to 24 hot-swap drives across the front when stacked
vertically. If we need that many storage devices, we save space by taking advantage of cases that
can accommodate them. We also need to remember to reserve two drives for the operating
system in a RAID-1, separate from our PostgreSQL storage. We can't diagnose problems on a
server that can't boot.

Some cases reserve mounts inside, or at the rear, for operating-system drives.
They are harder to replace, but make more room for storage dedicated to
PostgreSQL. Here, operating system drives are treated as operating overhead
without sacrificing case functionality.

If we need more drives than are available in any configuration, we should consider Direct
Attached Storage (DAS), Network Attached Storage (NAS), or Storage Area Network
(SAN). Some vendors supply drive extension cages specifically to provide more hot-swap bays
for specific server models. While we want to conserve space when possible, these are relatively
inexpensive and much smaller than an NAS or SAN if we haven't progressed to requiring such a
device.

Regarding the dual power supplies, this is not negotiable. Many data centers provide two power
rails per server rack. The intent is to provide two separate sources of power to the server in case
the server's power supply fails, or power is cut to one of the sources. Sometimes these power
sources even have separate generators. We're not the only ones interested in redundancy; data
centers want to avoid outages too.

The last, more optional element, involves investigating the case itself. Many server cases have
several fans inside and along the rear, and as a consequence, are very loud. This won't matter
when the server is in the data center, but the number of fans and the shape of the airflow will
directly affect the server temperature. Higher temperatures decrease system stability. It's not
uncommon for vendors to list maximum operating temperatures of each case, so try to gravitate
toward the cooler ones if all else is equal.



There's more...
We use the word vendor frequently, and there's a reason for that. Short of outright accusing bare
cases and motherboards of being faulty, they are simply not stable enough for our use. There are
some great cases available that in many ways exceed the capabilities provided by established
server providers.

We don't suggest the smaller vendors for a few reasons. Larger companies often have
replacement policies for each server component, including the case and motherboard. Building a
system ourselves may provide more satisfaction, but vendors presumably spend time testing for
compatibility and failure conditions. They produce manuals hundreds of pages long detailing
viable parts, configurations, and failure conditions of the entire unit.

However, one could just as easily argue that redundant servers increase failure tolerance, as
there's always an available backup. Bare cases and motherboards are usually cheaper, and user-
serviceable besides. That is a completely valid path, and if risk assessment suggests it's viable,
give it a try. The advice we give is by no means set in stone.



Saddling up to a SAN
SAN stands for Storage Area Network. Working in the industry, you may have encountered
NAS (Network Attached Storage) as well. How exactly is that different, and how is it relevant to
us?

It's subtle, but important. While both introduce networked storage, only a SAN grants direct
block-level access, as if the allocation were raw, unformatted disk space. NAS systems operate
one level higher, providing a fully formatted filesystem such as NFS or CIFS. This means our
PostgreSQL database does not have direct control over the filesystem; locks, flushes, allocation,
and read cache management are all controlled by a remote server.

When building a highly-available server, raw I/O and synchronization messages are very
important, and NFS is more for sharing storage than extending the storage capabilities of a
server. So what must we consider when deciding on how to best utilize a SAN, and when should
we do this instead of using a cheaper solution such as direct attached storage?

We won't be discussing how to evaluate a SAN, which vendors produce the best hardware, or
even basic configuration strategies. There are several entire books dedicated to SAN
management and evaluation that are far beyond the scope of our overview. For building a highly-
available PostgreSQL architecture, all we need to consider is the when and why, not the how.



Getting ready
Because we're going to cover both SAN performance and storage allocation, we recommend
referring to the Having enough IOPS and Sizing storage recipes. Just like physical disks, we
need to know how much space we need, and roughly how fast it should be to fulfill our
transaction and query requirements.

Do we need a SAN? We can ask ourselves a few questions:

Do our IOPS or storage requirements demand more than 20 hard drives?
Will the size of our database reach or exceed 3TB within the next three years?
Would the risk to the company be too high if we ever ran out of space?
Is there already a SAN available for testing?

If we answer yes to any of these, a SAN might be in our best interests. In that case, we can
determine if it would fulfill our needs.



How to do it...
Follow these steps if possible:

1. Request a LUN from the infrastructure department with the necessary IOPS and storage
requirements.

2. If a SAN isn't available, many SAN vendors will provide testing equipment to encourage
purchase. Try to obtain one of these.

3. Have the infrastructure department format the allocation and attach it to a testing server.
Keep note of the path to the storage.

4. Create a basic PostgreSQL testing database with the following command-line operations as
the postgres user:

        createdb pgbench 
        pgbench -i -s 4000 pgbench 

5. Drop the system caches as a user capable of performing root-level commands, as follows:

        echo 3 | sudo tee /proc/sys/vm/drop_caches 

6. Test the storage read IOPS with one final command as the postgres user:

        pgbench -S -c 24 -T 600 -j 2 pgbench 



How it works...
The first part of our process is to decide whether or not we actually need a SAN at all. If the
database will remain relatively small, capable of residing easily on local hard drives for several
years, we don't need a SAN just yet.

While it might seem arbitrary, setting 3 TB as a cutoff for local storage comes with a few
justifications. First, consider the local drives. Even if they were capable of saturating a 6 Gbps
disk controller, 3 TB would require over an hour to transfer to another local storage device. If
that wasn't a bottleneck, there is still the network. With a 10 Gbps NIC and assuming no
overhead, that's 40 minutes of transfer at full speed.

That directly affects speed of backups, synchronization, emergency data restores, and any
number of other critical operations. Some RAID cards also require special configuration when
handling over 4 TB of storage, out of which 3 TB is uncomfortably close if we ever need an
extension. SAN devices can perform local storage snapshots for nearly instant data copies
intended for other servers. If the other server also uses the same SAN, there's no transfer
overhead.

And lastly, while RAID devices can be extended when online, there is a limit imposed by how
many local disks are available to our server, either directly in the chassis, or from direct attached
storage extensions. If there's ever any risk we can reach that maximum, SAN devices do not
have any of these inherent limitations, which we can use to our advantage.

If a SAN is ever available for testing, we're still not done. Depending on the speed of
configuration of the SAN or the storage allocation itself, performance may not be sufficient, so
we should test the claims made by the SAN manufacturer before committing all of our storage to
it.

A very easy way to do this is with a basic pgbench test. The pgbench command is provided by the
PostgreSQL software, and it can test various aspects of a server. For our uses, we want to focus
on the disk storage. We start by creating a new pgbench database with createdb, so the pgbench
command has somewhere to store its test data. The -i option to pgbench tells it to initialize new
test data, and the -s option describes the scale of test data we want.

A scale of 4000 creates a database roughly 60 GB in size. Feel free to adjust this scale to be
larger than the amount of available RAM, which guarantees that the server cannot cache all of
the test data and taint our performance results by inflating the numbers.

After initializing a new test database, there is a Linux command that can instruct the server to
drop all available cached data. This means none of our test data is in memory before we start the
benchmark. Again, we don't want to inflate our results, otherwise the SAN looks more capable
than it really is.

The test itself comes from pgbench again, which is instructed to only read the test data with the -S
option. Furthermore, we tell the benchmark to launch 24 clients with the -c parameter, and to
run the test for ten full minutes with the -T option. While we used 24 clients here, consider any
amount up to three times the number of available processor cores. The final -j flag merely



launches two concurrent benchmark threads, preventing the test itself from reducing overall
performance due to CPU throttling.

This process should reveal how capable the SAN is, and if our production database will be safe
and have good performance while relying on remote storage.



There's more...
Notice how we never ask for a specific number of disks when requesting a SAN allocation.
Modern SAN equipment operates on an implied service level agreement based on installed
components. In effect, if we need 6,000 IOPS and 10 TB of space, the SAN will combine disks,
cache, and even SSDs if necessary, to match those numbers as closely as possible.

This not only reduces the amount of risky micromanagement we perform as DBAs, but it acts as
an abstraction layer between storage and server. In this case, storage can be modified any
number of ways, enhanced, adjusted, or copied, without affecting the database installation itself.

The main problem we encounter when using a SAN instead of several servers configured with
local storage, is that the SAN becomes a single point of failure. This is something to keep in
mind as our journey to high availability progresses.



See also
Here is a list of several SAN vendors, from well-known companies, to companies with great
potential:

EMC: https://www.emc.com
NetApp: https://www.netapp.com
Whiptail: https://www.whiptail.com
VCE: https://www.vce.com
Pure Storage: https://www.purestorage.com/

https://www.emc.com
https://www.netapp.com
https://www.whiptail.com
https://www.vce.com
https://www.purestorage.com/


Tallying up
Now it's time to get serious. For several pages, we have discussed all the components that go
into a stable server, and have strongly suggested obtaining multiple spares for each. Well, that
applies to the server itself. Not only does this mean having a spare idle server in case of a
catastrophic failure, but it means having an online server as well.

Determining how many excess servers we should have isn't quite that simple, but it's fairly close.
This is where the project starts to get expensive, but high availability is never cheap; the
company itself might depend on it.



Getting ready
For this, we want to consider the overall state of the application architecture. The database
doesn't exist in a vacuum. Work with the system and application teams to get an idea of the other
servers that depend on the database.



How to do it...
This won't be a very long list. In any case, follow these steps:

1. For every critical OLTP system, allocate one online replica.
2. For each two non-cached applications or web servers, consider one online replica.
3. For each 10 cached applications or web servers, consider one online replica.
4. For every stage or QA database server analog, allocate one spare server.



How it works...
OLTP systems, by their very nature, produce a very high transactional volume. Any disruption
to this volume is extremely visible and costly. A primary goal with running a highly-available
service, such as a database, is to minimize downtime. So for any database instance that is a
critical component, there should be a copy of the server configured in such a manner that near-
immediate promotion to production status is possible.

Any server that needs direct access to the database, whether it be a queue system, application
server, or web frontend, is sensitive to database overload. One way of diffusing this risk is to set
up one database copy for every two to four directly-connected servers. These copies are only
usable for reads and not writes, but a properly designed application can accommodate this
limitation. Not only does this reduce contention on the database instance that must handle data
writes, it all but eliminates the likelihood of one misbehaving query from taking down the entire
constellation of client-visible services.

When a sophisticated cache is involved, the risk to the frontend is greatly reduced. Properly
designed, a failed read from the database can default to a cached copy until reads can be re-
established. This means we can subsist on fewer database replicas. If the application does not
provide that kind of cache, our job as database advocate becomes one of working with
appropriate technical leads until such a cache is established.

The extra QA resource may seem excessive at first, but it has a very important role. While the
testing teams may never touch the spare server, we can use it in their stead. We can never safely
configure a production system for online failover without first testing that configuration on two
similarly equipped systems. To do otherwise risks failure of the automatic activation of alternate
production servers, which is a de facto outage. Database migrations, upgrades,
resynchronization, backup restores, all of these can be tested in the QA environment before they
are needed for production use. Without a second server, none of this would be possible.



There's more...
We have brought this up as a tip before, but this deserves special attention. PostgreSQL 9.2 and
above now has the capability to stream replicated data from one database standby to another.
Even with 10 GbE network cards, there is a limit to the amount of data our master server can or
should transmit before its role is put at risk.

While there is still a limit to the number of replicas, we can maintain with this new functionality,
overall traffic-and therefore risk-is mitigated. If our database is stuck on a version before 9.2, we
may never realize these new benefits. At the time of writing, PostgreSQL 9.6 is the latest release,
and 10.0 is well underway. A crafty DBA can encourage the company to adopt a forward stance
regarding upgrades by providing an upgrade proposal, procedural checklist, and deployment
integration tests.

Now that pg_upgrade is a standard part of PostgreSQL, producing a robust upgrade plan and
associated compatibility tests is much easier than in the past. By pushing for upgrades early, we
can use new features such as cascading replication, and with PostgreSQL, that can heavily
influence our resulting architecture. Consider this when choosing your hardware.



Protecting your eggs
Did we suggest that having several servers was serious? We lied. The place where our servers
live, the data center, also has several redundancies in place. Extra network lines, separate power
sources, multiple generators, air conditioning and ventilation, everything a server can require.

Yet, some have joked that a common backhoe is the natural enemy of the Internet. There is
more truth to that statement than its apparent lack of gravitas might suggest. Data centers are
geographically insecure. Inclement weather, natural disasters, disrupted backbones, power
outages, and of course, accidentally damaged trunk lines (from an errant backhoe?), and simple
human error can all remove a data center from the grid. When a data center vanishes from the
Internet, our servers become collateral damage.

However, we've done everything right! We have duplicates of everything, multiple parts, cables,
even whole servers. What can we possibly do about the data center?

Well, it's complicated...



Getting ready
For this section, we will need a list of every database server in our proposed architecture, and
the desired role for each.



How to do it...
This won't be a very long list. In any case, follow these steps:

1. For every critical OLTP operating pair, allocate at least one standby.
2. For every two online standby replicas, consider at least one standby.
3. For every other database instance, allocate one standby.



How it works...
This type of scenario is known as Disaster Recovery. In order to truly diffuse a data center
outage, we need backups of every major database server, and even minor servers. The reasoning
is simple: we don't know how long we have to operate at reduced capacity. At that point, even
non-critical reporting services still need analogs, otherwise business decisions that depend on
activity analysis may not be possible.

We only really need half the amount of database servers, as most disaster recovery scenarios are
severe enough for raised alertness, reduced refresh times, manually extended queue timeouts,
and more. Not only is this less expensive than having a copy of every server as the primary data
center, but it also encourages closer monitoring until it can be restored. Larger companies can opt
for complete parity between data centers, but this is not a requirement.

As DBAs, our scenario often resembles this:

Notice that we didn't make any reservations for QA or development database servers. In the
case of a disaster, the primary concern is ensuring the continued availability of the application
platform. Further development or testing is likely on hold for the duration of the outage in any
case.



There's more...
We cannot stress the importance of this section strongly enough. Some may consider an entire
extra data center as optional due to the cost. It is not. Others may think a total of three servers
for every primary system is too much maintenance overhead. Again, it is not. The price of a few
servers must be weighed against the future of the company itself; it is the cost of admission into
the world of high availability.

By the time we begin utilizing failover nodes, or any replicas in a separate data center, the
damage has already been done. In the absence of these resources, a database crash can result in
hours or even days of unavailability depending on the size of our database, exponentially
compounding the effects of the original problem.

With this in mind, all critical production systems the author designs always have a minimum of
four nodes: two mirrored production systems, and two mirrored disaster recovery analogs. This
ensures even the disaster recovery system is online with one node while the other node is
experiencing maintenance. Outages are unexpected, and we must always be prepared for them.



Handling and Avoiding Downtime
In this chapter, we will learn how we should react when outages inevitably occur and how to
prepare ourselves for them. We will cover the following recipes in this chapter:

Determining acceptable losses
Configuration - getting it right the first time
Configuration - managing scary settings
Identifying important tables
Defusing cache poisoning
Exploring the magic of virtual IPs
Terminating rogue connections
Reducing contention with concurrent indexes
Managing system migrations
Managing software upgrades
Mitigating the impact of hardware failure
Applying bonus kernel tweaks



Introduction
Every piece of software has bugs. All hardware eventually fails or becomes obsolete. No
environment is perfect. As a consequence, even a perfectly healthy database will require
downtime periodically. How do we reconcile this need with client expectations, which imply that
data is always available, no matter the circumstances?

As users ourselves, we know the frustration associated with attempting to use an application or
website that isn't responding. Maybe the only impediment is a message indicating maintenance.
No matter the cause, we have to remember to come back later and hope everything is working
normally by then. Even with our knowledge about the complexity of software and databases, it is
sometimes difficult to ignore an error message that prevents us from managing a bank account or
making an online purchase.

Every day, users will be less understanding. Business owners and investors who may be losing
millions in potential sales and liabilities while a system is unavailable are even less understanding.
Yet, there are several tools available that decrease the likelihood of outages and others that help
guarantee we're agile enough to handle them when outages--despite our best efforts-occur
anyway.

As is often the case with high-availability architecture, the trick is planning ahead.



Determining acceptable losses
We know that the PostgreSQL database will be offline at some point in the future. Maybe we
need an upgrade to remove a critical security vulnerability or address a potential data corruption
issue. Perhaps a RAM module is producing errors and needs immediate replacement. Maybe the
primary data center was struck by lightning.

No matter the reason, we need to make decisions quickly. A helpful way is to ensure that the
decision-making process is basing the answers on what the user expects for various levels of
liability and on the context of the user. The QA department will not require the same response
level as 10,000 shoppers who can't make a holiday purchase during a critical sale.

System outage and response escalation expectations are generally codified in a Service Level
Agreement (SLA). How long should the maintenance last? How often should planned outages
occur? When should users be informed and to what extent? Who is included in the set of
potential database users? All of these things, and more, should be defined before a production
system is released. Otherwise, we risk alienating clients with unexpected and arbitrary downtime
or outages that persist for hours.

Clients who have their trust broken may leave and never return. So, let's teach them when to
expect short amounts of unavailability and set their minds at ease with prompt contact and status
management.



Getting ready
Much of our work depends on knowing how much downtime the business is willing to tolerate
and who uses the database and when. We also need to know how long the application can
obscure a PostgreSQL outage through caches, queues, and connection management. Try to get a
complete picture of the database's role before continuing.



How to do it...
Try to answer all of these questions:

Who uses the database? For each type of user, answer these questions:
When does this user access the database?
What is the maximum query timeout they will tolerate?
Will the user lose money during an outage?
Is the user likely to return later?
Should this user be included in maintenance notifications?
Should this user be included in emergency notifications?

Can we get the user to agree to or even sign the SLA?
What uptime percentage is expected? 99 percent? 99.9 percent? 99.99 percent? More?
What are the company's official business hours?
When should notifications be sent?
How long can the platform operate without the database?
How long should regular maintenance windows be?
How often can maintenance occur?
Which weekdays can we consider for maintenance?
What is an emergency?
What situations require the activation of disaster recovery nodes?
Can we get a lawyer to write all of these into a contract?



How it works...
That is a lot of questions, and the list probably isn't even complete. It is, however, a very good
start. Notice how we want to know who (or what) is using the database on a regular basis. This
is not the same as a user who connects to the database. In this context, we want to know the
type of user. Is it the business, another department, a critical application component, or even just
a regular website user? Each of these will have different expectations, reactions, usage times, and
impact.

The next question we need to answer is how uptime is defined. One frequently quoted value is
the number of nines, referring to a percentage approaching 100 percent. Three nines for
example, would be 99.9 percent of a year, which is almost nine hours. Four nines is only about
50 minutes. Keep in mind that the SLA can be written to include or exclude planned
maintenance, depending on the audience. Unplanned outages definitely count, and remember
that this is the total cumulative time for the entire year.

The next important aspect is the latest time a business is officially available. Maintenance should
begin after this time and no sooner. Critical PostgreSQL nodes should not be taken offline if
more than 5 percent of active users are utilizing the platform and database. It is not uncommon
for regular maintenance windows to appear very late at night. Disaster recovery systems,
standby nodes, and stage or development copies are all excellent candidates for updates
following official business hours. We still want these systems available for developers and QA
staff or in case of an unexpected production-level outage, so it pays to be a little more cautious.

The rest are a mix of important questions that need answers, the last of which implies the
involvement of a lawyer. If possible, have the SLA in a contract form for all applicable clients
and users. A signed agreement acts as a barrier to litigation and liability and sets very definite
boundaries to user expectations early in the process.



Configuration - getting it right the first time
An important aspect of setting up a highly-available database is starting with a stable
configuration that will not require a lot of future modifications. Even settings that can be changed
during database operation can drastically alter its performance profile and behavior. Other
settings may require a full database restart, which can lead to a short outage, depending on how
resilient the frontend application is.

We want to avoid introducing instability into our PostgreSQL database from the very beginning.
To that end, we are going to explore common (and perhaps, uncommon) configuration options to
use in a highly-available installation.



Getting ready
The PostgreSQL documentation describes all of the settings we will be discussing. We
recommend that you visit the https://www.postgresql.org/ website and read the documentation
regarding server configuration. There's probably too much to absorb before continuing with this
section, but we recommend that you familiarize yourself with the settings presented here.

We will approach each setting in the order commonly encountered in a recent postgresql.conf file
generated in a new database.

https://www.postgresql.org/


How to do it...
Find these settings in the postgresql.conf file for the desired PostgreSQL instance and perform
the following steps:

1. Set max_connections to three times the number of processor cores on the server. Include
virtual (hyperthreading) cores. Set shared_buffers to 4GB for servers with up to 64 GB of
RAM. Use 8GB for systems with more than 64 GB of RAM.

2. Set work_mem to 8MB for servers with up to 32 GB of RAM, 16MB for servers with up to 64 GB
of RAM, and 32MB for systems with more than 64 GB of RAM. If max_connections is greater
than 400, divide this by two.

Systems with exceedingly large amounts of RAM (256GB and above) do not
require artificially halving the final suggested value for work_mem.

3. Set maintenance_work_mem to 1GB.
4. Set wal_level to one of these settings:

Use hot_standby for versions prior to 9.6.
Use replica for version 9.6 and beyond.

5. Set minimum WAL size to (system memory in MB / 20 / 16):
Use checkpoint_segments parameter for 9.4 and below.
Use min_wal_size for 9.5 and beyond. Then double this value and use it to set
max_wal_size.

6. Set checkpoint_completion_target to 0.8.
7. Set archive_mode to on.
8. Set archive_command to /bin/true.
9. Set max_wal_senders to 5.

10. Retain necessary WAL files with these settings:
Set wal_keep_segments to (3 * checkpoint_segments) for 9.3 and below.
Set replication_slots to 5 for 9.4 and above.

11. Set random_page_cost to 2.0 if you are using RAID or high-performance SAN; 1.1 for SSD-
based storage.

12. Set effective_cache_size to half of the available system RAM.
13. Set log_min_duration_statement to 1000.
14. Set log_checkpoints to on.



How it works...
The commonly accepted formula for estimating max_connections is to take the number of
processor cores, multiply them by two, and add disk spindles. With the relatively recent
improvement of virtual cores, contributing factors such as SSD or other high-performance
storage, and so on, we have a bit more freedom than we had earlier. In addition, even if we were
to follow this estimation method, allowing a few extra connections can prevent highly visible
connection rejections. A slightly lower performance is a small price to pay for availability.

The advice for shared_buffers is very different from the accepted practice of simply setting it to a
quarter of the available RAM. We must consider buffer flushing and the synchronization time. In
the case of a forced checkpoint, an amount of RAM equal to shared_buffers could be flushed to
disk. This kind of write storm can easily cripple even high-end hardware. Highly-available
hardware often has far more RAM that could easily be flushed to a disk in an emergency. As
such, we don't recommend that you use more than 8 GB until this situation improves
substantially.

Depending on hardware capabilities and certain advancements in recent
releases of PostgreSQL, it's possible that higher values of shared_buffers may
actually be advantageous. While we feel it's better to err on the side of caution,
feel free to test larger values on servers equipped with 128GB of RAM or more.

The work_mem setting is the amount of memory used by several temporary operations, including
data sorts. Thus, a single query can consume multiple instances of this amount simultaneously. A
good estimate is to assume that each connection will use up to four instances at a time. Setting
this too high can lead to over-committed memory and cause the kernel to start killing processes
until RAM is available. This can lead to PostgreSQL shutdown or a server crash, depending on
what processes are stopped. Systems with very high connection counts (over 400) have
increased risk for such a cascade, so we reduce work_mem in these cases.

The maintenance_work_mem setting is similar to the work_mem setting in that there can be multiple
instances. However, this is reserved for background workers and maintenance such as vacuum,
analyze, or create index activities. Starving these kinds of memory operations can drastically
increase the disk I/O, which can detrimentally affect query performance. For the cost of a few
GBs of RAM, we get a more stable server.

The only reason we set wal_level to hot_standby or replica is because in a highly-available
environment, we should have at least one online streaming standby. Other recipes will detail how
we set these up, but this is the starting point.

The number of checkpoint_segments or the proper value for min_wal_size is not a simple thing to
set. The calculation we used assumes up to 5 percent of system memory, which could be in
transit as checkpoint data, and each segment is 16 MB in size. This time, we are trying to avoid
forced checkpoints, because we ran out of segments during data acquisition. This also applies to
max_wal_size for lucky users of 9.5 and above.

We also want to reduce disk contention when possible, so we increase
checkpoint_completion_target to 0.8. We don't want to overwhelm the disk subsystem, and this



setting will cause PostgreSQL to spread writes over 80 percent of the time specified by
checkpoint_timeout. By default, checkpoint_timeout is set to 5 minutes, which should suffice until
we start working with larger batches of data or a busy OLTP system.

Next, we enable archive_mode by setting it to on. This setting can only be changed by restarting
PostgreSQL, which we want to avoid. It's very likely that we will be using WAL archival in some
respect, even if we don't yet know which method to use at this point. This means we also need
to set archive_command to a command that always succeeds, or PostgreSQL will fill our logs with
complaints that it couldn't archive old WAL files. Using /bin/true as a placeholder, we can
change it when we choose an archival method.

 

We increase max_wal_senders because it's needed for certain synchronization and backup methods.
Five is a good starting point, and we can always decrease it later; we definitely need more than
zero. Additionally, wal_keep_segments is set to a relatively high number in slightly older versions of
Postgres. In this case, we keep it up to three multiples of checkpoint_segments worth, in case a
streaming standby falls behind. For newer versions, we set replication_slots to a starting value
that should support at least five replicas, and only retain as many checkpoints as strictly
necessary.

For older systems that still use wal_keep_segments, a replica can fall permanently behind if this
count of segments is exhausted before they can be processed. In this case, it can never catch up
until the remaining WAL segments are provided some other way or the standby is re-imaged.
We'll discuss this more when it's time to talk about WAL archival. This uses more disk space, so
multiply the total number of these segments by 16 MB to estimate total disk usage.

The cost of reading a random disk block, as opposed to reading it sequentially, directly affects
how the query planner decides to execute a query. By decreasing random_page_cost, we tell
PostgreSQL that our storage's random read performance is very fast. A highly-available server
should have equally capable storage, so we lower this to something more reasonable. In the case
of SSD or PCIe-based storage, there is effectively no difference between a random or sequential
read, so the setting should reflect this.

We did not use a value of 1.0 for random_page_cost, as that suggests solid-state
storage is exactly as fast as RAM, and that simply isn't the case. Very low values
should be sufficient for this setting, but should not go lower than 1.1.

The last setting that modifies server behavior is effective_cache_size, which tells the query
planner how much RAM is probably being used by the OS to cache data. Generally, this makes
PostgreSQL prefer indexes, because it's likely that the indexed data is in memory. As most
UNIX systems are fairly aggressive when caching, at least half of the available RAM on a
dedicated database server will be full of cached data.

Finally, we want better logging. We increase the logging of slow queries by setting
log_min_duration_statement to 1000. This is in milliseconds, so any query that runs for over one
second will be logged. This helps us find slow queries without flooding the logs with thousands
or even millions of entries by logging everything. Similarly, we want log_checkpoints enabled,
because it provides extremely beneficial information on checkpoints. We can see how long they



took, how frequently they ran, and also how much disk-sync time they required. We need to
know if checkpoints start taking too long or occur too frequently so that some values can be
adjusted. This setting really should be enabled in all PostgreSQL servers.



There's more...
Many, if not most of these settings, show up frequently in the PostgreSQL mailing lists. As a
result, we used many of the prescribed values or formulas. However, several of these settings
show up very often; a tool is available to estimate them by analyzing the server hardware and by
taking parameter hints. The pgtune program is a contributed utility for automatically estimating
many system-dependent server settings.

We urge caution if you are relying primarily on this utility. It is extremely liberal when estimating
work_mem and shared_buffers and doesn't seem to modify checkpoint_segments at all. Still, we feel
that the values it produces are much better than the defaults for larger servers, so feel free to
experiment.



See also
There are many more configuration settings that we haven't included. We recommend that you
browse the PostgreSQL documentation to learn more. In addition, we've included a link to the
pgtune utility, which may be useful in optimizing your postgresql.conf file:

PostgreSQL Server Configuration: https://www.postgresql.org/docs/current/static/runtime-config.htm
l
pgtune: https://github.com/gregs1104/pgtune

https://www.postgresql.org/docs/current/static/runtime-config.html
https://github.com/gregs1104/pgtune


Configuration - managing scary settings
When it comes to highly-available database servers and configuration, a very important aspect is
whether or not a changed setting requires a database restart before taking effect. While it is true
that many of these are important enough and they should be set correctly before starting the
server, sometimes our requirements evolve.

If or when this happens, there is no alternative but to restart the PostgreSQL service. There are,
of course, steps we can take to avoid this fate. Perhaps, an existing server didn't need the WAL
output to be compatible with hot standby servers. Maybe, we need to move the logfile, enable
WAL archival, or increase the amount of connections.

These are all scenarios that require us to restart PostgreSQL. We can avoid this by identifying
these settings early and paying special attention to them.



Getting ready
PostgreSQL has a lot of useful views for DBAs to get information about the database and its
current state. For this section, we will concentrate on the pg_settings view, which supplies a
wealth of data regarding the current server settings, defaults, and usage context. We recommend
that you peruse the PostgreSQL documentation for this view.



How to do it...
Follow these steps to learn more about PostgreSQL settings:

1. Execute the following query to obtain a list of settings that require a server restart and their
current value:

        SELECT name, setting  
          FROM pg_settings  
          WHERE context = 'postmaster'; 

2. Execute this query for a list of only those settings that are not changed from the default and
require restart:

        SELECT name, setting, boot_val 
          FROM pg_settings 
         WHERE context = 'postmaster' 
           AND boot_val = setting; 

3. Execute the following query for a list of all settings and a translation of how the setting is
managed:

        SELECT name, 
               CASE context 
               WHEN 'postmaster' THEN 'REQUIRES RESTART' 
               WHEN 'sighup' THEN 'Reload Config' 
               WHEN 'backend' THEN 'Reload Config' 
               WHEN 'superuser' THEN 'Reload Config / Superuser' 
         WHEN 'user' THEN 'Reload Config / User SET' 
               END AS when_changed 
         FROM pg_settings 
        WHERE context != 'internal' 
        ORDER BY when_changed; 



How it works...
The first query, and the simplest one, merely identifies the name and value for each setting that
can only be modified by restarting PostgreSQL. In relation to all the available settings, this list is
relatively short. However, there are a few notable settings that could affect us.

We already mentioned wal_level, shared_buffers, max_connections, and max_wal_senders in another
recipe. However, this list also includes parameters related to SSL and WAL archival. We will
eventually discuss WAL archival separately, so that leaves SSL. When setting up a secure
PostgreSQL server that encrypts connection traffic, we require a host SSL certificate. If this
certificate is ever compromised, we need to regenerate it. Unfortunately, we can't simply tell
PostgreSQL to re-read the existing certificate; if we overwrite it, the entire database must be
restarted.

The second query only shows the settings that we have not already changed, but would require
server restart. This list is potentially more interesting and concise, as we are presumably seeking
further parameters to modify. Of course, the opposite can also be argued; we have only modified
the settings we care about.

The final query is a bit more complicated as it uses a CASE statement, yet it also simplifies the
contents of the view. First, consider the WHERE clause, which purges internal settings. We don't
care about these specifically because they can only be set when compiling PostgreSQL itself.
While such an action may be necessary to apply an emergency patch from the PostgreSQL
developers, we cannot modify several of these parameters without rebuilding the entire contents
of every affected database. These settings are for experts only, and these experts rarely even
consider changing them.

Within SELECT, we fetch the setting name as well as how it is modified. Note that all settings that
require a server reload to take effect are found in postgresql.conf. Subsequent changes applied at
the session level can also be overridden using SET syntax, so we included that as well.



There's more...
Of course, the pg_settings view can provide more than just an insight into the parameters that
require a server restart.



Distinct settings
A common request on the PostgreSQL mailing lists is for users to provide a list of settings
they've changed. This helps everyone diagnose where a problem could originate or give us an
idea of a database's usage pattern. Now that we know about this view, we can easily provide that
data with the following query:

SELECT name, setting 
  FROM pg_settings 
 WHERE boot_val IS DISTINCT FROM setting; 

The IS DISTINCT FROM clause isn't as well known as it should be. It can be easy to forget that != or
<> evaluates to NULL when either side of the equation is NULL. Thus, if the default boot_val value is
NULL, we would fail to obtain the entire list of modified settings.

The IS DISTINCT FROM clause considers NULL as a distinct value instead of an unknown one,
permitting direct comparisons.



More information
The pg_settings view also provides the short_desc and extra_desc columns. We can use these as
shortcuts to remember why we might have changed a setting, without pulling up the PostgreSQL
documentation.



See also
The pg_settings view has a lot more information than what we have presented here.
Checkout the documentation at https://www.postgresql.org/docs/current/static/view-pg-settings.html for
more details.

https://www.postgresql.org/docs/current/static/view-pg-settings.html


Identifying important tables
Another aspect of maintaining a highly-available database is to know all of the important
information about the contents of the database itself. In this case, we aim to focus on tables and
indexes that receive the most activity. If any problems that might require maintenance or a restart
arise, the most active portions are the likely origin.

What is activity? Inserts, updates, deletes, and selects are a good start. PostgreSQL collects
statistics on all of this information, making it easy to collect and track. It also tracks how often
indexes or tables are scanned and how many rows were affected by each. In addition, we can
find out how much disk space any object consumes, and given the help of a couple of
contributed tools, we can also find out how much of this space is currently reusable.

Data like this tells us which tables and indexes are the most active, which objects have the
highest row turnover, and which objects require a high disk I/O. Armed with these statistics, we
can properly distribute tables to high performance tablespaces, direct extra maintenance toward
particularly active tables, or remove inefficient indexes.

All of these operations increase the stability, responsiveness, and throughput of a PostgreSQL
database. First, however, we need to isolate our targets.



Getting ready
Many of these techniques rely on functions and views described in greater detail within the
PostgreSQL documentation. In particular, we use a few system administration functions such as
pg_relation_size and pg_total_relation_size and system views such as pg_class, pg_index,
pg_stat_user_tables, and pg_stat_user_indexes. We also make use of a contributed module named
pgstattuple.

We strongly recommend that you get familiar with these functions and views in the PostgreSQL
documentation before continuing. After we are finished, we hope to have successfully conveyed
just how useful these views are and encourage further exploration. When you are building a
highly-available database, there is rarely such a thing as too much information about the
database.



How to do it...
Follow these steps to learn a little about the database:

1. Use this query to get a list of the top 20 largest tables in the current database:

        SELECT oid::REGCLASS::TEXT AS table_name, 
               pg_size_pretty( 
               pg_total_relation_size(oid) 
               ) AS total_size 
          FROM pg_class 
         WHERE relkind = 'r' 
               AND relpages > 0 
         ORDER BY pg_total_relation_size(oid) DESC 
         LIMIT 20; 

2. Use this query to get a list of the top 20 largest indexes in the current database and their
parent tables:

        SELECT indexrelid::REGCLASS::TEXT AS index_name, 
               indrelid::REGCLASS::TEXT AS table_name, 
               pg_size_pretty( 
               pg_relation_size(indexrelid) 
               ) AS total_size 
          FROM pg_index 
         ORDER BY pg_relation_size(indexrelid) DESC 
         LIMIT 20; 

3. Use this query to find the top 20 most active tables by determining the ones that receive
the most inserts, updates, or deletes:

        SELECT relid::REGCLASS AS table_name, 
                n_tup_ins AS inserts, 
                n_tup_upd + n_tup_hot_upd AS updates, 
                n_tup_del AS deletes 
          FROM pg_stat_user_tables 
         ORDER BY (n_tup_ins + n_tup_upd + 
                n_tup_hot_upd + n_tup_del) DESC 
         LIMIT 20; 

4. Use this variant to obtain top tables with fetch activity by checking index and table scans:

        SELECT relid::REGCLASS AS table_name, 
               coalesce(seq_scan, 0) AS sequential_scans, 
               coalesce(idx_scan, 0) AS index_scans, 
               coalesce(seq_tup_read, 0) AS table_matches, 
               coalesce(idx_tup_fetch, 0) AS index_matches 
          FROM pg_stat_user_tables 
         ORDER BY (coalesce(seq_scan, 0) +  
               coalesce(idx_scan, 0)) DESC, 
               (coalesce(seq_tup_read, 0) + 
               coalesce(idx_tup_fetch, 0)) DESC 
         LIMIT 20; 

5. Use this query for the top 20 indexes with read activity in the current database:

        SELECT indexrelid::REGCLASS AS index_name, 
               coalesce(idx_scan, 0) AS index_scans, 
               coalesce(idx_tup_read, 0) AS rows_read, 
               coalesce(idx_tup_fetch, 0) AS rows_fetched 



          FROM pg_stat_user_indexes 
         ORDER BY (coalesce(idx_scan, 0) +  
                coalesce(idx_tup_read, 0)) DESC 
         LIMIT 20; 



How it works...
Each of these queries offers a distinct piece of information about the database. Simply executing
them in a vacuum offers very little insight. We have to look at the results of each to learn
anything. In addition, all of the system catalog views only return statistics for the current
database we're connected to.

If the PostgreSQL instance has dozens of databases and we're only connected to one, the
statistics will only apply to that particular database. To obtain stats on every database in the
instance, we would need to connect to each one and collect the information separately.

The first query returns the 20 largest tables in the database, including associated indexes and the
The Oversize Attribute Storage Technique (TOAST) data. This way, if a table has a large
amount of excessively long row data or several indexes, we still get its true size in relation to all
other tables. We will likely make use of the pg_size_pretty function several times through this
book. When given a size in bytes, it converts it to a more convenient and readable notation such
as megabytes or gigabytes.

The next query returns the 20 largest indexes in the database. While it is very likely that these
will be associated with the largest tables, this won't necessarily be the case. Indeed, large
composite indexes, functional indexes, or bloated indexes will also be listed here. Indexes (which
are not primary keys) that show up in this list are good candidates for optimization, either by
substituting them with partial indexes or replacing them with a more efficient version.

After size, we move on to table activity. The third query returns the 20 most active tables based
on writes. In many cases, this will immediately identify tables with high turnover that will
frequently invoke autovacuum or autoanalyze and may require manual adjustment. Often, user
session tables appear here due to inefficient storage of web session data; identification provides
ammunition for process revision. Overly active tables are bottlenecks and should be minimized if
possible.

Then, we may wish to know table select information. The fourth query is somewhat crude, but
the intent is to return 20 tables that are most often read by user sessions. Again, it will likely
identify tables with extremely inflated read activity in comparison to the database average. These
cases can often be reduced by better frontend data caches, and identifying them is the first step
down this path.

Finally, we can see the top 20 indexes using read activity. This can further isolate potential
indexes that should be monitored. If we invert the sorting of this query, we can also identify
indexes that are not producing many matches at all and are simply wasting space.



There's more...
Though we've already obtained a wealth of information from PostgreSQL, it still has a few tricks
up its sleeve.



Reset stats
Running these queries multiple times in a row, it's hard to ignore the fact that the numbers
increase, and there's no associated timestamp. Several statistics-tracking systems will track the
differences between readings and display this as the rate, but if we're doing this by hand, we
need another way to zero out statistics for ease of analysis. Use this function to reset all activity
statistics to zero:

SELECT pg_stat_reset(); 

Of course, we suggest that you capture this data before resetting it.



Using pgstattuple
The pgstattuple contributed extension is also useful for analysis, but it produces a deep scan of
single objects identified through other means. It's best to use the extension to get storage-related
data regarding indexes or tables matched with the preceding queries. To use it, it must first be
installed by a superuser account. It can also only be utilized by a superuser account.

To install the extension, execute this SQL query:

CREATE EXTENSION pgstattuple; 

To use it, select from it as if it were a normal table or view. The only difference is that we use it
as a function with the name of the table we want to analyze. For example, to obtain storage
statistics on the pg_class table, we could execute this:

SELECT * FROM pgstattuple('pg_class'); 

Of particular interest is the free_percent column. If this is very high, the table mostly has empty
space and could benefit from CLUSTER or VACUUM FULL. In addition, we should tell developers if this
table becomes bloated frequently, as it is possible that they can modify the application to use it
more efficiently.

If this isn't possible, we can also set autovacuum to be more aggressive for each specific table if
necessary.



See also
The tools discussed in this section have a lot of documentation and examples. Please refer to
these sites for more information:

System Administration Functions: https://www.postgresql.org/docs/current/static/functions-admin.ht
ml
The Statistics Collector: https://www.postgresql.org/docs/current/static/monitoring-stats.html
pgstattuple: https://www.postgresql.org/docs/current/static/pgstattuple.html

https://www.postgresql.org/docs/current/static/functions-admin.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/pgstattuple.html


Defusing cache poisoning
Not every DBA has experienced disk cache poisoning. Those who have recognize it as a bane to
any critical OLTP system and a source of constant stress in a highly-available environment.

When the operating system fetches disk blocks into memory, it also applies arbitrary aging,
promotion, and purging heuristics. Several of these can invalidate cached data in the presence of
an originating process change such as a database crash or restart. Any memory stored by
PostgreSQL in shared memory is also purged upon database shutdown.

Perhaps the worst thing a DBA can do following a database crash or a restart is to immediately
make the database available to applications and users. Unless storage is based on SSD or a very
capable SAN, random read performance will drop by two or three orders of magnitude as data is
being supplied by slow disks instead of by memory. As a result, all subsequent queries will
greatly over-saturate the available disk bandwidth. This delays query results and slows down the
cache rebuild, potentially multiplying query execution times for several hours.

In a highly-available system, we cannot ignore this kind of risk. Saturated disk bandwidth means
random reads are spread very thin. We need to figure out how to reinstate the disk cache and
possibly, the PostgreSQL shared buffers before declaring that the database is usable. Otherwise,
the claim turns out to be false. Queries can often become so slow that applications will ignore
results and return errors to users.



Getting ready
We recommend that you check the PostgreSQL documentation for system administration
functions and views maintained by the statistics collector. We will be using the
pg_relation_filepath function and the pg_stat_user_tables view.

We will also make use of a contributed utility named pgFincore. This utility is not included with
standard PostgreSQL, but is often packaged for popular Linux distributions. To install it on an
Ubuntu server along with the PostgreSQL server, use this command:

sudo apt-get install postgresql-9.6-pgfincore 

Afterwards, activate it in the database with this query:

CREATE EXTENSION pgfincore; 

For lucky users of 9.4 and above, there's also the option of pg_prewarm. It can be installed with
this SQL:

CREATE EXTENSION pg_prewarm; 



How to do it...
First, follow these steps to create a static table that stores the top 20 active tables and indexes:

1. Execute the following query as a superuser and ignore any errors:

        DROP TABLE IF EXISTS active_snap; 

2. Next, recreate the snapshot table by running this query as a superuser:

        CREATE TABLE active_snap AS 
        (SELECT t.relid AS objrelid, 
                s.setting || '/' ||  
                pg_relation_filepath(t.relid) AS file_path 
           FROM pg_stat_user_tables t, pg_settings s 
          WHERE s.name = 'data_directory' 
          ORDER BY coalesce(idx_scan, 0) DESC 
          LIMIT 20) 
        UNION 
        (SELECT t.indexrelid AS objrelid, 
                s.setting || '/' || 
                pg_relation_filepath(t.indexrelid) AS file_path 
           FROM pg_stat_user_indexes t, pg_settings s 
          WHERE s.name = 'data_directory' 
          ORDER BY coalesce(idx_scan, 0) DESC 
          LIMIT 20); 

To restore the disk cache to the operating system easily for 9.4 systems and above with
pg_prewarm available, merely execute this single SQL statement:

SELECT pg_prewarm(objrelid)  
  FROM active_snap; 

Otherwise, we need a slightly more manual route. For 9.3 and older, use these steps:

1. As a superuser in the database connected with psql, execute the following query in the
critical OLTP database before shutting down the database:

        COPY active_snap (file_path) TO '/tmp/frequent_tables.txt'; 

2. Shut down PostgreSQL.
3. Perform maintenance, updates, or recovery.
4. Execute these commands from the command line:

        for x in $(tac /tmp/frequent_tables.txt); do 
            for y in $x*; do 
                dd if=$y of=/dev/null bs=8192 
                dd if=$y of=/dev/null bs=8192 
            done 
        done 

5. Restart PostgreSQL.

If we're not comfortable with UNIX commands, this pure SQL method will work as well. Follow
these steps instead:



1. Shut down PostgreSQL.
2. Perform maintenance, updates, or recovery.
3. Restart the database.
4. As a superuser in the database, execute the following SQL query in the critical OLTP

database:

        UPDATE pg_database 
           SET datallowconn = FALSE 
         WHERE datname != 'template1'; 

5. Next, execute the entire contents of this SQL block:

        DO $$ 
        DECLARE 
            obj_oid oid; 
        BEGIN 
            FOR obj_oid IN SELECT objrelid FROM active_snap 
            LOOP 
                PERFORM pgfadvise_willneed(obj_oid::regclass); 
            END LOOP; 
        END; 
        $$ LANGUAGE plpgsql; 

6. Finally, execute the following query to re-enable connections:

        UPDATE pg_database SET datallowconn = TRUE; 



How it works...
The first part of this recipe has two steps. We could perform this work at any time, so the table
may have existed from our previous work. Therefore, the first step is to drop the active_snap
table. None of the steps following this one remove this table, because in the case of a crash, we
want its contents as a starting point for restoring the cache contents.

After dropping the active_snap table, we recreate it with the top 20 tables and top 20 indexes that
are sorted by how often they're used in selects. This is only a close approximation based on the
collected database statistics, but it's better than leaving the data entirely uncached.

After creating the list of the most accessed tables and indexes, we have one of two paths. In the
first and simplest one, we merely preserve the file_path contents of the active_snap table, as this
tells us exactly where the files are located. After preserving the table, we can do anything we
want, including restarting the database server.

After we're done with maintenance or crash recovery, we can actually restore the file cache
before starting the PostgreSQL service. To do this, users of Postgres 9.4 and above can simply
rely on the pg_prewarm extension to do all of the hard work.

Otherwise, we require an imposing block of shell scripting. While it looks complex, it's actually
just two loops to get a full list of every file that has a name similar to the ones we identified. As
PostgreSQL objects exist in 1 GB chunks, there can be several of these that we may have to
find. Then, we use the dd utility to read the file into memory twice. We do it twice because the
first time it loads the data into memory, and the second time it encourages marking of the blocks
as frequently used so that the OS is less likely to purge them.

Afterwards, we can start PostgreSQL and enjoy a database that is much less likely to have
problems retrieving frequently used data. If we don't have command line access to the system
where PostgreSQL runs, this process is a little more complicated, but still manageable.

In the second scenario, we actually stop the database first. Any of our cache recovery must
come after the database is restarted. Until that time, we're free to perform any activity necessary
to get the server or database contents in order. After we start the database, the fun begins.

We need to reject user connections while we load the database cache. The easiest way to do this
without complicated scripts is to simply reject all connections that don't target the template1
database. It's extremely unlikely that applications or users will use this, as it generally contains
nothing and they have no permissions within it. For our use, it allows us to reconnect and re-
enable connections from template1 if we get disconnected for some reason.

Then, we can use the contents of our previously initialized active_snap table to tell the pgFincore
module to load all of those tables and indexes into memory. After this is complete, we re-enable
database connections and our work is finished.

Our active_snap table is pretty handy, but it depends on the existence of
statistical data that might not be available in the case of a system crash. Be
wary of using this approach if statistical information is not trustworthy or is



missing.



See also
The tools discussed in this section have a lot of documentation and examples. Please refer to
these sites for more information:

System Administration Functions: https://www.postgresql.org/docs/current/static/functions-admin.ht
ml
The Statistics Collector: https://www.postgresql.org/docs/current/static/monitoring-stats.html
pg_prewarm: https://www.postgresql.org/docs/current/static/pgprewarm.html
pgFincore: https://github.com/klando/pgfincore

https://www.postgresql.org/docs/current/static/functions-admin.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://github.com/klando/pgfincore


Exploring the magic of virtual IPs
As we're running a highly-available database, we have at least one standby copy available at all
times, right? Of course we do. However, after promoting a standby copy to act as a primary, we
need to redirect traffic to the new server. How can we do this easily?

One common method is to use a database connection pool. The pool acts as a connection proxy
and simply needs each known node to be registered so that it can redirect connections to the
proper primary database server. We will eventually discuss this approach, but there's actually a
simpler tool available to us that requires no additional software.

Another method is to change DNS to redirect network connections to the new server. The
beauty of this technique is that it masquerades the entire access path to the server so that
services other than PostgreSQL can access the new server as well. Unfortunately, subdomains
are tied to a single IP address. As DBAs, we probably don't have access to most of the network
hardware; that means relying on an external infrastructure department.

Instead, we can tie the subdomain to an IP address that isn't associated with any particular
server. Then, it's simply a matter of changing the server that claims it owns that IP address.
Luckily, this is something we can control directly.



Getting ready
To perform this process, we need both the ifconfig and the arping commands. The arping
command may not be present by default, so install it before continuing. If you are on a Debian
or Ubuntu system, issue this command:

sudo apt-get install arping



How to do it...
For these steps, assume that  eth0 is the primary interface and 127.0.0.10 is the IP we are trying
to claim. Follow these steps to move or create a virtual IP:

1. First, connect to the PostgreSQL node that had the IP address earlier. This is often the
primary server.

2. Release the IP address with the following command:

        sudo ifconfig eth0:pgvip down

3. Ping the desired IP address with this command:

         ping -c 3 127.0.0.10

4. If the preceding command reaches any PostgreSQL server, restart from the beginning with
this system instead.

5. Next, connect to the new server that should own the IP address.
6. Claim the IP address with the following command:

         sudo ifconfig eth0:pgvip 127.0.0.10

7. Tell the network about the location of the new IP address with this command:

         sudo arping -c 3 -A -I eth0 127.0.0.10



How it works...
If we haven't created a virtual IP yet, we can skip the first three steps. Otherwise, in order to use
an IP address, it must be available. Setting up the same IP address on multiple servers can wreak
havoc on network traffic routing.

It's important to never operate while two PostgreSQL servers claim the same IP
address.

Next, we ping the desired address to ensure there are no replies. This should prove that our IP
address is free for use. It should end with something like this:

--- 127.0.0.10 ping statistics --- 
3 packets transmitted, 0 received, +3 errors, 100% packet loss,    time 2015ms 

We want to see 100 percent packet loss. This means that the IP address is currently unclaimed.
If this results in an active server, we need to repeat the command that we used to shut down the
existing virtual IPs there as well.

Provided the address is available, we simply connect to the desired server and use ifconfig to
create a new virtual IP. We named the virtual IP pgvip, and attached it to the eth0 interface, and
used 127.0.0.10 as the target address to claim.

After this step, the IP address is only visible on the local server, so we need to tell the upstream
switches and routers that the IP is in use. The arping command does precisely this when passed
the -A parameter. We use the -c setting to send three gratuitous broadcasts to help ensure that at
least one was accepted. Like ifconfig, we need to tell arping to use eth0 with the -I parameter;
otherwise, traffic may be misrouted.



There's more...
This is really only a demonstration of virtual IP functionality. In the case of a server reboot,
network assignments created through ifconfig will disappear. For our purposes, this is actually
the desired result. If a PostgreSQL server tried claiming a virtual IP address upon reboot and we
had already assigned it to a different system, traffic could go to either system and result in severe
consequences. Would either database handle the requests? Would the misrouted network packets
cause invalid data or some other result? We don't know; network routing can affect any level of
the communication process. The end result is that the database is unusable in this state.

That said, the process of maintaining virtual IP addresses is easily automated. Later in this book,
we will discuss at least one tool that automatically assigns the virtual IP to the current primary
PostgreSQL server. Until then, this is still a very powerful tool to add to our arsenal.



Terminating rogue connections
There comes a time in every DBA's life when they must disconnect a PostgreSQL client from
the server; for us, that time is now. There are varying degrees of escalation available for this
purpose, and several system catalog views to provide viable targets. Why would we want to
forcefully cancel a query or disconnect a user?

To prevent utter havoc, should a user forget an important clause, a query could require several
hours to complete. During this time, it is consuming an entire CPU and saturating the storage
bandwidth while doing so. A buggy application could start a transaction and stop responding,
leaving an idle transaction potentially holding locks and causing a wait backlog.

There are many reasons to evict a connection, and most of them revolve around maintaining a
regular flow of queries. If we're unable to maintain low latency and high throughput, our work in
building a highly-available environment is wasted.



Getting ready
Luckily, PostgreSQL provides most of the tools we need. However, there is a more advanced
command-line utility named tcpkill that we may need to use later. If it's not already installed, we
recommend that you do so before continuing. Debian or Ubuntu-based systems can use this
command as a root-capable user:

sudo apt-get install dsniff

For lucky users of 9.6 and above, we suggest setting the new
idle_in_transaction_session_timeout setting to 3600 or lower in postgresql.conf.
This parameter will tell Postgres to automatically cut any connection that is
idle for longer than an hour.



How to do it...
The full escalation path starts very subtly to avoid major disruptive action. Try to follow these
steps carefully, assuming eth0 is the network interface that PostgreSQL is using:

1. Connect to the database as a superuser and execute the following query for PostgreSQL
9.2 and higher versions:

        SELECT pid, client_port, state, 
               now() - query_start AS duration, query 
          FROM pg_stat_activity 
         WHERE now() - query_start > INTERVAL '2 seconds' 
           AND state != 'idle' 
         ORDER BY duration DESC; 

2. Use this query for 9.1 and lower versions:

        SELECT procpid AS pid, client_port, 
               now() - query_start AS duration, current_query 
          FROM pg_stat_activity 
         WHERE now() - query_start > INTERVAL '2 seconds' 
           AND current_query != '<IDLE>' 
         ORDER BY duration DESC; 

3. Starting from the top, carefully examine the queries in this list. Make note of pid for any
query that should be disconnected.

4. Stop the currently executing query for the selected pids with the following query:

        SELECT pg_cancel_backend(pid); 

5. Execute the first query again and check the results for the targeted pid.
6. If the query is still running or the state has switched to idle in transaction, execute the

following query:

        SELECT pg_terminate_backend(pid); 

7. Execute the first query again and check the results for the targeted pid.
8. If the query is still running, disconnect from the database and connect to the server as a

root-capable user.
9. Run the following command to terminate the client's network connection, using the

contents of the client_port column:

         sudo tcpkill -i eth0 -9 port client_port

10. Wait until the output from tcpkill resembles several identical lines.



How it works...
We begin the process by getting a list of every process ID, duration, and query currently running
for longer than 2 seconds. Though 2 seconds is arbitrary; it helps filter out short and fast queries
that we aren't interested in. If we examine the queries listed in these results, we may decide that
one or more need to be canceled or disconnected. The results should resemble this output:

If this is the case, the pid column conveys important information necessary to target the client
connection. We begin by invoking pg_cancel_backend in an attempt to terminate the currently
running query. Often, this is enough to clear locks or stop a query from consuming excessive
resources. It's important to rerun the status query to ensure that the command successfully
stopped the client's activity.

If the target connection is still active, we need to escalate to the next step: disconnect the client
from the database. For this, we use pg_terminate_backend instead. This is roughly equivalent to
using an operating system utility to terminate the client process, but it is something we can do
directly from PostgreSQL. Again, we check for success using the status query, just in case.

In very rare cases, pg_terminate_backend can fail, and the client connection will remain unscathed.
How is this possible? Networks, despite their apparent maturity, are notoriously unreliable.
Misrouted packets, retransmissions, blocked sockets, timeouts, stalls, and more issues wait to
disrupt the communication line between PostgreSQL and a connected client.

Sometimes the network socket is in such a state that PostgreSQL was interrupted while writing
output. In this case, PostgreSQL is waiting for the client to acknowledge receipt of the data, or
for the operating system to mark the network connection as broken. If this never happens,
PostgreSQL will wait patiently forever until the client properly handles the terminate command.

This isn't ideal for us if the process is locking necessary tables or rows. If we can't get
PostgreSQL to terminate the client, we need to use another approach. The tcpkill command
gives us the ability to interrupt a network connection directly; this causes the operating system to
close the network socket. When this happens, the PostgreSQL client exits automatically.

All we need to do is run tcpkill with the -i parameter to tell it about the network interface that
the database is using, the port to focus on, and how aggressive to be. We know the port from the
client_port column of our status query, and specifying -9 tells tcpkill to block all incoming and
outgoing packets so that there's no ambiguity regarding our intent.

The output from a tcpkill command should look like this towards the end:

127.0.0.10:5432 > 127.0.0.1:37601: R 315492496:315490496(0) win 0
127.0.0.10:5432 > 127.0.0.1:37601: R 315492538:315490538(0) win 0
127.0.0.10:5432 > 127.0.0.1:37601: R 315492622:315490622(0) win 0

It's important to not be impatient. Sometimes, it can take a minute or two before the connection
finally dies.



There's more...
If a connected application encounters a bug and goes haywire, it might be convenient to
disconnect several clients simultaneously. PostgreSQL lets us run query results through
functions, so we could kill all connections that were idle in the transaction for at least 2 minutes
by running this query as a superuser:

SELECT pg_terminate_backend(pid) 
  FROM pg_stat_activity 
 WHERE now() - query_start > INTERVAL '2 minutes' 
  AND state = 'idle in transaction'; 

The pg_stat_activity view offers a lot of characteristics to differentiate target queries. We could
terminate only connections from a specific IP address or those that connected to the database
over a week ago. There is a lot of opportunity here to maintain a highly-available system through
direct intervention.



Reducing contention with concurrent indexes
When administering a PostgreSQL installation, we will eventually need to create new tables and
indexes. In the case of new indexes, the table is locked in shared exclusive access mode for the
duration of the creation process, blocking any insert, update, or delete activity. This both
prevents inconsistencies, and allows the database to modify the table structure to reflect the new
index.

Unfortunately, this process is fundamentally incompatible with maintaining a highly-available
server. While building the index, PostgreSQL needs to examine every valid table row, which
means loading it from the disk into memory. For large or active tables, this can cause excessive
strain on the system. Other database activities will reduce available disk bandwidth, and the
required lock will block all modifications of data in that table. Combined, this can lead to a table
being locked for a very long time.

Beginning with PostgreSQL 8.2, indexes can be created concurrently with other activities. This
means PostgreSQL constructs the index in the background and only requests an exclusive lock
that is long enough to attach it to the table. Early after its introduction, some DBAs felt reluctant
to use it and have not changed their evaluation of its safety as it matured.

This may seem trivial as the feature has been around for a very long time, but not enough new
administrators know about this functionality. Using it properly and knowing the caveats can avert
several DBA headaches.



Getting ready
We just need to find an index to create. For the purposes of this discussion, we may also want to
create a small pgbench database for demonstration purposes. Execute the following commands as
the postgres user to build a sufficient sample:

createdb pgbench 
pgbench -i -s 200 pgbench 



How to do it...
Follow these steps to test concurrent index creation:

1. Connect to the pgbench database and execute the following command as a superuser or the
postgres user:

        CREATE INDEX CONCURRENTLY idx_account_bid 
            ON pgbench_accounts (bid); 

2. In another connection, attempt to execute the following insert before the preceding
command completes:

        INSERT INTO pgbench_accounts 
        VALUES (50000000, 100, 15000, 'testing'); 



How it works...
By adding the CONCURRENTLY modifier, PostgreSQL will begin the process of building an index.
While it does this, it also tracks the incoming insert, update, and delete activities to include them
in the new index.

In the connection where we invoked the CREATE INDEX statement, we will not see a prompt again
until PostgreSQL finishes building the index. So, how can we tell it apart from any regular index
creation? One of the reasons we built an example was to prove that concurrency is present. The
INSERT statement in the second connection should succeed before the index is complete. The
process is the same for a production PostgreSQL instance. Any incoming writes to a table
undergoing a concurrent index creation will complete normally until the final lock is necessary.



There's more...
While concurrent indexes are very useful, they have some very important elements we need to
consider.



No transactions
As of PostgreSQL 9.6, concurrent index creation cannot take place inside a transaction. Why
not? Remember that the process needs to look inside all the incoming transactions that could
modify the table being indexed. PostgreSQL normally never allows what most experienced
DBAs know as dirty reads of uncommitted data. As a consequence, concurrent indexes must be
built outside of a transaction by internal database mechanisms.



One at a time
As concurrent index creation is not transaction safe, PostgreSQL will only build one at a time.
Some enterprising DBAs have circumvented this limitation by building a queue system to send
concurrent index-creation requests until the queue is empty. More advanced PostgreSQL
installations may want to consider a similar system to utilize concurrent indexes extensively.



Danger with OLTP use
Concurrent indexes are not a panacea; they still follow rules for lock acquisition. Specifically,
PostgreSQL cannot acquire a lock to attach the index so long as any earlier transactions are still
running. While it waits for the lock, any new transactions that need to modify the table contents
will also wait. This feedback loop of waits can quickly consume all available client connections
on a busy OLTP system.

It's best to avoid this situation by following the normal index-creation protocol on OLTP systems:
only create indexes when the volume is low. We can also massively reduce the risk by avoiding
long-running transactions that could potentially block the final lock request. OLTP systems
should have a few of these in any case.



See also
PostgreSQL has an excellent manual page discussing indexes and concurrency. Please refer to
this page for more information:

https://www.postgresql.org/docs/current/static/sql-createindex.html

https://www.postgresql.org/docs/current/static/sql-createindex.html


Managing system migrations
As DBAs, it is likely that we will eventually preside over a server replacement. Whether this is to
avoid failed hardware or due to system upgrades, our job is to move PostgreSQL from one
system to the next.

It is not simple to perform a server migration while simultaneously maintaining maximum
availability. One of the easiest methods is limited to users of shared storage such as a SAN. Such
storage can be reassigned to another server easily. Without a SAN or other means of shared
storage, we need to utilize another method.

Luckily, PostgreSQL added streaming database replication in Version 9.1. With this, we can
make a copy on the new server and switch to it when we're ready.



Getting ready
For this demonstration, we will need another server or virtual machine to receive a copy of our
database. Have one ready to follow along. We will also be using a PostgreSQL tool named
pg_basebackup. Check the PostgreSQL documentation regarding this utility for more information.

If the donor server is configured as described in the Configuration - getting it right the first
time recipe, modify its pg_hba.conf file and add the following line:

host    replication    rep_user    0/0    md5 

Then, create a user to control replication with this SQL query issued as a superuser:

CREATE USER rep_user WITH PASSWORD 'rep_test' REPLICATION; 

Then, reload the server to activate the configuration line. If you are attempting this in a real
production system, use a better password and replace 0/0 with the actual IP address of the new
server.



How to do it...
Assuming 192.168.1.10 is our donor server, follow these steps to create a copy:

1. Connect to the new server as the postgres user.
2. Issue the following command to copy data from the donor system:

        pg_basebackup -U rep_user -h 192.168.1.10 -D /path/to/database

3. Create a file named recovery.conf in /path/to/database with the following contents:

        standby_mode = 'on' 
        primary_conninfo = 'host=192.168.1.10 port=5432 user=rep_user' 

4. Create a file named .pgpass in the home directory of the postgres user with the following
line:

        *:5432:replication:rep_user:rep_test 

5. Set the correct permissions for the .pgpass file with this command:

        chmod 0600 ~postgres/.pgpass

6. Start the new server using the following command:

        pg_ctl -D /path/to/database start

7. Inform application owners to stop their applications or bring available services up with a
maintenance message.

8. Issue the following command on the donor server to write any pending data to the
database:

        CHECKPOINT; 

9. Connect to PostgreSQL on the donor server and issue the following query to check
replication status:

        SELECT sent_location, replay_location 
          FROM pg_stat_replication 
         WHERE usename = 'rep_user'; 

10. Periodically repeat the preceding query until sent_location and replay_location match.

11. Issue a command on the primary server to stop the database. This command should work
on most systems:

        pg_ctl -D /path/to/database stop -m fast

12. Issue this command on the new server:

        pg_ctl -D /path/to/database promote

13. Inform application owners to start their applications or bring available services up normally



configured to use the new database server address.



How it works...
We start the somewhat long journey on the new server by invoking the pg_basebackup command.
When PostgreSQL introduced streaming replication, they also made it possible for a regular
utility to obtain copies of database files through the client protocol. To create a copy of every file
in the donor system, we specify its address with the -h parameter. Using the -U parameter, we
can tell pg_basebackup to use the rep_user user we created specifically to manage database
replication.

When PostgreSQL detects the presence of a recovery.conf file, it begins to recover as if it
crashed. The value we used for the primary_conninfo setting will cause the replica to connect to
the primary server. Once established, the replica will consume changes from the primary
database server until it is synchronized. After starting the database, any activity that occurs in the
primary system will also eventually be replayed in the copy.

As we created the replication user with a password, we need an automatic method to convey the
password from the replica to the primary. PostgreSQL clients often seek .pgpass files to obtain
credentials automatically; used in this context, the new server acts as a client.

Once we start the new server, everything should be ready, so we need all sources of new data in
the database to stop temporarily. Once this has happened, we issue CHECKPOINT to flush the
activity to disk. Afterwards, we monitor the status of the replication stream until it is fully
synchronized with the donor.

After the synchronization is verified with our replication lag query, we stop the source
PostgreSQL database; its job is complete. All that remains is to promote the new database to full
production status and tell various departments and application owners that the database is
available at the new location. Before replication, this was a much more involved process.



There's more...
We can use what we learned in the Exploring the Magic of Virtual IPs recipe to make this even
simpler for end users. Until near the end, the process is the same. However, if applications and
users were using the virtual address instead of the actual server IP for the old database, they can
continue to use the virtual location after the migration.

Simply detach the virtual IP from the old database server, and attach it on the new one before
informing the users that the migration is complete. As an added benefit, we can use the virtual IP
address as a form of security. Until we create it, users will be unable to locate the database. We
can take advantage of this and perform database checks before going fully online.

Once we have created the virtual IP address, any applications that were using the database
before we started the migration will need to reconnect. Yet, even this necessity can be removed;
we will discuss this in a future chapter.



See also
System migrations are extremely complicated. This section only touches on a small number of
concepts. Please refer to these PostgreSQL documentation links for a deeper exploration of the
material we covered:

The pg_basebackup Utility: https://www.postgresql.org/docs/current/static/app-pgbasebackup.html
Log-Shipping Standby Servers: https://www.postgresql.org/docs/current/static/warm-standby.html
Hot Standby: https://www.postgresql.org/docs/current/static/hot-standby.html

https://www.postgresql.org/docs/current/static/app-pgbasebackup.html
https://www.postgresql.org/docs/current/static/warm-standby.html
https://www.postgresql.org/docs/current/static/hot-standby.html


Managing software upgrades
Software in the server space is normally fairly stable. However, elements such as security
updates and bug fixes must be applied. Highly-available servers can't be stopped often, but
without important upgrades, they could crash or experience a breach, which would be far more
serious.

Then how do we ensure that updates can be applied safely while maintaining consistent
availability? Once again, this often comes down to preparation. We prepare by having duplicate
online data copies and by abstracting access paths. With architecture like this in place, we can
switch to a backup server while upgrading the primary; thus, the database never actually goes
offline.

We'll explore this scenario here, especially as it will be a very common one.



Getting ready
For this section, we need at least one extra server with PostgreSQL installed. This server should
be running a copy of our database. We can follow the Managing system migrations recipe to
build a copy if we don't already have one available. We will also use ideas introduced in the
Exploring the Magic of Virtual IPs recipe. Reviewing these recipes now might be a good idea.



How to do it...
For this scenario, assume that we have two servers with the addresses 192.168.1.10 and
192.168.1.20, where 192.168.1.10 is currently the primary server. In addition, we have a virtual IP
address of 192.168.1.30 on the eth0:pgvip Ethernet device. To upgrade the PostgreSQL software
on both nodes, follow these steps:

1. Stop the database copy on 192.168.1.20 as the postgres user using this command:

        pg_ctl -D /path/to/database stop -m fast

2. Perform any necessary software upgrades. For example, to upgrade a Debian or Ubuntu
server to the latest PostgreSQL 9.6, use the following command as a root-capable user on
192.168.1.20:

        sudo apt-get install postgresql-9.6

3. Start the database copy on 192.168.1.20 as the postgres user:

        pg_ctl -D /path/to/database start

4. As a root-capable user on 192.168.1.10, stop the virtual IP address with the following
command:

        sudo ifconfig eth0:pgvip down

5. As a database superuser, issue a checkpoint to the database on 192.168.1.10:

        CHECKPOINT; 

6. Connect to PostgreSQL on 192.168.1.10 and issue the following query to check replication
status:

        SELECT sent_location, replay_location
          FROM pg_stat_replication  WHERE usename = 'rep_user'; 

7. Periodically repeat the preceding query until sent_location and replay_location match.
8. As postgres, stop the PostgreSQL service on 192.168.1.10 with this command:

        pg_ctl -D /path/to/database stop -m fast

9. As postgres, promote the PostgreSQL replica on 192.168.1.20 with this command:

        pg_ctl -D /path/to/database promote

10. As a root-capable user on 192.168.1.20, start the virtual IP address with the following
command:

        sudo ifconfig eth0:pgvip 192.168.1.30 up

11. If necessary, inform the developers and support staff to restart the application's database
connection pools.



12. Repeat any necessary software upgrades on 192.168.1.10 as already performed on
192.168.1.20.

13. Erase the existing database on 192.168.1.10 as the postgres user this way:

        rm -Rf /path/to/database

14. Use pg_basebackup on 192.168.1.10 to make a copy of the upgraded database on 192.168.1.20:

        pg_basebackup -U rep_user -h 192.168.1.20 -D /path/to/database

15. Create a file named recovery.conf in /path/to/database with the following contents:

        standby_mode = 'on' 
        primary_conninfo = 'host=192.168.1.20 port=5432   
                            user=rep_user' 

16. Start the newly created copy as the postgres user on 192.168.1.10 using the following
command:

        pg_ctl -D /path/to/database start



How it works...
This entire process is very long, but we hope to illustrate that it is actually very straightforward.
The first step is to upgrade the mirror copy of the database under the assumption that it is not
actively utilized by applications or users. The role of the secondary node in this case is to act as
an emergency backup for the primary database node. As it's not being used, we are able to stop
the database, perform any updates necessary, and start it and allow it to synchronize again.

Afterwards, we isolate the primary database node by disabling the virtual IP address. This allows
the streaming replica to replay the last few active transactions so that it's fully synchronized
before we make it the new primary database. We accomplish this by issuing CHECKPOINT and
watching the replication status until it matches on both systems. When the replication status
matches, we can stop the primary PostgreSQL server; its role in the process is complete.

As software upgrades may take some time to complete or require a server restart, we need to
immediately make the secondary node available as the primary database. We start by promoting
the replica to become the new primary by sending the promote command to pg_ctl. Once the
database is writable, we reinstate the 192.168.1.30 virtual IP address so that applications and users
can reconnect safely.

This process of node switching is fairly quick, provided we already have a replica ready to take
over. With the replica acting as a primary, the next step is to perform any upgrades necessary,
just as we did on the secondary node. After the upgrades are finished, we cannot simply restart
the primary database again, as the replica has been acting as a primary database for a period of
time.

This means that we need to rebuild the primary database as a new replica. This makes both
nodes ready for the next upgrade and maintains the two-node relationship. We start this process
by erasing the old contents of the database and then use pg_basebackup to copy the current
primary database. Then, we create a new recovery.conf file and direct it to act as a new replica.
Once the replica is started, we have the same configuration as we had earlier, but now, the roles
are reversed; 192.168.1.20 is the primary, and 192.168.1.10 is the replica.



There's more...
Astute readers may have noticed that using pg_basebackup to copy the entire database following a
minor upgrade is somewhat wasteful. We agree! In later recipes, we will make use of rsync or
PostgreSQL-specific software to perform these tasks instead. This recipe was already pretty
long, and setting up rsync properly for this operation would have added quite a bit more time.
The point is to show you the switching process; feel free to substitute better methods you know
for synchronizing data.



See also
In addition to rsync, a newer utility named pg_rewind can make resetting replicas much
easier. It is beyond the scope of this chapter, so we recommend that you read more about it
at https://www.postgresql.org/docs/current/static/app-pgrewind.html.

https://www.postgresql.org/docs/current/static/app-pgrewind.html


Mitigating the impact of hardware failure
Software can have bugs, and PostgreSQL is no exception. Bugs in the database software rarely,
if ever, lead directly to data corruption. Hardware can fail too, but hardware problems are not
always so straightforward.

Disk, CPU, or memory failures don't always cause the server to crash. In fact, these failures can
persist for weeks or even months before their detection by a monitoring infrastructure. Disk
failures are generally abstracted away by RAID or SAN devices, and these arrays are designed to
readily handle online rebuilds. Other types of failures are more subtle.

CPU or memory problems can manifest in several different ways. In order for PostgreSQL to
function, the data from disk must be read into memory to be processed by the CPU. During any
of these transition states, a bad CPU or RAM module can inject an invalid checksum or data
value inconsistent with the rest of the database. However, PostgreSQL generally assumes that
the database is consistent and that transaction logs have been faithfully recorded and applied.

When running a dual-node database, where one node is always connected and synchronized with
the other, a failure like this can corrupt data on both nodes nearly simultaneously. When both
nodes contain invalid data, our promise of providing a highly-available system is impossible. We
have no backup to switch to or no alternate node to host the database while we repair the
problem. Data corruption can require intricate investigative and mitigation efforts, which are
much harder to complete while the database is online.

The only reasonable way to prevent this type of scenario is by exercising extreme caution and
with some extra preparation work.



Getting ready
We need to cover a few different scenarios here. One of the things we want to do is transfer files
from one server to another. A popular way to do this is with the rsync command. On Debian or
Ubuntu systems, we can install it as a root-capable user this way:

sudo apt-get install rsync

We also need it properly configured in order to use it. Create a file named /etc/rsyncd.conf and
fill it with this content:

[archive] 
    path = /db/wal_archive 
    comment = Archived Transaction Logs 
    uid = postgres 
    gid = postgres 
    read only = true 

We're now ready to protect our data from hardware problems.



How to do it...
The first thing we need to do is secure the WAL stream. Follow these steps to build a semi-
permanent copy of archived WAL data in the /db/wal_archive directory:

1. On the primary node, modify the postgresql.conf file to include the following setting:

        archive_command = 'cp -an %p > /db/wal_archive/%f' 

2. Create the /db/wal_archive directory as a root-capable user using the following commands:

        sudo mkdir -p -m 0700 /db/wal_archive
        sudo chown -R postgres /db/wal_archive

3. Reload the PostgreSQL service using the following command:

        pg_ctl -D /path/to/database reload

4. As a root-capable user, create a script named del_archives in the /etc/cron.daily directory
and fill it with this content as a single line:

        find /db/wal_archive -name '0000*' -type f -mtime +2 - delete 

5. Make sure that the script is executable using the following command:

        chmod a+x /etc/cron.daily/del_archives

Next, we should set up a copy on a remote location. In this case, let's assume that the database
is at 192.168.1.10 and we have another server set up specifically for WAL storage at 192.168.1.100.
Impose an hour's delay by following these steps:

1. On 192.168.1.100, create a /db/wal_archive directory as a root-capable user with these
commands:

        sudo mkdir -p -m 0700 /db/wal_archive
        sudo chown -R postgres /db/wal_archive

2. Ensure that the server at 192.168.1.100 has the rsync.conf file we discussed earlier.

3. As a root-capable user on 192.168.1.10, create a script named sync_archives in the
/etc/cron.d directory with this content:

        * * * * * postgres find /db/wal_archive -name '0000*' \ 
                       -type f -mmin +60 | \ 
                       xargs -I{} rsync {} 192.168.1.100::archive 



How it works...
To ensure that WAL data is available for recovery or emergency restore, we need to secure it on
a tertiary location away from the primary or secondary server. We start this by telling
PostgreSQL to store the old WAL files instead of deleting them. The cp command we used to
copy the files will not overwrite the existing archives due to the -n setting. This prevents
accidentally corrupting the existing transaction logs.

Then, we need to create the directory where the files will reside. The mkdir command does this,
and the chown command ensures that the PostgreSQL server can write to that directory. Once the
directory is in place, we need to reload the server because we changed archive_command.

Once a WAL file is no longer needed by PostgreSQL, it's stored in our /db/wal_archive directory
until it gets deleted. This is why we create the del_archives script. We only really need two or
three days worth of live WAL files. This allows us to send very old files to tape, and newer files
are available for Point In Time Recovery (PITR) or restore. Once we make the script
executable with the chattr command, we will not have to worry about accidentally filling the
disks with WAL files.

The final steps might be the most important of all. We create a directory on a completely
different server rather than on any of our existing database nodes. Once this directory is there,
we create an automated rsync job on the database master that will run every minute and copy all
WAL files older than 1 hour to the new storage area. Why only an hour? Current versions of
PostgreSQL don't have the ability to delay the replay stream, so if we encounter a hardware
problem, corrupt data will immediately synchronize to our spare server. This gives us up to an
hour for monitors, maintenance, and logs to discover the problem before the corrupted WAL
files pollute the tertiary storage server.

We could use PITR instead at this point. However, an imposed 1 hour delay
allows us to have live access to databases that obtain their WAL files from the
tertiary server. Otherwise, we would have to restore from backup and apply WAL
files to reach our desired point in time.



There's more...
In securing the WAL stream, there are a few other options available to us.



Copying WAL files more easily
If we have a version of PostgreSQL of 9.2 or above, there is a new command that, much like
pg_basebackup, utilizes the replication mechanism for a new purpose. Assuming PostgreSQL is
configured as described in the Configuration - getting it right the first time recipe, there should
be five available replication streams. As we're smart and have a dual-node cluster, we are already
using at least one to create a copy of the database.

The next step would be to have a copy of the WAL files alone, as they are critical to PITR,
which helps isolate the database. Instead of using rsync to copy these between nodes, we can
simply pull them directly from the primary node. With 192.168.1.30 as the virtual database IP
address and rep_user as the name of the replication user, we could use the following command to
obtain WAL data:

pg_receivexlog -h 192.168.1.30 -U rep_user -D /db/wal_archive

This command acts like a service. This means it will only copy from the replication stream while
it is actually running. To use pg_receivexlog effectively, it needs to be started as a background
service and it should be restarted if the virtual IP is moved or the server it's running on is ever
restarted.



Adding compression
PostgreSQL WAL files are very compressible. As such, we can save quite a bit of space while
storing them for long periods of time. Since PostgreSQL archive_command can be anything we
wish, we can incorporate compression right into the process. For example, we could use this
postgresql.conf setting instead:

archive_command = 'gzip -qc %p > /db/wal_archive/%f' 

Now, whenever PostgreSQL moves a WAL file into the archive, it also compresses it.



Secondary delay
We have already discussed maintenance in the previous sections. What we never covered was
self-imposed archival delay. If we're performing maintenance or the primary node crashes, it is a
very good idea to either delete the /etc/cron.d/sync_archive script or comment out the rsync
command itself until the maintenance is complete. This hour-long barrier helps avoid propagating
corrupt data, but there's no reason to take excess risks.

Some environments have another pair of servers in a different data center that acts as disaster
recovery. If this is our setup, any running server on the disaster-recovery side should be stopped
while we modify or rebuild the primary or secondary servers. The reasoning is the same: if there
is a problem with the maintenance, we have an untainted copy of everything.

Feel free to re-enable all the synchronization after verifying that crash recovery or maintenance
hasn't introduced invalid data.



See also
As we introduced the pg_receivexlog utility, we would be remiss if we didn't include its
helpful documentation as well. Follow this link for more information: https://www.postgresql.org
/docs/current/static/app-pgreceivexlog.html.

https://www.postgresql.org/docs/current/static/app-pgreceivexlog.html


Applying bonus kernel tweaks
Most operating system kernels are optimized for generalized use. While this does not preclude
operation as a server, we have to change a few settings to fully utilize our available hardware.
This isn't simply a series of configuration modifications meant to increase performance, but
critical kernel-related tweaks meant to prevent outages.

Though, while we're on the subject, there's no reason to not include purely performance-
enhancing changes. Getting the most out of our hardware prevents unnecessary operating strain
on existing resources. A server running too close to its limits cannot be considered highly-
available; an unexpected increase in demand can render a server unusable under the right
circumstances.



Getting ready
While the following settings are based on Linux servers, some of the concepts are universal.
We'll try to provide enough information to illustrate this. However, keep that in mind for this
recipe. Otherwise, look for a directory named /etc/sysctl.d. Any system with this directory can
be easily configured by adding a file that contains extra settings here. Otherwise, we need to find
a file named /etc/sysctl.conf, which serves a similar purpose, but requires direct modification.

The settings we are going to change include the following:

kernel.sched_migration_cost_ns = 5000000 
kernel.sched_autogroup_enabled = 0 
vm.dirty_background_bytes = 67108864 
vm.dirty_bytes = 1073741824 
vm.zone_reclaim_mode = 0 
vm.swappiness = 0 



How to do it...
If there's a /etc/sysctl.d directory, follow these steps to activate:

1. Create a file named 30-postgresql.conf in the /etc/sysctl.d directory with the settings we
mentioned earlier.

2. Execute this command as a root-capable user to activate:

        sudo sysctl -p /etc/sysctl.d/30-postgresql.conf

Otherwise, follow these steps:

1. Place the settings in /etc/sysctl.conf.
2. Execute this command as a root-capable user to activate:

        sudo sysctl -p



How it works...
In this case, it's all about the settings. Each of our two illustrated steps simply ensures that the
settings are in a location where they become permanent parts of the server. Any future reboot
will automatically apply these newly selected values instead of the defaults. The sysctl command
activates them immediately, so we don't need to reboot to modify system behavior.

The sched_migration_cost_ns setting is the total time the scheduler will consider a migrated process
cache hot and, thus, less likely to be remigrated. By default, this is 0.5 ms (500000 ns). As the
size of the process table increases, the complexity inherited by the process scheduler eventually
results in high CPU overhead, merely to assign processors to PostgreSQL tasks.

Depending on the count of database clients, we have observed overhead as high as 70 percent,
greatly reducing database performance. Our suggested setting of 5 ms gives PostgreSQL enough
time to process one or more queries before the task is eligible for migration and prevents the
CPU task scheduler from being overworked.

The sched_autogroup_enabled setting causes the operating system to group tasks by origin to
improve perceived responsiveness. On server systems, large daemons such as PostgreSQL are
launched from the same system task. As they're all in the same large group, they can be
effectively choked out of CPU cycles in favor of less important tasks. The default setting is 1
(enabled) on some platforms. By setting this to 0 (disabled), PostgreSQL query performance can
be improved by up to 30 percent on databases with hundreds of user connections.

We modify zone_reclaim_mode to completely disable its operation by setting it to 0. According to
the Linux kernel documentation, it may be beneficial to switch off zone reclaim when memory
should be used for caching files from disk. Without this, the kernel aggressively balances
memory between zones, causing excess overhead and reducing available memory for caching
disk data.

The dirty_background_bytes setting is the amount of memory (in bytes) that can be marked as
modified before the operating system begins writing data to disk in the background. It is closely
tied to dirty_ratio, which is the amount of memory (in bytes) where the operating system blocks
all other write activities and aggressively writes dirty memory until everything has been flushed.
This kind of occurrence effectively stops all database activity until the flush is complete.

By setting the background bytes to such a low value of 64MB, the constant background writes
make it much less likely that we will reach that trigger point. A highly-available server cannot
afford long unplanned periods of stopped query handling. The constant writing actually slightly
reduces performance, which is a risk we have to weigh against the stability of the server.

Older kernels used dirty_background_ratio and dirty_ratio in place of
dirty_background_bytes and dirty_bytes. These older settings are percentages of
total memory, and as such, should not exceed 1 and 5 respectively, especially on
systems with more than 64GB of RAM. Doing otherwise risks large flushes that
could over-saturate disk caches and cause IO waits.

Lastly, we set swappiness to 0; this disables memory swapping. When Linux runs low on memory,



it normally starts moving idle processes to disk to free up RAM. We don't want to risk any of
our PostgreSQL clients getting this treatment, so we tell Linux to only swap if there is no other
option. This is common to dedicated servers such as a critical PostgreSQL system.



There's more...
Some kernel settings have different names with different versions. For instance,
sched_migration_cost_ns is renamed sched_migration_cost in the older kernel releases. In the most
recent kernels, the setting is missing entirely. In addition, dirty_background_ratio and dirty_ratio
have been replaced for a very good reason.

Imagine a server with 512 GB of RAM. In such a case, up to 5 GB of memory could be dirty
before the operating system writes anything to disk. In the event of an emergency flush, the disk
subsystem may not be capable of handling such a large amount. The new settings allow us to use
the same logic as before, but with bytes instead of percentages. In systems with more than 64
GB of RAM, we highly recommend upgrading to a more recent kernel to make use of
dirty_bytes and dirty_background_bytes.

A good place to start for setting dirty_background_bytes is up to double the size of the RAID or
disk controller cache. This ensures that there is never more memory waiting to be written than
the controller can handle. Similarly, we can set dirty_bytes to eight to ten times the size of the
controller cache. This prevents long flushing delays if the background writer ever falls behind.
Our default of 1GB should suffice for most modern systems.

As always, your mileage may vary. Some PostgreSQL servers may experience slightly faster
writes with larger amounts of dirty memory buffers. However, the goal of this book is to reduce
the overall risk, even if that's at the cost of some performance. Long periods of database
timeouts due to an overwhelmed disk subsystem do not fit this model.



Pooling Resources
In this chapter, we will learn to combine and abstract connectivity to isolate and protect the
database. We will cover the following recipes in this chapter:

Determining connection costs and limits
Installing PgBouncer
Configuring PgBouncer safely
Connecting to PgBouncer
Listing PgBouncer server connections
Listing PgBouncer client connections
Evaluating PgBouncer pool health
Installing pgpool
Configuring pgpool for master/slave mode
Testing a write query on pgpool
Swapping active nodes with pgpool
Combining the power of pgBouncer and pgpool



Introduction
Abstraction can protect a database from even the busiest platform. At the time of writing this
book, applications and web services often involve hundreds of servers. If we follow a simple and
naïve development cycle where applications have direct access to the database, each of these
servers may require dozens of connections per program, even with a small server pool that can
result in hundreds or thousands of direct connections to the database.

Is this what we want? Consider the scenario illustrated in the following diagram:

We need a way to avoid overwhelming the database with the needs of too many clients. As we
suggested in the previous chapter, a PostgreSQL server experiences its best performance when
the amount of active connections is less than three times the available CPU count. With a
thousand incoming client connections, we will need hundreds of CPU cores to satisfy the
formula.

Every incoming connection requires resources such as memory for query calculations and
results, file-handle and port allocations for network traffic, process management, and so on. In
addition, each connection is another process the OS has to schedule for CPU time. Very large
servers are extremely capable, but resources are not infinite. Even if the database can handle
thousands of connections, performance will suffer for each in excess of design capacity. We need
to change the map to something slightly different, as seen here:

By inserting a connection pool in front of the database, hundreds of PostgreSQL server
processes are reduced to dozens. A database pool works by recycling database connections as
soon as the client completes its current transaction or when its database work is complete.
Instead of hundreds of mostly idle database connections, we maintain a specific set of highly
active connections.

Two popular tools for PostgreSQL that provide pooling capability are pgBouncer and pgpool. In this
chapter, we will explore how to use these services properly and reduce overhead while increasing
database availability.



Determining connection costs and limits
Excessive database connections are not without risk. The level of risk we incur and what exactly
qualifies as excessive are important to determine early. The company and our customers will find
it extremely inconvenient if normal database activity exhausted system memory, caused timeouts
due to increased context-switching, or overwhelmed the kernel with an overly large process
table.

To maintain a highly available server, we must know the full impact of every single connection in
terms of required memory and CPU resources. Servicing several disparate applications from
various external servers is difficult, so we must provide availability while simultaneously avoiding
resource exhaustion. If we properly assess the ideal balance between connection count and
performance early on, we can avoid costly emergencies.

Irrespective of whether we helped specify the hardware that will host our PostgreSQL
installation, it's still our job to figure out how many clients it can comfortably support. Since this
chapter is primarily focused on database pools, we can use this opportunity to choose a practical
pool size as well.



Getting ready
We will make a few rough calculations in this section. If possible, obtain data regarding the
amount of CPU cores, available RAM, and the number of disk spindles in the storage pool.

Linux systems have a live filesystem that tracks most of this information. To obtain the number
of CPUs, simply execute this at the command line, and add one to the highest value since
indexing starts at zero:

grep ^processor /proc/cpuinfo

For the amount of RAM in kilobytes, use this command:

grep MemTotal /proc/meminfo

Finding the amount of disk spindles can vary greatly between RAID and SAN implementations,
so we suggest you obtain the number from the infrastructure department.



How to do it...
Start by calculating the number of connections that the RAM can accommodate by following
these steps:

1. Begin the estimate with 8 MB used per connection.
2. Add four times the value of the work_mem PostgreSQL configuration setting in megabytes, for

a per-client total.
3. Obtain the amount of RAM in megabytes.
4. Divide half of the RAM size by the per-client MB total.

Next, calculate the number of connections the CPU and disk resources can support by following
these steps:

1. Obtain the CPU count in cores, including virtual if present.
2. Double the CPU core count.
3. Add the number of disk spindles.

Use the lower of the two values as the final ideal connection count.



How it works...
To know how much RAM a connection may use, we start with a baseline of eight megabytes.
This accounts for library overhead, likelihood of using temporary table space, and other various
allocations necessary for a session to function. To that, we add four times the work_mem setting
used by the server to sort and perform query calculations.

Why four? Large and complex queries will use more, while short and simple queries will use
less, so we start with something in the middle. It's actually possible that this multiplier is
somewhat pessimistic, so it trends toward assuming higher memory use. That's fine, since
overestimating in this case is safer than running out of memory in the presence of several
simultaneous complex queries.

With this total, we can see how many connections will use half of the available RAM. We only
use half of the system RAM here, since the database itself needs memory. In addition, queries
are much faster when tables are available in the operating system page cache. If too much RAM
is reserved for client use, query performance can suffer considerably.

In the next set of calculations, we start with the CPU total and double this amount. The more
disk spindles available, the less time each CPU spends waiting for results. By adding the number
of disks, we get an approximation of how many connections our CPUs can actually support
without excessive idling caused by insufficient storage performance.

By taking the lower of these two calculations, we account for whatever bottleneck will constrain
system performance the most. This is our ideal connection count, and it works as a first
approximation for the size of any connection pool we create.



There's more...
For an example of this in action, consider a system with 32 GB of RAM, eight CPU cores, and
eight disk spindles. We used 8 MB for our work_mem setting, so this means we may need up to 40
MB per database connection. 16 GB of RAM can then safely support about 409 connections,
assuming memory is our only resource limit.

Otherwise, our eight CPUs and eight disks can support up to 24 connections. This is quite a
discrepancy! However, 24 is the safer of the two limits to prevent latency. If we find that a
certain amount of latency is not overly disruptive, we can increase the connection count, but not
higher than 400, otherwise we risk actually exhausting the available RAM.

Please keep in mind that the focus of this book is high availability at nearly all
costs, and as such, our formulas are extremely pessimistic. We encourage
experimentation with these values; you may find a better balance than what we
suggest here.



Installing PgBouncer
The first pooling resource we will explore is named PgBouncer. This is a very popular
connection pool written by Skype developers in 2007. The project has been maintained by
various developers in subsequent years, but its role of lowering the cost of connecting to
PostgreSQL has never changed.

PgBouncer allows PostgreSQL to interact with orders of magnitude more clients than is
otherwise possible because its connection overhead is much lower. Instead of huge libraries,
accounting for temporary tables, query results, and other expensive resources, it essentially just
tracks each client connection in a queue. Then, based on configuration settings, it creates several
PostgreSQL connections and assigns them to the connections on a first-come, first-served basis.

This means hundreds, or even thousands of database clients, can theoretically share a single
PostgreSQL connection. Of course, we will never suggest implementing a ratio that absurd
without testing, yet this possibility presents several new opportunities for better resource
allocation.

The first step to get this exciting new functionality is installation of the software. PgBouncer is
popular enough for most Linux systems to package it along with other PostgreSQL tools, so we
will cover some of the most popular distributions. For the sake of completeness, we also intend
to cover pure source installs, which means we can utilize the latest release regardless of the
distribution.



Getting ready
Obtain a copy of the latest PgBouncer source code to complete the installation. At the time of
writing this book, the latest version is 1.7.2, released on February 26, 2016.

In order to compile the source code properly, we need the PostgreSQL development libraries in
addition to the normally installed system binaries. For example, to build on a Debian- or Ubuntu-
based system, we will need to install libraries by executing this at the command line:

sudo apt-get install postgresql-server-dev-9.6

We also need the libevent development libraries. Install these from the distribution package
repository on a Debian- or Ubuntu-based system with this command:

sudo apt-get install libevent-dev

Then, we simply need a root-capable user to install PgBouncer as a system-wide service.



How to do it...
To install in a Debian- or Ubuntu-based system, execute this command:

sudo apt-get install pgbouncer

To install in a CentOS, Fedora, or other RHEL-based system, execute this command:

sudo yum install pgbouncer

Otherwise, follow these steps to complete a full source-based installation:

1. Use these commands to extract the PgBouncer source and enter the source directory:

        tar -xzf pgbouncer-1.7.2.tar.gz
        cd pgbouncer-1.7.2

2. Next, build and install the actual software with these commands:

        ./configure --prefix=/usr
        make
        sudo make install

3. Create a location where PgBouncer can maintain activity logs with these commands:

        sudo mkdir /var/log/pgbouncer
        sudo chown postgres /var/log/pgbouncer

4. Create a directory where PgBouncer can keep its service lock file with these commands:

        sudo mkdir /var/run/pgbouncer
        sudo chown postgres /var/run/pgbouncer

5. Create a configuration directory and fill it with a sample configuration file with these
commands:

        sudo mkdir /etc/pgbouncer
        sudo cp etc/pgbouncer.ini /etc/pgbouncer
        sudo chown -R postgres /etc/pgbouncer

6. Copy the init/pgbouncer initialization script from this chapter's provided source code into
the /etc/init.d directory on the server.

7. Change the copied initialization script to make it executable with this command:

        sudo chmod a+x /etc/init.d/pgbouncer

8. Finally, add the service to system startup and shutdown.
For Debian or Ubuntu systems, use this command: sudo update-rc.d pgbouncer defaults
For CentOS, Fedora, or RHEL systems, use this command: sudo chkconfig --add
pgbouncer



How it works...
As we said before, it's very likely that a system with the vendor-supplied PostgreSQL packages
provides packages for PgBouncer. These versions are likely to install to the expected directories;
they include initialization scripts and basic working configuration files.

In case we want or need to install PgBouncer ourselves, the process is a bit more involved.
Assuming that we downloaded a version from the PgBouncer project page, we start the process
by extracting the source from the archive, and then enter the resulting directory to perform the
necessary installation steps.

The first of these steps is to compile the source into binaries and libraries. PostgreSQL supplies a
tool named pg_config that lists all of the flags and configuration settings used when it was
compiled. In order to pass these to the configure script for PgBouncer, we invoke it for these
options, and execute them as one single operation. Afterwards, regular make and make install
commands as a root-capable user, distribute the software to all expected locations within the
operating system so that they match the PostgreSQL installation.

When we launch PgBouncer, it will try to log connection and service activity to
/var/log/pgbouncer, so we need to create the location and ensure it's writable by the postgres user.
Similarly, PgBouncer keeps track of its process ID by saving information in /var/run/pgbouncer.
Again, this location should exist and be writable by the postgres user.

The PgBouncer source code provides a fairly rudimentary initialization script to start and stop
the service, but it only works properly in Debian or derivatives such as Ubuntu or Mint. Also, it
doesn't account for location flags defined by the source configure script, so it will require quite a
bit of manual modification to be functional.

Thus, we wrote a generic initialization script that should work on any Linux distribution. This
script is included as code accompanying this chapter, so feel free to use it instead of attempting
to locate or build one from scratch. If we move it into the /etc/init.d directory and mark it as
executable, standard operating system tools will be able to manage PgBouncer.

Finally, we add PgBouncer to the list of other services that start or stop when the server is shut
down or booted up. This ensures the service is always available, and we don't have to remember
to start or stop it ourselves. Depending on our Linux distribution, the command that registers the
script will vary, so we supplied two very common samples.



There's more...
Why did we provide a separate initialization script instead of simply modifying the one within the
source distribution? It turns out that only three changes are required for it to work on a Debian-
based system. However, as we said before, this ignores operating systems based on Red Hat,
SUSE, Slackware, and several others. We wish the authors of this tool were more inclusive.

Fortunately, the initialization script we supplied should support most major Linux distributions.
Further, it is fully Linux Standard Base (LSB) compliant. Some major high-availability tools
assume service control scripts that exit with specific codes under various conditions. When we
start discussing the more powerful techniques for automated failover and server control, we will
be ready.



See also
The PgBouncer site contains version downloads, documentation, and much more. Feel free
to visit the site to learn more about the project at: https://pgbouncer.github.io/

https://pgbouncer.github.io/


Configuring PgBouncer safely
Once PgBouncer is installed, we need to configure it to honor our ideal pool size calculations.
The settings included with the supplied configuration file are for demonstration purposes only
and are unlikely to match our requirements. This situation is easy to rectify, but it requires a bit
of research on our part.



Getting ready
The PgBouncer settings are explained in detail in the example configuration file. However, we
suggest making full use of the service documentation while following this recipe. We will
endeavor to explain important parameters, but there's more available than we cover here.

When we installed PgBouncer, we ensured the configuration directory was writable by the
postgres system user, which is the same user that owns the PostgreSQL service. For the sake of
simplicity, we suggest using either this user or a root-capable user that can modify files on its
behalf.

We also need the calculated pool size from the Determining connection costs and limits recipe,
so keep it handy.



How to do it...
Presuming that our calculated pool size was 25, with a memory-imposed maximum of 350,
follow these steps to properly configure PgBouncer:

1. Execute this query as the postgres user while connected to any database within
PostgreSQL:

        COPY ( 
            SELECT '"' || rolname || '" "' ||  
                   coalesce(rolpassword, '') || '"' 
              FROM pg_authid 
        ) 
        TO '/etc/pgbouncer/userlist.txt'; 

2. Open the /etc/pgbouncer/pgbouncer.ini file as the postgres system user.
3. Under the section labeled [databases], create the following entry:

        postgres = host=localhost 

4. Under the section labeled [pgbouncer], find the listen_addr entry and change it to the
following:

        listen_addr = * 

5. Under the section labeled [pgbouncer], find the auth_type entry and change it to the
following:

        auth_type = md5 

6. Under the section labeled [pgbouncer], find the admin_users entry and change it to the
following:

        admin_users = postgres 

7. Under the section labeled [pgbouncer], find the max_client_conn entry and change it to the
following:

        max_client_conn = 1000 

8. Under the section labeled [pgbouncer], find the default_pool_size entry and change it to the
following:

        default_pool_size = 25 

9. Under the section labeled [pgbouncer], find the reserve_pool_size entry and change it to the
following:

        reserve_pool_size = 5 

10. Start the PgBouncer service by executing the following at the command line as a root-
capable user:



        sudo service pgbouncer start



How it works...
The first thing we do is create an authentication file that PgBouncer can use. As a third-party
daemon, it does not have direct access to PostgreSQL authentication. Yet, it still must
authenticate users before assigning pool resources. Unfortunately, this means we need to create a
copy of the current users and their encrypted passwords that PgBouncer can use. This file
should be regenerated any time new users are created or passwords are changed.

Frequently regenerating this file will probably be extremely inconvenient in
many environments. We recommend either automating this process or relying on
LDAP, PAM, or some other service that PgBouncer can forward on the behalf of
the upstream PostgreSQL server.

The next thing we do is alter the pgbouncer.ini file where configuration settings are stored. The
first section that concerns us is the [databases] section, which keeps track of every database that
PgBouncer has mapped. This can be a one-to-one association or an alias that changes various
connection parameters such as port, host, or username. Feel free to experiment.

All the subsequent settings are to change the operation of PgBouncer. By changing listen_addr,
PgBouncer will monitor all IP addresses assigned to this server. If we make use of virtual IPs,
this is especially important. Later, we ensure that the auth_type is set to md5 so that all the
encrypted passwords we exported are actually used. We set admin_users to postgres because
PgBouncer has an administration console that we can use to control pooling behavior. For now,
setting it to the database superuser is a good start.

The max_client_conn setting does not restrict PostgreSQL clients, but it restricts PgBouncer
clients. This is mainly to prevent clients from waiting too long before being assigned a
connection. If throughput is generally good, feel free to increase this.

The default_pool_size and reserve_pool_size settings are actually per-user and per-database. Thus,
even if we only have one primary database in our instance, every user can have 25 connections
before PgBouncer puts them in the wait queue. If the number of PostgreSQL connections gets
too high and starts affecting query throughput, we may need to reduce these settings. It may be
best to reserve the pool for applications that need it, so we have better control of PostgreSQL
connections that it might create.

Once the settings are saved, we start PgBouncer. When we do that, it will watch port 6432 on the
same server where the database is running, assuming that we installed it there.



There's more...
Now that PgBouncer is running, there are a couple things that require further explanation.



What about pool_mode?
Perceptive readers probably noticed the pool_mode configuration setting both in the documentation
and in the example file. The possible options for this setting can basically be summarized this
way:

Session: A PostgreSQL setting is assigned to a client until the client disconnects. This is
considered the safest method, but greedy applications can monopolize limited connections
by never freeing them. This is the default, and we didn't change it in our instructions.
Transaction: Connections are assigned to clients until they complete a single transaction.
Once the transaction is either committed or aborted, the connection re-enters the pool and
is assigned to another client. This is a good setting to use for applications that insist on
holding persistent database connections as it still enables connection cycling within the pool.
Unfortunately, some applications that use cursors expect them to persist between
transactions for fetching purposes. Since the connection is reset between every transaction,
these cursors are also deallocated and the application will not function normally.
Statement: After every single SQL statement completes, the connection re-enters the pool
for reassignment to another client. There are few, if any, valid situations where this setting
should be used. Only servers that never make use of features such as transactions, cursors,
or prepared queries should use this value. Most PostgreSQL systems can avoid it
completely.



Problems with prepared statements
Database applications and object relation mappers that use prepared queries will have a problem
if we enable transaction-level pooling. Once a statement is prepared for execution, it can be
reused until it is deallocated. By default, we know that connections are reset between sessions,
so these prepared statements are lost. We can fix this by changing server_reset_query in
/etc/pgbouncer/pgbouncer.ini to the following:

server_reset_query = 

By setting a blank value, objects allocated between transactions can persist. However, this also
means that the application should check for a prepared statement before creating it. Since the
connections are recycled, the application may be assigned a connection where prepared
statements are not in their expected states. This is a lot of extra work on the application side, so
we generally don't suggest using transaction mode while prepared statements or cursors are
present.



See also
Although our suggestions on proper configuration will get things working, there are more options
available. We suggest reading the following documentation to learn more about PgBouncer:

PgBouncer Config File: https://pgbouncer.github.io/config.html
PgBouncer FAQ: https://pgbouncer.github.io/faq.html

https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/faq.html


Connecting to PgBouncer
Once PgBouncer is installed, configured, and operational, we still need to utilize it. How do we
connect to PgBouncer instead of PostgreSQL?



Getting ready
Make sure PgBouncer is configured and running. Take a look at the Configure PgBouncer
safely recipe. Then, execute this at the command line to check for the service:

pgrep -lf pgbouncer

We should see a line similar to this:

21281 /usr/bin/pgbouncer -d /etc/pgbouncer/pgbouncer.ini

If this is not the case, we need help beyond the scope of this book. Feel free to check the
PgBouncer mailing list for assistance. The community is willing to help too, so let them.



How to do it...
If our PostgreSQL server is on 192.168.56.30, we can connect to PgBouncer by using port 6432.
With psql, we can connect to the postgres database through PgBouncer with this command:

psql -p 6432 -h 192.168.56.30 postgres

With PgAdmin, we will just change the connection settings to resemble this:



How it works...
PgBouncer works like a simulated PostgreSQL server. Thus, any standard PostgreSQL client or
driver should be fully compatible. The only difference is that the default port is 6432 instead of
5432. Effectively, this makes PgBouncer a connection proxy, and it can be treated as such.



See also
After we connect to PgBouncer, we may want community assistance with common
problems. We suggest the PgBouncer mailing list, which is active with community members
willing to offer assistance; check this URL: http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-genera
l

http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general


Listing PgBouncer server connections
PgBouncer provides an administration console to view pool status or control the service. For
now, we will focus on viewing the list of server connections that PgBouncer maintains. These
connections are held for distribution to database clients as necessary, and they can tell us much
more about the health of the pool. Let's explore the PgBouncer console a bit.



Getting ready
We need to know how to connect to PgBouncer instead of PostgreSQL, so check the Connect to
PgBouncer recipe for a refresher. In this section, we will use something known as a pseudo-
database. When in use, PgBouncer reserves the database name pgbouncer for its own internal
purposes to access its administration console. This database does not actually exist, but it will still
connect from the perspective of our PostgreSQL client.

In the highly unlikely event that the pgbouncer database actually exists within your PostgreSQL
installation, we recommend renaming it to avoid confusion.



How to do it...
Follow these steps to get the status of PgBouncer connections to PostgreSQL:

1. Connect to the pgbouncer database on port 6432 of the PostgreSQL server as the postgres
user.

2. Issue the following query:

        SHOW SERVERS; 



How it works...
By connecting to the pgbouncer database name on port 6432, we connect to PgBouncer using a
simulated database that doesn't actually exist. This name tells PgBouncer that we want the
administration console. If we configured PgBouncer according to the Configure PgBouncer
safely recipe, the postgres user is the only database user allowed to use the console.

The author wishes that this information were also available as a view so that we could fetch only
interesting fields, but the PgBouncer syntax is easier to type. By sending SHOW SERVERS as a query,
PgBouncer responds with a list of every connection to PostgreSQL it is using to fulfill client
requests. Fields of particular interest include the following:

user: This column lists the users that are currently connected to the database. If we used
advanced settings, this could differ from the user that connected to PgBouncer.
database: This shows the database that the connection is attached to. A PostgreSQL server
can host many databases, so this is very helpful information. Again, advanced settings can
change this from the database name used to create the connection to PgBouncer.
state: This column answers the question: is the connection active, used, or idle?
Connections are marked as active when they are assigned to a client. Connections marked
as used have handled at least one query, but haven't been checked for validity. Used
connections are still idle and available; they merely haven't been verified by PgBouncer.
The idle status means the connection is verified as available, and it hasn't been used
recently. On active servers, PgBouncer connections will almost never be marked as idle.
connect_time: It displays the exact time PgBouncer created the connection to PostgreSQL.
We can use this to determine connection freshness. If most of these are recent, it means
that the connections are probably opening and closing too frequently. Connections to
PostgreSQL are relatively expensive to allocate, and connection pools are partially meant to
reduce this cost. We may need to consider changing some of the PgBouncer connection
timeout settings based on the contents of this field.
request_time: This column provides the last time the listed connection handled query
activity. On busy servers, this should always be a very recent timestamp. Otherwise, we
are potentially wasting server resources by maintaining unnecessary idle connections. In
this case, we need to examine the pool size settings and consider reducing them.
Alternatively, there may be a problem with the marked PostgreSQL connection, or the
assigned client can be frozen. This indicates that we need to check the database health, or
ask the development or support departments to investigate applications for normal
operation.

Feel free to browse the PgBouncer documentation for other available fields.



There's more...
We like referring readers to external resources on occasion. Unfortunately, the PgBouncer
documentation is incomplete in important ways. Our explanation of the state field is a good
example of this. The interpretation we used for that field came from a post in the mailing list by
one of the authors. Keep this in mind when seeking assistance not covered by this book. Mailing
lists can fill a huge void left by spartan documents meant to cover bare necessities.



See also
We know that we've listed these documentation links before, but we're still working with
complicated configuration settings and usage. We've listed them here again for convenience:

PgBouncer Usage: https://pgbouncer.github.io/usage.html
PgBouncer General Mailing List: http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general

https://pgbouncer.github.io/usage.html
http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general


Listing PgBouncer client connections
In addition to PostgreSQL server connection status, PgBouncer's administration console can
provide details regarding clients within its queue. Maintaining a healthy and active PgBouncer
queue is the key to high throughput over limited resources. In this case, we artificially limited the
amount of server connections available to clients, which means that there is potential for
stubborn or broken clients to prevent connection turnover.

This, of course, will effectively remove the connections from the pool, creating a bottleneck that
could lead to choking transaction throughput. Let's explore the PgBouncer console a bit more to
learn what it knows about the database clients attempting to communicate with PostgreSQL.



Getting ready
In this section, we will continue our previous exploration into the PgBouncer console. Check the
Listing PgBouncer client connections recipe for a refresher. Remember to use the pgbouncer
database name to enter the administration console.



How to do it...
Follow these steps to get the status of PgBouncer clients:

1. Connect to the pgbouncer database on port 6432 of the PostgreSQL server as the postgres
user.

2. Issue the following query:

        SHOW CLIENTS; 



How it works...
As before, we connect to the pgbouncer database name on port 6432 to use the administration
console. By sending SHOW CLIENTS as a query, PgBouncer responds with a list of every client using
or waiting for a PostgreSQL connection. Fields of particular interest include the following:

user: This displays the user that is currently connected to the database. If we used
advanced settings, this could differ from the user that is connected to PgBouncer.
database: This column indicates the database that the client is attached to. A PostgreSQL
server can host many databases, so this is very helpful information. Again, advanced
settings can change this from the database name used to create the connection to
PgBouncer.
state: This column shows whether the connection is active, used, waiting, or idle. Clients
are marked as active when they are currently using a connection. If the client is queued
prior to a connection becoming available, they are marked as waiting. The used and idle
status assignments do not seem to actually be valid for the client state, so don't worry
about them.
connect_time: This provides the exact time PgBouncer created the connection to
PostgreSQL. Although we specifically ask about the client status, this element is associated
with the connection to PostgreSQL. Since connections are recycled, they can be hours or
even days old. In determining health, we actually want slightly older connections in this list,
as that suggests low connection turnover, and connection turnover can be expensive.
request_time: This lists the last time the listed client transmitted query activity. On busy
servers, this should always be a very recent timestamp. Otherwise, we are potentially
wasting server resources by maintaining unnecessary idle connections. In this case, we
need to examine the pool size settings and consider reducing them. Alternatively, there may
be a problem with the marked PostgreSQL connection, or the assigned client could be
frozen. This will indicate that we need to investigate the database health, poll the
development, or support departments to check applications for normal operation.

Feel free to browse the PgBouncer documentation for other available fields.



There's more...
If this recipe looked familiar, that's because the important fields are exactly the same as those in
the Listing PgBouncer server connections recipe. Though their interpretation is slightly
different, and the list itself is probably more dynamic due to active client states, it's effectively
the same data.

The primary difference is the waiting state that we discussed, which doesn't exist when listing
server connections. If there are too many clients waiting for too long, it can be a sign of a
potential issue. Perhaps the connection pool is too small, resulting in insufficient connection
assignments. Maybe a client has gone haywire and is opening hundreds of connections and never
closing them, which could lock up all the available connections in the pool.

Whatever the case is, we look for regular state transitions between waiting and active. It is
unfortunate that there is no field that details the connection assignment time. With this datum, we
could readily discover the clients that are unfairly monopolizing database resources.



See also
We know that we've listed these documentation links before, but we're still working with
complicated configuration settings and usage. We've listed them again for convenience:

PgBouncer Usage: https://pgbouncer.github.io/usage.html
PgBouncer General Mailing List: http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general

https://pgbouncer.github.io/usage.html
http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general


Evaluating PgBouncer pool health
Though PgBouncer provides similar information regarding both server and client database
connections, the status and health of each pool are also available. If we didn't already clarify,
PgBouncer pools are separated by username, database name, and the server's hostname. Thus,
each PostgreSQL server may have as many connection pools as there are different databases a
user might access via PgBouncer.

PgBouncer supplies somewhat detailed information when seeking server or client status.
However, these are not database views, so we can't summarize or aggregate the output to make
it more usable. When running a highly available database server, we need to monitor aggregate
values, if possible, to watch for potential patterns of misconfiguration or abuse.

Unfortunately, since PgBouncer acts as a proxy, we can't rely on the pg_stat_activity system
view for summaries. This means PgBouncer and its administrative console are the main sources
of debugging and status information. Thankfully, there is quite a lot of useful information. Let's
explore.



Getting ready
As before, we continue to use the PgBouncer administration console, so we recommend
following the Listing PgBouncer client connections recipe before continuing here. Remember to
use the pgbouncer database name to enter the administration console.



How to do it...
Follow these steps to get the status of PgBouncer clients:

1. Connect to the pgbouncer database on port 6432 of the PostgreSQL server as the postgres
user.

2. Issue the following query for pool status:

        SHOW POOLS; 

3. Issue the following query for pool statistics:

        SHOW STATS; 



How it works...
Connecting to the pgbouncer database name on port 6432 connects us to PgBouncer using a
simulated database that doesn't actually exist. This name tells PgBouncer that we want the
administration console. If we configured PgBouncer according to the Configure PgBouncer
safely recipe, the postgres user is the only database user allowed to use the console.

By sending SHOW POOLS as a query, PgBouncer responds with a row for every PostgreSQL
database to which it is acting as a proxy. Each column is a summary for various client and server
metrics, mainly related to activity or status. Here is a detailed summary of the columns:

cl_active: This column shows the number of clients that are currently assigned a server
connection. This number should not exceed the value we get by adding default_pool_size
and reserve_pool_size from the pgbouncer.ini configuration file. If the total is regularly below
the maximum, we may consider reducing the pool size.
cl_waiting: It denotes the number of clients waiting for a server connection. Since this is a
snapshot of the current activity, the number can fluctuate drastically between checks.
However, if it regularly remains above zero, and the maxwait column is increasing, the pools
are probably too small.
sv_active: This column details how many PostgreSQL server connections are assigned to
the PgBouncer clients. These clients are not necessarily active, just associated with the
connection. The cl_active and sv_active columns should always be equal.
sv_idle: This column provides a count of PostgreSQL server connections that are not in use
at all. PgBouncer marks connections as idle after it sends a reset query to clear out the
allocated objects and settings. Thus, not only is the connection idle but it's also immediately
ready for assignment. If there are several of these, it's because PgBouncer doesn't need
them; think about reducing the pool size.
sv_used: This indicates the count of dirty PostgreSQL server connections. These
connections are actually idle, but they have not yet been reset by PgBouncer for reuse.
This means we need to add sv_used to sv_idle to get the real count of idle connections for
this database and user combination. As with sv_idle, a large amount of used connections
indicate reducing pool size limits.
maxwait: This column outlines the maximum number of seconds a client has waited for a
connection. Combined with the cl_waiting cumulative total, we can infer either an excess or
shortage of throughput based on the connection availability. This statistic is constantly
updated, so if no clients are waiting, it will show zero. This kind of live feedback allows us
to adjust our pool sizes to ideal levels.

By sending SHOW STATS as a query, PgBouncer responds with a row for every PostgreSQL
database to which it is acting as a proxy. Each column is a summary of various network and time
metrics. Here is a detailed summary of these columns:

total_requests: This column represents the total number of transactions that PgBouncer has
directed through the pool. The documentation suggests that the SQL requests are
summarized here, but this is probably a miscommunication. Tests clearly show that only
queries outside of transactions, or transactions themselves, increase the counter. As
transactions are more expensive than simple queries, they can represent a larger ratio of
excess work.



total_received: This column tracks the total amount of data in bytes sent to PgBouncer
through the network for this database and user combination. In order to have a healthy
pool, we need to illustrate high throughput. Thus, we must also examine the next column.
total_sent: This column tracks the total amount of data in bytes sent from PgBouncer to
the clients accessing the database. The ratio of this value to total_received can indicate that
PgBouncer is handling too many large queries, which reduces pool connection throughput.
It's also possible that a misconfigured batch job is improperly accessing the database via
PgBouncer.
total_query_time: This is the amount of time in microseconds that PgBouncer has spent
communicating with a client in this pool. This can be a particularly difficult column to read
because it's cumulative, based on all clients accessing PostgreSQL connections. For now,
we suggest ignoring it.
avg_req: This column shows the average number of requests per second since the last stat
update. As with total_requests, this is the amount of transactions, not queries, handled by
PgBouncer.
avg_recv: This column details the average number of bytes sent to PgBouncer by each client
since the last stat update. In low activity pools, this may reset to zero between samples.
avg_sent: This column indicates the average amount of bytes that PgBouncer has sent to
each client since the last stat update. In low activity pools, this may reset to zero between
samples. Along with avg_recv, we can again obtain a ratio of sent bandwidth versus received
to look for potential excessive query output.
avg_query: This column provides the average query duration in microseconds for all
connections in this pool. This is a much more useful metric than total_query_time as it
actually tells us the average throughput of the pool. If the average query time is 50 ms, for
example, we can expect each PostgreSQL connection to handle 20 clients per second. This
is valuable data to properly size the connection pools.

Feel free to browse the PgBouncer documentation for other available fields.



There's more...
We've mentioned adjusting pool size several times in this recipe. Since pgpool acts as a single
proxy for several database and user combinations, we can actually override the default in cases
where pools require more direct management. For instance, if we change our entry in
/etc/pgbouncer.ini for the postgres database to postgres = host=localhost pool_size=5, no user
connecting to the postgres database can use more than five connections, even if the default is 50
per pool. Keep this in mind when analyzing the pools, clients, servers, and other statistics that
PgBouncer collects on our behalf. We will most likely need several adjustments before reaching
an ideal state that won't overwhelm the PostgreSQL server, yet adequately supplies client
requirements.



See also
We know we've listed these documentation links before, but we're still working with complicated
configuration settings and usage. We've listed them again for convenience:

PgBouncer Usage: http://pgbouncer.projects.pgfoundry.org/doc/usage.html.
PgBouncer General Mailing List: http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general.

http://pgbouncer.projects.pgfoundry.org/doc/usage.html
http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general


Installing pgpool
The next pooling resource we will explore is named pgpool-II, but we'll refer to it simply as
pgpool. This is another popular connection proxy, but it predates PgBouncer by almost a year,
having been available since late 2006. The scope of pgpool is also much larger, providing
functionality such as query-based replication, connection pooling, load balancing, parallel-query,
and more.

Perhaps surprisingly, we won't discuss most of these features in this book. Interesting as they
may be, these advanced features don't directly apply to building a highly available PostgreSQL
cluster. Of course, we always encourage experimentation.

One feature pgpool exposes, which is directly relevant to this book, is server pooling. What does
this mean? If we have two PostgreSQL servers, we can make use of a virtual IP address so that
clients need not modify configuration files when we switch the primary database server.
However, in order to move the IP address between servers, it must first be removed from one
server and recreated on the other. This disconnects all active clients and causes a small
disruption in availability.

However, pgpool can pool servers so that the active primary server is hidden from database
clients. We can promote the secondary within pgpool, and it will handle failover internally. From
the application or client's perspective, the database was never offline.

The first step to gain this ability is installation. The pgpool proxy is so popular that many Linux
systems package it along with other PostgreSQL tools, so we will cover some of the more
popular distributions. For completeness, we also intend to cover pure source installs since that
means we can utilize the latest release, regardless of distribution.



Getting ready
For the sake of completeness, obtain a copy of the latest pgpool source code. At the time of
writing this book, the latest version is 3.5.4, released on Augest 31, 2016.

In order to properly compile the source code, we need PostgreSQL development libraries in
addition to the normally installed system binaries. For example, to build properly on a Debian- or
Ubuntu-based system, we need to install libraries by executing this at the command line:

sudo apt-get install postgresql-server-dev-9.6

Later, we simply need a root-capable user to install PgBouncer as a system-wide service.



How to do it...
To install in a Debian or Ubuntu-based system, execute this command:

sudo apt-get install pgpool2 postgresql-9.6-pgpool2

To install in a CentOS, Fedora, or other RHEL-based systems, execute this command:

sudo yum install pgpool-II-96

Otherwise, follow these steps to complete a full source-based installation:

1. Use these commands to extract the pgpool source and enter the source directory:

        tar -xzf pgpool-II-3.5.4.tar.gz
        cd pgpool-II-3.5.4

2. Next, build and install the actual software with these commands:

        ./configure --prefix=/usr --sysconfdir=/etc/pgpool/
        make
        sudo make install

3. Create a location where pgpool can maintain activity logs with these commands:

        sudo mkdir /var/log/pgpool
        sudo chown postgres /var/log/pgpool

4. Create a directory where pgpool can keep its service lock file with these commands:

        sudo mkdir /var/run/pgpool
        sudo chown postgres /var/run/pgpool

5. Copy the init/pgpool initialization script from this chapter's provided source code into the
/etc/init.d directory on the server.

6. Change the copied initialization script to make it executable with this command:

        sudo chmod a+x /etc/init.d/pgpool

7. Finally, add the service to system startup and shutdown:
For Debian or Ubuntu systems, use this command: sudo update-rc.d pgpool defaults
For CentOS, Fedora, or RHEL systems, use this command: sudo chkconfig --add
pgpool



How it works...
It's very likely that any system with vendor-supplied PostgreSQL packages also provides
packages for pgpool. These versions are likely to install to expected directories, including
initialization scripts and basic working configuration files. This is definitely not the case with the
source distribution.

If, for any reason, we would rather install the source package, we have a lot of work ahead.
Assuming that we downloaded a version from the pgpool project page, we start the process by
extracting the source from the archive, and then enter the resulting directory to perform the
necessary installation steps.

The first of these steps is to compile the source into binaries and libraries. The pgpool configure
script is fairly standard, so we can change the location of the configuration files with the
sysconfdir flag. For the purposes of these instructions, we do not need to alter any other
installation or compilation settings.

To get a list of all the parameters recognized by the pgpool build process, issue
this command while in the source directory: ./configure -help This applies to
most software that use configure scripts.

Later, regular make and make install commands as a root-capable user, distributes the software to
all expected locations within the operating system so that they match the PostgreSQL installation.

When we launch pgpool, it will try to log connection and service activity to /var/log/pgpool, so
we need to create that location and ensure it's writable by the postgres user. Similarly, pgpool
keeps track of its process ID by saving information in /var/run/pgpool. Again, this location should
exist and be writable by postgres.

The pgpool source code provides a fairly robust initialization script to start and stop the service,
but it only works properly in Red Hat derivatives such as Fedora, CentOS, or Scientific Linux.
Also, it doesn't account for the location flags defined by the source configure script, so it would
require quite a bit of manual modification to be functional.

Thus, we wrote a generic initialization script that should work on any Linux distribution. This
script is included in the code accompanying this chapter, so feel free to use it instead of
attempting to locate or build one from scratch. If we move it into the /etc/init.d directory and
mark it as executable, standard operating system tools will be able to manage pgpool.

Finally, we add the service to the list of other services that start or stop when the server is shut
down or booted up. This ensures pgpool is always available, and we don't have to remember to
start or stop it ourselves. Depending on our Linux distribution, the command that registers the
script will vary, so we supplied two very common samples.



There's more...
As with PgBouncer, we provided a very similar initialization script for pgpool. While the pgpool-
supplied script is very capable, it does not account for operating systems based on Debian,
SUSE, Slackware, and several others. While distributions often supply their own control scripts,
anyone compiling from source is simply out of luck.

Thankfully, the initialization script that we supplied should support most major Linux
distributions. As usual, it is fully LSB compliant as well. We suggest using our script if at all
possible as it is specifically designed to facilitate other recipes in this book. Feel free to examine
its contents to see how and why we can make such a bold claim.



See also
The pgpool website is currently written as a large informative wiki. This makes finding
downloads a little more difficult than usual. We've listed the proper download location so
that you can easily obtain the software at this URL: http://www.pgpool.net/mediawiki/index.php/Do
wnloads

http://www.pgpool.net/mediawiki/index.php/Downloads


Configuring pgpool for master/slave mode
When creating a highly available PostgreSQL server, one important element to consider is server
load. One database server, no matter how powerful its hardware may be, cannot scale infinitely.
Regardless of any frontend application-side caching, the database should be able to weather
cache failures or unexpected demand.

We can offset much of this risk by leveraging database replicas. Each replica is available for
read-only use, and applications are welcome to use them instead of the primary server.
Unfortunately, as the amount of replicas increase, the application must track the connection
settings for each, and it may even need to know which is currently configured as the primary
server.

Server additions, configuration changes, and deep knowledge of the database architecture
complicate the application layer and may result in connection management problems. However,
we've installed pgpool specifically to avoid mangling the application in order to fit database
needs.

The pgpool service provides load balancing through a mechanism designated master/slave
mode. Due to the design of PostgreSQL, pgpool always knows which server is the primary
server, and which servers can only accept read-only queries. This abstraction layer allows
applications to connect to pgpool and relinquish traffic management to its capable design.



Getting ready
In order to properly demonstrate pgpool's master/slave mode, we suggest installing PostgreSQL
on two servers or virtual machines as a test. Then, configure one as the primary and the second
as a streaming replica. Chapter 6, Replication, specifically details how to create and maintain
PostgreSQL replicas.

Then, install pgpool on the primary server according to the Installing pgpool recipe. We also
need the calculated pool size from the Determining connection costs and limits recipe, so keep
it handy.



How to do it...
For these instructions, assume we have two servers. The primary server is located at
192.168.56.10 , and the replicated server is at 192.168.56.20. Our PostgreSQL data is located in the
/db/pgdata directory. In addition, our calculated pool size is 25, with a memory-imposed
maximum of 350. Follow these steps to properly configure pgpool for master/slave mode:

1. Bootstrap the configuration file with some basic defaults by executing the following
commands as a root-capable user:

        cd /etc/pgpool/
        cp pgpool.conf.sample-stream pgpool.conf

2. As a root-capable user, open the /etc/pgpool/pgpool.conf file for modifications.
3. Change the listen_addresses setting to read as follows:

        listen_addresses = '*' 

4. Search for backend_ in the configuration file. Erase all of the entries and replace them with
the following text:

        # Host number 1 (primary) 
        backend_hostname0 = '192.168.56.10' 
        backend_weight0 = 1 
        backend_data_directory0 = '/db/pgdata' 
        backend_flag0 = 'DISALLOW_TO_FAILOVER' 
   
        # Host number 2 (replica) 
        backend_hostname1 = '192.168.56.20' 
        backend_weight1 = 1 
        backend_data_directory1 = '/db/pgdata' 
        backend_flag1 = 'DISALLOW_TO_FAILOVER' 

5. Change the num_init_children setting to read as follows:

        num_init_children = 25

6. Change the max_pool setting to read as follows:

        max_pool = 10

7. Find the replication_mode setting as follows, and make sure it reads as follows:

        replication_mode = off

8. Find the load_balance_mode setting as follows, and make sure it reads as follows:

        load_balance_mode = on

9. Find the master_slave_mode setting as follows, and make sure it reads as follows:

        master_slave_mode = on

10. Find the master_slave_sub_mode setting as follows, and make sure it reads as follows:



        master_slave_sub_mode = 'stream'

11. Find the parallel_mode setting as follows, and make sure it reads as follows:

        parallel_mode = off

12. Start the pgpool service by executing the following at the command line as a root-capable
user:

        sudo service pgpool start



How it works...
The first thing we do is copy the pgpool.conf.sample-stream file to act as our default configuration
settings. This file has already been customized to contain several of the settings we need for
pgpool to operate in master/slave mode. Later, we open it to make a few modifications and
double-check to ensure that all the necessary settings are correct.

The first setting we change is the listen_addresses value. The default value of localhost will only
allow connections that originate from the server where pgpool is installed. Since pgpool is
supposed to act as a connection proxy, this severely limits its functionality. The setting we used
will allow it to listen on all network interfaces available to the server.

The next thing we do is create two entries for PostgreSQL server hosts. This allows pgpool to
connect to both the primary database and the replica. There are two settings that may be non-
obvious in their intent.

The first is backend_weight, which allows us to customize the ranking of each database server.
Higher ranks mean a greater ratio of database traffic from pgpool. With this, more powerful
servers will handle more client connections, or we can reduce query pressure on an
overwhelmed server.

The next is backend_flag, which currently has only two possible values. The default value of
ALLOW_TO_FAILOVER tells pgpool that the listed server is part of the automated failover system.
Properly configuring the failover system is beyond the scope of this recipe, so we disable that for
now by using the value, DISALLOW_TO_FAILOVER.

Next, we need to limit the potential size of the connection pool. We start the process by setting
num_init_children to 25 to reflect our calculated ideal pool size. Next, we limit the number of pools
by setting max_pools to 10. This means there could be up to 250 PostgreSQL connections to each
server, lower than our maximum of 350.

Finally, we ensure that replication_mode and parallel_mode are disabled, while load_balance_mode
and master_slave_mode are enabled. Replication mode is what pgpool uses to keep servers in sync
when there is no other replication mechanism available. It will just interfere with our setup.
Parallel mode requires the replication mode, so we can't use that either.

When pgpool is using load balancing, it honors backend_weight for each server. By connecting to
pgpool, database clients can potentially access one of several PostgreSQL databases. Once a
client is assigned to a server, it will never deviate until it disconnects. This prevents excessive
connection management by pgpool and avoids race conditions based on replication pace of each
PostgreSQL server.

When using master/slave mode with a database replica, we must set master_slave_sub_mode to
stream. This tells pgpool to use regular PostgreSQL replication status functions to differentiate
primary PostgreSQL servers from replicas. With this knowledge, pgpool can directly write
queries to the primary node, while replicas absorb read-only activity.

Once the settings are saved, we start pgpool. Once we do that, it will watch port 9999 on the



same server where the primary database is running, assuming that we installed it there.



There's more...
Perceptive readers may notice that this is very different from how PgBouncer manages pools.
Each pool is still defined by the user login and database name, but max_pools is actually a hard
limit. Once ten users and database combinations are allocated due to incoming connections, there
can be no more. Furthermore, each pool can only have a maximum of num_init_children clients.

Unlike PgBouncer, pgpool does not queue excess connections beyond this maximum. If we start
noticing application problems due to insufficient connections, we may need to increase
num_init_children. Despite the name, pgpool is more of a server abstraction layer than a database
pool.



See also
The pgpool software is extremely complicated due to its extensive feature-set. We strongly
recommend perusing its manual and the following indicated tutorial:

Pgpool Manual: http://www.pgpool.net/docs/latest/en/html/index.html
pgpool-II Tutorial (watchdog in master-slave mode): http://www.pgpool.net/pgpool-web/contrib
_docs/watchdog_master_slave/en.html

http://www.pgpool.net/docs/latest/en/html/index.html
http://www.pgpool.net/pgpool-web/contrib_docs/watchdog_master_slave/en.html


Testing a write query on pgpool
The load-balancing mode in pgpool presumably distributes connections according to server
weight. Then, master/slave mode defines which servers are read-only as opposed to writable.

But can we depend on this behavior? We should at least verify these claims before using such a
configuration in a production environment. Our uptime depends upon it.



Getting ready
Make sure pgpool is installed and configured according to the Installing pgpool and Configuring
pgpool for master/slave mode recipes. We will follow these two recipes by testing a pool setup
with write activity, so we need a fully functional pgpool environment.

To simplify this recipe, perform all the tests as the postgres system user. To facilitate this, we
may need to set all the pg_hba.conf authentication types to trust, though we strongly suggest user
and password combinations instead.

If our primary PostgreSQL server is on 192.168.56.10, we can connect to pgpool by using port
9999. With psql, we can connect to the postgres database through pgpool with this command:

psql -p 9999 -h 192.168.56.10 postgres



How to do it...
Follow these steps to test as the postgres database user. Feel free to substitute where appropriate:

1. Connect to the primary database and create a test table with the following SQL:

        CREATE TABLE foo (bar INTEGER); 

2. Connect to pgpool and issue a query that will write to the test table with the following SQL:

        INSERT INTO foo SELECT generate_series(1, 100); 

3. Execute the following bash snippet at the command line to test the INSERT redirection:

        for x in {1..10}; do 
          psql -h 192.168.56.10 -p 9999 \ 
               -U postgres -d postgres \ 
               -c "INSERT INTO foo SELECT generate_series(1, 100)" 
        done 

4. Execute the following bash snippet at the command line to test the DELETE redirection:

        for x in {1..100}; do 
          psql -h 192.168.56.10 -p 9999 \ 
               -U postgres -d postgres \ 
               -c "DELETE FROM foo WHERE bar=$x" 
        done 



How it works...
In order to successfully test the capabilities of pgpool, we will try a couple of different scenarios
that cause PostgreSQL to write to the database. If we tried to write to the replica instead of the
primary server, we will get an error like this:

ERROR:  cannot execute INSERT in a read-only transaction 

Our first step is to create a table where we can try to insert data. We connect directly to the
primary server for this step so that we know the table exists and that pgpool didn't get a chance
to taint our results. The test table has only one column, so we can populate it with the
generate_series PostgreSQL function.

The first test we attempt is with a single connection to pgpool that we create manually. Since the
server weight is equal for both the primary and replica servers, we have a 50 percent chance of
being assigned to the read-only replica server. This test should succeed, but there's still a 50
percent chance that it was just a coincidence.

Therefore, our second test runs the same INSERT statement 10 times in a loop. Each psql line is a
separate connection attempt, so each should carry a 50 percent chance of being directed to the
read-only server. Yet, all of these tests will also succeed.

Finally, we run one final loop that will delete all the rows we inserted, and this time the loop will
invoke 100 times. Again, all of these are separate connection attempts, and all of them will
execute without an error.



There's more...
There is one caveat to this functionality. It is not uncommon for databases to perform the write
activity within a function body. For example:

CREATE FUNCTION test_insert() 
RETURNS VOID AS 
$$ 
  INSERT INTO foo SELECT generate_series(1, 100); 
$$ LANGUAGE SQL; 

By creating this function, we obfuscate the INSERT statement enough that pgpool won't recognize
it. This means that pgpool will improperly send the query to a read-only server and produce an
error. We can avoid this by using the black_function_list configuration setting. For example, if we
add our new function to this setting, it resembles this:

black_function_list = 'currval,lastval,nextval,setval,test_insert' 

Now, pgpool will understand that queries that include a call to test_insert should only execute on
the primary node. This configuration setting also honors regular expressions, so it's a very good
idea to follow a naming scheme when building functions that may alter database contents.



Swapping active nodes with pgpool
With pgpool installed, we have an abstraction layer above PostgreSQL, which hides the active
node from the client. This allows us to change the primary node so that we can perform
maintenance, and yet we never have to actually stop the database.

This kind of design will work best when pgpool is not installed on one of the PostgreSQL
servers, but it has its own dedicated hardware or virtual machine. This allows us full control over
each PostgreSQL server, including the ability to reboot for kernel upgrades, without potentially
disrupting pgpool.

Let's discuss the elements involved in switching the primary server with a replica so that we can
have high availability in addition to regular maintenance.



Getting ready
Make sure pgpool is installed and configured according to the Installing pgpool and Configuring
pgpool for master/slave mode recipes. We will need two nodes so that we can promote one and
demote the other.

Next, we will ready the operating system so that pgpool can invoke remote commands. If we
have two PostgreSQL servers at 192.168.56.10 and 192.168.56.20, we should execute these
commands as the postgres system user on each, as follows:

ssh-keygen
ssh-copy-id 192.168.56.10
ssh-copy-id 192.168.56.20

The ssh-keygen command will prompt for a key password. This can make SSH
keys more secure, but it also makes them extremely difficult to use within an
automated context. For this and future SSH keys, use a blank password.

We will also use scripts located in the pgpool_scripts directory of the code for this chapter. Have
these scripts available before continuing.



How to do it...
Assuming our database is located at /db/pgdata, follow all of these steps to enable and configure
automatic and forced pgpool primary server migration:

1. Copy the scripts from the pgpool_scripts directory of this book to the PostgreSQL cluster
data directory.

2. Execute this command as a root-level user to make them executable:

        chmod a+x /db/pgdata/pgpool_*

3. Execute the following at the command line as a root-capable user:

        sudo sed -i "s/'DISALLOW/'ALLOW/" /etc/pgpool/pgpool.conf

4. Execute these commands as a root-capable user to enable pgpool control operations, where
pass is a password defined for pgpool administration:

        mv /etc/pgpool/pcp.conf.sample /etc/pgpool/pcp.conf echo
        postgres:$(pg_md5 pass) >> /etc/pgpool/pcp.conf

5. Edit the /etc/pgpool/pgpool.conf file and make the following changes:

        failover_command = '%D/pgpool_failover %d %P %h %H %D %R' 
        recovery_1st_stage_command = 'pgpool_recovery' 

6. Execute this command as a root-capable user to restart pgpool:

        sudo service pgpool restart

7. Detach the primary node from pgpool with this command, where pass is the password we
created in step four:

        pcp_detach_node 10 192.168.56.10 9898 postgres pass 0

8. Perform some fake maintenance as the postgres user on the primary node with this
command:

        pg_ctl -D /db/pgdata status

9. Reattach the primary node as a replica with these commands, again using pass as the
pgpool control password:

        pcp_recovery_node 10 192.168.56.10 9898 postgres pass 0
        pcp_attach_node 10 192.168.56.10 9898 postgres pass 0



How it works...
pgpool depends on external helper scripts to perform remote operations on the servers it proxies.
The pgpool source includes a few examples, but they use antiquated commands and they may
not work on our system. The scripts included in this book should work on most major Linux
distributions. Thus, we move them into the PostgreSQL data directory and mark them as
executable. They must reside here for pgpool to invoke them.

Next, we enable failover on all nodes by changing nodes marked DISALLOW_TO_FAILOVER to
ALLOW_TO_FAILOVER with a quick command-line operation. Without this change, pgpool will not
perform any migrations, regardless of how many nodes have crashed or how many times we
request one.

Next, pgpool won't let us use the control commands until we create a user and password. This is
not the same as any PostgreSQL user or operating system users. We use postgres to simplify, but
any username will work. We encrypt the password with pg_md5, so pgpool will check against the
encrypted value it expects.

Then, we need to tell pgpool that we defined scripts for failover and recovery operations. We do
that by setting failover_command and recovery_1st_stage_command properly in pgpool.conf. Perceptive
readers may note that we didn't change any settings to include the pgpool_remote_start script. This
is because pgpool specifically seeks it by name. Don't forget to install it with the others. After we
restart pgpool, all of our changes are incorporated, and failover should work as expected.

By calling the pcp_detach_node command on the primary server at port 9898, pgpool removes the
indicated node from the active list of available servers. If the server is the primary node, it
automatically promotes the replica to act as the new primary. Our version of the failover script
also shuts down the primary PostgreSQL server to prevent unpooled connections from making
changes that won't be caught by the newly promoted server.

At this point, we can do anything to the PostgreSQL server, including upgrade of the
PostgreSQL software to the latest bugfix for our current version. Later, we use pcp_recovery_node
to tell pgpool that it should refresh node zero with a copy of the node currently serving as the
primary server. If the command succeeds, we can reattach it to the pool by invoking
pcp_attach_node.



There's more...
If pgpool doesn't seem to call our scripts, we may need to install the pgpool_recovery extension.
Assuming that we still have the pgpool source available, follow these steps as a root-capable user
to install the pgpool PostgreSQL extension library:

cd pgpool-II-3.5.4/sql/
make
sudo make install

Then, connect to the template1 PostgreSQL database and install the pgpool_recovery extension
with the following SQL query:

CREATE EXTENSION pgpool_recovery; 



See also
The steps in this recipe are particularly sensitive. If you require clarification not covered by
this recipe, you can find the pgpool manual at http://www.pgpool.net/docs/latest/en/html/index.html

http://www.pgpool.net/docs/latest/en/html/index.html


Combining the power of PgBouncer and pgpool
While pgpool works well as an abstraction layer above PostgreSQL, its handling of excess client
connection attempts is less than ideal. If the maximum number of clients per pool was 20, for
instance, any connections over 20 with the same login credentials and target database will simply
wait indefinitely. Furthermore, there is no concept of transaction-level connection reuse.

PgBouncer can allow prospective client connections to number in the thousands and still
maintain high throughput. We can also tell it to reuse connections after any client completes a
transaction so that clients do not have to disconnect between operations. Yet, it cannot balance
connections across multiple PostgreSQL servers, and it certainly has no concept of primary
server or replica. In this respect, it really is a bouncer, holding users at the door with minimal
knowledge of what's inside the building.

Until there's a product that combines the best elements of these two services, we can do so
manually. This way, we get the best of both utilities, while still maintaining high availability and
isolation of the PostgreSQL cluster from the outside world.



Getting ready
Install pgpool according to the instructions in the Installing pgpool recipe. Then, install
pgbouncer according to the instructions in the Installing PgBouncer recipe. Then, configure both
as described in the Configuring pgpool for master/slave mode and Configuring PgBouncer
safely recipes.

With that done, we simply need to change a few configuration settings to gain full integration.



How to do it...
Assuming PgBouncer and pgpool are installed on the same node as the primary server at
192.168.56.10, we can combine PgBouncer and pgpool with one change. Follow these steps:

1. Open the /etc/pgbouncer/pgbouncer.ini configuration file, and add the following line under
the [databases] section:

        * = host=192.168.56.10 port=9999 

2. Then, reload PgBouncer with the following command:

        sudo service pgbouncer reload



How it works...
We did much of the really hard work in all the previous installation and configuration
instructions. By adding a single line in the pgbouncer.ini configuration file and reloading
Pgbouncer, every connection to PgBouncer will automatically pass through pgpool as well.

We now have automatic server load balancing and robust connection pooling.



There's more...
When adding final touches to the configuration files, pay close attention to default_pool_size in
pgbouncer.ini and num_init_children in pgpool.conf. Since pgpool doesn't like having more
connections than num_init_children, no PgBouncer pool should exceed this number of
connections. Thus, the value of default_pool_size added to reserve_pool_size should always be
equal to or less than num_init_children in PgBouncer.



Troubleshooting
In this chapter, we will learn several techniques to track sources of poor performance or stop
potential outages before they occur. We will cover the following recipes in this chapter:

Performing triage
Installing common statistics packages
Evaluating the current disk performance with iostat
Tracking I/O-heavy processes with iotop
Viewing past performance with sar
Correlating performance with dstat
Interpreting /proc/meminfo
Examining /proc/net/bonding/bond0
Checking the pg_stat_activity view
Checking the pg_stat_statements view
Deciphering database locks
Debugging with strace
Logging checkpoints properly



Introduction
A DBA managing a highly-available database server is charged with a huge responsibility. The
amount of integration, speed of operations, and urgency behind resolving performance
degradation can be extremely stressful. Some personalities thrive under this kind of pressure,
while others will find it impossible to concentrate and will become paralyzed in fear.

We're not going to claim that every DBA in this position is a battle-weary veteran, typing
furiously to save the day while disaster looms. This kind of scenario only exists in movies and
often leads to compounding the original problem. In reality, a DBA's job includes many more
calculated reactions even when managing a transaction-heavy database with frightfully low
tolerance for downtime. The best tip we can give and the whole reason behind this book is to
have an expansive bag of tricks.

For the purposes of this chapter, our bag is full of common Linux utilities useful for
troubleshooting. With them, we approach system malfunctions like scientists. Given the behavior
of the database or the underlying operating system, it is our job to produce a hypothesis for the
cause. The tools serve as our instruments, ready to measure and sample, to either prove or
disprove until we successfully isolate and address the problem.

With enough practice, we can begin to expect certain output, given PostgreSQL's behavior. Like
a good mechanic who can diagnose an engine by its sound, we will hear the subtle tone of
distress deep in the database cluster and have an answer. The first step towards this goal is to
learn the tools.



Performing triage
When things go wrong or begin to look strange to an experienced eye, it is time to investigate.
But where do we start?

Is the RAID running in parity mode, thereby drastically reducing the I/O throughput? Is the
upstream switch saturated, robbing the database of bandwidth? Are we out of memory and
swapping to disk, or are we causing memory reclamation threads to terminate processes? Has
the operating system task scheduler gotten overloaded and spiraled into oblivion?

Maybe! We've seen all of these scenarios and many more. We can't fix a problem that we are
unable to locate. Any time that we spend analyzing an unlikely path is ultimately wasted, and it
only increases downtime. We must take an inventory of the known symptoms and extrapolate
this evidence into one or more avenues of investigation.

Anything less is simply guesswork.



Getting ready
We do not need a spreadsheet for this. A computer with a network connection should be enough
to quickly rule out several possibilities. Enough practice will render this process second nature
and some checks unnecessary.



How to do it...
When deciding how to analyze a possible system problem, consider the items in this checklist:

Can ping reach the PostgreSQL server?
Is it possible to use ssh to enter the server?
Do simple commands such as echo immediately return a Command Prompt?
Does uptime show the following:

A system load higher than the number of available CPUs?
Whether the server has?

Can psql connect to PostgreSQL locally?
Does the free command show the following:

Any swap space used?
Less free memory than used memory after accounting for cache?

Does the df command indicate that the database storage is:
Present and accounted for?
Used below 95 percent?

A system load higher than the number of available CPUs?
Whether the server has rebooted recently?



How it works...
With the exclusion of psql, all of the commands we use in this checklist are present on almost
every UNIX system. They do nothing more than provide a very general idea of the system's
health.

If we can ping a server, that doesn't mean it is running. The network service is one of the first
things that the operating system starts and one of the last things it stops. The server can be stuck
somewhere in its boot process or equally frozen in a shutdown. It does indicate, however, that
something is available for further checks.

The next thing we try is to ssh to the server. If this command hangs indefinitely or returns with
any kind of error, the server is effectively unusable. At this point, we would request the
infrastructure or server administration departments to attempt to log in through the local console.
Unfortunately, a failed ssh attempt often means that the server requires a manual reboot and
further analysis. If we have a replication server, now would be a good time to use it until we
have a diagnosis.

The next thing we will check is shell responsiveness. Commands such as echo, ls, or cat are
frequently used and should return control immediately after completing. If there is a significant
delay, it's also likely that we experienced a long delay after logging in to the server. This is
usually caused by an overloaded CPU, but extremely high I/O can also result in intermittent lag.

We can check the CPU tangentially using the uptime command. Its output looks like this:

08:53:57 up 9 days, 4:07, 12 users, load average: 9.38, 8.01, 6.53

This particular system has been up for nine days, indicating that it hasn't rebooted recently. If it
had, this would be a sign that the system kernel might be at fault, since it can result in
unexpected system crashes and reboots. The last three numbers indicate how stressed the CPU
is at an average of 1, 5, and 15 minutes. If this server has only four CPUs, it is currently
overloaded, and we should consider upgrading it.

If we use psql while we are logged in to the server locally, we don't have to contend with
network overhead. If the PostgreSQL service isn't running, we'll see output like this:

psql: could not connect to server: No such file or directory 
      Is the server running locally and accepting 
      connections on Unix domain socket "/tmp/.s.PGSQL.5432"? 

Output like this would demand investigation, starting with the PostgreSQL logs. If we can
connect, there are system views that we can analyze, which we will explain in the subsequent
sections.

The free command is very inexpensive, and its output tells us a lot. For example:

             total    used     free   shared   buffers   cached
Mem:          2002    1559      443        0       153     1258
-/+ buffers/cache:     147     1855
Swap:         2043       0     2043



Invoked with the -m parameter, the free output is listed in megabytes. We can see that this system
has 2 GB of RAM, and only 147 MB is used after we account for disk cache and buffers. We
can also see that we are not using swap space. If the used column shows that more than 50
percent of the system memory is allocated or any swap is active, we don't have enough memory.

Finally, we use df to detail how much space we are using on our disks. Provided we know the
source of the database storage, we can immediately see how much space is used. For example,
this output suggests a problem:

Filesystem          Size  Used Avail Use% Mounted on
/dev/sda1            40G  5.6G 34.2G  14% /
/dev/sdc1             2T  1.9T   50M  97% /db

Invoked with the -h setting, the df output becomes human readable instead of a very large
number of kilobytes. We can instantly see that our database mount is nearly full, and the amount
of available space is so low that the database might actually be in danger.



There's more...
These types of at a glance commands are our first means of diagnosis. We need quick methods,
which do not require complex interpretation, to assess the server. Given that a problem exists,
one or more of these tests should show abnormal results right away. If not, more advanced
techniques are necessary. We will endeavor to describe as many of these as possible.



Installing common statistics packages
There are several common data-gathering tools, and each of them has its own place. Several are
already installed for extremely basic information, but for the purposes of this chapter, we need
more depth.

For instance, we may want to know the exact distribution of CPU resources, aggregate views of
memory paging volume, or disk I/O utilization. For more in-depth needs, we could analyze
specific processes for storage interaction or resource locks. If we weren't watching at the exact
time a problem occurred, we might want a historical record of various server performance
metrics.

In order to have all these capabilities, we must first install the requisite tools. We might find it
quite shocking that these tools are not installed by default, considering their role in server
administration.

Packages installed in this section will be referenced in all the subsequent
sections, so please, don't skip this section!



How to do it...
Debian, Mint, or Ubuntu users can install the tools by executing this command as a root-level
user:

sudo apt-get install dstat iotop sysstat

Red Hat, Fedora, CentOS, and Scientific Linux users can install the tools by executing this
command as a root-level user:

sudo yum install dstat iotop sysstat



How it works...
Red-Hat-based systems do require a bit of preparation. However, Debian-based distributions
have all the necessary elements from the beginning. Once the software sources are accounted
for, the only command we need installs all three statistics and monitoring tools simultaneously.



Evaluating the current disk performance with iostat
Due to the disparity in speed between storage and RAM, one of the first signs of distress that a
DBA will observe is directly related to disk utilization. A badly written query, an unexpected
batch-loading process, a forced checkpoint, overwhelmed write caches - the array of things that
can ruin disk performance is vast.

The first step in tracking down the culprit(s) is to visualize the activity. The iostat utility is fairly
coarse in that it does not operate at the process level. However, it does output storage activity by
device and includes columns such as reads or writes per second, the size of the request queue,
and how busy it is compared to its maximum throughput.

This allows us to see the devices that are actually slow, busy, or overworked. Furthermore, we
can combine this information with other methods of analysis to find the activity's source. For
now, let's explore the tool itself.



Getting ready
As iostat is part of the sysstat package, we should ensure that the statistics-gathering elements
are enabled. Debian, Mint, and Ubuntu users should modify the /etc/default/sysstat file and
make sure that the ENABLED variable resembles this line:

ENABLED="true" 

Red Hat, Fedora, CentOS, and Scientific Linux users should make sure that the SADC_OPTIONS
variable in /etc/sysconfig/sysstat is set to the following:

SADC_OPTIONS="-d" 

Once these changes are complete, restart the sysstat service with this command as a root-level
user:

sudo service sysstat restart



How to do it...
Leverage some sample iostat output by following these steps:

1. Obtain the statistics of the disk activity every second, with this command:

        iostat -d 1

2. Show 10 seconds of disk activity in megabytes per second, with this command:

        iostat -dm 1 10

3. Show extended disk activity in megabytes per second for the sda , device with this
command:

        iostat -dmx sda 1



How it works...
The iostat utility has a rather unique method of interpreting command-line arguments. If no
recognized disks are part of the command, it simply shows information about all of them. After
devices, it checks for timing statistics. To get a second-by-second status, we specify one second
as the final argument. By providing the -d argument, we remove CPU utilization from the report.

The default output rate of iostat is in kilobytes per second. Current hardware is often so fast that
these results can be almost too high to easily compare, so we set the -m parameter in the second
command to change the output to megabytes per second. We also take advantage of the fact that
the last two parameters are related to timing. The first parameter specifies the interval, and the
second is the number of samples. So, the second command takes 10 samples at the rate of one
per second.

The last command adds two more elements. First, we place a disk device (sda) before the timing
interval. We can list as many devices as we want, and iostat will restrict the output to not include
any other devices. This is especially helpful in servers that can have dozens of disk devices, thus
making it hard to isolate potential performance issues. Then, we include the -x argument, which
lists extended statistics.

Without extended statistics, the output is not very useful. For example, watching the sda device
for one second will normally look like this:

Device:     tps    kB_read/s    kB_wrtn/s    kB_read    kB_wrtn
sda      806.59      3147.25      4742.86       5728       8632

The last two columns only list the cumulative activity for the sampling interval. This is of limited
use. However, the first three columns display the number of transactions per second (tps) and
how much data was either read from or written to that device per second. Depending on the
hardware we purchased, we might actually know its limits regarding these measurements, so we
have a basic idea of how busy it might be.

If we enable extended statistics with the -x argument, we gain several extra fields, including the
following:

r/s: This column lists the number of reads per second from the device. This was previously
aggregated into the tps field.
w/s: This column shows the number of writes per second to the device. This was
previously aggregated into the tps field.
avgqu-sz: This column describes the amount of requests in the disk's queue. If this gets very
large, the disk will have trouble keeping up with requests.
await: This column outlines the average time a request spends waiting in the queue and
being serviced, in milliseconds. An overloaded disk will often have a very high value in this
column as it is unable to keep up with requests.
r_await: This column details the average time read requests spend waiting in the queue and
being serviced, in milliseconds. This helps isolate whether or not the read activity is
overloading the disk.
w_await: This column depicts the average time write requests spend waiting in the queue and
being serviced, in milliseconds. This helps isolate whether or not the write activity is



overloading the disk.
%util: This column represents the percentage of time the device was busy servicing I/O
requests. This is actually a function of the queue size and the average time waiting in the
queue. It is also one of, if not the most important, metrics. If this is at or near 100 percent
for long periods of time, we need to start analyzing the sources of I/O requests and think
about upgrading our storage.



There's more...
Our examples of iostat always include the -d argument to only show disk information. By
default, it shows both CPU and disk measurements. The CPU data looks like this:

avg-cpu:  %user   %nice %system %iowait  %steal   %idle
          9.38    0.00   16.67   11.46    0.00   62.50

This can be useful for analysis as well, though there are several other tools that also provide this
data. If we use the -c parameter instead of -d, we will see only the CPU statistics, and no
information about disk devices will be included in the output.



See also
Always examine the manual for the tools that we use in these recipes. In this case, the
manual for iostat is available by executing this command:

        man iostat



Tracking I/O-heavy processes with iotop
Many DBAs and system administrators are familiar with the top command, which displays the
processes that use the most CPU or RAM. However, this does not help us find the processes
that cause high amounts of system I/O.

Fortunately, there is a command, much like top, that is designed specifically for displaying the
processes that make storage requests. The iotop utility displays a continuously updated list of the
processes and any I/O they are handling. Provided that the server is dedicated to PostgreSQL,
we can use this information to almost instantly identify one or more database backends that
make disk requests.

Just like top, processes are sorted to the head of the list according to the volume of their I/O.
Let's learn more about iotop and see if we can benefit from its functionality.



Getting ready
The iotop command can only be executed by root-level users, as it uses some kernel resources
available only to superusers. Be ready with the sudo command!



How to do it...
Follow these steps to obtain a sample output from the iotop command:

1. Enter interactive mode with this command (exit by pressing q):

        sudo iotop

2. Obtain batch output for 10 seconds with this command:

        sudo iotop -b -n 10

3. Restrict batch output to only active processes, include a timestamp, and suppress the
headers with this command:

        sudo iotop -bot -qqq



How it works...
While it may be somewhat inconvenient to need superuser access to invoke iotop, we're willing
to make that sacrifice in this case. Our first command simply starts iotop like we would use top
interactively. We can sort the output into different columns with the arrow keys, reverse the sort
order by pressing the r key, and quit by pressing q. Of the columns presented here, we may be
interested in the following:

TID: This column provides the PID of the process that makes I/O requests. This can be
used to investigate or terminate the program.
DISK READ: This column illustrates the number of bytes read per second by the listed
process.
DISK WRITE: This column details the number of bytes written per second by the listed
process.
IO: This column shows the percentage of time that the listed process spent issuing I/O
requests.
COMMAND: This column depicts the name of the process that handles I/O. If this is a master
process, it might include command-line switches as well.

While this kind of use is informative for live troubleshooting, it's less applicable for historical
applications. Thus, for the second command, we add the -b argument to put iotop in batch
mode. This means that all the output is simply printed to the screen, which we can redirect to a
file if desired. In addition, we used the -n parameter to only obtain 10 readings-one for each
second-for later analysis.

Readers working along by trying these examples might notice that the amount of output in batch
mode is overwhelming. By default, iotop lists every process it can see, whether or not it is
actually utilizing disk resources. We can stop this behavior with the -o parameter, so only active
processes are included in any output. By adding the -t argument, we also gain a timestamp that
we can use to correlate disk activity across data-gathering techniques.

The -q argument acts to suppress excessive iotop output. By specifying it once, iotop only
includes the column labels at the top of the output. If you specify it twice, it will never include
the column labels. If you specify it a third time, it will also remove the summary data that iotop
normally prints after every iteration. This type of output is ideal for importing into reporting tools
or even analyzing by hand by searching for interesting time periods.



There's more...
While the iotop data is not actually part of the statistics gathered automatically by the sysstat
package, we can log the data for posterity anyway. Follow these steps as a root-level user to log
the iostat data:

1. Create a file named iotop at /etc/cron.d/ and fill it with this line:

        * * * * * root iotop -boat -qqq -d 5 -n 2 >> /var/log/iotop 

2. Reload the configuration files of the cron service with this command:

        sudo service cron reload

By adding the -a parameter, iotop will log the cumulative total of the I/O used between the
readings, instead of the I/O per second. We use the -d argument to add a 5 second delay between
two readings, as specified by the -n parameter. Together, this means that we get a 5 second
sample logged to /var/log/iotop every minute.



See also
Always examine the manual for the tools that we use in these recipes. In this case, the
manual for iotop is available by executing this command:

        man iotop



Viewing past performance with sar
While there are many tools to view or analyze the current server performance and behavior, how
do we examine historical activity? Most Linux systems rotate logfiles in /var/log for varying
periods of time. Unfortunately, these are programs and system logs, not performance
measurements.

When we installed the sysstat package in a previous recipe, we gained the use of the sar utility.
Some argue that sar is the Swiss Army knife of metric collection. A simple invocation can display
past data regarding memory, CPUs, IRQs, disk devices, networks, or even TTYs.

When administering a highly-available server, there are few things as helpful as performance
trends. Let's examine them.



Getting ready
As sar and iostat are both part of the sysstat package, we recommend that you review the
Evaluating current disk performance with iostat recipe before continuing.



How to do it...
Collect some sample sar data by following these steps:

1. Display the default sar output with the following command:

        sar

2. Show the disk device status every 5 seconds with this command:

        sar -d 5

3. View memory usage between 4:00 A.M. and 6:00 A.M. today with this command:

        sar -r -s 04:00:00 -e 06:00:00

Examine the I/O statistics for any existing past dates by following these steps:

1. Find the appropriate sysstat log directory:
Red Hat, Fedora, CentOS, and Scientific Linux should use the /var/log/sa directory
Debian, Mint, and Ubuntu users should use the /var/log/sysstat directory

2. List the contents of that directory and choose a file. Files are simply binary formats
containing sar data for each retained date. Files are prefixed with sa. Thus, sa23 is the sar
data for the 23rd of the month.

3. Execute the following command to view past I/O statistics for the 3rd of the month:

          sar -f /var/log/sysstat/sa03 -b



How it works...
By default, sar operates in CPU mode. Simply using the command as named, we will receive
CPU activity samples for every 10 minutes of the current day. Once sar produces this output, it
exits. If we want the current data, we must invoke it much like we did with iostat.

In our second example, we've chosen to emulate the iostat output by providing a summary of
disk activity every 5 seconds until we cancel the command. The -d argument tells sar to display
the disk statistics. Just like iostat, sar accepts two optional parameters for interval and count. As
we didn't specify a count, sar will print disk performance every 5 seconds.

The third example is where we finally begin leveraging the real power of sar. If we had examined
our PostgreSQL log and noticed a large amount of idle queries between 4:00 A.M. and 6:00
A.M., we would need a method to obtain data for that time period. Well, sar has one argument (-
s) to specify the start time of a data extract and another (-e) to set the end time. These
parameters must be written in HH:MM:SS format, or sar will ignore them with an error. We also
elected to use the -r argument to display memory usage data, just to illustrate another metric that
sar can expose.

Our final example depends entirely on what Linux distribution we're using. Unfortunately, each
stores its collected sar data in different areas within /var/log. With that said, the directory
assigned to sysstat for data storage keeps a default of seven days worth of historical information
for analysis.

Every day, this data is collected in a file prefixed with sa and suffixed with the current month's
day. On weeks that span two months, the count simply restarts with 01. Once again, we use a
different output mode for sar and display the I/O activity.



There's more...
Seven days may not be enough for some administrators. To increase this amount, modify
/etc/sysconfig/sysstat or /etc/sysstat/sysstat and change the HISTORY setting to the desired amount
of days to retain data. For example, to keep 30 days of records, we could use this:

HISTORY=30



See also
Always examine the manual for the tools that we use in these recipes. In this case, the
manual for sar is available by executing this command:

        man sar

This is especially true for sar, as it has so many different operating modes and display formats.



Correlating performance with dstat
Eventually, we will want to view multiple types of system activity simultaneously. While sar has
many operating modes, its output is linear. Without a tool to interpret its exhaustive data, we are
left with a lot of manual analysis of several sar invocations. While iostat and iotop are wonderful
tools, they are rather limited in scope by comparison.

So, let us introduce dstat. While dstat can't access historical data like sar, it can display output
from several different operation modes side by side. It also includes color coding to easily
distinguish units. It's a very pretty command-line tool and it summarizes several different metrics
at a glance.

For servers that are of particular importance, we actually keep a terminal window that displays
the dstat results open so that we get an early warning when numbers begin to look bad.



Getting ready
Unlike the sysstat package, dstat is ready to use immediately after being installed.



How to do it...
The output from dstat is very colorful. Obtain a few samples with these steps:

1. Display default information with this command:

        dstat

2. Display only system load and network activity with this command:

        dstat -n -l

3. Display CPU usage, I/O, and disk utilization averaged over 5 second intervals with this
command:

        dstat -c -r --disk-util 5

4. For the next 10 seconds, display the time, memory usage, interrupts and context switches,
disk activity from only the sda device, and the process using the most I/O. In addition,
capture the results to a csv file, all with this command:

        dstat -tmyd -D sda --top-io --output /tmp/stats.csv 1 10



How it works...
We hope it's obvious by now that the number of combinations available for the dstat output is
effectively infinite. By default, the dstat output resembles this:

The default output from dstat enables CPU, disk, network, memory paging, and system
modules. In this particular example, we can see that the wai column is extremely high, suggesting
that the server is currently I/O bound.

Another interesting thing about dstat is that it really only displays the exact modules we request.
For the second example, the output becomes this:

In this second example, we've only enabled the network (-n) and system load (-l) modules, thus
extremely reducing the output width. Yet, at the same time, this sparse format makes it very easy
to combine several different metrics without absurdly wide terminal windows.

The third sample begins using dstat plugins. By activating the --disk-util argument, dstat will
show the utilization percentage for all active storage devices. This is in addition to the CPU stats
(-c) and I/O (-r) that we already activated.

By adding the last parameter (5), we again take advantage of a common trend for system view
utilities. The last two optional parameters are for sample interval and count. In the case of dstat,
any number printed while the interval is greater than 1 is actually the average of all the metrics
collected during that time period. So, for our third example, these numbers are all 5 second
cumulative averages. For posterity, the output looks like this:

This may be difficult to see, but the last line in this output is not bold like the rest. This means
that this particular line had not yet reached the requested interval of 5 seconds. It's not an
important detail, but it shows just how much attention the dstat developers paid to convey
information visually. We easily see a high percentage of CPU waits, and the sda device is utilized
over 90 percent by the read and write activity. It looks like a visual presentation works pretty
well.



For our fourth and final example, we try to include as many separate types of data as possible.
At the beginning, we enable the -t, -m, -y, and -d switches. This adds timestamp, memory
performance, interrupts and context switches, and device activity to the dstat output. We also
take advantage of the -D parameter to limit disk statistics to the sda device. Default disk statistics
are inclusive, but now we can actually restrict the output to interesting devices.

Next, we add --top-io to list the process that's using the most I/O while dstat runs. Earlier, we
needed iotop to get that data. Of course, iotop provides more depth and lists more than one
culprit, but for quick identification, it's hard to beat dstat. Then, we use the --output parameter to
send the csv output to /tmp/stats.csv so that we can potentially use a spreadsheet program to
analyze or graph the data we gathered.

Finally, we take advantage of both the interval and count parameters so that we capture only 10
seconds of statistics. For all of that work, we're rewarded with this output:

Oh! It looks like all of the I/O and load we saw earlier was due to a pgbench test. How
embarrassing!



See also
Always examine the manual for the tools that we use in these recipes. In this case, the
manual for dstat is available by executing this command:

        man dstat



Interpreting /proc/meminfo
Administrators familiar with the Linux /proc filesystem know that it is a valuable source for both
device status and performance information. The meminfo entry in this directory will always
provide copious data regarding the status, contents, and state of the memory in our server.

We care about this as DBAs because file cache and write buffering can drastically affect disk
I/O. We are not especially interested in analyzing PostgreSQL's memory usage itself. At the time
of writing, current recommendations suggest that PostgreSQL's performance doesn't really
improve after shared buffers reach 8 GB. However, for client connections, inode caches, and
dirty page flushing, it's more than relevant.

On a modern Linux kernel, there are over 40 different lines of information in /proc/meminfo.
Much of this data is not exceptionally useful to a DBA, so this recipe will focus on important
fields only.



Getting ready
We will be using the watch and grep commands in this recipe. It will be a good idea to experiment
with them and, perhaps, skim the man pages before continuing.



How to do it...
Follow these steps to capture an interesting memory status from /proc/meminfo:

1. Obtain basic memory states with the following command:

        grep -A3 MemTotal /proc/meminfo

2. Execute this command to extract dirty memory buffers and pending writes:

        grep -A1 Dirty /proc/meminfo

3. View the state of various memory caches with the following command:

        grep -A1 Active /proc/meminfo

4. Show swap usage with the following command:

        grep Swap /proc/meminfo



How it works...
The first command we execute is nothing but a basic summary of the current memory state. For
a test system with 2 GB of RAM running PostgreSQL, it would resemble this:

MemTotal:        2050908 kB
MemFree:          840088 kB
Buffers:            9288 kB
Cached:          1102228 kB

This output is similar to what we would learn using the free command. The MemTotal row should
speak for itself, as it is the total size of the memory in the system. The MemFree row is the total
amount of completely unallocated system memory, including buffers or cache. The Buffers row
in this context is mostly related to internal kernel bookkeeping, so we can ignore it. If we
examine the value reported by the Cached row, we can see that over 1 GB of data is cached in
memory.

The second command outlines dirty memory. Dirty memory, in this case, is the memory that is
modified and awaiting synchronization to disk. On the same 2 GB test system, a long pgbench test
might produce results like this:

Dirty:             29184 kB
Writeback:            40 kB

As we've said, the Dirty row details how much memory is waiting to be written to disk. On
systems with very large amounts of RAM, this value can indicate that too much RAM is dirty.
The consequences of this can include long query execution times or system stalls if the
underlying storage is unable to quickly absorb that many disk writes. In practice, this should
rarely be larger than the size of the disk controller's write cache.

However, what about the Writeback row? This field details how much of the dirty memory is
currently being written to disk. When storage is overwhelmed, the amount reflected here will
rise, as the write-back buffer fills with more write requests. This is a definite sign that the system
has encountered far more writes than it was designed to handle. In essence, each of these fields
is a warning sign that the application must be modified to reduce write workload or the database
needs faster storage with a bigger write cache.

With our next command, we examine the contents of the cache itself. Still using our 2 GB test
system, the cache looks like this:

Active:          1105760 kB
Inactive:          32764 kB
Active(anon):     207696 kB
Inactive(anon):     9340 kB
Active(file):     898064 kB
Inactive(file):    23424 kB

We won't get into too much detail regarding how the kernel actually works, but we will note that
all the fields named Inactive are something of a misnomer. Any time something is loaded into
cache, it first gets included in the Inactive list. Based on the subsequent amount and timing of
requests for this data, it might be promoted into the Active set. Once it is in that list, various aging



algorithms might eventually return it to the inactive list. Inactive cache data is always a candidate
for replacement by more important data.

In the context of PostgreSQL, we need to pay attention to the Active(file) entry. This is the
amount of disk pages in cache. Disk reads are expensive, and as databases process data from
disk, this is very important to us. We want as many disk pages as possible to be in the
Active(file) list, but this doesn't mean we discount Inactive(file).

Remember, inactive cache is still in memory and eligible for database use; it simply hasn't been
promoted to the active list. Thus, we want the total amount of file cache to be as high as
possible, reflecting the prioritization of disk reads for database processing.

We include Active(anon) and Inactive(anon) for one reason: database clients. Temporary data
allocated to database clients is often assigned to anonymous cache. This is good for the client
program, but with enough of these, we lose valuable memory from use as disk cache. One
remedy for this is to buy more memory, but another more scalable solution is to utilize database
connection pooling. This book includes a chapter specifically dedicated to optimizing the
connection count, as this helps preserve memory for data caching.

The last extract we obtain from /proc/meminfo is related to swap usage and looks like this:

SwapCached:            0 kB
SwapTotal:       2093052 kB
SwapFree:        2093052 kB

Again, we can get this kind of data using the free command as well. We mainly include it here in
case any readers want to search for all of these fields with a single command for monitoring
purposes.



There's more...
The watch utility will execute any command and its arguments until it is canceled with Ctrl + C.
Instead of using those grep statements every time we want to see interesting fields in the
/proc/meminfo file, we can simply use watch. For example, to observe the state of dirty buffers
waiting to be committed to disk, we can use the following command:

watch -n 5 grep -A1 Dirty /proc/meminfo



See also
The Linux kernel documentation is somewhat verbose. Nonetheless, more technically apt
readers can find much more information regarding /proc/meminfo at this URL: https://www.kernel.org/
doc/Documentation/filesystems/proc.txt

https://www.kernel.org/doc/Documentation/filesystems/proc.txt


Examining /proc/net/bonding/bond0
Highly-available databases often come in pairs for redundancy purposes. These servers can have
any number of procedures to keep the data synchronized, and this book suggests direct
connections when possible. Direct connections between servers ensure fast communication
between redundant servers, and it resembles the following network design:

In some cases, it can be advantageous to connect the database servers to a general network
fabric. Depending on the interaction of the upstream network devices, this can significantly
increase the network packet's round-trip-time (RTT). This is usually fine for PostgreSQL
replication, but OLTP systems may be more sensitive. Block-level replication systems, such as
DRBD, which operate beneath the filesystem, fare even worse.

Each of our database servers should be equipped with at least two independent network
interfaces. In order to prevent downtime, these interfaces must be linked with a bond. Network
bonds act as an abstraction layer that can route traffic over either interface, and like many
kernel-level services, bond status can be checked via the Linux /proc filesystem.

The health and current communication channel of the server network bond is surprisingly
relevant to throughput. In order to rule out potential delays caused by upstream network
hardware, we need to understand how the bond is operating.



Getting ready
As we are going to examine the network bond on two paired PostgreSQL servers, connect to
each before continuing. We don't need any special permissions or attributes for this recipe.



How to do it...
In order to check the status of the network bond, follow these steps:

1. Determine the current bonding method by executing this command:

        grep Mode /proc/net/bonding/bond0

2. Check the currently active interface with this command:

        grep Active /proc/net/bonding/bond0



How it works...
Surprised that it's so simple? Don't be. Much like /proc/meminfo and /proc/cpuinfo, the difficulty is
not in obtaining the information we need, but in interpreting it. The first thing that concerns us is
the bond mode. There are several modes, but only one is relevant to us for a dual-failover
configuration. The mode should reflect some kind of an active-backup status; otherwise, it's
combining the interfaces for bandwidth and throughput purposes. The line we want looks like
this:

Bonding Mode: fault-tolerance (active-backup) 

Next, we check the currently active interface. If the system was configured so that the network
bond is in active-backup mode, only one is active at any one time. The other serves as a backup
in case the network connection or the interface itself fails. In an ideal situation, similar interfaces
on both servers-eth3, for instance-are attached to the same switch. If not, we should talk to our
network and server administrators to correct the setup.

We suggest that you use the same interface name on both the servers for one simple reason: it's
difficult to diagnose network routes on bonded interfaces. For best throughput and RTT, our
network should look like this:

We hope it's clear from the diagram that this architecture introduces a possible source of network
lag. As the servers cannot transfer data to each other directly, at least one extra switch that
increases the RTT is involved. As our servers hopefully have two network interfaces, each
server is communicating with the same two switches. However, if each server is currently
working through a different switch, this actually adds at least two more jumps, as the switches
must communicate with an upstream router. If we follow the dotted path, that unfortunate
situation looks like this:

We've seen this increase ping time from 0.03 ms to 0.3 ms. This may not seem like much, but
when the network RTT is 10 times slower, replication and monitoring can suffer significantly.
This is one of the few obscure troubleshooting techniques that can elude even experienced
network administrators. Armed with this, we should be able to diagnose replication and idle-wait
problems using nothing more than grep.



See also
By their nature, networks are standardized to encourage intercommunication. As a result of
this, link aggregation (bonding) is available on Wikipedia as a standard term. If you want to
learn more about how it works, please visit the longer explanation on Wikipedia at this
URL: https://en.wikipedia.org/wiki/Link_aggregation

https://en.wikipedia.org/wiki/Link_aggregation


Checking the pg_stat_activity view
Another source of valuable troubleshooting information is PostgreSQL itself. There are
numerous views, tables, and functions dedicated to tracking and reporting various statistics and
operating statuses for each hosted database. Principal among these is the pg_stat_activity view.

This view tells us what every database client is doing, where it is connected from, which user
account it is operating under, and other important values. When administering a highly-available
database, we must either have iron control over what executes in the database or the ability to
quickly and easily assess its execution state. Besides using this data to track suspicious activity,
we can also cancel long-running queries or Cartesian Products, or simply examine the connection
turnover.

We probably use this view into the database more than any other, and it forms the backbone of
several monitoring utilities as well. Let's explore just why this system catalog is so indispensable.



Getting ready
While any user can view the contents of the pg_stat_activity view, only a superuser can freely
examine the contents of every column. To avoid security exploits, regular users cannot view the
current query activity, any connection information, or fields related to query time or status.

To get the most out of this view safely, we want to grant elevated privileges to specific users
dedicated to monitoring and status checks. In order to do this, we must first connect to the
database as a superuser (such as the postgres user) for the duration of this recipe.



How to do it...
Perform the following steps to prepare pg_stat_activity for generalized use:

1. Execute this SQL statement as a database superuser to create a function:

        CREATE OR REPLACE FUNCTION pg_stat_activity() 
        RETURNS SETOF pg_stat_activity AS $$ 
            SELECT * FROM pg_stat_activity; 
        $$ LANGUAGE sql SECURITY DEFINER; 

2. Execute this SQL statement to secure the function we created:

        REVOKE ALL ON FUNCTION pg_stat_activity() FROM PUBLIC; 

3. Create a user dedicated to monitoring with this SQL statement:

        CREATE USER db_mon WITH PASSWORD 'somepass'; 

4. Grant the monitoring user the ability to use our function with this SQL statement:

        GRANT EXECUTE ON FUNCTION pg_stat_activity() TO db_mon; 

Now, connect to PostgreSQL as the db_mon user and examine the contents of pg_stat_activity by
executing this SQL query:

SELECT * FROM pg_stat_activity(); 



How it works...
The pg_stat_activity view is a wealth of information for a database administrator. Unfortunately,
it is all but useless for monitoring due to the security measures that encumber it. Principally,
some of these fields are obfuscated specifically to prevent system compromises and data leaks.
Thus we must prevent abusing the view while still loosening the security enough to enable better
monitoring.

The first step we take is to create a function that is capable of returning a set of rows similar to
the pg_stat_activity view itself. The SETOF modifier tells PostgreSQL that our function does
exactly that. It's no coincidence that the body of our function is merely a SELECT statement on the
pg_stat_activity view.

Why did we use a function to abstract the view? After all, it seems excessive to create a whole
function for such a simple statement. The answer is in the SECURITY DEFINER function modifier that
we added; it allows the function to execute as the user that created it. Thus, if we create the
function as the postgres user, it runs as if the postgres user invoked it. As the postgres user is a
superuser, the function can see all of the hidden columns, no matter who runs the function.

By default, all new functions are available to all users. However, this function executes as a
superuser, and we don't want just anyone to execute it and see what everyone else is doing. So,
we revoke all permissions from the PUBLIC context. At this point, only a superuser can call our
function.

As we want to be able to monitor database status values, we create a user for this very purpose.
We named our user db_mon, but any username works just as well. As long as it has a secure
password or is only used locally, our security exposure is minimal. Then, we grant EXECUTE
privileges on the pg_stat_activity function, and our work is complete. The db_mon user can now
view all user queries. We can also grant EXECUTE to other DBAs or support staff who may need it.

What data is available? Important fields include, but are not limited to, the following:

pid or procpid: In versions of PostgreSQL 9.2 and above, this field is named pid; all older
versions use procpid. This tells us the process ID assigned to the backend server process by
the operating system and is extremely valuable for debugging or connection-management
purposes.
username: This displays the name of the user who owns this connection.
backend_start: This provides the date and time when the connection was established.
xact_start: This tracks the date and time when the current transaction started, if any.
query_start: This reports the date and time of the last query submitted.
wait_event: In versions of PostgreSQL 9.6 and higher, this labels the current lock event
that is blocking the current query from continuing. There is a very detailed table in the
documentation that further explains labels used in this column. If there is nothing blocking
this query, the value will be NULL.
waiting: This column is only valid in PostgreSQL versions 9.5 and below. This tells us
whether or not the connection is currently blocked by something and will show either t for
true or f for false.
state: In versions of PostgreSQL 9.2 and above, this column reports the current state of the



connection. States marked as active are executing a query; the idle ones are not. If a
connection is marked idle in a transaction, look carefully at the query_start and xact_start
fields for excessive delays. If a connection was in a transaction and encountered an error, it
will report idle in the transaction (aborted); applications should catch errors and either roll
back the transaction or disconnect, so idle aborted transactions are a possible source of
trouble. Unfortunately, this field does not exist in older versions, so a certain context is lost
during investigation.
query: In versions of PostgreSQL 9.1 and above, this column contains most or all of the last
known query this connection executed. This field does not exist in older versions.
current_query: In versions of PostgreSQL 9.1 and below, this column contains most or the
entire last known query that this connection executed. In newer versions, this field was split
into the state and query fields to provide better insight into the connection activity during
transactions.



There's more...
Mind the version! PostgreSQL versions below 9.2 do not have the state or query fields and
supply only the current_query column. While it might be tempting to use query and current_query
interchangeably, older PostgreSQL versions are strictly at a disadvantage.

Similarly, the way waits are displayed changed drastically in PostgreSQL 9.6. In older versions,
the waiting column merely noted whether or not the query was blocked by some other process.
The wait_event replacement makes it possible to actually see what is blocking a particular query.
Previously obscured actions such as lock acquisitions, disk synchronization, or even background
worker interaction, are now plainly visible. This amount of detail is far more useful for diagnostic
purposes than a mere boolean value.

In PostgreSQL 9.1 and below, queries are only reflected in the pg_stat_activity view while they
are actually executing. As soon as the query finishes, the current_query column will be empty or
report idle in transaction if the query was part of a transaction. This means we lose a lot of
operating context unless we just happened to be logging every database query.

On very high-volume OLTP systems, recording every query is not feasible. We've personally
administered databases that handle over 1 billion queries per day, at a rate of 60,000 per second.
Even with a conservative query length of 50 characters, we would produce over 50 GB of logs
every day.

Troubleshooting stuck, idle, or otherwise faulty connections is much easier in the newer versions
of PostgreSQL. If at all possible, upgrade to 9.2 or above.



See also
PostgreSQL has extremely informative documentation regarding how it collects and
maintains statistics. The pg_stat_activity view is described in more depth there, so take a
look at this URL: https://www.postgresql.org/docs/current/static/monitoring-stats.html

https://www.postgresql.org/docs/current/static/monitoring-stats.html


Checking the pg_stat_statements view
We mentioned in another recipe that logging every query on a highly-available database that
handles high volumes of query traffic is undesirable. DBAs often solve this problem by only
logging slow queries by setting log_min_duration_statement to a reasonable number of milliseconds
in postgresql.conf. Later, only queries that cross this threshold are logged, along with binding
parameters if the query was a prepared statement.

We strongly encourage this practice, as it is invaluable for catching outlying queries that could
benefit from optimization. Unfortunately, faster queries are still invisible to us. Worse, queries
that execute often probably have their data sources cached in memory, so it's unlikely that they
contribute to I/O. The database could be executing an inefficient or redundant query thousands
of times per second, and besides an elevated server load, we would never know.

This situation is not conducive to long-term viability of a highly-available database. Phantom
queries like this don't simply gorge on valuable CPU resources; they can multiply unseen until
the combined load requires more expensive hardware or the database buckles under the stress.

However, PostgreSQL can see everything, and now so can we, with pg_stat_statements.



Getting ready
Activating and using this extension requires us to modify the postgresql.conf configuration file
and restart PostgreSQL. As usual, we need to ensure that we have access to a PostgreSQL
superuser and a user capable of restarting the service, such as the postgres or root system users.



How to do it...
Begin by installing the pg_stat_statements module. Follow these steps:

1. Modify the shared_preload_libraries line in postgresql.conf to include the module:

        shared_preload_libraries = 'pg_stat_statements' 

2. If you are using PostgreSQL 9.1 or older, add this line to postgresql.conf:

        custom_variable_classes = 'pg_stat_statements' 

3. Restart PostgreSQL with a command similar to this:

        pg_ctl -D /db/pgdata restart

4. Log in to PostgreSQL as a superuser into any database that should have access to
pg_stat_statements and execute the following SQL statement:

        CREATE EXTENSION pg_stat_statements; 

Perform the following steps to prepare pg_stat_statements for generalized use:

1. Execute this SQL statement as a database superuser to create a function:

        CREATE OR REPLACE FUNCTION pg_stat_statements() 
        RETURNS SETOF pg_stat_statements AS $$ 
            SELECT * FROM pg_stat_statements; 
        $$ LANGUAGE sql SECURITY DEFINER; 

2. Execute this SQL statement to secure the function we created:

        REVOKE ALL ON FUNCTION pg_stat_statements() FROM PUBLIC; 

3. Create a user dedicated to monitoring with this SQL statement:

        CREATE USER db_mon WITH PASSWORD 'somepass'; 

4. Grant the monitoring user the ability to use our function with this SQL statement:

        GRANT EXECUTE ON FUNCTION pg_stat_statements() TO db_mon; 

5. Now, connect to PostgreSQL as the db_mon user, and examine the contents of
pg_stat_statements by executing this SQL statement:

        SELECT * FROM pg_stat_statements(); 



How it works...
In our opinion, the first set of instructions should not be required. The pg_stat_statements module
is so valuable that we feel everyone can benefit from its contents. In any case, the first thing we
must do is add pg_stat_statements to the shared_preload_libraries configuration setting. Several
PostgreSQL modules are only available after being added this way.

The next step is only necessary if we are running a version older than PostgreSQL 9.2. The
custom_variable_classes setting allows us to further configure the pg_stat_statements module later.
Current versions of PostgreSQL will handle this for us.

As the pg_stat_statements module depends on activating an external library, we must restart
PostgreSQL for it to take effect. Once the module is loaded, there are necessary functions that
access the module; we must also install these functions in any database where we want
pg_stat_statements to be available. By executing the CREATE EXTENSION statement, we register these
functions with the current database.

The next set of instructions focuses on making the pg_stat_statements module usable to non
superusers and mirrors the process we used in the Checking the pg_stat_activity view recipe.
We begin by creating a function that runs as the user who defined it. As we created the function
as a superuser, this means regular users can use it to examine the contents of pg_stat_statements.

To prevent any user from executing this elevated privilege function, we revoke all access from
the public context. Then, if we don't already have a user set aside for monitoring database
activity, we create one and then grant it access to execute pg_stat_statements(), because this is
one of its acknowledged roles.

Newer versions of PostgreSQL add more fields to this view, seemingly with every release. Many
of the new fields focus on the I/O related to disk timing and blocks being dirtied, so they are
intended for more advanced usage. However, the columns we can count on include the
following:

query: This column displays up to 1024 characters of the query being tracked
calls: This column contains the total number of times the SQL has been executed
total_time: This column provides the total time spent processing the query, in milliseconds
rows: This column lists the total number of rows ever returned by the query

This is actually enough to perform quite a bit of investigation. We can divide total_time by calls
to obtain the average execution speed. Perhaps, we want to know the total ratio of insert
statements to select statements. Simply sorting the data by the calls column can reveal outliers
that execute far more often than most queries. We used these ourselves to find a query that
represented more than 50 percent of all the calls in the database. Our developers were very
happy to cache the results of this query for us.



There's more...
Of course, this extremely useful view has a few extra features that we want to explain.



Resetting the stats
Statistics stored in the pg_stat_statements view accumulate until they are forcefully reset. If we
don't want to monitor value deltas between checks, we can simply reset the status of the module
and cause it to erase the data it has collected. To do that, execute this SQL statement as a
superuser:

SELECT pg_stat_statements_reset(); 



Catching more queries
By default, the pg_stat_statements module only tracks the first 1,000 queries it encounters during
database operation. Normally, this is enough, especially in versions of PostgreSQL above 9.1.
Newer versions provide better aggregation, because they remove SQL variables and constants
from the query before including them in the view. However, older versions or databases that
experience a high variance in query construction may want to increase this number. To do that,
add this line to the postgresql.conf file:

pg_stat_statements.max = 10000 

Then, we have to restart PostgreSQL again. Once this is finished, the pg_stat_statements module
will track 10,000 queries instead of 1,000. Feel free to experiment with other values.



See also
We feel strongly that the pg_stat_statements view is indispensable, but we can only convey a
tiny amount in a usage recipe. For an in-depth explanation of its contents and usage, please
checkout the documentation at: https://www.postgresql.org/docs/current/static/pgstatstatements.html

https://www.postgresql.org/docs/current/static/pgstatstatements.html


Deciphering database locks
It's not uncommon for various elements of the database to block each other. Queries can lock
shared resources, system maintenance can temporarily prevent a transaction from committing;
the list is endless. As a result, a critical aspect of troubleshooting a PostgreSQL system is
tracking down blocked systems, and what might be preventing normal operation.

There are two very powerful ways to decipher locks within PostgreSQL in the pg_locks view and
the new PostgreSQL 9.6 pg_blocking_pids function. Let's see why these approaches are so useful.



Getting ready
The pg_locks view needs no special access for use, and the pg_blocking_pids function can be
called by any user. However, these resources are of limited utility without full access to
pg_stat_activity as well. To proceed with this recipe, either connect to the database as a
superuser (such as the postgres user), or refer to the Checking the pg_stat_activity view recipe
to circumvent this limitation.



How to do it...
Create a blocking scenario with the following steps:

1. Connect to a database and create a test table, and then lock it with this SQL:

        CREATE TABLE lock_test (junk INT); 
        BEGIN; 
        LOCK TABLE lock_test IN EXCLUSIVE MODE; 

2. In a second connection, execute the following statement:

        INSERT INTO lock_test (junk) VALUES (42); 

Next, investigate the problem with these steps (PostgreSQL 9.6 and above only):

1. Execute this query to obtain locking information:

        SELECT pid, locktype, mode, granted, 
               relation::REGCLASS::TEXT AS locked_object 
          FROM pg_locks 
         WHERE relation IS NOT NULL 
         ORDER BY relation, granted DESC; 

2. Run this query to determine blocker sources:

        SELECT p.pid, p.query, 
               s.pid AS blocker_pid, s.query AS blocker_query 
          FROM pg_stat_activity p 
          JOIN pg_stat_activity s ON ( 
               s.pid = ANY(pg_blocking_pids(p.pid)) 
        ); 

 



How it works...
The first set of steps is not strictly necessary if we have access to a particularly busy database.
The lock tables are generally very active, and output in such a scenario is usually rather copious.
Barring this, we need a way to purposefully demonstrate just how powerful the PostgreSQL lock
debugging tools are.

Of the two queries that actually display PostgreSQL activity blocks, the first relies entirely upon
the pg_locks view. After executing it, we should see this on an otherwise empty database:

 pid  | locktype |       mode       | granted | locked_object  
------+----------+------------------+---------+--------------- 
 3147 | relation | AccessShareLock  | t       | pg_locks 
 3128 | relation | ExclusiveLock    | t       | lock_test 
 3137 | relation | RowExclusiveLock | f       | lock_test 

What we can learn directly from the output is that there are two different pids that want to use
the same object. We can see that one has a granted exclusive lock to lock_test, which means it is
preventing any other process from modifying its contents. The other connection needs a lock to
a specific row it can't obtain, and hence we have a lockup.

Yet this particular situation and many like it, can only be implied by tracking resource conflicts
between connections. There's no causal relationship other than what we might interpret based on
the current state of the pg_locks view. There were third-party utilities that aimed to address this
shortcoming, but none became particularly popular and the problem remained unresolved.

This is why PostgreSQL 9.6 added the pg_blocking_pids function. Given a single process ID, it
can gather a list of any other processes that are currently preventing it from proceeding. This is
why our second query also makes use of pg_stat_activity. Including it allows us to directly
witness the cause and effect relationship, as seen here:

-[ RECORD 1 ]-+---------------------------------------- 
pid           | 3137 
query         | INSERT INTO lock_test VALUES (42); 
blocker_pid   | 3128 
blocker_query | LOCK TABLE lock_test IN EXCLUSIVE MODE; 

Our demonstration is extremely simplified, yet the design of the query will capture any blocking
activity due to our use of the ANY array conditional. The pg_blocking_pids function returns an array
of all blocking processes, meaning our query should unroll and display an entire chain of locks
right up to the origin query.



There's more...
Astute readers may have noticed that the pg_locks and pg_stat_activity views both share the pid
column. Since the pg_locks view only details information about the locks themselves, we can't
tell when the lock might have been granted, or any other pertinent troubleshooting details. There
is a very handy query that uses both of these views.

Users of PostgreSQL 9.5 and older can use this query:

SELECT l.pid, l.mode, l.granted, a.waiting, 
       l.relation::REGCLASS::TEXT AS locked_object, 
       a.datname, a.client_addr, a.usename, 
       a.query_start, now() - a.query_start AS duration, 
       substring(a.query, 1, 20) AS query_part 
  FROM pg_locks l 
  JOIN pg_stat_activity a USING (pid) 
 WHERE l.relation IS NOT NULL 
   AND now() - a.query_start > INTERVAL '10 minutes' 
 ORDER BY a.query_start; 

This query is more suitable for PostgreSQL 9.6 and above:

SELECT l.pid, l.mode, l.granted, a.wait_event, 
       l.relation::REGCLASS::TEXT AS locked_object, 
       a.datname, a.client_addr, a.usename, 
       a.query_start, now() - a.query_start AS duration, 
       substring(a.query, 1, 20) AS query_part 
  FROM pg_locks l 
  JOIN pg_stat_activity a USING (pid) 
 WHERE l.relation IS NOT NULL 
   AND now() - a.query_start > INTERVAL '10 minutes' 
 ORDER BY a.query_start; 

This query is large, but it also does a lot of work. First, it only returns results where locks have
been held for at least ten minutes so we're not overwhelmed. It also orders the rows based on
when the queries started. In some cases, the best solution is to simply observe the amount of
resources the top queries might be locking, and terminate the connection to clear the jam. This is
much easier when we can actually tell which queries started the problem.

Beyond this, we've included a good assortment of debugging columns such as database name,
user name, connection origin, and a fragment of the query itself. These details are indispensable
when attempting to derive a requisite cause. If a script isn't operating normally, we want to know
where it's running so a developer can fix the problem! If we can tell them where the query came
from, its details, and the full list of locks, finding the problematic code will be far easier.

Of course, this is only one of many possible combinations of fields between these two views.
Don't be afraid to mix and match!



See also
Read more about pg_locks and pg_blocking_pids in the PostgreSQL manual:

pg_locks: https://www.postgresql.org/docs/current/static/view-pg-locks.html

System Information Functions: https://www.postgresql.org/docs/current/static/functions-info.html

https://www.postgresql.org/docs/current/static/view-pg-locks.html
https://www.postgresql.org/docs/current/static/functions-info.html


Debugging with strace
Sometimes, the only way to truly observe a server process is by using the kernel itself. This kind
of data is invaluable for troubleshooting or research into PostgreSQL activity.

The Linux strace utility provides detailed system trace data for any process or service running on
the server. For use with PostgreSQL, this utility means we can target the database itself or any
of the background processes it uses for maintenance.

Perhaps, more importantly, we can debug or examine any client connection. Is the network
connection permanently hung? Is the client sending thousands of simple SQL requests instead of
bulk-handling the results of a single large query? The strace command output is both intricate
and verbose. Let's use strace to inspect our server and see what we can discover.



Getting ready
There are certain limitations to using strace. Because of its high-level access to process
information, only root-level users are allowed to examine an application's activity. Make sure to
have this capability before continuing.

As we want activity we can depend on, open a connection to PostgreSQL for us to locate later.
We will be using this connection to generate debug output.



How to do it...
Follow these steps to examine the PostgreSQL processes in various ways:

1. In our PostgreSQL connection, execute the following query to find the process ID of the
server backend assigned to us:

        SELECT pg_backend_pid() AS pid; 

2. As our root-capable user, attach strace to the preceding pid (4200, for example) with this
command:

        sudo strace -p 4200

3. In our PostgreSQL connection, execute the following query to generate some activity:

        SELECT 1; 

4. In the terminal where strace is running, press Ctrl + C to disconnect.
5. Attach strace again, but collect the statistics with the following command:

        strace -c -S calls -p 4200

6. Now, execute the following query to generate some complex activity:

        SELECT * FROM information_schema.columns; 

7. In the terminal where strace is running, press Ctrl + C to disconnect.
8. Attach strace a final time, but limit the output with the following command:

        strace -e recvfrom -p 4200

9. Execute the following query to generate a simple activity:

        SELECT 1; 



How it works...
We can connect to any process with strace, but for demonstrative purposes, we elect to control
the environment by watching a connection we directly control. The pg_backend_pid function
returns the process ID of the backend process that serves our client, which then lets us monitor
its activity on the server.

With the pid of the backend, we can monitor it with the -p parameter to strace, which watches
the listed process ID. As we don't want too much output, we elect to execute a very simple
query that does not touch the tables, functions, or views. Our output should resemble this:

Process 4200 attached - interrupt to quit
recvfrom(11, "Q\0\0\0\16SELECT 1;\0", 8192, 0, NULL, NULL) = 15
sendto(11, "T\0\0\0!\0\1?column?\0\0\0\0\0\0\0\0\0\0\27\0\4\377\377\377\377"..., 66, 0, NULL, 0) = 66

Once we press Ctrl + C, strace exits, and we can try a different combination of parameters. For
example, the -c setting disables the normal output in favor of summarizing the kernel calls. If we
use the -S parameter to change the sort column, we can focus on repeated calls. As counts will
be boring with only a few columns, we've suggested a query that will touch on several database
objects. Once we exit from the second strace command, the output looks like this:

Finally, we would like to introduce the -e parameter, which limits the strace output to the calls
listed. In our case, we chose recvfrom, which is a network-related call that the backend uses to
await requests. When in this mode, strace will only print recvfrom calls and nothing else.

The -e setting also provides several shortcuts. If the first keyword is trace,
instead of a recognized call, we can specify a type of call to watch. For
example, this revision of our last strace command would watch all network-
related activities: strace -e trace=network -p 4200

 



There's more...
Output from strace can be somewhat esoteric, especially as it limits the content length by default
to increase readability. If we want to really capture a lot of data with extreme verbosity that will
help a human make a diagnosis, we need to increase the string length. For strace, the parameter
for that is -s. If we wanted to greatly extend the length of the string output, we can do that with
this command:

strace -p 4200 -s 2000

Then, if we execute the following query:

SELECT 'This is a very long query to view.'; 

We would see this output:

recvfrom(11, "Q\0\0\0001select 'This is a very long query to  view.';\0", 8192, 0, NULL, NULL) = 50 

Instead of this:

recvfrom(11, "Q\0\0\0001select 'This is a very long"..., 8192, 0,  NULL, NULL) = 50 

This is all that is required to monitor PostgreSQL, as even simple queries and data are truncated
with default settings.



See also
Always examine the manual for the tools that we use in these recipes. In this case, the
manual for strace is available by executing this command:

        man strace 



Logging checkpoints properly
Checkpoints are an integral part of a PostgreSQL server. Table data is not modified during query
execution until modified rows, index pages, and other structures are committed to the Write
Ahead Log (WAL). WAL files are also known as checkpoint segments. When the cumulative
size of these files exceeds max_wal_size-or the time since the last checkpoint exceeds
checkpoint_timeout-the data files are modified to reflect the changes.

In versions older than PostgreSQL 9.5, checkpoints were specified as a count of
16MB files with the checkpoint_segments parameter, rather than a cumulative total
size. The setting for max_wal_size in MB is roughly equivalent to
checkpoint_segments * 16.

This decoupled writing ensures database integrity at the cost of doubling the necessary disk
writes. This is the main reason why experienced PostgreSQL DBAs interested in performance
move the WAL location to a separate storage device. However, even moving the WAL files to
another device may not sufficiently reduce write pressure. Database activity is variable in nature,
and checkpoints only happen every few minutes or after a threshold of data modifications.

As PostgreSQL tries to avoid overwhelming the operating system, writes necessary to satisfy a
checkpoint are spread evenly over the checkpoint interval. Unfortunately, the operating system
may choose to buffer these writes unevenly, resulting in unexpected write spikes. A busy
database might have saturated disk bandwidth already, thus tying up any resources necessary for
writing data modifications.

The way we combat this is by logging all checkpoints and analyzing the output of our log for
checkpoint activity. We may need to leverage tablespaces, storage improvements, or application
revisions to really address resource collisions like this, so it's in our best interest to be proactive.



Getting ready
You need to know where to find PostgreSQL logs. We usually suggest a few specific
modifications to the postgresql.conf file for logging, including the following:

log_directory = 'pg_log' 
log_checkpoints = on 

This means logs will be found within our PostgreSQL data directory, in a subdirectory named
pg_log. Some distributions use /var/log/postgresql instead. Regardless, find where the logs are
kept. To ensure access, examine these as the postgres user, who should either own the logs
directly or have the necessary read access.



How to do it...
Assuming our logs are located at /db/pgdata/pg_log, follow these steps to examine the checkpoint
activity:

1. Execute this command to find the most recent logfile:

        ls -lt /db/pgdata/pg_log/postgres*.log | head -n 1

2. If the latest log is named postgresql-2016-10-16.log, view all the checkpoints in this log with
the following command:

        grep checkpoint /db/pgdata/pg_log/postgresql-2016-10-16.log

3. Execute the following command to obtain the five longest disk syncs:

        grep 'checkpoint complete:' \
            /db/pgdata/pg_log/postgresql-2016-10-16.log \
            | sed 's/.* sync=/sync=/; s/total=.*; //;' \
            | sort -n | tail -n 5



How it works...
We need to first find the most recent logfile. The ls command's -t parameter will sort the data
by the last modified time, which the head command limits to one line of results. Distributions that
provide PostgreSQL may adhere to a log-rotation scheme instead. In these cases, the latest
logfile will reside in /var/log/postgresql and always have the same name. Older logs will have a
number appended until the retention period passes.

No matter how we locate the most recent logfile, we use two relatively simple commands to
examine its contents. These logfiles can be extremely useful; however, for now, we will focus on
the checkpoint activity. Of those two commands, the first simply isolates all the checkpoint data
in the order it occurred. One complete checkpoint will resemble these lines:

2016-10-16 19:54:02 CST LOG:  checkpoint starting: time
2016-10-16 20:00:36 CST LOG:  checkpoint complete: wrote 129631  buffers (24.7%); 0 transaction log file(s) added, 0 removed, 2  recycled; write=392.875 s, sync=1.789 s, total=394.667 s; sync  files=203, longest=1.004 s, average=0.008 s

 

This data is helpful in determining the time period of the checkpoint. Combined with other
troubleshooting tools such as sar, we can correlate the checkpoint with disk activity. In the case
of this example, we wrote 24.7 percent of a 4 GB buffer as well, which is quite a bit of data.
However, these writes are spread over more than 6 minutes, reducing contention.

As useful as the raw log lines are, we can apply a few filters and sorting to expose the disk
synchronization time. Our last command makes use of grep to isolate the checkpoints, sed to
remove excess data, sort to focus on the longest syncs, and tail to restrict the output to the top
five. Of these, the sed command is the most complex. However, it merely removes all the
content before the first sync field and removes the total field, leaving only the data related to disk
synchronization. Then, our top five most expensive checkpoints look like this:

sync=0.891 s, sync files=87, longest=0.470 s, average=0.010 s
sync=1.203 s, sync files=129, longest=0.302 s, average=0.009 s
sync=1.789 s, sync files=203, longest=1.004 s, average=0.008 s
sync=2.004 s, sync files=187, longest=1.031 s, average=0.010 s
sync=5.083 s, sync files=104, longest=3.076 s, average=0.048 s

The first four could be improved, but the last example is clearly much larger than we would
normally expect or desire. Relatively few files were synchronized, yet the longest sync of over 3
seconds would likely adversely affect query performance. Disk synchronization times exhibited
here indicate a high level of contention. If we were to execute sar for the time periods indicated
by the longest checkpoint, we would most likely see 100 percent disk utilization.

If this utilization is primarily data reads, we may be able to ignore it if the checkpoint time
occurred outside of operational hours. In such cases, the cause is probably related to
maintenance or voluminous batch jobs. Otherwise, we should expand our investigation to track
the source of the disk activity until all the checkpoints are below a desirable threshold.



There's more...
Some checkpoint data is stored in a PostgreSQL view named pg_stat_bgwriter. This is more of a
summary view of the checkpoint activity, but it is available to any user who can execute SQL
statements in the database. Within this view, there are three fields related to this recipe that
directly concern us:

checkpoints_timed: This column provides the number of checkpoints that occur based on a
schedule. These are normal checkpoints and indicate regular operation.
checkpoints_req: This column stores the number of checkpoints that PostgreSQL has forced
to occur in order to keep up with write activity. If there are too many of these, database
performance can be extremely reduced and disk contention can have other adverse effects.
checkpoint_sync_time: This column describes the total amount of time that the checkpoint
system has spent in sync status, in milliseconds. This is basically a sum of all of the sync
columns for all the checkpoints since the statistics were last reset. This is a good value to
graph if you are monitoring the database, as a sudden spike in the elapsed sync time can
indicate trouble.



See also
The WAL is integral to how PostgreSQL operates. We strongly recommend that you learn as
much about its functionality as possible. The PostgreSQL documentation provides a great deal of
depth in its explanation of how the WAL really works. Please make use of these links:

WAL Configuration: https://www.postgresql.org/docs/current/static/wal-configuration.html
Write Ahead Log: https://www.postgresql.org/docs/current/static/runtime-config-wal.html
The Statistics Collector: https://www.postgresql.org/docs/current/static/monitoring-stats.html

https://www.postgresql.org/docs/current/static/wal-configuration.html
https://www.postgresql.org/docs/current/static/runtime-config-wal.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html


Monitoring
In this chapter, we will learn how to effectively monitor PostgreSQL's server status and database
performance. Primarily, we will focus on using Nagios, check_mk, check_postgres, collectd, and
Graphite; all of these tools excel at system monitoring. We will cover the following recipes in this
chapter:

Figuring out what to monitor
Installing and configuring Nagios
Configuring Nagios to monitor a database host
Enhancing Nagios with check_mk
Getting to know check_postgres
Installing and configuring collectd
Adding a custom PostgreSQL monitor to collectd
Installing and configuring Graphite
Adding collectd data to Graphite
Building a graph in Graphite
Customizing a Graphite graph
Creating a Graphite dashboard



Introduction
One aspect of PostgreSQL administration, which is unfortunately ignored too frequently, is
system monitoring. Provisioning, constructing, and maintaining a high availability cluster is
difficult by itself, without the extra complications inherent in setting up yet more infrastructure.

Larger companies with an established Network Operations Center (NOC) probably have
extremely mature incidence response and escalation procedures in place. Others may rely on a
few basic monitors and alerts or ad hoc scripts set to trigger on certain thresholds. If we aren't
part of the first group, we certainly can't include ourselves in the second and consider our cluster
protected. When availability is important for business continuity, we should take the time to
ensure that its activity is continuously reported, graphed, and summarized.

In this chapter, we will focus on what we should monitor, how often we should check system
status, and how to present the data for easy consumption. When the database goes down, we
need to know immediately. When the storage is higher than our projected limits, we need to plan
accordingly. When database behavior is unexpected or abnormal, we should have a baseline for
comparison. There are several tools available to do all of these things, and we're going to
examine a stack of complementary services to automate everything.

There's no need to build any of our own tools. System monitoring is a very mature field; we'd be
wasting our time and needlessly putting our database architecture at risk. Let's protect our
investment properly with professional tools vetted by hundreds or thousands of equally
concerned and attentive DBAs.



Figuring out what to monitor
Modern servers have a lot of active hardware and software that can stop working at any time. A
failure can start with the operating system, storage, database, network connectivity, heat, or a
number of other sources.

So, which elements do we rank highest to ensure system availability? Which hardware needs the
closest monitoring? What kind of tests should we use to ensure that the software is operating as
expected?

When dedicating monitoring resources to check hardware and software, we must answer several
questions to distribute effort efficiently. Every test takes time, uses network resources, and must
save its results to a status file. If our system checks are too frequent or numerous, we could end
up overwhelming our monitor server. Failing to prioritize the alerting criteria can actually be more
dangerous; if we become too accustomed to ignoring irrelevant alerts, legitimate system issues
can propagate unchecked.

Thus, the first step in building a monitoring infrastructure is to decide what it will monitor and
why.



Getting ready
We're going to be building a spreadsheet. This spreadsheet will rank all of our hardware and
software so that we know which systems deserve the most focus. Have a spreadsheet program
available before starting.



How to do it...
Follow these steps to rank the priority and frequency of monitoring hardware and software:

1. Create a spreadsheet with six columns labeled Monitor, Importance, Frequency, Warning Level,
Critical Level, and Action.

2. Under the Monitor column, list every piece of hardware and software on the server.
3. Under the Importance column, rank every monitor at one of these three levels: minor, major,

or critical.
4. Under the Frequency column, choose a monitoring interval. We suggest that you use one of

these choices: 10 seconds, 30 seconds, 1 minute, 1 hour, 12 hours, or 1 day.
5. Under the Warning Level column, choose a threshold where the status of this resource

should be considered a warning and might require further examination.
6. Under the Critical Level column, choose a threshold where the status of this resource

should be considered critical and in need of immediate attention.
7. Under the Action column, pick an appropriate action that the monitor should take when a

check triggers an alert. We suggest one of these choices: ignore, email support, email DBAs,
and panic.



How it works...
The spreadsheet we're making requires only six columns to fit this recipe. Feel free to include
any other relevant information when making your own spreadsheet. In fact, we suggest that you
retain this document in source control for reference purposes and revisions. Its mere existence
can prove beneficial as a necessary compliance document.

When we say to list every piece of hardware or software under the Monitor column, we expect a
few to be forgotten. Part of this step is a mental filter; if we can't think of the resource, it
probably isn't important enough to watch. There are limits to this, and we strongly suggest that
you have at least two other objective people to verify that the list is complete.

For Importance and Frequency, we're really deciding how active this resource is and its likelihood to
fail or require intervention. For example, consider a disk space monitor. Usable disk space is a
major concern, but it's not likely to grow quickly. We can safely check disk space every hour or
even every day and remain completely covered.

The Warning Level and Critical Level columns are essential to route the triggered alerts. A level of
warning means a resource may need someone to double-check its status or acknowledge a
problem for later review. If a resource reaches a critical status, every person interested in the
server should be alerted immediately.

Finally, the monitoring software needs to know what action to take if an alert is triggered. If we
ever choose ignore, we should simply disable that particular alert entirely. On the other hand, the
support staff can usually solve simple resource problems or forward the alert to a DBA. At other
times, we want the DBA to know immediately due to the importance or complexity of the
hardware or software being monitored. As a last resort, the alert can merely panic and alert
everyone in every contact list in the hope that at least one person is available to address the
issue.

In the end, the first few lines of our spreadsheet may look something like this:



There's more...
If we have access to a collaborative spreadsheet tool such as Google Docs or an internal wiki,
we should maintain this information there. Not only does this act as a central resource but it
ensures that all monitors have a logical reason to exist and have a predetermined escalation path.
When problems arise, any time spent on deciding what to do or who to inform only serves to
increase the overall amount of risk.

In the rare instance that management or business interests question our system monitoring
policies, we have an immediate answer. As DBAs, we want our company to know that the
database is in good hands, and a strict monitoring policy helps accomplish this.



Installing and configuring Nagios
Nagios is a well-known monitoring tool. We won't make any claims that it is the best or most
suitable tool for watching a highly available PostgreSQL installation. However, the community is
large, the functionality is extensive and established, and interoperability with other tools and
libraries is high.

As an unfortunate consequence, the amount of installation prerequisites is rather lengthy. To get
Nagios working properly, we need an HTTP server, Perl, and a mail daemon. Some plugins
require PHP, while others need MySQL, SNMP, or any number of esoteric utilities and
acronyms. There might be DBAs who also have strong skills as webmasters, but we can't
depend on that. Getting Nagios installed with all of its foundation services is very complex, so we
don't recommend that you do so.

Due to its history, the likelihood that Nagios is available on major Linux distributions is very
high. Installing Nagios through the distribution will handle most, if not all, configuration and
interoperability concerns. While an installation of this type only has minimal settings enabled and
only monitors the monitoring server itself, it's a step in the right direction.

This recipe will focus on using distribution packaging tools such as yum or apt-get to install and
configure a basic Nagios setup.



Getting ready
Red Hat-based systems such as Fedora, RHEL, CentOS, and Scientific Linux have a
prerequisite package that is not part of the included distribution repositories. To install Nagios,
we need to add the Extra Packages for Enterprise Linux (EPEL) library. Red Hat systems can
do this by obtaining the most recent EPEL package for their OS versions and architectures from
the following URL:

https://fedoraproject.org/wiki/EPEL

Look for the package file that begins with epel-release and download it to the monitoring server.
Once the package is downloaded, it can be installed with this command as a root-level user:

sudo rpm -ivh epel-release-*.rpm

https://fedoraproject.org/wiki/EPEL


How to do it...
Follow these steps to install and configure Nagios on a Debian, Mint, or Ubuntu monitoring
server:

1. Execute these commands as a root-level user to install Nagios and useful plugins:

        sudo apt-get install nagios3 nagios-plugins-extra
        Sudo apt-get install nagios-nrpe-plugin

2. When prompted, enter a password for the nagiosadmin user.

Follow these steps to install Nagios on a Red Hat, Fedora, CentOS, and Scientific Linux
monitoring server:

1. Open the /etc/selinux/config file and change the SELINUX parameter to match the following:

        SELINUX=permissive 

2. Execute the following command as a root-level user:

        sudo setenforce 0

3. Execute this command as a root-level user to install Nagios:

        sudo yum install nagios nagios-plugins-all

4. Set the nagiosadmin password by executing this command as a root-level user:

        htpasswd -c /etc/nagios/passwd nagiosadmin

5. Execute these commands as a root-level user to start Nagios on system boot:

        sudo chkconfig nagios on
        sudo chkconfig httpd on

6. Execute these commands as a root-level user to start Nagios:

        sudo service httpd start
        sudo service nagios start



How it works...
Red Hat-based distributions focus primarily on system stability and lack many third-party utilities
and daemons. Luckily, this is not a concern for us, as groups exist to rectify this situation. One
such group maintains EPEL, which we can exploit to simplify the process of installing Nagios.

Debian-based servers, for better or worse, are not so strict. Though they are often just as stable,
the package repository is much more extensive. Thus, we can install Nagios with one invocation
of apt-get. When installing the nagios3 package, all the necessary prerequisites are retrieved and
installed as well. The process even prompts us for a password for the nagiosadmin user, which we
use to access the web-based administration console.

Installing the nagios package on Red Hat-based systems is somewhat more complicated. RHEL
servers, especially, will often enable SELinux by default for the sake of security. We choose to
set SELinux in permissive mode so that it warns us of potential security problems but still allows
basic functionality. Nagios makes use of external servers, which SELinux would otherwise block.
Using the setenforce utility, we also manually switch to permissive mode without rebooting the
server. Due to our modification of /etc/selinux/config, future server reboots will leave SELinux
in permissive mode.

With SELinux out of the way, we can install Nagios with yum, which should resolve and install
any prerequisites for us. Unlike the Debian-based install, it will not automatically prompt us for a
password for the nagiosadmin user. Thus, we must use the htpasswd utility to create one. To do so,
we use the -c parameter to set the location of the password file we want to modify. Then we set
the second parameter to nagiosadmin, as that's the name of the user for whom we are creating a
password.

Next, we need to configure Nagios to start when the server starts. On Red Hat-based systems,
the chkconfig utility handles this for us. Finally, we can leverage the service utility to actually start
Nagios.



There's more...
We know that Nagios is running by accessing its HTTP location. By default, provided we know
the name or IP address of the monitor server, we can access Nagios via a web browser.
Assuming that 192.168.56.20 is the IP of the server we're using to monitor PostgreSQL, the web
interface would exist at http://192.168.56.20/nagios.

The Debian-based install will be at http://192.168.56.20/nagios3.

Our default Nagios dashboard should resemble this:



See also
As we mentioned earlier, installing Nagios is not easy due to all the other resources it depends
on. Please refer to the following links to learn more about installing and configuring Nagios.
We've also included a link to a comparison of various monitoring tools in case you want to try
one of the Nagios alternatives:

Nagios quickstart installation guides: https://assets.nagios.com/downloads/nagioscore/docs/nagiosco
re/3/en/quickstart.html
Nagios Core documentation: https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/toc.
html
Comparison of network monitoring systems: https://en.wikipedia.org/wiki/Comparison_of_networ
k_monitoring_systems

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/quickstart.html
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/toc.html
https://en.wikipedia.org/wiki/Comparison_of_network_monitoring_systems


Configuring Nagios to monitor a database host
Once Nagios is installed, it will automatically configure a few basic monitors directed toward its
own server. If we click on the Hosts link in the web administration site, we are presented with
this:

The local server is all that we are currently watching. This is useful to verify that Nagios is
working as intended, but we need to monitor one or more database servers as well. In this
recipe, we will learn how to watch external servers. By the end, we should see at least one more
server listed by Nagios.



Getting ready
Initially, Nagios can only monitor remote servers by checking exposed services such as HTTP,
FTP, or PostgreSQL. To check items such as CPU, RAM, or disk space, we need to rely on
Nagios Remote Plugin Executor (NRPE) to forward system information to the monitoring
server upon request. This means that NRPE must be installed on any server we want to monitor,
including our PostgreSQL servers.

To install this on Debian-based servers, use the following command:

sudo apt-get install nagios-nrpe-server

Red Hat derivatives will need to use this command:

sudo yum install nrpe

Next, open /etc/nagios/nrpe.cfg and change the allowed_hosts setting to include the IP address or
hostname of the monitor server. If 192.168.56.5 is the monitor server, it should look like this:

allowed_hosts=192.168.56.5 



How to do it...
Follow these steps on the monitoring system to watch the 192.168.56.10 server, which is the first
node of our PostgreSQL cluster:

1. Find the configuration directory for Nagios:
Debian-based servers should use this path: /etc/nagios3/conf.d
Red Hat-based servers should use this path: /etc/nagios/objects

2. As a root-level user, create a file named db_conf.cfg in the preceding path.
3. In the db_conf.cfg file, define a hostgroup entry by adding this text:

        define hostgroup { 
            hostgroup_name  pg-servers 
             alias           PostgreSQL Servers 
        } 

4. In the db_conf.cfg file, define a host entry by adding this text:

       define host {
       use generic-host
       host_name pg-1
       alias PostgreSQL Node 1
       address 192.168.56.10
       hostgroups pg-servers
       }

5. In the db_conf.cfg file, define a service entry by adding this text:

      define service {
      use generic-service
      hostgroup_name pg-servers
      service_description Current Load
      check_command check_nrpe_1arg!check_load
      }

6. Red Hat-based systems should modify commands.cfg in /etc/nagios/objects/ to include the
following code:

        define command {
        command_name check_nrpe_1arg
        command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$
        }

7. Reload the Nagios configuration files:
Debian-based servers should use this command: sudo service nagios3 reload
Red-Hat-based servers should use this command: sudo service nagios reload



How it works...
This recipe has a lot of moving parts, but it merely looks more complicated than it really is. We
begin by locating the directory where supplementary configuration files are stored. Once this is
located, we can create an entry to watch our PostgreSQL servers. To do this, we create a file
named db_conf.cfg.

You don't have to use db_conf.cfg. Nagios should recognize any file that ends
with a .cfg extension. If you'd rather separate hosts, host groups, and services,
feel free to do so.

The order of the elements that we are creating does not matter; Nagios has a very advanced
parser that checks configuration entries all at once. Knowing this, we feel it's logical to begin
with the PostgreSQL hostgroup so that we have a way of grouping all of our database servers
together. Once this is defined, we can create dozens or hundreds of PostgreSQL servers and
apply the same checks to all of them.

The second entry we create in our db_conf.cfg file tells Nagios that this is a host it should
monitor. Unless told otherwise, Nagios will ping this server to ensure that it's online, and this will
be the only check until we configure more.

The meaning of the use line is probably not obvious. Nagios has several requirements to define a
configuration entry. Instead of copying the same settings over and over again, we can create a
template and then use it later. In this case, Nagios comes preconfigured with several basic
templates, and we're making use of one for our newly-created hosts.

The next entry we create in db_conf.cfg is a service we want to check. In this case, we are going
to take advantage of NRPE to obtain the current system load. By setting hostgroup-name to pg-
servers, Nagios will check the system load on all PostgreSQL servers; there's no need to create a
service entry for each host.

The check-command is probably somewhat opaque as well. Every service requires a command to
execute. Commands are defined like other Nagios objects and must be named for reference. The
check_nrpe_1arg command is defined elsewhere, and we're using it here. Nagios separates
commands from their parameters with an exclamation point. Therefore, in this example, we're
invoking NRPE to check the system load on the remote server.

Red Hat-based systems don't have a Nagios command named check_nrpe_1arg, so we create this
one manually on those servers. With the newly-defined command block, Nagios will use NRPE
whenever the services invoke check_nrpe_1arg.

Finally, we tell Nagios to reload its configuration files. This causes Nagios to reread all
configuration files, including the one we created. If everything goes well, clicking on Host
Groups in the web interface should produce this summary:





There's more...
Wait a minute! We never added a check for PostgreSQL itself! As we can't allow PostgreSQL to
remain unmonitored, create a user on our PostgreSQL server with the following command:

CREATE USER nagios;

Then, make an entry in the pg_hba.conf file to allow trusted checks from the monitoring server
with this line:

host    template1    nagios    192.168.56.5/32    trust 

Then, reload the PostgreSQL configuration with this command:

pg_ctl -D $PGDATA reload

Next, add a service entry to our db_conf.cfg file like this:

define service { 
       use                     generic-service 
       hostgroup_name          pg-servers 
       service_description     PostgreSQL Status 
       check_command           check_pgsql 
} 

After reloading our Nagios configuration files, click on the Services link in the web interface. It
should now list two monitored services for the pg-1 server as seen here:



See also
Nagios configuration objects are fairly complicated. To use them properly, we strongly
suggest that you browse the Nagios object manual located at this URL: https://assets.nagios.co
m/downloads/nagioscore/docs/nagioscore/3/en/objectdefinitions.html

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/objectdefinitions.html


Enhancing Nagios with check_mk
While Nagios is well established in the system administration community, it retains a few
shortcomings due to its long legacy. This is not to suggest that Nagios is a bad platform!
However, we can make it better for our own uses and for other administrators that help us
monitor our database clusters.

check_mk is a popular extension to Nagios that provides a better interface, more built-in monitors,
and-for those interested-a GUI management system. This management GUI is actually one of
the main things we will cover in this recipe, as it has some idiosyncrasies of its own. However,
once we're done presenting the basics, we encourage you to experiment with some of its more
powerful features.



Getting ready
To complete this recipe, we will need a configured Nagios installation. Please follow the steps in
the Installing and configuring Nagios recipe. However, either skip the Configuring Nagios to
monitor a database host recipe or follow these two steps:

1. Delete the db_conf.cfg file that we created for our database host.
2. Reload the nagios service.



How to do it...
For the purposes of this recipe, our database has a local hostname of pg-1, and the monitor
server is named monitor-server. Follow these steps to use check_mk to create and configure the
host and service monitors for our PostgreSQL server:

1. Install check_mk according to the comprehensive instructions at this URL:https://mathias-kettner.c
om/checkmk_manual_install.html

2. Navigate to the monitor server in a web browser to the check_mk URL: http://monitor-server/chec
k_mk

3. Enter nagiosadmin as the username and the password created during the installation of
Nagios in the Installing and configuring Nagios recipe.

4. Click on Hosts in the WATO - Configuration segment of the left sidebar.
5. Click on the Create new folder icon.
6. Name the folder PostgreSQL Servers, and click on Save & Finish.
7. Click on the PostgreSQL Servers folder.
8. Click on the Create new host icon.
9. Set the Hostname to pg-1, the Alias to PostgreSQL Node 1, and click on Save & Finish.

10. Click on the highlighted inventory link in the information box above the list of hosts.
11. Click on Activate missing above the list of hosts.
12. Click on the orange icon that says there are 2 Changes.
13. Click on the Activate Changes! icon.
14. Wait for 5 minutes; then, click on All services in the Views segment of the left sidebar.

https://mathias-kettner.com/checkmk_manual_install.html
http://monitor-server/check_mk


How it works...
While we could have included instructions on installing check_mk, they are actually very long and
would have required several pages of explanation. The official check_mk site does an admirable
job presenting the installation process, so why duplicate it? The abundant documentation is a
great reason to use check_mk.

Once we log in, we see a very large and somewhat imposing interface. However, for now, we
are only interested in the left sidebar. What we're looking for is the Web Administration Tool
(WATO) section, as seen here:

The interface is actually very friendly to new users. Once we click on Hosts, we can either
create a new host right away or create a folder first. We recommend that you always group the
servers in specific folders to make bulk actions easier. Thus, we click on this enticing icon:

After we name and save the folder, we can enter the folder and create the new host. After
creating the host and saving its configuration, we are presented with this notice:

When check_mk inventories a server, it attempts to automatically detect the services and resources
it can monitor. Nagios definitely can't do this! Once we activate all of the changes we made, we
need to wait for a minute or two for check_mk to add the new checks and collect the status of
each. Once some time has elapsed, we can click on All services to see our newly-monitored
PostgreSQL server:

On our particular test server, check_mk found over 20 services it knew how to monitor. We don't
have to select all of them, of course, but adding the same services to Nagios would have been
much more difficult.



There's more...
check_mk doesn't just provide a handy web interface, but it actually has a very advanced
command-line utility. For instance, if we stopped the recipe after creating the folder and server
and then activated the changes, we could have performed the server inventory with these two
commands:

cmk -I pg-1
cmk -O

The first command checks the pg-1 server for new services. The second saves the services it
found and reloads Nagios so that it can see them as well. The command-line tool makes a great
companion to the web interface when handling several server clusters.



See also
We really like the check_mk documentation. It's comprehensive, verbose, and full of examples.
Check some of the following links for more information:

Quick manual installation guide: https://mathias-kettner.com/checkmk_turbostart.html
Calling check_mk: https://mathias-kettner.com/checkmk_calling.html
Catalog of check plugins: https://mathias-kettner.com/checkmk_check_catalogue.html

https://mathias-kettner.com/checkmk_turbostart.html
https://mathias-kettner.com/checkmk_calling.html
https://mathias-kettner.com/checkmk_check_catalogue.html


Getting to know check_postgres
Our friends at Bucardo created a useful, general-purpose PostgreSQL checking utility. The
check_postgres tool currently has an inventory of more than 50 checks to monitor PostgreSQL
servers.

While this is an exceptionally useful tool, integrating it into our overall stack is necessary to fully
take advantage of its capabilities. This recipe will cover the basic usage and integration with
Nagios for easy PostgreSQL monitoring of large database clusters.



Getting ready
Though some Linux distributions package the check_postgres utility for easy installation, the
versions that are included are usually very old. We recommend that you obtain a copy of the
latest check_postgres source code. At the time of writing this book, the latest version is 2.22.0,
released on June 30, 2015. Obtain the latest copy of the check_postgres source code from this
URL: https://bucardo.org/wiki/Check_postgres

As we want to use Nagios to execute the check_postgres, please follow the steps in the
Configuring Nagios to monitor a database host recipe to produce a working installation with a
basic database host configuration. We will be making further modifications to the db_conf.cfg file
introduced there.

https://bucardo.org/wiki/Check_postgres


How to do it...
Install check_postgres by following these steps:

1. Use these commands to extract the check_postgres source and enter the source directory:

        tar -xzf check_postgres-2.21.0.tar.gz
        cd check_postgres-2.21.0/

2. Next, build and install the actual software with these commands:

        perl Makefile.PL
        make
        sudo make install

As the postgres user on a PostgreSQL server, try using these commands to obtain database
information:

1. Check the state of the database size with this command:

        check_postgres.pl --action=database_size -w 100MB -c 200MB

2. Create a large table by executing this SQL as the postgres user in the postgres database:

        CREATE TABLE bigtable AS
        SELECT generate_series(1,1000000) AS vals;

3. Cause a critical alert by executing this command:

        check_postgres.pl --action=table_size -w 10MB -c 20MB

Integrate check_postgres.pl into Nagios by following these steps:

1. Create a command section in the db_conf.cfg file with this content:

        define command { 
        command_name  check_pg 
        command_line  /usr/local/bin/check_postgres.pl -H $HOSTADDRESS$     
        --action $ARG1$ -w $ARG2$ -c $ARG3$ 
        } 

2. Create a service section in the db_conf.cfg file that looks like this:

        define service { 
        use                  generic-service 
        hostgroup_name       pg-servers 
        service_description  PostgreSQL Database Size 
        check_command        check_pg!database_size!100MB!200MB 
        } 

3. Reload the Nagios configuration files:
Debian-based servers should use this command: sudo service nagios3 reload
Red Hat-based servers should use this command: sudo service nagios reload



How it works...
This recipe comes in three parts because we're doing three distinctly different things. Installing
check_postgres itself is actually very easy. The entirety of the utility is contained within a single
file, so we can simply move check_postgres.pl to a suitable location in our PATH environment
setting. However, we suggest that you use the standard installation process as we did.

While executing sudo make install, look for this line near the end: Installing
/usr/local/bin/check_postgres.pl This will indicate where the check_postgres.pl
script is located. Ours was installed in /usr/local/bin, but yours may be
elsewhere.

Next, we try a couple of basic commands to ensure that check_postgres works. The first
command makes use of the database_size action and alerts us if our database is larger than the
warning (-w) or critical (-c) thresholds that we set. The table_size action performs a similar task
but applies the thresholds to every table in the database. By default, check_postgres connects to
the postgres database, so we placed a large table there to trigger a critical alert. The output is very
large as it lists every table, but it should begin like this:

POSTGRES_TABLE_SIZE CRITICAL: DB "postgres" (host:192.168.56.10)    
largest table is "public.bigtable": 35 MB 

As we have verified that the check works, we want Nagios to invoke it instead. This removes
the need to create ad hoc invocations and allows us to search for large tables on all the database
servers that Nagios is monitoring.

We will start the process by adding a command to Nagios in the db_conf.cfg file we created for
our single test server. Remember where check_postgres.pl was installed, because we need to
specify the full path to the script, just in case it's not part of the standard PATH environment. We
will set the first argument to set the action we want to perform and reserve the second and third
for the warning and critical levels respectively. By making our check_pg command so generic, we
can use it for every action that check_postgres supports. Otherwise, we would have needed a
separate command section for each check.

Then, we will add a service check. We will need to add one of these for each check_postgres
action that we want to enact. In our example, we only enabled the database_size check and
applied the same thresholds that we used when manually invoking the script. By reloading the
Nagios configuration files, it will incorporate the new PostgreSQL database size check and apply
it to any server that we have in the pg-servers group.



There's more...
Though the documentation explains all the actions available for check_postgres, it may be
inconvenient to refer to it regularly. Though the check_postgres.pl script accepts the usual --help
parameter, it has a notable ability as well. If we specify the --man parameter instead,
check_postgres will actually display the entire manual. This is similar to investigating the
check_postgres man page like this:

man check_postgres

Sometimes, man pages don't get installed properly or are not available for one reason or another.
The --man parameter should always work on any system that also contains the perl
documentation package.



See also
As check_postgres is developed by Bucardo, their site contains various resources related to its
operation. We recommend these links for more information:

The check_postgres Wiki: https://bucardo.org/wiki/Check_postgres
The check_postgres documentation: https://bucardo.org/check_postgres/check_postgres.pl.html

https://bucardo.org/wiki/Check_postgres
https://bucardo.org/check_postgres/check_postgres.pl.html


Installing and configuring collectd
When monitoring multiple clusters of servers, we need a data collection method that's both
scalable and configurable. The collectd daemon is a scalable statistics-gathering service, perfect
for large clusters as it operates on a client-server model. A common collectd cluster may look
like this, with collectd running on every server:

We can direct the statistics of several PostgreSQL servers to a central aggregate server. This
server may process the data directly or forward it to a graph system for easy visualization. To
gain this type of functionality, we need to spend some time installing and configuring collectd.



Getting ready
For the sake of completeness, obtain a copy of the latest collectd source code. At the time of
writing this book, the latest version is 5.6.1, released on October 6, 2016. Download the latest
copy of the collectd source code from this URL: https://collectd.org/download.shtml

In order for collectd to interface with PostgreSQL, we need PostgreSQL development libraries in
addition to the normally installed system binaries. For example, to build properly on a Debian-
based system, we would also need to install libraries by executing this on the command line:

sudo apt-get install postgresql-server-dev-9.6

Red Hat-based systems can sometimes lag behind, so we suggest that you obtain the
postgresql96-libs package from the following URL: https://yum.postgresql.org/rpmchart.php

Later, we simply need a root-capable user to install collectd as a system-wide service.

Some companies have policies that disallow development tools from being
installed on production hardware. If this is the case in your company, it may be
necessary to use a staging or development server for these steps. Once the
binaries are available, they should be deployed to the production system
following the standard deployment protocol. This applies to all the recipes that
call for development libraries.

https://collectd.org/download.shtml
https://yum.postgresql.org/rpmchart.php


How to do it...
Assume that we have a monitor server named mon1 and a PostgreSQL server named pg1. Follow
these steps on both servers unless notified otherwise:

1. Use these commands to extract the collectd source and enter the source directory:

        tar -xzf collectd-5.6.1.tar.gz
        cd collectd-5.6.1/

2. Next, build and install the actual software with these commands:

        ./configure --sysconfdir=/etc/collectd
        make
        sudo make install

3. Copy the init/collectd initialization script from the source code provided with this chapter,
into the /etc/init.d directory on the server.

4. Change the copied initialization script to make it executable with this command:

        sudo chmod a+x /etc/init.d/collectd

 

5. In the /etc/collectd directory, create a file named collectd.conf with the following contents:

        PIDFile     "/var/run/collectd.pid" 
 
        LoadPlugin  load 
        LoadPlugin  syslog 
 
        Include     "/etc/collectd/network.conf" 
        Include     "/etc/collectd/local.conf" 

6. On the mon1 server only, create a file named network.conf in the /etc/collectd directory with
the following contents:

        LoadPlugin network 
        <Plugin network> 
        Listen "*" "25826" 
        </Plugin> 

7. On the pg1 server only, create a file named network.conf in the /etc/collectd directory with
the following contents:

        LoadPlugin network 
        <Plugin network> 
          Server "192.168.56.10" "25826" 
        </Plugin> 

8. On the mon1 server only, create a file named local.conf in the /etc/collectd directory with
the following contents:

        LoadPlugin csv 
        <Plugin csv> 
          DataDir "/tmp/collectd" 



        </Plugin> 

9. Then, add the service to the system startup and shutdown process:
1. For Debian or Ubuntu systems, use this command: sudo update-rc.d collectd defaults
2. For CentOS, Fedora, or RHEL systems, use this command: sudo chkconfig --add

collectd

10. Finally, start the collectd service on both servers:

        sudo service collectd start



How it works...
Our initial steps focus mainly on extracting and building the collectd source. We pass one
parameter to the configure script to set the configuration file's location and leave the rest at their
defaults.

By default, collectd installs in the /opt/collectd directory. If you are unhappy
with this arrangement, we suggest that you change the --prefix and --exec-prefix
parameters when executing the configure script.

Our next steps involve copying the provided initialization script into the server's /etc/init.d
directory to start and stop collectd. While there are several contributed scripts and configurations
in the contrib directory of the collectd source code, ours will work with almost any Linux
distribution.

Once collectd is installed, we need to configure it. The provided configuration file is a good
example, but we need something simpler. The collectd.conf file we created is enough to ensure
that collectd starts and operates as expected. We included two other configuration files as well so
that we can share multiple configuration files on several servers.

The first of these is network.conf. This file should contain network-related collectd settings. In our
particular example, the monitor server is configured to Listen, while our PostgreSQL server
sends data to a collectd server.

For the sake of demonstration, we configured the monitor server to store collected data to the
/tmp/collectd directory in CSV format. We don't recommend this configuration in a production
environment, but it's safe to use for now. After adding collectd to the list of services on this
server and starting it, both servers should be linked. How can we prove this?

On the monitoring server, we should see a file named after the current date in the
/tmp/collectd/pg1/load/ directory. The file should contain one or more lines like this:

1392592062.376,0.000000,0.010000,0.050000 

In this case, the load plugin we declared in the collectd.conf file provides data on system load.
Using commas as separators, the first column is the Unix time in seconds, followed by an
average of 1, 5, and 15 minutes. In the preceding example, the server is essentially idle.

The file in /tmp/collectd/pg1/load/ may not appear immediately. collectd uses
buffers and cache to avoid excessive traffic and output. Be patient and check
every minute or two until it appears.



See also
As collectd works on a client-server model and has several collection plugins available, it also has
a lot of documentation. Please use these links for more information:

The collectd documentation: https://collectd.org/documentation.shtml
The collectd manpage: https://collectd.org/documentation/manpages/collectd.conf.5.shtml

https://collectd.org/documentation.shtml
https://collectd.org/documentation/manpages/collectd.conf.5.shtml


Adding a custom PostgreSQL monitor to collectd
The primary reason we chose to install collectd stems from its ability to monitor arbitrary data
points. Due to the existence of a PostgreSQL plugin for collectd, we can actually collect data
from the database itself. Monitoring PostgreSQL becomes as easy as writing a query!

We'll include a few sample queries we developed for monitoring PostgreSQL servers. Feel free
to develop your own as we explain how to leverage the PostgreSQL collectd module.



Getting ready
As the collectd PostgreSQL module needs to log in to a database within the cluster to gather its
statistics, we should create a user specifically for this purpose. Execute this SQL query with an
appropriate password:

CREATE USER perf_mon WITH PASSWORD 'testpw';

In addition, follow the instructions in the Installing and configuring collectd recipe so that there
is a fully-functional collectd client and server.



How to do it...
To create a collectd custom PostgreSQL query, simply follow these steps on a server running
both collectd and PostgreSQL:

1. Create a file named local.conf in the /etc/collectd directory with these contents:

        LoadPlugin postgresql 
 
        <Plugin postgresql> 
          <Query tps> 
            Statement "SELECT datname, \ 
                           xact_commit + xact_rollback AS tps \ 
                      FROM pg_catalog.pg_stat_database;" 
 
        <Result> 
          Type derive 
          InstancePrefix "TPS" 
          InstancesFrom "datname" 
          ValuesFrom "tps" 
        </Result> 
          </Query> 
 
        <Database postgres> 
          Host "localhost" 
          User "perf_mon" 
          Password "testpw" 
          Instance "Production" 
 
          Query tps 
        </Database> 
        </Plugin> 

2. Reload the collectd configuration files with this command:

        sudo service collectd reload

3. Wait for 2 to 5 minutes.
4. Check the contents of the files in the /tmp/collectd/pg1/postgresql-Production/ directory on

the monitor server.



How it works...
This recipe is almost entirely based on the PostgreSQL collectd plugin. The large block of code
that we inserted into the local.conf file will configure that module with a single query that it will
execute and transmit to the monitor server. The monitor system will automatically accept these
results and integrate them into any data that it's already storing.

The <Query> block deserves some explanation. Every custom query that we define must have a
name. In this case, TPS stands for Transactions Per Second, and it is a common database
metric. The first thing we add is the statement being executed. The statement we included
gathers basic data from the pg_stat_database table for every database in this particular
PostgreSQL instance.

However, it is within the <Result> section that we truly make use of the query. In collectd, data is
classified by the type of information it represents. For our purposes, these types are gauge and
derive. Gauges represent values that are valid only at the time of observation. For example, most
cars have a gauge to display their current speed. Derived values, on the other hand, are the
difference in value between two subsequent readings. Transaction counters in the
pg_stat_database statistics table are cumulative; thus, we must use the derive type when declaring
results to collectd.

The InstancePrefix setting simply helps us distinguish query results when sending them to
collectd. It will associate this prefix with all the results and will help us find the data when it's
time to view it. The InstancesFrom setting has a similar purpose. By giving a column name (datname
here), each row is labeled with the value in that column. For example, a database named pgbench
would be given an instance name of pgbench.

The ValuesFrom setting also needs a column name to gather data. We took the contents of the
xact_commit and xact_rollback columns, added them together, and named the result tps. Combined
with the InstancesFrom setting, each database now has an associated transaction count.

The PostgreSQL collectd module allows us to create as many <Query> sections as we desire. But
we need to execute the queries somewhere. By creating a <Database> section, we provide
connection information to the module so that it can execute specified queries and gather the
results. The name we give the <Database> block both defines which database name collectd
should use when connecting, and what label it should use for tracking purposes.

Within the <Database> section, we can specify an Instance name, but we prefer to think of it as an
environment designator. Why is this? If we have multiple environments, such as development,
stage, testing, reporting, production, and so on, each one may have the same database name. By
giving the instance itself a name, we can tell all the statistics apart from one another.

At the end of the <Database> section, we tell collectd which <Query> sections it should apply to that
particular database. This means we can have multiple database sections, where some of our
custom queries apply to specific instances.

Once we reload the configuration files, collectd will activate the PostgreSQL module and begin
checking each database for the transaction count. If we wait for this information to reach the



monitor server, it should eventually appear in the /tmp/collectd/pg1/postgresql-Production
directory. Using these settings, this directory should contain one file for each database that it's
tracking. For example, the contents of this directory on our test server looks like this:

This makes use of every keyword we defined: the instance prefix, database name, type of graph,
and database instance. collectd takes every precaution to separate data for manual consumption
or for graphing purposes.



There's more...
We know that CSV data is not very exciting. collectd is primarily a transmission and aggregation
system with plugin capabilities. This makes it very good at collecting performance data and
sending that data to other presentation systems, but its own output is minimal to nonexistent.
This is by design and keeps collectd efficient when handling data from hundreds of servers.

However, don't fret! This chapter has several sections devoted to viewing collectd data.



See also
We found some information pertaining to collectd data types as well as the PostgreSQL module
for collectd. We suggest that you use these links for more insight:

Data source: https://collectd.org/wiki/index.php/Data_source
PostgreSQL plugin: https://collectd.org/wiki/index.php/Plugin:PostgreSQL

https://collectd.org/wiki/index.php/Data_source
https://collectd.org/wiki/index.php/Plugin:PostgreSQL


Installing and configuring Graphite
When viewing the collected data and statistics regarding our highly-available database, we can
simply settle for the raw numbers. They tell a story and include precise measurements necessary
for making decisions regarding architecture and incidence response. However, many would argue
that this is much easier with graphs and charts, as they enable the identification of trends.

There are a lot of graphing libraries and tools, but relatively few of them are tailored to the needs
of an agile monitoring team. The makers of Graphite helped fill this role, and they did so with
an extremely versatile tool. Graphite makes visualizing the collected system statistics easy.
Unfortunately, due to the number of installation requirements, administrators might skip it in
favor of something easier to use.

We don't want this to happen to our readers! Follow along, and we'll help you take advantage of
one of the most powerful system visualization suites available.



Getting ready
Red Hat-based systems will need to add the EPEL library. The most recent EPEL packages are
available for several Red Hat-based distributions at the following URL: https://fedoraproject.org/wiki/E
PEL

Look for the package file that begins with epel-release and download it to the monitoring server.
Once the package is downloaded, install it with this command as a root-level user:

sudo rpm -ivh epel-release-*.rpm

Once epel has been installed, install the python-pip package and several necessary development
libraries with this command:

sudo yum install python-pip python-devel cairo-devel libffi-  
devel

Debian-based systems should have an easier time due to the larger standard repositories. Execute
this command to install equivalent packages:

sudo apt-get install python-pip python-dev libcairo2-dev libffi-dev

https://fedoraproject.org/wiki/EPEL


How to do it...
Follow these steps to install, configure, and start Graphite on the dedicated monitoring server:

1. Prepare the environment with this export:

        export PYTHONPATH="/opt/graphite/lib/:/opt/graphite/webapp/"

2. Install the data storage engine with this command:

        sudo -H pip install \
        https://github.com/graphite-project/whisper/tarball/master

3. Install the data-caching daemon with this command:

        sudo -H pip install \
        https://github.com/graphite-project/carbon/tarball/master

4. Install the web-based visualization frontend with this command:

        sudo -H pip install \
        https://github.com/graphite-project/graphite-
        web/tarball/master

5. Create a new file named local_settings.py in the /opt/graphite/webapp/graphite/ directory
with these contents:

        SECRET_KEY = 'Put some unique text here.' 
        DEBUG = True 

6. Initialize the Graphite management database with this command:

        sudo PYTHONPATH=/opt/graphite/webapp \
            django-admin.py migrate \
         --settings=graphite.settings --run-syncdb

7. Create a Graphite superuser for managing the web app with this command:

        sudo PYTHONPATH=/opt/graphite/webapp \
            django-admin.py createsuperuser \
         --settings=graphite.settings

8. Copy two of the default storage configuration files with these commands:

        cd /opt/graphite/conf
        sudo mv carbon.conf.example carbon.conf
        sudo mv storage-schemas.conf.example storage-schemas.conf

9. Start the carbon daemon with the following command:

        sudo /opt/graphite/bin/carbon-cache.py start

10. Start the Graphite website with the following commands:

        cd /opt/graphite/bin



        sudo su -c "./run-graphite-devel-server.py \             
        /opt/graphite &> /var/log/graphite.log &"



How it works...
Once the prerequisites are installed, we need to install all of the pieces Graphite needs in order to
function. These modules include Graphite-web for web-based graph construction, carbon for
aggregating inputs, and whisper to store raw graph data.

The next step isn't strictly necessary, but each Graphite installation maintains a unique secret
series of characters. We recommend that you generate one and save it in the SECRET_KEY variable
of the local_settings.py file. When it is time to secure the Graphite installation, having a secret
key will make it easier. We also set DEBUG to True here because current versions of Django will not
serve static files (JavaScript, images, and so on.) from the development server we're using in our
demonstration. A more formal installation would leave the DEBUG setting disabled.

As we have changed no other configuration settings, initializing the Graphite management
database will create a SQLite database file in the /opt/graphite/storage directory. This file will
store Graphite users, saved graphs and dashboards, and other elements specific to Graphite. We
could have installed this in a PostgreSQL database as well. If the amount of Graphite users
increases significantly, we recommend that you reinstall the management database into a
PostgreSQL database to avoid usage contention. Until then, SQLite should suffice.

At this point, the database is empty so we need a user that has complete access over the
administration system. By using django-admin.py with createsuperuser, we're prompted for a
username, e-mail, and password to create a user for managing other users in the web front end.
Feel free to choose any username, but remember it for later recipes.

Next, there are two configuration files that carbon uses to control its cache and aggregation
abilities as well as the output storage format. When we copy the example configuration files for
carbon.conf and storage-schemas.conf, carbon will save data with the whisper module that we
installed earlier. Furthermore, whisper will aggregate and store data according to the contents of
storage-schemas.conf.

Finally, we start the carbon daemon and Graphite itself. Starting carbon is fairly easy due to the
manner in which its management script was written. However, Graphite is meant to be displayed
through a web server such as Apache or Nginx. As we're skipping the process of integrating
Graphite with a web server, we have the option of starting Graphite with a Python-based
development web server instead. The command we invoke sets up this Python development
web server and directs it to serve Graphite pages. We recommend that you use a more formal
installation process on an actual monitoring server.

If everything was successful, we should be able to see Graphite. The default port is 8080, so if
we direct a web browser to the monitoring server on that port, we should see this:



We selected a basic data point that carbon tracks for itself, and set the graph time range for 10
minutes. Currently the data available to Graphite is very minimal, but we hope to fix that soon.



See also
Graphite has rather extensive documentation, as does the pip utility that we used to install most
of its components. We suggest that you read further on these topics if possible, as our installation
and configuration examples were extremely minimalistic. Use the following links for more
information:

Graphite: http://graphiteapp.org/
Updated Graphite documentation: http://graphite.readthedocs.io/en/latest/
Python package index | pip: https://pypi.python.org/pypi/pip

http://graphiteapp.org/
http://graphite.readthedocs.io/en/latest/
https://pypi.python.org/pypi/pip


Adding collectd data to Graphite
Graphite has a good interface and a lot of graph options but no real data. collectd gathers a lot of
data but has no real interface. Luckily, we can combine the two, thanks to a collectd module
named write_graphite.

In order to feed the collectd data into Graphite, we simply need to modify two configuration files
on the monitoring server and restart collectd. After we do this, we can enable more collectd
modules, add more PostgreSQL queries, and so on. All the collectd data will be transmitted to
Graphite until we break the connection.

This is powerful functionality, as we will demonstrate.



Getting ready
In this recipe, we will be using both collectd and Graphite. Please follow the instructions in the
Installing and configuring collectd and Installing and configuring Graphite recipes before
continuing.



How to do it...
To send the collectd data to Graphite, follow these steps only on the server monitoring our
PostgreSQL nodes:

1. Add the following section to the top of the storage-schemas.conf file in the /opt/graphite/conf
directory:

        [collectd] 
        pattern = ^collectd\. 
        retentions = 10s:1d,1m:7d,5m:30d,10m:90d,1h:1y 

2. Restart the carbon daemon with the following commands:

        sudo /opt/graphite/bin/carbon-cache.py stop
        sudo /opt/graphite/bin/carbon-cache.py start

 

3. Replace the contents of the local.conf file in /etc/collectd with the following contents:

        LoadPlugin write_graphite 
 
        <Plugin write_graphite> 
         <Node "mon1"> 
          LogSendErrors true 
          Prefix "collectd." 
          StoreRates true 
          SeparateInstances true 
         </Node> 
        </Plugin> 

4. Restart the collectd daemon with the following command:

        sudo service collectd restart



How it works...
The first thing we need to do is prepare carbon and whisper for the data that will be arriving from
collectd. By default, whisper will apply storage settings in the order they appear in the storage-
schemas.conf file and has an existing default at the end. Thus, we must place our settings at the
top of the file to ensure they're properly applied.

After naming the storage schema [collectd], we specify a pattern for carbon to recognize the
collectd data. Any incoming data that fits this expression will use the retention periods that we've
configured. Regarding these retention periods, we should be able to see detailed statistics for
recent data and observe trends when viewing them over longer periods.

As such, we've told Graphite to keep every 10 seconds for 1 day, every minute for a week,
every 5 minutes for a month, every 10 minutes for 3 months, and every hour for a year. Feel
free to adjust these periods to reflect your preferences. Afterwards, we restart carbon to ensure
that it reads the new configuration values we've set.

The next step is to configure the local collectd daemon on the monitoring server to send data to
Graphite. Remember, collectd on the monitoring server is also aggregating performance metrics
from several other servers. The collectd daemons in Listen mode will forward all the data to
Graphite, so it makes sense to make our changes there.

We begin by loading the write_graphite module. The next step is to configure this module with
the settings we want. Many of the default values are actually desirable, so we'll ignore them.
Note that we set Prefix to collectd, because Graphite uses periods as separators for data points.
This means that the interface will group all the collectd data under a single heading, as seen here:

This makes it easier to group data. This also matches the pattern we used when setting the data
retention periods. In our preceding example, we have two PostgreSQL servers monitored by
collectd, and they're easy to find.

The other notable setting is SeparateInstances, which further groups related data. As an example,
if data was named pg2.postgresql-production, it will now be named pg2.postgresql.production
instead. By separating the sections with a period, the sections do not get their own header but are
grouped together instead. This means we can group environments under the postgresql banner,
for instance. Otherwise, we would have postgresql-production, postgresql-stage, postgresql-dev,
or other separate entries for each system variation.

Finally, we restart the collectd daemon so that it incorporates the write_graphite plugin safely. If
we wait for a few moments and reload our Graphite web interface, we should see new graph
activity. After finding the appropriate node to view, we should be greeted by this:





See also
As we've used write_graphite from collectd and storage schema settings for Graphite, we've
included manuals for both. You may have to search, but these pages should provide more
information on the elements covered in this recipe:

Configuring Carbon: http://graphite.readthedocs.io/en/latest/config-carbon.html
The collectd.conf manpage: https://collectd.org/documentation/manpages/collectd.conf.5.shtml
The write_graphite plugin: https://collectd.org/wiki/index.php/Plugin:Write_Graphite

http://graphite.readthedocs.io/en/latest/config-carbon.html
https://collectd.org/documentation/manpages/collectd.conf.5.shtml
https://collectd.org/wiki/index.php/Plugin:Write_Graphite


Building a graph in Graphite
The Graphite interface introduces several extensive capabilities. In order to use its complete
functionality, we must log in. After doing so, we can save graphs, delete saved graphs, load
graphs that other users have created and customized, and much more.

This recipe will take you through the interface to create a graph, save it, and load it later. Finally,
we can avoid extremely technical discussions for a while!



Getting ready
In this recipe, we will be combining the results of all the previous recipes related to collectd and
Graphite. We recommend that you have a functional monitor server configured, as discussed in
those recipes.

When we installed and configured Graphite, it should have asked for a username and password
for the primary administrative user. This information will be necessary to log in to the interface.



How to do it...
Follow these instructions to build, save, and load a saved graph:

1. Direct a web browser at the monitor server on port 8080.
2. Click on the Login link located at the top of the page.
3. Enter the username and password as requested, and click on login.
4. Click on the Graphite link on the left pane.
5. Click on the collectd link on the left pane.
6. Click on the name of the server you wish to view.
7. Continue by clicking on postgresql, Production, and then on derive.
8. Select the item corresponding to a busy database or default to TPS-postgres.
9. Select another item from the derive list so that both data points are in the same graph.

10. Click on the save icon shaped like a floppy disk, and name this graph. We suggest that you
name it Production TPS.

11. Reload the browser window to clear out any selections.
12. Click on My Graphs on the left pane.
13. Choose the Production TPS graph.



How it works...
Regular guest users can view graphs, but they cannot save views for later. Refer back to the step
where we created a superuser when we installed Graphite in Installing and Configuring
Graphite. Assuming we used root as the user for that step, we would enter that information into
the somewhat terse login screen:

Once we have logged into Graphite, we are free to build a graph. When we click on a link on the
left pane, we expand its contents. Every expanded section leads to a list of one or more further
sections. As such, we keep clicking on them until we reach items that can be represented on the
graph pane. The data we are interested in is being supplied by collectd, so we start with it after
expanding the Graphite section.

We recommended that you select two data series for two reasons. Firstly, it shows that multiple
data points can exist in the same graph. Secondly, we believe that saving a graph with only one
data point is boring. After the two data points are activated, our interface should look like this:

 

The active line through the graph represents the pgbench database in our test system, and it is
quite busy. The dashed line at the bottom of the graph is the postgres database, which nobody
uses, and it is zero for the duration of our view window. Regardless of the contents, we save this
graph so that we can load it again later.

After we reload the browser window and expand the My Graphs link, we should see the graph
that we just saved:

Click on the Production TPS chart, and it should load on the right pane automatically.



There's more...
Graphite groups the items that contain a period anywhere in their names. We suggest that you
develop a naming scheme to take advantage of this. A good naming scheme should incorporate
the environment and a descriptive explanation of the graph's contents. If we used Trading |
Database Write Activity, our saved graphs would look like this:



Customizing a Graphite graph
Graphite graphs are very helpful in their default form, even though they simply reflect the data
they can access. One of the less obvious features that Graphite offers is data transformation.
Graphite has several choices for line and background colors, legend names, and so on. We can
calculate moving averages, standard deviations, and logs.

There is a lot of extra functionality available in Graphite, and only exploration will truly unveil
much of it. We'll introduce a few basic examples in this recipe.



Getting ready
In this recipe, we will be combining the results of all the previous recipes related to collectd and
Graphite. We recommend that you have a functional monitor server configured, as discussed in
those recipes.



How to do it...
Follow these instructions to apply several transformations to a simple graph:

1. Direct a web browser at the monitor server on port 8080.
2. Click on the Graphite and collectd links on the left pane.
3. Click on the name of the server to view.
4. Continue by clicking on postgresql, Production, and then on derive.
5. Select the item corresponding to a busy database or default to TPS-postgres.
6. Click on the Graph Options button on the graph composer; then, click on Graph Title.
7. Enter Production TPS Graph as the new graph name.
8. Click on the Graph Data button on the graph composer.
9. Click on the only existing data point.

10. Select Apply Function, Calculate, and then Moving Average.
11. Enter 60 as the number of data points.
12. Select Apply Function, Special, and then Set Legend Name.
13. Enter TPS - Moving Average as the new legend name.
14. Close the Graph Data pane.



How it works...
To begin creating a graph, we first need data to display. The first few steps simply dictate what
elements we should select to drill down to an appropriate level where data points are stored.
Once we've selected one, it's time to customize the data.

The graph composer has two buttons that directly interest us: Graph Options and Graph Data.
They will look like this:

The Graph Options button groups the items that apply to the entire graph. This is the menu we
would use to change the graph's title, its line mode, fonts, colors, and so on. For now, we've
kept it simple and changed the graph's name.

The Graph Data button is the more complicated one of the two. It actually launches a submenu,
which looks like this:

This is where we apply transformations to specific data points or modify the ones that are
included in the graph. Of the functions available, we chose to apply a moving average of 60
readings. By default, collectd takes 1 reading every 10 seconds. Thus, 60 readings equates to 10
minutes' worth of readings. We now have a 10-minute moving average on our graph instead of
the raw data.

However, the full path to the collectd data point is also used as the label in the legend. Even
worse; now that we have applied a function to the data, it's included in the label as well. So, our
next steps involve changing the label under the Special menu to make it more readable. Once
we've changed the legend name, our graph should resemble this:

If we were to save this graph, all of the customizations would be saved as well. This allows
others to reuse the graphs that we've prepared, whether for system monitor dashboards or
presentations.



Creating a Graphite dashboard
Perhaps, we have saved the best Graphite feature for last. A major concern when monitoring the
activity of a highly-available PostgreSQL server is that of visibility. So far, we've seen that
Graphite makes data visible and offers a lot of customization. However, we still need a solution
to view multiple graphs at once.

This at-a-glance usage is invaluable for watching several servers at once or viewing multiple
aspects of a single server in depth. Thankfully, Graphite has us covered in this regard and
provides a robust dashboard view specifically for viewing multiple graphs simultaneously.

Let's explore this final exciting feature.



Getting ready
In this recipe, we will be combining the results of all the previous recipes related to collectd and
Graphite. We recommend that you have a functional monitor server configured, as discussed in
those recipes. We also recommend that you create at least one saved graph that we can load in
the dashboard we construct.



How to do it...
Follow these instructions to build, save, and load a monitor dashboard:

1. Direct a web browser at the monitor server on port 8080.
2. Click on the Dashboard link located at the top of the page.
3. Click on the icon in the upper-right corner of the window to collapse the search pane.
4. Click on the Graphs link on the top menu bar.
5. Continue by selecting New Graph and then From Saved Graph.
6. Expand the list of saved graphs and navigate to any previously saved graph.
7. Click on the desired graph name, and check Select.
8. Repeat as necessary until the dashboard is finished.
9. Click on the Dashboard link on the top menu bar.

10. Continue by selecting Save As, give the graph a name, and click on OK to confirm.
11. Click on OK to confirm new dashboard name.
12. Reload the browser window to clear out any selections.
13. Click on the Dashboard link on the top menu bar.
14. Continue by selecting Finder, and navigate to the desired dashboard name.
15. Choose Open to load the dashboard.



How it works...
The first thing we need to do is enter the dashboard view itself by clicking on the Dashboard link
in the main menu. Once there, we can load as many graphs as we desire to view at once. The
first step is to navigate through the Graphs menu as seen here:

Once we have added one or more graphs using this method, we have created our dashboard.
When we installed collectd, we also enabled the system load plugin, which reports how busy the
server is. We took the opportunity to create a graph for this and saved it as an example. Your
dashboard may look different, but ours has these two saved graphs:

To save this dashboard, we can simply select Save or Save As in the Dashboard menu.
Afterwards, this dashboard is available for anyone to use. We can see that for ourselves by
locating the dashboard within the Finder menu. Here's ours, for reference:



There's more...
A handy technique that the dashboard gives us is the ability to adjust the display range of all the
graphs at the same time. If we click on Relative Time Range in the top menu, this pop-up
appears:

With this, we can observe the past few minutes, hours, days, weeks, or months of data trends
for every graph currently being displayed. This functionality is further extended in the Absolute
Time Range menu, which allows us to choose any date or time range since we installed Graphite.

Explore further to fully leverage the dashboard view!



Replication
In this chapter, we will learn several methods to copy entire databases or individual tables. We
will cover the following recipes in this chapter:

Deciding what to copy
Securing the WAL stream
Setting up a hot standby
Upgrading to asynchronous replication
Bulletproofing with synchronous replication
Faking replication with pg_receivexlog
Setting up Slony
Copying a few tables with Slony
Setting up Bucardo
Copying a few tables with Bucardo
Setting up Londiste
Copying a few tables with Londiste
Setting up pglogical
Copying a few tables with pglogical



Introduction
One element that is absolutely required for any highly available PostgreSQL installation is
replication. It does not matter if we have a Storage Area Network (SAN) that provides disk
redundancy, nor is DRBD or other block-level replication sufficient to protect our investment.
Duplicating and backing up data is always a good practice, but when it comes to availability, we
need online copies of the database.

Similarly, if other departments need data that resides in our OLTP database, how can we provide
it safely? In ideal circumstances, we can supply a copy of the necessary tables. This way, we
don't strain the primary database with ad hoc report-based queries. A new DBA might try to
accomplish this by building a synchronization library or performing scheduled extracts and copies
into a remote database. However, there are easier ways!

PostgreSQL gives us methods to build and maintain a fully online copy of our primary database.
Furthermore, there are existing utilities to duplicate tables when we don't need a copy of the
whole database. In this chapter, we will utilize PostgreSQL replication as well as third-party
table-synchronization tools. Building the best stack requires familiarity with the tools available.



Deciding what to copy
Before copying anything, we need to determine what to copy. In some instances, it might be
necessary to copy the entire database for disaster-recovery purposes. At other times, such a
copy would waste resources. We need to differentiate between these two scenarios.

Once we've done this, we should decide what to do when we don't want to copy the whole
database. We need to know which tables to copy and where to send them. To accomplish this,
we will build a very small spreadsheet in this section to keep track of the resources we will need
for all of our table and database replicas.



Getting ready
We're going to build a spreadsheet. This spreadsheet will specify the type of replica we want to
maintain, as well as where it will reside. Have a spreadsheet program available before starting.



How to do it...
Follow these steps to determine replication resource requirements:

1. Create a spreadsheet with six columns labeled Source Server, Target Server, Type, DB Name,
Table, and Set.

2. Under the Source Server column, list the role or name of the PostgreSQL server that
provides the data.

3. Under the Target Server column, list the role or name of the PostgreSQL server that
receives the data.

4. Under the Type column, select either Replica to copy the whole database or Logical to copy
individual tables.

5. Under the DB Name column, enter the name of the database where tables reside on the
source server. If you are using Replica for Type, enter All here.

6. Under the Table column, enter All for every table in the listed database, or enter a single
table name. If you are copying multiple individual tables, create a single row for each table.

7. Under the Set column, enter a name for the set of tables being copied. Do this only if using
Logical for the Type column.

8. Create at least one row in the spreadsheet for a Disaster Recovery (DR) copy of every
source server in your PostgreSQL clusters.



How it works...
The spreadsheet we're making only requires six columns to fit this recipe. Feel free to include
any other relevant information when making your own. In fact, we suggest that you retain this
document for reference purposes and revisions.

We begin by listing the name or role of the server where all the data will originate. This Source
Server column will help us-and everyone else-to keep track of where the original data resides. If a
server is listed too often in this column, we may want to reconsider removing some replicas so
that we don't overwhelm it.

Next, we need to decide where to send the data. The Target Server column lets us define where
the tables will reside after being replicated. This allows us to formally dictate how many copies
will live in how many locations. There are some limitations based on the type we define for this
replica entry.

When listing the type of replication, we have only two options. We can either mirror the entire
database as a Replica, or single tables in the case of a Logical copy. Any target server can only
appear once if its value in the Type column is Replica. Otherwise, a server might receive several
Logical sources.

Then, we need to list DB Name where we can find the table to copy. If we are copying the entire
database as a Replica, this value will always be All. Otherwise, we should list a single database
name.

Next, which table will we copy? In the case of a Replica type, this value will be All. Otherwise,
should we copy the entire listed database or an inventory of specific tables? To mirror every
table in the database, enter All here. Otherwise, use the name of the table (including its schema)
that we want to include.

Finally, if we are copying a list of individual tables or a named database, we should name the
replica as Set. Replication utilities commonly use these set names to address the objects being
copied, so we can define any sets we plan to use.

The final step we've listed is to determine where we require at least one copy of the entire
database. This replica will be an online copy that we can switch to in the case of server or data
center failure. In a truly high availability architecture, this is not optional.

With all of these entries, our spreadsheet might look something like this:

In this particular example, we have our Disaster Recovery copy of the database and another full
replica for departments to query without disturbing the primary system. Then, we copy three
tables to the reporting database for our Business Intelligence or Marketing teams to integrate into



their customer activity reports.



Securing the WAL stream
The primary mechanism that PostgreSQL uses to provide a data durability guarantee is through
its Write Ahead Log (WAL). All transactional data is written to this location before ever being
committed to database files. Once WAL files are no longer necessary for crash recovery,
PostgreSQL will either delete or archive them. For the purposes of a highly available server, we
recommend that you keep these important files as long as possible. There are several reasons for
this; they are as follows:

Archived WAL files can be used for Point In Time Recovery (PITR)
If you are using streaming replication, interrupted streams can be re-established by applying
WAL files until the replica has caught up
WAL files can be reused to service multiple server copies

 

In order to gain these benefits, we need to enable PostgreSQL WAL archiving and save these
files until we no longer need them. This section will address our recommendations for long-term
storage of WAL files.



Getting ready
In order to properly archive WAL files, we recommend that you provision a server dedicated to
backups or file storage. Depending on the transaction volume, an active PostgreSQL database
might produce thousands of these on a daily basis. At 16 MB apiece, this is not an idle concern.
For instance, for a 1 TB database, we recommend at least 3 TB of storage space.

In addition, we will be using rsync as a daemon on this archive server. To install this on a
Debian-based server, execute the following command as a root-level user:

sudo apt-get install rsync

Red-Hat-based systems will need this command instead:

sudo yum install rsync xinetd



How to do it...
Our archive server has a 3 TB mount at the /db directory and is named arc_server on our
network. The PostgreSQL source server resides at 192.168.56.10. Follow these steps for long-
term storage of important WAL files on an archive server:

1. Enable rsync to run as a daemon on the archive server.
2. On Debian-based systems, edit the /etc/default/rsync file and change the RSYNC_ENABLE

variable to true.
3. On Red-Hat-based systems, edit the /etc/xinet.d/rsync file and change the disable

parameter to no.
4. Create a directory to store archived WAL files as the postgres user with these commands:

        sudo mkdir /db/pg_archived
        sudo chown postgres:postgres /db/pg_archived

 

5. Create a file named /etc/rsyncd.conf and fill it with the following contents:

        [wal_store] 
            path = /db/pg_archived 
            comment = DB WAL Archives 
            uid = postgres 
            gid = postgres 
            read only = false 
            hosts allow = 192.168.56.10 
            hosts deny = * 

6. Start the rsync daemon.
7. Debian-based systems should execute the following command:

        sudo service rsync start

8. Red-Hat-based systems can start rsync with this command instead:

        sudo service xinetd start

9. Change the archive_mode and archive_command parameters in postgresql.conf to read the
following:

        archive_mode = on 
        archive_command = 'rsync -aq %p arc_server::wal_store/%f' 

10. Restart the PostgreSQL server with the following command:

        pg_ctl -D $PGDATA restart



How it works...
The rsync utility is normally used to transfer files between two servers. However, we can take
advantage of using it as a daemon to avoid connection overhead imposed by using SSH as an
rsync protocol. Our first step is to ensure that the service is not disabled in some manner, which
would make the rest of this recipe moot.

Next, we need a place to store archived WAL files on the archive server. Assuming that we have
3 TB of space in the /db directory, we simply claim /db/pg_archived as the desired storage
location. There should be enough space to use /db for backups as well, but we won't discuss that
in this recipe.

Next, we create a file named /etc/rsyncd.conf, which will configure how rsync operates as a
daemon. Here, we name the /db/pg_archived directory wal_store so that we can address the path
by its name when sending files. We give it a human-readable name and ensure that files are
owned by the postgres user, as this user also controls most of the PostgreSQL-related services.

The next, and possibly the most important step, is to block all hosts but the primary PostgreSQL
server from writing to this location. We set hosts deny to *, which blocks every server. Then, we
set hosts allow to the primary database server's IP address so that only it has access. If
everything goes well, we can start the rsync (or xinetd on Red Hat systems) service and we can
see that in the following screenshot:

Next, we enable archive_mode by setting it to on. With archive mode enabled, we can specify a
command that will execute when PostgreSQL no longer needs a WAL file for crash recovery. In
this case, we invoke the rsync command with the -a parameter to preserve elements such as file
ownership, timestamps, and so on.

In addition, we specify the -q setting to suppress output, as PostgreSQL only checks the
command exit status to determine its success. In the archive_command setting, the %p value
represents the full path to the WAL file, and %f resolves to the filename. In this context, we're
sending the WAL file to the archive server at the wal_store module we defined in rsyncd.conf.

Once we restart PostgreSQL, it will start storing all the old WAL files by sending them to the
archive server.

In case any rsync command fails because the archive server is unreachable,
PostgreSQL will keep trying to send it until it is successful. If the archive server
is unreachable for too long, we suggest that you change the archive_command
setting to store files elsewhere. This prevents accidentally overfilling the
PostgreSQL server storage.



There's more...
As we will likely want to use the WAL files on other servers, we suggest that you make a list of
all the servers that could need WAL files. Then, modify the rsyncd.conf file on the archive server
and add this section:

[wal_fetch] 
    path = /db/pg_archived 
    comment = DB WAL Archive Retrieval 
    uid = postgres 
    gid = postgres 
    read only = true 
    hosts allow = host1, host2, host3 
    hosts deny = * 

Now, we can fetch WAL files from any of the hosts in hosts allow. As these are dedicated
PostgreSQL replicas, recovery servers, or other defined roles, this makes the archive server a
central location for all our WAL needs. Make sure this server is as fault-tolerant as possible;
otherwise it becomes a single-point-of-failure to lose all of the WAL files at once.



See also
We suggest that you read more about the archive_mode and archive_command settings on the
PostgreSQL site. We've included a link here: https://www.postgresql.org/docs/current/static/runtime-c
onfig-wal.html
The rsyncd.conf file should also have its own manual page. Read it with this command to
learn more about the available settings:

        man rsyncd.conf

https://www.postgresql.org/docs/current/static/runtime-config-wal.html


Setting up a hot standby
It is a very good practice, if not an outright requirement, to have a second online copy of a
PostgreSQL server in high availability clusters. Without such an online server, recovery from an
outage may require hours of incidence response, backup recovery, and server provisioning. We
have everything to gain by having extra online servers.

In addition, the process of setting up a hot standby acts as the basis for creating PostgreSQL
streaming replicas. This means that we can reuse this recipe over and over again anytime we
need to create PostgreSQL mirrors, provision extra backup copies, set up test instances, and so
on.

All of this is made possible by the pg_basebackup command.



Getting ready
A hot standby server should have similar, if not exactly the same, specifications as the
PostgreSQL server it is subscribed to. Try to accomplish this if possible. Also refer to the
previous Securing the WAL stream recipe, as we will be consuming WAL files in this recipe.



How to do it...
For this scenario, the server at 192.168.56.10 is the primary PostgreSQL server, and 192.168.56.20
will be the new copy. Once again, arc_server will be the location of the archive server with old
WAL files. On all PostgreSQL servers, our data directory should be located at /db/pgdata.

Follow these steps to build a PostgreSQL hot standby:

1. Ensure that the pg_hba.conf file on the primary server contains this line:

        host   replication   rep_user   192.168.56.20/32   trust 

2. Ensure that the wal_level and max_wal_senders settings in postgresql.conf are set as follows on
the primary server:

        wal_level = replica 
        max_wal_senders = 5 

3. Restart PostgreSQL on the primary server with the following command as the postgres
user:

        pg_ctl -D /db/pgdata restart

4. Create the replication user if it doesn't already exist with this SQL statement:

        CREATE USER rep_user WITH REPLICATION; 

 

5. On the new server replica, create the /db/pgdata and /db/pg_archived directories with these
commands as a root-level user:

        sudo mkdir -p /db/pgdata /db/pg_archived
        sudo chown postgres:postgres /db/*
        sudo chmod 0700 /db/pgdata /db/pg_archived

6. Create a file named /etc/cron.d/postgres with the following contents in a single line:

        * * * * * postgres flock /tmp/wal_sync rsync -aq --del    
        arc_server::wal_fetch/ /db/pg_archived 

7. Copy the primary server data with this command on the secondary server as the postgres
user:

        pg_basebackup -D /db/pgdata -h 192.168.56.10 -U rep_user

8. Create a file named /db/pgdata/recovery.conf and fill it with the following contents:

        standby_mode = on 
        restore_command = 'pg_standby /db/pg_archived %f %p' 

9. Ensure that the postgresql.conf file on the standby server contains the following setting:



        hot_standby = on 

10. Start the PostgreSQL server on the standby server with this command:

        pg_ctl -D /db/pgdata start



How it works...
The first thing we do with this recipe is allow the new PostgreSQL server to retrieve data from
the primary server. There are a few ways to do this, but for the sake of demonstration, we
created a rule for the server at 192.168.56.20 to connect to the replication pseudo-database. This
allows tools such as pg_basebackup to copy database files from the primary database when we
initialize the replica.

In a related concern, we must ensure that the wal_level setting of the primary server is set to
hot_standby and that max_wal_senders is a value greater than 0. Earlier chapters on configuring
PostgreSQL have already made this suggestion, but this recipe won't work at all if these
parameters are set wrong. We restart PostgreSQL after modifying these settings to force it to use
the new values. This also has the added benefit of integrating the changes to pg_hba.conf so
rep_user has sufficient access to copy PostgreSQL data files.

Next, we should make sure that rep_user exists. Earlier chapters contained instructions to create
this user, but it doesn't hurt to double-check. Regardless of what user we use to copy data, it
must have the replication permission used in the CREATE USER syntax.

Next, the new child server needs the same data directory as its parent. We also want to have a
location to synchronize WAL files so that the copy can process them and remain up to date. We
set the permissions so that only the postgres user can view their contents. We should end up with
something like this:

With these two directories in place, it's time to copy WAL files from the archive server. To
accomplish this, we create a file in /etc/cron.d that will execute an rsync command every minute.
This rsync command will copy WAL files from the archive server to the /db/pg_archived directory.
The -a parameter ensures that it will include file permissions and ownership, and -q will suppress
non-error messages so it's easier to tell if something went wrong. We have also added the --del
setting, which will cause rsync to delete any files that don't exist on the archive server.

Why every minute? It prevents the hot standby from falling too far behind,
without making use of pure PostgreSQL replication. If you want to use this
server as an insurance policy, it might be a good idea to delay it behind the
source database by an hour. This way, mistakes will not appear on the standby
for an hour, giving us a chance to fix problems before they taint database
copies. To sync every hour, change the * * * * * portion of the rsync command to
0 * * * *.

As we're launching rsync asynchronously, we use flock to create a temporary lock file in the /tmp
directory. This way, if the primary server produced a large burst of WAL files, we won't have
two conflicting rsync commands trying to copy the files to /db/pg_archived.

Once we've established a stream for WAL files, we need to copy the actual database. For this,
we use the pg_basebackup command. While pg_basebackup is, theoretically, a backup utility, it serves
a dual purpose. When launched with the -D parameter, it copies the server data files from the



host indicated by the -h parameter and saves them to the indicated directory. Thus, our
pg_basebackup command copied files from 192.168.56.10 to /db/pgdata. This produces a
PostgreSQL data directory capable of hosting a running database. We also used the -U setting to
use the rep_user user that we created specifically for replication-related tasks.

Next, we want to start the PostgreSQL hot standby, but first we need to tell it how to recover
WAL files. We create a file named recovery.conf, and if this file exists, PostgreSQL will enter
recovery mode instead of normal operation. In this recovery mode, it expects to process WAL
files until there are no more available. However, we set standby_mode to on in this file, which tells
PostgreSQL to wait forever under the assumption that more WAL files will arrive later. This is
continuous recovery, and this is what makes a hot standby work.

Another setting that we use in recovery.conf is restore_command. Here, we use the pg_standby utility
to regularly consume WAL files in the /db/pg_archived directory. We could have simply copied the
files with cp, but this produces annoying output in our logs that looks like this:

These errors do nothing but add useless noise to the logs. We could suppress these errors from
cp, but if there was an actual error, we would miss it. Using pg_standby is just easier.

Before we start the PostgreSQL hot standby, there's one more thing to confirm. Simply having a
standby is useful, but having a readable standby is better. By enabling hot_standby in the
postgresql.conf file, we can execute the basic select statements against the standby database.

Once we start the database on the replica, we should have a fully functional hot standby
PostgreSQL server.



See also
As this is such a common configuration, the PostgreSQL documents discuss it at great length.
We also made extensive use of the pg_basebackup and pg_standby commands. You can find out
more information about these from the following URLs:

Hot standby: https://www.postgresql.org/docs/current/static/hot-standby.html
pg_basebackup: https://www.postgresql.org/docs/current/static/app-pgbasebackup.html
pg_standby: https://www.postgresql.org/docs/current/static/pgstandby.html

https://www.postgresql.org/docs/current/static/hot-standby.html
https://www.postgresql.org/docs/current/static/app-pgbasebackup.html
https://www.postgresql.org/docs/current/static/pgstandby.html


Upgrading to asynchronous replication
Since the release of PostgreSQL 9.0, DBAs have had access to asynchronous streaming
replication. Unlike the older hot standby methods used in earlier versions, replica servers can
connect to an upstream PostgreSQL server and consume data modifications directly. With low
network latency and fast transactions, this means that it is fairly common for streaming replicas
to lag behind the master by only a few milliseconds.

In the context of high availability, this means we can scale horizontally by copying the database
to multiple servers. Of course, this means that we need to copy the entire database to each
server. For small-to medium-sized database instances, this is a relatively minor requirement. This
also means that we can produce up-to-date backups, perform ad hoc queries on practically live
data, and aggregate information into reports without disrupting our primary database.

This recipe will explain how to set up a streaming asynchronous database replica and explore
some of the hidden caveats of doing so.



Getting ready
We will be continuing the work we performed in the Setting up a hot standby recipe, so please
refer to that recipe to build a working hot standby. We will alter the standby setup to include
streaming replication, and better security.



How to do it...
For this scenario, the server at 192.168.56.10 is the primary PostgreSQL server, and 192.168.56.20
will be the asynchronous replica. Follow these steps to build a PostgreSQL asynchronous replica:

1. Give the rep_user user a password with this SQL statement:

        ALTER USER rep_user WITH PASSWORD 'newpass';

2. On the primary server, modify the pg_hba.conf line and remove any references to the
rep_user user. Then, add this line:

        host   replication   rep_user   192.168.56.20/32   md5

3. Reload the configuration files on the primary server with the following command as the
postgres user:

        pg_ctl -D /db/pgdata reload

4. On the replica server, create a file named .pgpass in the postgres user's home directory with
the following contents:

        192.168.56.10:*:replication:rep_user:newpass 

5. Alter the .pgpass file to have the correct permissions with this command:

        chmod 600 ~/.pgpass

6. Modify the recovery.conf file on the recovery server to match these lines:

        standby_mode = on 
        primary_conninfo = 'host=192.168.56.10 user=rep_user' 
        restore_command = 'cp /db/pg_archived/%f %p 2>/dev/null' 

7. Reload the configuration files on the streaming replica server with the following command
as the postgres user:

        pg_ctl -D /db/pgdata reload

8. Confirm that the standby is connected by executing this SQL on the primary PostgreSQL
server:

        SELECT client_addr, usename, state
          FROM pg_stat_replication;



How it works...
Using trust authentication is not generally a recommended practice. It is one thing to copy the
database without a password once, but quite another to leave a long-term security hole for all
database replicas. This means it is time to ensure that the rep_user user has a password. We also
need to change pg_hba.conf to reflect the fact that we want to use regular md5 authentication
instead of trust. Once we reload the configuration files on the primary server, we move on to the
streaming replica.

To get into the practice of using .pgpass files, we create one on the replica server for the rep_user
user. The line we created in this file will send our desired password when the sections match; in
this case, if we connect to 192.168.56.10 on any port to the replication database as the rep_user
user, authentication will succeed automatically. If any of these are different, the PostgreSQL
client libraries will not send a password, and the client will receive an error. This is a fairly easy
way to automate password submissions securely. PostgreSQL will also ignore this file if the
permissions are wrong, so we set the control flags with chmod so that only the postgres user can
access it.

Next, we rewrite the contents of the recovery.conf file to include primary_conninfo. This line is
used to specify the connection information for establishing streaming replication. Since our
password is in the .pgpass file, we don't need to enter it here. We also removed pg_standby in
favor of a regular cp command with the errors suppressed. Now that our primary method of
WAL consumption is directly from another server, we only need WAL files from /db/pg_archived
as a fail back in case the stream is disrupted.

Why do we use .pgpass instead of entering the password in the recovery.conf file?
It is very common for system automation tools to distribute configuration files
to dozens or even hundreds of servers. Using .pgpass, we can settle on and
redistribute passwords easily. In addition, tools that build recovery.conf will not
need to know the password for the replication user. Just make sure to protect
this file well, as it's a potential attack vector since it contains several important
database passwords.

Once we reload the standby server, it should become a streaming replica instead of a regular hot
standby. We can confirm this with the SQL statement that checks the pg_stat_replication view on
the primary server. We should get output similar to this:



There's more...
When we switch to asynchronous replication, we unleash a whole universe of new functionality.
As the versions of PostgreSQL have advanced over the years, this list becomes longer.



Cascading replication
In the event that we have several streaming replicas, older versions of PostgreSQL required
replica servers to connect directly to the primary server. For versions 9.3 and above,
PostgreSQL allows streaming replicas to subscribe to other replicas. With this, we can further
reduce strain on the primary database server by offloading replication duties to a topology of
alternate servers.

This chaining includes backup features. The pg_basebackup tool puts PostgreSQL in backup mode
by invoking the pg_start_backup() function. As this function writes to the database, it normally
can't be used on a streaming replica because it's read-only. However, chaining replication makes
it possible to use pg_basebackup on standby servers. This can greatly simplify the backup process
and reduce overhead on the primary server.



Using replication slots
Relying on transaction log files is a risky endeavour. If the primary server deletes one before a
replica can process it, we may need to rebuild the replica outright. If we're using PostgreSQL 9.4
or higher, we can prevent that kind of mishap by using replication slots instead.

To start, we would need to create a replication slot on the primary server itself with this SQL:

SELECT * FROM pg_create_physical_replication_slot('pg2_slot');

Then on the replica, we would add this line to its recovery.conf before starting (or restarting) the
instance:

primary_slot_name = 'pg2_slot' 

Now our replica can't fall behind. Though, we should be careful that replica outages are limited.
Otherwise the primary could accumulate too many unnecessary transaction log files and run out
of storage space. It may be necessary to remove unused replication slots so this doesn't happen.
Use this SQL if a replica needs to be offline for long periods of time:

SELECT pg_drop_replication_slot('pg2_slot');



Viewing replication status on a replica
Beginning with PostgreSQL 9.6, we can view a lot of information about the replication stream
from the replica server. In previous versions, there were only a couple of functions, and they
only really told us which transaction log the replica had recently processed. Version 9.6
introduces a view named pg_stat_wal_receiver to solve that issue. Consider we have our pg2
replica and it's using a replication slot named pg2_slot. We could use this query on the replica to
learn a bit more:

SELECT status, latest_end_lsn, latest_end_time, slot_name
  FROM pg_stat_wal_receiver;

The output of which should resemble this:

This tells us that the streaming is active, it's using the slot as expected, and the position in the
transaction log it last replayed. We can also see the upstream time that position represents,
making it much easier to determine replication lag visually.

Views like this help us troubleshoot in addition to monitor status from a replica's perspective.
Remember the PostgreSQL catalog is available and is always growing with each new version.



See also
There are good resources within the PostgreSQL documentation and Wiki regarding streaming
replication. For more information, please visit these URLs:

Log-shipping standby servers: https://www.postgresql.org/docs/current/static/warm-standby.html
Streaming replication: https://wiki.postgresql.org/wiki/Streaming_Replication
Standby server settings: https://www.postgresql.org/docs/current/static/standby-settings.html
The password file: https://www.postgresql.org/docs/current/static/libpq-pgpass.html

https://www.postgresql.org/docs/current/static/warm-standby.html
https://wiki.postgresql.org/wiki/Streaming_Replication
https://www.postgresql.org/docs/current/static/standby-settings.html
https://www.postgresql.org/docs/current/static/libpq-pgpass.html


Bulletproofing with synchronous replication
Sometimes, in order to provide acceptable data durability, a high availability configuration must
utilize synchronous commits. Beginning with PostgreSQL 9.1, database servers can now refuse
to commit a transaction until the data is located on at least one alternate server. Unlike
asynchronous replication where this is optional, synchronous replicas enforce this requirement to
a fault.

Discussions in the PostgreSQL mailing list suggest that there is a long-standing misconception
that synchronous replication is similar to RAID-1 operation. In RAID-1, the same exact data
exists on two disks (or two disk sets), and if one of the pair fails, it continues to operate in
degraded mode until the problem is addressed. This is absolutely not the case with PostgreSQL
synchronous replication.

Unlike a RAID-1, PostgreSQL replicas can exist on different servers, on different networks, or
even in different countries. PostgreSQL synchronous replication is a guarantee that data is
written to at least two servers. Despite the necessary increase in latency to confirm this, the
guarantee is upheld at all times.

This recipe is for databases that need this kind of extreme durability.



Getting ready
We will be continuing the work we performed in the Upgrading to asynchronous replication
recipe, so please refer to that section to build a working asynchronous replica. We will alter the
standby setup to include synchronous streaming replication.



How to do it...
For this scenario, the server at 192.168.56.10 is still the primary PostgreSQL server. Follow these
steps to change an asynchronous PostgreSQL server into a synchronous replica:

1. Modify the recovery.conf file on the recovery server to match these lines:

        standby_mode = on 
        primary_conninfo = 'host=192.168.56.10 user=rep_user              
        application_name=node2' 
        restore_command = 'cp /db/pg_archived/%f %p 2>/dev/null' 

2. Restart the streaming server with the following command as the postgres user:

        pg_ctl -D /db/pgdata restart

3. Change the synchronous_standby_names setting in the postgresql.conf file on the primary server
to read the following:

        synchronous_standby_names = 'node2' 

4. Reload the configuration files on the primary server with the following command as the
postgres user:

        pg_ctl -D /db/pgdata reload

5. Confirm that the standby is connected by executing this SQL on the primary PostgreSQL
server:

        SELECT client_addr, state, sync_state, application_name
          FROM pg_stat_replication;



How it works...
Promoting an asynchronous standby server to synchronous mode is actually a fairly simple
procedure. We begin by modifying the primary_conninfo setting in the standby's recovery.conf file
to include the application_name value. PostgreSQL differentiates replicas by their stated
application name, so if we change this, we can specifically target that particular replica. Any
other synchronous standby nodes should be assigned different names.

Once we restart the PostgreSQL server on the streaming standby, it will reconnect to the primary
server with the new application_name that we assigned. From this point onward, we can refer to
the standby server as node2. Thus, when we alter the synchronous_standby_names variable in the
primary server's postgresql.conf file, we use the same name there.

Any time we want to change the synchronous_standby_names variable, we merely need to tell
PostgreSQL to reload its configuration files. Thus, after we do this, node2 should now act as a
synchronous standby server. Any transaction will only commit if it can write to this server as
well as the primary one.

This last point is extremely important. If, for any reason, the synchronous
standby becomes unavailable, the primary server will stop writing to the
database as well! If you are performing maintenance on the secondary server,
we suggest that you set synchronous_standby_names to a blank value and reload the
PostgreSQL server. This will break the synchronous guarantee until the standby
can be reconnected.

Once we have reloaded the primary server's configuration files, we can check the
pg_stat_replication view again to observe how streaming is currently functioning. After executing
the query, we should see something like this:

As we can see in this example, the primary server sees node2 as a synchronous streaming replica.



There's more...
Beyond the basics of synchronous replication, there are also a few other things we can do with
this powerful feature.



Being less strict
We really want to confirm if the streaming replication works as advertised. To do this, let's shut
down the standby server with this command:

pg_ctl -D /db/pgdata stop -m fast

Then, try to write to the primary server. This simple SQL statement should wait indefinitely:

CREATE TABLE foo ( bar INT );

 

If we then restart the streaming replica using the following command, we should see the
transaction complete:

pg_ctl -D /db/pgdata start

As you might imagine, this can be problematic in true high availability architectures that handle
thousands of transactions per second. As such, we don't actually recommend that you use
synchronous replication on OLTP servers. As these comprise the bulk of highly available
PostgreSQL clusters, opportunities to take advantage of this level of data durability are
somewhat slim.

However, synchronous commit is actually somewhat optional. If we want to try the experiment
again, we can first issue this SQL statement before trying a basic write query:

SET synchronous_commit TO false;

This disables synchronous replication temporarily for the current session. Subsequent write
queries in this connection should succeed normally as if the remote server was a standard
asynchronous copy.



Being more strict
The synchronous_commit configuration parameter has another, more relevant setting for those
interested in high availability. The default functionality of a synchronous standby is to consume
transactions from the replication stream and acknowledge receipt. Yet this only means the data
has been physically written to disk on the replica system. There's still the very slim chance that a
crash of the synchronous standby might prevent transactions from reaching the actual data files
on that system.

If we set synchronous_commit to remote_apply however, the result is subtly different. This value is
only available in PostgreSQL 9.6 and higher and it makes synchronous replication even more
strict in its implementation. With this value in place, a transaction will not be committed on the
primary node until it's written to a standby server and that standby has also processed the
transaction. It's a slight but extremely important difference.

In the context of high availability, it means the replica is an exact copy of the upstream server at
all times, because the primary server can't even commit transactions without the standby also
reflecting those changes. Unlike standard synchronous commits, there is no race condition
between receipt and application.

Of course, we pay for this durability and availability with latency. It's
important to know when to decide between the two extremes.



Enabling extreme durability
PostgreSQL 9.6 also introduces another important component to a highly available cluster of
servers commonly found in the NoSQL world. Of course, we're talking about committing writes
to several replicas simultaneously. Version 9.6 changes the syntax for synchronous_standby_names so
that it's now possible to specify multiple standby servers as well as how many should be active at
once. If we had two replicas, rep1 and rep2, and needed both to always be in sync with the
primary, we would modify the parameter accordingly:

synchronous_standby_names = '2 (rep1, rep2)' 

We could also have five replicas in the list, and enable three of them, or any similar combination.
Again we trade latency for better durability, but in some cases, that's a perfectly valid
transaction. This level of paranoia is rarely necessary, but it's nice to have the choice.



See also
There are good resources within the PostgreSQL documentation and Wiki regarding streaming
replication. For more information, please visit these URLs:

Log-shipping standby servers: https://www.postgresql.org/docs/current/static/warm-standby.html
Streaming replication: https://wiki.postgresql.org/wiki/Streaming_Replication
Synchronous replication: https://wiki.postgresql.org/wiki/Synchronous_replication
Write Ahead Log: https://www.postgresql.org/docs/current/static/runtime-config-wal.html

https://www.postgresql.org/docs/current/static/warm-standby.html
https://wiki.postgresql.org/wiki/Streaming_Replication
https://wiki.postgresql.org/wiki/Synchronous_replication
https://www.postgresql.org/docs/current/static/runtime-config-wal.html


Faking replication with pg_receivexlog
Some built-in tools deserve special mention. The pg_receivexlog command was introduced with
PostgreSQL 9.2. With this new utility, PostgreSQL has the ability to transmit transaction logs to
a remote system without the need for a dedicated PostgreSQL server. This also means that we
can avoid ad hoc tools such as rsync when maintaining an archive server to save old WAL files.

This allows us to set up any server to pull transaction logs directly from the primary PostgreSQL
server. For highly available servers, PostgreSQL no longer needs to fork an external command to
safeguard transaction logs into an archive location. In addition, we can monitor the state of the
transmission through the pg_stat_replication system view.

In effect, we remove quite a bit of overhead from our PostgreSQL server and offload it to a less
sensitive system. This recipe will provide a quick outline for using this utility.



Getting ready
Before starting with this recipe, ensure that you have a good understanding of how PostgreSQL
replication works. To do this, follow the Upgrading to asynchronous replication and
Bulletproofing with synchronous replication recipes.



How to do it...
For this scenario, the server at 192.168.56.10 is still the primary PostgreSQL server, and
192.168.56.100 will be our archive server. Follow these steps to save WAL data remotely:

1. Ensure that the pg_hba.conf file on the primary server contains this line:

        host   replication   rep_user   192.168.56.100/32   md5 

2. Ensure that the wal_keep_segments and archive_mode settings in postgresql.conf are set as
follows on the primary server:

        wal_keep_segments = 1000 
        archive_mode = off 

 

3. Restart the configuration files on the primary server with the following command as the
postgres user:

        pg_ctl -D /db/pgdata restart

4. On the archive server, create the /db/pg_archived directory with these commands as a root-
level user:

        sudo mkdir -p /db/pg_archived
        sudo chown postgres:postgres /db/pg_archived
        sudo chmod 0700 /db/pg_archived

5. Start the pg_receivexlog utility on the archive server with the following command:

        pg_receivexlog -h 192.168.56.10 -U rep_user \
          -D /db/pg_archived -v \ 
          &> /db/pg_archived/wal_archive.log &



How it works...
First, we need to ensure that the archive server at 192.168.56.100 can connect to the primary
server to receive the transaction log traffic. Next, unlike other recipes that depend on archive_mode
to be enabled on the primary server, we want to disable it this time. Instead, we are going to rely
on pg_receivexlog itself.

One setting that we change might seem a bit odd at first. The wal_keep_segments parameter defines
how many transaction logs PostgreSQL should keep after it no longer needs them. Normally, it
would delete old files or call the archive command to process them if archive_mode is on. By
setting it to 1000, we are telling it to always have at least 1000 extra files. This helps avoid lost
WAL archives if there's a network problem, or we have to restart pg_receivexlog.

Is 1000 files too many? At 16 MB each, this accounts for 16 GB of space.
Providing this much space should be very easy with modern storage devices.
This many files should account for several hours of activity on all but the most
active databases. It may actually be prudent to increase the limit further,
depending on database activity.

Once these settings are in place, we need to restart PostgreSQL to disable WAL archival. At this
point, the primary server will no longer save or transmit old WAL files anywhere. To make up
for this, we make sure that the archive server has a location to store these files and that the
postgres user can write to it. To continue with our examples, we will continue to use the
/db/pg_archived directory.

Finally, we start the pg_receivexlog tool itself. We pass the -h parameter to connect to the primary
database and use -U to enforce the replication user, rep_user. The -D parameter is required, and
we use it to save WAL files to the /db/pg_archived directory we created. Then, we enable verbose
output with -v just so that we are always informed about what pg_receivexlog is doing. We direct
all output to a file named wal_archive.log and consider our work complete. The final & character
launches the command in the background so that it functions even if we disconnect from the
server.

If everything goes well, our /db/pg_archived directory should soon have some WAL files and a log
inside it, as shown in the following screenshot:

The file that ends in partial is a WAL transfer that is currently in progress.



There's more...
Starting with PostgreSQL 9.5, pg_receivexlog is also fully compatible with synchronous
replication. If we wanted to enable this capability, we could modify the final launch command to
look something like this:

  pg_receivexlog -h 192.168.56.10 -U rep_user \
    -D /db/pg_archived -v --synchronous \ 
    &> /db/pg_archived/wal_archive.log & 

Normally pg_receivexlog only flushes to disk periodically. With the --synchronous parameter
enabled, it will flush all transactions upon receipt, as well as send an acknowledgement to the
upstream primary. Now we don't necessarily need a full copy of our database everywhere.
Perhaps we could leverage this feature on a server that simply accumulates transaction logs in a
secure location.

Being available isn't always a matter of never going offline; it also means our data is safe.
Transaction logs are a critical source of PITR functionality and crash recovery. Having
transaction logs written immediately to a tertiary location without database overhead conveys a
certain amount of high availability to the files themselves.



See also
The pg_receivexlog utility has more extensive documentation on PostgreSQL's site. Visit this
URL to learn more: https://www.postgresql.org/docs/current/static/app-pgreceivexlog.html

https://www.postgresql.org/docs/current/static/app-pgreceivexlog.html


Setting up Slony
While there are a few logical asynchronous replication systems for PostgreSQL, Slony-I (Slony
in short) was the first to gain wide adoption. Why would we use Slony when PostgreSQL
already has replication? Currently, PostgreSQL replication can only copy the entire installation.
Every database, schema, table, and user is copied at the binary level. In effect, streaming
replication creates perfect clones of PostgreSQL servers.

Slony is very different. It is designed to copy tables only, capturing changes on a master server
and sending them to one or more subscribers. If you want this type of replication, this section
will provide a basic installation recipe designed for one master and one subscriber.



Getting ready
In order to install Slony, we will need the source code. At the time of writing this book, the latest
version available is 2.2.5. You can obtain a copy of the source at this URL: http://slony.info/download
s/2.2/source/

We only need the primary source package, but feel free to download the documentation as well.

http://slony.info/downloads/2.2/source/


How to do it...
For these instructions, 192.168.56.10 is the master PostgreSQL node, and 192.168.56.30 is our
desired subscriber. Follow these instructions to activate Slony on the postgres default database:

1. Extract the source code and change to the resulting directory with these commands:

        tar -xjf slony1-2.2.5.tar.bz2
        cd slony1-2.2.5

2. Build and install Slony with these commands as a root-capable user:

        ./configure --prefix=/usr
        make
        sudo make install

3. Repeat the above two steps on the subscriber node to ensure necessary libraries are
available to Slony.

4. Provide the rep_user database user with superuser capabilities by running this SQL
statement on both PostgreSQL nodes:

        ALTER USER rep_user WITH SUPERUSER;

5. Enter the following line in the .pgpass file for the postgres user on both nodes:

        *:*:postgres:rep_user:passwordhere 

6. Ensure that the following line exists within the pg_hba.conf file on the master node:

        host   postgres   rep_user   192.168.56.30/32   md5 

7. Ensure that the following line exists within the pg_hba.conf file on the subscriber node:

        host   postgres   rep_user   192.168.56.10/32   md5 

8. Reload the PostgreSQL service on both nodes with the following command as the postgres
user:

        pg_ctl -D /db/pgdata reload

9. Create a file named nodes.slonik in the /etc/slony directory of the master node with the
following contents:

        cluster name = replication; 
        define master 'dbname=postgres host=192.168.56.10  
                  user=rep_user'; 
        define sub1 'dbname=postgres host=192.168.56.30 
                user=rep_user'; 
        node 1 admin conninfo = @master; 
        node 2 admin conninfo = @sub1; 

10. Create a file named init.slonik in the /etc/slony directory of the master node with the
following contents:



        include </etc/slony/nodes.slonik>; 
        init cluster (id=1, comment = 'Master'); 
        store node (id=2, comment = 'Subscriber', event node=1); 
        store path (server = 1, client = 2, conninfo = @master); 
        store path (server = 2, client = 1, conninfo = @sub1); 

11. Install Slony on both nodes by executing the following command as the postgres user on the
master node:

        slonik < /etc/slony/init.slonik

12. Start Slony on the master node with this command as the postgres user:

        slon replication \ 
          'dbname=postgres host=192.168.56.10 user=rep_user' \
           &> /var/log/postgresql/slony.log &

13. Start Slony on the subscriber node with this command as the postgres user:

        slon replication \ 
          'dbname=postgres host=192.168.56.30 user=rep_user' \ 
          &> /var/log/postgresql/slony.log &



How it works...
The first two steps are common to most Unix-based software. We start by extracting the source
code, bootstrapping the build process with configure, and building it with make. We choose to
install with a prefix of /usr so that Slony binaries are installed in /usr/bin. This makes executables
more easily available.

Once installed, we need to ensure that our rep_user user, which we've used in the past, has
PostgreSQL superuser capabilities. Slony performs many tasks that are only available to
superusers, so this step is not optional. Then, we modify the postgres user's .pgpass file to allow
the rep_user database user to connect from either node. While we're making user changes, we
also alter pg_hba.conf on both nodes so that each server can connect to the other. Once we reload
the PostgreSQL configuration files, the user setup is complete.

We should note that more advanced installations will probably have a specific
user for streaming replicas and a completely separate user for logical
replication solutions such as Slony due to the superuser requirement. That
wasn't entirely necessary for the purpose of this book, but do consider it when
using tools such as Slony.

With our preliminary work complete, we create a basic configuration file in the /etc/slony
directory named nodes.slonik. This file describes the name of the cluster as well as each node
and its connection parameters. We create this file because it is a preamble commonly used in all
Slony-related commands. Why not save some typing effort?

Next, we create init.slonik in the /etc/slony directory. This file actually initializes the Slony
cluster. We start by including the nodes.slonik file we created earlier, and then, we initialize node
1 as the master node. After the cluster is created, we store the node for our subscriber. The two
store path commands are necessary so that each node knows how to communicate with the
other.

We should create two path entries for each subscriber node that we create, as each channel is
unidirectional. Slony communicates like this, where each Slony box represents one path:

With our configuration files created, we need to install Slony on both nodes. We do this by
sending the contents of our init.slonik to the slonik command. The slonik tool has its own
language and interprets our configuration files as instructions. For now, these instructions tell it to
initialize a cluster named replication with one node, one subscriber, and two communication
paths.

Now that Slony is installed on both the master and subscriber nodes, we need to start the slon
utility. This tool does all of the actual work of the Slony software. It copies data to the
subscriber, schedules and executes internal events, performs maintenance, and so on. It acts like
a multipurpose daemon but does not fork or run in the background by itself. Thus, we send the



output to a log file in /var/log/postgresql, and tell it to run in the background by specifying & at
the end of the command. Once again, we have to specify connection information for these
daemons to work properly.



See also
The Slony documentation is extremely extensive and includes a tutorial similar to this one.
It also includes much more in-depth explanations of the process.

To gain a deeper understanding of Slony and its use, we recommend this URL: h
ttp://slony.info/documentation/2.2/index.html

http://slony.info/documentation/2.2/index.html


Copying a few tables with Slony
Once Slony has been installed and is running on both nodes, we can actually make use of it and
copy tables to a remote database. For high availability PostgreSQL servers, making data available
to external systems means long-running and potentially disruptive ad hoc queries run elsewhere.
It also means that reporting environments have direct copies of relevant tables and do not need
to retrieve this data from our OLTP systems.

While it is possible for OLTP servers to act as OLAP systems as well, these workloads are quite
different. For the best performance possible and the least risk of outages, each server should be
specialized. So, let's use Slony to do just that.



Getting ready
We will be continuing where we left off in the Setting up Slony recipe. Please make sure to have
completed that recipe before continuing. As we want tables to test Slony with, we should create
some. The pgbench utility can do this quickly. Execute this command on the primary PostgreSQL
server as the postgres user:

pgbench -i postgres



How to do it...
For this recipe, 192.168.56.30 will remain our subscriber. Follow these instructions to copy the
pgbench tables and all future changes from pg1 to pg2:

1. Extract the table creation statements from the primary database with the following
command as the postgres user:

        pg_dump -s -t 'pgbench*' postgres > /tmp/tables.sql

2. Create the empty tables on the subscriber node by executing this command as the postgres
user on the primary node:

        psql -U rep_user -h 192.168.56.30 -f /tmp/tables.sql postgres

3. Confirm that the tables exist on the subscriber node by executing the following SQL
statement on that system:

        SELECT schemaname, tablename FROM pg_tables
          WHERE tablename LIKE 'pgbench%';

4. Create a file named pgbench_set.slonik in the /etc/slony directory with the following
contents:

        include </etc/slony/nodes.slonik>; 
        create set (id=1, origin=1, comment='pgbench Tables'); 
        set add table (set id=1, origin=1, id=1, 
          fully qualified name = 'public.pgbench_accounts'); 
        set add table (set id=1, origin=1, id=2, 
          fully qualified name = 'public.pgbench_branches'); 
        set add table (set id=1, origin=1, id=3, 
          fully qualified name = 'public.pgbench_tellers'); 

5. Create a file named subscribe_pgbench.slonik in the /etc/slony directory with the following
contents:

        include </etc/slony/nodes.slonik>; 
         subscribe set (id = 1, provider = 1, receiver = 2, 
        forward = no); 

6. Create the pgbench subscription set with this command:

        slonik < /etc/slony/pgbench_set.slonik

7. Subscribe our secondary node to the new pgbench set with this command:

        slonik < /etc/slony/subscribe_pgbench.slonik

 

8. Execute the following SQL on the subscriber node to confirm that data is being copied:

        SELECT count(*) FROM pgbench_accounts;



How it works...
Before we can copy any data, we need to begin by copying the table structures from the primary
node to the subscriber. Slony only copies data and assumes that the source and target tables have
the exact same columns. Therefore, we use pg_dump to obtain a schema-only (-s) extract of any
table that begins with pgbench (-t 'pgbench*'). Using the -h parameter, we can execute the
resulting SQL statement on the subscriber database and create all of the pgbench tables as empty
shells.

Before attempting to create the Slony set, we should first confirm that the tables exist on the
subscriber. We can check the pg_tables view and should see these records:

Once we've done this, we can continue by creating a slonik script that will create the Slony
subscription set itself. Sets can be sent to any node that requests a subscription and only includes
tables in that set. This lets us group tables by content if necessary. Observant readers may notice
that we didn't add the pgbench_history table to the subscription set. This is because Slony only
copies tables with primary keys by default.

Slony table IDs are assigned manually and must be unique across all sets. We
recommend skipping IDs between sets in case tables are added later. An easy
rule is to add 100 or 1000 between each set. Thus, if we created another set, its
table IDs could start at 100 to provide a sufficient buffer.

Next, we create one more slonik script for the subscription command itself. As this is our first
set, its id is 1. Though Slony supports chained table replication, we don't need that for our setup,
so we disable it by setting forward to no.

To send table contents to the remote server, we simply need to create the table set on the
primary node and subscribe the secondary node to the new set. This is one reason that we
created the two slonik scripts. Another reason is due to the chance that we might need to rebuild
this Slony replication cluster in the future. By having all of these scripts, we can do this in a few
quick steps by executing all of the slonik scripts.

Provided there were no errors returned by the slonik commands, we can confirm that data is
being sent to the subscriber with a single SQL query. We should see this:

Remember that we only extracted and copied the table definitions to the remote server. If we see
any rows there, they must have come from Slony.



There's more...
Slony operates by attaching triggers to both the source and target tables. Due to this, creating a
Slony set on a very active database can cause locking contention. Why does it need triggers?
The triggers on the source system capture insert, update, and delete activities and forwards
them to the remote system. On subscriber nodes, the triggers block any insert, update, or delete
activity that does not originate from Slony itself.

The triggers also make it possible to switch between which node is the subscriber, and which is
the origin without any further table locks. Keep this in mind when copying data via Slony, or the
locks could cause query timeouts and customer complaints. Try to schedule new sets and set
modifications during maintenance periods or low-usage periods.



See also
Once again, we recommend that you read the Slony documentation if you plan to use it for
logical table replication. The rich syntax and functionality is beyond the scope of this book,
but is available at http://slony.info/documentation/2.2/index.html

http://slony.info/documentation/2.2/index.html


Setting up Bucardo
Bucardo is another popular logical replication engine that actually seems to have originated
earlier than Slony, in 2002. Like Slony, it also uses triggers to perform its synchronization
activity, but its syntax is much simpler. Furthermore, it also provides multimaster capabilities; this
means that changes made in either the primary or secondary node will appear in both copies of a
replicated table.

There is something to be said for tools that encourage simplicity when maintaining a complex
high availability architecture. Let's explore Bucardo further.



Getting ready
The latest stable version of Bucardo at the time of writing this book is 5.4.1. Obtain the latest
source package from the following URL:

https://bucardo.org/wiki/Bucardo

Bucardo is written in Perl, so it requires quite a few Perl-based prerequisites. On Debian-based
systems, install them using the following apt-get commands:

sudo apt-get install libdbix-safe-perl libdbd-pg-perl libboolean-   
perl
sudo apt-get install postgresql-plperl-9.6

Red-Hat-based systems require a bit more work. Install the EPEL package for your Red Hat
platform from the following URL:

https://fedoraproject.org/wiki/EPEL

Then, install these RPMs with the following yum command:

sudo yum install perl-DBI perl-DBD-Pg perl-DBIx-Safe perl-boolean

Next, if it isn't installed already, download and install the PostgreSQL repository by installing the
appropriate RPM from this URL:

http://yum.pgrpms.org/repopackages.php

Then, install the plperl PostgreSQL procedural language with this yum command:

sudo yum install postgresql96-plperl

https://bucardo.org/wiki/Bucardo
https://fedoraproject.org/wiki/EPEL
http://yum.pgrpms.org/repopackages.php


How to do it...
For these instructions, 192.168.56.10 is the master PostgreSQL node, and 192.168.56.30 is the
subscriber. Follow these instructions to install Bucardo:

1. Extract the source code and change to the resulting directory with these commands:

        tar -xzf Bucardo-5.4.1.tar.gz
        cd Bucardo-5.4.1

2. Build and install Bucardo with these commands as a root-capable user:

        Perl Makefile.PL
        make
        sudo make install

3. Enter the following line in the .pgpass file for the postgres user:

        *:*:*:bucardo:passwordhere 

4. Ensure that the following line exists within the pg_hba.conf file:

        host   all   bucardo   192.168.56.1/24   md5 

5. Reload the PostgreSQL service on both nodes with the following command as the postgres
user:

        pg_ctl -D /db/pgdata reload

6. Next, install a bucardo user onto the database by executing the following command as the
postgres user:

        CREATE USER bucardo WITH PASSWORD 'newpass' SUPERUSER;

7. Create directories for Bucardo to store pid and log files with these commands as a root-
capable user:

        sudo mkdir /var/run/bucardo /var/log/bucardo
        sudo chown postgres:postgres /var/run/bucardo /var/log/bucardo

8. Create a bucardo database with this command as the postgres user:

        createdb -O bucardo bucardo

 

9. Connect to the bucardo database as the postgres user and install the PL/Perl procedural
language with this SQL:

        CREATE LANGUAGE plperlu;

10. As the postgres system user, complete the Bucardo installation with this command:



        bucardo install

11. Add the postgres database with this command as the postgres user:

        bucardo add db pg1 dbname=postgres host=192.168.56.10
        bucardo add db pg2 dbname=postgres host=192.168.56.30

12. Finally, start the Bucardo service by executing this command as the postgres user:

        bucardo start



How it works...
Bucardo has a lot of prerequisites, and its installation and configuration process has become
somewhat cumbersome. Yet it also provides a proper daemon control utility in bucardo once the
onerous installation is complete. Once Bucardo is installed on the primary server, we merely
have to invoke bucardo with the install parameter to finish the process.

For Bucardo to be installed, it needs a user named bucardo and a database named bucardo. The
bucardo user acts like the rep_user user we created for replication, so it must be a PostgreSQL
superuser. As such, we need to ensure that we use a superuser for the User configuration setting
during the installation process. This is why we recommend that you run the bucardo utility as
postgres when possible. Here's what our installation screen looked like:

Once we press P and hit Enter, Bucardo is installed. This means the only steps that remain
involve starting the Bucardo service itself.

A lot of our preparatory work in creating the bucardo user and database are only
necessary because we didn't use trust authentication in pg_hba.conf. Normally
the bucardo install command does all of this for us. Unfortunately it also
contains a lot of reconnection magic and is very easy to disrupt with unexpected
settings. It's easier to simply circumvent a large portion of its installation by
doing it ourselves.

To do this, we need to prepare the /var/run/bucardo and /var/log/bucardo directories so that
Bucardo can create files there. As we are going to launch it as the postgres user, the postgres
system user needs to own these directories.

Next, we configure Bucardo itself by adding an internal alias for the postgres database on each
server. The bucardo command has a lot of operation modes, but for now, all we need to do is add
the postgres database itself. After doing so, we can start Bucardo by calling bucardo with the start
parameter. If everything goes well, we can call bucardo with the status parameter and see that it's
running, as shown in the following screenshot:



See also
Bucardo has an easy-to-follow Wiki with instructions on installation and basic
configuration. To learn more, please visit their site at this URL: https://bucardo.org/wiki/Bucardo/I
nstallation

https://bucardo.org/wiki/Bucardo/Installation


Copying a few tables with Bucardo
Bucardo provides a very capable control mechanism in bucardo. Unlike Slony, which depends on
an arcane programming language to create new replication sets and subscriptions, Bucardo is
much more straightforward. As with Slony, we still want to copy data to other servers to avoid
overwhelming our primary server.

In this recipe, we will utilize bucardo to create what Bucardo refers to as a relgroup. Bucardo
herds contain one or more tables, and they are the basis of its synchronization system.

Let's begin.



Getting ready
We will be continuing where we left off in the Setting up Bucardo recipe. Please make sure that
you have completed that recipe before continuing. As usual, we will use the pgbench utility to
create an initial set of tables. Execute this command on the primary PostgreSQL server as the
postgres user if you haven't already done so:

pgbench -i postgres



How to do it...
As with all of the previous recipes, 192.168.56.30 will remain our replication subscriber. Execute
all commands in this recipe as the postgres system user. Follow these steps to copy the sample
pgbench tables:

1. Extract the table creation statements from the primary node with the following command:

        pg_dump -s -t 'pgbench*' postgres > /tmp/tables.sql

2. Create the empty tables on the subscriber node by executing this command on the primary
node:

        psql -U rep_user -h 192.168.56.30 -f /tmp/tables.sql postgres

3. Add all of the pgbench tables to Bucardo with these commands:

        bucardo add table pgbench_accounts db=pg1
        bucardo add table pgbench_branches db=pg1
        bucardo add table pgbench_tellers db=pg1

4. Confirm tables are being tracked by executing this command:

        bucardo list tables

5. Create a Bucardo database group with this command:

        bucardo add dbgroup pgbench pg1:source pg2:target

6. Create a Bucardo relation group by executing this command:

        bucardo add relgroup pgbench pgbench_accounts \           
        pgbench_branches pgbench_tellers

7. Execute the following commands to add a synchronization set to Bucardo:

        bucardo stop
        bucardo add sync pgbench dbgroup=pgbench \               
        relgroup=pgbench onetimecopy=1
        bucardo start

8. Finally, execute this command to view the status of Bucardo:

        bucardo status



How it works...
As with Slony, we need to begin by duplicating table structures to the subscriber. Bucardo only
copies data and assumes that the source and target tables have the exact same columns.
Therefore, we use pg_dump to obtain a schema-only (-s) extract of any table that begins with
pgbench (-t 'pgbench*'). Using the -h parameter, we can execute the resulting SQL on the
subscriber database and create all of the pgbench tables as empty shells.

After copying the table definitions, we can use the bucardo tool for all the remaining steps. The
first of these include configuring Bucardo to recognize each table we want to replicate. The add
table parameter to bucardo does this. By adding the db=pg1 segment, we explicitly state which
database owns the table we're adding. In this case, pg1 is the alias we created for the
192.168.56.10 origin server during the installation of Bucardo.

To prove that Bucardo added these tables to its configuration, we can check with the list tables
parameter. Output from bucardo should resemble this:

This relation group is the equivalent of a Slony table set. Like a relation set, we also need to
define a database group. This database group will represent the source and target relationships
for all the tables we plan to synchronize. We state this relationship explicitly as pg1:source and
pg2:target so there is no ambiguity regarding how these two databases are related within
Bucardo.

With a database group defined, it's time to give directions to our relation group by utilizing the
bucardo tool again. This time, we send the add sync parameter and a few other elements. The
relgroup parameter tells Bucardo which table set we will be copying, and the dbgroup parameter
denotes which database relationship we wish to involve. Bucardo defined groups this way
because it's entirely possible for tables to exist in multiple databases. Were we to declare multiple
different database groups, we could assign the same relation group to any or all of them.

These tables are empty on the target, and this is not the behavior we want. So, we also set the
onetimecopy value to 1, indicating that it should fill the tables before keeping them updated.

This behavior is much different from how Slony works. If the source and target
tables already contain data, Slony will truncate the target and copy all data
from the source. If a table has already been synchronized before adding it to a
replication set, this redundant copying can be very expensive. Bucardo only
copies all data if it is told to do so with the onetimecopy parameter, which is a
major benefit when running a sensitive high availability cluster.

Bucardo maintains separate child processes for each replication set so that it can handle multiple
synchronization sets simultaneously. However, notice that we temporarily stopped the bucardo
service before adding the synchronization set. This is because there is currently a bug regarding
the onetimecopy parameter. If a new sync set is added while Bucardo is running, current table
contents are not copied to the target database even though we asked for an initial copy.



After Bucardo is restarted, we should view sync status to confirm that it is active and copying
our herd properly. The status output from bucardo should look like this:

From this output, we can see that the pgbench synchronization set is in Good state, and hasn't
encountered any events which would adversely affect replication.



See also
The bucardo command is extremely versatile. You can learn more about how it controls
Bucardo replication by executing the following command:

        bucardo help



Setting up Londiste
To complete our suite of popular logical replication tools, we would like to introduce Londiste.
It is one of the SkyTools PostgreSQL utilities contributed by Skype in 2007. Why another
replication system? Due to other capabilities offered by this suite of tools, you may decide to use
one or more of them. Knowing how to leverage Londiste can simplify the total software stack
and thereby increase server stability and simplicity.

In addition, like Bucardo, its usage is much simpler than Slony due to its suite of command-line
tools. Let's continue with the installation of Londiste on two PostgreSQL servers, and perhaps,
we might utilize other SkyTools functionality later.

Londiste has not seen a code update since April 2014. As such, we consider the
project abandoned. Due to several changes in the PostgreSQL code, Londiste
will not even compile against version 9.6. If you rely on this software in any
critical database, we strongly recommend switching to another logical
replication mechanism such as pglogical, Slony, or Bucardo.



Getting ready
At the time of writing this book, the latest version of Londiste is 3.2. Download the latest source
package from PGFoundry at this URL:

http://pgfoundry.org/projects/skytools

Londiste is written in Python and uses the psycopg2 PostgreSQL database library. Make sure that
this is installed before continuing. On Debian-based systems, this command will install psycopg2 if
it isn't already available:

sudo apt-get install python-psycopg2

Red-Hat-based systems should obtain the latest EPEL package from the following URL:

https://fedoraproject.org/wiki/EPEL

Then, install psycopg2 with the following yum command:

sudo yum install python-psycopg2

http://pgfoundry.org/projects/skytools
https://fedoraproject.org/wiki/EPEL


How to do it...
As before, 192.168.56.10 is the master PostgreSQL node and 192.168.56.30 is our desired
subscriber. All of the steps here should only be performed on the primary PostgreSQL server.
Follow these instructions to activate Londiste on the postgres default database:

1. Extract the source code and change to the resulting directory with these commands:

        tar -xzf skytools-3.2.tar.gz
        cd skytools-3.2

2. Build and install Londiste with these commands as a root-capable user:

        export PATH=/usr/lib/postgresql/9.5/bin:/usr/pgsql-
                    9.5/bin:$PATH
        ./configure
        make
        sudo make install

3. Repeat the first two steps on the subscriber node to install necessary PostgreSQL libraries.
4. Create a file named primary.ini in the /etc/skytools directory with the following contents:

        [londiste3] 
        job_name = primary 
        db = user=rep_user dbname=postgres host=192.168.56.10 
        queue_name = replication 
        logfile = /var/log/postgresql/londiste-%(job_name)s.log 
        pidfile = /var/run/postgresql/londiste-%(job_name)s.pid 

5. Create a file named subscriber.ini in the /etc/skytools directory with the following contents:

        [londiste3] 
        job_name = subscriber 
        db = user=rep_user dbname=postgres host=192.168.56.30 
        queue_name = replication 
        logfile = /var/log/postgresql/londiste-%(job_name)s.log 
        pidfile = /var/run/postgresql/londiste-%(job_name)s.pid 

6. Create a file named pgqd.ini in the /etc/skytools directory with the following contents:

        [pgqd] 
        logfile = /var/log/postgresql/pgqd.log 
        pidfile = /var/run/postgresql/pgqd.pid 

From this point on, all steps should be executed within the /etc/skytools directory as the postgres
user. Continue with these instructions:

1. Configure the Londiste primary node by executing this command:

        londiste3 primary.ini create-root primary \           
        "user=rep_user    
        dbname=postgres host=192.168.56.10"

2. Configure the Londiste secondary node by executing this command:

        londiste3 subscriber.ini create-leaf subscriber \         



          "user=rep_user dbname=postgres host=192.168.56.30" \       
          --provider="user=rep_user dbname=postgres host=192.168.56.10"

3. Launch the Londiste background workers with the following commands:

        londiste3 -d primary.ini worker
        londiste3 -d subscriber.ini worker

4. Finally, launch the communication queue with this command:

        pgqd -d pgqd.ini



How it works...
Unfortunately, Londiste is not as easy to manage as Bucardo. Once we extract and install the
source code, we still need to create a few configuration files and launch several background
daemons to facilitate data movement.

The first of these configuration files is primary.ini. This file should tell Londiste everything it
needs to know about connecting to the primary PostgreSQL node where the original data resides.
When we launch the worker, it will operate under the job_name specified in this file.

Next, Londiste needs to know how to connect to the database it is copying. Here, we specify the
host of the primary server, and dbname should be postgres. The queue_name is the communication
channel Londiste will use to send data to the subscriber, so we choose something that is easy to
remember. Finally, we configure a directory for the PID file and logging output. To save time,
we reused the same directories that PostgreSQL uses for the PID file and log output by default.

The subscriber also has a configuration file. This time we name it subscriber.ini, and only
change host for the database server and job_name of the worker. Otherwise, everything is the
same as in primary.ini.

The last configuration file we create is pgqd.ini. This file provides configuration information to
the pgqd queue process through which Londiste communicates. Without this configuration file
and the accompanying pgqd daemon, Londiste will simply not function. This is very different
from Slony, which operates entirely through worker processes. Imagine the situation like this
diagram:

The queue reads from the database where the queue contents are stored, and workers can
interact with each database server in any direction. In turn, they can also communicate with the
queue. Due to this structure, the queue daemon can be relocated as long as the communication
channels are preserved. Some users of Londiste leave the queue on the primary server and run
the workers from subscriber nodes. This would be a good architecture to try for high availability,
as it leaves fewer services competing for primary server resources.

 

In any case, the time has come to configure nodes by installing various database-related
components. All management of Londiste is performed with the londiste3 command-line utility.
The first required parameter is always the name of a configuration file for the node that should
be affected. Thus, we change our location to /etc/skytools so that the configuration files exist
locally.

We begin by registering the master node. Londiste will do this for us on the primary node when
we specify the create-root parameter to londiste3. This parameter also requires us to name the
node, so we use primary to keep things clear. Finally, we need a connection string where this



database configuration will be stored. Again, for the sake of simplicity, we repeat the connection
information for the primary node.

Then, we register the subscriber as a leaf node by calling londiste3 with create-leaf. Once again,
we need to specify connection information. This time, it should not be for the primary node, but
for the subscriber. Yet, registering the subscriber is not enough; we must also designate the node
where the subscriber should be registered. In this case, the primary node is where all node
registrations reside, so we repeat the primary node connection string.

Now that the nodes are registered, we can launch the worker processes. This too is done with
the londiste3 utility and should be done for both nodes. The -d parameter tells the workers to run
in the background as standard UNIX daemons, and the worker parameter instructs londiste3 to
launch a worker process. Assuming that these workers did not encounter an error, we can see
them with a quick execution of pgrep:

The last process we launch is the queue, which ties all of the Londiste pieces together. This time,
we rely on the pgqd command and use the -d parameter again so that it runs as a background
daemon.



See also
The Londiste documentation is primarily located at PGFoundry and isn't quite as organized
as what Slony and Bucardo provide. Nevertheless, this URL contains their explanation of a
very basic Londiste setup, which is similar to this recipe: http://skytools.projects.pgfoundry.org/skyt
ools-3.0/doc/howto/londiste3_simple_rep_howto.html

Do not refer to the Londiste documents on the PostgreSQL Wiki; they are extremely out of
date with the current versions of Londiste.

http://skytools.projects.pgfoundry.org/skytools-3.0/doc/howto/londiste3_simple_rep_howto.html


Copying a few tables with Londiste
Londiste provides a very capable control mechanism in londiste3. Unlike Bucardo, we don't need
to create a herd or sync, nor do we have to launch the process that handles data for a particular
herd. With Londiste, it's all about the tables.

In this recipe, we will utilize londiste3 to register all of the tables we want to copy and verify that
the data is the same on each PostgreSQL server.



Getting ready
We will be continuing where we left off in the Setting up Londiste recipe. Please make sure that
you have completed that recipe before continuing. Once again, we will use the pgbench utility to
create an initial set of tables. Execute this command on the primary PostgreSQL server as the
postgres user if you haven't already done so:

pgbench -i postgres



How to do it...
Execute all commands in this recipe as the postgres system user. Follow these steps to copy the
sample pgbench tables:

1. Extract the table creation statements from the primary node with the following command:

        pg_dump -s -t 'pgbench*' postgres > /tmp/tables.sql

2. Create the empty tables on the subscriber node by executing this command on the primary
node:

        psql -U rep_user -h 192.168.56.30 -f /tmp/tables.sql postgres

3. Make sure that you are in the /etc/skytools directory for the following steps.

4. Register all of the pgbench tables with the primary PostgreSQL server with these commands:

        londiste3 primary.ini add-table pgbench_accounts
        londiste3 primary.ini add-table pgbench_branches
        londiste3 primary.ini add-table pgbench_tellers

5. Register all of the pgbench tables with the subscriber PostgreSQL server with these
commands:

        londiste3 subscriber.ini add-table pgbench_accounts
        londiste3 subscriber.ini add-table pgbench_branches
        londiste3 subscriber.ini add-table pgbench_tellers

6. Compare data on both nodes with this command:

        londiste3 subscriber.ini compare



How it works...
Once again, we need to begin by duplicating table structures to the subscriber. Londiste only
copies data and assumes that the source and target tables have the exact same columns.
Therefore, we use pg_dump to obtain a schema-only (-s) extract of any table that begins with
pgbench (-t 'pgbench*'). Using the -h parameter, we can execute the resulting SQL on the
subscriber database and create all of the pgbench tables as empty shells.

Next, we need to be in the /etc/skytools directory. This isn't strictly required, but as the
configuration file is always the first parameter to londiste3, we would need to type the full path
to each file every time.

To register each table with the primary server, we specify its configuration file, the add-table
parameter, and the table we want to register. As with Slony and Bucardo, we need to add the
three pgbench tables with primary keys. We repeat this process for the subscriber, using its
configuration file instead.

Once we have done this, Londiste will begin by checking the table contents on each server and
copying any data that is missing on the subscriber. All future modifications will also be copied to
the subscriber.

An interesting function that londiste3 provides is the ability to confirm that data is synchronized
by performing checksum comparisons. If we wait a moment for the data to synchronize and
execute londiste3 with the compare parameter, we should see these lines for each table:



See also
The londiste3 utility is very versatile. We highly recommend that you use this URL to learn
more about its capabilities: http://skytools.projects.pgfoundry.org/skytools-3.0/doc/londiste3.html

http://skytools.projects.pgfoundry.org/skytools-3.0/doc/londiste3.html


Setting up pglogical
PostgreSQL 9.4 introduced a feature called replication slots. This essentially makes it possible to
decode the transaction log and extract database traffic for remote replay at a logical level. Unlike
standard replication that requires the primary and replica to be identical, slots can be mined for
specific information relevant to user needs.

One of the first PostgreSQL extensions to make use of replication slots is pglogical by
2ndQuadrant. Like Slony, Bucardo, and Londiste, pglogical can copy individual tables from one
database to another. Unlike those other pieces of software, it does so without encumbering tables
with performance-robbing triggers, and does not rely on an external daemon to coordinate data
copy streams.

Let's get it running.



Getting ready
The latest version of pglogical at the time of writing this book is 1.2.1. Obtain a copy of the
source code from the following URL:

https://github.com/2ndQuadrant/pglogical

 

The pglogical extension also requires several other libraries for the build to succeed. On Debian-
based systems, install them using the following apt-get commands:

sudo apt-get install libselinux1-dev libxslt1-dev libpam0g-dev   
libedit-dev

For Red-Hat-based systems, install these RPMs with the following yum command:

sudo yum install libselinux-devel libxslt-devel pam-devel libedit-  
devel

https://github.com/2ndQuadrant/pglogical


How to do it...
As usual for these instructions, 192.168.56.10 is the master PostgreSQL node, and 192.168.56.30 is
the subscriber. Follow these steps to install pglogical:

1. Obtain the most recent source distribution from the releases link here: https://github.com/2ndQua
drant/pglogical/releases

2. Extract the source code and change to the resulting directory with these commands:

        tar -xzf REL1_2_1.tar.gz
        cd pglogical-REL1_2_1

3. Build and install pglogical with these commands as a root-capable user:

        export PATH=/usr/lib/postgresql/9.6/bin:/usr/pgsql-
                    9.6/bin:$PATH
        make USE_PGXS=1 clean all
        sudo -E make install

4. Ensure that the pg_hba.conf file on the primary and subscriber server contains these lines:

        host   all           rep_user   192.168.56.1/24   md5 
        host   replication   rep_user   192.168.56.1/24   md5 

5. Ensure that the wal_level, max_replication_slots, and shared_preload_libraries settings in
postgresql.conf are set as follows on the primary server:

        wal_level = logical 
        max_replication_slots = 5 
        shared_preload_libraries = 'pg_stat_statements, pglogical' 

6. Ensure the shared_preload_libraries setting is set as follows on the subscriber server:

        shared_preload_libraries = 'pg_stat_statements, pglogical' 

7. Restart the PostgreSQL service on both servers with this command:

        pg_ctl -D $PGDATA restart -m fast

8. Create the replication user on both nodes if it doesn't already exist with this SQL statement:

        CREATE USER rep_user WITH REPLICATION SUPERUSER
              PASSWORD 'newpass';

9. On both servers, create a file named .pgpass in the postgres user's home directory with the
following contents:

        *:*:*:rep_user:newpass 

10. Alter the .pgpass file to have the correct permissions with this command:

        chmod 600 ~/.pgpass

11. Execute these statements in the postgres database on the primary server:

https://github.com/2ndQuadrant/pglogical/releases


       CREATE EXTENSION pglogical; 
       SELECT pglogical.create_node( 
       node_name := 'origin', 
        dsn := 'host=192.168.56.10 dbname=postgres user=rep_user' 
       ); 

12. Finally, execute these statements in the postgres database on the subscriber node:

       CREATE EXTENSION pglogical; 
       SELECT pglogical.create_node( 
       node_name := 'target', 
        dsn := 'host=192.168.56.30 dbname=postgres user=rep_user' 
       ); 

 



How it works...
Does this look like a lot? Most of the work is actually optional, but we wanted to show how a
specific user can be secured to operate the pglogical replication stream. This is necessary
because whichever user we choose, it must currently be a superuser, and have access to the
postgres replication stream to decode the logical instructions it contains.

Otherwise, this is no different from several other recipes in this chapter. In this case, we begin
with the standard extract, make, and make install. We also added a common export for the PATH
just in case, because the pglogical build needs some binaries that may otherwise be unavailable.

Next we change several configuration settings. The two lines in pg_hba.conf ensure that the
rep_user user can connect to both the replication stream on the primary server, along with any
database we might want to use as a source for table replication. We set wal_level to logical,
because that's a requirement to use logical replication in PostgreSQL. The previous replica
setting is only suitable for standard replication. Previous chapters already suggested a setting for
max_replication_slots, but we wanted to reinforce its importance here. And finally, we need to
include pglogical in the list of shared libraries to load on server start. By restarting Postgresql, we
activate all of these modifications.

The next steps create a rep_user user to actually manage the replication stream, with a password
saved in .pgpass so the stream is at least relatively secure. Note that we included both SUPERUSER
and REPLICATION modifiers to provide this user with appropriate privileges.

The last two steps simply install the pglogical extension in the primary and subscriber databases,
and create a node to represent each. By naming any nodes involved in replication, we can use
them in multiple replication streams if we so desire.



See also
To learn more about pglogical and PostgreSQL logical replication, refer to the following
resources:

Pglogical documentation: https://2ndquadrant.com/en/resources/pglogical/pglogical-docs/
Logical decoding concepts: https://www.postgresql.org/docs/current/static/logicaldecoding-explanation.h
tml

https://2ndquadrant.com/en/resources/pglogical/pglogical-docs/
https://www.postgresql.org/docs/current/static/logicaldecoding-explanation.html


Copying a few tables with pglogical
Once we've installed the pglogical extension, we have access to any of the functionality it
provides. For now, we're going to focus on the basic table replication features. More advanced
capabilities are available, but we won't be needing them for this recipe.

An important difference between pglogical and every other current logical replication system, is
that it does not use triggers to capture changes to table contents. With the addition of logical
replication slots, pglogical actually intercepts table changes as transactions are committed. This
makes it a perfect match for OLTP database systems that require high availability and don't want
to sacrifice performance. The transaction log is a standard part of PostgreSQL, so why not
leverage it for logical replication now that such a thing is possible?

Let's see how to copy tables with this exciting new extension.



Getting ready
We will be continuing where we left off in the Setting up pglogical recipe. Please make sure that
you have completed that recipe before continuing. As usual, we will use the pgbench utility to
create an initial set of tables. Execute this command on the primary PostgreSQL server as the
postgres user if you haven't already done so:

pgbench -i postgres



How to do it...
As with all of the previous recipes 192.168.56.10 is our origin server and 192.168.56.30 will remain
our replication subscriber. Execute all commands in this recipe as the postgres system user.
Follow these steps to copy the sample pgbench tables:

1. Extract the table creation statements from the primary node with the following command:

        pg_dump -s -t 'pgbench*' postgres > /tmp/tables.sql

2. Create the empty tables on the subscriber node by executing this command on the primary
node:

        psql -U rep_user -h 192.168.56.30 -f /tmp/tables.sql postgres

3. Execute this SQL on the primary server to create a replication set:

        SELECT pglogical.create_replication_set(set_name := 'pgbench',
            replicate_insert := TRUE, replicate_update := TRUE,
            replicate_delete := FALSE, replicate_truncate := FALSE
        );

4. Add the pgbench tables to the replication set with the following SQL on the primary server:

        SELECT pglogical.replication_set_add_table(
            'pgbench', 'pgbench_accounts');
        SELECT pglogical.replication_set_add_table(
            'pgbench', 'pgbench_branches');
        SELECT pglogical.replication_set_add_table(
            'pgbench', 'pgbench_tellers');

5. Execute the following SQL on the subscription server to subscribe to the replication we just
created:

        SELECT pglogical.create_subscription(
           subscription_name := 'pgbench',
           replication_sets := ARRAY['pgbench'],
           synchronize_data := TRUE,
           provider_dsn := 'host=192.168.56.10 dbname=postgres    
         user=rep_user'
           );

6. Check the health of our subscription with this command on the subscriber node with this
SQL statement:

          SELECT subscription_name, status, provider_node,
               replication_sets
            FROM pglogical.show_subscription_status('pgbench');



How it works...
After the last few extensions, using pglogical is almost refreshingly easy. As usual, we start by
copying the pgbench table definitions from the origin node to the subscriber. Once that is done,
the primary node has only one job: create a subscription set.

The subscription set we create is named pgbench to fit the theme of copying multiple pgbench
tables. When defining a replication set with the create_replication_set function, we actually have
a few options here that the other replication systems did not offer. In this example, we elected to
only replicate INSERT and UPDATE statements. In this scenario, the primary server can delete records
from the table, or truncate it entirely, and the copy on the subscriber will remain. The only other
step is to add all of the tables we want in that replication set with the replication_set_add_table
function.

We only need to execute a single command on the subscriber! We've already created the tables
themselves, so why complicate matters? By invoking the create_subscription function, we
specify the name of the subscription itself, the replication set we want, and the provider of the
table contents. We don't need to specify the synchronize_data parameter since it defaults to TRUE
already, but it's important to know the option is available.

If we execute the final statement on the subscriber, we should be able to determine if our data
stream is working properly. Output from this command should look something like this:

The pglogical extension works by utilizing background workers, a feature added in PostgreSQL
9.4. Since these background workers are a part of PostgreSQL itself, they're running while our
database instance is online. This is the reason pglogical does not require a daemon to manage
subscriptions or data transfers; PostgreSQL handles it automatically.



There's more...
Remember how we defined the replication set to only forward INSERT and UPDATE statements? The
primary reason to do something like this is because we're sending data to some kind of archival
system. Since these types of databases tend to accumulate data for months or even years,
they're also commonly partitioned. The pglogical extension is perfectly compatible with this
approach, but there is one caveat.

Most, if not all major PostgreSQL partitioning systems use triggers to redirect incoming data to
the appropriate partition. To ensure data gets where we need it to go, we need to modify that
trigger slightly so it's compatible with pglogical. For example, if our trigger is named
pgbench_accounts_part_trig, we'd need to execute this SQL:

ALTER TABLE pgbench_accounts
ENABLE ALWAYS TRIGGER pgbench_accounts_part_trig;

Once we've done that, we could have a single partition or hundreds, and incoming data from
pglogical will reach its appropriate destination. If we already have data in our tables, we also
need to set synchronize_data to FALSE during the subscription phase, or we might end up with
multiple copies of the origin data. This is due to limitations PostgreSQL partitions have regarding
primary keys.



See also
Again, we strongly recommend visiting the following documentation to learn more about
pglogical and logical replication slots:

Pglogical documentation: https://2ndquadrant.com/en/resources/pglogical/pglogical-docs/
Logical decoding concepts: https://www.postgresql.org/docs/current/static/logicaldecoding-explanation.h
tml

https://2ndquadrant.com/en/resources/pglogical/pglogical-docs/
https://www.postgresql.org/docs/current/static/logicaldecoding-explanation.html


Replication Management Tools
In this chapter, we will learn where to turn when the management of large PostgreSQL clusters
becomes a concern. We will cover the following recipes in this chapter:

Deciding when to use third-party tools
Installing and configuring Barman
Backing up a database with Barman
Restoring a database with Barman
Installing and configuring OmniPITR
Managing WAL files with OmniPITR
Installing and configuring repmgr
Cloning a database with repmgr
Swapping active nodes with repmgr
Installing and configuring walctl
Cloning a database with walctl
Managing WAL files with walctl
Installing and configuring WAL-E
Managing WAL files with WAL-E



Introduction
When it comes to maintaining a single PostgreSQL cluster with a single source of WAL files, our
job is an easy one. Even a small number of streaming replicas are easily managed manually with
PostgreSQL-provided tools. However, what happens when we have a large constellation of
PostgreSQL servers, such as this?

This diagram represents seven PostgreSQL servers for a single source of data. The Trading
server sends its WAL data to a secondary system for safekeeping. One replica subscribes directly
to the Trading database, while two others acquire their data through cascading replication. All
clones are attached to the WAL archive in case their respective streams get disconnected.

Further complicating the situation, there's an off-site copy of the entire architecture for disaster
recovery. Even though the recovery copy in the alternate data center is reduced in terms of
capabilities, it still requires several servers for the client applications to run properly. Worse still,
in the event of a failure in the primary data center, we will need to promote the Disaster
Recovery systems to full write functionality. How then, do we rebuild the primary architecture
and all of its clones when it's time to revert?

There are too many moving parts to reliably handle so many servers. This chapter is dedicated
to managing several servers with automated tools, thus removing the risk of human error. When
maintaining a high-availability cluster, leveraging these tools is essential.



Deciding when to use third-party tools
Not every PostgreSQL cluster is as advanced as the example we used in the introduction, yet
some are far larger. How do we decide when a cluster architecture becomes unsafe to manage
by hand? How do we integrate backups, WAL archival, and streaming targets without
overloading the primary server? Are the included PostgreSQL tools sufficient, or do we need
something more advanced?

There are a lot of questions to ask, and thanks to the PostgreSQL community, we have answers
for many of them. This recipe will act as a worksheet to assess the interconnections between all
of the various necessary servers. Once we've properly summarized the intricacy involved, we
can decide if outside assistance is needed.



Getting ready
We will be filling out a very short spreadsheet inventory of our PostgreSQL servers. Be sure to
have access to a spreadsheet program before continuing. We also strongly recommend a diagram
of all PostgreSQL servers for each segment of your database architecture. Whether we are in the
planning or deployment phases, we need to know how servers will be interconnected.



How to do it...
Follow these steps to determine the extent of the necessary automated tooling:

1. Create a spreadsheet with the following columns: Server Name, Source, Environment, Streaming,
Promotion, and Backup.

2. Consider using an external tool if any of these are true:
For Environment, use Production or Disaster Recovery
Specify True or False for Streaming if the server is a streaming provider or recipient
Mark the Promotion column as True or False if the server can be promoted to be the
master copy for the whole constellation of servers
Indicate True or False for Backup if the server is used for backups

3. Create a row for each server indicating its Server Name and the Source of its data.

4. For each row, set the corresponding attribute column as follows:
The Disaster Recovery environment has three or more servers
Any server has more than two rows in the spreadsheet
Three or more servers use streaming replication



How it works...
The idea behind this spreadsheet is that we want to list every connection between every server.
This means some servers may be listed multiple times. With this in mind, we start with six
columns to track important attributes. This example spreadsheet represents part of our
architecture in the introduction:

As the current production server has no data source, we leave that field blank. Otherwise, each
row has important attributes. The Environment column, for instance, helps us decide whether or
not we need tools to coordinate data movement between data centers or server clusters. If there
are too many Streaming servers or too many clones are eligible for Promotion, rearranging might be
excessively difficult.

However, why does Backup get its own attribute column? Backup servers deserve special
attention due to their importance. Not only might data or WAL backups be sources for new
clones, but their role might change based on the current primary server. If this is overly complex,
tools might be the best approach to management.

If we consider our rules, they are arbitrary for a reason. Some DBAs may find it easy to handle
server rebuilds, and we commend them. However, we believe three or more servers in any
major role render a constellation effectively unmanageable. This is true whether it is the DR
environment as a whole, any server is used in two or more relationships, or streams are used
extensively.



There's more...
Why do we think that three is the magic number when evaluating our ability to manage
PostgreSQL relationships? The answer is reorganization.

If we ever need to utilize the DR environment, the entire primary system must eventually be
rebuilt. Likewise, if a streaming replica is promoted, every server that once depended on the
primary must switch to its stream instead. These actions take time and must be repeated at least
twice as three or more servers are involved. Every time a command is manually invoked, there's
a chance of a mistake.

Highly available servers do not have the luxury to withstand accidents. One misapplied stream
change might spell the difference between platform errors, a system outage, or normal operation.
We can't take that chance. So, we can either write our own tools to prevent these types of
problems or take advantage of those that are already available.



Installing and configuring Barman
Though PostgreSQL provides a very capable tool in pg_basebackup, it's not really a complete
backup management system. Barman is a Backup and Recovery Manager developed by
2ndQuadrant to remedy that situation.

Unlike the included utilities, Barman can receive WAL archives, produce and restore database
backups, list available backups, control backup retention policies, and more. With a single
command, we can manage backups of any PostgreSQL server we've configured Barman to
recognize. Further, we can accomplish this from the backup server itself with no need to perform
any local post-installation tasks on any PostgreSQL servers.

However, before we can get any of these abilities, we must first install and configure Barman.
This recipe will walk you through this process as simply as possible.



Getting ready
At the time of writing this book, the most recent version of Barman is 2.0. Because of
2ndQuadrant's close interaction with the PostgreSQL community, it is available within the
PostgreSQL package repositories. If you are using a Debian or Ubuntu-based system, follow the
instructions at this URL to add the PostgreSQL repository to the system that will be running
Barman:

http://wiki.postgresql.org/wiki/Apt

Otherwise, Red Hat-based systems should add the PostgreSQL repository by installing the
derivative-appropriate RPM located at this URL:

http://yum.postgresql.org/repopackages.php

We recommend that you use repositories only, as the repository-provided packages perform
tasks other than software installation, such as user creation.

http://wiki.postgresql.org/wiki/Apt
http://yum.postgresql.org/repopackages.php


How to do it...
For this procedure, we will need two servers. The backup server will be named pg-backup, and
our primary PostgreSQL server will be named pg-primary. Make sure to have passwords for both
the barman and postgres system users and the postgres database user. As usual, our database is
located at /db/pgdata.

Follow these steps:

1. Install the Barman toolkit as a root-capable user:
For Red Hat-based servers, use the following command: sudo yum install barman
Debian-based systems should use this command instead: sudo apt-get install barman

2. On the pg-backup server as the barman user, execute the following commands for direct SSH
access to pg-primary as the postgres user:

        ssh-keygen -t rsa -N ''
        ssh-copy-id postgres@pg-primary

3. On the pg-primary server as the postgres user, execute the following commands for direct
SSH access to pg-backup as the barman user:

        ssh-keygen -t rsa -N ''
        ssh-copy-id barman@pg-backup

4. Ensure that the following line exists in the pg_hba.conf file on pg-primary:

        host   all   postgres   pg-backup   md5 

5. Make sure that the following settings are configured in postgresql.conf on pg-primary:

        archive_mode = on 
        archive_command = 'rsync -aq %p \ 
                barman@pg-backup:primary/incoming/%f' 

6. Enter the following line in the .pgpass file for the barman user on pg-backup:

        *:*:*:postgres:postgres-password 

7. Restart the PostgreSQL service on pg-primary with the following command as the postgres
user:

        pg_ctl -D /db/pgdata restart

8. Add the following to the end of /etc/barman.conf or /etc/barman/barman.conf, depending on
which exists:

        [primary] 
        description = "Primary PostgreSQL Server" 
        conninfo = "host=pg-primary user=postgres" 
         ssh_command = "ssh postgres@pg-primary" 
            archiver = on 

9. As the barman user on pg-backup, execute the following command to check the primary



server's configuration entry:

        barman check primary



How it works...
Our first step is to install Barman itself. As this book focuses on Red Hat-based and Debian-
based Linux systems, this process is very simple. Barman is available in the PostgreSQL
repositories for either platform, making the first step the easiest. Unfortunately, we have quite a
few more steps to complete.

In order for Barman to work properly, it must be able to retrieve PostgreSQL files from the pg-
primary server. Similarly, the postgres user needs to be able to transmit files to pg-backup through
rsync. To facilitate this, we generate SSH keys on each server with ssh-keygen. We set the key
type to RSA with the -t parameter and set the pass-phrase to a blank value with -N. This allows
each server to communicate with the other without a password, yet do so securely. The ssh-copy-
id command sends the public key to the desired server. This is why we need the barman and
postgres system user passwords.

Next, we need to modify pg_hba.conf on the pg-primary server to allow the postgres database user
to connect from pg-backup. While we're changing PostgreSQL settings, we also need to enable
archive_mode and set archive_command to send archived WAL files to the pg-backup server for storage
in a directory where Barman expects to find them. Once we restart PostgreSQL with pg_ctl, we
are finished making changes on the pg-primary server.

When we install the Barman packages, they should create a configuration file named barman.conf
in either the /etc or /etc/barman directory. In order to manage our pg-primary server, we need to
add a few new lines to this file. The first is a label for the section so that Barman knows primary
refers to the pg-primary PostgreSQL server. By setting conninfo, Barman can use internal Python
libraries to perform management functions that require direct database access. And ssh_command
tells Barman how to access files on the pg-primary server as the postgres system user.

That's a lot of preliminary work, but if everything goes well, the barman command-line tool will
be fully functional. We can test this by checking the status of the server that we've configured
under the primary label. It's important that we use barman with the check primary parameters,
because it doesn't just check the server status; it also creates various directories and tracking files
that it uses to manage the PostgreSQL server backups. If everything goes as expected, the server
status should resemble this output:



There's more...
As of version 2.0, Barman now supports obtaining backups from the primary server through the
use of streaming replication. Since most major utilities and the core functionality recommend
streaming replication in place of direct file manipulation, you might want to consider using it
instead. To configure Barman to use streaming replication instead of rsync, we'll need to modify
the configuration entry we appended to resemble this:

[primary] 
description = "Primary PostgreSQL Server" 
conninfo = "host=pg-primary user=postgres" 
streaming_conninfo = "host=pg-primary user=rep_user" 
streaming_archiver = on 
slot_name = "barman" 
backup_method = "postgres" 

Once we've made these changes, we can remove the archive_command setting from postgresql.conf.
We also need to launch a secondary process as the barman system user to obtain a steady stream
of transaction log traffic for backup purposes. Use these commands when relying on Barman
streaming:

barman receive-wal --create-slot primary
barman receive-wal primary &>/var/log/postgresql/barman.log &

The first command creates the replication slot on the primary server. We've discussed these
before in the previous chapter. The second command launches the transaction log consumer and
runs it in the background. Any output will be directed to a log file, just in case it produces any
messages we might want to save for later.

We should mention that this carries a tremendous caveat. When using the postgres backup
method, instead of using rsync to synchronize data, Barman will invoke pg_basebackup. Since this
utility copies the whole database every time, it's simply not suited to extremely large instances.

In cases where PostgreSQL data exceeds 1 TB-2 TB, streaming settings can still be used for
obtaining transaction logs. We can do this by setting the backup_method to rsync, and adding the
ssh_command line from our previous configuration.



See also
Barman has a very clean and concise website, which includes basic documentation on installation
and usage.

For further reading, we recommend these URLs:

Barman: http://www.pgbarman.org/
The Barman documentation: http://docs.pgbarman.org/release/2.0/

http://www.pgbarman.org/
http://docs.pgbarman.org/release/2.0/


Backing up a database with Barman
After Barman is installed, we should be able to leverage any of its capabilities using the Barman
command-line tool. For now, we will focus entirely on creating a backup, verifying that the new
backup exists, and examining its contents.

Barman doesn't just produce backups, it also catalogs them extensively. We will use this to our
advantage in this recipe to prove that Barman works as advertised.



Getting ready
This recipe depends on Barman being installed on a backup server. Please follow the Installing
and configuring Barman recipe before continuing.



How to do it...
All steps should be executed as the barman system user on the pg-backup server that we were using
in the previous recipe. Follow these steps to create, verify, and examine a Barman backup:

1. Create the first backup with this command:

        barman backup primary

2. Examine a list of backups with this command:

        barman list-backup primary

3. View the metadata of the most recent backup with this command:

        barman show-backup primary latest

4. View all of the files in the most recent backup with this command:

        barman list-files primary latest



How it works...
Creating a backup is extremely easy. To do so, we merely need to invoke the barman command
with the backup parameter and specify primary as the label we want to back up. When activated,
Barman contacts the pg-primary server and tells it to enter backup mode. It then retrieves all
database files over SSH and saves them in its backup catalog. We can view the contents of the
catalog in several ways.

The first way to examine the catalog is using the list-backup parameter. On our test server, we
would expect to see output similar to this:

Backups are listed from least to most recent. The first column is the name of the server that
Barman backed up. The second column details the unique ID of the backup and is composed
primarily of the time and date the backup started. All further commands need this ID, as it tells
Barman which backup we want to view.

Barman provides a few convenient shortcuts to avoid needing the backup IDs.
The latest keyword, for example, always resolves to the ID of the most recent
backup.

We won't show the output of the next two commands because they're very large. However, we
can explain what they would display. In the case of the show-backup parameter to barman, we get to
see the metadata of the backup itself. Metadata may include the start and stop time of the
backup, the timeline the server was on, the range of WAL files produced during the backup, and
so on.

We can also observe the full contents of the backup. If we invoke barman with the list-files
parameter and pass the ID of the backup we want to view, it sends a list of every file that it has
stored. This includes any WAL files necessary to restore this particular backup.



There's more...
We referred to retention policies at the beginning of this recipe. This means that we can
configure Barman to only retain a certain number of backups to avoid exhausting disk space. We
begin by adding this line to the barman.conf file under the primary label:

retention_policy = RECOVERY WINDOW OF 1 WEEK 

Then, Barman will delete any backup files or WAL archives not necessary to restore backups
less than 1 week in age. To perform this maintenance, execute the following command regularly:

barman cron

We suggest that you invoke barman with the cron parameter daily within cron itself to automate the
process.



See also
The barman command tool has a manual that we can view locally. Use this command to
learn more about what it can do:

        man barman

We would also like to recommend the Barman documentation again. It really does a very
good job at describing some of the more advanced functionality. For reference, use this
URL: http://docs.pgbarman.org/

http://docs.pgbarman.org/


Restoring a database with Barman
As you might expect, Barman does not just create backups, it can also restore them. This
functionality can be used to restore the current server, but its real power lies in its ability to
restore data remotely. With this capability and a little bit of preparation, we can clone a
PostgreSQL backup any number of times without straining the primary database server.

In this recipe, we will explore Barman's recovery aptitude and the steps necessary to start a
PostgreSQL server cloned by Barman.



Getting ready
This recipe depends on Barman being installed on a backup server and at least one backup
registered in the backup catalog. Please follow the Installing and configuring Barman and
Backing up a database with Barman recipes before continuing.



How to do it...
For this procedure, we will need one new server. The backup server will remain pg-backup, but
we need a target server for the restore. This server will be named pg-clone. Make sure to have
the password for the postgres system user on this server. As usual, our database will be located at
/db/pgdata:

1. On the pg-backup server as the barman user, execute the following command for direct SSH
access to pg-clone as the postgres user:

        ssh-copy-id postgres@pg-clone

2. Ensure that the target restore directory is empty on pg-clone with this command executed as
the postgres user:

        rm -Rf /db/pgdata

3. Transmit the backup to pg-clone by running this command as barman on the pg-backup server:

        barman recover --remote-ssh-command "ssh postgres@pg-clone"\
        primary latest /db/pgdata

4. As the postgres user on pg-clone, start the PostgreSQL service with the following command:

        pg_ctl -D /db/pgdata start



How it works...
As with our Barman installation process, we need to ensure that Barman can communicate
directly with the PostgreSQL clone system. Once more, we rely on ssh-copy-id to transmit the
necessary SSH key to the pg-clone server.

The next step is to erase any existing PostgreSQL files on the target server. This step should not
be necessary on a new server, but it never hurts to double-check. Assuming that the postgres
user has permission to write to the /db directory, we are now ready to recover the backup to the
pg-clone server.

At this point, we want to invoke the barman command with its recover operand. Remember, the
default recovery system is the local server. As we're executing commands from pg-backup, that's
not entirely useful to us. Instead, we want to send the data to pg-clone. We do this using the --
remote-ssh-command parameter and by specifying the ssh command necessary to reach the pg-clone
server. This is why we copied Barman's public RSA key to pg-clone.

The next parameter for barman includes the label of the backup we want to restore, the ID of the
specific backup, and the directory where the files should be located. In this case, we are
restoring the primary database using the latest backup and restoring to the /db/pgdata directory.
We want the output of this command to look like this:

If we follow the advice that Barman gives after this step completes, we should give a cursory
look at postgresql.conf to ensure that the server will run properly on pg-clone. Barman also
disabled the archive_command setting on the newly restored server. As this was a command to send
files to pg-backup, this is a very good thing! We don't want the new server polluting our WAL
archive with invalid files.

The final step is to start the PostgreSQL server on the new pg-clone server with pg_ctl.



There's more...
Barman does not have a mode to initialize the newly-restored server as a streaming replica of the
original. To do this, create a file named recovery.conf in the /db/pgdata directory with the
following contents before starting PostgreSQL:

standby_mode = 'on' 
primary_conninfo = 'host=pg-primary user=postgres' 

If you've followed the recipes in the previous chapters, you may also consider using the rep_user
user instead, as we created it specifically for replication purposes.



See also
The barman command tool has a manual we can view locally. Use this command to learn
more about what it can do:

        man barman

To get more immediate output for the restore mode's parameters, execute this command:

        barman recover



Installing and configuring OmniPITR
Up until now, we've been managing WAL files with tools such as cp or rsync. Our end goal was
to transmit these to a backup server so that the WAL files were safe long-term in case we needed
them for PITR recovery. As a bonus, the backup server is a central location that can be
committed to tape regularly so that our PostgreSQL databases are preserved so long as we retain
the tapes.

While this is a valid and functional approach, logging options, debugging, and flexibility are
somewhat limited. Regular operating-system tools are not specifically designed to process
PostgreSQL WAL files. Though we can use them for that purpose, there are better utilities
available. OmniPITR is a powerful toolkit developed by OmniTI to manage PostgreSQL
backups, restores, and WAL files.

This recipe will focus on installing OmniPITR so that we can use it later.



Getting ready
At the time of writing this book, the most recent version of OmniPITR is 1.3.3. In order to
install it, we would like to introduce the PostgreSQL Extension Network (PGXN). PGXN is a
site that attempts to collect PostgreSQL-related tools and extensions in a single place to simplify
usage. PGXN is located at this URL:

http://pgxn.org/

PGXN provides a command-line tool named pgxn to access the PGXN repository, which we
can install with Python's setuptools. Use this command to install pgxn:

sudo easy_install pgxnclient

http://pgxn.org/


How to do it...
For this procedure, we will continue to use two servers. The backup server will still be named
pg-backup, and our primary PostgreSQL server is still pg-primary. Make sure to have the password
for the postgres system user.

Follow these steps to install OmniPITR on both pg-backup and pg-primary:

1. Download OmniPITR using the pgxn utility with this command:

        pgxn download omnipitr

2. Unzip and relocate the OmniPITR files with these commands as a root-capable user:

        unzip omnipitr-1.3.3.zip
        cd omnipitr-1.3.3
        sudo cp bin/* /usr/local/bin
        sudo cp -R lib/OmniPITR /usr/local/lib
        sudo cp -R doc /usr/local

3. Check the OmniPITR installation with the following command:

        sanity-check.sh

4. As the postgres user on pg-primary, generate an RSA key pair and transmit it to pg-backup
with these commands:

        ssh-keygen -t rsa -N ''
        ssh-copy-id postgres@pg-backup

5. As the postgres user on pg-backup, generate an RSA key pair and transmit it to pg-primary
with these commands:

        ssh-keygen -t rsa -N ''
        ssh-copy-id postgres@pg-primary



How it works...
Unlike some other toolkits, OmniPITR is purely a set of command-line utilities. As such, its
authors never created a proper installation process. With this in mind, we start by downloading
the latest omnipitr package from PGXN. Unlike the omnipitr package's install parameter, the
download parameter simply retrieves the indicated package and saves it in the local directory.

With the archive saved locally, we begin by extracting its contents and entering the resulting
directory. OmniPITR itself is a collection of tools located in the bin/ directory, so we move those
files into /usr/local/bin for easy invocation. Due to the way OmniPITR was written, it searches
for the doc/ and lib/ directories at the same level as the bin/ directory. This means that the
utilities should work if we copy the contents of these directories to /usr/local as well.

The doc/ directory is important for one simple reason: usage. As OmniPITR has
no traditional manual pages, the only way to view help topics for each
command is with the --help or --man parameter. This will only work if we install
the doc/ directory where OmniPITR expects to find it.

Next, we should verify that OmniPITR is properly installed and will function as expected. It is
distributed with a file named sanity-check.sh, which we installed with the other files in the bin/
directory. If we execute this command, it will examine various resources and produce a report.
The report for our test system looks like this:

Provided the sanity check succeeded, we still need to facilitate communication between pg-backup
and pg-primary. To do that, we generate an RSA key pair on each server as the postgres user and
send it to the other system. We've performed this task before, so it should come as no surprise
now. We do this so that automated tools can transmit files securely.

At this point in the book, it is extremely likely that you already have an SSH key
for the postgres user on pg-primary. If that's the case, you only need to use the
ssh-copy-id command to ensure that the key is located on pg-backup. Don't
overwrite the key you already have!



See also
Both OmniPITR's documentation and the software itself are available on PGXN. To view their
installation and usage documents, please use the following URLs:

OmniPITR-Installation: http://pgxn.org/dist/omnipitr/doc/install.html
OmniPITR-how to setup: http://pgxn.org/dist/omnipitr/doc/howto.html

http://pgxn.org/dist/omnipitr/doc/install.html
http://pgxn.org/dist/omnipitr/doc/howto.html


Managing WAL files with OmniPITR
We've stated on several occasions that WAL files are very important. Their role in PostgreSQL
crash recovery, backup restoration, and replication gives them a central role in maintaining a high
availability cluster. With OmniPITR, we can upgrade communication between servers to ensure
that we have logging for every step of a WAL file's movement. This is no small benefit, and we
can use it to audit the entire transmission path if we encounter a problem.

Though OmniPITR is a full suite of backup-related tools, we wish to focus on its ability to give
us better control of WAL archival and recovery. As a consequence, this recipe will describe
usage of the omnipitr-archive command.



Getting ready
This recipe depends on OmniPITR being installed on all servers that need to utilize it. Please
follow the Installing and configuring OmniPITR recipe before continuing.



How to do it...
For this procedure, we will continue to use two servers. The backup server will still be named
pg-backup, and our primary PostgreSQL server is pg-primary. As usual, the PostgreSQL data
directory will be located at /db/pgdata.

Follow these steps to send WAL files from pg-primary to pg-backup:

1. On the pg-backup server, create a directory writable by the postgres user with the following
commands as a root-capable user:

        sudo mkdir /db/pg_archived
        sudo chown postgres:postgres /db/pg_archived

2. Create a file named omnipitr.conf in the /etc directory on pg-primary with the following
contents:

        --data-dir /db/pgdata 
        --dst-remote postgres@pg-backup:/db/pg_archived 
        --log /var/log/postgresql/omnipitr.log 

3. Modify the postgresql.conf file on pg-primary and ensure that the following parameters are
set:

        archive_mode = on 
        archive_command = 'omnipitr-archive \ 
                         --cfg=/etc/omnipitr.conf %p' 

4. Restart the PostgreSQL server with the following command as the postgres user:

        pg_ctl -D /db/pgdata restart

5. Examine the contents of the omnipitr.log logfile with this command as the postgres user:

        tail /var/log/postgresql/omnipitr.log



How it works...
We start by ensuring that the postgres user can write to the /db/pg_archived directory on the pg-
backup server, which is the location we've set aside to hold WAL files. This is also the only step
we perform on the pg-backup server.

One interesting thing to consider about OmniPITR is that it reads configuration files in a similar
manner to command-line parameters. With this in mind, and to avoid long and confusing
command-lines, we save several in a configuration file for later use.

The first is the path to the PostgreSQL data directory. If this is unset, OmniPITR will assume
that the WAL files are local to the data directory in pg_xlog. While this will work, it's better for
logging purposes to set this explicitly to /db/pgdata. The second is the remote path to WAL files.
As we created the /db/pg_archived directory on pg-backup, we use that same location here. Finally,
we'll commit logs to the /var/log/postgresql directory, which should already exist on most Red
Hat- and Debian-based servers.

Now, we need to ensure PostgreSQL uses OmniPITR to send the files to pg-backup. Once we've
confirmed that archive_mode is on, we can set archive_command to invoke omnipitr-archive. Because
of our earlier work, we only need to set two parameters. The first is the full path to the
configuration file we created, and the second is %p, which represents the full path to the WAL file
that PostgreSQL wants to archive. Once PostgreSQL is restarted, it will use OmniPITR to
manage its WAL files.

We should note that we only need to fully restart PostgreSQL if archive_mode was
previously set to off. Otherwise, a simple reload will cause PostgreSQL to use
the newly-defined archive_command value.

Unlike Barman, OmniPITR has no command to verify that it's working properly. To do this, we
must examine the logfile. If we look at the end of the omnipitr.log file in /var/log/postgresql/ with
tail, we should see something like this:



There's more...
Perceptive readers may have noticed that we don't present an analogous situation to pull WAL
files from the pg-backup server to a hot-standby. Unfortunately, while the provided omnipitr-
restore command will move WAL files to their expected locations and include logging, it cannot
retrieve these files from a remote server. We are not entirely sure why the authors of OmniPITR
would neglect to include this functionality, but it is an issue that we cannot overcome.

As such, we do not recommend using OmniPITR to maintain clones or streaming replicas with
our suggested architecture. An off-site backup server is invaluable, which means that remote
WAL files are an inescapable reality.

This does not imply that OmniPITR is completely unsuited to manage certain elements of larger
clusters. If you have time, examine the documentation of each OmniPITR utility and consider
how each might be beneficial to your architecture.



See also
While OmniPITR does not install manuals locally, we can invoke its tools to learn more
about them. To see the full capabilities of omnipitr-archive, use this command:

        omnipitr-archive --help

OmniPITR's documentation is also available on PGXN. To view the manual for omnipitr-
archive there, please visit this URL: http://pgxn.org/dist/omnipitr/doc/omnipitr-archive.html

http://pgxn.org/dist/omnipitr/doc/omnipitr-archive.html


Installing and configuring repmgr
It's time to address the elephant in the room. When managing a wide PostgreSQL cluster, we will
often need to rebuild, reassign, and repair nodes that are replicas of our primary server. If we
remember our rule-of-threes, three or more nodes make it difficult and error prone to perform
any task related to replication.

While Barman and OmniPITR are useful, neither of them is capable of managing a wide
network of PostgreSQL replicas. This is why we would like to thank 2ndQuadrant for repmgr.
With it, we can create new clones and add them to an existing cluster of PostgreSQL servers. We
can shut down the existing primary server and promote any node in this network. Further, all of
the existing replicas automatically consider the promoted node their new source of streaming
updates.

This may not be the first tool to perform this task, but it is one of the best available. We'll tackle
the process of installing it in this recipe before moving on to usage scenarios.



Getting ready
At the time of writing this book, the most recent version of repmgr is 3.2.1. As with Barman,
repmgr is available within the PostgreSQL package repositories. If you are using a Debian or
Ubuntu-based system, follow the instructions at the following URL:

https://wiki.postgresql.org/wiki/Apt

It will provide instructions to add the PostgreSQL repository to any system that will be running
as a repmgr server or client.

Otherwise, Red Hat-based systems should add the PostgreSQL repository by installing the
derivative-appropriate RPM located at this URL:

https://yum.postgresql.org/repopackages.php

We recommend that you use repositories only, as the repository-provided packages perform
tasks other than software installation, such as user creation.

https://wiki.postgresql.org/wiki/Apt
https://yum.postgresql.org/repopackages.php


How to do it...
For the purposes of this recipe, we will need two servers. The primary PostgreSQL node will be
named pg-primary, and the replica will be pg-clone. Both servers exist on the 192.168.56.0 subnet.
As always, the /db/pgdata path will be our default data directory. Be sure to have the password
for the postgres system user ready.

Follow these steps to install repmgr on both servers:

1. Red Hat-based systems should use this command as a root-capable user:

        sudo yum install repmgr

2. Debian-based systems should use this command instead:

        sudo apt-get install repmgr postgresql-9.6-repmgr

Next, follow these steps on pg-primary to set it up as a master node. We'll consider pg-clone in the
next section:

1. As the postgres user, generate an RSA key pair and transmit it to pg-clone with these
commands:

        ssh-keygen -t rsa -N ''
        ssh-copy-id postgres@pg-clone

2. Modify the postgresql.conf file and set the following parameters:

        wal_level = replica 
        archive_mode = on 
        archive_command = 'exit 0' 
        hot_standby = on 

3. Modify the pg_hba.conf file and add the following lines:

        host   all           postgres   192.168.56.0/24   trust 
        host   replication   postgres   192.168.56.0/24   trust 

4. Restart the PostgreSQL service as the postgres user with this command:

        pg_ctl -D /db/pgdata restart

5. Execute this command to find the binary path to PostgreSQL tools:

        pg_config --bindir

6. Create a file named /etc/repmgr.conf with the following contents:

        cluster=pgnet 
        node=1 
        node_name=parent 
        conninfo='host=pg-primary dbname=postgres' 
        logfile='/var/log/postgresql/repmgr.log' 
        loglevel='INFO' 
        pg_bindir=[value from step 5] 



7. Register the master node with the following command as the postgres user:

        repmgr -f /etc/repmgr.conf master register

8. Start the repmgrd daemon with the following command as a root-level user:

        sudo service repmgrd start

9. Examine the repmgr logfile with cat:

        cat /var/log/postgresql/repmgr.log



How it works...
This may seem like a lot of instructions, but they're actually very simple, merely numerous. We
start the process by actually installing repmgr on both nodes. Depending on our OS, we do this
either with yum or apt-get.

Once we've installed repmgr, we want to focus on pg-primary as it will be the source of all of our
data clones. To facilitate secure communication, our first job is to establish an RSA SSH key pair
and transmit it to the clone. For repmgr to work best, every server should be able to interact with
every other server in this manner.

Then, we need to modify some PostgreSQL configuration files. We start with the postgresql.conf
file. Earlier chapters recommend that you set wal_level to replica, but what about the other
settings? We've already used archive_mode in this chapter; however, we've set archive_command to
exit 0. In Unix, any command that exits with a status of 0 is assumed to be functioning properly.
Thus, PostgreSQL will believe that its archive process always succeeds. After that, we enable
hot_standby to simplify replica creation. This parameter is ignored on primary nodes but ready
when the configuration file is copied to a replica.

Next, we add two lines to the pg_hba.conf file to allow the postgres user to connect to any
database, including the replication pseudo-database. To follow our example, we allow these
connections to originate from anywhere within the 192.168.56.0 subnet.

Though our example uses trust authorization, we suggest that real production
systems utilize .pgpass files and md5 authentication instead. Unless the
PostgreSQL servers can communicate directly on a private firewalled network,
this setup allows any user on these servers to clone our database. Further, only
use the postgres database user when configuring repmgr. There is currently a
bug that prevents repmgr from working properly if you are using any other
superuser name.

To finish our configuration duties, we create a single file named repmgr.conf in the /etc directory.
We named the repmgr cluster pgnet, noted that this is our first node, and named our node parent
as it is easy to remember. The connection information needs to match our entry in pg_hba.conf;
thus, we use the repmgr user that we added to the database earlier.

The next thing we want to do is capture log output. Unfortunately, the default behavior redirects
log information to the console, which is not captured. Thus, we change it to use a file in
/var/log/postgresql instead. We also take the opportunity to make the output more verbose for
demonstration purposes by setting loglevel to INFO. Once we've established a working system, it's
probably better to comment out this line and restart repmgr.

Finally, we set pg_bindir so that repmgr always knows where to find certain PostgreSQL binaries.
This setting is supposed to be optional, but we ran into several problems when we tried to omit
this entry; just keep it for now.

Now that everything is prepared, we can finally register the primary node and complete the
installation process by creating various database objects. These steps are all performed by the



repmgr command, provided we specify the configuration file with -f and use the master register
parameter. Our output should look something like this:

We're almost done! The repmgr system comes with a daemon that manages communication and
controls behavior between other repmgr nodes. If we start this daemon, repmgr will run in the
background and await the arrival of new clones. If we examine the log output in
/var/log/postgresql, we'll see the initial startup messages:



See also
The repmgr system exists mainly as a source repository, making the documentation
somewhat sparse. However, it does provide a very lengthy installation and usage overview
at this URL: https://github.com/2ndQuadrant/repmgr

https://github.com/2ndQuadrant/repmgr


Cloning a database with repmgr
As repmgr is a client/server PostgreSQL management suite, we need at least two nodes involved
before we're really using it. We can perform the tasks outlined in this recipe as many times as we
wish, creating several clones and registering them with repmgr. Of course, this book is for
demonstration purposes, so we'll leave the larger clusters to you. With multiple nodes involved,
the chances of data loss or system outages decline, which is excellent for our goal of high
availability.

This recipe will focus on the process necessary to add a node to an existing repmgr cluster. The
existing cluster in our case is the one that we established on pg-primary in the previous recipe.



Getting ready
This recipe depends on repmgr being installed on both a primary server and the clone that we
will use. Please follow the Installing and configuring repmgr recipe before continuing.



How to do it...
For the purposes of this recipe, pg-primary will remain our master node, and the replica will be pg-
clone. As always, the /db/pgdata path will be our default data directory. Be sure to have the
password for the postgres system user ready.

All of these commands should be executed from pg-clone. Follow these steps to produce a fully
functional repmgr replica:

1. As the postgres user, generate an RSA key pair and send it to pg-primary with these
commands:

        ssh-keygen -t rsa -N ''
        ssh-copy-id postgres@pg-primary

2. Clone the data on pg-primary with the following command as the postgres user:

        repmgr -D /db/pgdata standby clone -F pg-primary

3. Start the new clone as the postgres user with pg_ctl:

        pg_ctl -D /db/pgdata start

4. Execute this command to find the binary path to the PostgreSQL tools:

        pg_config --bindir

5. Create a file named /etc/repmgr.conf and enter the following contents:

        cluster=pgnet 
        node=2 
        node_name=child1 
        conninfo='host=pg-clone dbname=postgres' 
        logfile='/var/log/postgresql/repmgr.log' 
        loglevel='INFO' 
        pg_bindir=[value from step 4] 

6. Register pg-clone with pg-primary as the postgres user:

        repmgr -f /etc/repmgr.conf standby register

7. Start the repmgrd daemon with the following command as a root-level user:

        sudo service repmgrd start

8. Connect to the postgres database and view the status of repmgr with this SQL statement:

        SELECT standby_node, standby_name, replication_lag   FROM  
        repmgr_pgnet.repl_status;



How it works...
Because the replica is based on the primary, much of the preliminary work we performed in the
previous recipe is inherited. One thing we can't avoid is creating an SSH key for direct server-to-
server communication. Any time we create a new clone, it's a good practice to generate a key
with ssh-keygen and copy that key to the current primary server.

In fact, every server should have the postgres SSH key for every other server. In
situations where any server in the cluster can be promoted to be the new
primary, this ensures repmgr commands always work as expected. We strongly
recommend that you use system automation tools such as Ansible, Chef, or
Puppet to manage these keys.

With the SSH key established, we can clone pg-primary with the repmgr command. Because no
PostgreSQL instance exists on pg-clone yet, we can't use our configuration file just yet. Instead,
we specify -D to define the path to the database. Assuming that there were no errors, the
command should produce a lot of extremely verbose output, with this at the end:

If we follow the advice in the last line and start PostgreSQL with pg_ctl, the clone should
immediately connect to pg-primary and begin replication. We can do this because repmgr knows
all of the connection information necessary to establish a streaming replication connection with
pg-primary. During the cloning process, it automatically created a recovery.conf file suitable to start
directly in replication mode.

Now, we must configure repmgr to recognize the clone. When we create /etc/repmgr.conf, we
need to use the same cluster name as we used on pg-primary. We also tell repmgr that this is node
2, and it should be named child1. The conninfo value should always reflect the connection string
necessary for repmgr to connect to PostgreSQL on the named node. As we did earlier, we set
pg_bindir to avoid encountering possible repmgr bugs.

With the configuration file in place, we can register the new clone similarly to the process that we
used to register the primary. By calling the repmgr command with -f and the full path to the
configuration file, there are several operations we can invoke. For now, we will settle with
standby register to tell repmgr that it should track pg-clone as part of the pgnet cluster.

Once we start the repmgrd daemon, all nodes are aware of each other and the current status of
each. We can confirm this by checking the repl_status view on any node. If we execute the
supplied SQL statement, we should see this:

The repl_status view has other useful columns, but for now we can see that the cluster considers
child1 the only standby node, and it's not lagging behind the primary at all.



If you are using version 2.0 or higher of repmgr, this view will be empty unless
the repmgrd daemon is launched with the --monitoring-history parameter. The
authors of repmgr claim that the view is no longer necessary for operation, but
we feel more comfortable knowing that we can check the status of the cluster via
SQL at any time. Examine the repmgrd init script to find how to add this
parameter to the launch command.



There's more...
There is another way to obtain cluster status. The repmgr command can also report how it
perceives the cluster from any active node, given the cluster show parameter. Here is the entire
command:

repmgr -f /etc/repmgr.conf cluster show

The result of this command as executed on pg-clone is as follows:



See also
Though the process that we used differs slightly from the repmgr documentation, it is fully
viable. If you would like to see the entire process in greater detail, repmgr documentation is
available at this URL: https://github.com/2ndQuadrant/repmgr

https://github.com/2ndQuadrant/repmgr


Swapping active nodes with repmgr
Creating a clone can be surprisingly dangerous. When using a utility such as rsync, accidentally
transposing the source and target can result in erasing the source PostgreSQL data directory.
This is especially true when swapping from one node to another and then reversing the process.
It's all too easy to accidentally invoke the wrong script when the source and target are so readily
switched.

We've already established how repmgr can ease the process of clone creation, and now it's time
to discuss node promotion. There are two questions we will answer in this recipe. How do we
swap from one active PostgreSQL node to another? How do we then reactivate the original node
without risking our data? The second question is perhaps more important due to the fact that we
are at reduced capacity following node deactivation.

Let's explore how to keep our database available through multiple node swaps.



Getting ready
This recipe depends on repmgr being installed on both a primary server and at least one clone.
Please follow the Installing and configuring repmgr and Cloning a database with repmgr
recipes before continuing.



How to do it...
For the purposes of this recipe, pg-primary will remain our master node, and the replica will be pg-
clone. As always, the /db/pgdata path will be our default data directory.

Follow these steps to promote pg-clone to be the new cluster master:

1. Stop the PostgreSQL service on the pg-primary node with pg_ctl:

        pg_ctl -D /db/pgdata stop -m fast

2. As the postgres user on pg-clone, execute this command to promote it from standby status
to primary:

        repmgr -f /etc/repmgr.conf standby promote

3. View the status of the cluster with this command as postgres on pg-clone:

        repmgr -f /etc/repmgr.conf cluster show

Follow these steps to rebuild pg-primary (while logged into pg-primary) to be the new cluster
standby:

1. Erase the contents of the /db/pgdata directory with this command:

        rm -Rf /db/pgdata

2. Clone the data on pg-clone with the following command as the postgres user:

        repmgr -D /db/pgdata --force standby clone pg-clone

3. Start the PostgreSQL service as the postgres user with pg_ctl:

        pg_ctl -D /db/pgdata start

4. Start the repmgrd daemon with the following command as a root-level user:

        sudo service repmgrd start

5. View the status of the cluster with this command as postgres:

        epmgr -f /etc/repmgr.conf cluster show



How it works...
To start the process, we simulate a failure of the pg-primary PostgreSQL node. The simplest way
to do this is to stop the PostgreSQL service. After the database stops serving requests, repmgr
will detect that pg-primary is no longer active. If we tried the next step before stopping the existing
master node, repmgr would refuse to honor the request. After all, we can't promote a standby
when there's already a functional master.

Next, we invoke the repmgr tool from pg-clone with standby promote. This tells repmgr that this
node should be the new master. This is necessary because repmgr allows several nodes to act as
standby systems, and any could be a candidate for promotion. If we didn't do this manually,
repmgr would hold an election and choose a new master from one of the existing standby
systems. Following this action, it's a good idea to check the status of the repmgr cluster to ensure
that it shows the correct status. We expect pg-clone to be the new master, as seen here:

We can also see that repmgr has properly detected pg-primary as FAILED. However, this is not
desirable long-term. If we ever want to switch back to pg-primary, or our architecture works best
with two active nodes, we need to restart the old master node as the new standby. Once again,
we turn to the repmgr command-line utility.

If we log in to pg-primary as the postgres user, we can actually clone the standby the same way
we initially provisioned the data on pg-clone. This means that we call repmgr once again with the
standby clone parameter, except this time, we are cloning pg-clone as it is the new data master.
There is also another important addition: the --force parameter. Without requesting that repmgr
overwrite existing data on pg-primary, it will refuse. By forcing the operation, repmgr only copies
data that is different between pg-clone and pg-primary.

After the data is copied, PostgreSQL should be ready to start on pg-primary, which we do with
pg_ctl as usual. With PostgreSQL running, we can safely launch the daemon to reintegrate pg-
primary into the repmgr cluster as a standby node. Once again, we can invoke repmgr with cluster
show to verify this has occurred:

We can complete the previous recipe as many times as we wish. If we followed the recipe again,
we could revert the cluster to its original layout, with pg-primary as the master node and pg-clone
as the standby.



There's more...
Remember that we mentioned the possibility of multiple nodes acting as standby. As a test, we
created another clone using the process described in the Cloning a database with repmgr recipe.
Then, we followed the recipes in this section and stopped pg-primary before promoting pg-clone.
What do you think we saw while examining the repmgr logfile on the second standby node?
This:

Notice how the other standby started checking known repmgr cluster nodes to find a new master
to follow. Once we promoted pg-clone, the second standby had a new target. If this doesn't
happen automatically, you may have to bootstrap the process by running this command on any
standby that didn't transition properly:

repmgr -f /etc/repmgr.conf standby follow



See also
This recipe is based on information obtained from the repmgr documentation at this URL: h
ttps://github.com/2ndQuadrant/repmgr

https://github.com/2ndQuadrant/repmgr


Installing and configuring walctl
There's something to be said for simplicity. So far, the tools we've discussed in this chapter are
larger client-server mechanisms or components of entire toolkits. One of the central tenets of the
Unix philosophy is to build tools that do one thing well. In this case, we turn to Peak6 and their
walctl WAL-management tools.

I created walctl specifically to address shortcomings in existing WAL-related utilities. Primarily of
note is the question of architecture. Existing WAL tools follow an architecture diametrically
opposed to the end goal of high availability. We often see this:

In this kind of model, the master node is tasked with transmitting transaction streams or WAL
files to every node in the cluster. This makes it fantastically difficult to change the active master
node and potentially overloads the master node itself. The primary write node of any cluster
should be focused on fulfilling client requests. The purpose of walctl is to impose a structure like
this:

Instead of forcing the master node to supply each standby, the master transmits WAL data to a
central archive server. Then, each clone can pull from that location as needed. In this recipe, we
will install walctl so that we can take advantage of the structure it advocates.



Getting ready
Currently, walctl does not have its own website. As such, it resides primarily on GitHub. You
can download a copy of walctl from this URL:

https://github.com/peak6/walctl

We also suggest that you install the rsync, openssh, and PostgreSQL server development
libraries. For most PostgreSQL servers, it's very likely these are already installed.

https://github.com/peak6/walctl


How to do it...
For this procedure, we will need three servers. The archive server should be named pg-arc, our
primary PostgreSQL server is pg-primary, and the new standby will be pg-clone. As usual, the
PostgreSQL data directory will be located at /db/pgdata. For simplicity, the system user on all
machines will be postgres. Be sure to have the password for this user!

1. As a root-capable user on pg-primary and pg-clone, run these commands to install walctl:

        git clone https://github.com/peak6/walctl
        cd walctl
        sudo make install

2. As a root-capable user on pg-arc, create the WAL storage directory:

        sudo mkdir -m 0600 /db/wal_archive
        sudo chown postgres:postgres /db/wal_archive

3. On pg-primary, create and export an SSH key to the pg-arc and pg-clone servers:

        ssh-keygen -t rsa -N ''
        ssh-copy-id pg-arc
        ssh-copy-id pg-clone

4. Repeat the previous step on the pg-clone server:

        ssh-keygen -t rsa -N ''
        ssh-copy-id pg-arc
        ssh-copy-id pg-primary

5. Execute this SQL on pg-primary to create a database user for walctl:

        CREATE USER walctl
            WITH PASSWORD 'test' SUPERUSER REPLICATION;

6. Modify pg_hba.conf on pg-primary and add these lines:

        host   all,replication   walctl   pg-clone     md5 
        host   all,replication   walctl   pg-primary   md5  

7. On pg-clone and pg-primary, ensure this line appears in the .pgpass file for the postgres user:

        *:*:*:walctl:test 

8. On pg-clone and pg-primary, create a file named /etc/walctl.conf with these contents:

        PGDATA=/db/pgdata 
        ARC_HOST=pg-arc 
        ARC_PATH=/db/wal_archive 

9. On pg-primary, execute this command to set up walctl:

        walctl_setup master

10. If instructed by walctl_setup, restart the PostgreSQL server:



        pg_ctl -D /db/pgdata restart



How it works...
Currently, the best source for the walctl files is from GitHub. We suggest that you clone the
repository and install the latest version with the included Makefile. After doing so, most of the
installation steps are actually things that we've already done, such as creating and distributing
SSH keys, allowing host connections in pg_hba.conf, or adding authentication information to
.pgpass. It doesn't actually matter how you do this, but the end result must match these
requirements:

Both pg-primary and pg-clone must be able to communicate via SSH with pg-arc
The pg-clone server must be able to connect to pg-primary to clone data and potentially
stream it as well
We don't suggest using trust-based authentication, so some higher-security method such as
md5 should be used to authenticate the walctl database user

Given that the previous steps have been accomplished, either on our instructions or otherwise,
we can configure walctl. A minimal configuration requires three settings before walctl will
operate normally. To read or write WAL files to their expected locations, PGDATA must be set.
Then, it needs ARC_HOST to send files to the archive server, and ARC_PATH so that it knows where to
store archived WAL files.

The walctl_setup utility has one purpose: prepare PostgreSQL for walctl integration. When called
with the master parameter as we've done here, it modifies postgresql.conf so that WAL files are
compatible with archival, and streaming replicas can connect. In addition, it enables archive
mode and sets archive_command to invoke a walctl utility named walctl_push, which sends WAL
files to the archive server. While calling walctl_setup on our test server, this was the output:

Walctl knows which settings can be changed by reloading PostgreSQL configuration files and
which require a full service restart. It even tells us how to do it if we don't already know. If that
last NOTICE doesn't appear in the output, the pg-primary server is already archiving WAL files on
pg-arc. Otherwise, restarting PostgreSQL will initialize the process.



See also
Currently, all documentation for walctl is located at the GitHub repository at this URL: https:
//github.com/peak6/walctl

The README file in the source code also contains very similar instructions to what we
described in this recipe

https://github.com/peak6/walctl


Cloning a database with walctl
One of the utilities that walctl includes is a script dedicated to creating a copy of the source
database. Why don't we just use pg_basebackup? When dealing with large databases common to
high availability systems, we want to copy as little data as possible. The pg_basebackup utility is a
great basic tool, but it always copies every file. The walctl_clone program that we use in this
recipe relies on rsync.

Of course, this raises another question: Why not just use rsync directly? Due to its extensive
capabilities, rsync is inherently dangerous. Did you accidentally transpose the source and target
destination parameters? If you did so, you've just erased or corrupted your database master. The
walctl_clone tool wraps rsync in such a way that it can only retrieve data from a master node. We
can stay safe by limiting its use to clone servers.

In this recipe, we'll introduce and invoke the walctl_clone command, which does a few other
useful things on our behalf. Not only does it copy the database files, it creates a recovery.conf to
retrieve WAL files from a remote archive and starts the PostgreSQL server. There isn't much
manual work involved. Let's try it out!



Getting ready
This recipe depends on walctl being installed on both a primary server and the clone that we will
use. Please follow the Installing and configuring walctl recipe before continuing.



How to do it...
For this recipe, we only care about two servers. The primary PostgreSQL server is pg-primary,
and the new standby will be pg-clone. Execute this command as the postgres system user on the
pg-clone server:

walctl_clone pg-primary walctl

When the command finishes, we should have a fully operational clone of pg-primary.



How it  works...
It may seem impossible that such a simple command can clone an entire database. Yet, in the
previous recipe we wrote a configuration file, and that's all walctl needs to operate. The
walctl_clone command only has two parameters: the hostname of the database we are cloning
and the name of the database superuser necessary to invoke a backup. Given these settings,
walctl_clone performs a number of actions on our behalf:

Puts the master node into backup mode.
Retrieves all files from the database. If data files already exist in the PGDATA directory, it only
copies changed files.
Ends backup mode on the master node.
Creates a recovery.conf file that will continuously retrieve files from pg-arc and connect as a
streaming standby to pg-primary.
Starts the PostgreSQL server.

We can't think of any other PostgreSQL clone utility that is as easy to use. This is important
when maintaining a high availability cluster, because simplicity prevents accidents.



Managing WAL files with walctl
The walctl toolkit provides two extra scripts that a DBA should never have to call manually:
walctl_push and walctl_pull. These are purely intended to facilitate the preferred architecture of
walctl. However, we also understand that many PostgreSQL servers exist already, and not every
cluster is new.

It's actually very likely that at least one clone exists now and that such behavior is directly
supported by PostgreSQL 9.1 and more. In this recipe, we'll explore how to convert an existing
cluster to use walctl for WAL management instead.



Getting ready
This recipe depends on walctl being installed on a primary server and any existing PostgreSQL
clones. Please follow the Installing and configuring walctl recipe before continuing.



How to do it...
For this recipe, imagine we have four PostgreSQL servers. The primary PostgreSQL server is
pg-primary, and we also have three existing replicas named pg-clone1, pg-clone2, and pg-clone3.
Execute this command as the postgres system user on each of the existing clone systems:

walctl_setup clone

Once again, this one command does all the work for us.



How it works...
The beauty of walctl_setup is that it never needs to communicate with pg-primary at all.
Everything this tool needs is in the /etc/walctl.conf file we created after installing walctl. By
calling walctl_setup with the clone parameter, it performs three basic actions:

Modifies archive_command in postgresql.conf to always produce a true value in case we ever
need to change it to walctl_push later
Removes any existing restore_command in recovery.conf
Sets restore_command to walctl_pull with the necessary parameters

Did you notice that walctl_setup does not touch the primary_conninfo setting in recovery.conf? This
means existing streaming standby servers will continue to operate as they always have. The only
difference is that they will retrieve WAL files from pg-arc (or whatever ARC_HOST is set to) instead
of the previous source.



There's more...
What happens if we ever need to promote a clone to be a fully operational master node? Well, as
we have subscribed to a detached design model, it means clones don't need pg-primary to
continue replication. All we need to do is alter one clone such that it writes to pg-arc so that other
clones will consume the new WAL files. We can do this using walctl_setup on the node we're
promoting:

walctl_setup master
pg_ctl -D /db/pgdata promote

This will make the same modifications on the clone as it did to the master when we installed
walctl. Principally, this means it sets archive_command in postgresql.conf to walctl_push to send WAL
files to pg-arc.

Now, perhaps it's easier to understand why we're such strong advocates of including an archive
server in the WAL-management process.



Installing and configuring WAL-E
WAL-E is a tool designed specifically for interacting with various cloud services and
PostgreSQL. Cloud services are often designed to require complex API calls before accepting
read or write commands. This makes it somewhat difficult to send them arbitrary files such as
PostgreSQL transaction logs we wish to save in a secure location.

The principal benefit of keeping WAL files in a remote cloud location is the same as maintaining
offline backups. By moving transaction logs to an external server, we can use them in
emergencies or complete datacenter disasters. It's a different form of high availability where we
trade the expense and latency of involving distant servers for a major increase in geographical
diversity.

WAL-E supports transmitting and retrieving files to several cloud vendors and APIs:

Amazon S3 (https://aws.amazon.com/s3/)
Microsoft Azure Blobs (https://azure.microsoft.com/en-us/)
Google Storage (https://cloud.google.com/storage/)
SWIFT (https://wiki.openstack.org/wiki/Swift)

While creating accounts with these services and managing their resources is beyond the scope of
this book, there are several Packt books that do an admirable job in our stead. If you are
unaccustomed to managing cloud-based systems, we recommend becoming familiar with at least
one of these environments before attempting to implement this recipe.

Let's explore the process of integrating WAL-E into our PostgreSQL environment.

https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/
https://cloud.google.com/storage/
https://wiki.openstack.org/wiki/Swift


Getting ready
Before storing our WAL files in the cloud, we'll need somewhere to put them. Create an account
with one of the supported WAL-E services and create a storage location for files we'll be
transmitting. For example, in Amazon AWS, we would select S3 and Create Bucket, and fill out
a form like this:

We also strongly encourage setting up specific authentication credentials for this location to avoid
unnecessary distribution of critical users or passwords for other portions of the application layer.

After this, we need to install some prerequisite libraries. WAL-E has recently undergone an
overhaul and now depends on Python 3 and is easiest to install with pip3. With that in mind,
Debian-based systems would use this apt-get command to prepare:

sudo apt-get install python3-pip lzop

Red Hat-based systems need to install the EPEL package for the appropriate Red Hat platform
from the following URL:

https://fedoraproject.org/wiki/EPEL

Then, execute these commands to get pip3 running:

sudo yum install python34-setuptools lzop
sudo easy_install-3.4 pip3

https://fedoraproject.org/wiki/EPEL


How to do it...
For the purposes of this recipe, we'll be using an Amazon S3 user account with associated access
keys identified as key-id and key-value. We've also created a bucket we'll refer to as bucket-path,
which is located in the aws-region zone. Follow these steps to install and configure WAL-E:

1. Use pip3 to install WAL-E and a complementary environment utility:

        sudo pip3 install wal-e envdir

2. Install the necessary WAL-E cloud driver (Amazon in our case) with this command:

        sudo pip3 install boto
          sudo python3 -c 'import boto; print(boto.__path__[0])' \
             | xargs -I{} sudo chmod -R a+rx {}

3. Create a configuration directory readable by the postgres system user:

        sudo mkdir -m 0750 -p /etc/wal-e/env
        sudo chgrp -R postgres /etc/wal-e

4. As a root-capable user, install several environment variables with these commands:

        sudo -i
        umask u=rwx,g=r,o=
        echo 'key-id' > /etc/wal-e/env/AWS_ACCESS_KEY_ID
        echo 'key-value' > /etc/wal-e/env/AWS_SECRET_ACCESS_KEY
        echo 'bucket-path' > /etc/wal-e/env/WALE_S3_PREFIX
        echo 'aws-region' > /etc/wal-e/env/AWS_REGION
        chgrp postgres /etc/wal-e/env/*



How it works...
We begin by using pip3 to actually install WAL-E using Python version 3. WAL-E was recently
modified to remove Python 2 compatibility, so we must use this approach to complete the install.

While each cloud service has its own necessary driver, we don't need to install all of them. The
appropriate driver should be described in the WAL-E requirements, but a failed attempted
transmission will also tell us which one we need if it isn't already installed. If we were missing
the necessary driver, we would receive an error like this:

In the case of the boto driver for Amazon S3, there was a bug in the installer
when we wrote this recipe. The bug meant that the driver only worked as the
root user, making us unable to communicate with our Amazon S3 bucket. This
means the second command to install the boto driver specifically addresses this
issue. It may not be necessary to execute the fix after installing boto, but
consider it if there are problems.

Next, we create a directory to keep configuration files for WAL-E. This part isn't strictly
necessary, but WAL-E depends on quite a bit of sensitive information. It needs to authenticate
with the cloud storage server for every interaction. The safest way to do this is to maintain
several files that are only readable by the postgres system user. The only other alternative is
calling the wal-e command by manually passing these values.

The final step is configuring our authentication, connection, and storage path information with
files in the directory we prepared. In the case of Amazon S3, this means we need an Access Key
ID and an associated Secret Access Key saved into similarly named files for WAL-E.

In the case of the WALE_S3_PREFIX variable, it's important to only use the path to the bucket we
created earlier and, optionally, a directory. If we named our bucket postgres-ha-cookbook and
added a wal directory, we'd use s3://postgres-ha-cookbook/wal for WALE_S3_PREFIX.

When we created our bucket, we were allowed to select a region where the Amazon servers
would actually store our data. WAL-E needs to know where those servers are, so, at least in the
case of Amazon S3, we need to set the AWS_REGION variable. The default region is us-east-1, but
the correct region for our bucket should be listed in the AWS S3 interface.

Unfortunately this is where the recipe ends. WAL-E does not have a method to test whether or
not we configured it properly. In addition, the fact it can interact with multiple cloud vendors
makes it impossible to demonstrate each variation. This is the reason we strongly recommend
learning about cloud services in general before attempting this recipe. It's far easier to understand
what WAL-E expects if we're comfortable working with cloud servers.



See also
WAL-E is also available on GitHub along with all of its documentation at this URL: https://git
hub.com/wal-e/wal-e

https://github.com/wal-e/wal-e


Managing WAL files with WAL-E
With WAL-E installed, we can now use it to transmit transaction logs to and from our cloud
service of choice. Remember, by keeping WAL files in a remote location, they're isolated from
natural disasters, datacenter outages, being overwritten, and any number of unplanned events.
Consider cloud storage a form of long-term archival of our transaction logs.

Why is this important? Remember our mantra: outages are unavoidable. We can take multiple
steps to avoid them, but sometimes the situation is beyond human intervention. Sometimes we
simply need to rebuild.

An offsite backup of WAL files means we can apply PITR to a recent backup and reach the last
known stable state of our data. Since WAL-E integrates directly into the PostgreSQL transaction
log archival process, the WAL files we preserve are as fresh as possible.

Let's see how it works.



Getting ready
Before continuing with this recipe, please complete the steps in the Installing and configuring
WAL-E recipe.



How to do it...
Assuming we have a server that should be archiving transaction logs, follow these steps to store
them in a cloud service using WAL-E:

1. Edit the postgresql.conf file to reflect these parameter settings:

        wal_level = 'replica' 
        archive_mode = 'on' 
        archive_command = 'envdir /etc/wal-e/env wal-e wal-push %p' 
        archive_timeout = '60' 

2. Restart the PostgreSQL service with the following command as the postgres user:

        pg_ctl -D /db/pgdata restart

3. Connect as the postgres user and force it to switch transaction logs with this SQL:

        SELECT pg_switch_xlog();

4. Watch the end of the PostgreSQL log file for transmission success. Use a command similar
to this to capture WAL-E specific information:

        tail -f /var/log/postgresql/postgresql-9.6-main.log \
            | grep "Archiving"



How it works...
Like walctl, WAL-E is generally easy to use once it has been installed. In this case, we merely
need to modify the postgresql.conf config file and restart PostgreSQL. Assuming our installation
of WAL-E is working properly, there really are no more steps. However, it's always a good idea
to verify.

Regarding the changes we made to postgresql.conf, only two are different from those we dictated
in the Configuration - getting it right the first time recipe of the Chapter 2, Handling and
Avoiding Downtime. We're mainly repeating them here for posterity; these are good parameters
to be familiar with.

Remember the replica value for wal_level only works in PostgreSQL 9.6 and
more. For older systems, use hot_standby instead.

First, we set archive_command to invoke the wal-e utility. The wal-push parameter tells it to transmit
the specified file to our cloud storage and to assume it's a transaction log. It performs some
cursory checks before and after it does this, so we can't use it as a general tool to send
miscellaneous files to the cloud.

Next, it's a good idea to set archive_timeout to some value other than zero. This recipe uses a
value of 60 seconds as a guide, but to determine the appropriate value it's important to consider
what the parameter actually does. When archive_timeout is set to a non-zero value, it will rotate
transaction logs after that many seconds have elapsed, regardless of need.

This matters because PostgreSQL usually only switches the current transaction log after the
amount of changes inside exceed about 16MB. On low-volume systems, this may take minutes
or even hours. This means there could be up to 16MB of data that hasn't yet been archived and
would be lost in the case of a catastrophic outage. By forcing PostgreSQL to switch transaction
logs more frequently, we produce a type of heartbeat that implies the server is alive so long as
transaction logs keep appearing in our cloud storage. One could argue any highly available
PostgreSQL server should always utilize this parameter.

The last thing we do before checking our log file is to simply invoke the pg_switch_xlog function
to manually switch to a new transaction log. This effectively triggers an immediate archival of
the previous WAL file and, thus, WAL-E. There's a lot more output than we're watching for, but
if everything went well, we should see something like this in the logs:



There's more...
WAL-E has a lot of other functionality we don't have time to fully describe. There are however,
a couple of extra points we'd like to make.



Recovering WAL files
Every good command has an analog, right? We can send WAL files, so we must also be able to
receive them. Imagine we have a replica system or a backup we've recently pulled from a tape
archive. Now we want to use our safe and secure WAL files previously stored in the cloud. Like
all good PostgreSQL restores, we need to start with a properly prepared recovery.conf file.

To use WAL-E to restore remotely stored transaction logs to a recovered database, start with
something like this:

standby_mode = 'on' 
restore_command = 'envdir /etc/wal-e/env /usr/local/bin/wal-e     
wal-fetch "%f" "%p"' 

Of course, this would cause our PostgreSQL server to constantly spam the cloud service with
file requests. This is fine so long as there are files to retrieve, but if we've reached the end of the
available files it's just excess traffic against our cloud quotas. We can avoid that by using
recovery_target_name, recovery_target_time, or recovery_target_xid to stop recovery once it reaches
our chosen destination.

If it's not possible to obtain a specific recovery target, we recommend watching the log file
during recovery until messages start repeating. If WAL-E repeatedly fails to obtain the next
transaction log in the sequence, it's probably time to promote the server so it stops recovering.



Backing up the database
WAL-E can also act as a backup solution. We don't generally recommend this as backing up to a
remote location is usually a rather expensive proposition. It isn't simply a matter of monetary
cost; we should also consider time and latency. It might not be a good idea to back up a 1TB
database using WAL-E, but a smaller system that doesn't exceed a few GB may be a perfect fit.

The best thing about this capability is that it's easy to invoke. Here's how we would back up our
database using WAL-E:

envdir /etc/wal-e/env wal-e backup-push /db/pgdata

And here's the command we'd use to restore the same database:

envdir /etc/wal-e/env wal-e backup-fetch /db/pgdata LATEST

These two commands make a great pair if we have no other recourse or want to test offsite
recovery. In highly available systems, it's always good to have prepared alternatives standing by.



Removing old files
Of course, we might not need to keep transaction logs forever. WAL-E also provides a simple
command for purging old WAL files that have served their purpose. We're mainly concerned
with high availability, so being able to restore from a backup taken several weeks ago, probably
isn't necessary. To remove these old files, we can use a command like this:

envdir /etc/wal-e/env wal-e delete --confirm retain 2

This would remove all but WAL files for the two most recent backup operations. The --confirm
flag commits the change; otherwise WAL-E errs on the side of caution and considers the
command a dry run.

Unfortunately, this only really works if we've performed a backup with WAL-E. If our database
is too large for this to be feasible, we'll need another clean-up method. We hope a future release
of WAL-E will allow specifying a time target instead of assuming all WAL files are related to a
backup in some way.



See also
The WAL-E documentation is more complete than our simple recipe. Feel free to peruse it
at this URL: https://github.com/wal-e/wal-e

https://github.com/wal-e/wal-e


Simple Stack
In this chapter, we will learn how to build a quick, yet adaptable, high availability stack to keep
our PostgreSQL servers online. In order to do that, we will cover the following recipes:

Preparing systems for the stack
Installing and configuring etcd
Installing and configuring HAProxy
Installing and configuring Patroni
Performing a managed failover
Using an outage to test availability
Adding a node back into the cluster
Adding additional nodes to the mix
Replacing etcd with ZooKeeper
Replacing etcd with Consul
Upgrading while staying online



Introduction
Up until now, we've performed a great deal of preliminary work. We know the proper settings,
we can create replicas in our sleep, and have all the skills necessary to troubleshoot and fix a
misbehaving server or two. Yet we're still missing one critical element to truly achieve high
availability: automation.

Many of the recipes in previous chapters cover utilities that are almost automated. We learned
how to combine PgBouncer and pgpool in the Chapter 3, Pooling Resources, for example. The
Replication chapter got us even further, giving us the necessary tools to maintain a veritable
army of alternate servers for primary substitution at a moment's notice.

But we still need manual intervention. We don't want a central point of failure, so pgpool and
PgBouncer must run on all candidate servers. Only one of these is writable, so we have a virtual
IP address or CNAME that needs to be reassigned to a promoted replica. Given three
PostgreSQL servers, the best stack we could produce with these tools would look like this:

Figure 8-1

This arrangement of servers is definitely robust. We could connect to any of them and always
retain the capability of reaching the others. Connections are routed by pgpool to prevent
overwhelming any one server, and all we need to do is point the VIP or CNAME to the writable
system. This raises one simple question: is that enough?

In some cases, this is a perfectly acceptable stopping point. But we can do better. We want a
cluster with the following capabilities:

Can automatically elect a replacement in the case of failover.
Can redirect write-capable connections to a newly elected primary node.
Newly provisioned nodes can add themselves to the cluster.
Recovered primary nodes can re-join the cluster as replicas.

Luckily our new stack is capable of delivering all of those requirements. Let's learn a bit more
about HAProxy, etcd, and Patroni.



Why HAProxy?
Part of improving our stack is to understand its weaknesses. We can see in Figure 8-1 that
pgpool will promote one of the replicas to be the new primary, but we don't know which! That
makes moving the shared IP resource rather difficult.

Some readers may be aware that pgpool can migrate virtual IP resources
through its watchdog feature. However, for this functionality to operate
properly, pgpool must run as the root user. We find this requirement far too risky
to recommend. In fact, we strongly suggest never using this feature unless there
is no viable alternative.

HAProxy doesn't have that limitation because every IP address acts as if it were the primary
node. So long as we connect through the proxy port we choose during configuration, we're
communicating with whichever node is the primary at that specific moment.



Why etcd?
In order to build our stack, we will need a reliable message-passing layer. Some enterprising
students at Stanford University came up with a consensus algorithm they named Raft. There's a
lot of theory regarding how it works, but the end result is that a key/value pair stored within a
Raft-based layer remains internally consistent across all servers.

This is crucially important because we will be using etcd to store the location of the primary
Postgres server. Provided we have a service which can connect to etcd, any one of our Postgres
servers will immediately know the location of the primary system. This makes it trivial to alter
replication sources when the primary changes.



Why Patroni?
Patroni is the glue that binds all of these pieces together. It acts as a master coordinator and
serves a number of roles. This is the process it uses on every Postgres server:

1. It checks for the presence of an existing primary in the Raft layer.
2. If no primary is found, it inserts a key in the Raft layer claiming the primary location.

3. If this server is the primary, it signals the HAProxy layer to use it as the new redirection
target.

4. If a primary is found, it performs several checks and attempts transform the current server
into a replica.

Patroni repeats these steps every few seconds on every server where it is installed. As a
consequence, some outages may result in race conditions where multiple replicas will attempt to
become the new primary. The Raft layer ensures that only one will win this race, and Patroni
takes care of the rest.

This also allows each Postgres server to operate independently so there is no single point of
failure. Since replicas redirect themselves to the new primary in parallel, the whole cluster
becomes a self-healing swarm.



The stack
By the time we're finished with this chapter, our complete architecture diagram will be far
different from what we could achieve before:

Figure 8-2

 

We can see that each Patroni only communicates with its own local Postgres instance. It also
communicates with etcd and HAProxy to maintain the cluster in a healthy state. Because each of
these vertical elements operates independently, we could continue adding Postgres nodes with
managing Patroni elements almost indefinitely.

But first, we have to build it.

The Raft Consensus Algorithm: https://raft.github.io/
HAProxy: http://www.haproxy.org/
etcd: https://github.com/coreos/etcd
Patroni: https://github.com/zalando/patroni

https://raft.github.io/
http://www.haproxy.org/
https://github.com/coreos/etcd
https://github.com/zalando/patroni


Preparing systems for the stack
Patroni, etcd, and HAProxy have a few dependencies necessary for them to function. Most of
these are easily obtained, so the amount of work in this recipe should be relatively minimal.

Let's get this part done so we can proceed to the really interesting stuff!



Getting ready
This recipe depends on few potentially supplementary packages that are missing from many
Linux distributions. Red-Hat-based systems need to install the EPEL package for the appropriate
Red Hat platform from the following URL:

https://fedoraproject.org/wiki/EPEL

Users of Debian-based distributions should be able to follow this recipe as written.

https://fedoraproject.org/wiki/EPEL


How to do it...
For this recipe, we will need at least three PostgreSQL servers. For demonstration purposes,
we'll assume they are named pg1, pg2, and pg3. Follow these steps on all three servers:

1. Debian-based systems should use this apt-get command to install as many distribution-
provided packages as possible:

        sudo apt-get install python-psycopg2 python-pip python-yaml

2. Red-Hat-based systems will need to substitute this yum command instead:

        sudo yum install python-psycopg2 python-pip PyYAML



How it works...
We begin by ensuring multiple popular libraries are available. After following so many recipes in
this book, it's extremely likely that many (or even all) of these are already installed. Yet it never
hurts to be certain!

First in the list is Python's psycopg2 Postgres interface layer. Patroni uses this to connect to
Postgres for various operations, and because it is so commonly used, it's already packaged by
our distribution. Python libraries tend to evolve extremely quickly, so this isn't always possible.

Next we install pip, a Python-specific installation utility that can download and install Python
packages from the Python Package Index. This is very similar to the Postgres Extension
Network, but for popular Python packages. We'll need it to continue with this recipe as well as
Patroni's own installation routine.

YAML stands for Yet Another Markup Language. It's a format some projects use to define
configuration files. Patroni happens to be among these projects. The Python API that interacts
with these files is actually named PyYAML, but Debian-based systems rename it to python-yaml
to fit their chosen naming scheme. Red-Hat systems tend to use the provided package name.

With all of these elements installed, we should be able to construct the rest of the stack fairly
easily.



See also
Psycopg2: http://initd.org/psycopg/
PyPI - the Python package index: https://pypi.python.org/pypi
PyYAML: http://pyyaml.org/

 

http://initd.org/psycopg/
https://pypi.python.org/pypi
http://pyyaml.org/


Installing and configuring etcd
In order for Patroni to reliably determine or define the identity of the primary PostgreSQL
instance, we need a distributed key-value layer. In this recipe, we'll be installing etcd to fulfil that
role.

The etcd maintainers appear to have designed it to operate primarily in nameless virtual
containers. This means we just need to download it and place some binaries in appropriate
locations. It's not an ideal installation with reliable configuration files and other expected
components, but that's easily rectified if we decide to rely on etcd long-term.

Let's get started.



Getting ready
The etcd service doesn't seem to be a commonly provided package in many Linux distributions.
The project itself moves rapidly as well; the version changed four times while this book was
being written. As such, we recommend obtaining the latest stable release provided at this URL:

https://github.com/coreos/etcd/releases

While we use 3.0.14 as the version number in our instructions, don't worry if the version you
use is slightly different.

https://github.com/coreos/etcd/releases


How to do it...
For this recipe, we will need at least three PostgreSQL servers. For demonstration purposes,
we'll assume they are named pg1, pg2, and pg3. Follow these steps on all three servers except
where indicated:

1. Extract the files in the etcd binary distribution and install the necessary files with the
following commands as a root-capable user:

        tar -xzf etcd-v3.0.14-linux-amd64.tar.gz
        sudo cp etcd-3.0.14-linux-amd64/etcd* /usr/local/bin

2. Create a storage directory for etcd with these commands as a root-level user:

        sudo mkdir /db/etcd
        sudo chown postgres:postgres /db/etcd

3. Create a file named /etc/etcd.conf on the pg1 server with these contents:

        name: pg1 
        data-dir: /db/etcd 
        initial-advertise-peer-urls: http://pg1:2380 
        listen-peer-urls: http://pg1:2380 
        listen-client-urls: http://pg1:2379,http://localhost:2379 
        advertise-client-urls: http://pg1:2379 
        initial-cluster: "pg1=http://pg1:2380, pg2=http://pg2:2380,     
        pg3=http://pg3:2380" 

4. Create a file named /etc/etcd.conf on the pg2 server with these contents:

        name: pg2 
        data-dir: /db/etcd 
        initial-advertise-peer-urls http://pg2:2380 
        listen-peer-urls: http://pg2:2380 
        listen-client-urls: http://pg2:2379,http://localhost:2379 
        advertise-client-urls: http://pg2:2379 
        initial-cluster: "pg1=http://pg1:2380, pg2=http://pg2:2380,     
        pg3=http://pg3:2380" 

5. Create a file named /etc/etcd.conf on the pg3 server with these contents:

        name: pg3 
        data-dir: /db/etcd 
        initial-advertise-peer-urls: http://pg3:2380 
        listen-peer-urls: http://pg3:2380 
        listen-client-urls: http://pg3:2379,http://localhost:2379 
        advertise-client-urls: http://pg3:2379 
        initial-cluster: "pg1=http://pg1:2380, pg2=http://pg2:2380,   
        pg3=http://pg3:2380" 

6. Start the etcd daemon by executing this command as the postgres user:

        etcd --config-file /etc/etcd.conf 
        &>/var/log/postgresql/etcd.log &

7. As the postgres user on pg2 and pg3, execute the following command, but replace NUM with
the node number:



        ETCDCTL_API=3 etcdctl put ha-cookbook-NUM "Hello World!"

8. As the postgres user on pg1, execute the following command:

        ETCDCTL_API=3 etcdctl get ha-cookbook-1 ha-cookbook-9



How it works...
We start by downloading and installing etcd so we have a distributed communication layer for
Patroni to use. The file we download should contain documentation as well, but we only need to
install etcd and etcdctl. These two command-line utilities either launch etcd or send it arbitrary
instructions while it's running.

Much like PostgreSQL, etcd also uses a write-ahead log for data durability. Therefore we need a
storage location for this WAL data. By default, etcd will create a subdirectory from where it was
launched, which we don't really want if our intent is to establish and interact with the same etcd
cluster every time.

Now we must configure etcd on all of the PostgreSQL servers that comprise the Patroni cluster.
We start by naming the node with the name parameter, and then define the WAL directory we
discussed earlier with the data-dir parameter.

The etcd service maintains a peer-to-peer network for nodes to communicate amongst
themselves. By default, this network operates on port 2380 on each node where etcd is running,
but we want to explicitly state the hostname to ensure we can accept outside connections. The
initial-advertise-peer-urls setting defines the name and port that other etcd nodes should use
when communicating with this system. Likewise, the listen-peer-urls parameter provides an
analogous behavior by defining which host and port to monitor for connections, so we use the
same value for both.

Beyond internal communications, clients usually connect to etcd on port 2379 to store and
retrieve key/value pairs. By setting the listen-client-urls parameter to listen on both the node
name and localhost, we've ensured Patroni can set values locally, and any node in the cluster can
also communicate with etcd in case their local etcd service is unavailable. Similarly to peer
advertisement, each node announces itself with the value in advertise-client-urls parameter, so
we use the node name for external communication.

Finally we can launch the etcd service itself and redirect its output to a log file. Normally etcd
operates explicitly through command-line flags or environment variables, but these are both
somewhat inconvenient compared to the stability of a configuration file. Thus we set the --
config-file flag to our /etc/etcd.conf file to prevent that behavior.

To prove everything went as expected, and that keys set in one node are available on all nodes,
we used etcdctl to set a value. The reason we also set the ETCDCTL_API environment variable to 3
is due to the fact etcdctl is only compatible with the version 2 API by default. We wanted to
specifically demonstrate that the get parameter can fetch a whole range of keys if we so desire.
Here's what the get output should look like on pg1:



There's more...
We don't provide a standard Linux init script to control the etcd service. Yet many Linux
distributions are moving to systemd as a service control mechanism. If we wanted to control etcd
this way, we would create a file named etcd.service in the /lib/systemd/system directory with the
following contents:

[Unit] 
Description=etcd key-value store 
Documentation=https://github.com/coreos/etcd 
After=network.target 
 
[Service] 
User=postgres 
Type=notify 
ExecStart=/usr/local/bin/etcd --config-file /etc/etcd.conf 
Restart=always 
RestartSec=10s 
LimitNOFILE=40000 

[Install] 
WantedBy=multi-user.target 

Then we could start or stop etcd using these systemctl commands:

sudo systemctl start etcd
sudo systemctl stop etcd

And our log output would be available via the journalctl command:

journalctl -u etcd.service

This is much easier than the old process of writing a shell script to manage these actions.
Consider using this approach for other services or daemons installed by recipes in this book.



See also
etcd configuration flags: https://github.com/coreos/etcd/blob/master/Documentation/op-guide/configurati
on.md
systemd system and service manager: https://www.freedesktop.org/wiki/Software/systemd/

https://github.com/coreos/etcd/blob/master/Documentation/op-guide/configuration.md
https://www.freedesktop.org/wiki/Software/systemd/


Installing and configuring Patroni
Patroni is the primary coordinating component of our stack. As we can see from figure 8-2, it is
involved in every element of the stack to some degree. Though it ties all of the stack elements
together, we're installing it next specifically because of how tightly it integrates with the key-value
layer and PostgreSQL.

If a PostgreSQL server is already running, Patroni will adopt it. If not, Patroni will create a new
instance based on how it's configured. We've already established that the key-value store
distributes the same information across the entire cluster, so the first established server also
becomes the primary node for the cluster. Any subsequent Patroni instance will start as-or
transform itself into-a replica.

This means it's critically important to get this part right. Pay special attention to this recipe!



Getting ready
This recipe depends on multiple libraries and services. Please follow the Preparing systems for
the stack and Installing and configuring etcd recipes before continuing.

Because of its relatively recent release and niche role, Patroni hasn't made its way into standard
Linux distribution repositories. Due to this, begin by obtaining the latest source distribution of
Patroni from this URL:

https://github.com/zalando/patroni/releases

 

https://github.com/zalando/patroni/releases


How to do it...
For this recipe, we will need at least three PostgreSQL servers. As before, we'll assume they are
named pg1, pg2, and pg3. Follow these steps on all three servers except where indicated:

1. Extract and install Patroni by running the following commands as a root-capable user:

        tar -xzf v1.1.tar.gz
        cd patroni-1.1
        sudo python setup.py install

2. Continue by fixing any adversely affected Python libraries with this set of commands:

        export FIXDIR=$(python -c \
              'import site; print(site.getsitepackages()[0])')
        sudo chmod -R a+r $FIXDIR
        sudo find $FIXDIR -type d -exec chmod a+x {} \;

3. Execute this command to find where the PostgreSQL binaries are stored:

        pg_config --bindir

4. Now create a configuration directory for Patroni that is owned by the postgres user:

        sudo mkdir /etc/patroni
        sudo chown postgres:postgres /etc/patroni

5. As the postgres user, continue by creating a file named stampede.yml in the /etc/patroni
directory with these contents. Replace all instances of pg1 with the appropriate server name
on each node:

        scope: stampede 
        name: pg1 
 
        restapi: 
           listen: pg1:8008 
           connect_address: pg1:8008 
 
        etcd: 
           host: pg1:2379 
 
        bootstrap: 
           dcs: 
           ttl: 30 
           loop_wait: 10 
           retry_timeout: 10 
           maximum_lag_on_failover: 1048576 
           postgresql: 
              use_pg_rewind: true 
              use_slots: true 
              parameters: 
              wal_level: replica 
              hot_standby: "on" 
              max_wal_senders: 5 
              max_replication_slots: 5 
              wal_log_hints: "on" 
              archive_mode: "on" 
              archive_timeout: 600s 
               archive_command: "cp -f %p /db/pg_archived/%f" 



             recovery_conf: 
               restore_command: "cp -f /db/pg_archived/%f %p" 
            initdb: 
           - encoding: UTF8 
           - data-checksums 
            pg_hba: 
            - host replication rep_user 192.168.56.1/24 md5 
            - host all all 192.168.56.1/24 md5 
            - host all all 127.0.0.1/24 md5 
           users: 
            admin: 
            password: adminpass 
            options: 
              - createrole 
              - createdb 
            postgresql: 
           listen: pg1:5432 
           connect_address: pg1:5432 
           data_dir: /db/pgdata 
           bin_dir: [VALUE FROM STEP 3] 
           pgpass: /tmp/pgpass0 
           authentication: 
            replication: 
            username: rep_user 
            password: newpass 
            superuser: 
            username: postgres 
            password: newpass 
            parameters: 
            unix_socket_directories: '/var/run/postgresql' 
           external_pid_file: '/var/run/postgresql/9.6-main.pid' 
           logging_collector: "on" 
           log_directory: "/var/log/postgresql" 
           log_filename: "postgresql-9.6-main.log" 

6. As the postgres user, modify the readability of the stampede.yml file with this command:

        chmod 600 /etc/patroni/stampede.yml

7. Starting with pg1, execute the following command to start Patroni on each server:

        patroni /etc/patroni/stampede.yml \
                &> /var/log/postgresql/patroni.log &



How it works...
As with all good recipes, we begin with the primary ingredients. Projects written with Python
commonly include a file named setup.py that manages installation-related activity. If we invoke
that script with the install parameter, Patroni gets installed as a generally available system
package with associated command-line tools. We're particularly interested in the patroni and
patronictl utilities.

We're not particularly sure why this is the case, but many of the libraries installed by Patroni are
only readable by the root user. In order to fix this, we start by setting the FIXDIR environment
variable to the probable location of the libraries. Next we use chmod to make all of the files
readable, and finish with a find command to specifically modify the directories so we can
traverse them. With these changes in place, we should be able to invoke Patroni commands
without strange errors.

The find command is extremely versatile. Don't be afraid to read its manual and
help page to see some of its more advanced functionality.

Then we need to locate the PostgreSQL binaries, and the easiest way to do that is to invoke the
pg_config utility with the --bindir parameter. This is especially necessary if we're using a Linux
distribution that has a nonstandard binary directory that might affect cluster operation. We will be
using this value later in the configuration file, so keep it for later.

Our next job is to create a configuration file for Patroni. This file will define how a new cluster
definition is initialized, current operation parameters, and existing structure for the patronictl
command-line tool. We start by creating a file named stampede.yml in the /etc/patroni directory
and ensure it's owned by the postgres user. This allows us to potentially add password
information and ensure it remains confidential and secure within our cluster.

This configuration file is defined in YAML format and can be considered in five distinct sections.
In the first section, we define the cluster and node name. We chose the name stampede due to its
relation to the PostgreSQL mascot, but feel free to choose something better suited to the cluster's
purpose. The node name should reflect the name of the server to keep things simple, but again,
this is not a requirement.

Anywhere you see pg1 in the configuration file, remember to change it to pg2,
pg3, and so on, on each system. This file needs to be distinct for each
PostgreSQL instance being managed by Patroni, and we've elected to have one
Patroni + instance pair per server.

In the restapi section, we define two parameters. We set listen to pg1:8008 so Patroni watches
port 8008 on the named node. This URL can be used to obtain or define configuration
information, or for determining the current primary server. We set connect_address to the same
value so Patroni can access its own REST API if necessary. These parameters are distinct in
case of scenarios where they must differ, but in most cases this isn't necessary.

After restapi is the etcd section. This is where we define the location of our key-value store. Due



to its relative simplicity, we're only required to set the host parameter to pg1:2379, the same client
interface and port we defined for etcd.

Next we define the bootstrap section, and it contains several sub-elements. All of the parameters
we define within these subsections are used to initialize a new cluster. If we attach Patroni to an
existing PostgreSQL instance, only the dcs section remains relevant and is saved to the key-value
store for further use.

The dcs portion corresponds to the cluster definition. Here, we begin by setting ttl to 30,
meaning the primary node must reclaim its status every 30 seconds, or potentially trigger a
failover to another node. By setting loop_wait to 10, a replica should notice a missing master in
ten seconds or less. Setting the retry_timeout parameter to 10 basically prevents stalled
connections during operations, in case servers vanish due to network issues. And finally, we set
maximum_lag_on_failover to the byte equivalent of 1MB as minimum threshold that replicas must
satisfy before being considered failover candidates.

After basic DCS elements, we define how PostgreSQL is handled by Patroni. If we're using
PostgreSQL 9.5 or higher, we can set use_pg_rewind to true as a faster method for transforming a
former primary into a new replica without the need of a data resync. We also recommend using
replication slots in PostgreSQL 9.4 and greater when possible to prevent replica lag, and setting
use_slots to true makes that explicit to Patroni.

The parameters subsection is merely a series of values commonly found in postgresql.conf.
Similarly, the recovery_conf section corresponds to the recovery.conf file used to define replica
recovery operations. These are specifically supplementary values, meaning we only add them if
we want to override Patroni defaults or define any configuration elements we consider critical to
cluster operation. Normally we would restrict such additions to replication requirements, or for
necessary WAL file management.

After the dcs section comes the initdb section, which is basically used to handle parameters to
PostgreSQL's initdb utility. In this case, we've elected to enable data checksums and ensure a
newly initialized database uses the UTF8 character encoding. Specifying this latter value may not
seem necessary, but we've encountered ASCII encoded databases, and it's very difficult to fix
these once they're established.

Then there's a pg_hba section for additional entries in newly created pg_hba.conf files. In this case,
we've elected to allow the rep_user account to utilize the replication pseudo-database, and all
other accounts can connect within our limited subnet. This is where you would place any
necessary pg_hba.conf entries for basic cluster operation within an application stack.

Next we have the users section, where we may create as many user accounts for a newly
instantiated cluster as we need. In our case, we opted for a single admin account with the ability
to generate further roles and databases. This section is also the reason we want the file to be
owned by the postgres system user. We want as little password exposure as possible!

The last section in the configuration file is postgresql, and determines the operating state of each
local PostgreSQL instance. Like the restapi section, this also has listen and connect entries for
defining connection targets. This is also where we define data_dir, as the PostgreSQL data may
reside in different locations on each server.



The reason we set bin_dir explicitly to the full path of the PostgreSQL binaries is due to the
possibility of servers hosting multiple PostgreSQL versions, or using nonstandard installation
directories. This is where we use the value we obtained with pg_config earlier.

The pgpass and authentication sections essentially go together. The first defines a location for a
temporary password file, and the second declares both a replication and super user. Since proper
authentication is necessary for newly provisioned replicas to bootstrap themselves and begin
replication, these sections ensure that process always succeeds.

And finally, we can provide as many arbitrary postgresql.conf values in the parameters subsection
as we desire. Unlike those within the bootstrap section, these are only applied to the instance the
current Patroni node is managing. While not likely, there are occasions where certain nodes will
require specific settings to function properly.

Fortunately, the Patroni configuration file is the most difficult part of using it. Once we make the
configuration file readable only to the postgres user, we can start Patroni on each node by passing
the full path of the configuration file to the patroni command. Even if the data directory of each
new replica was completely empty, we should see something like this in the Patroni logs shortly
after starting the service:

This is because Patroni will use pg_basebackup to initialize new replicas that have no existing data.



There's more...
We can also view the full status of the cluster from any existing node. To do this, we need to
pass the list parameter and the path to our configuration file to the patronictl command-line
tool. We also need to specify which cluster we want information about. This is because there are
multiple methods for obtaining cluster information.

If we use the -c parameter to detail a configuration file, our results should look like this:

The patronictl command also accepts the location of the distributed key-store system. So we
could get the same status summary by passing -d pg2:2379 instead, for example.



See also
YAML configuration settings: https://github.com/zalando/patroni/blob/master/docs/SETTINGS.rst

https://github.com/zalando/patroni/blob/master/docs/SETTINGS.rst


Installing and configuring HAProxy
The final element on the stack is HAProxy. Patroni uses this to redirect traffic to the primary
read/write node in our PostgreSQL cluster. Technically we don't strictly need this component
since Patroni will operate without it. But if we want the capability to always reach the primary
node regardless of its location, this recipe is essential.

Let's build a high availability connection proxy!



Getting ready
This recipe depends on some necessary libraries and services. Please follow the Preparing
systems for the stack and Installing and configuring Patroni recipes before continuing.

If this is a Debian-based system, begin by installing HAProxy from the standard system
repository with this apt-get command:

        sudo apt-get install haproxy

For Red-Hat-based servers, use an equivalent yum command:

        yum install haproxy



How to do it...
For this recipe, we will need at least three PostgreSQL servers. As usual, we'll assume they are
named pg1, pg2, and pg3. In addition, assume the IP address of pg1 is 192.168.56.10. Follow these
steps on all three servers except where indicated:

1. Create a file named haproxy.cfg in the /etc/haproxy directory with the following contents:

        global 
            maxconn 100 
 
        defaults 
           log     global 
           mode    tcp 
           retries 2 
           timeout client 30m 
           timeout connect 4s 
           timeout server 30m 
           timeout check 5s 
 
         frontend ft_postgresql 
             bind *:5000 
             default_backend bk_db 
 
         backend bk_db 
             option httpchk 

             server postgresql_pg1 pg1:5432 check port 8008 
             server postgresql_pg2 pg2:5432 check port 8008 
             server postgresql_pg3 pg3:5432 check port 8008 

2. If this is an older Debian-based system, set the ENABLED variable to 1 in the
/etc/default/haproxy file.

3. Start HAProxy with the following command as a root-enabled user:

        sudo service haproxy start

4. On pg3, execute the following command as the postgres user:

        psql -h pg3 -p 5000 -c "select inet_server_addr();"



How it works...
HAProxy has very powerful configuration syntax backed by hundreds of parameters. While this
makes it quite versatile, trying to write a configuration file from scratch would be extremely
difficult. In our case, the amount of parameters we need to set is actually fairly minimal.

We start by setting the global connection limit to 100 connections. This is the amount of
connections HAProxy will manage before simply allowing them to queue in the kernel buffer.
Generally we would want to set this to the same value we use with max_connections in
postgresql.conf, but it's not required.

Next we set the log to global so all HAProxy instances write to the same log output. HAProxy is
an HTTP proxy system at heart, so we must ensure the mode is set to tcp so HAProxy doesn't try
to interpret the actual traffic.

After these essentials are set, we also define a number of connection retry and timeout values.
These are all subject to usage patterns, so feel free to modify them to better fit your cluster
needs. Of special note are the server and client timeouts, which will break the connection if
either the client or server is idle for over 30 minutes. We also set the connect timeout to 4 seconds
so HAProxy doesn't wait forever to establish a connection. And finally we set the check timeout
to 5 seconds so that once a connection is established, it isn't alive much longer than necessary
before being disconnected.

Databases that commonly host persistent connections may need to greatly
increase client and server timeout values or set them to 0 to disable the feature
altogether.

Once we've taken care of the default connection handling behaviour, we must define frontend
and backend actions. On the frontend, HAProxy will be handling incoming connections, so we
create a new frontend named ft_postgresql. Within this definition, we set bind to *:5000 to listen
to all available interfaces on port 5000. Then we link the frontend to a backend we'll name bk_db.

On the backend, HAProxy will be forwarding connections to our primary writable PostgreSQL
server. To handle this, we create a new backend named bk_db that we already referenced in the
frontend configuration section. The only option we set here is httpchk, the method HAProxy
should use to confirm server health.

All other lines in the backend section refer to one of our PostgreSQL servers. Each server line
comes in three distinct sections. First comes the server name, then the host and port for the
service, and finally further options for the definition. We chose rather boring server names such
as postgresql_pg1 to make it obvious what is expected.

Aside from the host:port combination for each server, we also defined check port 8008. This
option tells HAProxy to connect to port 8008 to determine server health, and this is also where
Patroni is performing some magic. When HAProxy connects to a server on port 8008, it is
actually connecting to Patroni.

Since each local Patroni node knows whether or not it is the primary system, HAProxy is



actually asking each node whether or not it is the primary. It's an ingenious way to leverage a
proxy health check. With these configuration values in place, any incoming connection to port
5000 on any HAProxy host will be forwarded to whichever server passed the backend health
check. Due to this, there's no need for a virtual IP address or a CNAME definition; we'll always
be sent to the correct system.

After starting the haproxy service on all of the cluster servers, it's a good idea to run a quick test
to ensure the proxy is working as expected. To do this, we connect to port 5000 on pg3 and
execute the inet_server_addr function to obtain the IP address of the server we've contacted.
Since this is the port HAProxy is monitoring, we should have been redirected to pg1 and get
192.168.56.10 as the result. A successful result should resemble this output:



See also
HAProxy documentation: http://cbonte.github.io/haproxy-dconv/

http://cbonte.github.io/haproxy-dconv/


Performing a managed failover
Managing a Patroni cluster is relatively easy as long as it's operating normally. The primary
reason for this is the provided patronictl command-line tool. Beyond simply displaying cluster
status, it also manages several other helpful operations.

In particular, we can use it to force the primary node to step down and allow one of the replicas
to take its place. In a high availability context, this is a great way to perform system upgrades.
We merely need switch to another primary, upgrade the old system, and repeat. We're done
when every node is the latest PostgreSQL version. During this process, the database is never
offline. This procedure also works for regular system maintenance.

Let's see how to change the primary node using Patroni.



Getting ready
This recipe depends on the presence of the entire stack. Please complete all previous recipes in
this chapter before continuing.



How to do it...
For this recipe, we should already have three PostgreSQL servers. As usual, we'll assume they
are named pg1, pg2, and pg3. If pg1 is the current primary, follow these steps to promote a
different node to primary status:

1. Execute the following command as the postgres user to initiate a failover:

        patronictl failover -d pg1:2379 stampede

2. Answer the presented prompts as directed.
3. Wait a few seconds before running this command as the postgres user:

        patronictl list -d pg1:2379 stampede



How it works...
We were serious when we said this recipe would be fairly simple. By calling patronictl with the
failover parameter, we're telling it that we definitely want to promote another node to primary
status. The -d flag allows us to specify etcd as a configuration source, and is usually the safer
option since it should always reflect the current state of the cluster.

Our example targeted the pg1 server on the etcd port of 2379, but we could have used any of the
cluster systems. Since the distributed key-value system may play host to any number of clusters,
we must also specify stampede as the name of the cluster we want to manage.

Once we invoke the failover command, Patroni asks multiple questions to verify the process to
make absolutely certain before altering the cluster state. Most of these choices are defaults that
do not require an answer. We could choose which of the replicas to promote, but if we do not,
Patroni will select one on our behalf.

After we confirm the final prompt, Patroni will present status output like this:

Note that pg1 is now marked as stopped and pg2 is the new cluster leader. This state is actually
only temporary. We never removed pg1 from the cluster, so Patroni will modify it to act as a
replica. If we wait for a few seconds and check the cluster status with the list parameter to
patronictl, we will see evidence of the transition:

The procedure for reclaiming a previous master and converting it to a replica normally requires
several commands. We would need to manually invoke pg_rewind or rsync, find the location of the
new leader, modify recovery.conf, and restart the instance with pg_ctl. Patroni does all of that
automatically.

Patroni delivers a very hands-off self-healing approach that is actually fairly difficult to defeat,
even on purpose. That's exactly what we want from a high availability solution.



There's more...
We were not exaggerating when we said Patroni was difficult to defeat. If a system operator was
ignorant of Patroni's presence, they might attempt to stop the PostgreSQL service with pg_ctl or
some other system-level script. Upon noticing the outage, Patroni would immediately restart the
database instance.

If the outage was on the primary node, Patroni would promote another node to leader status and
begin the process of converting the old leader into a replica. It's extremely likely that this cycle
will complete before the system administrator is able to even verify the PostgreSQL service was
stopped.

Patroni considers itself the true arbiter of the PostgreSQL systems it manages. So the only way
to actually prevent the comical scenario up is to temporarily defer cluster management. We can
do that by invoking patronictl with the pause parameter as in this command:

patronictl pause -d pg1:2379 stampede

While paused, Patroni will not detect outages, invoke automated failovers, or enact any other
kind of high availability actions. To revert the cluster to its standard managed state, we would
use the resume parameter as seen in this command:

patronictl resume -d pg1:2379 stampede



Using an outage to test availability
Every high availability cluster must possess the capability to detect and route around server
failures. Hardware faults, virtual instance crashes, mistyped commands, and any number of
potential disasters lurk around every corner. The best way to determine the true resilience of our
stack is to test it by breaking something.

Let's see what happens by attacking Patroni directly.



Getting ready
This recipe depends on the presence of the entire stack. Please complete all recipes until
Installing and configuring HAProxy before continuing.



How to do it...
For this recipe, we should already have three PostgreSQL servers. As usual, we'll assume they
are named pg1, pg2, and pg3. If pg2 is the current primary, follow these steps to simulate a server
failure:

1. Execute the following command as the postgres user on pg2:

        pkill -f patroni

2. Follow the Patroni log on pg1 or pg3 with this command:

        tail -f /var/log/postgresql/patroni.log

 



How it works...
This recipe relies on a dirty trick to avoid the long and irritating process of rebooting a server.
The patroni daemon considers itself the solitary coordinator of the PostgreSQL service. Just as it
will restart databases we stop without its permission, it will also stop running databases if we end
the patroni service itself.

The pkill command is extremely useful for stopping services without knowing their process ID.
By invoking it with the -f flag, we tell it to match the full text of the command that launched the
patroni daemon. As a result, any and all currently running processes with patroni in the name will
cease.

We need to execute the pkill command on the server currently acting as the primary node.
Without Patroni running on this server, the lock on the primary node pointer in the key-value
layer will expire. Upon the next internal status iteration, both pg1 and pg3 will notice there's no
registered leader and attempt to claim the position.

Only one node can win this race. If we invoke the tail command with the -f (follow) flag on
either pg1 or pg3, or both, we can actually watch the takeover. This is what it should look like on
the new primary:



There's more...
Relying on the tail command is an old standby method that's frequently useful in watching logs.
Unfortunately we also need to know which server won the leader race to know which logs to
observe. We could use the list parameter for patronictl, yet the takeover process relies on
several timeouts. The authors of Patroni considered this and added a -w flag to "watch" the
command by running it upon a configurable interval.

This means we could observe the failover and takeover as it happened with a command like this:

patronictl list -w 5 -d pg1:2379 stampede

Of course, this isn't really a novel feature. It's extremely likely most Linux systems have the
watch command installed, and it fills the same role. We could get the same result with this
command:

watch -n 5 patronictl list -d pg1:2379 stampede

Still, it's less typing. If we know about the -w flag, we're likely to use it when interacting with the
patronictl command simply due to convenience.



Adding a node back into the cluster
Recovering systems after a major crash or outage is not an enjoyable experience. We must
reboot or restore one or more servers, perform forensics to determine the root cause of the
failure, and attempt to repair or replace corrupt binaries.

This is no less true on systems that rely on Patroni as their high availability solution. However,
Patroni automates the more annoying portions of recovering a damaged PostgreSQL database.

Let's see how.



Getting ready
This recipe depends on the presence of the entire stack. Please complete all previous recipes in
this chapter before continuing.

We also need a broken server. The easiest way to do this is to break it ourselves. Execute these
commands on any system to simulate an unrecoverable server crash:

pkill -9 patroni
pkill -9 postgres
find /db/pgdata -name '*r*' -o  -name '*0*' -delete



How to do it...
For this recipe, we should already have three PostgreSQL servers. As before, we'll assume they
are named pg1, pg2, and pg3. Follow these steps to fix the broken system:

1. Remove the contents of the corrupt cluster by running the following command as the
postgres user on the broken system:

        rm -Rf /db/pgdata

2. Start a new patroni daemon with this command as the postgres user:

        patroni /etc/patroni/stampede.yml \
            &> /var/log/postgresql/patroni.log &

3. Follow the Patroni log with this command:

        tail -f /var/log/postgresql/patroni.log



How it works...
Do, or do not; there is no try. If the system outage is serious enough, we do not know the full
extent of the damage to system files. If our database was not initialized with file checksums, it
might be weeks before corruptions make themselves known. If a crashed server takes over as a
primary before that happens, these corruptions could eventually be replicated to other systems.

It's safer to simply start from scratch. Thus our first step is to erase the /db/pgdata directory
itself. With no old files to lead Patroni astray, it will rebuild the data by invoking pg_basebackup
and configuring the instance as we specified in /etc/patroni/stampede.yml. We can even watch this
happen by following the logs.

This is what we should see when recreating a node with an empty data directory:

This seems too easy, but that really is all we need to do. Erase the old data and start Patroni.
The simpler a procedure is, the more difficult it is to make mistakes.



There's more...
Of course, this process does not lend itself well to extremely large database installations. Beyond
a few hundred gigabytes, erasing all of the data and resynchronizing is extremely time, network,
and IO intensive. For these scenarios, we recommend a different technique. Before starting
Patroni, we can manually synchronize the data files with rsync.

These are the commands we might use when rebuilding pg2 from the contents of pg1 if we have
SSH keys in place:

        psql -U rep_user -h pg1 \
             -c "SELECT pg_start_backup('resync', TRUE);" postgres
        rsync -av --delete-after postgres@pg1:/db/pgdata /db
        psql -U rep_user -h pg1 postgres\
            -c "SELECT pg_stop_backup();"    
        rm /db/pgdata/postmaster*

Some more experienced DBAs might recognize this as the "old" process for obtaining a
PostgreSQL backup before pg_basebackup became a standard utility. Though somewhat antiquated
by today's standards, there's really no replacement for rsync to minimize the amount of
synchronizing with an existing set of files.

We hope that PostgreSQL will eventually integrate partial file transfers into pg_basebackup so it's
possible to "patch" a replica from a donor system. Until then, we always have rsync.



Adding additional nodes to the mix
Eventually we may decide to expand our cluster of PostgreSQL servers to accommodate more
traffic, further increase availability, or retire an old system. Once we've established an etcd +
HAProxy + Patroni stack, how difficult is the process of adding further nodes?

We wish it were possible to follow the previous recipes and consider ourselves finished.
Unfortunately, modifying an operating cluster stack requires a small amount of finesse. Luckily,
the extra steps are somewhat minimal, and our reward is an adaptable architecture.

Let's get started.



Getting ready
This recipe is somewhat unique. It depends primarily on the Installing and configuring etcd,
Installing and configuring Patroni, and Installing and configuring HAProxy recipes. However,
we must stress that they should not be followed exactly. The steps outlined here will explain
necessary deviations, so pay close attention.



How to do it...
For the purposes of this recipe, we are going to be adding a new pg4 server to the stack. As in all
of the other recipes, we already have pg1, pg2, and pg3 operating. Follow these steps to fully
integrate pg4 into the cluster:

1. Follow the steps in the Installing and configuring etcd for pg4 until you are asked to start
etcd, but do not start the service.

2. Execute the following command as the postgres user on any one of pg1, pg2, or pg3:

        etcdctl member add pg4 http://pg4:2380

3. Modify the /etc/etcd.conf configuration file on pg4 and make sure it includes these lines:

        initial-cluster-state: existing 
        initial-cluster: "pg4=http://pg4:2380,     
        pg1=http://pg1:2380, pg2=http://pg2:2380,   
        pg3=http://pg3:2380" 

4. Start the etcd daemon as the postgres user with the following command on pg4:

        etcd --config-file /etc/etcd.conf \
              &>/var/log/postgresql/etcd.log &

5. Follow the steps in Installing and configuring HAProxy.
6. Modify the /etc/haproxy/haproxy.conf configuration file on all servers and ensure it includes

this line in the backend bk_db section:

         server postgresql_pg4 pg4:5432 maxconn 100 check port 8008 

7. Reload the haproxy daemon on all servers by executing the following command as a root-
enabled user:

         sudo service haproxy reload

8. Follow the steps in Installing and configuring Patroni recipe.
9. On any server, execute the following command as the postgres user to obtain the new

cluster status:

         patronictl list -d pg1:2379 stampede



How it works...
As with most things, we start at the beginning. To integrate a new node, we need to add each
necessary component of the stack. In this case, etcd is the first-and most complicated-portion.
Generally we can follow the installation process as outlined in the Installing and configuring
etcd recipe, but we absolutely must not start the etcd service just yet.

When we first bootstrapped etcd, we specified the initial-cluster parameter in the original
configuration file. This parameter did not include pg4 when the cluster was established, so etcd
will not acknowledge its attempts to join. We can modify the cluster definition by invoking the
etcdctl command with the member add parameter. We only need to supply the name of the
member and its peer connection information, so etcd knows how to connect to it.

Then we need to add pg4 to the list of servers in the initial-cluster parameter in its own
configuration file. This allows pg4 to join the cluster in a similar manner as the original members
when it was newly established. The only difference is that we also need to set the initial-
cluster-state parameter to existing so the etcd daemon on pg4 joins the current cluster instead of
creating a new one.

Once we've added pg4 to the etcd cluster the "proper" way, it is safe to start the etcd service on
pg4. After this, the remaining steps to integrating pg4 practically complete themselves.

To that end, we can install and configure HAProxy just as we did on the other nodes. We can
even start the daemon without worry. It just won't connect to any services on the new node until
we add the necessary server configuration line in the backend bk_db section of the configuration
file on all nodes. Once we reload the haproxy service so it integrates changes we've made to the
configuration file, we're ready to complete the cluster expansion.

The easiest step is to install and start Patroni on pg4. As we've learned from previous recipes,
Patroni handles most of the difficult elements in bootstrapping a PostgreSQL server. It will
connect to the current leader, create a new data directory by cloning the contents of the primary
node, and automatically add it to the Patroni layer.

After Patroni is installed and running, we can view the current operational nodes by passing the
list parameter to patronictl. If everything went as expected, we should see this:



There's more...
The analogous process to adding a node to the cluster stack is to remove one. That procedure is
considerably easier and mainly involves executing these commands as the postgres user to
remove pg2. For example:

pkill patroni
export MEMBER=$(etcdctl member list | grep pg2 | cut -d ':' -f 1)
etcdctl member remove $MEMBER

Since the etcd layer is persistent across all nodes, pg2 is permanently removed from all of them
unless we add it again by following this recipe. Once Patroni is stopped and etcd no longer
considers pg2 part of the key-value layer, we can safely recycle the server without worry.

We also need to remove references to pg2 from the HAProxy configuration file, but that isn't
critical.

Hopefully you're making use of configuration management tools like salt,
Puppet, or Chef. In larger clusters, these types of management tools are
essential for modifying configuration files and restarting services. With these,
we could remove pg2 from the HAProxy configuration file, transmit it to every
node in the cluster, and restart the haproxy service without logging into each
individual system. They also greatly simplify bootstrapping new servers with
mostly configured software and settings based on predefined profiles.



See also
etcd runtime configuration: https://coreos.com/etcd/docs/latest/runtime-configuration.html

https://coreos.com/etcd/docs/latest/runtime-configuration.html


Replacing etcd with ZooKeeper
It's common for server stacks to already partially exist; often using components we don't have
the privilege of choosing. Servers and related software can be around for years before we adapt
them to our needs. Thus it's possible an infrastructure department already uses a distributed key-
value storage system like etcd for its own purposes.

ZooKeeper is one of these alternative key-value storage layers. Patroni is fully capable of
utilizing this instead of etcd, provided we make some changes to how it is configured.

Let's leverage an existing ZooKeeper installation to our advantage!

Please note that installing ZooKeeper itself is beyond the scope of this recipe.
The intention here is to make changes to Patroni that make it compatible with
an existing ZooKeeper installation. This can happen when an infrastructure
already incorporates ZooKeeper, allowing us to leverage it as well.



Getting ready
This recipe depends on the presence of the entire stack, as well as an existing installation of
ZooKeeper. Please complete all recipes up to Installing and configuring HAProxy before
continuing.



How to do it...
For this recipe, we should already have three PostgreSQL servers. As usual, we'll assume they
are named pg1, pg2, and pg3. If pg1 is the current primary, follow these steps to switch to
ZooKeeper:

1. Locate the myid file in the ZooKeeper configuration directory for each server.

2. Assuming the server number in myid corresponds to the server name we've assigned (pg1,
and so on), ensure the ZooKeeper configuration file on each server contains the following
lines:

        server.1=pg1:2888:3888 
        server.2=pg2:2888:3888 
        server.3=pg3:2888:3888 

3. If necessary, reload the ZooKeeper configuration file with the following command:

        sudo service zookeeper reload

4. Execute this command as the postgres user on all nodes to stop Patroni, ending with the
cluster leader:

        pkill -f patroni

5. Remove these two lines from /etc/patroni/stampede.yml on each server:

        etcd: 
            host: ... 

6. Add these two lines to /etc/patroni/stampede.yml on each server:

        zookeeper: 
            hosts: pg1:2181,pg2:2181,pg3:2181 

7. Beginning with the former leader (pg1), start Patroni on all servers with this command:

        patroni /etc/patroni/stampede.yml \
               &> /var/log/postgresql/patroni.log



How it works...
Since these servers presumably already have ZooKeeper installed and configured, it's likely the
configuration files reflect the settings we want. However, it's always a good idea to perform due
diligence. This also gives us the opportunity to see the full list of available ZooKeeper servers as
listed in the configuration file. It may mean there is a large constellation of additional systems
available for our PostgreSQL cluster.

Of special note is the myid file. ZooKeeper can maintain a cluster of up to 255 nodes, and each is
assigned an arbitrary number in this file. Our small sample setup can easily align these ID values
to the server name we've assigned, but this is probably not the case in a real environment. Make
special note of these ID values when checking the ZooKeeper configuration file for the server.x
entries we need for our own uses.

If we modified the ZooKeeper configuration file, we need to reload the ZooKeeper service so it
incorporates our changes. Afterwards, we must stop Patroni on all hosts where it is installed for
our cluster. This is one of the rare instances where we have no choice but to accept downtime
within our cluster. The key-value layer is a critical component to Patroni, and switching it
requires temporarily disabling the entire stack.

Moving from etcd to ZooKeeper is actually fairly easy. We start by removing the etcd and
associated host entries from the stampede.yml configuration file for the cluster. Then we add
equivalent lines for zookeeper, which need the entire list of hosts in host:port format for the
cluster.

Once we start Patroni, the alterations are complete and we are now using ZooKeeper as our key-
value layer instead of etcd. We can verify this by examining the Patroni log output. Here's what
the primary node logs should contain after launch:



There's more...
Since we changed the location of the key-value layer of our cluster, we should also alter the
host:port value to the -d parameter when invoking the patronictl command. If we wanted to
temporarily disable cluster management while relying on ZooKeeper, we could invoke this
command on any node:

        patronictl pause -d pg3:2181 stampede

 



See also
ZooKeeper getting started guide: http://zookeeper.apache.org/doc/current/zookeeperStarted.html

http://zookeeper.apache.org/doc/current/zookeeperStarted.html


Replacing etcd with Consul
Consul is another key-value layer we can use instead of etcd. As with ZooKeeper, it's possible
that an infrastructure department has already decided on the official software for several
dedicated roles. If this is the case and Consul is the chosen key-value store within the company,
it would be silly to maintain another without some overriding reason.

There may be reason to prefer one key-value layer over another, but that conversation is far
beyond the scope of this book. Instead of initiating an argument on the fine points of leader
election algorithms, let's convert our stack to Consul in place of etcd.

Please note that installing Consul itself is beyond the scope of this recipe. The
intention here is to make changes to Patroni that make it compatible with an
existing Consul installation. This can happen when an infrastructure already
incorporates Consul, allowing us to leverage it as well.



Getting ready
This recipe depends on the presence of the entire stack. Please complete all recipes up to
Installing and configuring HAProxy before continuing.



How to do it...
For this recipe, we should already have three PostgreSQL servers. As usual, we'll assume they
are named pg1, pg2, and pg3. If pg1 is the current primary, follow these steps to switch to Consul:

1. Execute this command as the postgres user on all nodes to stop Patroni, ending with the
cluster leader:

        pkill -f patroni

2. Remove these two lines from /etc/patroni/stampede.yml on each server:

        etcd: 
           host: ... 

3. Add these two lines to /etc/patroni/stampede.yml on each server, remembering to substitute
the proper server name:

        consul: 
            host: pg1:8500 

4. Beginning with the former leader (pg1), start Patroni on all servers with this command:

        patroni /etc/patroni/stampede.yml \
            &> /var/log/postgresql/patroni.log



How it works...
Unfortunately our first order of business is to break the entire cluster. The key-value layer is
essential to storing the cluster definition, as well as ensuring only one PostgreSQL server ever
wins the leader race. It's one element that is not optional, and as a result, we must shut down all
of our Patroni instances in order to swap out all key-value references at once.

While we suggest stopping the leader node last, this is not entirely essential.
However, avoiding needless failovers is always beneficial to cluster health.

Next we need to remove the etcd and corresponding host line from the Patroni stampede.yml
configuration file. We can then add equivalent consul and host lines that inform Patroni to use
Consul instead. It's important that we specify 8500 for the port element, as Patroni uses the
HTTP protocol for all interactions. By default, Consul monitors port 8500 for incoming HTTP
connections.

Our last step is to merely start the patroni service. Since we stopped the primary node last, we
should start it before the others. It likely has the most up-to-date database state, and since we
stopped all normal cluster operations, there's a slight chance the replica nodes are at least slightly
behind the leader.

If we examine the Patroni logs after starting the patroni service, we should see something like
this on the primary system:



There's more...
Since we changed the location of the key-value layer of our cluster, we should also alter the
host:port value to the -d parameter when invoking the patronictl command. If we wanted a list
of cluster nodes from pg2 while relying on Consul, we would execute this command:

patronictl list -d pg2:8500 stampede



See also
Consul - Bootstrapping a Datacenter: https://www.consul.io/docs/guides/bootstrapping.html
Consul - configuration: https://www.consul.io/docs/agent/options.html

https://www.consul.io/docs/guides/bootstrapping.html
https://www.consul.io/docs/agent/options.html


Upgrading while staying online
We've all encountered this scenario. PostgreSQL recently released version 9.6.1 and we need to
upgrade to protect ourselves from potential data corruption. Or perhaps it isn't PostgreSQL that
requires an upgrade, but the system kernel or another critical element of the operating system.

Regardless of the reason, we must accommodate the procedure somehow. Upgrading software
while remaining online is the ultimate aspiration of maintaining a high availability stack. Let's see
how we can reach that goal by leveraging Patroni's functionality.



Getting ready
This recipe depends on the presence of the entire stack. Please complete all recipes up to
Installing and configuring HAProxy before continuing.



How to do it...
For this recipe, we should still have three PostgreSQL servers. As usual, we'll assume they are
named pg1, pg2, and pg3. If pg1 is the initial leader, follow these steps to perform an in-place
system upgrade:

1. Start a status monitor on pg3 with the following command executed as the postgres user:

        patronictl list -w 5 -d pg3:2379 stampede

2. Execute the following command on any node as the postgres user to initiate a managed
failover from pg1 to pg2:

        patronictl failover -d pg2:2379 --master pg1 \
             --candidate pg2 --scheduled now --force stampede

3. Verify that pg2 has assumed the cluster leadership role. The status screen should eventually
resemble this output:

4. As the postgres user on pg1, stop Patroni with this command:

        pkill -f patroni

5. Perform any necessary upgrades to system software, reboot the pg1 server, or apply a
minor PostgreSQL update.

6. When the upgrades are complete, start Patoni on pg1 with the following command as the
postgres user:

        patroni /etc/patroni/stampede.yml \
            &> /var/log/postgresql/patroni.log

7. Verify the Lag in MB column in the status report for pg1 reaches 0.0.
8. Execute the following command on any node as the postgres user to initiate a managed

failover from pg2 to pg1:

        patronictl failover -d pg2:2379 --master pg2 \
             --candidate pg1 --scheduled now --force stampede

9. Verify that pg1 has resumed the cluster leadership role. As it was with the pg2 failover, it
should show a * under the Leader column in the status report.

10. As the postgres user on pg2, stop Patroni with this command:

        pkill -f patroni

11. Perform any necessary upgrades to system software, reboot the pg2 server, or apply a



minor PostgreSQL update.
12. When the upgrades are complete, start Patoni on pg2 with the following command as the

postgres user:

        patroni /etc/patroni/stampede.yml \
            &> /var/log/postgresql/patroni.log

13. Repeat the previous three steps for pg3.



How it works...
Before we explain the steps of this recipe, we want to mention that none of this process is
actually necessary except for killing the patroni daemon on the node we're upgrading. If we stop
Patroni on pg1, the cluster will eventually notice and elect a new leader without our direct
intervention. However, depending on our timeout settings, the cluster may remain without a
leader for several seconds. This recipe ensures the cluster is never without a primary and is
always writable.

Otherwise, our first step is to start a monitor on pg3 since it will be upgraded last. This allows us
to see which node is the current leader and any transition states while we upgrade the other two
systems. This is important since pg1 and pg2 will both spend time in a leadership position.

Our next step is to actually invoke a managed failover. We already did this in the Performing a
managed failover recipe, but this time we've added a few extra flags to the patronictl command.
We use --master to show that pg1 is the current leader, --candidate to select pg2 as the failover
target, --scheduled to now so the failover happens immediately, and --force because we are
skipping verification prompts.

If we return to pg3 to watch the transition complete, the whole process should finish relatively
quickly. Once we're satisfied the cluster is stable again, we can stop the patroni service and then
do whatever we want with pg1. After the upgrades or other maintenance are finished, we just
need to start Patroni on pg1 and wait for it to catch up with the other nodes. Again, we can watch
this happen on pg3.

Now we revert the earlier transition with another managed failover. This time, --master is pg2 and
--candidate is pg1. All we have to do is watch the monitor on pg3 and wait until the cluster is
stable once more. Then pg2 and pg3 are both safe to upgrade as we did with pg1. After stopping
Patroni on the node we want to upgrade, we have carte blanche to make software modifications.



There's more...
Do not confuse a major PostgreSQL upgrade with a minor one. While we can use the steps in
this recipe to upgrade from 9.5.4 to 9.5.5 for example, we cannot use it to move from 9.5.5 to
9.6.0 or 9.6.1.

This is because an upgrade of that magnitude currently requires pg_upgrade or pg_dump. In either
case, the newly upgraded PostgreSQL instance is actually a copy of the old database. Patroni
relies on the PostgreSQL replication system to synchronize nodes. Since it's not possible to
replicate between major PostgreSQL versions, Patroni can't integrate nodes with large version
mismatches.

If we tried a similar tactic as outlined in this recipe and used pg_upgrade after moving the cluster
leader to pg2, pg1 could never re-join the cluster. As such, we could never revert the leadership
role back to pg1. It would forever be excluded from our existing Patroni cluster.

While unfortunate, a full major-version upgrade still requires a full outage window as of
PostgreSQL 9.6.



Advanced Stack
In this chapter, we will learn to build and manipulate a fault-tolerant, high-performance
foundation for our PostgreSQL clusters. We will cover the following recipes in this chapter:

Preparing systems for the stack
Starting with the Linux Volume Manager
Adding block-level replication
Incorporating the second LVM layer
Verifying a DRBD filesystem
Correcting a DRBD split brain
Formatting an XFS filesystem
Tweaking XFS performance
Maintaining an XFS filesystem
Using LVM snapshots
Switching live stack systems
Detaching a problematic node
Building and attaching a new node



Introduction
Thus far in this book, we've discussed quite an array of functionality and methodology dedicated
to keeping PostgreSQL systems online. By now, we have a burgeoning menagerie of replication
utilities, system monitoring tools, connection pooling layers, and even a handful of
troubleshooting tips.

Then we moved on to combining several of these techniques and a few others to create a
software stack that automates and protects a PostgreSQL cluster. Yet despite the power
demonstrated in the Chapter 8, Simple Stack, we're still reliant primarily on PostgreSQL
replication to safeguard replicated data. If we have an extremely high transaction throughput,
even PostgreSQL replication is too slow to fully resist data-loss in the event of a server outage.

What tools can we use to safeguard our critical data beyond the guarantees granted by
PostgreSQL? Where do we go next?

As it turns out, simply installing PostgreSQL on a server can be done too early. Presuming that
we have all of the hardware and software we discussed earlier, our servers are still missing the
following three things:

The ability to synchronize data to two servers simultaneously
The capacity to freeze data to prevent changes for backup purposes
A durable filesystem designed for multiprocess I/O

There are several solutions for each of these missing elements, yet we've settled on three in
particular: DRBD, LVM, and XFS. Let's explore a bit about each of these technologies and why
we've chosen them to represent what we've deemed our Advanced Stack.



Why DRBD?
DRBD stands for Distributed Replicated Block Device. DRBD is meant to operate below the
filesystem layer, mirroring the contents of one server's storage to another at the block level. This
means the operating system doesn't even know that its data is located on another server as well.
Having trouble imagining how it works? We hope the following diagram will help:

As we can see here, DRBD acts as an abstraction from the disk device that normally hosts our
PostgreSQL database. The primary benefit we gain from this situation is that data is always
located on at least two servers at all times. If one server crashes and its storage is rendered
unusable, we have a backup available.

Why not use streaming replication instead? Even PostgreSQL synchronous streaming replication
only guarantees that transactions are written to the standby, not replayed within the actual
database. As we've already discussed, streaming replication means that the master node will halt
on commit if there isn't at least one replica available at all times. With DRBD, the other server
has a copy, which is identical in all aspects. Any block written to one server is always available
on the other.



Why LVM?
LVM is the Linux Volume Manager. Like DRBD, LVM is another abstraction layer that sits
between the filesystem and the underlying disk devices. Why is this necessary? LVM allows us
to dynamically manage disk devices as one single continuous piece of storage that we can
arbitrarily extend, group, freeze, or reorganize, all while remaining online.

Have you ever wanted to simply add storage to a filesystem without messy symbolic links or a
server reboot? What about moving data from one device to another after an upgrade? With
LVM, all of this is easy. Using a modern server with hot-swappable disks or a SAN, we never
even have to reboot the server to completely reconfigure its disk devices.

Through the entire process of almost any LVM change, PostgreSQL can remain online and serve
requests. This is the ultimate in high availability.



Why XFS?
XFS stands for Extents File System. Some may consider this a somewhat controversial
selection, given that ext4 performs perfectly well and is the current default for all of the major
Linux distributions. Both XFS and ext4 are journaling filesystems; they provide online growth,
LVM freezing, and numerous maintenance and repair tools.

However, XFS still has something that ext4 does not: allocation groups. ext4, like all of its
predecessors, has a single file allocation table for the entire formatted device. XFS, on the other
hand, can split the allocation table into several segments so that multiple independent CPU
processes can write to the disk simultaneously. The end result of this is that large servers with
many CPUs and random writes, such as a PostgreSQL database, will perform better on an XFS-
formatted device.

If you are using Red Hat Enterprise Linux (RHEL) and have a support
contract with Red Hat, be wary of using XFS. Red Hat considers XFS
enterprise-grade storage and distributes it separately as a paid extension. If
this becomes a problem, please feel free to use ext4 and ignore the XFS-related
sections of this chapter.



The stack
At the end of this chapter, we will have a software stack that looks like the following:

Each of the following layers represents one enhancement necessary for the best long-term high
availability:

The first LVM layer (starting at the storage) protects DRBD from inheriting device-specific
block sizes and allows for online resizing or migration to new devices
The DRBD layer replicates data to another server for immediate use
The second LVM layer provides snapshot capabilities and other potentially useful LVM
functionality to the filesystem
The XFS layer is the last element where data resides and is available for direct
manipulation by programs such as PostgreSQL

The recipes we provide in this chapter should make this easier to understand, despite its
advanced nature.

These layers in our stack do come at a cost. Since each is an abstraction above
the raw storage device, performance will decrease slightly. We believe this
tradeoff is worth the security and availability the stack provides. The makers of
DRBD provide a good summary of how storage speed is affected at this URL: htt
p://blogs.linbit.com/p/469/843-random-writes-faster/

http://blogs.linbit.com/p/469/843-random-writes-faster/


Preparing systems for the stack
Before we can use LVM, DRBD, or XFS on our servers, we must take some preliminary steps.
We've never encountered a Linux system that is optimized for this kind of advanced usage
directly after installation. In this recipe, we will modify several configuration files and even
reboot the server.

We're trying to put each system in a standard state that we'll use for all future database servers.
This means that LVM needs to ignore some devices to prevent disrupting DRBD, the initial
RAM disks during a boot should reflect this same allocation, and device performance shouldn't
be lost between abstraction layers. We also need all of the tools that we'll use throughout this
chapter.

This recipe will guarantee that these criteria are true, so be prepared!



Getting ready
The only things we should need at this point are the ability to run commands as root and a
device dedicated to database storage. However, if you are running a RHEL system (not a
derivative such as CentOS or Scientific Linux), you may need to contact Red Hat to obtain
necessary licenses and packages to add XFS functionality. Thus, we will approach this recipe
under the assumption that packages are available on Debian-based servers and RHEL
derivatives.



How to do it...
To keep things simple, we will assume that each server we prepare has a device named /dev/sdb
for database storage. Follow these steps as root:

1. Install the xfsprogs package with apt-get or yum.
2. Install drbd8-utils with apt-get on Debian-based systems, or drbd with yum on Red Hat

derivatives.
3. In the devices section of /etc/lvm/lvm.conf, change the filter setting to read the following:

        filter = [ "a|/dev/sd.*|", "a|/dev/drbd.*|", "r|.*|" ] 

4. In the devices section of /etc/lvm/lvm.conf, set these two options to completely disable any
caching:

        write_cache_state = 0 
        use_lvmetad = 0 

5. Remove the existing LVM cache file with the following command:

        rm /etc/lvm/cache/.cache

6. Execute the following command to validate our LVM changes:

        lvmconfig --validate 

7. Update the kernel's list of available devices with the following command:

        update-initramfs -u

8. Create a file named /etc/udev/rules.d/20-postgresql.rules with the following contents:

        ACTION=="add|change", KERNEL=="sd[a-z]",      
        ATTR{queue/read_ahead_kb}="4096" 
        ACTION=="add|change", KERNEL=="drbd[0-9]",      
        ATTR{bdi/read_ahead_kb}="4096" 

9. Finally, reboot the server using the following command:

        reboot



How it works...
In order for the stack to work properly, we need to get the server ready. For now, this means
installing basic toolkits such as xfsprogs for XFS maintenance tools and drbd8-utils for DRBD
administrative scripts. Once this is complete, we move on to preparing LVM.

Since LVM is so highly integrated into the system, we need to perform several steps. The first is
to modify the primary lvm.conf file so that it only watches certain devices, and while it does so, it
never caches the result. Due to the way Linux is designed, there are several different aliases and
paths that point to the same device in the /dev filesystem. To remove these extra paths, we set a
very strict filter that only includes /dev/sd* and /dev/drbd* devices.

We want LVM to avoid caching devices by setting write_cache_state to 0 because the DRBD
devices may disappear or reappear based on their statuses. It's equally important to set
use_lvmetad to 0, as this activates a daemon that caches device state. We don't want an invalid
cache poisoning the active device list. Just to make sure there are no stale LVM caches, we
remove the existing /etc/lvm/cache/.cache so that all readings are current.

Before we commit to these configuration changes, we absolutely must validate the configuration
file with lvmconfig. If we reboot the server while there are mistakes in the LVM configuration file,
it might not boot successfully! By Invoking update-initramfs with the -u parameter, it generates a
new device map that will be used when the system boots. This ensures that devices are
consistent at all availability levels in case we need emergency access.

Before we venture further, we need to address performance. In Greg Smith's PostgreSQL 9.0
High Performance, Packt Publishing, he suggests that we increase the read_ahead_kb setting for
every block device to 4096 kilobytes or higher. Unfortunately, due to the transient nature of our
devices, there is no static method we can use that would survive a device appearing after boot.
This is where the udev filesystem comes in. It watches as various system devices change state,
appear, or reappear. Thanks to this, we can give it parameters to use when new storage devices
appear, such as our DRBD or LVM devices.

The two lines we added to 20-postgresql.rules tell the udev filesystem to set the read_ahead_kb
value to 4096 any time a new device is added or modified. In our case, we are specifically
interested in the sdb and drbd0 devices, but we include all sd or drbd devices for future expansion
purposes if necessary. This ensures that we'll always have a large read buffer for good
PostgreSQL performance, no matter how many abstraction layers we place between the device
and the database.

The last thing we do is reboot the server. This gives us a fresh slate, with a cleanly generated
device map based on the changes we made.



There's more...
The version of DRBD you receive with these instructions may vary considerably depending on
the age of your distribution. Though DRBD 9.0 is the latest official release, DRBD 8.4 is the
most recent stable version included with many distributions at the time of writing this book. As
such, all recipes assume that this is the installed version. To see if you are using 8.4, execute
drbdadm with the -V parameter and check the DRBD_KERNEL_VERSION_CODE output. If this value doesn't
include 804 or greater, please follow the instructions from one of these URLs to upgrade to 8.4:

For Red Hat systems: http://www.drbd.org/en/doc/users-guide-84/s-build-rpm
For Debian systems: http://www.drbd.org/en/doc/users-guide-84/s-build-deb

If you complete this chapter and feel brave enough to try using DRBD 9.0, Linbit has a guide at
this URL:

http://www.drbd.org/en/doc/users-guide-90

We should note that DRBD 9.0 is treated like a flagship piece of supported software. Linbit will
only provide RPM and DEB packages to paying customers. Without these packages, installation
is much more complicated and includes integrating a new Linux kernel module. We don't
recommend this process unless you are comfortable with these types of procedure.

http://www.drbd.org/en/doc/users-guide-84/s-build-rpm
http://www.drbd.org/en/doc/users-guide-84/s-build-deb
http://www.drbd.org/en/doc/users-guide-90


See also
The DRBD website has a good supplementary installation guide at this URL: http://www.drbd.
org/en/doc/users-guide-84/s-distro-packages
Greg Smith's PostgreSQL 9.0 High Performance book is another great resource from
Packt Publishing. It is available at this URL: http://www.packtpub.com/postgresql-90-high-performan
ce/book

http://www.drbd.org/en/doc/users-guide-84/s-distro-packages
http://www.packtpub.com/postgresql-90-high-performance/book


Getting started with the Linux Volume Manager
The Linux Volume Manager (LVM) is something of an optional master control panel for Linux
storage devices. It can combine several devices into one, allows arbitrary storage grouping far
more granular than simple partitions, and provides functionality such as data snapshots and
reorganization. It's very powerful, and in the right hands greatly improves potential server
uptime.

It is also the first layer above the raw storage device in our stack. We start with LVM instead of
DRBD, because DRBD at the device level is extremely messy. What do we gain by insulating
DRBD from the raw storage device?

We can easily add storage to the LVM device group assigned to DRBD
DRBD can be resized while in an online state
We can perform storage migrations without taking PostgreSQL offline

None of this is possible unless LVM is the first layer. For a high-availability server, this is
extremely desirable. Follow along to see how it works.



Getting ready
At this point, all we need is a single unformatted device to use for database storage. In addition,
make sure you've prepared the system as described in the Preparing systems for the stack
recipe.



How to do it...
For the purposes of this recipe, we will assume that the /dev/sdb device has been dedicated to
PostgreSQL use. Follow these steps as the root user on two servers to create the first LVM layer:

1. Create and verify a single LVM partition on the device with these commands:

        parted /dev/sdb mklabel gpt
        parted /dev/sdb mkpart primary 1 100%
        parted /dev/sdb set 1 lvm on
        parted /dev/sdb print

2. Register /dev/sdb as an LVM physical device with this command:

        pvcreate /dev/sdb1

3. Create a single volume group to contain /dev/sdb1 with this command:

        vgcreate VG_DRBD /dev/sdb1

4. Create a single logical volume as 100% of the outer volume group with this command:

        lvcreate -n LV_DATA -l 100%VG VG_DRBD

5. Verify that the new volume exists and is available with this command:

        lvdisplay VG_DRBD/LV_DATA | grep LV



How it works...
Before we can use LVM safely, we should create at least one partition on the raw device. For
this, we use parted, a more advanced partition editor than fdisk. We need parted because it can
set the partition table type as GPT, which allows filesystems greater than 2 TB. This is what the
first invocation of parted does, with the mklabel parameter set to gpt.

To create the partition itself, we call parted with the mkpart parameter. By using mkpart, we also
need to specify the type of partition we want, and its starting and ending positions. We keep
things simple by starting at the beginning of the device and using 100% of the available storage.

Finally, we set the LVM flag to true by invoking parted with the set parameter. The set parameter
requires a partition number, the flag we want to set, and the value. In our case, we are using the
first partition and setting the lvm flag to on.

It's always a good idea to verify our creations, and parted has a print setting to output the current
partition table for a specified disk device. Here is /dev/sdb on our test system:

As you can see, the test device we've used for this example is very small, at just over 4 GB.
However, we can also see that the partition table is gpt, and the lvm flag is set as expected.

Now we can start with LVM itself. The first step is to use pvcreate to create a physical LVM
device. This allows LVM to manage the device, and only requires us to name /dev/sdb1 as the
device we're adding.

Next, we need a volume group. Volume groups can consist of multiple physical volumes and can
be split into several logical volumes. By calling vgcreate, we need to name the group with the first
parameter. Every subsequent parameter is a device that should be part of the new group. In our
case, we only have the /dev/sdb1 device, so that becomes our last parameter.

Since the volume group can host several logical volumes, we need to create at least one. Unlike
vgcreate, the lvcreate command does not assume the first parameter is the volume name. Thus,
we need to specify the -n parameter to name the volume. By using the -l parameter, we can
specify a percentage of the volume group as the size of our volume. For the base volume, we
want to use all available storage space (100%VG) since DRBD will be the next layer. The last
parameter for lvcreate is the name of the volume group we are using for this logical volume.

The last thing we do is verify that the logical volume has the elements we expect. We can do this
with the lvdisplay command as seen here:



From this, we can see that the new logical volume is 4.00 GiB in size and is available for use. We
can also observe that LVM created a new device path at /dev/VG_DRBD/LV_DATA. This path will be
how we address the storage in the future. It can be formatted, mounted, or treated just like any
other Linux storage device.

As we'll discuss in the next recipe, this new /dev location can be used as the target device for
another resource such as DRBD.



There's more...
We hope you noticed the naming scheme inherent in all of the LVM commands. Commands
prefixed with pv are meant for physical volume management. Similarly, vg is used for volume
groups, and lv is for logical volumes. This greatly simplifies the management of LVM devices.

We used pvcreate, vgcreate, and lvcreate in this recipe. However, it shouldn't surprise you that
there are also analogous pvremove, vgremove, and lvremove commands as well. There are also
commands to retrieve information about volumes and groups: pvdisplay, vgdisplay, and lvdisplay.

This is one of the reasons we enjoy working with LVM; we rarely have to guess at commands.



See also
LVM itself is a conceptual architecture. To understand more about how it works, we
recommend the Linux Documentation Project discussion on the topic at this URL: http://tl
dp.org/HOWTO/LVM-HOWTO/
In addition, all of the LVM commands have their own man page. We highly recommend at
least viewing the man page for each utility before using it. For example:

        man lvextend

 

http://tldp.org/HOWTO/LVM-HOWTO/


Adding block-level replication
DRBD is the next component of our software stack. Unlike LVM, it requires at least two servers
to function normally. One server acts as the data Primary, and the other acts as a Secondary.
These roles can be switched at any time, depending on which server is running PostgreSQL.

For now, we are going to focus on configuring and activating DRBD as part of our stack.



Getting ready
By now, we hope you've followed the recipe in Getting starting with the Linux Volume
Manager on two servers with /dev/sdb as physically identical storage on each server. While
DRBD can operate in standalone mode on a single server, this is actually more advanced usage.
The steps in this recipe are best applied identically on both of the servers simultaneously, unless
noted otherwise.



How to do it...
For the purposes of this recipe, we will assume that the /dev/VG_DRBD/LV_DATA device already
exists. The two PostgreSQL nodes for this example are named pg1 and pg2 and are located on the
192.168.56.0 subnet. Follow these steps as the root user on each server to add DRBD:

1. Create a file named /etc/drbd.d/pg.res with the following contents:

        resource pg { 
          device minor 0; 
          disk /dev/VG_DRBD/LV_DATA; 
          meta-disk internal; 
          on pg1 { 
            address 192.168.56.10:7788; 
          } 
         on pg2 { 
           address 192.168.56.20:7788; 
          } 
        } 

2. Allocate the DRBD storage with this command:

        drbdadm create-md pg

3. Restart the DRBD service:

        service drbd restart

4. Use drbdadm on pg1 to invalidate the data on pg2:

        drbdadm invalidate-remote pg

5. View the status of DRBD from any node, using this command:

        cat /proc/drbd

6. Run this command on pg1 to declare it as the primary node:

        drbdadm primary pg



How it works...
We begin by creating a configuration file for DRBD with the least amount of information
necessary. In the pg.res file, we define a DRBD resource named pg for our PostgreSQL data.
DRBD resource numbers start at zero, so we use the define keyword to set the DRBD minor
device number to 0. This means our DRBD device will be named /dev/drbd0.

After setting the device number, we specify which storage volume this DRBD resource should
use with the disk keyword. The meta-disk keyword allows us to define a device to store DRBD
metadata. To keep things simple, we've used the internal setting so that metadata is stored on
the same device as the data we are synchronizing.

The last thing we do in the resource configuration file is define each host involved in replication.
The on keyword expects a hostname that matches our PostgreSQL nodes, followed by a block of
settings. The only setting we actually need is the IP address of the server we name, followed by
a port, which DRBD should use for communication and transfer purposes. A common port
number is 7788 as in our example, but really, this can be any arbitrary unused value.

Once we have a valid configuration file, we need to initialize the DRBD device. When we invoke
drbdadm with the create-md parameter, it allocates metadata for the named DRBD resource. Since
pg is the name of our resource, we specify that here as well. We could have also used all, which
applies the command to any configured resources. This produces quite a bit of output, but
should look like the following near the end:

With metadata in place, we can start (or restart) the DRBD service. Once we do this, DRBD will
attempt to connect both nodes named in our resource definition file. This is why DRBD should
be started on both nodes consecutively, or the running node will wait indefinitely for the other to
start as well.

At this point, DRBD is connected, but it doesn't know the state of the underlying storage data.
Due to this, we must invalidate one of the nodes so DRBD considers the other node up-to-date.
When we use drbdadm with invalidate-remote, we tell DRBD to consider valid local data and all
data on any other node in need of replacement. If we examine the contents of /proc/drbd at this
moment, we should see synchronization taking place:

The top line of this output actually provides most of the DRBD status information. The section
labeled ro stands for roles, and the slash always separates the current node from the remote
node. By default, both DRBD systems report their role as a Secondary node. Similarly, ds
represents disk states and tells us the status of data on each node. Based on this, we can see



that the current node is UpToDate, while the remote is Inconsistent. We invalidated the data on pg2
from pg1, so this is exactly what we should expect.

Once synchronization is complete, it is time to declare one of the nodes as the primary resource.
For this task, we run drbdadm with the primary parameter. The only difference we should see is a
change in the ro reading in /proc/drbd. It should reflect Primary/Secondary when viewed from pg1,
and Secondary/Primary when viewed from pg2. At this point, DRBD is working, and any data we
save on one node should automatically exist on the other as well.



See also
DRBD documentation is extremely detailed. We strongly recommend browsing this URL to
truly understand how DRBD works: http://www.drbd.org/en/doc/users-guide-84/drbd-users-guide
In addition, the drbdadm tool, which administers almost all DRBD functionality has a man
page:

        man drbdadm

http://www.drbd.org/en/doc/users-guide-84/drbd-users-guide


Incorporating the second LVM layer
In this recipe, we are going to create the second of our two LVM abstraction layers. While the
first layer provides an elastic base for DRBD, this one will provide most of the LVM
functionality that we will actually use on a regular basis.

Tasks such as creating filesystem snapshots or reorganizing data are within the domain of the
second layer. This is because we create the filesystem on top of this second LVM definition. We
can mount or otherwise manipulate a snapshot like any other filesystem. If we tried to create a
snapshot with the first LVM layer, we would still have a snapshot, but it would be of an
unreadable DRBD binary blob.

With that in mind, let's add the LVM layer necessary for filesystem manipulation.



Getting ready
Please follow all previous recipes before starting.



How to do it...
Perform these steps only on pg1 as the root user:

1. Register /dev/drbd0 as an LVM physical device, using this command:

        pvcreate /dev/drbd0

2. Create a single volume group to contain /dev/drbd0, using this command:

        vgcreate VG_POSTGRES /dev/drbd0

3. Create a single logical volume as 95% of the outer volume group, using this command:

        lvcreate -n LV_DATA -l 95%VG VG_POSTGRES

4. Verify that the new volume exists and is available, using this command:

        vgdisplay VG_POSTGRES | grep Size



How it works...
Do these steps seem familiar? They should! With a few minor exceptions, this is almost the same
as the recipe we used in Starting with the Linux Volume Manager. Unlike the other instructions,
we don't need to partition the /dev/drbd0 device and can immediately add it to LVM with pvcreate.

Following this, we use vgcreate to define a new volume group named VG_POSTGRES containing
/dev/drbd0 as its only device. The definition for this volume group actually exists on the /dev/drbd0
device itself, meaning it is replicated by DRBD to the other node. This is why we only need to
execute these commands on pg1.

Next, we use lvcreate with the -n parameter to create a logical volume named LV_DATA within the
VG_POSTGRES group. This time we use the -l parameter to set the volume size at 95%VG instead of
100%VG. This means LV_DATA will contain 95% of the total available space within the VG_POSTGRES
volume group.

Why did we neglect to allocate the remaining 5 percent? Snapshot space. We can
use snapshots for backups, risky temporary work, or simply as a placeholder. If
you never plan on using filesystem snapshots, feel free to use 100 percent of the
VG_POSTGRES group instead.

Instead of verifying the allocation of our logical volume, our last command retrieves some of the
information about the volume group. On our testing system, it looks like the following:

We can see that the volume group is 3.99 GiB in size, that 3.79 GiB is allocated, and that 208.00 MiB
is free. Based on this information, we can presume 3.79 GiB is allocated to the LV_DATA volume,
leaving us 208 MiB for allocating snapshots. We are glad this is only an example, as 208 MiB is not
very much free snapshot space!



There's more...
Is five percent too much space to set aside for snapshots, especially in multi-terabyte volumes?
Probably! Unfortunately, the only other mechanism available to define volume size is the -L
parameter to lvcreate, which only works with absolute measurements. Yet, we know the size of
our devices, and we are free to make loose estimates.

For example, imagine we have a 4 TB storage device, and we only want to leave around 50 GB
for snapshots instead of 200 GB. This lvcreate command specifies the size of our device in GB:

lvcreate -n LV_DATA -L 3950G VG_POSTGRES



See also
As before, we strongly recommend examining the LVM documentation and man pages to
fully leverage its capabilities. We recommend using this URL at the Linux Documentation
Project to learn more: http://tldp.org/HOWTO/LVM-HOWTO/

http://tldp.org/HOWTO/LVM-HOWTO/


Verifying a DRBD filesystem
A fairly-common maintenance concern regarding synchronized devices is verification. The
question we should always ask ourselves in a high-availability scenario is: How confident are we
that the data on both nodes match?

The drbdadm utility provides a parameter specifically for addressing this need. However, there are
some caveats to consider when using it, which we will explain in this recipe.



Getting ready
Follow the recipes defined in all previous sections before starting here. At the very least, we need
a fully operational DRBD node pair to follow this recipe.



How to do it...
Follow these steps as the root user on pg1:

1. Add this block of text inside the resource section defined in /etc/drbd.d/pg.res:

        net { 
          verify-alg md5; 
        } 

2. Run this command to make DRBD reread its configuration files:

        drbdadm adjust pg

3. Begin verification with this command:

        drbdadm verify pg

4. Monitor /proc/drbd until verification is complete:

        watch cat /proc/drbd

5. Disconnect and reconnect the DRBD resource:

        drbdadm disconnect pg
        drbdadm connect pg



How it works...
Our first job is to define what we mean by verify. By default, DRBD is somewhat minimal, and
it has no default for the algorithm it should use for checksum comparisons. The verify-alg setting
is a network-oriented value and defines how DRBD should compare data segments. We also
know md5 as a widely-used checksum algorithm. Thus, we set the verify-alg in a net block within
the resource definition for pg.

Afterwards, we need to reread the configuration files so that the verify-alg setting is defined for
the verification step. By invoking drbdadm with the adjust parameter, it will read and apply any
valid changes we made to /etc/drbd.d/pg.res. When we're ready, we can launch the verification
process by calling drbdadm with the verify parameter. Due to the CPU overhead of md5, this will be
noticeably slower than a full device synchronization. We can watch its progress by paying
attention to /proc/drbd:

We can see that our example verification is 23.6% complete, with an estimated completion time of
just over 2 minutes. The estimate is produced based on network speed, md5 speed, and the
amount of remaining data. These details can fluctuate frequently, as writes to the DRBD device
slow down the verification process.

The last step is to disconnect, then reconnect the pg resource from the DRBD network. During
verification, DRBD marks blocks that have unmatched md5 checksums, but does not resend them
until a new connection is established. We can't speculate about the reason for this step, but it is
required to correct errors.

The last step is only required if any block failed verification. Errors (bad
blocks) will be located in the kernel log according to the DRBD documentation.
We recommend checking for drbd0 messages in /var/log/syslog, /var/log/messages,
and /var/log/kern.log, depending on your distribution.



There's more...
When we're done with this recipe, it's important to ensure the configuration files on each system
match. Since we added the net block to /etc/drbd.d/pg.res on pg1, we should do the same on pg2.
After making any changes to a DRBD configuration file, run this command to enable them:

drbdadm adjust pg

 



See also
The DRBD documentation explains online verification in more detail than we do. Please
refer to this URL for a full discussion of the process: http://www.drbd.org/en/doc/users-guide-84/s-u
se-online-verify

http://www.drbd.org/en/doc/users-guide-84/s-use-online-verify


Correcting a DRBD split brain
One looming danger when running any replication system is that of node status conflicts. This
happens when more than one node has been primary, and we want to reestablish the previous
mirror state. This can happen in many ways, but a common scenario can occur if the existing
primary node experiences a sudden failure and the remaining secondary node is promoted to
primary status.

Where we repair the old primary node, we can't simply reattach it to the DRBD network and
expect successful synchronization. In cases where the last status for each node is that of a
primary, DRBD will not resolve this conflict automatically. It is our job to manually choose the
best primary node from our available choices, and reattach the other node.

In this recipe, we'll explore the steps necessary to reattach a malfunctioning node to an existing
DRBD architecture. We can't have a highly available PostgreSQL cluster with only one
functional node.



Getting ready
Since we're working with DRBD and need a fully established mirror, please follow the steps in
all the recipes up to Adding block-level replication before continuing. In addition, we need to
simulate a split brain. A very easy way to do this is to put both nodes in the primary state while
disconnected from each other.

Assuming that we have nodes pg1 and pg2, where pg1 is the current primary node, follow these
instructions as the root user to cause a split brain:

1. On both nodes, disconnect from DRBD with this command:

        drbdadm disconnect pg

2. On pg2, execute this command to force it into the primary status:

        drbdadm primary --force pg

If we were to use drbdadm to attempt to connect the nodes now, we would see the following
message in the system logs:

Split-Brain detected but unresolved, dropping connection!



How to do it...
Follow these instructions as the root user to repair a split-brain scenario:

1. First, decide which node should be the new primary. This should be relatively easy, since
some event likely precipitated the node mismatch. For the remainder of this recipe, we will
assume pg2 should be the new primary node.

2. Prepare each server by assuring that each is disconnected from the other:

        drbdadm disconnect pg

3. Disable the VG_POSTGRES volume with vgchange on pg1:

        vgchange -a n VG_POSTGRES

4. Use drbdadm to downgrade pg1 to secondary status:

        drbdadm secondary pg

5. Execute this command on pg1 to connect while discarding metadata:

        drbdadm connect --discard-my-data pg

6. Execute this command on pg2 to connect to DRBD:

        drbdadm connect pg



How it works...
The first step is clearly the most critical. We need to determine which node has the most recent
valid data. In almost all cases, there should be sufficient logs to make this determination.
However, in some network disruption scenarios coupled with automated failover solutions, this
may not be obvious. Unfortunately, resolving this step is too varied to adequately express in a
simple guide.

If you are unsure of how to continue following an extremely complicated failure
scenario, we strongly recommend contacting Linbit, which maintains the DRBD
software. Their support information is available at this URL: http://www.linbit.com/
en/products-and-services/drbd-support

For our example, we manually promoted the pg2 node, so it should be the new primary. With that
in mind, there are many states DRBD could have right now, and we want one in particular:
StandAlone. By disconnecting both nodes, we don't have to worry about aborted or premature
connection attempts disrupting our progress. We want both nodes to report StandAlone in
/proc/drbd as the connection state (cs), as shown in this screenshot:

Our next step is actually related to LVM. If DRBD is primary on a node, the second LVM layer
is probably active as well. Since LVM uses the underlying DRBD device, we can't demote this
node to secondary status until we use vgchange to set the active (-a) state of VG_POSTGRES to no (n).

Given that there are no other elements connected to /dev/drbd0, we can set its status to secondary
with drbdadm. While in the secondary state, we can attempt to connect to the DRBD network
with drbdadm connect. Since both nodes were primary at one point, each was maintaining a
different map of modified blocks; these maps will not match. If this happens, DRBD will refuse
to connect to the network, and it will revert to the StandAlone status.

To prevent that, we add --discard-my-data to the connect operation. This option acknowledges the
situation, and it tells the secondary node to ignore its own change map in favor of what the
primary node may contain. If the secondary node is too out-of-date for the update map, DRBD
will simply resynchronize all data on the device.

Of course, none of this will happen until we invoke drbdadm connect from the new primary node.
We do this last because we can always change our minds and abort the process. If we did this
before connecting the secondary node, previously existing storage maps have already been
discarded, and resynchronization would already be taking place.

http://www.linbit.com/en/products-and-services/drbd-support


See also
DRBD addresses this exact scenario in their documentation. We recommend reading
through this URL for a different perspective on the operation: http://www.drbd.org/users-guide/s-r
esolve-split-brain.html

http://www.drbd.org/users-guide/s-resolve-split-brain.html


Formatting an XFS filesystem
The next and last part of our stack is the filesystem layer. This is where the PostgreSQL data will
reside, so we need to ensure it's allocated properly. Unlike the underlying LVM layers, the
filesystem is not so easily modified.

In this recipe, we will discuss some common formatting options and why we recommend them
in addition to necessary commands.



Getting ready
Since this is the last layer in our complete stack, we strongly suggest following all the recipes up
to Incorporating the second LVM layer before starting here.



How to do it...
Assuming pg1 is our current primary node, follow these steps there as the root user:

1. Activate the second LVM volume with this command:

        lvchange -a y VG_POSTGRES/LV_DATA

2. Count the number of CPUs on the primary node.
3. Multiply the CPU count by four.
4. If the total in the previous step is less than 256, use 256.
5. Use this command to find the Linux kernel version:

        uname -r

6. For kernel versions 3.0 and above, format the XFS filesystem with this command, setting
agcount to the value derived in the preceding steps:

        mkfs.xfs -d agcount=256 /dev/VG_POSTGRES/LV_DATA

7. For kernels below 3.0, format with this command:

        mkfs.xfs -d agcount=256 -l size=128m -l lazy-count=1 \
             -i attr=2 /dev/VG_POSTGRES/LV_DATA



How it works...
We begin by activating (-a y) the VG_POSTGRES/LV_DATA volume with lvchange. This is like vgchange,
but only affects the named volume, instead of every volume in the named group. We used this
command merely to demonstrate that either command will work for our stack, especially since
there is only one volume to activate.

The next three steps involve a simple calculation, but it deserves some explanation. The main
feature we want to exploit here is the count of allocation groups. Each allocation group can be
addressed independently when making filesystem modifications. Presumably, this enhances
performance in several different categories since it reduces allocation table contention.

To reach our desired number, we start with the total CPU count in our primary server. This is
the maximum number of concurrent processes that can touch the filesystem simultaneously.
However, we live in a world where upgrades are frequent and CPU core counts are only
increasing. Thus, we suggest multiplying the current CPU count by four, because we only get
one chance to create the XFS layer once it contains data. We want to keep time-consuming data
migrations to a minimum if possible.

With this calculated allocation group count in hand, we can begin formatting. The mkfs.xfs utility
supplied by xfsprogs will perform this step for us. The command we used contained several
parameters, separated into data (-d), log (-l), and inode (-i) settings. Here is a quick summary of
what these options do:

The agcount setting defines how many allocation groups XFS should create. Our example
uses 256, but you may have more.

Because our sample device is only 4GB, it's too small for an agcount of 256. If
you've been following along and created a similarly tiny device, use a setting of
128 instead.

We set the log size to 128m for a 128 MB journal. Journaling filesystems are not new, but
we need a sufficient size to track many concurrent changes on active databases. On kernels
at and above 3.0, this value is calculated based on the device size, so we don't need to set
it.
By setting lazy-count to 1, we get the full power of our agcount setting. Though there are
several allocation groups, there is still a master superblock that tracks some universal
counters. By enabling this, XFS uses other techniques to maintain these values, avoiding
sequential superblock access. On kernels 3.0 and higher, this is set to 1 by default.
The attr inode setting configures an internal mechanism to store inline attributes. This is
more of an implementation detail, but Version 2 is more efficient. On kernels above 2.6.16,
this is set to 2 by default.

While this is a lot to digest, it should be clear by now that newer kernels make it much easier to
use XFS. Instead of all these other options, we merely need to set agcount and format the
filesystem. If everything works as expected, we should see this output from the mkfs.xfs
command:



From this, we can see that our agcount is indeed set to 128 due to the limitations of our 4GB
volume, lazy-count is set to 1, and attr is set to 2.



See also
A definitive source of current XFS documentation is oddly difficult to find. Instead, we
recommend you examine the mkfs.xfs manual provided by man for more information:

        man mkfs.xfs

 



Tweaking XFS performance
When it comes to performance optimization on XFS filesystems, allocation groups are only the
beginning. To maintain a high-availability PostgreSQL server, we want to get the most out of
XFS. For us, this means using specific mount options.

Thankfully, unlike formatting, mount options can be changed frequently and require very little
downtime. Though it isn't essential that we apply these values immediately, the options discussed
in this recipe are our recommendation for this stack.



Getting ready
In order to mount an XFS filesystem, we need one to exist. Please follow the recipe contained in
Formatting an XFS filesystem before continuing.



How to do it...
Assuming pg1 is our current primary node, follow these steps as the root user:

1. Use this command to find the Linux kernel version:

        uname -r

2. Create a mount location by executing this command:

        mkdir /db

3. For kernel versions 3.0 and above, mount the filesystem with this command:

        mount -t xfs -o noatime,nodiratime \
              -o logbsize=256k,allocsize=1m \ 
                 /dev/VG_POSTGRES/LV_DATA /db

4. For kernels below 3.0, mount with this command:

        mount -t xfs -o noatime,nodiratime \
              -o logbufs=8,logbsize=256k,attr2 \ 
              -o allocsize=1m /dev/VG_POSTGRES/LV_DATA /db

5. Execute this command to confirm a successful mount:

        df /dev/mapper/VG_POSTGRES-LV_DATA



How it works...
Our first step is to find our current kernel version as this will dictate which settings have been
defaulted to our desired values. Then, we continue with the mount command and specify -t to set
the filesystem type to xfs. The last two parameters to the mount command define the device we
are mounting and which directory it should be attached to. In this case, we use our
/dev/VG_POSTGRES/LV_DATA device and the /db directory, which we've discussed throughout the
book.

All of the parameters prefixed with -o are options that mount should apply during the mounting
process. These options define how certain aspects of the filesystem behave. Here is a quick
overview of the options we selected, and what they mean:

We use noatime to prevent file metadata from reflecting the last time the file was accessed.
In a PostgreSQL database, storage files are likely constantly being accessed and modified,
so tracking this information is a waste of time and incurs unnecessary writes.
We use nodiratime for a similar reason regarding directory access times.
By ensuring logbufs is set to 8, we get the maximum amount of available buffers for the
filesystem data journal. On kernels 3.0 and above, this is set to 8 by default.
The maximum value for logbsize is 256k. This is a very small amount of memory, and it
ensures good performance for file deletion operations.
The attr2 option reflects the attr=2 value that we set when formatting XFS, and it produces
more efficient inode tables. On kernels 3.0 and above, this is enabled by default.
The allocsize setting is extremely important. It defines the amount of space associated with
each newly created file. It's meant to prevent excessive file fragmentation by preallocating
larger amounts than requested. By setting this to 1m, these allocations are limited to 1 MB in
size.

In 3.0 kernels and above, XFS implemented a dynamic allocation calculation
that will often use values above 256 MB per file. Due to aggressive kernel
caching, these larger allocations may not be released for hours or even days,
causing a mismatch between used and free space in the filesystem. This can
result in 0 percent free space, even if the usage percentage is very low. Never
forget this setting in newer kernels.

 

A successful mount will return no output, so we need to confirm that the space is available some
other way. The df command will report the amount of used and free space on a device, and we
can pass it the -h parameter to make the output human-readable. This is what we see on our test
system:



There's more...
There is one final important mount option that we have not yet discussed: nobarrier. Write
barriers insert a flush operation between a filesystem write and disk sync to prevent inadvertent
data reordering. Some storage devices contain a battery-backed disk cache such as high-end
RAID solutions, SANs, and some solid-state disks with on-board capacitors. This kind of
hardware can survive sudden power loss and does not require explicit barrier-imposed data
flushing.

Without this excessive data flushing, write performance can improve noticeably. To use this
setting, merely include nobarrier in the list of mount options. For example:

mount -t xfs -o noatime,nodiratime,logbsize=256k \
      -o allocsize=1m,nobarrier /dev/VG_POSTGRES/LV_DATA /db

Do not use this setting on any other devices, as data corruption would be the likely result.



See also
The XFS FAQ contains a lot of information related to performance and tweaking XFS in
general. This is available at this URL: http://xfs.org/index.php/XFS_FAQ
Otherwise, the mount manual provided by man has a section specifically pertaining to XFS
mount options:

        man mount

 

http://xfs.org/index.php/XFS_FAQ


Maintaining an XFS filesystem
Conventional wisdom regarding Linux filesystems suggests that file defragmentation is not a
necessary task. While this is true in general, file fragmentation isn't something we should allow to
spiral out of control. PostgreSQL storage files are limited to 1 GB in size, yet we configured XFS
to pre-allocate no more than 1 MB at a time.

This introduces the potential for data fragmentation on OLTP systems or any database cluster
where several tables experience high turnover. To prevent this from adversely affecting
sequential scans, and to promote good filesystem health in general, we need to track and
potentially correct overly fragmented files.

XFS provides two tools suited to this activity. The first is xfs_db, which provides information
about an XFS filesystem. The second is xfs_fsr, which allows us to defragment XFS while it is
still mounted and active. This recipe will cover the basic usage of these tools to keep our high
availability server performing well.



Getting ready
For this recipe, we want a formatted and active XFS filesystem. Follow the recipe in Formatting
an XFS filesystem before continuing. It may also be a good idea to set up a dummy database
where you have mounted XFS. This way, you can run a pgbench test to create a lot of database
write activity so that there is a small amount of data fragmentation. This is not required to follow
along with this recipe.



How to do it...
Assuming pg1 is our current primary node and /dev/VG_POSTGRES/LV_DATA is the device we formatted
with XFS, follow these steps there as the root user:

1. Examine the current fragmentation status with this command:

        xfs_db -f -c frag /dev/VG_POSTGRES/LV_DATA

2. Defragment the filesystem with xfs_fsr:

        xfs_fsr -t 600 /dev/VG_POSTGRES/LV_DATA

3. View the real-time fragmentation status afterwards:

        xfs_db -f -c frag -r /dev/VG_POSTGRES/LV_DATA



How it works...
We begin with the xfs_db utility to view the current fragmentation status of the filesystem. The -c
parameter lets us specify a command that xfs_db should invoke. In this case, we want it to check
the fragmentation status, so we set -c to frag. We set the -f parameter as it allows us to use
xfs_db on a mounted filesystem.

The fragmentation status is calculated by counting the number of non-contiguous extents on all
files and comparing that number to the total amount of files. To prepare for this, we
continuously invoked pgbench to cause a high amount of fragmentation. Here is the fragmentation
on our system:

As you can see, our filesystem is 16.34% fragmented. To correct this, we need to use xfs_fsr to
reorganize any fragmented files. To do this, we only need to call xfs_fsr with either the device
path or the path where the device is mounted. For the sake of consistency, we choose the
former.

We can also limit the amount of time XFS spends fixing fragmentation with the -t parameter,
which sets the run time in seconds. We chose 600 seconds for an even 10 minutes, but larger
systems might require an hour or longer. By setting the -t parameter, we can run xfs_fsr
regularly as a maintenance item, so fragmentation is regularly kept in check.

XFS defragmentation proceeds on a file-by-file basis. Thus, if the xfs_fsr
command is canceled, or does not defragment every file before it exceeds our
time limit, no progress is lost.

If we examine the filesystem again with xfs_db, our fragmentation should be significantly
reduced. Let's consider the following screenshot:

Now our fragmentation is down to 0.68%, which is well within tolerances for good sequential
access performance. However, you might have noticed that we added an -r setting just after the
-c frag declaration.

Remember when we said XFS maintained an internal database? Due to caching and update
intervals, parts of the XFS database are not always accurate. The -r option to the -c frag
command tells XFS that we want real-time information about the filesystem, and not what is
currently stored in the tracking database.



There's more...
While we use the xfs_db command to obtain file fragmentation information, it can actually do
much more. XFS maintains a small internal database, which xfs_db can view or manipulate.
Unfortunately, modifying XFS metadata can render the filesystem corrupt or otherwise unusable.
We highly recommend never using xfs_db for anything but checking fragmentation statuses.

Only experts should ever use xfs_db command parameters other than frag.



See also
Both the xfs_db and xfs_fsr commands have fairly extensive manual pages. We recommend
using these to learn more about the other functionalities these tools provide:

        man xfs_db
        man xfs_fsr



Using LVM snapshots
One of the reasons we created a second layer of LVM on top of DRBD was to provide
filesystem snapshot capabilities. When we create a snapshot, all files on a particular volume will
appear static on that snapshot until one of the following two things happens:

We destroy the snapshot
The amount of changes on the source volume is larger than the space we reserved for the
snapshot

 

This is the primary reason we left 5 percent space unused within our PostgreSQL volume group.
If we create a snapshot, up to 5 percent of the database can change before we have to remove it.
For larger storage devices, this should give us a lot of time to perform emergency restores, create
byte-stable backups, or perform any other operation that requires consistent data.

In this recipe, we'll learn how to properly allocate, use, and remove an LVM snapshot.



Getting ready
For this recipe, we want a formatted and active XFS filesystem. Please follow the recipe in
Formatting an XFS filesystem before continuing.



How to do it...
For this, we will assume pg1 is our current primary node and VG_POSTGRES/LV_DATA is the principal
data volume. Follow these steps as the root user to create and use an LVM snapshot:

1. Create the snapshot with lvcreate:

        lvcreate -l 100%FREE -s -n snap VG_POSTGRES/LV_DATA

2. Create a directory on which to mount the snapshot using this command:

        mkdir /mnt/db_snap

3. Mount the snapshot as a regular XFS filesystem using this command:

        mount -t xfs -o nouuid /dev/VG_POSTGRES/snap /mnt/db_snap

4. Enter the snapshot pgdata directory using this command:

        cd /mnt/db_snap/pgdata

5. Examine snapshot information with lvdisplay:

        lvdisplay VG_POSTGRES/snap | grep snap

 

Follow these steps as the root user to unmount and remove an LVM snapshot:

1. Unmount the snapshot with this command:

        umount /mnt/db_snap

2. Destroy the snapshot with lvremove:

        lvremove VG_POSTGRES/snap



How it works...
We can use the same lvcreate utility that helped us provision the PostgreSQL volume. We start
the command with the -l parameter set to 100%FREE to use any unallocated space in the
VG_POSTGRES volume group. While we can specify sizes in MB or GB with the -L setting, we really
only need to do this if we plan on creating multiple snapshots.

The -s parameter makes this volume a snapshot, which causes LVM to base its contents on
those of another volume. Thus, we specify VG_POSTGRES/LV_DATA as the origin volume group and
volume we want to use for the snapshot. We also use the -n parameter to set the name of the
new volume to snap, making our intentions more obvious.

With the volume created, we simply need to mount it to access the contents. A quick mkdir later,
we have a location in /mnt/db_snap, where we can find the files after mounting.

The mount command itself contains the basic parts. We set the type to xfs with -t, while the last
two parameters dictate the device and the location where it should be mounted. Since we are
using an XFS filesystem, we also need to provide the nouuid mount option. By default, XFS will
not allow the same filesystem to be mounted more than once. The nouuid option skips this check,
allowing us to mount the snapshot.

At this point, the files in the /mnt/db_snap/pgdata directory will be the same as those in /db/pgdata.
The primary difference between the two lies in the fact that /db/pgdata is our live database
instance, and it has continued changing. The files at /mnt/db_snap/pgdata are frozen in time from
when the lvcreate command was completed. If we view the snapshot volume with lvdisplay, we
can see this in action:

Notice that LVM tells us that this is a snapshot volume and what the source volume is. We can
also see that 13.72% of the snapshot space is used. This means that files have changed on the
source volume, and the snapshot responded by storing the original blocks locally. When all of its
space is consumed, the snapshot will be marked as invalid by LVM. Periodic checks with
lvdisplay are important to determine the validity of the files we are using that reside on a
snapshot.

When we are finished with the snapshot, it's good practice to destroy it. We start the process by
unmounting the snapshot volume from /mnt/db_snap. Afterwards, we can use lvremove for the first
time to destroy the snapshot volume. The lvremove command only requires the name of the
volume we want to destroy, and it will confirm our intent before doing so. Once a volume is
removed, there's no way to restore it.

Be careful about keeping snapshots around too long or creating them during
business hours. Depending on the underlying device, performance can suffer
significantly due to the extra writes necessary to maintain the snapshot.



See also
The Linux Documentation Project has a very simple example of snapshot usage. Feel
free to browse the example at this URL: http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_bac
kup.html

http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html


Switching live stack systems
At this point, we have our data located simultaneously on two servers. The second system can
fulfill many possible roles. It can replace the current node in case of hardware failure, or allow us
to perform server maintenance or upgrades with very little downtime.

Regardless of our intent, properly utilizing the second system is the key to a highly available
database server. In this recipe, we'll discuss the proper method for activating the second server in
a two-node pair so that we can make changes to one or both nodes.



Getting ready
By now, we need the full stack and probably a fully active database server as well. Follow all the
recipes up to Tweaking XFS performance before starting here.



How to do it...
For this recipe, we will need two PostgreSQL servers, pg1 and pg2, where pg1 is the currently
active node. Follow these steps as the root user on the system indicated to move an active
PostgreSQL service from one node to another:

1. Stop the PostgreSQL service with pg_ctl on pg1:

        pg_ctl -D /db/pgdata stop -m fast

2. Unmount the /db filesystem on pg1:

        umount /db

3. Mark the VG_POSTGRES group as inactive using vgchange on pg1:

        vgchange -a n VG_POSTGRES

4. Demote the DRBD status to secondary with drbdadm on pg1:

        drbdadm secondary pg

5. Promote the DRBD status to primary with drbdadm on pg2:

        drbdadm primary pg

6. Mark the VG_POSTGRES group as active using vgchange on pg2:

        vgchange -a y VG_POSTGRES

7. Mount the /db filesystem on pg2:

        mount -t xfs -o noatime,nodiratime \
              -o logbsize=256k,allocsize=1m \
               /dev/VG_POSTGRES/LV_DATA /db

8. Start PostgreSQL on pg2:

        pg_ctl -D /db/pgdata start



How it works...
There is actually very little in this recipe that we have not done in this chapter. What we have
actually done here is formalized the steps necessary to tear down and build up an active stack.
We start the process by stopping the PostgreSQL service with pg_ctl, as we clearly can't move
the data while it's still in use.

Next, we use umount to decouple the /dev/VG_POSTGRES/LV_DATA device from the /db directory. With
no locks on the storage volume, we can use vgchange with the -a parameter set to n to deactivate
any volume in the VG_POSTGRES group. Since the VG_POSTGRES group actually resides on the DRBD
device, it can only be active on one node at a time.

Once the volumes are no longer active, we can set the DRBD status to secondary with drbdadm.
After we perform this step, the /dev/VG_POSTGRES directory and any corresponding device will
actually disappear. This is because a DRBD device in secondary status is only active within
DRBD. Here is what DRBD shows us in /proc/drbd regarding the situation:

DRBD sees the device as Secondary on both nodes; currently, neither node can access our
PostgreSQL data. From this point, we merely reverse the process to reactivate all of these
resources on pg2 instead.

We begin reactivating PostgreSQL by promoting the storage to the primary status with drbdadm on
the pg2 node. This causes the requisite VG_POSTGRES volume group to appear on pg2, making it a
candidate for activation with vgchange.

Now we simply reuse the mount command that we discussed in the Tweaking XFS performance
recipe on the pg2 node, making the data available to us once again. If we start PostgreSQL with
the pg_ctl control script, our database will begin running as if it were still on the pg1 node.
PostgreSQL does not know anything has changed.



There's more...
Since data can switch nodes arbitrarily as demonstrated here, upgrades and maintenance on
server hardware are much easier. What can we do with the extra node? We can reboot it, apply
firmware or kernel updates, apply security patches, or even update the database software to a
bug-fix release.

Following any required or suggested changes to the secondary node, we merely promote it to run
PostgreSQL in place of the current server. Then, we can repeat modifications on the other node.
With this, we can limit outages to a matter of seconds while still providing high uptime
guarantees, all without skipping system maintenance.

In fact, this process is so standardized that we will be exploring it in great detail in the next
chapter. Once this tear-down and build-up procedure is automated, maintaining or replacing
servers is even easier.



Detaching a problematic node
There's one last thing we need to cover before ending this chapter. If a server is causing
problems, there's a good chance that the infrastructure department will want to reclaim, rebuild,
or replace it. Simply stopping the broken server is a possible solution, but there is a safer way to
decouple DRBD from another system.

In this recipe, we'll quickly cover partially dismantling a running DRBD system without
disrupting the active server.



Getting ready
By now, we need the full stack and probably a fully active database server as well. Follow all the
recipes up to Tweaking XFS performance before starting here.



How to do it...
For this recipe, we will need two PostgreSQL servers: pg1 and pg2, where pg1 is the currently
active node. Follow these steps as the root user on the system indicated to permanently remove
pg2 from the DRBD cluster:

1. Execute this command on both pg1 and pg2 to disconnect DRBD:

        drbdadm disconnect pg

2. Invalidate the data on the remote node with drbdadm on pg1:

        drbdadm invalidate-remote pg

3. Invalidate the data on the current node with drbdadm on pg2:

        drbdadm invalidate pg



How it works...
This recipe is one of the easiest in our list, but it is equally important. We begin by using drbdadm
to disconnect each node from the communication link DRBD uses to copy data between servers.

Then we use drbdadm again to doubly invalidate the data on the bad node. First, we use the
invalidate-remote parameter on pg1 to ensure it sees pg2 as unusable. Then we use the invalidate
parameter on pg2, so it sees its own data as incorrect. We can see what this looks like by
examining the contents of /proc/drbd again:

As we can see here, DRBD considers the data on the current node as Inconsistent, meaning it
cannot be used as the source data for a new DRBD pair. At this point, we can release pg2 to its
fate, no matter what that might be.



There's more...
Some might claim that any data invalidation is excessive. DRBD has its own safeguards to
protect against inadvertent data copies. While true, server pools are not always cleaned up
properly. Invalidating the data on pg2 does more than protect pg1 from being adversely affected if
or when pg2 reconnects. We've effectively ensured pg2 cannot contribute data to any other
DRBD cluster as a primary node.

However, we can go even further. We can actually physically destroy all traces of DRBD data on
the decommissioned node. These commands on pg2 will do the work for us:

drbdadm down pg
drbdadm wipe-md pg
dd if=/dev/zero of=/dev/VG_DRBD/LV_DATA bs=1024 count=1024

The first drbdadm command stops the DRBD device itself. The second erases its metadata. Why
do we need the third, then?

The dd utility is absurdly dangerous because it can write arbitrary blocks to any device on a
server with almost no restrictions. We set the input file (if) to /dev/zero, and the output file (of)
to /dev/VG_DRBD/LV_DATA, which we know to be the device DRBD was using. Then we set the
block size (bs) to 1024, and write a count of 1024 blocks to the device. Basically, we just overwrite
the first megabyte of data on the DRBD device with zeroes.

We did this because metadata can be extracted from other nodes and reapplied. Theoretically,
this means pg2 can be salvaged with enough expertise. By corrupting the data on the device itself,
this is no longer possible. Furthermore, if we use drbdadm with create-md later, there's no existing
data to interfere with the new metadata.



See also
Linbit, the maker of DRBD, has very extensive documentation on system troubleshooting.
Refer to this URL for more information: http://www.drbd.org/en/doc/users-guide-84/ch-troubleshooting

http://www.drbd.org/en/doc/users-guide-84/ch-troubleshooting


Cluster Control
In this chapter, we will learn how to automate cluster management and ensure high availability.
We will cover the following recipes in this chapter:

Installing the necessary components
Configuring Corosync
Preparing startup services
Starting with base options
Adding DRBD to cluster management
Adding LVM to cluster management
Adding XFS to cluster management
Adding PostgreSQL to cluster management
Adding a virtual IP to hide the cluster
Adding an e-mail alert
Grouping associated resources
Combining and ordering related actions
Performing a managed resource migration
Using an outage to test migration



Introduction
Almost everything that we've discussed so far has led directly to this chapter. By now, we have
multiple servers, redundant alternates, backup, synchronization, and much more. If we combine
all of these techniques, management becomes more difficult with each component we add.

In the previous chapter, we covered all of the elements for a robust and elastic storage structure.
Even then, we noted the arduous nature of moving a running server from one node to another.
Typing commands safely takes time, as does referring to a checklist and verifying commands
before running them in a production environment. We would never recommend anything less.

Finally, we will learn how to configure the two linked nodes to manage themselves. It's not
entirely foolproof, yet the process we are about to undergo is robust and implemented safely by
many enterprises. Instead of a dozen commands to move an active PostgreSQL instance to
another server, we will need only one. Furthermore, the software can detect several failure
scenarios and relocate PostgreSQL on our behalf if something goes wrong.

The safest cluster in a high-availability architecture is one that requires the least amount of
manual intervention. To that end, this chapter will cover Corosync and Pacemaker and the
steps to manage dual-node servers with this software. By the end of this chapter, we should have
something similar to this diagram:

Here, all of the components are installed on both nodes, but the grayed-out ones are unavailable
on Node 2. Yet, we could use Pacemaker to reverse the graph so that Node 2 is the active
server instead of node 1. That is a lot of changes to make manually.



Before we begin...
Before we spend any more time on this chapter, we should ask ourselves a question: Is
automation necessary? It's certainly nice to have, but is it required? Will we benefit from the
admittedly esoteric incantations needed to install and configure these tools?

The answer is not always so straightforward. While exceedingly powerful, Pacemaker is
infamously difficult to use and even a little overzealous in applying its rules. An improperly built
Pacemaker cluster might produce a database that moves to another node at the slightest
provocation. Worse, Pacemaker enforces its current status and will actively thwart management
attempts it didn't personally invoke.

We won't lie; the learning curve is immense and should extend far longer than what this chapter
teaches. If this is too much for now, skip this chapter with our best regards.

Otherwise, we want you to know that this chapter is only the beginning. We will guide you
through the creation of a functional Pacemaker-managed system, but we strongly recommend
experimenting frequently on a pair of virtual servers. This gives you a safe area to make
mistakes, break Pacemaker in all kinds of interesting ways, and learn more about the material we
present here.

None of this content is easy, but we promise it's worth the time to absorb. We will introduce this
material slowly to help aid in the process.



Installing the necessary components
The two main components of the software we use in this chapter are Corosync and Pacemaker.
Each of these comprises, or depends on, several other elements and prerequisites. For now, we'll
simply refer to the entire suite as Pacemaker, as it comprises the bulk of how we will control the
failover system.

This recipe should be relatively short, as we will only discuss the installation of Corosync and
Pacemaker, not their configuration.



Getting ready
Red-Hat-based systems such as Fedora, CentOS, and Scientific Linux will already have
Pacemaker in their repositories. Debian and its derivatives such as Ubuntu also include
Pacemaker as an optional install from standard repositories. Red Hat Enterprise Linux
(RHEL) itself, however, only offers the software as a paid add-on, available at this URL:

https://www.redhat.com/apps/store/add-ons/

Whatever choice you make, it shouldn't be necessary to compile Pacemaker from source on
most Linux distributions.

https://www.redhat.com/apps/store/add-ons/


How to do it...
Follow these quick steps to install Pacemaker and Corosync on all PostgreSQL server pairs
running a Debian-based distribution:

1. Install the main packages and all dependencies with this command as a root-capable user:

        sudo apt-get install corosync pacemaker

2. Disable the cluster software from starting on system boot:

        sudo update-rc.d corosync disable
        sudo update-rc.d pacemaker disable

For those running a Red-Hat-based operating system, follow these steps to install and prepare
Pacemaker:

1. Install the main packages and all dependencies with this command as a root-capable user:

        sudo yum install corosync pacemaker

2. Disable the cluster software from starting on system boot:

        sudo chkconfig corosync off
        sudo chkconfig pacemaker off

Newer Linux systems are likely configured to start and start scripts with systemd. If that is the
case, be sure to use systemctl to disable the services with these steps:

1. Stop Corosync and disable it from starting by default with these commands:

        systemctl stop corosync
        systemctl disable corosync

2. Stop Pacemaker and disable it from starting by default with these commands:

        systemctl stop pacemaker
        systemctl disable pacemaker

 



How it works...
Each of these short recipes consists of two steps:

1. Install Corosync and Pacemaker.
2. Disable Corosync and Pacemaker on server boot.

While the first step makes sense, why do we need the second? When running a highly available
cluster, caution is a beneficial attribute. A server may reboot for any number of reasons, and
many of those include crashes that require further investigation.

Were Pacemaker to start immediately following a server reboot, we could potentially lose
valuable diagnostic information. More importantly, a rebooted server should be considered in an
unknown or potentially damaged state until it is examined by an experienced system
administrator. We don't want a misbehaving server as part of our critical infrastructure.

Corosync is the communication layer between each Pacemaker node. It also launches the
Pacemaker management system. This means that we can prevent all node management simply
by disabling it.



There's more...
If you believe we are being too wary, simply skip the second step in our recipe. However, it's
important to remember that services are easy to start on Linux servers. These commands, for
instance, will start Corosync and Pacemaker normally:

sudo service corosync start
sudo service pacemaker start

If the server was rebooted as the result of maintenance, the preceding commands will return the
system to normal operation. Otherwise, a few cursory checks through server logs may determine
that the cause of the system crash does not adversely affect PostgreSQL data. If so, once again,
it is easy to start Corosync and Pacemaker and re-establish the dual-node cluster.

What we have done here is a very rudimentary form of STONITH, which means to Shoot The
Other Node In The Head. Dedicated STONITH hardware may power a server off completely
or remove it from the network, making it inaccessible through anything other than console
emulation or direct access. Truly high-availability systems cannot afford to introduce unknown
entities into a carefully crafted and manicured architecture. To do so invites undefined behavior
across the spectrum of database services that could lead to outages or data loss.

If we claim that our data is important and our uptime is essential, we need to adopt a similar
stance toward crashed or damaged servers. We haven't gone so far as to completely disable the
server in this recipe; we only prevent it from rejoining a functioning Pacemaker pair. In a true
STONITH-enabled organization, our measures would be much more drastic.



See also
The clusterlabs.org website is a repository of all things related to Pacemaker. It has several
relevant tutorials, examples, and copious documentation. If you had trouble installing with
our recipe, try an alternative listed at this URL: http://clusterlabs.org/wiki/Install

http://clusterlabs.org/wiki/Install


Configuring Corosync
Once Corosync and Pacemaker are installed, we only need to modify a single configuration file
to activate them. As we've mentioned earlier and shown in the introduction diagram, Corosync is
the conduit that Pacemaker uses for communication. Corosync also binds itself to services that
rely on its channels, so it will also launch Pacemaker on our behalf.

This recipe will explain how to create a simple configuration for Corosync that will establish a
secure Pacemaker cluster.



Getting ready
We have already installed everything we need, but if we are running an older Debian-based
system such as Ubuntu or Mint, we have one more step. Before Corosync will work properly,
we need to enable its startup script. Open the /etc/default/corosync file and make sure it contains
this line:

START=yes 

Without it, Corosync won't run even if we start it manually. We removed it from system boot
time, but that doesn't mean we never want it to run at all!



How to do it...
For this recipe, we have two PostgreSQL nodes: pg1 and pg2, which are assigned IP addresses in
the 192.168.56.0 subnet. Follow these steps as a root-capable user:

1. On pg1, run this command to generate an authorization key file:

        corosync-keygen

2. Open another connection to pg1 and perform several activities to generate sufficient entropy
until corosync-keygen completes. A good source of random events is software compilation,
for example.

3. Copy the resulting /etc/corosync/authkey file to pg2. Make sure it is copied to
/etc/corosync/authkey on pg1 as well.

4. Modify the bindnetaddr, crypto_cipher, and crypto_hash lines in the /etc/corosync/corosync.conf
file on both pg1 and pg2 so that it contains the following values:

        bindnetaddr: 192.168.56.0 
        crypto_cipher: aes256 
        crypto_hash: sha256 

5. Start Corosync on both pg1 and pg2 with this command:

        sudo service corosync start
        sudo service pacemaker start

6. Show the status of Pacemaker with the crm utility on pg1:

        sudo crm status



How it works...
The first step involves securing our Corosync communication channel. The corosync-keygen utility
will generate a 1,024-bit key that helps Pacemaker nodes identify each other, but to do so, it
involves a lot of random input. This random input must come from the server itself, so simply
typing gibberish in the console while we wait will not suffice.

We can generate entropy by making the server perform tasks. If the server is otherwise idle, we
may need to execute commands, test SQL, or compile basic software. Given enough server
activity, the corosync-keygen command will eventually exit and save a file named authkey in the
/etc/corosync configuration directory. As we want this file to be the same on all nodes, we also
copy it from pg1 to pg2.

Next, we only need to change two lines in the existing configuration files to suit our needs. First,
we need to tell Corosync which network interface it should bind to with bindnetaddr. In our case,
both servers are on the 192.168.56.0 network, so we can use that value. This address will likely
be different on your system, but it's easily obtained.

If you don't know how network subnets work, find the IP address of your server
and simply replace the last number with a zero. This skips a lot of calculating,
and works in our case. So, if the address is 10.2.8.14, use 10.2.8.0. If you don't
control the entire subnet, doing this isn't exactly safe due to the risk of traffic
conflicts. Find a network engineer and ask for assistance if you are unsure.

Then, we change crypto_cypher and crypto_hash to one of the many supported protocols to enable
secure and encrypted communication between nodes. The configuration file lists several, so
choose an encryption algorithm that fits your security requirements. When this is done on both
nodes, we can start Corosync and then Pacemaker with the service command, and our work is
done.

Again, in newer Linux distributions it's likely that systemd manages services. On
these systems, use the systemctl command to start Pacemaker and Corosync
instead. The system command will probably still work, but it's best to use the
proper tool when possible.

To verify that the Pacemaker cluster exists, we can use the crm command. What is crm? It stands
for cluster resource manager and will be the command we use for all Pacemaker interactions
from now on. The status parameter displays the current state of the cluster, and for our test
systems, it looks like this:

As we can see, Pacemaker can communicate with both nodes, so it lists them as Online. The rest
of the information presented here regarding quorum and votes can be ignored for now, but we'll



cover it soon enough.



See also
As mentioned earlier, the clusterlabs.org site should be considered the ultimate resource
regarding Corosync and Pacemaker. To learn more about the process we used here,
proceed to this URL: http://clusterlabs.org/wiki/Initial_Configuration
Otherwise, the corosync.conf file actually has its own extensive manual page available via
the man utility. It's extremely useful for creating more advanced clusters. Use the following
command:

        man corosync.conf

http://clusterlabs.org/wiki/Initial_Configuration


Preparing startup services
A common interpretation of a functional server is one that runs on its own recognizance. After
being rebooted, it starts all necessary services and does its job as configured. It might be hard to
believe, but we want to fight that inclination for two important reasons:

Pacemaker is a state machine
Pacemaker needs total control of any service it manages

Pacemaker wants to start services itself so it knows that the current status is the one it created. It
will perform tests to obtain this information, but for things such as DRBD, this isn't always
reliable. It's generally safer to start from scratch. Beyond this, if a service that isn't supposed to
be running starts, Pacemaker will only have to stop it anyway.

In this recipe, we'll quickly cover which services to disable on each of our PostgreSQL nodes.



Getting ready
As we're continuing to configure Corosync and Pacemaker, make sure you've followed all the
previous recipes.



How to do it...
For this recipe, we will use the same two PostgreSQL nodes: pg1 and pg2. We will also continue
to assume that our PostgreSQL data is located at /db/pgdata.

On Red-Hat-based systems, follow these steps on both servers as a root-capable user:

1. Prevent the PostgreSQL service from starting automatically with this command:

        sudo chkconfig postgresql off

2. Do the same for the DRBD service with this command:

        sudo chkconfig drbd off

3. Create a file named /etc/sysconfig/postgresql with the following line:

        PGDATA=/db/pgdata 

On Debian-based systems, follow these steps on both servers as a root-capable user:

1. Prevent the PostgreSQL service from starting automatically with this command:

        sudo update-rc.d postgresql disable

2. Do the same for the DRBD service with this command:

        sudo update-rc.d drbd disable

3. Create a file named /etc/default/postgresql with the following line:

        PGDATA=/db/pgdata 

Newer Linux systems are likely configured to start and stop scripts with systemd. If that is the
case, be sure to use systemctl to disable the services with these steps:

1. Prevent the PostgreSQL service from starting automatically with this command:

        systemctl disable postgresql

2. Do the same for the DRBD service with this command:

        systemctl disable drbd

No matter what Linux system you are using, install the /init/postgresql-ha script from this book
into the /etc/init.d directory.



How it works...
Both of these short recipes perform the same task. The first step is to remove PostgreSQL from
the list of services that start at system boot time. The next does the same to DRBD. These are
the only two services that are controlled via system startup scripts, so our work here is very
short indeed. Then, we create a file and provide a value for PGDATA so that the
/etc/init.d/postgresql-ha startup script can find our PostgreSQL data.

Our final, and perhaps the most important, step is to ignore any provided PostgreSQL
initialization script in favor of one that is fully compatible with Pacemaker. Pacemaker is
extremely dependent on the expected Linux Standard Base exit codes. At least in the case of
Debian and Ubuntu, the provided initialization script does not return the proper exit code
because it expects to manage multiple PostgreSQL instances per server.

Without the correct exit value, Pacemaker will interpret the service as up, down, or unknown
and will make improper management decisions. This is excessively dangerous when trying to run
a highly available PostgreSQL installation. The script provided by this book has been tested with
Pacemaker, and we know it works as intended.



There's more...
If you have another test server with PostgreSQL installed and running, try some of these tests to
confirm it works as described:

1. Start PostgreSQL and confirm the exit status is 0 for success with this command:

        sudo service postgresql start
        echo $?

2. Stop PostgreSQL and confirm the exit status is 0 for success with this command:

        sudo service postgresql stop
        echo $?

3. Finally, check the status of PostgreSQL while it is stopped and confirm the exit value is 3,
indicating the service isn't running with this command:

        sudo service postgresql status
        echo $?

 

The $? variable represents the exit status of the previous command. It's an easy way to visualize
the exit code, which is normally only used by other utilities. Any script that does not return these
three exit codes for these specific conditions cannot be used with Pacemaker.



See also
The Linux Standard Base specification for initialization scripts is fully documented. We
recommend that you refer to the following URL to see why we used a script not supplied
by the distribution: http://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptac
t.html

http://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html


Starting with base options
Pacemaker, as a cluster resource manager, has some defaults that we are interested in changing.
As Pacemaker is so powerful, it makes several assumptions about the composition of cluster
resources and nodes it controls, one of which is that there are several nodes, and not just two.

This works well for large cooperative networks of web servers or independent services that can
operate in a transient manner. However, we have two nodes that are very much dependent on
shared storage that can only be used by one node at a time. So, in this recipe, we are going to
perform three tasks:

Disable STONITH because we don't currently have STONITH-enabled hardware
Disable the cluster quorum because two systems cannot produce a meaningful vote
Enable resource stickiness to prevent disruptive automated node swaps



Getting ready
As we're continuing to configure Corosync and Pacemaker, make sure you've followed all
previous recipes.



How to do it...
For this recipe, we will use the same two PostgreSQL nodes: pg1 and pg2. Perform the following
steps on either server as the root user:

1. Disable STONITH with this crm command:

        crm configure property stonith-enabled=false

2. Ignore quorum voting with this crm command:

        crm configure property no-quorum-policy=ignore

3. Increase the default resource stickiness with this crm command:

        crm configure property default-resource-stickiness=100

4. Finally, view the current state of the cluster configuration with this command:

        crm configure show



How it works...
This recipe differs from those in the previous sections in that we can execute these steps from
any server. Commands issued by the crm utility are sent to the cluster itself, so any node will
transmit them successfully, and Pacemaker will act accordingly. In the case of our configuration
changes, the only action that Pacemaker takes is to alter its stored settings.

The first thing we do is disable STONITH by calling crm with the configure property parameter
for stonith-enabled. While STONITH is an amusing acronym, there are actual devices on the
market that fill this role. These devices can isolate a node from a network in several ways, and
Pacemaker is designed to interact with them by default. As we don't have one right now, it's best
to tell Pacemaker that it shouldn't expect such functionality.

Our next step includes shutting down our fledgling democracy by disabling quorum verification.
We only have two nodes, and votes comprising two voters are entirely meaningless because they
will always result in a tie. Without an odd number of nodes, no quorum (agreement) can be
reached. This time, we configure property for no-quorum-policy and set it to ignore. This essentially
means that the nodes will continue to vote, but we don't care unless they can reach a quorum.
As two servers can't reach a quorum, resources will run where we tell them to run, and they
have no say in the matter.

The last setting we change with configure property is default-resource-stickiness. As we
mentioned earlier, Pacemaker is really built for transient services that act as independent agents.
If an HTTP daemon moves from one node to another, nobody really cares or notices. If
PostgreSQL acted in a similar manner, there would be several broken applications and irritated
users.

By changing this setting to 100, we give every resource a default weight, so it sticks to
whichever server it started on. Unless there's a crash or forced migration, it will stay there
indefinitely.

Our last step is to view our handiwork by issuing crm with configure show. Pacemaker stores its
configuration as XML, and while this is somewhat human-readable, it's hardly concise. On our
test cluster, it produces this output:

As we can see, both pg1 and pg2 are each labeled as a node. In addition, stonith-enabled, no-
quorum-policy, and default-resource-stickiness are all set as we described in the recipe.

We're well on our way to building a Pacemaker cluster.



There's more...
The crm command is actually a fully functional pseudo-shell. If executed without parameters, it
presents a prompt and waits for valid crm commands. These commands include help for every
level chosen. For example, to see what options are available when putting a node into standby, we
can type this input while in a crm shell:

node help standby

 

Then, we can use what we learned previously and put the node into standby state until it is
rebooted and Corosync is started again. Like this:

node standby pg1 reboot

This is extremely helpful as Pacemaker has a lot of commands, and it's easy to forget the proper
syntax.



See also
The crm shell has undergone a lot of changes in the last few years, including splitting from
the Pacemaker project itself. As such, its documentation is somewhat fragmented. The
new crm shell maintainers have information that is mostly compatible with versions
packaged with Debian and Red-Hat-based systems at this URL: http://crmsh.github.io/man-2.0/

It might be easier to simply explore the help for each command as we described earlier.

http://crmsh.github.io/man-2.0/


Adding DRBD to cluster management
DRBD is actually one of the most difficult resources to manage with Pacemaker. Unlike a
regular service that is started or stopped depending on where it is active, DRBD is always active.
The only thing that changes between two nodes running DRBD is the Primary or Secondary state
ascribed to each.

Due to this complication, DRBD is not one resource, but two:

A DRBD resource to manage starting and stopping DRBD
A master/slave resource to control which node acts as the Primary

In this recipe, we'll allocate both of these resources so that Pacemaker can manage DRBD
properly.



Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all previous recipes.



How to do it...
In the previous chapter, we created a DRBD resource named pg. With this in mind, follow these
steps as the root user to add DRBD to Pacemaker:

1. Create a basic Pacemaker primitive for DRBD with this command:

        crm configure primitive drbd_pg ocf:linbit:drbd \
            params drbd_resource="pg" \
            op monitor interval="15" role="Master" \
            op monitor interval="20" role="Slave" \
            op start interval="0" timeout="240" \
            op stop interval="0" timeout="120"

2. Create a master/slave resource with this command:

        crm configure ms ms_drbd_pg drbd_pg \
            meta master-max="1" master-node-max="1" \
            clone-max="2" clone-node-max="1" notify="true"

3. Clean up any errors that might have accumulated with crm:

        crm resource cleanup drbd_pg

4. Display the status of our new resources with crm:

        crm resource status



How it works...
Most of the resources we create in subsequent sections are called primitives. These should be
considered the base resource element that Pacemaker controls, as they have a one-to-one
relationship with each service. The first of these we create is for our DRBD service.

When creating new configuration entries with crm, we declare them with configure primitive, and
then we must supply a name. To keep things simple, we named this resource drbd_pg. After the
name, we must supply a resource agent to actually manage this service. Pacemaker is shipped
with several, but we are specifically interested in the ocf:linbit:drbd agent, as it was written by
the makers of DRBD themselves.

Next, we can configure the resource agent by specifying params, followed by the options it
recognizes, labeled with op. Among these options, we define a monitor interval for the master
server and one for the slave that isn't quite as frequent. Then, finally, we override the start
timeout and stop timeout so that they match the minimum values expected by Pacemaker. It will
complain if we use values lower than this, but feel free to increase them.

Next, we create the master/slave resource that controls how Pacemaker views the drbd_pg
resource. Instead of adding and configuring a primitive, this time we configure a master slave
resource(ms) and name it ms_drbd_pg. After naming our ms resource, we designate drbd_pg as the
primitive to treat as a master or slave service. All of the entries after the meta designation are
somewhat confusing and arbitrary, so we hope these pointers help:

By setting master-max to 1, we tell Pacemaker that only one node in the cluster can ever be
promoted to master for this service.
Similarly, setting master-node-max to 1 limits Pacemaker to a single copy of this resource per
server.
The clone-max setting actually describes the amount of active copies for this resource, which
is 2 in our case.
Oddly enough, the clone-node-max setting means basically the same thing as master-node-max.
We set this to 1 as well to safeguard the DRBD resource from potential Pacemaker bugs or
future changes in default settings.
Finally, the notify setting effectively transmits master/slave notices to all nodes so that
Pacemaker knows the new status of the shared resource everywhere it is running.

What do we mean by a resource copy? Internally, Pacemaker stores resources as defined roles.
If a single resource has two roles, it actually exists as two items within Pacemaker. In Pacemaker
lingo, these are referred to as clones. The crm system hides these details from us, but they're still
very real and difficult to manage.

The values we chose for all of the meta options are actually Pacemaker defaults. We could have
omitted them, but a high-availability system cannot remain safe while it is at the mercy of
malleable defaults. We set these in stone now to prevent Pacemaker upgrades from potentially
causing problems in the future.

When adding new resources, sometimes Pacemaker enters an undefined state and lists errors
that aren't actually valid. We can clear these out using the resource cleanup parameter to target the



drbd_pg primitive. It's always a good idea to keep the Pacemaker status clean to avoid possible
conflicts later.

Our final job is to view the status of all configured resources by calling crm with resource status.
Our test system showed this output:

Even though we created two primitive resources, we only see one entry: ms_drbd_pg. Note,
however, that it represents the drbd_pg resource. We can also see the Masters and Slaves for this
Set, though there should never be more than one of each with the configuration we used.



There's more...
In Pacemaker, resource agents can be viewed separately with the crm program, and many are
available. To get a list of all the LSB resource agents (scripts in /etc/init.d) Pacemaker can see,
use this command:

crm ra list lsb

For a list of Pacemaker-specific agents, use this command:

crm ra list ocf

By itself, this information isn't entirely helpful. Knowing that the agents exist does not tell us
what parameters they have. To see this, we need to view the meta information for the agent. We
used the ocf:linbit:drbd agent in this recipe, and we can view its usage information with this
command:

crm ra meta ocf:linbit:drbd

If this is not convenient enough, we can actually use the man command for most agents as well. If
we know the class, provider, and name of an agent, we can view its Unix manual. For example,
to see the manual for the ocf:heartbeat:nginx agent, we could use this command:

man ocf_heartbeat_nginx

 



See also
Some of this information is also available within the DRBD documentation at this URL: http
://www.drbd.org/en/doc/users-guide-84/s-pacemaker-crm-drbd-backed-service

http://www.drbd.org/en/doc/users-guide-84/s-pacemaker-crm-drbd-backed-service


Adding LVM to cluster management
To avoid potential conflicts, we will continue to add resources to Pacemaker in the same order
as if we were starting them manually. After DRBD comes our second LVM layer. The primary
purpose of Pacemaker in this instance is to activate or deactivate the VG_POSTGRES volume group
that we created in the previous chapter.

This is necessary because DRBD cannot demote a primary resource to the secondary status as
long as there are any open locks. Any LVM volume group that contains active volumes can
cause these kinds of lock. Also, we cannot utilize a volume group that has no active volumes
when DRBD is promoted on the second node.

This recipe will explain the steps necessary to manage our VG_POSTGRES/LV_DATA data volume with
Pacemaker.



Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all the previous recipes.

Users of some Debian-derivative systems such as Ubuntu need to beware! To
avoid potential issues, it may be necessary to delete the /lib/udev/rules.d/85-
lvm2.rules file if it exists. Some versions of this file automatically mount LVM
devices when they appear; such actions can interfere with Pacemaker LVM
management.

 



How to do it...
Perform these steps on any Pacemaker node as the root user:

1. Add an LVM primitive to Pacemaker with crm:

        crm configure primitive pg_lvm ocf:heartbeat:LVM \
            params volgrpname="VG_POSTGRES" \
            op start interval="0" timeout="30" \
            op stop interval="0" timeout="30"

2. Clean up any errors that might have accumulated with crm:

        crm resource cleanup pg_lvm

3. Display the status of our new LVM resource with crm:

        crm resource status



How it works...
As with the previous recipe, we begin by adding a primitive to Pacemaker. For the sake of
consistency and simplicity, we name this resource pg_lvm. In order to manage LVM, we also need
to specify the ocf:heartbeat:LVM resource agent.

Remember, to see the list of parameters for a resource agent, use the ra meta
command to the crm shell. For the LVM agent, this invocation would display
usage information:

        crm ra meta ocf:heartbeat:LVM

The only parameter (params) that concerns us regarding the LVM resource agent is volgrpname,
which we set to VG_POSTGRES. The other options we set are more advisory minimum values, which
reflect the number of seconds we should wait before considering an operation as failed.

In our case, we wait 30 seconds before declaring a start or stop ping a failed action. If
Pacemaker is unable to start LVM, it will attempt to do so on other available nodes. In the event
that Pacemaker can't stop LVM, it will report an error and perform no further actions until the
error is cleared or corrected.

Speaking of clearing errors, it's a good practice to perform a resource cleanup after adding a new
resource to Pacemaker. While not strictly required, this keeps the status output clean and ensures
that Pacemaker will add the next resource as expected. Sometimes, Pacemaker will refuse to
perform further actions if the error list contains any entries.

As we will do with all recipes in this chapter, our last action is to view the status of the resources
to prove that the new addition is listed. Our test server shows that it is:

Now, in addition to the ms_drbd_pg resource that represents drbd_pg, we can see the new pg_lvm
resource. Pacemaker also checks the status of LVM and displays it as Started.



There's more...
If you're tired of always checking the status of Pacemaker manually, there is a tool we can use
instead. Much like top, which displays the current list of running processes, the crm_mon command
monitors the status of a Pacemaker cluster and prints the same output as crm status. For our
cluster in its current state, it looks like this:

This will refresh regularly and makes it easy to watch live transition states as Pacemaker
performs actions related to cluster management. Feel free to keep this running in another
terminal window for the sake of convenience.



Adding XFS to cluster management
Next in our list of resources to manage with Pacemaker is the filesystem. As with LVM and
DRBD, Pacemaker needs the ability to start and stop the resource arbitrarily to clear locks or
enable activation. In addition, filesystems are somewhat more complex than LVM, simply due to
the number of necessary parameters required to use them.

In order for Pacemaker to manage a filesystem, we need to tell it about the device it's mounting,
which directory the mount should target, the type of filesystem, and any extra options we want
to use. While DRBD and LVM encode metadata within reserved storage areas on the device,
filesystem mounts require explicit parameters.

This recipe will explain the steps necessary to manage our XFS filesystem with Pacemaker.



Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all the previous recipes.



How to do it...
Perform these steps on any Pacemaker node as the root user:

1. Export our list of XFS mount options to avoid long lines by executing these commands:

        OPS=noatime,nodiratime,logbufs=8,logbsize=256k
        OPS=$OPS,attr2,allocsize=1m

2. Add an XFS primitive to Pacemaker with crm:

        crm configure primitive pg_fs ocf:heartbeat:Filesystem \
            params device="/dev/VG_POSTGRES/LV_DATA" \
                   directory="/db" \
                   fstype="xfs" \
                   options="$OPS" \
            op start interval="0" timeout="60" \
            op stop interval="0" timeout="120"

3. Clean up any errors that might have accumulated with crm:

        crm resource cleanup pg_fs

4. Display the status of our new XFS resource with crm:

        crm resource status



How it works...
Due to the limited format of this book, we wanted to avoid excessive line wrapping in the
commands we present. Thus, the first step simply saves all of the XFS mount options from the
previous chapter in a variable named OPS that we can reuse when adding the Pacemaker
primitive.

Regarding the primitive itself, we continue our preferred naming scheme and label it pg_fs (for
the PostgreSQL filesystem). As usual, we need a resource agent to facilitate Pacemaker
management, and the ocf:heartbeat:Filesystem agent fills that role nicely.

As with all agents, to see the list of parameters for a resource agent, use the ra
meta command to the crm shell. For the Filesystem agent, this invocation would
display usage information:

        crm ra meta ocf:heartbeat:Filesystem

We highly recommend that you use this command in each recipe, if only to
verify the parameters act as we claim they do.

This time, the list of parameters (params) we set for the resource agent is somewhat longer than
we used for LVM. Here's a short explanation of each:

The device parameter tells Pacemaker which device it should try to mount. From the
previous chapter, this is /dev/VG_POSTGRES/LV_DATA.
directory specifies where the device should be mounted. Following the example set by our
previous chapter, this is the /db directory.
By setting fstype, we explicitly tell Pacemaker we are attempting to mount an xfs
filesystem. Modern mount commands can often determine the filesystem automatically, but
we advocate a more cautious approach.
Finally, we set the mount options. Our list of options was very long, so we stored it in the
$OPS variable, which we used here.

 

The other options (op) we set are more advisory minimum values, which reflect the number of
seconds we should wait before considering an operation as failed. The timeouts to start and stop
a filesystem are somewhat longer than an LVM device, because filesystems can have direct
users. A filesystem user includes any terminals currently located in a mounted directory,
automated tasks using it as a file target, or files held open by a running process; any one of these
can prevent a filesystem from being unmounted.

As usual, we perform a resource cleanup on the pg_fs device to clear out any invalid errors.
Afterwards, we can view the clean resource status with crm, which looks like this on our test
system:



As expected, we can see that pg_fs has joined our growing list of Pacemaker resources.



Adding PostgreSQL to cluster management
By now, we've fulfilled a fairly long series of prerequisites simply to add PostgreSQL to the list
of services managed by Pacemaker. We're over halfway through the chapter and are just now
getting to the parts relevant to a PostgreSQL DBA. If you're new to DBA work, this might come
as quite a shock, but it comes with the territory.

Once we add this resource, Pacemaker will be capable of starting and stopping everything
necessary to run a PostgreSQL server. We'll still need to add several more elements to control
factors such as the start order and associated services, but we've reached a critical juncture. We
are very close to having a highly-available PostgreSQL cluster.

In this recipe, we'll discuss the steps required to add PostgreSQL itself to Pacemaker control.



Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all the previous recipes.



How to do it...
Perform these steps on any Pacemaker node as the root user:

1. Add a PostgreSQL primitive to Pacemaker with crm:

        crm configure primitive pg_lsb lsb:postgresql-ha \
            op monitor interval="30" timeout="60" \
            op start interval="0" timeout="60" \
            op stop interval="0" timeout="60"

2. Clean up any errors that might have accumulated with crm:

        crm resource cleanup pg_lsb

3. Display the status of our new PostgreSQL resource with crm:

        crm resource status



How it works...
The next primitive that we add to Pacemaker will need to call the script we saved as
/etc/init.d/postgresql-ha. Scripts in this location are known as Linux Standard Base scripts, and
Pacemaker knows to find LSB items in the /etc/init.d directory. Thus, when we call crm with
the call crm with the configure primitive parameters, we name the new primitive pg_lsb to remain
consistent and use the lsb:postgresql-ha resource agent. In reality, the lsb:postgresql-ha agent is
merely an alias for our script.

One of the consequences of this is that our resource agent is not fully integrated into Pacemaker
and has no configurable parameters. The only things we can change are generic options (op) such
as monitor intervals and start or stop timeouts. For this agent, we've set all of the timeouts to 1
minute, but you may need to adjust these based on your PostgreSQL usage.

We set the monitor interval to 30 seconds and the timeout to 60 seconds for one reason: system
overload. If a checkpoint causes enough write activity, PostgreSQL may fail to respond, though
it is still running. If this happens frequently, we strongly recommend that you look into the
problem and correct it.

However, with Pacemaker, the problem is compounded. If a monitor action fails, Pacemaker
assumes that the service is dead, and it will try to restart it. If that fails, it will move everything
over to the alternate node. This can cause an outage seemingly at random, which is not good in a
high-availability environment.

Following this, we continue our usual steps of clearing out any invalid errors and viewing the
Pacemaker cluster status. On our test system, the status shows this output:

As expected, we can see that pg_lsb is Started.

Until we add a few more rules, Pacemaker isn't very smart. On our test system,
Pacemaker repeatedly attempted to start PostgreSQL on the pg2 node, even
though it was already running on pg1. Of course, this failed, and it eventually
checked pg1 to reach the preceding output. We were not kidding when we said
Pacemaker considers resources transitory until told otherwise! Be wary of this
behavior in the next few recipes.



There's more...
Though we provided our own PostgreSQL control script, the resource-agents repository package
installed with Pacemaker contains a resource agent specifically designed for PostgreSQL.
However, its usage is far more complicated. It can also monitor PostgreSQL by querying it,
instead of simply using a process ID test. If you want to use this agent instead, follow these steps
as root:

1. Set the path of pg_ctl with this command:

        CTL=$(pg_config --bindir)/pg_ctl

2. Add the pgsql resource agent as a primary with this command:

        crm configure primitive pg_agent ocf:heartbeat:pgsql \
            params pgctl="$CTL" \
                   pgdata="/db/pgdata" \
             op monitor interval="30" timeout="60" \
             op start interval="0" timeout="60" \
             op stop interval="0" timeout="60"

In order to get the full benefit of this resource agent, you'll also want to set the monitor_user and
monitor_password agent parameters. To see the full list of parameters for this agent, use this crm
command:

crm ra meta ocf:heartbeat:pgsql

Alternatively, view the man page:

man ocf_heartbeat_pgsql



Adding a virtual IP to hide the cluster
We discussed virtual IP addresses earlier; now, it's time to leverage them properly. A virtual IP is
not a service in the traditional sense, but it does provide functionality that we need in a highly-
available configuration. In cases where we also have control over DNS resolution, we can even
assign a name to the virtual IP address to insulate applications from future changes.

For now, this recipe will limit itself to outlining the steps required to add a transitory IP address
to Pacemaker.



Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all the previous recipes.



How to do it...
We will assume that the 192.168.56.50 IP address exists as a predefined target for our PostgreSQL
cluster. Users and applications will connect to it instead of the actual addresses of pg1 or pg2.

Perform these steps on any Pacemaker node as the root user:

1. Add an IP address primitive to Pacemaker with crm:

        crm configure primitive pg_vip ocf:heartbeat:IPaddr2 \
            params ip="192.168.56.50" \
                  iflabel="pgvip" \
           op monitor interval="5"

2. Try to view the IP allocation on pg1 and pg2:

        ifconfig | grep -A3 :pgvip

3. Clean up any errors that might have accumulated with crm:

        crm resource cleanup pg_vip

4. Display the status of our new IP address with crm:

        crm resource status



How it works...
This call to crm with configure primitive allows us to associate an arbitrary IP address with our
Pacemaker cluster. Once again, we follow the simple naming scheme and label our resource
pg_vip. As we always require a resource agent, we need one that is designed to handle network
interfaces. There are actually two that fit this role: IPaddr and IPaddr2. Though we can use either,
the IPaddr2 agent is designed specifically for Linux hosts, so we might as well use it for maximum
compatibility.

The minimum parameters (params) we need for this resource agent include the IP address (ip)
and a label for network management (iflabel). We chose to set these to the IP address that we
set aside earlier (192.168.56.50). We also chose a descriptive label to associate with the interface
(pgvip). Due to the nature of IP addresses, it's a good idea to check the interface on both
machines to see that it is properly listed. Our test system looks like this:

As our test system has a second interface representing the 192.168.56.255 mask, pgvip was
attached to eth1 instead of the usual eth0. We check both pg1 and pg2 because Pacemaker still
starts resources independently, and the new IP address might be on either node. We'll be
resolving this soon, so don't worry if the IP address is allocated to the wrong node.

As usual, we run a resource cleanup and then display the resource status of the cluster. No matter
where pgvip is running, we should see output similar to this:

As expected, the pg_vip Pacemaker resource is Started and part of our growing list of resources.



Adding an e-mail alert
The last thing we are going to add should be considered a requirement when building a high-
availability PostgreSQL cluster. Any time the status of Pacemaker changes; we can have it
transmit an e-mail alerting us to the activity. Not only is this possible with Pacemaker, it's
relatively easy to set up.

This recipe will outline the steps necessary to add an e-mail alert to Pacemaker.



Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all the previous recipes.



How to do it...
Perform these steps on any Pacemaker node as the root user:

1. Add an e-mail primitive to Pacemaker with crm:

        crm configure primitive pg_mail ocf:heartbeat:MailTo \
            params email="dbas@mycompany.com" \
                  subject="Pacemaker\ cluster\ status\ changed:\ "

2. Clean up any errors that might have accumulated with crm:

        crm resource cleanup pg_mail

3. Display the status of our new e-mail alert with crm:

        crm resource status



How it works...
To add an e-mail alert, we need to configure another primitive with crm. We name this resource
pg_mail so that it fits in with the other services that we've configured so far. As always, we need
a resource agent for Pacemaker to invoke when necessary, and the ocf:heartbeat:MailTo agent
works well for our use case.

The MailTo agent is not a regular resource, as it does not represent any actual system service. It's
more of a defined action that Pacemaker should invoke while managing other cluster resources.
This means it's essentially useless until we associate it with another Pacemaker primitive.

The MailTo agent also has two parameters (params) we are interested in setting. We begin by
setting email to an e-mail address for a recipient tasked with monitoring the PostgreSQL cluster.
In most cases, this is either a single DBA or the entire team. In any case, we strongly suggest
that you transmit these alerts to anyone associated with the PostgreSQL database, in case one or
more members of the team are unavailable.

If you don't already have one, speak with the infrastructure team or whoever is
in charge of setting up e-mail lists at your company. Using a generic address
that reaches everyone in the team, Pacemaker won't need to be changed
whenever you hire or fire a DBA.

 

The next setting that concerns us is the subject of the message. If we don't set this, Pacemaker
uses a suitable default, but it's good to have more control over the messages in case we want to
set up e-mail rules or filters. Use any message you like, but there are a couple of important
notes:

Spaces must be escaped by a backslash (\). Otherwise, Pacemaker will print out a lot of
errors and refuse to add the primitive.
The subject is more of a prefix. Pacemaker will add more detail to the subject and body of
the e-mail when the message is sent.

With that said, we are now ready to clean up and view our list of resources. Let's see the output
of resource status on our test system:

We can see from this output that pg_mail is listed as Started, even though it doesn't do anything
by itself. We'll be fixing this soon enough.



Grouping associated resources
Defining all of the critical resources within Pacemaker is a good start. However, Pacemaker is
not concerned with keeping related services operating together. It is designed to facilitate service
management for any series of resources over a large array of servers. This is a recurring theme
in this chapter, and one we have to overcome to fully leverage Pacemaker's abilities.

One way we can do this is by creating a group of related resources. When we do this, the group
represents every member as a whole and must run on one server or another. This prevents the
problems we had in the previous recipes, such as the possibility of new resources being started
on the wrong node.

We'll create a group in this recipe and discuss other important caveats.



Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all the previous recipes.



How to do it...
Perform these steps on any Pacemaker node as the root user:

1. Add a group to Pacemaker with crm:

        crm configure group PGServer pg_lvm pg_fs pg_lsb pg_vip

2. Display the status of our new group with crm:

        crm resource status



How it works...
For the first time in this chapter, we are not configuring a primitive, but a group. Unlike
primitives, which describe each resource we want to manage, a group tells pacemaker how. In
this case, any resource listed in the group must share a few new attributes:

Resources must reside on the same node
Resources must be started in the specified order
Resources must be stopped by reversing the specified order

We named the group PGServer, and now we can address every member as a cohesive unit using
that name. The resource order mirrors the order in which we defined the primitives, which is the
logical order necessary to start (and stop) a PostgreSQL server.

When PGServer is started, Pacemaker will activate LVM, followed by XFS, then PostgreSQL, and
finally, it will add our virtual IP address. We didn't add the e-mail alert, because there's no logical
place for it within the group. If we list it at the beginning, we'll only get an alert if everything is
shut down. We can't place it at the end, or we won't see changes in DRBD.

DRBD has a related complication: it's only a single entry but represents two states. We can't
target specific states in the grouping, so we must omit it from the group. However, there is a
solution to associate the mail and DRBD resources with our new group; we'll cover this in the
next recipe.

Until then, we can view the group with our usual resource status. Here's what we have on our
test system:

Now, we see a new Resource Group named PGServer. We can also see that all of the items within
the group are indented, making the association more obvious.



Combining and ordering related actions
There are two final pieces of the puzzle that will produce a fully functional Pacemaker cluster.
At this point, we have three independent base-level entries in Pacemaker: DRBD, the PGServer
group, and the e-mail alert. They are independent because Pacemaker may start or stop them on
any server in the list of active nodes.

We can fix this by defining a colocation between related resources. When we create a
colocation, we are effectively stating that, wherever this service goes, this other service should
follow. Of course, this by itself is not sufficient. We also need to declare the expected order
necessary for the services to start.

In this recipe, we'll finish our Pacemaker setup by creating the necessary colocation entries, and
defining a service start order.



Getting ready
As we're continuing to configure Pacemaker, make sure that you've followed all the previous
recipes.



How to do it...
Perform these steps on any Pacemaker node as the root user:

1. Add a colocation for DRBD to Pacemaker with crm:

        crm configure colocation col_pg_drbd \
            inf: PGServer ms_drbd_pg:Master

2. Add a colocation for the e-mail alert with crm:

        crm configure colocation col_pg_mail \
            inf: pg_mail PGServer

3. Add a resource order to Pacemaker with crm:

          crm configure order ord_pg \
              inf: ms_drbd_pg:promote PGServer:start

4. Display the status of our new group with crm:

        crm resource status



How it works...
As with all of our changes to Pacemaker, we configure the item we're adding. For this first step,
we are adding a colocation named col_pg_drbd to represent the dependency between the PGServer
group and the ms_drbd_pg master/slave resource. To do this, we need three elements. They are as
follows:

The strength of the relationship, as expressed as a score: We used inf: to represent
infinity, meaning that these two items should always be associated
The name of the resource we are trying to colocate: We use the group name PGServer, as
we want all Pacemaker resources to follow it to the same node
The name of a resource this entry should be colocated with, and is dependent upon:
By setting this to ms_drbd_pg:Master, we are telling Pacemaker that the PGServer group must
be on the same server where DRBD is the master node, wherever that might be

 

We then repeat this process with the e-mail alert. This time, we name the colocation col_pg_mail
to express it as a colocation of the pg_mail resource. The score remains at inf: for infinity, and
we make one final and very important change. When defining a colocation, the order is
extremely important. In fact, all colocation entries should be read as: resource a depends on
resource b.

With the e-mail alert colocation, we now have what amounts to a dependency chain. The e-mail
alert depends on the state of the PGServer group, and the PGServer group depends on the DRBD
master server. Yet, colocations are rules, so Pacemaker is still free to execute these resources
independently of each other, as long as the final result matches the defined state we dictated.

As colocations have no inherent order, we need to impose one. We create one final configure
entry by defining an order named ord_pg. Once again, we need to provide a score, and once
again, we use inf: for infinity; the order of services is very important to us. When we define the
order of our resources, we can also dictate an action that Pacemaker should take, as separated
by a colon.

The order we defined tells Pacemaker that it should promote the ms_drbd_pg resource before it is
allowed to start the PGServer group. Why didn't we add the e-mail alert to our order definition?
Because its order doesn't matter. By being a colocation, it is associated with the PGServer group,
but, since it has no imposed order, any change to the group or to DRBD will trigger an e-mail
alert.

One crm command we haven't used until now is configure show. Colocation and order definitions
don't alter the outward appearance of resource status, so we need another way to prove
Pacemaker incorporated our changes. This is what we see on our test system:



Notice that we ran this command on the pg2 server, and we were still shown the current
Pacemaker configuration. Pacemaker also takes it upon itself to remove all of our formatting for
these particular entries. If we were to remove the egrep statement, we'd see the entire Pacemaker
configuration for our cluster, containing all of the additions we've made in this chapter.



Performing a managed resource migration
Now that we have a working Pacemaker cluster-management system, we should put it to use.
There are a lot of scenarios where we might need to manually change the active PostgreSQL
node. Doing this with Pacemaker is much easier than the process we outlined in the previous
chapter. That was a long process composed of several manual steps, each of which we would
want to confirm in a perfect world.

With Pacemaker, we can change the active system by issuing a single command from any node
in the cluster. There are some safeguards we'll also need to discuss and possibly a caveat or two
to consider, but this will be our first use of Pacemaker as a piece of functional software. We've
done a lot of work setting everything up!

Let's make Pacemaker do some work on our behalf for a change.



Getting ready
In order to migrate resources from one node to another, we need a fully functional Pacemaker
cluster that manages all of our software layers. Make sure you've followed all the previous
recipes before continuing.



How to do it...
This recipe will assume pg1 is currently the active node, and we want to move PostgreSQL to
pg2. Perform these steps on either Pacemaker node as the root user:

1. Initiate the migration with crm:

        crm resource migrate PGServer pg2

2. Remove the continued forced migration with this command:

        crm resource unmigrate PGServer

3. Use crm to display the currently active node:

        crm resource status PGServer

 



How it works...
The process is as simple as we claimed. We can launch a migration by specifying resource migrate
as our primary crm arguments. There are only two remaining parameters for us to set: the
resource we want to migrate and the target location. The PGServer group represents PostgreSQL
and all of its prerequisite storage elements, so that is our third parameter.

The last parameter is the target node, and as pg2 is the only other node in this Pacemaker
configuration, it's an easy choice. What happens during a migration? The following is a
screenshot of crm_mon during a migration:

As you can see, Pacemaker is doing just as we claimed in the previous section and is shutting
down PGServer resources in reverse order. It has already stopped pg_vip and pg_lsb and will
shortly proceed to the rest of the services. In fact, here is a full ordered list of what Pacemaker
does during a migration with our configuration:

1. Create a rule with an infinite score that the PGServer group should be running on pg2.
2. Stop the pg_mail alert on pg1, causing an e-mail alert.
3. Start the pg_mail resource on pg2.
4. Stop the pg_vip resource on pg1.
5. Stop the pg_lsb resource on pg1.
6. Stop the pg_fs resource on pg1.
7. Stop the pg_lvm resource on pg1.
8. Demote ms_drbd_pg to Secondary on pg1.
9. Promote ms_drbd_pg to Primary on pg2.

10. Start the pg_lvm resource on pg2.
11. Start the pg_fs resource on pg2.
12. Start the pg_lsb resource on pg2.
13. Start the pg_vip resource on pg2.

We hope you can see the obvious linear progression Pacemaker is following; it mirrors the
process we used when we performed these tasks manually. After the migration is over, we call
unmigrate to remove the infinite score that Pacemaker added. This way, PGServer can remain on
pg1 again in the future.

Our final step is to examine the resource status of the PGServer group itself. If we did our job
right, we should see this output:



Pacemaker reports that PGServer is running on pg2, just as we asked.



There's more...
When we call crm resource migrate, Pacemaker merely makes a simple configuration change. As
the PGServer resource is running on pg1 and we set stickiness to 100, any score higher than that
will override the current (and preferred) node.

When we ask for a migration, Pacemaker sets the node score for pg2 at the highest value
possible. The next time the resource target evaluation system runs, it sees that the score has
changed and starts reorganizing the cluster to match. It's actually quite elegant. Unfortunately, it
means that we need to remove the score, or we could be in trouble later.

When we unmigrate the PGServer group, Pacemaker removes the infinite score assigned to pg2,
leaving it with the regular score of 100. This is enough to keep PGServer attached to pg2, but
nothing more. This is important because the score is absolute.

Imagine if the rule was still in place and Pacemaker vastly preferred pg2 over pg1. In the event pg2
crashes, Pacemaker will dutifully move PostgreSQL over to pg1. This is exactly what we want.
However, what happens after we fix pg2 and reattach it to Pacemaker? That's right; the infinite
score means Pacemaker will move it to pg2 immediately. Oh no!

We can't overstate how important this is. Never invoke a resource migration
without using unmigrate as the second step. Failure to do so can result in
unplanned outages, which is not something we want in a highly-available
PostgreSQL cluster.



Using an outage to test migration
While planned migrations are always preferred, sometimes hardware failures or server instability
will introduce an aspect of surprise. If we had not used Pacemaker, a server crash would be a
catastrophic event. Even if we had followed every chapter in this book this far and had Nagios
and e-mail alerts galore, a DBA would need to be available to activate the alternate node.

If an outage occurred at night when everyone was sleeping, we would be faced with a worst-
case scenario. Necessary personnel might not hear the alert for several minutes, and more time is
lost on triage and activation steps. Such an outage could extend from a few minutes to over an
hour. So much for our high availability!

Yet, at this point, we don't know if Pacemaker would negate the previous scenario. While we've
tested how Pacemaker handles an expected and safe migration, what happens when a node
disappears entirely? Will Pacemaker cover us in the event there is an outage when nobody is
immediately available?

In this recipe, we'll attempt to answer all of those questions and test Pacemaker with a server
reboot.



Getting ready
For this final recipe, we need a complete and tested Pacemaker stack before causing an
automated migration. Make sure you've followed all the previous recipes prior to attempting this.



How to do it...
This recipe will assume pg1 is currently the active node and pg2 is acting as the standby. Perform
these steps on the Pacemaker node indicated as the root user:

1. Start crm_mon on pg2.
2. Kill the corosync service on pg1:

        pkill -9 corosync

3. Reboot pg1 with this command:

        reboot

4. Watch Pacemaker start PostgreSQL on pg2.



How it works...
We've made use of crm_mon before. It's an easy way to view the current status of all Pacemaker
cluster resources. By starting this on pg2, we can watch what happens when pg1 shuts down.
Unfortunately, simple reboots are too safe. The server will call the Pacemaker shutdown script,
which will cause it to migrate to pg2 like it did in the previous recipe.

By calling pkill with the -9 argument on the corosync service, Pacemaker can no longer interfere.
The Linux kernel will end the corosync process, negating any safeguards that Pacemaker might
try to impose when pg1 reboots. Once we reboot pg1, we should return to pg2 in order to watch
the output of crm_mon.

The final result should look something like this:

Note that pg1 shows up as OFFLINE, and pg2 is the only server in the Online list.



There's more...
There's one final way to force a migration, and it's one we actually suggest for almost all cases.
One of the arguments we can pass to crm node is the desired state of the node. Instead of killing
the corosync service and rebooting pg1, we could run this command:

crm node standby pg1

This tells Pacemaker that pg1 should no longer be considered a valid target for resources. Again,
this causes Pacemaker to migrate PGServer and any dependencies over to pg2. No matter what the
state of Pacemaker is, pg1 will always be listed as Standby in the cluster by crm status.

This is an easy way to perform maintenance that might require multiple reboots or other
potentially disruptive changes. To bring pg1 online once again, we would use this command:

crm node online pg1

The effect on Pacemaker is the same as a migrate command followed by an unmigrate operation.
The pg1 node is simply added to the list of possible target nodes, and the cluster remains on pg2.
The primary difference is that we've removed any chance of pg1 interfering with pg2. A standby
Pacemaker node cannot participate in the cluster, and we can see at a glance that it's undergoing
maintenance until we change it back to online status.



Data Distribution
In this chapter, we will learn how clever data management can increase uptime even further. We
will cover the following recipes in this chapter:

Identifying horizontal candidates
Setting up a foreign PostgreSQL server
Mapping a remote user
Creating a foreign table
Using a foreign table in a query
Optimizing foreign table access
Transforming foreign tables into local tables
Creating a scalable nextval replacement
Building a sharding API
Talking to the right shard
Moving a shard to another server



Introduction
Every business has the goal of being successful. The consequence of having a successful
business when there's a database involved is increasingly high volume. This volume can be
composed of query activity, data accumulation, or both. A PostgreSQL database that is not
prepared for vast amounts of data or a huge transaction load will slowly falter until the platform
suffers.

Customers notice bad performance just as readily as outages. If our database is struggling to
service queries, we have three options:

Spend time optimizing the platform to reduce database interaction
Buy a more capable database server
Store data on several PostgreSQL servers

Indeed, we should probably always implement step one in any case. Yet, there is a limit to
candidates for optimization. If the platform is using an ORM (Object-relational Mapping),
making query changes can be difficult because they are generated from the framework. Frontend
caching can prevent a vast amount of database accesses, but we need to consider cold caches,
refreshes, and write volume. Writes must touch the database regardless of the cache state, so we
need a solution independent of optimization.

We can also buy a newer, bigger, and better server. We can add CPUs, memory, and storage to a
single expensive server until we saturate its available slots and ports. If we've maximized the
most expandable server currently manufactured, we have a problem if the database volume
continues to increase. What can we do?

A good platform architect will see this potential disaster before it strikes. We must make the
assumption that our business and software will be successful beyond our wildest dreams, and act
accordingly. If we were Facebook, Instagram, or Skype, we would recognize the necessity of
using multiple database servers early, enabling horizontal growth. It just so happens that
PostgreSQL has a rich interface for database federation that we can leverage.

That will be the focus of this chapter. A highly available PostgreSQL cluster isn't only online and
responding now, it does so in the future as well. Whether we accomplish horizontal distribution
through assigned regions, associated groups, or at random, we need the infrastructure in place to
facilitate this type of access. We will use PostgreSQL features to split up our data and ensure that
the platform can run for years to come for the millions of users that will follow.

The features we will discuss in this chapter rely on the PostgreSQL foreign data
wrapper, which wasn't introduced until PostgreSQL 9.3. We strongly recommend
that you upgrade any old PostgreSQL clusters to 9.3 when possible if you
foresee a future need for widely distributed data. You will not be able to
implement many of the ideas discussed here until then.

 



Identifying horizontal candidates
Before we can really decide how to spread our data across several database servers, we need to
find appropriate candidates. To do this, we should start at the database level for databases that
are extremely active. What qualifies as extremely active? Databases that fit any of these criteria
are a good start:

The database experiences more than 10 million transactions per day
The database handles more than 100 million queries per day
The database writes more than 100 million tuples per day

Once we've chosen a database for horizontal scalability, we need to look at its tables and decide
which should be distributed. Tables that make good choices are those that fit one or more of the
following criteria:

Tables that contain more than 10 million rows
Tables that experience more than 1 million writes per day
Tables that are larger than 10 GB

This recipe will discuss easy ways to find prospective tables for further study.



Getting ready
This recipe uses an existing database for concrete numbers. If you do not have one of these,
create it with pgbench using the following commands as the postgres user:

createdb pgbench
pgbench -i -s 200 pgbench

The -i flag initializes a new series of benchmark tables, and the -s flag specifies the scale of the
data. We started with a scale of 200, so our largest table has 20 million rows and is about 3 GB in
size. Feel free to use a higher scale for demonstration purposes.

We will also be using the pg_stat_statements extension that we discussed in the Checking the
pg_stat_statements view recipe from Chapter 4, Troubleshooting. Make sure it's installed in every
database with the following SQL statement:

CREATE EXTENSION pg_stat_statements;

 



How to do it...
As the postgres user on a suitable PostgreSQL cluster, follow these steps to find horizontal
scalability candidates:

1. Execute the following query while connected to any database:

        SELECT * FROM (
        SELECT d.datname AS database_name,
               d.xact_commit  + d.xact_rollback AS transactions,
               d.tup_inserted + d.tup_updated 
                              + d.tup_deleted AS writes,
               sum(s.calls) AS queries
          FROM pg_stat_database d
          LEFT JOIN pg_stat_statements s ON (s.dbid = d.datid)
         WHERE d.datname NOT IN ('template0', 'template1', 'postgres')
         GROUP BY 1, 2, 3
        ) db
        WHERE db.transactions > 10000000
           OR db.writes > 100000000
           OR db.queries > 100000000;

2. Create the following view in the candidate database with this SQL statement:

        CREATE OR REPLACE VIEW v_shard_candidates AS
        SELECT c.oid::regclass::text AS table_name,
               c.reltuples::NUMERIC AS num_rows,
               pg_total_relation_size(c.oid) / 1048576 AS size_mb,
               t.n_tup_ins + t.n_tup_upd + t.n_tup_del AS writes
          FROM pg_class c
          JOIN pg_namespace n ON (n.oid = c.relnamespace)
          JOIN pg_stat_user_tables t ON (t.  relid = c.oid)
         WHERE n.nspname NOT IN ('pg_catalog',
                                'information_schema')
           AND c.relkind = 'r'
           AND (c.reltuples > 10000000
                  OR
                t.n_tup_ins + t.n_tup_upd + t.n_tup_del > 1000000
                  OR
                pg_total_relation_size(c.oid) / 1048576 > 10240);

3. Use this query to check the view to match tables:

        SELECT *
          FROM v_shard_candidates
         ORDER BY size_mb DESC;



How it works...
The first step checks the pg_stat_database system view. This provides various global statistics
about all databases in the PostgreSQL database cluster. This is a very easy way to obtain a list of
extremely active databases that we can break into smaller pieces. The query gives us all three
criterias we want regarding database statistics.

Our example database isn't quite busy enough, so we omitted the entire WHERE clause to show the
pgbench database statistics:

To get specific table measurements, we need to connect to any databases named by the database
activity query. Then, we create a view that will always provide a list of tables that match our
three criteria. This will probably be used much more often than the database query, so it's handy
to have it defined at all times.

If you create the view in the template1 database, all future databases created
within this cluster will automatically have the view defined.

The view itself isn't too complicated but deserves some explanation. The pg_total_relation_size
function provides the size of the table, including all indexes and TOAST data. This is important
because the full impact of a table is much more than the data it contains. The
pg_total_relation_size function returns results in bytes, so we transform it to megabytes so that
it's more useful to us.

We restrict relkind to r because this restricts matches to relations, which is how PostgreSQL
identifies tables. The last thing we do is apply our three conditions for candidate tables such that
any criterion is enough for the table to appear in our list. The last query simply invokes the view
and orders the results nicely for us.

Our pgbench database contained a single matching table, as seen here:

We can see that the pgbench_accounts table contains 20,000,000 rows and is 2993 MB in size.



There's more...
Growth rates are also important. We recommend that you create a scheduled task that checks
these results at the end of every day and either e-mails them to you or saves them into a table
for further examination. After statistics are checked and logged, call these two functions to reset
them to zero:

SELECT pg_stat_statements_reset();
SELECT pg_stat_reset();

Any tables that are growing quickly are even more critical to identify early.



See also
We used quite a few system views in this recipe. Please use the following URLs to view
the PostgreSQL documentation, which provides further details regarding statistic tables and
system catalogs:

The Statistics collector: https://www.postgresql.org/docs/current/static/monitoring-stats.html
pg_stat_statements: https://www.postgresql.org/docs/current/static/pgstatstatements.html
pg_class: https://www.postgresql.org/docs/current/static/catalog-pg-class.html

 

https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/catalog-pg-class.html


Setting up a foreign PostgreSQL server
The first requirement of data federation is the ability to connect to remote databases. With this
capability, we can read or write to a remote PostgreSQL database table as if it were local. By
doing so, certain query elements can be offloaded to the other server. We can also access
metadata that is stored in some central location that acts as a shared resource for all database
servers.

This recipe will describe how to create a foreign PostgreSQL server and will be the basis for
several upcoming segments.



Getting ready
Before we can use the PostgreSQL foreign data wrapper functionality, we need to add the
postgres_fdw extension to the database that will use it. Execute this SQL statement as the postgres
user in the database that will be contacting foreign servers (pgbench, for example):

CREATE EXTENSION postgres_fdw;



How to do it...
For this recipe, we have two servers: pg-primary as our main data source and pg-report as a
reporting server. As with the previous recipe, we will use pgbench as our sample database. Follow
these steps to create a connection from pg-report to pg-primary within pgbench.

1. Connect to pgbench on the pg-report PostgreSQL server as the postgres user.
2. Execute the following SQL statement:

        CREATE SERVER primary_db
            FOREIGN DATA WRAPPER postgres_fdw
            OPTIONS (host 'pg-primary', dbname 'pgbench');

3. Execute this SQL statement to check for the foreign server entry:

        SELECT srvname, srvoptions
          FROM pg_foreign_server;



How it works...
We start by connecting to the database where we will be accessing remote data. As our test
database is pgbench, this is where the foreign server will reside.

Server creation itself consists of a server name, a foreign data wrapper, and options to the
foreign data wrapper. For the server name, we used primary_db to keep things simple, but
anything relatively descriptive is a good choice.

The CREATE SERVER statement can use several available foreign data wrappers, but to contact a
PostgreSQL server, we need postgres_fdw. This data wrapper will accept many standard
PostgreSQL connection parameters, including host, dbname, port, and so on.

We only used the dbname and host settings because we don't want to force this server connection
to always use any specific user or password combination. This allows us to map one or more
local users to users on the remote database. When new connections are created to the foreign
server, each user will access the remote data as themselves. This is a much more secure usage
pattern.

Finally, we check the pg_foreign_server view to make sure PostgreSQL registered it with the
options we specified. Once this is verified, we can move on to the next step. Here is our test
server's output:



There's more...
Foreign data servers have a couple of additional pieces of functionality that we should discuss.



Altering foreign servers
Assume for a moment that we need the definition of the primary_db foreign server to change. For
instance, what if we integrated pgBouncer to reduce user contention and we need to use a
nondefault port of 5433? Here's how we would add the port option:

ALTER SERVER primary_db OPTIONS (ADD port '5433');

If we need to change this again later, we would use this syntax instead:

ALTER SERVER primary_db OPTIONS (SET port '5444');

We must admit that this difference in syntax is something of an oddity. To PostgreSQL, SET only
modifies the settings that were specified when we called CREATE SERVER. We must use ADD to
override a default, even though SET could have been overloaded to perform both actions. This
merely means SET might fail with an error, noting that the option isn't found. If this happens,
simply use ADD instead.



Dropping foreign servers
If we no longer want a foreign server, we can drop it along with all dependent objects. This use
case is probably the only one that will work, unless we simply never reference the foreign server
at all. Use this SQL statement as a database superuser:

DROP SERVER primary_db CASCADE;



See also
The PostgreSQL foreign data wrapper has quite a bit of documentation available. The CREATE
SERVER statement has its own entry as well. Please refer to these URLs for more information:

postgres_fdw: https://www.postgresql.org/docs/current/static/postgres-fdw.html
CREATE SERVER: https://www.postgresql.org/docs/current/static/sql-createserver.html
pg_foreign_server: https://www.postgresql.org/docs/current/static/catalog-pg-foreign-server.html

https://www.postgresql.org/docs/current/static/postgres-fdw.html
https://www.postgresql.org/docs/current/static/sql-createserver.html
https://www.postgresql.org/docs/current/static/catalog-pg-foreign-server.html


Mapping a remote user
Database users and the permissions they are granted may vary between PostgreSQL clusters.
This is especially true if we do not directly administer the remote server. The role of user
mappings is to overcome this obstacle by linking a local database user with a remote database
user.

User mappings must be created for any local user that is going to utilize the remote server.
Furthermore, these mappings are only valid for the remote server for which they're defined. In
situations where all or most local users will be accessing remote data, this can be somewhat
inconvenient. This is, however, a small price to pay for the security inherent in such a design.

In this recipe, we will create a user mapping to access our remote server.



Getting ready
As we will be using a foreign server in this recipe, please follow the Setting up a foreign
PostgreSQL server recipe before proceeding.



How to do it...
For this recipe, we will continue to use two servers: pg-primary as our main data source and pg-
report as a reporting server. We will keep pgbench as our sample database. Follow these steps to
create and map a user from pg-report to pg-primary within pgbench:

1. Execute this SQL statement on both PostgreSQL servers as the postgres user:

        CREATE USER bench_user WITH PASSWORD 'testing';

2. Connect to pgbench on the pg-report PostgreSQL server as the postgres user.
3. Execute the following SQL statement to create the mapping:

        CREATE USER MAPPING FOR bench_user
          SERVER primary_db
          OPTIONS (user 'bench_user', password 'testing');

4. Execute this SQL statement to check for the foreign server entry:

        SELECT u.rolname AS user_name,
               s.srvname AS server_name,
               um.umoptions AS map_options
          FROM pg_user_mapping um
          JOIN pg_authid u ON (u.oid = um.umuser)
          JOIN pg_foreign_server s ON (s.oid = um.umserver);



How it works...
The first thing we need is a user we know exists on both servers. While we can link a local user
with any remote user, this is easiest when they have the same name. This prevents confusion or
connection problems in the future. If we are linking to a remote server we don't administer, this
may not be possible. For now, however, we have control over both systems, so we can create
the bench_user safely with a simple password for testing purposes.

Next, we create the user mapping itself. As with the server, we need to fill in three sections: a
local user name, the server to use, and options for the mapping. We just created bench_user, so
this will be our local user to associate with the mapping. Next, we specify the primary_db server
that we created in the previous recipe. Finally, we set the options for the mapping, which
consists of the name of the remote user and their password.

The password option is required for non-superusers. This is not noted in the
documentation for foreign servers, user mappings, or foreign tables.
PostgreSQL's developers included it as a security precaution to prevent mapped
users from accessing unauthorized entries in .pgpass files or other automated
password entry systems.

As a last step, we want to verify that PostgreSQL is storing the user mapping with the options
we specified. It's always good to visualize database changes when possible, if only to put our
minds at ease. The query we use gets its data from pg_user_mapping, though we do perform a
couple of joins to transform meaningless IDs into useful information. Here's how it looks on our
test server:

As we can see, bench_user is properly associated with the primary_db server and shows the correct
remote user mapping name and associated password.



There's more...
As we said in the introduction, every user must have a mapping if they are to access the remote
data. This is rather onerous to do manually, so we can use PostgreSQL anonymous blocks to
make things easier. This SQL statement, for instance, will map all local users under the
assumption that the remote system has the same users:

DO $$
DECLARE
  user_name VARCHAR;
BEGIN
  FOR user_name IN
      SELECT usename FROM pg_user
  LOOP
    EXECUTE
      'CREATE USER MAPPING FOR ' || user_name || '
      SERVER primary_db
      OPTIONS (user ' || quote_literal(user_name) || ')';
  END LOOP;
END;
$$ LANGUAGE plpgsql;

Feel free to modify the SELECT we used to only target certain groups of users. This isn't the only
way PostgreSQL anonymous blocks make maintenance easier. Learn more about them at this
URL:

https://www.postgresql.org/docs/current/static/sql-do.html

Keep in mind that you will either need to use a non-password authentication
system in pg_hba.conf on the remote server or simply use trust authentication. By
not specifying passwords, PostgreSQL will refuse to check any local password
source, making authentication impossible otherwise.

https://www.postgresql.org/docs/current/static/sql-do.html


See also
The CREATE USER MAPPING statement has good documentation in the PostgreSQL manual, as does
the pg_user_mapping view. Please refer to these URLs for more information:

CREATE USER MAPPING: https://www.postgresql.org/docs/current/static/sql-createusermapping.html
pg_user_mapping: https://www.postgresql.org/docs/current/static/catalog-pg-user-mapping.html

https://www.postgresql.org/docs/current/static/sql-createusermapping.html
https://www.postgresql.org/docs/current/static/catalog-pg-user-mapping.html


Creating a foreign table
The last step in initializing foreign data access is the creation of the foreign table itself. While
doing so, we are limited to specifying column names, types, default values, and whether or not
each column is nullable. This table skeleton helps the PostgreSQL query planner interact with the
remote data as efficiently as possible.

In this recipe, we will create a foreign table and make it ready for use by our mapped user.



Getting ready
As we will be using a foreign server and a user mapping in this recipe, please follow all the
previous recipes before proceeding.



How to do it...
For this recipe, we will perform all actions on the pg-report PostgreSQL server in the pgbench
database. Follow these steps as the postgres user to create a table in pg-report, which refers to a
table on pg-primary within pgbench:

1. Create a user mapping for the postgres user with this SQL statement:

        CREATE USER MAPPING FOR postgres
            SERVER primary_db
            OPTIONS (user 'postgres');

2. Drop any existing pgbench_accounts table with this SQL statement:

        DROP TABLE IF EXISTS pgbench_accounts;

3. Execute the following SQL statement to create the foreign table:

        CREATE FOREIGN TABLE pgbench_accounts
        (
            aid       INTEGER NOT NULL,
            bid       INTEGER,
            abalance  INTEGER,
            filler    CHAR(84)
        )
        SERVER primary_db
        OPTIONS (table_name 'pgbench_accounts');

4. Analyze pgbench_accounts to create local statistics:

        ANALYZE pgbench_accounts;

5. Grant bench_user access to pgbench_accounts with this SQL statement on both pg-primary and
pg-report:

        GRANT ALL ON pgbench_accounts TO bench_user;

6. Describe the contents of the pgbench_accounts table with psql:

        psql pgbench -c '\d pgbench_accounts'



How it works...
In the first step, we create a user mapping for the postgres user. This is primarily a security step;
remote tables should be as locked down as possible on the assumption that their contents are
untrusted or otherwise sensitive. This allows us to create the foreign table as the postgres
database superuser, preventing any unauthorized use of the remote server.

Next, we drop the local copy of the pgbench_accounts table on the pg-report server. This is both
the largest table created by pgbench and the table we identified as a potential candidate for remote
access of some kind. We drop it because we are going to replace it with a foreign table that refers
to the same table on pg-primary.

To create the foreign table itself, we can look at the table definition of pgbench_accounts and ignore
things such as primary keys, indexes, and other types of constraint. By issuing a CREATE FOREIGN
TABLE statement instead of CREATE TABLE, PostgreSQL looks for some additional table specification
settings. As with user mappings, we set the SERVER to primary_db. For OPTIONS, we simply need to
name the remote table that this foreign table represents: pgbench_accounts.

The next step is not strictly necessary but one we strongly recommend. PostgreSQL knows very
little about the contents of the remote database or the table we've just created. The PostgreSQL
query planner makes much better decisions when it is fully informed of table contents. By
running ANALYZE on pgbench_accounts, PostgreSQL fetches enough data to perform statistical
analysis and stores that information in pg_stats for query-planning purposes.

Then, the bench_user user mapping we created needs specific access granted before it can use the
new table. If we simply granted access locally, the remote bench_user would still not be able to
use the table, so we would receive an error by doing so. Any grants for foreign tables must be
equivalent on both servers involved.

Finally, we use psql to examine the foreign table structure. This is what PostgreSQL sees when a
foreign table is used in a query. Our test server provided this output:

PostgreSQL makes it fairly clear that this is a Foreign table. The FDW Options column lists any
column options that we might have attached, though it's empty in our case. We can see that this
table resides on the primary_db server and that it corresponds to the pgbench_accounts table on that
system. All of this allows us to see that this isn't a regular table; it also allows us to see where its
data is actually stored.



There's more...
While creating foreign tables is a good start, there are a couple of additional tricks remaining for
this PostgreSQL feature.



Creating all tables for a foreign schema
This recipe provides an example of creating a single foreign table, although in an actual
production system, this process could be quite cumbersome. Do we really want to create dozens
or even hundreds of tables one by one? In PostgreSQL 9.5 and more, we can actually import the
entire foreign schema.

The test data we're using is the default set of tables created by the pgbench tool. This means all of
the tables exist in the public schema. With this knowledge, we could substitute this command for
the CREATE FOREIGN TABLE step in our recipe:

IMPORT FOREIGN SCHEMA public
  FROM SERVER primary_db
  INTO public;

Of course, importing the public schema is not a recommended practice. Yet it's clear we can
utilize this syntax to greatly simplify mirroring remote schemas from other PostgreSQL systems.
Also note that we can import from one schema but place the new foreign tables somewhere else
entirely. While it's good practice to maintain consistent schema names across a cluster, there are
scenarios where we benefit from renaming.

Consider a series of PostgreSQL servers that each hosts one or more shards. We could link the
servers together using foreign tables and name remote schemas based on the shards they
reference. In essence, we would have access to all of our data from any node. How's that for
high availability?



Dropping foreign tables
PostgreSQL enforces foreign table statements everywhere. For instance, let's try to drop this
table using a regular DROP TABLE statement:

DROP TABLE pgbench_accounts;

The server would quickly respond with this output:

Similarly, if we checked the relkind column in the pg_class catalog table, its type would be listed
as f for foreign table instead of r for relation. PostgreSQL saves several hints and other bread
crumbs so that there is never any question as to the nature of foreign tables. Doing so prevents
bugs and can even produce better performance, as remote access is taken into consideration
before it selects the most efficient query plan. The more you use foreign tables, the more of
these reminders you'll encounter.



See also
CREATE FOREIGN TABLE: https://www.postgresql.org/docs/current/static/sql-createforeigntable.htm
l
IMPORT FOREIGN SCHEMA: https://www.postgresql.org/docs/9.6/static/sql-importforeignschema.h
tml

https://www.postgresql.org/docs/current/static/sql-createforeigntable.html
https://www.postgresql.org/docs/9.6/static/sql-importforeignschema.html


Using a foreign table in a query
Foreign tables exist as empty shells on the local database, lending merely their structure for
query-planning and data-fetching purposes. The foreign data wrapper transforms data requests to
something the remote server can understand and presents it in a way PostgreSQL will recognize.

As we're using the postgres_fdw wrapper, the situation is simplified. A PostgreSQL server should
have less trouble communicating with another PostgreSQL server than an Oracle server, for
instance. Though this means less transformation, there are still limitations on what functionality a
foreign table might provide compared to a local table.

In this recipe, we'll use a foreign table in a few scenarios and examine how it performs in each.
We'll also explore some of the common caveats involved in foreign table access.



Getting ready
As we will be using the pgbench_accounts foreign table in this recipe, please follow all the previous
recipes before proceeding.



How to do it...
All queries in this recipe should be performed by the bench_user mapped user in the pgbench
database on the pg-report PostgreSQL server. Follow these steps:

1. Execute the following simple query to view a remote query plan:

        EXPLAIN VERBOSE
        SELECT aid, bid, abalance
          FROM pgbench_accounts
         WHERE aid BETWEEN 500000 AND 500004;

2. Execute this SQL statement to examine how PostgreSQL handles remote aggregates:

        EXPLAIN VERBOSE
         SELECT sum(abalance)
           FROM pgbench_accounts
          WHERE aid BETWEEN 500000 AND 500004;

3. Execute this SQL statement to see a query plan involving a JOIN:

        EXPLAIN VERBOSE
        SELECT a2.aid, a2.bid, a2.abalance
          FROM pgbench_accounts a1
          JOIN pgbench_accounts a2 USING (aid)
         WHERE a1.aid BETWEEN 500000 AND 500004;



How it works...
The first query is very simple. We only fetch the five inclusive records from 500,000 to 500,004.
We chose these values because they are so far into the table that scanning to find them would be
very slow. This encourages the remote system to use the index on the aid column, and we can
easily tell if it does not.

As we used EXPLAIN VERBOSE, PostgreSQL reports the query it would have performed on the
remote server as well. This is how the full explain looks on our test server:

PostgreSQL tries to send WHERE clauses to the remote server when possible. We can see from the
Remote SQL lines that, aside from some inconsequential transformations, it sent the entire query to
the remote server unaltered.

In the next query, we made a very minor change that should have caused the remote server to
aggregate the abalance column as a sum and send it back to us. However, the current foreign data
wrapper API included with PostgreSQL 9.6 cannot handle aggregates of any kind. Again, let's
see the actual output on our test system:

What happened here? The Remote SQL that PostgreSQL sent to the remote server includes no sum
aggregate at all. This means that PostgreSQL fetches all five rows before producing a sum for
us. This is probably OK for such a small amount of data, but consider the overhead involved if
we requested a sum of one million rows.

All of these rows must be fetched from storage, sent over the network, received, and then
summarized into an aggregate locally. The situation becomes even more dire when we try to join
two foreign tables. We only have the pgbench_accounts table, so we joined it with itself. The query
still only asks for five rows, and both of its inputs are on the remote server, so we might expect
the remote server to perform the join.

This expectation would be wrong. To illustrate, here's the EXPLAIN output for the last query on our
test server:



Don't worry too much about most of this output. Simply direct your attention to both of the
Remote SQL sections. First, observe that there are two of these sections. This means our single
query was transformed into two remote queries. Next, notice that one of the queries has no WHERE
clause and is fetching all 200 million of the rows in pgbench_accounts.

The foreign data wrapper is literal in its interpretation of our WHERE clause. We supplied one WHERE
clause for the first instance of pgbench_accounts, and in normal circumstances, this would be
enough. Unfortunately, search conditions are not transitive where foreign tables are concerned.
One of the queries returns five rows as we expected, while the other must process 200 million
rows to find the matching aid values for those five rows.

Foreign tables are very powerful, but they must be used judiciously. Failing to observe the
previous lessons will result in the same scenarios, or worse.



There's more...
While there are a number of notable caveats regarding foreign table usage, the situation is not
entirely catastrophic. Foreign data wrappers continue to advance, and we can take advantage of
those upgrades as they appear.



Explaining strange planner decisions
There's actually a very simple reason PostgreSQL is failing our expectations in the last two of
our query examples. The answer lies in the structure of foreign tables themselves. When we
defined the pgbench_accounts table, we specified four column names. PostgreSQL expects to see
one or more of those column names within the SELECT clause in every interaction with the foreign
table.

The second query example changes the SELECT clause to read sum(abalance). While the abalance
column is part of our foreign table definition, sum is not. A functional transformation of any kind
renders the column mappings moot, and PostgreSQL must apply them after data is retrieved
from the remote server.

The third query example performs badly for a different reason. If we ignore the problem with
the nontransitive WHERE clause, there's still another issue. We could add another WHERE clause for
the second instance of pgbench_accounts in that query, but as the EXPLAIN output shows, we would
still be executing two queries on the remote server instead of one.

This is due to how PostgreSQL currently handles foreign data. If we imagine the postgres_fdw
wrapper as a worker carrying a large box, every box requires a new worker. In this scenario,
every foreign table is a box, and every box is separate. Each time PostgreSQL encounters a
foreign table, it dispatches a worker with his box and waits for the results. As JOIN is a distinctly
separate action, we get two workers and two boxes.

There are, of course, exceptions to this behavior. With the introduction of PostsgreSQL 9.6,
certain combined operations become possible.



Improvements in PostgreSQL 9.6
Two things that changed in the most recent release of PostgreSQL are both associated with
deferring certain actions to the remote server. In PostgreSQL 9.6, JOIN and ORDER BY operations
are actually transmitted to the remote system, though there are some restrictions:

1. Joined foreign tables exist on the same SERVER. In our case, this would be primary_db.
2. The remotely joined tables must be distinct. Our third query example was a self-join which

is unfortunately not supported by the pushdown logic.
3. We don't want to sort and join at the same time.

 

Basically this means we could create pgbench_branches as a foreign table and joining it with
pgbench_accounts would be done by the remote system. We could also sort the results of a query
from a single table, but not if we join them. In that case, PostgreSQL would sort the results from
each table independently, and again revert to performing the join locally.

In effect, PostgreSQL 9.6 can walk and chew gum, but not simultaneously. Still, this is a vast
improvement over older versions, which could accomplish neither task.



Optimizing foreign table access
If you read the end of the previous recipe, you might assume we don't recommend that you use
foreign tables at all. However, we would like to reassure you that foreign tables are not all doom
and gloom. To prove it, we're going to use a disarmingly simple technique to optimize them:
views.

It's true that PostgreSQL foreign data wrappers cannot combine queries for multiple tables on
the same server. Provided we have access to the remote server, we can rectify this situation by
creating a view to encapsulate the core of the query we want to perform. We can do this because
PostgreSQL only knows the name of remote objects, not their composition. We can take
advantage of this and use views to force remote joins.

In this recipe, we will describe how to use a remote view in place of a foreign table.



Getting ready
As we will be using the pgbench_accounts foreign table in this recipe, please follow all the previous
recipes before proceeding.



How to do it...
For this recipe, we will continue to use the pg-primary and pg-report database servers. All queries
should be performed by the postgres user in the pgbench database. Follow these steps to enforce
better remote JOIN performance:

1. Create a view for the basis of the join on pg-primary:

        CREATE OR REPLACE VIEW v_pgbench_accounts_self_join AS
        SELECT a1.aid, a2.bid, a2.abalance
          FROM pgbench_accounts a1
          JOIN pgbench_accounts a2 USING (aid)
         ORDER BY a1.aid DESC;

2. Grant access to bench_user on the new view on pg-primary:

        GRANT SELECT ON v_pgbench_accounts_self_join
           TO bench_user;

3. Create a foreign table that references the view on pg-report:

        CREATE FOREIGN TABLE pgbench_accounts_self
         (
            aid       INTEGER NOT NULL,
            bid       INTEGER,
            abalance  INTEGER
         )
         SERVER primary_db
        OPTIONS (table_name 'v_pgbench_accounts_self_join');

4. Grant access to bench_user on the foreign table on pg-report:

        GRANT SELECT ON pgbench_accounts_self
           TO bench_user;

5. Examine the new query plan on pg-report with this SQL statement:

        EXPLAIN VERBOSE
         SELECT aid, bid, abalance
           FROM pgbench_accounts_self
          WHERE aid BETWEEN 500000 AND 500004;



How it works...
For the first step, we create a view named v_pgbench_accounts_self_join on pg-primary that uses the
same columns and the same self-join we attempted in the previous recipe. Then, we grant access
to bench_user so that the view is usable on the pg-report server.

Next, we create a foreign table just as we did in the Creating a foreign table recipe, but this
time, we name the local foreign table pgbench_accounts_self even though the view has a much
different name. This should illustrate that names do not have to necessarily match and that
PostgreSQL doesn't care whether the remote object is a table or a view. Once again, we grant
access to the foreign table to the mapped bench_user user and consider our work complete.

Before we consider this operation a success, let's examine a verbose EXPLAIN that uses the foreign
table. Here's the output from our test system:

This is much better! Now, we can see that the WHERE clause is being sent to restrict output from
the v_pgbench_accounts_self_join view. As this view is evaluated on the pg-primary server, the join
happens there as well. We have successfully combined two foreign tables into one. For users of
PostgreSQL 9.6 which already provides this functionality, our view includes an ORDER BY clause
that is also applied. We've successfully given PostgreSQL the ability to walk and chew bubble
gum at the same time.



There's more...
As powerful as this technique might be, its utility is limited by the fact that we're using views to
circumvent normal table access methods. This means our foreign table now has the same
limitations as views. Unless the view is very simple-which would defeat the purpose of using a
view like this-we cannot perform any of the following actions:

We cannot insert into a foreign table view
We cannot update records in a foreign table view
We cannot delete from a foreign table view

However, there is one thing we can do with a foreign table view that we can't do with a local
view. As foreign tables can be analyzed to gather statistics, we can analyze foreign table views as
well. This produces local statistics that may include correlations that PostgreSQL would normally
not find.

In the current state of the PostgreSQL foreign data architecture, this might not mean much. Yet
as techniques and the underlying code improve, what is now merely an interesting fluke might
become an advanced optimization approach. Only time will tell.



Transforming foreign tables into local tables
Remote tables provide an easy and convenient way to access remote data in a PostgreSQL
database. This is good for highly available systems, as a properly compartmentalized system
invites segmented maintenance. Yet, remote data comes with a rather drastic cost regarding data
fetching and handling overhead.

PostgreSQL 9.3 introduced internal support for materialized views. Traditionally, materialized
views merely instantiate a view into a physical structure to avoid expensive or complicated query
plans and result sets. They also make it possible to index or optimize a view in ways not
normally possible. Now, imagine what we can do with such a structure when utilizing foreign
tables.

In this recipe, we will explore how materialized views can drastically increase local data access
capability within a PostgreSQL database.



Getting ready
As we will be using the pgbench_accounts foreign table in this recipe, please follow all recipes up to
Creating a foreign table before proceeding.



How to do it...
For this recipe, we will focus on the pg-report database server. All queries should be performed
by the postgres user in the pgbench database. Follow these steps to create and use a materialized
view:

1. Rename the pgbench_accounts foreign table with this SQL statement:

        ALTER FOREIGN TABLE pgbench_accounts
              RENAME TO remote_accounts;

2. Use this SQL statement to create a materialized view:

        CREATE MATERIALIZED VIEW pgbench_accounts AS
        SELECT *
          FROM remote_accounts
         WHERE bid = 5
          WITH DATA;

3. Add an index to pgbench_accounts to make it usable:

        CREATE INDEX idx_pgbench_accounts_aid
            ON pgbench_accounts (aid);

4. Execute this SQL statement to produce a simple query plan:

        EXPLAIN ANALYZE
         SELECT *
           FROM pgbench_accounts
          WHERE aid BETWEEN 400001 AND 400050;



How it works...
When it comes to this recipe, we begin by moving the existing pgbench_accounts table out of the
way. The intent in this case is to prove that we can treat a materialized view similarly to a local
table. To do this, we want to create it with the same name the foreign table currently uses. Thus,
pgbench_accounts becomes remote_accounts and better illustrates its relationship with the foreign
server as a bonus.

Next, we create the actual materialized view. We could define all of the columns manually, but in
this case, we want it to simply mirror the remote table. Think of this as object-oriented
programming; we have a class named pgbench_remote, and we will instantiate it as pgbench_accounts.

Notice, however, that we added a WHERE clause to restrict the results to rows where bid is 5. For
our particular set of test data, this represents only 100,000 rows of the total 20 million. We did
this to illustrate that we could have a central repository of data and maintain only a small subset
on each local server for better scalability purposes. By finishing the statement with WITH DATA,
PostgreSQL executes the query and stores the result in our new materialized view. If we had
omitted this, the view would be empty and unusable.

At this point, we created an index on the aid column. This reflects the primary key that exists on
the remote table, and it means any local queries that expect it will perform normally. To prove
this, our final step is to perform a basic query that retrieves 50 rows from the table and examines
the path that PostgreSQL used to execute our request.

Our test system produced this output:

We can see a few important things from this EXPLAIN output. First, our results are being supplied
by the idx_pgbench_accounts_aid index we created. The query run time is reported as 0.099 ms,
which is about 1/100th of a millisecond. This is the performance we would expect from an
indexed retrieval with such a small amount of rows.



There's more...
There are a few unfortunate aspects of materialized views that we must consider:

The contents are completely static
They cannot be the target of INSERT, UPDATE, or DELETE statements
Refreshing their contents may be slow

By static, we mean that the rows stored in the materialized view are the result of the SELECT
statement we used to define it. It would be a great way to bootstrap a reporting table of some
kind, but then, we see the next item in our list: no modifications. A natural consequence of this is
that we can't build manual maintenance procedures designed to top off the contents. This means
we must refresh the contents of the materialized view all at once with this statement:

REFRESH MATERIALIZED VIEW pgbench_accounts;

If the query that builds the output is slow and we have several materialized views like it,
maintenance times could increase dramatically. Some contributed materialized view architectures
do not have this limitation, and it's entirely possible future versions of PostgreSQL will also
improve this aspect. For now though, we'll want to limit our materialized view definitions to
queries that are very well optimized.

Refreshing a materialized view requires an exclusive lock, because its entire
contents are replaced during the refresh. Be wary of queries or batch jobs that
depend on these views, as they may be temporarily blocked until the refresh is
complete. PostgreSQL versions 9.4 and beyond can prevent this blocking by
using the following syntax:

    REFRESH MATERIALIZED VIEW CONCURRENTLY pgbench_accounts;



See also
The PostgreSQL documentation does a pretty good job of explaining materialized views. Please
refer to these resources to learn more:

CREATE MATERIALIZED VIEW: https://www.postgresql.org/docs/current/static/sql-createmateriali
zedview.html
REFRESH MATERIALIZED VIEW: https://www.postgresql.org/docs/current/static/sql-refreshmater
ializedview.html

You can also build your own materialized view library. Before PostgreSQL 9.3 incorporated this
feature, users commonly applied the techniques described at this URL:

http://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views

https://www.postgresql.org/docs/current/static/sql-creatematerializedview.html
https://www.postgresql.org/docs/current/static/sql-refreshmaterializedview.html
http://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views


Creating a scalable nextval replacement
Now that we have all of the tools to communicate between disparate servers, we can start
building a very rudimentary API to generate ID values that are distinct across a pool of database
servers. By doing so, database-level function calls are available to the application and encourage
data distribution, otherwise known as application-level sharding. This, in turn, increases our
scalability and availability, as it will take far more than a single database outage to truly derail the
application.

A company that did this early in the development cycle of their platform is Instagram. In fact,
they're very open about the process they used, as described in this blog post:

http://instagram-engineering.tumblr.com/post/10853187575/sharding-ids-at-instagram

 

The idea they implemented may seem complicated but is actually deceptively simple. Here's a
basic breakdown of what they were trying to create:

The system should accommodate several thousand logical shards
Generated SERIAL IDs should be unique across all logical shards
The ID generator should remain viable for several decades at the minimum
The ID generator must handle extremely high insert traffic

For us to accomplish these goals in the same manner as Instagram, we can utilize a standard 64-
bit BIGINT column type separated into three sections:

Bits 1-42 represent the number of milliseconds since an arbitrary epoch. This is viable for
roughly 140 years.
Bits 43-53 represent the logical shard number, for up to 2,048 shards.
Bits 54-64 are used for the actual generated ID, for up to 2,048 ID values.

This may not seem like much, but this means that we can generate 2,048 IDs per 2,048 shards
per millisecond for almost 140 years. Taken to its extreme, this is over 4 billion IDs per second.
It's possible there are systems that have higher insert volumes than this, but we can't think of
any.

In this recipe, we'll build such a function using PostgreSQL's plpgsql language and explain how
each part works.

http://instagram-engineering.tumblr.com/post/10853187575/sharding-ids-at-instagram


Getting ready
We will actually be starting from scratch in this recipe and will no longer use the pgbench tables.
Instead, we want to start with new shell tables designed specifically for sharding. Execute these
SQL statements as the postgres user on an empty database to get ready:

CREATE SCHEMA myapp;
CREATE TABLE myapp.msg_log (
  id       SERIAL  PRIMARY KEY,
  message  TEXT    NOT NULL
);

We will be using this schema and table for the rest of this chapter.



How to do it...
Execute the following SQL statements as the postgres user to create a function that can generate
IDs as we described:

1. Create the schema to hold shard-related functionality:

        CREATE SCHEMA shard;

2. Create a sequence to act as an ID generator:

        CREATE SEQUENCE shard.table_id_seq;

3. Create the function that will generate IDs:

        CREATE OR REPLACE FUNCTION shard.next_unique_id(
          shard_id INT
        )
        RETURNS BIGINT AS
        $BODY$
        DECLARE
          epoch    DATE := '2016-01-01';
          epoch_ms BIGINT;
          now_ms   BIGINT;
          next_id  BIGINT;
        BEGIN
          epoch_ms := floor(
            extract(EPOCH FROM epoch) * 1000
          );
          now_ms := floor(
            extract(EPOCH FROM clock_timestamp()) * 1000
          );
          next_id := (now_ms - epoch_ms) << 22
              | (shard_id << 11)
              | (nextval('shard.table_id_seq') % 2048);
          RETURN next_id;
        END;
        $BODY$ LANGUAGE plpgsql;

4. Execute the following query to generate an ID and view its contents:

        SELECT (newval & 2047) AS id_value,
               (newval >> 11) & 2047 AS shard_id,
               (newval >> 22) / 1000 / 3600 / 24 AS days
          FROM (SELECT shard.next_unique_id(15)
                  AS newval) nv;



How it works...
Our first two steps aren't all that interesting; we merely create the shard schema and a sequence
named table_id_seq for the IDs needed for value increments. Our design saves on
implementation complexity using the same sequence for every table within a shard, but this is not
a requirement.

The bulk of the work is defined in the next_unique_id function we create. We start the function
with the epoch variable, set to the beginning of 2016. This is an arbitrary starting date and could
have been any date in the past. The important thing to remember is that this value is used as a
baseline for how long the IDs will remain unique.

Next, we have this section of code:

epoch_ms = floor( 
  extract(EPOCH FROM epoch) * 1000 
); 

The extract PostgreSQL function will obtain the date in any format we want. By passing EPOCH,
we get the date as the number of seconds since January 1, 1970, with a decimal representing the
number of milliseconds as well. If we multiply this by 1000, we're left with the number of
milliseconds since the beginning of 1970 to our chosen epoch of 2016-01-01.

We repeat this process for now_ms, but this time, we use the clock_timestamp function instead of a
static date. The clock_timestamp function always returns a timestamp obtained from the execution
time of the function call. This is important because functions such as now will return the start time
of the surrounding transaction. If we used now, we could theoretically experience ID collisions
after using more than 2,048 IDs.

In this block of code, we calculate the ID we return as a fully unique value:

next_id = (now_ms - epoch_ms) << 22 
    | (shard_id << 11) 
    | (nextval('shard.table_id_seq') % 2048); 

Remember what we said about using the full size of a 64-bit integer. We begin with the time
elapsed since our epoch and shift that value to the left by 22 bits. This left shift makes room for
the shard ID and the generated ID, both of which should be between 0 and 2047.

After shifting our time delta, we shift the shard ID by 11 bits to make room for the generated ID
and append it to the cumulative ID. Again, 2,048 values are represented by 11 bits, so these
modifications are nondestructive. The shard ID is unharmed but packed into 43-53 bytes of
next_id.

Finally, we append an ID obtained from the sequence that we created at the beginning, modulo
by 2048 to ensure we don't overflow the 11 bits we're using for this portion. In the end, we are
left with an encoded ID with all of the attributes that we discussed at the beginning of this recipe.

If we call our new function once or twice, we should see it generate ID values. However, to
prove it's doing what we claim, we need to reverse the encoding process to see what the ID



actually contains. On our test system, one call of next_unique_id produces this output:

We called the function and passed it 15 as the shard number to use, and after decoding the ID,
we can see that it's unchanged. If we called this function several times in a row, we would see
the id_value increment as well. We discarded a lot of information in our rush to decode the
number of days since our epoch date, so we only see that 115 days have elapsed. In reality, that
portion of the ID represents days, hours, minutes, seconds, and milliseconds since the beginning
of 2016.



There's more...
If we wanted to use our new ID generator in a table, we could do it very simply. Assuming we
already have our myapp.msg_log table, we could create a new table based on it with this SQL
statement:

CREATE SCHEMA myapp1;
CREATE TABLE myapp1.msg_log (
    LIKE myapp.msg_log INCLUDING INDEXES
);
    
ALTER TABLE myapp1.msg_log
ALTER id TYPE BIGINT,
ALTER id SET DEFAULT shard.next_unique_id(1);

This structure would correspond with shard number 1. All we need to do is modify the id
column so that it can store our 64-bit integer and then set the default value to invoke our
next_unique_id function. By doing so, we can create up to 2,048 schemas holding tables like this,
and every generated ID will be unique across all of them.



Building a sharding API
When building a horizontally scalable system, we need a database library that facilitates its use.
Without this, ad hoc tables can derail the whole process by producing a heterogeneous
environment incompatible with a horizontal architecture. We need consistency if we also want
reliability.

In the previous recipe, we discussed the necessary components of a function that can generate
unique IDs across thousands of logical shards. This will form the core of our API as it ensures
that ID collisions are avoided within our application. However, what about the rest? How do we
manage each shard? How do we add tables to the application? How can we automate as much
management as possible to encourage adherence to the API?

This recipe will attempt to answer these questions and many more by having you create the
necessary functions to manage a shard-driven system.



Getting ready
This recipe depends on the work we performed in the Creating a scalable nextval replacement
recipe. Please review that part of this chapter before continuing.



How to do it...
Follow these steps to build a complete database-sharding API:

1. Learn one of the PostgreSQL procedural languages.
2. Create a table to track shard-configuration settings.
3. Write one or more functions to manage shard-configuration settings.
4. Create a table to track shard tables and source schemas.
5. Write a next_unique_id equivalent function.
6. Write one or more functions to control which tables are managed.
7. Write one or more functions to build or alter each shard's structure based on the tables it

contains.
8. Create a table to track logical to physical shard mappings.
9. Write one or more functions to manage logical to physical shard mappings.

10. Write one or more functions to grant sufficient permissions to users tasked with using all of
the previous functions.



How it works...
Before we discuss these steps, we readily admit there is a lot of work involved here, and most of
it is beyond the scope of this book. However, this is the minimum list of components necessary
for a functional shard API. Fortunately, we only have to build this once!

The first step is to learn one of the procedural languages that PostgreSQL provides for database
interaction. The core PostgreSQL server comes with PL/pgSQL, PL/Tcl, PL/Perl, or PL/Python
as possible choices, though there are many more such as Java, Ruby, or even PHP. Each of
these has different performance characteristics and varying levels of difficulty, so choose
whichever you are most comfortable with or whichever produces the best results. We used the
pgSQL language for our next_unique_id function, but this doesn't mean you must follow our lead.

Next, we need a table and associated functions to manage shard-configuration settings. Perhaps
this means a table named shard_config and two functions named get_shard_config and
set_shard_config. We use functions so that we can protect the boundaries of our 64-bit integer or
to prevent changes to settings that would adversely affect the cluster of shards. Like any API,
we should never trust user input.

Now, we need a table and associated functions to manage the architecture of our shards. For
instance, the table of API-managed tables might be called shard_table. Then, we might create
register_base_table to add tables to shard management and unregister_base_table to remove them.

Then, we might add create_next_shard to increment the active shard counter and create an empty
schema based on this new value. We might also want create_id_function to generate an optimized
shard-specific ID generation function whenever a new shard is added. We'll probably need
init_shard_tables to create table copies of all the base tables we've registered, which will also
modify each copy to use our unique ID function.

Beyond managing the actual structure of the shards, we also need to control who can invoke all
of these specialty functions, especially since there's so many of them. So, it would be a good
idea to create add_shard_admin and drop_shard_admin to the handle necessary grants for shard
administrators.

Do we need more? Possibly. This core of functions provides the minimal structure necessary to
create and maintain a working sharded database, but few systems exist with only minimal
implementations.



There's more...
As we said earlier, building a fully functional API as we discussed here is beyond the scope of
this book. However, we have written a reference implementation named Shard Manager,
available on GitHub:

https://github.com/OptionsHouse/shard_manager

Shard Manager creates all of the configuration tables and functions that we discussed in this
recipe, along with a couple of extras. Further, it operates as a PostgreSQL extension. For
example, to create a schema named shard to store the API and configuration tables, we would
use these SQL statements:

CREATE SCHEMA shard;
CREATE EXTENSION shard_manager WITH SCHEMA shard;

The documentation is currently somewhat sparse, but there is enough to install and use the
provided functions, as well as some basic usage examples. Feel free to contribute if you come up
with fixes or enhancements!

https://github.com/OptionsHouse/shard_manager


See also
As we suggested that you learn one of the PostgreSQL procedural languages, here is a list of
links to several popular choices:

PL/pgSQL: https://www.postgresql.org/docs/current/static/plpgsql.html
PL/Perl: https://www.postgresql.org/docs/current/static/plperl.html
PL/Python: https://www.postgresql.org/docs/current/static/plpython.html
PL/Java: https://github.com/tada/pljava/wiki
PL/PHP: https://github.com/commandprompt/PL-php
PL/Ruby: https://github.com/knu/postgresql-plruby
PL/V8: https://github.com/plv8/plv8
PL Matrix: https://wiki.postgresql.org/wiki/PL_Matrix

 

https://www.postgresql.org/docs/current/static/plpgsql.html
https://www.postgresql.org/docs/current/static/plperl.html
https://www.postgresql.org/docs/current/static/plpython.html
https://github.com/tada/pljava/wiki
https://github.com/commandprompt/PL-php
https://github.com/knu/postgresql-plruby
https://github.com/plv8/plv8
https://wiki.postgresql.org/wiki/PL_Matrix


Talking to the right shard
In this chapter, we have chosen to represent database shards as PostgreSQL schema names. So,
if our basic schema is named myapp, shard 1 would be myapp1, shard 15 would be myapp15, and so
on. This is what we call the logical shard name.

Beyond this, shards should be independent of each other such that they can be relocated to
another PostgreSQL server arbitrarily. However, if shards can be moved at will, how do we find
them? Much like LVM has a physical drive, logical shards have a corresponding physical shard.
The physical shard is the server where the logical shard currently resides. Think of it like this
diagram:

Elements such as clients, products, and vendors are shared resources that all PostgreSQL
shard servers can use. This is where our foreign tables would be beneficial. The logical shards
(schemas) myapp1 through myapp4 all reside on PG Server 1, and myapp5 through myapp8
live on PG Server 2. In this architecture, we have eight logical shards distributed to two physical
servers.

In this recipe, we will explore various techniques to preserve and decode the logical to physical
mapping necessary to interact with the correct data.



Getting ready
This recipe depends on the work we performed in the Creating a scalable nextval replacement
recipe. Please review that part of this chapter before continuing.



How to do it...
All SQL statements in this recipe should be executed by the postgres database user. Follow these
steps to build a table to map logical shards to their physical locations:

1. Execute this SQL statement to create the shard-mapping table:

        CREATE TABLE shard.shard_map
        (
          map_id         SERIAL   PRIMARY KEY,
          shard_id       INT      NOT NULL,
          source_schema  VARCHAR  NOT NULL,
          shard_schema   VARCHAR  NOT NULL,
          server_name    VARCHAR  NOT NULL,
          UNIQUE (shard_id, source_schema)
        );

2. Create a shard and register it with the shard map with this SQL:

        CREATE SCHEMA myapp1;
        INSERT INTO shard.shard_map
          (shard_id, source_schema, shard_schema, server_name)
        VALUES (1, 'myapp', 'myapp1', 'pg-primary');

3. Repeat the previous step to create a second shard:

        CREATE SCHEMA myapp2;
        INSERT INTO shard.shard_map
          (shard_id, source_schema, shard_schema, server_name)
        VALUES (2, 'myapp', 'myapp2', 'pg-primary');

4. View the current status of our shard mappings:

        SELECT * FROM shard.shard_map;



How it works...
If you wish, you can view this as another primer on preparing a shard-management API. Our
first step towards this goal is to create a table to store the logical to physical location mappings
necessary to locate a specific shard. At minimum, this table needs to track the shard ID
(shard_id), the skeleton schema the shard is based on (source_schema), the shard name itself
(shard_schema), and the server where the shard resides (server_name).

Some readers may wonder where the shard_map table should reside. There's a
reason we introduced the shared PostgreSQL server in the introduction to this
recipe. Metadata should be stored on that central server. A combination of
foreign tables and materialized views will ensure that all servers have
immediate access to its contents if necessary.

Next, we create and save the location of two new shards for illustrative purposes. For our shard
names, we chose to simply append the shard name to the source schema name. In addition, we
created both shards on the pg-primary server we used in various chapters of this book. This kind
of naming scheme makes it simple to locate, and interact with, any particular shard in our cluster.

The final step is to visualize the data we stored regarding our logical to physical mapping. On our
test server, the mappings are as follows:

Notice that the shard_map table is designed in such a way that we can create mappings for any
number of schemas. Any schema can have all 2,048 shards, and we can find the physical
location for any of them based on this table.



There's more...
While the mapping is an important step, we still need two things to really make use of the
mapping. Let's see what they are.



Creating a cache
In modern applications, it is becoming increasingly common to inject a secondary cache layer
between the application and database. This layer stores commonly retrieved data in memory for
immediate use. This layer might be composed of memcached or a NoSQL database such as
CouchDB, MongoDB, or Redis.

Once such a layer exists, it's important that the shard_map table is one of the first tables copied
there. It has very few rows, and storing it in memory removes the relatively expensive round-trip
to the database. With this mapping in memory, the application will always know which physical
server it should be connected to as long as it also knows which shard it is using.



Choosing an application data to logical shard mapping
How does an application know which shard it should use in any particular situation? This answer
requires one more modifications to the table structure our application uses. Our last decision
involves adding a shard_id column to one table. This table can be anything but should be some
central value that all data can eventually be traced to.

A good choice for this is a customer table. In an order system, all interaction is eventually driven
by customer activity. If we assign a customer a specific shard ID, all of their order data will be
stored in that shard. As the application likely has the customer row information available at all
times, it should also know the associated shard and, hence, which server to store that data on.

As a consequence, customer data should also be stored in the shared PostgreSQL instance that
other shard servers can see. Customer data is relatively sparse compared to high volumes of
order, image, or other types of activity a customer can generate. If the customer table is too large
to cache directly, we could create a customer_shard table in the shared database instead.



Moving a shard to another server
The final important aspect of database sharding that we are going to explore in this chapter is
reorganization. The purpose of allocating a large number of logical shards is to prepare for future
expansion needs. If we started with 2,048 shards, all of which are currently mapped to a single
server, we will eventually want to move some of them elsewhere.

The easiest way to do this is to leverage PostgreSQL replication. Essentially, we will create a
streaming replica for the server we want to split and drop the schemas we don't need on each
server. Consider a database with two shards. Our end goal is to produce something like this:

On each server, we simply drop the schema indicated by the dashed box. This way, we still have
two shards, and only the location of myapp2 has changed; its data remains unharmed.

This recipe will cover the process described here, making it easy to move shards to a new
physical location.



Getting ready
This recipe depends on the work we performed in the Creating a scalable nextval replacement
and Talking to the right shard recipes. Please review these recipes before continuing.



How to do it...
In addition to our usual pg-primary PostgreSQL server, we will also be using pg-primary2 for this
recipe. Database data will remain in the /db/pgdata directory. A server named pg-shared will play
the role of our shared database as well. Follow these steps as the postgres system user and
postgres database users where indicated:

1. Use pg_basebackup executed from the pg-primary2 server to clone the data from pg-primary:

        pg_basebackup -h pg-primary -D /db/pgdata

2. Create a file named recovery.conf in /db/pgdata on pg-primary2 with these contents:

        standby_mode = 'on' 
        primary_conninfo = 'host=pg-primary user=postgres'  

3. Start PostgreSQL on pg-primary2:

        pg_ctl -D /db/pgdata start

4. When ready to split the shards, promote pg-primary2 to master status:

        pg_ctl -D /db/pgdata promote

5. Execute this SQL statement on pg-shared to change the shard mapping:

        UPDATE shard.shard_map
           SET server_name = 'pg-primary2'
         WHERE shard_schema = 'myapp2';

6. Refresh any cached copies of the shard_map table.
7. Drop the myapp2 schema on pg-primary:

        DROP SCHEMA myapp2;

8. Drop the myapp1 schema on pg-primary2:

        DROP SCHEMA myapp1;



How it works...
We've already discussed the process of creating streaming replicas several times throughout this
book, so we've elected to use a shortened version here. Our primary goal here is to create a full
database clone of pg-primary on pg-primary2. This clone should continue to receive data from pg-
primary until we are ready to split up our application data. When database activity is low or we
can temporarily disable write activity to the myapp2 schema, we can promote pg-primary2 so that it
acts as a writable server.

Once pg-primary2 is writable, we execute an UPDATE statement on the shard_map table in pg-shared.
Then, we either refresh or invalidate cached copies of that table so that they are rebuilt. From
this point on, all new requests to interact with data stored in the myapp2 shard will be directed to
the pg-primary2 server.

With the myapp2 shard's physical location changed and caches updated, it should be safe to drop
the unneeded schemas on each PostgreSQL server. The pg-primary server is only in charge of the
myapp1 shard now, so we can drop myapp2. Similarly, the pg-primary2 server is only handling the
myapp2, so we can drop myapp1.

If our data was evenly distributed, each PostgreSQL server should now be half the size of what
pg-primary originally was. Furthermore, database load, IOPS and TPS requirements, and other
metrics are also scaled down. By doubling our server count, we've cut our hardware needs in
half and have thereby increased our query response times and availability.



There's more...
Though our example used only two schema shards, this process scales well to any number of
preallocated shards. It's surprisingly easy to relocate schemas using the method described here,
and there's no reason we must limit ourselves to splitting one server into only two. The only real
limitation is that we can't effectively recombine servers once they've been split this way.

There is, however, one important caveat we must explain. This type of database sharding works
best when the application is designed to accommodate it. In fact, it's even better to create all of
the logical shards upfront, before data is inserted into any shard. Why is this?

Consider an existing schema with existing data. Foreign keys, customers, and customer activity
have been accumulating for years. Redistributing this data into all of the necessary tables of our
shard schemas will be extremely difficult and will likely be an entirely manual migration process.

This same problem exists if we only start our application with a small number of shards instead
of allocating the maximum from the beginning. If we only have four out of 2,048 active shards
and they're already on four physical servers, we will need to create new shards and manually
distribute the data once again.

However, we can also start with all 2,048 shards at the beginning. From the very start,
customers are assigned to shards, and data is inserted to the proper shard. Even if all shards start
on one server, we can expand using the method described in this recipe. If we want to
immediately grow to four servers, we merely create three clones and evenly distribute the shards
to each system.

It's important to advocate and impose this architecture early in systems that are likely to require
high transactional volume. Otherwise, the path to horizontal scalability and the availability
associated with it will be a long and hard one.
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