

Chef Cookbook - Third Edition

Table of Contents

Chef Cookbook - Third Edition
Credits
About the Author
About the Reviewer
www.PacktPub.com

eBooks, discount offers, and more
Why Subscribe?

Customer Feedback
Preface

What this book covers
What you need for this book
Who this book is for
Sections

Getting ready
How to do it…
How it works…
There's more…
See also

Conventions
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Chef Infrastructure
Introduction
Using version control

Getting ready
How to do it…
How it works…
There's more...

See also
Installing the Chef Development Kit on your workstation

How to do it…
How it works…
See also

Using the hosted Chef platform
Getting ready
How to do it…
How it works…
There's more…
See also

Managing virtual machines with Vagrant
Getting ready
How to do it…
How it works…
There's more…
See also

Creating and using cookbooks
Getting ready
How to do it…
How it works…
There's more…
See also

Inspecting files on your Chef server with knife
Getting ready

How to do it…
How it works…
There's more…
See also
Defining cookbook dependencies

Getting ready
How to do it…
How it works…
There's more…
See also

Managing cookbook dependencies with Berkshelf

Getting ready
How to do it…
How it works...
There's more...
See also

Using custom knife plugins
Getting ready
How to do it…
How it works…
There's more...
See also

Deleting a node from the Chef server
Getting ready
How to do it…
How it works...
There's more…
See also

Developing recipes with local mode
Getting ready
How to do it…
How it works…
There's more…

Running knife in local mode
Moving to hosted Chef or your own Chef server

See also
Using roles

Getting ready
How to do it…
How it works...
See also

Using environments
Getting ready
How to do it…
How it works…
There's more…
See also

Freezing cookbooks
Getting ready
How to do it…
How it works…
There's more…
See also

Running the Chef client as a daemon
Getting ready
How to do it…
How it works…
There's more…

2. Evaluating and Troubleshooting Cookbooks and Chef Runs
Introduction
Testing your Chef cookbooks with cookstyle and Rubocop

Getting ready
How to do it…
How it works…
There's more…
See also

Flagging problems in your Chef cookbooks with Foodcritic
Getting ready
How to do it…
How it works…
There's more…
See also

Test-driven development for cookbooks using ChefSpec
Getting ready
How to do it…
How it works…
There's more…
See also

Compliance testing with InSpec
Getting ready
How to do it…
How it works…
There's more…

See also
Integration-testing your Chef cookbooks with Test Kitchen

Getting ready
How to do it…
How it works…
There's more…
See also

Showing affected nodes before uploading cookbooks
Getting ready
How to do it…
How it works…
See also

Overriding a node's run list to execute a single recipe
Getting ready
How to do it...
How it works...
See also

Using chef-shell
How to do it…
How it works…
There's more…
See also

Using why-run mode to find out what a recipe might do
Getting ready
How to do it…
How it works…
See also

Debugging Chef client runs
Getting ready
How to do it…
How it works…
There's more…
See also

Inspecting the results of your last Chef run
Getting ready
How to do it...

How it works...
See also

Using Reporting to keep track of all your Chef client runs
Getting ready
How to do it…
How it works…
There's more…
See also

Raising and logging exceptions in recipes
Getting ready
How to do it...
How it works…
See also

Diff-ing cookbooks with knife
Getting ready
How to do it…
How it works...
There's more…
See also

Using community exception and report handlers
Getting ready
How to do it…
How it works...
There's more…
See also

3. Chef Language and Style
Introduction
Using community Chef style

Getting ready
How to do it…
How it works...
There's more...
See also

Using attributes to dynamically configure recipes
Getting ready
How to do it...

How it works…
There's more…

Calculating values in the attribute files
See also

Using templates
Getting ready
How to do it…
How it works…
There's more…
See also

Mixing plain Ruby with Chef DSL
Getting ready
How to do it…
How it works...
There's more…
See also

Installing Ruby gems and using them in recipes
Getting ready
How to do it…
How it works...
See also

Using libraries
Getting ready
How to do it...
How it works…
There's more…
See also

Creating your own custom resource
Getting ready
How to do it…
How it works…
There's more...
See also

Extending community cookbooks by using application wrapper
cookbooks

Getting ready

How to do it…
How it works…
There's more…
See also

Creating custom Ohai plugins
Getting ready
How to do it…
How it works…
There's more…
See also

Creating custom knife plugins
Getting ready
How to do it…
How it works...
There's more…
See also

4. Writing Better Cookbooks
Introduction
Setting environment variables

Getting ready
How to do it…
How it works…
There's more…
See also

Passing arguments to shell commands
Getting ready
How to do it...
How it works…
There's more…
See also

Overriding attributes
Getting ready
How to do it…
How it works…
There's more…
See also

Using search to find nodes
Getting ready
How to do it...
How it works…
There's more…

Using knife to search for nodes
Searching for arbitrary node attributes
Using boolean operators in search

See also
Using data bags

Getting ready
How to do it…
How it works…
See also

Using search to find data bag items
Getting ready
How to do it...
How it works…
There's more…
See also

Using encrypted data bag items
Getting ready
How to do it…
How it works…
There's more…

Using a private key file
See also

Accessing data bag values from external scripts
Getting ready
How to do it…
How it works…
There's more…
See also

Getting information about the environment
Getting ready
How to do it…

How it works…
There's more…
See also

Writing cross-platform cookbooks
Getting ready
How to do it…
How it works…
There's more…

Avoiding case statements to set values based on the platform
Declaring support for specific operating systems in your

cookbook's metadata
See also

Making recipes idempotent by using conditional execution
Getting ready
How to do it…
How it works…
There's more…
See also

5. Working with Files and Packages
Introduction
Creating configuration files using templates

Getting ready
How to do it…
How it works…
There's more…
See also

Using pure Ruby in templates for conditionals and iterations
Getting ready
How to do it…
How it works…
There's more…
See also

Installing packages from a third-party repository
Getting ready
How to do it…
How it works…

See also
Installing software from source

Getting ready
How to do it…
How it works…
There's more…
See also

Running a command when a file is updated
Getting ready
How to do it...
How it works…
There's more…
See also

Distributing directory trees
Getting ready
How to do it…
How it works…
There's more…
See also

Cleaning up old files
Getting ready
How to do it…
How it works…
There's more…
See also

Distributing different files based on the target platform
Getting ready
How to do it…
How it works…
See also

6. Users and Applications
Introduction
Creating users from data bags

Getting ready
How to do it…
How it works…

There's more…
See also

Securing the Secure Shell daemon
Getting ready
How to do it…
How it works…
There's more…
See also

Enabling passwordless sudo
Getting ready
How to do it…
How it works…
There's more…
See also

Managing NTP
Getting ready
How to do it…
How it works…
There's more…
See also

Installing nginx from source
Getting ready
How to do it...
How it works…
There's more…
See also

Creating nginx virtual hosts
Getting ready
How to do it…
How it works…
There's more…
See also

Creating MySQL databases and users
Getting ready
How to do it…
How it works…

There's more...
See also

Managing Ruby on Rails applications
Getting ready
How to do it…
How it works…
There's more...
See also

Managing Varnish
Getting ready
How to do it…
How it work…
There's more…
See also

Managing your local workstation with Chef Pantry
Getting ready
How to do it…
How it works…
See also

7. Servers and Cloud Infrastructure
Introduction
Creating cookbooks from a running system with Blueprint

Getting ready
How to do it…
How it works…
There's more…
See also

Running the same command on many machines at once
How to do it…
How it works…
There's more…
See also

Setting up SNMP for external monitoring services
Getting ready
How to do it…
How it works…

There's more…
See also

Deploying a Nagios monitoring server
Getting ready
How to do it…
How it works…
There's more…
See also

Using HAProxy to load-balance multiple web servers
Getting ready
How to do it…
How it works…
See also

Using custom bootstrap scripts
Getting ready
How to do it…
How it works…
There's more…
See also

Managing firewalls with iptables
Getting ready
How to do it…
How it works…
See also

Managing fail2ban to ban malicious IP addresses
Getting ready
How to do it…
How it works…
There's more…
See also

Managing Amazon EC2 instances
Getting ready
How to do it...
How it works…
There's more…
See also

Managing applications with Habitat
Getting ready
How to do it...
How it works...
There's more...
See also

Index

Chef Cookbook - Third Edition

Chef Cookbook - Third Edition
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without
the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or
implied. Neither the author nor Packt Publishing, and its dealers and
distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by the
appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

First published: August 2013

Second edition: May 2015

Third edition: February 2017

Production reference: 1300117

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78646-535-1

www.packtpub.com

http://www.packtpub.com

Credits
Author

Matthias Marschall

Reviewer

Spencer Owen

Commissioning Editor

Kartikey Pande

Acquisition Editor

Prachi Bisht

Content Development Editor

Trusha Shriyan

Technical Editor

Naveenkumar Jain

Copy Editor

Safis Editing

Project Coordinator

Kinjal Bari

Proofreader

Safis Editing

Indexer

Francy Puthiry

Graphics

Kirk D'Penha

Production Coordinator

Shantanu N Zagade

Cover Work

Shantanu N Zagade

About the Author
Matthias Marschall is a Software Engineer "made in Germany". His
four children make sure that he feels comfortable in lively environments,
and stays in control of chaotic situations. A lean and agile engineering
lead, he's passionate about continuous delivery, infrastructure
automation, and all things DevOps.

In recent years, Matthias has helped build several web-based businesses,
first with Java and then with Ruby on Rails. He quickly grew into
system administration, writing his own configuration management tool
before migrating his whole infrastructure to Chef in its early days.

In 2008, he started a blog (http://www.agileweboperations.com) together
with Dan Ackerson. There, they have shared their ideas about DevOps
since the early days of the continually emerging movement. You can
find him on Twitter as @mmarschall.

Matthias holds a Master's degree in Computer Science (Dipl.-Inf. (FH))
and teaches courses on Agile Software Development at the University of
Augsburg.

When not writing or coding, Matthias enjoys drawing cartoons and
playing Go. He lives near Munich, Germany.

http://www.agileweboperations.com

About the Reviewer
Spencer Owen is an Automation Engineer with 4 years' experience
automating Windows and Linux servers. He has experience with both
Puppet and Chef and has written dozens of Modules and Cookbooks.

www.PacktPub.com
eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to the
eBook version at www.PacktPub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at
<customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters and receive exclusive
discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's
online digital book library. Here, you can search, access, and read
Packt's entire library of books.

Why Subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Customer Feedback
Thank you for purchasing this Packt book. We take our commitment to
improving our content and products to meet your needs seriously—that's
why your feedback is so valuable. Whatever your feelings about your
purchase, please consider leaving a review on this book's Amazon page.
Not only will this help us, more importantly it will also help others in the
community to make an informed decision about the resources that they
invest in to learn.

You can also review for us on a regular basis by joining our reviewers'
club. If you're interested in joining, or would like to learn more about the
benefits we offer, please contact us: customerreviews@packtpub.com.

http://customerreviews@packtpub.com

Preface
Irrespective of whether you're a systems administrator or developer, if
you're sick and tired of repetitive manual work and don't know whether
you should dare to reboot your server, it's time for you to get your
infrastructure automated.

This book has all the required recipes to configure, deploy, and scale
your servers and applications, irrespective of whether you manage five
servers, 5,000 servers, or 500,000 servers.

It is a collection of easy-to-follow recipes showing you how to solve
real-world automation challenges. Learn techniques from the pros and
make sure you get your infrastructure automation project right the first
time.

This book takes you on a journey through the many facets of Chef. It
teaches you simple techniques as well as full-fledged real-world
solutions. By looking at easily digestible examples, you'll be able to
grasp the main concepts of Chef, which you'll need to automate your
own infrastructure. You'll get ready-made code examples to get you
started.

After demonstrating how to use the basic Chef tools, the book shows
you how to troubleshoot your work and explains the Chef language.
Then, it shows you how to manage users, applications, and your whole
Cloud infrastructure. The book concludes by providing you with
additional, indispensable tools and giving you an in-depth look into the
Chef ecosystem.

Learn the techniques of the pros by walking through a host of step-by-
step guides to solve your real-world infrastructure automation
challenges.

What this book covers

Chapter 1, Chef Infrastructure, helps you get started with Chef. It
explains some key concepts, such as cookbooks, roles, and
environments, and shows you how to use some basic tools such as Git,
knife, chef shell, Vagrant, and Berkshelf from the Chef development kit
(ChefDK).

Chapter 2, Evaluating and Troubleshooting Cookbooks and Chef Runs,
is all about getting your cookbooks right. It covers logging and
debugging, as well as the why run mode, and shows you how to develop
your cookbooks in a totally test-driven manner.

Chapter 3, Chef Language and Style, covers additional Chef concepts,
such as attributes, templates, libraries, and even custom resources. It
shows you how to use plain old Ruby inside your recipes and ends with
writing your own Ohai and knife plugins.

Chapter 4, Writing Better Cookbooks, shows you how to make your
cookbooks more flexible. It covers ways to override attributes, use data
bags and search, and make your cookbooks idempotent. This chapter
also covers writing cross-platform cookbooks.

Chapter 5, Working with Files and Packages, covers powerful
techniques to manage configuration files and install and manage
software packages. It shows you how to install software from source and
how to manage whole directory trees.

Chapter 6, Users and Applications, shows you how to manage user
accounts, secure SSH and configure sudo. Then, it walks you through
installing complete applications, such as nginx, MySQL, Ruby on Rails,
and Varnish. It ends by showing you how to manage your own OS X
workstation with Chef.

Chapter 7, Servers and Cloud Infrastructure, deals with networking and
applications spanning multiple servers. It shows you how to set up load-
balancers and how to monitor your whole infrastructure with Nagios.
Finally, it shows you how to manage your Amazon EC2 Cloud with
Chef.

What you need for this book
To run the examples in this book, you'll need a computer running OS X
or Ubuntu Linux 16.04. The examples will use Sublime text
(http://www.sublimetext.com/) as the editor. Make sure that you
configure the Sublime text command-line tool, subl, to follow along
smoothly.

It helps if you have Ruby 2.3.x with bundler (http://bundler.io/) installed
on your system as well.

http://www.sublimetext.com/
http://bundler.io/

Who this book is for
This book is for system engineers and administrators who have a
fundamental understanding of information management systems and
infrastructure. It helps if you've already played around with Chef;
however, this book covers all the important topics you will need to
know. If you don't want to dig through a whole book before you can get
started, this book is for you, as it features a set of independent recipes
you can try out immediately.

Sections
In this book, you will find several headings that appear frequently
(Getting ready, How to do it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these
sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to
set up any software or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened
in the previous section.

There's more…
This section consists of additional information about the recipe in order
to make you more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the
recipe.

Conventions
In this book, you will find a number of text styles that distinguish
between different kinds of information. Here are some examples of
these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles
are shown as follows: "The omnibus installer will download Ruby and all
required Ruby gems into /opt/chef/embedded."

A block of code is set as follows:

name "web_servers"
description "This role contains nodes, which act as web
servers"
run_list "recipe[ntp]"
default_attributes 'ntp' => {
 'ntpdate' => {
 'disable' => true
 }
}

Any command-line input or output is written as follows:

mma@laptop:~/chef-repo $ knife role from file web_servers.rb

New terms and important words are shown in bold. Words that you
see on the screen, for example, in menus or dialog boxes, appear in the
text like this: "Open http://requestb.in in your browser and click on
Create a RequestBin."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

http://requestb.in

Reader feedback
Feedback from our readers is always welcome. Let us know what you
think about this book—what you liked or disliked. Reader feedback is
important for us as it helps us develop titles that you will really get the
most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>,
and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in
either writing or contributing to a book, see our author guide at
www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number
of things to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

You can download the code files by following these steps:
1. Log in or register to our website using your e-mail address and

password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book

from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files
button on the book's webpage at the Packt Publishing website. This page
can be accessed by entering the book's name in the Search box. Please
note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at

http://www.packtpub.com
http://www.packtpub.com/support

https://github.com/mmarschall/chef-repo. We also have other code
bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you find a mistake in one of our books
—maybe a mistake in the text or the code—we would be grateful if you
could report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted
and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of
the book in the search field. The required information will appear under
the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem
across all media. At Packt, we take the protection of our copyright and
licenses very seriously. If you come across any illegal copies of our
works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the
suspected pirated material.

We appreciate your help in protecting our authors and our ability to
bring you valuable content.

https://github.com/mmarschall/chef-repo
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com

Questions
If you have a problem with any aspect of this book, you can contact us
at <questions@packtpub.com>, and we will do our best to address the
problem.

mailto:questions@packtpub.com

Chapter 1. Chef Infrastructure
"What made Manhattan Manhattan was the underground
infrastructure, that engineering marvel."

Andrew Cuomo

A well-engineered infrastructure builds the basis for successful
companies. In this chapter, we will see how to set up an infrastructure
around Chef as the basis of your infrastructure as code. We'll cover the
following recipes in this chapter:

Using version control
Installing the Chef Development Kit on your workstation
Using the hosted Chef platform
Managing virtual machines with Vagrant
Creating and using cookbooks
Inspecting files on your Chef server with knife
Defining cookbook dependencies
Managing cookbook dependencies with Berkshelf
Using custom knife plugins
Deleting a node from the Chef server
Developing recipes with local mode
Using roles
Using environments
Freezing cookbooks
Running the Chef client as a daemon

Introduction
This chapter will cover the basics of Chef, including common
terminology, workflow practices, and various tools that work with Chef.
We will explore version control using Git, walk through working with
community cookbooks, and run those cookbooks on your own servers.

First, let's talk about some important terms used in the Chef universe.

A cookbook is a collection of all the components needed to change
something on a server. Things such as installing MySQL or configuring
SSH can be done by cookbooks. The most important parts of cookbooks
are recipes, which tell Chef which resources you want to configure on
your host.

You need to deploy cookbooks to the nodes that you want to change.
Chef offers multiple methods for this task. Most probably, you'll use a
central Chef server. You can either run your own server or sign up for
hosted Chef.

The Chef server is the central registry, where each node needs to be
registered. The Chef server distributes the cookbooks you uploaded to it,
to your nodes.

Knife is Chef's command-line tool to interact with the Chef server. You
run it on your local workstation and use it to upload cookbooks and
manage other aspects of Chef.

On your nodes, you need to install Chef Client—the program that runs
on your nodes, retrieving cookbooks from the Chef server and executing
them on the node.

In this chapter, we'll see the basic infrastructure components of your
Chef setup at work and learn how to use the basic tools. Let's get started
by looking at how to use Git as a version control system for your
cookbooks.

Using version control
Do you manually back up every file before you change it? And do you
invent creative file name extensions such as _me and _you when you try
to collaborate on a file? If you answer yes to any of these, it's time to
rethink your processes.

A version control system (VCS) helps you stay sane when dealing with
important files and collaborating on them.

Using version control is a fundamental part of any infrastructure
automation. There are multiple solutions to manage source version
control, including Git, SVN, Mercurial, and Perforce. Due to its
popularity among the Chef community, we will be using Git. However,
you could easily use any other version control system with Chef.

Note

Don't even think about building your infrastructure as code without
using a version control system to manage it!

Getting ready
You'll need Git installed on your local workstation. Either use your
operating system's package manager (such as Apt on Ubuntu or
Homebrew on OS X, or simply download the installer from www.git-
scm.org.

Git is a distributed version control system. This means that you don't
necessarily need a central host to store your repositories. However, in
practice, using GitHub as your central repository has proven to be very
helpful. In this book, I'll assume that you're using GitHub. Therefore,
you need to go to www.github.com and create an account (which is free)
to follow the instructions given in this book. Make sure that you upload
your Secure Shell (SSH) key by following the instructions at
https://help.github.com/articles/generating-ssh-keys, so that you're able
to use the SSH protocol to interact with your GitHub account.

http://www.git-scm.org
http://www.github.com
https://help.github.com/articles/generating-ssh-keys

As soon as you have created your GitHub account, you should create
your repository by visiting https://github.com and using chef-repo as the
repository name.

Make sure you have wget installed on your local workstation, to be able
to download the required files from public servers.

How to do it…
Before you can write any cookbooks, you need to set up your initial Git
repository on your development box. Chef Software, Inc. provides an
empty Chef repository to get you started. Let's see how you can set up
your own Chef repository with Git, using Chef's skeleton:
1. Download Chef's skeleton repository as a tarball:

mma@laptop $ wget http://github.com/chef/chef-
repo/tarball/master
...TRUNCATED OUTPUT...
2016-09-28 20:54:41 (9.26 MB/s) - 'master' saved
[7332/7332]

2. Extract the downloaded tarball:

mma@laptop $ tar xzvf master

3. Rename the directory:

mma@laptop:~ $ mv chef-boneyard-chef-repo-* chef-repo

4. Change to your newly created Chef repository:

mma@laptop:~ $ cd chef-repo/

5. Initialize a fresh Git repository:

git init .
Initialized empty Git repository in /Users/mma/work/chef-
repo/.git/

6. Connect your local repository to your remote repository on
github.com. Make sure to replace mmarschall with your own
GitHub username:

mma@laptop:~/chef-repo $ git remote add origin

https://github.com

git@github.com:mmarschall/chef-repo.git

7. Configure Git with your user name and e-mail address:

mma@laptop:~/chef-repo $ git config --global user.email
"you@example.com"
mma@laptop:~/chef-repo $ git config --global user.name
"Your Name"

8. Add and commit Chef's default directory structure:

mma@laptop:~/chef-repo $ git add .
mma@laptop:~/chef-repo $ git commit -m "initial commit"
[master (root-commit) 6148b20] initial commit
 11 files changed, 545 insertions(+), 0 deletions(-)
 create mode 100644 .gitignore
...TRUNCATED OUTPUT...
create mode 100644 roles/README.md

9. Push your initialized repository to GitHub. This makes it available to
all your co-workers to collaborate on:

mma@laptop:~/chef-repo $ git push -u origin master
...TRUNCATED OUTPUT...
To git@github.com:mmarschall/chef-repo.git
 * [new branch] master -> master

How it works…
You have downloaded a tarball containing Chef's skeleton repository.
Then, you initialized chef-repo and connected it to your own repository
on GitHub.

After that, you added all the files from the tarball to your repository and
committed them. This makes Git track your files and the changes you
make later.

Finally, you pushed your repository to GitHub, so that your co-workers
can use your code too.

There's more...
Let's assume you're working on the same chef-repo repository, together

with your co-workers. They cloned the repository, added a new
cookbook called other_cookbook, committed their changes locally, and
pushed to GitHub. Now, it's time for you to get the new cookbook
downloaded to your own laptop.

Pull your co-workers' changes from GitHub. This will merge their
changes into your local copy of the repository. Use the pull
subcommand:

mma@laptop:~/chef-repo $ git pull --rebase
From github.com:mmarschall/chef-repo
 * branch master -> FETCH_HEAD
...TRUNCATED OUTPUT...
create mode 100644 cookbooks/other_cookbook/recipes/default.rb

In the event of any conflicting changes, Git will help you merge and
resolve them.

See also
Learn about Git basics at http://git-scm.com/videos
Walk through the basic steps using GitHub at
https://help.github.com/categories/bootcamp

http://git-scm.com/videos
https://help.github.com/categories/bootcamp

Installing the Chef Development
Kit on your workstation
If you want to use Chef, you'll need to install the Chef Development
Kit (DK) on your local workstation first. You'll have to develop your
configurations locally and use Chef to distribute them to your Chef
server.

Chef provides a fully packaged version, which does not have any
external prerequisites. This fully packaged Chef is called the omnibus
installer. We'll see how to use it in this section.

How to do it…
Let's see how to install the Chef DK on your local workstation using
Chef's omnibus installer:
1. Download the Chef DK for your specific workstation platform from

https://downloads.chef.io/chef-dk/ and run the installer.
2. Verify that Chef installed all the required components:

mma@laptop:~ $ chef verify
...TRUNCATED OUTPUT...
Verification of component 'test-kitchen' succeeded.
Verification of component 'chefspec' succeeded.
Verification of component 'rubocop' succeeded.
Verification of component 'knife-spork' succeeded.
Verification of component 'openssl' succeeded.
Verification of component 'delivery-cli' succeeded.
Verification of component 'opscode-pushy-client' succeeded.
Verification of component 'berkshelf' succeeded.
Verification of component 'chef-dk' succeeded.
Verification of component 'fauxhai' succeeded.
Verification of component 'inspec' succeeded.
Verification of component 'chef-sugar' succeeded.
Verification of component 'tk-policyfile-provisioner'
succeeded.
Verification of component 'chef-provisioning' succeeded.
Verification of component 'kitchen-vagrant' succeeded.
Verification of component 'git' succeeded.

https://downloads.chef.io/chef-dk/

Verification of component 'chef-client' succeeded.
Verification of component 'generated-cookbooks-pass-
chefspec' succeeded.
Verification of component 'package installation' succeeded.

3. Add the newly installed Ruby to your path:

mma@laptop:~ $ echo 'export
PATH="/opt/chefdk/bin:/opt/chefdk/embedded/bin:$PATH"' >>
~/.bash_profile && source ~/.bash_profile

Note

You may not want to use (and don't have to use) ChefDK's Ruby,
especially if you are a Rails Developer. If you're happily using your
Ruby rvm or rbenv environment, you can continue to do so. Just
ensure that ChefDK-provided applications appear first in your PATH,
before any gem-installed versions, and you're good to go.

.chef/encrypted_data_bag_secret

How it works…
The omnibus installer will download Ruby and all required Ruby gems
into /opt/chefdk.

See also
Find detailed instructions for OS X and Linux at https://learn.chef.io
Find ChefDK on GitHub at https://github.com/chef/chef-dk

https://learn.chef.io
https://github.com/chef/chef-dk

Using the hosted Chef platform
If you want to get started with Chef right away (without the need to
install your own Chef server) or want a third party to give you a Service
Level Agreement (SLA) for your Chef server, you can sign up for
hosted Chef by Chef Software, Inc. Chef Software, Inc. operates Chef
as a cloud service. It's quick to set up and gives you full control, using
users and groups to control access permissions to your Chef setup. We'll
configure knife, Chef's command-line tool, to interact with hosted Chef,
so that you can start managing your nodes.

Getting ready
Before being able to use hosted Chef, you need to sign up for the
service. There is a free account for up to five nodes.

Visit http://manage.chef.io/signup and register for a free account.

I registered as the user webops with an organization short name of awo.
An organization is the top-level entity for role-based access control in
the Chef server.

After registering your account, it is time to prepare your organization to
be used with your chef-repo repository.

How to do it…
Carry out the following steps to interact with the hosted Chef:
1. Create the configuration directory for your Chef client on your local

workstation:

mma@laptop:~ $ cd ~/chef-repo
 mkdir .chef

2. Generate the knife config and put the downloaded knife.rb into
the .chef directory inside your chef-repo directory. Make sure you
have your user's private key saved as .chef/<YOUR USERNAME>.pem,

http://manage.chef.io/signup

(in my case it is .chef/webops.pem). If needed, you can reset it at
https://id.chef.io/id/profile. Replace webops with the
username you chose for hosted Chef, and awo with the short name
you chose for your organization in your knife.rb file:

current_dir = File.dirname(__FILE__)
log_level :info
log_location STDOUT
node_name "webops"
client_key "#{current_dir}/webops.pem"
chef_server_url
"https://api.chef.io/organizations/awo"
cache_type 'BasicFile'
cache_options(:path => "#{ENV['HOME']}/.chef/checksums")
cookbook_path ["#{current_dir}/../cookbooks"]

Note

You should add the following code to your .gitingore file inside
chef-repo to avoid your credentials ending up in your Git
repository:

.chef/*.pem

3. Use knife to verify that you can connect to your hosted Chef
organization. It should not have any clients, so far:

mma@laptop:~/chef-repo $ knife client list

How it works…
The following line of code in your knife.rb file tells knife where to find
your user's private key. It is used to authenticate you with the Chef
server:

client_key "#{current_dir}/webops.pem"

Also, the following line of code in your knife.rb file tells knife that you
are using hosted Chef. You will find your organization name as the last
part of the URL:

chef_server_url

"https://api.chef.io/organizations/awo"

Using the knife.rb file and your user's key, you can now connect to
your organization hosted by Chef Software, Inc.

There's more…
This setup is good for you if you do not want to worry about running,
scaling, and updating your own Chef server and if you're happy with
saving all your configuration data in the Cloud (under the control of
Chef Software, Inc.).

Note

If you need to have all your configuration data within your own network
boundaries, you can install Chef server on premises by choosing ON
PREMISES CHEF at https://www.chef.io/chef/choose-your-version/ or
install the Open Source version of Chef server directly from GitHub at
https://github.com/chef/chef.

See also
Learn more about the various Chef products at
https://www.chef.io/chef/
You can find the source code for the Chef server on GitHub at
https://github.com/chef/chef

http://at%20https://www.chef.io/chef/choose-your-version/
https://github.com/chef/chef
https://www.chef.io/chef/
https://github.com/chef/chef

Managing virtual machines with
Vagrant
Vagrant is a command-line tool that provides you with a configurable,
reproducible, and portable development environment using VMs. It lets
you define and use preconfigured disk images to create new VMs from.
Also, you can configure Vagrant to use provisioners such as Shell scripts,
Puppet, or Chef to bring your VM into the desired state.

Tip

Chef comes with Test Kitchen, which enables you to test your
cookbooks on Vagrant without you needing to setup anything manually.

You only need to follow this section, if you want to learn how to use
Vagrant and Chef for more advanced cases.

In this recipe, we will see how to use Vagrant to manage VMs using
VirtualBox and Chef client as the provisioner.

Getting ready
1. Download and install VirtualBox at

https://www.virtualbox.org/wiki/Downloads.
2. Download and install Vagrant at

https://www.vagrantup.com/downloads.html.
3. Install the Omnibus Vagrant plugin to enable Vagrant to install the

Chef client on your VM by running the following command:

mma@laptop:~/chef-repo $ vagrant plugin install vagrant-
omnibus
Installing the 'vagrant-omnibus' plugin. This can take a
few minutes...
Installed the plugin 'vagrant-omnibus (1.5.0)'!

How to do it…

https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html

Let's create and boot a virtual node by using Vagrant:
1. Visit https://github.com/chef/bento and choose a Vagrant box to base

your VMs on. We'll use the amd64 image of ubuntu-16.04 in this
example.

2. The URL of that box is http://opscode-vm-
bento.s3.amazonaws.com/vagrant/virtualbox/opscode_ubuntu-
16.04_chef-provisionerless.box.

3. Create a new Vagrantfile. Make sure that you replace <YOUR-ORG>
with the name of your organization on the Chef server. Use the
name and URL of the box file you noted down in the first step as
config.vm.box and config.vm.box_url:

mma@laptop:~/chef-repo $ subl Vagrantfile
Vagrant.configure("2") do |config|
 config.vm.box = "opscode-ubuntu-16.04"
 config.vm.box_url = "http://opscode-vm-
bento.s3.amazonaws.com/vagrant/virtualbox/opscode_ubuntu-
16.04_chef-provisionerless.box"
 config.omnibus.chef_version = :latest

 config.vm.provision :chef_client do |chef|
 chef.provisioning_path = "/etc/chef"
 chef.chef_server_url =
"https://api.chef.io/organizations/<YOUR_ORG>"
 chef.validation_key_path = ".chef/<YOUR_USER>.pem"
 chef.validation_client_name = "<YOUR_USER> "
 chef.node_name = "server"
 end
end

4. Create your virtual node using Vagrant:

mma@laptop:~/chef-repo $ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Box 'opscode-ubuntu-16.04' could not be found.
Attempting to find and install...
...TRUNCATED OUTPUT...
==> default: Importing base box 'opscode-ubuntu-16.04'...
...TRUNCATED OUTPUT...
==> default: Installing Chef latest Omnibus package...
...TRUNCATED OUTPUT...
==> default: Running chef-client...
==> default: Starting Chef Client, version 12.14.89

https://github.com/chef/bento
http://opscode-vm-bento.s3.amazonaws.com/vagrant/virtualbox/opscode_ubuntu-16.04_chef-provisionerless.box

...TRUNCATED OUTPUT...

5. Log in to your virtual node using SSH:

mma@laptop:~/chef-repo $ vagrant ssh
Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 4.4.0-31-generic
x86_64)
...TRUNCATED OUTPUT...
vagrant@server:~$

6. Log out of your virtual node:

vagrant@server:~$ exit
logout
Connection to 127.0.0.1 closed.
mma@laptop:~/chef-repo $

7. Validate that the Chef server knows your new virtual machine as a
client called server:

mma@laptop:~/chef-repo $ knife client list
awo-validator
server

8. Go to https://manage.chef.io/organizations/<YOUR
ORGANIZATION>/nodes and validate that your new virtual machine
shows up as a registered node:

How it works…

https://manage.chef.io/organizations

The Vagrantfile is written in a Ruby Domain Specific Language
(DSL) to configure the Vagrant virtual machines. We want to boot a
simple Ubuntu VM. Let's go through the Vagrantfile step by step.

First, we create a config object. Vagrant will use this config object to
configure the VM:

Vagrant.configure("2") do |config|
...
end

Inside the config block, we tell Vagrant which VM image to use, in
order to boot the node:

config.vm.box = "opscode-ubuntu-16.04"
config.vm.box_url = "http://opscode-vm-
bento.s3.amazonaws.com/vagrant/virtualbox/opscode_ubuntu-
16.04_chef-provisionerless.box"

We want to boot our VM using a so-called Bento Box, provided by
Chef. We use Ubuntu Version 16.04 here.

Note

If you have never used the box before, Vagrant will download the image
file (a few hundred megabytes) when you run vagrant up for the first
time.

As we want our VM to have the Chef client installed, we tell the
omnibus vagrant plugin to use the latest version of the Chef client:

 config.omnibus.chef_version = :latest

After selecting the VM image to boot, we configure how to provision the
box by using Chef. The Chef configuration happens in a nested Ruby
block:

 config.vm.provision :chef_client do |chef|
 ...
 end

Inside this chef block, we need to instruct Vagrant on how to hook up
our virtual node to the Chef server. First, we need to tell Vagrant where
to store all the Chef stuff on your node:

 chef.provisioning_path = "/etc/chef"

Vagrant needs to know the API endpoint of your Chef server. If you use
hosted Chef, it is https://api.chef.io/organizations/<YOUR_ORG>. You need
to replace <YOUR_ORG> with the name of the organization that you
created in your account on hosted Chef. If you are using your own Chef
server, change the URL accordingly:

 chef.chef_server_url =
"https://api.chef.io/organizations/<YOUR_ORG>"

While creating your user on hosted Chef, you must have downloaded
your private key. Tell Vagrant where to find this file:

 chef.validation_key_path = ".chef/<YOUR_USER>.pem"

Also, you need to tell Vagrant which client it should use to validate itself
against in the Chef server:

 chef.validation_client_name = "<YOUR_USER>"

Finally, you should tell Vagrant how to name your node:

 chef.node_name = "server"

After configuring your Vagrantfile, all you need to do is run the basic
Vagrant commands such as vagrant up, vagrant provision, and
vagrant ssh. To stop your VM, just run the vagrant halt command.

There's more…
If you want to start from scratch again, you will have to destroy your
VM and delete both the client and the node from your Chef server by
running the following command:

mma@laptop:~/chef-repo $ vagrant destroy
mma@laptop:~/chef-repo $ knife node delete server -y && knife

https://api.chef.io/organizations/

client delete server -y

Alternatively, you may use the Vagrant Butcher plugin found at
https://github.com/cassianoleal/vagrant-butcher.

Tip

Don't blindly trust Vagrant boxes downloaded from the Web; you never
know what they contain.

See also
Integration-testing your Chef cookbooks with Test Kitchen in
Chapter 2, Evaluating and Troubleshooting Cookbooks and Chef
Runs
Find the Vagrant documentation at
https://www.vagrantup.com/docs/getting-started/index.html
You can use a Vagrant plugin for VMware instead of VirtualBox and
find it at http://www.vagrantup.com/vmware
You can use a Vagrant plugin for Amazon AWS instead of
VirtualBox and find it at https://github.com/mitchellh/vagrant-aws

https://github.com/cassianoleal/vagrant-butcher
https://www.vagrantup.com/docs/getting-started/index.html
http://www.vagrantup.com/vmware
https://github.com/mitchellh/vagrant-aws

Creating and using cookbooks
Cookbooks are an essential part of Chef. Basically, you describe the
configurations you want to apply to your nodes in cookbooks. You can
create them using the Chef executable installed by the Chef DK.

In this recipe, we'll create and apply a simple cookbook using the chef
and knife command-line tools.

Getting ready
Make sure you have Chef DK installed and a node available for testing.
Check out the installation instructions at http://learn.chef.io if you need
help here.

Edit your knife.rb file (usually found in the hidden .chef directory)
and add the following three lines to it, filling in your own values:

cookbook_copyright "your company"
cookbook_license "apachev2"
cookbook_email "your email address"

Note

The Apache 2 license is the most commonly license found in cookbooks,
but you're free to choose whichever suits your needs. If you put none as
cookbook_license, knife will put All rights reserved into your recipe's
metadata file.

Chef will use the preceding values as the defaults whenever you create a
new cookbook. We assume that you have a node called server
registered with your Chef server, as described in the Managing virtual
machines with Vagrant section in this chapter.

How to do it…
Carry out the following steps to create and use cookbooks:

http://learn.chef.io

1. Create a cookbook named my_cookbook by running the following
command:

mma@laptop:~/chef-repo $ chef generate cookbook
cookbooks/my_cookbook
Generating cookbook my_cookbook
- Ensuring correct cookbook file content
- Ensuring delivery configuration
- Ensuring correct delivery build cookbook content

Your cookbook is ready. Type `cd cookbooks/my_cookbook` to
enter it.
...TRUNCATED OUTPUT...

2. Upload your new cookbook on the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]
Uploaded 1 cookbook.

3. Add the cookbook to your node's run list. In this example, the name
of the node is server:

mma@laptop:~/chef-repo $ knife node run_list add server
'recipe[my_cookbook]'
server:
 run_list: recipe[my_cookbook]

4. Run the Chef client on your node:

user@server:~$ sudo chef-client

Tip

If you're using a Vagrant VM as your server, you need to make sure to
run vagrant up and vagrant ssh to be able to execute the Chef client
on the node.

How it works…
The chef executable helps you to manage your local Chef Development
environment. We used it here to generate the cookbook.

Knife is the command-line interface for the Chef server. It uses the

RESTful API exposed by the Chef server to do its work and helps you
to interact with the Chef server.

The knife command supports a host of commands structured as follows:

knife <subject> <command>

The <subject> used in this section is either cookbook or node. The
commands we use are upload for the cookbook, and run_list add for
the node.

There's more…
Before uploading your cookbook to the Chef server, it's a good idea to
run it in Test Kitchen first. Test Kitchen will spin up a virtual machine,
execute your cookbook, and destroy the virtual machine again. That
way you can evaluate what your cookbook does before you upload it to
the Chef server and run it on real nodes.

To run your cookbook with Test Kitchen on an Ubuntu 16.04 virtual
machine, execute the following steps:
1. Create a configuration file for Test Kitchen for executing the default

recipe of my_cookbook:

mma@laptop:~/chef-repo $ subl .kitchen.yml

driver:
 name: vagrant

provisioner:
 name: chef_zero

platforms:
 - name: ubuntu-16.04

suites:
 - name: default
 run_list:
 - recipe[my_cookbook::default]
 attributes:

2. Run kitchen test to execute the default recipe of my_cookbook:

mma@laptop:~/chef-repo $ kitchen test
-----> Starting Kitchen (v1.13.2)
...TRUNCATED OUTPUT...
-----> Kitchen is finished. (0m45.42s)

See also
Learn how to use Test Kitchen to evaluate your cookbooks before
uploading them to the Chef server in the Integration-testing your
Chef cookbooks with Test Kitchen recipe in Chapter 2, Evaluating
and Troubleshooting Cookbooks and Chef Runs
Learn how to set up your Chef server in the Using the hosted Chef
platform recipe in this chapter

Inspecting files on your Chef
server with knife
Sometimes, you may want to peek into the files stored on your Chef
server. You might not be sure about an implementation detail of the
specific cookbook version currently installed on your Chef server, and
need to look it up. Knife can help you out by letting you show various
aspects of the files stored on your Chef server.

Getting ready
1. Install the iptables community cookbook by executing the

following command:

mma@laptop:~/chef-repo $ knife cookbook site install
iptables
Installing iptables to /Users/mma/work/chef-repo/cookbooks
...TRUNCATED OUTPUT...

Note

Take a look at the following error:

ERROR: IOError: Cannot open or read ../chef-
repo/cookbooks/iptables/metadata.rb!

If you get the preceding error, your cookbook only has a
metadata.json file. Make sure that you delete it and create a valid
metadata.rb, file instead.

2. Upload the iptables cookbook on your Chef server by executing
the following command:

mma@laptop:~/chef-repo $ knife cookbook upload iptables --
include-dependencies
Uploading iptables [3.0.0]
Uploading compat_resource [12.14.7]
Uploaded 2 cookbooks.

How to do it…
Let's find out how knife can help you to look into a cookbook stored in
your Chef server:
1. First, you want to find out the current version of the cookbook

you're interested in. In our case, we're interested in the iptables
cookbook:

mma@laptop:~/work/chef_helpster $ knife cookbook show
iptables
iptables 3.0.0 0.14.1

2. Then, you can look up the definitions of the iptables cookbook,
using the version number that you found in the previous step:

mma@laptop:~/chef-repo $ knife cookbook show iptables
0.14.1 definitions
 checksum: 45c0b77ff10d7177627694827ce47340
 name: iptables_rule.rb
 path: definitions/iptables_rule.rb
 specificity: default
 url: https://s3-external-
1.amazonaws.com:443/opscode-platform...

3. Now, you can even show the contents of the iptables_rule.rb
definition file, as stored on the server:

mma@laptop:~/chef-repo $ knife cookbook show iptables
0.14.1 definitions iptables_rule.rb
#
Cookbook Name:: iptables
Definition:: iptables_rule
#
#
define :iptables_rule, :enable => true, :source => nil,
:variables => {}, :cookbook => nil do
...TRUNCATED OUTPUT...
end

How it works…
The knife cookbook show subcommand helps you understand what
exactly is stored on the Chef server. It lets you drill down into specific
sections of your cookbooks and see the exact content of the files stored
in your Chef server.

There's more…
You can pass patterns to the knife show command to tell it exactly what
you want to see. Showing the attributes defined by the cookbook can be
done as follows:

mma@laptop:~/work/chef_helpster $ knife show
cookbooks/iptables/attributes/*
cookbooks/iptables/attributes/default.rb:
#
Cookbook Name:: iptables
Attribute:: default
...TRUNCATED OUTPUT...

See also
To find some more examples on knife show, visit
https://docs.chef.io/knife_show.html

https://docs.chef.io/knife_show.html

Defining cookbook dependencies
Quite often, you might want to use features of other cookbooks in your
own cookbooks. For example, if you want to make sure that all
packages required for compiling software written in C are installed, you
might want to include the build-essential cookbook, which does just
that. The Chef server needs to know about such dependencies in your
cookbooks. You declare them in a cookbook's metadata.

Getting ready
Make sure you have a cookbook named my_cookbook, and the run_list
of your node includes my_cookbook, as described in the Creating and
using cookbooks recipe in this chapter.

How to do it…
Edit the metadata of your cookbook in the file
cookbooks/my_cookbook/metadata.rb to add a dependency to the
build-essential cookbook:

mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb
...
depends 'build-essential', '>= 7.0.3'

How it works…
If you want to use a feature of another cookbook inside your cookbook,
you will need to include the other cookbook in your recipe using the
include_recipe directive:

include_recipe 'build-essential'

To tell the Chef server that your cookbook requires the build-essential
cookbook, you need to declare that dependency in the metadata.rb file.
If you uploaded all the dependencies to your Chef server either using
knife cookbook upload my_cookbook --include-dependencies or berks
install and berks upload, as described in the Managing cookbook

dependencies with Berkshelf recipe in this chapter, the Chef server will
then send all the required cookbooks to the node.

The depends function call tells the Chef server that your cookbook
depends on a version greater than or equal to 7.0.3 of the build-
essential cookbook.

You may use any of these version constraints with depends calls:
< (less than)
<= (less than or equal to)
= (equal to)
>= (greater than or equal to)
~> (approximately greater than)
> (greater than)

There's more…
If you include another recipe inside your recipe, without declaring the
cookbook dependency in your metadata.rb file, Foodcritic will warn
you:

mma@laptop:~/chef-repo $ foodcritic cookbooks/my_cookbook
FC007: Ensure recipe dependencies are reflected in cookbook
metadata: cookbooks/my_cookbook/recipes/default.rb:9

Tip

Foodcritic will just return an empty line, if it doesn't find any issues.

Additionally, you can declare conflicting cookbooks through the
conflicts call:

conflicts "nginx"

Of course, you can use version constraints exactly the same way you did
with depends.

See also
Read more on how you can find out what is uploaded on your Chef

server in the Inspecting files on your Chef server with knife recipe
in this chapter
Find out how to use foodcritic in the Flagging problems in your
Chef cookbooks recipe in Chapter 2, Evaluating and
Troubleshooting Cookbooks and Chef Runs

Managing cookbook dependencies
with Berkshelf
It's a pain to manually ensure that you have installed all the cookbooks
that another cookbook depends on. You must download each and every
one of them manually only to find out that, with each downloaded
cookbook, you inherit another set of dependent cookbooks.

And even if you use knife cookbook site install, which installs all
the dependencies locally for you, your cookbook directory and your
repository get cluttered with all those cookbooks. Usually, you don't
really care about all those cookbooks and don't want to see or manage
them.

This is where Berkshelf comes into play. It works like Bundler for Ruby
gems, managing cookbook dependencies for you. Berkshelf downloads
all the dependencies you defined recursively and helps you to upload all
cookbooks to your Chef server.

Instead of polluting your Chef repository, it stores all the cookbooks in a
central location. You just commit your Berkshelf dependency file (called
Berksfile) to your repository, and every colleague or build server can
download and install all those dependent cookbooks based on it.

Let's see how to use Berkshelf to manage the dependencies of your
cookbook.

Getting ready
Make sure you have a cookbook named my_cookbook and the run_list
of your node includes my_cookbook, as described in the Creating and
using cookbooks recipe.

How to do it…

Berkshelf helps you to keep those utility cookbooks out of your Chef
repository. This makes it much easier to maintain the important
cookbooks.

Let's see how to write a cookbook by running a bunch of utility recipes
and manage the required cookbooks with Berkshelf:
1. Edit your cookbook's metadata:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/metadata.rb
...
depends "chef-client"
depends "apt"
depends "ntp"

2. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
...
include_recipe "chef-client"
include_recipe "apt"
include_recipe "ntp"

3. Run Berkshelf to install all the required cookbooks:

mma@laptop:~/chef-repo $ cd cookbooks/my_cookbook
mma@laptop:~/chef-repo/cookbooks/my_cookbook $ berks
install
Resolving cookbook dependencies...
Fetching 'my_cookbook' from source at .
Fetching cookbook index from https://supermarket.chef.io...
Installing apt (4.0.2)
...TRUNCATED OUTPUT...

4. Upload all the cookbooks on the Chef server:

mma@laptop:~/chef-repo/cookbooks/my_cookbook $ berks upload
Using my_cookbook (0.1.0)
...TRUNCATED OUTPUT...
Uploaded windows (2.0.2) to:
'https://api.opscode.com:443/organizations/awo'

How it works...

Berkshelf comes with the Chef DK.

We edit our cookbook and tell it to use a few basic cookbooks.

Instead of making us manually install all the cookbooks using knife
cookbook site install, Chef generates a Berksfile, besides the
metadata.rb file.

The Berksfile is simple. It tells Berkshelf to use the Chef supermarket as
the default source for all cookbooks:

source "https://supermarket.chef.io"

And the Berksfile tells Berkshelf to read the metadata.rb file to find all
the required cookbooks. This is the simplest way when working inside a
single cookbook. Please see the following There's more… section to find
an example of a more advanced usage of the Berksfile.

After telling Berkshelf where to find all the required cookbook names,
we use it to install all those cookbooks:

berks install

Berkshelf stores cookbooks in ~/.berkshelf/cookbooks, by default.
This keeps your Chef repository clutter-free. Instead of having to
manage all the required cookbooks inside your own Chef repository,
Berkshelf takes care of them. You simply need to check in Berksfile
with your cookbook, and everyone using your cookbook can download
all the required cookbooks by using Berkshelf.

To make sure that there's no mix-up with different cookbook versions
when sharing your cookbook, Berkshelf creates a file called
Berksfile.lock alongside Berksfile.

Note

Don't commit the Berksfile.lock to version control. If you use berks
generate it will auto populate the .gitignore for you. Otherwise, you
need to add Berksfile.lock to your .gitignore manually.

Here, you'll find the exact versions of all the cookbooks that Berkshelf
installed:

DEPENDENCIES
 my_cookbook
 path: .
 metadata: true

GRAPH
 apt (4.0.2)
 compat_resource (>= 12.10)
 chef-client (6.0.0)
 cron (>= 1.7.0)
 logrotate (>= 1.9.0)
 windows (>= 1.42.0)
 compat_resource (12.14.7)
 cron (2.0.0)
 logrotate (2.1.0)
 compat_resource (>= 0.0.0)
 my_cookbook (0.1.1)
 apt (>= 0.0.0)
 chef-client (>= 0.0.0)
 ntp (>= 0.0.0)
 ntp (3.2.0)
 windows (2.0.2)

Berkshelf will only use the exact versions specified in the
Berksfile.lock file, if it finds this file.

Finally, we use Berkshelf to upload all the required cookbooks to the
Chef server:

berks upload

There's more...
Berkshelf integrates tightly with Vagrant via the vagrant-berkshelf
plugin. You can set up Berkshelf and Vagrant in such a way that
Berkshelf installs and uploads all the required cookbooks on your Chef
server whenever you execute vagrant up or vagrant provision. You'll
save all the work of running berks install and berks upload manually
before creating your node with Vagrant.

Let's see how you can integrate Berkshelf and Vagrant:
1. First, you need to install the Berkshelf plugin for Vagrant:

mma@laptop:~/work/chef-repo $ vagrant plugin install
vagrant-berkshelf
Installing the 'vagrant-berkshelf' plugin. This can take a
few minutes...
Installed the plugin 'vagrant-berkshelf (5.0.0)'!

2. Then, you need to tell Vagrant that you want to use the plugin. You
do this by enabling the plugin in Vagrantfile:

mma@laptop:~/work/chef-repo $ subl Vagrantfile
config.berkshelf.enabled = true

3. Then, you need a Berksfile in the root directory of your Chef
repository to tell Berkshelf which cookbooks to install on each
Vagrant run:

mma@laptop:~/work/chef-repo $ subl Berksfile
source 'https://supermarket.chef.io'

cookbook 'my_cookbook', path: 'cookbooks/my_cookbook'

4. Eventually, you can start your VM using Vagrant. Berkshelf will first
download and then install all the required cookbooks in the
Berkshelf, and upload them to the Chef server. Only after all the
cookbooks are made available on the Chef server by Berkshelf will
Vagrant go on:

mma@mma-mbp:~/work/chef-repo $ vagrant up
Bringing machine 'server' up with 'virtualbox' provider...

==> default: Updating Vagrant's Berkshelf...
==> default: Resolving cookbook dependencies...
==> default: Fetching 'my_cookbook' from source at
cookbooks/my_cookbook
==> default: Fetching cookbook index from
https://supermarket.chef.io...
...TRUNCATED OUTPUT...

5. This way, using Berkshelf together with Vagrant saves a lot of
manual steps and gets faster cycle times for your cookbook
development. if you're using your manual Vagrant setup instead of

Test Kitchen.

See also
For the full documentation for Berkshelf, please visit
http://berkshelf.com/
Please find the Berkshelf source code at
https://github.com/berkshelf/berkshelf
Please find the Vagrant Berkshelf plugin source code at
https://github.com/berkshelf/vagrant-berkshelf
The Managing virtual machines with Vagrant recipe in this chapter

http://berkshelf.com/
https://github.com/berkshelf/berkshelf
https://github.com/berkshelf/vagrant-berkshelf

Using custom knife plugins
Knife comes with a set of commands out-of-the-box. The built-in
commands deal with the basic elements of Chef-like cookbooks, roles,
data bags, and so on. However, it would be nice to use knife for more
than just the basic stuff. Fortunately, knife comes with a plugin API and
there are already a host of useful knife plugins built by the makers of
Chef and the Chef community.

Getting ready
Make sure you have an account at Amazon Web Services (AWS) if you
want to follow along and try out the knife-ec2 plugin. There are knife
plugins available for most Cloud providers. Go through the There's
more… section of this recipe for a list.

How to do it…
Let's see which knife plugins are available, and try to use one to manage
Amazon EC2 instances:
1. List the knife plugins that are shipped as Ruby gems using the chef

command-line tool:

mma@laptop:~/chef-repo $ chef gem search -r knife-
*** REMOTE GEMS ***
...TRUNCATED OUTPUT...

knife-azure (1.6.0)
...TRUNCATED OUTPUT...
knife-ec2 (0.13.0)
...TRUNCATED OUTPUT...

2. Install the EC2 plugin to manage servers in the Amazon AWS
Cloud:

mma@laptop:~/chef-repo $ chef gem install knife-ec2
Building native extensions. This could take a while...
...TRUNCATED OUTPUT...
Fetching: knife-ec2-0.13.0.gem (100%)

Successfully installed knife-ec2-0.13.0
...TRUNCATED OUTPUT...

6 gems installed

3. List all the available instance types in AWS using the knife ec2
plugin. Please use your own AWS credentials instead of XXX and
YYYYY:

mma@laptop:~/chef-repo $ knife ec2 flavor list --aws-
access-key-id XXX --aws-secret-access-key YYYYY
ID Name Arch
RAM Disk Cores
c1.medium High-CPU Medium 32-
bit 1740.8 350 GB 5
…TRUNCATED OUTPUT…
m2.xlarge High-Memory Extra Large 64-
bit 17510. 420 GB 6.5
t1.micro Micro Instance 0-bit
613 0 GB 2

How it works…
Knife looks for plugins in various places.

First, it looks into the .chef directory, which is located inside your
current Chef repository, to find plugins specific to this repository:

./.chef/plugins/knife/

Then, it looks into the .chef directory, which is located in your home
directory, to find plugins that you want to use in all your Chef
repositories:

~/.chef/plugins/knife/

Finally, it looks for installed gems. Knife will load all the code from any
chef/knife/ directory found in your installed Ruby gems. This is the
most common way of using plugins developed by Chef or the Chef
community.

There's more...

There are hundreds of knife plugins, including plugins for most of the
major Cloud providers, as well as the major virtualization technologies,
such as VMware, vSphere, and OpenStack, among others.

See also
To learn how to write your own knife plugins, see the Creating
custom knife plugins recipe in Chapter 2, Evaluating and
Troubleshooting Cookbooks and Chef Runs
Find a list of supported Cloud providers at
http://docs.chef.io/plugin_knife.html

http://docs.chef.io/plugin_knife.html

Deleting a node from the Chef
server
Every node managed by a Chef server has a corresponding client object
on the Chef server. Running the Chef client on your node uses the client
object to authenticate itself against the Chef server on each run.

Additionally, to register a client, a node object is created on the Chef
server. The node object is the main data structure, which you can use to
query node data inside your recipes.

Getting ready
Make sure you have at least one node registered on your Chef server
that is safe to remove.

How to do it…
Let's delete the node and client object to completely remove a node
from the Chef server.
1. Delete the node object:

mma@laptop:~/chef-repo $ knife node delete my_node
Do you really want to delete my_node? (Y/N) y
Deleted node[my_node]

2. Delete the client object:

mma@laptop:~/chef-repo $ knife client delete my_node
Do you really want to delete my_node? (Y/N) y
Deleted client[my_node]

How it works...
To keep your Chef server clean, it's important to not only manage your
node objects but to also take care of your client objects, as well.

Knife connects to the Chef server and deletes the node object with a
given name, using the Chef server RESTful API.

The same happens while deleting the client object on the Chef server.

After deleting both objects, your node is totally removed from the Chef
server. Now you can reuse the same node name with a new box or
virtual machine.

There's more…
Having to issue two commands is a bit tedious and error-prone. To
simplify things, you can use a knife plugin called playground.
1. Run the chef command-line tool to install the knife plugin:

mma@laptop:~/chef-repo $ chef gem install knife-playground
...TRUNCATED OUTPUT...
Installing knife-playground (0.2.2)

2. Run the knife pg clientnode delete subcommand:

mma@laptop:~/chef-repo $ knife pg clientnode delete my_node
Deleting CLIENT my_node...
Do you really want to delete my_node? (Y/N) y
Deleted client[my_node]
Deleting NODE my_node...
Do you really want to delete my_node? (Y/N) y
Deleted node[my_node]

See also
Read about how to do this when using Vagrant in the Managing
virtual machines with Vagrant recipe in this recipe
Read about how to set up your Chef server and register your nodes
in the Using the hosted Chef platform recipe in this chapter

Developing recipes with local
mode
If running your own Chef server seems like overkill and you're not
comfortable with using the hosted Chef, you can use local mode to
execute cookbooks.

Getting ready
1. Create a cookbook named my_cookbook by running the following

command:

mma@laptop:~/chef-repo $ chef generate cookbook
cookbooks/my_cookbook
Compiling Cookbooks...
Recipe: code_generator::cookbook
...TRUNCATED OUTPUT...

2. Edit the default recipe of my_cookbook so that it creates a temporary
file:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
file "/tmp/local_mode.txt" do
 content "created by chef client local mode"
 action :create
end

How to do it…
Let's run my_cookbook on your local workstation using the Chef client's
local mode:
1. Run the Chef client locally with my_cookbook in the run list:

mma@laptop:~/chef-repo $ chef-client --local-mode -o
my_cookbook
[2016-10-03T20:37:02+02:00] INFO: Started chef-zero at
chefzero://localhost:8889 with repository at
/Users/matthias.marschall/chef-repo
 One version per cookbook

[2016-10-03T20:37:02+02:00] INFO: Forking chef instance to
converge...
Starting Chef Client, version 12.14.89
[2016-10-03T20:37:02+02:00] INFO: *** Chef 12.14.89 ***
[2016-10-03T20:37:02+02:00] INFO: Platform: x86_64-darwin13
...TRUNCATED OUTPUT...
Chef Client finished, 1/1 resources updated in 04 seconds

2. Validate that the Chef client run creates the desired temporary file
on your local workstation:

mma@laptop:~/chef-repo $ cat /tmp/local_mode.txt
created by chef client local mode

How it works…
The --local-mode (short form: -z) parameter switches the Chef client
into local mode. Local mode uses chef-zero—a simple, in-memory
version of the Chef server provided by Chef DK—when converging the
local workstation.

By providing the -o parameter, you override the run list of your local
node so that the Chef client executes the default recipe from
my_cookbook.

There's more…
Chef-zero saves all modifications made by your recipes to the local
filesystem. It creates a JSON file containing all node attributes for your
local workstation in the nodes directory. This way, the next time you run
the Chef client in local mode, it will be aware of any changes your
recipes made to the node.

Running knife in local mode

You can use knife in local mode, too. To set the run list of a node named
laptop (instead of having to override it with -o), you can run the
following command:

mma@laptop:~/chef-repo $ knife node run_list add -z laptop

'recipe[my_cookbook]'

Moving to hosted Chef or your own Chef server

When you're done editing and testing your cookbooks on your local
workstation with chef-zero, you can seamlessly upload them to hosted
Chef or your own Chef server:

Note

Make sure you bump the version number of modified cookbooks in their
metadata.rb file and commit them to your version control system before
uploading to the Chef Server.

mma@laptop:~/chef-repo $ berks upload
Uploaded ...

See also
You can find the source code of chef-zero at
https://github.com/chef/chef-zero
Read more about the Chef client's local mode and how it relates to
Chef solo at https://blog.chef.io/2013/10/31/chef-client-z-from-zero-
to-chef-in-8-5-seconds/

https://github.com/chef/chef-zero
https://blog.chef.io/2013/10/31/chef-client-z-from-zero-to-chef-in-8-5-seconds/

Using roles
Roles group nodes with similar configurations. Typical cases are using
roles for web servers, database servers, and so on.

You can set custom run lists for all the nodes in your roles and override
attribute values from within your roles.

Let's see how to create a simple role.

Getting ready
For the following examples, I assume that you have a node named
server and that you have at least one cookbook (I'll use the ntp
cookbook) registered with your Chef server.

How to do it…
Let's create a role and see what we can do with it:
1. Create a role:

mma@laptop:~/chef-repo $ subl roles/web_servers.rb
name "web_servers"
description "This role contains nodes, which act as web
servers"
run_list "recipe[ntp]"
default_attributes 'ntp' => {
 'ntpdate' => {
 'disable' => true
 }
}

2. Upload the role on the Chef server:

mma@laptop:~/chef-repo $ knife role from file
web_servers.rb
Updated Role web_servers

3. Assign the role to a node called server:

mma@laptop:~/chef-repo $ knife node run_list add server

'role[web_servers]'
server:
 run_list: role[web_servers]

4. Log in to your node and run the Chef client:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-10-03T18:52:10+00:00] INFO: Run List is
[role[web_servers]]
[2016-10-03T18:52:10+00:00] INFO: Run List expands to [ntp]
[2016-10-03T18:52:10+00:00] INFO: Starting Chef Run for
server
...TRUNCATED OUTPUT...

How it works...
You define a role in a Ruby (or a JSON) file inside the roles folder of
your Chef repository. A role consists of a name attribute and a
description attribute. Additionally, a role usually contains a role-
specific run list and role-specific attribute settings.

Every node with a role in its run list will have the role's run list
expanded into its own. This means that all the recipes (and roles) that
are in the role's run list will be executed on your nodes.

You need to upload your role to your Chef server by using the knife
role from file command.

Only then should you add the role to your node's run list.

Running the Chef client on a node having your role in its run list will
execute all the recipes listed in the role.

The attributes you define in your role will be merged with attributes
from environments and cookbooks, according to the precedence rules
described at https://docs.chef.io/roles.html#attribute-precedence.

See also
Find out how roles can help you find nodes in the Using search to

https://docs.chef.io/roles.html#attribute-precedence

find nodes recipe in Chapter 4, Writing Better Cookbooks
Learn more about in the Overriding attributes recipe in Chapter 4,
Writing Better Cookbooks
Read everything about roles at https://docs.chef.io/roles.html

https://docs.chef.io/roles.html

Using environments
Having separate environments for development, testing, and production
is a good way to be able to develop and test cookbook updates, and
other configuration changes in isolation. Chef enables you to group your
nodes into separate environments so as to support an ordered
development flow.

Getting ready
For the following examples, let's assume that you have a node named
server in the _default environment and that you have at least one
cookbook (I'll use the ntp cookbook) registered with your Chef server.

How to do it…
Let's see how to manipulate environments using knife:

Note

This is only a good idea if you want to play around. For serious work,
please create files describing your environments and put them under
version control as described in the There's more… section of this recipe.
1. Create your environment on-the-fly using knife. The following

command will open your shell's default editor so that you can
modify the environment definition:

Note

Make sure you've set your EDITOR environment variable to your
preferred one.

mma@laptop:~/chef-repo $ knife environment create dev
{
 "name": "dev",
 "description": "",
 "cookbook_versions": {
 },

 "json_class": "Chef::Environment",
 "chef_type": "environment",
 "default_attributes": {
 },
 "override_attributes": {
 }
}
Created dev

2. List the available environments:

mma@laptop:~/chef-repo $ knife environment list
_default
dev

3. List the nodes for all the environments:

mma@laptop:~/chef-repo $ knife node list
server

4. Verify that the node server is not in the dev environment yet by
listing nodes in the dev environment only:

mma@laptop:~/chef-repo $ knife node list -E dev
mma@laptop:~/chef-repo $

5. Change the environment of the server to dev using knife:

mma@laptop:~/chef-repo $ knife node environment set server
book
server:
 chef_environment: dev

6. List the nodes in the dev environment again:

mma@laptop:~/chef-repo $ knife node list -E dev
server

7. Use specific cookbook versions and override certain attributes for
the environment:

mma@laptop:~/chef-repo $ knife environment edit dev
{
 "name": "dev",
 "description": "",
 "cookbook_versions": {
 "ntp": "1.6.8"
 },

 "json_class": "Chef::Environment",
 "chef_type": "environment",
 "default_attributes": {
 },
 "override_attributes": {
 "ntp": {
 "servers": ["0.europe.pool.ntp.org",
"1.europe.pool.ntp.org", "2.europe.pool.ntp.org",
"3.europe.pool.ntp.org"]
 }
 }
}
Saved dev

How it works…
A common use of environments is to promote cookbook updates from
development to staging and then into production. Additionally, they
enable you to use different cookbook versions on separate sets of nodes
and environment-specific attributes. You might have nodes with less
memory in your staging environment as in your production environment.
By using environment-specific default attributes, you can, for example,
configure your MySQL service to consume less memory on staging than
on production.

Note

The Chef server always has an environment called _default, which
cannot be edited or deleted. All the nodes go in there if you don't specify
any other environment.

Be aware that roles are not environment-specific. You may use
environment-specific run lists, though.

The node's environment can be queried using the
node.chef_environment method inside your cookbooks.

There's more…
If you want your environments to be under version control (and you

should), a better way to create a new environment is to create a new
Ruby file in the environments directory inside your Chef repository:

mma@laptop:~/chef-repo $ cd environments
mma@laptop:~/chef-repo $ subl dev.rb
name "dev"

You should add, commit, and push your new environment file to GitHub:

mma@laptop:~/chef-repo $ git add environments/dev.rb
mma@laptop:~/chef-repo $ git commit -a -m "the dev environment"
mma@laptop:~/chef-repo $ git push

Now, you can create the environment on the Chef server from the newly
created file using knife:

mma@laptop:~/chef-repo $ knife environment from file dev.rb
Created environment dev

Tip

You have to deal with two artifact storages here. You have to use your
version control system and knife / Berkshelf to sync your local
changes to your Chef server. The Chef server is not aware of any
changes that you do when using your version control system, and vice
versa.

There is a way to migrate all the nodes from one environment to another
by using knife exec:

mma@laptop:~/chef-repo $ knife exec -E
'nodes.transform("chef_environment:_default") { |n|
n.chef_environment("dev")

You can limit your search for nodes in a specific environment:

mma@laptop:~/chef-repo $ knife search node
"chef_environment:dev"
1 item found

See also
If you want to set up a virtual machine as a node, see the Managing

virtual machines with Vagrant recipe in this chapter
Read more about environments at
https://docs.chef.io/environments.html

https://docs.chef.io/environments.html

Freezing cookbooks
Uploading broken cookbooks that override your working ones is a major
pain and can result in widespread outages throughout your
infrastructure. If you have a cookbook version, you tested successfully
with Test Kitchen, it's a good idea to freeze this version so that no one
can overwrite the same version with broken code. When used together
with version constraints that are specified in your environment
manifests, freezing cookbooks can keep your production servers safe
from accidental changes.

Note

Berkshelf takes care of freezing cookbooks automatically.

Getting ready
Make sure you have at least one cookbook (I'll use the ntp cookbook)
registered with your Chef server.

How to do it…
Let's see what happens if we freeze a cookbook.
1. Upload a cookbook and freeze it:

mma@laptop:~/chef-repo $ knife cookbook upload ntp --freeze
Uploading ntp [3.2.0]
Uploaded 1 cookbook.

2. Try to upload the same cookbook version again:

mma@laptop:~/chef-repo $ knife cookbook upload ntp
Uploading ntp [3.2.0]
ERROR: Version 3.2.0 of cookbook ntp is frozen. Use --force
to override.
WARNING: Not updating version constraints for ntp in the
environment as the cookbook is frozen.
ERROR: Failed to upload 1 cookbook.

3. Change the cookbook version:

mma@laptop:~/chef-repo $ subl cookbooks/ntp/metadata.rb
…
version "3.2.1"

4. Upload the cookbook again:

mma@laptop:~/chef-repo $ knife cookbook upload ntp
Uploading ntp [3.2.1]
Uploaded 1 cookbook.

How it works…
By using the --freeze option when uploading a cookbook, you tell the
Chef server that it should not accept any changes to the same version of
the cookbook anymore. This is important if you're using environments
and want to make sure that your production environment cannot be
broken by uploading a corrupted cookbook.

By changing the version number of your cookbook, you can upload the
new version. Then you can make, for example, your staging
environment use that new cookbook version.

There's more…
To support a more elaborate workflow, you can use the knife-spork knife
plugin, which comes pre-installed with the Chef DK. It helps multiple
developers work on the same Chef server and repository without
treading on each other's toes. You can find more information about it at
https://docs.chef.io/plugin_knife_spork.html.

See also
Check out Seth Vargo's talk about Chef + Environments = Safer
Infrastructure at https://speakerdeck.com/sethvargo/chef-plus-
environments-equals-safer-infrastructure

https://docs.chef.io/plugin_knife_spork.html
https://speakerdeck.com/sethvargo/chef-plus-environments-equals-safer-infrastructure

Running the Chef client as a
daemon
While you can run the Chef client on your nodes manually whenever
you change something in your Chef repository, it's sometimes preferable
to have the Chef client run automatically every so often. Letting the
Chef client run automatically makes sure that no node misses out any
updates.

Getting ready
You need to have a node registered with your Chef server. It needs to be
able to run chef-client without any errors.

How to do it…
Let's see how to start the Chef client in daemon mode so that it runs
automatically:
1. Start the Chef client in daemon mode, running every 30 minutes:

user@server:~$ sudo chef-client -i 1800

2. Validate that the Chef client runs as a daemon:

user@server:~$ ps auxw | grep chef-client

How it works…
The -i parameter will start the Chef client as a daemon. The given
number is the seconds between each Chef client run. In the previous
example, we specified 1,800 seconds, which results in the Chef client
running every 30 minutes.

You can use the same command in a service startup script.

Tip

You can use the chef-client cookbook to install the Chef client as a
service. See: https://supermarket.chef.io/cookbooks/chef-client for
details.

There's more…
Instead of running the Chef client as a daemon, you can use a Cronjob
to run it every so often:

user@server:~$ subl /etc/cron.d/chef_client
PATH=/usr/local/bin:/usr/bin:/bin
m h dom mon dow user command
*/15 * * * * root chef-client -l warn | grep -v 'retrying
[1234]/5 in'

This cronjob will run the Chef client every 15 minutes and swallow the
first four retrying warning messages. This is important to avoid Cron
sending out e-mails if the connection to the Chef server is a little slow
and the Chef client needs a few retries.

Note

It is possible to initiate a Chef client run at any time by sending the
SIGUSR1 signal to the Chef client daemon:

user@server:~$ sudo killall -USR1 chef-client

https://supermarket.chef.io/cookbooks/chef-client

Chapter 2. Evaluating and
Troubleshooting Cookbooks and
Chef Runs

"Most people spend more time and energy going around problems
than in trying to solve them."

Henry Ford

In this chapter, we'll cover the following recipes:
Testing your Chef cookbooks with cookstyle and Rubocop
Flagging problems in your Chef cookbooks with Foodcritic
Test-driven development for cookbooks using ChefSpec
Compliance testing with InSpec
Integration-testing your Chef cookbooks with Test Kitchen
Showing affected nodes before uploading cookbooks
Overriding a node's run list to execute a single recipe
Using chef-shell
Using why-run mode to find out what a recipe might do
Debugging Chef client runs
Inspecting the results of your last Chef run
Using Reporting to keep track of all your Chef client runs
Raising and logging exceptions in recipes
Diff-ing cookbooks with knife
Using community exception and report handlers

Introduction
Developing cookbooks and making sure your nodes converge to the
desired state is a complex endeavor. You need transparency about what
is happening. This chapter will cover a lot of ways to see what's going on
and make sure that everything is working as it should. From running
basic checks on your cookbooks to a fully test-driven development

approach, we'll see what the Chef ecosystem has to offer.

Testing your Chef cookbooks with
cookstyle and Rubocop
You know how annoying this is: you tweak a cookbook, run Test
Kitchen, and, boom! it fails. What's even more annoying is that it fails
only because you missed a mundane comma in the default recipe of the
cookbook you just tweaked. Fortunately, there's a very quick and easy
way to find such simple glitches before you go all in and try to run your
cookbooks on Test Kitchen.

Getting ready
Install the ntp cookbook by running the following command:

mma@laptop:~/chef-repo $ knife cookbook site install ntp
Installing ntp to /Users/mma/work/chef-repo/cookbooks
…TRUNCATED OUTPUT…
Cookbook ntp version 3.2.0 successfully installed

How to do it…
Carry out the following steps to test your cookbook; run cookstyle on
the ntp cookbook:

mma@laptop:~/chef-repo $ cookstyle cookbooks/ntp
Inspecting 5 files
...C.

Offenses:

cookbooks/ntp/recipes/default.rb:25:1: C: Extra blank line
detected.

5 files inspected, 1 offense detected

How it works…
Cookstyle is a wrapper around Rubocop and executes a Ruby syntax
check on all Ruby files within the cookbook. Rubocop is a linting and

style-checking tool built for Ruby. cookstyle defines some sane rules for
Chef cookbooks.

There's more…
There exists a whole ecosystem of additional tools such as ChefSpec
(behavior-driven testing for Chef), and Test Kitchen (an integration
testing tool to run cookbooks on virtual servers), and then some.

See also
Read more about Rubocop at https://docs.chef.io/rubocop.html
Find the source code of Rubocop at GitHub:
https://github.com/bbatsov/rubocop
Read more about Cookstyle at: https://github.com/chef/cookstyle
If you want to write automated tests for your cookbooks, read the
Test-driven development for cookbooks using ChefSpec recipe in
this chapter
If you want to run full integration tests for your cookbooks, read the
Integration-testing your Chef cookbooks with Test Kitchen recipe in
this chapter

https://docs.chef.io/rubocop.html
https://github.com/bbatsov/rubocop
https://github.com/chef/cookstyle

Flagging problems in your Chef
cookbooks with Foodcritic
You might wonder what the proven ways to write cookbooks are.
Foodcritic tries to identify possible issues with the logic and style of
your cookbooks.

In this section, you'll learn how to use Foodcritic on some existing
cookbooks.

Getting ready
Install version 6.0.0 of the mysql cookbook by running the following
code:

mma@laptop:~/chef-repo $ knife cookbook site install mysql
6.0.0
Installing mysql to /Users/mma/work/chef-repo/cookbooks
…TRUNCATED OUTPUT…
Cookbook mysql version 6.0.0 successfully installed

How to do it…
Let's see how Foodcritic reports findings:
1. Run foodcritic on your cookbook:

mma@laptop:~/chef-repo $ foodcritic ./cookbooks/mysql
...TRUNCATED OUTPUT...
FC001: Use strings in preference to symbols to access node
attributes: ./cookbooks/mysql/libraries/helpers.rb:273
FC005: Avoid repetition of resource declarations:
./cookbooks/mysql/libraries/provider_mysql_service.rb:77
...TRUNCATED OUTPUT...

2. Get a detailed list of the reported sections inside the mysql
cookbook by using the -C flag:

mma@laptop:~/chef-repo $ foodcritic -C ./cookbooks/mysql
...TRUNCATED OUTPUT...

FC001: Use strings in preference to symbols to access node
attributes
273| @pkginfo.set[:suse]['11.3']['5.5']
[:server_package] = 'mysql'
 274|
 275| @pkginfo
 276| end
cookbooks/mysql/libraries/provider_mysql_service.rb
FC005: Avoid repetition of resource declarations
 74| end
 75|
 76| # Support directories
 77| directory "#{new_resource.name} :create #
{etc_dir}" do
 78| path etc_dir
 79| owner new_resource.run_user
 80| group new_resource.run_group

How it works…
Foodcritic defines a set of rules and checks your recipes against each of
them. It comes with rules concerning various areas: style, correctness,
attributes, strings, portability, search, services, files, metadata, and so on.
Running Foodcritic against a cookbook tells you which of its rules
matched a certain part of your cookbook. By default, it gives you a short
explanation of what you should do along the concerned file and line
number.

If you run foodcritic -C, it displays excerpts of the places where it
found the rules to match.

In the preceding example, it didn't like it that the mysql cookbook
version 6.0.0 uses symbols to access node attributes instead of strings:

@pkginfo.set[:suse]['11.3']['5.5'][:server_package] = 'mysql'

This could be rewritten as follows:

@pkginfo.set['suse']['11.3']['5.5']['server_package'] = 'mysql'

There's more…

Some of the rules, especially those from the styles section, are
opinionated. You're able to exclude certain rules or complete sets of
rules, such as style, when running Foodcritic:

mma@laptop:~/chef-repo $ foodcritic -t '~style'
./cookbooks/mysql
mma@laptop:~/chef-repo $

In this case, the tilde negates the tag selection to exclude all rules with
the style tag. Running without the tilde would run the style rules
exclusively:

mma@laptop:~/chef-repo $ foodcritic -t style ./cookbooks/mysql

If you want to run foodcritic in a continuous integration (CI)
environment, you can use the -f parameter to indicate which rules
should fail the build:

mma@laptop:~/chef-repo $ foodcritic -f style ./cookbooks/mysql
…TRUNCATED OUTPUT…
FC001: Use strings in preference to symbols to access node
attributes: ./cookbooks/mysql/libraries/helpers.rb:273
FC005: Avoid repetition of resource declarations:
./cookbooks/mysql/libraries/provider_mysql_service.rb:77
mma@laptop:~/chef-repo $ echo $?

In this example, we tell Foodcritic to fail if any rule in the style group
fails. In our case, it returns a non-zero exit code instead of zero, as it
would if either no rule matches or we omit the -f parameter. That non-
zero exit code would fail your build on your continuous integration
server. You can use –f any if you want Foodcritic to fail on all warnings.

See also
Find out more about Foodcritic and its rules at
http://www.foodcritic.io
Learn how to make sure that your cookbooks compile in the Testing
your Chef cookbooks with cookstyle and Rubocop recipe in this
chapter
Check out strainer, a tool to simultaneously test multiple things,
such as Foodcritic, knife test, and other stuff, at

http://www.foodcritic.io

http://github.com/customink/strainer

http://github.com/customink/strainer

Test-driven development for
cookbooks using ChefSpec
Test-driven development (TDD) is a way to write unit tests before
writing any recipe code. By writing the test first, you design what your
recipe should do. Then, you ensure that your test fails, while you haven't
written your recipe code.

As soon as you've completed your recipe, your unit tests should pass.
You can be sure that your recipe works as expected – even if you decide
to refactor it later to make it more readable.

ChefSpec is built on the popular RSpec framework and offers a tailored
syntax to test Chef recipes.

Let's develop a very simple recipe using the TDD approach with
ChefSpec.

Getting ready
Make sure you have a cookbook called my_cookbook and the run_list
of your node includes my_cookbook, as described in the Creating and
using cookbooks recipe in Chapter 1, Chef Infrastructure.

How to do it…
Let's write a failing test first. Then we will write a recipe that satisfies
the test:
1. Create your spec file:

mma@laptop:~/chef-repo $ subl cookbooks/my_cookbo
ok/spec/default_spec.rb
require 'chefspec'
describe 'my_cookbook::default' do
 let(:chef_run) {
 ChefSpec::ServerRunner.new(
 platform:'ubuntu', version:'16.04'

).converge(described_recipe)
 }

 it 'creates a greetings file, containing the platform
name' do
 expect(chef_run).to
render_file('/tmp/greeting.txt').with_content('Hello!
ubuntu!')
 end
end

2. Run rspec to make sure that your spec fails (you've not written your
recipe yet):

mma@laptop:~/chef-repo $ chef exec rspec
cookbooks/my_cookbook/spec/default_spec.rb
F

Failures:
 1) my_cookbook::default creates a greetings file,
containing the platform name
 Failure/Error: expect(chef_run).to
render_file('/tmp/greeting.txt').with_content('Hello!
ubuntu!')

 expected Chef run to render "/tmp/greeting.txt"
matching:

 Hello! ubuntu!

 but got:

 # ./cookbooks/my_cookbook/spec/default_spec.rb:10:in
`block (2 levels) in <top (required)>'
Finished in 0.98965 seconds (files took 1.1 seconds to
load)
1 example, 1 failure
Failed examples:

rspec ./cookbooks/my_cookbook/spec/default_spec.rb:9 #
my_cookbook::default creates a greetings file, containing
the platform name

3. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb

template '/tmp/greeting.txt' do
 variables greeting: 'Hello!'
 action :create
end

4. Create a directory for the template resource used in your cookbook:

mma@laptop:~/chef-repo $ mkdir
cookbooks/my_cookbook/templates

5. Create the template file:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/templates/greeting.txt.erb
<%= @greeting %> <%= node['platform'] %>!

6. Run rspec again to check whether your test succeeds now:

mma@laptop:~/chef-repo $ chef exec rspec
cookbooks/my_cookbook/spec/default_spec.rb
Finished in 0.7316 seconds (files took 1.89 seconds to
load)
1 example, 0 failures

How it works…
First, you need to set up a basic infrastructure to use RSpec with Chef.
ChefDK comes with ChefSpec preinstalled but your cookbook needs a
directory called spec, in which all your tests will live.

When everything is set up, we're ready to start. Following the Test First
approach of TDD, we create our test (called spec) before we write our
recipe.

Every spec needs the chefspec gem:

require 'chefspec'

The main part of every spec is a describe block, where you tell RSpec
which recipe you want to test. Here, you want to test the default recipe
of your cookbook:

describe 'my_cookbook::default' do
 ...

end

Now, it's time to create the object that simulates the Chef run. Note that
ChefSpec will not really run your recipe; rather, it will simulate a Chef
run so that you can verify whether certain expectations you have about
your recipe hold true.

By using RSpec's let call, you create a variable called chef_run, which
you can use later to define your expectations.

The chef_run variable is a ChefSpec::ServerRunner object. We want to
simulate a Chef run on Ubuntu 16.04. The parameters platform and
version, which we pass to the constructor during the
ChefSpec::ServerRunner.new call, populate the automatic node
attributes so that it looks as though we performed our Chef run on an
Ubuntu 16.04 node. ChefSpec uses Fauxhai to simulate the automatic
node attributes as they would occur on various operating systems:

let(:chef_run) {
 ChefSpec::ServerRunner.new(
 platform:'ubuntu', version:'16.04'
).converge(described_recipe)
}

You can retrieve the recipe under test using the described_recipe call
instead of typing my_cookbook::default again. Using described_recipe
instead of the recipe name will keep you from repeating the recipe name
in every it-block. It will keep your spec DRY (Don't Repeat Yourself):

ChefSpec::ChefRunner.new(...).converge(described_recipe)

Finally, we define what we expect our recipe to do.

We describe what we expect our recipe to do with the it statements.
Our description of the it-call will show up in the error message, if this
test fails. That message can be any plain English sentence you want. It
must be unique and it only matters when it comes to troubleshooting
failures:

it 'creates a greetings file, containing the platform name' do

 ...
end

Now it's finally time to formulate our exact expectations. We use the
standard RSpec syntax to define our expectations:

expect(...).to ...

Every expectation works on the simulated Chef run object, defined
earlier.

We use a ChefSpec-specific matcher called render_file with the
filename and chain it with a call to with_content to tell our spec that our
recipe should create a file with the given path and fill it with the given
text:

... render_file('/tmp/greeting.txt').with_content('Hello!
ubuntu!')

On the ChefSpec site, you will find a complete list of custom matchers
that you can use to test your recipes in the ChefSpec README at
https://github.com/sethvargo/chefspec#making-assertions.

After defining our spec, it's time to run it and verify that it fails before
we write our recipe:

$ chef exec rspec cookbooks/my_cookbook/spec/default_spec.rb
F

Failures:
…TRUNCATED OUTPUT…

Next, we write our recipe. We use the template resource to create a file
with the contents as specified in the spec.

Finally, we run chef exec rspec again to see our spec pass!

There's more…
You can modify your node attributes before simulating the Chef run:

https://github.com/sethvargo/chefspec#making-assertions

 it 'uses a node attribute as greeting text' do
 chef_run.node.override['my_cookbook']['greeting'] = "Go!"

expect(chef_run).torender_file('/tmp/greeting.txt').with_conten
t('Go! ubuntu!')
 end

Running chef exec rspec after adding the preceding test to our spec
fails, as expected, because our recipe does not handle the node
parameter ['my_cookbook']['greeting']:

.F
Failures:
 1) my_cookbook::default uses a node attribute as greeting
text
 Failure/Error: expect(chef_run).to
render_file('/tmp/greeting.txt').with_content('Go! ubuntu!')

 expected Chef run to render "/tmp/greeting.txt"
matching:

 Go! ubuntu!

 but got:

 Hello! ubuntu!

 # ./cookbooks/my_cookbook/spec/default_spec.rb:11:in
`block (2 levels) in <top (required)>'

Finished in 0.9879 seconds (files took 1.08 seconds to load)
1 example, 1 failure

Failed examples:

rspec ./cookbooks/my_cookbook/spec/default_spec.rb:9 #
my_cookbook::default uses a node attribute as greeting text

Now, modify your recipe to use the node attribute:

node.default['my_cookbook']['greeting'] = "Go!"

template '/tmp/greeting.txt' do
 variables greeting: node['my_cookbook']['greeting']

end

This makes our tests pass again:

.
Finished in 0.97804 seconds (files took 1.06 seconds to load)
1 example, 0 failures

See also
A short introduction on ChefSpec by Chef at
https://docs.chef.io/chefspec.html
The ChefSpec repository on GitHub at
https://github.com/sethvargo/chefspec
The source code for Fauxhai at
https://github.com/customink/fauxhai
A talk by Seth Vargo showing an example of developing a test-
driven cookbook at https://confreaks.tv/videos/mwrc2013-tdding-
tmux
The RSpec website at http://rspec.info/

https://docs.chef.io/chefspec.html
https://github.com/sethvargo/chefspec
https://github.com/customink/fauxhai
https://confreaks.tv/videos/mwrc2013-tdding-tmux
http://rspec.info/

Compliance testing with InSpec
Verifying that servers and applications you install are configured
correctly and fulfill all compliance requirements by hand is tedious and
error-prone. Chef comes with InSpec, a human-readable language for
compliance auditing and testing your infrastructure. With InSpec, you
can write automated tests to verify a host of criteria on your servers:
from the contents of certain files to applications running on certain
ports, you can make sure that your servers and applications are
configured correctly.

Getting ready
Make sure you have ChefDK installed, as described in the Installing the
Chef Development Kit on your workstation recipe in Chapter 1, Chef
Infrastructure.

How to do it…
Let's create a very simple compliance requirement as code and run it on
your local workstation:
1. Create a new profile for your InSpec tests:

mma@laptop:~/chef-repo $ inspec init profile my_profile
Create new profile at /Users/mma/work/chef-repo/my_profile
 * Create directory controls
 * Create file controls/example.rb
 * Create file inspec.yml
 * Create directory libraries
 * Create file README.md
 * Create file libraries/.gitkeep

2. Create a test ensuring that there is only one account called root with
UID 0 in your /etc/passwd file:

mma@laptop:~/chef-r
epo $ subl my_profile/controls/passwd.rb
describe passwd.uids(0) do
 its('users') { should cmp 'root' }

 its('entries.length') { should eq 1 }
end

3. Run the test:

mma@laptop:~/chef-repo $ inspec exec
my_profile/controls/passwd.rb

Target: local://

 /etc/passwd with
 uid == 0 users should cmp == "root"
 uid == 0 entries.length should eq 1

Test Summary: 2 successful, 0 failures, 0 skipped
its('users') { should cmp 'root' }

How it works…
First, we create an InSpec profile. Then we create our test and run it
against our local workstation.

First, the test retrieves all entries from our /etc/passwd having UID 0:

describe passwd.uids(0) do
 ...
end

Inside the describes block, we first make sure that there is a user called
root defined:

 its('users') { should cmp 'root' }

Then we ensure that there is only one such entry:

 its('entries.length') { should eq 1 }

This test ensures that we have exactly one user called root with UID 0
(a super user) defined in our local /etc/passwd.

There's more…

A profile is very similar to a cookbook. You can define supported
operating systems, dependencies, and the like. You can store profiles
locally on GitHub, on Supermarket, or on a Chef Compliance server.

You can define complete controls, which you can automatically run
against your systems:

control "cis-6-2-5" do
 impact 1.0
 title "6.2.5 Ensure root is the only UID 0 account (Scored)"
 desc "Any account with UID 0 has superuser privileges on the
system. This access must be limited to only the default root
account"

 describe passwd.uids(0) do
 its('users') { should cmp 'root' }
 its('entries.length') { should eq 1 }
 end
end

See also
Find InSpec at http://inspec.io/
Find InSpec at GitHub: https://github.com/chef/inspec
Read more about compliance profiles with InSpec at
https://github.com/chef/inspec/blob/master/docs/profiles.md
Find various benchmarks from the Center for Internet Security at
https://benchmarks.cisecurity.org/downloads/browse/index.cfm?
category=benchmarks

http://inspec.io/
https://github.com/chef/inspec
https://github.com/chef/inspec/blob/master/docs/profiles.md
https://benchmarks.cisecurity.org/downloads/browse/index.cfm?category=benchmarks

Integration-testing your Chef
cookbooks with Test Kitchen
Verifying that your cookbooks actually work when converging a node is
essential. Only when you know that you can rely on your cookbooks,
are you ready to run them anytime on your production servers.

Test Kitchen is Chef's integration testing framework. It enables you to
write tests, which run after a VM is instantiated and converged, using
your cookbook. Your tests run in that VM and can verify that everything
works as expected.

This is in contrast to ChefSpec, which only simulates a Chef run. Test
Kitchen boots up a real node and runs Chef on it. Your InSpec tests run
by Test Kitchen see the real thing.

Let's see how you can write such integration tests for your cookbooks.

Getting ready
Make sure you have a cookbook named my_cookbook, as described in
the Creating and using cookbooks recipe in Chapter 1, Chef
Infrastructure.

Make sure you have Vagrant installed on your workstation, as described
in the Managing virtual machines with Vagrant recipe in Chapter 1,
Chef Infrastructure.

How to do it…
Let's create a very simple recipe and use Test Kitchen and InSpec to run
a full integration test with Vagrant:
1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb

file "/tmp/greeting.txt" do
 content node['my_cookbook']['greeting']
end

2. Edit your cookbook's default attributes:

mma@laptop:~/chef-repo $ mkdir -p
cookbooks/my_cookbook/attributes
mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/attributes/default.rb
default['my_cookbook']['greeting'] = "Ohai, Chefs!"

3. Change to your cookbook directory:

mma@laptop:~/chef-repo $ cd cookbooks/my_cookbook

4. Edit the default Test Kitchen configuration file to only test against
Ubuntu 16.04:

mma@laptop:~/chef-repo/cookbooks/my_cookbook $ subl
.kitchen.yml
...
 platforms:
 - name: ubuntu-16.04
 ...

5. Create your test, defining what you expect your cookbook to do:

mma@laptop:~/chef-repo/cookbooks/my_cookbook $ subl
test/recipes/default_test.rb
...
describe file('/tmp/greeting.txt') do
 its('content') { should match 'Ohai, Chefs!' }
end

6. Run Test Kitchen:

mma@laptop:~/chef-repo/cookbooks/my_cookbook $ kitchen test
-----> Starting Kitchen (v1.13.2)
...TRUNCATED OUTPUT...
 Bringing machine 'default' up with 'virtualbox'
provider...
...TRUNCATED OUTPUT...
 Finished creating <default-ubuntu-1604> (0m50.31s).
-----> Converging <default-ubuntu-1604>...
...TRUNCATED OUTPUT...
-----> Installing Chef Omnibus (install only if missing)
...TRUNCATED OUTPUT...

 Starting Chef Client, version 12.16.42
...TRUNCATED OUTPUT...
 Recipe: my_cookbook::default
...TRUNCATED OUTPUT...
 Chef Client finished, 1/1 resources updated in
6.450780111 seconds
...TRUNCATED OUTPUT...
-----> Verifying <default-ubuntu-1604>...
 Use `/Users/mma/work/chef-
repo/cookbooks/my_cookbook/test/recipes/default` for
testing

Target: ssh://vagrant@127.0.0.1:2200

 File /tmp/greeting.txt
 content should match "Ohai, Chefs!"

Test Summary: 1 successful, 0 failures, 0 skipped
 Finished verifying <default-ubuntu-1604> (0m0.31s).
-----> Destroying <default-ubuntu-1604>...
 ==> default: Forcing shutdown of VM...
 ==> default: Destroying VM and associated drives...
 Vagrant instance <default-ubuntu-1604> destroyed.
 Finished destroying <default-ubuntu-1604> (0m5.27s).
 Finished testing <default-ubuntu-1604> (2m32.55s).
-----> Kitchen is finished. (2m33.99s)

How it works…
First, we create a very simple recipe, which writes the value of a node
attribute to a file.

Then, it's time to configure Test Kitchen. You do this by modifying the
.kitchen.yml file in your cookbook directory. It consists of four parts:
1. Part one defines which driver you want Test Kitchen to use to create

virtual machines (VMs) for testing. We use Vagrant to spin up
VMs:

driver:
 name: vagrant

2. Part two defines how you want to use Chef on your test VMs. We

don't want to use a Chef server, so we keep the default Chef Zero:

provisioner:
 - name: chef_zero

3. Part three defines on which platforms you want to test your
cookbook. To keep things simple, we only define Ubuntu 16.04
here. Test Kitchen will always create and destroy new instances.
You do not have to fear any side-effects with Vagrant VMs you spin
up using your Vagrantfile as Test Kitchen is using its own Vagrant
setup:

platforms:
- name: ubuntu-16.04

4. Part four defines the test suites. We use the one called default. It
already includes our my_cookbook::default recipe so that we're able
to test what it does using the given InSpec verifier. The InSpec
verifier looks for its tests in the test/recipes directory within your
cookbook:

suites:
- name: default
 run_list:
 - recipe[my_cookbook::default]
 verifier:
 inspec_tests:
 - test/recipes
 attributes:

In the test/recipes directory there is already a file for our tests called
default_test.rb.

After some boilerplate code, we describe what we expect our recipe to
do:

describe file('/tmp/greeting.txt') do
 its(:content) { should match 'Ohai, Chefs!' }
end

Finally, we can run Test Kitchen. It will make sure that no old VMs are
running and then create a new one. It installs Chef on that brand new

VM and starts a Chef run. Test Kitchen executes our InSpec tests after
the node converges.

If everything works, Test Kitchen destroys the VM again.

If something fails, Test Kitchen keeps the VM and you can analyze it by
running kitchen login.

There's more…
You don't have to run kitchen test every time you change something.
If you change your cookbook, you can run kitchen converge to re-apply
your changes to an existing VM.

To run your test suite after your node converged, you use kitchen
verify.

Test Kitchen does not only support Vagrant but a host of other cloud
providers as well, such as OpenStack, EC2, Rackspace, Joyent, and
many more. Just make sure you use the matching driver in your
.kitchen.yml file.

You can define multiple different platforms, such as other Ubuntu
versions, CentOS, and so on, by adding them to the platforms definition
in .kitchen.yml:

platforms:
- name: centos-6.4

Note

You will find Test Kitchen's log files inside your cookbook in the
.kitchen/logs directory.

If you defined multiple platforms but want to run a Test Kitchen
command against only one of them, you can add a regular expression
matching the desired platform to your command: kitchen test
default-ubuntu-16.04. Test Kitchen will recognize partial matches such
as kitchen test 16.

If you want to know the status of the various VMs managed by Test
Kitchen, you can list them as follows:

mma@laptop:~/chef-repo/cookbooks/my_cookbook $ kitchen list
Instance Driver Provisioner Verifier Transport
Last Action
default-ubuntu-1404 Vagrant ChefZero Inspec Ssh
<Not Created>
default-ubuntu-1604 Vagrant ChefZero Inspec Ssh
<Not Created>

See also
Find Test Kitchen at http://kitchen.ci
Find the source code for Test Kitchen and its associated tools on
GitHub at https://github.com/test-kitchen
Find InSpec at http://inspec.io
See the Compliance testing with InSpec recipe in this chapter

http://kitchen.ci
https://github.com/test-kitchen
http://inspec.io

Showing affected nodes before
uploading cookbooks
You tweak a cookbook to support your new server and upload it to your
Chef server. Your new node converges just fine and you're happy. Well,
until your older production server picks up your modified cookbook
during an automated Chef client run and throws a fit. Obviously, you
forgot that your old production server was still using the cookbook you
tweaked. Luckily, there is the knife preflight command, which can show
you all the nodes using a certain cookbook before you upload it to your
Chef server.

Getting ready
For the following example, we assume that you have multiple servers
with the ntp cookbook in their run list (either directly or via roles).

Use Chef to install the knife-preflight gem. It contains the preflight
plugin extending knife with additional commands:

mma@laptop:~/chef-repo $ chef gem install knife-preflight
Fetching gem metadata from https://rubygems.org/
...TRUNCATED OUTPUT...
Installing knife-preflight (0.1.8)

How to do it…
Let's see how preflight works on the ntp cookbook.

Run the preflight command to find out which nodes and roles have the
ntp cookbook in their expanded run lists. You'll see your nodes and roles
in the output instead of the ones listed here:

mma@laptop:~/chef-repo $ knife preflight ntp
Searching for nodes containing ntp OR ntp::default in their
expanded run_list or added via include_recipe...
1 Nodes found
server - in environment _default, no version constraint for ntp

cookbook
Searching for roles containing ntp OR ntp::default in their
expanded run_list or added via include_recipe...
2 Roles found
base
web_servers
Found 1 nodes and 2 roles using the specified search criteria

How it works…
There are multiple ways for a cookbook to get executed on a node:

You can assign the cookbook directly to a node by adding it to the
node's run list
You can add a cookbook to a role and add the role to the node's run
list
You can add a role to the run list of another role and add that other
role to the node's run list
A cookbook can be a dependency of another used cookbook

No matter how a cookbook ended up in a node's run list, the knife
preflight command will catch it because Chef stores all expanded lists
of roles and recipes in node attributes. The knife preflight command
issues a search for exactly those node attributes.

The knife preflight command is a nicer way to run knife search
node recipes:ntp -a name and knife search node roles:ntp -a
name.

Note

When using the knife preflight command (or trying to search for the
recipes and roles attributes of a node), it is important to know that
those attributes are only filled after a Chef client runs. If you change
anything in your run lists but do not run the Chef client, neither knife
preflight nor knife search will pick up your changes.

See also
Learn how to find and use other knife plugins in the Using custom

knife plugins recipe in Chapter 1, Chef Infrastructure
The source code of the knife-preflight plugin is available from
GitHub at https://github.com/jonlives/knife-preflight

https://github.com/jonlives/knife-preflight

Overriding a node's run list to
execute a single recipe
Even though we do not want to do a full Chef client run, we might need
to run, for example, the users cookbook, in order to add a new
colleague to a server. This is where the Chef client's feature to override
a run list in order to execute a single recipe comes in very handy.

Note

Only use this feature when you absolutely must! It is bad practice
because it breaks the principles of desired state config and single
source of truth.

Getting ready
To follow along with the following example, you'll need a node hooked
up to your Chef server having multiple recipes and/or roles in its run list.

How to do it...
Let's see how to run a single recipe out of a bigger run list on your node:
1. Show the data for your node. In this example, the node has the role

base in its run list. Depending on your setup, you'll find other data
here:

mma@laptop:~/chef-repo $ knife node show www.example.com
...TRUNCATED OUTPUT…
Run List: role[base]
Roles: base
Recipes: chef-client::delete_validation, runit, chef-
client
...TRUNCATED OUTPUT…

2. Run chef-client, overriding its run list. In our example, we want to
run the default recipe of the users cookbook. Please replace
recipe[users] with whatever you want to run on your node:

user@server:~$ sudo chef-client -o 'recipe[users]'
Starting Chef Client, version 12.14.89
[2016-11-14T07:48:36+00:00] WARN: Run List override has
been provided.
[2016-11-14T07:48:36+00:00] WARN: Original Run List: []
[2016-11-14T07:48:36+00:00] WARN: Overridden Run List:
[recipe[users]]
resolving cookbooks for run list: ["users"]
...TRUNCATED OUTPUT...

How it works...
Usually, the node uses the run list stored on the Chef server. The -o
parameter simply ignores the node's run list and uses whatever the value
of the -o parameter is as the run list for the current Chef run. It will not
persist the overwritten run list. The next Chef client run (without the -o
parameter) will use the run list stored on the Chef server again.

See also
Read more about Chef run lists at
http://docs.chef.io/nodes.html#about-run-lists
You might want to read more about this topic in the Showing
affected nodes before uploading cookbooks recipe in this chapter

http://docs.chef.io/nodes.html#about-run-lists

Using chef-shell
While writing cookbooks, being able to try out parts of a recipe
interactively and using breakpoints helps you to understand how your
recipes work.

Chef comes with chef-shell, which is essentially an interactive Ruby
session with Chef. In chef-shell, you can create attributes, write recipes,
and initialize Chef runs, among other things. Chef-shell allows you to
evaluate parts of your recipes on-the-fly before uploading them to your
Chef server.

How to do it…
Running chef-shell is straightforward:
1. Start chef-shell in standalone mode:

mma@laptop:~/chef-repo $ chef-shell
loading configuration: none (standalone chef-shell session)
Session type: standalone
Loading......done.

This is the chef-shell.
 Chef Version: 12.14.89
 http://www.chef.io/
 http://docs.chef.io/

run `help' for help, `exit' or ^D to quit.

Ohai2u mma@laptop!
chef (12.14.89)>

2. Switch to the attributes mode in chef-shell:

chef (12.14.89)> attributes_mode

3. Set an attribute value to be used inside the recipe later:

chef:attributes (12.14.89)> default[:title] = "Chef
Cookbook"
 => "Chef Cookbook"
chef:attributes (12.14.89)> quit

 => :attributes
chef (12.14.89)>

4. Switch to the recipe mode:

chef (12.14.89)> recipe_mode

5. Create a file resource inside a recipe, using the title attribute as the
content:

chef:recipe (12.14.89)> file "/tmp/book.txt" do
chef:recipe > content node["title"]
chef:recipe ?> end
 => <file[/tmp/book.txt] @name: "/tmp/book.txt" @noop: nil
@before: nil @params: {} @provider: Chef::Provider::File
@allowed_actions: [:nothing, :create, :delete, :touch,
:create_if_missing] @action: "create" @updated: false
@updated_by_last_action: false @supports: {}
@ignore_failure: false @retries: 0 @retry_delay: 2
@source_line: "(irb#1):1:in `irb_binding'" @elapsed_time: 0
@resource_name: :file @path: "/tmp/book.txt" @backup: 5
@diff: nil @cookbook_name: nil @recipe_name: nil @content:
"Chef Cookbook">
chef:recipe (12.14.89)>

6. Initiate a Chef run to create the file with the given content:

chef:recipe (12.14.89)> run_chef
[2016-10-08T22:04:47+02:00] INFO: Processing
file[/tmp/book.txt] action create ((irb#1) line 1)
...TRUNCATED OUTPUT...
=> true

How it works…
Chef-shell starts an interactive Ruby Shell (IRB) session, which is
enhanced with some Chef-specific features. It offers certain modes,
such as attributes_mode or recipe_mode, which enable you to write
commands like you would put them into attributes files or recipes.

Entering a resource command into the recipe context will create the
given resource, but not run it yet. It's like Chef reading your recipe file
and creating the resources but not yet running them. You can run all the
resources you created within the recipe context using the run_chef

command. This will execute all the resources on your local box and
physically change your system. To play around with temporary files,
your workstation will suffice, but if you're going to do more invasive
things, such as installing or removing packages, installing services, and
so on, you might want to use chef-shell from within a Vagrant VM.

There's more…
Not only can you run chef-shell in standalone mode but you can also do
so in Chef client mode. If you run it in Chef client mode, it will load the
complete run list of your node and you'll be able to tweak it inside the
chef-shell. You start Chef client mode by using the --client parameter:

mma@laptop:~/chef-repo $ chef-shell --client

You can configure which Chef server to connect it to in a file called
chef-shell.rb, in the same way as you do in the client.rb file on your
local workstation.

You can use chef-shell to manage your Chef server, for example, listing
all nodes:

chef (12.14.89)> nodes.list{|n| puts n.name}
production-host
training-host
server
webops
 => [nil, nil, nil, nil]

You can put breakpoints into your recipes. If it hits a breakpoint
resource, chef-shell will stop the execution of the recipe and you'll be
able to inspect the current state of your Chef run:

breakpoint "name" do
 action :break
end

See also
Read more about chef-shell at https://docs.chef.io/chef_shell.html

https://docs.chef.io/chef_shell.html

Using why-run mode to find out
what a recipe might do
why-run mode lets each resource tell you what it would do during a Chef
client run, assuming certain prerequisites. This is great because it gives
you a glimpse of what might really happen on your node when you run
your recipe for real.

However, because Chef converges a lot of resources to a desired state,
why-run will never be accurate for a complete run. Nevertheless, it
might help you during development while you're adding resources step-
by-step to build the final recipe.

In this section, we'll try out why-run mode to see what it tells us about
our Chef client runs.

Getting ready
To try out why-run mode, you need a node where you can execute the
Chef client and at least one cookbook available on that node.

How to do it…
Let's try to run the ntp cookbook in why-run mode:
1. Override the current run list to run the ntp recipe in why-run mode

on a brand new box:

user@server:~$ sudo chef-client -o 'recipe[ntp]' --why-run
...TRUNCATED OUTPUT...
Converging 10 resources
Recipe: ntp::default
 * apt_package[ntp] action install
 - Would install version 1:4.2.8p4+dfsg-3ubuntu5 of
package ntp
 * apt_package[ntpdate] action install (up to date)
 * directory[/var/lib/ntp] action create
 - Would create new directory /var/lib/ntp

 - Would change mode from '' to '0755'
...TRUNCATED OUTPUT...
 * service[ntp] action enable
 * Service status not available. Assuming a prior action
would have installed the service.
 * Assuming status of not running.
 * Could not find /etc/init/ntp.conf. Assuming service
is disabled.
 - Would enable service service[ntp]
...TRUNCATED OUTPUT...
Chef Client finished, 10/12 resources would have been
updated

2. Install the ntp package manually to see the difference in why-run:

user@server:~$ sudo apt-get install ntp
…TRUNCATED OUTPUT…
0 upgraded, 2 newly installed, 0 to remove and 1 not
upgraded.
…TRUNCATED OUTPUT…

3. Run why-run for the ntp recipe again (now with the installed ntp
package):

user@server:~$ sudo chef-client -o recipe['ntp'] --why-run
…TRUNCATED OUTPUT…
Converging 10 resources
Recipe: ntp::default
 * apt_package[ntp] action install (up to date)
 * apt_package[ntpdate] action install (up to date)
 * directory[/var/lib/ntp] action create (up to date)
...TRUNCATED OUTPUT...
 Chef Client finished, 0/11 resources would have been
updated

How it works…
why-run mode is the no-operations mode for the Chef client. Instead of
providers modifying the system, it tries to tell what the Chef run would
attempt to do.

It's important to know that why-run makes certain assumptions; if it
cannot find the command needed to find out about the current status of
a certain service, it assumes that an earlier resource would have installed

the needed package for that service and that therefore, the service will
have been started. We see this when the ntp cookbook tries to enable
the ntp service:

 * Service status not available. Assuming a prior action
would have installed the service.
 * Assuming status of not running.
 * Could not find /etc/init/ntp.conf. Assuming service is
disabled.
 - Would enable service service[ntp]

Additionally, why-run shows diffs of modified files. In our example,
those differences show the whole files, as they do not exist yet. This
feature is more helpful if you already have ntp installed and your next
Chef run would only change a few configuration parameters.

Note

why-run mode will execute the not_if and only_if blocks. It is assumed
that the code within the not_if and only_if blocks will not modify the
system but only do some checks.

See also
Read more about why-run mode at
http://docs.chef.io/nodes.html#about-why-run-mode
Read more about the issues with dry runs in configuration
management at
http://blog.afistfulofservers.net/post/2012/12/21/promises-lies-and-
dryrun-mode/

http://docs.chef.io/nodes.html#about-why-run-mode
http://blog.afistfulofservers.net/post/2012/12/21/promises-lies-and-dryrun-mode/

Debugging Chef client runs
Sometimes you get obscure error messages when running the Chef client
and you have a hard time finding any clue about where to look for the
error. Is your cookbook broken? Do you have a networking issue? Is
your Chef server down? Only by looking at the most verbose log output
do you have a chance to find out.

Getting ready
You need a Chef client hooked up to the hosted Chef or your own Chef
server.

How to do it…
To see how we can ask the Chef client to print debug messages, run the
Chef client with debug output:

user@server:~$ sudo chef-client -l debug
...TRUNCATED OUTPUT...
[2016-11-14T07:57:36+00:00] DEBUG: Sleeping for 0 seconds
[2016-11-14T07:57:36+00:00] DEBUG: Running Ohai with the
following configuration: {:log_location=>#<IO:<STDOUT>>,
:log_level=>:debug, ...TRUNCATED OUTPUT...
 [2016-11-14T07:57:37+00:00] DEBUG: Plugin C: ran 'cc -V -
flags' and returned 1
[2016-11-14T07:57:37+00:00] DEBUG: Plugin C 'cc -V -flags'
failed. Skipping data.
[2016-11-14T07:57:37+00:00] DEBUG: Plugin C: ran 'what
/opt/ansic/bin/cc' and failed #<Errno::ENOENT: No such file or
directory - what>
[2016-11-14T07:57:37+00:00] DEBUG: Plugin C 'what
/opt/ansic/bin/cc' binary could not be found. Skipping data.
...TRUNCATED OUTPUT...
 [2016-11-14T07:57:37+00:00] DEBUG: Building node object for
server
[2016-11-14T07:57:37+00:00] DEBUG: Chef::HTTP calling
Chef::HTTP::JSONInput#handle_request
...TRUNCATED OUTPUT...
* apt_package[ntp] action install
[2016-11-14T07:57:41+00:00] INFO: Processing apt_package[ntp]

action install (ntp::default line 28)
[2016-11-14T07:57:41+00:00] DEBUG: Providers for generic
apt_package resource enabled on node include:
[Chef::Provider::Package::Apt]
[2016-11-14T07:57:41+00:00] DEBUG: Provider for action install
on resource apt_package[ntp] is Chef::Provider::Package::Apt
ntp:
 Installed: 1:4.2.8p4+dfsg-3ubuntu5
 Candidate: 1:4.2.8p4+dfsg-3ubuntu5
 Version table:
 *** 1:4.2.8p4+dfsg-3ubuntu5 500
 500 http://us.archive.ubuntu.com/ubuntu xenial/main
amd64 Packages
 100 /var/lib/dpkg/status
...TRUNCATED OUTPUT...
[2016-11-14T07:57:43+00:00] DEBUG: Audit Reports are disabled.
Skipping sending reports.
[2016-11-14T07:57:43+00:00] DEBUG: Forked instance successfully
reaped (pid: 15052)
[2016-11-14T07:57:43+00:00] DEBUG: Exiting

How it works…
The -l option on the Chef client run sets the log level to debug. In the
debug log level, the Chef client shows more or less everything it does,
including every request to the Chef server.

There's more…
The debug log level is the most verbose one. You're free to use debug,
info, warn, error, or fatal with the -l switch.

You can configure the log level in your /etc/chef/client.rb file, using
the log_level directive:

...
log_level :debug
...

See also
Read more about log levels in the Raising and logging exceptions in
recipes section in this chapter

Inspecting the results of your last
Chef run
When developing new cookbooks, we need to know what exactly went
wrong when a Chef client run fails.

Even though Chef prints all the details to stdout, you might want to
look at it again, for example, after clearing your shell window.

Getting ready
You need to have a broken cookbook in your node's run list; any invalid
piece of Ruby code will do:

Nil.each {}

How to do it...
Carry out the following steps:
1. Run the Chef client with your broken cookbook:

user@server:~$ sudo chef-client
===
=====================
Recipe Compile Error in
/var/chef/cache/cookbooks/my_cookbook/recipes/default.rb
===
=====================
NoMethodError

undefined method `each' for nil:NilClass

Cookbook Trace:

/var/chef/cache/cookbooks/my_cookbook/recipes/default.rb:7:
in `from_file'

Relevant File Content:

/var/chef/cache/cookbooks/my_cookbook/recipes/default.rb:

 3: # Recipe:: default
 4: #
 5: # Copyright (c) 2016 The Authors, All Rights
Reserved.
 6:
 7>> nil.each {}
 8:

2. Look into the stracktrace file to find out what happened in more
detail:

user@server:~$ sudo less /var/chef/cache/chef-
stacktrace.out

Generated at 2016-12-27 21:52:06 +0000
NoMethodError: undefined method `each' for nil:NilClass
/var/chef/cache/cookbooks/my_cookbook/recipes/default.rb:10
:in `from_file'
/opt/chef/embedded/apps/chef/lib/chef/mixin/from_file.rb:30
:in `instance_eval'
/opt/chef/embedded/apps/chef/lib/chef/mixin/from_file.rb:30
:in `from_file'
/opt/chef/embedded/apps/chef/lib/chef/cookbook_version.rb:2
45:in `load_recipe'

How it works...
The Chef client reports errors to stdout, by default. If you missed that
output, you need to look into the files Chef generated to find out what
went wrong.

See also
Read how to produce the debug output on stdout in the Logging
debug messages section in this chapter

Using Reporting to keep track of
all your Chef client runs
You need to know what exactly happened on your servers. If you want
to record every Chef client run and want to see statistics about
successful and failed runs, Chef Reporting is your tool of choice. You
can even dive into each individual run across your whole organization if
you have Reporting enabled for your Chef clients.

Getting ready
Make sure you have Vagrant installed, as described in the Managing
virtual machines with Vagrant recipe in Chapter 1, Chef Infrastructure.

Note

Reporting is a premium feature. If you're running your own Chef server
you need a Chef Automate license to use it.

Install the reporting knife plugin by running the following command:

mma@laptop:~/chef-repo $ chef gem install knife-reporting
Successfully installed knife-reporting-0.5.0
1 gem installed

How to do it…
Carry out the following steps to see how Reporting tracks your Chef
client runs:
1. Configure Vagrant to send reporting data to your Chef server by

editing your Vagrantfile:

mma@laptop:~/chef-repo $ subl Vagrantfile
 config.vm.provision :chef_client do |chef|
 ...
 chef.enable_reporting = true
 end

2. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
Chef Client finished, 0/11 resources updated in 06 seconds
[2016-11-16T20:41:10+00:00] INFO: Sending resource update
report (run-id: e541a6bd-e737-4f50-29d2-fb914425bfa2)

3. List all recorded Chef client runs using the knife reporting plugin:

mma@laptop:~/chef-repo $ knife runs list
node_name: server
run_id: 38e73162-3916-4bb0-8b5e-a791c718d875
start_time: 2016-11-16T20:51:40Z
status: success

node_name: server
run_id: e541a6bd-e737-4f50-92d9-fb914425bfa2
start_time: 2016-11-16T20:41:06Z
status: success

4. Show the results of one recorded Chef client run using a run_id
from the list of runs:

mma@laptop:~/chef-repo $ knife runs show <RUN_ID>
run_detail:
 data:
 end_time: 2016-11-16T20:27:23Z
 node_name: server
 run_id: dafd2ecd-fa7a-4863-9531-67986ba6c4d7
 run_list: ["role[web_servers]"]
 start_time: 2016-11-16T20:27:19Z
 status: success
 total_res_count: 11
 updated_res_count: 0
run_resources:

How it works…
By setting chef.enable_reporting to true in your Vagrantfile, you tell
your Chef client to record each run and send it to your Chef server.

At the end of every run the Chef client prints a unique run_id to stdout.
The run_id helps you to identify each individual Chef client run on your

Chef Reporting server.

The knife reporting plugin can show you a list of recorded Chef client
runs (knife runs list) and lets you dive into each individual run (knife
runs show <RUN_ID>).

There's more…
The Chef server comes with a Report user interface including a
dashboard and the possibility to drill down into individual runs, all from
within your browser:

See also
Read more about Reporting at https://docs.chef.io/reporting.html

https://docs.chef.io/reporting.html

Chef Reporting comes with a REST API that provides access to
recorded data: https://docs.chef.io/reporting.html#reporting-api

https://docs.chef.io/reporting.html#reporting-api

Raising and logging exceptions in
recipes
Running your own cookbooks on your nodes might lead to situations
where it does not make any sense to continue the current Chef run. If a
critical resource is offline or a mandatory configuration value cannot be
determined, it is time to bail out.

However, even if things are not that bad, you might want to log certain
events while executing your recipes. Chef offers the possibility to write
your custom log messages and exit the current run, if you choose to do
so.

In this section, you'll learn how to add log statements and stop Chef runs
using exceptions.

Getting ready
You need to have at least one cookbook you can modify and run on a
node. The following example will use the ntp cookbook.

How to do it...
Let's see how to add our custom log message to a recipe:
1. Add log statements to the ntp cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/ntp/recipes/default.rb
Chef::Log.info('** Going to install the ntp service
now...')

service node['ntp']['service'] do
 supports :status => true, :restart => true
 action [:enable, :start]
end

Chef::Log.info('** ntp service installed and started
successfully!')

2. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload ntp
Uploading ntp [3.2.0]
Uploaded 1 cookbook.

3. Run the Chef client on the node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
Compiling Cookbooks...
[2016-11-17T20:07:06+00:00] INFO: ** Going to install the
ntp service
 now...
Converging 10 resources
...TRUNCATED OUTPUT...

4. Raise an exception from within the ntp default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/ntp/recipes/default.rb
raise 'Ouch!!! Bailing out!!!'

5. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload ntp
Uploading ntp [3.2.0]
Uploaded 1 cookbook.

6. Run the Chef client on the node again:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
RuntimeError

Ouch!!! Bailing out!!!
...TRUNCATED OUTPUT...

How it works…
The raise(msg) method throws an exception and exits the Chef client
run safely.

See also
Find a detailed description about how to abort a Chef run here:

http://stackoverflow.com/questions/14290397/how-do-you-abort-
end-a-chef-run

http://stackoverflow.com/questions/14290397/how-do-you-abort-end-a-chef-run

Diff-ing cookbooks with knife
When working with a Chef server, you often need to know what exactly
is already uploaded to it. You edit files such as recipes or roles locally,
and commit and push them to GitHub.

However, before you're ready to upload your edits to the Chef server,
you want to verify your changes. To do this, you need to run a diff
between the local version of your files and the version already uploaded
to the Chef server.

Getting ready
You need to have at least one cookbook that you can modify and is
uploaded to your Chef server.

How to do it…
After changing a recipe, you can diff it against the current version stored
on the Chef server.

Let knife show you the differences between your local version of
my_cookbook and the version stored on the Chef server, by running:

mma@laptop:~/chef-repo $ knife diff cookbooks/my_cookbook
diff --knife cookbooks/my_cookbook/recipes/default.rb
cookbooks/my_cookbook/recipes/default.rb
--- cookbooks/my_cookbook/recipes/default.rb 2016-11-29
21:02:50.000000000 +0100
+++ cookbooks/my_cookbook/recipes/default.rb 2016-11-29
21:02:50.000000000 +0100
@@ -7,5 +7,6 @@
 #file "/tmp/greeting.txt" do
 # content node['my_cookbook']['greeting']
 #end
-nil.each {}
+Chef::Application.fatal!('Ouch!!! Bailing out!!!')
+

How it works...
The diff verb for knife treats the Chef server like a file server mirroring
your local file system. This way, you can run diffs by comparing your
local files against files stored on the Chef server.

There's more…
If you want to show diffs of multiple cookbooks at once, you can use
wildcards when running knife diff:

mma@laptop:~/chef-repo $ knife diff cookbooks/*
diff --knife remote/cookbooks/backup_gem/recipes/default.rb
cookbooks/backup_gem/recipes/default.rb
...TRUNCATED OUTPUT...
diff --knife remote/cookbooks/backup_gem/metadata.rb
cookbooks/backup_gem/metadata.rb
...TRUNCATED OUTPUT...

You can limit knife diff to only listing files that have been changed
instead of showing the full diff:

mma@laptop:~/chef-repo $ knife diff --name-status
cookbooks/my_cookbook
M cookbooks/my_cookbook/recipes/default.rb

The M indicates that the file
cookbooks/my_cookbook/recipes/default.rb is modified.

See also
Find some more examples on how to use knife diff here:
http://docs.chef.io/knife_diff.html

http://docs.chef.io/knife_diff.html

Using community exception and
report handlers
When running your Chef client as a daemon on your nodes, you usually
have no idea whether everything works as expected. Chef comes with a
feature named Handlers, which helps you to find out what's going on
during your Chef client runs.

There are a host of community handlers available, for example, to report
Chef client run results to IRC, via e-mail, to Slack, Nagios, or Graphite.
You name it.

In this section, we'll see how to install an IRC handler as an example.
The same method is applicable to all other available handlers.

Note

For a full list of available community handlers, go to
http://docs.chef.io/community_plugin_report_handler.html

Getting ready
To install community exception and report handlers, you need to add the
chef_handler cookbook to your Berksfile first:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'chef_handler'

How to do it…
Let's see how to install and use one of the community handlers:
1. Create your own cookbook to install community exception and

report handlers:

mma@laptop:~/chef-repo $ chef generate cookbook
cookbooks/my_handlers --berks
Generating cookbook my_handlers

http://docs.chef.io/community_plugin_report_handler.html

- Ensuring correct cookbook file content
- Ensuring delivery configuration
- Ensuring correct delivery build cookbook content

Your cookbook is ready. Type `cd cookbooks/my_handlers` to
enter it.
...TRUNCATED OUTPUT...

2. Make your my_handlers cookbook aware of the fact that it needs
the chef_handler cookbook by adding the dependency to its
metadata. Also pin the cookbook at version 2.0.0:

mma@laptop:~/chef-repo $ subl
cookbooks/my_handlers/metadata.rb
depends 'chef_handler', '~> 2.0.0'

3. Add the IRC handler to your my_handlers cookbook (make sure you
use your own URI for the irc_uri argument). Also make sure to pin
the gem version:

mma@laptop:~/chef-repo $ subl
cookbooks/my_handlers/recipes/default.rb
include_recipe 'chef_handler'

chef_gem "chef-irc-snitch" do
 version: '0.2.1'
 action :install
end

chef_handler 'IRCSnitch' do
 source File.join(Gem::Specification.find{|s| s.name ==
'chef-irc-snitch'}.gem_dir,
 'lib', 'chef-irc-snitch.rb')
 arguments :irc_uri =>
"irc://nick:password@irc.example.com:6667/#admins"
 action :enable
end

4. Upload your my_handlers cookbook to your Chef server:

mma@laptop:~/chef-repo $ berks upload my_handlers
Uploading my_handlers [0.1.0]
Uploaded 1 cookbook.

5. Run the Chef client on your node to install your handlers:

Note

Using –o to override the run list of your node is a shortcut we take
for the sake of brevity in this example. You should add your
my_handlers cookbook to the run list of your node.

user@server:~$ sudo chef-client -o recipe[my_handlers]
...TRUNCATED OUTPUT...
 * chef_handler[IRCSnitch] action enable
 - load
/opt/chef/embedded/lib/ruby/gems/2.1.0/gems/chef-irc-
snitch-0.2.1/lib/chef-irc-snitch.rb
[2016-11-17T20:21:55+00:00] INFO: Enabling
chef_handler[IRCSnitch] as a report handler

 - enable chef_handler[IRCSnitch] as a report handler
[2016-11-17T20:21:55+00:00] INFO: Enabling
chef_handler[IRCSnitch] as a exception handler

 - enable chef_handler[IRCSnitch] as a exception handler

How it works...
You could install your custom handler manually by modifying the
client.rb file on your nodes. The chef_handler custom resource,
provided by the chef_handler cookbook, helps you enable and
configure any custom handler without the need to manually modify
client.rb for all your nodes.

Typically, you would install the desired community handler as a gem.
You do this using the chef_gem resource.

You can pass an attributes Hash to the Handler class and you need to tell
the custom resource where it can find the Handler class. The default
should be chef/handlers/... but often, this is not the case. We will
search through all our installed Ruby gems to find the right one and
append the path to the .rb file, where the Handler class is defined.

The custom resource will take care of enabling the handler, if you tell it
to do so by using enable true.

There's more…
If you want, you can install your handler manually by editing client.rb
on your nodes.

If your desired handler is not available as a Ruby gem, you can manually
install it in /var/chef/handlers and use this directory as the source
when using the chef_handler custom resource.

See also
Read more about exception and report handlers at
http://docs.chef.io/handlers.html

http://docs.chef.io/handlers.html

Chapter 3. Chef Language and
Style

"Style is what separates the good from the great."

Bozhidar Batsov

In this chapter, we will cover the following recipes:
Using community Chef style
Using attributes to dynamically configure recipes
Using templates
Mixing plain Ruby with Chef DSL
Installing Ruby gems and using them in recipes
Using libraries
Creating your own custom resource
Extending community cookbooks by using application wrapper
cookbooks
Creating custom Ohai plugins
Creating custom knife plugins

Introduction
If you want to automate your infrastructure, you will end up using most
of Chef's language features. In this chapter, we will look at how to use
the Chef Domain Specific Language (DSL) from the basic to advanced
level. We will end the chapter with creating custom plugins for Ohai and
knife.

Using community Chef style
It's easier to read code that adheres to a coding style guide. It is
important to deliver consistently styled code, especially when sharing
cookbooks with the Chef community. In this chapter, you'll find some of
the most important rules (out of many more—enough to fill a short book
on their own) to apply to your own cookbooks.

Getting ready
As you're writing cookbooks in Ruby, it's a good idea to follow general
Ruby principles for readable (and therefore maintainable) code.

Chef Software, Inc. proposes Ian Macdonald's Ruby Style Guide
(http://www.caliban.org/ruby/rubyguide.shtml#style) but, to be honest, I
prefer Bozhidar Batsov's Ruby Style Guide
(https://github.com/bbatsov/ruby-style-guide) due to its clarity.

Let's look at the most important rules for Ruby in general and for
cookbooks specifically.

How to do it…
Let's walk through a few Chef style guide examples:
1. Use two spaces per indentation level:

remote_directory node['nagios']['plugin_dir'] do
 source 'plugins'
end

2. Use Unix-style line endings. Avoid Windows line endings by
configuring Git accordingly:

mma@laptop:~/chef-repo $ git config --global core.autocrlf
true

Tip

For more options on how to deal with line endings in Git, go to

http://www.caliban.org/ruby/rubyguide.shtml#style
https://github.com/bbatsov/ruby-style-guide

https://help.github.com/articles/dealing-with-line-endings.
3. Align parameters spanning more than one line:

variables(
 mon_host: 'monitoring.example.com',
 nrpe_directory: "#{node['nagios']['nrpe']
['conf_dir']}/nrpe.d"
)

4. Describe your cookbook in metadata.rb (you should always use the
Ruby DSL)

5. Version your cookbook according to Semantic Versioning standards
(http://semver.org):

version "1.1.0"

6. List the supported operating systems by looping through an array
using the each method:

%w(redhat centos ubuntu debian).each do |os|
 supports os
end

7. Declare dependencies and pin their versions in metadata.rb:

depends "apache2", ">= 1.0.4"
depends "build-essential"

8. Construct strings from variable values and static parts by using
string expansion:

my_string = "This resource changed #{counter} files"

9. Download temporary files to Chef::Config['file_cache_path']
instead of /tmp or some local directory.

10. Use strings to access node attributes instead of Ruby symbols:

node['nagios']['users_databag_group']

11. Set attributes in my_cookbook/attributes/default.rb by using
default:

default['my_cookbook']['version'] = "3.0.11"

12. Create an attribute namespace by using your cookbook name as the
first level in my_cookbook/attributes/default.rb:

https://help.github.com/articles/dealing-with-line-endings
http://semver.org

default['my_cookbook']['version'] = "3.0.11"
default['my_cookbook']['name'] = "Mine"

How it works...
Using community Chef style helps to increase the readability of your
cookbooks. Your cookbooks will be read much more often than
changed. Because of this, it usually pays off to put a little extra effort
into following a strict style guide when writing cookbooks.

There's more...
Using Semantic Versioning (see http://semver.org) for your cookbooks
helps to manage dependencies. If you change anything that might break
cookbooks depending on your cookbook, you need to consider this as a
backwards-incompatible API change. In such cases, Semantic
Versioning demands that you increase the major number of your
cookbook, for example from 1.1.3 to 2.0.0, resetting minor levels and
patch levels.

Using Semantic Versioning helps to keep your production systems stable
if you freeze your cookbooks (see the Freezing cookbooks recipe in
Chapter 1, Chef Infrastructure).

See also
If you want to know whether you've done everything right, follow
the Flagging problems in your Chef cookbooks recipe in Chapter 2,
Evaluating and Troubleshooting Cookbooks and Chef Runs.

http://semver.org

Using attributes to dynamically
configure recipes
Imagine some cookbook author has hardcoded the path where the
cookbook puts a configuration file, but in a place that does not comply
with your rules. Now, you're in trouble! You can either patch the
cookbook or rewrite it from scratch. Both options leave you with a
headache and lots of work.

Attributes are there to avoid such headaches. Instead of hardcoding
values inside cookbooks, attributes enable authors to make their
cookbooks configurable. By overriding default values set in cookbooks,
users can inject their own values. Suddenly, it's next to trivial to obey to
your own rules.

In this section, we'll see how to use attributes in your cookbooks.

Getting ready
Make sure you have a cookbook called my_cookbook and the run_list
of your node includes my_cookbook, as described in the Creating and
using cookbooks recipe in Chapter 1, Chef Infrastructure.

How to do it...
Let's see how to define and use a simple attribute:
1. Create a default file for your cookbook attributes:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/attributes/default.rb

2. Add a default attribute:

default['my_cookbook']['message'] = 'hello world!'

3. Use the attribute inside a recipe:

mma@laptop:~/chef-repo $ subl

cookbooks/my_cookbook/recipes/default.rb
message = node['my_cookbook']['message']
Chef::Log.info("** Saying what I was told to say: #
{message}")

4. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

5. Run chef-client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-11-23T19:29:03+00:00] INFO: ** Saying what I was told
to say: hello world!
...TRUNCATED OUTPUT...

How it works…
Chef loads all attributes from attribute files before it executes recipes.
The attributes are stored with the node object. You can access all
attributes stored with the node object from within your recipes and
retrieve their current values.

Chef has a strict order of precedence for attributes: default is the
lowest, then normal (which is aliased with set), and then override.
Additionally, attribute levels set in recipes have precedence over the
same level set in an attribute file. Also, attributes defined in roles and
environments have the highest precedence.

You will find an overview chart at
https://docs.chef.io/attributes.html#attribute-precedence.

There's more…
You can set and override attributes within roles and environments.
Attributes defined in roles or environments have the highest precedence
(on their respective levels: default and override):
1. Create a role:

https://docs.chef.io/attributes.html#attribute-precedence

mma@laptop:~/chef-repo $ subl roles/german_hosts.rb
name "german_hosts"
description "This Role contains hosts, which should print
out their messages in German"
run_list "recipe[my_cookbook]"
default_attributes "my_cookbook" => { "message" => "Hallo
Welt!" }

2. Upload the role to the Chef server:

mma@laptop:~/chef-repo $ knife role from file
german_hosts.rb
Updated Role german_hosts!

3. Assign the role to a node called server:

mma@laptop:~/chef-repo $ knife node run_list add server
'role[german_hosts]'
server:
 run_list: role[german_hosts]

4. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-11-23T19:40:56+00:00] INFO: ** Saying what I was told
to say: Hallo Welt!
...TRUNCATED OUTPUT...

Calculating values in the attribute files

Attributes set in roles and environments (as shown earlier) have the
highest precedence and they're already available when the attribute files
are loaded. This enables you to calculate attribute values based on role-
or environment-specific values:
1. Set an attribute within a role:

mma@laptop:~/chef-repo $ subl roles/german_hosts.rb
name "german_hosts"
description "This Role contains hosts, which should print
out their messages in German"
run_list "recipe[my_cookbook]"
default_attributes "my_cookbook" => {
 "hi" => "Hallo",
 "world" => "Welt"

}

2. Calculate the message attribute, based on the two attributes hi and
world:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/attributes/default.rb
default['my_cookbook']['message'] = "#{node['my_cookbook']
['hi']} #{node['my_cookbook']['world']}!"

3. Upload the modified cookbook to your Chef server and run the Chef
client on your node to see that it works, as shown in the preceding
example.

See also
Read more about attributes in Chef at
https://docs.chef.io/attributes.html

https://docs.chef.io/attributes.html

Using templates
Configuration Management is all about configuring your hosts well.
Usually, configuration is carried out by using configuration files. Chef's
template resource allows you to create these configuration files with
dynamic values that are driven by the attributes we've discussed so far
in this chapter. You can retrieve dynamic values from data bags and
attributes, or even calculate them on-the-fly before passing them into a
template.

Getting ready
Make sure you have a cookbook called my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

How to do it…
Let's see how to create and use a template to dynamically generate a file
on your node:
1. Add a template to your recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
template '/tmp/message' do
 source 'message.erb'
 variables(
 hi: 'Hallo',
 world: 'Welt',
 from: node['fqdn']
)
end

2. Add the ERB template file:

mma@laptop:~/chef-repo $ mkdir -p
cookbooks/my_cookbook/templates
mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/templates/def
ault/message.erb

<%- 4.times do %>
<%= @hi %>, <%= @world %> from <%= @from %>!
<%- end %>

3. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

4. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-11-23T19:36:30+00:00] INFO: Processing
template[/tmp/message] action create (my_cookbook::default
line 9)
[2016-11-23T19:36:31+00:00] INFO: template[/tmp/message]
updated content
...TRUNCATED OUTPUT...

5. Validate the content of the generated file:

user@server:~$ sudo cat /tmp/message
Hallo, Welt from vagrant.vm!
Hallo, Welt from vagrant.vm!
Hallo, Welt from vagrant.vm!
Hallo, Welt from vagrant.vm!

How it works…
Chef uses Erubis as its template language. It allows you to use pure
Ruby code by using special symbols inside your templates.

You use <%= %> if you want to print the value of a variable or Ruby
expression into the generated file.

You use <%- %> if you want to embed Ruby logic into your template file.
We used it to loop our expression four times.

When you use the template resource, Chef makes all the variables you
pass available as instance variables when rendering the template. We
used @hi, @world, and @from in our earlier example.

There's more…
The node object is available in a template as well. Technically, you could
access node attributes directly from within your template:

<%= node['fqdn'] %>

However, this is not a good idea because it will introduce hidden
dependencies to your template. It is better to make dependencies
explicit, for example, by declaring the fully qualified domain name
(FQDN) of your node as a variable for the template resource inside your
cookbook:

template '/tmp/fqdn' do
 source 'fqdn.erb'
 variables(
 fqdn: node['fqdn']
)
end

Tip

Avoid using the node object directly inside your templates because this
introduces hidden dependencies to node variables in your templates.

If you need a different template for a specific host or platform, you can
put those specific templates into various subdirectories of the templates
directory. Chef will try to locate the correct template by searching these
directories from the most specific (host) to the least specific (default).

You can place message.erb in the
cookbooks/my_cookbook/templates/host-server.vm ("host-#
{node[:fqdn]}") directory if it is specific to that host. If it is platform-
specific, you can place it in cookbooks/my_cookbook/templates/ubuntu
("#{node[:platform]}"); and if it is specific to a certain platform
version, you can place it in cookbooks/my_cookbook/templates/ubuntu-
16.04 ("#{node[:platform]}-#{node[:platorm_version]}"). Only
place it in the default directory if your template is the same for any host
or platform.

Tip

The templates/default directory means that a template file is the same
for all hosts and platforms—it does not correspond to a recipe name.

See also
Read more about templates at https://docs.chef.io/templates.html

https://docs.chef.io/templates.html

Mixing plain Ruby with Chef
DSL
To create simple recipes, you only need to use resources provided by
Chef such as template, remote_file, or service. However, as your
recipes become more elaborate, you'll discover the need to do more
advanced things such as conditionally executing parts of your recipe,
looping, or even making complex calculations.

Instead of declaring the gem_package resource ten times, simply use
different name attributes; it is so much easier to loop through an array of
gem names creating the gem_package resources on-the-fly.

This is the power of mixing plain Ruby with Chef Domain Specific
Language (DSL). We'll see a few tricks in the following sections.

Getting ready
Start a chef-shell on any of your nodes in Client mode to be able to
access your Chef server, as shown in the following code:

user@server:~$ sudo chef-shell --client
loading configuration: /etc/chef/client.rb
Session type: client
...TRUNCATED OUTPUT...
run `help' for help, `exit' or ^D to quit.
Ohai2u user@server!
chef >

How to do it…
Let's play around with some Ruby constructs in chef-shell to get a feel
for what's possible:
1. Get all nodes from the Chef server by using search from the Chef

DSL:

chef > nodes = search(:node, "hostname:[* TO *]")

=> [#<Chef::Node:0x00000005010d38 @chef_server_rest=nil,
@name="server",
...TRUNCATED OUTPUT...

2. Sort your nodes by name using plain Ruby:

chef > nodes.sort! { |a, b| a.hostname <=> b.hostname
}.collect { |n| n.hostname }
 => ["alice", "server"]

3. Loop through the nodes, printing their operating systems:

chef > nodes.each do |n|
chef > puts n['os']
chef ?> end
linux
windows
 => [node[server], node[alice]]

4. Log only if there are no nodes:

chef > Chef::Log.warn("No nodes found") if nodes.empty?
=> nil

5. Install multiple Ruby gems by using an array, a loop, and string
expansion to construct the gem names:

chef > recipe_mode
chef:recipe > %w{ec2 essentials}.each do |gem|
chef:recipe > gem_package "knife-#{gem}"
chef:recipe ?> end
=> ["ec2", "essentials"]

How it works...
Chef recipes are Ruby files that get evaluated in the context of a Chef
run. They can contain plain Ruby code, such as if statements and loops,
as well as Chef DSL elements such as resources (remote_file, service,
template, and so on).

Inside your recipes, you can declare Ruby variables and assign them any
values. We used the Chef DSL method search to retrieve an array of
Chef::Node instances and stored that array in the variable nodes.

Because nodes is a plain Ruby array, we can use all methods the array
class provides such as sort! or empty? Also, we can iterate through the
array by using the plain Ruby each iterator, as we did in the third
example.

Another common thing is to use if, else, or case for conditional
execution. In the fourth example, we used if to only write a warning to
the log file if the nodes array are empty.

In the last example, we entered recipe mode and combined an array of
strings (holding parts of gem names) and the each iterator with the Chef
DSL gem_package resource to install two Ruby gems. To take things one
step further, we used a plain Ruby string expansion to construct the full
gem names (knife-ec2 and knife-essentials) on-the-fly.

There's more…
You can use the full power of Ruby in combination with the Chef DSL
in your recipes. Here is an excerpt from the default recipe from the
nagios cookbook, which shows what's possible:

Sort by name to provide stable ordering
nodes.sort! { |a, b| a.name <=> b.name }
maps nodes into nagios hostgroups
service_hosts = {}
search(:role, ‚*:*') do |r|
 hostgroups << r.name
 nodes.select { |n| n[‚roles'].include?(r.name) if n[‚roles']
}.each do |n|
 service_hosts[r.name] = n[node[‚nagios']
[‚host_name_attribute']]
 end
end

First, we use Ruby to sort an array of nodes by their name attributes.

Then, we define a Ruby variable called service_hosts as an empty
Hash. After this, you will see some more array methods in action such as
select, include?, and each.

See also
Find out more about how to use Ruby in recipes here:
https://docs.chef.io/chef/dsl_recipe.html
The Using community Chef style recipe in this chapter
The Using attributes to dynamically configure recipes recipe in this
chapter

https://docs.chef.io/chef/dsl_recipe.html

Installing Ruby gems and using
them in recipes
Recipes are plain Ruby files. It is possible to use all of Ruby's language
features inside your recipes. Most of the time, the built-in Ruby
functionality is enough but sometimes you might want to use additional
Ruby gems. Connecting to an external application via an API or
accessing a MySQL database from within your recipe are examples of
where you will need Ruby gems inside your recipes.

Chef lets you install Ruby gems from within a recipe, so that you can
use them later.

Getting ready
Make sure you have a cookbook called my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef
Infrastructure.

How to do it…
Let's see how we can use the ipaddress gem in our recipe:
1. Edit the default recipe of your cookbook, installing a gem to be

used inside the recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
 chef_gem 'ipaddress' do
 compile_time true
 end
 require 'ipaddress'
 ip = IPAddress("192.168.0.1/24")
 Chef::Log.info("Netmask of #{ip}: #{ip.netmask}")

2. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook

 Uploading my_cookbook [0.1.0]

3. Run the Chef client on your node to see whether it works:

user@server $ sudo chef-client
...TRUNCATED OUTPUT...
[2016-11-23T19:53:08+00:00] INFO: Netmask of 192.168.0.1:
255.255.255.0
...TRUNCATED OUTPUT...

How it works...
If you want to use the functionality of a Ruby gem inside your
cookbook, you need to install that gem using chef_gem. You can define
whether you want to install the gem during the compile phase of the
cookbook or the execute phase: they can only be used in your recipes if
you install them during the compile phase.

The gem_package resource, in contrast, installs the gem into the Ruby
system. It does that during the execute phase of the Chef run. This
means that gems installed by gem_package cannot be used inside your
recipes.

See also
The Mixing plain Ruby with Chef DSL recipe in this chapter

Using libraries
You can use arbitrary Ruby code within your recipes. If your logic isn't
too complicated, it's totally fine to keep it inside your recipe. However,
as soon as you start using plain Ruby more than Chef DSL, it's time to
the move the logic into external libraries.

Libraries provide a place to encapsulate Ruby code so that your recipes
stay clean and neat. In this section, we'll create a simple library to see
how this works.

Getting ready
Make sure you have a cookbook called my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe of Chapter 1, Chef Infrastructure.

How to do it...
Let's create a library and use it in a cookbook:
1. Create a helper method in your own cookbook's library:

mma@laptop:~/chef-repo $ mkdir -p
cookbooks/my_cookbook/libraries
mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/libraries/ipaddress.rb
class Chef::Recipe
 def netmask(ipaddress)
 IPAddress(ipaddress).netmask
 end
end

2. Use your helper method in a recipe:

mma@laptop:~/chef-repo $ subl c
ookbooks/my_cookbook/recipes/default.rb
ip = '10.10.0.0/24'
mask = netmask(ip) # here we use the library method
Chef::Log.info("Netmask of #{ip}: #{mask}")

3. Run the Chef client on your development box to see whether it
works:

mma@laptop:~/chef-repo $ chef-client -z -o
'recipe[my_cookbook]'
...TRUNCATED OUTPUT...
[2016-11-23T21:36:22+01:00] INFO: Netmask of
192.168.0.110.10.0.0/24: 255.255.255.0
...TRUNCATED OUTPUT...

How it works…
In your library code, you can open the Chef::Recipe class and add your
new methods:

class Chef::Recipe
 def netmask(ipaddress)
 ...
 end
end

Tip

This isn't the cleanest, but it is the simplest way of doing it. The
following paragraphs will help you find a cleaner way.

Chef automatically loads your library code in the compile phase, which
enables you to use the methods that you declare inside the recipes of the
cookbook:

mask = netmask(ip)

There's more…
Opening a class and adding methods pollutes the class's namespace. This
might lead to name clashes. If you define a method inside a library in
your own cookbook and someone else defines a method with the same
name in the library of another cookbook, the names will clash. Another
clash would happen if you accidentally used a method name that Chef
defines in its Chef::Recipe class.

It's cleaner to introduce subclasses inside your libraries and define your
methods as class methods. This avoids polluting the Chef::Recipe
namespace:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/libraries/ipaddress.rb
 class Chef::Recipe::IPAddress
 def self.netmask(ipaddress)
 IPAddress(ipaddress).netmask
 end
 end

You can use the method inside your recipes like this:

IPAddress.netmask(ip)

You can define library methods in chef-shell directly in the root context:

user@server $ chef-shell --client
chef > class Chef::Recipe::IPAddress
chef ?> def self.netmask(ipaddress)
chef ?> IPAddress(ipaddress).netmask
chef ?> end
chef ?> end

Now, you can use the library method inside the recipe context:

chef > recipe
chef:recipe > IPAddress.netmask('10.10.0.0/24')
 => "255.255.255.0"

See also
Learn more about chef-shell by reading chef-shell recipe in Chapter
2, Evaluating and Troubleshooting Cookbooks and Chef Runs
The Mixing plain Ruby with Chef DSL recipe in this chapter

Creating your own custom
resource
Chef offers the opportunity to extend the list of available resources by
creating a custom resource. By creating your own custom resources, you
can simplify writing cookbooks because your own custom resources
enrich the Chef DSL and make your recipe code more expressive.

In this section, we will create a very simple custom resource to
demonstrate the basic mechanics.

Getting ready
Create a new cookbook named greeting and ensure that the run_list
of your node includes greeting, as described in the Creating and using
cookbooks recipe of Chapter 1, Chef Infrastructure.

How to do it…
Let's see how to build a very simple custom resource to create a text file
on your node:
1. Create the custom resource in your greeting cookbook:

mma@laptop:~/chef-repo $ subl
cookbooks/greeting/resources/file.rb
property :title, String, default: "World"
property :path, String, default: "/tmp/greeting.txt"
action :create do
 Chef::Log.info "Adding '#{new_resource.name}' greeting as
#{new_resource.path}"
 file new_resource.path do
 content "#{new_resource.name}, #{new_resource.title}!"
 action :create
 end
end
action :remove do
 Chef::Log.info "Removing '#{new_resource.name}' greeting
#{new_resource.path}"

 file new_resource.path do
 action :delete
 end
end

2. Use your new resource by editing your greeting cookbook's default
recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/greeting/recipes/default.rb
greeting_file "Ohai" do
 title "Chef"
end

3. Run the Chef client on your workstation:

mma@laptop:~/chef-repo $ chef-client -z -o
'recipe[greeting]'
...TRUNCATED OUTPUT...
 * greeting_file[Ohai] action create[2016-11-
24T20:55:07+01:00] INFO: Processing greeting_file[Ohai]
action create (greeting::default line 6)
[2016-11-24T20:55:07+01:00] INFO: Adding 'Ohai' greeting as
/tmp/greeting.txt

 * file[/tmp/greeting.txt] action create[2016-11-
24T20:55:07+01:00] INFO: Processing file[/tmp/greeting.txt]
action create (/Users/matthias.marschall/chef-
repo/.chef/local-mode-
cache/cache/cookbooks/greeting/resources/file.rb line 5)
[2016-11-24T20:55:07+01:00] INFO: file[/tmp/greeting.txt]
created file /tmp/greeting.txt

 - create new file /tmp/greeting.txt[2016-11-
24T20:55:07+01:00] INFO: file[/tmp/greeting.txt] updated
file contents /tmp/greeting.txt

 - update content in file /tmp/greeting.txt from none
to 47c39a
 --- /tmp/greeting.txt 2016-11-24 20:55:07.000000000
+0100
 +++ /tmp/.chef-greeting20161124-12376-vie0p9.txt
 2016-11-24 20:55:07.000000000 +0100
 @@ -1 +1,2 @@
 +Ohai, Chef!
 ...TRUNCATED OUTPUT...

4. Validate the content of the generated file:

mma@laptop:~/chef-repo $ cat /tmp/greeting.txt
Ohai, Chef!

How it works…
Custom resources live in cookbooks. A custom resource, which you
define in a file called file.rb in the resources directory of your
cookbook, will be available under the name <cookbook name>_file.

We create greeting/resources/file.rb and use it in our default recipe,
as follows:

greeting_file "..." do
end

Let's see what the resource definition in greeting/resources/file.rb
looks like.

First, we define properties you can pass to the resource when using it in
your cookbook. In our case, we define two string properties with their
default values:

property :title, String, default: "World"
property :path, String, default: "/tmp/greeting.txt"

We implement two actions: create and remove, as shown in the
following code:

action :create do
 ...
end
action :remove do
 ...
end

You can use pure Ruby and the existing Chef resources to make your
custom resource do something. First, we create a log statement and then
we use the existing file resource to create a text file containing the
greeting:

 Chef::Log.info "Adding '#{new_resource.name}' greeting as #
{new_resource.path}"
 file new_resource.path do
 ...
 end

The new_resource attribute is a Ruby variable containing the resource
definition from the recipe that uses the resource. In our case,
new_resource.name evaluates to Ohai and new_resource.path evaluates
to the attribute's default value (because we did not use that attribute
when using the greeting resource in our cookbook).

Inside the file resource, we use our resource's title
(new_resource.title) property to fill the text file:

file new_resource.path do
 content "#{new_resource.name}, #{new_resource.title}!"
 action :create
end

Now, we can use those actions and properties in our recipe:

greeting_file "Ohai" do
 title "Chef"
 action :create
end

The remove action works in a similar way to the create action, but calls
the file resource's delete action, instead.

There's more...
To simplify the usage of your custom resource, you can define a default
action. You declare it using the default_action call:

default_action :create

Now you can use your new resource like this:

greeting "Ohai" do
 title "Chef"
end

Note

If you're using plain Ruby code in your custom resources, you need to
make sure that your code is idempotent. This means that it only runs if it
needs to modify something. You should be able to run your code
multiple times on the same machine, without executing unnecessary
actions on each run.

See also
Read more about what custom resources are at
https://docs.chef.io/custom_resources.html

https://docs.chef.io/custom_resources.html

Extending community cookbooks
by using application wrapper
cookbooks
Using community cookbooks is great. However, sometimes they do not
exactly match your use case. You may need to modify them. If you don't
want to use Git vendor branches that are generated by knife cookbook
site install, you'll need to use the library versus application
cookbook approach.

In this approach, you don't touch the community (library) cookbook.
Instead, you include it in your own application cookbook and modify
resources from the library cookbook.

Let's see how to extend a community cookbook with your own
application cookbook.

Getting ready
We'll use the ntp cookbook as the library cookbook and will change a
command it executes.

Add the ntp cookbook to your Berksfile:

mma@laptop:~/chef-repo $ subl Berksfile
source 'https://supermarket.chef.io'
cookbook 'ntp'

How to do it…
Let's see how we can override the ntp cookbook's behavior from within
our own cookbook:
1. Create your own application cookbook:

mma@laptop:~/chef-repo $ chef generate cookbook

cookbooks/my_ntp
Generating cookbook my_ntp
- Ensuring correct cookbook file content
- Ensuring delivery configuration
- Ensuring correct delivery build cookbook content

Your cookbook is ready. Type `cd cookbooks/my_ntp` to enter
it.
...TRUNCATED OUTPUT...

2. Add your new my_ntp cookbook to the run list of your node:

mma@laptop:~/chef-repo $ knife node run_list set server
'recipe[my_ntp]'
server:
 run_list:
 recipe[my_ntp]

3. Add the dependency on the ntp cookbook to the my_ntp metadata:

mma@laptop:~/chef-repo $ subl cookbooks/my_ntp/metadata.rb
version '0.1.0'
...
depends 'ntp', '~> 3.3.0'

4. Make the default recipe from the ntp cookbook execute another
command, which you've defined in your own cookbook:

mma@laptop:~/chef-repo $ subl
cookbooks/my_ntp/recipes/default.rb
...
include_recipe 'ntp::default'
node.override['ntp']['sync_hw_clock'] = true
resources("execute[Force sync hardware clock with system
clock]").command "hwclock --systohc -D"

5. Upload your cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_ntp
Uploading my_ntp [0.1.0]

6. Run the Chef client on your node:

user@server $ sudo chef-client
...TRUNCATED OUTPUT...
[2016-11-25T07:22:53+00:00] INFO: execute[Force sync
hardware clock with system clock] ran successfully
 - execute hwclock --systohc -D

...TRUNCATED OUTPUT...

How it works…
We retrieve and modify the execute resource for the hwclock --systohc
command from the ntp cookbook. First, we need to include the recipe
that defines the resource we want to modify:

include_recipe 'ntp::default'

The resources method retrieves the given resource. We can then call all
the methods on it, which we could also call while defining it in a recipe.
In our example, we want to tell the execute resource that we want to use
a different command:

resources("execute[Force sync hardware clock with system
clock]").command "hwclock --systohc -D"

This modification of the resource happens during the compile phase.
Only after Chef has evaluated the whole recipe will it execute all the
resources it built during the compile phase.

There's more…
If you don't want to modify existing cookbooks, this is currently the only
way to modify parts of recipes that are not meant to be configured via
attributes.

This approach is exactly the same thing as monkey-patching any Ruby
class by reopening it in your own source files. This usually leads to
brittle code, as your code now depends on the implementation details of
another piece of code instead of depending on its public interface (in
Chef recipes, the public interface is its attributes).

Keep such cookbook modifications in a separate place so that you can
easily find out what you did later. If you bury your modifications deep
inside your complicated cookbooks, you might experience issues later
that are very hard to debug.

See also
The Creating and using cookbooks recipe of Chapter 1, Chef
Infrastructure

Creating custom Ohai plugins
Ohai is the tool used by a Chef client to find out everything about the
node's environment. During a Chef client run, Ohai populates the node
object with all the information it found about the node, such as its
operating system, hardware, and so on.

It is possible to write custom Ohai plugins to query additional properties
about a node's environment.

Tip

Please note that Ohai data isn't populated until after a successful chef-
client run!

In this example, we will see how to query the currently active firewall
rules with Ohai using iptables and make them available as node
attributes.

Getting ready
Make sure you have iptables installed on your node. See the Managing
firewalls with iptables recipe in Chapter 7, Servers and Cloud
Infrastructure.

Make sure you have the chef-client cookbook available:
1. Add the chef-client cookbook to your Berksfile:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'chef-client'

2. Add the chef-client cookbook to your node's run list:

mma@laptop:~/chef-repo $ knife node run_list set server
'chef-client::config'
server:
 run_list:
 recipe[chef-client::config]

How to do it…
Let's write a simple Ohai plugin listing all the currently active iptables
rules:
1. Install the ohai cookbook:

mma@laptop:~/chef-repo $ knife cookbook site install ohai
Installing ohai to /Users/mma/work/chef-repo/cookbooks
...TRUNCATED OUTPUT...
Cookbook ohai version 4.2.2 successfully installed

2. Add your plugin to the ohai cookbook:

mma@laptop:~/chef-repo $ subl
cookbooks/ohai/files/default/iptables.rb
Ohai.plugin(:Iptables) do
 provides "iptables"

 collect_data(:default) do
 iptables Mash.new
 `iptables -S`.each_line.with_index {|line, i|
iptables[i] = line }
 end
end

3. Make the ohai cookbook install your plugin:

mma@laptop:~/chef-repo $ subl
cookbooks/ohai/recipes/default.rb
...
ohai_plugin 'iptables'

4. Upload the modified ohai cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload ohai
Uploading ohai [4.2.2]

5. Add the ohai cookbook to the run list of your node:

mma@laptop:~/chef-repo $ knife node run_list add server
ohai
server:
 run_list:
 recipe[chef-client::config]
 recipe[ohai]

6. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-11-25T07:29:52+00:00] INFO: ohai[custom_plugins]
reloaded

 - re-run ohai and merge results into node attributes
...TRUNCATED OUTPUT...

7. Validate that the iptables rules show up as node attributes, for
example, by navigating to your Chef server's management console.
The iptables rules should show up amongst the other node
attributes:

How it works…
The chef-client cookbook configures the Chef client to look for
additional Ohai plugins in the /etc/chef/ohai_plugins directory by
adding this line to /etc/chef/client.rb:

Ohai::Config[:plugin_path] << "/etc/chef/ohai_plugins"

You can simply install the ohai cookbook and add your Ohai plugins to
the cookbooks/ohai/files/default/ directory. Then you can use the
ohai_plugin resource in the default cookbook to install your plugins.

A custom Ohai plugin has only a few basic parts. First, you need to give
it a Ruby class name:

 Ohai.plugin(:Iptables) do

end

Then, you need to define which attribute the plugin will populate:

provides "iptables"

The preceding code tells Ohai that the node attributes you fill will be
available under the iptables key.

Inside a method called collect_data, you define what the plugin should
do when it runs. The default parameter says that this collect_data
method runs on any platform.

You collect the node attributes in a Mash, an extended version of a
Hash, as follows:

iptables Mash.new

The preceding line of code creates an empty node attribute.

Then, we run iptables -S to list all the currently loaded firewall rules
and loop through the lines. Each line gets added to the Mash with its line
number as the key:

`sudo iptables -S`.each_line.with_index {|line,i|
 iptables[i] = line }

Ohai will add the contents of that Mash as node attributes during a Chef
client run. We can now use the new iptables node attribute in our
recipes:

node['iptables']

There's more…
You can use your Ohai plugin as a library. This enables you to use the
functionality of your Ohai plugins in arbitrary Ruby scripts. Fire up IRB
in the /etc/chef/ohai/plugins directory and run the following
command lines to make the iptables attributes accessible in the IRB
session:

user@server:/etc/chef/ohai/plugins$ sudo
/opt/chef/embedded/bin/irb
 >> require 'ohai'
 >> Ohai::Config[:plugin_path] << '.'
 >> o = Ohai::System.new
 >> o['iptables']
=> {0=>"-P INPUT ACCEPT\n", 1=>"-P FORWARD ACCEPT\n", 2=>"-P
OUTPUT ACCEPT\n"}

See also
Read more about Ohai at https://docs.chef.io/ohai.html
Learn more about how to create your own custom Ohai plugins at
https://docs.chef.io/ohai_custom.html
Read more about how to distribute Ohai plugins here:
https://docs.chef.io/ohai.html#ohai-cookbook
Find the source code for Ohai here: https://github.com/chef/ohai
Find the source code for the Ohai cookbook here:
https://github.com/chef-cookbooks/ohai

https://docs.chef.io/ohai.html
https://docs.chef.io/ohai_custom.html
https://docs.chef.io/ohai.html#ohai-cookbook
https://github.com/chef/ohai
https://github.com/chef-cookbooks/ohai

Creating custom knife plugins
Knife, the command-line client for the Chef server, has a plugin system.
This plugin system enables us to extend the functionality of knife in any
way we need. The knife-ec2 plugin is a common example: It adds
commands such as ec2 server create to knife.

In this section, we will create a very basic custom knife plugin to learn
about all the required building blocks of knife plugins. As knife plugins
are pure Ruby programs that can use any external libraries, there are no
limits to what you can make knife do. This freedom enables you to build
your whole DevOps workflow on knife, if you want to.

Now, let's teach knife how to tweet in your name!

Getting ready
Make sure you have a Twitter user account and have created an
application with Twitter (https://apps.twitter.com/app/new).

While creating your Twitter application, you should set the OAuth access
level to Read and write, so as to enable your application to post in your
name.

Create an access token by connecting the application to your Twitter
account. This will enable your Twitter application (and therefore your
knife plugin) to tweet as your Twitter user.

Make sure you have the twitter gem installed. It will enable you to
interact with Twitter from within your knife plugin:

mma@laptop:~/chef-repo $ chef gem install twitter
...TRUNCATED OUTPUT...
Successfully installed twitter-5.16.0
13 gems installed

How to do it…

https://apps.twitter.com/app/new

1. Let's create a knife plugin so that we can tweet by using the
following knife command:

$ knife tweet "having fun building knife plugins"

2. Create a directory for your knife plugin inside your Chef repository:

mma@laptop:~/chef-repo $ mkdir -p .chef/plugins/knife

3. Create your knife plugin:

mma@laptop:~/chef-repo $ subl
.chef/plugins/knife/knife_twitter.rb
require 'chef/knife'
module KnifePlugins
 class Tweet < Chef::Knife
 deps do
 require 'twitter'
 end
 banner "knife tweet MESSAGE"
 def run
 client = Twitter::REST::Client.new do |config|
 config.consumer_key = "<YOUR_CONSUMER_KEY>"
 config.consumer_secret = "<YOUR_CONSUMER_SECRET>"
 config.access_token = "<YOUR_ACCESS-TOKEN>"
 config.access_token_secret = "
<YOUR_ACCESS_TOKEN_SECRECT>"
 end
 client.update("#{name_args.first} #getchef")
 end
 end
end

4. Send your first tweet:

mma@laptop:~/chef-repo $ knife tweet "having fun with
building knife plugins"

5. Validate whether the tweet went live:

How it works...
There are three ways to make your knife plugins available: in your home
directory under ~/.chef/plugins/knife (so that you can use them for
all your Chef repositories); in your Chef repository under
.chef/plugins/knife (so that every co-worker using that repository can
use them); or as a Ruby gem (so that everyone in the Chef community
can use them).

We chose the second way, so that everyone working on our Chef
repository can check out and use our Twitter knife plugin.

First, we need to include Chef's knife library in our Ruby file to be able
to create a knife plugin:

require 'chef/knife'

Then, we define our plugin as follows:

module KnifePlugins
 class Tweet < Chef::Knife
 ...
 end
end

The preceding code creates the new knife command tweet. The
command is derived from the class name that we gave our plugin. Each
knife plugin needs to extend Chef::Knife.

The next step is to load all the dependencies required. Instead of simply
putting multiple require calls at the beginning of our Ruby file, knife
provides the deps method (which we can override) to load dependencies
lazily on demand:

 deps do
 require 'twitter'
 end

Placing require 'twitter' inside the deps method makes sure that the
twitter gem will only get loaded if our plugin runs. Not doing so would

mean that the twitter gem would get loaded on each knife run, whether
it will be used or not.

After defining the dependencies, we need to tell the users of our plugin
what it does and how to use it. The knife plugin provides the banner
method to define the message that users see when they call our plugin
with the --help parameter:

 banner "knife tweet MESSAGE"

Let's see how this works:

mma@laptop:~/chef-repo $ knife tweet --help
knife tweet MESSAGE

Finally, we need to actually do something. The run method is where to
place the code we want to execute. In our case, we create a Twitter
client passing our authentication credentials:

client = Twitter::REST::Client.new do |config|
...
end

Then, we send our tweet:

 client.update("#{name_args.first} #getchef")

The name_args attribute contains command-line arguments. We take the
first one as the message that we send to Twitter and add the #getchef
hashtag to every message we send.

There's more…
You can add simple error handling to make sure that the user doesn't
send empty tweets by adding this block at the beginning of the run
method:

run
 unless name_args.size == 1
 ui.fatal "You need to say something!"
 show_usage

 exit 1
 end
...
end

This piece of code gets executed if there isn't exactly one command-line
argument available to the knife tweet call. In that case, it will print the
error message and a user will get the same message when using the --
help parameter. Then, this block will exit with the error code 1, without
doing anything else.

See also
Read more about how to write custom knife plugins at
https://docs.chef.io/plugin_knife_custom.html
Find the twitter gem at https://github.com/sferik/twitter

https://docs.chef.io/plugin_knife_custom.html
https://github.com/sferik/twitter

Chapter 4. Writing Better
Cookbooks

"When you know better, you do better"

Maya Angelou

In this chapter, we will cover the following recipes:
Setting environment variables
Passing arguments to shell commands
Overriding attributes
Using search to find nodes
Using data bags
Using search to find data bag items
Using encrypted data bag items
Accessing data bag values from external scripts
Getting information about the environment
Writing cross-platform cookbooks
Making recipes idempotent by using conditional execution

Introduction
In this chapter, we'll see some more advanced topics in action. You'll see
how to make your recipes more flexible by using search and data bags,
and how to make sure your cookbooks run on different operating
systems. You'll gain critical knowledge to create extensible and
maintainable cookbooks for your infrastructure.

Setting environment variables
You might have experienced this: you try out a command on your node's
shell and it works perfectly. Now you try to execute the very same
command from within your Chef recipe but it fails. One reason may be
that certain environment variables set in your shell are not set during the
Chef run. You might have set them manually or in your shell startup
scripts – it does not matter. You'll need to set them again in your recipe.

In this section, you will see how to set environment variables during a
Chef run.

Getting ready
Make sure you have a cookbook called my_cookbook, and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

How to do it…
Let's see how we can set environment variables from within Chef
recipes:
1. Set an environment variable to be used during the Chef client run:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
ENV['MESSAGE'] = 'Hello from Chef'

execute 'print value of environment variable $MESSAGE' do
 command 'echo $MESSAGE > /tmp/message'
end

2. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

3. Run the Chef client to create the tmp file:

user@server:~$ sudo chef-client

...TRUNCATED OUTPUT...
[2016-11-26T20:15:32+00:00] INFO: execute[print value of
environment variable $MESSAGE] ran successfully

 - execute echo $MESSAGE > /tmp/message
...TRUNCATED OUTPUT...

4. Ensure that it worked:

user@server:~$ cat /tmp/message
Hello from Chef

How it works…
Ruby exposes the current environment via ENV – a hash to read or
modify environment variables. We use ENV to set our environment
variable. It is valid for the Ruby process in which the Chef client runs,
as well as all its child processes.

The execute resource spawns a child process of the Ruby process,
which is running the Chef client. Because it is a child process, the
environment variable we set in the recipe is available to the script code
the execute resource runs.

We access the environment variable by $MESSAGE, as we would do
through the command line.

There's more…
The execute resource offers a way to pass environment variables to the
command it executes:
1. Change the my_cookbook default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
execute 'print value of environment variable $MESSAGE' do
 command 'echo $MESSAGE > /tmp/message'
 environment 'MESSAGE' => 'Hello from the execute
resource'
end

2. Upload the modified cookbook to your Chef server and run the Chef
client, as shown in the How to do it… section.

3. Validate the contents of the tmp file:

user@server:~$ cat /tmp/message
Hello from the execute resource

Tip

Setting an environment variable using ENV will make that variable
available during the whole Chef run. In contrast, passing it to the
execute resource will only make it available for that one command
executed by the resource.

See also
Read more about handling Unix environment variables in Chef at
https://docs.chef.io/environment_variables.html

https://docs.chef.io/environment_variables.html

Passing arguments to shell
commands
The Chef client enables you to run shell commands by using the execute
resource. However, how can you pass arguments to such shell
commands? Let's assume you want to calculate a value and pass it to the
shell command in your recipe. How can you do that? Let's find out...

Getting ready
Make sure you have a cookbook called my_cookbook, and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

How to do it...
Let's see how we can pass Ruby variables into shell commands:
1. Edit your default recipe. You'll pass an argument to a shell command

by using an execute resource:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
max_mem = node['memory']['total'].to_i * 0.8

execute 'echo max memory value into tmp file' do
 command "echo #{max_mem} > /tmp/max_mem"
end

2. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

3. Run the Chef client on your node to create the tmp file:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-11-26T20:21:33+00:00] INFO: execute[echo max memory
value into tmp file] ran successfully

 - execute echo 400153.60000000003 > /tmp/max_mem
...TRUNCATED OUT
PUT...

4. Validate that it worked:

user@server:~$ cat /tmp/max_mem
400153.60000000003

How it works…
We calculate a value we want to pass to the command we want to
execute. The node['memory']['total'] call returns a string. We need to
convert it to an integer by calling to_i on the returned string to be able
to multiply it with 0.8.

As these recipes are Ruby files, you can use string expansion if you need
it. One way to pass arguments to shell commands defined by execute
resources is to use string expansion in the command parameter:

command "echo #{max_mem} > /tmp/max_mem"

In the preceding line, Ruby will replace #{max_mem} with the value of the
max_mem variable that was defined previously. The string, which we pass
as a command to the execute resource, could look like this (assuming
that node['memory']['total'] returns 1000):

command "echo 800 > /tmp/max_mem"

Tip

Be careful! You need to use double quotes if you want Ruby to expand
your string.

There's more…
String expansion works in multiline strings, as well. You can define them
like this:

 command <<EOC
 echo #{message} > /tmp/message

EOC

Tip

EOC is the string delimiter. It can be EOF, EOH, STRING, FOO, or whatever
you want it to be. Just make sure to use the same delimiter at the
beginning and the end of your multi-line string

We saw another way to pass arguments to shell commands by using
environment variables in the previous section.

See also
The Mixing plain Ruby with Chef DSL section in Chapter 3, Chef
Language and Style
The Setting environment variables section in this chapter

Overriding attributes
You can set attribute values in attribute files. Usually, cookbooks come
with reasonable default values for attributes. However, the default
values might not suit your needs. If they don't fit, you can override
attribute values.

In this section, we'll look at how to override attributes from within
recipes and roles.

Getting ready
Make sure you have a cookbook called my_cookbook, and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

How to do it…
Let's see how we can override attribute values:
1. Edit the default attributes file to add an attribute:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/attributes/default.rb
default['my_cookbook']['version'] = '1.2.3'

2. Edit your default recipe. You'll override the value of the version
attribute and print it to the console:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
node.override['my_cookbook']['version'] = '1.5'
execute 'echo the cookbook version' do
 command "echo #{node['my_cookbook']['version']}"
end

3. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

4. Run the Chef client on your node in order to create the tmp file:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-11-26T20:39:39+00:00] INFO: execute[echo the path
attribute] ran successfully

 - execute echo 1.5

How it works…
You set a default value for the version attribute in your cookbook's
default attributes file. Chef evaluates the attributes file early in the Chef
run and makes all the attributes available via the node object. Your
recipes can use the node object to access the values of the attributes.

The Chef DSL provides various ways to modify attributes, once they are
set. In our example, we used the override method to change the value
of the attribute inside our recipe. After this call, the node will carry the
newly set value for the attribute, instead of the old value set via the
attributes file.

There's more…
You can override attributes from within roles and environments as well.
In the following example, we set the version attribute to 2.0.0 (instead
of keeping the default value of 1.2.3):
1. Edit the default attributes file to add an attribute:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/attributes/default.rb
default['my_cookbook']['version'] = '1.2.3'

2. Use the attribute in your default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
execute 'echo the path attribute' do
 command "echo #{node['my_cookbook']['version']}"
end

3. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook

--force
Uploading my_cookbook [0.1.0]

4. Create a role named upgraded_hosts by creating a file called
roles/upgraded_hosts.rb:

mma@laptop:~/chef-repo $ subl roles/upgraded_hosts.rb
name "upgraded_hosts"

run_list "recipe[my_cookbook]"
default_attributes 'my_cookbook' => { 'version' => '2.0.0'
}

5. Upload the role to the Chef server:

mma@laptop:~/chef-repo $ knife role from file
upgraded_hosts.rb
Updated Role upgraded_hosts!

6. Change the run_list of your node:

mma@laptop:~/chef-repo $ knife node run_list set server
'role[upgraded_hosts]'
 server:
 run_list: role[upgraded_hosts]

7. Run the Chef client on your system:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-11-26T20:42:39+00:00] INFO: execute[echo the path
attribute] ran successfully

 - execute echo 2.0.0

See also
Learn more about roles at https://docs.chef.io/roles.html
Read more about attributes at https://docs.chef.io/attributes.html

https://docs.chef.io/roles.html
https://docs.chef.io/attributes.html

Using search to find nodes
If you are running your infrastructure in any type of virtualized
environment, such as a public or private cloud, the server instances that
you use will change frequently. Instead of having a well-known set of
servers, you destroy and create virtual servers regularly.

In this situation, your cookbooks cannot rely on hardcoded server names
when you need a list of available servers.

Chef provides a way to find nodes by their attributes, for example, their
roles. In this section, we'll see how you can retrieve a set of nodes to use
them in your recipes.

Getting ready
Make sure that you have a cookbook called my_cookbook, as described
in the Creating and using cookbooks section in Chapter 1, Chef
Infrastructure.

How to do it...
Let's see how we can find all nodes having a certain role:
1. Create a role called web that has my_cookbook in its run list. This

command will open a JSON definition of your role in your default
editor. You need to add "recipe[my_cookbook]" to "run_list":

mma@laptop:~/chef-repo $ knife role create web
...
 "run_list": [
 "recipe[my_cookbook]"
],
...
Created role[web]

2. Create at least one node that has the new role in its run list. This
command will open a JSON definition of your node in your default
editor:

mma@laptop:~/chef-repo $ knife node create webserver
...
 "run_list": [
 "role[web]"
],
...
Created node[webserver]

3. Edit your default recipe to search for all nodes that have the web
role:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
servers = search(:node, "role:web")

servers.each do |srv|
 log srv.name
end

4. Upload your modified cookbook:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

5. Run the Chef client on one of your nodes:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
 * log[webserver] action write[2016-11-26T20:54:18+00:00]
INFO: webserver
...TRUNCATED OUTPUT...

How it works…
The Chef server stores all nodes with their attributes. The attributes are
partly auto-detected by using Ohai (such as name, IP address, CPUs,
and so on) and partly configured by you (such as run_list). The Chef
DSL offers the search method to look up nodes based on your search
criteria. In the preceding example, we simply used a role as the search
criterion. However, you can use any combination of node attributes
available to construct your search.

The search method returns a list of node objects, which you can use in
your recipe. In the preceding example, we looped through the list of

nodes by using the standard Ruby each iterator. The current element is
available as the variable you declare between the | after the do. In our
case, it's a full-blown node object and you can use it to retrieve its
attributes, or even to modify it.

There's more…
Search is a very powerful tool to dynamically identify nodes. You can
use Boolean operators to craft more complex queries and you can use
search in your cookbooks, as well as with knife. Let's see how you can
take search a bit further.

Using knife to search for nodes

Knife offers the very same search syntax as the search method within
your recipes. It lets you search for nodes via the command line:

mma@laptop:~/chef-repo $ knife search node "role:web"
3 items found

Node Name: web
...TRUNCATED OUTPUT...
Node Name: web1
...TRUNCATED OUTPUT...
Node Name: web2
...TRUNCATED OUTPUT...

Searching for arbitrary node attributes

In addition to searching for roles, you can search for any attribute of a
node. Let's see how you can search for a node that has ubuntu as its
platform using knife:

mma@laptop:~/chef-repo $ knife search node "platform:ubuntu"
3 items found
Node Name: web
...TRUNCATED OUTPUT...
Node Name: vagrant
...TRUNCATED OUTPUT...
Node Name: db
...TRUNCATED OUTPUT...

Using boolean operators in search

If you want to combine multiple attributes in your search query, you can
use Boolean operators such as NOT, AND, and OR:

mma@laptop:~/chef-repo $ knife search node 'platform:ubuntu AND
name:v*'
1 items found
Node Name: vagrant
...TRUNCATED OUTPUT...

See also
Read more about search at https://docs.chef.io/chef_search.html
Read more about how to use search from within a recipe here:
https://docs.chef.io/dsl_recipe.html#search

https://docs.chef.io/chef_search.html
https://docs.chef.io/dsl_recipe.html#search

Using data bags
There are situations where you have data that you neither want to
hardcode in your recipes nor store as attributes in your cookbooks.
Users, external servers, or database connections are examples of such
data. Chef offers so-called data bags to manage arbitrary collections of
data, which you can use with your cookbooks.

Let's see how we can create and use a data bag and its items.

Getting ready
In the following example, we want to illustrate the usage of data bags by
sending HTTP requests to a configurable HTTP endpoint. We don't want
to hardcode the HTTP endpoint in our recipe. That's why we store it as a
data bag item in a data bag.

To be able to follow along with the example, you'll need an HTTP
endpoint.

One way to establish an HTTP endpoint is to just run sudo nc –l 80 on
any server that is accessible by your node and use its IP address below.

Another way to establish an HTTP endpoint, which shows us the
requests we make, is a free service called RequestBin. To use it, follow
these steps:
1. Open http://requestb.in in your browser and click on Create a

RequestBin.
2. Note the URL for your new RequestBin. We'll call it from within our

recipe, as shown in the following screenshot:

http://requestb.in

How to do it…
Let's create a data bag to hold our HTTP endpoint URL and use it from
within our recipe:
1. Create a directory for your data bag:

mma@laptop:~/chef-repo $ mkdir data_bags/hooks

2. Create a data bag item for RequestBin. Make sure to use your own
RequestBin URL you noted in the Getting ready section:

mma@laptop:~/chef-repo $ subl
data_bags/hooks/request_bin.json
{
 "id": "request_bin",
 "url": "http://requestb.in/<YOUR_REQUEST_BIN_ID>"
}

3. Create the data bag on the Chef server:

mma@laptop:~/chef-repo $ knife data bag create hooks
Created data_bag[hooks]

4. Upload your data bag item to the Chef server:

mma@laptop:~/chef-repo $ knife data bag from file hooks
request_bin.json
Updated data_bag_item[hooks::request_bin]

5. Edit the default recipe of my_cookbook to retrieve the RequestBin
URL from your data bag:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
hook = data_bag_item('hooks', 'request_bin')
http_request 'callback' do
 url hook['url']
end

6. Upload your modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

7. Run the Chef client on your node to test whether the HTTP request
to your RequestBin was executed:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-11-27T19:43:04+00:00] INFO: http_request[callback]
GET to http://requestb.in/1ka7usr1 successful

 - http_request[callback] GET to
http://requestb.in/1ka7usr1
...TRUNCATED OUTPUT...

8. Check your RequestBin. The request should show up there:

How it works…
A data bag is a named collection of structured data entries. You define
each data entry called a data bag item in a Ohai file. You can search for
data bag items from within your recipes to use the data stored in the data
bag.

In our example, we created a data bag called hooks. A data bag is a
directory within your Chef repository and you can use knife to create it
on the Chef server.

Then, we created a data bag item with the name request_bin in a file

called request_bin.json inside the data bag's directory and uploaded it
to the Chef server as well.

Our recipe retrieves the data bag item using the data_bag_item method,
taking the data bag name as the first parameter and the item name as the
second parameter.

Then, we created an http_request resource by passing it the url
attribute of the data bag item. You can retrieve any attribute from a data
bag item using the hash notation hook['url'].

See also
Read more about data bags at https://docs.chef.io/data_bags.html

https://docs.chef.io/data_bags.html

Using search to find data bag
items
You might want to execute code in your recipe multiple times – once for
each data bag item, such as for each user or each HTTP endpoint.

You can use search to find certain data bag items and loop through the
search results to execute code multiple times.

Let's see how we can make our recipes more dynamic by searching for
data bag items.

Getting ready
Follow the Getting ready and How to do it... (steps 1 to 4) sections in
the Using data bags recipe in this chapter. You might want to add a few
more HTTP endpoints to your data bag.

How to do it...
Let's create a recipe to search for data bag items and call the
http_request resource for each one:
1. Edit the default recipe of my_cookbook to retrieve all HTTP hooks

from your data bag, which should be called by your recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
search(:hooks, '*:*').each do |hook|
 http_request 'callback' do
 url hook['url']
 end
end

2. Upload your modified recipe to the Chef server, run the Chef client
on your node, and verify that your HTTP endpoint received the
HTTP request as described in the How to do it... (steps 6 to 8)
sections in the Using data bags recipe in this chapter.

How it works…
Our recipe uses the search method to retrieve all items from the data
bag called hooks. The first parameter of the search method is the name
of the data bag (as a Ruby symbol). The second parameter is the search
query – in our case, we're looking for all data bag items by using *:*.
Using the each iterator, we loop through every data bag item found.
Inside the Ruby block, which gets executed for each item, we can
access the item by using the variable hook.

We create an http_request resource for each data bag item, passing the
URL stored in the item as the url parameter to the resource. You can
access arbitrary attributes of your data bag item using a Hash-like
notation.

There's more…
You can use various search patterns to find certain data bag items; some
examples are shown here:

search(:hooks, "id:request_bin")

search(:hooks, "url:*request*)

See also
The Using data bags recipe in this chapter
The Using search to find nodes recipe in this chapter
Find out what else is possible with data bag searches at
https://docs.chef.io/data_bags.html#with-search

https://docs.chef.io/data_bags.html#with-search

Using encrypted data bag items
Data bags are a great way to store user- and application-specific data.
Before long, you'll want to store passwords and private keys in data bags
as well. However, you might (and should) be worried about uploading
confidential data to a Chef server.

Chef offers encrypted data bag items to enable you to put confidential
data into data bags, thus reducing the implied security risk.

Getting ready
Make sure you have a Chef repository and can access your Chef server.

How to do it…
Let's create and encrypt a data bag item and see how we can use it:
1. Create a directory for your encrypted data bag:

mma@laptop:~/chef-repo $ mkdir data_bags/accounts

2. Create a data bag item for a Google account:

mma@laptop:~/chef-repo $ subl
data_bags/accounts/google.json
{
 "id": "google",
 "email": "some.one@gmail.com",
 "password": "Oh! So secret?"
}

3. Create the data bag on the Chef server:

mma@laptop:~/chef-repo $ knife data bag create accounts
Created data_bag[accounts]

4. Upload your data bag item to the Chef server, encrypting it on-the-
fly:

mma@laptop:~/chef-repo $ knife data bag from file accounts
google.json --secret 'Open sesame!'
Updated data_bag_item[accounts::google]

Note

Be careful! Using the --secret command-line switch is dangerous
because it will show up in your shell history and log files. Look at
the There's more... section in this recipe to find out how to use a
private key instead of a plaintext secret.

5. Verify that your data bag item is encrypted:

mma@laptop:~/chef-repo $ knife data bag show accounts
google
email:
 cipher: aes-256-cbc
 encrypted_data: DqYu8DnI8E1XQ5I/
jNyaFZ7LVXIzRUzuFjDHJGHymgxd9cbUJQ48nYJ3QHxi
 3xyE

 iv: B+eQ1hD35PfadjUwe+e18g==

 version: 1
id: google
password:
 cipher: aes-256-cbc
 encrypted_data:
m3bGPmp6cObnmHQpGipZYHNAcxJYkIfx4udsM8GPt7cT1ec0w+
IuLZk0Q9F8
 2pX0

 iv: Bp5jEZG/cPYMRWiUX1UPQA==

 version: 1

6. Now let's look at the decrypted data bag by providing the secret
keys:

mma@laptop:~/chef-repo $ knife data bag show accounts
google - -secret 'Open sesame!'
email: some.one@gmail.com
id: google
password: Oh! So secret?

How it works…
Passing --secret to the knife command that is creating the data bag

item encrypts the contents of the data bag.

Tip

The primary purpose of encrypting is to protect data on the Chef server.
You still need to securely distribute the secret keys manually.

The ID of the data bag item will not be encrypted because the Chef
server needs it to work with the data bag item.

Chef uses a shared secret to encrypt and decrypt data bag items.
Everyone having access to the shared secret will be able to decrypt the
contents of the encrypted data bag item.

There's more…
Accessing encrypted data bag items from the command line with knife
is usually not what you want. Let's look at how to use encrypted data
bag items in real life.

Using a private key file

Instead of passing the shared secret via the command line, you can
create an openssl-format private key and pass its file location to the
knife command:

mma@laptop:~/chef-repo $ knife data bag from file accounts
google.json --secret-file .chef/data_bag_secret_key.pem

Note

You can create an openssl-format private key like this:

mma@laptop:~/chef-repo $ openssl genrsa -out
.chef/data_bag_secret_key.pem 1024

The preceding command assumes that you have a file called
data_bag_secret_key.pem in the .chef directory.

To enable your node to decrypt the data bag item, you need to scp your

secret key file to your node and place it in the /etc/chef/ directory. If
you're using Vagrant, you can run vagrant ssh-config; scp -P 2200
.chef/data_bag_secret_key.pem 127.0.0.1.

Note

The initial bootstrap procedure for a node will put the key in the right
place on the node, if one already exists in your Chef repository.

Make sure that /etc/chef/client.rb points to your
data_bag_secret_key.pem file:

encrypted_data_bag_secret "/etc/chef/data_bag_secret_key.pem"

Now you can access the decrypted contents of your data bag items in
your recipe:

google_account = Chef::EncryptedDataBagItem.load("accounts",
"google")
log google_account["password"]

Chef will look for the file configured in client.rb and use the secret
given there to decrypt the data bag item.

See also
The Using data bags recipe in this chapter
Learn more about encrypted data bag items at
https://docs.chef.io/data_bags.html#encrypt-a-data-bag-item

https://docs.chef.io/data_bags.html#encrypt-a-data-bag-item

Accessing data bag values from
external scripts
Sometimes, you cannot put a server under full Chef control (yet). In
such cases, you might want to be able to access the values managed in
Chef data bags from scripts that are not maintained by Chef. The easiest
way to do this is to dump the data bag values (or any node values for
that matter) into a JSON file and let your external script read them from
there.

Getting ready
Make sure you have a cookbook called my_cookbook, and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

Create a data bag item, as shown in the following steps, so that we can
use its values later:
1. Create the data bag:

mma@laptop:~/chef-repo $ mkdir data_bags/servers
mma@laptop:~/chef-repo $ knife data bag create servers
Created data_bag[servers]

2. Create the first data bag item:

mma@laptop:~/chef-repo $ subl data_bags/servers/backup.json
{
 "id": "backup",
 "host": "10.0.0.12"
}
mma@laptop:~/chef-repo $ knife data bag from file servers
backup.json
Updated data_bag_item[servers::backup]

How to do it…
Let's create a JSON file that contains data bag values by using our

cookbook, so that external scripts can access those values:
1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
file "/etc/backup_config.json" do
 owner "root"
 group "root"
 mode 0644
 content data_bag_item('servers', 'backup')
['host'].to_json
 end

2. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

3. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-11-27T19:56:39+00:00] INFO:
file[/etc/backup_config.json] created file
/etc/backup_config.json

 - create new file /etc/backup_config.json
 [2016-11-27T19:56:39+00:00] INFO:
file[/etc/backup_config.json] updated file contents /
etc/backup_config.json

 - update content in file / etc/backup_config.json from
none to adc6de
...TRUNCATED OUTPUT...

4. Validate the content of the generated file:

user@server:~$ cat /etc/backup_config.json
"10.0.0.12"

5. Now you can access the backup_config.json file from within your
external scripts that are not managed by Chef.

How it works…
The file resource creates a JSON file in the /etc directory. It gets the

file's content directly from the data bag by using the data_bag_item
method. This method expects the name of the data bag as the first
argument and the name of the data bag item as the second argument. We
then can access the host value from the data bag item and convert it to
JSON.

The file resource uses this JSON-converted value as its content and
writes it to disk.

Now, any external script can read the value from that file.

There's more…
If you are sure that your data bag values don't get modified by the Chef
client run on the node, you could use the Chef API directly from your
script.

See also
Read more about how to do this at
https://stackoverflow.com/questions/10318919/how-to-access-
current-values-from-a-chef-data-bag
The Using data bags recipe in this chapter to learn how to handle
data bags

https://stackoverflow.com/questions/10318919/how-to-access-current-values-from-a-chef-data-bag

Getting information about the
environment
Sometimes, your recipes need to know details about the environment
they are modifying. I'm not talking about Chef environments but about
things such as Linux kernel versions, existing users, and network
interfaces.

Chef provides all this information via the node object. Let's look at how
to retrieve it.

Getting ready
Log in to any of your Chef-managed nodes and start chef-shell:

user@server:~$ sudo chef-shell --client
chef (12.16.42)>

How to do it…
Let's play around with the node object and look at what information it
stores:
1. List which information is available. The example shows the keys

available on a Vagrant VM. Depending on what kind of server you
work on, you'll find different data, as shown in the following:

chef > node.keys.sort
=> ["block_device", "chef_packages", "command", "counters",
"cpu", "current_user", "dmi", "domain", "etc",
"filesystem", "fqdn", "hostname", "idletime",
"idletime_seconds", "ip6address", "ipaddress", "kernel",
"keys", "languages", "lsb", "macaddress", "memory",
"network", "ntp", "ohai_time", "os", "os_version",
"platform", "platform_family", "platform_version",
"recipes", "roles", "root_group", "tags", "uptime",
"uptime_seconds", "virtualization"]

2. Get a list of network interfaces available:

chef > node['network']['interfaces'].keys.sort
=> ["enp0s3", "lo"]

3. List all the existing user accounts:

chef > node['etc']['passwd'].keys.sort
=> ["_apt", "backup", "bin", "daemon", "games", "gnats",
"irc", "libuuid", "list", "lp", "mail", "man",
"messagebus", "news", "nobody", "ntp", "proxy", "root",
"sshd", "sync", "sys", "syslog", "uucp", "vagrant",
"vboxadd", "www-data"]

4. Get the details of the root user:

chef > node['etc']['passwd']['root']
=> {"dir"=>"/root", "gid"=>0, "uid"=>0,
"shell"=>"/bin/bash", "gecos"=>"root"}

5. Get the code name of the installed Ubuntu distribution:

chef > node['lsb']['codename']
=> "xenial"

6. Find out which kernel modules are available:

chef > node['kernel']['modules'].keys.sort
=> ["8250_fintek", "ablk_helper", "aes_x86_64",
"aesni_intel", "ahci", "autofs4", "crc32_pclmul",
"crct10dif_pclmul", "cryptd", "drm", "drm_kms_helper",
"e1000", "fb_sys_fops", "fjes", "gf128mul", "glue_helper",
"i2c_piix4", "input_leds", "libahci", "lrw", "mac_hid",
"parport", "parport_pc", "pata_acpi", "ppdev", "psmouse",
"serio_raw", "sunrpc", "syscopyarea", "sysfillrect",
"sysimgblt", "ttm", "vboxguest", "vboxsf", "vboxvideo",
"video"]

How it works…
Chef uses Ohai to retrieve a node's environment. It stores the data found
by Ohai with the node object in a Hash-like structure called a Mash. In
addition to providing key-value pairs, it adds methods to the node object
to query the keys directly.

There's more…

You can use the exact same calls that we used in chef-shell inside your
recipes.

See also
Ohai is responsible for filling the node with all that information.
Read more about Ohai at https://docs.chef.io/ohai.html.

https://docs.chef.io/ohai.html

Writing cross-platform
cookbooks
Imagine you have written a great cookbook for your Ubuntu node and
now you need to run it on that CentOS server. Ouch! It will most
probably fail miserably. The package names might be different and the
configuration files are in different places.

Luckily, Chef provides you with a host of features to write cross-
platform cookbooks. With just a few simple commands, you can make
sure that your cookbook adapts to the platform that your node is running
on. Let's look at how to do this...

Getting ready
Make sure you have a cookbook called my_cookbook, and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

How to do it…
Retrieve the node's platform and execute the conditional logic in your
cookbook depending on the platform:
1. Log a message only if your node is on Ubuntu:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
Log.info("Running on ubuntu") if node.platform == 'ubuntu'

2. Upload the modified cookbook to your Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
--force
Uploading my_cookbook [0.1.0]
Uploaded 1 cookbook.

3. Log in to your node and run the Chef client to see whether it works:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-11-27T20:03:09+00:00] INFO: Running on Ubuntu
...TRUNCATED OUTPUT...

4. If you are not interested in a specific platform but you only need to
know whether you are running on a Debian derivative, you can
place the following line in your default recipe:

Log.info("Running on a debian derivative") if
platform_family?('debian')

5. Upload the modified cookbook and run the Chef client on an
Ubuntu node. It will show the following:

[2016-11-27T20:03:46+00:00] INFO: Running on a debian
derivative

How it works…
Ohai discovers the current node's operating system and stores it as
platform attribute with the node object. You can access it like any other
attribute by using the Hash syntax, as follows:

node['platform']

Chef knows which operating systems belong together. You can use this
knowledge by using the platform_family method from the Chef DSL.

You can then use basic Ruby conditionals, such as if, unless, or case,
to make your cookbook do platform-specific things.

There's more…
Let's take a closer look at what else is possible.

Avoiding case statements to set values based on the
platform

The Chef DSL offers these convenience methods: value_for_platform
and value_for_platform_family. You can use them to avoid complex

case statements and use a simple Hash instead. The runit cookbook, for
example, uses value_for_platform to pass the start command for the
runit service to the execute resource:

execute "start-runsvdir" do
 command value_for_platform(
 "debian" => { "default" => "runsvdir-start" },
 "ubuntu" => { "default" => "start runsvdir" },
 "gentoo" => { "default" => "/etc/init.d/runit-start start"
}
)
 action :nothing
end

The command will be runsvdir-start on Debian, start runsvdir on
Ubuntu, and will use an init.d script on Gentoo.

Tip

Some built-in resources have platform-specific providers. These
platform-specific providers will automatically be used by Chef. For
example, the group resource uses one of the following providers
depending on the platform:

Chef::Provider::Group::Dscl on Mac OS X

Chef::Provider::Group::Pw on FreeBSD

Chef::Provider::Group::Usermod on Solaris

Declaring support for specific operating systems in your
cookbook's metadata

If your cookbook is written for a well-defined set of operating systems,
you should list the supported platforms in your cookbook's metadata:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/metadata.rb
supports 'ubuntu'

If your cookbook supports multiple platforms, you can use a nice Ruby

shortcut to list all the platforms as a Ruby array of strings (using the %w
shortcut) and loop through that array to call supports for each platform:

%w(debian ubuntu redhat centos fedora scientific amazon
oracle).each do |os|
 supports os
end

See also
The Mixing plain Ruby with Chef DSL recipe in Chapter 3, Chef
Language and Style
The runit cookbook at https://github.com/chef-cookbooks/runit

https://github.com/chef-cookbooks/runit

Making recipes idempotent by
using conditional execution
Chef manages the configuration of your nodes. It is not simply an
installer for new software but you will run the Chef client on the existing
nodes, as well as new ones.

To speed up your Chef client runs on the existing nodes, you should
make sure that your recipes do not try to re-execute resources that have
already reached the desired state.

Running resources repeatedly will be a performance issue at best and
will break your servers at worst. Chef offers a way to tell resources not
to run or only to run if a certain condition is met. Let's look at how
conditional execution of resources works.

Getting ready
Make sure you have a cookbook called my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

How to do it…
Let's see how to use conditional execution in our cookbooks:
1. Edit your default recipe to trigger a callback only if you have set a

node attribute called enabled:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
http_request 'callback' do
 url node['my_cookbook']['callback']['url']
 only_if { node['my_cookbook']['callback']['enabled'] }
end

2. Add the attributes to your cookbook:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/attributes/default.rb
default['my_cookbook']['callback']['url'] =
'http://www.chef.io'
default['my_cookbook']['callback']['enabled'] = true

3. Upload your modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
--force
Uploading my_cookbook [0.1.0]

4. Run the Chef client on your node to test whether the HTTP request
was executed:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-11-27T20:15:13+00:00] INFO: http_request[callback]
GET to http://www.chef.io successful

 - http_request[callback] GET to http://www.chef.io
...TRUNCATED OUTPUT...

How it works…
You can use only_if and not_if with every resource. In our example,
we passed it a Ruby block. The Ruby block is surrounded with { and }.
In our case, the Ruby block simply queries a node attribute. Because we
set the enabled attribute to true, the Ruby block evaluates it to be true.
And because we used only_if, the resource is executed.

You can use the full power of Ruby to find out whether the resource
should run. Instead of using the curly braces, you can use do ... end to
surround a multiline Ruby block.

There's more…
Instead of passing a Ruby block, you can pass a string. The string will be
executed as a shell command, as shown in the following code:

http_request 'callback' do
 url node['my_cookbook']['callback']['url']
 only_if "test -f /etc/passwd"

end

In this example, Chef will execute the test command in a shell. If the
shell command returns the exit code 0, the resource will run.

See also
The Using attributes recipe in Chapter 3, Chef Language and Style
Learn more about conditional execution at
https://docs.chef.io/resource_common.html#guards

https://docs.chef.io/resource_common.html#guards

Chapter 5. Working with Files
and Packages

"The file is a gzipped tar file. Your browser is playing tricks with
you and trying to be smart."

Rasmus Lerdorf

In this chapter, we will cover the following recipes:
Creating configuration files using templates
Using pure Ruby in templates for conditionals and iterations
Installing packages from a third-party repository
Installing software from source
Running a command when a file is updated
Distributing directory trees
Cleaning up old files
Distributing different files based on the target platform

Introduction
Moving files around and installing software are the most common tasks
when setting up your nodes. In this chapter, we'll look at how Chef
supports you in dealing with files and software packages.

Creating configuration files using
templates
The term Configuration Management already says it loud and clear:
your recipes manage the configuration of your nodes. In most cases, the
system configuration is held in local files, on disk. Chef uses templates
to dynamically create configuration files from given values. It takes such
values from data bags or attributes, or even calculates them on-the-fly
before passing them into a template.

Let's see how we can create configuration files by using templates.

Getting ready
Make sure that you have a cookbook named my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

How to do it…
Let's use a template resource to create a configuration file:
1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
template "/etc/logrotate.conf" do
 source "logrotate.conf.erb"
 variables(
 how_often: "daily",
 keep: "31"
)
end

2. Add an ERB template file to your recipe in its default folder:

mma@laptop:~/chef-repo $ mkdir -p
cookbooks/my_cookbook/templates/default
mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/templates/default/logrotate.conf.erb

<%= @how_often %>
rotate <%= @keep %>
create

3. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

4. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-12-11T20:12:21+00:00] INFO:
template[/etc/logrotate.conf] updated file contents
/etc/logrotate.conf
 - update content in file /etc/logrotate.conf from
b44f70 to c5c92d
 --- /etc/logrotate.conf 2015-05-06
22:20:17.000000000 +0100
 +++
/var/folders/fz/dcb5y3qs4m5g1hk8zrxd948m0000gn/T/chef-
rendered-template20150109-63309-ly6vmk 2016-12-11
20:12:26.850020999 +0000
 @@ -1,37 +1,4 @@
 -# see "man logrotate" for details
 -# rotate log files weekly
 -weekly
 -
 -# use the syslog group by default, since this is the
owning group
 -# of /var/log/syslog.
 -su root syslog
 -
 -# keep 4 weeks worth of backlogs
 -rotate 4
 -
 -# create new (empty) log files after rotating old ones
 +daily
 +rotate 31
 create
...TRUNCATED OUTPUT...

5. Validate the content of the generated file:

user@server:~$ cat /etc/logrotate.conf
daily

rotate 31
create

How it works…
If you want to manage any configuration file by using Chef, you must
follow these steps:
1. Copy the desired configuration file from your node to your

cookbook's default directory under the templates folder.
2. Add the extension .erb to this copy.
3. Replace any configuration value that you want to manage with your

cookbook with an ERB statement printing out a variable. Chef will
create variables for every parameter that you define in the
variables call in your template resource. You can use it in your
template, like this:

<%= @variable_name -%>

4. Create a template resource in your recipe by using the newly
created template as the source, and pass all the variables you
introduced in your ERB file to it.

5. Running your recipe on the node will back up the original
configuration file to the backup_path that you configured in your
client.rb file (the default is /var/chef/backup) and replace it with
the dynamically generated version.

Tip

Whenever possible, try using attributes instead of hardcoding values in
your recipes.

There's more…
Be careful when a package update makes changes to the default
configuration files. You need to be aware of those changes and merge
them manually into your handcrafted configuration file template;
otherwise, you'll lose all the configuration settings you changed using
Chef.

Tip

To avoid accidental changes, it's usually a good idea to add a comment
at the top of your configuration file to say that it is managed by Chef.

See also
Read everything about templates at
https://docs.chef.io/templates.html
Learn more about templates in the Using templates recipe in
Chapter 3, Chef Language and Style

https://docs.chef.io/templates.html

Using pure Ruby in templates for
conditionals and iterations
Switching options on and off in a configuration file is a pretty common
thing. Since Chef uses ERB as its template language, you can use pure
Ruby to control the flow in your templates. You can use conditionals or
even loops in your templates.

Getting ready
Make sure that you have a cookbook called my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

How to do it…
Let's create a hypothetical configuration file listing the IP addresses of a
given set of backend servers. We only want to print that list if the flag
called enabled is set to true:
1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
template "/tmp/backends.conf" do
 mode "0444"
 owner "root"
 group "root"
 variables({
 :enabled => true,
 :backends => ["10.0.0.10", "10.0.0.11", "10.0.0.12"]
 })
end

2. Create your template:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/templates/default/backends.conf.erb
<%- if @enabled %>
 <%- @backends.each do |backend| %>

 <%= backend %>
 <%- end %>
<%- else %>
 No backends defined!
<%- end %>

3. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

4. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2015-01-09T10:37:45+01:00] INFO:
template[/tmp/backends.conf] created file
/tmp/backends.conf
 - create new file /tmp/backends.conf[2015-01-
09T10:37:45+01:00] WARN: Could not set gid = 0 on
/var/folders/fz/dcb5y3qs4m5g1hk8zrxd948m0000gn/T/chef-
rendered-template20150109-63512-1y8uas4, file modes not
preserved
[2015-01-09T10:37:45+01:00] INFO:
template[/tmp/backends.conf] updated file contents
/tmp/backends.conf
 - update content in file /tmp/backends.conf from none
to 68b086
 --- /tmp/backends.conf 2015-01-09
10:37:45.000000000 +0100
 +++
/var/folders/fz/dcb5y3qs4m5g1hk8zrxd948m0000gn/T/chef-
rendered-template20150109-63512-1y8uas4 2015-01-09
10:37:45.000000000 +0100
 @@ -1 +1,4 @@
 + 10.0.0.10
 + 10.0.0.11
 + 10.0.0.12
...TRUNCATED OUTPUT...

5. Validate the content of the generated file:

user@server:~$ cat /tmp/backends.conf
 10.0.0.10
 10.0.0.11
 10.0.0.12

How it works…
You can use plain Ruby in your templates. We will mix two concepts in
our example. First, we use an if-else block to decide whether we
should print a list of IP addresses or just a message. If we are going to
print a list of IP addresses, we will use a loop to go through all of them.

Let's have a look at the conditional:

<%- if @enabled %>
...
<%- else %>
 No backends defined!
<%- end %>

We either pass true or false as the value of the variable called enabled.
You can access the given variables directly in your template. If we pass
true, the first block of Ruby code will be executed while rendering the
template. If we pass false, Chef will render the string No backends
defined! as the content of the file.

Tip

You can use <%- %> if you want to embed Ruby logic into your template
file.

Now, let's see how we loop through the list of IPs:

 <%- @backends.each do |backend| %>
 <%= backend %>
 <%- end %>

We pass an array of strings as the value of the backends variable. In the
template, we use the each iterator to loop through the array. While
looping, Ruby assigns each value to the variable that we define as the
looping variable between the | characters. Inside the loop, we simply
print the value of each array element.

While it is possible to use the full power of Ruby inside your templates,

it is a good idea to keep them as simple as possible. It is better to put
more involved logic into your recipes and pass precalculated values to
the template. You should limit yourself to simple conditionals and loops
to keep templates simple.

There's more…
You can use conditionals to print strings, as shown in the following code:

<%= "Hello world!" if @enabled -%>

If you use this in your template, the string Hello world! will be printed
only if the variable enabled is set to true.

See also
Read more about templates in the Using templates recipe in Chapter
3, Chef Language and Style
Find more explanations and examples of templates at
https://docs.chef.io/templates.html

https://docs.chef.io/templates.html

Installing packages from a third-
party repository
Even though the Ubuntu package repository contains many up-to-date
packages, you might encounter situations in which the package you need
is either missing or outdated. In such cases, you can either use third-
party repositories or your own repositories (containing self-made
packages). Chef makes it simple to use additional APT repositories with
the apt cookbook.

Getting ready
Make sure that you have a cookbook called my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

Let's retrieve the required apt cookbook:
1. Add it to Berksfile:

mma@laptop:~/chef-repo $ subl Berksfile
source 'https://supermarket.getchef.com'
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'
cookbook 'apt','~> 5.0.0'

2. Install it to your local workstation:

mma@laptop:~/chef-repo $ berks install
Resolving cookbook dependencies...
Fetching cookbook index from https://supermarket.chef.io...
Using compat_resource (12.16.2)
Installing apt (5.0.0)

3. Upload it to your Chef server:

mma@laptop:~/chef-repo $ berks upload
Uploaded apt (5.0.0) to:
'https://api.opscode.com:443/organizations/awo'

Tip

Remember that, if you're using Vagrant and have installed the Berkshelf
plugin, all you need to run is vagrant provision to get the apt
cookbook installed on your node.

How to do it…
Let's look at how you can make the Cloudera tool sentry available on
your Ubuntu node:
1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
apt_repository 'cloudera' do
 uri
'http://archive.cloudera.com/cdh4/ubuntu/precise/amd64/cdh'
 arch 'amd64'
 distribution 'precise-cdh4'
 components ['contrib']
 key
'http://archive.cloudera.com/debian/archive.key'
end

2. Upload the modified my_cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

3. Validate that the default repository doesn't know the sentry
package:

user@server:~$ apt-cache showpkg sentry
N: Unable to locate package sentry

4. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-12-11T20:50:47+00:00] INFO: execute[apt-get -q
update] ran successfully

 - execute apt-get –q update
...TRUNCATED OUTPUT...

5. Ensure that the sentry package is now available:

user@server:~$ apt-cache showpkg sentry
Package: sentry
Versions:
1.1.0+23-1.cdh4.7.0.p0.17~precise-cdh4.7.0
(/var/lib/apt/lists/archive.cloudera.com_cdh4_ubuntu_precis
e_amd64_cdh_dists_precise-cdh4_contrib_binary-
amd64_Packages)
 Description Language:
 File:
/var/lib/apt/lists/archive.cloudera.com_cdh4_ubuntu_precise
_amd64_cdh_dists_precise-cdh4_contrib_binary-amd64_Packages
 MD5: 99d2800702103eccb351d8ea1a093e56
Reverse Depends:
Dependencies:
1.1.0+23-1.cdh4.7.0.p0.17~precise-cdh4.7.0 - hadoop-hdfs (0
(null)) hive (0 (null))
Provides:
1.1.0+23-1.cdh4.7.0.p0.17~precise-cdh4.7.0 -
Reverse Provides:

How it works…
Chef defines the apt_repository resource.

We can add the third-party repository by using the apt_repository
resource:

apt_repository 'cloudera' do
 uri
'http://archive.cloudera.com/cdh4/ubuntu/precise/amd64/cdh'
 arch 'amd64'
 distribution 'precise-cdh4'
 components ['contrib']
 key 'http://archive.cloudera.com/debian/archive.key'
end

After adding the third-party repository, we could install the desired
package from the command line:

user@server:~$ sudo apt install sentry

Even better, we could install it from within our recipe:

package 'sentry' do

 action :install
end

See also
Learn more about the apt cookbook at https://github.com/chef-
cookbooks/apt

https://github.com/chef-cookbooks/apt

Installing software from source
If you need to install a piece of software that is not available as a
package for your platform, you will need to compile it yourself.

In Chef, you can easily do this by using the script resource. What is
more challenging is to make such a script resource idempotent – that
means that it can be applied multiple times without changing the result
beyond the initial application.

In the following recipe, we will see how to do both.

Getting ready
Make sure that you have a cookbook called my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

Retrieve the required cookbooks:
1. Add them to your Berksfile:

mma@laptop:~/chef-repo $ subl Berksfile
source 'https://supermarket.chef.io'
cookbook 'apt', '~> 5.0.0'
cookbook 'build-essential', '~> 7.0.2'

2. Install them on your local workstation:

mma@laptop:~/chef-repo $ berks install
Resolving cookbook dependencies...
Fetching cookbook index from https://supermarket.chef.io...
Installing apt (5.0.0)
Installing compat_resource (12.16.2)
Installing build-essential (7.0.2)
...TRUNCATED OUTPUT...

3. Upload them to your Chef server:

mma@laptop:~/chef-repo $ berks upload
Uploaded apt (5.0.0) to:
'https://api.opscode.com:443/organizations/awo'

...TRUNCATED OUTPUT...
Uploaded windows (2.1.1) to:
'https://api.opscode.com:443/organizations/awo'

Tip

Remember that, if you're using Vagrant and have installed the Berkshelf
plugin, all you need to run is vagrant provision to get the required
cookbooks installed on your node.

How to do it…
The nginx community cookbook has a recipe to install nginx from
source. The following example only illustrates how you can install any
software from source.

Let's take nginx as a well-known example of installing from source:
1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
include_recipe "apt"
include_recipe "build-essential"
version = "1.11.6"
bash "install_nginx_from_source" do
 cwd Chef::Config['file_cache_path']
 code <<-EOH
 wget http://nginx.org/download/nginx-#{version}.tar.gz
 tar zxf nginx-#{version}.tar.gz &&
 cd nginx-#{version} &&
 ./configure --without-http_rewrite_module && make &&
make install
 EOH
 not_if "test -f /usr/local/nginx/sbin/nginx"
end

2. Edit your cookbook's metadata to add the required dependencies:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/metadata.rb
...
depends "apt", '~> 5.0.0'
depends "build-essential", '~> 7.0.0'

3. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

4. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
 make[1]: Leaving directory
'/var/chef/cache/nginx-1.11.6'
[2016-12-12T20:11:47+00:00] INFO:
bash[install_nginx_from_source] ran successfully
 - execute "bash" "/tmp/chef-script20161212-11144-
1jmsedb"
...TRUNCATED OUTPUT...

5. Validate that nginx is installed:

user@server:~$ /usr/local/nginx/sbin/nginx -v
nginx version: nginx/1.11.6

How it works…
The bash resource executes only if the nginx executable is not yet
present. Our not_if block tests for this.

To be able to compile code on your node, you'll need to have the build
essentials installed. That's why you need to include the build-essential
cookbook before you run your script to make sure you have a compiler
installed.

Before Chef runs the script given as code, it changes into the working
directory that is given as cwd. We use Chef's file cache directory instead
of /tmp because the contents of /tmp might get deleted during a reboot.
To avoid downloading the source tarball again, we need to keep it at a
permanent location.

Tip

Usually, you would retrieve the value for the version variable from an
attribute defined in my_cookbook/attributes/default.rb.

The script itself simply unpacks the tarball and configures, prepares, and
installs nginx. We chain the commands using && to avoid running the
following commands if an earlier one fails:

<<-EOH
...
EOH

Tip

The preceding code is a Ruby construct that denotes multiline strings.

There's more…
Right now, this recipe will download the source tarball repeatedly, even
if it is already there (at least if the nginx binary is not found). You can
use the remote_file resource instead of calling wget in your bash script.
The remote_file resource is idempotent: if you include the checksum of
the file, it will only download it if needed.

Change your default recipe in the following way to use the remote_file
resource:

include_recipe 'apt'
include_recipe 'build-essential'

version = "1.11.6"

remote_file "fetch_nginx_source" do
 source "http://nginx.org/download/nginx-#{version}.tar.gz"
 path "#{Chef::Config['file_cache_path']}/nginx-#
{version}.tar.gz"
end

bash "install_nginx_from_source" do
 cwd Chef::Config['file_cache_path']
 code <<-EOH
 tar zxf nginx-#{version}.tar.gz &&
 cd nginx-#{version} &&
 ./configure --without-http_rewrite_module &&
 make && make install
 EOH
 not_if "test -f /usr/local/nginx/sbin/nginx"

end

See also
Find the full nginx source recipe of GitHub at
https://github.com/miketheman/nginx
Read more about this at
http://stackoverflow.com/questions/8530593/chef-install-and-
update-programs-from-source

https://github.com/miketheman/nginx
http://stackoverflow.com/questions/8530593/chef-install-and-update-programs-from-source

Running a command when a file
is updated
If your node is not under complete Chef control, it might be necessary to
trigger commands when Chef changes a file. For example, you might
want to restart a service that is not managed by Chef when its
configuration file (which is managed by Chef) changes. Let's see how
you can achieve this with Chef.

Getting ready
Make sure that you have a cookbook called my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

How to do it...
Let's create an empty file as a trigger and run a bash command, if that
file changes:
1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
template "/tmp/trigger" do
 notifies :run, "bash[run_on_trigger]", :immediately
end

bash "run_on_trigger" do
 user "root"
 cwd "/tmp"
 code "echo 'Triggered'"
 action :nothing
end

2. Create an empty template:

mma@laptop:~/chef-repo $ touch
cookbooks/my_cookbook/templates/default/trigger.erb

3. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

4. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
 * template[/tmp/trigger] action create[2016-12-
12T20:19:55+00:00] INFO: template[/tmp/trigger] created
file /tmp/trigger

 - create new file /tmp/trigger[2016-12-
12T20:19:55+00:00] INFO: template[/tmp/trigger] updated
file contents /tmp/trigger

 - update content in file /tmp/trigger from none to
e3b0c4
 (no diff)
[2016-12-12T20:19:55+00:00] INFO: template[/tmp/trigger]
sending run action to bash[run_on_trigger] (immediate)
 * bash[run_on_trigger] action run
 [execute] Triggered
[2016-12-12T20:19:55+00:00] INFO: bash[run_on_trigger] ran
successfully
 - execute "bash" "/tmp/chef-script20161212-16083-
10924mj"
...TRUNCATED OUTPUT...

5. Run the Chef client again to verify that the run_on_trigger script
does not get executed again:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
Recipe: my_cookbook::default
 * template[/tmp/trigger] action create (up to date)
...TRUNCATED OUTPUT...

How it works…
We define a template resource and tell it to notify our bash resource
immediately. Chef will notify the bash resource only if the template
resource changes the file. To make sure that the bash script runs only
when notified, we define its action as nothing.

We see in the output of the first Chef client run (which created the
trigger file) that the bash script was executed:

bash[run_on_trigger] ran successfully

We see in the output of the second Chef client run that this message is
missing. Chef did not execute the script because it did not modify the
trigger file.

There's more…
Instead of a template, you can let a file, or remote_file resource, trigger
a bash script. When compiling programs from source, you will download
the source tarball using a remote_file resource. This resource will
trigger a bash resource to extract and compile the program.

See also
The Installing software from source recipe in this chapter

Distributing directory trees
You need to seed a directory tree on your nodes. It might be a static
website or some backup data that is needed on your nodes. You want
Chef to make sure that all the files and directories are there on your
nodes. Chef offers the remote_directory resource to handle this
scenario. Let's see how you can use it.

Getting ready
Make sure you have a cookbook called my_cookbook, and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

How to do it…
Let's upload a directory with some files to our node:
1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
remote_directory "/tmp/chef.github.com" do
 files_backup 10
 files_owner "root"
 files_group "root"
 files_mode 00644
 owner "root"
 group "root"
 mode 00755
end

2. Create a directory structure on your workstation with files that you
want to upload to your node. In this example, I am using a plain
GitHub pages directory, which contains a static website. To follow
along, you can use whatever directory structure you want; just be
careful that it doesn't get so big that it takes hours to upload. Just
move the directory to the files/default directory inside your
cookbook:

mma@laptop:~/chef-repo $ mv chef.github.com
cookbooks/my_cookbook/files/default

Note

Chef will not upload empty directories.
3. Upload the modified cookbook on the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

4. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-12-12T20:20:58+00:00] INFO:
remote_directory[/tmp/chef.github.com] created directory
/tmp/chef.github.com

 - create new directory /tmp/chef.github.com
 Recipe: <Dynamically Defined Resource>
 * directory[/tmp/chef.github.com/images] action create
[2016-12-12T20:20:58+00:00] INFO: Processing
directory[/tmp/chef.github.com/images] action create
(dynamically defined)
[2016-12-12T20:20:58+00:00] INFO:
directory[/tmp/chef.github.com/images] created directory
/tmp/chef.github.com/images

 - create new directory /tmp/chef.github.com/images
[2016-12-12T20:20:58+00:00] INFO:
directory[/tmp/chef.github.com/images] owner changed to 0
[2016-12-12T20:20:58+00:00] INFO:
directory[/tmp/chef.github.com/images] group changed to 0
[2016-12-12T20:20:58+00:00] INFO:
directory[/tmp/chef.github.com/images] mode changed to 644

 - change mode from '' to '0644'
 - change owner from '' to 'root'
 - change group from '' to 'root'
 ...TRUNCATED OUTPUT...

5. Validate that the directory and its files are there on the node:

user@server:~$ ls -l /tmp/chef.github.com
total 16

4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 images
4 -rw-r--r-- 1 root root 3383 Mar 22 08:36 index.html
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 javascripts
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 stylesheets

How it works…
You need to put the directory that you want to distribute to your nodes
into your cookbook under the default folder of files. The
remote_directory resource picks it up from there and uploads it to your
nodes. By default, the name of the resource (in our example,
/tmp/chef.github.com) will act as the target directory.

Tip

Be careful not to put very heavy directory structures into your
cookbooks. You will not only need to distribute them to every node but
also to your Chef server.

There's more…
While you could use the remote_directory resource to deploy your
applications, there are better ways to do this. Either you could use any
of Chef's application cookbooks that are available, for example, for
Ruby (application_ruby) or PHP (application_php) applications, or
you could use tools such as Capistrano or Mina for deployment.

See also
The Distributing different files based on the target platform recipe
in this chapter
Find out more about GitHub Pages at http://pages.github.com/
The documentation for the remote_directory resource can be found
at https://docs.chef.io/chef/resources.html#remote-directory
Find the application_ruby cookbook at
https://supermarket.chef.io/cookbooks/application_ruby
Find the application_php cookbook at
https://supermarket.chef.io/cookbooks/application_php
Find more about Capistrano at http://www.capistranorb.com/

http://pages.github.com/
https://docs.chef.io/chef/resources.html#remote-directory
https://supermarket.chef.io/cookbooks/application_ruby
https://supermarket.chef.io/cookbooks/application_php
http://www.capistranorb.com/

Find more about Mina at http://nadarei.co/mina/

http://nadarei.co/mina/

Cleaning up old files
What happens if you want to remove a software package from your
node? You should be aware that Chef does not undo its changes.
Removing a resource from your cookbook does not mean that Chef will
remove the resource from your nodes. You need to do this by yourself.

Tip

In today's infrastructure, it's far better to replace a node than try to clean
things up with Chef.

Getting ready
Make sure that you have a cookbook called my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

Make sure that you have a remote_directory resource in my_cookbook,
as described in the Distributing directory trees recipe.

How to do it…
Let's remove the remote_directory resource from my_cookbook and see
what happens:
1. Edit your cookbook's default recipe and remove the

remote_directory resource:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
there used to be the remote_directory resource

2. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

3. Run the Chef client on your node:

user@server:~$ sudo chef-client

...TRUNCATED OUTPUT...

...TRUNCATED OUTPUT...

4. Validate that the directory and its files are still there on the node:

user@server:~$ ls -l /tmp/chef.github.com
total 16
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 images
4 -rw-r--r-- 1 root root 3383 Mar 22 08:36 index.html
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 javascripts
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 stylesheets

Now let's explicitly remove the directory structure:
1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
directory "/tmp/chef.github.com" do
 action :delete
 recursive true
end

2. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

3. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-12-12T20:41:02+00:00] INFO:
remote_directory[/tmp/chef.github.com] deleted
/tmp/chef.github.com recursively

 - delete existing directory /tmp/chef.github.com
...TRUNCATED OUTPUT...

4. Validate that the directory and its files are deleted from the node:

user@server:~$ ls -l /tmp/chef.github.com
ls: cannot access /tmp/chef.github.com: No such file or
directory

How it works…
Removing a resource from your cookbook will lead to Chef not knowing
anything about it anymore. Chef does not touch things that are not
defined in cookbooks, even if it might have created them once.

To clean up stuff you created using Chef, you need to put the reverse
actions into your cookbooks. If you created a directory using Chef, you
need to explicitly delete it by using the directory resource with action
:delete in your cookbook.

The directory resource is idempotent. Even if the directory is already
deleted, it will run fine and simply do nothing.

There's more…
If you upload a directory structure by using the remote_directory
resource, you can use the purge parameter to delete files within that
directory structure if they are no longer in your cookbook. In this case,
you do not need to delete each file by using a file resource with the
delete action:

remote_directory "/tmp/chef.github.com" do
 ...
 purge true
end

See also
The Distributing directory trees recipe in this chapter
Learn more about the directory resource at
https://docs.chef.io/resource_directory.html
Learn more about the remote_directory resource at
https://docs.chef.io/chef/resources.html#remote-directory

https://docs.chef.io/resource_directory.html
https://docs.chef.io/chef/resources.html#remote-directory

Distributing different files based
on the target platform
If you have nodes with different operating systems, such as Ubuntu and
CentOS, you might want to deliver different files to each of them. There
might be differences in the necessary configuration options and the like.
Chef offers a way for files and templates to differentiate which version
to use, based on a node's platform.

Getting ready
Make sure that you have a cookbook called my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

How to do it…
Let's add two templates to our cookbook and see which one gets used:
1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
template "/tmp/message" do
 source "message.erb"
end

2. Create a template as a default:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/templates/default/message.erb
Hello from default template!

3. Create a template only for Ubuntu 16.04 nodes:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/templates/ubuntu-16.04/message.erb
Hello from Ubuntu 16.04!

4. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ knife cookbook upload my_cookbook
Uploading my_cookbook [0.1.0]

5. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-12-12T20:42:48+00:00] INFO: template[/tmp/message]
created file /tmp/message

 - create new file /tmp/message
[2016-12-12T20:42:48+00:00] WARN: Could not set gid = 0 on
/var/folders/fz/dcb5y3qs4m5g1hk8zrxd948m0000gn/T/chef-
rendered-template20150115-74876-coftw0, file modes not
preserved
[2016-12-12T20:42:48+00:00] INFO: template[/tmp/message]
updated file contents /tmp/message

 - update content in file /tmp/message from none to
01666e
...TRUNCATED OUTPUT...

6. Validate that the Ubuntu-specific template has been used:

user@server:~$ sudo cat /tmp/message
Hello from Ubuntu 16.04!

How it works…
Chef tries to use the most specific template for a given platform by
looking for templates in the following order, if the given platform is
Ubuntu 16.04:

my_cookbook/templates/my_node.example.com/message.erb
my_cookbook/templates/ubuntu-16.04/message.erb
my_cookbook/templates/ubuntu-16/message.erb
my_cookbook/templates/ubuntu/message.erb
my_cookbook/templates/default/message.erb

Chef takes the first hit. If there is a file in a directory with the same
name as the fully qualified domain name (FQDN) of the node, it will
take that one.

If not, it will look through the other directories (if they exist), such as

ubuntu-16.04 or ubuntu-16, and so on.

This enables you to make sure each platform gets tailored templates. If
the template is platform-agnostic, it's sufficient to keep it in the
templates/default directory. The default directory is the only
directory that is mandatory.

See also
Learn more about this in the Using templates recipe in Chapter 4,
Writing Better Cookbooks
Find more details about file specificity at
https://docs.chef.io/resource_template.html#file-specificity

https://docs.chef.io/resource_template.html#file-specificity

Chapter 6. Users and
Applications

"The system should treat all user input as sacred."

Jef Raskin

In this chapter, we will cover the following recipes:
Creating users from data bags
Securing the Secure Shell daemon
Enabling passwordless sudo
Managing NTP
Installing nginx from source
Creating nginx virtual hosts
Creating MySQL databases and users
Managing Ruby on Rails applications
Managing Varnish
Managing your local workstation with Chef Pantry

Introduction
In this chapter, we'll see how to manage the user accounts on your nodes
with Chef. This is one of the fundamental things you can start your
infrastructure automation efforts with.

After dealing with users, we'll look at how to install and manage more
advanced applications. Our examples cover a web application stack
using nginx as a web server, MySQL as a database, and Ruby on Rails
for the web application.

We'll close the chapter by learning how to manage your local
workstation with Chef.

Creating users from data bags
When managing a set of servers, it's important to make sure that the
right people (and only them) have access. You don't want a shared
account whose password is known by everyone. You don't want to
hardcode any users into your recipes either, because you want to
separate logic and data.

Chef helps you to manage users on your nodes using data bags for your
users and allow a recipe to create and remove users, accordingly.

Let's look at how you can do that.

Getting ready
Make sure that you have a cookbook named my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks section in Chapter 1, Chef
Infrastructure.

Create a Berksfile in your Chef repository that includes my_cookbook:

mma@laptop:~/chef-repo $ subl Berksfile
source 'https://supermarket.chef.io'

cookbook 'my_cookbook', path: './cookbooks/my_cookbook'

Make sure that you have a public SSH key available for your user by
following the instructions at http://git-scm.com/book/en/v2/Git-on-the-
Server-Generating-Your-SSH-Public-Key.

How to do it…
First, we need to set up the data bag and at least one data bag item for
our first user:
1. Create a data bag for your users:

mma@laptop:~/chef-repo $ knife data bag create users

http://git-scm.com/book/en/v2/Git-on-the-Server-Generating-Your-SSH-Public-Key

Created data_bag[users]

2. Create a directory for your data bag item's JSON files:

mma@laptop:~/chef-repo $ mkdir -p data_bags/users

3. Create a data bag item for your first user. Keep the username as the
filename (here, mma). You need to replace ssh-rsa AAA345...bla==
mma@laptop with the contents of your public key file:

mma@laptop:~/chef-repo $ subl data_bags/users/mma.json

{
 "id": "mma",
 "ssh_keys": [
 "ssh-rsa AAA345...bla== mma@laptop"
],
 "groups": ["staff"],
 "shell": "\/bin\/bash"
}

4. Upload the data bag item to the Chef server:

mma@laptop:~/chef-repo $ knife data bag from file users
mma.json
Updated data_bag_item[users::mma]

Tip

Because the Chef server indexes data bags, it can take a few
minutes until a new data bag is available for use. If you encounter
an error, please wait a few minutes and then try again.

Now it's time to set up the recipe to manage your users:
1. Edit your cookbook's metadata.rb to include the dependency on the

users cookbook:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/metadata.rb
depends "users", "~> 4.0.3"

2. Install your cookbook's dependencies:

mma@laptop:~/chef-repo $ berks install

...TRUNCATED OUTPUT...
Installing users (4.0.3)
Using my_cookbook (0.1.0) from source at
cookbooks/my_cookbook

3. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
include_recipe "users"

users_manage "staff" do
 group_id 50
 action [:remove, :create]
end

4. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to:
'https://api.chef.io:443/organizations/awo'
...TRUNCATED OUTPUT...

5. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
 * users_manage[staff] action remove (up to date)
 * users_manage[staff] action create
 * group[mma] action create (skipped due to only_if)
 * linux_user[mma] action create[2016-12-
13T06:54:00+00:00] INFO: linux_user[mma] created
...TRUNCATED OUTPUT...

6. Validate that the user, mma, exists:

user@server:~$ fgrep mma /etc/passwd
mma:x:1000:1000::/home/mma:/bin/bash

7. Validate that the user, mma, belongs to the group staff now:

user@server:~$ fgrep staff /etc/group
staff:x:50:mma

How it works…

The users cookbook requires that you create a users data bag and one
data bag item for each user. In that data bag item, you define the
attributes of the user: groups, shell, and so on. You even can include an
action attribute, which defaults to create but could be remove as well.

To be able to manage users with my_cookbook, you need to include the
users cookbook as a dependency. In your recipe, you can include the
users cookbook's default recipe in order to be able to use the
manage_users custom resource provided by the users cookbook.

The manage_users custom resource takes its name attribute "staff" as
the group name it should manage. It searches for data bag items that
have this group in their groups entry, and uses every entry found to
create those users and groups.

Tip

The manage_users custom resource replaces group members; existing
(non-Chef-managed) users will get thrown out of the given group (bad,
if you manage the sudo group on Vagrant).

By passing both actions, :create and :remove, into the custom resource,
we make sure that it searches for both users to remove and users to add.

There's more…
Let's look at how you can remove a user:
1. Edit the data bag item for your first user, setting action to remove:

mma@laptop:~/chef-repo $ subl data_bags/users/mma.json
{
 "id": "mma",
 "ssh_keys": [
 "ssh-rsa AAA345...bla== mma@laptop"
],
 "groups": ["staff"],
 "shell": "\/bin\/bash",
 "action": "remove"
}

2. Upload the data bag item to the Chef server:

mma@laptop:~/chef-repo $ knife data bag from file users
mma.json
Updated data_bag_item[users::mma]

3. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
- remove user user[mma]
...TRUNCATED OUTPUT...

4. Validate that the user mma does not exist anymore:

user@server:~$ fgrep mma /etc/passwd
...NO OUTPUT...

Tip

If the user you want to remove is currently logged on, you will get an
error. This happens because the underlying operating system command
userdel cannot remove the user (and exits with return code 8):

Chef::Exceptions::Exec

userdel mma returned 8, expected 0

See also
Find the users cookbook on GitHub at https://github.com/chef-
cookbooks/users
The Using data bags recipe in Chapter 4, Writing Better Cookbooks

https://github.com/chef-cookbooks/users

Securing the Secure Shell daemon
Depending on your Linux flavor, the SSH daemon might listen on all
network interfaces on the default port, and allow root logins using
passwords instead of keys.

This default configuration is not very safe. Automated scripts can try to
guess the root password. You're at the mercy of the strength of your root
password.

It's a good idea to make things stricter. Let's see how you can do this.

Getting ready
Create a user who can log in using his SSH key instead of a password.
Doing this with Chef is described in the Creating users from data bags
recipe in this chapter.

Tip

If you're using Vagrant, you can SSH into your node using the
information given by running vagrant ssh-config.

For the default configuration, this command should work (replace mma
with your username):

mma@laptop:~/chef-repo $ ssh mma@127.0.0.1 -p 2222

Make sure that you have a cookbook named my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure:

Create a Berksfile in your Chef repository including my_cookbook:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'

Tip

Note that making a mistake while configuring sshd might lock you out of
your system. Make sure you have an open SSH connection with root
access to fix what an error in your cookbook might have broken!

How to do it…
We'll secure sshd by disabling the root login (you should use sudo
instead) and by disabling password logins. Users should only be able to
log in using their SSH key.
1. Edit your cookbook's metadata.rb and add a dependency on the

openssh cookbook:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/metadata.rb
...
depends "openssh","~> 0.1.0"

2. Install your cookbook's dependencies:

mma@laptop:~/chef-repo $ berks install
Resolving cookbook dependencies...
...TRUNCATED OUTPUT...
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'

3. Edit your cookbook's default recipe:

Tip

When writing production-ready cookbooks, it's better to change
attributes in attributes/default.rb instead of inside the recipe.

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
node.default['openssh']['server']['permit_root_login'] =
"no"
node.default['openssh']['server']
['password_authentication'] = "no"

include_recipe 'openssh'

4. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...

Uploading my_cookbook (0.1.0) to:
'https://api.opscode.com:443/organizations/awo'
...TRUNCATED OUTPUT...

5. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-12-13T08:09:18+00:00] INFO:
template[/etc/ssh/sshd_config] sending restart action to
service[ssh] (delayed)
 * service[ssh] action restart[2015-02-09T20:15:22+00:00]
INFO: service[ssh] restarted

 - restart service service[ssh]
...TRUNCATED OUTPUT...

6. Validate the content of the generated file:

user@server:~$ cat /etc/ssh/sshd_config
This file was generated by Chef for vagrant.vm
Do NOT modify this file by hand!

ChallengeResponseAuthentication no
UsePAM yes
PermitRootLogin no
PasswordAuthentication no

How it works…
The openssh cookbook offers attributes for most configuration
parameters in ssh_config and sshd_config. We override the default
values in our cookbook and include the openssh default recipe.

The order is significant here because, this way, the openssh recipe will
use our overridden values instead of its default values.

The openssh cookbook writes the /etc/ssh/sshd_config file and
restarts the sshd service. After running this recipe, you will no longer be
able to SSH into the node using a password.

There's more…

If your nodes are connected to a Virtual Private Network (VPN) by
using a second network interface, it's a good idea to bind sshd to that
secure network only. This way, you block anyone from the public
Internet trying to hack into your sshd.

You can override listen_address in your cookbook:

node.default['openssh']['server']['listen_address']

If your nodes need to be accessible via the Internet, you might want to
move sshd to a higher port to avoid automated attacks:

node.default['openssh']['server']['port'] = '6222'

In this case, you need to use -p 6222 with your ssh commands in order
to be able to connect to your nodes.

Note

Moving sshd to a non-privileged port adds one layer of security, but
comes at the cost of moving from a privileged port to a non-privileged
port on your node. This creates the risk of someone on your box
hijacking that port. Read more about the implications at
http://www.adayinthelifeof.nl/2012/03/12/why-putting-ssh-on-another-
port-than-22-is-bad-idea/.

See also
Find the openssh cookbook on GitHub at https://github.com/chef-
cookbooks/openssh
Find a detailed list of all attributes the openssh cookbook supplies to
configure sshd at https://github.com/chef-
cookbooks/openssh/blob/master/attributes/default.rb

http://www.adayinthelifeof.nl/2012/03/12/why-putting-ssh-on-another-port-than-22-is-bad-idea/
https://github.com/chef-cookbooks/openssh
https://github.com/chef-cookbooks/openssh/blob/master/attributes/default.rb

Enabling passwordless sudo
You have secured your sshd so that users can only log in with their own
user accounts, instead of root. Additionally, you made sure that your
users do not need passwords, but have to use their private keys for
authentication.

However, once authenticated, users want to administer the system.
That's why it is a good idea to have sudo installed on all boxes. Sudo
enables non-root users to execute commands as root, if they're allowed
to. Sudo will log all such command executions.

To make sure that your users don't need passwords here, you should
configure sudo for passwordless logins. Let's take a look at how to do
this.

Getting ready
Make sure that you have a cookbook named my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

Create a Berksfile in your Chef repository including my_cookbook:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'

How to do it…
Let Chef modify the sudo configuration to enable passwordless sudo
for the staff group:
1. Edit your cookbook's metadata.rb and add the dependency on the

sudo cookbook:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/metadata.rb
...
depends "sudo","~> 3.1.0"

2. Install your cookbook's dependencies:

mma@laptop:~/chef-repo $ berks install
Installing sudo (3.1.0)
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'

3. Edit your cookbook's default recipe:

Tip

When writing production-ready cookbooks, it's better to change
attributes in attributes/default.rb instead of inside the recipe.

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
node.default['authorization']['sudo']['passwordless'] =
true
node.default['authorization']['sudo']['groups'] = ['staff',
'vagrant']

include_recipe 'sudo'

Tip

Vagrant users: If you are working with a Vagrant-managed VM,
make sure to include the vagrant group in the sudo configuration;
otherwise, your vagrant user will not be able to sudo anymore.

4. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to:
'https://api.opscode.com:443/organizations/awo'
Uploaded sudo (3.1.0) to:
'https://api.opscode.com:443/organizations/awo'

5. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
 * template[/etc/sudoers] action create[2016-12-
13T08:14:52+00:00] INFO: template[/etc/sudoers] backed up
to /var/chef/backup/etc/sudoers.chef-20161213081452.882702
[2016-12-13T08:14:52+00:00] INFO: template[/etc/sudoers]
updated file contents /etc/sudoers

 - update content in file /etc/sudoers from 9093e5 to
0c9e82
 --- /etc/sudoers 2016-07-28 07:45:22.288000000 +0000
 +++ /etc/.chef-sudoers20161213-18429-9w296h 2016-12-13
08:14:52.876403927 +0000
...TRUNCATED OUTPUT...

6. Validate the content of the generated sudoers file:

user@server:~$ sudo cat /etc/sudoers
...
Members of the group 'staff' may gain root privileges
%staff ALL=(ALL) NOPASSWD:ALL
Members of the group 'vagrant' may gain root privileges
%vagrant ALL=(ALL) NOPASSWD:ALL

How it works…
The sudo cookbook rewrites the /etc/sudoers file by using the attribute
values that we set in the node. In our case, we set the following:

node.default['authorization']['sudo']['passwordless'] = true

This will tell the sudo cookbook that we want to enable our users to sudo
without passwords.

Then we tell the sudo cookbook which groups should have
passwordless sudo rights:

node.default['authorization']['sudo']['groups'] = ['staff',
'vagrant']

The last step is to include the sudo cookbook's default recipe to let it
install and configure sudo on your nodes:

include_recipe 'sudo'

There's more…
By using the custom resource from the sudo cookbook, you can manage
each group or user individually. The custom resource will place

configuration fragments inside /etc/sudoers.d. You can employ this to
use your own template for the sudo configuration:

sudo 'mma' do
 template 'staff_member.erb' # local cookbook template
 variables :cmds => ['/etc/init.d/ssh restart']
end

This snippet assumes that you have
my_cookbook/templates/default/staff_member.erb in place.

See also
The Creating users from data bags recipe in this chapter
Find the sudo cookbook at GitHub at https://github.com/chef-
cookbooks/sudo

https://github.com/chef-cookbooks/sudo

Managing NTP
Your nodes should always have synchronized clocks, if for no other
reason than that the Chef server requires clients' clocks to be
synchronized with it. This is required because the authentication of
clients is based on a time window in order to prevent man-in-the-middle
attacks.

NTP is there to synchronize your nodes' clocks with its upstream peers.
It usually uses a set of trusted upstream peers so that it gets a reliable
timing signal.

It's a good idea to put the installation of NTP into a role which you
assign to every node. Bugs caused by clocks which are out of sync are
not nice to track down. It is better to avoid them in the first place by
using NTP on every node.

Getting ready
1. Create a Berksfile in your Chef repository including the ntp

cookbook:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'ntp', '~> 3.2.0'

2. Install the ntp cookbook:

mma@laptop:~/chef-repo $ berks install
Resolving cookbook dependencies...
Using ntp (3.2.0)

3. Upload the ntp cookbook to the Chef server:

mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading ntp (3.2.0) to:
'https://api.opscode.com:443/organizations/awo'
...TRUNCATED OUTPUT...

How to do it…

Let's create a role called base that ensures that your nodes will
synchronize their clocks, using NTP:
1. Create a base.rb file for your role:

mma@laptop:~/chef-repo $ subl roles/base.rb
name "base"

run_list "recipe[ntp]"

default_attributes "ntp" => {
 "servers" => ["0.pool.ntp.org", "1.pool.ntp.org",
"2.pool.ntp.org"]
}

2. Upload the new role to the Chef server:

mma@laptop:~/chef-repo $ knife role from file base.rb
Updated Role base!

3. Add the base role to your node's run list:

mma@laptop:~/chef-repo $ knife node run_list set server
'role[base]'
server:
 run_list: role[base]

4. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
Recipe: ntp::default
 * template[/etc/ntp.conf] action create[2016-12-
13T07:18:53+00:00] INFO: template[/etc/ntp.conf] backed up
to /var/chef/backup/etc/ntp.conf.chef-20161210075603.587108
[2016-12-13T07:18:53+00:00] INFO: template[/etc/ntp.conf]
updated file contents /etc/ntp.conf

 - update content in file /etc/ntp.conf from af9be0 to
d933a5
...TRUNCATED OUTPUT...
 * service[ntp] action restart[2016-12-13T07:18:53+00:00]
INFO: service[ntp] restarted

 - restart service service[ntp]
...TRUNCATED OUTPUT...

5. Validate that ntp is installed correctly:

user@server:~$ /etc/init.d/ntp status
* ntp.service - LSB: Start NTP daemon
 Loaded: loaded (/etc/init.d/ntp; bad; vendor preset:
enabled)
 Active: active (running) since Tue 2016-12-13 08:20:39
UTC; 5s ago

How it works…
The ntp cookbook installs the required packages for your node's
platform and writes a configuration file. You can influence the
configuration by setting the default attributes in the ntp namespace. In
the preceding example, we configured the upstream NTP servers for our
node to query.

There's more…
The ntp cookbook also contains an ntp::undo recipe. You can
completely remove NTP from your node by adding ntp::undo to your
node's run list.

See also
You can find the ntp cookbook on GitHub at
https://github.com/chef-cookbooks/ntp
The Overriding attributes recipe in Chapter 4, Writing Better
Cookbooks

https://github.com/chef-cookbooks/ntp

Installing nginx from source
You need to set up a website that handles a lot of traffic. nginx is a web
server that is designed to handle high loads and is used by a lot of big
web companies such as Facebook, Dropbox, and WordPress.

You'll find nginx packages in most major distributions but, if you want to
extend nginx by using modules, you'll need to compile nginx from
source.

In this section, we'll configure the nginx cookbook to do just that.

Getting ready
Let's get ready to set up nginx:
1. Create a Berksfile in your Chef repository including the nginx

cookbook:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'nginx', '~>2.7.6'

2. Install the nginx cookbook:

mma@laptop:~/chef-repo $ berks install
...TRUNCATED OUTPUT...
Installing nginx (2.7.6)
...TRUNCATED OUTPUT...

3. Upload the nginx cookbook to your Chef server:

mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploaded nginx (2.7.6) to:
'https://api.opscode.com:443/organizations/agilewebops'
...TRUNCATED OUTPUT...

How to do it...
Let's set up a role and configure how we want to build nginx:
1. Create a new role called web_server with the following content:

mma@laptop:~/chef-repo $ subl roles/web_server.rb
name "web_server"
run_list "recipe[nginx::source]"

default_attributes "nginx" => {
 "version" => "1.11.7",
 "init_style" => "init",
 "enable_default_site" => false,
 "upload_progress" => {
 "url" => "https://github.com/masterzen/nginx-upload-
progress-module/archive/v0.9.1.tar.gz",
 "checksum" =>
"99ec072cca35cd7791e77c40a8ded41a7a8c1111e057be26e55fba2fdf
105f43"
 },
 "source" => {
 "checksum" =>
"0d55beb52b2126a3e6c7ae40f092986afb89d77b8062ca0974512b8c76
d9300e",
 "modules" => ["nginx::upload_progress_module"]
 }
}

Tip

To generate the checksum for the remote_file resource, you need
to run the following command:

mma@laptop:~/chef-repo $ shasum -a 256 <PATH_TO_FILE>

To generate the checksum for the upload_progress module, you can
run the following command:

mma@laptop:~/chef-repo $ curl -L -s
https://github.com/masterzen/nginx-upload-progress-
module/archive/v0.9.1.tar.gz | shasum -a 256

To generate the checksum for the nginx source, run the following
command:

mma@laptop:~/chef-repo $ shasum -a 256 ~/Downloads/nginx-
1.11.7.tar.gz

2. Upload the role to the Chef server:

mma@laptop:~/chef-repo $ knife role from file web_server.rb
Updated Role web_server!

3. Add the web_server role to your node's run list:

mma@laptop:~/chef-repo $ knife node run_list set server
'role[web_server]'
server:
 run_list: role[web_server]

4. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-12-14T07:41:13+00:00] INFO:
bash[compile_nginx_source] sending restart action to
service[nginx] (delayed)
 * service[nginx] action restart[2016-12-
14T07:41:13+00:00] INFO: service[nginx] restarted

 - restart service service[nginx]
...TRUNCATED OUTPUT...

5. Validate that nginx is installed with upload_progress_module:

user@server:~$ /opt/nginx-1.11.7/sbin/nginx -V
nginx version: nginx/1.11.7
built by gcc 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.4)
built with OpenSSL 1.0.2g-fips 1 Mar 2016
TLS SNI support enabled
configure arguments: --prefix=/opt/nginx-1.11.7 --conf-
path=/etc/nginx/nginx.conf --sbin-path=/opt/nginx-
1.11.7/sbin/nginx --with-http_ssl_module --with-
http_gzip_static_module --add-
module=/var/chef/cache/nginx_upload_progress/99ec072cca35cd
7791e77c40a8ded41a7a8c1111e057be26e55fba2fdf105f43

How it works…
We configure nginx in our new role web_server. First, we decide that we
want to install nginx from source because we want to add an additional
module. We do this by adding the nginx::source recipe to the run list:

run_list "recipe[nginx::source]"

Then, we set the attributes that will be necessary for our source build.
They all live in the nginx name space:

default_attributes "nginx" => {
...
}

Since we want to use the default way of starting the nginx service on
Ubuntu, we set init_style to init. This will create start up scripts for
init.d, as shown in the following code:

"init_style" => "init",

Other options included using runit or bluepill, among others.

Next, we have to tell the nginx recipe where to find the source code for
the upload_progress module and provide the SHA checksum for the
file, so that the remote_file resource can validate that the file it
downloads is exactly the one you requested:

"upload_progress" => {
 "url" => "https://github.com/masterzen/nginx-upload-
progress-module/archive/v0.9.1.tar.gz ",
"checksum" => "..."
 },

Finally, we have to instruct the nginx recipe to compile nginx with the
upload_progress_module enabled:

"source" => {
 "modules" => ["upload_progress_module"]
 }

After defining the role, we have to upload it to the Chef server and add
it to the node's run list. Running the Chef client on the node will now
create all the necessary directories, download all the required sources,
and build nginx with the module enabled.

The nginx cookbook will create a default site, which we disabled in our
role settings. It installs nginx in /opt/nginx-1.11.7/sbin.

There's more…
If you only want to use your distribution's default nginx package, you
can use the nginx default recipe instead of nginx::source in your role's
run list:

run_list "recipe[nginx]"

If you want to disable the default site, you need to set the attributes
accordingly:

"default_site_enabled" => false

You'll find all tunable configuration parameters in the nginx cookbook's
attributes file. You can modify them according to the preceding
examples.

Tip

The nginx cookbook sets up the handling of sites and their configuration
in a similar way to Debian's way of configuring Apache2. You can use
nxdissite and nxensite to disable and enable your sites, which you will
find under /etc/nginx/sites-available and /etc/nginx/sites-
enabled, respectively.

You can set up nginx as a reverse proxy using the application_nginx
cookbook.

See also
Find the nginx cookbook on GitHub at
https://github.com/miketheman/nginx/blob/2.7.x/recipes/source.rb
Find the application_nginx cookbook on GitHub at
https://github.com/poise/application_nginx
Find the HTTP Upload Progress Module at
https://www.nginx.com/resources/wiki/modules/upload_progress/
Learn how to calculate checksums for the remote_file resource at
https://coderwall.com/p/bbfjrw/calculate-checksum-for-chef-s-
remote_file-resource

https://github.com/miketheman/nginx/blob/2.7.x/recipes/source.rb
https://github.com/poise/application_nginx
https://www.nginx.com/resources/wiki/modules/upload_progress/
https://coderwall.com/p/bbfjrw/calculate-checksum-for-chef-s-remote_file-resource

The Overriding attributes recipe in Chapter 4, Writing Better
Cookbooks

Creating nginx virtual hosts
Assuming you have nginx installed, you want to manage your websites
with Chef. You need to create an nginx configuration file for your
website and upload your HTML file(s). Let's see how to do this.

Getting ready
Make sure that you have a cookbook named my_cookbook, as described
in the Creating and using cookbooks recipe in Chapter 1, Chef
Infrastructure.
1. Create a Berksfile in your Chef repository including my_cookbook:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'

2. Create or edit a role called web_server with the following content:

mma@laptop:~/chef-repo $ subl roles/web_server.rb
name "web_server"
run_list "recipe[my_cookbook]"

default_attributes "nginx" => {
 "init_style" => "init",
 "default_site_enabled" => false
}

3. Upload the role to the Chef server:

mma@laptop:~/chef-repo $ knife role from file web_server.rb
Updated Role web_server!

4. Add the web_server role to your node's run list:

mma@laptop:~/chef-repo $ knife node run_list set server
'role[web_server]'
server:
 run_list: role[web_server]

How to do it…
Let's put together all the code to configure your site in nginx and upload

a sample index.html file:
1. Edit your cookbook's metadata.rb file to include the dependency on

the nginx cookbook:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/metadata.rb
...
depends "chef_nginx", "~> 5.0.4"

2. Install your cookbook's dependencies:

mma@laptop:~/chef-repo $ berks install
Resolving cookbook dependencies...
Fetching 'my_cookbook' from source at cookbooks/my_cookbook
...TRUNCATED OUTPUT...

3. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
include_recipe "chef_nginx"

app_name = "my_app"
app_home = "/srv/#{app_name}"

directory "#{app_home}/public" do
 recursive true
end

file "#{app_home}/public/index.html" do
 content "<h1>Hello World!</h1>"
end

nginx_site "#{app_name}" do
 template "nginx-site-#{app_name}.erb"
 variables :app_home => app_home
 action :enable
end

4. Create a template for your nginx configuration:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/templates/default/nginx-site-
my_app.erb
server {
 listen 80;

 server_name _;
 root <%= @app_home -%>/public;
}

5. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploaded my_cookbook (0.1.0) to:
'https://api.opscode.com:443/organizations/awo'
...TRUNCATED OUTPUT...

6. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-12-14T21:24:02+00:00] INFO: execute[nxensite my_app]
ran successfully
 - execute /usr/sbin/nxensite my_app
...TRUNCATED OUTPUT...

7. Validate whether the nginx site is up-and-running by requesting
index.html from the web server:

user@server:~$ wget localhost
--2016-12-14 21:24:30-- http://localhost/
Resolving localhost (localhost)... ::1, 127.0.0.1
Connecting to localhost (localhost)|::1|:80... failed:
Connection refused.
Connecting to localhost (localhost)|127.0.0.1|:80...
connected.
HTTP request sent, awaiting response... 200 OK
Length: 21 [text/html]
Saving to: 'index.html'

index.html 100%
[==
==============>] 21 --.-KB/s in 0s

2016-12-14 21:24:30 (3.87 MB/s) - 'index.html' saved
[21/21]

8. Validate whether the downloaded index.html file contains the text
we set:

user@server:~$ cat index.html
<h1>Hello World!</h1>

How it works…
After setting two variables, the recipe creates the directory and the
index.html file in /srv/my_app/public. This is the directory that our
nginx configuration template uses as its root location.

Finally, we enable the site that we just created using the nginx_site
resource, which is defined by the nginx cookbook.

The configuration file template nginx-site-my_app.erb makes nginx
listen on port 80 and defines the root location as /srv/my_app/public.

There's more…
If you want to disable your site, set the action of your nginx_site to
:disable:

nginx_site "#{app_name}" do
...
 action :disable
end

After uploading the modified cookbook and running the Chef client
again, you should not be able to retrieve the index.html file anymore:

user@server:~$ wget localhost
--2015-02-22 23:29:47-- http://localhost/
Resolving localhost (localhost)... 127.0.0.1
Connecting to localhost (localhost)|127.0.0.1|:80... failed:
Connection refused.

See also
Learn how to install nginx from source in the Installing nginx from
source recipe in this chapter
Read more about the nginx_site resource at
https://github.com/chef-
cookbooks/chef_nginx/blob/master/resources/site.rb

https://github.com/chef-cookbooks/chef_nginx/blob/master/resources/site.rb

Creating MySQL databases and
users
You need to use two different cookbooks to manage MySQL (or any
other database) on your nodes: the generic database cookbook and the
specific mysql cookbook.

The database cookbook provides resources for managing databases and
database users for MySQL, PostgreSQL, and Microsoft SQL Server. The
mysql cookbook installs the MySQL client and server.

Let's see how we can install the MySQL server and create a database
and a database user.

Getting ready
Make sure that you have a cookbook called my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

Make sure a Berksfile in your Chef repository includes my_cookbook:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'

How to do it…
We'll install the MySQL server with a database and user:
1. Edit your cookbook's metadata.rb file to include dependencies on

the database and mysql cookbooks:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/metadata.rb
...
depends "mysql2_chef_gem", "~> 1.1.0"
depends "database","~> 6.1.1"
depends "mysql", "~> 8.2.0"

2. Install your cookbook's dependencies:

mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...

3. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
mysql2_chef_gem 'default' do
 action :install
end

connection_params = {
 :username => 'root',
 :password => 'root_password_15',
 :host => '127.0.0.1'
}

mysql_service 'default' do
 port '3306'
 version '5.7'
 initial_root_password connection_params[:password]
 action [:create, :start]
end

mysql_database 'my_db' do
 connection connection_params
 action :create
end

mysql_database_user 'me' do
 connection connection_params
 password 'my_password_11'
 privileges [:all]
 action [:create, :grant]
end

4. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to:
'https://api.opscode.com:443/organizations/awo'
...TRUNCATED OUTPUT...

5. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
 - start service service[default :start mysql-default]

 * mysql_database[my_db] action create
 - Creating schema 'my_db'
 * mysql_database_user[me] action create
 - Creating user 'me'@'localhost'
...TRUNCATED OUTPUT...

6. Validate that you can log in to our MySQL server with the user that
you have just created and can see the database my_db:

user@server:~$ mysql -h 127.0.0.1 -u me -p
mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| my_db |
...

How it works…
First, we install the mysql2 Ruby gem so that Chef can access MySQL:

mysql2_chef_gem 'default' do
 action :install
end

Since we want to connect to our MySQL server multiple times, we
define the connection parameters as a variable called
connection_params in our recipe:

connection_params = {
 :username => 'root',
 :password => 'root_password_15',
 :host => '127.0.0.1'
}

Now it's time to install MySQL Server 5.7, listening to port 3306, and
start it:

mysql_service 'default' do
 port '3306'
 version '5.7'
 initial_root_password connection_params[:password]
 action [:create, :start]
end

Then, we use the mysql_database resource from the database cookbook
to create a database called my_db:

mysql_database 'my_db' do
 connection connection_params
 action :create
end

Finally, we use the mysql_database_user resource to create a user called
me and grant them all privileges:

mysql_database_user 'me' do
 connection connection_params
 password 'my_password_11'
 privileges [:all]
 action [:create, :grant]
end

There's more...
It's quite common to have things such as a database name or users with
their privileges stored in data bags. You can find out how to do this in
the Using search to find data bag items recipe in Chapter 4, Writing
Better Cookbooks.

See also
The Using data bags recipe in Chapter 4, Writing Better Cookbooks
Find the database cookbook on GitHub at https://github.com/chef-
cookbooks/database
Find the mysql cookbook on GitHub at https://github.com/chef-
cookbooks/mysql

https://github.com/chef-cookbooks/database
https://github.com/chef-cookbooks/mysql

Managing Ruby on Rails
applications
Ruby on Rails helps you to quickly get your web applications up and
running. However, deployment is not an issue solved by the framework.
In this section, we'll see how to write the simplest possible recipe to
deploy a Rails application, using Puma as the application server and
SQLite as the database.

Getting ready
Make sure that you have a cookbook called my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

Create a Berksfile in your Chef repository including my_cookbook:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'

How to do it…
Let's get our Ruby on Rails application up and running on our node:
1. Edit your cookbook's metadata.rb file to make it depend on the

application_ruby cookbook:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/metadata.rb
...
depends "application_ruby","~> 3.0.2"

2. Install your cookbook's dependencies:

mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...

3. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/defau
lt.rb
%w[git libsqlite3-dev].each do |p|
 package "p" do
 action :install
 end
end

application "/usr/local/rails-app" do

 owner "www-data"
 group "www-data"

 ruby_runtime "2"

 git do
 repository 'https://github.com/mmarschall/rails-
app.git'
 end

 bundle_install do
 deployment true
 without %w[test development]
 end

 rails do
 database 'sqlite3:///db.sqlite3'
 precompile_assets false
 secret_token '4fd43ea2d5198a'
 end
end

4. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to:
'https://api.opscode.com:443/organizations/awo'
...TRUNCATED OUTPUT...

5. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
 * application[/usr/local/rails-app] action deploy
...TRUNCATED OUTPUT...

6. Start your Rails application on port 3000 using the embedded Puma
web server:

user@server:~$ cd /usr/local/rails-app
user@server:~$ sudo ./bin/rails server -e production
sudo ./bin/rails server -e production
=> Booting Puma
=> Rails 5.0.0.1 application starting in production on
http://0.0.0.0:3000
=> Run `rails server -h` for more startup options
Puma starting in single mode...
* Version 3.6.2 (ruby 2.3.1-p112), codename: Sleepy Sunday
Serenity
* Min threads: 5, max threads: 5
* Environment: production
* Listening on tcp://0.0.0.0:3000
Use Ctrl-C to stop

7. Call your Rails application using wget:

user@server:~$ wget localhost:3000

8. Then you can have a look at the downloaded file to verify whether
the start page of your Rails app shows up:

user@server:~$ cat index.html
<!DOCTYPE html>
<html>
 <head>
 <title>RailsApp</title>
...

How it works…
First, we need to install a few operating system packages as follows:

%w[git libsqlite3-dev].each do |p|
package "p" do
 action :install
 end

end

Chef provides an abstract application cookbook to deploy web
applications. We call our application rails-app and install it in

/usr/local/rails-app:

application "/usr/local/rails-app" do
...
end

Inside the application block, we define the details of our web app.

The ruby_runtime "2" call will make sure that we have the Ruby
runtime and headers to build native gems installed. If you installed your
Chef client by using the Omnibus installer, it comes with an embedded
Ruby, which you might not want to use to run your Rails application.

The next step is to retrieve your application from its Git repository:

git do
 repository https://github.com/mmarschall/rails-app.git
end

Then, we install all required Ruby gems using bundler:

bundle_install do
 deployment true
 end

Finally, we need to tell our Rails application that we're using a SQLite
database and that we don't want to precompile assets for now. You need
to give your Rails app a secret token to protect it from Cross-Site
Request Forgery (CSRF). Of course, you need to use your own secret
instead of the one below:

 rails do
 database 'sqlite3:///db.sqlite3'
 precompile_assets false
 secret_token '4fd43ea2d5198a'

 end

There's more...
If you want to run a cluster of nodes, each one installed with your Rails
application, you can use the application_nginx cookbook, to install an

nginx load balancer in front of your application server cluster, and the
database cookbook to set up a networked database instead of SQLite.

See also
Find the application cookbook on GitHub at
https://github.com/poise/application
Find the application_ruby cookbook on GitHub at
https://github.com/poise/application_ruby

https://github.com/poise/application
https://github.com/poise/application_ruby

Managing Varnish
Varnish is a web application accelerator. You install it in front of your
web application to cache generated HTML files and serve them faster. It
will take a lot of the burden from your web application and can even
provide you with extended uptime, covering up for application failures
through its cache while you are fixing your application.

Let's see how to install Varnish.

Getting ready
You need a web server running on your node at port 3000. We'll set up
Varnish to use localhost:3000 as its backend host and port. You can
achieve this by installing a Ruby on Rails application on your node, as
described in the Managing Ruby on Rails applications recipe.

Make sure that you have a cookbook called my_cookbook and that the
run_list of your node includes my_cookbook as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

Create a Berksfile in your Chef repository including my_cookbook:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'

How to do it…
Let's install Varnish with its default parameters. We will use the Varnish-
provided apt repository to have access to the latest versions of Varnish:
1. Edit your cookbook's metadata to add the dependency on the

varnish cookbook:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/metadata.rb
...
depends "varnish", "~> 2.5.0"

2. Install your cookbook's dependencies:

mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...

3. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
varnish_install 'default' do
 package_name 'varnish'
 vendor_repo true
 vendor_version '4.1'
end

varnish_default_vcl 'default' do
 backend_host '127.0.0.1'
 backend_port 3000
end

4. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to:
'https://api.opscode.com:443/organizations/awo'
...TRUNCATED OUTPUT...

5. Run the Chef client on your node:

user@server:~$ sudo chef-client
 * apt_package[varnish] action install[2016-12-
18T19:40:57+00:00] INFO: apt_package[varnish] installed
varnish at 4.1.1-1

 - install version 4.1.1-1 of package varnish
...TRUNCATED OUTPUT...
[2016-12-18T19:40:57+00:00] INFO:
template[/etc/varnish/default.vcl] updated file contents
/etc/varnish/default.vcl
...TRUNCATED OUTPUT...

6. Validate whether your Varnish cache is up and running by hitting
your node at port 6081:

user@server:~$ wget localhost:6081

2016-12-18 19:41:10 (80.5 MB/s) - 'index.html' saved
[561/561]

How it work…
As we want to use the latest version of Varnish (and not the usually
outdated one from the default Ubuntu package repository), we ask the
varnish_install resource to use the original apt repository provided by
Varnish by setting vendor_repo to true:

varnish_install "default" do
 vendor_repo true
end

This call will install, configure, and start the Varnish server listening to
its default port 6081.

We change the backend host Varnish uses to connect to our Rails
application, listening at port 3000, as shown in the following code:

varnish_default_vcl "default" do
 backend_host '127.0.0.1'
 backend_port 3000
end

There's more…
Use the varnish_log resource to change Varnish's log settings.

You can connect to the Varnish admin interface by logging in to your
node and running Telnet:

user@server:~$ sudo telnet localhost 6082

See also
Find out more about Varnish at https://www.varnish-cache.org/
You can find the varnish cookbook on GitHub at
https://github.com/rackspace-cookbooks/varnish
The Managing Ruby on Rails applications recipe in this chapter

https://www.varnish-cache.org/
https://github.com/rackspace-cookbooks/varnish

Managing your local workstation
with Chef Pantry
You know the drill. You get a brand-new MacBook and need to set up
all your software – again. Chef can help here, too.

We will look at how to install applications and tweak settings on your
local development box with Chef.

Tip

This example is based on recipes for OS X.

Getting ready
First, we need to install Chef Pantry:
1. Clone the Pantry repository to your local development box:

mma@laptop:~/ $ git clone https://github.com/chef/pantry-
chef-repo

2. Go into your clone of the pantry-chef-repo repository:

mma@laptop:~/ $ cd pantry-chef-repo

3. Make sure you have Chef Pantry installed by running the following
code:

mma@laptop:~/pantry-chef-repo $ sudo ./bin/pantry -c
...TRUNCATED OUTPUT...
Password:
Running `chef-client` with the default Policyfile.rb.
Starting Chef Client, version 12.15.19
...TRUNCATED OUTPUT...
In the future, you can modify the Policyfile.rb, then run
`chef update` and `chef export zero-repo`, then rerun chef
client with
`sudo /opt/chefdk/embedded/bin/chef-client -z` from this
directory.

How to do it…
Let's set up Chef Pantry to install the Go programming language and
configure your Dock:
1. Modify Policyfile.rb to add your desired packages and Chef

recipes:

mma@laptop:~/pantry-chef-repo $ subl Policyfile.rb
...
run_list(
 'pantry',
 'osxdefaults::dock_position_the_dock_on_the_left_side'
)
...
default['homebrew']['formula'] = %w(go)
...

2. Update your policy:

mma@laptop:~/pantry-chef-repo $ sudo chef update
Building policy pantry
Expanded run list: recipe[pantry],
recipe[osxdefaults::dock_position_the_dock_on_the_left_side]

...TRUNCATED OUTPUT...

3. Export your modified policy to your local Chef zero server used by
Pantry:

mma@laptop:~/pantry-chef-repo $ chef export --force zero-
repo
Exported policy 'pantry' to zero-repo
...TRUNCATED OUTPUT...

4. Run the Chef client on your local development box to execute your
updated policy:

mma@laptop:~/pantry-chef-repo $ sudo chef-client -z
...TRUNCATED OUTPUT...
Recipe: homebrew::install_formulas
 * homebrew_package[go] action install
 - install version 1.7.4 of package go
...TRUNCATED OUTPUT...
* execute[Move the Dock to the left side of the screen -

com.apple.dock - orientation] action run
 - execute defaults write "com.apple.dock" "orientation" -
string left
 ...TRUNCATED OUTPUT...

5. Now your dock should be located on the left-hand side of the screen
and the Go programming language should be installed on your box.

How it works…
The Chef Pantry GitHub repository contains a default policy, which you
can use to configure your local development workstation. By adding
arbitrary Chef recipes to the run list and by modifying the attributes of
the pantry cookbook, you tell Chef what you want to install on your
local workstation.

Pantry uses a Chef zero on your local workstation to execute your
policy.

See also
Find the Chef Pantry GitHub repository at
https://github.com/chef/pantry-chef-repo
Find the Pantry cookbook at
https://supermarket.chef.io/cookbooks/pantry
Find the OS X defaults cookbook at
https://supermarket.chef.io/cookbooks/osxdefaults
You can search for Homebrew formulas at http://braumeister.org;
there, you can find the formula for the Go programming language at
http://braumeister.org/formula/go

https://github.com/chef/pantry-chef-repo
https://supermarket.chef.io/cookbooks/pantry
https://supermarket.chef.io/cookbooks/osxdefaults
http://braumeister.org/formula/go

Chapter 7. Servers and Cloud
Infrastructure

"The interesting thing about cloud computing is that we've
redefined cloud computing to include everything that we already
do."

Richard Stallman

In this chapter, we will cover the following recipes:
Creating cookbooks from a running system with Blueprint
Running the same command on many machines at once
Setting up SNMP for external monitoring services
Deploying a Nagios monitoring server
Using HAProxy to load-balance multiple web servers
Using custom bootstrap scripts
Managing firewalls with iptables
Managing fail2ban to ban malicious IP addresses
Managing Amazon EC2 instances
Managing applications with Habitat

Introduction
In the preceding chapters, we mostly looked at individual nodes. Now,
it's time to consider your infrastructure. We'll see how to manage
services spanning multiple machines, such as load balancers, and how to
manage the networking aspects of your infrastructure.

Creating cookbooks from a
running system with Blueprint
Everyone has it: that one server in the corner of the data center, which
no one dares to touch anymore. It's like a precious snowflake: unique
and infinitely fragile. How do you get such a server under configuration
management?

Blueprint is a tool that can find out exactly what's on your server. It
records all directories, packages, configuration files, and so on.

Blueprint can spit out that information about your server in various
formats; one of them is a Chef recipe. You can use such a generated
Chef recipe as a basis to rebuild that one unique snowflake server.

Let's see how to do that.

Getting ready
Make sure that you have Python and Git installed on the node that you
want to run Blueprint on. Install Python and Git by running the
following command:

user@server:~$ sudo apt-get install git python python-pip

How to do it…
Let's see how to install Blueprint and create a Chef cookbook for our
node:
1. Install blueprint using the following command:

user@server:~$ sudo pip install blueprint

2. Configure Git:

user@server:~$ git config --global user.email "YOUR EMAIL"
user@server:~$ git config --global user.name "YOUR NAME"

3. Run blueprint. Replace my-server with any name you want to use
for your Blueprint. This name will become the name of the
cookbook in the following step:

user@server:~$ sudo blueprint create my-server
[blueprint] caching excluded APT packages
[blueprint] searching for Yum packages to exclude
[blueprint] parsing blueprintignore(5) rules
[blueprint] searching for Python packages
[blueprint] searching for Yum packages
[blueprint] searching for configuration files
...TRUNCATED OUTPUT...
[blueprint] searching for APT packages
[blueprint] searching for PEAR/PECL packages
[blueprint] searching for Ruby gems
[blueprint] searching for npm packages
[blueprint] searching for software built from source
[blueprint] searching for service dependencies

4. Create a Chef cookbook from your Blueprint:

user@server:~$ blueprint show -C my-server
my-server/recipes/default.rb

5. Validate the content of the generated file:

user@server:~$ cat my-server/recipes/default.rb
#
Automatically generated by blueprint(7). Edit at your
own risk.
#
directory('/etc/apt/apt.conf.d') do
 group 'root'
 mode '0755'
 owner 'root'
 recursive true
end
...TRUNCATED OUTPUT...
service('ssh') do
 action [:enable, :start]
 provider Chef::Provider::Service::Upstart
 subscribes :restart,
resources('cookbook_file[/etc/default/nfs-common]',
'cookbook_file[/etc/default/ntfs-3g]',
'cookbook_file[/etc/default/keyboard]',
'cookbook_file[/etc/pam.d/common-session-noninteractive]',

'cookbook_file[/etc/default/console-setup]',
'cookbook_file[/etc/pam.d/common-auth]',
'cookbook_file[/etc/pam.d/common-session]',
'package[openssh-server]')
end

How it works…
Blueprint is a Python package, which finds out all the relevant
configuration data of your node and stores it in a Git repository. Each
Blueprint has its own name.

You can ask Blueprint to show the contents of its Git repository in
various formats. Using the -C flag to the blueprint show command
creates a Chef cookbook containing everything you need in that
cookbook's default recipe. It stores the cookbook in the directory from
where you run Blueprint and uses the Blueprint name as the cookbook
name, as shown in the following code:

user@server:~$ ls -l my-server/
total 8
drwxrwxr-x 3 vagrant vagrant 4096 Mar 5 06:01 files
-rw-rw-r-- 1 vagrant vagrant 0 Mar 5 06:01 metadata.rb
drwxrwxr-x 2 vagrant vagrant 4096 Mar 5 06:01 recipes

There's more…
You can inspect your Blueprints using specialized show commands in
the following way:

user@server:~$ blueprint show-packages my-server
...TRUNCATED OUTPUT...
apt watershed 7
apt wireless-regdb 2015.07.20-1ubuntu1
apt zlib1g-dev 1:1.2.8.dfsg-2ubuntu4
python-pip blueprint 3.4.2

The preceding command shows all kinds of installed packages. Other
show commands are as follows:

show-files

show-services

show-sources

Blueprint can output your server configuration as a shell script, as
shown in the following command line:

user@server:~$ blueprint show -S my-server

You can use this script as a basis for a knife bootstrap as described in the
Using custom bootstrap scripts recipe in this chapter.

See also
Read about all you can do with Blueprint at
http://devstructure.com/blueprint/
You find the source code of Blueprint at
https://github.com/devstructure/blueprint

http://devstructure.com/blueprint/
https://github.com/devstructure/blueprint

Running the same command on
many machines at once
A simple problem with so many self-scripted solutions is logging in to
multiple boxes in parallel, executing the same command on every box at
once. No matter whether you want to check the status of a certain
service or look at some critical system data on all boxes, being able to
log in to many servers in parallel can save you a lot of time and hassle
(imagine forgetting one of your seven web servers when disabling the
basic authentication for your website).

How to do it…
Let's try to execute a few simple commands on multiple servers in
parallel:
1. Retrieve the status of the nginx processes from all your web servers

(assuming you have at least one host up-and-running, that has the
role web_server):

mma@laptop:~/chef-repo $ knife ssh 'role:web_server' 'sudo
sv status nginx'
www1.prod.example.com run: nginx: (pid 12356) 204667s; run:
log: (pid 1135) 912026s
www2.prod.example.com run: nginx: (pid 19155) 199923s; run:
log: (pid 1138) 834124s
www.test.example.com run: nginx: (pid 30299) 1332114s;
run: log: (pid 30271) 1332117s

2. Display the uptime of all your nodes in your staging environment
running on Amazon EC2:

mma@laptop:~/chef-repo $ knife ssh
'chef_environment:staging AND ec2:*' uptime
ec2-XXX-XXX-XXX-XXX.eu-west-1.compute.amazonaws.com
21:58:15 up 23 days, 13:19, 1 user, load average: 1.32,
1.88, 2.34
ec2-XXX-XXX-XXX-XXX.eu-west-1.compute.amazonaws.com
21:58:15 up 10 days, 13:19, 1 user, load average: 1.51,
1.52, 1.54

How it works…
First, you must specify a query to find your nodes. It is usually a good
idea to test your queries by running knife search node
<YOUR_SEARCH_QUERY>.

Knife will run a search and connect to each node found, executing the
given command on every single one. It will collect and display all
outputs received by the nodes.

There's more…
You can open terminals to all the nodes identified by your query by
using either tmux or screen as commands.

If you don't want to use a search query, you can list the desired nodes
using the -m option:

mma@laptop:~/chef-repo $ knife ssh -m 'www1.prod.example.com
www2.prod.example.com' uptime
www1.prod.example.com 22:10:00 up 9 days, 16:00, 1 user,
load average: 0.44, 0.40, 0.38
www2.prod.example.com 22:10:00 up 15 days, 10:28, 1 user,
load average: 0.02, 0.05, 0.06

See also
The knife search syntax is described at:
http://docs.chef.io/knife_search.html
Find more examples at http://docs.chef.io/knife_ssh.html

http://docs.chef.io/knife_search.html
http://docs.chef.io/knife_ssh.html

Setting up SNMP for external
monitoring services
Simple Network Management Protocol (SNMP) is the standard way
to monitor all your network devices. You can use Chef to install the
SNMP service on your node and configure it to match your needs.

Getting ready
Make sure that you have a cookbook named my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks section in Chapter 1, Chef
Infrastructure.

Create your Berksfile in your Chef repository, including my_cookbook:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'

How to do it…
Let's change some attributes and install SNMP on our node:
1. Add the dependency on the snmp cookbook to your cookbook's

metadata.rb:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/metadata.rb
depends "snmp","~> 4.0.0"

2. Install the dependent cookbooks:

mma@laptop:~/chef-repo $ berks install
...TRUNCATED OUTPUT...
Installing snmp (4.0.0)
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'

3. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl

cookbooks/my_cookbook/recipes/default.rb
node.default['snmp']['syslocationVirtual'] = "Vagrant
VirtualBox"
node.default['snmp']['syslocationPhysical'] = "My laptop"
node.default['snmp']['full_systemview'] = true
include_recipe "snmp"

4. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploaded snmp (4.0.0) to:
'https://api.opscode.com:443/organizations/awo'
...TRUNCATED OUTPUT...

5. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
 - restart service service[snmpd]
...TRUNCATED OUTPUT...

6. Validate that you can query snmpd:

user@server:~$ snmpwalk -v 1 localhost -c public
iso.3.6.1.2.1.1.5.0
iso.3.6.1.2.1.1.5.0 = STRING: "vagrant.vm"

How it works…
First, we need to tell our cookbook that we want to use the snmp
cookbook by adding a depends call to our metadata file. Then, we
modify some of the attributes provided by the snmp cookbook. The
attributes are used to fill the /etc/snmp/snmp.conf file, which is based
on the template provided by the snmp cookbook.

The last step is to include the snmp cookbook's default recipe in our own
recipe. This will instruct the Chef client to install snmpd as a service on
our node.

There's more…
You can override ['snmp']['community'] and ['snmp']

['trapcommunity'] as well.

See also
Find the snmp cookbook on GitHub at https://github.com/atomic-
penguin/cookbook-snmp

https://github.com/atomic-penguin/cookbook-snmp

Deploying a Nagios monitoring
server
Nagios is one of the most widely used monitoring servers available. Chef
provides you with a cookbook to install a Nagios server, as well as
Nagios clients. It provides ways to configure service checks, service
groups, and so on, using data bags instead of manually editing Nagios
configuration files.

Getting ready
Make sure that you have a cookbook named my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure:
1. Create your Berksfile in your Chef repository including the nagios

cookbook:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'resource-control', '~>0.1.2'
cookbook 'apache2', '~>3.2.2', github: 'sous-chefs/apache2'
cookbook 'nagios', '~> 7.2.6'

2. Install the nagios cookbook:

mma@laptop:~/chef-repo $ berks install
Using nagios (7.2.6)
...TRUNCATED OUTPUT...

3. Upload the nagios cookbook to the Chef server:

mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading nagios (7.2.6) to:
'https://api.chef.io:443/organizations/awo'
...TRUNCATED OUTPUT...

How to do it…
Let's create a user (called mma in the following example) for the Nagios

web interface and set up a Nagios server with a check for SSH:
1. Create a password hash for your Nagios user:

mma@laptop:~/chef-repo $ htpasswd -n -s mma
New password:
Re-type new password:
mma:{SHA}AcrFI+aFqjxDLBKctCtzW/LkVxg=

Note

You may want to use an online htpasswd generator such as
http://www.htaccesstools.com/htpasswd-generator/, if you don't
have htpasswd installed on your system.

2. Create a data bag for your Nagios user, using the password hash
from the preceding step. Further, we use mma as the username and
mm@agilweboperations.com as the e-mail address. Please use your
username and e-mail address instead of mine:

mma@laptop:~/chef-repo $ subl data_bags/users/mma.json
{
 "id": "mma",
 "htpasswd": "{SHA}AcrFI+aFqjxDLBKctCtzW/LkVxg=",
 "groups": "sysadmin",
 "nagios": {
 "email": "mm@agileweboperations.com"
 }
}

3. Upload the user data bag to your Chef server:

mma@laptop:~/chef-repo $ knife data bag from file users
mma.json
Updated data_bag_item[users::mma]

4. Create a data bag for your service definitions:

mma@laptop:~/chef-repo $ knife data bag create
nagios_services
Created data_bag_item[nagios_service]

5. Create a data bag item for your first service:

mma@laptop:~/chef-repo $ mkdir -p data_bags/nagios_services
mma@laptop:~/chef-repo $ subl

http://www.htaccesstools.com/htpasswd-generator/

data_bags/nagios_services/ssh.json
{
 "id": "ssh",
 "hostgroup_name": "linux",
 "command_line": "$USER1$/check_ssh $HOSTADDRESS$"
}

6. Upload your service data bag item:

mma@laptop:~/chef-repo $ knife data bag from file
nagios_services ssh.json
Updated data_bag_item[nagios_services::ssh]

7. Create a role for your Nagios server node:

mma@laptop:~/chef-repo $ subl roles/monitoring.rb
name "monitoring"
description "Nagios server"
run_list(
 "recipe[apt]",
 "recipe[nagios::default]"
)

default_attributes(
 "nagios" => {
 "server_auth_method" => "htauth"
 },
 "apache" => {
 "mpm" => "prefork"
 }
)

8. Upload your monitoring role to your Chef server:

mma@laptop:~/chef-repo $ knife role from file monitoring.rb
Updated Role monitoring!

9. Apply the monitoring role to your node called server:

mma@laptop:~/chef-repo $ knife node run_list set server
'role[monitoring]'
server:
 run_list: role[monitoring]

10. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...

[2016-12-22T21:03:36+00:00] INFO: Processing
service[nagios] action start (nagios::server line 284)
...TRUNCATED OUTPUT...

11. Validate the Nagios web interface by navigating to your node on
port 80. Use the user/password combination that you set for your
user in the user's data bag:

How it works…
First, we set up a user to manage the Nagios web interface. We create a
data bag called users and a data bag item for your user (in the preceding
example, the user is called mma. You will change that to the username
you desire).

By default, Nagios will set up web access for every user in the
sysadmins group, which has a Nagios e-mail address defined in the data
bag.

As we want to use HTTP basic authentication for the Nagios web
interface, we need to create a password hash to put into our user data

bag.

To make Nagios use HTTP basic authentication, we need to set the
server_auth_method attribute to htauth when defining the monitoring
role, which we assign to our node.

Then, we configure a service check for SSH using a default template for
the Nagios configuration file. To do so, we create a data bag and data
bag item for our service.

Finally, we run the Chef client on our node and validate that we can log
in with our user/password to the Nagios web frontend running on our
node, and make sure that the SSH service check is running.

There's more…
You can change the default group to choose users for the Nagios web
interface by modifying the ['nagios']['users_databag_group']
attribute in the role you use to configure your Nagios server.

You can set up your checks using your own templates and you can
configure the contact groups and so on.

See also
You can find the nagios cookbook on GitHub at:
https://github.com/schubergphilis/nagios

https://github.com/schubergphilis/nagios

Using HAProxy to load-balance
multiple web servers
You have a successful website and it is time to scale out to multiple web
servers to support it. HAProxy is a very fast and reliable load-balancer
and proxy for TCP- and HTTP-based applications.

You can put it in front of your web servers and let it distribute the load.

Getting ready
Make sure that you have at least one node registered on your Chef
server with the role web_server in its run list. The following example
will set up HAProxy so that it routes all requests to all your nodes that
have the web_server role.

How to do it…
Let's see how to set up a simple HAProxy balancing to all nodes that
have the web_server role:
1. Create a role called load_balancer:

mma@laptop:~/chef-repo $ subl roles/load_balancer.rb
name 'load_balancer'
description 'haproxy load balancer'
run_list('recipe[haproxy::app_lb]')
override_attributes(
 'haproxy' => {
 'app_server_role' => 'web_server'
 }

2. Upload the new role to the Chef server:

mma@laptop:~/chef-repo $ knife role from file
load_balancer.rb
Updated Role load_balancer

3. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
[2016-12-27T21:57:15+00:00] INFO: service[haproxy]
restarted
...TRUNCATED OUTPUT...

4. Validate that the HAproxy forwards requests to your web server(s):

user@server:~$ wget localhost:80
--2016-12-27 22:42:51-- http://localhost/
...TRUNCATED OUTPUT...

How it works…
In our role, we tell the haproxy cookbook which role our backend
servers have. The haproxy cookbook will include every node (using its
ipaddress node attribute, as returned by Ohai) having this role within its
cluster.

The app_lb recipe from the haproxy cookbook – which we set as the
run_list of our role – will install HAProxy from a package and run a
search for all nodes having the configured role.

After uploading the role and running the Chef client, you'll find the
HAProxy listening at port 80 on your node. Hitting your HAProxy node
at port 80 will forward your request to one of your web servers.

See also
Read about the Managing Ruby on Rails applications section in
Chapter 6, Users and Applications
Learn more about how you can search for nodes in Chef at
https://docs.chef.io/chef_search.html
You can find HAproxy at http://www.haproxy.org
You can find the haproxy cookbook on GitHub at
https://github.com/sous-chefs/haproxy

https://docs.chef.io/chef_search.html
http://www.haproxy.org
https://github.com/sous-chefs/haproxy

Using custom bootstrap scripts
While creating a new node, you need to make sure that it has Chef
installed on it. Knife offers the bootstrap subcommand to connect to a
node via Secure Shell (SSH) and run a bootstrap script on the node.

The bootstrap script should install the Chef client on your node and
register the node with your Chef server. Chef comes with a few default
bootstrap scripts for various platforms. There are options to install the
Chef client using the Omnibus installer packages, or Ruby gems.

If you want to modify the way your Chef client gets installed on your
nodes, you can create and use custom bootstrap scripts.

Let's look at how to do this.

Getting ready
Make sure that you have a node that is ready to become a Chef client
and can SSH into it. In the following example, we'll assume that you
have a username and password to log in to your node.

How to do it…
Let's see how to execute our custom bootstrap script with knife to make
our node a Chef client:
1. Create your basic bootstrap script from one of the existing Chef

scripts:

mma@laptop:~/chef-repo $ mkdir bootstrap
mma@laptop:~/chef-repo $ curl
https://raw.githubusercontent.com/chef/chef/master/lib/chef
/knife/bootstrap/templates/chef-full.erb -o bootstrap/my-
chef-full.erb
 % Total % Received % Xferd Average Speed Time
Time Time Current
 Dload Upload Total
Spent Left Speed

100 5527 100 5527 0 0 27267 0 --:--:-- --:-
-:-- --:--:-- 33295

2. Edit your custom bootstrap script. Find the mkdir –p /etc/chef
command and add a cat command after it:

mma@laptop:~/chef-repo $ subl bootstrap/my-chef-full.erb
mkdir -p /etc/chef

cat > /etc/chef/greeting.txt <<'EOP'
Ohai, Chef!
EOP

3. Bootstrap your node using your modified custom bootstrap script.
Replace 192.168.0.100 with the IP address of your node and user
with your SSH username:

mma@laptop:~/chef-repo $ knife bootstrap 192.168.0.100 -x
user –bootstrap-template bootstrap/my-chef-full.erb --sudo
192.168.0.100 [2016-12-27T23:17:41+00:00] WARN: Node
bootstrapped has an empty run list.

4. Validate the content of the generated file:

user@server:~$ cat /etc/chef/greeting.txt
Ohai, Chef!

How it works…
The chef-full.erb bootstrap script uses the Omnibus installer to install
the Chef client and all its dependencies onto your node. It comes
packaged with all the dependencies so that you don't need to install a
separate Ruby or additional gems on your node.

First, we download the bootstrap script, which is a part of Chef. Then,
we customize it as we like. Our example of putting an additional text file
is trivial so feel free to change it to whatever you need.

After changing our custom bootstrap script, we're only one command
away from a fully bootstrapped Chef node.

Note

If you want to bootstrap a virtual machine such as Vagrant to test your
bootstrap script, you can find out the relevant SSH configuration using:

mma@laptop:~/chef-repo $ vagrant ssh-config

The bootstrap command could look like this, depending on the output of
the previous command:

mma@laptop:~/chef-repo $ knife bootstrap 127.0.0.1 -x vagrant -
p 2201 -i /Users/mma/chef-
repo/.vagrant/machines/server/virtualbox/private_key --
bootstrap-template bootstrap/my-chef-full.erb --sudo

There's more…
If you already know the role your node should play or which recipes you
want to run on your node, you can add a run list to your bootstrapping
call:

mma@laptop:~/chef-repo $ knife bootstrap 192.168.0.100 -x user
–bootstrap-template bootstrap/my-chef-full.erb --sudo -r
'role[web_server]'

Here, we added the web_server role to the run the list of the nodes with
the -r parameter.

See also
Read more about bootstrapping nodes with knife at
http://docs.chef.io/knife_bootstrap.html
You can find the chef-full bootstrap script at:
https://github.com/chef/chef/blob/master/lib/chef/knife/bootstrap/templates/chef-
full.erb

http://docs.chef.io/knife_bootstrap.html
https://github.com/chef/chef/blob/master/lib/chef/knife/bootstrap/templates/chef-full.erb

Managing firewalls with iptables
Securing your servers is very important. One basic way of shutting down
quite a few attack vectors is running a firewall on your nodes. The
firewall will make sure that your node only accepts those network
connections that hit the services you decide to allow.

On Ubuntu, iptables is one of the tools available for the job. Let's see
how to set it up to make your servers more secure.

Getting ready
Make sure that you have a cookbook called my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including my_cookbook:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'

How to do it…
Let's set up iptables so that it blocks all network connections to your
node and only accepts connections to the SSH and HTTP ports:
1. Edit your cookbook's metadata.rb:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/metadata.rb
depends "iptables", "~>3.0.0"

2. Install your cookbook's dependencies:

mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...

3. Edit your own cookbook's default recipe:

mma@laptop:~/chef-repo $ subl

cookbooks/my_cookbook/recipes/default.rb
include_recipe "iptables"
iptables_rule "ssh"
iptables_rule "http"

4. Create a template for the SSH rule:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/templates/default/ssh.erb
Allow ssh access to default port
-A FWR -p tcp -m tcp --dport 22 -j ACCEPT

5. Create a template for the HTTP rule:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/templates/default/http.erb
-A FWR -p tcp -m tcp --dport 80 -j ACCEPT

6. After testing the modified cookbook, upload it to the Chef server:

mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to:
'https://api.chef.io:443/organizations/awo'
...TRUNCATED OUTPUT...

7. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
Recipe: iptables::default
 * execute[rebuild-iptables] action run
 - execute /usr/sbin/rebuild-iptables
...TRUNCATED OUTPUT...

8. Validate that the iptables rules have been loaded:

user@server:~$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Chain FWR (0 references)

target prot opt source destination
ACCEPT tcp -- anywhere anywhere
tcp dpt:http
ACCEPT tcp -- anywhere anywhere
tcp dpt:ssh

How it works…
First, we download the iptables cookbook from the Chef community
site.

Then, we modify our own cookbook to install iptables. This will set
things up in such a way that all network connections are refused by
default.

To be able to access the node via SSH afterwards, we need to open port
22. To do so, we create the my_cookbook/templates/default/ssh.erb
template and include the required iptables rule.

We do the same for port 80 to accept HTTP traffic on our node.

Finally, we make sure that iptables has been activated. We add this
step because the iptables cookbook ran, but did not load all the rules.
This is fatal because you deem your box to be secured, whereas in fact,
it is wide open.

After doing all our modifications, we upload all cookbooks and run the
Chef client on our node.

We can validate whether iptables runs by listing all the active rules
with the -L parameter to an iptables call on our node. You will see the
ACCEPT lines for ports http and ssh. That's a good sign.

See also
You can find the iptables cookbook on GitHub at
https://github.com/chef-cookbooks/iptables

https://github.com/chef-cookbooks/iptables

Managing fail2ban to ban
malicious IP addresses
Every public-facing system is bombarded with automated attacks all the
time.

The fail2ban tool monitors your log files and acts as soon as it discovers
malicious behavior in the way you told it to. One common use case is
blocking malicious IP addresses by establishing firewall rules on the fly
using iptables.

In this section, we'll look at how to set up a basic protection for SSH
using fail2ban and iptables.

Getting ready
Make sure that you have a cookbook named my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

Make sure that you have created the ssh.erb template for your
iptables rule as described in the Managing firewalls with iptables
recipe in this chapter.

Create your Berksfile in your Chef repository including my_cookbook:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'

How to do it…
Let's install fail2ban and create a local configuration by enabling one
additional rule to protect your node against SSH DDos attacks. This
approach is easily extensible for various additional services.
1. Edit your cookbook's metadata.rb:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/metadata.rb
...
depends "iptables","~>3.0.1"
depends "fail2ban","~>3.1.0"

2. Install your cookbook's dependencies:

mma@laptop:~/chef-repo $ berks install
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'
...TRUNCATED OUTPUT...

3. Edit your own cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/recipes/default.rb
include_recipe "iptables"
iptables_rule "ssh"

node.default['fail2ban']['services'] = {
 'ssh-ddos' => {
 "enabled" => "true",
 "port" => "ssh",
 "filter" => "sshd-ddos",
 "logpath" => node['fail2ban']['auth_log'],
 "maxretry" => "6"
 }
}
include_recipe "fail2ban"

4. After testing the modified cookbook, upload it to the Chef server:

mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploading my_cookbook (0.1.0) to:
'https://api.chef.io:443/organizations/awo'
...TRUNCATED OUTPUT...

5. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
 * service[fail2ban] action restart
 - restart service service[fail2ban]
...TRUNCATED OUTPUT...

6. Validate that your local fail2ban configuration has been created:

user@server:~$ cat /etc/fail2ban/jail.local
[ssh-ddos]

enabled = true
...TRUNCATED OUTPUT...

How it works…
First, we need to install iptables because we want fail2ban to create
iptables rules to block malicious IP addresses. Then, we pull the
fail2ban cookbook down to our local Chef repository.

In our cookbook's default recipe, we install iptables.

Then, we define a custom configuration for fail2ban to enable the ssh-
ddos protection. fail2ban requires you to put your customizations into a
file called /etc/fail2ban/jail.local.

Then, we install fail2ban.

It first loads /etc/fail2ban/jail.conf and then loads jail.local,
overriding the jail.conf settings. This way, setting enabled=true for the
ssh-ddos section in jail.local will enable that section after restarting
the fail2ban service.

There's more…
Usually, you want to add the recipe with the fail2ban configuration to a
base role, which you apply to all nodes.

You can add more sections to the ['fail2ban']['services'] attribute
hash, as needed.

See also
Read more about the Managing firewalls with iptables recipe in this
chapter
You can find the fail2ban manual at the following location:
http://www.fail2ban.org/wiki/index.php/MANUAL_0_8

http://www.fail2ban.org/wiki/index.php/MANUAL_0_8

You can find the fail2ban cookbook on GitHub at
https://github.com/chef-cookbooks/fail2ban

https://github.com/chef-cookbooks/fail2ban

Managing Amazon EC2 instances
Amazon Web Services (AWS) includes the Amazon Elastic Compute
Cloud (EC2), where you can start virtual machines running in the
Cloud. In this section, we will use Chef to start a new EC2 instance and
bootstrap the Chef client on it.

Getting ready
Make sure that you have an account at AWS.

To be able to manage EC2 instances with knife, you need security
credentials. It's a good idea to create a new user in the AWS
Management Console using AWS Identity and Access Management
(IAM) as shown in the following document:
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

Tip

Note down your new user's AWS Access Key ID and AWS Secret
Access Key.

Additionally, you will need to create a SSH key pair and download the
private key to enable knife to access your node via SSH.

To create a key pair, log in to the AWS Console and navigate to EC2
service (https://console.aws.amazon.com/ec2/home). Then, choose Key
Pairs under the Network & Security section in the navigation. Click on
the Create Key Pair button and enter aws_knife_key as the name.
Store the downloaded aws_knife_key.pem private key in your ~/.ssh
directory.

How to do it...
Note

Warning: Executing the examples in this section will create costs for the

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://console.aws.amazon.com/ec2/home

usage of AWS services. Make sure you destroy everything when done!

Let's use the knife-ec2 plugin to instantiate and bootstrap an EC2 node
with Ubuntu 16.04 in the following way:
1. Install the knife-ec2 plugin to be able to use the AWS API via

knife:

mma@laptop:~/chef-repo $ chef gem install knife-ec2
Fetching: knife-ec2-0.14.0.gem (100%)
Successfully installed knife-ec2-0.14.0
1 gem installed

2. Create your EC2 instance:

mma@laptop:~/chef-repo $ knife ec2 server create –
bootstrap-template 'chef-full' -r 'recipe[apt]' -S
'aws_knife_key' -x ubuntu -i ~/.ssh/aws_knife_key.pem -I
'ami-bcd7c3ab' -f 'm1.small' --aws-access-key-id 'Your AWS
Access Key ID' --aws-secret-access-key 'Your AWS Secret
Access Key'
Instance ID: i-0f2598fcef867bced
Flavor: m1.small
Image: ami-bcd7c3ab
Region: us-east-1
Availability Zone: us-east-1c
Security Groups: default
Tags: Name: i-0f2598fcef867bced
SSH Key: aws_knife_key

Waiting for EC2 to create the instance.......
Public DNS Name: ec2-54-162-69-159.compute-1.amazonaws.com
Public IP Address: 54.162.69.159
Private DNS Name: ip-10-185-22-203.ec2.internal
Private IP Address: 10.185.22.203

Waiting for sshd access to become available
SSH Target Address: ec2-54-162-69-159.compute-
1.amazonaws.com(dns_name)
....done
Connecting to ec2-54-162-69-159.compute-1.amazonaws.com
ec2-54-162-69-159.compute-1.amazonaws.com -----> Installing
Chef Omnibus (-v 12)
...TRUNCATED OUTPUT...
ec2-54-162-69-159.compute-1.amazonaws.com Chef Client
finished, 5/13 resources updated in 25 seconds

Instance ID: i-0f2598fcef867bced
Flavor: m1.small
Image: ami-bcd7c3ab
Region: us-east-1
Availability Zone: us-east-1c
Security Groups: default
Security Group Ids: default
Tags: Name: i-0f2598fcef867bced
SSH Key: aws_knife_key
Root Device Type: instance-store
Public DNS Name: ec2-54-162-69-159.compute-1.amazonaws.com
Public IP Address: 54.162.69.159
Private DNS Name: ip-10-185-22-203.ec2.internal
Private IP Address: 10.185.22.203
Environment: _default
Run List: recipe[apt]

Note

You need to look up the most current AMI ID for your node. You
can go to http://cloud-images.ubuntu.com/locator/ec2/ or run knife
ec2 amis ubuntu trusty. See the How it works... section for more
details about how to identify the correct AMI.

3. Log in to your new EC2 instance:

mma@laptop:~/chef-repo $ ssh -i ~/.ssh/aws_knife_key.pem
ubuntu@ec2-54-162-69-159.compute-1.amazonaws.com
Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 4.4.0-57-generic
x86_64)
...TRUNCATED OUTPUT...
ubuntu@ip-10-185-22-203:~$

Note

Make sure you destroy your EC2 instance again either using the
AWS console or knife ec2 server delete <YOUR SERVER ID>.

How it works…
First, we need to install the EC2 plugin for knife. It comes as a Ruby
gem.

http://cloud-images.ubuntu.com/locator/ec2/

Then, we need to make a few decisions on which type of EC2 instance
we want to launch and where it should run:
1. Decide on the node size. You'll find a complete list of all the

available instance types at the following location:
http://aws.amazon.com/ec2/instance-types/. In this example, we'll
just spin up a small instance (m1.small).

2. Choose the Region to run your node in. We use the AWS default
region, US East (Northern Virginia), in this example. The shorthand
name for it is us-east-1.

3. Find the correct Amazon Machine Image (AMI) by navigating to
http://cloud-images.ubuntu.com/locator/ec2/ and selecting the
desired one based on the Availability Zone, the Ubuntu version, the
CPU architecture, and the desired storage mode. In this example,
we'll use the 64-bit version of Ubuntu 16.04 LTS code named trusty,
using instance-store. At the time of writing, the most current version
is ami-bcd7c3ab

The knife-ec2 plugin adds a few subcommands to knife. We use the ec2
server create subcommand to start a new EC2 instance.

The initial parameters we will use to deal with the desired Chef client
setup are as follows:

--bootstrap-template 'chef-full': This asks knife to use the
bootstrap script for the Omnibus installer. It is described in more
detail in the Using custom bootstrap scripts recipe in this chapter.
-r 'recipe[apt]': It defines the run list. In this case, we install and
run the apt cookbook to automatically update the package cache
during the first Chef client run.

The second group of parameters deals with SSH access to the newly
created instance:

-S 'aws_knife_key': This lists the name of the SSH key pair you
want to use to access the new node. This is the name you defined in
the AWS console while creating the SSH key pair.
-x ubuntu: This is the SSH username. If you use a default Ubuntu

http://aws.amazon.com/ec2/instance-types/
http://cloud-images.ubuntu.com/locator/ec2/

AMI, it is usually ubuntu
-i ~/.ssh/aws_knife_key.pem: This is your private SSH key, which
you downloaded after creating your SSH key pair in the AWS
console

The third set of parameters deals with the AWS API:
-I 'ami-bcd7c3ab': This names the AMI ID. You need to take the
latest one, as described above.
-f 'm1.small': This is the instance type, as described above
--aws-access-key-id 'Your AWS Access Key ID': This is the ID of
your IAM user's AWS Access Key
--aws-secret-access-key 'Your AWS Secret Access Key': This is
the secret part of your IAM user's AWS Access Key

Note

The AWS Access Key ID and AWS Secret Access Key are the
security credentials of a user, who can use the AWS API. You create
such users in the IAM section of the AWS management console.

The SSH key pair is there to secure the access to your nodes. By
defining the name of the key pair in the knife command, the public
key of your SSH key pair will be installed for the SSH user on your
new node. You create such SSH key pairs in the EC2 section of the
AWS management console.

The command will now start a new EC2 instance via the AWS API using
your AWS credentials. Then, it will log in using the given SSH user and
key and run the given bootstrap script on your new node to make it a
working Chef client and register it with your Chef server.

There's more…
Instead of adding your AWS credentials to the command line (which is
unsafe as they will end up in your shell history), you can put them into
your knife.rb:

knife[:aws_access_key_id] = "Your AWS Access Key ID"

knife[:aws_secret_access_key] = "Your AWS Secret Access Key"

Instead of hardcoding it there, you can even use environment variables
to configure knife:

knife[:aws_access_key_id] = ENV['AWS_ACCESS_KEY_ID']
knife[:aws_secret_access_key] = ENV['AWS_SECRET_ACCESS_KEY']

Tip

Never expose your knife.rb file to a public Git repository!

The knife-ec2 plugin offers additional subcommands. You can list them
by just typing the following command line:

mma@laptop:~/chef-repo $ knife ec2
** EC2 COMMANDS **
knife ec2 flavor list (options)
knife ec2 amis ubuntu DISTRO [TYPE] (options)
knife ec2 server create (options)
knife ec2 server delete SERVER [SERVER] (options)
knife ec2 server list (options)

See also
Read more about the Using custom bootstrap scripts recipe in this
chapter
You can find the knife-ec2 plugin on GitHub at
https://github.com/chef/knife-ec2

https://github.com/chef/knife-ec2

Managing applications with
Habitat
Habitat enables you to package your application and your configuration
in a way that you can use the same package on your local development
machine up to your production servers. All you need to change are some
well-defined configuration parameters. Let's see how to install Habitat
and use a pre-defined Habitat package.

Getting ready
Make sure that you have a cookbook named my_cookbook and that the
run_list of your node includes my_cookbook, as described in the
Creating and using cookbooks recipe in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including my_cookbook:

mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my_cookbook', path: './cookbooks/my_cookbook'

How to do it...
Let's run and configure nginx using Habitat:
1. Add the dependency on the habitat cookbook to your cookbook's

metadata.rb:

mma@laptop:~/chef-repo $ subl
cookbooks/my_cookbook/metadata.rb
depends "habitat","~>0.2.0"

2. Install the dependent cookbooks:

mma@laptop:~/chef-repo $ berks install
...TRUNCATED OUTPUT...
Installing habitat (0.2.0)
Using my_cookbook (0.1.0) at './cookbooks/my_cookbook'

3. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my_
cookbook/recipes/default.rb
hab_install 'install habitat'

user 'hab'

hab_package 'core/nginx'

hab_service 'core/nginx'

4. Upload the modified cookbook to the Chef server:

mma@laptop:~/chef-repo $ berks upload
...TRUNCATED OUTPUT...
Uploaded habitat (0.2.0) to:
'https://api.opscode.com:443/organizations/awo'
...TRUNCATED OUTPUT...

5. Run the Chef client on your node:

user@server:~$ sudo chef-client
...TRUNCATED OUTPUT...
 * service[nginx] action start[2016-12-
28T21:58:13+00:00] INFO: service[nginx] started

 - start service service[nginx]
...TRUNCATED OUTPUT...

6. Validate that nginx is up and running using four worker processes:

user@server:~$ service nginx status
* nginx.service - nginx
 Loaded: loaded (/etc/systemd/system/nginx.service;
static; vendor preset: enabled)
 Active: active (running) since Wed 2016-12-28 07:58:13
UTC; 3s ago
 Main PID: 4636 (hab-sup)
 CGroup: /system.slice/nginx.service
 |-4636 /hab/pkgs/core/hab-
sup/0.15.0/20161222205412/bin/hab-sup start core/nginx
 |-4656 nginx: master process ngin
 |-4660 nginx: worker proces
 |-4661 nginx: worker proces
 |-4662 nginx: worker proces
 `-4663 nginx: worker process

7. Ask Habitat which parameters we can configure for its nginx

package:

user@server:~$ hab sup config core/nginx
General Configuration
worker_processes: Number of NGINX processes. Default = 1
worker_processes = 4
...TRUNCATED OUTPUT...

How it works...
The Habitat cookbook provides us with three custom resources. First,
we install Habitat using the hab_install resource. Next, we create a
user called hab on our system. After the initial setup of Habitat we can
install and run applications packaged using Habitat. In our example, we
install one of Habitat's core packages for nginx. As a last step, we start
the nginx service using the hab_service resource.

Habitat provides a managed environment for running services. We use
this managed environment to find out which parameters the Habitat
package exposes for configuration.

There's more...
We can try out our configuration changes by starting a Habitat
controlled service manually and passing in our configuration values:

user@server:~$ service nginx stop
user@server:~$ sudo HAB_NGINX="worker_processes=2" hab start
core/nginx
hab-sup(MN): Starting core/nginx
hab-sup(MR): Butterfly Member ID
981087b9ff1d4d58a948bb54f9125ed7
nginx.default(SR): Process will run as user=root, group=hab
hab-sup(MR): Starting butterfly on 0.0.0.0:9638
hab-sup(MR): Starting http-gateway on 0.0.0.0:9631
hab-sup(SC): Updated nginx.conf
acad8388d8db877dbec243e788ebcb56c902455ec15cad8020b30d031901f717

nginx.default(SR): Initializing
nginx.default(SV): Starting

We can now verify that nginx uses only two worker processes (using a
second console on our server):

user@server:~$ ps -ef | grep nginx
...TRUNCATED OUTPUT...
root 5138 5119 0 19:53 pts/0 00:00:00 nginx: master
process nginx
hab 5141 5138 0 19:53 pts/0 00:00:00 nginx: worker
process
hab 5142 5138 0 19:53 pts/0 00:00:00 nginx: worker
process
...TRUNCATED OUTPUT...

See also
Read more about Habitat at https://www.habitat.sh
Learn how to update the configuration of Habitat applications:
https://www.habitat.sh/docs/run-packages-apply-config-updates/
You can find the Habitat cookbook on GitHub at:
https://github.com/chef-cookbooks/habitat

https://www.habitat.sh
https://www.habitat.sh/docs/run-packages-apply-config-updates/
https://github.com/chef-cookbooks/habitat

Index
A

affected nodes
displaying, before uploading cookbooks / Showing affected
nodes before uploading cookbooks, How it works…, See also

Amazon Elastic Compute Cloud (EC2)
about / Managing Amazon EC2 instances
instances, managing / Managing Amazon EC2 instances, How to
do it..., How it works…, There's more…
URL, for instance types / How it works…
reference link / See also

Amazon Machine Image (AMI)
about / How it works…
reference link / How it works…

Amazon Web Services (AWS) / Getting ready
about / Managing Amazon EC2 instances

application wrapper cookbooks
used, for extending community cookbooks / Extending
community cookbooks by using application wrapper cookbooks,
How to do it…, How it works…

apt cookbook
URL / See also

attributes
using, to configure recipe / Using attributes to dynamically
configure recipes, How it works…
files, values calculating in / Calculating values in the attribute
files
overriding / Overriding attributes, How it works…, There's
more…
reference link / See also

attributes, in Chef
reference link / See also

AWS Access Key ID / Getting ready
AWS Identity and Access Management (IAM)

about / Getting ready
URL, for creatig user in / Getting ready

AWS Management Console
about / Getting ready
URL, for login / Getting ready

AWS Secret Access Key / Getting ready

B
bash command

executing, during file modification / Running a command when
a file is updated, How to do it..., How it works…

Berkshelf
cookbook dependencies, managing with / Managing cookbook
dependencies with Berkshelf, How to do it…, How it works...
reference / See also

Blueprint
cookbooks, creating from running system with / Creating
cookbooks from a running system with Blueprint, How to do
it…, How it works…
about / Creating cookbooks from a running system with
Blueprint
references / See also

bootstrap scripts
references / See also

Bozhidar Batsovs Ruby Style Guide
reference link / Getting ready

C
Center for Internet Security

reference link / See also
checksums, for remote_file resource

reference / See also
Chef

terms / Introduction
reference / Getting ready

chef-shell

using / Using chef-shell, How to do it…, How it works…,
There's more…
reference link / See also

chef-zero
reference / See also

Chef Client
about / Introduction

Chef client
running, as daemon / Running the Chef client as a daemon,
There's more…

Chef client runs
debugging / Debugging Chef client runs, How to do it…, How it
works…
result, analyzing / Inspecting the results of your last Chef run,
How to do it..., How it works...
tracking, Reporting used / Using Reporting to keep track of all
your Chef client runs, How to do it…, How it works…

Chef cookbooks
testing, with cookstyle / Testing your Chef cookbooks with
cookstyle and Rubocop, How it works…
testing, with Rubocop / Testing your Chef cookbooks with
cookstyle and Rubocop, How it works…
issues, flagging with Foodcritic / Flagging problems in your Chef
cookbooks with Foodcritic, How to do it…, How it works…,
There's more…
integration, testing with Test Kitchen / Integration-testing your
Chef cookbooks with Test Kitchen, How to do it…, How it
works…

Chef Development Kit (DK)
installing, on workstation / Installing the Chef Development Kit
on your workstation, How to do it…, How it works…
reference / How to do it…

ChefDK, on GitHub
reference / See also

Chef Domain Specific Language (DSL) / Mixing plain Ruby with
Chef DSL

Chef DSL
combining, with Ruby / Mixing plain Ruby with Chef DSL,
How to do it…, There's more…

Chef environments
information, obtaining / Getting information about the
environment, How to do it…

Chef Pantry
used, for managing local workstation / Managing your local
workstation with Chef Pantry, Getting ready, How to do it…,
See also
reference / See also

Chef products
reference / See also

Chef run
URL, for aborting / See also

Chef server
about / Introduction
files, inspecting on / Inspecting files on your Chef server with
knife, Getting ready, How it works…
node, deleting from / Deleting a node from the Chef server,
How it works...

Chef server installation, on premises
reference / There's more…

ChefSpec
using, TDD for cookbooks / Test-driven development for
cookbooks using ChefSpec, How to do it…, How it works…,
There's more…
URL, for custom matchers / How it works…
references / See also

command
executing, on multiple servers in parallel / Running the same
command on many machines at once, How it works…

community Chef style
using / Using community Chef style, Getting ready, How it
works..., There's more...

community cookbooks

extending, with application wrapper cookbooks / Extending
community cookbooks by using application wrapper cookbooks,
How to do it…, How it works…

community exception
using / Using community exception and report handlers, How to
do it…, How it works...
reference link / See also

community handlers
reference link / Using community exception and report handlers

compliance
testing, with InSpec / Compliance testing with InSpec, How it
works…, There's more…

compliance, with InSpec
reference link / See also

conditional execution
used, for creating recipes idempotent / Making recipes
idempotent by using conditional execution, How to do it…,
How it works…
reference link / See also

configuration files
creating, with templates / Creating configuration files using
templates, How to do it…, How it works…, See also

Configuration Management / Using templates
about / Creating configuration files using templates

cookbook
about / Introduction

cookbook dependencies
defining / Defining cookbook dependencies, How it works…,
There's more…
managing, with Berkshell / Managing cookbook dependencies
with Berkshelf, Getting ready, How it works...

cookbooks
creating / Creating and using cookbooks, Getting ready, How it
works…, There's more…
using / Creating and using cookbooks, Getting ready, How it
works…, There's more…

freezing / Freezing cookbooks, How to do it…
diff, with knife / Diff-ing cookbooks with knife, Getting ready,
There's more…
creating, from running system with Blueprint / Creating
cookbooks from a running system with Blueprint, How to do
it…, How it works…

cookbook test-driven
reference link / See also

cookstyle
Chef cookbooks, testing with / Testing your Chef cookbooks
with cookstyle and Rubocop, How it works…
reference link / See also

cross-platform cookbooks
writing / Writing cross-platform cookbooks, How to do it…,
How it works…
case statements, avoiding to set values / Avoiding case
statements to set values based on the platform
operating systems, supporting / Declaring support for specific
operating systems in your cookbook's metadata

Cross-Site Request Forgery (CSRF) / How it works…
custom bootstrap scripts

using / Using custom bootstrap scripts, How to do it…, There's
more…

custom knife plugins
using / Using custom knife plugins, How to do it…
creating / Creating custom knife plugins, Getting ready, How to
do it…, How it works..., There's more…
reference link / See also

custom Ohai plugins
creating / Creating custom Ohai plugins, How to do it…, How it
works…, There's more…

custom resource
creating / Creating your own custom resource, How to do it…,
How it works…
reference link / See also

D
daemon

Chef client, running as / Running the Chef client as a daemon,
There's more…

data bags / Using data bags
using / Using data bags, Getting ready, How to do it…, How it
works…
reference link / See also, See also, See also
items, finding search method used / Using search to find data
bag items, There's more…
private key file, using / Using a private key file
values, accessing from external scripts / Accessing data bag
values from external scripts, How to do it…
users, creating from / Creating users from data bags, How to do
it…, There's more…, See also

directory resource
URL / See also

directory trees
distributing / Distributing directory trees, How to do it…
references / See also

Domain Specific Language (DSL) / How it works…, Introduction
dry runs, in configuration management

reference link / See also

E
enabled

about / How it works…
encrypted data bags items

using / Using encrypted data bag items, How to do it…, See also
private key file, using / Using a private key file
reference link / See also

environments
using / Using environments, How to do it…, How it works…
reference / See also

environment variables

setting / Setting environment variables, How it works…, See
also
setting, ENV used / There's more…
reference link / See also

Erubis / How it works…
exceptions

logging, in recipe / Raising and logging exceptions in recipes,
How to do it...
raising, in recipe / Raising and logging exceptions in recipes,
How to do it...

external scripts
data bag values, accessing from / Accessing data bag values
from external scripts, How to do it…

F
fail2ban

managing, to block malicious IP addresses / Managing fail2ban
to ban malicious IP addresses, How to do it…, See also
references / See also

Fauxhai
reference link / See also

files
inspecting, on Chef server / Inspecting files on your Chef server
with knife, Getting ready, How it works…
cleaning up / Cleaning up old files, How to do it…, How it
works…
distributing, on target platform / Distributing different files
based on the target platform, How it works…

file specificity
reference link / See also

firewalls
managing, with iptables / Managing firewalls with iptables, How
to do it…, How it works…

Foodcritic
Chef cookbooks, issues flagging with / Flagging problems in
your Chef cookbooks with Foodcritic, How to do it…, How it

works…, There's more…
reference link / See also

fully qualified domain name (FQDN) / There's more…
about / How it works…

G
Git

reference / See also
GitHub

reference / Getting ready, See also
Go programming language

reference / See also

H
Habitat

applications, managing with / Managing applications with
Habitat, How to do it..., There's more...
references / See also

Handlers / Using community exception and report handlers
HAProxy

using, for load balance multiple web servers / Using HAProxy to
load-balance multiple web servers, How to do it…
about / Using HAProxy to load-balance multiple web servers
references / See also

Homebrew formulas
reference / See also

hosted Chef
about / Introduction

hosted Chef platform
using / Using the hosted Chef platform, How to do it…, How it
works…

I
Ian Macdonalds Ruby Style Guide

reference link / Getting ready
InSpec

compliance, testing / Compliance testing with InSpec, How it
works…, There's more…
references / See also
reference link / See also

interactive Ruby Shell (IRB) / How it works…
iptables

firewalls, managing with / Managing firewalls with iptables,
How to do it…, How it works…
reference link / See also

K
knife

files, inspecting on Chef server / Inspecting files on your Chef
server with knife, Getting ready, How it works…
running, in local mode / Running knife in local mode
cookbooks, diff with / Diff-ing cookbooks with knife, Getting
ready, There's more…
reference link / See also
using, to search nodes / Using knife to search for nodes

Knife
about / Introduction

knife-preflight plugin
reference link / See also

knife search
references / See also

knife show
reference / See also

L
libraries

using / Using libraries, How to do it..., How it works…
Light Weight Resource Provider (LWRP) / How it works...
line endings, in Git

reference link / How to do it…
local mode

recipes, developing with / Developing recipes with local mode,

How to do it…, How it works…
knife, running in / Running knife in local mode

local workstation
managing, Chef Pantry / Managing your local workstation with
Chef Pantry, How to do it…, See also

M
multiple web servers

HAProxy, using for load balance / Using HAProxy to load-
balance multiple web servers, How to do it…

MySQL databases and users
creating / Creating MySQL databases and users, How to do it…,
How it works…

N
Nagios

monitoring server, deploying / Deploying a Nagios monitoring
server, How to do it…, How it works…, There's more…
about / Deploying a Nagios monitoring server
reference link / See also

nginx
URL / See also
installing, from source / Installing nginx from source, How to do
it..., How it works…, See also

nginx virtual hosts
creating / Creating nginx virtual hosts, How to do it…, How it
works…, See also

nginx_site resource
reference / See also

node
deleting, from Chef server / Deleting a node from the Chef
server, How it works...

nodes
run list, overriding for recipe execution / Overriding a node's run
list to execute a single recipe, How it works...
finding, search method used / Using search to find nodes, How

to do it..., How it works…
finding, knife used / Using knife to search for nodes
arbitary attributes, searching / Searching for arbitrary node
attributes

nodes search in Chef
reference link / See also

NTP
managing / Managing NTP, How to do it…, How it works…

O
Ohai / Creating custom Ohai plugins

references / See also
reference link / See also

omnibus installer / Installing the Chef Development Kit on your
workstation
Open Source version, of Chef

reference / There's more…

P
packages

installing, from third-party repository / Installing packages from
a third-party repository, How to do it…, How it works…

passwordless sudo
enabling / Enabling passwordless sudo, How to do it…, There's
more…

public SSH key
reference / Getting ready

R
recipe

execution, nodes run list overriding / Overriding a node's run list
to execute a single recipe, How it works...
prerequisites, why-run mode using / Using why-run mode to find
out what a recipe might do
exceptions, raising in / Raising and logging exceptions in
recipes, How to do it...

exceptions, logging in / Raising and logging exceptions in
recipes, How to do it...
configuring, attributes used / Using attributes to dynamically
configure recipes, How it works…
Ruby gems, using in / Installing Ruby gems and using them in
recipes, How it works...

recipes
developing, with local mode / Developing recipes with local
mode, How to do it…, How it works…

recipes idempotent
creating, conditional execution used / Making recipes
idempotent by using conditional execution, How to do it…,
How it works…

remote directory resource
URL / See also

report handlers
using / Using community exception and report handlers, How to
do it…, How it works...
reference link / See also

Reporting
used, for tracking Chef client runs / Using Reporting to keep
track of all your Chef client runs, How to do it…, How it
works…
references / See also

RequestBin / Getting ready
reference link / Getting ready

roles
using / Using roles, How it works...
reference link / See also

RSpec
reference link / See also

Rubocop
Chef cookbooks, testing with / Testing your Chef cookbooks
with cookstyle and Rubocop, How it works…
references / See also

Ruby

combining, with Chef DSL / Mixing plain Ruby with Chef DSL,
How to do it…, There's more…
reference link / See also
gems, installing / Installing Ruby gems and using them in
recipes, How it works...
gems, using in recipe / Installing Ruby gems and using them in
recipes, How it works...
using, in templates for conditionals and iterations / Using pure
Ruby in templates for conditionals and iterations, How to do
it…, How it works…, There's more…

Ruby on Rails applications
managing / Managing Ruby on Rails applications, How to do
it…, How it works…

runit cookbook
reference link / Declaring support for specific operating systems
in your cookbook's metadata

S
search method

using, to find nodes / Using search to find nodes, How to do it...,
How it works…
boolean operators, using / Using boolean operators in search
references / See also
using, to find data bag items / Using search to find data bag
items, There's more…

Secure Shell (SSH)
about / Using custom bootstrap scripts

Secure Shell Daemon
securing / Securing the Secure Shell daemon, How to do it…,
There's more…

Semantic Versioning
reference link / How to do it…

Service Level Agreement (SLA) / Using the hosted Chef platform
shell commands

arguments, passing / Passing arguments to shell commands,
How it works…, See also

Simple Network Management Protocol (SNMP)
about / Setting up SNMP for external monitoring services
setting up, for external monitoring services / Setting up SNMP
for external monitoring services, How to do it…, How it
works…
reference link / See also

software
installing, from source / Installing software from source, Getting
ready, How to do it…, How it works…

strainer
reference link / See also

T
target platform

files, distributing / Distributing different files based on the target
platform, How it works…

templates
using / Using templates, How to do it…, There's more…
reference link / See also
configuration files, creating with / Introduction, Creating
configuration files using templates, How to do it…, How it
works…, See also
URL / See also, See also
using, in Ruby, used for conditionals and iterations / Using pure
Ruby in templates for conditionals and iterations, How to do
it…, How it works…, See also

test-driven development (TDD)
about / Test-driven development for cookbooks using ChefSpec
for cookbooks, using ChefSpec / Test-driven development for
cookbooks using ChefSpec, How to do it…, How it works…,
There's more…

Test First approach / How it works…
Test Kitchen

Chef cookbooks, integration testing with / Integration-testing
your Chef cookbooks with Test Kitchen, How to do it…, How it
works…

about / Integration-testing your Chef cookbooks with Test
Kitchen
references / See also

twitter gem
reference link / See also

U
users

creating, from data bags / Creating users from data bags, How to
do it…, There's more…, See also

V
Vagrant

reference / Getting ready, See also
virtual machines, managing with / How to do it…, How it
works…

Vagrant Berkshelf plugin
reference / See also

Vagrant Butcher plugin
reference / There's more…

Vagrant plugin, for Amazon AWS
reference / See also

Vagrant plugin, for VMware
reference / See also

Vagrant users / How to do it…
Varnish

managing / Managing Varnish, How to do it…, There's more…
reference / See also

version control
using / Using version control, Getting ready, How to do it…

version control system (VCS)
about / Using version control

VirtualBox
reference / Getting ready

virtual machines
managing, with Vagrant / How to do it…, How it works…

virtual machines (VMs) / How it works…
Virtual Private Network (VPN) / There's more…

W
why-run mode

using, for / Using why-run mode to find out what a recipe might
do
reference link / See also

workstation
Chef Development Kit (DK), installing on / Installing the Chef
Development Kit on your workstation, How to do it…, How it
works…

Table of Contents

Chef Cookbook - Third Edition 19
Credits 21
About the Author 23
About the Reviewer 24
www.PacktPub.com 25
eBooks, discount offers, and more 25
Why Subscribe? 25
Customer Feedback 26
Preface 27
What this book covers 27
What you need for this book 29
Who this book is for 30
Sections 31
Getting ready 31
How to do it… 31
How it works… 31
There's more… 31
See also 31
Conventions 32
Reader feedback 33
Customer support 34
Downloading the example code 34
Errata 35
Piracy 35
Questions 36
1. Chef Infrastructure 37
Introduction 37
Using version control 39
Getting ready 39
How to do it… 40

How it works… 41
There's more... 41
See also 42
Installing the Chef Development Kit on your workstation 43
How to do it… 43
How it works… 44
See also 44
Using the hosted Chef platform 45
Getting ready 45
How to do it… 45
How it works… 46
There's more… 47
See also 47
Managing virtual machines with Vagrant 48
Getting ready 48
How to do it… 48
How it works… 50
There's more… 52
See also 53
Creating and using cookbooks 54
Getting ready 54
How to do it… 54
How it works… 55
There's more… 56
See also 57
Inspecting files on your Chef server with knife 58
Getting ready 58
How to do it… 59
How it works… 60
There's more… 61
See also 62
Defining cookbook dependencies 63

Getting ready 63
How to do it… 63
How it works… 63
There's more… 64
See also 64
Managing cookbook dependencies with Berkshelf 66
Getting ready 66
How to do it… 66
How it works... 67
There's more... 69
See also 71
Using custom knife plugins 72
Getting ready 72
How to do it… 72
How it works… 73
There's more... 73
See also 74
Deleting a node from the Chef server 75
Getting ready 75
How to do it… 75
How it works... 75
There's more… 76
See also 76
Developing recipes with local mode 77
Getting ready 77
How to do it… 77
How it works… 78
There's more… 78
Running knife in local mode 78
Moving to hosted Chef or your own Chef server 79
See also 79
Using roles 80

Getting ready 80

How to do it… 80
How it works... 81
See also 81
Using environments 83
Getting ready 83
How to do it… 83
How it works… 85
There's more… 85
See also 86
Freezing cookbooks 88
Getting ready 88
How to do it… 88
How it works… 89
There's more… 89
See also 89
Running the Chef client as a daemon 90
Getting ready 90
How to do it… 90
How it works… 90
There's more… 91
2. Evaluating and Troubleshooting Cookbooks and Chef Runs 92
Introduction 92
Testing your Chef cookbooks with cookstyle and Rubocop 94
Getting ready 94
How to do it… 94
How it works… 94
There's more… 95
See also 95
Flagging problems in your Chef cookbooks with Foodcritic 96
Getting ready 96

How to do it… 96
How it works… 97

There's more… 97
See also 98
Test-driven development for cookbooks using ChefSpec 100
Getting ready 100
How to do it… 100
How it works… 102
There's more… 104
See also 106
Compliance testing with InSpec 107
Getting ready 107
How to do it… 107
How it works… 108
There's more… 108
See also 109
Integration-testing your Chef cookbooks with Test Kitchen 110
Getting ready 110
How to do it… 110
How it works… 112
There's more… 114
See also 115
Showing affected nodes before uploading cookbooks 116
Getting ready 116
How to do it… 116
How it works… 117
See also 117
Overriding a node's run list to execute a single recipe 119
Getting ready 119
How to do it... 119
How it works... 120

See also 120
Using chef-shell 121
How to do it… 121

How it works… 122
There's more… 123
See also 123
Using why-run mode to find out what a recipe might do 124
Getting ready 124
How to do it… 124
How it works… 125
See also 126
Debugging Chef client runs 127
Getting ready 127
How to do it… 127
How it works… 128
There's more… 128
See also 128
Inspecting the results of your last Chef run 129
Getting ready 129
How to do it... 129
How it works... 130
See also 130
Using Reporting to keep track of all your Chef client runs 131
Getting ready 131
How to do it… 131
How it works… 132
There's more… 133
See also 133
Raising and logging exceptions in recipes 135
Getting ready 135
How to do it... 135

How it works… 136
See also 136
Diff-ing cookbooks with knife 138
Getting ready 138

How to do it… 138
How it works... 139
There's more… 139
See also 139
Using community exception and report handlers 140
Getting ready 140
How to do it… 140
How it works... 142
There's more… 143
See also 143
3. Chef Language and Style 144
Introduction 144
Using community Chef style 145
Getting ready 145
How to do it… 145
How it works... 147
There's more... 147
See also 147
Using attributes to dynamically configure recipes 148
Getting ready 148
How to do it... 148
How it works… 149
There's more… 149
Calculating values in the attribute files 150
See also 151
Using templates 152
Getting ready 152

How to do it… 152
How it works… 153
There's more… 154
See also 155
Mixing plain Ruby with Chef DSL 156

Getting ready 156
How to do it… 156
How it works... 157
There's more… 158
See also 159
Installing Ruby gems and using them in recipes 160
Getting ready 160
How to do it… 160
How it works... 161
See also 161
Using libraries 162
Getting ready 162
How to do it... 162
How it works… 163
There's more… 163
See also 164
Creating your own custom resource 165
Getting ready 165
How to do it… 165
How it works… 167
There's more... 168
See also 169
Extending community cookbooks by using application wrapper
cookbooks 170

Getting ready 170
How to do it… 170

How it works… 172
There's more… 172
See also 173
Creating custom Ohai plugins 174
Getting ready 174
How to do it… 175
How it works… 176
There's more… 177
See also 178
Creating custom knife plugins 179
Getting ready 179
How to do it… 179
How it works... 181
There's more… 182
See also 183
4. Writing Better Cookbooks 184
Introduction 184
Setting environment variables 185
Getting ready 185
How to do it… 185
How it works… 186
There's more… 186
See also 187
Passing arguments to shell commands 188
Getting ready 188
How to do it... 188
How it works… 189
There's more… 189
See also 190
Overriding attributes 191
Getting ready 191
How to do it… 191

How it works… 192
There's more… 192
See also 193
Using search to find nodes 194
Getting ready 194
How to do it... 194
How it works… 195
There's more… 196
Using knife to search for nodes 196
Searching for arbitrary node attributes 196
Using boolean operators in search 197
See also 197
Using data bags 198
Getting ready 198
How to do it… 199
How it works… 200
See also 201
Using search to find data bag items 202
Getting ready 202
How to do it... 202
How it works… 203
There's more… 203
See also 203
Using encrypted data bag items 204
Getting ready 204
How to do it… 204
How it works… 205
There's more… 206
Using a private key file 206
See also 207
Accessing data bag values from external scripts 208
Getting ready 208

How to do it… 208
How it works… 209
There's more… 210
See also 210
Getting information about the environment 211
Getting ready 211
How to do it… 211
How it works… 212
There's more… 212
See also 213
Writing cross-platform cookbooks 214
Getting ready 214
How to do it… 214
How it works… 215
There's more… 215
Avoiding case statements to set values based on the platform 215
Declaring support for specific operating systems in your cookbook's
metadata 216

See also 217
Making recipes idempotent by using conditional execution 218
Getting ready 218
How to do it… 218
How it works… 219
There's more… 219
See also 220
5. Working with Files and Packages 221
Introduction 221
Creating configuration files using templates 222
Getting ready 222
How to do it… 222
How it works… 224
There's more… 224

See also 225
Using pure Ruby in templates for conditionals and iterations 226
Getting ready 226
How to do it… 226
How it works… 228
There's more… 229
See also 229

Installing packages from a third-party repository 230
Getting ready 230
How to do it… 231
How it works… 232
See also 233
Installing software from source 234
Getting ready 234
How to do it… 235
How it works… 236
There's more… 237
See also 238
Running a command when a file is updated 239
Getting ready 239
How to do it... 239
How it works… 240
There's more… 241
See also 241
Distributing directory trees 242
Getting ready 242
How to do it… 242
How it works… 244
There's more… 244
See also 244
Cleaning up old files 246

Getting ready 246
How to do it… 246
How it works… 248
There's more… 248
See also 248
Distributing different files based on the target platform 249
Getting ready 249
How to do it… 249

How it works… 250
See also 251
6. Users and Applications 252
Introduction 252
Creating users from data bags 253
Getting ready 253
How to do it… 253
How it works… 255
There's more… 256
See also 257
Securing the Secure Shell daemon 258
Getting ready 258
How to do it… 259
How it works… 260
There's more… 260
See also 261
Enabling passwordless sudo 262
Getting ready 262
How to do it… 262
How it works… 264
There's more… 264
See also 265
Managing NTP 266

Getting ready 266
How to do it… 266
How it works… 268
There's more… 268
See also 268
Installing nginx from source 269
Getting ready 269
How to do it... 269
How it works… 271

There's more… 273
See also 273
Creating nginx virtual hosts 275
Getting ready 275
How to do it… 275
How it works… 278
There's more… 278
See also 278
Creating MySQL databases and users 279
Getting ready 279
How to do it… 279
How it works… 281
There's more... 282
See also 282
Managing Ruby on Rails applications 283
Getting ready 283
How to do it… 283
How it works… 285
There's more... 286
See also 287
Managing Varnish 288
Getting ready 288

How to do it… 288
How it work… 290
There's more… 290
See also 290
Managing your local workstation with Chef Pantry 291
Getting ready 291
How to do it… 292
How it works… 293
See also 293
7. Servers and Cloud Infrastructure 294

Introduction 294
Creating cookbooks from a running system with Blueprint 295
Getting ready 295
How to do it… 295
How it works… 297
There's more… 297
See also 298
Running the same command on many machines at once 299
How to do it… 299
How it works… 300
There's more… 300
See also 300
Setting up SNMP for external monitoring services 301
Getting ready 301
How to do it… 301
How it works… 302
There's more… 302
See also 303
Deploying a Nagios monitoring server 304
Getting ready 304
How to do it… 304

How it works… 307
There's more… 308
See also 308
Using HAProxy to load-balance multiple web servers 309
Getting ready 309
How to do it… 309
How it works… 310
See also 310
Using custom bootstrap scripts 311
Getting ready 311
How to do it… 311

How it works… 312
There's more… 313
See also 313
Managing firewalls with iptables 314
Getting ready 314
How to do it… 314
How it works… 316
See also 316
Managing fail2ban to ban malicious IP addresses 317
Getting ready 317
How to do it… 317
How it works… 319
There's more… 319
See also 319
Managing Amazon EC2 instances 321
Getting ready 321
How to do it... 321
How it works… 323
There's more… 325
See also 326

Managing applications with Habitat 327
Getting ready 327
How to do it... 327
How it works... 329
There's more... 329
See also 330
Index 331

	Chef Cookbook - Third Edition
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why Subscribe?
	Customer Feedback
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Chef Infrastructure
	Introduction
	Using version control
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also
	Installing the Chef Development Kit on your workstation
	How to do it…
	How it works…
	See also
	Using the hosted Chef platform
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Managing virtual machines with Vagrant
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating and using cookbooks
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Inspecting files on your Chef server with knife
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Defining cookbook dependencies
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Managing cookbook dependencies with Berkshelf
	Getting ready
	How to do it…
	How it works...
	There's more...
	See also
	Using custom knife plugins
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also
	Deleting a node from the Chef server
	Getting ready
	How to do it…
	How it works...
	There's more…
	See also
	Developing recipes with local mode
	Getting ready
	How to do it…
	How it works…
	There's more…
	Running knife in local mode
	Moving to hosted Chef or your own Chef server
	See also
	Using roles
	Getting ready
	How to do it…
	How it works...
	See also
	Using environments
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Freezing cookbooks
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Running the Chef client as a daemon
	Getting ready
	How to do it…
	How it works…
	There's more…
	2. Evaluating and Troubleshooting Cookbooks and Chef Runs
	Introduction
	Testing your Chef cookbooks with cookstyle and Rubocop
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Flagging problems in your Chef cookbooks with Foodcritic
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Test-driven development for cookbooks using ChefSpec
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Compliance testing with InSpec
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Integration-testing your Chef cookbooks with Test Kitchen
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Showing affected nodes before uploading cookbooks
	Getting ready
	How to do it…
	How it works…
	See also
	Overriding a node's run list to execute a single recipe
	Getting ready
	How to do it...
	How it works...
	See also
	Using chef-shell
	How to do it…
	How it works…
	There's more…
	See also
	Using why-run mode to find out what a recipe might do
	Getting ready
	How to do it…
	How it works…
	See also
	Debugging Chef client runs
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Inspecting the results of your last Chef run
	Getting ready
	How to do it...
	How it works...
	See also
	Using Reporting to keep track of all your Chef client runs
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Raising and logging exceptions in recipes
	Getting ready
	How to do it...
	How it works…
	See also
	Diff-ing cookbooks with knife
	Getting ready
	How to do it…
	How it works...
	There's more…
	See also
	Using community exception and report handlers
	Getting ready
	How to do it…
	How it works...
	There's more…
	See also
	3. Chef Language and Style
	Introduction
	Using community Chef style
	Getting ready
	How to do it…
	How it works...
	There's more...
	See also
	Using attributes to dynamically configure recipes
	Getting ready
	How to do it...
	How it works…
	There's more…
	Calculating values in the attribute files
	See also
	Using templates
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Mixing plain Ruby with Chef DSL
	Getting ready
	How to do it…
	How it works...
	There's more…
	See also
	Installing Ruby gems and using them in recipes
	Getting ready
	How to do it…
	How it works...
	See also
	Using libraries
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Creating your own custom resource
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also
	Extending community cookbooks by using application wrapper cookbooks
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating custom Ohai plugins
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating custom knife plugins
	Getting ready
	How to do it…
	How it works...
	There's more…
	See also
	4. Writing Better Cookbooks
	Introduction
	Setting environment variables
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Passing arguments to shell commands
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Overriding attributes
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using search to find nodes
	Getting ready
	How to do it...
	How it works…
	There's more…
	Using knife to search for nodes
	Searching for arbitrary node attributes
	Using boolean operators in search
	See also
	Using data bags
	Getting ready
	How to do it…
	How it works…
	See also
	Using search to find data bag items
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Using encrypted data bag items
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using a private key file
	See also
	Accessing data bag values from external scripts
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Getting information about the environment
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Writing cross-platform cookbooks
	Getting ready
	How to do it…
	How it works…
	There's more…
	Avoiding case statements to set values based on the platform
	Declaring support for specific operating systems in your cookbook's metadata
	See also
	Making recipes idempotent by using conditional execution
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	5. Working with Files and Packages
	Introduction
	Creating configuration files using templates
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using pure Ruby in templates for conditionals and iterations
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Installing packages from a third-party repository
	Getting ready
	How to do it…
	How it works…
	See also
	Installing software from source
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Running a command when a file is updated
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Distributing directory trees
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Cleaning up old files
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Distributing different files based on the target platform
	Getting ready
	How to do it…
	How it works…
	See also
	6. Users and Applications
	Introduction
	Creating users from data bags
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Securing the Secure Shell daemon
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Enabling passwordless sudo
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Managing NTP
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Installing nginx from source
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Creating nginx virtual hosts
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating MySQL databases and users
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also
	Managing Ruby on Rails applications
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also
	Managing Varnish
	Getting ready
	How to do it…
	How it work…
	There's more…
	See also
	Managing your local workstation with Chef Pantry
	Getting ready
	How to do it…
	How it works…
	See also
	7. Servers and Cloud Infrastructure
	Introduction
	Creating cookbooks from a running system with Blueprint
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Running the same command on many machines at once
	How to do it…
	How it works…
	There's more…
	See also
	Setting up SNMP for external monitoring services
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Deploying a Nagios monitoring server
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using HAProxy to load-balance multiple web servers
	Getting ready
	How to do it…
	How it works…
	See also
	Using custom bootstrap scripts
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Managing firewalls with iptables
	Getting ready
	How to do it…
	How it works…
	See also
	Managing fail2ban to ban malicious IP addresses
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Managing Amazon EC2 instances
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Managing applications with Habitat
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Index

