

About This E-Book

EPUB is an open, industry-standard format for e-books. However, support for EPUB and its many features varies across reading devices and applications. Use your device or app settings to customize the presentation to your liking. Settings that you can customize often include font, font size, single or double column, landscape or portrait mode, and figures that you can click or tap to enlarge. For additional information about the settings and features on your reading device or app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the e-book in single-column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.

Sams Teach Yourself R in 24 Hours

Andy Nicholls
Richard Pugh
Aimee Gott

[image: Image]

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself R in 24 Hours

Copyright © 2016 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33848-9
ISBN-10: 0-672-33848-3

Library of Congress Control Number: 2015913320

First Printing December 2015

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development Editor
Songlin Qiu

Managing Editor
Kristy Hart

Project Editor
Elaine Wiley

Copy Editor
Bart Reed

Indexer
Tim Wright

Proofreader
Katie Matejka

Technical Editor
Stephanie Locke

Editorial Assistant
Olivia Basegio

Cover Designer
Mark Shirar

Compositor
Nonie Ratcliff

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an “as is” basis. The authors and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact international@pearsoned.com.

Contents at a Glance

Preface

HOUR 1 The R Community

2 The R Environment

3 Single-Mode Data Structures

4 Multi-Mode Data Structures

5 Dates, Times and Factors

6 Common R Utility Functions

7 Writing Functions: Part I

8 Writing Functions: Part II

9 Loops and Summaries

10 Importing and Exporting

11 Data Manipulation and Transformation

12 Efficient Data Handling in R

13 Graphics

14 The ggplot2 Package for Graphics

15 Lattice Graphics

16 Introduction to R Models and Object Orientation

17 Common R Models

18 Code Efficiency

19 Package Building

20 Advanced Package Building

21 Writing R Classes

22 Formal Class Systems

23 Dynamic Reporting

24 Building Web Applications with Shiny

APPENDIX Installation

Index

Table of Contents

Preface

HOUR 1: The R Community

A Concise History of R

The R Community

R Development

Summary

Q&A

Workshop

Activities

HOUR 2: The R Environment

Integrated Development Environments

R Syntax

R Objects

Using R Packages

Internal Help

Summary

Q&A

Workshop

Activities

HOUR 3: Single-Mode Data Structures

The R Data Types

Vectors, Matrices, and Arrays

Vectors

Matrices

Arrays

Relationship Between Single-Mode Data Objects

Summary

Q&A

Workshop

Activities

HOUR 4: Multi-Mode Data Structures

Multi-Mode Structures

Lists

Data Frames

Exploring Your Data

Summary

Q&A

Workshop

Activities

HOUR 5: Dates, Times, and Factors

Working with Dates and Times

The lubridate Package

Working with Categorical Data

Summary

Q&A

Workshop

Activities

HOUR 6: Common R Utility Functions

Using R Functions

Functions for Numeric Data

Logical Data

Missing Data

Character Data

Summary

Q&A

Workshop

Activities

HOUR 7: Writing Functions: Part I

The Motivation for Functions

Creating a Simple Function

The If/Else Structure

Summary

Q&A

Workshop

Activities

HOUR 8: Writing Functions: Part II

Errors and Warnings

Checking Inputs

The Ellipsis

Checking Multivalue Inputs

Using Input Definition

Summary

Q&A

Workshop

Activities

HOUR 9: Loops and Summaries

Repetitive Tasks

The “apply” Family of Functions

The apply Function

The lapply Function

The sapply Function

The tapply Function

Summary

Q&A

Workshop

Activities

HOUR 10: Importing and Exporting

Working with Text Files

Relational Databases

Working with Microsoft Excel

Summary

Q&A

Workshop

Activities

HOUR 11: Data Manipulation and Transformation

Sorting

Appending

Merging

Duplicate Values

Restructuring

Data Aggregation

Summary

Q&A

Workshop

Activities

HOUR 12: Efficient Data Handling in R

dplyr: A New Way of Handling Data

Efficient Data Handling with data.table

Summary

Q&A

Workshop

Activities

HOUR 13: Graphics

Graphics Devices and Colors

High-Level Graphics Functions

Low-Level Graphics Functions

Graphical Parameters

Controlling the Layout

Summary

Q&A

Workshop

Activities

HOUR 14: The ggplot2 Package for Graphics

The Philosophy of ggplot2

Quick Plots and Basic Control

Changing Plot Types

Aesthetics

Paneling (a.k.a Faceting)

Custom Plots

Themes and Layout

The ggvis Evolution

Summary

Q&A

Workshop

Activities

HOUR 15: Lattice Graphics

The History of Trellis Graphics

The Lattice Package

Creating a Simple Lattice Graph

Graph Options

Multiple Variables

Groups of Data

Using Panels

Controlling Styles

Summary

Q&A

Workshop

Activities

HOUR 16: Introduction to R Models and Object Orientation

Statistical Models in R

Simple Linear Models

Assessing a Model in R

Multiple Linear Regression

Interaction Terms

Factor Independent Variables

Variable Transformations

R and Object Orientation

Summary

Q&A

Workshop

Activities

HOUR 17: Common R Models

Generalized Linear Models

Nonlinear Models

Survival Analysis

Time Series Analysis

Summary

Q&A

Workshop

Activities

HOUR 18: Code Efficiency

Determining Efficiency

Initialization

Vectorization

Using Alternative Functions

Managing Memory Usage

Integrating with C++

Summary

Q&A

Workshop

Activities

HOUR 19: Package Building

Why Build an R Package?

The Structure of an R Package

Code Quality

Automated Documentation with roxygen2

Building a Package with devtools

Summary

Q&A

Workshop

Activities

HOUR 20: Advanced Package Building

Extending R Packages

Developing a Test Framework

Including Data in Packages

Including a User Guide

Code Using Rcpp

Summary

Q&A

Workshop

Activities

HOUR 21: Writing R Classes

What Is a Class?

Creating a New S3 Class

Generic Functions and Methods

Inheritance in S3

Documenting S3

Limitations of S3

Summary

Q&A

Workshop

Activities

HOUR 22: Formal Class Systems

S4

Reference Classes

R6 Classes

Other Class Systems

Summary

Q&A

Workshop

Activities

HOUR 23: Dynamic Reporting

What Is Dynamic Reporting?

An Introduction to knitr

Simple Reports with RMarkdown

Reporting with LaTeX

Summary

Q&A

Workshop

Activities

HOUR 24: Building Web Applications with Shiny

A Simple Shiny Application

Reactive Functions

Interactive Documents

Sharing Shiny Applications

Summary

Q&A

Workshop

Activities

APPENDIX: Installation

Installing R

Installing Rtools for Windows

Installing the RStudio IDE

Index

Preface

Mango Solutions has been teaching face-to-face R training courses to business professionals and academics alike for over 13 years. In this time, we’ve seen R grow from its early days as a low cost alternative to S-PLUS and SAS to become the leading analytical programming language in the world today, with several thousand contributors and somewhere upward of a million users. R is widely used throughout academia and is commercially supported by the likes of Microsoft, Google, HP, and Oracle.

In Mango’s face-to-face training program we teach R to statisticians, data scientists, physicists, biologists, chemists, geographers, and psychologists among others. All are looking to R to help improve the way they analyze their data in a professional environment. Our aim with this book was to take tried and tested training material and turn it into a lasting resource for anyone looking to learn R for analysis.

Who Should Read This Book?

This book is designed for professional statisticians, data scientists, and analysts looking to widen the scope of analytical tools available to them by learning R. Although it is expected that you might have some programming knowledge in another analytical application or language for data analysis, such as SAS, Python, or Excel/VBA, this is not a prerequisite. This book is suitable for complete novices in programming. From the start, we do not assume any prior knowledge of R; however, those familiar with the basics may find that they can jump straight to later chapters.

What Should You Expect from This Book?

This book is designed to take you from the basics of the R language through common tasks in data science, including data manipulation, visualization, and modeling, to elements of the language that will allow you to produce high-quality, production-ready code. As with our face-to-face training, this book is structured around simple and easy-to-follow examples, all of which are available to download from the book’s website (http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book). Throughout, we introduce good practices for writing code as well as provide tips and tricks from our combined experience in R development.

By the end of this book, you should have a good understanding of the fundamentals of R as well as many of the most commonly used packages. You should have a good understanding of what makes well written R code and how to implement this yourself.

How Is This Book Organized?

This book is designed to guide you through everything you need to know to get started with the R language and then introduce additional elements of the language for specific tasks.

The following is an outline of each of the hours and what to expect:

Hour 1, “The R Community”—In this hour, we start by looking at how R evolved from the S language to become the all-purpose data science programming language that it is today. The R community offers a plethora of help and support options for users. We look at some of the better-known options during this hour.

Hour 2, “The R Environment”—In this hour, we start a new R session via RStudio, type some basic commands, and explore the idea of an R “object.” You will be more formally introduced to the concept of an R package.

Hour 3, “Single-Mode Data Structures”—In this hour, we describe the standard types of data found in R and introduce three key structures that can be used to store these data types: vectors, matrices, and arrays. We illustrate the ways in which these structures can be created and manage these data structures with a focus on how we can extract data from them.

Hour 4, “Multi-Mode Data Structures”—The majority of data sources contain a mixture of data types, which we need to store together in a simple, effective format. In this hour, we focus on two key data structures that allow us to store “multi-mode” data: lists and data frames. We illustrate the ways in which these structures can be created and manage these data structures with a focus on how we can extract data from them. We also look at how these two data structures can be effectively used in our day-to-day work.

Hour 5, “Dates, Times, and Factors”—In this hour, you learn more about some of the special data types in R that enable us to work with dates and times and with categorical data.

Hour 6, “Common R Utility Functions”—In this hour, we introduce you to some of the most common utility functions in R that you will find yourself using every day.

Hour 7, “Writing Functions: Part I”—One of the strengths of R is that we can extend it by writing our own functions, allowing us to create utilities that can perform a variety of tasks. In this hour, we look at ways in which we can create our own functions, specify inputs, and return results to the user. We also discuss the “if/else” structure in R and use it to control the flow of code within a function.

Hour 8, “Writing Functions: Part II”—This hour looks at a range of advanced function-writing topics, such as returning error messaging, checking whether inputs are appropriate to our functions, and the use of function “ellipses.”

Hour 9, “Loops and Summaries”—In this hour, you see how we can apply simple functions and code in a more “applied” fashion. This allows us to perform tasks repeatedly over sections of our data without the need to produce verbose, repetitive code.

Hour 10, “Importing and Exporting”—In this hour, we introduce common methods for importing and exporting data. By the end of the hour you will have seen how R can be used to read and write flat files and connect to database management systems (DBMSs) as well as Microsoft Excel.

Hour 11, “Data Manipulation and Transformation”—As data scientists and statisticians, we rarely get to control the structure and format of our data. Now we will look a little closer at the structure of our data. Several approaches to data manipulation in R have evolved over time. In this hour, we start by looking at what could be called “traditional” approaches to the data manipulation tasks of sorting, setting, and merging. We then look at the popular packages reshape, reshape2, and tidyr for data restructuring.

Hour 12, “Efficient Data Handling in R”—We begin the hour by looking at the incredibly popular dplyr package. The data.table package is a standalone package for data manipulation that offers greater efficiency for very large data.

Hour 13, “Graphics”—After all the manipulations to our data, we want to be able to start to do something with it. In this hour, we look at how we can create graphics using the base graphics functionality, including how to send your graphics to devices such as a PDF and the standard graphics functions. We finally look at how to control the layout of graphics on the page.

Hour 14, “The ggplot2 Package for Graphics”—In this hour, we look at the hugely popular ggplot2 package, developed by Hadley Wickham for creating high-quality graphics.

Hour 15, “Lattice Graphics”—Here we will look at a third way of creating graphics: using the lattice package. This graphic system is well suited to graphing highly grouped data, with the code designed to closely resemble the modeling capabilities of R.

Hour 16, “Introduction to R Models and Object Orientation”—In this hour, we see how to fit a simple linear model and assess its performance using a range of textual and graphical methods. Beyond this, we introduce “object orientation” and see how the R statistical modeling framework is built on this concept.

Hour 17, “Common R Models”—In this hour, we extend the ideas of the previous hour to other modeling approaches. Specifically, we look at Generalized Linear Models, nonlinear models, time series models, and survival models.

Hour 18, “Code Efficiency”—In this hour, we look at some of the techniques we can use to improve the efficiency and, importantly, the professionalism of our R code.

Hour 19, “Package Building”—When we put our code into a package, it forces us to ensure that our code is of a high standard and we are adhering to good practices, such as documenting our code. We focus here on making sure our code is well written and documented, the starting point for high-quality, professional code that is easy to share and reuse.

Hour 20, “Advanced Package Building”—There are a number of ways we can extend a package to make it more robust to changes and easier for users to get started with. You learn the most common of these extra components in this hour.

Hour 21, “Writing R Classes”—In this hour, we take a general look at some key features of object-oriented programming before focusing in on R’s S3 implementation.

Hour 22, “Formal Class Systems”—During this hour, we look at the more formal S4 and Reference Class systems in R. Along the way, you will be introduced to concepts such as validity checking, multiple dispatch, message-passing object orientation, and mutable objects.

Hour 23, “Dynamic Reporting”—Up to this point we have seen the fundamentals of the R language as well as the aspects of R that allow us to ensure that we write high-quality, well-documented, and easily shareable code. In this hour, we take a look at one of the ways you can extend your use of R, specifically for simplifying the generation of reports that rely heavily on R-generated output.

Hour 24, “Building Web Applications with Shiny”—Although you may initially be put off by the idea of building a web application, we introduce a package that allows you to generate web applications entirely in R, writing only R code. This is currently one of the most popular packages available in R, with more and more packages being added to CRAN that use this framework.

About the Sample Code

Throughout this book, we have included examples of the concepts that are being introduced. You may notice that the code is prefixed with the symbols “>” and “+”. These are the R prompt and continuation characters and do not need to be entered when writing code. We have used the formatting conventions of function for a function name and package for a package name.

All of the code examples included in this book are available from our web page: http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book/

Note

Code-Continuation Arrows and Listing Line NumbersYou might see code-continuation arrows ([image: Image]) occasionally in this book to indicate when a line of code is too long to fit on the printed page. Also, some listings have line numbers and some do not. The listings that have line numbers have them so that we can reference code by line; the listings that do not have line numbers are not referenced by line.

Contacting the Authors

If you have any comments or questions about this book, please drop us an email at rin24hours@mango-solutions.com.

About the Authors

Andy Nicholls has a Master of Mathematics degree from the University of Bath and Master of Science in Statistics with Applications in Medicine from the University of Southampton. Andy worked as a Senior Statistician in the pharmaceutical industry for a number of years before joining Mango Solutions as an R consultant in 2011. Since joining Mango, Andy has taught more than 50 on-site R training courses and has been involved in the development of more than 30 R packages. Today, he manages Mango Solution’s R consultancy team and continues to be a regular contributor to the quarterly LondonR events, by far the largest R user group in the UK, with over 1,000 meet-up members. Andy lives near the historical city of Bath, UK with his wonderful, tolerant wife and son.

Richard Pugh has a first-class Mathematics degree from the University of Bath. Richard worked as a statistician in the pharmaceutical industry before joining Insightful, the developers of S-PLUS, joining the pre-sales consulting team. Richard’s role at Insightful included a variety of activities, providing a range of training and consulting services to blue-chip customers across many sectors. In 2002, Richard co-founded Mango Solutions, developing the company and leading technical efforts around R and other analytic software. Richard is now Mango’s Chief Data Scientist and speaks regularly at data science and R events. Richard lives in Bradford on Avon, UK with his wife and two kids, and spends most of his “spare” (ha!) time renovating his house.

Aimee Gott has a PhD in Statistics from Lancaster University where she also completed her undergraduate and master’s degrees. As Training Lead, Aimee has delivered over 200 days of training for Mango. She has delivered on-site training courses in Europe and the U.S. in all aspects of R, as well as shorter workshops and online webinars. Aimee oversees Mango’s training course development across the data science pipeline, and regularly attends R user groups and meet-ups. In her spare time, Aimee enjoys learning European languages and documenting her travels through photography.

Dedications

This book is dedicated to my wife, for her love and support and for putting up with
losing our summer to all the late nights, and to my baby boy who learnt to sit up,
eat, crawl, and walk whilst this book was being written! —Andy Nicholls

This book is dedicated to my family for having to put up with me
writing the book at weekends. —Richard Pugh

To Stephen, Carol, Richard, and Kirstie. —Aimee Gott

Acknowledgments

Throughout the process of writing, many people have taken time to assist us, guide us, and shape this book. First of all, thanks go to Andy Miskell, Jeff Stagg, Mike K. Smith, and Susan Duke, who took the time to review our initial outline. Thanks also go to the consultancy team at Mango and Stephen Kaluzny of TIBCO who were all able to answer our questions while writing.

We would also like to thank all those who have been involved in the production of this book. In particular we would like to thank Elaine Wiley (production editor), Trina MacDonald (acquisitions editor), Songlin Qiu (development editor), Olivia Basegio (publisher assistant), Stephanie Locke (technical editor), Bart Reed (copyeditor), and Katie Matejka (proofreader).

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: errata@informit.com

Mail: Addison-Wesley/Prentice Hall Publishing
 ATTN: Reader Feedback
 330 Hudson Street
 7th Floor
 New York, New York, 10013

Reader Services

Register your copy of Teach Yourself R in 24 Hours at informit.com for convenient access to downloads, updates, and corrections as they become available.​ To start the registration process, go to informit.com/register and log in or create an account.* Enter the product ISBN, 9780672338489, and click Submit. Once the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us in order to receive exclusive discounts on future editions of this product.

Hour 1. The R Community

What You’ll Learn in This Hour:

[image: Image] A brief history of S and R

[image: Image] An overview of the R community

[image: Image] The development and release of R versions

In this hour we start by looking at how R evolved from the S language to become the all-purpose data science programming language that it is today. It is important when learning any programming language to understand a little about where it came from and why it functions as it does. This is particularly relevant for R because many of the quirkier aspects of the language have roots in S.

As a free and open-source programming language, R relies strongly on community input. The R community offers a plethora of help and support options for users. We look at some of the better-known options during this hour. Toward the end of the hour we look a little closer at the development and release of R versions.

A Concise History of R

When I first started teaching introductory R courses, I would ask how many people in the room had any experience with S. This was an important question for an R training course because the languages are syntactically similar. If you know S, then what are you doing in an Introduction to R course?! A couple of years ago, the number of raised hands had dropped significantly, and I revised this question to ask, “How many people here have actually heard of S?” Today, very few people have but to begin to understand R, so it helps to know just where it came from, and that means knowing what S is and how it came to be.

The Birth of S

S was initially developed at AT&T Bell Laboratories by John Chambers in the mid-to-late 1970s—a time that predates Google and the need to be able to search for help concerning your programming language! John Chambers’ original idea is beautifully portrayed in the now infamous sketch from 1976, shown in Figure 1.1. The essence of Chambers’ idea was that his then-unnamed language would provide an accessible interface to lower-level Fortran subroutines, thereby reducing the time a statistician would have to spend coding. Today, languages such as R, SAS, Matlab, and Python all take a similar approach, but at the time this idea was fairly ground-breaking.

[image: Image]

FIGURE 1.1 John Chambers’ sketch of the idea that became S

The name “S” stands for “Statistics.” It was chosen over other names primarily for consistency (the C language was also born out of Bell Laboratories a few years earlier) and because pretty much every name proposed began with the letter S. One name in particular, SAS (Statistical Analysis Software), had already been taken.

The S language continued to grow and evolve with several key changes that shaped both the S language and eventually R today. These included a gradual transition toward C for internal routines, a switch from macros to functions, and the introduction of the “S3” and then the “S4” class systems, which are described in Hour 21, “Writing R Classes,” and Hour 22, “Formal Class Systems.”

A particularly important milestone in the life of S was the development and release of the first version of S-PLUS by Statistical Sciences, Inc., in 1988. In the next few years, Statistical Sciences built a new graphical user interface for S and added interactive graphical capabilities by integrating the GUI with their Axum product. They also added connectors to a number of Microsoft products, such as Excel and PowerPoint. However, perhaps most significant of all was that in 1993 Statistical Sciences acquired the exclusive license to market and distribute the S language, closing off the development of S to outsiders. TIBCO acquired the then-owners of S-PLUS, Insightful, in 2008. However, to date, no new versions of S-PLUS have been released since the acquisition, with TIBCO turning their attentions toward R and becoming a founding member of the R Consortium in 2015.

The Birth of R

Earlier in this hour we said that S and R were “syntactically similar.” The main R Project website for R, www.r-project.org, does not shy away from the relationship with S, describing R as “similar to the S language and environment” and claiming that “much code written for S runs unaltered under R.” It does not go as far as saying that R is a copy or reimplementation of S, but R is widely considered to have evolved from S. The near-identical syntax is no coincidence! The first version of the R language was developed by Robert Gentleman and Ross Ihaka of The University of Aukland in the mid-late 1990s. The name “R” is a play on the names Robert and Ross, though the significance of the position of the letter R next to S in the alphabet should not be downplayed.

Robert and Ross were soon joined by a core group of contributors known as the “R Development Core Team,” which is today responsible for the development and release of new R versions. Following the release of R-1.5.0, the core members created “The R Foundation,” which, among other things, is responsible for copyright and documentation of R. The R Foundation now contains many of the original S development team, including John Chambers.

R has undergone many iterations of its own since the early days, with minor releases approximately every 3 months. However, much of the functionality, particularly the core statistic routines, resembles the S language of old.

The R Community

Before we install R and begin programming, we would like to highlight some of the available online resources for R. Indeed, there are many online resources, almost all of which can be accessed via the main R project website (see Figure 1.2). From here you can download the latest copy of R, download R packages, find help on R, join several R mailing lists, search for R books such as this, and find events.

[image: Image]

FIGURE 1.2 The main page of the R Project website, www.r-project.org

A big difference between the open-source R language and commercially supported software such as SAS and SPSS is the large and active online community that has built up around R. Like many open-source communities, the R community is a weird yet wonderful beast that takes some getting used to! However, one of the goals of a group formed in 2015, known as the R Consortium, is to try to make R more accessible for newcomers to the language.

Mailing Lists

Several mailing lists are dedicated to R, each listed on the R Project website. The first port of call for most new users is the R-help mailing list. My advice to any newcomer is to use the searchable archives on the R Project website (and read the posting guide) before posting any help requests to the community because chances are someone else has had the same issue before. If you do use R-help, what you will first notice is the speed at which users are rushing to help you out; night and day the community is waiting to embrace your R challenge. On the flip side, do beware of making critical remarks about the behavior of a function or quality of the documentation. The chances are the author is reading your post with no sales or marketing team sitting next to him telling you to be kind!

R Manuals

A typical response to an R-help request used to be “read the manuals.” Like the language itself, the R manuals, of which there are several, have their roots in S. If you do decide to consult them for help, we can promise you that the information you’re looking for will be there. In particular, the “Writing R Extensions” manual is a very handy reference for those wanting to develop and deploy R packages for mass consumption. However, unless you are already very familiar with general programming constructs such as object orientation, and are therefore ready to jump in at the deep end, you may find the manuals hard going. The R Core Team recognizes this, and the “An Introduction to R” manual contains a subsection within the preface titled, “Suggestions to the reader” where the advice for R novices is essentially to skip the first 80 pages and “start with the introductory session in Appendix A”!

Online Resources

Plenty of online resources are available, although they are not always easy to find for the R newcomer. I’ve been using R for nearly 15 years, yet when I type R and a space into Google, it still thinks I’m looking for R. Kelly! Generally, though, there is enough of a divide between the worlds of R&B and of statistical programming to make Googling for R help fairly straightforward. Besides Google, there are a number of other options for searching for R-based material, some of which are listed on the R Project website. In particular, Sasha Goodman of Stanford University has created Rseek (http://rseek.org/), which searches several known R-related sites.

If you wish to search the manuals for help, you can do so directly using a tool called R Documentation, http://www.rdocumentation.org, developed by DataCamp. R Documentation is a website that pulls together documentation from the main R repositories into a single location. The website also offers the ability to search the Comprehensive R Archive Network’s (CRAN’s) Task Views for packages of code. We will discuss CRAN and R packages in greater detail during Hour 2, “The R Environment.”

The R Consortium

On June 30, 2015, the Linux Foundation launched the R Consortium. The R Consortium consists primarily of data scientists from both industry and academia with the joint goal of trying to advance the R language and support the growth of the R community. The home page for the R Consortium is shown in Figure 1.3. Existing members of the R Foundation were joined by founding members Microsoft and RStudio (Platinum); TIBCO Software, Inc. (Gold); and Alteryx, Google, HP, Mango Solutions, Ketchum Trading, and Oracle (Silver).

[image: Image]

FIGURE 1.3 The home page of the R Consortium, www.r-consortium.org

The R Consortium is still very much in its infancy, but it is anticipated that its formation will both improve the accessibility of the R language and oversee its next phase of growth. The R Consortium home page may soon replace the R Project home page as the go-to starting point for the R community.

User Events

Another great plus of the open-source community is the number of user events available to attend globally. New user groups are popping up all the time, and attendance numbers can vary from 5 to 500. Events are typically held in the evening, with participants giving up their own time to attend. Since the very early days of R, these user meetings have been a primary arena for R enthusiasts to meet and share ideas. Many of the more established meetings receive commercial backing.

In addition to the localized R meetings, the main “useR!” conference has been held regularly since 2004, with the number of attendees steadily increasing year over year. The conference is generally focused on developments in the R language and R packages. It is packed with presentations from academia and industry and is now backed by the R Consortium. In 2014, UseR! was joined by the Effective Applications of the R Language (EARL) conference. The primary focus of the EARL conference is the commercial usage of R across a range of industry sectors with the aim of sharing knowledge and applications of the language.

In addition to the cross-sector R conferences, there are also industry-specific R conferences for those working in either the finance or insurance industry. These are, respectively, R/Finance, which has been held annually in Chicago since 2009, and R in Insurance, which has been running annually since 2013.

R Development

Today, the R Development Core Team still controls the write-access to the R source (though as an open-source GNU project, this source code is freely available to download for anyone who wants to see it). However, much of the popularity of the R language today can also be attributed to the many contributors outside of that group who have written one or more of several thousand R “packages,” freely available for download from the CRAN repository. CRAN is a network of ftp and web servers mirrored around the world, each of which contains versions of R and the contributed R packages.

The scope and quality of the R packages can vary greatly, but finding and using new R packages is an important part of the life of the modern R user. A proactive statistician or data scientist may have several hundred packages installed on his or her local machine for any particular version of R. R packages are explained in more detail in Hour 2.

Versions of R

The R Core Development Team decides when new versions of R are ready for general public release. Each release comes with a comprehensive description of additional features and fixes since the previous version. R versions follow the Major-Minor-Patch structure (for example, R-3.2.0). The first version of R, R-1.0.0 was released in February 2000, with a steady release pattern of patch, minor and very occasionally major releases, since then. In recent years the rate of release has slowed a little, with minor versions of R released approximately annually. Historically, each new minor release has had two to three associated patch versions.

Note: Nicknames

R version 2.15.1 was the first R release to be given a “nickname,” Roasted Marshmallows, by the R Core Development Team. Every subsequent R version has been given an interesting but apparently random nickname. This nickname is printed on start-up but can also be accessed by running the line R.Version()$nickname.

If you have a background in software such as SAS or Microsoft Excel, you may wonder why R versions are released so frequently. There is often a concern that the high frequency of releases is a sign of instability and that R is very buggy. Actually the opposite is true; however, commercial organizations do tend to be cautious about both the R versions that they adopt and the frequency with which they adopt them. Often companies wait until the second or third patched version of a minor release, such as R-3.1.2, before upgrading their R environment.

If you do ever identify a bug in R, it is very simple and easy to report it by emailing the package maintainer. Unlike most commercially backed closed-source models, the open model allows a direct dialogue with the person developing the code. Once it has been established as a genuine bug, you can work with the maintainer on a solution and in some cases gain recognition as a package author for your efforts. Once a resolution has been established to the issue, your bug-fix is usually implemented in the next patched or minor release. This means you typically never have to wait more than a couple of months for a bug to be fixed.

Summary

During this hour you were presented with a brief history of the evolution of S and then R. Along the way you heard terms such as “S3” and “S4,” deriving from S, which will be mentioned at various points throughout the remaining hours and covered specifically during Hours 21 and 22.

You were introduced to the R community and the various groups that support the R language: the R Core Development Team, the R Foundation, and the R Consortium. We looked at a selection of the available online resources and touched on the difficulties of searching for R help. Finally, we discussed the development cycle of R and what it means for bugs in the code.

In the “Activities” section, we install R and the RStudio integrated development environment (IDE). In the next hour, we will begin to use and explore R through the RStudio IDE.

Q&A

Q. With so many versions of R, should I be worried about backward compatibility?

A. If we consider the base R language and ignore the many thousand additional packages available to download from CRAN, it is fair to say that R is pretty backward compatible. Indeed there are many features of R today that exist due to decisions made when the S language was developed. However, the same cannot be said for the thousands of contributed packages residing in the main CRAN repository. Even some of the best known and respected R package authors change their mind from time to time, and package version numbers can make a big difference. Ensuring quality and consistency across R packages is one of the biggest challenges facing the R Foundation today.

Q. A colleague of mine has sent me a bunch of S scripts. Will they run in R?

A. The official line is, “There are some important differences, but much code written for S runs unaltered under R.” This is very much the case for day-to-day code, with a few notable exceptions. The function for calculating the standard deviation in S is stdev compared with sd in R, for example. For slightly more advanced users, functional scoping can become an issue (one of the “important differences”), but in essence the official line is spot on. To the naked eye, S and R code look very similar indeed.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. Which “similar” programming language predated R?

2. What does the acronym CRAN stand for?

3. Which group of R enthusiasts controls the write-access to the R source and is responsible for the distribution of the R language?

A. The R Core Development Team

B. The R Foundation

C. The R Consortium

Answers

1. The S language.

2. Comprehensive R Archive Network.

3. The R Core Development Team is directly responsible, though the resources and support surrounding each release could also be considered the responsibility of the R Foundation or R Consortium.

Activities

1. Refer to the “Installing R” section of this book’s Appendix. Download and install the appropriate version of R for your operating system.

2. Refer to the “Installing RStudio” section of this book’s Appendix. Download and install the latest version of RStudio Desktop from the RStudio website.

Hour 2. The R Environment

What You’ll Learn in This Hour:

[image: Image] Environments for writing R code

[image: Image] Basic R syntax

[image: Image] Elements of the RStudio IDE

[image: Image] The premise of an R object

[image: Image] Working with R packages

[image: Image] Getting internal help

At the end of Hour 1, “The R Community,” you installed R and the popular RStudio Desktop IDE. In this hour we start a new R session via RStudio, type some basic commands, and explore the idea of an R “object.” You will be more formally introduced to the concept of an R package, and in the “Activities” section you will load an R package from the CRAN repository containing datasets that supplement the book.

Integrated Development Environments

At the end of the previous hour you installed two pieces of software, R and RStudio Desktop. In this hour we focus on RStudio. The R language can be accessed in many different ways, however. For example, when you installed R, you also installed the R GUI, which for a long time was the way most R users interacted with the language. The RStudio Desktop IDE is therefore not necessary in order to use R, but it certainly helps.

The R GUI

The R GUI is installed with R and provides an environment in which you can work with R interactively via the R console. The R GUI contains a small selection of drop-down menus that allow you to quickly install and load R packages, load workspaces, and access the R manuals. There is also a series of quick-access buttons that include a “Run line or selection” button for working with scripts and a Stop Current Computation button to allow users to cancel submitted statements.

Compared with modern IDEs such as RStudio, the R GUI is beginning to look quite dated. It remains very quick to load, however, and can be useful if all you need to do is open R to run one or two commands. Throughout this hour and the remaining hours, we will access the R language via the far richer RStudio IDE. Many of the features we look at in this hour are also available directly through the R language or via the R GUI. They may, however, have a slightly different name within the R GUI or behave slightly differently.

The RStudio IDE

RStudio is a U.S.-based company that builds tools to assist R users. One such tool is their extremely popular integrated development environment (IDE) for R, called RStudio (see Figure 2.1). The first publically available version of the RStudio environment was released in 2011 and was made available in both desktop and server formats, with the server version accessed via a web browser. Since then, development has continued at some pace, and the IDE has surpassed many others to become the de facto standard way of interfacing with R.

[image: Image]

FIGURE 2.1 The RStudio Environment

Today, RStudio is still open source and available as both a desktop and a server product. Commercial versions of both products are now available for those that require additional features such as security or commercial support.

In Hour 1, you installed the latest version of RStudio Desktop appropriate for your operating system. The RStudio environment consists of four primary panels or panes. The size of these panes can easily be adjusted by clicking the dividing line between two panes and moving up/down or left/right accordingly. In order to change the layout of the panes, you need to use the menu options. Select Tools > Global Options... and then click the Pane Layout button on the left. The structured pane layout within RStudio is one of the features that sets RStudio apart from the standard R GUI. Panes such as Packages and Environment provide a user interface to core R functionality that new users are typically not aware of. More generally, the RStudio environment has helped make R more accessible to many new users who might previously have been put off by the rather basic looking R GUI.

The most relevant and useful features within RStudio will be briefly covered within the remainder of this hour. RStudio is an evolving product, and new features are being added all the time. Full documentation is available on the RStudio product website, www.rstudio.com/products/rstudio/, and is accessible via the Help menu within RStudio.

Other Development Environments

The R GUI and RStudio are by no means the only ways to interface with R. Notepad++ is a very popular general-purpose text editor that understands R syntax. You can even use the editor to submit code using the NppToR plug-in available from SourceForge. Similarly, ESS is an add-on package that enhances the Emacs text editor, enabling interaction with R. The highly customizable Vim editor also has an R plug-in.

Eclipse is a very popular development platform maintained by the Eclipse Foundation, which offers support for a number of programming languages. The StatET plug-in enables users to create customized R environments. Eclipse with StatET is particularly useful when working on large projects across multiple languages. Casual users may find it a little too heavyweight for their needs, however. There is also Rattle, an open-source GUI for data mining in R, as well as Tinn-R, an R GUI and development environment for Windows.

The brief list presented here is by no means exhaustive, and you can call R from a number of different applications and environments. For example, you can call R from Excel using a tool called RExcel. Similarly, the major business intelligence vendors all allow users to write extensions in R and provide their own script editors. Oracle, HP, and Teradata all offer the ability to run R within their respective databases. Microsoft announced in May 2015 that they will be offering the same functionality in SQL Server 2016.

R Syntax

Basic R syntax loosely resembles other mathematical/statistical scripting languages such as Matlab and Python. In this section, we take a look at the R console and type a few simple commands to see how an interactive R session functions.

The Console

Within both the R GUI and RStudio, you access your R session via the R Console. The console is essentially equivalent to running a command-line R session. Working directly within the R console, you type an R command, and when you press Enter, the result of that command is displayed on the line(s) below.

When you start an R session, you are greeted with an initial start-up message containing information about the version of R you are using, along with a selection of commands that the R Core Development Team would like you to know about (see Figure 2.2). Following the start-up message is the > symbol. This is commonly referred to as the command prompt.

[image: Image]

FIGURE 2.2 The R Console

Caution: No Warranty!

Note the “ABSOLUTELY NO WARRANTY” comment in the initial startup message. If things go wrong, there is no one you can pick up the phone and complain to!

A flashing cursor to the right of the command prompt is a sign that R is ready for you to submit a new command for processing. An example of the use of the console for a simple mathematical operation can be seen here:

> 4*5 # A simple command
[1] 20
>

Here, we asked R to evaluate the expression 4*5. The correct answer, 20, was printed on the following line, and we were returned to the command prompt and flashing cursor. The [1] relates to the way R prints vectors. It is something we will look at more closely in Hour 3, “Single-Mode Data Structures.” Note the use of the # symbol in order to comment our code. R will ignore anything to the right of the first # symbol of a line.

Caution: Comment Blocks

There is no multiline comment capability within R, so comment blocks may only be achieved by starting each line of code with a #.

The command prompt reappears once R has finished processing a complete line of code. If we do not provide a complete line of code, we will get a “continuation” prompt, +, as follows:

> 4* # An incomplete line
+

Often this occurs when a closing brace or quotation mark is accidently omitted, though it can also be used deliberately. Because R only processes the statement once the “line” of code is complete, incomplete lines do not necessarily cause syntax errors. If the break was deliberate or if we know what to type to complete the line, we can simply complete the line and press Enter. If we have made a more serious error or are unsure of what mistake we have made, we can press the Esc key to cancel the statement and return to the standard command prompt.

Using the R Console

Let’s type a few commands into the console using the following steps:

1. Open RStudio and wait for the command prompt to appear.

2. Type in a mathematical expression to evaluate, such as 20/4.

3. Press Enter.

The correct result should be displayed after a [1] and you should be returned to the command prompt, >.

Scripting

Professional-level code is rarely, if ever, developed directly in a console or command line. Large volumes of well-structured, readable, and well-documented code should be developed within an R script. The RStudio environment provides an enhanced text editor, shown in Figure 2.3, which can be used to develop R scripts. RStudio refers to this as the Source pane. You can open a script window using File > New File > R Script or via the equivalent buttons or keyboard shortcuts within the application.

[image: Image]

FIGURE 2.3 The script editor and console windows

During script development, code from the Source pane can be executed in the console by using the Run button at the top of the Source pane. Equivalently, the keyboard shortcut Ctrl+Enter (Windows) or Command+Return (OS X) can be used. By default, submission of code occurs on a line-by-line basis. RStudio will submit the entirety of the line on which the cursor is placed, regardless of where on the line the cursor is placed. By highlighting only part of a line or, for that matter, multiple lines, you can choose exactly what is submitted to the console.

Many of the examples in this book are brief and will therefore use the R Console directly. However, it is thoroughly recommended that you store all of the code you generate when working through the book in your own script or series of scripts. The content of the script editor can be written to a file by selecting File > Save As... or by using the quick access Save button at the top of the Source pane. In Hour 7, “Writing Functions: Part I,” we will begin writing functions, and it is almost impossible to do so without using scripts.

R Objects

R is often described as a loosely object-oriented programming language. If you have a background in computer science and have used truly object-oriented languages such as Java, you probably would not consider R to be object-oriented. If, like the authors of this book, you have more of an analytical background, you may find the multiple references to “objects” throughout the R manuals a little off-putting.

We will look closer at object orientation in R during Hour 16, “Introduction to R Models and Object Orientation,” and then again in Hour 21, “Writing R Classes,” and Hour 22, “Formal Class Systems.” To begin with, however, we won’t worry too much about the impact of object orientation in R. All it really means is that everything has a name and can be classified into different types of “objects.” For example, there are “function” objects, “data” objects, and “statistical model” objects. This book will focus first on “data” objects, then move on to the use of specific “function” objects (such as particular graphic and statistical modelling function objects).

R Packages

Sets of R “objects” are held together in “packages,” which are structured elements that store data, functions, and other information. When R is installed, it is distributed with a set of core packages, which can be seen in the “library” subdirectory of the R installation. Only a small subset of the installed packages is actually loaded when you start an R session. This helps reduce the start-up time and avoid a behavior known as masking, which we discuss later in this hour. The Packages pane in RStudio shows you which packages are installed on your machine.

The Search Path

When an R session begins, a set of “default” packages are loaded into the environment, providing immediate access to the most commonly used R functions and other objects. The list of packages included within the environment is called the R “search path,” which can be viewed using the search function. The physical location of the packages loaded can be viewed using the searchpaths function. These functions are demonstrated in Listing 2.1.

LISTING 2.1 The Search Path

Click here to view code image

 1: > search()
 2: [1] ".GlobalEnv" "tools:rstudio" "package:stats"
 3: [4] "package:graphics" "package:grDevices" "package:utils"
 4: [7] "package:datasets" "package:methods" "Autoloads"
 5: [10] "package:base"
 6: > searchpaths()
 7: [1] ".GlobalEnv"
 8: [2] "tools:rstudio"
 9: [3] "C:/Program Files/R/R-3.1.2/library/stats"
10: [4] "C:/Program Files/R/R-3.1.2/library/graphics"
11: [5] "C:/Program Files/R/R-3.1.2/library/grDevices"
12: [6] "C:/Program Files/R/R-3.1.2/library/utils"
13: [7] "C:/Program Files/R/R-3.1.2/library/datasets"
14: [8] "C:/Program Files/R/R-3.1.2/library/methods"
15: [9] "Autoloads"
16: [10] "C:/PROGRA~1/R/R-31~1.2/library/base"

Note: Text Wrapping

In the function call to the search function in Listing 2.1, the output was printed with three elements on each line, whereas the searchpaths output was longer so only one element was printed on each line. The number in square brackets tells us the position in the search path for the first element on the line.

Note: RStudio Tools

The "tools:rstudio" item is unique to RStudio. It contains many hidden objects used by the RStudio IDE. The average R user will never touch any of the objects within this item.

Listing Objects

Each package loaded contains (possibly many) R objects that can be accessed. R provides functions to list the objects available in each package. One such function is the objects function. The objects function lists the objects contained in a package. To use the function, you simply call it, specifying the position of the package on the search path from which you wish to list the objects. Alternatively, you can use the “package: [packageName]” syntax produced by running search(). For example, if you want to see the names of the objects contained within the graphics package, you can run either of these lines:

Click here to view code image

objects(4) # Assumes that graphics is 4th in the search path
objects("package:graphics") # Assumes nothing about the search path

The ls.str function provides a listing of the objects in a package together with a short view of each object (usually the arguments if the object is a function). You call ls.str in the same way as objects, using either the position of the package in the search path or the text produced by running search().

Tip: Find Hidden Objects

When you list package objects in this manner, you list only those objects that the package developer has chosen to expose to the user.

If, however, you wish to view all objects in a package, you can use the all.names argument to the objects function, setting all.names = TRUE.

The R Workspace

Not all the items in the search path refer to R packages. In particular, the first item returned using both search and searchpaths was ".GlobalEnv". This refers to what is known as the “Global Environment,” (or “workspace”) which is a storage box for objects that you create during your R session. This might be data that you read in to R or functions that you write yourself. To begin with, it is empty, but you can easily create your own objects. The standard method for assigning a name to an object is to use the < and - characters to create an arrow (<-). To the left of the arrow you specify the name of a new object you wish to create. To the right you specify the value that the object will take. Here is an example:

> x <- 3*4
> x
[1] 12

Note: Dynamic Typing

R is a “dynamically typed” programming language. This means that you do not have to specify the type (or class) of an object before you assign it a value. The effect of dynamic typing is that R is quicker to write but slower to run than statically typed languages such as Java and C.

Instead of the left arrow, you can use the = sign. Some would argue that the left arrow makes it clear that a new object is being created, whereas others would argue that the = sign is more consistent with assignment in other programming languages. In most situations, there is very little difference, but experienced R package developers tend to use the left arrow, and this is what we will use for the examples throughout this book.

Note: Assigning to the Right

The assignment arrow works both ways. For example, you can create a variable, x, that has the value 9 by typing 9 -> x. Very few people actually use a right arrow to assign, however. It is generally considered good practice to avoid using it.

Object Naming

R object names can be practically any length, and be made up of any combination of letters, numbers, and the . and _ characters. The only real restriction is that it cannot start with a number or “_”. Objects beginning with a dot are accessible but hidden objects. It is important to note that R is a case-sensitive language; therefore, an object named myObject is completely different from one named myobject.

Note: Naming objects with quotes

Strictly speaking, it is possible to start an object name with a number or underscore. It is also possible to include spaces. However, these forms of naming are generally discouraged. We must use one of three types of quotes to identify the non-standard object name: single quotes, '; double quotes, “; or backticks, `. The standard convention in R is to use backticks if naming objects in this way.

There is no widely adopted object-naming convention among R users. Throughout this book we will predominantly use a convention known as “camelCase,” because this is the convention that applies to most cases within the Mango Solutions coding standards. The camelCase convention specifies that each new word within an object’s name, excluding the first, should start with a capital letter. A variant of the convention is also discussed within Google’s R Style Guide, which is a great starting point for anyone looking for styling tips to help ensure professional-level R code.

Tip: Removing Objects

It is possible to remove objects from the workspace using the rm function—for example rm(x).

The objects and ls functions default to the first item in the search path (that is, the Global Environment). You can therefore delete every object in the Global Environment using rm(list=objects()) or rm(list=ls()).

The Working Directory

In R, the working directory is the default directory from which you import files, and to which you write information. A thorough understanding of how to query and change the working directory is essential in order to collaborate and/or share code effectively. If a codebase is well structured and relative file paths (as opposed to absolute file paths) are used throughout, then setting the working directory need only occur once right at the start of an R session.

Tip: Navigating the File System

The R function list.files can also be used to list all the files and folders within a particular directory, returning either file/directory names alone or full file paths.

You can view the current working directory using the getwd function, and change the working directory using the setwd function. RStudio allows the working directory to be updated via the Session > Set Working Directory menu item. It can also be set via the Files pane.

Note the use of the forward slash (/) in the directory paths specified in Listing 2.2. Every time R reads a backslash (\), it skips onto the next character and tries to evaluate what is known as an “escape sequence.” This can be painful when you’re copying directory paths from Windows Explorer. The simple solution is to replace every backslash with either a forward slash or a double backslash (\\). This includes paths to servers. For example, a Windows path of \\server would become \\\\server or //server in R.

LISTING 2.2 A Working Direcotry

Click here to view code image

 1: > # Print the current working directory
 2: > getwd()
 3: [1] "C:/Users/username/Desktop/STY"
 4: > # Change the current working directory using an absolute path
 5: > setwd("C:/Users/username/Desktop")
 6: > getwd()
 7: [1] "C:/Users/username/Desktop"
 8: > # Change the current working directory using a relative path
 9: > setwd("STY")
10: > getwd()
11: [1] "C:/Users/username/Desktop/STY"

The backslash itself is known as an escape character. An escape character has a special place in programming because it changes the behavior of subsequent characters, assuming the escape sequence is known. The double backslash (\\) is one such use of an escape sequence in R. We will explore some useful escape sequences such as \n and \t in later hours.

Saving Workspace Objects

The collection of objects in the Global Environment that you create during an R session are held in memory during the session. When you close R, you must choose whether to save these objects to disk for use at a later date or to delete them.

When a user decides to quit RStudio (and hence close their R session), they are presented with a dialog box similar to the one shown in Figure 2.4, asking them if they would like to “Save workspace image to ~/.RData.” The options presented are Save, Don’t Save, and Cancel. Selecting Save will create an .RData file within the current working directory. This is a compressed format that R can use to regenerate the objects within your Global Environment. RStudio automatically saves an .Rhistory file containing a list of all the commands typed during the R session. This file is visible in RStudio via the History pane.

[image: Image]

FIGURE 2.4 To save or not save?

Tip: Saving Large Objects

The save function can be used at any time during an R session. For example, it can be used to create custom .RData files containing objects you specify directly. The save function, along with its counterpart load, are great for working with very large datasets because the time to load objects stored as .RData files can be an order of magnitude faster than reading data from a CSV file or other formats.

In a professional environment it is common to work on multiple projects, each with its own directory structure. RStudio allows the creation of projects via a button in the top-right corner of the IDE. When you create a new project within a specified directory, RStudio stores some information within that directory relating to your project. The impact of creating a new project is that the R session restarts and the working directory is set to be the project directory. When you return to a project after closing down RStudio, any files you had open when you closed the program down are reopened, enabling you to continue where you left off. This is not unique to RStudio, and tools such as Eclipse with StatET offer a slightly richer project setup, allowing you to associate a particular version of R with your project.

Using R Packages

The base R distribution consists of approximately 30 R packages classified as either “core” (otherwise known as “base”) or “recommended.” The packages that make up the base R distribution contain a huge amount of functionality. However, the success of R has largely been due to the contribution of several thousand authors who have chosen to submit new functionality via additional R packages.

The main repository for R packages is CRAN, for which the number of R packages passed 7,000 in 2015. There is also a specialist repository for R developers called R-Forge; however, an increasing number of authors are choosing to share development versions of their packages on the more general-purpose GitHub. In addition to these primary repositories, the field of bioinformatics has its own repository known as Bioconductor, which “provides tools for the analysis and comprehension of high-throughput genomic data.” The Bioconductor community is very strong and even maintains its own conference, BioC.

Finding the Right Package

The CRAN repository is growing at an incredible rate. When I began teaching R courses in 2011, there were fewer than 2,000 packages on CRAN. In 2015, the number of packages passed 7,000. The R Core Development Team is constantly looking for ways to limit the number of packages, and the formation of the R Consortium may bring some control to the situation. However, at present, there is no standard way of finding the right package. A good starting point is CRAN’s Task Views, shown in Figure 2.5.

[image: Image]

FIGURE 2.5 CRAN Task Views

At the time of writing, there are 33 Task Views. Each is manually maintained by members of the R community with a special interest in the topic that their Task View covers. There is no higher-level classification of views, so the views themselves are quite diverse and a great deal of overlap occurs between the various Task Views. This is to be expected given that there is no requirement that an R package should focus on a single topic. Conversely, not every package on CRAN appears in a Task View.

A drawback of the open-source nature of CRAN is the duplication of effort that occurs when two independent developers attempt to solve the same problem. This has resulted in several packages that attempt to do the same thing, just in slightly different ways. Ensuring better collaboration on such projects in the future is one of the primary goals of the R Consortium. The aim of CRAN Task Views is to tell you what is available, not to try to rank the packages in any way. Finding the right package via CRAN can therefore be a bit of a challenge!

In 2012, RStudio began maintaining its own CRAN mirror and publish download logs of all the packages downloaded from the mirror. The popularity of the RStudio environment (which defaults to downloading from this mirror) means that if you want to know which packages are the most popular, these download logs can give you a good indication. Gábor Csárdi’s METACRAN (http://www.r-pkg.org/) summarizes the RStudio download logs in a more interactive, user-friendly manner. Alternatively, just search for blog posts discussing the popularity of R packages—there are plenty! Many of the popular general-purpose packages are discussed in this book.

Installing an R Package

The Packages pane in RStudio provides a user-friendly interface for installing and loading R packages. When you install an R package, you essentially create a directory on your machine. Once installed, the package lives on your machine permanently until such time that you choose to delete it.

Tip: Removing Packages

You can delete packages from your system using the remove.packages function.

When you install your first R package, you may be asked if you wish to create your own local library. A library is a just a name for a collection of R packages. Local libraries are particularly useful when you are logged in to your operating system as a standard user and do not have all the necessary admin privileges in order to create new files within your R installation. If you have a local library, you may notice that the Packages pane in RStudio is divided into “User Library” and “System Library” to show where the packages are installed.

The quickest way to install an R package in RStudio is to navigate to the Packages pane and click the Install button. This loads the pop-up shown in Figure 2.6, for installing packages from both CRAN and locally.

[image: Image]

FIGURE 2.6 The Install Packages window

Tip: Local Libraries

You can ask R which libraries it is using with the .libPaths function. The same function can also be used to point R at different local libraries. The system library cannot be changed, but you can create as many local libraries as you like.

If you don’t specify the package location when loading a package, R will look through each library in turn to try to find a package with the name you specified.

Installing from CRAN

To install from CRAN, you need to ensure the Install From field shown in Figure 2.6 is pointing to CRAN. If you were using R on the command line or through the R GUI, you would first have to choose your CRAN mirror. RStudio does this for you, however, so you don’t have to worry about choosing a mirror. If you are connected to the Internet and your firewall allows it, you simply need to start typing the name of the package you wish to install in the Packages field, and RStudio will autocomplete the rest for you. Note that if you have multiple libraries, you can choose which one to install to, though RStudio defaults to a local library if you have one.

Caution: Package Quality

A package must pass many checks to make it on to CRAN. It is therefore natural to assume that being on CRAN is a sign of package quality. Although this is partly true, packages downloaded from CRAN have not necessarily been fully tested, or developed in a “valid” environment. Only the “core” and “recommended” packages have been tested by the R Core Development Team.

To save yourself some effort, we recommend leaving the Install Dependencies box checked unless you are concerned about what might be installed onto your system. For one thing, your package will fail to load unless the dependencies are installed. Therefore, if you don’t leave this box checked, you will have to manually install each dependency separately. Bear in mind that some of the more popular packages can have 10 or more dependencies.

Note that the Install Packages tool generates a line of code in the R Console that calls the R function install.packages. This function resides in the utils package, which is loaded by default when you start R. It is possible to call this function directly in any R session.

Installing from a Package Archive File (Binary)

CRAN is the primary package repository for R users, though it is not the exclusive repository. Many commercial organizations build their own utility packages for internal use and may instead distribute package binaries over an intranet. The term “binary” refers to a package that has been built into an archive (a “.zip” on Windows, a “.tgz” on OS X), ready for installation. When you install a package directly from CRAN, the appropriate package binary is chosen for your operating system; it is downloaded to a temporary location and then “unpacked” and installed. When you install manually from a binary, you are simply skipping the CRAN piece and pointing directly to the binary for R to unpack. It is important to note that binaries are constructed in order to be unpacked by R, and you should never try to install a package that you have unzipped yourself.

Installing from Source

Since R is open source, the source code is always available to use and is distributed as a “.tar.gz” file. In addition to installing from a package binary, we may also install directly from the package source. Linux users have to install from source, though Windows and OS X users usually won’t have a need to until they start building their own packages. There are other occasions when it can be useful, but installing from source takes a lot longer than installing from a binary and may require additional tools. For example, Windows users need to install a version of Rtools that is appropriate for their R version. Instructions for installing Rtools can be found in the Appendix.

To install from a source using the RStudio GUI, Linux users simply need to follow the instructions above for installing a package archive file. For those on Windows or OS X we first need download the “tar.gz” file locally. We then install the package as we would a local package binary. Regardless of our operating system, we can install directly from the console by adding the type = "source" argument when running the install.packages function.

Tip: Installing from GitHub

The package devtools contains a function, install_github, that facilitates a direct installation from the GitHub repository. You can use install.packages to install packages directly from other repositories as well.

Loading an R Package

When you start R, only a subset of your installed packages is actually loaded for use within the R session. This helps reduce the startup time and avoid a behavior called masking. In order to access the functionality of other installed packages, you must load them into the environment. The Packages pane in RStudio lists all the packages that your R session is aware of. To load any of these packages, you simply check the box next to a package name and the packages is loaded. Checking the box calls a line of R code using the library function. You can also call the library function directly from the R console.

When developing reusable production-level code, it is best to avoid using untraceable “point-and-click” actions as much as possible. It is standard practice to place multiple calls to the library function at the top of an R script so that other users can run your code. If R cannot find the specified package library, it will produce an error. The require function is an alternative to library that returns a warning if a package is not present, allowing more control over the behavior of the script—for example, “do this, but only if package X has successfully been loaded.” We will look closer at errors and warnings and control flow when we discuss writing R functions in Hour 7, “Writing Functions: Part I,” and Hour 8, “Writing Functions: Part II.” In a professional development environment, checking that the right packages are available is only half the battle. Errors may still occur due to differences in package versions or operating systems, but we’ll come to that later!

Package Dependencies

When you’re developing packages, it is highly unlikely you will need to write every function from scratch. It is likely that you will use one or more functions defined within another package. Rather than copy all the relevant code into your own package, you simply specify a “dependency” on the other package. This avoids duplication and ensures that bugs need only be fixed in a single location. When you load an R package with a dependency, the dependency is also loaded and added to the search path. Note that this means the dependent package must also be installed on your machine.

Masking

Masking occurs when two or more “environments” on the search path contain one or more objects with the same name. Whenever we refer to an object by typing its name, R looks in each of the loaded environments on the search path for that object in turn, starting with the Global Environment. If R finds an object with the name it is looking for, it stops searching. Any objects it doesn’t find have been hidden, or “masked.”

We can delete objects from our own workspace but we cannot delete objects from R packages, only mask them. If you inadvertently mask an object, you can simply clone your object with a different name and use rm to delete the original object from your workspace, thereby unmasking the hidden object.

Tip: Ensuring the Right Object Is Used

Masking is much less of a problem than most new users perceive it to be. This is largely due to package namespaces, which we will look at more closely in Hour 19, “Package Building,” and Hour 20, “Advanced Package Building.” To avoid any potential masking issues, it is possible to reference an object within a package directly by using the [packageName]::[objectName] syntax—for example, base::pi.

Internal Help

The help function can be used to display help on a function or indeed any R object. RStudio allows users to navigate R’s help files via the Help tab. If the phrase you search for exactly matches the name of an R object available in your current session, then the help file for that object is returned. Otherwise, it searches your package libraries (including packages that are not loaded) for possible help pages.

Note: Help from the Console

The RStudio Help pane simply provides wrappers for functionality contained within the utils package. A general search of all help files can be achieved using either the help.search function or the shorthand version, ??. Similarly, if you know the name of the object you require help with, you can use a function help or its shorthand, ?.

The help files can be a little daunting if you are unfamiliar with the standard terminology, as demonstrated in Figure 2.7, which shows the help file for the mean function referring to terms such as “objects,” “vectors,” and “methods” in several places.

[image: Image]

FIGURE 2.7 The help page for the mean function

There is a standard set of fields that package maintainers are encouraged to complete, though few are actually necessary. For example, in order to publish a package on CRAN, you must pass what is known as an “R CMD check.” This requires that all your examples in the Examples section of the help file run successfully. However, it is also possible to pass the check by not including the Examples section!

Summary

In this hour we looked at the available development environments for R, focusing on the RStudio environment. We looked closely at the makeup of the language and saw how R is constructed from a number of core and recommended packages that can be extended by downloading additional packages from a repository such as CRAN. In the “Workshop” and “Activities” sections, you will load RStudio, begin using the R console, and install your first R package.

In the next two hours we will look at the standard data objects that are the building blocks of the R language, beginning with vectors and working through to R’s data frame structure. You will learn how to create, combine, and subset these structures.

Q&A

Q. I created an object named using the syntax x <- 5 but when I tried the line X + 2 I got “Error: object ‘X’ not found.” Is that right?

A. If you have been using a language such as SAS, this may seem odd but it is correct. R is case sensitive, so x and X are not the same thing.

Q. A colleague sent you an R package via a .zip file but after unzipping the file you found that you could not install the package. Why is this?

A. R packages are commonly distributed as binaries or “.zip” files. Unless you want to build the package from source yourself, you need to provide R with a binary file, which means keeping it zipped up.

Q. Is it possible to install two different versions of the same package to different libraries? If so, what happens when I try to load them?

A. It is entirely possible to install different versions of the same package to different libraries. Unless you specify exactly which one you are loading, R will load the one highest up the library path. Thankfully, you can only load one version of a package at a time. If you do try to load a package that has already been loaded, R does not produce an error or warning, so our advice is to be careful!

Q. Is it possible to have multiple versions of R installed? If so, how are the package libraries affected?

A. You can have as many versions of R installed on your machine as you like, which is great if you work in a heavily regulated environment and need to ensure you can exactly reproduce results from a time when you were working with an earlier version of R. RStudio lets you switch between R versions via the Tools > Global Options... menu, though you will need to restart RStudio for the change to take effect.

The system library is associated with your version of R and therefore this is automatically updated to use the new versions of the core and recommended R packages when you switch to a new version of R. User libraries default to a version-specific location as well, so there is little risk to using packages built for a different version of R. On the flip side, this means that each time you install a new version of R, you will need to install your favorite packages for that R version as well.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. True or false? You must install RStudio in order to work interactively with R.

2. Which of the following is not used for assignment in R?

A. <-

B. _

C. ->

D. =

3. What does the line objects(4) tell you?

4. What is the difference between installing and loading an R package?

5. What is the difference between an Rhistory and an .RData file?

6. What is masking?

Answers

1. False. There are many ways of working interactively with R, though RStudio is the most popular.

2. The answer is B. However, you might be surprised to learn that prior to R, underscores were used for assignment in S.

3. The line objects(4) produces a list of objects that are contained within the fourth item in the search path. In the example used in this hour, this was graphics, though that might not always be the case. As new packages are loaded, the position of packages in the search path can change.

4. Installing an R package creates a permanent directory on your machine. Typically, you only install a package once for a version of R. Loading a package enables you to actually use it within the R session.

5. An.Rhistory file contains a list of commands that were executed during an R session (or sessions). An .RData file stores R objects and can be used to re-create Global Environment objects from a previous R session.

6. Masking occurs when two or more “environments,” typically packages, contain an object with the same name. When you type that name into the console, R finds the object that is higher up the search path. Any objects that are not found are hidden, or “masked.”

Activities

1. Start an R session by opening RStudio.

2. Print the search path for your R session.

3. List all objects from the “datasets” package using the objects function.

4. Use the Packages pane to install the mangoTraining package from CRAN.

5. Load the mangoTraining package into the R session.

6. List the objects the mangoTraining package contains.

Hour 3. Single-Mode Data Structures

What You’ll Learn in This Hour:

[image: Image] The common R data types

[image: Image] What a vector object is

[image: Image] What a matrix object is

[image: Image] What an array object is

R is commonly used to gain insight from data, using graphical or analytic methods. To use R effectively, you must have a good working knowledge of the basic data structures. In this hour, we describe the standard types of data found in R and introduce three key structures that can be used to store these data types: vectors, matrices, and arrays. We will look at the ways in which these structures can be created and managed, with a focus on how to extract data from them.

The R Data Types

Four standard types of data can be used in R. These data types, or “modes” as they are formally known as, are as follows:

[image: Image] Numeric values (integers or continuous values)

[image: Image] Character strings

[image: Image] Logical values (TRUE and FALSE values)

[image: Image] Complex numbers (with real and imaginary parts)

The following code shows examples of each of these data types:

Click here to view code image

> 4 + 5 # numeric
[1] 9
> "Hello" # character
[1] "Hello"
> 4 > 5 # logical (is 4 greater than 5)
[1] FALSE
> 3 + 4i # complex
[1] 3+4i

Note: Quotation Marks

Note the use of the double quotation marks for specifying character data. You may use either double or single quotation marks (but not both at the same time).

The mode Function

In the last section you saw examples of the four “modes” of data within R. You can use the mode function directly to discover the mode of data held in any object, as illustrated in the following example:

Click here to view code image

> X <- 4 + 5 # Assign a (numeric) value to X
> X # Print the value of X
[1] 9
> mode(X) # The mode of X
[1] "numeric"

> X < 10 # Logical statement: is X less than 10?
[1] TRUE
> mode(X < 10) # The mode of this data
[1] "logical"

Note: Missing Values

In R, any missing value is represented with an “NA” symbol. This can be a “missing” numeric, character, logical, or complex value.

Vectors, Matrices, and Arrays

In R, there are three data structures designed to store a single type of data. These structures are known as “single-mode” data structures:

[image: Image] Vectors—Series of values

[image: Image] Matrices—Rectangular structures with rows and columns

[image: Image] Arrays—Higher dimension structures (for example, 3D and 4D arrays)

Given that these are single-mode structures, they may only hold a single type of data. Therefore, you may have a numeric vector or a character matrix, for example, but you cannot create an array that contains both numeric and logical data.

Vectors

A vector is a series of values of the same mode—it is the basic form of R structure, and most functions in R are ultimately designed to operate on vectors. In this section, we look at the following:

[image: Image] Some ways to create vectors

[image: Image] The attributes of a vector

[image: Image] The ways in which you can extract information from a vector

Creating Vectors

There are many ways to create vectors in the R language, and many functions will return vectors as an output (such as the set of functions that create random samples from statistical distributions, which you’ll see later in Hour 6, “Common R Utility Functions”). In this section, we focus on four ways to create simple vectors.

Combining Elements with the c Function

The c function allows you to create simple vectors by combining elements of the same mode. (Note that c is lowercase!) You specify as many elements as you want, separated by commas, optionally saving the results as objects for reuse later. Here’s an example:

Click here to view code image

> numericVector <- c(2, 6, 8, 4, 2, 9, 4, 0) # Vector of numerics
> numericVector # Print the numeric vector
[1] 2 6 8 4 2 9 4 0
> mode(numericVector) # What is the mode of "numericVector"?
[1] "numeric"

> c("Hello", "There") # Vector of characters
[1] "Hello" "There"
> c(F, T, T, F, F, T, F, F) # Vector of logicals
[1] FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
> c(3+4i, 5+9i, 3+7i) # Vector complex numbers
[1] 3+4i 5+9i 3+7i

Note: Logical Values

You specify logical values without quotation marks, using either T and F or TRUE and FALSE, as shown here:

> c(T, F, TRUE, FALSE)
[1] TRUE FALSE TRUE FALSE

You can use the c function to combine single values, or even vectors of values (because a single value is actually a vector of length 1). In this way, you can combine vectors, as illustrated here:

Click here to view code image

> X <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) # Create a simple vector of numerics
> X # Print the vector
 [1] 1 2 3 4 5 6 7 8 9 10
> c(X, X, X, X, X) # Combine vectors
 [1] 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4
[25] 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8
[49] 9 10

Note: Indexed Printing

When you print vectors in R, you see that the values are prefixed with [1]. This specifies an index for the values in the vector. If you print a vector with many elements, it is clearer to see this indexing behavior. In the preceding example, the first 5 on the second “line” of printing is the 25th value in the vector, as noted by the [25] that precedes it.

Although the horizontal printing of the vector may encourage you to think of a vector as a “row” of data, this is just a printing convention. In fact, a vector has no structure: It is simply a series of values.

Tip: Multi-Mode Structures

Earlier, we stated that vectors are strictly single-mode structures—that is, they contain only values of a single data type. If you try to create vectors containing more than one mode of data, R coerces the vector to a single mode, as shown here:

Click here to view code image

> c(1, 2, 3, "Hello") # Multiple modes
[1] "1" "2" "3" "Hello"
> c(1, 2, 3, TRUE, FALSE) # Multiple modes
[1] 1 2 3 1 0
> c(1, 2, 3, TRUE, FALSE, "Hello") # Multiple modes
[1] "1" "2" "3" "TRUE" "FALSE" "Hello"

Creating a Sequence of “Integers”

In the previous section, we looked at the use of the c function to create vectors. In one of the examples, we created a sequence of integers:

Click here to view code image

> X <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) # Create a simple vector of numerics
> X # Print the vector
 [1] 1 2 3 4 5 6 7 8 9 10

This is a simple line of code that creates a sequence of values from 1 to 10, “by 1.” However, if you wanted to create a sequence of integer values from 1 to 100, this would require significantly more typing! If you do wish to create a series of integers, you can use the : symbol, specifying the start and end values, as follows:

Click here to view code image

> 1:100 # Series of values from 1 to 100
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
 [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
 [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
 [91] 91 92 93 94 95 96 97 98 99 100

In fact, the : notation can be used to create any sequence of numeric values from one number to another number, “by 1,” as shown in the following examples:

> 1:5
[1] 1 2 3 4 5
> 5:1
[1] 5 4 3 2 1
> -1:1
[1] -1 0 1
> 1.3:5.3
[1] 1.3 2.3 3.3 4.3 5.3

You can combine R statements, such as those in the last two sections, to create more complex vectors. Here is an example of the c function and the : notation used together to create a symmetric pattern of values:

> c(0:4, 5, 4:0)
 [1] 0 1 2 3 4 5 4 3 2 1 0

You can operate on vectors to create sequences where the “gap” in the sequence is not one. For example, this line of code would create a series of values from 2 to 20, “by 2”:

Click here to view code image

> 2*1:10
 [1] 2 4 6 8 10 12 14 16 18 20

This works well for simple sequences, such as the one illustrated here. However, for more complex sequences of numeric values (for example, 1.3 to 8.4, by 0.3), you need a more general approach.

Note: Letter Sequences

In this section we have looked at regular series of numeric (primarily integer) values. This approach works only for numeric values. For example, you cannot create a series of letters using syntax such as A:Z. You will, however, see how to achieve letter sequences in the “Subscripting Vectors” section, later in this hour.

Creating a Sequence of Numeric Values with the seq Function

In the preceding section, we used the : notation to create a series of numeric values, where the “gap” in the sequence is one. A more general way of performing the same operation is with the seq function. The first two arguments to seq are the starting and ending values, and the default gap is one. Therefore, the following lines are equivalent:

Click here to view code image

> 1:10
 [1] 1 2 3 4 5 6 7 8 9 10
> seq(1, 10)
 [1] 1 2 3 4 5 6 7 8 9 10

The advantage of using the seq function is that it has an additional argument, by, that allows you to specify the gap between consecutive sequence values, as shown in the following examples:

Click here to view code image

> seq(1, 10, by = 0.5) # Sequence from 1 to 10 by 0.5
 [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
[13] 7.0 7.5 8.0 8.5 9.0 9.5 10.0

> seq(2, 20, by = 2) # Sequence from 2 to 20 by 2
 [1] 2 4 6 8 10 12 14 16 18 20

> seq(5, -5, by = -2) # Sequence from 5 to -5 by -2
[1] 5 3 1 -1 -3 -5

These examples illustrate some simple sequences of values. However, let’s consider the following examples, where we create a sequence of values from 1.3 to 8.4 by 0.3:

Click here to view code image

> seq(1.3, 8.4, by = 0.3) # Sequence from 1.3 to 8.4 by 0.3
 [1] 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3 4.6 4.9 5.2 5.5
[16] 5.8 6.1 6.4 6.7 7.0 7.3 7.6 7.9 8.2

In this example, note that the last value in the vector is 8.2, whereas we requested a sequence from 1.3 to 8.4. Of course, the reason that the last value is not precisely 8.4 is that the difference between the start and end of the sequence is not divisible by 0.3 (the specified “gap”).

If instead we wanted to create a sequence of values from a start point to a particular end point, we could specify a length of the output vector instead of the gap in consecutive sequence values:

Click here to view code image

> seq(1.3, 8.4, length = 10) # Sequence of 10 values from 1.3 to 8.4
 [1] 1.300000 2.088889 2.877778 3.666667 4.455556 5.244444
 [7] 6.033333 6.822222 7.611111 8.400000

Creating a Sequence of Repeated Values

In the earlier section “Combining Elements with the c Function,” we created a repeated sequence of values by combining a created vector a number of times:

Click here to view code image

> X <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) # Create a simple vector of numerics
> X # Print the vector
 [1] 1 2 3 4 5 6 7 8 9 10

> c(X, X, X, X, X) # Combine vectors
 [1] 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4
[25] 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8
[49] 9 10

We can use the rep function in R to create a vector containing repeated values. The first two arguments to the rep function are the value(s) to repeat and the number of times to repeat the value(s), as shown here:

Click here to view code image

> rep("Hello", 5) # Repeat "Hello" 5 times
[1] "Hello" "Hello" "Hello" "Hello" "Hello"

In the last example, we are repeating a single value, but the first argument to rep could be a vector of values. In this way, we could re-create the earlier vector of repeated sequences (where we used the c function to combine multiple instances of a vector) using rep, as follows:

Click here to view code image

> X <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
> rep(X, 5) # Repeat the X vector 5 times
 [1] 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4
[25] 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8
[49] 9 10

You saw in the earlier section “Creating a Sequence of Integers” that you can create a series of integers with the : notation. Therefore, we can further simplify this example as follows:

Click here to view code image

> X <- 1:10
> rep(X, 5) # Repeat the X vector 5 times
 [1] 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4
[25] 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8
[49] 9 10

Or even:

Click here to view code image

> rep(1:10, 5) # Repeat 1:10 5 times
 [1] 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4
[25] 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8
[49] 9 10

In these examples, we repeat a series of values a specific number of times. Alternatively, we can repeat each of the values a specified number of times by supplying a vector value for the second argument the same length as that in the first argument:

Click here to view code image

> rep(c("A", "B", "C"), c(4, 1, 3))
[1] "A" "A" "A" "A" "B" "C" "C" "C"

In this example, we repeat “A” four times, “B” once, and “C” three times. Using this same approach, we can replace each value of a vector a specific number of times, as shown here:

Click here to view code image

> rep(c("A", "B", "C"), c(3, 3, 3))
[1] "A" "A" "A" "B" "B" "B" "C" "C" "C"

Alternatively, because the second input is a repeated set of values, this could be written as follows:

Click here to view code image

> rep(c("A", "B", "C"), rep(3, 3))
[1] "A" "A" "A" "B" "B" "B" "C" "C" "C"

However, an argument to rep called each provides an easy way to achieve the same result:

Click here to view code image

> rep(c("A", "B", "C"), each = 3)
[1] "A" "A" "A" "B" "B" "B" "C" "C" "C"

As you can see, the rep function can be used to create a variety of vectors with repeated sequences. Let’s quickly recap the three ways of using rep, as illustrated in this section:

Click here to view code image

> rep(c("A", "B", "C"), 3) # Repeat the vector 3 times
[1] "A" "B" "C" "A" "B" "C" "A" "B" "C"

> rep(c("A", "B", "C"), c(4, 1, 3)) # Repeat each value a specific number of
 times
[1] "A" "A" "A" "A" "B" "C" "C" "C"

> rep(c("A", "B", "C"), each = 3) # Repeat each value 3 times
[1] "A" "A" "A" "B" "B" "B" "C" "C" "C"

Caution: Nested Calls

The last section included the following line of code:

Click here to view code image

> rep(c("A", "B", "C"), rep(3, 3))
[1] "A" "A" "A" "B" "B" "B" "C" "C" "C"

This is possibly the most complex line of code you’ve seen so far, and includes nested calls: The inputs to rep are, themselves, derived from calls to functions (c and rep, respectively). This sort of syntax is common in R, but care must be taken not to create overly complex nested calls because this may make your code hard to read and understand later. Where appropriate, consider breaking the code into smaller, commented fragments, as shown here:

Click here to view code image

> theVector <- c("A", "B", "C") # Vector to repeat
> repTimes <- rep(3, 3) # Number of times to repeat the vector
> rep(theVector, repTimes) # Repeat the vector
[1] "A" "A" "A" "B" "B" "B" "C" "C" "C"

Vector Attributes

A vector has a number of attributes that you can query using a set of simple functions. Specifically, you can query a vector’s length, mode, and element names.

The mode function you saw earlier in this hour takes a vector input and returns the mode of the data it contains. Here’s an example:

Click here to view code image

> X <- c(6, 8, 3, 1, 7) # Create a simple vector
> X # Print the vector
[1] 6 8 3 1 7
> mode(X) # The mode of the vector
[1] "numeric"

If you want to see the number of elements in a vector, you can use the length function:

Click here to view code image

> length(X) # Number of elements
[1] 5

Note: Missing Values

If we have a vector that contains one or more missing values, these values will still contribute to the vector’s length:

Click here to view code image

> Y <- c(4, 5, NA, 1, NA, 0)
> Y
[1] 4 5 NA 1 NA 0
> length(Y)
[1] 6

The third and fifth elements of the preceding vector exist—we just don’t know their values.

A vector can also have elements you can query using the names function. (Note that we did not specify names for the vector created earlier.) Here’s an example:

Click here to view code image

> X <- c(6, 8, 3, 1, 7) # Create a simple vector
> X # Print the vector
[1] 6 8 3 1 7
> names(X) # Element names of X
NULL

In R, NULL signifies an empty structure. So here, the result of the call to the names function tells us that this vector has no element names. We come across vectors with element names in one of two ways: either as the result of a call to a function or when we assign names directly.

Consider an example where we have created a frequency count of men and women in a set of data. These numbers could be returned as a vector, as shown next:

Click here to view code image

> genderFreq # Frequency by gender
[1] 165 147

Here, we see that the vector contains two values (165 and 147) that relate to the frequency count by gender. However, without labels, we do not know which value refers to which gender. As such, R may return a named vector, as shown here:

> genderFreq
Female Male
 165 147

If we want to create a vector with named elements, we can specify names for the elements as we create the vector or assign names using the names function itself:

Click here to view code image

> genderFreq <- c(Female = 165, Male = 147) # Create a vector with element names
> genderFreq
Female Male
 165 147

> genderFreq <- c(165, 147) # Create a vector with no element
 names
> genderFreq
[1] 165 147
> names(genderFreq) <- c("Female", "Male") # Assign element names
> genderFreq
Female Male
 165 147

When we encounter a “named” vector, we can query it with the names function to return the (character) vector of element names:

Click here to view code image

> genderFreq # Print the vector
Female Male
 165 147
> names(genderFreq) # Return the element names
[1] "Female" "Male"

To summarize, the three primary functions used to query vector attributes are listed in Table 3.1.

[image: Image]

TABLE 3.1 Functions to Query Vector Attributes

Subscripting Vectors

In this section, we look at the ways in which to extract subsets of data from a vector. We can achieve this using square brackets ([]) following the name of the vector, as follows:

Click here to view code image

VECTOR [Input specifying the subset of data to return]

The input itself can be one of a five possible inputs, as shown in Table 3.2.

[image: Image]

TABLE 3.2 Possible Vector Subscripting Inputs

Caution: Square versus Round Brackets

When we call a function, we use round brackets, as shown in our examples of the functions c, seq, and rep. We use square brackets to reference data from an object. If we use the wrong “type” of bracket, R will assume we are trying to call a function instead of reference data:

Click here to view code image

> X # A vector called X
[1] 6 8 3 1 7
> X[] # Using square brackets
[1] 6 8 3 1 7
> X() # Error when using round brackets
Error: could not find function "X"

Subscripting Vectors: Blank Inputs

The first (and simplest) input is “blank,” which has the result of returning the entire vector of values:

Click here to view code image

> X <- c(6, 8, 3, 1, 7) # Create a simple vector

> X # Print the values
[1] 6 8 3 1 7

> X [] # Blank input
[1] 6 8 3 1 7

Tip: White Space

White space is ignored by R (unless within quotation marks as part of a string). Therefore, in this example, the command X [] is equivalent to X[] or even X []. As a convention, we will use spaces to improve readability where appropriate.

Subscripting Vectors: Positive Integers

If you specify a vector of integers as the input, they are used as an index of values to return:

Click here to view code image

> X # Print the values
[1] 6 8 3 1 7
> X [c(1, 3, 5)] # 1st, 3rd and 5th elements
[1] 6 3 7

In the preceding example, we used a vector of positive integers within the square brackets as the index. However, we could alternatively create a separate vector with which to reference the data:

Click here to view code image

> index <- c(1, 3, 5) # Create index vector
> X [index] # 1st, 3rd and 5th elements
[1] 6 3 7

Using this approach, we could also specify values to omit from our vector. For example, if we wanted to return all values except the third value, we could achieve that as follows:

Click here to view code image

> X [c(1:2, 4:5)] # Return the 1st, 2nd, 4th and 5th elements
[1] 6 8 1 7

Subscripting Vectors: Negative Integers

In the last example, we used a vector of positive integers to remove a value from a vector (that is, to omit one value in the return). However, for larger vectors this is not a scalable solution.

If we provide a vector of negative integers as the input, this refers to an index of values to omit from the vector, as illustrated in this example:

Click here to view code image

> X # Original vector of values
[1] 6 8 3 1 7
> X [c(1:2, 4:5)] # Omit 3rd value using positive integers
[1] 6 8 1 7
> X [-3] # Omit 3rd value using negative integers
[1] 6 8 1 7

If we want to omit more than one position, we could either provide a vector of negative integers or place a minus symbol in front of a vector of positive integers. Consequently, the following two lines are equivalent:

Click here to view code image

> X [c(-2, -4)] # Omit 2nd and 4th values
[1] 6 3 7
> X [-c(2, 4)] # Omit 2nd and 4th values
[1] 6 3 7

Among other uses, this syntax allows us to exclude values from a vector based on another vector, as shown here:

Click here to view code image

> Y # Vector of values to subset
 [1] 6 9 4 3 6 8 1 9 0 3 4 8 7 4 5
> outliers # Index of values to omit
[1] 4 7 9 11 15
> Y [-outliers] # Omit the values specified in outliers
 [1] 6 9 4 6 8 9 3 8 7 4

Subscripting Vectors: Logical Values

Our third possible input is a vector of logical values the same length as the original vector. When we reference a vector in this way, only the corresponding TRUE values are returned, as illustrated here:

Click here to view code image

> X # Original vector
[1] 6 8 3 1 7
> c(T, T, F, F, T) # Vector of logical values
[1] TRUE TRUE FALSE FALSE TRUE
> X [c(T, T, F, F, T)] # Return corresponding TRUE values only
[1] 6 8 7

The logical vector has TRUE values in the first, second, and fifth positions, so that is the index of values returned (6, 8, and 7).

Although this example illustrates the “mechanics” of how R returns values when given a logical vector input, in practice this is not useful (in other words, we will not commonly manually enter TRUE and FALSE values into a vector to subscript in this way).

More commonly, we use simple logical statements to create vectors of logical values to use as the input, as shown here:

Click here to view code image

> X # Original vector
[1] 6 8 3 1 7
> X > 5 # Logical statement: where is X > 5?
[1] TRUE TRUE FALSE FALSE TRUE
> X [X > 5] # Subset where values of X are greater than 5
[1] 6 8 7

This mirrors the previous example, although here we use a logical vector via the statement X > 5. Some other styles of logical statements we can use are listed here:

Click here to view code image

> X > 6 # Greater than 6
[1] FALSE TRUE FALSE FALSE TRUE
> X >= 6 # Greater than or equal to 6
[1] TRUE TRUE FALSE FALSE TRUE
> X < 6 # Less than 6
[1] FALSE FALSE TRUE TRUE FALSE
> X <= 6 # Less than or equal to 6
[1] TRUE FALSE TRUE TRUE FALSE
> X == 6 # X is equal to 6
[1] TRUE FALSE FALSE FALSE FALSE
> X != 6 # X is not equal to 6
[1] FALSE TRUE TRUE TRUE TRUE
> X > 2 & X <= 6 # Between 2 (exclusive) and 6 (inclusive)
[1] TRUE FALSE TRUE FALSE FALSE
> X < 2 | X > 6 # Less than 2 or greater than 6
[1] FALSE TRUE FALSE TRUE TRUE

Because these statements produce a logical vector that (by definition) is the same length of the input vector, they can all be used to subset the original vector:

Click here to view code image

> X # Original vector
[1] 6 8 3 1 7
> X [X <= 6] # Values less than or equal to 6
[1] 6 3 1
> X [X != 6] # Values that are not equal to 6
[1] 8 3 1 7
> X [X >= 3 & X <= 7] # Values between 3 and 7
[1] 6 3 7

It is important to consider that, for these examples, R performs a two-step process: The input is evaluated, returning the logical vector, which is then used to reference the original vector.

This allows us to reference values of one vector based on a second or third vector, as shown here:

Click here to view code image

> ID # Vector of ID values
[1] 1001 1002 1003 1004 1005
> AGE # Vector of ages
[1] 18 35 26 42 22
> GENDER # Vector of genders
[1] "M" "F" "M" "F" "F"

> AGE [AGE > 25] # Vectors of AGE that are greater than 25
[1] 35 26 42
> ID [AGE > 25] # ID where AGE is greater than 25
[1] 1002 1003 1004
> ID [AGE > 25 & GENDER == "F"] # ID where AGE is greater than 25 and GENDER is
 "F"
[1] 1002 1004

Subscripting Vectors: Character Values

When a vector has element names, we can use a vector of characters to refer to the elements to return. First, let’s add element names to our vector example:

Click here to view code image

> names(X) <- c("A", "B", "C", "D", "E") # Add element names

> X # Original vector
A B C D E
6 8 3 1 7

> X[c("A", "C", "E")] # Reference based on names
A C E
6 3 7

Subscripting Vectors: Summary

At this point, we have looked at referencing data from a vector by specifying one of five possible inputs, as shown earlier in Table 3.2, examples of which are shown here:

Click here to view code image

> X [] # Blank: all values returned
A B C D E
6 8 3 1 7
> X [c(1, 3, 5)] # Positives: Positions to return
A C E
6 3 7
> X [-c(1, 3, 5)] # Negatives: Positions to omit
B D
8 1
> X [X > 5] # Logical: TRUE values returned
A B E
6 8 7
> X [c("A", "C", "E")] # Character: Named elements returned
A C E
6 3 7

Tip: Sequence of Letters

As discussed earlier, you cannot use the : notation to directly create a sequence of letters (for example, A:E). However, there are two in-built R vectors (called letters and LETTERS) that contain the (lowercase and uppercase) letters of the alphabet:

Click here to view code image

> letters
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m"
[14] "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

> LETTERS
 [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"
[14] "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

Because these are vectors, we can reference them using square brackets with one of the five input types we just discussed. In this way, we can create sequences of lowercase or uppercase letters:

Click here to view code image

> letters [1:5] # First 5 (lower case) letters
[1] "a" "b" "c" "d" "e"
> LETTERS [1:5] # First 5 (upper case) letters
[1] "A" "B" "C" "D" "E"

Matrices

A matrix is a two-dimensional structure containing values of the same mode. Similar to the section “Vectors” earlier in this hour, in this section we look at the following topics:

[image: Image] Some ways to create matrices

[image: Image] The attributes of a matrix

[image: Image] The ways in which we can extract information from a matrix

Creating Matrices

You typically create matrices in two fundamental ways:

[image: Image] By combining a series of vectors to form rows or columns

[image: Image] By reading a single vector into a matrix structure

Combining Vectors to Create a Matrix

You can use the cbind function to combine a series of vectors, thus forming the columns of a matrix. An example, creating a three-row-by-four-column matrix, is shown here:

Click here to view code image

> cbind(1:3, 3:1, c(2, 4, 6), rep(1, 3))
 [,1] [,2] [,3] [,4]
[1,] 1 3 2 1
[2,] 2 2 4 1
[3,] 3 1 6 1

Note: Recycling

Note here that we’ve created a matrix by supplying four vectors of the same length to create our vector. However, if we supply vectors that are not of the same length, R will repeat the shorter-length vectors to the length of the longest vector to create the matrix. That means we can re-create the preceding matrix by specifying a 1 for the fourth column instead of repeating that value:

Click here to view code image

> cbind(1:3, 3:1, c(2, 4, 6), 1)
 [,1] [,2] [,3] [,4]
[1,] 1 3 2 1
[2,] 2 2 4 1
[3,] 3 1 6 1

In this example, the shorter-length vector is of length 1, which can easily be repeated to create a vector of length 3. If the shorter-length vectors cannot be recycled to exactly create the required length, a warning is provided. Consider the third column in this example:

Click here to view code image

> cbind(1:3, 3:1, c(2, 4), 1)
 [,1] [,2] [,3] [,4]
[1,] 1 3 2 1
[2,] 2 2 4 1
[3,] 3 1 2 1
Warning message:
In cbind(1:3, 3:1, c(2, 4), 1) :
 number of rows of result is not a multiple of vector length (arg 3)

As shown, the two values are repeated but a warning message is produced because the result is not a multiple of the longest-length vector.

Instead of using cbind, we can use the rbind function to specify the rows of a matrix. This time, we will use the same vectors to create a four-row-by-three-column matrix:

Click here to view code image

> rbind(1:3, 3:1, c(2, 4, 6), rep(1, 3))
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 3 2 1
[3,] 2 4 6
[4,] 1 1 1

Tip: Transposing Matrices

The t function can be used to transpose a matrix; therefore, the following commands are equivalent:

Click here to view code image

> cbind(1:3, 3:1, c(2, 4, 6), rep(1, 3))
 [,1] [,2] [,3] [,4]
[1,] 1 3 2 1
[2,] 2 2 4 1
[3,] 3 1 6 1
> t(rbind(1:3, 3:1, c(2, 4, 6), rep(1, 3)))
 [,1] [,2] [,3] [,4]
[1,] 1 3 2 1
[2,] 2 2 4 1
[3,] 3 1 6 1

Creating a Matrix with a Single Vector

As you just saw, the rbind and cbind functions can be used to create a matrix by combining vectors as rows or columns. An alternative way is to take a single vector of data and “read” the data into rows and columns of a matrix. You can achieve this using the matrix function, which accepts, as a first argument, the vector of data to be used:

> matrix(1:12)
 [,1]
 [1,] 1
 [2,] 2
 [3,] 3
 [4,] 4
 [5,] 5
 [6,] 6
 [7,] 7
 [8,] 8
 [9,] 9
[10,] 10
[11,] 11
[12,] 12

The matrix function has two arguments, nrow and ncol, that you can specify to create a matrix with specific “dimensions,” as shown here:

Click here to view code image

> matrix(1:12, nrow = 3, ncol = 4)
 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

In this example, we have used both nrow and ncol to specify the dimensions of the matrix. When we create a matrix in this way, we need only specify one dimension (nrow or ncol), as shown here:

> matrix(1:12, nrow = 3)
 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

By default, the values are read in to the matrix in a column-wise manner, resulting in the first column containing the numbers 1 to 3 in this example. This is controlled by an argument to matrix called byrow, which, by default, is set to FALSE:

Click here to view code image

> matrix(1:12, nrow = 3, byrow = F) # Default behavior – byrow = FALSE
 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

We can change this argument to instead read in the values by row, as shown here:

Click here to view code image

> matrix(1:12, nrow = 3, byrow = TRUE)
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

Matrix Attributes

When we have created a matrix, we can query a number of matrix attributes using a set of utility functions. This includes functions to query the following:

[image: Image] The mode of the matrix

[image: Image] The dimensions of the matrix

[image: Image] The row/column names of the matrix

As before, we can query the mode of the matrix using the mode function:

Click here to view code image

> aVector <- c(4, 5, 2, 7, 6, 1, 5, 5, 0, 4, 6, 9) # Create a vector
> X <- matrix(aVector, nrow = 3) # Create a matrix
> X # Print the matrix
 [,1] [,2] [,3] [,4]
[1,] 4 7 5 4
[2,] 5 6 5 6
[3,] 2 1 0 9
> mode(X) # The mode of the matrix
[1] "numeric"

Similarly, we can use the length function to return the number of elements in the matrix:

Click here to view code image

> length(X) # Number of elements
[1] 12

Although the length function returns the total number of elements in the matrix, it does not allow us to directly see the structure (that is, the number of rows and columns) of the matrix. For this, we can use the dim function, which returns a vector of length 2, specifying the rows (first) and columns of the matrix:

Click here to view code image

> dim(X) # Dimension of the matrix
[1] 3 4
> dim(X)[1] # Number of rows
[1] 3
> dim(X)[2] # Number of columns
[1] 4

Here, we use positive integers to reference the position of the vector (returned by dim) to return (1 for rows, 2 for columns). Alternatively, we can use the functions nrow and ncol to directly return the number of rows and columns:

Click here to view code image

> nrow(X) # Number of rows
[1] 3
> ncol(X) # Number of columns
[1] 4

Earlier you saw that vectors can be associated with element names. With matrices, it is not practical to assign a name for each element (cell) of the matrix. However, you might see matrices that have row and column names.

You’ll either create matrices with row and column names (or “dimension names”) or, more commonly, come across matrices with dimension names as the result of an operation.

Consider an example where we have created a frequency count of age group versus gender from a set of data. These numbers could be returned as a matrix, as shown next:

Click here to view code image

> freqMatrix # Frequency by Age Group and Gender
 [,1] [,2]
[1,] 75 68
[2,] 52 49
[3,] 38 30

Here, we can see that the matrix contains six values, which relate to the frequency count by age group and gender. However, without labels, we do not know what the values refer to. As such, R may return a matrix with dimension names, as shown here:

> freqMatrix
 Female Male
18-35 75 68
26-35 52 49
36+ 38 30

If we want to create a matrix with dimension names, we can assign names using the dimnames function. It accepts a “list” structure with row and column names. (Note that we will cover lists in Hour 4, “Multi-Mode Data Structures.”) Here’s an example:

Click here to view code image

> freqMatrix # Original matrix – no row/column names
 [,1] [,2]
[1,] 75 68
[2,] 52 49
[3,] 38 30

> dimnames(freqMatrix) <- list(c("18-35", "26-35", "36+"),
+ c("Female", "Male")) # Assign dimension names

> freqMatrix # Resulting matrix
 Female Male
18-35 75 68
26-35 52 49
36+ 38 30

When we see a matrix that has dimension names, we can query those names using the dimnames function, which returns a “list” containing two character vectors:

Click here to view code image

> dimnames(freqMatrix) # Dimension names of freqMatrix
[[1]]
[1] "18-35" "26-35" "36+"

[[2]]
[1] "Female" "Male"

Subscripting Matrices

When we covered vectors, you saw that we can use square brackets with one of five input types to extract data. This included examples such as the following:

[image: Image] Select the first five elements.

[image: Image] Select all but the sixth element.

[image: Image] Select all values greater than 5.

[image: Image] Select the "A", "C", and "E" elements.

With a matrix, which has rows and columns, these selections no longer seem particularly relevant. However, we may wish to select specific rows and columns, which we specify using 2 separate inputs within the square brackets separated by a comma:

Click here to view code image

MATRIX [Input specifying rows to return, Input specifying columns to return]

Subscripting Matrices: Blanks, Positives, and Negatives

First, let’s look at using blank subscripts for both rows and columns. The following returns all rows and all columns:

Click here to view code image

> X [,] # Blank for rows, blank for columns
 [,1] [,2] [,3] [,4]
[1,] 4 7 5 4
[2,] 5 6 5 6
[3,] 2 1 0 9

Next, we’ll use vectors of positive integers for both the rows and columns:

Click here to view code image

> X [1:2 , c(1, 3, 4)] # +ives for rows, +ives for columns
 [,1] [,2] [,3]
[1,] 4 5 4
[2,] 5 5 6

In this example, we returned the first two rows and the first, third, and fourth columns.

Note: Column Index

In this example, note that we selected rows 1 and 2 with columns 1, 3 and 4, and the matrix returned the correct matrix subset. The column index of the new matrix is [,1] [,2] [,3].

This is because the subset is a completely new matrix with its own column index, and it has no “memory” of the manner in which it was created (in other words, the index is not “1, 3, 4”). If, however, the matrix we were subsetting had dimension names, the row/column names would be retained in the sub-matrix.

So far, we have used blanks on the rows and columns, then vectors of positive integers for both rows and columns. However, we can also specify different input types for the rows and columns, as shown in this example:

Click here to view code image

> X [, -2] # Blank for rows, -ives for columns
 [,1] [,2] [,3]
[1,] 4 5 4
[2,] 5 5 6
[3,] 2 0 9

Here, we use blank for the rows (so all rows are returned) and a negative integer for the columns (so all but the second column is returned).

Dropping Dimensions

In the preceding example, we referenced data from a 3×4 matrix, but always returned at least two rows/columns. If we instead reference a single row or column, the dimensions of the output matrix are dropped, so a simpler structure (in fact, a vector) is returned:

Click here to view code image

> X [, 1:2] # First 2 columns - returns a matrix
 [,1] [,2]
[1,] 4 7
[2,] 5 6
[3,] 2 1
> X [, 1] # First column - returns a vector
[1] 4 5 2

Because most R functions work with vectors, the “dropping” of dimensions in this way is often what we want. However, if we want to reference the data but ensure the dimensions are not dropped, we can use an argument called drop within the square brackets, as shown here:

Click here to view code image

> X [, 1] # Returns a vector
[1] 4 5 2
> X [, 1, drop = FALSE] # Use drop to maintain dimensions
 [,1]
[1,] 4
[2,] 5
[3,] 2

Subscripting Matrices: Logical Values

We can use logical values to reference rows and/or columns of a matrix. To achieve this, we provide a logical vector the same length as the numbers of rows/columns to subscript. A simple example is shown here:

Click here to view code image

> X # Original Matrix
 [,1] [,2] [,3] [,4]
[1,] 4 7 5 4
[2,] 5 6 5 6
[3,] 2 1 0 9

> X [c(T, F, T),] # Logical for rows, blank for columns
 [,1] [,2] [,3] [,4]
[1,] 4 7 5 4
[2,] 2 1 0 9

In this example, a logical vector is used to subscript the matrix. We provide a logical vector length of 3, and only the rows corresponding to the TRUE values are returned (the first and third rows).

Instead of specifying a vector manually, we could use a logical statement based on one of the other columns to subscript the data. For example, let’s consider referencing only rows where the first column is not 5:

Click here to view code image

> X [, 1] # 1st column
[1] 4 5 2

> X [, 1] != 5 # Where is the 1st column not 5
[1] TRUE FALSE TRUE

> X [X [, 1] != 5 ,] # Use to subscript the data
 [,1] [,2] [,3] [,4]
[1,] 4 7 5 4
[2,] 2 1 0 9

This last line looks particular complex, but relates to syntax that is rarely used. The single-mode nature of matrices means it is not a good structure in which to store our standard rectangular data; there is a more appropriate structure to hold this sort of data (the data.frame structure, covered in Hour 4) that has a simpler syntax for referencing subsets of data.

Subscripting Matrices: Character Values

So far, we have discussed how matrices can be referenced using blank, positive, negative, and logical inputs. If we have a matrix with row and column names, we can also use vectors of characters to refer directly to the rows and columns we wish to return. First, let’s add dimension names to our matrix example:

Click here to view code image

> dimnames(X) <- list(letters[1:3], LETTERS[1:4])
> X
 A B C D
a 4 7 5 4
b 5 6 5 6
c 2 1 0 9

Now we can use character vectors to reference the rows and/or columns. For example, let’s reference rows “a” and “c” with all the columns:

Click here to view code image

> X [c("a", "c"),] # Characters for rows, blank for columns
 A B C D
a 4 7 5 4
c 2 1 0 9

In this next example, we use a character vector to reference the columns we want to return and all the rows:

Click here to view code image

> X [, c("A", "C", "D")] # Blank for rows, Characters for columns
 A C D
a 4 5 4
b 5 5 6
c 2 0 9

Arrays

At the start of this hour we introduced vectors as a structure that contains a series of values of the same mode. Next, we looked at matrices as a single-mode structure with rows and columns.

An array is a single-mode structure that can have any number of dimensions (so, in fact, a matrix in R is simply a two-dimensional array).

Similar to the previous sections in this hour on vectors and matrices, in this section we look at the following:

[image: Image] Some ways to create an array

[image: Image] The attributes of an array

[image: Image] The ways in which we can extract information from an array

For the purposes of this hour, we will focus on three-dimensional arrays, but the code works in a similar way for any dimension of array.

Creating Arrays

You create an array by providing a single vector input to the array function along with the dimension of the array you wish to create (as a vector of integers). The following example creates a two-dimensional array (that is, a matrix):

Click here to view code image

> aVector <- c(4, 5, 2, 7, 6, 1, 5, 5, 0, 4, 6, 9) # Create a vector
> X <- array(aVector, dim = c(3, 4)) # Create a 2D array (matrix)
> X # Print the matrix
 [,1] [,2] [,3] [,4]
[1,] 4 7 5 4
[2,] 5 6 5 6
[3,] 2 1 0 9

If you want to create a three-dimensional array, you specify a vector of length of 3 for the dim argument, as shown here:

Click here to view code image

> aVector <- c(4, 5, 2, 7, 6, 1, 5, 5, 0, 4, 6, 9) # Create a vector
> X <- array(rep(aVector, 3), dim = c(3, 4, 3)) # Create a 3D array
> X # Print the array
, , 1

 [,1] [,2] [,3] [,4]
[1,] 4 7 5 4
[2,] 5 6 5 6
[3,] 2 1 0 9

, , 2

 [,1] [,2] [,3] [,4]
[1,] 4 7 5 4
[2,] 5 6 5 6
[3,] 2 1 0 9

, , 3

 [,1] [,2] [,3] [,4]
[1,] 4 7 5 4
[2,] 5 6 5 6
[3,] 2 1 0 9

Array Attributes

Attributes for arrays can be referenced in exactly the same way as you saw for matrices. Some examples of extracting array attributes can be seen here:

Click here to view code image

> mode(X) # Mode of array
[1] "numeric"
> length(X) # Number of elements in array
[1] 36
> dim(X) # Dimension of array
[1] 3 4 3

As with matrices, you specify dimension names using the dimnames function:

Click here to view code image

> dimnames(X) <- list(letters[1:3], LETTERS[1:4], c("X1", "X2", "X3"))
> X
, , X1

 A B C D
a 4 7 5 4
b 5 6 5 6
c 2 1 0 9

, , X2

 A B C D
a 4 7 5 4
b 5 6 5 6
c 2 1 0 9

, , X3

 A B C D
a 4 7 5 4
b 5 6 5 6
c 2 1 0 9

Subscripting Arrays

To extract data from an array, you provide one input per dimension. Therefore, for a three-dimensional array, you need to provide three inputs, each of which can be one of the five types of input (blank, positives, negatives, logicals, or characters).

Some examples of array subscripting with our sample (three-dimensional) array are shown here:

Click here to view code image

> X [, , 1] # Blank / Blank / Positive
 A B C D
a 4 7 5 4
b 5 6 5 6
c 2 1 0 9
> X [-1, 1:2, 1:2] # Negative / Positive / Positive
, , X1

 A B
b 5 6
c 2 1

, , X2

 A B
b 5 6
c 2 1

Relationship Between Single-Mode Data Objects

So far in this hour we have looked at the three “single-mode” data structures in R: vectors, matrices, and arrays. You have seen how to create these structures, how to query attributes of the structures, and how to extract data from them.

Table 3.3 describes the key aspects of each of these structures.

[image: Image]

TABLE 3.3 Comparison of Single-Mode Data Structures

During this hour you may have noticed a pattern emerging with the three structures, which is also prevalent in Table 3.3. In fact, these three structures are very closely related because they are all, fundamentally, vectors. The only thing that distinguishes vectors from matrices and arrays is the dimension of the structure, which allows you to print, manage, and reference the data from structures in a particular manner.

This allows you to very easily convert from one structure to another by (re)specifying the dimension with the dim function. Consider the following code, which converts a vector first to a matrix and then to a three-dimensional array:

Click here to view code image

> X <- c(2, 6, 5, 1, 2, 8, 9, 4, 3, 1, 9, 4) # Create a vector
> X # Print the vector
 [1] 2 6 5 1 2 8 9 4 3 1 9 4
> length(X) # Vector has 12 elements
[1] 12
> dim(X) # Vectors have no "dimension"
NULL

> dim(X) <- c(3, 4) # Assign a dimension (3 x 4)
> X # Print X - it is now a matrix
 [,1] [,2] [,3] [,4]
[1,] 2 1 9 1
[2,] 6 2 4 9
[3,] 5 8 3 4

> dim(X) <- c(2, 3, 2) # Assign a new dimension (2 x 3 x 2)
> X # Print X - it is now a 3D array
, , 1

 [,1] [,2] [,3]
[1,] 2 5 2
[2,] 6 1 8

, , 2

 [,1] [,2] [,3]
[1,] 9 3 9
[2,] 4 1 4

This also allows you to treat matrices and arrays as vectors for simple functions later, for example:

Click here to view code image

> dim(X) # X is an array
[1] 2 3 2
> median(X) # Median of X
[1] 4

Summary

In this hour, we have looked at how the four different “modes” of data in R (numeric, character, logical, and complex) can be stored in the three single-mode structures: vectors, matrices, and arrays. We have looked at the ways in which we can create each structure, the attributes each structure has, and how to reference subsets of data from each structure.

Although we have covered matrices and arrays in this section, the majority of the time was spent looking at vectors in some details. This reflects the fact that we typically work with vectors as a primary data structure, so familiarity with how to manage these objects is essential.

Of course, in this hour we have looked only at “single mode” structures (i.e. those structures that only hold a single mode of data). In the next hour, we will look at two data structures that allow us to store data with more than one mode: lists and data frames.

Q&A

Q. Can I mix the five types of subscript input?

A. Not really, because one of two things will happen: either R will convert all elements in the subscript input to a single type or, if you use positives and negatives together, R will return an error.

Q. Why is a matrix not a suitable structure to hold standard rectangular datasets?

A. Because it is a single-mode structure, it isn’t capable of storing (say) a numeric column and a character column from a dataset together. In the next hour, you will see a more natural structure for storing this sort of data.

Q. What if I try to reference data outside of the dimensions?

A. Missing values will be returned, as shown in this example:

Click here to view code image

> X <- c(A = 1, B = 2, C = 3)
> X
A B C
1 2 3
> X[2:5]
 B C <NA> <NA>
 2 3 NA NA
> X[c("A", "C", "E")]
 A C <NA>
 1 3 NA

Q. How do missing values impact referencing with logical values?

A. If you use a vector of missing values in a logical statement, the return value will also be NA (because you don’t know whether the missing value would have met the condition). When you use this to subscript, missing values are returned. Consider the following example:

Click here to view code image

> ID
[1] 1 2 3 4 5
> AGE
[1] 18 35 25 NA 23
> AGE >= 25
[1] FALSE TRUE TRUE NA FALSE
> ID [AGE >= 25]
[1] 2 3 NA

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. What are the four different “modes” of data in R?

2. Why do we refer to vectors, matrices, and arrays as “single-mode” structures?

3. What function can you use to create a vector of repeated sequences?

4. What are the five different “subscript” inputs you can use to reference a subset of data from a vector?

5. What is the difference between the cbind and rbind functions?

6. Why do we use a comma within the square brackets when subscripting a matrix (for example, mat[1:2, -1])?

7. What is the difference between a matrix and an array?

Answers

1. The four modes of data are numeric, character, logical, and complex.

2. “Single mode” refers to the fact that these structures can only store data of a single mode (for example, a “numeric” vector or a “character” matrix). Vectors, matrices, and arrays cannot hold data of more than one “mode.”

3. You can use the rep function to create a vector of repeated sequences.

4. The five “subscript” input types are blanks, vectors of positive integers, vectors of negative integers, vectors of logical values, and vectors of characters.

5. Both functions create a matrix based on a number of vector inputs. The cbind function specifies that provided vectors are to be used as the columns of the matrix, whereas rbind specifies that the provided vectors should be used to define the rows of the matrix.

6. We use a comma to separate the “row” subscripts from the “column” subscripts. Therefore, the line mat[1:2, -1] specifies that we want to return the first two rows, and all but the first column of mat.

7. A matrix is strictly a two-dimensional structure (it has rows and columns). An array is a structure with any number of dimensions (that is, we could create a three-, four-, 10-, or 100-dimensional array). A two-dimensional array is exactly equal to a matrix.

Activities

1. There is an object in R called pi. What is the length and mode of pi?

2. Create the following vectors in R:

Click here to view code image

[1] 6 3 4 8 5 2 7 9 4 5
[1] TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
[1] -1 0 1 2 3
[1] 5 4 3 2 1
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
[1] 1 2 3 1 2 3 1 2 3
[1] "A" "A" "A" "A"
[1] "A" "A" "A" "A" "B" "B" "B" "C" "C" "D"

3. Using the LETTERS vector, print the following:

[image: Image] The first four letters

[image: Image] All but the first four letters

[image: Image] The “even” letters (that is, A, C, E, G, ...)

4. Create a numeric vector of length 10 using a selection of integers between 1 and 9. Assign the first 10 elements of the letters vector as the element names of your vector. Using this vector, do the following:

[image: Image] Select the first and last values of the vector.

[image: Image] Select all values of the vector greater than 3.

[image: Image] Select all values of the vector between 2 and 7.

[image: Image] Select all values of the vector that are not 5.

[image: Image] Select the "D", "E", and, "G" elements of your vector.

5. Create a 3×4 matrix containing numeric values. Print the first two rows and all but the last column of this matrix.

Hour 4. Multi-Mode Data Structures

What You’ll Learn in This Hour:

[image: Image] What a list object is

[image: Image] How to create and manipulate a data frame

[image: Image] How to perform an initial investigation in the structure of our data

The majority of data sources contain a mixture of data types, which we need to store together in a simple, effective format. The “single-mode” structures introduced in the last hour are useful basic data objects, but are not sufficiently sophisticated to store data containing multiple “modes.” In this hour, we focus on two key data structures that allow us to store “multi-mode” data: lists and data frames. We will illustrate the ways in which these structures can be created and managed, with a focus on how to extract data from them. We also look at how these two data structures can be effectively used in our day-to-day work.

Multi-Mode Structures

In the last hour, we examined the three structures designed to hold data in R:

[image: Image] Vectors—Series of values

[image: Image] Matrices—Rectangular structures with rows and columns

[image: Image] Arrays—Higher dimension structures (for example, 3D and 4D arrays)

Although these objects provide us with a range of useful functionality, they are restricted in that they can only hold a single “mode” of data. This is illustrated in the following example:

Click here to view code image

> c(1, 2, 3, "Hello") # Multiple modes
[1] "1" "2" "3" "Hello"
> c(1, 2, 3, TRUE, FALSE) # Multiple modes
[1] 1 2 3 1 0
> c(1, 2, 3, TRUE, FALSE, "Hello") # Multiple modes
[1] "1" "2" "3" "TRUE" "FALSE" "Hello"

As you can see, when we attempt to store more than one mode of data in a single-mode structure, the object (and its contents) will be converted to a single mode.

The preceding example uses a vector to illustrate this behavior, but let’s suppose we want to store a rectangular “dataset” using a matrix. For example, we might attempt to create a matrix that contains the forecast temperatures for New York over the next five days:

Click here to view code image

> weather <- cbind(
+ Day = c("Saturday", "Sunday", "Monday", "Tuesday", "Wednesday"),
+ Date = c("Jul 4", "Jul 5", "Jul 6", "Jul 7", "Jul 8"),
+ TempF = c(75, 86, 83, 83, 87)
+)
> weather
 Day Date TempF
[1,] "Saturday" "Jul 4" "75"
[2,] "Sunday" "Jul 5" "86"
[3,] "Monday" "Jul 6" "83"
[4,] "Tuesday" "Jul 7" "83"
[5,] "Wednesday" "Jul 8" "87"

From the quotation marks, it is clear that R has converted all the data to character values, which can be confirmed by looking at the mode of this matrix structure:

Click here to view code image

> mode(weather) # The mode of the matrix
[1] "character"

This reinforces the need for data structures that allow us to store data of multiple modes. R provides two “multi-mode” data structures:

[image: Image] Lists—Containers for any objects

[image: Image] Data frames—Rectangular structures with rows and columns

Lists

The list is considered perhaps the most complex data object in R, and many R programmers will go to great lengths to avoid the use of lists in their structures. This perceived complexity, perhaps, stems from a lack of clarity over what a list “looks like.” Other structures, such as vectors and matrices, are relatively easy to visualize, and are therefore easier to adopt and manage.

Despite this, lists are simple structures that can be used to perform a number of complex operations.

What Is a List?

Lists are simply containers for other objects. The objects stored in a list can be of any type (for example, “matrix” or “vector”) and any mode. Therefore, you can create a list containing the following, for example:

[image: Image] A character vector

[image: Image] A numeric matrix

[image: Image] A logical array

[image: Image] Another list

When discussing lists, some people use the analogy of a box. For example, you might do the following:

[image: Image] Create an empty box.

[image: Image] Put some “things” into the box.

[image: Image] Look into the box to see what things are in there.

[image: Image] Take things back out of the box.

In a similar way, in this section, we will look at how to do the following:

[image: Image] Create an empty list.

[image: Image] Put objects into the list.

[image: Image] Look at the number (and names) of objects in the list.

[image: Image] Extract elements from the list.

Creating an Empty List

You create a list using the list function. The simplest list you can create is an empty list, like this:

> emptyList <- list()
> emptyList
list()

Later, you will see how to add elements to this empty list.

Creating a Non-Empty List

More commonly, you’ll create a list and add initial elements to it at the same time. You achieve this by specifying a comma-separated set of objects within the list function:

Click here to view code image

> aVector <- c(5, 7, 8, 2, 4, 3, 9, 0, 1, 2)
> aMatrix <- matrix(LETTERS[1:6], nrow = 3)
> unnamedList <- list(aVector, aMatrix)
> unnamedList
[[1]]
 [1] 5 7 8 2 4 3 9 0 1 2

[[2]]
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

In this example, we created two objects (aVector and aMatrix) and then created a list (unnamedList) containing copies of these objects.

Note: Original Objects

When you create lists in this way, you take copies of the objects (aVector and aMatrix in this example). The original objects are not impacted by this action (that is, they are not edited, moved, changed, or deleted).

If you only need the objects within the list, you could create the objects as you specify the list, like this:

Click here to view code image

> unnamedList <- list(c(5, 7, 8, 2, 4, 3, 9, 0, 1, 2),
+ matrix(LETTERS[1:6], nrow = 3))
> unnamedList
[[1]]
 [1] 5 7 8 2 4 3 9 0 1 2

[[2]]
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

Creating a List with Element Names

When you create a list, you can optionally assign names to the elements. This helps you when you’re referencing elements in the list later.

Click here to view code image

> namedList <- list(VEC = aVector, MAT = aMatrix)
> namedList
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

$MAT
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

As before, you can also create the (named) objects as you’re creating the list:

Click here to view code image

> namedList <- list(VEC = c(5, 7, 8, 2, 4, 3, 9, 0, 1, 2),
+ MAT = matrix(LETTERS[1:6], nrow = 3))
> namedList
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

$MAT
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

Creating a List: A Summary

You have now seen a few different ways of creating a list. It is worth recapping the ways in which we created the lists with some code examples:

Click here to view code image

> # Create an empty list
> emptyList <- list()

> # 2 Ways of Creating an unnamed list containing a vector and a matrix
> unnamedList <- list(aVector, aMatrix)
> unnamedList <- list(c(5, 7, 8, 2, 4, 3, 9, 0, 1, 2),
+ matrix(LETTERS[1:6], nrow = 3))

> # 2 Ways of Creating a named list containing a vector and a matrix
> namedList <- list(VEC = aVector, MAT = aMatrix)
> namedList <- list(VEC = c(5, 7, 8, 2, 4, 3, 9, 0, 1, 2),
+ MAT = matrix(LETTERS[1:6], nrow = 3))

In these examples, we created three lists that we will use as examples over the next few sections:

Click here to view code image

> emptyList # An empty list
list()

> unnamedList # A list with unnamed elements
[[1]]
 [1] 5 7 8 2 4 3 9 0 1 2

[[2]]
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

> namedList # A list with element names
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

$MAT
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

Note: Printing Style

Notice the difference in printing when a list has element names versus when there are no element names: Elements are indexed with double square brackets (for example, [[1]]) for “unnamed” lists, and with dollar symbols (for example, $VEC) for “named” lists. This gives you a hint as to how you’ll be able to reference the elements of a list later.

List Attributes

As with single-mode structures, a set of functions allows you to query some of the list attributes. Specifically, you can use the length function to query the number of elements in the list, and the names function to return the element names.

The length function returns the number of elements in the list, as shown here:

> length(emptyList)
[1] 0
> length(unnamedList)
[1] 2
> length(namedList)
[1] 2

The names function returns the names of the elements in the list, or NULL if there are no elements or no element names assigned:

> names(emptyList)
NULL
> names(unnamedList)
NULL
> names(namedList)
[1] "VEC" "MAT"

With single-mode data structures, we additionally used the mode function to return the type of data they held. Because lists are multi-mode structures, there is no longer a single mode of data being stored, so the word “list” is returned:

> mode(emptyList)
[1] "list"
> mode(unnamedList)
[1] "list"
> mode(namedList)
[1] "list"

Subscripting Lists

Two types of list subscripting can be performed:

[image: Image] You can create a subset of the list, returning a shorter list.

[image: Image] You can reference a single element within the list.

Subsetting the List

You can use square brackets to select a subset of an existing list. The return object will itself be a list.

Click here to view code image

LIST [Input specifying the subset of list to return]

As with vectors, you can put one of five input types in the square brackets, as shown in Table 4.1.

[image: Image]

TABLE 4.1 Possible List Subscripting Inputs

To illustrate the subsetting of lists, we will use the namedList object created earlier.

Blank Subscripts

If you use a blank subscript, the whole of the list is returned:

Click here to view code image

> namedList [] # Blank subscript
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

$MAT
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

Positive Integer Subscripts

If you use a vector of positive integers, it is used as an index of elements to return:

Click here to view code image

> subList <- namedList [1] # Return first element
> subList # Print the new object
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

> length(subList) # Number of elements in the list
[1] 1
> class(subList) # Check the "class" of the object
[1] "list"

As you can see from this example, the return object (saved as subList here) is itself a list. You can also use the class function to check the type of object, and it confirms subList is a list object.

Note: An Object’s Class

This is the first time in this book you’ve seen the class function used. It returns the type of objects, whereas the mode function returns the type of data held in an object. Let’s illustrate this distinction with a numeric matrix:

Click here to view code image

> aMatrix <- matrix(1:6, nrow = 2) # Create a numeric matrix
> aMatrix # Print the matrix
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

> mode(aMatrix) # Mode of data held in this object
[1] "numeric"

> class(aMatrix) # Type (or "class") of object
[1] "matrix"

Negative Integer Subscripts

You can provide a vector of negative integers to specify the index of list elements to omit:

Click here to view code image

> namedList
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

$MAT
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"
> namedList [-1] # Return all but the first element
$MAT
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

Logical Value Subscripts

You can provide a vector of logical integers to specify the list elements to return and omit:

Click here to view code image

> namedList
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

$MAT
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

> namedList [c(T, F)] # Vector of logical values
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

Character Value Subscripts

If your list has element names, you can provide a vector of character values to identify the (named) elements you wish to return:

Click here to view code image

> namedList
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

$MAT
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

> namedList ["MAT"] # Vector of Character values
$MAT
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

Reference List Elements

In the last section, you saw that you can reference a list using square brackets to “subset” the list (that is, return a list containing only a subset of the original elements). More commonly, you’ll want to reference a specific element within your list.

You can reference elements of a list in two ways:

[image: Image] You can use “double” square brackets.

[image: Image] If there are element names, you can use the $ symbol.

Double Square Bracket Referencing

You can directly reference an element of a list using double square brackets. Although there are a number of uses of the double square brackets, the most common use is to supply a single integer index to refer to the element to extract:

Click here to view code image

> namedList # The original list
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

$MAT
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

> namedList[[1]] # The first element
 [1] 5 7 8 2 4 3 9 0 1 2
> namedList[[2]] # The second element
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

> mode(namedList[[2]]) # The mode of the second element
[1] "character"

When you use double square brackets in this way, you are directly referencing the objects contained within the list, as supported by the result of the mode function call. This is in contrast to the use of the single square bracket earlier, where we extracted a subset of the list itself:

Click here to view code image

> namedList [1] # Return a list containing 1 element
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

> namedList [[1]] # Return the first element of the list (a vector)
 [1] 5 7 8 2 4 3 9 0 1 2

Referencing Named Elements with $

If the elements of your list are named, you can use the $ symbol to directly reference them. As such, the following lines of code are equivalent ways of referencing the first (the “VEC”) element of our namedList object:

Click here to view code image

> namedList # Print the original list
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

$MAT
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

> namedList[[1]] # Return the first element
 [1] 5 7 8 2 4 3 9 0 1 2
> namedList$VEC # Return the "VEC" element
 [1] 5 7 8 2 4 3 9 0 1 2

Double Square Brackets versus $

The $ symbol provides a more intuitive way of referencing named list elements, which is also more aesthetically pleasing than the use of double square brackets. We tend to use double square brackets when there are no element names assigned, and use $ when names exist. Here’s an example:

Click here to view code image

> unnamedList # List with no element names
[[1]]
 [1] 5 7 8 2 4 3 9 0 1 2

[[2]]
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

> unnamedList[[1]] # First element
 [1] 5 7 8 2 4 3 9 0 1 2

> namedList # List with element names
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

$MAT
 [,1] [,2]
[1,] "A" "D"
[2,] "B" "E"
[3,] "C" "F"

> namedList$VEC # The "VEC" element
 [1] 5 7 8 2 4 3 9 0 1 2

Tip: Shortened $ Referencing

When you use the $ symbol, you only need to provide enough of the name so that R understands which element you are referring to. This is illustrated in the following example:

Click here to view code image

> aList <- list(first = 1, second = 2, third = 3, fourth = 4)
> aList$s # Returns the second
[1] 2
> aList$fi # Returns the first
[1] 1
> aList$fo # Returns the fourth
[1] 4

Although it is possible to use shortened referencing in this way, it can lead to less maintainable and readable code, and should be avoided where possible when creating scripts.

Adding List Elements

You can add elements to a list in one of two ways:

[image: Image] By directly adding an element with a specific name or in a specific position

[image: Image] By combing lists together

Directly Adding a List Element

You can add a single element to a list by assigning it into a specific index or name. The syntax mirrors that of the “Double Square Brackets versus $” section earlier. For example, let’s add a single element to our empty list:

Click here to view code image

> emptyList # Empty list
[[1]]
[1] "A" "B" "C" "D" "E"

> emptyList[[1]] <- LETTERS[1:5] # Add an element

> emptyList # Updated (non)empty list
[[1]]
[1] "A" "B" "C" "D" "E"

Instead of using the double square brackets, we can use the $ symbol to add a “named” element to a list:

Click here to view code image

> emptyList <- list() # Recreate the empty list
> emptyList # Empty list
list()
> emptyList$ABC <- LETTERS[1:5] # Add an element
> emptyList # Updated (non)empty list
$ABC
[1] "A" "B" "C" "D" "E"

Note: Adding Nonconsecutive Elements

The preceding examples uses either square brackets or the $ symbol to add elements to the “first” position of an empty list. If we add an element to a later index, R interpolates a number of NULL elements to fill any gaps in the list:

Click here to view code image

> emptyList <- list() # Recreate the empty list
> emptyList # Empty list
list()
> emptyList[[3]] <- "Hello" # Assign to third element
> emptyList
[[1]]
NULL

[[2]]
NULL

[[3]]
[1] "Hello"

Combining Lists

You can grow lists by combining them together using the c function, as shown here:

Click here to view code image

> list1 <- list(A = 1, B = 2) # Create list1
> list2 <- list(C = 3, D = 4) # Create list2
> c(list1, list2) # Combine the lists
$A
[1] 1

$B
[1] 2

$C
[1] 3

$D
[1] 4

A Summary of List Syntax

As you have seen so far in this hour, the way we use lists varies slightly based on whether the elements of the list are named. At this point, it is worth reviewing the syntax to create and manage “unnamed” and “named” list structures.

Overview of Unnamed Lists

An overview of the key syntax covered is shown here, using a list without named elements as an example. First, let’s create a list and look at the list attributes:

Click here to view code image

> unnamedList <- list(aVector, aMatrix) # Create the list

> unnamedList # Print the list
[[1]]
 [1] 5 7 8 2 4 3 9 0 1 2

[[2]]
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

> length(unnamedList) # Number of elements
[1] 2

> names(unnamedList) # No element names
NULL

We can subset the list or extract list elements using single/double square brackets:

Click here to view code image

> unnamedList[1] # Subset the list
[[1]]
 [1] 5 7 8 2 4 3 9 0 1 2

> unnamedList[[1]] # Return the first element
 [1] 5 7 8 2 4 3 9 0 1 2

> unnamedList[[3]] <- 1:5 # Add a new element

> unnamedList
[[1]]
 [1] 5 7 8 2 4 3 9 0 1 2

[[2]]
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

[[3]]
[1] 1 2 3 4 5

Overview of Named Lists

Let’s look at a similar example using a list with element names. First, let’s create the list and view the list attributes:

Click here to view code image

> namedList <- list(VEC = aVector, MAT = aMatrix) # Create the list

> namedList # Print the list
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

$MAT
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

> length(namedList) # Number of elements
[1] 2

> names(namedList) # Element names
[1] "VEC" "MAT"

We can subset the list using single square brackets, or reference elements directly with the $ symbol:

Click here to view code image

> namedList[1] # Subset the list
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

> namedList$VEC # Return the first element
 [1] 5 7 8 2 4 3 9 0 1 2

> namedList$NEW <- 1:5 # Add a new element

> namedList
$VEC
 [1] 5 7 8 2 4 3 9 0 1 2

$MAT
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

$NEW
[1] 1 2 3 4 5

Motivation for Lists

A good understanding of lists helps you to accomplish a number of useful tasks in R. To illustrate this, we will briefly look at two use cases that rely on list structures. Note that this section includes syntax that will be covered later in this book, but we include it here to illustrate “the art of the possible” at this stage.

Flexible Simulation

Consider a situation where we want to simulate a number of extreme values (for example, large financial losses by day, or particularly high values of some measure for each patient in a drug study). For each iteration, we may simulate any number of numeric values from a given distribution.

A list provides a flexible structure to hold all the simulated data. Consider the following code example:

Click here to view code image

> nExtremes <- rpois(100, 3) # Simulate number of extreme values by
 day from a Poisson distribution
> nExtremes[1:5] # First 5 numbers
[1] 0 3 5 7 3

> # Define function that simulates "N" extreme values
> exFun <- function(N) round(rweibull(N, shape = 5, scale = 1000))
> extremeValues <- lapply(nExtremes, exFun) # Apply the function to our simulated
 numbers

> extremeValues[1:5] # First 5 simulated outputs
[[1]]
numeric(0)

[[2]]
[1] 1305 948 1077

[[3]]
[1] 676 516 865 614 970

[[4]]
[1] 618 1217 818 1173 1205 1105 519

[[5]]
[1] 1026 933 657

From this example, note that the first simulated output generated no “extreme” values, resulting in the output containing an empty numeric vector (signified by numeric(0)). The “unnamed” list structure allows us to hold, in the same structure:

[image: Image] This empty vector (indicating no “extreme values” for a particular day)

[image: Image] Large vectors holding a number of simulated outputs (for days where many “extreme values” were simulated)

Given that we have stored this information in a list, we can query it to summarize the average number and average of extreme values:

Click here to view code image

> median(sapply(extremeValues, length)) # Average number of simulated extremes
[1] 3
> median(sapply(extremeValues, sum)) # Average extreme value
[1] 2634

Tip: The apply Functions

In the preceding examples, we used functions such as lapply (which applies a function to each element of a list) and sapply (which performs the same action but simplifies the outputs). We cover the apply family of functions later in Hour 9, “Loops and Summaries.”

Extracting Elements from Named Lists

In R, most objects are, fundamentally, lists. For example, let’s use the t.test function to perform a simple T-test. We will take the example straight from the t.test help file:

Click here to view code image

> theTest <- t.test(1:10, y = c(7:20)) # Perform a T-Test
> theTest # Print the output

 Welch Two Sample t-test

data: 1:10 and c(7:20)
t = -5.4349, df = 21.982, p-value = 1.855e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -11.052802 -4.947198
sample estimates:
mean of x mean of y
 5.5 13.5

The output is printed as a nicely formatted text summary informing us of the significant T-test. But what if we wanted to use one of the elements of this output in further work (for example, the p-value). Consulting the help file, we see the return value is described as follows:

Value

A list with class htest containing the following components:

[image: Image] statistic The value of the t-statistic.

[image: Image] parameter The degrees of freedom for the t-statistic.

[image: Image] p.value The p-value for the test.

[image: Image] conf.int A confidence interval for the mean appropriate to the specified alternative hypothesis.

[image: Image] estimate The estimated mean or difference in means, depending on whether it was a one-sample test or a two-sample test.

[image: Image] null.value The specified hypothesized value of the mean or mean difference, depending on whether it was a one-sample test or a two-sample test.

[image: Image] alternative A character string describing the alternative hypothesis.

[image: Image] method A character string indicating what type of t-test was performed.

[image: Image] data.name A character string giving the name(s) of the data.

The key thing to note here is that the return object is “a list.” Given that the output is a list, we can query the named elements of this list and see that the result matches the description of elements in the help file:

Click here to view code image

> names(theTest) # Names of list elements
[1] "statistic" "parameter" "p.value" "conf.int" "estimate"
[6] "null.value" "alternative" "method" "data.name"

Given that this is a named list, and we know the names of the elements, we can use the $ symbol to directly reference the information we need:

Click here to view code image

> theTest$p.value # Reference the p-value
[1] 1.855282e-05

Using this approach, we can reference a wide range of elements from R outputs.

Note: Print Methods

In the preceding example, we created a complex object (fundamentally, a named list) that printed in a neat manner:

Click here to view code image

> theTest # Print the output

 Welch Two Sample t-test

data: 1:10 and c(7:20)
t = -5.4349, df = 21.982, p-value = 1.855e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -11.052802 -4.947198
sample estimates:
mean of x mean of y
 5.5 13.5

The neat printout is generated by a print “method” associated with outputs from t.test. If we want to see the “raw” underlying structure, we can use the print.default function, which confirms that the structure is list based:

> print.default(theTest)
$statistic
 t
-5.43493

$parameter
 df
21.98221

$p.value
[1] 1.855282e-05
...

Data Frames

In the last section, we introduced the “list” structure, which allows you to store a set of objects of any mode. A data frame is, like many R objects, a named list. However, a data frame enforces a number of constraints on this named list structure. In particular, a data frame is constrained to be a named list that can only hold vectors of the same length.

Creating a Data Frame

We create a data frame by specifying a set of named vectors to the data.frame. For example, let’s create a data frame containing New York temperature forecasts over the next five days:

Click here to view code image

> weather <- data.frame(# Create a data frame
+ Day = c("Saturday", "Sunday", "Monday", "Tuesday", "Wednesday"),
+ Date = c("Jul 4", "Jul 5", "Jul 6", "Jul 7", "Jul 8"),
+ TempF = c(75, 86, 83, 83, 87)
+)
> weather # Print the data frame
 Day Date TempF
1 Saturday Jul 4 75
2 Sunday Jul 5 86
3 Monday Jul 6 83
4 Tuesday Jul 7 83
5 Wednesday Jul 8 87

Note: Print Methods

As discussed earlier, the neat printing of this object is caused by a print “method” for data frames. We can see the raw structure using print.default, which again confirms that a data frame is fundamentally a named list of vectors:

Click here to view code image

> print.default(weather)
$Day
[1] Saturday Sunday Monday Tuesday Wednesday
Levels: Monday Saturday Sunday Tuesday Wednesday

$Date
[1] Jul 4 Jul 5 Jul 6 Jul 7 Jul 8
Levels: Jul 4 Jul 5 Jul 6 Jul 7 Jul 8

$TempF
[1] 75 86 83 83 87

attr(,"class")
[1] "data.frame"

Caution: Nonmatching Vector Lengths

If we try to create a data frame using vectors with nonmatching lengths, we get an error message:

Click here to view code image

> data.frame(X = 1:5, Y = 1:2)
Error in data.frame(X = 1:5, Y = 1:2) :
 arguments imply differing number of rows: 5, 2

Querying Data Frame Attributes

Because a data frame is simply a named list, the functions we used to query list attributes will work the same way:

[image: Image] The length function returns the number of elements of the list (that is, the number of columns).

[image: Image] The names function returns the element (column) names.

The following example illustrates the use of these functions:

Click here to view code image

> length(weather) # Number of columns
[1] 3
> names(weather) # Column names
[1] "Day" "Date" "TempF"

Selecting Columns from the Data Frame

As with lists, we can reference a single element (vector) from our data frame using either double squared brackets or the $ symbol:

Click here to view code image

> weather # The whole data frame
 Day Date TempF
1 Saturday Jul 4 75
2 Sunday Jul 5 86
3 Monday Jul 6 83
4 Tuesday Jul 7 83
5 Wednesday Jul 8 87

> weather[[3]] # The "third" column
[1] 75 86 83 83 87
> weather$TempF # The "TempF" column
[1] 75 86 83 83 87

Selecting Columns from the Data Frame

Because we can reference columns in this way, we can also use these approaches to add new columns. For example, let’s add a new column called TempC to our data containing the temperature in degrees Celsius:

Click here to view code image

> weather$TempC <- round((weather$TempF - 32) * 5/9)
> weather
 Day Date TempF TempC
1 Saturday Jul 4 75 24
2 Sunday Jul 5 86 30
3 Monday Jul 6 83 28
4 Tuesday Jul 7 83 28
5 Wednesday Jul 8 87 31

Subscripting Columns

Because the columns of data frames are vectors, we can subscript them using the approaches from Hour 3, “Single-Mode Data Structures.” Specifically, we can subscript the columns using square brackets:

Click here to view code image

DATA$COLUMN [Input specifying the subset to return]

As before, we can reference using blank, positive, negative, or logical inputs. Character inputs do not make sense for referencing columns because the individual elements within columns are not associated with element names.

Blank, Positive, and Negative Subscripts

If we use a blank subscript, all the values of the vector are returned:

Click here to view code image

> weather
 Day Date TempF TempC
1 Saturday Jul 4 75 24
2 Sunday Jul 5 86 30
3 Monday Jul 6 83 28
4 Tuesday Jul 7 83 28
5 Wednesday Jul 8 87 31

> weather$TempF [] # All values of TempF column
[1] 75 86 83 83 87

If we use a vector of positive integers, it refers to the elements of the column (vector) to return:

Click here to view code image

> weather$TempF [1:3] # First 3 values of the TempF column
[1] 75 86 83

If we use a vector of negative integers, it refers to the elements of the column (vector) to omit:

Click here to view code image

> weather$TempF [-(1:3)] # Omit the first 3 values of the TempF column
[1] 83 87

Logical Subscripts

As you saw in the last hour, we can provide a vector of logical values to reference a vector, and only the corresponding TRUE values are returned. Here’s an example:

Click here to view code image

> weather$TempF
[1] 75 86 83 83 87
> weather$TempF [c(F, T, F, F, T)] # Logical subscript
[1] 86 87

Of course, we usually generate the logical vector with a logical statement involving a vector. For example, we could return all the TempF values greater than 85 using this statement:

Click here to view code image

> weather$TempF [weather$TempF > 85] # Logical subscript
[1] 86 87

Instead, we could reference a column of a data frame based on logical statements involving one or more other columns (because all columns are constrained to be the same length):

Click here to view code image

> weather$Day [weather$TempF > 85] # Logical subscript
[1] Sunday Wednesday
Levels: Monday Saturday Sunday Tuesday Wednesday

Note: Factor Levels

In the last example, you can see that the days where the forecast is greater than 85°F are Sunday and Wednesday. However, you should note two things about the output:

[image: Image] There are no quotation marks around the returned values (Sunday and Wednesday).

[image: Image] Additional “Levels” information has been printed.

This strange output is produced because, when you create a data frame using character columns, those columns are converted to “factors,” which are “category” columns that are automatically derived from character vectors when used in a data frame. You’ll see more on factors later in Hour 5, “Dates, Times, and Factors.”

Referencing as a Matrix

Although a data frame is structured as a named list, its rectangular output is more similar to the matrix structure you saw earlier. As such, R allows us to reference the data frame as if it was a matrix.

Matrix Dimensions

Because we can treat a data frame as a matrix, we can use the nrow and ncol functions to return the number of rows and columns:

Click here to view code image

> nrow(weather) # Number of rows
[1] 5
> ncol(weather) # Number of columns
[1] 4

Subscripting as a Matrix

In Hour 3, you saw that you can subscript a matrix using square brackets and two inputs (one for the rows, one for the columns). We can use the same approach to subscript a data frame, where each input can be one of the standard five input types:

Click here to view code image

DATA.FRAME [Rows to return , Columns to return]

Blanks, Positives, and Negatives

We can use blank subscripts to return all rows and columns from a data frame:

Click here to view code image

> weather[,] # Blank, Blank
 Day Date TempF TempC
1 Saturday Jul 4 75 24
2 Sunday Jul 5 86 30
3 Monday Jul 6 83 28
4 Tuesday Jul 7 83 28
5 Wednesday Jul 8 87 31

If we use vectors of positive integers, they are used to provide an index of the rows/columns to return. This example uses positive integers to return the first four rows and the first three columns:

Click here to view code image

> weather[1:4, 1:3] # +ive, +ive
 Day Date TempF
1 Saturday Jul 4 75
2 Sunday Jul 5 86
3 Monday Jul 6 83
4 Tuesday Jul 7 83

We can use vectors of negative integers to indicate the rows and columns to omit in the return result, as shown in this example:

Click here to view code image

> weather[-1, -3] # -ive, -ive
 Day Date TempC
2 Sunday Jul 5 30
3 Monday Jul 6 28
4 Tuesday Jul 7 28
5 Wednesday Jul 8 31

In the preceding examples, we have used the same input type for both rows and columns. However, we can mix up the input types, as illustrated in this example, where we select the first four rows and all the columns:

Click here to view code image

> weather[1:4,] # +ive, Blank
 Day Date TempF TempC
1 Saturday Jul 4 75 24
2 Sunday Jul 5 86 30
3 Monday Jul 6 83 28
4 Tuesday Jul 7 83 28

Logical Subscripts

We often use logical subscripts to reference specific rows of the data to return. To perform this action, we need to provide a logical value for each row of the data:

Click here to view code image

> weather # The original data
 Day Date TempF TempC
1 Saturday Jul 4 75 24
2 Sunday Jul 5 86 30
3 Monday Jul 6 83 28
4 Tuesday Jul 7 83 28
5 Wednesday Jul 8 87 31

> weather[c(F, T, F, F, T),] # Logical, Blank
 Day Date TempF TempC
2 Sunday Jul 5 86 30
5 Wednesday Jul 8 87 31

As before, we more commonly apply a logical statement to a column (vector) contained in the data frame to generate the logical vector:

Click here to view code image

> weather[weather$TempF > 85,] # Logical, Blank
 Day Date TempF TempC
2 Sunday Jul 5 86 30
5 Wednesday Jul 8 87 31

> weather[weather$Day != "Sunday",] # Logical, Blank
 Day Date TempF TempC
1 Saturday Jul 4 75 24
3 Monday Jul 6 83 28
4 Tuesday Jul 7 83 28
5 Wednesday Jul 8 87 31

Character Subscripts

We often use vectors of character strings to specify the columns we wish to return. Although a data frame has “row names,” we tend not to reference rows using character strings. This example selects the Day and TempC columns from the data, filtering so that only rows with temperatures greater than 85°F are returned:

Click here to view code image

> weather[weather$TempF > 85, c("Day", "TempC")] # Logical, Character
 Day TempC
2 Sunday 30
5 Wednesday 31

Summary of Subscripting Data Frames

At this point, it is worth a quick review of some of the key syntax used to select subsets of a data frame. In particular, consider the following lines of code:

Click here to view code image

> weather$Day [weather$TempF > 85] # Days where TempF > 85
[1] Sunday Wednesday
Levels: Monday Saturday Sunday Tuesday Wednesday

> weather [weather$TempF > 85 ,] # All data where TempF > 85
 Day Date TempF TempC
2 Sunday Jul 5 86 30
5 Wednesday Jul 8 87 31

> weather [weather$TempF > 85 , c("Day", "TempF")] # 2 columns where TempF > 85
 Day TempF
2 Sunday 86
5 Wednesday 87

In the first example, we are subscripting weather$Day. This is a vector, so we provide a single input (a logical vector in this case). It returns the two values of the Day column where the corresponding TempF column is greater than 85.

In the second example, we are now referencing data from the whole weather dataset. As such, we need two subscripts (one for rows, one for columns). In this example, we use a logical vector for the rows and blank for the columns, returning all columns but only rows where TempF is greater than 85. Attention should be paid to the use of the comma in the first example versus the second example, driven by the fact that we are referencing data from a vector (first example) versus the whole data frame (second example).

The third example extends the second example to pick only columns Day and TempF using a character vector for the column input.

Exploring Your Data

Later in this book, you’ll see a range of functionality for manipulating data frames. For now, it is useful for you to look at a few simple functions that will help you to quickly understand the data stored in a data frame.

The Top and Bottom of Your Data

A function called head allows you to return the first few rows of the data. This is particularly useful when you have a large data frame and only want to get a high-level understanding of the structure of the data frame. The head function accepts any data frame and will return (by default) only the first six rows. For this example, we use the built-in iris data frame (for more information, open the help file for the iris data frame using the ?iris command):

Click here to view code image

> nrow(iris) # Number of rows in iris
[1] 150
> head(iris) # Return only the first 6 rows
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

This immediately gives us a view on the structure of the data. We can see that the iris data frame has five columns: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, and Species. All columns seem to be numeric, except the Species column, which appears to be character (or a “factor,” as briefly discussed earlier).

The second argument to the head function is the number of rows to return. Therefore, we could look at more or fewer rows if we wish:

Click here to view code image

> head(iris, 2) # Return only the first 3 rows
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa

If instead we wanted to look at the last few rows, we could use the tail function. This works in the same way as the head function, with the data frame as the first input and (optionally) the number of rows to return as the second input:

Click here to view code image

> tail(iris) # Return only the last 6 rows
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
145 6.7 3.3 5.7 2.5 virginica
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica
> tail(iris, 2) # Return only the last 2 rows
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica

Viewing Your Data

If you are using the RStudio interface, you can use the View function to open the data in a viewing grid. This feature in RStudio is evolving quickly, so readers of this book may find the functionality richer than that presented here (the version of RStudio being used is 0.99.441). See Figure 4.1 for an example.

[image: Image]

FIGURE 4.1 The iris dataset viewed in the RStudio data grid viewer

If we use the View function, our data frame is opened in the data grid viewer in RStudio:

Click here to view code image

> View(iris) # Open the iris data in the data grid viewer

This window allows us to scroll around our data, and tells us the range of data we are viewing (for example, in Figure 4.1 the message at the bottom of the viewer tells us that we are looking at rows “1 to 19 of 150”).

The search bar (top right of the window) allows us to input search criteria that will be used to search the entire dataset. This is used to interactively filter the data based on a partial matching of the search term. As a quick example, look at the result of typing 4.5 in the search bar, as shown in Figure 4.2.

[image: Image]

FIGURE 4.2 Using the search bar in the data grid viewer

If we click the Filter icon from the top of the data grid viewer window, we will see a number of filtering fields appear, which we can use to interactively subset the data in a more data-driven manner. This example uses the filter feature to look only at rows for the “setosa” species with Sepal.Length greater than 5.5 (see Figure 4.3).

[image: Image]

FIGURE 4.3 Filtering data in the data grid viewer

Summarizing Your Data

We can use the summary function to produce a range of statistical summary outputs to summarize our data. The summary function accepts a data frame and produces a textual summary of each column of the data:

Click here to view code image

> summary(iris) # Produce a textual summary
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50
 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50
 Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginica :50
 Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
 Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Note that the summaries produced are suitable for each column type (statistical summary for numeric columns, frequency count for factor columns).

Visualizing Your Data

In this book, you will see a number of functions for creating sophisticated graphical outputs. However, let’s look at one simple function that creates an immediate visualization of the structure of our data.

We can create a scatter-plot matrix plot of our data frame using the pairs function as follows:

Click here to view code image

> pairs(iris) # Scatter-plot matrix of iris

In the graphic shown in Figure 4.4, each variable in the data is plotted against each other. For example, the plot in the top-right corner is a plot of Sepal.Length (y axis) against Species (x axis).

[image: Image]

FIGURE 4.4 Scatter-plot Matrix of the iris data frame

From this plot we can quickly identify a number of characteristics of our data:

[image: Image] We see that the data has five columns, whose names are printed on the diagonal of the plot.

[image: Image] We can again see that Species is a factor column, whereas the rest are numeric.

[image: Image] If we look at the plots on the right side of the chart, we can see each numeric variable plotted against Species and note that the numeric data would seem to vary across each level of Species.

[image: Image] Columns Petal.Length and Petal.Width would seem to be highly correlated.

Summary

In this hour, we focused on two structures that store “multi-mode” data (that is, data containing more than one data type). First, we looked at lists, which allow us to store any number of objects of varying modes. Then, we looked at data frames as a special “type” of list that stores rectangular datasets in an effective manner.

Although lists are very powerful structures, when we import data into R (which you’ll see in Hour 10, “Importing and Exporting”), it will be stored as a data frame. Therefore, you need to be very comfortable manipulating this structure in particular. You should practice the syntax relating the subscripting of data frames using square brackets and the $ symbol, because this is a fundamental skill useful across all R tasks.

Q&A

Q. Can we create nested lists?

A. Yes. Because lists can store any type of object, they can themselves store other lists. Here’s an example:

Click here to view code image

> nestedList <- list(A = 1, B = list(C = 3, D = 4)) # Create a nested list
> nestedList # Print the nested list
$A
[1] 1

$B
BC
[1] 3

BD
[1] 4

> nestedListBC # Extract the C element within the B element
[1] 3

Q. What other inputs can we use within the double square brackets?

A. In the last hour, you saw that you can use integers to directly reference elements of a list. Refer to the help file (opened using ?"[[") for a complete list of possible inputs. However, it is worth nothing that you can use single-character strings to reference columns. Here’s an example:

Click here to view code image

> weather # The full dataset
 Day Date TempF TempC
1 Saturday Jul 4 75 24
2 Sunday Jul 5 86 30
3 Monday Jul 6 83 28
4 Tuesday Jul 7 83 28
5 Wednesday Jul 8 87 31
> col <- "TempC" # The column we want to select
> weather[[col]] # Return the TempC column
[1] 24 30 28 28 31

Q. What is the difference between DF[] and DF[,]?

A. As shown previously, you subscript data from a data frame using square brackets. Here’s an example:

Click here to view code image

> weather [, c("Day", "TempC")] # All rows, 2 columns
 Day TempC
1 Saturday 24
2 Sunday 30
3 Monday 28
4 Tuesday 28
5 Wednesday 31

In this example, we provide two subscripts for the data frame: blank for the rows (so all rows are returned) and a character vector to select two columns. The subscripts are separated by a comma. If we omit the comma, we appear to get the same result:

Click here to view code image

> weather [c("Day", "TempC")] # 2 vector elements
 Day TempC
1 Saturday 24
2 Sunday 30
3 Monday 28
4 Tuesday 28
5 Wednesday 31

Here, we are using the fact that a data frame is actually a named list of vectors. In this case, we are creating a “sub-list” containing only the two columns specified.

Q. Why, when I select a single column, is it returned as a vector?

A. When you select a single column via the square brackets approach, it is indeed returned as a vector:

Click here to view code image

> weather [, c("Day", "TempC")] # 2 columns - returns a data frame
 Day TempC
1 Saturday 24
2 Sunday 30
3 Monday 28
4 Tuesday 28
5 Wednesday 31
> weather [, "TempC"] # 1 column - returns a vector
[1] 24 30 28 28 31

In this case, the last line is equivalent to weather$TempC. When you select a single column of data, R simplifies the output in a way that’s similar to how you saw matrix dimensions dropped in Hour 3. If you specifically want to retain the dimensional structure, you can use the argument drop within the square brackets, as follows:

Click here to view code image

> weather [, "TempC", drop = F] # 1 column - retain dimensions
 TempC
1 24
2 30
3 28
4 28
5 31

As you can see from the output, the use of drop = F retains the structure, returning a 5×1 data frame.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. What is a “list” object?

2. How do we reference elements from a list?

3. What is the “mode” of a list?

4. What’s the difference between a list and a data frame?

5. Name two ways we can return the number of columns of a data frame.

6. If we run the following code, what would the contents and structure of result1 and result2 contain?

Click here to view code image

> myDf <- data.frame(X = -2:2, Y = 1:5)
> result1 <- myDf$Y [myDf$X > 0]
> result2 <- myDf [myDf$X > 0,]

7. What is the difference between the head and tail functions?

Answers

1. A “list” is a simple R object that can contain any number of objects of any “class.”

2. We can reference elements of a list using the “double square brackets” notation. Most commonly, we provide the index of the element we want to return from the list (for example, myList[[2]] for the second element). If a list has element names, we can alternatively use the dollar notation, specifying the name of the list element (for example, myList$X to return the X element of myList).

3. Because a list is a “multi-mode” object, it has no explicit “mode.” If you ask for a list’s mode, it simply returns “list.”

4. A list can contain any number of objects of any class—its elements may be named or unnamed. A data frame is a “named” list that is restricted to contain only same-length vectors—when printing a data frame, it uses a specific method so the data is presented in a more formatted manner.

5. We can use the length function to return the number of columns in a data frame, because this returns the number of vector elements in the underlying “list” structure. Alternatively, because we can treat a data frame as a matrix, we can use the ncol function to achieve the same result.

6. The result1 object will contain a vector of those values from the Y column where the corresponding X column is greater than 0—specifically, this will be a vector containing values 4 and 5. The result2 object will contain a data frame with two rows, corresponding to the rows where X is greater than 0 (so rows 4 and 5 of the original data frame).

7. The head function returns the first six rows (by default) of a data frame. The tail function returns the last six rows (by default) of a data frame.

Activities

1. Create a “named” list containing a numeric vector with 10 values (called X) and a character vector with 10 values (called Y) and a sequence of values from 1 to 10 (called Z). Use this list:

[image: Image] Print the number of elements and the element names.

[image: Image] Select the X element.

[image: Image] Select the Y element.

[image: Image] Select values of the X element that are greater than the median of X.

[image: Image] Select values of the Y element where the corresponding X element is greater than the median of X.

2. Adapt your code to instead create a data frame containing two columns (X = a numeric vector with 10 elements, Y = a character column containing 10 elements, Z = integers 1 to 10). Use this structure:

[image: Image] Print the number of columns and the column names.

[image: Image] Select the X column.

[image: Image] Select the Y column.

[image: Image] Select values of the X column that are greater than the median of X.

[image: Image] Select values of the Y column where the corresponding X value is greater than the median of X.

3. Further subset the data in the data frame created in the last exercise as follows:

[image: Image] Select all rows of the data where Z is greater than 5.

[image: Image] Select all rows of the data where Z is greater than 3 and X is greater than the median of X.

[image: Image] Select just the X and Z columns from the data where Z is greater than 5.

4. Print the built-in mtcars data frame. Look at the help file for mtcars to understand the origin of the data. Use this data frame:

[image: Image] Print only the first five rows.

[image: Image] Print the last five rows.

[image: Image] How many rows and columns does the data have?

[image: Image] Look at the data in the RStudio data viewer (if you are using RStudio).

[image: Image] Print the mpg column of the data.

[image: Image] Print the mpg column of the data where the corresponding cyl column is 6.

[image: Image] Print all rows of the data where cyl is 6.

[image: Image] Print all rows of the data where mpg is greater than 25, but only for the mpg and cyl columns.

[image: Image] Create a scatter-plot matrix of your data.

[image: Image] Create a scatter-plot matrix of your data, but only using the first six columns of the data.

Hour 5. Dates, Times, and Factors

What You’ll Learn in This Hour:

[image: Image] How to create a date object

[image: Image] How to create a time object

[image: Image] How to manipulate date and time objects

[image: Image] What a factor is and how to create one

[image: Image] How to manipulate factors

In Hour 3, “Single-Mode Data Structures,” and Hour 4, “Multi-Mode Data Structures,” you saw how to create the basic data objects in R, objects that allow us to store numeric, logical, and character data.

In this hour, you learn more about some of the special data types in R that enable you to work with dates and times and with categorical data.

Working with Dates and Times

In this section, we look at how to convert date and time data into a format that R will recognize and manipulate.

Creating Date Objects

We can create a date object in R using the function as.Date. With this function we can create a vector of dates we can index in the same way we did in Hour 3. Most often our dates will be in the format of a character string, which we will convert to a date using the format argument to specify the structure of the date in the character string. You can see all of this in the following example:

Click here to view code image

> myDates <- c("2015-06-21", "2015-09-11", "2015-12-31")
> myDates <- as.Date(myDates, format = "%Y-%m-%d")
> myDates
[1] "2015-06-21" "2015-09-11" "2015-12-31"
> myDates[2:3]
[1] "2015-09-11" "2015-12-31"
class(myDates)
[1] "Date"

As you can see, this creates a special Date type object. When this is printed to the screen, you will see it in the format year-month-day. This is the standard R date format. In actual fact, R has created an object that represents an integer number of days since January 1, 1970:

> as.numeric(myDates)
[1] 16607 16689 16800

Tip: Date Formats

In these examples we used the format argument to as.Date. This argument allows us to specify the initial format of our date string. For more details on the specification of the format argument, see the help file for the function strptime.

If we were to give a numeric value to the function as.Date, we would also need to specify the origin, or starting point, for the counting of days. For instance, if we were to pass dates that were generated by Microsoft Excel, which start counting from January 1, 1900, we would need to tell R that this is the origin or date from which the counting should start. Here’s an example:

Click here to view code image

> as.Date(42174, origin = "1900-01-01")
[1] "2015-06-21"

So what if our date is in a numeric format, such as 20150621? In this instance we first need to convert our date to a character string and then convert to a date as we did previously, using the format argument to specify the structure of the dates:

Click here to view code image

> myDates <- c(20150621, 20150911, 20151231)
> myDates <- as.character(myDates)
> myDates <- as.Date(myDates, format = "%Y%m%d")
> myDates
[1] "2015-06-21" "2015-09-11" "2015-12-31"

You will see very soon how you can manipulate and work with this type of object further.

Creating Objects That Include Times

When you have data that also includes times, you will need to work with a different class of object to incorporate the additional information. Here, we will use POSIXct and POSIXlt objects to store dates and times down to milliseconds. The two classes are very similar, though POSIXct objects are more suitable for storing data n data frames, whereas POSIXlt objects are a more human-readable format.

The functions that we use to create these objects are as.POSIXct and as.POSIXlt. They work in very much the same way as the as.Date function we used in the previous section, but we can now include hours, minutes and seconds. Both functions work in the same way, so here we will only look at as.POSIXct. Here is an example:

Click here to view code image

> myTimes <- c("2015-06-21 14:22:00", "2015-09-11 10:23:32", "2015-12-31 23:59:59")
> myTimes <- as.POSIXct(myTimes, format = "%Y-%m-%d %H:%M:%S")
> myTimes
[1] "2015-06-21 14:22:00 BST" "2015-09-11 10:23:32 BST" "2015-12-31 23:59:59 GMT"
> class(myTimes)
[1] "POSIXct" "POSIXt"

Note: Time Zones

You will have noticed that the preceding example has converted the dates and times into both British Summer Time and Greenwich Mean Time. The default for the POSIX functions is to use the locale of the machine you are working on and account for daylight savings time, but we can control the time zone used with the argument tz, for instance:

Click here to view code image

as.POSIXct(myTimes, format = "%Y-%m-%d %H:%M:%S", tz = "US/Pacific")

For more information on how to define time zones, take a look at the help pages for “timezones.”

As with dates, times are stored as an integer value, though in the instance of times it is the number of seconds starting from 00:00:00 January 1, 1970 UTC.

Manipulating Dates and Times

Once we have converted our dates and times to the appropriate R format, we can do things like

Click here to view code image

> myDates + 1
[1] "2015-06-22" "2015-09-12" "2016-01-01"

which makes use of the storage as numeric values to add a day (or second in the case of POSIX objects) to the time we provide. When it comes to adding other amounts of time, you might find the lubridate package, which we will see in the next section, useful.

A number of functions allow us to extract information such as weekdays, months, and quarters:

Click here to view code image

> weekdays(myDates)
[1] "Sunday" "Friday" "Thursday"
> months(myDates)
[1] "June" "September" "December"
> quarters(myDates)
[1] "Q2" "Q3" "Q4"

However, the more useful functions for working with dates and times are diff and difftime. These two functions both find the differences between given dates and times but work in a slightly different way. First of all, the diff function takes a vector of date-times and returns a vector of the difference between consecutive values. Here’s an example:

> diff(myDates)
Time differences in days
[1] 82 111

The function difftime, on the other hand, requires two separate date objects and finds the difference between the two. This is particularly useful if you want to find the difference between a series of dates and a specific date—for instance, the number of days from the start of the new year to the values in a given vector:

Click here to view code image

> difftime(myDates, as.Date("2015-07-04"))
Time differences in days
[1] -13 69 180

One useful feature of this function is that you can change the unit used for the difference returned, so you can see the difference in weeks, days, hours, minutes, or seconds:

Click here to view code image

> difftime(myDates, as.Date("2015-07-04"), units = "weeks")
Time differences in weeks
[1] -1.857143 9.857143 25.714286

Tip: Date Sequences

You might want to know that you can also create dates and times using a special version of the seq function. For instance, try the following:

Click here to view code image

seq (as.Date("2015-01-01"), as.Date("2015-12-01"), by = "week")

This will create a sequence of dates from January 1st to December 1st in weekly increments.

The lubridate Package

Instead of using the functions we have seen so far that are in the base R installation, we can use a number of additional packages for working with dates and times. In this section we look at the lubridate package, which has been designed to simplify the way in which you work with dates and times, making it easier to read them in to R and easier to manipulate, particularly when it comes to adding a unit of time. Because this package is not available in the standard R installation, you will first need to install and load it. See Hour 2, “The R Environment,” for a reminder on installing and loading an R package.

This package includes a number of useful functions, such as now, which gives the current date and time:

> now()

The equivalent to this in the base functionality of R would be Sys.time. You will notice functions in lubridate have been named in what is intended to be a more user-friendly manner. Before we look at some of the other useful functions in this package, let’s first look at converting our character strings or numeric values into date formats. There are three main functions in lubridate for converting to a date: ymd, mdy, and dmy. The one to use will depend on the order in which the year, month, and day are provided.

Click here to view code image

> myDates <- c("2015-06-21", "2015-09-11", "2015-12-31")
> myDates <- ymd(myDates)
> myDates
[1] "2015-06-21 UTC" "2015-09-11 UTC" "2015-12-31 UTC"

You will notice here that we simply provided the vector of dates; we did not need to provide the separator or any other formatting for the dates. Because the lubridate package is intended to make reading data easier, it will try to automatically determine the format based on the function we have called. In this example, it assumes the data is in the format year, month, day. In most instances this will be sufficient; however, in the case of mixed separators, it may not be able to determine the format and will return an appropriate warning to inform you of that fact.

You will also notice that the date is in the time zone UTC, or Universal time. As with the usual date function, we can change the time zone that is used when we import our data with the argument tz. Also, the useful functions force_tz and with_tz allow us to change the time zone after converting it.

When it comes to times, we continue to use the three functions from earlier, but now we add on “_hms,” or simply use the function hm or hms. Here is an example:

Click here to view code image

myTimes <- c("14:22:00", "10:23:32", "23:59:59")
myTimes <- hms(myTimes)
myTimes
[1] "14H 22M 0S" "10H 23M 32S" "23H 59M 59S"

These functions make it much easier to work with unconventional date-time data—for instance, when you only have the date and hour of an observation rather than data down to the second.

Further useful functions in this package include year, month, and day, which allow us to add a given amount of a specific period, for instance 2 seconds or 3 months, to a date-time:

Click here to view code image

newYearEve <- ymd_hms("2015-12-31 23:59:59")
newYearEve + seconds(2)
[1] "2016-01-01 00:00:01 UTC"
newYearEve + months(3)
[1] "2016-03-31 23:59:59 UTC"
newYearEve - years(1)
[1] "2014-12-31 23:59:59 UTC"

Working with Categorical Data

When we work with categorical data in R, we need to use a special data type called a factor. A factor is simply a categorical variable that is made up of levels and labels. In this section you will see how to convert a vector of categorical data into a factor and how to further manipulate these special objects. You will also see how to convert continuous data to a factor using the cut function.

Creating Factors

You can convert a vector of numeric values or character strings into a factor using the factor function. The default behavior of this function is to use the unique values of the vector as the levels and labels for the factor in alphanumeric order. As an example, consider Listing 5.1.

LISTING 5.1 Creating a Factor

Click here to view code image

 1: > x <- c("B", "B", "C", "A", "A", "A", "B", "C", "C")
 2: > x
 3: [1] "B" "B" "C" "A" "A" "A" "B" "C" "C"
 4: > mode(x)
 5: [1] "character"
 6: > class(x)
 7: [1] "character"
 8: >
 9: > y <- factor(x)
10: > y
11: [1] B B C A A A B C C
12: Levels: A B C
13: > mode(y)
14: [1] "numeric"
15: > class(y)
16: [1] "factor"

As you can see in line 9, you can very simply create a factor from a vector of character strings. You will notice in lines 11 and 12 that the output is printed differently when it is converted to a factor, displaying not only the vector but the levels of the factor. There are a few things to take note of in the factor and the mode of the object itself.

Let’s first consider the mode, or the way in which a factor is stored. Notice on lines 13 and 14 that the mode of the factor is numeric. A factor in R is actually stored as integer values that match up to the levels. In this example, any elements with the label “A” are in fact stored as 1, “B” stored as 2, and “C” as 3. In general, this will not impact the way in which you work with a factor but is worth noting.

Caution: Numeric Factors

When working with factors that have numeric levels, be aware that although the labels will take the values of the individual levels, the factor will be stored as integer values starting from 1. If you want to convert your factor back to numeric values, you first need to convert to character strings and then to numeric values.

The second thing to consider is the way in which factor levels are determined. As mentioned earlier and shown in Listing 5.1, the default behavior is to order levels alphanumerically. In the preceding example, this was not a problem, but consider the following example, where we are using the sample function to randomly select 20 values from a vector (see Hour 6, “Common R Utility Functions,” for more details on this function):

Click here to view code image

> ratings <- c("Poor", "Average", "Good")
> myRatings <- sample(ratings, 20, replace = TRUE)
> factorRatings <- factor(myRatings)
> factorRatings
 [1] Poor Average Good Poor Good Good Good Poor
 [9] Average Poor Average Good Average Average Average Average
[17] Good Average Poor Good
Levels: Average Good Poor

You can see here that the levels of the factor have been ordered alphabetically, even though there is an ordering that is more sensible for this case. This will have an impact when you want the ordering of a factor to be correct (for instance, when creating graphics). You can control the order of the levels of your factors using the levels argument, as shown next:

Click here to view code image

> factorRatings <- factor(myRatings, levels = ratings)
> factorRatings
[1] Poor Average Good Poor Good Good Good Poor
 [9] Average Poor Average Good Average Average Average Average
[17] Good Average Poor Good
Levels: Poor Average Good

Notice here that the levels are now ordered exactly as we have specified.

Tip: Reordering Factors

You can use the reorder function to change the order of the levels of a factor based on another vector. This is particularly useful when creating graphics.

Manipulating Factor Levels

After creating your factor, you can work with it as though it was any other character vector, for instance:

Click here to view code image

> y == "A"
[1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE

However, if you want to change the levels of the factor, you can’t just use standard methods for indexing and changing vector elements. As an example, suppose we want to change the levels in the ratings example from “Poor” to “Negative”:

Click here to view code image

> factorRatings[factorRatings == "Poor"] <- "Negative"
Warning message:
In `[<-.factor`(`*tmp*`, factorRatings == "Poor", value = "Negative") :
 invalid factor level, NA generated

This is because when we defined the levels of the factor, we restricted the values that the factor could take to these groups, so we can’t use the usual manipulation techniques because we have to change the set of allowed values for the factor. Instead, we will need to use the levels function:

Click here to view code image

> levels(factorRatings)
[1] "Poor" "Average" "Good"
> levels(factorRatings) <- c("Negative", "Average", "Positive")
> factorRatings
[1] Negative Average Positive Negative Positive Positive Positive
 [8] Negative Average Negative Average Positive Average Average
[15] Average Average Positive Average Negative Positive
Levels: Negative Average Positive

Caution: Missing Values in a Factor

If you have introduced missing values into a factor, you will need to re-create the factor or replace the missing values with the previous value that they took, otherwise you will retain missing values in your factor.

Here, we have only used the levels function to change the names of existing levels to unique equivalent levels, but we can also use this function to reduce the set of levels. Suppose that we were only interested in which elements were “Negative” and we were not interested in the distinction between “Average” and “Positive”. We might want to combine these elements as one level of the factor:

Click here to view code image

> levels(factorRatings) <- c("Negative", "Other", "Other")
> factorRatings
[1] Negative Other Other Negative Other Other Other Negative
 [9] Other Negative Other Other Other Other Other Other
[17] Other Other Negative Other
Levels: Negative Other

Creating Factors from Continuous Data

So far you have seen how to create a factor from data that is already categorical, but what about if you want to use a continuous variable as the basis for a factor? In this case, you can use the cut function. The cut function has a number of arguments that can help you control exactly how the categories are formed. See Table 5.1 for a list of the main arguments.

[image: Image]

TABLE 5.1 Arguments to the cut Function

The simplest way you can create a factor is by providing the data and the breaks argument. Therefore, if you wanted to create three groups, you simply give breaks = 3, like so:

Click here to view code image

> ages <- c(19, 38, 33, 25, 21, 27, 27, 24, 25, 32)
> cut(ages, breaks = 3)
 [1] (19,25.3] (31.7,38] (31.7,38] (19,25.3] (19,25.3] (25.3,31.7]
 [7] (25.3,31.7] (19,25.3] (19,25.3] (31.7,38]
Levels: (19,25.3] (25.3,31.7] (31.7,38]

You can see in this example that the data has been split into three equally spaced levels. The levels are based on the range of the data rather than the number of values in each level. The levels here take the names of the ranges. You can have much more control over the ranges by instead specifying the lower and upper limits of each of the levels:

Click here to view code image

> cut(ages, breaks = c(18, 25, 30, Inf))
[1] (18,25] (30,Inf] (30,Inf] (18,25] (18,25] (25,30] (25,30] (18,25] (18,25]
[10] (30,Inf]
Levels: (18,25] (25,30] (30,Inf]

When you do this, you need to keep in mind that if the whole range of your data is not covered by the break points, you will introduce missing values, hence the use of Inf at the upper end. The arguments include.lowest and right let you control exactly where the group break points fall. Finally, you can control the labels that are given to the levels using the labels argument:

Click here to view code image

> cut(data, breaks = c(18, 25, 30, Inf), labels = c("18-25", "25-30", "30+"))
[1] 18-25 30+ 30+ 18-25 18-25 25-30 25-30 18-25 18-25 30+
Levels: 18-25 25-30 30+

As you can see, you can easily convert your continuous data to categories. You can see from Table 5.1 that there are more arguments that let you control the creation of the factor even further, including whether the groups are closed on the right or left (it defaults to left). We will use factors more when we manipulate data and create graphics, in particular when we use the package ggplot2 in Hour 14, “The ggplot2 Package for Graphics.”

Summary

In this hour we looked at some additional data types that allow us to work with dates and times and categorical data. You learned how to convert both numeric and character values into date and/or time objects and then how to manipulate these objects using the base functionality in R. You were also introduced to a useful package that can make these manipulations much simpler. Finally, you saw how R manages categorical data, how you can convert your data into this format, and how you can use continuous data to create your own categorical data. In the next hour, we look at some of the functions that we can use for working with the standard data types.

Q&A

Q. I have tried to convert my data to a Date object but it’s just returned a series of NA’s. Why doesn’t it recognize my data?

A. If you find you have been returned a series of NA’s after converting to a date or time, it is most likely because you have specified the wrong format in the format argument. Take a look at the help file for strptime for a full list of format codes, and don’t forget to include any spaces, dashes, or slashes in your dates.

Q. Why do I need to bother converting my data to a factor?

A. For general data-manipulation tasks, you will find that it makes very little difference whether your data is a factor or not. It will only be if you want to rename elements that you see a difference in behavior. Converting to a factor type is important when it comes to producing graphics and modeling your data. When you’re modeling, if your data is really categorical and you treat it as continuous, you will see a significantly different result. You will also find that if your data is large, then storing it as a factor is more efficient, as it will only store the unique values rather than repeating them a potential large number of times.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. What date does R use as the origin for counting dates and times?

2. What is the default time zone for creating POSIX objects?

3. What is a factor?

4. How are the levels of a factor determined?

5. If you were to use the function cut with the argument "breaks = 3", how would the levels be determined?

A. The data would be split into three equally sized groups based on the number of elements.

B. The range of the data would be split equally into three.

Answers

1. The origin for dates and times in R is January 1, 1970, 00:00:00 UTC.

2. The default time zone is the locale on your operating system. You can change the time zone using the tz argument. This is particularly useful if you are working with people across time zones and want to ensure the correct time zone for the data is used.

3. A factor is the way of storing categorical data in R.

4. If you choose not to give the appropriate levels using the levels argument, they will be the alphanumerically ordered unique elements of the data.

5. The answer is B. The range of the data is split equally to create three groups. This may mean, however, that the groups are of uneven size or the break points occur at locations that are not sensible for the data.

Activities

1. Create a vector of character strings that contains today’s date as well as the date of your next birthday and New Year’s Eve. Convert this character vector to a Date object.

2. Use the vector of dates to work out what day of the week your next birthday and New Year’s Eve occur on.

3. How many days are there from now until your next birthday?

4. Using the weather data we created in Hour 4, convert the Day column to a factor, ensuring that all possible days of the week can be used as levels and they are in the correct order, starting with Monday.

5. Change the levels of the Day factor column to be “Weekend” and “Weekday.”

6. Using the cut function, create a new column in the data, TempFactor, that takes the value “low” for temperatures less than 25, “medium” for temperatures from 25 to 30, and “high” for temperatures including and above 30 where all temperatures are in degrees Celsius.

Hour 6. Common R Utility Functions

What You’ll Learn in This Hour:

[image: Image] Common functions for numeric data

[image: Image] How to simulate data in R

[image: Image] Simple logical summaries

[image: Image] Functions for missing data

[image: Image] Useful function for manipulating character data

So far you have seen how to create objects of different modes and how to work with special types of data—but what about numeric, logical, and character data? How can we handle missing data or even remove it from our data? How can we simulate from statistical distributions? In this hour, we answer these questions by introducing you to some of the most common utility functions in R that you will find yourself using every day.

Using R Functions

You have already used a number of functions in the previous hours, including seq, matrix, length, and factor. However, before we look many more useful functions, it is handy to know how to work with functions in R.

When you call a function in R, you use the function name with a number of arguments, which you give inside round brackets, to pass information to that function about how it should run and what data it should use. So how do you know what the arguments to a function are? You can either look in the help file—using ?functionName or help("functionName")—or you can use a function called args, which will print the arguments to a function in the console. As an example of using a function, we will look at sample. This function allows us to randomly sample a number of values from a vector of given values (this is the R way of selecting balls from an urn). So let’s take a look at the arguments to this function:

Click here to view code image

> args(sample)
function (x, size, replace = FALSE, prob = NULL)
NULL

You can see that we have four arguments to this function. You will notice that the first two are simply given as x and size, whereas the second two are followed by = value. This indicates that they have a default value, so we don’t need to supply an alternative. Because x and size do not have a default, we have to tell R what value we want them to take. To know the purpose of the arguments, you will need to take a look at the help files, which will tell you more. In this case, x is the vector that we want to sample from and size is the number of samples we want to take, whereas replace allows us to put values back, and we can set the probability of each value with prob.

When it comes to calling the function, we can supply the arguments in a number of ways. To start with, we can name all the arguments in full:

Click here to view code image

> sample(x = c("red", "yellow", "green", "blue"), size = 2, replace = FALSE, prob =
NULL)

Because replace and size have default values, this is the same as the following:

Click here to view code image

> sample(x = c("red", "yellow", "green", "blue"), size = 2)

Using this form of complete naming of arguments, we can actually supply them in any order we like. Therefore, the preceding would do the same as this:

Click here to view code image

> sample(size = 2, x = c("red", "yellow", "green", "blue"))

It’s worth remembering that when you actually run each of these lines, you will most likely get a different result because the function is randomly sampling from the vector x.

If you provide all the arguments in the same order as the args function gives them, you do not actually need to give the names of the arguments. Therefore, we can also say this:

Click here to view code image

> sample(c("red", "yellow", "green", "blue"), 2)

In reality, you will often see, and use, a combination of naming and ordering of arguments because you will tend to remember what should come first but not the order of other arguments. Therefore, you might see something like the following:

Click here to view code image

> sample(c("red", "yellow", "green", "blue"), size = 2, replace = TRUE)

Now that you know more about how to call functions, we will look at some useful functions for various types of data.

Functions for Numeric Data

When it comes to working with numeric data, there is a whole host of functions we may want to use—from mathematical functions such as logarithms to simulating from statistical distributions. I won’t cover every single function available in R, but we will introduce you to some of the most common.

Mathematical Functions and Operators

You have already, briefly, seen that you can use R for basic arithmetic using functions such as +, -, *, and /. In R, these are known as operators, and other useful operators include ^ (power) and %% (mod). Here’s an example:

> 3^2
[1] 9
> 5 %% 3
[1] 2

Other useful mathematical functions are shown in Table 6.1.

[image: Image]

TABLE 6.1 Mathematical Functions

All these functions are used very simply with an argument, x, with the data of interest, typically a vector or matrix. However, for logarithms, you can also provide the base, which is the exponential base (natural logarithm) by default. As an example, let’s create a simple vector of values to pass to some of these functions:

Click here to view code image

> x <- seq(1, 4, by = 0.5)
> x
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0
> sqrt(x)
[1] 1.000000 1.224745 1.414214 1.581139 1.732051 1.870829 2.000000
> log(x)
[1] 0.0000000 0.4054651 0.6931472 0.9162907 1.0986123 1.2527630 1.3862944
> sin(x)
[1] 0.8414710 0.9974950 0.9092974 0.5984721 0.1411200 -0.3507832 -0.7568025

As you can see, these are very simple functions to use and they follow standard mathematical order of operations (that is, brackets, order, division, multiplication, addition, subtraction).

Statistical Summary Functions

When it comes to statistical summaries, there is a whole host of functions you could choose to use to find out more about your data. Just like the mathematical functions you saw in the previous section, these are all very simple to use, and often you need only provide the data to the function. Table 6.2 shows some of the most common summary functions.

[image: Image]

TABLE 6.2 Statistical Summaries

The first argument to all these functions is the data and should be a single vector of values. Here’s an example:

Click here to view code image

> age <- c(38, 20, 44, 41, 46, 49, 43, 23, 28, 32)
> median(age)
[1] 39.5
> mad(age)
[1] 10.3782
> range(age)
[1] 20 49

When you are working with missing data, you need to take a little extra care with these functions. Take a look at this example:

> age[3] <- NA
> median(age)
[1] NA

As you can see, when you have missing values in your data, the median function, and in fact all the statistical summary functions in Table 6.2, will return NA. Although this is a technically correct value to return, you are typically more interested in the value of the summary after removing the missing values. By using the argument na.rm, you can do this easily:

> median(age, na.rm = TRUE)
[1] 38

You will see before the end of this hour how to remove missing values from a vector without these functions.

Simulation and Statistical Distributions

For working with statistical distributions in R, we have functions for working with all of the common distributions and all the common actions. All the functions follow the same pattern of naming, which starts with a single letter to identify what we want to do and is followed by the R code name for the distribution. Table 6.3 shows some of the most common distributions available in the base R installation. Many other distributions, such as the Pareto distribution, are available in contributed packages.

[image: Image]

TABLE 6.3 R Codes for Statistical Distributions

The list of distributions in Table 6.3 is by no means an exhaustive list, and many more can be found in the help pages by simply searching the name of the distribution. As stated earlier, you will need to combine this name for the distribution with a letter that determines whether you want to sample or calculate the quantiles. The letters you will need, their purpose, and an example of structuring the function name with the Normal distribution is shown in Table 6.4.

[image: Image]

TABLE 6.4 Distribution Functions

On top of the first argument shown in Table 6.4, and which is the same for all distribution functions, there will be additional arguments specific to the distribution. For example, the Normal distribution has the arguments mean and sd that are set to the Standard Normal defaults (0 and 1 respectively), whereas the Poisson distribution has the argument lambda, which does not have a default value set. In general the arguments will be set to the “standard” values for that distribution. Where the distribution does not have a standard, default values will not be set. For example, if you wanted to simulate five values from the Normal, Poisson, and Exponential distributions, it may look something like this:

Click here to view code image

> rnorm(5)
[1] -0.23515046 -1.79043043 -0.03287786 -0.24937333 -1.00660505
> rpois(5, lambda = 3)
[1] 4 6 6 3 1
> rexp(5)
[1] 3.2443094 1.1198132 0.9365825 0.2731334 0.4363149

Although this allows you to simulate values from a distribution, you may want to generate samples from existing data. You have already seen the function for this: sample. As you have seen, this function allows you to specify the vector you want to sample from, the number of samples you want, whether you want to replace the values or not, and whether you want to change the probability of sampling particular values, which are equal by default. As an example, let’s sample from our vector of ages:

Click here to view code image

> sample(age, size = 5)
[1] 28 46 20 49 23
>sample(age, size = 5, replace = TRUE)
[1] 20 20 23 28 41

As we saw previously, the replace argument here is allowing values to be sampled again when it is set to TRUE whereas when it is set to FALSE a value cannot be sampled again after it has been sampled once.

Note: Re-creating Simulated Values

If you want to be able to re-create the random samples you generated, you will need to set the random seed. You can do this with the function set.seed, which simply takes an integer value to indicate the seed to use. You can also use this function to change the type of random number generator used. See the help documentation for more details.

Logical Data

One of the main ways you will work with logical data is to subset the data as we did in Hour 3, “Single-Mode Data Structures.” There are, however, a couple of functions you will find useful for, in particular, counting the number of cases of a condition.

First of all, it is worth knowing how logical data is stored in R. As you have seen, a logical vector contains only values that are TRUE or FALSE. In R, these are in fact stored as the numeric values 0 and 1. You can see this by using the as.numeric function to force the numeric representation of a value, like so:

Click here to view code image

> as.numeric(c(TRUE, FALSE))
[1] 1 0

Therefore, when you have a logical vector, you can actually use the numeric functions you have seen to manipulate it. Of course, finding the variance of TRUE and FALSE values is not generally something that you want to do, but the sum function will actually allow you to count the total number of TRUE occurrences. As an example, let’s see how many values in the age vector from the previous section are less than 30:

Click here to view code image

> age
[1] 38 20 NA 41 46 49 43 23 28 32
> age < 30
[1] FALSE TRUE NA FALSE FALSE FALSE FALSE TRUE TRUE FALSE
> sum(age < 30, na.rm = TRUE)
[1] 3

Another useful function for counting the TRUE versus FALSE cases is table:

Click here to view code image

> table(age < 30)

FALSE TRUE
 6 3
> table(age < 30, useNA = "ifany")

FALSE TRUE <NA>
 6 3 1

You can, in fact, use the table function to display the number of cases for any vector, but as you can see, this is useful for tabulating logical cases. You will also notice that by default the function does not include missing values. However, if you set the argument useNA to "ifany", missing values will be included when they are present.

Missing Data

Many of the statistical summary functions allow you to easily remove your missing data from calculations. As you will see when we look at graphics and model fitting, missing data is simply removed. But what if you want to identify the missing values to, for example, determine how many missing values there are or to replace them in some way?

You saw in the last section that you can easily count the number of missing values using the sum function, if you are able to create a logical vector indicating which values are missing. If you were to simply test for values being equal to the missing value NA, you would in fact just be returned a series of NA’s. Here’s an example:

Click here to view code image

> age <- c(38, 20, NA, 41, 46, 49, 43, 23, 28, 32)
> age == NA
[1] NA NA NA NA NA NA NA NA NA NA

This is because we are asking R whether or not each value in the vector is equal to some value that we don’t actually know. In each case, R doesn’t know the answer! Therefore, you need to use an alternative function for determining whether a value is missing: is.na. This is actually one of a whole series of is.x functions, some of which you will see throughout this book, that allow you to test whether data is of a particular type. Therefore, in this case, you can say the following:

Click here to view code image

> is.na(age)
[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Thus, you can count the number of cases of missing data or generate a table showing the number of missing and non-missing cases, for example:

> sum(is.na(age))
[1] 1
> table(is.na(age))
FALSE TRUE
 9 1

Alternatively, you may want to replace your missing values with the mean of the data, or some other value. A useful function for doing this is the replace function. Although this function is not restricted to working with missing data, this is often what you’ll be interested in doing. You need to provide this function with three pieces of information: first, the vector of data; second, a condition that returns TRUE and FALSE values to determine which values should be replaced; third, the value to be inserted. Suppose, for example, we wanted to replace the missing age value in the age vector with the mean of the remainder of the age values:

Click here to view code image

> meanAge <- mean(age, na.rm = TRUE)
> missingObs <- is.na(age)
> age <- replace(age, missingObs, meanAge)
> age
[1] 38.00000 20.00000 35.55556 41.00000 46.00000 49.00000 43.00000
[8] 23.00000 28.00000 32.00000

Of course, if we simply wanted to remove the missing values from our data, we could use is.na in combination with the “not” operation (!), along with the standard subscripting techniques you saw in Hour 3. Here’s how to remove the missing values from our age vector:

Click here to view code image

> age[!is.na(age)]
[1] 38 20 41 46 49 43 23 28 32

Tip: Missing Data Functions

A number of useful functions for working with missing data can be found in the zoo package. This includes functions such as na.locf for the last observation carried forward and na.trim for trimming leading and trailing missing values.

Character Data

We can often find ourselves having to perform string manipulation tasks in R, including creation of character strings and searching for patterns in character strings. In this section, we look at some of the functions in the base R installation, but if you are particularly interested in manipulating strings, you may be interested in the stringr and stringi packages.

Simple Character Manipulation

Some of the basic manipulations you’ll want to perform are counting characters, extracting substrings, and combining elements to create or update a string. Let’s start with counting characters. You do this using the nchar function, simply providing the string that you are interested in:

Click here to view code image

> fruits <- "apples, oranges, pears"
> nchar(fruits)
[1] 22

Notice that all characters are counted, including the spaces. To extract substrings, you use the substring function. Here, you need to give the string along with the start and end points for the substring. You can extract multiple substrings by giving the vectors of the start and end points.

Click here to view code image

> substring(fruits, 1, 6)
[1] "apples"
> fruits <- substring(fruits, c(1, 9, 18), c(6, 15, 22))
> fruits
[1] "apples" "oranges" "pears"

Finally, you can create a character string from a series of strings or numeric values using the paste function. You can provide as many strings and objects as you wish to the paste function and they will all be converted to character data and pasted together. Like with many R functions, you can pass vectors to the paste function. Here’s an example:

Click here to view code image

> paste(5, "apples")
[1] "5 apples"
> nfruits <- c(5, 9, 2)
> paste(nfruits, fruits)
[1] "5 apples" "9 oranges" "2 pears"

You can use the argument sep to change the separator between the pasted strings, which as you can see in the preceding example is a space by default, like so:

Click here to view code image

> paste(fruits, nfruits, sep = " = ")
[1] "apples = 5" "oranges = 9" "pears = 2"

Searching and Replacing

Two of the most useful functions for working with character data are the functions grep and gsub. These functions allow you to search elements of a vector for a particular pattern (grep) and replace a particular pattern with a given string (gsub). You search for patterns using regular expressions (that is, a pattern that describes the character string).

Tip: Regular Expressions

Much more information on regular expressions can be found in the R help pages for the function regex. If you are familiar with Perl expressions, you can use these along with the argument perl = TRUE.

Let’s start by looking at the function grep. The first argument that we are going to give is the pattern to search for, which can be as simple as the string "red". The second argument will be the vector to search.

Click here to view code image

> colourStrings <- c("green", "blue", "orange", "red", "yellow",
+ "lightblue", "navyblue", "indianred")
> grep("red", colourStrings, value = TRUE)
[1] "red" "indianred"

In this example, we have used an additional argument, value. This allows us to return the actual values of the vector that include the pattern rather than simply the index of their position in the vector. Some more examples of using the grep function, with a variety of regular expressions, are shown in Listing 6.1.

LISTING 6.1 Searching Character Strings

Click here to view code image

 1: > colourStrings <- c("green", "blue", "orange", "red", "yellow",
 2: + "lightblue", "navyblue", "indianred")
 3: >
 4: > grep("^red", colourStrings, value = TRUE)
 5: [1] "red"
 6: > grep("red$", colourStrings, value = TRUE)
 7: [1] "indianred"
 8: >
 9: > grep("r+", colourStrings, value = TRUE)
10: [1] "green" "orange" "red" "indianred"
11: >
12: > grep("e{2}", colourStrings, value = TRUE)
13: [1] "green"

In lines 4 and 6 you can see how the symbols ^ and $ have been used to mark the start and end of the string. In the example in line 4, we are specifying that immediately following the start of the string is the pattern "red", whereas in line 6 the string ends straight after the pattern "red". The examples in lines 9 and 12 show how to specify that something must appear a given number of times. In line 9, the + indicates that the letter r should appear at least once in the string. In line 12, the {2} following the e indicates that there should be two occurrences of the letter.

The gsub function, which allows you to substitute a pattern for a value, is very similar, because you also use regular expressions to search for the pattern. The only additional information you need to give is what to substitute in its place. Here is an example:

Click here to view code image

> gsub("red", "brown", colourStrings)
[1] "green" "blue" "orange" "brown" "yellow"
[6] "lightblue" "navyblue" "indianbrown"

As with grep, you can use any regular expression to match the pattern you wish to replace.

Summary

In this hour, you saw a number of useful functions when working with a variety of data types. You saw some of the standard mathematical and statistical functions, as well as simulation functions. You also saw how to manipulate character strings, logical values, and missing data. We will use many of these functions throughout the rest of this book, though this is by no means an exhaustive list of useful functions you will find in R. In the next hour, we will start to look at how to write our own functions for common actions we want to perform.

Q&A

Q. I want to simulate data from a distribution that is not listed here. What do I do?

A. First of all, try searching the help documentation using the name of the distribution. We have not given an exhaustive list of all available distributions in this hour, so there is a good chance we just haven’t listed it. If you don’t immediately find it in the base R help documentation, it may be that there is a package that includes the distribution functions you need; for example, the Pareto distribution can be found in the package evir, among others.

Q. I am trying to use regular expressions to find a particular value to replace, but I simply get back the original vector. Why isn’t it replacing my pattern?

A. If you find that while using gsub you are returned the original vector, it is most likely because your pattern or regular expression is not specific enough to find the pattern. Try being even more specific by thinking about what will be at the start of the string, whether there may be spaces, and how many occurrences of a pattern there may be.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. Take a look at the following three function calls. Would they all give the same result?

A. matrix(1:9, 3, 3)

B. matrix(nrow = 3, ncol = 3, data = 1:9)

C. matrix(data = 1:9, nrow = 3, ncol = 3)

2. What function would you need to call to find the 95% quantile of the standard Exponential distribution?

3. How is logical data stored in R?

4. What function would you use to test whether your data is missing?

5. What is the purpose of the function paste?

Answers

1. Yes, all three would produce the same matrix. When you name the arguments, it doesn’t matter what order you provide them in, and as long as you give the arguments in the correct order there is no need to name them. Typically, you will see a combination of naming and ordering of arguments.

2. For the quantiles, you use the q* functions along with the distribution code, which in this case would be exp, so you would call

> qexp(0.95)

3. Although you see TRUE and FALSE in vectors of logical data, they are actually stored as 1 and 0. This is what allows you to take the sum to find the number of TRUE cases.

4. You test for missing values using the function is.na.

5. The paste function allows you to combine character strings and vectors of values. This is particularly useful if you wanted to, for example, create character strings for a plot title from a fixed string and a value in the data.

Activities

1. Using the Normal distribution, simulate 50 values with the same mean and standard deviation as the Ozone variable in the airquality data.

2. What is the range of values in your simulated data?

3. How many values in your simulated data are larger than the mean of your data?

4. A function in R called colors returns a vector of all colors known by name. Using the grep function, create a vector that contains only colors that contain the string "blue".

5. How many colors do you have in your vector of blues?

6. Replace the pattern "blue" with "green" throughout your vector.

Hour 7. Writing Functions: Part I

What You’ll Learn in This Hour:

[image: Image] How to write and use a simple R function

[image: Image] How to return objects from a function

[image: Image] How to control flow through a function

So far in this book you have seen many functions being used. For example, in the earlier hour on single-mode data structures you saw that you could create vectors using functions such as c, seq, and rep. One of the strengths of R is that you can extend it by writing your own functions. This allows you to create utilities that can perform a variety of tasks. In this hour, we look at ways to create our own functions, specify inputs, and return results to the user. We also introduce the “if/else” structure in R, and we use this to control the flow of code within a function.

The Motivation for Functions

You have seen that functions in R allow you to perform a number of tasks in a simple command. This approach has parallels in most programmable languages, such as “macros” in Visual Basic and SAS.

Creating your own functions is a powerful aspect of R that allows you to “wrap up” a series of steps into a simple container. This way, you can capture common workflows and utilities and call them when needed instead of producing long, verbose scripts of repeated code snippets that can be difficult to manage.

A Closer Look at an R Function

Before we write our own functions, let’s take a closer look at the structure of an existing R function. Consider, for example, the upper.tri function, which allows us to identify values in the upper triangle of a matrix:

Click here to view code image

> myMat # A sample matrix
 [,1] [,2] [,3]
[1,] 1 6 3
[2,] 1 3 8
[3,] 5 4 1
> upper.tri(myMat) # Upper triangle
 [,1] [,2] [,3]
[1,] FALSE TRUE TRUE
[2,] FALSE FALSE TRUE
[3,] FALSE FALSE FALSE
> myMat [upper.tri(myMat)] # Values from upper triangle
[1] 6 3 8

As seen here, we can call the upper.tri function using round brackets, specifying the matrix as the first input. However, if we simply print the upper.tri function, we can see its contents:

Click here to view code image

> upper.tri # Print the upper.tri function
function (x, diag = FALSE)
{
 x <- as.matrix(x)
 if (diag) row(x) <= col(x)
 else row(x) < col(x)
}

The function is split into two parts:

[image: Image] The top part defines the inputs to the function (in this case, the inputs are x and diag).

[image: Image] The next part, captured within curly brackets, contains the main “body” of the function.

In a similar way, we can create our own functions by specifying a function name, defining the function inputs, and specifying the actions we wish to take in the function body.

Creating a Simple Function

We can create a simple function in R using the function keyword. The curly brackets are used to contain the body of the function. In this simple example, we create a function that accepts a single input:

> addOne <- function(x) {
+ x + 1
+ }

Our new addOne function adds 1 to any input object. Once we’ve created a function, we can call that function in the usual way:

Click here to view code image

> addOne(x = 1:5) # Call the addOne function
[1] 2 3 4 5 6

Tip: Saving Outputs

Here, we see the values 2 to 6 returned from a function. If we want to save the output from a function for later use, we need to assign the output from the function to an object, as shown here:

> result <- addOne(1:5)
> result
[1] 2 3 4 5 6

The function created is itself an R object. As such, it exists in the R Workspace, and can be managed and reused in future sessions if you save your Workspace objects, as discussed in Hour 2, “The R Environment.”

The body of our simple addOne function contains only one line of code. If the function body contains only a single line of code, we can omit the curly brackets, as follows:

Click here to view code image

> addOne <- function(x) x + 1
> addOne(x = 1:5) # Call the addOne function
[1] 2 3 4 5 6

Note: Named Arguments

As you saw in Hour 6, “Common R Utility Functions,” there are many ways to call functions and define arguments. In the preceding example, addOne(x = 1:5) is equivalent to addOne(1:5). In this hour, we will name all arguments when calling the functions to aid clarity, but common convention in R is that the first argument (or arguments) is not directly named.

Caution: Continual Prompts

In many of our examples, we see the familiar command prompt for the first line of the function, with plus (+) symbols prefixing the following lines. These signify the “continuation” prompt in R, and are not part of the code itself (in other words, you should not type these symbols when creating your functions).

Tip: Using the Script Window

As mentioned earlier, functions typically contain more than one line of code. As such, the script window (in RStudio or other interface) is preferred to the console window when developing functions.

Naming a Function

A function is an R object, so it can be named like any other R object. Hence, its name

[image: Image] Can be of any length

[image: Image] Can contain any combinations of letters, numbers, underscores, and period characters

[image: Image] Cannot start with a number

One thing to note, however, is that creating a function can cause existing functions to be “masked.” Consider the following example:

Click here to view code image

> X <- 1:5 # Create a vector
> median(X) # The median of the vector is 3
[1] 3
> find("median") # Where is the "median" function?
[1] "package:stats"

> median <- function(input) "Hello" # Create a new "median" function
> median(X) # The median of the vector is "Hello"
[1] "Hello"
> find("median") # Where is the "median" function?
[1] ".GlobalEnv" "package:stats"

> rm(median) # Remove the new "median" function from the
 workspace
> median(X) # The median of the vector is 3
[1] 3

Here we have created a new median function in the R Workspace, thus “masking” the original median function, which still exists in the stats package. As such, care should be taken when naming functions to ensure you don’t “mask” existing key functions.

Defining Function Arguments

In the previous section, we created a very simple function called addOne, defined as follows:

> addOne <- function(x) {
+ x + 1
+ }

Note that this function takes a single argument, x. If we wanted to extend this example, we could add a second argument:

Click here to view code image

> addNumber <- function(x, number) {
+ x + number
+ }
> addNumber(x = 1:5, number = 2)
[1] 3 4 5 6 7

Our new function (addNumber) now accepts two arguments (x and number) and adds these values together. Note, however, that these are both required arguments because they do not have default values. As such, calling the function without both arguments defined will result in an error:

Click here to view code image

> addNumber() # Calling with no arguments
Error in addNumber() : argument "x" is missing, with no default

> addNumber(x = 1:5) # Calling with only the "x" argument
Error in addNumber(x = 1:5) : argument "number" is missing, with no default

> addNumber(number = 2) # Calling with only the "number" argument
Error in addNumber(number = 2) : argument "x" is missing, with no default

> addNumber(x = 1:5, number = 2) # Calling with both arguments
[1] 3 4 5 6 7

If we want to assign default values for arguments to a function, we can specify them directly in the argument definition, as follows:

Click here to view code image

> addNumber <- function(x, number = 0) {
+ x + number
+ }
> addNumber(x = 1:5) # Call function with default (number = 0)
[1] 1 2 3 4 5
> addNumber(x = 1:5, number = 1) # Call function with number = 1
[1] 2 3 4 5 6

Function Scoping Rules

When we define a function, we can create objects within the function body. This may help to simplify functions or make them generally more readable. For example, we may create an object to be returned:

Click here to view code image

> addNumber <- function(x, number = 0) {
+ theAnswer <- x + number # Create "theAnswer" by adding "x" and "number"
+ theAnswer # Return the value
+ }

If we call the function, note that the theAnswer object is not accessible once the function has been executed:

Click here to view code image

> output <- addNumber(x = 1:5, number = 1) # Call the function creating
 "output" object
> output # Look at value of "output"
[1] 2 3 4 5 6

> theAnswer # "theAnswer" object does not exist
Error: object 'theAnswer' not found

When we run a function, R loads argument inputs and objectives created into a separate, temporary area of memory (a memory “frame”). Once the execution of the function is complete, the output is returned and the temporary area of memory closed. As such, objects created within a function call should be considered “local” to that function, so any required outputs must be explicitly returned from the function.

Return Objects

In the preceding example, you saw an object created within the function body. Let’s extend that example to include the creation of more “local” objects. In this example, we create a function called plusAndMinus, which creates two “local” objects (called PLUS and MINUS) and attempts to return both of them:

Click here to view code image

> plusAndMinus <- function(x, y) {
+ PLUS <- x + y # Define "PLUS"
+ MINUS <- x - y # Define "MINUS"
+ PLUS # Return "PLUS"
+ MINUS # Return "MINUS"
+ }
> plusAndMinus(x = 1:5, y = 1:5) # Call function
[1] 0 0 0 0 0

As you can see, only the last object (the MINUS object) is returned from the function—the PLUS object value is not returned and, as discussed earlier, is only a local object, so the value cannot be retrieved.

R functions can only return a single object, which is the result of the last line of code in the function. This can be confirmed by swapping the order of the PLUS and MINUS return objects:

Click here to view code image

> plusAndMinus <- function(x, y) {
+ PLUS <- x + y # Define "PLUS"
+ MINUS <- x - y # Define "MINUS"
+ MINUS # Return "MINUS"
+ PLUS # Return "PLUS"
+ }
> plusAndMinus(x = 1:5, y = 1:5) # Call function
[1] 2 4 6 8 10

If we want to return more than one value from a function (for example, the PLUS and MINUS objects), we need to combine them into a single object. First, let’s return the two values in a list:

Click here to view code image

> plusAndMinus <- function(x, y) {
+ PLUS <- x + y # Define "PLUS"
+ MINUS <- x - y # Define "MINUS"
+ list(PLUS, MINUS) # Return "PLUS" and "MINUS" in a list
+ }
> plusAndMinus(x = 1:5, y = 1:5) # Call function
[[1]]
[1] 2 4 6 8 10

[[2]]
[1] 0 0 0 0 0

This returns a single object, a list, containing the two values. When we return a list in this way, we should name the elements so we can more easily reference the values later:

Click here to view code image

> plusAndMinus <- function(x, y) {
+ PLUS <- x + y # Define "PLUS"
+ MINUS <- x - y # Define "MINUS"
+ list(plus = PLUS, minus = MINUS) # Return "PLUS" and "MINUS" in a list
+ }
> output <- plusAndMinus(x = 1:5, y = 1:5) # Call function, saving the output
> output # Print the output
$plus
[1] 2 4 6 8 10

$minus
[1] 0 0 0 0 0

> output$plus # Print the "plus" element
[1] 2 4 6 8 10

The list object is an appropriate structure in this example, because we are returning multiple vectors. However, we may be returning a number of single values from a function, in which case a vector may be more suitable. Consider the following example, where we return some summary statistics as a vector:

Click here to view code image

> summaryFun <- function(vec, digits = 3) {
+
+ # Create some summary statistics
+ theMean <- mean(vec)
+ theMedian <- median(vec)
+ theMin <- min(vec)
+ theMax <- max(vec)
+
+ # Combine them into a single vector and round the values
+ output <- c(Mean = theMean, Median = theMedian, Min = theMin, Max = theMax)
+ round(output, digits = digits)
+ }
>
> X <- rnorm(50) # Generate 50 samples from a normal distribution
> summaryFun(X) # Produce summaries of the vector
 Mean Median Min Max
-0.214 -0.051 -2.633 1.764

Note: Checking Function Inputs

For the preceding functions, we frequently make assumptions about the structure of the inputs. For example, in the summaryFun function we assume the vec input is a numeric object (otherwise functions such as mean make no sense). Later, in Hour 8, “Writing Functions: Part II,” we will cover ways of checking function inputs. This includes functions for checking the structure of inputs and for producing error or warning messages when those inputs are not appropriate for the function.

The If/Else Structure

In the function examples you’ve seen so far in this hour, the “flow” through the body of the function has been completely linear and sequential. However, we may alternatively wish to control the flow based on decisions using an “if/else” statement.

Note: What Do We Mean by “If/Else”?

If you are not familiar with programming, the if/else statement is a common structure, where code is executed, or not, based on certain decisions. Consider this pseudo-code example:

Click here to view code image

IF I have enough money, I will buy a can of soda and a candy bar
ELSE I will just buy the can of soda

Often, we will only need an “IF” statement. Note that because either option in this example involves buying a can of soda, we can rewrite without the “ELSE” statement:

Click here to view code image

Buy the can of soda
IF I have enough money, I will also buy a candy bar

We can also have nested statements, such as this:

Click here to view code image

IF I have enough money, I will buy a can of soda and a candy bar
ELSE {
 IF they have my favorite type of candy bar I will just buy that
 ELSE I will just buy the can of soda
}

We can use a similar structure within our code to control the flow of the function based on specific choices.

The basic structure of an if/else statement in R is as follows:

if (something is TRUE) {
 do this
}
else {
 do this instead
}

As with functions, we use curly brackets to contain a body of code. However, if these are simple one-line statements, we may omit the curly brackets, as follows:

Click here to view code image

if (something is TRUE) do this
else do this instead

The “test” that is performed within the if statement (marked as “something is TRUE” here) is called the “condition,” and should take the form of a single TRUE or FALSE value.

A Simple R Example

Let’s look at a simple example of this in action. Here, we use the cat function, which prints text to the screen based on whether the number passed to it is positive or negative:

Click here to view code image

> posOrNeg <- function(X) {
+ if (X > 0) {
+ cat("X is Positive")
+ }
+ else {
+ cat("X is Negative")
+ }
+ }
> posOrNeg(1) # is 1 positive or negative?
X is Positive
> posOrNeg(-1) # is -1 positive or negative?
X is Negative
> posOrNeg(0) # is 0 positive or negative?
X is Negative

Note: If/Else in a Script

Note that the above example of if/else is contained within a function. If, instead, the if/else code was run interactively or as part of a script, it would interpret the if part of the statement as a single command and would fail when the else statement is encountered:

Click here to view code image

> X <- 1
> if (X > 0) {
+ cat("X is Positive")
+ }
X is Positive
> else {
Error: unexpected 'else' in "else"
> cat("X is Negative")
X is Negative
> }
Error: unexpected '}' in "}"

To guard against this issue, we can rewrite the command positioning the else statement immediately following the closing curly bracket of the if component as follows:

Click here to view code image

> X <- 1
> if (X > 0) {
+ cat("X is Positive")
+ } else { # NOTE: "else" on same line as closing } of "if"
+ cat("X is Negative")
+ }
X is Positive

Nested Statements

In this example, positive and negative integers are handled and the function will return the correct message. However, when we pass the function a 0, this would be reported as a negative, which isn’t true (in the most popular definition 0 is neither positive nor negative).

We can improve our example by using a nested if/else statement:

Click here to view code image

> posOrNeg <- function(X) {
+ if (X > 0) {
+ cat("X is Positive")
+ }
+ else {
+ if (X == 0) cat("X is Zero")
+ else cat("X is Negative")
+ }
+ }
> posOrNeg(1) # is 1 positive or negative?
X is Positive
> posOrNeg(0) # is 0 positive or negative?
X is Zero

Using One Condition

Consider the following example:

Click here to view code image

> posOrNeg <- function(X) {
+ if (X > 0) {
+ cat("X is Positive")
+ }
+ else {
+ cat("")
+ }
+ }
> posOrNeg(1) # is 1 positive or negative?
X is Positive
> posOrNeg(0) # is 0 positive or negative?

In this example, the “else” part of the statement does nothing, so we can drop it and simplify as follows:

Click here to view code image

> posOrNeg <- function(X) {
+ if (X > 0) {
+ cat("X is Positive")
+ }
+ }
> posOrNeg(1) # is 1 positive or negative?
X is Positive
> posOrNeg(0) # is 0 positive or negative?

Multiple Test Values

In the preceding example, the posOrNeg function accepts an input called X and the condition is X > 0. Running this condition outside the if/else statement shows that it returns a single logical value:

Click here to view code image

> X <- 1 # Set X to 1
> X > 0 # Is X greater than 0?
[1] TRUE

> X <- 0 # Set X to 0
> X > 0 # Is X greater than 0?
[1] FALSE

If we instead provide a vector of values to this function, we get the following warning message:

Click here to view code image

> posOrNeg <- function(X) {
+ if (X > 0) cat("X is Positive")
+ else cat("X is Negative")
+ }
> posOrNeg(-2:2) # is 1 positive or negative?
X is Negative
Warning message:
In if (X > 0) cat("X is Positive") else cat("X is Negative") :
 the condition has length > 1 and only the first element will be used

In this case, when running the condition outside the if/else statement, we can see that the result is a vector of logicals:

Click here to view code image

> X <- -2:2 # Set X to -2:2
> X > 0 # Is X greater than 0?
[1] FALSE FALSE FALSE TRUE TRUE

The if/else structure is looking for a single “choice” (that is, should it run the first “if” section of code or the second “else” section of code?). In this example, the condition has returned five “answers” (FALSE FALSE FALSE TRUE TRUE).

R handles this mismatch by only using the first “answer” (as per the warning message). This is FALSE, hence the result (“X is Negative”).

Summarizing to a Single Logical

In the last example, you saw that the condition should be a single TRUE or FALSE value. You also saw that warnings and unexpected behaviors can occur if multiple logical values are generated from the condition.

One way of handling this is to use the all and any functions to collapse a vector of logicals into a single TRUE or FALSE value:

Click here to view code image

> X <- -2:2 # Set X to -2:2
> X > 0 # Is X greater than 0?
[1] FALSE FALSE FALSE TRUE TRUE
> all(X > 0) # Are all values of X greater than 0?
[1] FALSE
> any(X > 0) # Are any values of X greater than 0?
[1] TRUE

We can use these functions directly in the condition as follows:

Click here to view code image

> posOrNeg <- function(X) {
+ if (all(X > 0)) cat("All values of X are > 0")
+ else {
+ if (any(X > 0)) cat("At least 1 value of X is > 0")
+ else cat("No values are > 0")
+ }
+ }
> posOrNeg(-2:2)
At least 1 value of X is > 0
> posOrNeg(1:5)
All values of X are > 0
> posOrNeg(-(1:5))
No values are > 0

Switching with Logical Input

Sometimes we may want the person calling the function to choose the flow of the function. In this case, we can provide a logical argument that the function passes directly to the condition in the if/else statement:

Click here to view code image

> logVector <- function(vec, logIt = FALSE) {
+ if (logIt == TRUE) vec <- log(vec)
+ else vec <- vec
+ vec
+ }
> logVector(1:5)
[1] 1 2 3 4 5
> logVector(1:5, logIt = TRUE) # Call the function with logIt = TRUE
[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379

Again, the “else” portion of this statement changes nothing, so we can drop it:

Click here to view code image

> logVector <- function(vec, logIt = FALSE) {
+ if (logIt == TRUE) vec <- log(vec)
+ vec
+ }
> logVector(1:5)
[1] 1 2 3 4 5
> logVector(1:5, logIt = TRUE) # Call the function with logIt = TRUE
[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379

There is one more simplification we can make. Consider the possible outcomes from the condition:

[image: Image] If logIt is TRUE, then logIt == TRUE will be TRUE.

[image: Image] If logIt is FALSE, then logIt == TRUE will be FALSE.

So, regardless of the result, logIt == TRUE will always return the same value as logIt. Therefore, we can simplify the condition as follows:

Click here to view code image

> logVector <- function(vec, logIt = FALSE) {
+ if (logIt) vec <- log(vec)
+ vec
+ }
> logVector(1:5)
[1] 1 2 3 4 5
> logVector(1:5, logIt = TRUE) # Call the function with logIt = TRUE
[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379

Reversing Logical Values

Using all and any, we can summarize logical vectors as follows:

Click here to view code image

> X <- -2:2 # Set X to -2:2
> X > 0 # Is X greater than 0?
[1] FALSE FALSE FALSE TRUE TRUE
> all(X > 0) # Are all values of X greater than 0?
[1] FALSE
> any(X > 0) # Are any values of X greater than 0?
[1] TRUE

We can introduce the ! notation before any logical statement to convert TRUE values to FALSE values and FALSE values to TRUE values. This can be seen here:

Click here to view code image

> X <- -2:2 # Set X to -2:2
> X > 0 # Is X greater than 0?
[1] FALSE FALSE FALSE TRUE TRUE
> !(X > 0) # Reverse logical values
[1] TRUE TRUE TRUE FALSE FALSE

We can also use the ! notation before the all and any functions to reverse the meanings of the conditions as follows:

Click here to view code image

> posOrNeg <- function(X) {
+ if (all(X > 0)) cat("\nAll values of X are greater than 0")
+ if (!all(X > 0)) cat("\nNot all values of X are greater than 0")
+ if (any(X > 0)) cat("\nAt least 1 value of X is greater than 0")
+ if (!any(X > 0)) cat("\nNo values of X are greater than 0")
+ }
> posOrNeg(1:5) # All > 0

All values of X are greater than 0
At least 1 value of X is greater than 0
> posOrNeg(-2:2) # Some > 0, Some <= 0

Not all values of X are greater than 0
At least 1 value of X is greater than 0
> posOrNeg(-(1:5)) # All <= 0

Not all values of X are greater than 0
No values of X are greater than 0

Note: New Line Characters

Note the use of the \n character in the call to cat in the preceding example. The \n character specifies that a new line is written, which is why each statement printed is on a separate line. This can be further seen in this example:

> cat("Hello\nthere")
Hello
there

Mixing Conditions

In all our examples so far, there has been a single condition. If we have more than one condition, we can use the & or | notation to combine conditions. Here is a rather contrived example to show the use of these operators:

Click here to view code image

> betweenValues <- function(X, Min = 1, Max = 10) {
+ if (X >= Min & X <= Max) cat(paste("X is between", Min, "and", Max))
+ if (X < Min | X > Max) cat(paste("X is NOT between", Min, "and", Max))
+ }
> betweenValues(5)
X is between 1 and 10
> betweenValues(5, Min = -2, Max = 2)
X is NOT between -2 and 2

We may also mix conditions that come from different sources. Consider the following example that mixes a condition passed from the user with one derived within the function:

Click here to view code image

> logVector <- function(vec, logIt = FALSE) {
+ if (all(vec > 0) & logIt) vec <- log(vec)
+ vec
+ }
> logVector(1:5, logIt = TRUE) # Logs the data
[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379
> logVector(-5:5, logIt = TRUE) # Doesn't log the data because first condition not met
 [1] -5 -4 -3 -2 -1 0 1 2 3 4 5

Control And/Or Statements

When multiple conditions are combined with & and/or | conditions, each condition is evaluated separately, and the each result is compared. To illustrate this, consider the following example:

Click here to view code image

> logVector <- function(vec) {
+ if (all(vec > 0) & all(log(vec) <= 2)) cat("Numbers in range")
+ else cat("Numbers not in range")
+ }
> logVector(1:10) # Some logged values are greater than 2
Numbers not in range
> logVector(1:5) # All values are in range
Numbers in range

Let’s consider the way in which the condition from the last call is evaluated:

[image: Image] The all(vec > 0) statement is evaluated, resulting in a TRUE value.

[image: Image] The all(log(vec) <= 2) statement is evaluated, also resulting in a TRUE value.

[image: Image] The results of the two statements are compared: TRUE & TRUE = TRUE.

Now consider the following example:

> logVector(-2:2)
Numbers not in range
Warning message:
In log(vec) : NaNs produced

In this example, we see a return value (“Numbers not in range”) and also a warning message. This message occurs because both conditions are evaluated and compared. The first condition returns a FALSE value, but the second condition generates a warning message because the function is attempting to calculate logs of negative numbers (which is not mathematically possible).

To remedy these issues, we can use the “control” versions of the & and | operators. This changes the flow so that the second condition is only evaluated if the result of the first is inconclusive. To use the “control” and/or statement, we use double notation (&& or ||). Let’s update our logVector function with “control” notation:

Click here to view code image

> logVector <- function(vec) {
+ if (all(vec > 0) && all(log(vec) <= 2)) cat("Numbers in range")
+ else cat("Numbers not in range")
+ }
> logVector(-2:2)
Numbers not in range

You can see that the earlier message has been avoided because we specified a “control and” using the && notation. Now, the flow of the condition is as follows:

[image: Image] The all(vec > 0) statement is evaluated, resulting in a FALSE value.

[image: Image] Because the first condition is FALSE, the whole statement must be FALSE, so a FALSE value is returned without evaluating the second condition.

Returning Early

Earlier in this hour, in the “Return Objects” section, you saw that the last evaluated line of code within a function generates the return value. Consider this example:

Click here to view code image

> verboseFunction <- function(X) {
+ if (all(X > 0)) output <- X # if all values of X > 0, set output to X
+ else {
+ X [X <= 0] <- 0.1 # Set all values <=0 to 0.1
+ output <- log(X) # Take logs of the X input data, set as output
+ }
+ output # Return the value of output
+ }
> verboseFunction(-2:2) # Call our function
[1] -2.3025851 -2.3025851 -2.3025851 0.0000000 0.6931472

If all the values of X are greater than 0, we set the output to 0. At this point in the function (that is, the first line of the body of the function) we already know the value we want to return from the function. If we wish to return the result of the function early, we can force this to happen using the return function. This way, we can rewrite our function as follows:

Click here to view code image

> verboseFunction <- function(X) {
+ if (all(X > 0)) return(X) # Return early if all values of X are > 0
+
+ # Carry on if not returned already
+ X [X <= 0] <- 0.1 # Set all values <=0 to 0.1
+ log(X) # Return the logged X values
+ }
> verboseFunction(-2:2)
[1] -2.3025851 -2.3025851 -2.3025851 0.0000000 0.6931472

This provides a clear, readable behavior where results are returned earlier in the function when certain conditions are met.

A Worked Example

So far in this hour, all our examples have been very simple (and, often, rather useless). This has been done to ensure we focus on the basic syntax of R functions, but at this point it is worth exploring a more complete and useful worked example to see the various components discussed in this hour in action.

The following function summarizes a numeric object, calculating a variety of statistics:

Click here to view code image

> summaryFun <- function(vec, digits = 3) {
+ N <- length(vec) # Calculate the number of values in "vec"
+ if (N == 0) return(NULL) # Return NULL if "vec" is empty
+
+ testMissing <- is.na(vec) # Look for missing values
+ if (all(testMissing)) {
+ output <- c(N = N, nMissing = N, pMissing = 100)
+ return(output) # Return simple summary if all missing
 values
+ }
+
+ nMiss <- sum(testMissing) # Calculate the number of missing values
+ pMiss <- 100 * nMiss / N # Calculate the percentage of missing values
+ vec <- vec [!testMissing] # Remove missing values from the vector
+ someStats <- c(Mean = mean(vec), Median = median(vec), SD = sd(vec),
+ Min = min(vec), Max = max(vec)) # Calculate a number of statistics
+
+ output <- c(someStats, N = N, nMissing = nMiss, pMissing = pMiss)
+ round(output, digits = digits)
+ }

> summaryFun(c()) # Empty Vector
NULL
> summaryFun(rep(NA, 10)) # Vector of missing values
 N nMissing pMissing
 10 10 100
> summaryFun(1:10) # Basic numeric vector
 Mean Median SD Min Max N nMissing pMissing
 5.500 5.500 3.028 1.000 10.000 10.000 0.000 0.000
> summaryFun(airquality$Ozone) # Vector containing missings
 Mean Median SD Min Max N nMissing pMissing
 42.129 31.500 32.988 1.000 168.000 153.000 37.000 24.183

Summary

In this hour, we have covered the basic structure of an R function, and you have seen how to create simple functions of your own. In particular, you saw how to specify the function inputs, define what your functions “do” with those inputs, and how results are returned from your functions. Beyond this, we covered the if/else structure, which allows you to control the overall flow through a function.

In the next hour, we will use the skills you learned here to create more complex functions, including the use of error messaging and the checking of function inputs.

Q&A

Q. Is there a convention for naming functions in R?

A. During the history of R, a number of naming conventions have come and gone. The current convention (which I’ve followed in this hour) is to use camel-case starting with a lower case letter (e.g. myFunction). However, there are no specific rules as to how functions should be named.

Q. How do I load and share my functions?

A. Functions are R objects so, when created, they exist in the workspace of the current session. If you save that workspace and restart in the same working directory, your function (and other) objects should still exist. If you want to share with other users, or reuse your functions in other projects, we can do the following:

[image: Image] Save the function definitions as scripts, then open and re-execute them in other sessions.

[image: Image] Save your functions together in your own “package,” which can be shared and loaded into R (you’ll see how to do this in Hour 19, “Package Building”).

Q. Can I “globally assign” local objects so they can be seen later?

A. Yes, this can be achieved with the assign function. However, this practice is discouraged, and we recommend that any required results are passed back to the user in the manner discussed in this hour.

Q. What is the difference between the cat and print functions?

A. In this section, we make heavy use of the cat function to demonstrate the flow of a function when using if/else statements. The cat function simply prints the value of an object without printing the structure of that object. The print function also returns the structure of the object. This can be seen with a simple example:

> cat("Hello")
Hello
> print("Hello")
[1] "Hello"

Q. How do missing values impact “conditions”?

A. If the condition results in a single missing value, then an error is returned:

Click here to view code image

> testMissing <- function(X) {
+ if (X > 0) cat("Success")
+ }
> testMissing(NA)
Error in if (X > 0) cat("Success") :
 missing value where TRUE/FALSE needed

If you use the all function with a condition that contains any missing values, the result is missing, which will also result in an error (because you do not know if “all” the conditions are met):

Click here to view code image

> allMissings <- rep(NA, 5) # All missing values
> someMissings <- c(NA, 1:4) # Some missing values
> all(allMissings > 0)
[1] NA
> all(someMissings > 0)
[1] NA

If you use the any function with a condition that contains all missing values, the result is a missing value. If, however, you use the any function with a vector where not all values are missing, some conditions may be met:

> any(allMissings > 0)
[1] NA
> any(someMissings > 0)
[1] TRUE

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. How do you specify default inputs to a function?

2. What value will be held in the result1 object when the following code is executed?

Click here to view code image

> qaFun <- function(X) {
+ addOne <- X + 1
+ minusOne <- X - 1
+ addOne
+ minusOne
+ }
> result1 <- qaFun(1)

3. What value will be held in the result2 object when the following code is executed?

> qaFun <- function(X) {
+ addOne <- X + 1
+ minusOne <- X - 1
+ c(ADD = addOne, MINUS = minusOne)
+ }
> result2 <- qaFun(1)

4. When you specify an if/else statement, what object should the “condition” (that is, the statement within the if call) return?

5. What is the difference between all(X > 0) and !all(X > 0)?

6. What is the difference between & and && when used in a condition?

7. What function can you use to return an object early (that is, before the last line of the function)?

Answers

1. You specify default values directly in the input statement with “equals” (for example, function(x = 1)).

2. The result1 object will contain a 0, because only the last line is returned (the value of minusOne, created as X – 1 = 0).

3. The result2 object will contain a vector of length 2, containing the values 2 and 0. The elements of the vector will be named ADD and MINUS.

4. The condition should return a single logical value. If multiple logical values are returned, unexpected behaviors can occur.

5. The all function returns a TRUE value if all the values of X are greater than 0 (and non-missing). The ! prefix in !all reverses the logical values, so this would return a TRUE if “not all” values of X are greater than 0 (that is, at least one is less than or equal to 0).

6. When you use a single &, the conditions each side of the & are evaluated and the outputs compared to see whether both conditions are met. Therefore, if you have test1 & test2, both test1 and test2 are evaluated, then they are compared. If instead you use the “control” && (for example, in test1 && test2), then the first condition (test1) is evaluated, and the second condition (test2) is only evaluated if the first condition is TRUE.

7. You can use the return function to return a result earlier in the function call.

Activities

1. Create a function that accepts two inputs (X and Y) and returns the value of X + Y. Test your function by calling it with X and Y inputs.

2. Update your function so that Y has a default value. Test your function by calling it with only an X input, then try specifying a value for Y.

3. Create a function called firstLast that accepts a vector and returns the first and last values. Test your function.

4. Update your firstLast function so that, if the vector input only has a single value (that is, it is of length 1), only that single value is returned.

5. Update your firstLast function so that, if all values of the vector are less than zero, a message is printed to the user informing him or her of this fact.

6. Update your firstLast function so that, if any values of the vector are missing, the first value, last value, and the number of missing values are returned to the user.

Hour 8. Writing Functions: Part II

What You’ll Learn in This Hour:

[image: Image] How to check the appropriateness of function inputs

[image: Image] How to return errors and warnings from a function

[image: Image] How to use function “ellipsis”

In the last hour, you saw how to create a number of simple R functions. This included the definition of function inputs, the creation of the function body, and the management of results back to the user. You also saw how to control the overall “flow” through a function with the if/else structure. This hour will look at a range of advanced function writing topics, such as returning error messaging, checking whether inputs are appropriate to our functions, and the use of function “ellipsis.”

Errors and Warnings

On occasion, we may wish to return errors or warnings to the users of our functions. This allows us to inform our users of unexpected behavior and communicate the resulting impact on the execution of the functions (for example, stop processing or continue with some assumption).

First, let’s consider a simple function. Here’s an example that causes unexpected behavior:

Click here to view code image

> logRange <- function(X) {
+ logX <- log(X) # Takes logs of X
+ round(range(logX), 2) # Return (rounded) range of values
+ }
> logRange(1:5) # Only positive integers
[1] 0.00 1.61
> logRange(-2:2) # Positive and negative integers
[1] NaN NaN
Warning message:
In log(X) : NaNs produced

When we execute our logRange function with a vector of positive integers, the function executes correctly. However, when we introduce negative integers, the function produces unexpected results: two NaN values are returned, and a warning message is produced.

Note: Adding the na.rm Argument

We could, of course, fix this function by removing missing values (with is.na) or calculating the range without missing values (using the na.rm argument to range). However, we’ll instead use error and warning messages to illustrate the behavior of these features.

Error Messages

It could be that we want to return an error message when we find negative integers in the input data and halt the execution of the function. We can achieve this with the stop function, which accepts an error message to return:

Click here to view code image

> logRange <- function(X) {
+ stop("Negative Values found!") # Return an error message
+ logX <- log(X) # Takes logs of X
+ round(range(logX), 2) # Return (rounded) range of values
+ }
> logRange(1:5) # Only positive integers
Error in logRange(1:5) : Negative Values found!
> logRange(-2:2) # Positive and negative integers
Error in logRange(-2:2) : Negative Values found!

In this case, we can see that an error message is returned to the user. However, the error message is returned regardless of whether negative values are found. Let’s update our function to return an error only when a particular condition is met, using the if/else structure from the last hour:

Click here to view code image

> logRange <- function(X) {
+ if (any(X <= 0)) stop("Negative Values found!")
+ logX <- log(X) # Takes logs of X
+ round(range(logX), 2) # Return (rounded) range of values
+ }
> logRange(1:5) # Only positive integers
[1] 0.00 1.61
> logRange(-2:2) # Positive and negative integers
Error in logRange(-2:2) : Negative Values found!

Now the error message is only returned if there are any values of X less than or equal to 0, and we’ve provided a (slightly) more informative error message to the user. Note that the function stops executing at this point and no value is returned. This can be further illustrated by introducing an artificial message using cat:

Click here to view code image

> logRange <- function(X) {
+ if (any(X <= 0)) stop("Negative Values found!")
+ cat("Made it this far!!\n")
+ logX <- log(X) # Takes logs of X
+ round(range(logX), 2) # Return (rounded) range of values
+ }
> logRange(1:5) # Only positive integers
Made it this far!!
[1] 0.00 1.61
> logRange(-2:2) # Positive and negative integers
Error in logRange(-2:2) : Negative Values found!

Warning Messages

In the last example, we halted the flow of the function under a specific condition (that is, if any negative values exist). We sometimes want to warn the user that something has happened, inform them of how we’re going to continue, and then execute the rest of the function. For example, we may want to check for any negative values, and if there are any, we want to do the following:

[image: Image] Remove the negative values.

[image: Image] Inform the user that we’re continuing without these values.

We can achieve this using the warning function, which, as with the stop function, accepts a message to display to the user:

Click here to view code image

> logRange <- function(X) {
+ if (any(X <= 0)) {
+ warning("Some values were <= 0. We will remove them")
+ X <- X [X > 0]
+ }
+ logX <- log(X) # Takes logs of X
+ round(range(logX), 2) # Return (rounded) range of values
+ }
> logRange(1:5) # Only positive integers
[1] 0.00 1.61
> logRange(-2:2) # Positive and negative integers
[1] 0.00 0.69
Warning message:
In logRange(-2:2) : Some values were <= 0. We will remove them

Note that, in both instances, the function continues and a result is provided. However, when negative integers are found, the user is warned.

We could extend this further to inform the user of the number of values we have removed:

Click here to view code image

> logRange <- function(X) {
+ lessTest <- X <= 0 # Test for values <= 0
+ if (any(lessTest)) {
+ nLess <- sum(lessTest) # How many values
+ outMessage <- paste(nLess, "values were <= 0. We will remove them")
+ warning(outMessage)
+ X <- X [X > 0]
+ }
+ logX <- log(X) # Takes logs of X
+ round(range(logX), 2) # Return (rounded) range of values
+ }
> logRange(1:5) # Only positive integers
[1] 0.00 1.61
> logRange(-2:2) # Positive and negative integers
[1] 0.00 0.69
Warning message:
In logRange(-2:2) : 3 values were <= 0. We will remove them

Of course, if we removed all of the negatives there may not be any left, so perhaps we should mix both the “error” and “warn” approaches:

Click here to view code image

> logRange <- function(X) {
+ lessTest <- X <= 0 # Test for values <= 0
+ if (all(lessTest)) stop("All values are <= 0") # Stop if all <= 0
+ if (any(lessTest)) {
+ nLess <- sum(lessTest) # How many values
+ outMessage <- paste(nLess, "values were <= 0. We will remove them")
+ warning(outMessage)
+ X <- X [X > 0]
+ }
+ logX <- log(X) # Takes logs of X
+ round(range(logX), 2) # Return (rounded) range of values
+ }
> logRange(1:5) # Only positive integers
[1] 0.00 1.61
> logRange(-2:2) # Positive and negative integers
[1] 0.00 0.69
Warning message:
In logRange(-2:2) : 3 values were <= 0. We will remove them
> logRange(-(1:5)) # All negative integers
Error in logRange(-(1:5)) : All values are <= 0

Caution: Missing Values

We should also consider missing values in the preceding example, but we will leave it at this now.

Checking Inputs

In the last example, we checked whether the values of X were less than or equal to 0, and informed the user of the impact (with either an error or warning message). However, in this case, we are assuming the input to the function is a numeric object. Consider, instead, if we pass a character vector to the logRange function:

Click here to view code image

> logRange <- function(X) {
+ if (any(X <= 0)) stop("Negative Values found!")
+ logX <- log(X) # Takes logs of X
+ round(range(logX), 2) # Return (rounded) range of values
+ }
> logRange(LETTERS) # A Character vector
Error in log(X) : non-numeric argument to mathematical function

Because we often write functions to expect a particular type of data structure, we commonly want to check whether these assumptions hold at the start of the function. To achieve this, R contains a large suite of functions that start with “is.”:

Click here to view code image

> apropos("^is\\.") # Show all objects starting with "is."
 [1] "is.array" "is.atomic" "is.call"
 [4] "is.character" "is.complex" "is.data.frame"
 [7] "is.double" "is.element" "is.empty.model"
[10] "is.environment" "is.expression" "is.factor"
[13] "is.finite" "is.function" "is.infinite"
[16] "is.integer" "is.language" "is.leaf"
[19] "is.list" "is.loaded" "is.logical"
[22] "is.matrix" "is.mts" "is.na"
...

The “is.” functions take an object and return a TRUE or FALSE value, depending on whether the object matches the mode or class we’re testing for. Let’s look at some examples:

Click here to view code image

> letters # The letters vector
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o"
[16] "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"
> mode(letters) # It's a character vector
[1] "character"

> is.vector(letters) # Is it a vector?
[1] TRUE
> is.character(letters) # Is it a character?
[1] TRUE
> is.matrix(letters) # Is it a matrix?
[1] FALSE
> is.numeric(letters) # Is it numeric?
[1] FALSE

We can introduce these functions to check the mode and class of our inputs before continuing:

Click here to view code image

> logRange <- function(X) {
+ if (!is.numeric(X) | !is.vector(X)) stop("Need a numeric vector!")
+ if (any(X <= 0)) stop("Negative Values found!")
+ logX <- log(X) # Takes logs of X
+ round(range(logX), 2) # Return (rounded) range of values
+ }
> logRange(1:10) # A Numeric vector
[1] 0.0 2.3
> logRange(LETTERS) # A Character vector
Error in logRange(LETTERS) : Need a numeric vector!
> logRange(airquality) # A Data Frame
Error in logRange(airquality) : Need a numeric vector!

Note: Converting Objects

In addition to the suite of “is.” functions to check our object’s mode and class, there is an equivalent suite of “as.” functions, which will (attempt to) convert an object from one mode/class to another. Here is an example:

Click here to view code image

> charNums <- c("1.65", "2.03", "9.88", "3.51") # Create character vector
> charNums
[1] "1.65" "2.03" "9.88" "3.51"
> is.numeric(charNums) # Is it numeric?
[1] FALSE
> convertNums <- as.numeric(charNums) # Convert to numeric
> is.numeric(convertNums) # Is it numeric now?
[1] TRUE
> is.matrix(convertNums) # Is it a matrix?
[1] FALSE
> matNums <- as.matrix(convertNums) # Convert to matrix
> is.matrix(matNums) # Is it a matrix now?
[1] TRUE
> matNums # Print the matrix
 [,1]
[1,] 1.65
[2,] 2.03
[3,] 9.88
[4,] 3.51

The Ellipsis

As discussed in Hour 6, “Common R Utility Functions,” we can use the args function to check the inputs to a function. Let’s consider two examples: the runif function (which creates samples from a Uniform distribution) and the paste function (which concatenates strings). First, let’s use the runif function:

Click here to view code image

> args(runif) # Arguments of runif
function (n, min = 0, max = 1)
NULL
> runif(n = 10, min = 1, max = 100) # Call runif
 [1] 84.95420 51.39096 66.54084 91.43757 88.51552 66.70264 45.44668
 [8] 19.76205 82.41349 36.74277

As you can see, we’ve specified the n, min, and max inputs to generate some random numbers. Now let’s consider an example using the paste function:

Click here to view code image

> fruits <- c("apples", "bananas", "pears", "peaches")
> paste("I like", fruits[1])
[1] "I like apples"
> paste("I like", fruits[1], "and", fruits[2])
[1] "I like apples and bananas"
> paste("I like", fruits[1], "and", fruits[2], "and", fruits[3])
[1] "I like apples and bananas and pears"
> paste("I like", fruits[1], "and", fruits[2], "and", fruits[3], "and", fruits[4])
[1] "I like apples and bananas and pears and peaches"

You can see that the paste function accepts any number of inputs that are simply “pasted” together. Given that we can pass “any number of inputs,” what do the arguments of paste look like? Let’s find out:

Click here to view code image

> args(paste)
function (..., sep = " ", collapse = NULL)
NULL

The first argument for paste is “...”, which is referred to as an “ellipsis.” The ellipsis here refers to “one or more inputs,” and the help file describes what the function will do with these inputs. In the case of the paste function, the inputs are described as follows:

Click here to view code image

... one or more R objects, to be converted to character vectors.
sep a character string to separate the terms. Not NA_character_.
collapse an optional character string to separate the results. Not NA_character_.

Therefore, we can pass “one or more R objects” as the ellipsis.

Using the Ellipsis

We can use the ellipsis in our function definitions by specifying them in the arguments and then specifying where in the function body the inputs should be passed. Consider the following example, which allows the user to generate random samples from one of three different distributions:

Click here to view code image

> genRandoms <- function(N, dist, mean = 0, sd = 1, lambda, min, max) {
+ switch(dist,
+ "norm" = rnorm(N, mean = mean, sd = sd),
+ "pois" = rpois(N, lambda = lambda),
+ "unif" = runif(N, min = min, max = max))
+ }
> genRandoms(10, "norm", mean = 5)
 [1] 4.071533 5.212119 5.610405 6.527552 4.519315 4.333632 4.518676
 [8] 5.242985 3.050987 5.969838
> genRandoms(10, "unif", min = 1, max = 10)
 [1] 2.830932 8.213797 5.294915 1.089826 4.190719 9.482410 2.877680
 [8] 1.398005 9.294324 9.313718

Here, we define many arguments that are parameters to the distribution functions (mean, sd, lambda, min, and max) and then pass them directly into function calls with syntax such as mean = mean, sd = sd.

Instead of defining the inputs in this way, we could use the ellipsis, as follows:

Click here to view code image

> genRandoms <- function(N, dist, ...) {
+ switch(dist,
+ "norm" = rnorm(N, ...),
+ "pois" = rpois(N, ...),
+ "unif" = runif(N, ...))
+ }
> genRandoms(10, "norm", mean = 5)
 [1] 4.812319 4.330495 5.369091 4.205875 5.072567 4.029603 5.116522
 [8] 4.163062 6.231766 5.481158
> genRandoms(10, "unif", min = 1, max = 10)
 [1] 2.141485 5.552706 5.114769 2.800839 9.396432 8.006636 3.249285
 [8] 7.320116 4.525931 9.238757

Tip: Switching Flow

Note the use of the switch function in the preceding example. This function allows for a number of alternative flows to be executed, depending on the outcome of an initial expression. See the help file (?switch) for more details.

Passing Graphical Parameters Using the Ellipsis

We see many examples of the ellipsis with graphic functions. Consider the hist function, which (as you’ll see later) produces a simple histogram. The col and main arguments to the hist function control the color of the plot and the main title, respectively. Let’s see an example of producing a histogram with 1,000 samples from a Normal distribution. The output is seen in Figure 8.1.

Click here to view code image

> hist(rnorm(1000), main = "Nice Red Histogram", col = "red")

[image: Image]

FIGURE 8.1 Histogram of samples from a normal distribution

Note: Graphics

We will cover the use of functions such as hist to create graphics in Hour 13, “Graphics,” but they are useful to illustrate the ellipsis at this point. As such, in this section, do not worry too much about the uses of graphic functions, but look at the way in which the ellipsis is used.

Now let’s see the inputs to the hist function using args:

> args(hist)
function (x, ...)
NULL

From the help file, we can see that the col and main inputs are passed via the ellipsis, and are considered “further arguments and graphical parameters passed to plot.histogram.”

If we wanted to create a function that draws a specific graphic, we could also use the ellipsis to pass graphical parameters in the same way. Consider the following example, where we define a function histFun which creates a histogram and (optionally) adds a vertical line at the median. The output from this function can be seen in Figure 8.2.

Click here to view code image

> histFun <- function(X, addLine = TRUE, col = "lightblue", main = "Histogram") {
+ hist(X, col = col, main = main)
+ if (addLine) abline(v = median(X), lwd = 2)
+ }
> histFun(rnorm(1000), main = "New Title")

[image: Image]

FIGURE 8.2 Output from histFun: a histogram of samples from a normal distribution

We could represent many graphic parameters in this way, but we would need to specify them as inputs before our users can control those aspects of the graphic. This is another case where the ellipsis can add value. In this example, we’ve updated the histFun function with the ellipsis, then passed those inputs directly to the call to hist. The output from this example can be seen in Figure 8.3.

Click here to view code image

> histFun <- function(X, addLine = TRUE, ...) {
+ hist(X, ...)
+ if (addLine) abline(v = median(X), lwd = 2)
+ }
> histFun(rnorm(1000), col = "plum", xlab = "X AXIS LABEL")

[image: Image]

FIGURE 8.3 Plum-colored histogram created with histFun

Caution: Shortened Argument Calling

Earlier you saw that we can shorten the name of the input when calling a function as follows:

Click here to view code image

> aFunction <- function(x, inputWithLongName) {
+ x + inputWithLongName
+ }
> aFunction(x = 1, i = 2)
[1] 3

When there is an ellipsis in the argument definition, we can only use this approach for inputs defined before the ellipsis, as shown here:

Click here to view code image

> aFunction <- function(x, inputWithLongName, ...) {
+ x + inputWithLongName
+ }
> aFunction(x = 1, i = 2)
[1] 3
> aFunction <- function(..., x, inputWithLongName) {
+ x + inputWithLongName
+ }
> aFunction(x = 1, i = 2)
Error in aFunction(x = 1, i = 2) :
 argument "inputWithLongName" is missing, with no default

Checking Multivalue Inputs

In the previous section we defined a function called genRandoms that generates random numbers based on three possible distributions. We specify the distribution using the dist argument as follows:

Click here to view code image

> genRandoms <- function(N, dist, ...) {
+ switch(dist,
+ "norm" = rnorm(N, ...),
+ "pois" = rpois(N, ...),
+ "unif" = runif(N, ...))
+ }
> genRandoms(10, "norm", mean = 5)
 [1] 4.152562 4.330108 6.580539 5.708272 5.872492 4.533635 4.295672
 [8] 5.654961 3.838976 4.474047
> genRandoms(10, "Normal", mean = 5)

Note that, for the last example, we specified the distribution as “Normal,” which isn’t an option in the switch function. As such, no tasks are performed—but this isn’t very intuitive.

We could improve the messaging to the users by specifying a last, unnamed option to the switch function:

Click here to view code image

> genRandoms <- function(N, dist, ...) {
+ switch(dist,
+ "norm" = rnorm(N, ...),
+ "pois" = rpois(N, ...),
+ "unif" = runif(N, ...),
+ stop(paste0("Distribution \"", dist, "\" not recognized")))
+ }
> genRandoms(10, "norm", mean = 5)
 [1] 3.213303 5.564620 4.029048 6.004051 4.965648 3.395951 5.754919
 [8] 5.019788 5.627128 4.528970
> genRandoms(10, "Normal", mean = 5)
Error in genRandoms(10, "Normal", mean = 5) :
 Distribution "Normal" not recognized

This produces an error message stating that the input “Normal” is not recognized. Alternatively, we could use the match.arg function, which provides a neat mechanism for checking that an input is one of a list of “valid” inputs. The simplest way to use match.arg is to place a value in a first argument to be matched against a vector of possible values as the second argument:

Click here to view code image

> match.arg("norm", choices = c("norm", "pois", "unif"))
[1] "norm"
> match.arg("NORM", choices = c("norm", "pois", "unif"))
Error in match.arg("NORM", choices = c("norm", "pois", "unif")) :
 'arg' should be one of "norm", "pois", "unif"

We could include this approach to check whether an input is valid:

Click here to view code image

> genRandoms <- function(N, dist, ...) {
+ dist <- match.arg(dist, choices = c("norm", "pois", "unif")) # Check dist
+ switch(dist,
+ "norm" = rnorm(N, ...),
+ "pois" = rpois(N, ...),
+ "unif" = runif(N, ...))
+ }
> genRandoms(10, "norm", mean = 5)
 [1] 4.503535 4.971087 3.758512 4.580493 6.297477 2.688116 5.637076
 [8] 4.921771 4.408372 4.484797
> genRandoms(10, "Normal", mean = 5)
Error in match.arg(dist, choices = c("norm", "pois", "unif")) :
 'arg' should be one of "norm", "pois", "unif"

We can alternatively use match.arg in “one-argument form,” which matches our input against choices set in the argument statement:

Click here to view code image

> genRandoms <- function(N, dist = c("norm", "pois", "unif"), ...) {
+ dist <- match.arg(dist) # Check validity if "dist" input
+ switch(dist,
+ "norm" = rnorm(N, ...),
+ "pois" = rpois(N, ...),
+ "unif" = runif(N, ...))
+ }
> genRandoms(10, "norm", mean = 5)
 [1] 6.243477 4.173172 6.449329 3.768405 5.283295 4.849446 5.190646
 [8] 4.464281 6.497654 3.584767
> genRandoms(10, "Normal", mean = 5)
Error in match.arg(dist) : 'arg' should be one of "norm", "pois", "unif"

Tip: Getting a Function

If we wanted to, we could write this function more concisely using the get function, which returns a function, given its name as a character string. Therefore, the function could be rewritten as follows:

Click here to view code image

> genRandoms <- function(N, dist = c("norm", "pois", "unif"), ...) {
+ dist <- match.arg(dist) # Check validity if "dist" input
+ randFun <- get(paste0("r", dist)) # Get the function
+ randFun(N, ...) # Run the function
+ }
> genRandoms(10, "norm", mean = 5)
 [1] 5.698743 5.463239 6.596608 4.385926 5.288524 6.200866 5.537720
 [8] 3.854999 4.781841 5.588260
> genRandoms(10, "pois", lambda = 3)
 [1] 5 3 1 1 2 2 3 2 2 1

Using Input Definition

Consider the following code, which plots two variables as a scatter plot. The output can be seen in Figure 8.4.

Click here to view code image

> Day <- 1:7
> Sales <- c(100, 120, 150, 130, 160, 210, 120)
> plot(Day, Sales, type = "o")

[image: Image]

FIGURE 8.4 Simple line plot of Sales versus Day

Note that the X axis is labeled “Day” and the Y axis is labeled “Sales.” This occurs because R is able to access the argument definitions and use them as the labels. This can be further illustrated using a modified example, the result of which can be seen in Figure 8.5.

Click here to view code image

> plot(Day - 1, log(Sales), type = "o")

[image: Image]

FIGURE 8.5 Simple line plot of log(Sales) versus “Day – 1”

As you can see, the labels reflect the modified inputs. This ability to capture not just the input values but also the definition that was used can be very useful. Consider, for example, if we create a function based on this plot, and use it to create a graph of our Sales data, shown in Figure 8.6.

Click here to view code image

> nicePlot <- function(X, Y) {
+ plot(X, Y, type = "o")
+ }
> nicePlot(Day, Sales)

[image: Image]

FIGURE 8.6 Simple line plot of Y versus X

In this example, the plot function uses the calling inputs X and Y for the axes. What if we instead want to capture the input definitions (Day and Sales) and use those for the axis labels?

To do this we use two functions together: substitute and deparse. The substitute function performs the action of capturing the definition, and the deparse function then converts this to characters:

Click here to view code image

> x <- 1 + 2 # Add 2 numbers
> substitute(x <- 1 + 2) # Capture the call
x <- 1 + 2
> deparse(substitute(x <- 1 + 2)) # Convert this to character
[1] "x <- 1 + 2"

We can use this approach to capture the inputs to our functions, then use the inputs to provide better labels to our plots. An example of this can be seen here, with the output seen in Figure 8.7.

Click here to view code image

> nicePlot <- function(X, Y) {
+ xLab <- deparse(substitute(X)) # Capture X input
+ yLab <- deparse(substitute(Y)) # Capture Y input
+ plot(X, Y, type = "o", xlab = xLab, ylab = yLab)
+ }
> nicePlot(Day, Sales)

[image: Image]

FIGURE 8.7 Simple line plot of Sales versus Day, with correct axis labels

Summary

In this hour, we looked at some more approaches that can enrich our R functions. In particular, we focused on ways in which we can check the inputs to a function, providing feedback to the function user if the inputs are not appropriate. In the next hour, we’ll look at how to perform tasks in a repetitive manner using loop structures, and how to extend into frameworks that allow us to apply functions to structures in more complex ways.

Q&A

Q. Is it possible to simplify the error messages by removing the “call”?

A. By default, the call made is included in the error message. See the inclusion of “in logFun(-2:2)” in the following error message:

Click here to view code image

> logFun <- function(X) stop("Your Error Message here!")
> logFun(-2:2)
Error in logFun(-2:2) : Your Error Message here!

You can remove the call itself from the error using the call. argument, which accepts a single logical value. (Note the period character in this argument name!) This argument can be used in both stop and warning functions.

Click here to view code image

> logFun <- function(X) stop("Your Error Message here!", call.=F)
> logFun(-2:2)
Error: Your Error Message here!

Q. What is the “environment” tag I see when I print out (some) functions?

A. Every function (with the exception of low-level “primitive” functions) has an “environment,” which is the active environment when the function was created.

Q. When is a warning message printed?

A. By default, a warning message is printed after a function completes; therefore, warnings are collated on the last line(s) of output:

Click here to view code image

> addFun <- function(x, y) {
+ warning("This is a warning!")
+ x + y
+ }
> addFun(1, 2)
[1] 3
Warning message:
In addFun(1, 2) : This is a warning!

We could, instead, issue warnings immediately using the immediate. argument to warning:

Click here to view code image

> addFun <- function(x, y) {
+ warning("This is a warning!", immediate. = T)
+ x + y
+ }
> addFun(1, 2)
Warning in addFun(1, 2) : This is a warning!
[1] 3

For more control over the behavior of warning messages, see the details for the warn option in the getOption function help file.

Q. Can the ellipsis be used in multiple places within the function body?

A. Yes, although care has to be taken to ensure the inputs in the ellipsis are applicable to all the functions we pass the ellipsis to.

Q. Can I capture the inputs contained in the ellipsis?

A. Yes, you can directly capture the input values using a line such as X <- list(...) and then process them in any manner you wish. Here’s an example:

Click here to view code image

> getDots <- function(...) {
+ list(...)
+ }
> getDots(1, 2)
[[1]]
[1] 1

[[2]]
[1] 2

> getDots(x = 1, y = 2)
$x
[1] 1

$y
[1] 2

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. What’s the difference between stop and warning?

2. How would you check whether an input to a function is a character matrix?

3. What is the difference between is.data.frame and as.data.frame?

4. How many dots make up the ellipsis?

5. What are the two ways you’ve seen for using match.arg?

6. What do the deparse and substitute functions do?

Answers

1. The stop and warning functions both issue messages to the user. The primary difference is that the stop function causes the execution of the function to halt, whereas the warning function continues to execute after a warning is reported—unless controlled explicitly with getOption("warn").

2. You can use is.character & is.matrix as a condition.

3. The is.data.frame function takes an object and returns a TRUE value if the object is a data frame. The as.data.frame function takes an object and attempts to convert to a data frame.

4. The ellipsis is represented by exactly three dots.

5. You can call match.arg with the input as the first argument and a vector of possible “choices” as the second argument. Alternatively, you can use match.arg in one-argument mode, where you pass only an input to the function with the “choices” defined in the input definition. Here’s an example:

Click here to view code image

> genRandoms <- function(N, dist = c("norm", "pois", "unif"), ...) {
+ dist <- match.arg(dist) # Check validity if "dist" input
+ dist
+ }

6. The substitute function returns the call that was made to create an input. The deparse function converts the output from substitute to character format. By using them together, you can access the call made to define an argument in a suitable (character) format:

> theCall <- function(x) {
+ deparse(substitute(x))
+ }
> theCall(x = mean(Sales))
[1] "mean(Sales)"

Activities

1. Create a function that accepts a vector input, X, and returns the mean and median of X.

2. Update your function so that a warning is issued if any missing values exist in X.

3. Update your function so that an error is returned if all values of X are missing.

4. Update your function to ensure that X is, actually, a numeric vector, and return an error if not.

5. Add an argument to your function called funs, and ensure the input is either mean, median, sd, min, or max. When called, the selected function defined in funs should be used to summarize X.

6. Look at the several.ok argument to match.arg. Update your function so that multiple summaries (that is, multiple values of funs) are returned from the function.

7. Update your function so the input definition of X (that is, the call used to define the X input) is printed (via a called to cat) before the summaries are returned.

Hour 9. Loops and Summaries

What You’ll Learn in This Hour:

[image: Image] How to perform iterative “looping” techniques in R

[image: Image] How to apply functions to complex data structures

[image: Image] How to calculate metrics “by” one or more variables

Throughout this book you have seen how to use, and even create, simple R functions. In this hour, we are going to use simple functions and code in a more “applied” fashion. This allows us to perform tasks repeatedly over sections of our data without the need to produce verbose, repetitive code.

Repetitive Tasks

Imagine we want to perform the same task multiple times—for example, on each row of some dataset, df. We might first create a simple function, performAction, and then write a verbose R script such as this:

Click here to view code image

> performAction(df[1,]) # Perform action on first row
> performAction(df[2,]) # Perform action on second row
> performAction(df[3,]) # Perform action on third row
> performAction(df[4,]) # Perform action on fourth row
...

Writing code in this way can lead to large scripts that can be very difficult to manage; for example, if you need to change the name of the function, you need to do it in a variety of places. This code is also not overtly reusable because we’ll need to specify a call for each row in our data—if we try to apply this code to a different data structure, it may not have the same number of rows.

Instead of writing scripts in this manner, we can use a “loop.”

What Is a Loop?

A loop is a programming structure that allows us to perform the same task in a repetitive manner. Two types of loops are supported by R: the “for” loop and the “while” loop.

What Is a For Loop?

A “for” loop will perform the same action on each of a pre-specified set of inputs. For example, imagine we have a bag containing 100 potato chips and we have decided we’re going to eat every one. In this case, our “for” loop may be structured as follows:

Click here to view code image

For each of our 100 chips:
 Reach into the bag
 Remove a single potato chip
 Eat the potato chip

This is a simple repetitive pattern. However, we do need to pre-specify the inputs over which we’re going to iterate. For example, if we didn’t know exactly how many potato chips were in the bag, we cannot use this approach.

What Is a While Loop?

By contrast, a “while” loop allows us to perform the same action in a repeated manner until a condition is met. For example, if we had a bag of potato chips and we wanted to eat the contents, we may write a “while” loop as follows:

Click here to view code image

While there are still chips left in the bag:
 Reach into the bag
 Remove a single potato chip
 Eat the potato chip

Again, this is a simple structure and will work well in our case. However, we need to be sure no one hands us a bag with an infinite number of potato chips, in which case we’ll never “leave” the loop and just keep on eating.

The for Function

The for function in R allows us to implement a “for” loop. The structure of the loop is as follows:

Click here to view code image

for (variable in set_of_values) {
 # do this
}

The variable defined will iteratively take each value of the set_of_values, and the body of the “for” loop will then be executed. Here’s an example:

Click here to view code image

> for (i in 1:5) {
+ cat("\n Hello") # Say Hello
+ }

 Hello
 Hello
 Hello
 Hello
 Hello

In this very simple example, i is iteratively set to each value in vector 1:5 and then the body of the loop is executed—the result is to print the message “Hello” five times.

Note: Using Curly Brackets

In this example, we are using curly brackets to encapsulate the body of code. As with writing functions, we can omit these if the body of code is a single line; therefore, this example could be rewritten as follows:

Click here to view code image

> for (i in 1:10) cat("\n Hello") # Say Hello

As a convention, and as good practice, we will use curly brackets throughout this hour.

Using the Loop Variable

In the last example, we set i to each value in vector 1:5. If we use i in the body of the loop, we can more easily see this process:

Click here to view code image

> for (i in 1:5) {
+ cat("\n i has been set to the value of", i)
+ }

 i has been set to the value of 1
 i has been set to the value of 2
 i has been set to the value of 3
 i has been set to the value of 4
 i has been set to the value of 5

Let’s look at a slightly different example, this time involving a set of character values over which to iterate:

Click here to view code image

> for (let in LETTERS[1:5]) {
+ cat("\n The Letter", let)
+ }

 The Letter A
 The Letter B
 The Letter C
 The Letter D
 The Letter E

Referencing Data with Loops

For loops are often used to iterate over data sources, performing actions on groupings within that data. Let’s use the internal airquality dataset for this example, which contains air quality measurements for New York from May to September 1973:

Click here to view code image

> head(airquality)
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

The Month column stores the month number (May = 5 to September = 9). We can generate a vector of unique month values using the unique function as follows:

> unique(airquality$Month)
[1] 5 6 7 8 9

What if we wanted to report the average Ozone value for each month? Without a loop, we might write code like this:

Click here to view code image

> # Perform summary for Month 5
> ozoneValues <- airquality$Ozone [airquality$Month == 5] # Subset the data
> theMean <- round(mean(ozoneValues, na.rm = TRUE), 2) # Calculate the mean
> cat("\n Average Ozone for month 5 =", theMean) # Print the message

 Average Ozone for month 5 = 23.62
>
> # Perform summary for Month 6
> ozoneValues <- airquality$Ozone [airquality$Month == 6] # Subset the data
> theMean <- round(mean(ozoneValues, na.rm = TRUE), 2) # Calculate the mean
> cat("\n Average Ozone for month 6 =", theMean) # Print the message

 Average Ozone for month 6 = 29.44
>
> # Perform summary for Month 7
> ozoneValues <- airquality$Ozone [airquality$Month == 7] # Subset the data
> theMean <- round(mean(ozoneValues, na.rm = TRUE), 2) # Calculate the mean
> cat("\n Average Ozone for month 7 =", theMean) # Print the message

 Average Ozone for month 7 = 59.12

Note that the only varying aspect between these sections of code is the Month value itself. Using a for loop, we could iterate over each (unique) month value, calculating summaries specific to that month, as follows:

Click here to view code image

> for (M in unique(airquality$Month)) {
+ ozoneValues <- airquality$Ozone [airquality$Month == M] # Subset the data
+ theMean <- round(mean(ozoneValues, na.rm = TRUE), 2) # Calculate and round
 the mean
+ cat("\n Average Ozone for month", M, "=", theMean) # Print the message
+ }

 Average Ozone for month 5 = 23.62
 Average Ozone for month 6 = 29.44
 Average Ozone for month 7 = 59.12
 Average Ozone for month 8 = 59.96
 Average Ozone for month 9 = 31.45

In this example, we are iterating over the unique values of Month. We use the iterator variable M to subset the data, saving the result each time as ozoneValues. We then calculate the mean based on this vector and report the result.

Nested Loops

It is possible to perform “nested” loop operations, where we iterate over more than one set of values. For example, let’s again loop through sections of the airquality dataset, but this time report the average values of the Ozone, Wind, and Solar.R columns. We could extend the last loop as follows:

Click here to view code image

> for (M in unique(airquality$Month)) {
+
+ cat("\n\n Month =", M, "\n =========") # Write Month Number
+ subData <- airquality [airquality$Month == M,] # Subset the data
+
+ theMean <- round(mean(subData$Ozone, na.rm = TRUE), 2) # Calculate the mean
+ cat("\n Average Ozone =\t", theMean) # Print the message
+
+ theMean <- round(mean(subData$Wind, na.rm = TRUE), 2) # Calculate the mean
+ cat("\n Average Wind =\t", theMean) # Print the message
+
+ theMean <- round(mean(subData$Solar.R, na.rm = TRUE), 2) # Calculate the mean
+ cat("\n Average Solar.R =\t", theMean) # Print the message
+
+ }

 Month = 5
 =========
 Average Ozone = 23.62
 Average Wind = 11.62
 Average Solar.R = 181.3

 Month = 6
 =========
 Average Ozone = 29.44
 Average Wind = 10.27
 Average Solar.R = 190.17

 Month = 7
 =========
 Average Ozone = 59.12
 Average Wind = 8.94
 Average Solar.R = 216.48

 Month = 8
 =========
 Average Ozone = 59.96
 Average Wind = 8.79
 Average Solar.R = 171.86

 Month = 9
 =========
 Average Ozone = 31.45
 Average Wind = 10.18
 Average Solar.R = 167.43

Tip: Tab Characters

Note the use \t in the preceding example. This allows us to insert a “tab” symbol when printing text in this way. For this example, it left-aligns the numeric mean values produced. If we wanted to (more correctly) right-align these numeric values, we could additionally call the format function to convert the numeric values to a nicely formatted character output.

We could instead iterate over values of Month and then iterate over the columns within Month using a nested loop, as follows:

Click here to view code image

> for (M in unique(airquality$Month)) {
+
+ cat("\n\n Month =", M, "\n =========") # Write Month Number
+ subData <- airquality [airquality$Month == M,] # Subset the data
+
+ for (column in c("Ozone", "Wind", "Solar.R")) { # Iterate over columns
+ theMean <- round(mean(subData[[column]], na.rm = TRUE), 2) # Calculate the
 mean
+ cat("\n Average", column, "=\t", theMean # Print the message
+ }
+
+ }

 Month = 5
 =========
 Average Ozone = 23.62
 Average Wind = 11.62
 Average Solar.R = 181.3

 Month = 6
 =========
 Average Ozone = 29.44
 Average Wind = 10.27
 Average Solar.R = 190.17

 Month = 7
 =========
 Average Ozone = 59.12
 Average Wind = 8.94
 Average Solar.R = 216.48

 Month = 8
 =========
 Average Ozone = 59.96
 Average Wind = 8.79
 Average Solar.R = 171.86

 Month = 9
 =========
 Average Ozone = 31.45
 Average Wind = 10.18
 Average Solar.R = 167.43

Note: Referencing Columns

Note that we used the double square brackets notation here as opposed to the $ syntax in the more verbose example. This is because we can’t parameterize values used by $, as shown in this example:

Click here to view code image

> airquality$Wind[1:5] # The Wind column
[1] 7.4 8.0 12.6 11.5 14.3
> airquality$"Wind"[1:5] # Also works
[1] 7.4 8.0 12.6 11.5 14.3
> whichColumn <- "Wind" # set value of whichColumn
> airquality$whichColumn # Reference using whichColumn
NULL

We must therefore use a double square bracket notation (or alternatively the [, whichColumn] notation) that was introduced in Hour 4, “Multi-Mode Data Structures”.

Note: Loop Performance

Later, in Hour 18, “Code Efficiency,” we will look again at loops and discuss performance and efficiency gains.

Looping through data frames in this way is generally not recommended. As we will see shortly, and again in Hour 12, “Efficient Data Handling in R,” there are many simpler, faster ways to loop through columns or rows in a data frame. However the concept of a for loop is a much more widely applicable programming concept that can help clean up repetitive, unmaintainable code.

The while Function

The while function in R allows us to implement a “while” loop. The structure of the “while” loop is as follows:

while (condition) {
 # do this
}

The result is that the loop will iterate constantly until the condition is no longer TRUE. Of course, if the condition is always TRUE, the loop will never stop iterating, so we need to exercise caution.

Let’s look at a simple example:

Click here to view code image

> index <- 1 # Set value of index to 1
> while(index < 6) {
+ cat("\n Hello") # Write a message
+ index <- index + 1 # Update the value of index
+ }

 Hello
 Hello
 Hello
 Hello
 Hello

Here, we initially set the value of index to 1. Then, we iteratively write a simple message and increment index. The loop continues to iterate until the condition (index < 6) is no longer true.

We can see this more clearly by improving the message produced:

Click here to view code image

> index <- 1 # Set value of index to 1
> while(index < 6) {
+ cat("\n Setting the value of index from", index) # Write a message
+ index <- index + 1 # Update the value of index
+ cat(" to", index) # Write a message
+ }

 Setting the value of index from 1 to 2
 Setting the value of index from 2 to 3
 Setting the value of index from 3 to 4
 Setting the value of index from 4 to 5
 Setting the value of index from 5 to 6

The “apply” Family of Functions

The majority of functions in R are relatively simple and designed to work with single-mode structures. Consider, for example, the median function, which can be used to calculate the median of a numeric data object (typically a vector). Let’s have a look at the arguments of the function and a simple example:

Click here to view code image

> args(median)
function (x, na.rm = FALSE)
NULL
> median(airquality$Wind) # Median of Wind column
[1] 9.7

We can see that median has two arguments (x and na.rm), which can be used to specify the values for which the median is to be calculated, and a logical value specifying whether missing values should be removed before calculating the median.

What if we wanted to apply this function in a more sophisticated way? Here are some examples:

[image: Image] The median of rows or columns of a matrix

[image: Image] The median of each element of a list

[image: Image] The median of some variable for each level of one or more grouping variables (for example, median sales by age group)

As you have seen earlier in this hour, the loop structure provides a way to iteratively call a function (for example, on subsections of a data object). Although we could apply a function using loops, much of our code would be needed just to reference the subsections of the data we need given the values over which we’re iterating (as you saw previously).

Instead, R provides a set of functions (the “apply” family of functions) that offer a more natural structure for applying simple functions to data structures in a more sophisticated way.

The Set of “apply” Functions

In R, many functions could be considered part of the “apply” family of functions. Let’s start by looking at the set of functions in R of the form “xapply,” where x is an optional letter, using the apropos function:

Click here to view code image

> apropos("^[a-z]?apply$") # Find all objects ending in "apply"
[1] "apply" "eapply" "lapply" "mapply" "rapply"
[6] "sapply" "tapply" "vapply"

Note: Other Functions in the “apply” Family

We could conceivably include functions such as by and aggregate in the “apply” family given their aims and usage. We’ll cover aggregate in Hour 11, “Data Manipulation and Transformation,” but will not cover by in this book given the numerous better ways of performing the tasks by enables.

Tip: Regular Expressions

As seen in the apropos call, the regular expression capabilities of R are very useful for looking for patterns in vectors of characters.

The call to apropos returns eight functions, which are listed in Table 9.1.

[image: Image]

TABLE 9.1 Set of “apply” Functions

For now, let’s focus on the first four functions listed in Table 9.1 (apply, lapply, sapply and tapply).

The apply Function

The apply function allows us to apply a function over dimensions of a data object. Acceptable inputs to apply include any object that has a “dimension”—for example, matrices, data frames, and arrays. The arguments to the apply function are as follows:

Click here to view code image

> args(apply)
function (X, MARGIN, FUN, ...)
NULL

Table 9.2 details the arguments of the apply function.

[image: Image]

TABLE 9.2 Arguments to the apply Function

The “Margin”

The second argument, the “Margin,” specifies the “dimension number” over which to apply the function, as described in Table 9.3.

[image: Image]

TABLE 9.3 Margin Values

We typically specify the margin as a single integer value or vector of integer values.

Note: Named Dimensions

If your structure has dimension names assigned, a character vector can be provided instead of the (more commonly used) vector of integers.

A Simple apply Example

The apply function is best described with a simple example. First, let’s create a structure that has dimensions:

Click here to view code image

> myMat <- matrix(rpois(20, 3), nrow = 4) # Create a simple matrix
> myMat # Print myMat
 [,1] [,2] [,3] [,4] [,5]
[1,] 5 6 4 2 2
[2,] 1 7 3 1 6
[3,] 2 3 0 3 4
[4,] 2 2 4 3 4
> dim(myMat) # Dimensions of myMat
[1] 4 5

Now let’s use our first call to apply. In this example, we’ll calculate the maximum of each column (dimension 2) of our matrix:

Click here to view code image

> apply(myMat, 2, max) # Column Maxima
[1] 5 7 4 3 6

The result is a vector that holds the maximum of each column (for example, we see that the maximum of the values in the second column is 7).

Note: The Use of Random Numbers

In this and the following sections I use functions such as rpois to generate random samples. Since these are random draws, they will not necessarily match your results if you run the same code.

The apply function operates by “breaking apart” the structure based on the margin(s) provided and then applying the function to each “piece” of the partitioned structure. In this example, the matrix is split into separate columns with the max function applied to each column, as illustrated in Figure 9.1.

[image: Image]

FIGURE 9.1 A visual demonstration of the apply function calculating column maxima

Now let’s look at another simple example—this time we’ll calculate the minimum of each row (dimension 1) of our matrix:

Click here to view code image

> apply(myMat, 1, min) # Row Minima
[1] 2 1 0 2

Again, the result is a vector, this time containing the minimum of each row of the matrix (so the minimum value in row 3 is 0). This time, the apply function “breaks apart” the structure by rows and applies the min function to each “piece” of the structure, as illustrated in Figure 9.2.

[image: Image]

FIGURE 9.2 A visual demonstration of the apply function calculating row minima

Using Multiple Margins

In these simple examples, we specified a single margin in each call (1 for rows or 2 for columns). We can, instead, use multiple margins, as shown here:

Click here to view code image

> myMat
 [,1] [,2] [,3] [,4] [,5]
[1,] 5 6 4 2 2
[2,] 1 7 3 1 6
[3,] 2 3 0 3 4
[4,] 2 2 4 3 4

> apply(myMat, c(1, 2), median) # Median by row AND column
 [,1] [,2] [,3] [,4] [,5]
[1,] 5 6 4 2 2
[2,] 1 7 3 1 6
[3,] 2 3 0 3 4
[4,] 2 2 4 3 4

In this example, we’ve calculated the median value by row and column by specifying two values for the margin (1 and 2). This calculates the median of each cell of the matrix (that is, the median of “5” is “5”) and thus returns exactly the same matrix that we started with. This process is visualized in Figure 9.3.

[image: Image]

FIGURE 9.3 A visual demonstration of the apply function performing cell calculations

Although this is not of any practical use, it does further illustrate the way the apply function works.

Using apply with Higher Dimension Structures

Although using multiple margins may not be useful for two-dimensional structures (that is, matrices or data frames), when we deal with structures with a higher number of dimensions it can be useful. To illustrate this, let’s create a three-dimensional array:

Click here to view code image

> myArray <- array(rpois(18, 3), dim = c(3, 3, 2)) # Create array
> myArray # Print myArray
, , 1

 [,1] [,2] [,3]
[1,] 2 2 4
[2,] 4 3 1
[3,] 4 1 1

, , 2

 [,1] [,2] [,3]
[1,] 0 6 3
[2,] 4 3 1
[3,] 1 5 1

> dim(myArray) # Dimensions of myArray
[1] 3 3 2

Now, there are three dimensions over which we could apply our functions. Let’s try to apply a function over dimension 3 of the array:

> apply(myArray, 3, min)
[1] 1 0

Here, the array is first broken apart based on dimension 3, resulting in 2×2-dimensional structures. The min function is then applied to each of the two structures, as illustrated in Figure 9.4.

[image: Image]

FIGURE 9.4 The apply function operating over the third dimension of an array

Instead, we could provide multiple margins. For example, let’s apply the max function, this time over dimensions 1 and 2:

Click here to view code image

> apply(myArray, c(1, 2), max)
 [,1] [,2] [,3]
[1,] 2 6 4
[2,] 4 3 1
[3,] 4 5 1

This time the structure is “collapsed” over the third dimension, producing a matrix of outputs. This process is illustrated in the Figure 9.5.

[image: Image]

FIGURE 9.5 The apply function operating over the first and second dimensions of an array

Passing Extra Arguments to the “applied” Function

Let’s return to our matrix example, but this time insert a missing value:

Click here to view code image

> myMat[2, 2] <- NA # Add a missing value in cell 2, 2
> myMat # Print the matrix
 [,1] [,2] [,3] [,4] [,5]
[1,] 5 6 4 2 2
[2,] 1 NA 3 1 6
[3,] 2 3 0 3 4
[4,] 2 2 4 3 4

Now, let’s once again apply a function. For example, let’s calculate the maximum of each column (dimension 2) of the matrix:

Click here to view code image

> apply(myMat, 2, max) # Maximum of each column
[1] 5 NA 4 3 6

This time, our output contains a missing value. The reason for this is that when the second column is passed into the max function, the missing value causes the max function to return an NA value. This is illustrated in Figure 9.6.

[image: Image]

FIGURE 9.6 The use of apply with missing values

We can also see this behavior directly by calculating the maximum of the second column:

Click here to view code image

> max(myMat[,2]) # Maximum of 2nd column
[1] NA

As you saw earlier, functions such as max have a na.rm argument, which allows us to specify that missing values are removed before performing the calculation:

Click here to view code image

> max(myMat[,2], na.rm = TRUE) # Maximum of 2nd column
[1] 6

If we want to call a function but also pass additional arguments, we can take advantage of the ellipsis argument to apply, as follows:

Click here to view code image

> args(apply) # Ellipsis is 4th argument
function (X, MARGIN, FUN, ...)
NULL
> apply(myMat, 2, max, na.rm = TRUE) # Maximum of each column
[1] 5 6 4 3 6

As you can see, the max function is now called with the argument na.rm set to TRUE, so the maximum of the (nonmissing) values of column 2 is now reported.

We can pass as many additional arguments as we need. For example, let’s calculate the quantiles of a slightly larger matrix using the quantile function:

Click here to view code image

> biggerMat <- matrix(rpois(300, 3), ncol = 3) # Create a 100 x 3 matrix

> head(biggerMat) # First few rows
 [,1] [,2] [,3]
[1,] 4 2 3
[2,] 5 3 5
[3,] 4 7 1
[4,] 5 3 3
[5,] 3 3 4
[6,] 1 5 4

> apply(biggerMat, 2, quantile) # Column quantiles
 [,1] [,2] [,3]
0% 0 0 0
25% 2 2 2
50% 3 3 3
75% 4 4 4
100% 8 8 8

Now, let’s artificially add a number of missing values; therefore, we need to pass the extra na.rm argument to quantile:

Click here to view code image

> biggerMat [sample(1:300, 50)] <- NA # Randomly add some missings

> head(biggerMat) # First few rows
 [,1] [,2] [,3]
[1,] 4 2 NA
[2,] 5 3 NA
[3,] 4 7 1
[4,] 5 3 3
[5,] NA NA 4
[6,] 1 NA 4

> apply(biggerMat, 2, quantile, na.rm = TRUE) # Column quantiles
 [,1] [,2] [,3]
0% 0 0 0
25% 2 2 1
50% 3 3 3
75% 4 4 4
100% 8 8 8

The quantile function has an argument, probs, that allows us to specify that a different set of quantiles are returned. Let’s additionally pass the probs argument to specify some new quantiles:

Click here to view code image

> apply(biggerMat, 2, quantile,
+ probs = c(0, .05, .5, .95, 1), na.rm = TRUE) # Column quantiles
 [,1] [,2] [,3]
0% 0 0.00 0
5% 0 1.00 1
50% 3 3.00 3
95% 6 6.15 6
100% 8 8.00 8

Using apply with Our Own Functions

So far in this hour, we have used simple functions to illustrate the use of the apply function (for example, row minima, column maxima). There are in fact several utility functions designed for this very purpose, for example rowMeans, colMeans, rowSums, and colSums. However, we can also create our own functions and “apply” those over dimensions instead.

Consider the matrix we created earlier:

Click here to view code image

> myMat
 [,1] [,2] [,3] [,4] [,5]
[1,] 5 6 4 2 2
[2,] 1 7 3 1 6
[3,] 2 3 0 3 4
[4,] 2 2 4 3 4

Let’s imagine we want to count the number of values in each column that are greater than 3. There isn’t currently a function in R that will return “the number of values greater than 3,” so let’s create one:

Click here to view code image

> above3 <- function(vec) {
+ sum(vec > 3)
+ }
> above3(c(1, 6, 5, 1, 2, 3)) # Try out our function
[1] 2

In the same way as before, we can now “apply” this function across dimensions of our matrix. So to calculate the number of values in each column that are greater than 3, we use the following code:

Click here to view code image

> apply(myMat, 2, above3) # Number of values > 3 in each column
[1] 1 2 2 0 3

In this example, we created the function above3 and “applied” it to our structure. If we wanted to use above3 for other uses, this is fine. However, if this is only something we want to do once, we can define the function directly in the apply call (so it is never created as an R object in our session). To achieve this, we replace the function object with the definition as follows:

Click here to view code image

> apply(myMat, 2, function(vec) {
+ sum(vec > 3)
+ })
[1] 1 2 2 0 3

Tip: One-Line Function Definitions

As before, we can omit the {} (curly brackets) if our function can be defined on a single line. As such, the preceding code could be rewritten as follows:

Click here to view code image

> apply(myMat, 2, function(vec) sum(vec > 3))
[1] 1 2 2 0 3

As a convention, we will use the curly brackets consistently throughout this hour.

Passing Extra Arguments to Our Functions

As shown earlier, if we want to pass additional arguments, we can list them after the function call. We can do the same for the functions we write. For example, let’s update our function with a second argument to control the threshold value for counting:

Click here to view code image

> aboveN <- function(vec, N) {
+ sum(vec > N)
+ }
> someValues <- c(1, 6, 5, 1, 2, 3)
> aboveN(someValues, N = 3) # Number > 3
[1] 2
> aboveN(someValues, N = 5) # Number > 4
[1] 1

If we “apply” this function to columns of our matrix, we need to additionally pass the N argument:

Click here to view code image

> myMat # Print the matrix
 [,1] [,2] [,3] [,4] [,5]
[1,] 5 6 4 2 2
[2,] 1 7 3 1 6
[3,] 2 3 0 3 4
[4,] 2 2 4 3 4
> apply(myMat, 2, aboveN, N = 3) # Number > 3
[1] 1 2 2 0 3
> apply(myMat, 2, aboveN, N = 4) # Number > 4
[1] 1 2 0 0 1

If, instead, we want to define the function directly in the apply call, we would need to list the additional arguments after the definition itself:

Click here to view code image

> apply(myMat, 2, function(vec, N) {
+ sum(vec > N)
+ }, N = 3)
[1] 1 2 2 0 3

Applying to Data Frames

Throughout this hour, we have used single-mode structures (matrices and arrays) as sample inputs to the apply function. However, because we can use any structure that has a dimension, we could also use apply with data frames. As an example, let’s “apply” the median function to columns of the airquality data frame:

Click here to view code image

> head(airquality) # First few rows
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

> apply(airquality, 2, median, na.rm = TRUE) # Median of each column
 Ozone Solar.R Wind Temp Month Day
 31.5 205.0 9.7 79.0 7.0 16.0

This command returns the median of each column (although, perhaps the “median Month” and “median Day” are not that useful). Now let’s consider a second example, this time using the iris data frame:

Click here to view code image

> head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

> apply(iris, 2, median, na.rm = TRUE)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 NA NA NA NA NA
Warning messages:
1: In mean.default(sort(x, partial = half + 0L:1L)[half + 0L:1L]) :
 argument is not numeric or logical: returning NA
2: In mean.default(sort(x, partial = half + 0L:1L)[half + 0L:1L]) :
 argument is not numeric or logical: returning NA
3: In mean.default(sort(x, partial = half + 0L:1L)[half + 0L:1L]) :
 argument is not numeric or logical: returning NA
4: In mean.default(sort(x, partial = half + 0L:1L)[half + 0L:1L]) :
 argument is not numeric or logical: returning NA
5: In mean.default(sort(x, partial = half + 0L:1L)[half + 0L:1L]) :
 argument is not numeric or logical: returning NA

This time, the output returns missing values along with a number of warning messages—but why is this?

When we apply functions over dimensions of single-mode structures (for example, matrices and arrays), we know the “mode” of data being passed to our function is the same each time it is called (that is, if we have a numeric matrix, we know that each column will necessarily be numeric).

By comparison, a data frame is a multi-mode structure, so each column may (or may not) be of the same mode. When we call “apply,” R will first break the data and store it in a single-mode structure—at this point, all the data is coerced to a single mode, which may or may not be a suitable input to the function.

With the airquality example, the apply function first structures the data into a single-mode (numeric) object and then applies the median function to each (numeric) column. With the iris data frame, the Species column is not a numeric column, so when the data is structured into a single-mode object, the resulting data is no longer numeric. We can see this in the following call, where we query the class of each column of the data:

Click here to view code image

> apply(iris, 2, class)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 "character" "character" "character" "character" "character"

So, when R then attempts to apply the median function to each column, the missing values and warning messages are produced.

So, in summary, we can use apply with data frames, but we have to take care that data over which we’re “applying” can be adequately combined into a single mode. For example, if we wanted to calculate the mean of all numeric columns of iris, we could use this approach:

Click here to view code image

> # Apply median function over the first 4 columns of iris
> apply(iris[,-5], 2, median, na.rm = TRUE)
Sepal.Length Sepal.Width Petal.Length Petal.Width
 5.80 3.00 4.35 1.30

The lapply Function

The lapply function applies functions to each element of a list and always returns a list structure as its output. For example, let’s create a list of numeric vectors and calculate the median of each element. First, we’ll create the list:

Click here to view code image

> myList <- list(P1 = rpois(10, 1), P3 = rpois(10, 3), P5 = rpois(10, 5))
> myList
$P1
 [1] 1 2 2 2 1 0 0 1 1 4

$P3
 [1] 0 1 4 0 2 3 2 2 1 6

$P5
 [1] 5 4 9 6 6 4 6 5 3 5

To use the lapply function, we simply pass the list and the function to apply (there is no “margin” here because the data is already “split” into list elements):

> lapply(myList, median)
$P1
[1] 1

$P3
[1] 2

$P5
[1] 5

The split Function

In the preceding example, the lapply call itself was actually a lot simpler (and more concise) than the code used to create the sample list. In a slight departure, let’s quickly look at a simple function that creates lists (which we could then use as examples in lapply). This function is called split.

The split function divides a data structure into separate parts based on one or more grouping variables. The output from a split is a list. As a first example, let’s split the Wind column from airquality based on levels of Month. We can achieve that by calling split with the Wind column as the first input and the “grouping” column (Month) as the second argument. Note that the output is a list:

Click here to view code image

> spWind <- split(airquality$Wind, airquality$Month)
> $`5`
 [1] 7.4 8.0 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 6.9 9.7 9.2
[14] 10.9 13.2 11.5 12.0 18.4 11.5 9.7 9.7 16.6 9.7 12.0 16.6 14.9
[27] 8.0 12.0 14.9 5.7 7.4

$`6`
 [1] 8.6 9.7 16.1 9.2 8.6 14.3 9.7 6.9 13.8 11.5 10.9 9.2 8.0
[14] 13.8 11.5 14.9 20.7 9.2 11.5 10.3 6.3 1.7 4.6 6.3 8.0 8.0
[27] 10.3 11.5 14.9 8.0

$`7`
 [1] 4.1 9.2 9.2 10.9 4.6 10.9 5.1 6.3 5.7 7.4 8.6 14.3 14.9
[14] 14.9 14.3 6.9 10.3 6.3 5.1 11.5 6.9 9.7 11.5 8.6 8.0 8.6
[27] 12.0 7.4 7.4 7.4 9.2

Given that this structure is a list, it is a suitable input to the lapply function. Let’s calculate the median value of each element of spWind:

> lapply(spWind, median)
$`5`
[1] 11.5

$`6`
[1] 9.7

$`7`
[1] 8.6

$`8`
[1] 8.6

$`9`
[1] 10.3

This result is, therefore, the median Wind value for each level of Month, or the “median Wind by Month.”

Note: Nested Calls to lapply and split

In the preceding example, we separated the split and lapply calls for clarity. We could, of course, combine them into a single call, as follows:

Click here to view code image

> lapply(split(airquality$Wind, airquality$Month), median)

Or

Click here to view code image

> with(airquality, lapply(split(Wind, Month), median))

Splitting Data Frames

In the preceding example, we split a vector based on levels specified in another vector. The split function can also be used to divide data frames. For example, let’s split our airquality data based on Month:

Click here to view code image

> spAir <- split(airquality, airquality$Month) # Split the data

> length(spAir) # Length of list
[1] 5
> names(spAir) # Element names
[1] "5" "6" "7" "8" "9"

> head(spAir[[1]]) # First element
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

As you can see, this creates a list of length 5 where each element contains a data frame containing data for only one month. Now let’s use lapply to apply a function to each data frame stored in this list. We need to apply a function that will perform an operation on a data frame, so let’s return the first three rows in each element of the list using head:

Click here to view code image

> lapply(spAir, head, n = 3)
$`5`
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3

$`6`
 Ozone Solar.R Wind Temp Month Day
32 NA 286 8.6 78 6 1
33 NA 287 9.7 74 6 2
34 NA 242 16.1 67 6 3

$`7`
 Ozone Solar.R Wind Temp Month Day
62 135 269 4.1 84 7 1
63 49 248 9.2 85 7 2
64 32 236 9.2 81 7 3

$`8`
 Ozone Solar.R Wind Temp Month Day
93 39 83 6.9 81 8 1
94 9 24 13.8 81 8 2
95 16 77 7.4 82 8 3

$`9`
 Ozone Solar.R Wind Temp Month Day
124 96 167 6.9 91 9 1
125 78 197 5.1 92 9 2
126 73 183 2.8 93 9 3

Perhaps instead we could lapply our own function to each data frame. For example, let’s create a function that calculates column means for the Ozone, Solar.R, Wind, and Temp variables:

Click here to view code image

> lapply(spAir, function(df) {
+ apply(df[,1:4], 2, median, na.rm = TRUE)
+ })
$`5`
 Ozone Solar.R Wind Temp
 18.0 194.0 11.5 66.0

$`6`
 Ozone Solar.R Wind Temp
 23.0 188.5 9.7 78.0

$`7`
 Ozone Solar.R Wind Temp
 60.0 253.0 8.6 84.0

$`8`
 Ozone Solar.R Wind Temp
 52.0 197.5 8.6 82.0

$`9`
 Ozone Solar.R Wind Temp
 23.0 192.0 10.3 76.0

Here, each element of spAir is passed into the function we defined as input: df. Then, for each df, we calculate the column means of the first four columns.

Note: Splitting on Multiple Variables

You’ve seen that the split function can be used to divide data structures (such as vectors or data frames) into elements of a list based on values of another vector. We can split by more than one variable by passing a list of factors:

Click here to view code image

> split(airquality$Wind, list(airquality$Month, cut(airquality$Temp, 3)))
$`5.(56,69.7]`
 [1] 7.4 11.5 14.3 14.9 8.6 13.8 20.1 8.6 9.7 9.2 10.9 13.2 11.5 12.0 18.4 11.5 9.7
[18] 9.7 9.7 12.0 16.6 14.9 8.0 12.0

$`6.(56,69.7]`
[1] 16.1 9.2

$`7.(56,69.7]`
numeric(0)
...

This could then be passed to lapply to calculate summaries by more than one grouping variable.

Using lapply with Vectors

At the start of this section, we said that the lapply function will apply a function to each element of a list. However, if we instead pass a vector to the lapply function, it will convert it to a list using the as.list function as follows:

> as.list(1:5)
[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3

[[4]]
[1] 4

[[5]]
[1] 5

That means we can use lapply to apply a function to each element of a vector. Let’s consider a simple example, where we apply the rnorm function to values 1 to 5:

Click here to view code image

> lapply(1:5, rnorm)
[[1]]
[1] 0.8168998

[[2]]
[1] -0.8863575 -0.3315776

[[3]]
[1] 1.1207127 0.2987237 0.7796219

[[4]]
[1] 1.4557851 -0.6443284 -1.5531374 -1.5977095

[[5]]
[1] 1.8050975 -0.4816474 0.6203798 0.6121235 -0.1623110

This is equivalent to the following:

Click here to view code image

> list(
+ rnorm(1),
+ rnorm(2),
+ rnorm(3),
+ rnorm(4),
+ rnorm(5)
+)
[[1]]
[1] 0.8118732

[[2]]
[1] 2.196834 2.049190

[[3]]
[1] 1.6324456 0.2542712 0.4911883

[[4]]
[1] -0.32408658 -1.66205024 1.76773385 0.02580105

[[5]]
[1] 1.1285108 -2.3803581 -1.0602656 0.9371405 0.8544517

Let’s add a second argument to rnorm. For example, let’s specify a mean for the Normal distribution:

Click here to view code image

> lapply(1:5, rnorm, mean = 10)
[[1]]
[1] 11.46073

[[2]]
[1] 8.586901 10.567403

[[3]]
[1] 10.583188 8.693201 9.459614

[[4]]
[1] 11.947693 10.053590 10.351663 9.329023

[[5]]
[1] 10.277954 10.691171 10.823795 12.145065 7.653056

The Order of “apply” Inputs

When the lapply function (like all “apply” functions) passes the data to the function, the data is passed as the first input and is not named. So, the last example is equivalent to this:

Click here to view code image

> list(
+ rnorm(1, mean = 10),
+ rnorm(2, mean = 10),
+ rnorm(3, mean = 10),
+ rnorm(4, mean = 10),
+ rnorm(5, mean = 10)
+)
[[1]]
[1] 10.14959

[[2]]
[1] 8.657469 10.553303

[[3]]
[1] 11.589963 9.413120 8.167623

[[4]]
[1] 10.888139 11.593488 10.516855 8.704328

[[5]]
[1] 10.054616 9.215351 8.950647 12.330512 11.402705

Let’s quickly remind ourselves of the arguments of rnorm:

Click here to view code image

> args(rnorm)
function (n, mean = 0, sd = 1)
NULL

The first argument to rnorm, the number of values to sample, is called n. Although the lapply function is not “naming” the first input, the order-based method for specifying arguments in a function means that it is this “n” input that accepts each of the values, 1 to 5. What if we, instead, specify the first argument (n) as an extra parameter?

Click here to view code image

> lapply(1:5, rnorm, n = 5)
[[1]]
[1] 1.9426009 1.8262583 0.1884595 1.4762483 2.0212584

[[2]]
[1] 2.645383 3.043144 1.695631 4.477111 2.971221

[[3]]
[1] 4.867099 3.672042 2.692047 3.536524 3.824870

[[4]]
[1] 3.036099 3.144917 5.886947 3.608181 3.019367

[[5]]
[1] 5.687332 4.494956 7.157720 4.400202 4.305453

This produces a slightly different output, where each element of the list is a sample of five values from a Normal distribution. Here, the lapply call is equivalent to the following:

Click here to view code image

> list(
+ rnorm(1, n = 5),
+ rnorm(2, n = 5),
+ rnorm(3, n = 5),
+ rnorm(4, n = 5),
+ rnorm(5, n = 5)
+)
[[1]]
[1] 1.2239254 -0.1562233 1.4224185 -0.3247553 1.1410843

[[2]]
[1] 1.463952 1.688394 3.556110 1.551967 2.321124

[[3]]
[1] 1.769828 1.675941 4.261242 4.319232 2.919246

[[4]]
[1] 3.494910 3.947846 4.628861 6.180002 3.930983

[[5]]
[1] 6.544864 6.321452 5.322152 6.530955 4.578760

In this case, we are explicitly naming the “n” input and setting it to 5, which explains why five samples are being returned in each list element. Therefore, the values we pass to the function (1 to 5) are instead used as the second input: the mean of the distribution from which to sample. In other words, this code returns the following:

[image: Image] Five samples from a Normal distribution with mean 1

[image: Image] Five samples from a Normal distribution with mean 2

[image: Image] Five samples from a Normal distribution with mean 3

[image: Image] Five samples from a Normal distribution with mean 4

[image: Image] Five samples from a Normal distribution with mean 5

As a natural extension, if we specify the n and mean inputs, then each value of 1 to 5 will move to the third argument (the standard deviation).

Using lapply with Data Frames

As you saw in Hour 4, data frames are structured as lists of vectors. Therefore, we can use lapply to apply functions to each column of a data frame as follows:

Click here to view code image

> lapply(airquality, median, na.rm = TRUE)
$Ozone
[1] 31.5

$Solar.R
[1] 205

$Wind
[1] 9.7

$Temp
[1] 79

$Month
[1] 7

$Day
[1] 16

This is a similar process to using apply to apply functions over columns of a data frame. The two primary differences are as follows:

[image: Image] The lapply function always returns a list.

[image: Image] When using apply, the structures are first put into a single-mode structure before processing, whereas the lapply function does not attempt to combine columns between processing.

The last point here can be illustrated by the following example, where we look at the class of each column in our data frame:

Click here to view code image

> apply(airquality, 2, class)
 Ozone Solar.R Wind Temp Month Day
"numeric" "numeric" "numeric" "numeric" "numeric" "numeric"
> lapply(airquality, class)
$Ozone
[1] "integer"

$Solar.R
[1] "integer"

$Wind
[1] "numeric"

$Temp
[1] "integer"

$Month
[1] "integer"

$Day
[1] "integer"

Note that, by the time the class function is applied in our first example, the apply function has already structured the data into a single-mode structure (so all data is forced to be of the same mode). With lapply, this coercion is not done, so we see instances of “numeric” (the “Wind” column) and “integer” column classes reported.

The sapply Function

The sapply function is a simple wrapper for the lapply function. In fact, the call to lapply can be clearly seen on the second line of the sapply function body:

Click here to view code image

> sapply
function (X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
{
 FUN <- match.fun(FUN)
 answer <- lapply(X = X, FUN = FUN, ...)
 if (USE.NAMES && is.character(X) && is.null(names(answer))) names(answer) <- X
 if (!identical(simplify, FALSE) && length(answer))
 simplify2array(answer, higher = (simplify == "array"))
 else answer
}

Therefore, as with lapply, the sapply function allows us to apply functions to elements of a list (or vector). The primary difference is that, whereas lapply always returns a list, sapply will (by default) attempt to simplify the return object using the simplify2array function.

To illustrate this, let’s look back at an earlier example where we use lapply and split to calculate the median values of Wind by Month:

Click here to view code image

> lapply(split(airquality$Wind, airquality$Month), median)
$`5`
[1] 11.5

$`6`
[1] 9.7

$`7`
[1] 8.6

$`8`
[1] 8.6

$`9`
[1] 10.3

If we replace the lapply function with the sapply function, we get a simpler output (in this case, a named vector):

Click here to view code image

> sapply(split(airquality$Wind, airquality$Month), median)
 5 6 7 8 9
11.5 9.7 8.6 8.6 10.3

For another example, let’s use sapply to see the class of each column of the iris data frame:

Click here to view code image

> sapply(iris, class)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 "numeric" "numeric" "numeric" "numeric" "factor"

Returns from sapply

The return values from sapply can sometimes be rather unpredictable. That is because sapply will attempt to simplify the return structure (which may result in a nicely formatted structure) but is often not able to simplify the return (in which case it stays as a list). Table 9.4 summarizes the return values, which depend on the number of values returned from the “applied” function.

[image: Image]

TABLE 9.4 Return Values from sapply

Some examples showing the various return objects are provided here:

Click here to view code image

> myList <- list(P1 = rpois(5, 1), P3 = rpois(5, 3), P5 = rpois(5, 5))
>
> # Function that (always) returns a single value > vector output
> sapply(myList, median)
P1 P3 P5
 1 3 4

> # Function that (always) returns 2 values > matrix output
> sapply(myList, range)
 P1 P3 P5
[1,] 0 1 3
[2,] 3 4 6

> # Function that (always) returns 5 values > matrix output
> sapply(myList, quantile)
 P1 P3 P5
0% 0 1 3
25% 0 3 4
50% 1 3 4
75% 2 3 5
100% 3 4 6

> # Function that can return a variable number of values > list output
> sapply(myList, function(X) X [X > 2])
$P1
[1] 3

$P3
[1] 3 3 3 4

$P5
[1] 3 5 4 4 6

> # Function that can return a variable number of values
> # BUT it happens that the return values are of the same
> # length in this instance > simplification occurs
> sapply(myList, function(X) min(X):max(X))
 P1 P3 P5
[1,] 0 1 3
[2,] 1 2 4
[3,] 2 3 5
[4,] 3 4 6

Why Not Just Stick with sapply?

At this point, you may be wondering why we’d ever need to use lapply given that sapply returns a “simpler” output.

The key reason for using lapply instead of sapply is that you always know a list will be returned, whereas the returns from sapply can be unpredictable, particularly when the function applied can return a variable number of values (as seen previously). When we write code, we need to be sure of the structure returned so we can write code to deal with that structure—for example, imagine writing a script where you expect the return output from an sapply call to be a list, but then it is unexpectedly simplified to an array (as seen in the last example).

More generally, there may be times when you explicitly don’t want to try and simplify the output. Consider a situation where we have a list containing two matrices:

Click here to view code image

> matList <- list(
+ P3 = matrix(rpois(8, 3), nrow = 2),
+ P5 = matrix(rpois(8, 5), nrow = 2)
+)
> matList
$P3
 [,1] [,2] [,3] [,4]
[1,] 8 1 1 4
[2,] 4 2 8 2

$P5
 [,1] [,2] [,3] [,4]
[1,] 5 4 3 2
[2,] 1 7 7 1

Now let’s use our lapply and sapply functions to extract the first row of each matrix:

> lapply(matList, head, 1)
$P3
 [,1] [,2] [,3] [,4]
[1,] 8 1 1 4

$P5
 [,1] [,2] [,3] [,4]
[1,] 5 4 3 2

> sapply(matList, head, 1)
 P3 P5
[1,] 8 5
[2,] 1 4
[3,] 1 3
[4,] 4 2

As you can see, the lapply function has returned a list, whereas the sapply function has simplified the output by combining the results into a single (matrix) structure. If these two matrices were measurements on two different systems, we may want to ensure the results are analyzed separately, so combining them into a single structure is not desirable.

The tapply Function

The tapply function allows us to apply a function to elements of a vector, grouped by levels of one or more other variables. The primary arguments to tapply are described in Table 9.5.

[image: Image]

TABLE 9.5 The Primary Arguments of tapply

Let’s look at a simple example of tapply used to calculate the median Wind by Month using the airquality data:

Click here to view code image

> tapply(airquality$Wind, airquality$Month, median)
 5 6 7 8 9
11.5 9.7 8.6 8.6 10.3

As you can see, in this case tapply returns a named vector of values, containing the median Wind values by Month.

Note: Similarity to split + sapply

This is very similar to an earlier example using sapply and split:

Click here to view code image

> sapply(split(airquality$Wind, airquality$Month), median)
 5 6 7 8 9
11.5 9.7 8.6 8.6 10.3

In fact, tapply is primarily a wrapper for a call to the split and sapply (technically, lapply with a simplify step) functions.

Multiple Grouping Variables

We can specify more than one grouping variable by which to process the data—this is achieved by providing a list of factors instead of a single factor. Let’s calculate the median Wind by Month and grouped Temp (which we’ll create using the cut function):

Click here to view code image

> tapply(airquality$Wind,
+ list(airquality$Month, cut(airquality$Temp, 3)), median)
 (56,69.7] (69.7,83.3] (83.3,97]
5 11.50 8.0 NA
6 12.65 9.7 9.2
7 NA 9.2 7.4
8 NA 10.3 7.4
9 12.05 10.3 6.0

The return from this function is a matrix with the levels of the first grouping variable (Month) set as the rows (dimension 1) and the levels of the second grouping variable (Temp) in columns (dimension 2).

Caution: Missing Values in Return Structure

In the preceding example, a number of missing values have been returned. Usually when we see a missing value, it presents a value that “exists” but one we do not know. Consider the missing value for high temperature values in Month 5 in this example. It is difficult to know whether this value is generated because

[image: Image] There were Wind values in Month 5 for high temperatures, but they contained missing values so we do now know the median value.

[image: Image] There were actually no values in Month 5 for high temperatures (that is, there is no data).

In fact, in this case, the latter is true—there were no days in Month 5 when the temperature went above 83.3 degrees Fahrenheit. So, this missing value represents a “lack” of data. However, care should be taken when interpreting the results.

Let’s extend this example a little further, calculating the median Wind by Month levels of Temp and levels of Solar.R:

Click here to view code image

> tapply(airquality$Wind,
+ list(airquality$Month, cut(airquality$Temp, 3), cut(airquality$Solar.R, 2)),
+ median)
, , (6.67,170]

 (56,69.7] (69.7,83.3] (83.3,97]
5 12.60 10.3 NA
6 9.20 8.0 NA
7 NA 8.6 11.45
8 NA 9.7 8.60
9 13.45 10.3 7.40

, , (170,334]

 (56,69.7] (69.7,83.3] (83.3,97]
5 10.90 11.15 NA
6 16.10 12.65 9.2
7 NA 9.70 7.4
8 NA 10.90 8.0
9 12.05 10.30 4.6

This now creates a three-dimensional array of output, where each of our three grouping variables is aligned to a dimension.

Multiple Returns

In the preceding example, we used the median function to illustrate the use of tapply, which will always return a single value. If, instead, our function returns multiple values, the outputs from tapply can be unexpected and, occasionally, highly complex. Let’s start with a simple example, this time calculating quantiles of Wind values by Month:

Click here to view code image

> tapply(airquality$Wind, airquality$Month, quantile)
$`5`
 0% 25% 50% 75% 100%
 5.70 8.90 11.50 14.05 20.10

$`6`
 0% 25% 50% 75% 100%
 1.7 8.0 9.7 11.5 20.7

$`7`
 0% 25% 50% 75% 100%
 4.1 6.9 8.6 10.9 14.9

$`8`
 0% 25% 50% 75% 100%
 2.3 6.6 8.6 11.2 15.5

$`9`
 0% 25% 50% 75% 100%
 2.800 7.550 10.300 12.325 16.600

We can see that, with multiple return values, no simplification is performed and a list is returned. This is the equivalent of the following:

Click here to view code image

> lapply(split(airquality$Wind, airquality$Month), quantile)
$`5`
 0% 25% 50% 75% 100%
 5.70 8.90 11.50 14.05 20.10

$`6`
 0% 25% 50% 75% 100%
 1.7 8.0 9.7 11.5 20.7

$`7`
 0% 25% 50% 75% 100%
 4.1 6.9 8.6 10.9 14.9

$`8`
 0% 25% 50% 75% 100%
 2.3 6.6 8.6 11.2 15.5

$`9`
 0% 25% 50% 75% 100%
 2.800 7.550 10.300 12.325 16.600

Now let’s extend this example to calculate the quantiles by Month and (grouped) Temp:

Click here to view code image

> tapply(airquality$Wind,
+ list(airquality$Month, cut(airquality$Temp, 3)), quantile)
 (56,69.7] (69.7,83.3] (83.3,97]
5 Numeric,5 Numeric,5 NULL
6 Numeric,5 Numeric,5 Numeric,5
7 NULL Numeric,5 Numeric,5
8 NULL Numeric,5 Numeric,5
9 Numeric,5 Numeric,5 Numeric,5

The “simplification” process has now forced the outputs into a matrix, creating a “matrix of lists,” which is a particularly complex and unhelpful structure:

Click here to view code image

> X <- tapply(airquality$Wind,
+ list(airquality$Month, cut(airquality$Temp, 3)), quantile)
> class(X)
[1] "matrix"
> X
 (56,69.7] (69.7,83.3] (83.3,97]
5 Numeric,5 Numeric,5 NULL
6 Numeric,5 Numeric,5 Numeric,5
7 NULL Numeric,5 Numeric,5
8 NULL Numeric,5 Numeric,5
9 Numeric,5 Numeric,5 Numeric,5
> X[1,1]
[[1]]
 0% 25% 50% 75% 100%
 7.400 9.700 11.500 13.925 20.100

Return Values from tapply

As with sapply, the returns from tapply can sometimes be difficult to predict. Table 9.6 summarizes the return objects from tapply based on the number of return values from a function and the number of grouping variables.

[image: Image]

TABLE 9.6 Return Values from tapply

Given that tapply may return unexpected (and/or highly complex) values, we recommend the use of lapply and split instead of tapply, unless we can guarantee the number of return values from the function (so we can rely on the outputs).

Tip: The plyr Package

The plyr package was developed and is maintained by popular R package author, Hadley Wickham. It was first released to CRAN in 2008 and is still one of the most popular R packages on CRAN, with a huge number of packages depending on plyr functionality. The plyr package offers a more consistent “apply” syntax based on the input and output structures to which we apply a function. Functions follow the form [i][o]ply, where i and o represent the input and output format respectively. For example the function llply expects a list input and produces a list output:

Click here to view code image

> air <- split(airquality, airquality$Month)
> llply(air, dim)

In addition to providing an alternative apply framework plyr offers data manipulation functionality such as merging and aggregation. However, for those working with data frames, the dplyr package that you will be introduced to in Hour 12 provides a much more user-friendly approach to data manipulation and aggregation.

Summary

In this hour, we have looked at a number of ways we can apply simple functions to data structures in a more sophisticated way. Specifically, we’ve look at

[image: Image] The use of loops to iterate over data objects

[image: Image] The rich set of “apply” functions

Together, this provides a range of capabilities of summarizing data and performing tasks in a repetitive manner. In later hours, we’ll extend this to cover higher-level mechanisms for processing and aggregating data, with a focus on summarizing data frames. In Hour 18, we’ll also look again at loops and “apply” functions with respect to coding efficiency and performance.

Q&A

Q. How can I stop a “for” loop if a certain condition is met?

A. You can stop the for loop using the break construct, as follows:

Click here to view code image

> for (i in 1:100) {
+ cat("\n Hello") # Writing a message
+ if (runif(1) > .9) {
+ cat(" - STOP!!")
+ break # 90% chance of stopping each time
+ }
+ }

 Hello
 Hello
 Hello
 Hello
 Hello
 Hello
 Hello
 Hello
 Hello - STOP!!

Q. How do I stop the process if I get stuck in an infinite “while” loop?

A. You can use the Esc key (in interactive mode) to stop the process.

Q. How could I apply a function over multiple lists at the same time?

A. The mapply function is a multivariate version of sapply, which allows us to apply functions over multiple lists at the same time. For example, let’s apply the rpois function over elements 1:5 (for the number of values to sample) and 5:1 (for the lambda values to use):

Click here to view code image

> mapply(rpois, n = 1:5, lambda = 5:1)
[[1]]
[1] 2

[[2]]
[1] 7 3

[[3]]
[1] 4 1 1

[[4]]
[1] 1 0 2 4

[[5]]
[1] 3 0 1 0 2

Q. How performant is a “for” loop compared to, say, an “apply” function?

A. Generally, the R language is optimized for vectorized operations, and it is quite possible to write very underperforming code using (nested) for loops. The “apply” family of functions can add some gains in terms of both performance and code maintenance. This will be discussed further in Hour 18.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. What is the difference between a “for” and a “while” loop?

2. If you use a for loop to iterate over a vector of (character) column names, how would you use each value to reference a column in a data frame?

3. When using the apply function, what does the MARGIN argument control?

4. How do you pass additional arguments to a function you wish to “apply”?

5. What is the difference between sapply and lapply?

6. What does the split function do, and how can you use it in conjunction with lapply/sapply?

7. When using tapply, how do you specify that a summary is to be performed “by” more than one variable?

Answers

1. A “for” loop will iterative for a predefined set of values. A “while” loop instead iterates until a specified condition is no longer true.

2. If the condition results in a single missing value, then an error is returned:

Click here to view code image

> testMissing <- function(X) {
+ if (X > 0) cat("Success")
+ }
> testMissing(NA)
Error in if (X > 0) cat("Success") :
 missing value where TRUE/FALSE needed

If you use the all function with a condition that contains any missing values, the result is missing and therefore will also result in an error (since you do not know if “all” the conditions are met):

Click here to view code image

> allMissings <- rep(NA, 5) # All missing values
> someMissings <- c(NA, 1:4) # Some missing values
> all(allMissings > 0)
[1] NA
> all(someMissings > 0)
[1] NA

If we use the any function with a condition that contains all missing values, the result is a missing value. If, however, you use the any function with a vector where not all values are missing, some conditions may be met:

> any(allMissings > 0)
[1] NA
> any(someMissings > 0)
[1] TRUE

3. The MARGIN argument controls the dimension over which you want to apply your function (for example, 1 for rows, 2 for columns).

4. Each “apply” function has an ellipsis argument where you list additional arguments—for example, apply(Y, X min, na.rm = TRUE).

5. The lapply function applies a function to elements of a list (or vector) and (always) returns its results in a list. The sapply function performs exactly the same actions but, where possible, will try to simplify the output (for example, as a vector or array).

6. The split function will take a data object (typically a vector or data frame) and break it into parts based on one or more grouping variables, storing the results as a list. When the results are “broken” into a list structure, we can use lapply or sapply to apply a function to each element—for example, you can calculate the mean Y by levels of X using the following:

sapply(split(Y, X), mean)

7. You can specify multiple “by” variables using a list as follows:

Click here to view code image

tapply(Y, list(X1, X2), mean)

Activities

1. Create a “for” loop that iteratively prints each element of LETTERS on a new line.

2. Create a “for” loop that prints the mean mpg value (from the mtcars dataset) for each unique level of the carb variable.

3. Look at the provided WorldPhones matrix, which contains the total number of phones in different regions of the world between 1951 and 1961. Use the apply function to calculate the total number of phones by year and the maximum number of phones by region.

4. Create a list containing three numeric vectors. Use lapply or sapply to print the median value from each element of the list.

5. Use split together with sapply to calculate the median value of mpg (from the mtcars data) by levels of carb.

6. Use split together with lapply to calculate a summary (?summary) of the iris data by levels of Species.

Hour 10. Importing and Exporting

What You’ll Learn in This Hour:

[image: Image] Storage of data in R

[image: Image] Working with flat files

[image: Image] Connecting to databases

[image: Image] Working with Microsoft Excel

In Hours 3 through 6, we looked at the various mechanisms for storing data in R and some useful functions for manipulating modes of R data. In this hour, you are introduced to the common methods for importing and exporting data. By the end of the hour you will have seen how R can be used to read and write flat files and connect to database management systems (DBMSs) as well as Microsoft Excel.

Working with Text Files

Everyday R users tend to prefer importing and exporting Comma Separated Value (CSV) and other text-based (“flat file”) formats. Text files are, of course, completely open and can easily be generated from any analysis tool. Reading flat files in to R (and exporting them) is very straightforward.

Tip: File Navigation

The file.choose function allows us to browse and select a file to import using our operating system’s standard file browsing interface.

Perhaps the easiest way to import a text file in RStudio is via the menu system. The Import Wizard can be started by navigating to Tools > Import Dataset > From Text File and then navigating to the file you wish to import. The wizard looks at the file and tries to evaluate whether your dataset has headers and which character separates columns. In most cases the defaults are correct, and you simply need to click the Import button when you are ready to import your data.

Reading in Text Files

The RStudio import feature is, of course, unique to RStudio. However, if you try it, you will notice that, like many of the menu features in RStudio, it produces the line of R code required to read in the data, which is great if you work in a heavily regulated industry where reproducible code is a necessity. We will now look at the functions read.table and read.csv used by the Import Wizard.

The read.table function reads tabular information from a text file and returns a data frame. An example of using read.table to read in djiData.csv, embedded within the mangoTraining package, is shown in Listing 10.1. In the example, we assume that the data has been copied to our current working directory for simplified file referencing. Note that when we call read.table, we create a named R object. This is how we will refer to the dataset once we have read it into R. If we don’t do this, R will just print the dataset to the screen and we won’t be able to access it.

LISTING 10.1 Reading in Text Files

Click here to view code image

 1: > djiData <- read.table("djiData.csv", header= TRUE, sep = ",")
 2: > head(djiData,3)
 3: Date DJI.Open DJI.High DJI.Low DJI.Close DJI.Volume DJI.Adj.Close
 4: 1 12/31/2014 17987.66 18043.22 17820.88 17823.07 82840000 17823.07
 5: 2 12/30/2014 18035.02 18035.02 17959.70 17983.07 47490000 17983.07
 6: 3 12/29/2014 18046.58 18073.04 18021.57 18038.23 53870000 18038.23

The first line in Listing 10.1 only works because we first copy djiData.csv to our working directory. R then uses relative paths to find and import the data. If we instead place the file within a “data” directory within our working directory then we can import using the line:

Click here to view code image

> djiData <- read.table("data/djiData.csv", header= TRUE, sep = ",")

Alternatively, we can provide the full file path to the file; however, this makes our code less transferable, particularly when importing multiple files because we would have to change the file path for each dataset that we import. As we discussed in Hour 2, “The R Environment,” it is important to remember to use forward slashes when referencing file paths.

Tip: Package Data

In Listing 10.1, we copy the data from the mangoTraining package to our working directory in order to read it in. This highlights the ease with which data can be imported from our working directory. We normally extract data from an R package using the package argument contained within the system.file function:

Click here to view code image

> system.file(package = "mangoTraining", "extdata/djiData.csv")
[1] "C:/Program Files/R/R-3.1.2/library/mangoTraining/extdata/djiData.csv"

Using the package argument contained within the system.file function allows us to write code that is independent of our own operating system and therefore more transferrable.

Caution: Case-Sensitivity for File Paths

The import and export functions within R work directly with the operating system. If you use an operating system such as Windows that is not case-sensitive, then there is no need to match case for the file path. In other words, djiData.csv is equivalent to djidata.csv. However, if you use an operating system such as Linux, which is case-sensitive, then this case-sensitivity must be respected in file paths.

The read.table function is a generic function for reading in text data, and it makes several assumptions about your data. The important assumptions (or defaults) are that the dataset does not have a row of column headings, that header = FALSE, and that elements are separated using a space (sep = " "). There are also function arguments to specify the symbol that represents missing data and the characters used for marking character data. In addition, we can choose which rows to start and stop reading the data from, which is particularly useful for text output where the first few lines are meta-information before the data actually begins.

Tip: The Windows Clipboard

In Windows you can copy and paste your data into R by taking advantage of the “clipboard.” Simply set the file argument in read.table to be file="clipboard". Setting sep="\t" specifies a tab separator and allows you to copy and paste directly from Excel. However, this practice is generally discouraged as it is not reproducible.

Tip: Troublesome Factors

As you saw in Hour 5, “Dates, Times, and Factors,” when R creates a data frame, the default behavior is to convert anything nonnumeric into factors. This means that you have to carefully handle dates and other columns that have been turned into factors, as well as reorder or relabel factor levels for the factors you do want. If this becomes a major part of your workflow, you might consider the stringsAsFactors argument to read.table. Setting stringsAsFactors=FALSE will prevent any columns being turned into factors, giving you more control over how your data is represented in R.

Reading in CSV Files

If you work with CSV files, sooner or later you will become tired of typing header=TRUE, sep="," each time you read in a dataset. The read.csv function is simply a wrapper for read.table that assumes your dataset has headers and that the separator is a comma. Note that we are still required to provide the “.CSV” file extension when specifying the file we want to read in, assuming that file has the correct extension.

Click here to view code image

> djiData <- read.csv("djiData.csv", header= TRUE, sep = ",")

Note: Comma Used as a Decimal Point?

In some European countries and other countries throughout the world, a comma is used as a decimal point instead of a period, and data elements are instead separated by semicolons. If you work with such data or have colleagues that do, then the read.csv2 function is designed specifically for such data.

Exporting Text Files

We can write data frames to CSV or other simple text formats using the write.csv or write.table function, respectively. As with read.csv and read.table, the write.csv function is simply a wrapper for write.table that reduces the number of required arguments when exporting .CSV files. Both functions expect the data frame that you want to export as the first argument and the name of the file that you want to create as the second.

As with the read.* functions, there are a number of other useful arguments that can assist with writing out data. In particular, the argument row.names = FALSE prevents the row names (which are often numbers) from being written to the output file. We can also control whether quotes are placed around character data as well as the character used to represent missing data. Here, we write out the internal airquality dataset to our working directory:

Click here to view code image

> write.csv(airquality, "airquality.csv", row.names = FALSE)

Faster Imports and Exports

The package data.table has a function called fread that is much faster for large files. The fread function is also generally easier to use than read.table because it guesses the separator and can interpret common column types that are known to cause trouble for R users. We will look closer at data.table and fread in Hour 12, “Efficient Data Handling in R.”

Another alternative for flat files is readr, released to CRAN by popular R package author Hadley Wickham in 2015. As with fread, the aim of the functions within readr is to improve the speed at which (large) CSV and other flat files can be read into R as well as to interpret common column types to save post-processing effort on the part of the user. The package also produces data frames in a “tbl_df” format, ready for use with the dplyr package, which we will look at in Hour 11, “Data Manipulation and Transformation,” and Hour 12. The main function in readr for reading .CSV files into R is the read_csv function.

Neither data.table nor readr are installed as part of the base R distribution and must therefore be installed separately.

Efficient Data Storage

As you saw in Hour 2, when we close R (or RStudio) we have the option of saving our workspace. By saving the objects in our workspace, we are moving them from memory to a single “.RData” file stored on disc. When we start a new R session, our workspace is restored to the same state as when we closed R down.

Caution: Restoring Sessions

When we start a new session using an .RData file, it restores all of the objects but it does not reload all of the packages we were using. Clearly this will cause some problems if any of our objects rely on functionality within the packages that were loaded. Be sure to reload any necessary packages when starting a new session from an .RData file.

To avoid errors and ensure reproducible code, it is generally better to work with a clean environment than rely on a saved workspace. The .RData format is exclusive to R and is therefore not a suitable means of transferring data between applications. However, it can be used as an efficient means of storing large interim datasets during an analysis. A similar .rds format can be used for saving individual datasets.

To illustrate the efficiency of the .RData and .rds formats, let’s create a data frame with 10 million rows and write it out to.CSV, .RData, and .rds formats:

Click here to view code image

> longData <- data.frame(ID = 1:10000000, Value = rnorm(10000000))
> write.csv(longData, "longData.csv", row.names = F)
> save(longData, file = "longData.RData")
> saveRDS(longData, file = "longData.rds")

We start by deleting the longData object from our session. Now let’s read in the .CSV file and time the operation with a function called system.time:

Click here to view code image

> rm(longData)
> system.time(longData <- read.csv("longData.csv"))
 user system elapsed
118.04 1.03 119.31

I’m using a decent machine here with 8GB RAM running 64-bit R, so nearly 2 minutes of elapsed time is pretty slow. So how does load perform with the .RData and .rds file types?

Click here to view code image

> rm(longData)
> system.time(load("longData.RData"))
 user system elapsed
 0.78 0.03 0.81
> rm(longData)
> system.time(load("longData.RData"))
 user system elapsed
 0.81 0.03 0.84

Using the R formats, we are down to less than a second, which is a huge difference. Incidentally, the read_csv function from readr and fread from data.table both managed the same .CSV import in less than 10 seconds. We will look more closely at some R packages that can generally improve R’s speed and efficiency when handling large data during Hour 11 and Hour 12. We will also look at code efficiency in Hour 18, “Code Efficiency.”

Proprietary and Other Formats

If you have previously been using another statistical analysis language such as SAS or SPSS, then you will probably find yourself needing to read .SAS7BDAT or .SAV files into R. One solution would be to use SAS or SPSS to write out a CSV file, which can easily be read into R; however, this is not always possible, and you may find yourself needing to read in data from SAS, SPSS, Stata, Minitab, and so on into R. Such data can (mostly) be read into R using the foreign package, which is a “recommended” R package and therefore distributed with each new version of R.

The foreign package is a small collection of functions to read and write data to some well-known data formats. The package functions very well; however, it is limited by proprietary formats. For example, in order to write to SAS, the package actually generates an intermediary text file and corresponding SAS script that it tries to call from your SAS installation in order to read the text into SAS.

Note: SAS Users

If you are a SAS user, you may find the package sas7bdat useful for reading and writing .SAS7BDAT files. However, you should be aware that the package is documented as being experimental in places and does not work in all cases. If you are working with transport files, the SASxport package provides tools for writing SAS transport files from R.

The haven package provides a wrapper for Evan Miller’s ReadStat C library and offers an alternative to foreign. The package is still in its infancy and limited to SAS, SPSS, and STATA, but unlike foreign it can read the proprietary .SAS7BDAT format, and like readr it can correctly interpret some date formats and generate data that is ready for dplyr.

Relational Databases

Unfortunately there is no “one-size-fits-all” solution to working with relational databases in R. There are a few general-purpose packages for working with databases, but for the best results you are better off looking for the package that has been built specifically for the database that you are using.

The approach that the various database packages take in R is very much the same. There are typically one or more functions to assist with making a connection to the database, plus a number of utility functions that wrap up common tasks that you might perform in SQL. If you are familiar with SQL, though, you may prefer to write SQL directly, which all the main packages allow you to do.

RODBC

The RODBC package is probably the most well established method for connecting to a database from R. Note that the package is not installed by default; it must first be installed and loaded. As the name suggests, it implements standard ODBC database connectivity. You can therefore use RODBC to connect to all the popular DBMSs: Oracle, MySQL, Microsoft Access as well as SQL Server, PostgreSQL, and SQLite. You can even use RODBC to connect to Excel spreadsheets!

Let’s look at an example of an RODBC workflow using the well-known training database distributed with Microsoft Access: Northwind.mdb. The package is available online via the book’s website or within the mangoTraining package. To find the file within mangoTraining we can use the following line:

Click here to view code image

> system.file(package = "mangoTraining", "extdata/Northwind.mbd")

The RODBC package contains a general-purpose odbcConnect function for connecting to any database, though for Access we can use a “convenience wrapper,” odbcConnectAccess. As always, when importing or connecting to external data from R it is important that we name the connection in order to be able to refer to it. If a username and password is required, these can be entered using the arguments uid and pwd. We start by loading the RODBC package and making a connection to the database. In the following example, it is assumed that the database has been placed in our current working directory. We therefore provide the file name only. Alternatively, a full file path can be specified.

Click here to view code image

> library(RODBC)
> nWind <- odbcConnectAccess("Northwind.mdb")

Caution: Windows Architecture

The odbcConnectAccess function only works with 32-bit versions of the Microsoft drivers. These cannot be used when working in 64-bit R. For Access 2007 and beyond, there is the option to install 64-bit drivers, though the drivers cannot be installed with 32-bit Office. These compatibility issues can make RODBC difficult (but not impossible) to set up in a managed IT environment. If you run into problems, a sensible first step is to check whether you are running 32-bit or 64-bit R using Sys.getenv("R_ARCH").

The RODBC package contains a number of utility functions, such as sqlTables, that can be used to explore the database. The first each of the utility functions is always the name of the connection:

Click here to view code image

> nwTableData <- sqlTables(nWind)
> nwTableData[1:3, c("TABLE_NAME", "TABLE_TYPE")] # Preview main information
 TABLE_NAME TABLE_TYPE
1 MSysAccessObjects SYSTEM TABLE
2 MSysACEs SYSTEM TABLE
3 MSysCmdbars SYSTEM TABLE

Another useful function is sqlColumns, which returns information about the columns within a specific table:

> sqlColumns(nWind, "Orders")

In order to extract data from the database, we can use wrappers such as sqlFetch to import an entire table or subsets of rows, or we can use SQL commands directly via sqlQuery:

Click here to view code image

> orderQuery <- "SELECT OrderID, EmployeeID, OrderDate, ShipCountry FROM Orders"
> keyOrderInfo <- sqlQuery(nWind, orderQuery)
> head(keyOrderInfo, 3)
 OrderID EmployeeID OrderDate ShipCountry
1 10248 5 1996-07-04 France
2 10249 6 1996-07-05 Germany
3 10250 4 1996-07-08 Brazil

Further utility functions exist in order to clear the rows of a table (sqlClear), drop the table entirely (sqlDrop), and add new tables (sqlSave). When we have finished working with the database, it is important to remember to close the connection, like so:

> odbcClose(nWind)

If making multiple connections, we can use the odbcCloseAll function to close all of them in a single command.

DBI

The RODBC package is an extremely popular, well-tested package, but it is certainly not the only option available. Away from RODBC, the vast majority of R packages available for connecting to databases implement a standard database interface (DBI). Packages such as ROracle, RJDBC, RPostgreSQL, RMySQL, RMySQLite, and many more use the interface, which is wrapped in an R package, DBI.

The aim of the DBI is to ensure consistency when working with databases. Each of the packages that uses the interface contains a common set of functions that behave in the same way regardless of which package you are using or which database you are connecting to. The only difference is the connection itself. The standard set of functions follow the format db* (for example, dbReadTable). This standardization makes it incredibly easy to switch between packages because, once you’ve learned how to use one, you can essentially use them all. Alternatively, you can use DBI directly, as Listing 10.2 demonstrates, via RSQLite. Note how similar the approach is to the RODBC package, despite the fact that RODBC does not follow DBI.

LISTING 10.2 Using DBI Directly

Click here to view code image

 1: > library(DBI)
 2: > library(RSQLite) # We create a SQLite DB
 3: > # Create a new SQLite database in-memory
 4: > dbiCon <- dbConnect(SQLite(), dbname = ":memory:")
 5: >
 6: > # Write airquality to the DB as a new table
 7: > dbWriteTable(dbiCon, "airquality", airquality)
 8: [1] TRUE
 9: >
10: > # Check what columns (fields) are in the airquality table
11: > dbListFields(dbiCon, "airquality")
12: [1] "Ozone" "Solar.R" "Wind" "Temp" "Month" "Day"
13: >
14: > # Send a query and return the result
15: > aQuery <- "SELECT * FROM airquality WHERE Month = 5 AND Wind > 15"
16: > dbiQuery <- dbSendQuery(dbiCon, aQuery)
17: > dbFetch(dbiQuery)
18: Ozone Solar.R Wind Temp Month Day
19: 1 8 19 20.1 61 5 9
20: 2 6 78 18.4 57 5 18
21: 3 11 320 16.6 73 5 22
22: 4 NA 66 16.6 57 5 25
23: >
24: > dbClearResult(dbiQuery) # Be tidy!
25: [1] TRUE

Working with Microsoft Excel

If you are reading this book, there is an extremely high likelihood that either you or one of your close colleagues has been using Excel for day-to-day analysis. And why not?! So long as it’s not pushed beyond its limits, it’s a fantastic, easy-to-use tool for generating simple summary statistics. It’s also a tool that very few analysts are willing to throw away, even after they have seen what R is capable of. You won’t be surprised to learn, therefore, that there are a million and one R packages available for connecting R and Excel (well, more than 10 anyway). It probably also won’t surprise you that they all do it in a slightly different way.

Connecting to R from Excel

If you want to link R and Excel, you can either call R from Excel or call Excel from R. Those who want to call R from Excel usually do so because they have a large number of colleagues who are extremely comfortable in Excel and want any analysis to start and end in there. This approach is particularly common in the insurance industry, where the underwriters typically consume advanced algorithms that actuaries have developed in R but via an Excel front end.

There are a number of ways of calling R from Excel, depending on the level of sophistication you require. At some point, a Microsoft language such as VBA or C# will be required to call to R either via command line or using a technology such as RServe. The focus of this book is on R, however, so we will look at the methods for connecting to Excel from R.

Reading Structured Data from Excel

If you have structured data—that is, data that is neatly laid out such that each tab of your workbook contains just a single table of data, usually stored in the top-left corner of the sheet—then there are some very efficient options available to you for reading in data from Excel. One such package is RODBC, which you have just seen in the context of databases. Using RODBC, we connect to a workbook using the odbcConnectExcel function for .XLS files or odbcConnectExcel2007 for .XLSX files. We then treat the workbook like a mini database, where each tab is a separate table. All of the standard SQL wrappers work in the same way as for other types of database. The RJDBC package can similarly be used with Excel.

An alternative solution designed specifically to work with structured data in Excel is Hadley Wickham’s readxl package. This package was released in 2015 and, in a similar vein to readr, aims to improve the speed at which data can be read from Excel. Likewise, it also produces tbl_df output for use with dplyr.

Let’s start with a simple example using the airquality.xlsx workbook. This workbook can be found in the mangoTraining package. As with other examples in this hour, we can use the following line to locate the file within the package:

Click here to view code image

> system.file(package = "mangoTraining", "extdata/airquality.xlsx")

The workbook consists of a single sheet named “data” containing a copy of the internal airquality data frame. We start by loading the package and using the excel_sheets function to return the sheet names.

Click here to view code image

> library(readxl)
>
> # What sheets does the workbook contain?
> excel_sheets("airquality.xlsx")
[1] "data"

Next we use the primary read_excel function to read the airquality.xlsx file. We pass the name of the sheet we want to read as the second argument. As an alternative, we can provide the sheet position, in this case 1. Since 1 is also the default sheet number, we could also leave out the argument altogether in the following example:

Click here to view code image

> # Read in the "data" sheet
> air <- read_excel("airquality.xlsx", sheet = "data")
> head(air, 3)
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3

The function automatically ignores blank rows and columns until it finds a cell containing data; however, we can control the row and column that it starts reading from using the arguments skip and col_names respectively. We can use the col_types argument to specify a vector of types of data contained within each column, including date ("date") type. The readxl package also works with the older .xls format. It cannot be used to write to Excel workbooks, however. For that we need one of four “all-rounder” packages.

Connecting to Excel from R

At the time of writing there are four “all-rounder” packages that can both read and write to Excel from R. Two of these four, XLConnect and xlsx, are very similar in their approach and use Java with the rJava package underneath to make the connection. The other two are the openxlsx package and the excel.link package, the most different of the four in terms of approach.

Each of the first three packages mentioned implements a similar workflow idea, albeit implemented in slightly different ways using functions with slightly different names. That workflow involves creating an image of the workbook in R that can be manipulated before saving any changes back to the workbook or to a new file. The excel.link package uses the RDCOMClient package to open an Excel workbook and edit it live using R code.

The XLConnect Package

Let’s walk through an example of a typical analysis workflow using XLConnect. In this workflow we will take the following steps:

1. Connect to a workbook.

2. Import data from one of the tabs.

3. Generate some statistical summaries of the key columns.

4. Create a simple plot (using the plot function from the graphics package, which is covered in Hour 13, “Graphics.”)

5. Write the summary data and graphic back to new tabs in the workbook.

6. Save the workbook with a new filename.

Making the connection results in a named R object that we must reference when using any of the other functions within the package. Note that, strictly speaking, we are not actually making a connection but a copy of the workbook, which is held in memory: The workbook can still be opened and edited from Excel while we are making changes in R. The loadWorkbook function can also be used to create new workbooks.

Click here to view code image

> airWB <- loadWorkbook("airquality.xlsx")

Caution: Java Dependency

Loading the XLConnect package is not as straightforward as for other packages due to the reliance on the rJava package, which itself has a reliance on the Java SE Development Kit, better known as JDK. If JDK is not installed, R cannot find JAVA_HOME and the XLConnect package fails to load. In most cases, simply installing the appropriate version of JDK (greater than 1.4 is required for rJava) for your operating system and architecture (that is, the 32-bit or the 64-bit version) and accepting all defaults fixes the issue. Instructions for installing JDK versions and the required executable can be found at http://www.oracle.com.

Once we have made our connection, we can use a function such as getSheets or getDefinedNames to explore the workbook:

> getSheets(airWB)
[1] "data"

Once we’re done exploring, we can use a function such as readWorksheet, readNamedRegion, or readTable to read in data from the workbook. In this case we use readWorksheet. The function automatically ignores blank rows and columns until it finds a cell containing data. Otherwise, we can use the arguments startRow, endRow, startCol, and endCol to specify the exact location of the data within the sheet. Note the use of the sheet name in the second argument. We could also have used the sheet index.

Click here to view code image

> air <- readWorksheet(airWB, "data")
> head(air)
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

Tip: Indexing Columns

In Excel, rows can be referenced numerically, whereas columns are referenced alphabetically. In R, we tend to work with numerical referencing for both, and the XLConnect package is no different. The col2idx function is a useful function for converting columns such as AA into their equivalent numeric position:

> col2idx("AA")
[1] 27

Next, we summarize the data using the aggregate function that we discuss in Hour 11 and create a plot in our working directory using the plot function from the graphics package, which we will explore fully in Hour 13.

Click here to view code image

> # Summary Data
> averageOzone <- aggregate(data = air, Ozone ~ Month, mean, na.rm = T)
>
> # Graphic as png
> png("Ozone_Levels.png")
> hist(air$Ozone, col = "lightblue",
+ main = "Histogram of Ozone Levels in New York\nMay to September 1973",
+ xlab = "Ozone (ppb)")
> dev.off()

In this next-to-last step, we create a new sheet and load it with the summary data and graphic we just created. Note the use of createName to create a new named region within the workbook, which is then used to place the graphic. Note also the use of the argument originalSize = TRUE. This ensures that the image dimensions are retained and that it is not resized to fit the named region.

Click here to view code image

> # New tab
> createSheet(airWB, "Summary")
>
> # Write summary data
> writeWorksheet(airWB, averageOzone, "Summary", startRow = 2, startCol = 2)
>
> # Add graphic
> createName(airWB, "PlotGoesHere", "Summary!E2")
> addImage(airWB, filename = "Ozone_Levels.png", name = "PlotGoesHere",
+ originalSize = TRUE)

Finally, we set the Summary tab to be the current active tab so that when we next open the workbook, this is the tab we see and then save the workbook. A screenshot of the final workbook open in Excel is show in Figure 10.1.

Click here to view code image

> # Set active sheet and close
> setActiveSheet(airWB, "Summary")
> saveWorkbook(airWB, "air_summary.xlsx")

[image: Image]

FIGURE 10.1 Writing data and graphics to Excel from R

XLConnect has many more features, many of which are replicated using similarly named functions in xlsx and openxlsx. Such features include formatting, writing Excel formulas, and merging cells.

In our experience, the biggest restriction of XLConnect (and xlsx) is the large amount of memory required when working with Excel workbooks. There are options for dealing with memory issues, but eventually you will reach a limit and may need to explore one of the other options.

Summary

In this hour, we looked at some of the primary methods for importing data into R for analysis. You saw how to easily read and write text files using read.table and read.csv, and if your data is large you can use faster alternatives within the data.table and readr packages. You also saw how R’s .RData format can be used as an efficient means for storing data on disk.

You also saw how to use either the RODBC or DBI syntax to connect to and edit a DBMS from R and how to connect to an Excel spreadsheet using XLConnect. The “Activities” section provides an opportunity for you to try these tools yourself. In the next hour, we will continue with the data workflow and look at manipulation and transformation in R.

Q&A

Q. A colleague of mine is using xlsx to connect to Excel. Should I encourage them to switch to XLConnect?

A. After installation there really is very little difference between the two packages (or openxlsx for that matter). In certain circumstances you may experience limitations with one or the other, but if your colleague is using xlsx and your only experience of XLConnect to date is what you’ve read in this hour, then you may as well begin learning xlsx.

Q. You say that RODBC can be used to read structured data from Excel. Can it be used to write data to Excel as well?

A. Absolutely. For reasons of efficiency this is not the default behavior, but if you specify readOnly = FALSE when calling odbcConnectExcel or odbcConnectExcel2007, you can override the default and write tables back to the spreadsheet.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. What argument prevents row numbers or names being written to a CSV file when using write.csv?

2. In which R packages would you find the functions read.csv, read_csv, and fread?

3. What binary format can you use to store R objects on disk?

4. Is it possible to use a 32-bit ODBC driver to connect to Excel from 64-bit R?

5. Which RMySQL function can be used to read tables from a database?

6. Name three packages that can be used to connect to Excel from R.

Answers

1. To prevent R’s default behavior of writing out what are known as “row names,” you specify row.names = FALSE.

2. The read.csv function is in the utils package that is distributed with R. The read_csv and fread functions can be found in reader and data.table, respectively.

3. You use the .RData format to save any number of objects from your workspace to disk. This facilitates easy loading later on.

4. No. You need to ensure that the R architecture matches the ODBC driver architecture to use RODBC.

5. We didn’t explicitly cover RMySQL, but it is a DBI package and therefore the dbReadTable function can be used.

6. In this hour, we mentioned several, including XLConnect, xlsx, openxlsx, excel.link, RODBC, and readxl. There is also the gdata package, which offers general programming tools for data manipulation.

Activities

1. Read the NST-EST2014-01.csv data containing annual estimates of the resident population for the United States, Regions, States, and Puerto Rico from April 1, 2010 to July 1, 2014, taken from the U.S. Census Bureau.

2. Write out R’s internal quakes dataset to a .CSV file. Ensure that row numbers are not written to the file.

3. Simulate a million records of a demographic data frame containing columns ID, Age, Sex, Weight, and Height and then save the data to an .RData file.

4. Make a connection to the Northwind database:

[image: Image] Create data tables from the Order Details and Orders tables.

[image: Image] Merge the two tables based on the Order ID.

[image: Image] Calculate the mean unit price by Customer ID.

[image: Image] Save this data back to the Northwind database.

5. Use the XLConnect package to create an Excel workbook containing R’s internal mtcars data:

[image: Image] Install JDK from http://www.oracle.com.

[image: Image] Install and load the XLConnect package.

[image: Image] Use loadWorkbook to create a new file.

[image: Image] Write the mtcars dataset to this file.

[image: Image] Save the workbook.

Hour 11. Data Manipulation and Transformation

What You’ll Learn in This Hour:

[image: Image] Sorting

[image: Image] Setting and merging

[image: Image] Handling duplicate values

[image: Image] Restructuring data frames

[image: Image] Data Aggregation

In the previous hour, we walked through a variety of methods for reading data into R as well as exporting it. This included working with flat files, R’s .RData format, databases, and Microsoft Excel. However, reading data into R is only the start of the data analysis workflow. As data scientists and statisticians, we rarely get to control the structure and format of our data. In Hour 5, “Dates, Times, and Factors,” and Hour 6, “Common R Utility Functions,” you saw some useful functions for working with the format of your data. We looked at dates, times, factors, and missing data. We also looked at common functions for working with numeric and character data. Now we will look a little closer at the structure of our data.

Analysts will tend to quote all kinds of numbers for the proportion of a data analysis workflow that is taken up with data manipulation, or “data munging” as it is increasingly being referred to. However, one thing that most people agree on is that it takes more time than it should—and takes up significantly more time than the interesting analysis piece at the end! These days you can make a career out of being an expert data wrangler!

Several approaches to data manipulation in R have evolved over time. In this hour, we start by looking at what could be called “traditional” approaches to the data manipulation tasks of sorting, setting, and merging. We will then look at the popular packages reshape, reshape2, and tidyr for data restructuring. We will then continue the data manipulation theme into Hour 12, “Efficient Data Handling in R,” where we will look deeper at two of the most popular packages for data manipulation and aggregation, data.table and dplyr.

Sorting

In R we are rarely required to sort our data in order to use a particular function. Most functions do it for us if it’s needed. However, if we are calculating cumulative sums, analyzing time series, or if we just want to view our data in a way that makes sense to us, then we will need to sort the data ourselves. Base R contains a function named sort that enables us to easily sort vectors. By default, the function sorts vectors from low to high, though we can sort in descending order by specifying decreasing = TRUE.

Click here to view code image

> sort(airquality$Wind)[1:10]
 [1] 1.7 2.3 2.8 3.4 4.0 4.1 4.6 4.6 4.6 4.6

Unfortunately, the sort function only works with vectors, and it is useless to us if we want to sort data frames. To do so, we need to use the order function.

Sorting Data Frames

The order function returns a vector of positions or indices corresponding to the elements we would select if we were to order our data. Let’s create a simple numeric vector, myVec, and examine the output when we feed it to the order function:

Click here to view code image

> myVec <- c(63, 31, 48, 82, 51, 20, 72, 99, 84, 53)
> order(myVec)
 [1] 6 2 3 5 10 1 7 4 9 8

The first value of the output vector is 6. This tells us that if we were to sort our data from low to high, the first value in the myVec vector that we should select is the sixth value (in this case, the number 20). Next, we should select the second value, which is 31, and so on. The sort order that the order function produces can be used to sort vectors; however, the real benefit is felt when working with data frames. In Listing 11.1 we use order to sort the entire airquality data frame based on the Wind column. The order function is used to select rows in the subscript.

LISTING 11.1 Sorting Data Frames

Click here to view code image

 1: > sortedByWind <- airquality[order(airquality$Wind),]
 2: > head(sortedByWind, 10)
 3: Ozone Solar.R Wind Temp Month Day
 4: 53 NA 59 1.7 76 6 22
 5: 121 118 225 2.3 94 8 29
 6: 126 73 183 2.8 93 9 3
 7: 117 168 238 3.4 81 8 25
 8: 99 122 255 4.0 89 8 7
 9: 62 135 269 4.1 84 7 1
10: 54 NA 91 4.6 76 6 23
11: 66 64 175 4.6 83 7 5
12: 98 66 NA 4.6 87 8 6
13: 127 91 189 4.6 93 9 4

Another benefit of the order function is that it allows us to order data by more than one variable. Looking again at Listing 11.1 we can see that each of the last four printed rows has a Wind value of 4.6. Where two or more values match like this, R uses the original order of the data for the sorting. To instead specify a second ordering variable, we simply have to add the variable as the second argument to order. We can continue to add as many ordering variables as we like in this way.

Descending Sorts

The order function has an argument, decreasing, which if set to TRUE, can be used to sort from high to low instead of the default low to high. However, this only really helps us if we are sorting a single variable or if we want to specify that all the order variables should be sorted from high to low. If we want to be specific about which variables will be ascending and which are descending, then we accept the default decreasing = FALSE and place a minus sign (-) in front of any variables that require a descending sort. An example of this is shown in Listing 11.2, where the airquality data is sorted by Wind and then by descending values of Temp.

LISTING 11.2 Descending Sorts

Click here to view code image

1: > sortedByWindandDescTemp <- airquality[order(airquality$Wind, -airquality$Temp),]
 2: > head(sortedByWindandDescTemp, 10)
 3: Ozone Solar.R Wind Temp Month Day
 4: 53 NA 59 1.7 76 6 22
 5: 121 118 225 2.3 94 8 29
 6: 126 73 183 2.8 93 9 3
 7: 117 168 238 3.4 81 8 25
 8: 99 122 255 4.0 89 8 7
 9: 62 135 269 4.1 84 7 1
10: 127 91 189 4.6 93 9 4
11: 98 66 NA 4.6 87 8 6
12: 66 64 175 4.6 83 7 5
13: 54 NA 91 4.6 76 6 23

Appending

Appending, also commonly referred to as combining or setting, normally occurs when data are arriving to us in chunks over a time period. Each dataset we receive is structurally identical to the last but contains one or more new rows of data. All we therefore need to do is append the new rows to our existing data. In R this can be achieved using the rbind function, which you first saw in action with data frames in Hour 4, “Multi-Mode Data Structures.” To use rbind with data frames, we need to ensure that the column names and the type of data contained within the columns matches between the two data frames. The rbind function is clever enough to resolve any potential issues with factor levels.

Click here to view code image

> # New data arrives each month
> jan <- data.frame(Month = "Jan", Value = 46.4)
> feb <- data.frame(Month = "Feb", Value = 55.2)
> rbind(jan, feb)
 Month Value
1 Jan 46.4
2 Feb 55.2

Merging

For some reason R tends not to be compared favorably with languages such as SAS when it comes to merging, though as a user of both R and SAS I actually find it slightly easier to merge data in R than in SAS, and it certainly beats Excel! In R, there is no need to sort before a merge. In many cases, you can also get away without specifying the variable(s) you want to merge by, though it’s generally considered bad practice not to do so explicitly. The function that we use is the merge function.

The merge function allows us to merge two datasets by one or more common variables. The function has a number of arguments that can be used to control the “by” variables and match the rows in each dataset. These arguments are listed in Table 11.1.

[image: Image]

TABLE 11.1 Arguments to the merge Function

A Merge Example

In order to see the merge function in action, let’s walk through an example using two of the datasets contained within the mangoTraining package, demoData and pkData. The data frames contain data from a fictitious clinical trial in which 33 subjects were given doses of a drug and then monitored over time. First of all, let’s preview the data frames:

Click here to view code image

> head(demoData, 3)
 Subject Sex Age Weight Height BMI Smokes
1 1 M 43 57 166 20.7 No
2 2 M 22 71 179 22.2 No
3 3 F 23 72 170 25.1 No
> head(pkData, 7)
 Subject Dose Time Conc
1 1 25 0 0.00
2 1 25 1 660.13
3 1 25 6 178.92
4 1 25 12 88.99
5 1 25 24 42.71
6 2 25 0 0.00
7 2 25 1 445.55

For each of the 33 subjects in demoData there are five corresponding records in pkData representing times at which blood samples were taken during the fictitious study. In order to model drug concentration, Conc, as a response to Dose and each subject’s demographic information, we would need to create a single data frame containing all relevant information. We do this by merging the two data frames together by the Subject column:

Click here to view code image

> fullPk <- merge(x = demoData, y = pkData, by = "Subject")

The merge function requires at least an x and a y argument to specify the two data frames that we want to merge by. Here, we specified by = "Subject" to illustrate that we were merging by the common variable Subject. However, because this is a common variable, we could just as easily have omitted the argument and let R find the common variables to merge by:

Click here to view code image

> fullPk <- merge(x = demoData, y = pkData)

The arguments by.x and by.y come into play when the name of the variable(s) that we want to merge by differs within the two data frames. The x and y refer to the first two arguments of the function. Therefore, if Subject had been labeled ID in the pkData data frame (our “y” data frame), we would have specified by.x = "Subject", by.y = "ID".

Missing Data

The all, all.x, and all.y arguments control the way in which records are merged when a value of the by variable only appears in one of the two data frames. By default, each of these arguments is set to FALSE, meaning that records will only be merged if the value of the by variable appears in both data frames. In database terminology, this is commonly referred to as an inner join. This is probably best illustrated with an example. Suppose we take tiny subsets of demoData and pkData, keeping only data for the first two subjects in demoData and subjects 2 and 3 in pkData.

Click here to view code image

> demo1and2 <- demoData[demoData$Subject %in% 1:2,]
> pk2and3 <- pkData[pkData$Subject %in% 2:3,]
>
> demo1and2
 Subject Sex Age Weight Height BMI Smokes
1 1 M 43 57 166 20.7 No
2 2 M 22 71 179 22.2 No
> pk2and3
 Subject Dose Time Conc
6 2 25 0 0.00
7 2 25 1 445.55
8 2 25 6 129.31
9 2 25 12 93.33
10 2 25 24 46.11
11 3 25 0 0.00
12 3 25 1 500.65
13 3 25 6 146.04
14 3 25 12 116.93
15 3 25 24 68.25

The default behavior of merge only merges data for subject 2 because this is the only subject that appears in both data frames:

Click here to view code image

> merge(demo1and2, pk2and3)
 Subject Sex Age Weight Height BMI Smokes Dose Time Conc
1 2 M 22 71 179 22.2 No 25 0 0.00
2 2 M 22 71 179 22.2 No 25 6 129.31
3 2 M 22 71 179 22.2 No 25 12 93.33
4 2 M 22 71 179 22.2 No 25 24 46.11
5 2 M 22 71 179 22.2 No 25 1 445.55

Specifying all.x = TRUE retains all records in our “x” data (that is, demo1and2), regardless of whether they appear in pk2and3 (a.k.a. a “left join”). Specifying all.y = TRUE does likewise for pk2and3 (a “right join”). An “outer join,” where all records in each data frame are merged regardless of whether there is a matching value to merge by in the other data frame is achieved by specifying all = TRUE. An example of an outer join is provided next. Notice that in cases where the merge by variable only has records in the “x” data frame, values for all other variables in the “y”” data frame are set to NA, and vice versa.

Click here to view code image

> merge(demo1and2, pk2and3, all = TRUE)
 Subject Sex Age Weight Height BMI Smokes Dose Time Conc
1 1 M 43 57 166 20.7 No NA NA NA
2 2 M 22 71 179 22.2 No 25 0 0.00
3 2 M 22 71 179 22.2 No 25 6 129.31
4 2 M 22 71 179 22.2 No 25 12 93.33
5 2 M 22 71 179 22.2 No 25 24 46.11
6 2 M 22 71 179 22.2 No 25 1 445.55
7 3 <NA> NA NA NA NA <NA> 25 12 116.93
8 3 <NA> NA NA NA NA <NA> 25 0 0.00
9 3 <NA> NA NA NA NA <NA> 25 1 500.65
10 3 <NA> NA NA NA NA <NA> 25 6 146.04
11 3 <NA> NA NA NA NA <NA> 25 24 68.25

Note: Naming Common Variables

If our two datasets have common variables that we do not wish to merge by, then R will append “.x” and “.y” to the column names in the resulting data frame. The suffixes argument can be used to create an alternative suffix.

Duplicate Values

The duplicated function finds duplicate values. It does so by asking the question, “Have I seen this before?” For example, take the Month column from the airquality data frame. The airquality data frame contains daily records for five months (May through September). In total there are therefore 153 individual values in the Month column but most are repeats. Calling duplicated on the column yields the following:

Click here to view code image

> isMonthValueADuplicate <- duplicated(airquality$Month)
> isMonthValueADuplicate[1:10] # View first 10 records
 [1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

The fact that we can generate these TRUE and FALSE values like this is very useful. By placing ! in front of the call to duplicated, we switch the TRUE and FALSE values around. The corresponding logical vector can then be used to remove duplicate values and hence subset our data to leave only the first instance of a value occurring. Here, we use this to extract the first record for each month in the airquality dataset:

Click here to view code image

> airquality[!duplicated(airquality$Month),]
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
32 NA 286 8.6 78 6 1
62 135 269 4.1 84 7 1
93 39 83 6.9 81 8 1
124 96 167 6.9 91 9 1

Perhaps a more standard use of the duplicated function is to find and remove duplicated records. To achieve this, we can call duplicated directly on a data frame:

Click here to view code image

> # Create data with a duplicate record for ID==2
> duplicateData <- data.frame(ID = c(1,2,2,3,4), Score = c(57, 45, 45, 63, 54))
> duplicateData
 ID Score
1 1 57
2 2 45
3 2 45
4 3 63
5 4 54
> # Remove the duplicate record
> duplicateData[!duplicated(duplicateData),]
 ID Score
1 1 57
2 2 45
4 3 63
5 4 54

Tip: Unique Values

If we just want to identify the unique values within a vector, the unique function removes all duplicates within a vector and returns a smaller subset containing the unique values.

Restructuring

Before we can begin to fit models or even plot our data, we need to ensure that it is in a suitable structure. If it is not, we will need to restructure the data. SAS users would call this transposing the data. Excel users might call it pivoting. Others might call it reshaping or tidying. In R, the best known and most used packages for restructuring data are reshape, reshape2, and recently tidyr. Each of the packages has been written by Hadley Wickham and is based around the notion of what he now refers to as “tidy” data. We can think of the packages as an evolution (beginning with reshape and ending with tidyr). The terminology and usability have improved slightly with each, though the scope of these packages has actually decreased. We will therefore take a little time to look at the packages in turn.

Although the term “tidy data” might be unfamiliar, the concept is nothing new. If you are familiar with relational databases, the basic aim is to structure the data as you would in a database table. In other words, we structure the data such that

[image: Image] Each variable forms a column.

[image: Image] Each observation forms a row.

This differs from Excel, for which it is common to spread values that we want to compare across multiple columns in order to treat them as separate series when working with Excel’s plotting wizards. The tidy structure is, however, very standard in R, and most of the graphical and analytical packages in R expect a data frame in the tidy format.

Restructuring with reshape

The reshape and reshape2 packages offer essentially the same functionality for restructuring our data. We will work through an example using reshape and highlight differences within reshape2. There are several utility functions contained within the reshape package, but the main restructuring functions are melt, cast, and recast. The basic idea is to “melt” a data frame (using the melt function) into a very long and thin structure and then, if necessary, “cast” it (using the cast function in reshape or dcast in reshape2) into a new structure.

Tip: Getting to Grips with reshape via reshapeGUI

Reshaping data can be hard! The melt and cast functions in reshape are great but can take some getting used to. The reshapeGUI package provides an interactive graphical user interface for practicing using the melt and cast functions. When we use the GUI to select ID and measurement variables, it builds up the equivalent line of R code for us. The GUI also allows us to preview the results before we submit to the R console.

Melting

The trick to understand the melt function is to be able to identify what are referred to as ID and measurement (“measured”) variables within the package. ID variables represent fixed information about the data collected; this is usually IDs or names, geographic information about where the data was collected, the date and time the data was collected, and so on. The measurement variables contain the data we have collected. If you consider fitting a model to the data, then as a rough guide the measurement variables would be the response variables and the ID variables would be the explanatory variables.

Once we’ve decided what our ID variables are and what our measurement variables are, we feed them into the respective id.vars and measure.vars arguments. Any variables we are not interested in can be ignored and are excluded from the restructuring. To save some typing, we need only specify one of id.vars and one of measure.vars. R will assume that the rest of our variables fall into the unused category.

The melt function is best seen through an example. Listing 11.3 shows a simple example using the french_fries data contained within the reshape package. The data was originally collected from a sensory experiment to investigate fryer oils conducted at Iowa State University in 2004.

LISTING 11.3 Melting the french_fries Data

Click here to view code image

 1: > # Let's begin by loading the package and looking at the data
 2: > library(reshape)
 3: > head(french_fries, 3)
 4: time treatment subject rep potato buttery grassy rancid painty
 5: 61 1 1 3 1 2.9 0.0 0 0.0 5.5
 6: 25 1 1 3 2 14.0 0.0 0 1.1 0.0
 7: 62 1 1 10 1 11.0 6.4 0 0.0 0.0
 8: > tail(french_fries, 3)
 9: time treatment subject rep potato buttery grassy rancid painty
10: 695 10 3 78 2 3.3 0 0 2.5 1.4
11: 666 10 3 86 1 2.5 0 0 7.0 10.5
12: 696 10 3 86 2 2.5 0 0 8.2 9.4
13:
14: # Now we 'melt' having identified the ID variables
15: > fryMelt <- melt(french_fries,
16: + id.vars = c("time", "treatment", "subject", "rep"))
17:
18: # Our new data is long and thin
19: > head(fryMelt, 3)
20: time treatment subject rep variable value
21: 1 1 1 3 1 potato 2.9
22: 2 1 1 3 2 potato 14.0
23: 3 1 1 10 1 potato 11.0
24: > tail(fryMelt, 3)
25: time treatment subject rep variable value
26: 3478 10 3 78 2 painty 1.4
27: 3479 10 3 86 1 painty 10.5
28: 3480 10 3 86 2 painty 9.4

Lines 1 to 11 of the listing show the basic structure of our data. We can deduce from the data that at each time point, a subject was given two French fries to taste that had undergone one of three treatments. The subject rated each of the fries using the criteria defined in the remaining columns. These remaining columns are therefore our measurement variables. The variables time, treatment, subject, and rep are our ID variables. Once we have identified the ID and measurement variables, the code is fairly straightforward; we call the melt function and specify the ID variables using id.vars. As can be seen from line 17 onward in the listing, the resulting data is very long and thin. The column names for the measurement variables have been stacked into a single column named variable, and the ID variables have been repeated accordingly. The associated values for the measurement variables have been stacked into a column named value.

Casting

Calling the melt function on a data frame will normally produce a data frame in the desired format. However, more often than not some further work is required in order to “cast” the data into a new structure. The cast function in reshape (or dcast in reshape2) accepts a formula that describes the shape of the output format. It has the following basic form:

Click here to view code image

untouched_column_1 + untouched_column_2 ~ column_to_split_1 + column_to_split_2

On the left side we specify the columns that are to remain as they are. On the right side we specify columns that are to be split apart into new columns. A new column will be created for each unique combination of values contained within the variables on the right side of the equation. We never reference the value column because this represents our content or measured data. The behavior is best seen using an example. In Listing 11.4 we create two new columns from the fryMelt data we created in Listing 11.3 based on the rep variable. The “...” notation is used to mean “all other columns.” A single period can also be used to represent “no variable” in the casting formula.

LISTING 11.4 Casting the french_fries Data

Click here to view code image

 1: > # Create two new columns based on the rep variable
 2: > fryReCast <- cast(fryMelt, ... ~ rep)
 3: > head(fryReCast, 3)
 4: time treatment subject variable 1 2
 5: 1 1 1 3 potato 2.9 14
 6: 2 1 1 3 buttery 0.0 0
 7: 3 1 1 3 grassy 0.0 0

Note: Differences Between reshape and reshape2

In reshape2 the distinction is made between casting to data frames and casting to arrays. Instead of the cast function, we have two new functions: acast for arrays and dcast for data frames.

Using melt and then cast (or dcast) helps break up the reshaping process. For more complicated examples, it can be really useful to check that the intermediate “melted” data frame is as expected before casting into a new shape. However, this is not actually a necessary step. The entire transformation can be performed in a single step using the recast function. The only difference when using recast is that instead of the id.vars and measure.vars arguments that we used in melt, we drop the “s” and use id.var and measure.var instead.

Click here to view code image

> recast(french_fries,
+ id.var = c("time", "treatment", "subject", "rep"),
+ formula = ... ~ rep)
 time treatment subject variable 1 2
1 1 1 3 potato 2.9 14.0
2 1 1 3 buttery 0.0 0.0
3 1 1 3 grassy 0.0 0.0
...

Note: Aggregation Using reshape

The fun.aggregate argument to cast (and dcast in reshape2) provides the ability to aggregate the data using summary functions such as mean.

Click here to view code image

> # Mean across replicates
> replicateMeans <-
+ cast(fryMelt, time + treatment + subject + variable ~ ., mean)
> head(replicateMeans, 3)
 time treatment subject variable (all)
1 1 1 3 potato 8.45
2 1 1 3 buttery 0.00
3 1 1 3 grassy 0.00

Although it is possible to aggregate data using reshape, we will look at more straightforward aggregation techniques later in the hour and then again in Hour 12.

Restructuring with tidyr

The main difference between the reshape approach to restructuring and tidyr is the terminology. The functions melt and cast (or dcast) become gather and spread. Otherwise, the idea is very much the same. In tidyr we also have a third option, separate, that comes in handy when multiple pieces of information are stored together in a single variable.

Gather

When the values of a particular variable are spread over several columns, we look to “gather” the data into a single column. We do this using gather. The required arguments to the gather function are shown in Table 11.2.

[image: Image]

TABLE 11.2 Arguments to the gather Function

Let’s look at how we would use gather with some real data. For this example, we will use the djiData stock data contained within the mangoTraining package. To simplify the example, we will first subset the data to obtain a data frame with three columns; the date, and the low and high values for the DJI for each date:

Click here to view code image

> djiHighLow <- djiData[, c("Date", "DJI.High", "DJI.Low")]
> head(djiHighLow, 3)
 Date DJI.High DJI.Low
1 12/31/2014 18043.22 17820.88
2 12/30/2014 18035.02 17959.70
3 12/29/2014 18073.04 18021.57

Suppose that we want to create a single graphic of the high and low DJI values using one of the packages described in Hours 13–15. We need one column containing the values to plot and another column specifying whether each value was a high or a low value. We do this using the gather function.

Having loaded the package, we next specify each of the columns we wish to gather, separated by a comma, referencing each by name directly and without wrapping in quotes. As highlighted in Table 12, we must also specify names for the key and value columns in the gathered data frame. In this example, we gather two columns, DJI.High and DJI.Low, but in general we can specify as many columns as we like:

Click here to view code image

> gatheredDJI <- gather(djiHighLow, key="DJI", value="Value", DJI.High, DJI.Low)
> head(gatheredDJI, 4)
 Date DJI Value
1 2014-12-31 DJI.High 18043.22
2 2014-12-30 DJI.High 18035.02
3 2014-12-29 DJI.High 18073.04
4 2014-12-26 DJI.High 18103.45

Variables that are not listed, such as Date in the preceding example, are unaffected by the gathering process. If we find the need to gather the majority of columns within our data, then instead of specifying what to gather we can specify what not to gather. We do so by listing columns that we are not interested in and placing a minus sign in front of each one.

Tip: Lots to Gather?

The tidyr package allows a special use of the : operator for sequencing. The operator allows us to specify a “from” and a “to” in terms of column names. Therefore, a:z would be interpreted as start gathering at column “a” and gather all columns up to column “z.”

Spread

The term “spread” is similar to “cast” in reshape. It enables us to take a column of values and a column label for these values (the “key”) and “spread” the contents over several columns. The primary arguments to spread are again key and value. A new column is created for each label in the key column. This can be useful if we need to calculate, say, changes over time. We take a column of values, value, and a column of times, key, at which these values occurred. We then spread the information, creating a new column for each time point. In the following example, we undo the process of gathering the low and high DJI values into a single column, spreading back into the two original columns:

Click here to view code image

> backToOriginal <- spread(gatheredDJI, key = DJI, value = Value)
> head(backToOriginal, 3)
 Date DJI.High DJI.Low
1 01/02/2014 16573.07 16416.49
2 01/03/2014 16518.74 16439.30
3 01/06/2014 16532.99 16405.52

Tip: Piping Commands

The tidyr package has been designed to work with magrittr’s pipe operator. This allows us to chain commands together, thus avoiding intermediate data frames. You will learn more about the pipe operator in Hour 12.

Separate

Occasionally we may find ourselves in a situation where two separate pieces of information are joined together in a single variable. R packages provide a nice example of this. An R package source name is made up of a package name and version number. An example of this is shown here:

Click here to view code image

> Packages <- data.frame(Source=c("reshape_0.8.5", "tidyr_0.2.0"))
> Packages
 Source
1 reshape_0.8.5
2 tidyr_0.2.0

We can use the separate function to split the package names from the version numbers. Further arguments such as sep are used to specify the splitting character:

Click here to view code image

> separate(Packages, Source, into = c("Package", "Version"), sep = "_")
 Package Version
1 reshape 0.8.5
2 tidyr 0.2.0

By default, the original variable is deleted. We override this behavior, however, by specifying remove = FALSE.

Data Aggregation

In Hour 9, “Loops and Summaries,” you saw two ways of applying simple functions to more complex data structures:

[image: Image] Iterate over sections of data with a loop.

[image: Image] Use one of the apply family of functions.

Let’s consider if we want to add a new column to airquality, containing the difference between the Wind speed for a particular day and the median Wind speed for that Month. To achieve this, we need to perform three tasks:

[image: Image] Calculate the median Wind speed by Month.

[image: Image] Align the median Wind speed value calculated with the daily Wind speed data.

[image: Image] Calculate the difference between the daily Wind speed and the “median” data.

Using a “for” Loop

If we choose to use loops, we could do the following, for example:

[image: Image] Create an empty column in our data.

[image: Image] For each row in the data:

[image: Image] Look at the Month value for this row.

[image: Image] Calculate the median Wind for all data with that Month value.

[image: Image] Calculate the difference between the daily Wind value and this median.

[image: Image] Insert this value in the cell.

This approach is very inefficient. For example, it involves calculating a median repeatedly (once per row). Instead, we could calculate the medians using one loop and then reference the values in a second loop, using an approach like this:

[image: Image] Create an empty column in our data.

[image: Image] For each unique Month value, calculate and store the mean Wind.

[image: Image] For each row in the data:

[image: Image] Look at the Month value for this row.

[image: Image] Reference the correct median Wind for that Month value (from previous loop).

[image: Image] Calculate the difference between the daily Wind value and this median.

[image: Image] Insert this value in the cell.

Again, this isn’t ideal. Let’s instead consider (and see) an approach using the “apply” functions that we saw in Hour 9.

Using an “apply” Function

The first thing we have to decide is which “apply” function to use. Let’s first use the tapply function (or split and sapply) to return the median Wind by Month:

Click here to view code image

> head(airquality) # Print airquality
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

> windMedians <- tapply(airquality$Wind, airquality$Month, median)
> windMedians
 5 6 7 8 9
11.5 9.7 8.6 8.6 10.3

This is straightforward and calculates the median Wind speed by Month, storing the results in a named vector. The next step is to align the daily values with the corresponding windMedians values so we can calculate the differences. This is, perhaps, the most complex part of this process.

As you saw in Hour 3, “Single-Mode Data Structures,” we can reference values from a vector using square brackets and specifying with blank, positive, negative, logical, or character inputs. In this case, we have a vector of Month values to use to reference values from the windMedians vector. Let’s convert our Month values to characters and then use those values to reference the (named) elements of windMedians:

Click here to view code image

> charMonths <- as.character(airquality$Month) # Converted character values of
 Month
> # Use character values to reference named elements
> head(windMedians [charMonths])
 5 5 5 5 5 5
11.5 11.5 11.5 11.5 11.5 11.5

Now we can create a column of means in our dataset and calculate differences from those. Of course, we don’t have to create the column of intermediate values, but we included it here to help illustrate the process:

Click here to view code image

> airquality$MedianWind <- windMedians [charMonths] # Add Median Wind
 column
> airquality$DiffWind <- airquality$Wind - airquality$MedianWind # Calculate
 differences
> head(airquality, 3) # First few rows
 Ozone Solar.R Wind Temp Month Day MeanWind DiffWind MedianWind
1 41 190 7.4 67 5 1 11.5 -4.1 11.5
2 36 118 8.0 72 5 2 11.5 -3.5 11.5
3 12 149 12.6 74 5 3 11.5 1.1 11.5
> tail(airquality, 3) # Last few rows
 Ozone Solar.R Wind Temp Month Day MeanWind DiffWind MedianWind
151 14 191 14.3 75 9 28 10.3 4.0 10.3
152 18 131 8.0 76 9 29 10.3 -2.3 10.3
153 20 223 11.5 68 9 30 10.3 1.2 10.3

This approach works, but the second step (aligning the means with the daily values) was perhaps a little complex. If we decide later that we want to perform the same process for a number of columns, the solution would become more verbose/complex. We can simplify this approach using the aggregate function.

The aggregate Function

The aggregate function allows us apply functions over sections of a data frame, returning a data frame as the output. We can use aggregate using two different methods:

[image: Image] We can supply a “formula” to describe the data over which to apply.

[image: Image] We can specify a set of variables to summarize and a set of variables by which to summarize separately.

Let’s first see an example using a formula to define the structure of the data.

Using aggregate with a Formula

We can use a formula with aggregate to specify the variables to summarize and the variables by which to perform the summary. A basic formula is of the form Y ~ X, where Y is the variable to summarize and X is the variable by which to summarize. The aggregate function additionally accepts a data argument (specifying the data frame containing the data) and a FUN argument (specifying the function to apply). Let’s look at a simple example where we again calculate the median Wind by Month:

Click here to view code image

> aggregate(Wind ~ Month, data = airquality, FUN = median)
 Month Wind
1 5 11.5
2 6 9.7
3 7 8.6
4 8 8.6
5 9 10.3

As you can see, the return structure is a data frame, which is a very simple and useable structure.

Summarizing by Multiple Variables

If we want to apply the function by more than one variable, we can add the names of the variables to the set of variables in the formula:

Click here to view code image

> aggregate(Wind ~ Month + cut(Temp, 2), data = airquality, FUN = median)
 Month cut(Temp, 2) Wind
1 5 (56,76.5] 11.5
2 6 (56,76.5] 9.7
3 7 (56,76.5] 10.6
4 8 (56,76.5] 12.6
5 9 (56,76.5] 10.9
6 5 (76.5,97] 10.3
7 6 (76.5,97] 9.7
8 7 (76.5,97] 8.6
9 8 (76.5,97] 8.3
10 9 (76.5,97] 7.7

Again, the return structure is a data frame.

Summarizing Multiple Columns

If we want to perform the same summary on a number of variables at the same time, we can combine the summary variables in a call to cbind. For example, let’s calculate the median Wind and Ozone values by Month:

Click here to view code image

> aggregate(cbind(Wind, Ozone) ~ Month, data = airquality, FUN = median, na.rm = TRUE)
 Month Wind Ozone
1 5 11.5 18
2 6 11.5 23
3 7 7.7 60
4 8 8.0 52
5 9 10.3 23

Multiple Return Values

In the preceding examples, we used the median function, which returns a single value. If, instead, we used a function that returned multiple values, these would be returned as separate columns. To illustrate this behavior, let’s repeat the last three examples with the range function:

Click here to view code image

> # Range of Wind values by Month
> aggregate(Wind ~ Month, data = airquality, FUN = range, na.rm = TRUE)
 Month Wind.1 Wind.2
1 5 5.7 20.1
2 6 1.7 20.7
3 7 4.1 14.9
4 8 2.3 15.5
5 9 2.8 16.6

> # Range of Wind AND Ozone values by Month
> aggregate(cbind(Wind, Ozone) ~ Month, data = airquality, FUN = range, na.rm = TRUE)
 Month Wind.1 Wind.2 Ozone.1 Ozone.2
1 5 5.7 20.1 1 115
2 6 8.0 20.7 12 71
3 7 4.1 14.9 7 135
4 8 2.3 15.5 9 168
5 9 2.8 16.6 7 96

> # Range of Wind AND Ozone values by Month AND grouped Temp
> aggregate(cbind(Wind, Ozone) ~ Month + cut(Temp, 2), data = airquality,
+ FUN = range, na.rm = TRUE)
 Month cut(Temp, 2) Wind.1 Wind.2 Ozone.1 Ozone.2
1 5 (56,76.5] 6.9 20.1 1 41
2 6 (56,76.5] 9.2 20.7 12 37
3 7 (56,76.5] 6.9 14.3 10 16
4 8 (56,76.5] 7.4 14.3 9 23
5 9 (56,76.5] 6.9 16.6 7 30
6 5 (76.5,97] 5.7 14.9 45 115
7 6 (76.5,97] 8.0 14.9 21 71
8 7 (76.5,97] 4.1 14.9 7 135
9 8 (76.5,97] 2.3 15.5 9 168
10 9 (76.5,97] 2.8 15.5 16 96

In these examples, the values returned are named based on the column that was summarized and an index of the return value. If, instead, the function returned “named” elements, these names would be appended to the summarized column names:

Click here to view code image

> aggregate(Wind ~ Month, data = airquality,
+ FUN = function(X) {
+ c(MIN = min(X), MAX = max(X))
+ })
 Month Wind.MIN Wind.MAX
1 5 5.7 20.1
2 6 1.7 20.7
3 7 4.1 14.9
4 8 2.3 15.5
5 9 2.8 16.6

Using aggregate by Specifying Columns

Instead of the formula, we can use aggregate by specifying variables separately in the function call. Specifically, we specify lists of variables, which we can rename when specifying the variables if we want to control the names of the resulting summary variables:

[image: Image] The first input specifies the variable(s) to summarize.

[image: Image] The second input specifies the grouping variable(s).

[image: Image] The third input is the function to apply.

Let’s again calculate the median Wind by Month, this time specifying the inputs as described earlier:

Click here to view code image

> aggregate(list(aveWind = airquality$Wind), list(Month = airquality$Month), median)
 Month aveWind
1 5 11.5
2 6 9.7
3 7 8.6
4 8 8.6
5 9 10.3

The output is a data frame, with the variables named as specified in the input lists.

Summarizing by Multiple Variables

If we want to apply the function by more than one variable, we can add these variables to the list, as follows:

Click here to view code image

> aggregate(list(aveWind = airquality$Wind),
+ list(Month = airquality$Month, TempGroup = cut(airquality$Temp, 2)), median)
 Month TempGroup aveWind
1 5 (56,76.5] 11.5
2 6 (56,76.5] 9.7
3 7 (56,76.5] 10.6
4 8 (56,76.5] 12.6
5 9 (56,76.5] 10.9
6 5 (76.5,97] 10.3
7 6 (76.5,97] 9.7
8 7 (76.5,97] 8.6
9 8 (76.5,97] 8.3
10 9 (76.5,97] 7.7

Again, this approach allows us to easily control the names of the resulting variables (for example, naming the TempGroup and aveWind columns).

Summarizing Multiple Columns

If we want to perform the same summary on a number of variables at the same time, we can provide multiple variables in the first input list, as follows:

Click here to view code image

> aggregate(list(aveWind = airquality$Wind, aveOzone = airquality$Ozone),
+ list(Month = airquality$Month), median, na.rm = TRUE)
 Month aveWind aveOzone
1 5 11.5 18
2 6 9.7 23
3 7 8.6 60
4 8 8.6 52
5 9 10.3 23

Tip: Specifying Inputs as Data Frames

Because a data frame is, structurally, a list of vectors, we can supply data frame inputs directly instead of lists, if preferred. This is most useful when there are multiple variables being specified. For example, we could rewrite the last example as follows:

Click here to view code image

> aggregate(airquality[,c("Wind", "Ozone")],
+ list(Month = airquality$Month), median, na.rm = TRUE)
 Month Wind Ozone
1 5 11.5 18
2 6 9.7 23
3 7 8.6 60
4 8 8.6 52
5 9 10.3 23

Although this is far more concise, we do lose the ability to directly rename the variables (for example, to aveWind and aveOzone as per the previous example).

Multiple Return Values

As with the example where we specified formulas, we can apply functions that return multiple values. In this case, the index of values is appended to the summarized variable name:

Click here to view code image

> aggregate(list(Wind = airquality$Wind),
+ list(Month = airquality$Month), range)
 Month Wind.1 Wind.2
1 5 5.7 20.1
2 6 1.7 20.7
3 7 4.1 14.9
4 8 2.3 15.5
5 9 2.8 16.6

Again, if our function returns named elements, these are appended instead of the index values:

Click here to view code image

> aggregate(list(Wind = airquality$Wind),
+ list(Month = airquality$Month),
+ function(X) {
+ c(MIN = min(X), MAX = max(X))
+ })
 Month Wind.MIN Wind.MAX
1 5 5.7 20.1
2 6 1.7 20.7
3 7 4.1 14.9
4 8 2.3 15.5
5 9 2.8 16.6

Calculating Differences from Baseline

At the start of the Data Aggregation section, we introduced a task that we were aiming to complete and discussed how the previous approaches (for loops and apply functions) could be used to achieve that task. To recap, we are aiming to add a new column to airquality, containing the difference between the Wind speed for a particular day and the median Wind speed for that Month.

To achieve this, we need to perform three tasks:

[image: Image] Calculate the median Wind speed by Month.

[image: Image] Align the median Wind speed value calculated with the daily Wind speed data.

[image: Image] Calculate the difference between the daily Wind speed and the “median” data.

Using the aggregate function, we can calculate the median Wind by Month, returning our results as a data frame:

Click here to view code image

> windMedians <- aggregate(list(MedianWind = airquality$Wind),
+ list(Month = airquality$Month), median)
> windMedians
 Month MedianWind
1 5 11.5
2 6 9.7
3 7 8.6
4 8 8.6
5 9 10.3

Note: Using List Inputs to Aggregate

In this example, I’m specifying the inputs to aggregate as list elements, instead of a formula, so I can explicitly control the naming of the summary (that is, the MedianWind column). If I used a formula, I’d need to rename the column to MedianWind as a second step.

Now that we have our median Wind values in a data frame, we can merge this onto our original dataset to create the MedianWind column:

Click here to view code image

> airquality <- merge(airquality, windMedians)
> head(airquality)
 Month Ozone Solar.R Wind Temp Day MedianWind
1 5 41 190 7.4 67 1 11.5
2 5 36 118 8.0 72 2 11.5
3 5 12 149 12.6 74 3 11.5
4 5 18 313 11.5 62 4 11.5
5 5 NA NA 14.3 56 5 11.5
6 5 28 NA 14.9 66 6 11.5

Summary

In this hour, you saw how to sort, set, and merge data using traditional R functions. We looked at the popular reshape (reshape2) and tidyr packages for restructuring our data, ready for plotting and modeling. We also looked at various options for aggregating data including the powerful aggregate function.

In the next hour, we will look closer at two packages that are changing the way people manipulate and summarize data with R. The data.table and dplyr packages offer speed and efficiency, borrowing approaches from the database world.

Q&A

Q. I tried to sort the airquality data using airquality[sort(airquality$Wind),] but got strange results. What happened?

A. To sort a data frame in this way, you need to know which rows to select. The sort order is returned by the order function, not sort.

Q. I have two data frames, each containing data for specified locations at specified times. Can I merge by both variables?

A. Absolutely. You can specify as many merge-by-variable operations as you like using merge. Pass the names to merge as a character vector.

Q. Is it possible to merge three data frames at once using merge?

A. Unfortunately, no. However, the merge_recurse function in reshape provides this functionality.

Q. Should I be using reshape2 instead of reshape?

A. Development of reshape ceased in 2011. However, it depends on what you want to do. In some sense, reshape2 supersedes reshape; however, there is arguably more functionality contained within reshape. If you want to use reshape/reshape2 for data aggregation, it is worth noting that the cast function can handle summary functions such as range that produce a vector of multiple values, whereas dcast cannot and fails with an error.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. What is the difference between sort and order?

2. Which function can be used to return the unique values in a vector?

3. What function would you use to append rows to a data frame?

4. What does the “d” represent in the dcast function?

Answers

1. The sort function is used to sort vectors. It cannot be used to sort data frames. The order function provides a sort order that can be used to sort vectors or data frames.

2. The unique function directly returns the unique values. Alternatively, duplicated could be used as a means to subscript and obtain the same result.

3. The rbind function is a simple means of appending new rows to a data frame.

4. The “d” stands for “data frame.” In reshape2, the more generic cast was replaced with acast and dcast functions to allow casting to both arrays and data frames via separate functions.

Activities

1. Sort the mtcars data frame by the number of cylinders and then descending by miles per gallon.

2. Extract the “Employees” and “Orders” tables from the Northwind.mdb file contained within the mangoTraining package using RODBC. Merge the two data frames by EmployeeID.

3. Use melt and dcast to find the average tip size by the sex and smoking habit of the bill payer using the tips data contained within the reshape2 package.

4. Separate the Date column within djiData into three new columns: Month, Day, and Year. Ensure that you keep the original Date column.

Hour 12. Efficient Data Handling in R

What You’ll Learn in This Hour:

[image: Image] The dplyr package

[image: Image] Piping commands together

[image: Image] The data.table package

[image: Image] Options for improving efficiency

In Hour 11, “Data Manipulation and Transformation,” we looked at some standard methods for processing data in R. In particular, you saw how to sort and merge data. In previous hours we discussed how to subscript and summarize data using the “apply” family of functions. Now we will look at two packages, dplyr and data.table, that enable us to do all of these tasks for data frames within consistent, highly efficient frameworks.

We will begin the hour by looking at Hadley Wickham’s incredibly popular dplyr package. Although dplyr is actually the more recent of the two packages we’ll discuss in this hour, it fits in with packages such as readr and tidyr from the previous two hours. The data.table package is a standalone package for data manipulation that offers greater efficiency for very large data.

dplyr: A New Way of Handling Data

The dplyr package is another Hadley Wickham package that is revolutionizing the way people work with data in R. The package, which was first released in January 2014, fits into an analysis workflow that Hadley Wickham has helped define. In Hour 10, “Importing and Exporting,” you saw how packages such as readr, haven, and readxl can be used to import data into R. In Hour 11, you saw how the tidyr package can be used to transform data into a new shape. We will now look at how dplyr can be used to sort, subset, merge and summarize data.

The dplyr package can be thought of as an evolution of the popular plyr package, although it focuses solely on the manipulation of rectangular data structures, whereas plyr provides a more general framework. The focus of dplyr is very much on usability; however, there has also been considerable effort to ensure that dplyr is fast and efficient.

Creating a dplyr (tbl_df) Object

The dplyr package is intended to be used in a data analysis workflow in which data is imported using packages such as readr, haven, and readxl and then (possibly) transformed using tidyr. Each of these packages contains functions that produce an object of the tbl_df class. A tbl_df object is a dplyr construct that extends a data frame, affecting the way it prints.

The tbl_df class extension does not affect standard data frame operations; however, each of the data-manipulation functions within dplyr returns a tbl_df object and so it is worth us spending a little time to see what a tbl_df actually looks like. We can create a tbl_df object directly from a data.frame using the tbl_df function. An example of this is shown in Listing 12.1.

LISTING 12.1 Creating tbl_df Objects

Click here to view code image

 1 : > library(dplyr)
 2 : >
 3 : > # Create a tbl_df object from mtcars
 4 : > head(mtcars)
 5 : mpg cyl disp hp drat wt qsec vs am gear carb
 6 : Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
 7 : Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
 8 : Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
 9 : Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
10 : Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
11 : Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
12 : >
13 : > carData <- tbl_df(mtcars)
14 : > carData
15 : Source: local data frame [32 x 11]
16 :
17 : mpg cyl disp hp drat wt qsec vs am gear carb
18 : 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
19 : 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
20 : 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
21 : 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
22 : 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
23 : 6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
24 : 7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
25 : 8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
26 : 9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
27 : 10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
28 :..
29 : >
30 : > class(carData) # A dbl_df object is just an extension to a data.frame object
31 : [1] "tbl_df" "tbl" "data.frame"

In addition to changing the way in which data frames print, the creation of a tbl_df object also removes row names. In Listing 12.1 we can see how the creation of the carData “tbl_df” removes the row names from the original mtcars data. This is intentional and enforces the tidy data principle that all meaningful information should be stored in the same way (in columns). However, it can of course be a little frustrating if you have meaningful row names! The terms “tbl_df” and “data frame” will be used interchangeably throughout the remainder of this hour.

Note: Working with Data Tables

The dplyr package allows us to work with data table objects via the tbl_dt function, which extends the data.table class to create a tbl_dt object. A tbl_dt object behaves just like a tbl_df object.

Sorting

In dplyr we sort data using the arrange function. The arrange function expects a data frame (or a tbl_df) as the first argument. We can then list any number of columns as the subsequent arguments. The data is sorted by the first column we provide, then by the second, and so on. By default, an ascending sort is used. In the example below, we sort the carData data by carb and then by cyl:

Click here to view code image

> arrange(carData, carb, cyl)
Source: local data frame [32 x 11]

 mpg cyl disp hp drat wt qsec vs am gear carb
1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
2 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
3 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
4 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
5 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
6 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
7 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
10 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
..

If we want to sort by descending values for any of our sort columns, we can wrap the column name in a call to the desc function; for example, to sort by carb and then descending values of cyl we would write arrange(carData, carb, desc(cyl)). Alternatively, we can simply place a minus sign in front of the column name, as shown here:

Click here to view code image

arrange(carData, carb, -cyl)

Subscripting

The dplyr package defines subscripting as two distinct operations: choosing rows and choosing columns. These are defined respectively as filter and select. As with all of the dplyr functions we are discussing in this hour, each function expects a data frame (or tbl_df object) as the first argument. This allows us to reference variables directly in subsequent arguments without using dollar signs or square brackets. In the second argument, we choose how we wish to “filter” the rows or “select” the columns. Let’s start by using the filter function to create a subset of carData containing only four-cylinder cars:

Click here to view code image

> cyl4 <- filter(carData, cyl == 4)
> cyl4
Source: local data frame [11 x 11]

 mpg cyl disp hp drat wt qsec vs am gear carb
1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
7 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
8 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
9 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
10 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
11 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

We can use any standard logical operations to filter our data. In addition to the standard ampersand (&), dplyr also permits us to separate “and” operations with a comma:

Click here to view code image

> filter(carData, cyl == 4, gear == 5) # equivalent to cyl == 4 & gear == 5
Source: local data frame [2 x 11]

 mpg cyl disp hp drat wt qsec vs am gear carb
1 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2
2 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2

The select function operates in much the same way as filter. We can either use column names or column numbers to select which columns to keep or drop, much like the select option in the subset function. The standard way to select multiple columns is to separate each column with a comma. Note again that we do not use quotes to specify columns.

Click here to view code image

> select(carData, mpg, wt, cyl) # Return just these columns
Source: local data frame [32 x 3]

 mpg wt cyl
1 21.0 2.620 6
2 21.0 2.875 6
3 22.8 2.320 4
4 21.4 3.215 6
5 18.7 3.440 8
6 18.1 3.460 6
7 14.3 3.570 8
8 24.4 3.190 4
9 22.8 3.150 4
10 19.2 3.440 6
..
> select(carData, -vs, -am) # Return everything except these columns
Source: local data frame [32 x 9]

 mpg cyl disp hp drat wt qsec gear carb
1 21.0 6 160.0 110 3.90 2.620 16.46 4 4
2 21.0 6 160.0 110 3.90 2.875 17.02 4 4
3 22.8 4 108.0 93 3.85 2.320 18.61 4 1
4 21.4 6 258.0 110 3.08 3.215 19.44 3 1
5 18.7 8 360.0 175 3.15 3.440 17.02 3 2
6 18.1 6 225.0 105 2.76 3.460 20.22 3 1
7 14.3 8 360.0 245 3.21 3.570 15.84 3 4
8 24.4 4 146.7 62 3.69 3.190 20.00 4 2
9 22.8 4 140.8 95 3.92 3.150 22.90 4 2
10 19.2 6 167.6 123 3.92 3.440 18.30 4 4
..

Another nice property of the select function is that we can choose a sequence of columns using the column names in addition to the column numbers. For example, we could specify select(carData, mpg:wt). Choosing the columns that we want is simplified via a number of additional utility functions, as listed in Table 12.1.

[image: Image]

TABLE 12.1 Utility Functions for Selecting Columns

Caution: Specialist functions within select

The functions described in Table 12.1 only work inside the select function and cannot be used to find patterns in standard character vectors.

Adding New Columns

The mutate function enables us to easily add new columns to our data. We can either provide a vector of values in the same way we would with a standard data frame or we can create new columns from existing variables. In the following example, we create a new column containing the original row names from the mtcars data frame. We then use the information contained with the hp and wt columns to create a second new column containing the power-to-weight ratio.

Click here to view code image

> fullCarData <- mutate(carData, type = rownames(mtcars), pwr2wt = hp/wt)
> fullCarData
Source: local data frame [32 x 13]

 mpg cyl disp hp drat wt qsec vs am gear carb type pwr2wt
1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 41.98473
2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Mazda RX4 Wag 38.26087
3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 Datsun 710 40.08621
4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Hornet 4 Drive 34.21462
5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 Hornet Sportabout 50.87209
6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Valiant 30.34682
7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 Duster 360 68.62745
8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 Merc 240D 19.43574
9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 Merc 230 30.15873
10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 Merc 280 35.75581
..

We can also drop columns by assigning existing names to NULL. The mutate function is similar to the base R function transform. However, unlike transform, the mutate function creates variables in the order in which we specify them, allowing variables that we create to themselves create new variables.

Click here to view code image

> fullCarData <- mutate(carData, type = rownames(mtcars),
+ drat = NULL, qsec = NULL,
+ pwr2wt = hp/wt, pwr2wt.Sq = pwr2wt^2)
> head(fullCarData,3)
Source: local data frame [3 x 12]

 mpg cyl disp hp wt vs am gear carb type pwr2wt pwr2wt.Sq
1 21.0 6 160 110 2.620 0 1 4 4 Mazda RX4 41.98473 1762.718
2 21.0 6 160 110 2.875 0 1 4 4 Mazda RX4 Wag 38.26087 1463.894
3 22.8 4 108 93 2.320 1 1 4 1 Datsun 710 40.08621 1606.904

Merging

In Hour 11, you saw how the merge function can be used to merge data frames. The merge function allows us to specify arguments such as all.x in order to achieve what is also commonly known as a “left join.” In contrast, dplyr splits these arguments out into separate functions. These can be seen in Table 12.2. As with merge, we refer to our two datasets as x and y.

[image: Image]

TABLE 12.2 Functions for Merging Data in dplyr

The first four functions listed in Table 12.2 operate in the same way as the merge function. For example, inner_join(demoData, pkData) provides an equivalent to merge(demoData, pkData). In addition, dplyr offers us the concepts of a semi-join and an anti-join. The semi_join function does not actually perform a merge. Instead, it returns rows in x that would be retained if we were to merge x with y. Conversely, the anti_join function returns rows of x that would not be retained if we were to merge with y. Listing 12.2 illustrates a semi-join and an anti-join using two (fabricated) sample data frames.

LISTING 12.2 Sample Joins

Click here to view code image

 1 : > # Fabricate two datasets to merge
 2 : > beerData <- data.frame(ID = c(1, 2, 3), Beer = c(75, 64, 92))
 3 : > diaperData <- data.frame(ID = c(1, 3, 4), Diapers = c(51, 68, 32))
 4 : > beerData
 5 : ID Beer
 6 : 1 1 75
 7 : 2 2 64
 8 : 3 3 92
 9 : > diaperData
10 : ID Diapers
11 : 1 1 51
12 : 2 3 68
13 : 3 4 32
14 : >
15 : > # Rows of beerData that have a corresponding "ID" in diaperData
16 : > semi_join(beerData, diaperData, by = "ID")
17 : ID Beer
18 : 1 1 75
19 : 2 3 92
20 : > # Rows of beerData that do not have a corresponding "ID" in diaperData
21 : > anti_join(beerData, diaperData, by = "ID")
22 : ID Beer
23 : 1 2 64
24 : > # An inner join of the two datasets
25 : > inner_join(beerData, diaperData, by = "ID")
26 : ID Beer Diapers
27 : 1 1 75 51
28 : 2 3 92 68

Note that in each case we specified the “by” variable for the merge as "ID" but we did not have to. Like merge, each of the dplyr *join functions will automatically determine the merge by variables for us if we do not specify it. Because we stated that the data in the example is to be merged by the ID variable, the semi-join looks for ID values in beerData that also appear in diaperData. These are the rows that would be merged using either inner_join (as in lines 25 to 28) or left_join. Accordingly, anti_join returns the remaining rows that would not be merged.

Aggregation

In addition to facilitating data manipulation, dplyr also provides an easy-to-use syntax for data aggregation that is a marked improvement upon the more generic predecessor, the plyr package. In dplyr terminology, data aggregation is referred to as a data summary. We therefore use a function called summarize to obtain numeric summaries of our data. As always, when using dplyr we pass the data as the first argument. In the subsequent arguments we can use standard summary functions to summarize columns in the data. In the following example, we use the mean function to summarize the mpg column within carData:

Click here to view code image

> summarize(carData, mean(mpg))
Source: local data frame [1 x 1]

 mean(mpg)
1 20.09062

We can summarize using any function we like, including custom-written functions. The only restrictions are that the function we use must expect a vector as the input and that it must return a single value. We cannot therefore use a function such as range because this returns a vector of length 2. However, we can make as many summaries as we like in a single call to summarize.

Click here to view code image

> summarize(carData, min(mpg), median(mpg), max(mpg))
Source: local data frame [1 x 3]

 min(mpg) median(mpg) max(mpg)
1 10.4 19.2 33.9

When creating multiple summaries in this way, it can be helpful to be able to manually control the labels of the resulting data. In order to do so we simply specify the name of the resulting output column when creating the summary, as follows:

Click here to view code image

> mpgSummary <- summarize(carData, Min=min(mpg), Median=median(mpg), Max=max(mpg))
> mpgSummary
Source: local data frame [1 x 3]

 Min Median Max
1 10.4 19.2 33.9

Sometimes we may find that we need to pass additional arguments to our summary functions. For example, we may need to specify na.rm = TRUE when summarizing a variable with missing values. In order to pass extra arguments to our summary functions, we pass the arguments as if we were calling the function directly. Here’s an example:

Click here to view code image

summarize(airquality, mean(Ozone, na.rm = TRUE)).

Grouped Data

If all we needed to do was summarize columns of data using standard numeric summary functions, then dplyr doesn’t really offer anything new. If anything, it makes the process more tedious. However, the real advantage of using the summarize function is that it facilitates easy “by” operations. In order to summarize our data by variable(s), we use the group_by function to define a grouping within our data. We can actually group our data at any time, and the grouping will be retained by any other operations we perform. We can group by as many variables as we like.

To demonstrate the concept of grouped data, let’s group carData by the cyl variable and observe what happens when we filter the data by carb. The code for the operation is shown in Listing 12.3.

LISTING 12.3 The Effect of group_by

Click here to view code image

 1: > cylGrouping <- group_by(carData, cyl)
 2: > head(cylGrouping)
 3: Source: local data frame [6 x 11]
 4: Groups: cyl
 5:
 6: mpg cyl disp hp drat wt qsec vs am gear carb
 7: 1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
 8: 2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
 9: 3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
10: 4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
11: 5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
12: 6 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
13: >
14: > filter(cylGrouping, carb == 4)
15: Source: local data frame [10 x 11]
16: Groups: cyl
17:
18: mpg cyl disp hp drat wt qsec vs am gear carb
19: 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
20: 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
21: 3 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
22: 4 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
23: 5 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
24: 6 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
25: 7 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
26: 8 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
27: 9 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
28: 10 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4

Notice first of all that grouping by the cyl variable has the effect of adding a line to the output (see line 4). As can be seen in line 16, the cyl grouping was retained when we filtered the data. In both cases the sort order remains unaffected by the grouping. The effect of grouping our data is only felt when we summarize it. In the following example, we summarize the mpg column in our grouped data, cylGrouping:

Click here to view code image

> mpgSummaryByCyl <- summarize(cylGrouping, min(mpg), median(mpg), max(mpg))
> mpgSummaryByCyl
Source: local data frame [3 x 4]

 cyl min(mpg) median(mpg) max(mpg)
1 4 21.4 26.0 33.9
2 6 17.8 19.7 21.4
3 8 10.4 15.2 19.2

The result of performing a summary operation on grouped data is that the output is summarized by each level of the grouping variable(s). In keeping with the concept of tidy data, the output is a data frame (in fact, a tbl_df). The operation returns a separate column for each variable that we grouped by, with additional columns for each summary we specified.

Other Uses of group_by

You have already seen that when we filter our data, the grouping variables are retained. However, we can also use the grouping to our advantage within the filter itself. In the following example, we use a grouping on the cyl variable to extract the maximum mpg value for each value of cyl. The comparison mpg == max(mpg) is performed within each group (that is, each value of cyl).

Click here to view code image

> cylGrouping <- group_by(carData, cyl)
> # Extract maximum mpg by for each cyl category
> filter(cylGrouping, mpg == max(mpg))
Source: local data frame [3 x 11]
Groups: cyl

 mpg cyl disp hp drat wt qsec vs am gear carb
1 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
2 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
3 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2

Grouping our data also facilitates the generation of new aggregation variables. For example, we could create a new variable, meanMPGbyCyl, that is the mean of the mpg column for each value of cyl, as shown here:

Click here to view code image

> mutate(cylGrouping, meanMPGbyCyl = mean(mpg))
Source: local data frame [32 x 12]
Groups: cyl

 mpg cyl disp hp drat wt qsec vs am gear carb meanMPGbyCyl
1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 19.74286
2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 19.74286
3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 26.66364
4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 19.74286
5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 15.10000
6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 19.74286
7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 15.10000
8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 26.66364
9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 26.66364
10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 19.74286
..

Note: Remove a Grouping

We can remove any groupings in our data using the ungroup function.

The Pipe Operator

Functions in dplyr have been written in order to take advantage of what is commonly referred to as the “pipe” operator. The pipe operator, %>%, originates in the magrittr package and is by no means restricted to usage within dplyr. The pipe operator allows us to chain functions together such that the output from one function becomes the input to the first argument (by default) of the next. This has led to it being called the “then” operator in some quarters (do this, then this, then this, and so on). It is particularly useful if we have many steps to perform on a single type of object such as a data frame. The advantage of this approach is that it avoids intermediary objects (that is, those that we create simply to break up nested function calls).

Note: Piping to Other Arguments

When you use the pipe operator, the output from a function does not have to be used as the input to the first argument of the next function. It can in fact become the input to any argument within the following function. However, the code is generally a lot more readable if we feed the output into the first argument of the following function.

The dplyr package has been written with the pipe operator very much in mind. In a typical analysis workflow we might arrange, filter, select, mutate, group_by, and summarize several times over. Each of these functions takes a data frame as its first input and returns another data frame as the output. This is ideal for piping together function calls. Consider the example in Listing 12.4 using mtcars. In the first instance we use the traditional approach to data processing. To avoid nesting, we end up creating three intermediate datasets on the way to obtaining our summary. We then perform the same operations using the pipe operator. In the second case, no intermediate datasets are required.

LISTING 12.4 Workflow Examples With and Without the Pipe Operator

Click here to view code image

 1: > # A standard workflow, mean mpg by cyl for manual cars
 2: > # The traditional way:
 3: > carsByCyl <- arrange(mtcars, cyl)
 4: > groupByCyl <- group_by(carsByCyl, cyl)
 5: > manualCars <- filter(groupByCyl, am == 1)
 6: > summarize(manualCars, Mean.MPG=mean(mpg))
 7: Source: local data frame [3 x 2]
 8:
 9: cyl Mean.MPG
10: 1 4 28.07500
11: 2 6 20.56667
12: 3 8 15.40000
13: >
14: > # Using pipes
15: > mtcars %>%
16: + arrange(cyl) %>%
17: + group_by(cyl) %>%
18: + filter(am == 1) %>%
19: + summarize(Mean.MPG=mean(mpg))
20: Source: local data frame [3 x 2]
21:
22: cyl Mean.MPG
23: 1 4 28.07500
24: 2 6 20.56667
25: 3 8 15.40000

The pipe operator is not to everyone’s taste, and it can be harder to debug than well-written code using a traditional syntax. However, it is becoming an increasingly popular means of working with data—and before long it may not be possible to avoid it!

Efficient Data Handling with data.table

The data.table package predates dplyr by several years, having been first released to CRAN in April 2006. However, it is still actively maintained by its primary author and maintainer Matt Dowle, and despite the growing popularity of the dplyr package, data.table remains one of the most popular and well-documented packages on CRAN. In addition to the standard help and a quick-start guide, Matt Dowle has written an extensive FAQ document for the package tackling some of the less-obvious aspects of the package.

The focus of the package is very much on reading, processing, and aggregating large data efficiently. The data.table object is essentially an enhancement to the data.frame class. It allows us to index, merge, and group data much faster than we can with standard data frames.

Creating a data.table

Like any analysis workflow the data.table workflow begins with importing data. In Hour 10 we looked briefly at the performance of the fread function contained within data.table. The fread function is similar to read.table in terms of usage, though it’s much faster for large datasets. Conveniently, the output of the function is a data.table object.

Click here to view code image

> dji <- fread("djiData.csv")
> dji
 Date DJI.Open DJI.High DJI.Low DJI.Close DJI.Volume DJI.Adj.Close
 1: 12/31/2014 17987.66 18043.22 17820.88 17823.07 82840000 17823.07
 2: 12/30/2014 18035.02 18035.02 17959.70 17983.07 47490000 17983.07
 3: 12/29/2014 18046.58 18073.04 18021.57 18038.23 53870000 18038.23
 4: 12/26/2014 18038.30 18103.45 18038.30 18053.71 52570000 18053.71
 5: 12/24/2014 18035.73 18086.24 18027.78 18030.21 42870000 18030.21

248: 01/08/2014 16527.66 16528.88 16416.69 16462.74 103260000 16462.74
249: 01/07/2014 16429.02 16562.32 16429.02 16530.94 81270000 16530.94
250: 01/06/2014 16474.04 16532.99 16405.52 16425.10 89380000 16425.10
251: 01/03/2014 16456.89 16518.74 16439.30 16469.99 72770000 16469.99
252: 01/02/2014 16572.17 16573.07 16416.49 16441.35 80960000 16441.35

The appearance of a data table is similar to that of a standard data frame. When we choose to print a small dataset (one containing 100 rows or less), the entire dataset is returned, but with the header row repeated at the base of the table. For larger datasets, only the first and last five rows are returned. We can turn existing data frames into data.table objects by directly calling a data.table function—for example, air <- data.table(airquality). We can also create a data.table from scratch in the same way we would using the data.frame function.

Tip: Keeping Track of Tables

If we create many data table objects, the tables function can be used to find out what tables we have, what they contain, and how much memory they have been allocated.

Setting a Key

One of the primary focuses of the data.table package is performance. To achieve this performance, we define a key. In some ways this is similar to a primary key that would be used in a relational database. However, in data.table the key can be made up of several columns and does not have to be unique. In fact, it is often more useful if the key is not unique. The key is used for sorting, indexing, and summarizing. It is defined using a function called setkey. In Listing 12.5 we define a simple data.table using the demoData data in the mangoTraining package and then set the key based on the variables Sex and Smokes.

LISTING 12.5 Defining a Key

Click here to view code image

 1: > # Create a data.table and define the key
 2: > demoDT <- data.table(demoData)
 3: > setkey(demoDT, Sex, Smokes)
 4: > head(demoDT)
 5: Subject Sex Age Weight Height BMI Smokes
 6: 1: 3 F 23 72 170 25.1 No
 7: 2: 6 F 29 67 169 23.5 No
 8: 3: 12 F 32 77 182 23.1 No
 9: 4: 15 F 27 73 172 24.8 No
10: 5: 23 F 26 82 175 26.8 No
11: 6: 26 F 25 58 175 18.9 No

The obvious effect of defining a key is that when printing, the data is sorted by the key variables from left to right as we defined them. In Listing 12.5 they are sorted by Sex and then by Smokes. The purpose of defining the sort key is not just for printing purposes, however. It enables faster indexing when subscripting.

Notice that we wrote setkey(demog, Sex, Smokes) as opposed to demog <- setkey(demog, Sex, Smokes). Functions in data.table update the data table directly, so we do not need to use <- to copy/replace the original data. Updating by reference in this way reduces the memory required to perform manipulation tasks and improves speed.

Tip: Querying the Key

We can find out if a data table has a key using the function haskey, which returns TRUE if the data table has a key and FALSE otherwise.

The key function tells us what the key is.

Subscripting

In the data.table syntax, we can reference columns directly as if they were objects in their own right. In other words, we can drop the “dataName$” syntax. This saves some typing, though the real benefit is the speed gain we get from using data.table in the first place.

Click here to view code image

> demoDT[Sex == "F",]
 Subject Sex Age Weight Height BMI Smokes
 1: 3 F 23 72 170 25.1 No
 2: 6 F 29 67 169 23.5 No
 3: 12 F 32 77 182 23.1 No
 4: 15 F 27 73 172 24.8 No
 5: 23 F 26 82 175 26.8 No
 6: 26 F 25 58 175 18.9 No
 7: 28 F 28 69 172 23.4 No
 8: 30 F 33 61 175 19.9 No
 9: 17 F 41 62 172 20.9 Yes
10: 27 F 36 82 190 22.6 Yes

If our data table has a key and we want to subset by that key, we can go one step further and drop the reference to the variable we want to subset altogether (for example, demoDT["F",]). In fact, we don’t even need the comma to specify rows as we would with a data frame, though it can be sometimes be confusing to leave it out.

If we have defined a key using multiple variables, we can provide the subset values by separating with a comma. We enclose the values using J(), where J stands for “join.” In the following example, we subset the demography data to return female smokers:

Click here to view code image

> key(demoDT)
[1] "Sex" "Smokes"
> demoDT[J("F", "Yes"),]
 Subject Sex Age Weight Height BMI Smokes
1: 17 F 41 62 172 20.9 Yes
2: 27 F 36 82 190 22.6 Yes

Note: Alternatives to J

The J function is the data.table specification of a “join” of two keys. The practice of joining based on keys has its roots in SQL, but in practice it is just a means of separating variables. As an alternative, the function list (base) or . (plyr) could be used in exactly the same way.

Occasionally we may want to return a subset in which the variables of interest match multiple criteria. To achieve this we can specify a vector of values. If we have defined a key from multiple variables, any vector we specify must be contained within a call to the J function. An example of this is shown here:

Click here to view code image

> setkey(demoDT, Sex, Weight)
> demoDT[J("M", c(76, 77)),]
 Subject Sex Age Weight Height BMI Smokes
1: 4 M 25 76 188 21.4 No
2: 31 M 25 76 174 25.1 No
3: 13 M 21 77 180 23.6 No
4: 20 M 22 77 183 23.1 No

Caution: Numeric Keys

The data.table package allows us to define a key using numeric variables. However, in order to subset using these keys we must use the . function. This is because, like data frames, data tables also allow us to subset by specifying the row numbers. If we wanted to return all the rows in demoDT for which Weight is equal to 72, we would write the following:

Click here to view code image

> setkey(demoDT, Weight)
> demoDT[.(72),]
 Subject Sex Age Weight Height BMI Smokes
1: 3 F 23 72 170 25.1 No

Adding New Columns and Rows

The data.table package makes adding variables to an existing data table much easier and quicker than when working with standard data frames. Whenever we add a column to a standard data frame, we make a copy of the data. When we work with data tables, the new column is instead appended by reference; in other words, R points to the existing table and tells it to add a new column. This makes it much faster and more efficient.

Adding and Renaming Columns

We create new variables in our data, by reference, using the := operator. To create variables by reference we use square, subscript brackets with the existing data table. We avoid any standard R assignment. If we are generating the new variable from existing variables, we refer to them directly as in the following example:

Click here to view code image

> demoDT[, HeightInM.sq := (Height^2)/10000]
> head(demoDT)
 Subject Sex Age Weight Height BMI Smokes HeightInM.sq
1: 1 M 43 57 166 20.7 No 2.7556
2: 2 M 22 71 179 22.2 No 3.2041
3: 3 F 23 72 170 25.1 No 2.8900
4: 4 M 25 76 188 21.4 No 3.5344
5: 5 M 29 82 175 26.8 No 3.0625
6: 6 F 29 67 169 23.5 No 2.8561

Caution: Updating the Values in the Key

If we update the values in any of the columns that make up our key, we need to redefine the key.

To create multiple new columns, we must provide the names of the new columns as a character vector and the transformations as a list. The vector of names and list of transformations should be separated by the := operator, as shown in Listing 12.6. We can also remove columns by setting them to NULL using the := operator.

LISTING 12.6 Creating New Columns

Click here to view code image

 1: > demoDT[, c("SexNum", "SmokesNum") := list(as.numeric(Sex), as.numeric(Smokes))]
 2: > head(demoDT)
 3: Subject Sex Age Weight Height BMI Smokes HeightInM.sq SexNum SmokesNum
 4: 1: 1 M 43 57 166 20.7 No 2.7556 2 1
 5: 2: 26 F 25 58 175 18.9 No 3.0625 1 1
 6: 3: 30 F 33 61 175 19.9 No 3.0625 1 1
 7: 4: 22 M 27 61 170 21.0 No 2.8900 2 1
 8: 5: 17 F 41 62 172 20.9 Yes 2.9584 1 2
 9: 6: 14 M 26 64 170 22.0 No 2.8900 2 1

We can rename columns using the setnames function. Once again the renaming is performed by reference to avoid copying the entire dataset. The setnames function expects a data table as its first argument, with further arguments old and new, which respectively expect a vector of column names to change from and to.

Note: Multiple Ways to Create New Variables

There are normally several ways of doing the same thing with data.table, and everyone tends to have their preference. In order to create new variables in Listing 12.6, we could also have used the following syntax:

Click here to view code image

demoDT[, `:=` (SexNum = as.numeric(Sex), SmokesNum = as.numeric(Smokes))]

We could also have used the set function to achieve the same result.

Adding Rows

Although the rbind function in base can be used to append rows to a data table, the function rbindlist is optimized for speed and memory efficiency. The rbindlist function can be used to join data tables and/or regular data frames that are stored as a list. We can join together as many datasets as we wish, but we must first store them together in a list. Unlike the standard rbind that we looked at in Hour 11, rbindlist will permit us to bind together datasets for which the column names do not match by setting fill = TRUE. An example of this is shown in Listing 12.7. First we generate a list by splitting the airquality data by the Month variable and combine this back together in line 5. Then we use rbindlist again in line 24 to add on new rows of data.

LISTING 12.7 Adding New Rows

Click here to view code image

 1: > # Create a list containing airquality data for each available month
 2: > airSplit <- split(airquality, airquality$Month)
 3: >
 4: > # Bind these together into a single data table
 5: > airDT <- rbindlist(airSplit)
 6: > airDT
 7: Ozone Solar.R Wind Temp Month Day
 8: 1: 41 190 7.4 67 5 1
 9: 2: 36 118 8.0 72 5 2
10: 3: 12 149 12.6 74 5 3
11: 4: 18 313 11.5 62 5 4
12: 5: NA NA 14.3 56 5 5
13: ---
14: 149: 30 193 6.9 70 9 26
15: 150: NA 145 13.2 77 9 27
16: 151: 14 191 14.3 75 9 28
17: 152: 18 131 8.0 76 9 29
18: 153: 20 223 11.5 68 9 30
19: >
20: > # Now assume two new records arrive but with missing columns
21: > month10 <- data.table(Ozone = c(24, 28), Month = 10, Day = 1:2)
22: >
23: > # Bind this to our original data
24: > newAirDT <- rbindlist(list(airDT, month10), fill = TRUE)
25: > tail(newAirDT)
26: Ozone Solar.R Wind Temp Month Day
27: 1: NA 145 13.2 77 9 27
28: 2: 14 191 14.3 75 9 28
29: 3: 18 131 8.0 76 9 29
30: 4: 20 223 11.5 68 9 30
31: 5: 24 NA NA NA 10 1
32: 6: 28 NA NA NA 10 2

Merging

Merging data tables works in the much same way as a typical merge on a data frame using the merge function. However, the default behavior of merge for data tables is to use the respective keys for the two data tables. We must therefore either define keys for the two data tables or specify the “by” variables manually. In Listing 12.8 we create two data tables from the demoData and pkData data frames contained within the mangoTraining package and set the keys accordingly. In line 8 we perform a merge, similar to that used in Hour 11.

LISTING 12.8 Merging Two Data Tables

Click here to view code image

 1: > # Create data tables and define the keys accordingly
 2: > demoDT <- data.table(demoData)
 3: > setkey(demoDT, Subject)
 4: > pkDT <- data.table(pkData)
 5: > setkey(pkDT, Subject)
 6: >
 7: > # Merge the two data tables together
 8: > allPKDT <- merge(demoDT, pkDT)
 9: > allPKDT
10: Subject Sex Age Weight Height BMI Smokes Dose Time Conc
11: 1: 1 M 43 57 166 20.7 No 25 0 0.00
12: 2: 1 M 43 57 166 20.7 No 25 1 660.13
13: 3: 1 M 43 57 166 20.7 No 25 6 178.92
14: 4: 1 M 43 57 166 20.7 No 25 12 88.99
15: 5: 1 M 43 57 166 20.7 No 25 24 42.71
16: ---
17: 161: 33 M 30 80 180 24.8 No 25 0 0.00
18: 162: 33 M 30 80 180 24.8 No 25 1 453.13
19: 163: 33 M 30 80 180 24.8 No 25 6 205.30
20: 164: 33 M 30 80 180 24.8 No 25 12 146.69
21: 165: 33 M 30 80 180 24.8 No 25 24 46.84

For large datasets you will notice that using merge with data tables is significantly faster than the with data frames. For those that need that little bit of extra performance, however, the package offers an alternative that is even faster. To perform the data table merge, we return to using square brackets. For a standard merge (a.k.a. an inner join), we put one data table inside the brackets and one outside. An example of an inner join or standard merge is shown here:

Click here to view code image

> demoDT[pkDT]
 Subject Sex Age Weight Height BMI Smokes Dose Time Conc
 1: 1 M 43 57 166 20.7 No 25 0 0.00
 2: 1 M 43 57 166 20.7 No 25 1 660.13
 3: 1 M 43 57 166 20.7 No 25 6 178.92
 4: 1 M 43 57 166 20.7 No 25 12 88.99
 5: 1 M 43 57 166 20.7 No 25 24 42.71

161: 33 M 30 80 180 24.8 No 25 0 0.00
162: 33 M 30 80 180 24.8 No 25 1 453.13
163: 33 M 30 80 180 24.8 No 25 6 205.30
164: 33 M 30 80 180 24.8 No 25 12 146.69
165: 33 M 30 80 180 24.8 No 25 24 46.84

Aggregation

In addition to transforming and manipulating our data, we can also use data.table to summarize our data. As usual, we start by specifying the name of the data and use square brackets to create a summary. We can perform simple summary operations on columns using standard statistical summary functions such as mean.

Click here to view code image

> # Calculate the mean height
> demoDT <- data.table(demoData)
> demoDT[, mean(Height)]
[1] 176.1515

So far we have seen nothing special. However, data.table permits the use of a “by” argument, which allows aggregation. The return object is also a data table. Here, we calculate the mean height again by sex:

Click here to view code image

> demoDT[, mean(Height), by = Sex]
 Sex V1
1: M 176.5652
2: F 175.2000

Tip: Counting Records

In data.table we can use .N to count records within by-groups. For example, to count the number of males and females in the demoDT data table, we would write demoDT[, .N, by = Sex].

We can summarize by multiple variables by providing them as a list using . or list. The result is another data table with a column for each “by” variable and an additional column for the summary.

Click here to view code image

> demoDT[, mean(Height), by = list(Sex, Smokes)]
 Sex Smokes V1
1: M No 177.3158
2: F No 173.7500
3: M Yes 173.0000
4: F Yes 181.0000

We can provide multiple summaries and name them using a list. Again, the result is a data table.

Click here to view code image

> demoDT[, list(Mean.Height = mean(Height), Mean.Weight = mean(Weight)),
+ by = list(Sex, Smokes)]
 Sex Smokes Mean.Height Mean.Weight
1: M No 177.3158 74.10526
2: F No 173.7500 69.87500
3: M Yes 173.0000 74.25000
4: F Yes 181.0000 72.00000

Caution: Summary Functions That Return Multiple Values

It is possible to summarize using functions that return multiple values, such as range and quantile. However, the effect is that a new row is created for each element of the return vector—for example, one for the minimum and one for the maximum if using range. Other than the sort order, there is no way to tell which row corresponds to which value in the output vector.

The aggregation that we have seen thus far creates a new data table that we can use for publishing, plotting, or modeling. The original table is unaffected by the operation. However, if we want to merge the results of the aggregation back on to the original data, we can easily do so using the := operator.

Click here to view code image

> demoDT[, MeanWeightBySex := mean(Weight), by = Sex]
> head(demoDT, 5)
 Subject Sex Age Weight Height BMI Smokes MeanWeightBySex
1: 1 M 43 57 166 20.7 No 74.13043
2: 2 M 22 71 179 22.2 No 74.13043
3: 3 F 23 72 170 25.1 No 70.30000
4: 4 M 25 76 188 21.4 No 74.13043
5: 5 M 29 82 175 26.8 No 74.13043

In order to generate multiple summaries, we may use any of the methods associated with := for creating new variables.

More with data.table

There are always many ways of achieving the same goal using data.table, and we have presented just a small selection of options in most cases. There are also many more features, such as rolling means, that we simply do not have the time to cover in any detail. If you are interested in digging into data.table further, Matt Dowle has crammed the package help files full of examples. The package FAQ offers further guidance.

Too Large for data.table

For the vast majority of readers, dplyr and data.table will be more than sufficient for your data needs. In particular, data.table has been shown to be extremely performant. On a standard desktop, it can comfortably handle basic summary operations on datasets with a billion rows, containing several thousand groups, within a matter of minutes. However, for some that might still not be enough!

Without parallelizing your code and/or turning to high-performance computing solutions, you might find two further packages to be of assistance. The first of these is bigmemory. The bigmemory package is designed to work with matrices that can be held in your computer’s memory but cannot be processed by standard R functions for data structures. The package takes advantage of C++ and allows objects to be shared across multiple sessions on the same machine.

An alternative approach to handling very large datasets is to use the ff package. Instead of storing large datasets in memory, the ff package stores data on disc. Only a tiny portion of the data is ever mapped to memory. Though the data is stored on disk, it behaves in very much the same way as standard R objects held in memory. On the back end, C++ is used to perform the requested operations.

Still further options are available beyond the two packages covered in this hour, though typically they involve parallelizing your operation and are beyond the scope of this tutorial.

Summary

In this hour, we have looked at the two most popular packages for efficient data handling in R: dplyr and data.table. We have looked at the basic syntax of the packages as well as common data-handling tasks such as sorting, subscripting, merging, and aggregation. If you are still unsure as to which is right for you, you can now have a go at using them both during the workshop.

Having seen how R can be used to import and manipulate data, we will spend the next three hours looking at how we can visualize our data using the graphics package and the popular alternatives lattice and ggplot2.

Q&A

Q. Which is better, dplyr or data.table?

A. In short, it depends! In terms of speed, most benchmarking examples show the packages to be comparable to a point, but as the number of rows and/or groups increases, data.table comes out on top. If speed or memory usage matter to you and you have more than a million rows or 100,000 groups within your data, you should probably use data.table. If data size (and hence performance) is not that important to you, choose whichever you feel more comfortable with.

Q. We have now seen a data.frame, a tbl_df, and a data.table. Why do I need to learn about three different structures?

A. First of all, both a tbl_df and a data.table are just an extension to a data.frame. Generally, there is therefore very little difference, though functions such as print behave in a slightly different manner for tbl_df and data.table objects than they do with a data.frame. This is due to R’s S3 class system, which we will look at more closely in Hour 16, “Introduction to R Models and Object Orientation,” and then again in Hour 21, “Writing R Classes.”

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. True or false? When using select, you must provide a character vector of columns names.

2. Which of the following is a dplyr function that allows you to create new columns?

A. transform

B. subset

C. mutate

3. Assuming you have created a data.table object called demoDT from the demoData data frame and set the key to be the Smokes column, which of the following would return a subset containing all records for subjects that smoke?

A. demoDT[demoDT$Smokes == "Yes",]

B. demoDT[Smokes == "Yes",]

C. demoDT["Yes",]

D. demoDT["Yes"]

4. What is “wrong” with the following syntax when working with a data.table called demoDT?

Click here to view code image

demoDT$Height.Sq <- demoDT$Height^2

Answers

1. False. You specify each column name as a separate argument. In fact, if you do try to use a character vector, the function will return an error.

2. C. The transform and subset functions are contained in the base R package. The transform function is actually quite similar to mutate, though it does not allow you to base new variables on other variables that you are creating within the call to transform. The subset function offers similar functionality to the dplyr functions filter and select.

3. A, B, C and D. The data.table syntax is extremely flexible, and all four methods achieve the same end result.

4. Nothing is technically “wrong” with the statement, though data.table is optimized for efficiency, and the command shown is a standard, less efficient way of creating a new column, Height.Sq. The more efficient method in data.table would be

Click here to view code image

demoDT[, Height.Sq := Height^2]

Activities

1. Using the dplyr package, perform the following actions:

[image: Image] Create a tbl_df object named air from the airquality data frame.

[image: Image] Sort the data by the Wind column.

[image: Image] Remove any rows for which the Ozone column has a missing value.

[image: Image] Remove the Solar.R column and create a new column containing the ratio of Ozone to Wind.

[image: Image] Create a subset of the original airquality data containing just three columns: Month, Day, and Solar.R. The data should only contain data for June and July. Name the output solar.

[image: Image] Merge the air and solar datasets together, retaining all records from the air dataset (that is, a left join).

[image: Image] Calculate the median Ozone value by Month for the merged data.

2. Now using the data.table package, perform the same following actions:

[image: Image] Create a data.frame object named air from the airquality data frame.

[image: Image] Sort the data by the Wind column.

[image: Image] Remove any rows for which the Ozone column has a missing value.

[image: Image] Remove the Solar.R column and create a new column containing the ratio of Ozone to Wind.

[image: Image] Create a subset of the original airquality data containing just three columns: Month, Day, and Solar.R. The data should only contain data for June and July. Name the output solar.

[image: Image] Merge the air and solar datasets together, retaining all records from the air dataset (that is, a left join).

[image: Image] Calculate the median Ozone value by Month for the merged data.

Hour 13. Graphics

What You’ll Learn in This Hour:

[image: Image] How to use graphics devices

[image: Image] High-level graphics functions

[image: Image] Low-level graphics functions

[image: Image] Graphical parameters

[image: Image] How to control the device layout

After all the manipulations to our data, we want to be able to start to do something with it. In this hour, we look at how to create graphics using the base graphics functionality. You may be aware that there are other packages for creating graphics, including ggplot2 and lattice, which we will look at in the next two hours. Here, however, we look at some of the basics, including how to send graphics to devices such as a PDF and the standard graphics functions. Finally, we look at how to control the layout of graphics on the page.

Graphics Devices and Colors

Before we start to create graphics, we need to think about where we will create them and how we will color them. In this section, you learn how to control the device that is used to create the graphic, whether this is the default plot device or a specific file type. You will also see the options for defining color in R graphics.

Devices

Whenever we create a graphic in R, it is returned to a device. This may be the RStudio Plot tab or it may be a physical file, such as a PDF, that we want to return to. A number of graphics devices are available, including PDF, PNG, JPEG, and bitmap. If we do not specify the device, the default device will be opened, and in RStudio this is the Plot tab.

If we want to create a graphic in a specific device, we do so by first creating that device. We create devices with a series of functions that take the name of the file type (for instance, pdf or png). This opens a connection between R and the device, and any graphics we now create will be written to that file. A vital step is to then close the device using the function dev.off. As an example, let’s create a graphic in a PDF file that we will name myFirstGraphic.pdf:

Click here to view code image

> pdf("myFirstGraphic.pdf")
> hist(rnorm(100))
> dev.off() # remember to close the device!

In our current working directory we will now have the PDF file myFirstGraphic. We can, of course, give the full file path to an alternative location to save our device. Attributes of the device, such as width, height, and resolution, can all be set in the specific device functions.

Tip: Closing Graphics Devices

When you start to create graphics in devices in this way, you may find that you have unintentionally opened a number of devices and you are not certain where the graphic is being written to anymore. If this happens, try using the function graphics.off, with no arguments. This will close all active devices and allow you to start again with creating your graphic.

Colors

When it comes to specifying colors in R, we have a few options. The easiest is to simply name the color. To know what colors we can name in this way, we can use a function in R called colors (or colours) that will return a vector of all the colors that R recognizes by name. Here’s an example:

Click here to view code image

> sample(colors(), 10)
[1] "wheat3" "lightblue1" "wheat" "olivedrab1" "lightblue4" "grey11"
[7] "peru" "grey39" "firebrick2" "peachpuff4"

Alternatively, we can provide the exact hexadecimal value for the color we want to use. For instance, #FF0000 is the hexadecimal value for red. If you are not certain of the hexadecimal value but do know the red, green, and blue color values, you can use the rgb function to help you out. For example, here’s how to find the hexadecimal value for green:

Click here to view code image

> rgb(0, 255, 0, maxColorValue = 255)
[1] "#00FF00"

High-Level Graphics Functions

Graphics functions in the base graphics package are split into two types. High-level functions are those that allow us to create the graphic. Low-level functions allow us to add content, such as points and lines to an existing graphic. In this section, we look at the high-level functions available to us. These have been split into univariate graphics and the plot function. We also look at how to control aesthetics and the type of plot we create.

Univariate Graphics

In this section, we look at graphics that we may create with a single variable. This includes histograms, boxplots, and bar charts, as well as QQ plots. Throughout this section we use simple vectors of simulated values to plot.

To start with, let’s look at histograms and QQ plots. Both are very simply created by passing a vector of data to the appropriate function, hist or qqnorm. In the case of the QQ plot, if we want to add a QQ line, we need to additionally use the function qqline.

Click here to view code image

> x <- rnorm(100)
> hist(x, col = "lightblue")
> qqnorm(x)
> qqline(x)

In all these functions there is an argument, col, that allows us to set the color, as can be seen in the preceding hist example. The graphics that these calls generate can be seen in Figure 13.1.

[image: Image]

FIGURE 13.1 Examples of the default histogram and QQ plot, with corresponding QQ line

For boxplots, again we can simply provide a vector of the data we want to plot. Here’s how:

> boxplot(x)

If, however, we want to plot the data split by another variable, we would need to provide a formula for that representation. As an example, we will create a new vector that is simply a random sampling of values from "F" and "M" to assign a gender to each value in the vector x. We then want to plot the data x split by the corresponding gender we have sampled.

Click here to view code image

> gender <- sample(c("F", "M"), size = 100, replace = TRUE)
> boxplot(x ~ gender)

The two graphics generated here can be seen in Figure 13.2. In the case where we have the data stored in a data frame, we can simply provide the variable names and then specify the dataset with the data argument. Here’s an example:

Click here to view code image

> genderData <- data.frame(gender = gender, value = x)
> boxplot(value~gender, data = genderData)

[image: Image]

FIGURE 13.2 A simple univariate boxplot and boxplot split by a second variable, in this case gender

The final example to consider is the barplot function. This allows us to create a bar chart where the heights of the bars are based on the values given by the vector input. Consider this simple example of a vector of just three elements:

> barplot(c(3, 9, 5))

This bar chart is shown in Figure 13.3. There are additional options for giving names to each of the bars, for instance, and for coloring the bars, as you have seen for other plots. This function also works well with the table function you saw in Hour 6, “Common R Utility Functions.” Consider the gender vector that we created. Suppose we want to count the number of cases of each gender and generate a bar chart showing these counts:

Click here to view code image

> genderCount <- table(gender)
> barplot(genderCount)

[image: Image]

FIGURE 13.3 Bar charts created from a single vector and a named vector, the output of the table function

This is also shown in Figure 13.3. You will notice that in this case the bars are already named. This is because the output from the table function is a named vector, so the names of the categories in the data are passed through to the barplot function to label the bars.

The plot Function

The main function you will use for generating graphics is the plot function. As you will see, this is a very versatile function and can be used to easily generate diagnostic plots for models. In this hour we use it only to plot vectors of data.

Let’s start with just a single vector of data. In this case, just as with the preceding univariate graphics, we can simply pass the vector to the plot function:

> plot(x[1:10])

This plot is shown in Figure 13.4, where you can see that in this instance the values of the vector are plotted against the Y axis. On the X axis we have the index of the position of the element in the vector.

[image: Image]

FIGURE 13.4 Using plot for a single vector. Here, the values in the vector are plotted against their index, or position in the vector

When it comes to plotting two variables, we need to give the X and Y axis variables in that order. So the first argument to plot is the vector of values on the X axis, and the second is the vector of values on the Y axis. Therefore, let’s create a plot using the airquality data. In this instance, we are going to plot Ozone against Wind, so we want the Wind vector on the X axis and Ozone on the Y axis:

Click here to view code image

> plot(airquality$Wind, airquality$Ozone, pch = 4)

In this example, the result of which can be seen in Figure 13.5, we have also changed the plotting symbol, which you will see in more detail in the next section. You will notice that this has, by default, added axis labels that are simply the names of the objects we passed and that there is no title. All of these things, which contribute to the appearance of the plot, we will look at in the next section.

[image: Image]

FIGURE 13.5 Using plot to create a bivariate scatterplot. Here, we have also changed the plotting symbol

Aesthetics

For all of the plotting functions that we have looked at in this hour, there are a number of arguments we can use to change the way that the plot looks. This could be adding a title, changing the point styles, or adding the correct axis labels. In this section, we discuss how to do all these things.

Titles and Axis Labels

We need three arguments to change the main title of the plot along with the X and Y axis labels:

[image: Image] main, for controlling the plot title

[image: Image] xlab, for setting the X axis label

[image: Image] ylab, for setting the Y axis label

We can use these arguments in all the plotting functions from this hour:

Click here to view code image

> hist(x, main = "Histogram of Random Normal Data", xlab = "Simulated Normal Data")
> require(mangoTraining)
> plot(pkData$Time, pkData$Conc,
+ main = "Concentration against Time", xlab = "Time",
+ ylab = "Concentration")

The plots for these examples are shown in Figure 13.6, where you can see we now have more appropriate titles and axis labels.

[image: Image]

FIGURE 13.6 Changing titles and axis labels in both histograms and scatterplots

Tip: Including Special Characters

If you want to include special characters, such as Greek letters, in your titles and axis labels, you will need to use the expression function. As an example, the axis label may become this:

Click here to view code image

ylab = expression("Concentration ("*mu*"g/ml)")

Here, we are using the asterisk (*) to combine strings with the Greek character mu.

Axis Limits

The default behavior of the plot function is to set the range of the plot limits to cover the range of the data. In some instances this is sufficient; however, often this will not be suitable for the data in question—for instance, if the axis limits need to extend to zero. In this case, we need to make use of the arguments xlim and ylim.

Both of these arguments are provided in the same way. We need to give a single vector of length two. The first element of this vector is the minimum value for the axis and the second value is the maximum value for the axis. As an example, suppose we want to extend the maximum value of both axes in the Concentration against Time plot:

Click here to view code image

> plot(pkData$Time, pkData$Conc, xlim = c(0, 50), ylim = c(0, 3000))

The plot that is created by this code is shown in Figure 13.7. This functionality is particularly useful if we want to plot a subset of the data across the range of the full dataset. For instance, suppose we want to plot the Dose 25 data from the pkData dataset but with the axes based on the complete data:

Click here to view code image

> plot(pkData$Time[pkData$Dose == 25], pkData$Conc[pkData$Dose == 25],
+ ylim = range(pkData$Conc))

[image: Image]

FIGURE 13.7 Changing axis limits

This plot can also be seen in Figure 13.7, and you can see how we have used the range function from Hour 6 to determine the minimum and maximum values of the Y axis of the plot.

Plotting Symbols

In the graphics that we have created so far, we have mostly left the plotting symbol as the default, black, unfilled circle, although Figure 13.5 showed that we can change the symbol itself using the argument pch, and Figure 13.1 showed we can change color using the col argument.

You can change the plotting symbol by providing a numeric value to indicate the symbol you want to use. Figure 13.8 shows symbols 0 to 20. Additionally, a series of other symbols takes values in the region 21 to 25 (see Figure 13.9). The difference with these symbols is that, in addition to being able to set the color, we can also set the fill. The fill of the shapes is actually set with the argument bg, but just like with the argument col, we can give any color value.

[image: Image]

FIGURE 13.8 Plotting symbols and their values

[image: Image]

FIGURE 13.9 Plotting symbols 21 to 25 with just the col argument set (bottom) and with col and bg set (top)

As well as setting the color and shape of the symbols, we can also set the size. We do this with the argument cex. This argument is simply a numeric value indicating how many times bigger (or smaller) than the usual size we want our points. The default is 1.

The following example shows how we can create a graphic where all these arguments are set. Notice that we are using the plotting symbol 24, which allows us to use the bg argument:

Click here to view code image

> plot(pkData$Time, pkData$Conc,
+ main = "Concentration against Time", xlab = "Time",
+ ylab = "Concentration", pch = 24, col = "navyblue",
+ bg = "yellow", cex = 2)

You can see the graphic that is created from this code in Figure 13.10.

[image: Image]

FIGURE 13.10 Updating the plotting symbol and its attributes

Plot Types

Clearly it is very simple to create scatterplots of our data, but what about alternative plot types? You haven’t yet seen a line plot or step plot. How about lines and points? We can switch our plot to any of these graphics by using the type argument. We pass to the type argument one of a series of letters. The default is p, to indicate points, but we can also have l, o, and s, to name a few. The complete set of options is given in Table 13.1, and a series of graphics showing different types when plotting the same random 10 points is shown in Figure 13.11. Generating graphics of this type would look something like this:

Click here to view code image

> x <- rnorm(100)
> plot(x, type = "l", main = 'type = "l"')

[image: Image]

TABLE 13.1 Available Plot Types

[image: Image]

FIGURE 13.11 Setting the plot type

It is probably worth noting that just as we can style the points, as you saw in the previous section, we can also style lines. The argument lty lets us set the line type and again takes integer values. The argument lwd allows us to set the line width in the same way that we set the point size using cex. We will look at examples of setting line types in the next section.

Low-Level Graphics Functions

So far you have seen only the high-level graphics functions available in the base graphics package. This package has allowed us to create an entire plot. Often we will want to add a component to the graphic—such as lines showing the mean and confidence intervals, or text to identify an outlier. For this we need the low-level graphics functions. All the functions you will see in this section add a component to the existing graphics device rather than creating a new plot device. This is where the type = "n" option you saw in the previous section is particularly useful.

Points and Lines

We will start by adding simple points and lines to our graphics. For this we will use the functions points and lines. Just as with the plot function, these functions add points at the X and Y locations specified, or join the locations together in the case of lines. Just as with the plot function, therefore, the first two arguments are the vector of x values and the vector of y values. As an example, let’s take the first and second subjects from the pkData. On a single plot we will add the points to show subject 1 and a line to show subject 2:

Click here to view code image

> subject1 <- pkData[pkData$Subject == 1,]
> subject2 <- pkData[pkData$Subject == 2,]
> plot(pkData$Time, pkData$Conc, type = "n")
> points(subject1$Time, subject1$Conc, pch = 16)
> lines(subject2$Time, subject2$Conc)

The resulting plot is shown in Figure 13.12. The lines function shown here has simply connected together supplied X and Y points. What if we wanted to add a straight line that shows the median concentration value, or the time when the maximum occurs, or even some form of trend? In this case, we would use the function abline. The default behavior of this function is to add a line based on an intercept and slope. However, we can also use the arguments h and v to add horizontal and vertical lines. So, here’s how to add the median concentration and the time of the maximum concentration:

Click here to view code image

> abline(h = median(pkData$Conc), lty = 2)
> abline(v = pkData$Time[pkData$Conc == max(pkData$Conc)], lty = 3)

[image: Image]

FIGURE 13.12 Adding points and lines to a plot

Text

The ability to add text to a graphic is incredibly useful. It may be that you actually want to use text as the plotting symbol itself but more often than not it will simply be that you want to label a particular point, typically an outlier. We would perform all of these tasks with the text function. Another low level function, this will allow us to add information to an existing plot and it doesn’t matter if this was created using only a high level function or a combination of high and low level functions as we saw in the last section.

To start with, we will use the text function to add all of the content of our plot, using text as the plotting symbol. Just as other plot functions, the first two arguments are the vectors of the X and Y location for the points. The third argument to this function is then the text that we want at each location. This is typically a vector of the values for each X, Y pair. So if we were to plot the Concentration against Time plot of the pkData, using the Dose as the text to plot, it might look something like this:

Click here to view code image

> plot(pkData$Time, pkData$Conc, type = "n")
> text(pkData$Time, pkData$Conc, pkData$Dose)

This graphic is shown in Figure 13.13, and as you can see the doses appear as text on the plot. A more effective use of this function is to label specific points. We can use the text function in a very similar way with the X and Y location along with the text, but as you will notice, this centers the text on the location. If you also have a point here, this is a problem because the text will be obscured. You can, of course, manually adjust the X or Y location to handle this, though the text function includes a number of arguments for controlling the positioning. One argument, adj, lets us specify an X and Y adjustment for the text. We can also use the arguments pos and offset. The pos argument lets us control which side of the point to position the text and takes a value from 1 to 4, with 1 being the bottom, 2 to the left, 3 above, and 4 to the right. The offset argument is used in conjunction to determine how far away from the point to center the text.

[image: Image]

FIGURE 13.13 Using the text function to plot text or add text labels

As an example of using text in this way, we can consider labeling the maximum value at each time point, except 0, with the Subject number. Here, we are using the dplyr package to retain only the rows of data that correspond to the maximum concentration, and then we are using the text function to plot the Subject label to the right of the corresponding points. This graphic can be seen in Figure 13.13.

Click here to view code image

> library(dplyr)
> maxData <- filter(group_by(pkData, Time), Conc == max(Conc), Time != 0)
> plot(pkData$Time, pkData$Conc, pch = 16)
> text(maxData$Time, maxData$Conc, maxData$Subject, pos = 4, offset = 0.5)

Legends

Adding a legend to a graphic created with any of the base graphics functions requires us to use the low-level legend function. It can initially seem like a confusing function to work with, but in reality it is not too confusing if you remember to always give the groups in the same order as the text on the legend itself.

The first argument to this function is either an X and Y location for the position of the top-left corner of the legend or a single string of the form "topright" or "bottomleft", among others. A full list is available in the help file for the legend function.

We then need to specify the legend text. To the argument legend we pass a vector of character strings that will appear as the labels on the legend—for instance, legend = c("Subject 1", "Subject 2"). We can give the text in any order we want the groups to appear. The only thing we need to remember is that when we specify colors, points, and so on, we need to maintain this ordering.

In addition to the location and the legend text, we can then provide vectors of the values for any parameters we want to change. For instance, if we have set the color for each group, we may want to pass a vector of colors to the col argument. If we have changed the plotting symbol for each group, we may want to pass a vector of the plotting symbols—again, remembering for each to maintain the ordering we gave in the text.

As an example, suppose we want to add a legend to the pkData plot, where subject 1 is plotted with blue filled circles and subject 2 is plotted with red, unfilled squares:

Click here to view code image

> subj1 <- pkData[pkData$Subject == 1,]
> subj2 <- pkData[pkData$Subject == 2,]
> plot(subj1$Time, subj1$Conc, pch = 16, col = "blue")
> points(subj2$Time, subj2$Conc, pch = 0, col = "red")
> legend("topright", legend = c("Subject 1", "Subject 2"),
+ pch = c(16, 0), col = c("blue", "red"))

This graphic is shown in Figure 13.14, and you can see that in this case the legend has been pushed into the very top-right corner and sized appropriately based on the legend text provided.

[image: Image]

FIGURE 13.14 Adding a legend to a graphic

Note: Arguments to the legend Function

You will have noticed in the example that the arguments used were the same as those in the plot and points functions. For many of the graphics parameters, this will be the same. However, take care because some, such as cex, will actually change the legend itself. You can still change the size of the points in the legend, but you will need the argument pt.cex instead. Much more information is available in the help file.

Other Low-Level Functions

In addition to the low-level functions you have seen in this section, a few others are available. We will not go through them all here, but Table 13.2 lists many of the functions you may be interested in. This includes functions for controlling the title, text in the margins, and the axes.

[image: Image]

TABLE 13.2 Low-Level Graphics Functions

Graphical Parameters

In the graphics we created in this hour, we have set any parameters related to the graphics in the plotting functions. We can also set these inside a function called par. The par function actually returns a list that contains the settings for graphics parameters. This not only includes arguments such as col and pch, but also mar for setting the margins and xpd, which allows us to add graphics content outside of the figure region.

When it comes to setting margins for our graphic, it is useful to know how a graphics device in R is split. Figure 13.15 shows the sub-regions of a device, including the outer margins and the figure region. You will notice that the par function includes arguments for the outer margin. You may want to alter this when you have multiple graphics in one device, as you will see in the next section, because they all share an outer margin.

[image: Image]

FIGURE 13.15 Regions in a graphics device

For all the options that can be set in the par function, their usage, and their default values, the help documentation is an invaluable resource.

Controlling the Layout

Once we are able to create all the graphics we are interested in, we typically want to think about how we present that information. When we looked at creating a graphics device, we said that a PDF file would allow us to create a single, multipage document of all our individual plots. In this section, we look at options for creating a single page containing multiple graphics.

Grid Layouts

The simplest layout of our graphics is in a grid-like structure, where we have a specified number of rows and/or columns of graphics. We can set up a graphics device to have the format by using the mfrow option to the par function. This argument takes a vector of the number of rows and columns into which our device should be split. When we then create graphics, they will be entered into the device across the rows, starting in the top left of the grid.

As an example, suppose that we have some random data that we want to plot as a histogram, boxplot, QQ plot, and against its index. We may want to set this up as a 2×2 plot area, like so:

> par(mfrow = c(2, 2))
> x <- rnorm(100)
> hist(x)
> boxplot(x)
> qqnorm(x)
> plot(x)

The graphic that this generates can be seen in Figure 13.16. Once set, this layout of graphics will be maintained. We can revert to the default by setting the mfrow argument to c(1, 1).

[image: Image]

FIGURE 13.16 Splitting up the plot region using mfrow

The layout Function

For much finer control of the layout of our graphics we can use the layout function. As well as being able to control the width and height of each of the columns in our graphics device, we have much finer control of which regions a graphic appears in.

The main argument for this function is a matrix that specifies the locations for each graphic. Each graphic is represented by an integer value and appears in the grid in all regions where that value appears. As an example, suppose we want to plot four graphics, as in the previous section, but we want the first histogram to take up the entire first row and the other three graphics to appear underneath in one row. In that case, we would create the following matrix:

> mat <- rbind(1, 2:4)
> mat
 [,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 3 4

Thus, the first graphic would fill all cells containing the value 1—in this case, the entire first row. The second graphic would appear in the position of the 2, and so on. To set this as our layout, we pass it to the layout function, followed by the graphics in order:

> layout(mat)
> x <- rnorm(100)
> hist(x)
> boxplot(x)
> qqnorm(x)
> plot(x)

The result is shown in Figure 13.17. Clearly this gives us a large amount of flexibility over which graphics appear where and their size. If you don’t want a region to include a graphic, you can set the value in the matrix to 0. To see the layout you have specified, use the layout.show function. This will generate a graphic showing the specified layout.

[image: Image]

FIGURE 13.17 Splitting up the plot region using layout

Tip: Finer Control of the Layout

We can control the appearance of the layout further by using the widths and heights arguments to the layout function. We simply need to provide a vector the same length as the number of columns (for widths) or rows (for heights) specifying the sizes.

Summary

In this hour, you saw how to create graphics using the base R functionality. Functions for graphics are split into two: The high-level functions create a whole plot, and the low-level functions allow us to add components to an existing graphic. The base graphics package is not the only option for graphics, and in the next two hours you will see how to create graphics using the ggplot2 and lattice packages.

Q&A

Q. Why isn’t my plot appearing in the Plot tab?

A. This is usually because you have an open connection to a graphics device other than the default Plot tab in RStudio. In that case, your graphics are being written to an alternative graphics device. You can use the function dev.off to close the current connection, but if you are not sure how many graphics devices you have open, try graphics.off. This will close all active devices, and you can start again.

Q. The argument bg isn’t changing anything in my graphic. What am I doing wrong?

A. What plotting symbol are you using? The argument bg is only compatible with plotting symbols in the range 21 to 25. If you are using any other symbol, this argument won’t change anything about your graphic.

Q. How can I remove lines or points after I have added them with the low-level functions?

A. The approach taken by R in drawing graphics with the base graphics functions is similar to a pen-and-paper approach. If you want to remove a component, you will need to run the code again, excluding the component you don’t want anymore.

Q. I changed the layout of my device and now I just want to see one plot. How can I change it back?

A. You can change the layout back to the default (one row, one column) by setting the argument mfrow of the par function to c(1, 1).

Q. Can I put the legend outside of the plot region?

A. Yes, you can. You will need to extend the margins and set the argument xpd (in the par function) to NA to allow you to draw in the margins.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. What is a device and why do you need to set one?

2. Which functions allow you to create the following graphics?

A. A QQ plot with corresponding line

B. A bar chart of counts

C. A plot of a variable against another

D. A histogram

3. What effect would setting pch = 6 have on a scatterplot?

4. Which low-level graphics function can you use to add text to the margins?

5. When would you use the mfrow argument of the par function and when would you use the layout function?

Answers

1. A device is what your graphic is created in. This could be the default RStudio device or a specific file type, such as PDF or PNG. If you want to use a device that is not the default device, you need to set it. You use a function such as pdf or png to set the device and dev.off to close the connection.

2. You would need the following functions:

A. qqnorm and qqline

B. barplot

C. plot

D. hist

3. It would change the plotting symbol to an upside-down triangle.

4. To add text in the margins, you would need to use the mtext function.

5. You would use both to change the layout of a device to include multiple graphics in a single device. The mfrow argument is sufficient if you want the graphics to be in a grid layout with a specified number of rows and columns. The layout function gives you much more control over exactly where graphics should appear and the widths and heights of rows and columns.

Activities

1. Sample 100 values from a Normal distribution. Create a histogram of this data.

2. For each month in the airquality data, create a plot of Ozone against Wind. Ensure that all the plots are on the same axis and include a suitable title that indicates the month—for example, “Ozone against Wind for Month X.”

3. Create a five-page PDF document from the graphics in the previous exercise.

4. Create a single-page PNG file that includes all five graphics created in Activity 2. Choose a suitable layout to show the data.

5. Create a single graphic of Wind against Day, where each month is a single line, each in a different color. Add a legend to the graphic.

Hour 14. The ggplot2 Package for Graphics

What You’ll Learn in This Hour:

[image: Image] Creating simple plots

[image: Image] Changing plot types

[image: Image] Control of aesthetics

[image: Image] Groups and panels

[image: Image] Themes and legend control

In Hour 13, “Graphics,” you saw how the graphics package can be used to create highly customized graphics. However, as you have seen, the graphics package can be hard work when used as an exploratory tool. To compare levels of a variable, we typically need to use “for” loops or a clever application of factors. Items such as the legend must be added manually.

The lattice and ggplot2 packages offer alternatives to the graphics package that are much easier to use for data exploration. Each has been built using Paul Murrell’s grid package, thus enabling plots to be created as objects that are then printed when required. In this hour we start by looking at the hugely popular ggplot2 package, developed (once again) by Hadley Wickham.

The Philosophy of ggplot2

The ggplot2 package was inspired by Leland Wilkinson’s book The Grammar of Graphics. The grammar of graphics philosophy breaks a graphic into a series of layers. Different layers describe the mapping of the data to plot features, the plot type, the coordinate system, and the associated scaling of plot features. To follow the grammar of graphic using ggplot2, we need just one plot function, ggplot, to which we add the required layers. Different plot types can be achieved through geometric layers, or “geoms.”

In addition to the relatively pure implementation of the grammar of graphics via the ggplot function, ggplot2 offers an additional graphical function, qplot, designed to speed up the creation of graphics by making assumptions about the layers we want to use. The existence of qplot in ggplot2 is divisive: Several vocal supporters of the grammar of graphics concept advocate scrapping qplot. However, as passionate ggplot2 supporters that use and teach the package on a daily basis, the authors of this book cannot relate to this opinion. Our clients want to be able to create powerful visualizations as quickly and easily as possible. Why would anyone want to remove a function that makes it quicker and easier to create high quality graphics?! By the end of the hour, you can decide for yourself whether you prefer the quick-and-easy approach, the true grammar of graphics, or a combination of the two. For now let’s take a look at some ggplot2 basics using the qplot function.

Quick Plots and Basic Control

The “q” in qplot stands for “quick.” The speed mainly relates to typing; the function requires a lot less typing than its ggplot counterpart. It achieves this by making assumptions; however, the function is also far more flexible than most people realize and can be used in conjunction with a layered grammar of graphics approach.

Using qplot

We have stated that qplot is quick because it makes assumptions. Thankfully there are very few assumptions, and they are all very sensible! Indeed, most of the assumptions are no different from the assumptions made by graphics functions such as plot and hist. In addition to assumptions about the coordinate system, axes, plotting character, and so on, qplot also makes an assumption about the plot type. For example, if we provide a single variable to qplot, it is assumed that we want to draw a histogram. If we provide two variables, it is assumed that we want to draw a scatter plot.

Later, you’ll see how to easily vary the plot type using qplot, but for now we start with a simple scatter plot using the mtcars data. We specify mtcars as the data frame that we are using and refer to the wt and mpg variables directly. The output is displayed in Figure 14.1.

Click here to view code image

> # Load package and create a simple plot
> require(ggplot2)
> theme_set(theme_bw(base_size= 14)) # Set the theme to a white background (more
 later)
> qplot(x = wt, y = mpg, data = mtcars)

[image: Image]

FIGURE 14.1 Creating a scatter plot using the qplot function

Tip: Changing the Default Theme

In the code block that creates Figure 14.1, we include a line to set the “theme”. This line of code changes the default background color from grey with white gridlines to white with grey gridlines. At the same time we increase the default font size. This is a global setting that changes the appearance of each of the subsequent graphics produced in this hour. We look at themes in more detail later in the hour.

Note: Working with Vectors

The qplot function allows us to directly pass individual vectors—for example, qplot(1:10, rnorm(10)). However, it is generally more common to have the data that you wish to plot stored within a data frame. In this case, it is much easier to specify the name of the data frame using the data argument so that we can refer to variables directly.

Titles and Axes

As with the plotting functions contained within the base graphics package, we can add a main title to our plot using qplot via the main argument. The arguments xlab and ylab control the axis labels for the X and Y axes, respectively. Similarly, arguments xlim and ylim allow users to control the X and Y axis limits. These arguments must be provided with a vector of length 2. We can also add these features using “layers.”

Working with Layers

To follow the grammar of graphics, we build a plot in layers. We don’t have to do this with qplot, but each of the title/axis elements that we have looked at could instead have been added using a layer. A main title as well as X and Y axis labels can also be added as layers using the ggtitle function and the xlab and ylab functions, respectively. For the X and Y axis limits, we can use xlim and ylim functions. Listing 14.1 contains two sections of code for re-creating the graphic in Figure 14.1 with an appropriate title and axis labels. The two code sections produce an identical graphic; the first, starting on line 2, uses a single call to qplot, and the second, starting on line 10, uses a layered approach.

LISTING 14.1 Optional Layering

Click here to view code image

 1: > # Version 1: Using a single call to qplot
 2: > qplot(x = wt, y = mpg, data = mtcars,
 3: + main = "Miles per Gallon vs Weight\nAutomobiles (1973–74 models)",
 4: + xlab = "Weight (lb/1000)",
 5: + ylab = "Miles per US Gallon",
 6: + xlim = c(1, 6),
 7: + ylim = c(0, 40))
 8: >
 9: > # Version 2: qplot with additional layers
10: > qplot(x = wt, y = mpg, data = mtcars) +
11: + ggtitle("Miles per Gallon vs Weight\nAutomobiles (1973–74 models)") +
12: + xlab("Weight (lb/1000)") +
13: + ylab("Miles per US Gallon") +
14: + xlim(c(1, 6)) +
15: + ylim(c(0, 40))

To add plots as layers, we use the “+” symbol. By placing a + at the end of the line, we tell R to expect more layers to our plot, much like adding numbers. When we add ggplot2 functions in this way, we say we are adding “layers.”

Tip: Fixing One End of an Axis

Sometimes we’re only interested in fixing one end of an axis scale. For example, we may wish to fix the lower end at zero. In this case, NA can be used to specify that we are happy to let ggplot2 choose a bound for us.

Plots as Objects

Both lattice and ggplot2 are built using Paul Murrell’s grid package. This allows us to save plots as objects. The qplot function creates a ggplot object. A ggplot object is essentially a set of instructions that explain how to create the graphic. Only when we ask R to print the object are the instructions followed and the graph created. The instructions can be saved and used at any time—for example, after we have altered some theme settings and we are ready to export our graphics.

Click here to view code image

> # Create a basic plot and save it as an object
> basicCarPlot <- qplot(wt, mpg, data = mtcars)
> # Modify the plot to include a title
> basicCarPlot <- basicCarPlot +
+ ggtitle("Miles per Gallon vs Weight\nAutomobiles (1973–74 models)")
> # Now print the plot
> basicCarPlot

We can use layers to modify a ggplot object, adding new instructions as to what to draw. This is extremely powerful for data exploration because it allows us to create a base graphic and use a variety of different additional layers to explore covariates.

Tip: Exporting ggplot2 Graphics

In Hour 13 you saw how to write a plot to file by opening the device, drawing the plot, and then closing the device with dev.off. The ggplot2 package provides an alternative workflow via ggsave. To export using ggsave, we first save our plot as an object. When we are ready to write the plot to file, we pass ggsave the filename and ggplot the object name, for example:

Click here to view code image

> carPlot <- qplot(x = wt, y = mpg, data = mtcars) # Create ggplot object
> ggsave(file = "carPlot.png", carPlot) # Save object as a png
Saving 10.6 x 7.57 in image

The function handles the opening and closing of devices for us, selecting the device based on the file extension that we provide.

Changing Plot Types

Using the grammar of graphics terminology, plot types are considered to be geometric shapes that describe how the data are displayed. We vary the plot type using the geom (short for “geometric”) argument to qplot, negating the need for separate plotting functions. A sample call is shown here with the resulting graphic shown in Figure 14.2:

Click here to view code image

> # Ensure cyl variable is of the right type by fixing in the data
> mtcars$cyl <- factor(mtcars$cyl)
> qplot(cyl, mpg, data = mtcars, geom = "boxplot")

[image: Image]

FIGURE 14.2 Generating boxplots

Caution: Know Your Factors!

When you’re working within the ggplot2 framework, it is really important to know your data types. You need to pay particular attention to categorical data that might be stored as numeric (for example, the cyl variable in mtcars). Such variables must be converted to factors to ensure appropriate representation on the end graphic. Generally, it is better to make any necessary conversions within the data as opposed to within the call to qplot or subsequent layers.

Plot Types

When we specify the geom argument within qplot, we are in fact calling out to one of many geometric functions that tell R how to display the graphic. Each function has a geom_ prefix. We can therefore use a regular expression to find all geometric functions within the ggplot2 package.

Click here to view code image

> grep("^geom", objects("package:ggplot2"), value = TRUE)
 [1] "geom_abline" "geom_area" "geom_bar" "geom_bin2d"
 [5] "geom_blank" "geom_boxplot" "geom_contour" "geom_crossbar"
 [9] "geom_density" "geom_density2d" "geom_dotplot" "geom_errorbar"
[13] "geom_errorbarh" "geom_freqpoly" "geom_hex" "geom_histogram"
[17] "geom_hline" "geom_jitter" "geom_line" "geom_linerange"
[21] "geom_map" "geom_path" "geom_point" "geom_pointrange"
[25] "geom_polygon" "geom_quantile" "geom_raster" "geom_rect"
[29] "geom_ribbon" "geom_rug" "geom_segment" "geom_smooth"
[33] "geom_step" "geom_text" "geom_tile" "geom_violin"
[37] "geom_vline"

Caution: Line Graphs!

There are two geoms for creating a standard line graph in ggplot2: geom_line and geom_path. The geom_path function is analogous to using the low-level lines function in the graphics package. The geom_line function is best used with time series data because it ensures that the x-values are plotted from low to high by reordering the coordinates before plotting.

When working with qplot, we simply remove the “geom_” from the function name and pass the rest, in quotes, to the geom argument. As with the title, axis labels, and axis limit options, we can call the geometric functions directly as separate layers. However, one of the features that makes qplot “quick” is that it assumes a geometric shape or plot type to draw. If we don’t specify a plot type, qplot chooses one for us. The following code therefore fails to exactly re-create Figure 14.2. Instead, the boxplots are drawn over the top of a scatter plot as shown in Figure 14.3.

Click here to view code image

> qplot(cyl, mpg, data = mtcars) + geom_boxplot()

[image: Image]

FIGURE 14.3 The effect of adding a geom_boxplot layer to a standard qplot call

The previous example might imply that it is difficult to use qplot to create complex graphics. However, with a good understanding of the working of qplot and the ggplot2 layers, almost anything is possible!

Combining Plot Types

Although the previous example (overlaying points and a boxplot) may in itself be undesirable, it highlights the possibility of using two or more geometric layers in conjunction with one another. One example is using multiple layers to create the ggplot2 equivalent to a type = "o" plot that we saw in the previous hour by overlaying points and lines. However, there are many more possible combinations. The following example adds a linear smoothing line to a plot of mpg against wt using mtcars:

Click here to view code image

> qplot(wt, mpg, data = mtcars) + geom_smooth(method = "lm")

We do not necessarily need to add geometric layers to create the desired plot. It is possible to create the exact same plot as the preceding line using a single call to qplot. We do so by providing the geom argument with a character vector of geometric names. In this case, we specify a vector containing both "point" and "smooth". Note that any additional arguments to the geometric functions, such as method = "lm" in this case, can also be passed to qplot. An example of this with the output displayed follows in Figure 14.4.

Click here to view code image

> qplot(wt, mpg, data = mtcars, geom = c("point", "smooth"), method = "lm")

[image: Image]

FIGURE 14.4 Passing additional arguments to geoms when using qplot

When combining two or more plot types together, it can often be clearer to use the ggplot function instead of qplot. We will look more closely at ggplot later in the hour.

Aesthetics

In ggplot2 terminology, the word “aesthetic” has a special meaning and can refer to any graph element that is affected by columns within our data. This could include what we traditionally think of as aesthetics, such as the color, shape, or size of plotting characters, but also arguments such as x and y. We will look more closely at the idea of x and y as being aesthetics toward the end of the hour, but for now let’s focus on the traditional meaning.

A big advantage of ggplot2 over the graphics package is the ease with which we can visually explore our data using aesthetic elements. Using qplot, we can link an attribute such as color directly to a variable. Doing so creates a legend automatically. In order to use aesthetics, we can either specify the same arguments to the par function (col, pch, cex) that we saw in Hour 13 or we can use more memorable, user-friendly terms: color, shape and size. We can also use alpha to vary the transparency, fill to control shaded areas, and linetype to vary the line type. As can be seen in the following code block and Figure 14.5, we can create extremely attractive graphics using very little code. In this example, we create a plot of earthquake locations in a region of Fiji, where the size of the plot character represents the magnitude of the earthquake, and the color represents the depth at which it occurred.

Click here to view code image

> qplot(x = long, y = lat, data = quakes, size = mag, col = -depth) +
+ ggtitle("Locations of Earthquakes off Fiji") +
+ xlab("Longitude") + ylab("Latitude")

[image: Image]

FIGURE 14.5 Varying the aesthetics of a plot

Caution: Make Everything Blue!

The qplot function has been written to make it as easy as possible to link aesthetic elements with variables in our data. As a consequence, it’s not quite so easy to just color every point blue! To do so, we have to use a function called I. Here’s an example:

Click here to view code image

> qplot(wt, mpg, data = mtcars, colour = I("blue"))

Neglecting to use the I function in this example would result in the text “blue” being treated as a variable in our data. This does not cause an error but does yield some interesting results!

Control of Aesthetics

One of the great things about using ggplot2 for data exploration is that the package handles the aesthetics for us. However, when it comes to presenting or publishing our results, there are usually one or two styling elements we would like to tweak. In ggplot2 the appearance of the aesthetics is controlled by scaling layers. The scale layer functions follow a very consistent naming convention that depends on the element we want to control and the type of data we are controlling. The general format is

Click here to view code image

scale_[aestheticElement]_[scaleType]

Using this convention, we replace aestheticElement with the aesthetic used (for example, color). We replace scaleType by an appropriate scale for our data type (for example, continuous). In addition to the more obvious discrete and continuous scales, a number of other useful aesthetic scales are available in ggplot2. For example, scale_color_gradientn creates a continuous color through n colors, e.g., scale_color_gradientn(colours = rainbow(6)).

Consider a plot of mpg against wt using mtcars for which we decide to vary the shape by the cyl variable. To change the shapes used for the three levels of the cyl variable, we use the scale layer function scale_shape_manual. The example is shown here with the corresponding output displayed in Figure 14.6:

Click here to view code image

> # Create a basic plot
> carPlot <- qplot(x = wt, y = mpg, data = mtcars, shape = cyl, # cyl is a factor
+ main = "Miles per Gallon vs Weight\nAutomobiles (1973–74 models)",
+ xlab = "Weight (lb/1000)",
+ ylab = "Miles per US Gallon",
+ xlim = c(1, 6),
+ ylim = c(0, 40))
>
> # Edit plotting symbols and print
carPlot + scale_shape_manual("Number of\nCylinders", values = c(3,5,2))

[image: Image]

FIGURE 14.6 Manual control of the aesthetics

The scale function chosen must match the data type. In the previous example, we used the manual suffix, which allows us to be specific about which shapes we want to use. This manual suffix only works with discrete data. We provided the function with a list of three shapes because the factor version of the cyl variable is discrete and has three levels.

Note: Universal Spelling

Hadley Wickham is a New Zealander who has spent much of his adult life living in the USA. The ggplot2 package is a universally friendly package that accounts for variants in the English language, such as the two ways of spelling color/colour, by duplicating functionality. This has resulted in several identical functions such as scale_color_manual and scale_colour_manual.

Scales and the Legend

In ggplot2 there is a direct link between the aesthetic elements and the legend. It is this link that causes a legend item to be generated whenever we vary an aesthetic such as color by a variable in our data. This link extends to the aesthetic scaling functions, which, in addition to controlling the aesthetics themselves, can be used to control the way in which the aesthetics are portrayed within the legend. As you may have noted from the code block that creates Figure 14.6, the first argument to each of the aesthetic scaling functions controls the name that appears with that element within the legend. An example of updating the legend titles is shown here with the output displayed in Figure 14.7:

Click here to view code image

> # Create a basic plot
> carPlot <- qplot(x = wt, y = mpg, data = mtcars,
+ shape = cyl, size = disp,
+ main = "Miles per Gallon vs Weight\nAutomobiles (1973–74 models)",
+ xlab = "Weight (lb/1000)",
+ ylab = "Miles per US Gallon",
+ xlim = c(1, 6),
+ ylim = c(0, 40))
>
> # Change legend titles via scale layers
> carPlot +
+ scale_shape_discrete("Number of Cylinders") +
+ scale_size_continuous("Displacement (cu.in.)")

[image: Image]

FIGURE 14.7 Updating the legend titles

In the previous example we chose to vary the size of the plotting character by each car’s displacement value. The physical size of the points representing low displacement and high displacement is chosen for us. However, we can use the scale layers to control these physical properties. For a continuous scale we use the range argument to control the minimum and maximum values that a scale can take. Here’s an example with the effect displayed in Figure 14.8:

Click here to view code image

> carPlot + scale_size_continuous("Displacement (cu.in.)", range = c(4,8))

[image: Image]

FIGURE 14.8 Using the range argument to control the symbol scaling

We can also control the appearance of each aesthetic in the legend. We do so using the breaks argument. We use limits to ensure that the values we provide to breaks are within the scale limits. Figure 14.9 shows a complete example using scale_size_continuous to control the size of points on the graph as well as the legend title and breaks. The corresponding code is shown here:

Click here to view code image

> carPlot +
+ scale_shape_discrete("Number of cylinders") +
+ scale_size_continuous("Displacement (cu.in.)",
+ range = c(4,8),
+ breaks = seq(100, 500, by = 100),
+ limits = c(0, 500))

[image: Image]

FIGURE 14.9 Control of aesthetics

For a full list of available scales, type the following line into the console:

Click here to view code image

> grep("^scale", objects("package:ggplot2"), value = TRUE)

Note: Axis Scales

In addition to scales for color, shape, size, fill, alpha, and linetype, there are further scales to control the X and Y axes. The axis scales work in much the same way as the other scales. We can use these scales to control axis titles, limits, breakpoints, and so on.

Working with Grouped Data

Occasionally our data may be inherently grouped, but we are not interested in visually exploring the differences between these groups with aesthetics. A good example of this is repeated measures or longitudinal data. Consider the following pkData dataset. The dataset contains repeated measures data for 33 subjects. For each subject, five drug concentration values were collected at times 0, 1, 6, 12, and 24. We can think of the concentration records as grouped by subject.

> library(mangoTraining)
> head(pkData)
 Subject Dose Time Conc
1 1 25 0 0.00
2 1 25 1 660.13
3 1 25 6 178.92
4 1 25 12 88.99
5 1 25 24 42.71
6 2 25 0 0.00

To see how this grouping affects a plot, consider a line plot of Conc against Time. Using qplot, we could specify either geom = "path" or geom = "line". Here’s an example:

Click here to view code image

qplot(data = pkData, x = Time, y = Conc, geom = "line") # Not the desired
 result!
qplot(data = pkData, x = Time, y = Conc, geom = "path") # Not the desired
 result!

If you draw these plots for yourself, you can see that there is something wrong with each one. To understand what is happening, imagine drawing the plot by hand but not taking the pen off the page. Specifying geom = "line" causes the data to be sorted by Time before plotting. Because there are multiple values at each time point, we end up with a slightly odd-looking plot with vertical lines at each time point where every Conc value has been joined before moving to the next time point. By specifying geom = "path", we create what, at a glance, looks like the desired plot; however, because we don’t take the pen off the page, we end up with lots of unwanted lines linking the 24-hour value for one subject back to the zero-hour value for the next.

At this point we could use an aesthetic such as color or linetype to separate the lines. However, this would result in each subject being plotted in a different color or using a different line type. Because we are not interested in investigating subjects individually, this does not help us. We need a group option. By specifying group = Subject, we metaphorically take the pen off the page to draw each new subject. The grouping is not linked to any other physical property of the plot and so each line remains consistent in appearance. The result is shown in Figure 14.10, and the corresponding code is shown here:

Click here to view code image

> qplot(data = pkData, x = Time, y = Conc, geom = "path", group = Subject,
+ ylab = "Concentration")

[image: Image]

FIGURE 14.10 Using groups to separate lines

The concept of groups is also useful when plotting geographical data using maps because groups can be used to ensure state boundaries are separated correctly but remain a consistent color.

Paneling (a.k.a Faceting)

There can come a point when a plot is simply too busy to effectively compare groups using aesthetics. As an alternative, we can split the information into separate subplots, commonly known as panels, and instead compare the information contained within each panel. In ggplot2 terminology, the concept of paneling is known as “faceting.” To panel/facet by a variable, we must invoke one of two facet_* functions: facet_grid or facet_wrap.

Using facet_grid

To see the difference between the two functions, let’s suppose that we want to explore the relationship between mpg and wt for each gear in the mtcars data. We create a graphic with a separate panel for each level of gear and plot, say, side by side. We start with our basic carPlot that we looked at earlier.

Next, we add a facet_grid layer. The aim of the facet_grid function is to allow us to compare plots either vertically or horizontally across the levels of a factor. The facet_grid function expects a formula object. In R, a formula is a class of object that is commonly used for statistical modeling; therefore, we will look at formula objects in greater detail in Hour 16, “Introduction to R Models and Object Orientation.” A formula object is based around a tilde (~). The facet_grid function expects a formula of the form rows ~ cols for which we replace rows and cols with variables in our data. Any variables specified on the left side of the formula are split across the rows. In other words, the resulting panels are stacked on top of each other. Any variables specified on the right side are split across columns (that is, side by side). In order to compare the various gears side by side, we must put the gear variable on the right side of the formula. For now, we are not interested in comparing anything else, so we do not provide a variable in the left side of the formula. In order for facet_grid to work, we must provide a period (.) as an alternative to any variables. This results in the graphic shown in Figure 14.11, which features a separate panel for each of the three gears. Note that the varying of aesthetics defined in carPlot are still present despite the faceting performed.

Click here to view code image

> carPlot + facet_grid(. ~ gear)

[image: Image]

FIGURE 14.11 Faceting with facet_grid

Had we decided to stack the same three panels vertically, we could have written the following instead:

Click here to view code image

> carPlot + facet_grid(gear ~ .)

Now let’s take this concept further and look at paneling by a second variable, cyl. Given that we decided to compare gear side by side, we compare cyl vertically. We replace the period on the left side of the formula with the cyl variable. This creates a 3×3 plot, with each row representing a different value of cyl and each column representing a different value of gear. It is worth noting that within the mtcars dataset there are no records of cars that have four gears and eight cylinders. The panel that represents the four-gear, eight-cylinder combination is displayed but is empty.

Alternatively, we may prefer to visualize each combination of cyl and gear side by side as shown in Figure 14.12. In this case, we literally add cyl as a variable to the right side of our formula using a + sign, leaving the left side untouched.

Click here to view code image

> carPlot + facet_grid(. ~ gear + cyl)

[image: Image]

FIGURE 14.12 Multiple variables on the right-hand side of the facet_grid formula

The result is a 1×8 plot with eight panels representing the eight combinations of gear and cyl for which we have data to plot. The levels of the gear and cyl variables appear in the panel headers, commonly known as “strip headers.” The strip header is split into two rows of text. In the first are the levels of gear, and in the second are the levels of cyl.

Using facet_wrap

In most cases it is much easier to compare plots if they are presented side by side or vertically stacked on top of each other. However, if the faceting variable has many levels, then this may not be practically possible. The facet_wrap function offers an alternative to facet_grid that “wraps” the plots around to best fill the available page and avoid long and thin or short and squat panels, which may result from comparing too many levels with facet_grid.

To illustrate this, consider the same basic carPlot from before, but let’s now look to the panel by the carb variable, representing the number of carburetors for each car in the data. Plotting panels for each of the six possible values for the carb variable side by side using facet_grid creates some very tall, thin panels. Using facet_wrap, we get back the same six plots but laid out in a 2×3 grid, starting in the top left and moving left to right, then down the page through each of the possible carb values. A facet_wrap function call differs from a facet_grid call in that we leave the left side of the faceting formula blank. The following line generates the graphic shown in Figure 14.13:

Click here to view code image

> carPlot + facet_wrap(~ carb)

[image: Image]

FIGURE 14.13 Faceting with facet_wrap

If we want to facet by multiple variables, these must be listed on the right side, each one separated by a +.

Note: Axis Scales

Neither facet_grid nor facet_wrap requires a factor in order to create the separate panels.

Faceting from qplot

It is possible to create faceted plots directly using qplot without having to add a facet_grid or facet_wrap layer. We can do so via the facets argument to qplot, providing it with an appropriate formula to determine which of facet_grid or facet_wrap is invoked. The key to determining which of the two functions is invoked by qplot is the left side of the faceting formula. To invoke facet_grid, we supply either a variable or period as we would when calling facet_grid directly. To invoke facet_wrap, we leave the left side blank.

Custom Plots

Each of the examples we have seen thus far has either been created directly using qplot or with qplot and additional layers. In the vast majority of cases this is absolutely fine; however, as the examples become more complex, the code may become difficult to follow. In such cases, the ggplot function may offer a more readable alternative.

Working with ggplot

Unlike qplot, ggplot makes no assumptions about the plot type or even the coordinate system. It simply creates a template ggplot object from which to build. On its own the object is useless, and we get an error message if we try to print it. It is the equivalent of an empty recipe. We must build our recipe piece by piece (layer by layer) telling R precisely how to build the plot.

Let’s start by re-creating Figure 14.1, this time by fully embracing the grammar of graphics with the ggplot function. For comparison, remind yourself of the two qplot approaches in Listing 14.1 that can be used to create the plot. To achieve the desired scatter plot of mpg against wt, we start by adding a geom_point layer to a base ggplot object. We need to ensure that geom_point knows what the x and y variables are. Unfortunately, however, it is not as simple as specifying x = wt and y = mpg. As you may note from the following code, we must use a new function, aes:

Click here to view code image

> ggplot() + geom_point(data = mtcars, aes(x = wt, y = mpg))

[image: Image]

FIGURE 14.14 When to use the aes function

If we want to add elements such as the title, axis limits, and labels, we must do so using additional layers. This layered approach is, in essence, the grammar of graphics.

The aes Function

For the ggplot2 newcomer, the aes function can be one of the more confusing aspects of the package. I’ve taught training courses to people who have been using the package for several years but tell me that they still don’t fully understand how or when to use it! In fact, there’s only one rule you need to know, and it’s quite straightforward once you know it. First, let’s briefly look at what aes means and where it comes from.

In the grammar of graphics, the term “aesthetics” refers not only to the appearance of points on a graph but the points themselves. In fact, it need not necessarily refer to points at all. It could be lines, boxes, or bars because the plot type is defined by the geometric shape or “geom.” The aesthetics are essentially just information about how variables in the data are to be represented (or “mapped,” to use the grammar of graphics). They depend on the plot type, coordinate system, faceting, scaling, and so on.

In short, the aesthetics describe how columns of data are to be mapped to elements of the plot. This leads to the following rule for ggplot2 layers:

[image: Image] Any reference to a variable must be wrapped within a call to the aes function.

Perhaps what confuses people is that the rule does not apply to facet_grid and facet_wrap, which use a formula. As we have seen, it also does not apply to qplot. However, it does apply to subsequent layers that are added to an object generated by qplot. Let’s return to our carPlot example and suppose we now wish to plot each point using a different plotting character depending on the value of the factor cyl.

Click here to view code image

> ggplot() + geom_point(data = mtcars, aes(x = wt, y = mpg, shape = cyl))

In this example, we mapped the three variables wt, mpg, and cyl to the aesthetics x, y, and shape, respectively. We placed each mapping within a call to aes. The data frame itself is never placed within a call to aes.

Working with ggplot

Switching between qplot and ggplot with layers can be confusing at first. When working outside of qplot, we don’t need to use the I function to refer to plot elements that are not based on variables within our data. For example, to create a scatter plot of mpg against wt using large triangles as the plotting character, we write the following:

Click here to view code image

> ggplot() + geom_point(data = mtcars, aes(x = wt, y = mpg), shape = 17, size = 3)

We place the shape and size arguments outside the call to aes because they do not refer to variables in the data. The resulting plot is shown in Figure 14.14.

Where to Specify Aesthetics

So far we have looked at building a graphic using an empty ggplot object. However, if you look for ggplot2 help online, you can find plenty of examples that do not start with an empty object. If we’re working with a single data frame, we can save ourselves some typing by defining the data, and any aesthetics that we wish to pass to subsequent geometric layers, within the ggplot call.

Suppose we want to add a linear line of best fit through our mpg against wt plot. We use two geometric layers: geom_point and geom_smooth. Rather than pass the data and aesthetics to each layer separately, we define them up front:

Click here to view code image

> ggplot(data = mtcars, aes(x = wt, y = mpg)) +
+ geom_point(shape = 17, size = 3) +
+ geom_smooth(method = "lm", se = FALSE, col = "red")

An advantage of writing the code in this way is to save typing. Providing data and aesthetic arguments within the ggplot function call does not prevent us from changing or adding new aesthetics in subsequent layers. For example, as shown in Figure 14.15, we can modify the previous code block to vary the geom_point plotting symbol by the cyl variable:

Click here to view code image

> ggplot(data = mtcars, aes(x = wt, y = mpg)) +
+ geom_point(aes(shape = cyl), size = 3) +
+ geom_smooth(method = "lm", se = FALSE, col = "red")

[image: Image]

FIGURE 14.15 Use of aes in layers

There is nothing to stop us creating this plot by starting with qplot and adding the geom_smooth layer. However, in order to ensure that we keep a single best-fit line, we do need to “undo” the definition of cyl as the shape variable by setting shape = NULL in the call to geom_smooth:

Click here to view code image

> qplot(data = mtcars, x = wt, y = mpg, shape = cyl, size = I(3)) +
+ geom_smooth(method = "lm", se = FALSE, col = "red", aes(shape = NULL))

Note that these examples draw a single smoothing line through the data. If we want a separate smoothing line for each level of cyl, we either need to specify this in the geom_smooth layer using aes(linetype = cyl) or we could move aes(shape = cyl) in geom_point into the original ggplot call.

Working with Multiple Data Frames

The qplot function cannot directly handle multiple data frames. However, it is possible to use qplot so long as you have a good understanding of layers and know when and where to use the aes function. We therefore do not technically need to use ggplot to work with multiple data frames, but it is generally much easier and can improve readability.

In the following example we use ggplot2 to create a “shadow” plot. We panel by the cyl variable in mtcars but plot a copy of the full data in the background using light grey to create the shadow effect. The resulting plot can be seen in Figure 14.16. In order to achieve the shadow effect, we create a second data frame that does not contain the cyl variable in order to avoid the paneling.

Click here to view code image

> # Create a copy of the mtcars data to be used as a "shadow"
> require(dplyr) # To use select function
> carCopy <- mtcars %>% select(-cyl)
>
> # Use layers to control the color of points
> ggplot() +
+ geom_point(data = carCopy, aes(x = wt, y = mpg), color = "lightgrey") +
+ geom_point(data = mtcars, aes(x = wt, y = mpg)) +
+ facet_grid(~ cyl) + # Note that cyl only exists in mtcars not carCopy
+ ggtitle("MPG vs Weight Automobiles (1973–74 models)\nBy Number of Cylinders") +
+ xlab("Weight (lb/1000)") +
+ ylab("Miles per US Gallon")

[image: Image]

FIGURE 14.16 A “shadow” plot using the mtcars data

The previous example uses what might be considered a trick to create the shadow affect. However, a similar approach can be used plot any information contained within two or more separate data frames. The only restriction is that the axes remain on the same scale. It is not possible to use ggplot2 to obtain a plot with two completely different y variables.

Tip: Quick Data Summaries

The stat_summary function enables us to summarize our y variable at each unique x value. This is particularly useful when plotting confidence intervals for repeated measures data.

Coordinate Systems

The layered grammar of graphics approach that ggplot2 uses enables us to change the coordinate system completely via a single coordinate layer. Examples include transposing the axes (coord_flip), switching from a Cartesian to a polar coordinate system (coord_polar), and allowing for the Earth’s curvature when plotting maps (coord_map). Borrowing functionality from the mapproj package, we can plot geographical data using a number of known map projections such as the default "mercator" projection as well as "cylindrical", "mollweide", and many, many more. The following code block generates the graphic in Figure 14.17.

Click here to view code image

> nz <- map_data("nz") # Extract map coordinates for New Zealand
> nzmap <- ggplot(nz, aes(x=long, y=lat, group=group)) +
+ geom_polygon(fill="white", colour="black")
>
> # Now let's add a projection
> nzmap + coord_map("cylindrical")

[image: Image]

FIGURE 14.17 Adding map projections

A similar principle can be used to create a pie chart. If you look through the various “geom” layers available in ggplot2, you will notice the lack of a geom_pie. In the grammar of graphics, a pie chart is actually just another representation of a bar chart. To create a pie chart we must therefore start by creating a stacked bar chart. We then add to this a coord_polar layer. The coord_polar layer converts the coordinate system from a Cartesian system to a polar coordinate system, and with a little extra work to modify the axes and other features we end up with a reasonably decent-looking pie chart.

Themes and Layout

One of the reasons that the ggplot2 package is so popular is that the “out-of-the-box” graphics are so visually appealing. However, if we’re sharing our graphic either in a document, a slide show, or via a web application, we typically need to make some tweaks to the general appearance. Thankfully the concept of themes in ggplot2 makes it very straightforward to control both the global styling options and the styling for individual plots.

At first the ggplot2 theme settings can appear a little daunting, but once you understand the basic format that is required, modifying the elements is a very straightforward, logical process. Let’s look first at how we can make minor theme alterations to an individual plot using a “theme” layer.

Tweaking Individual Plots

Theme layers can be used to control styling elements for a plot such as axis ticks and labels, panel headers, and the legend. We can add a theme layer to a plot using the theme function. The theme function accepts a number of arguments relating to specific plot items. Plot items are classified as either text, such as the plot title; an area, such as the panel background; or a line, such as the X or Y axis. Depending on the classification, we choose one of four element_* functions, corresponding to the classifications described, or element_blank if we do not want the item to appear on our plot.

The modification of theme elements for a plot is best illustrated with an example. Suppose we are looking to publish a graphic and need to match some predefined criteria for graphics that prevent the use of gridlines and require that strip header backgrounds be blank. We re-use the basic carPlot example from earlier in the hour and panel by the cyl column. To make the necessary modifications, we add theme layers to carPlot as follows:

Click here to view code image

> carPlot +
+ facet_grid(~ cyl) +
+ theme(
+ strip.background = element_rect(colour = "grey50", fill = NA),
+ panel.grid.minor = element_blank(),
+ panel.grid.major = element_blank()
+)

In this example, we modified the strip background, strip.background, and the major and minor grid lines, panel.grid.major and panel.grid.minor, respectively. Each was specified using a single theme layer called using the theme function. To modify the strip background, we used the element_rect function, which defines settings for an area. The gridlines are lines and would typically be modified using the element_line function. However, in this example we needed to remove them and so we chose element_blank. If we had needed to control the appearance of the strip text, we would have used element_text.

Global Themes

Rather than modify plots on an individual basis, it is usually much more desirable when creating several graphics to modify plot styles at a global level. We can define and modify a global theme using the theme_set and theme_update functions, respectively. The theme_set function allows us to define a new global theme based on predefined global themes. We pass the theme_set function one of a number of predefined global themes, which include the default gray theme and a black-and-white theme that could be used to create the figures in this hour.

Themes are actually functions in their own right, with arguments that control the size and font family used for plotting. Each follows the convention theme_[themeName], where [themeName] would be gray or bw in the examples just described. For example, the default theme could be defined by calling theme_set(theme_gray()). At the beginning of this hour we set the global theme for graphics with the line theme_set(theme_bw(base_size = 14)). The base_size argument controls the base font size used for titles and axis labels. Similarly the base_family argument controls the font family.

The global theme settings are independent from the ggplot objects that we create during an R session. When we ask R to print a ggplot object, the list of instructions that make up the object are combined with the global theme settings to create the plot. In other words, once we have created the ggplot object we can easily draw and redraw using any theme we like.

Having selected a base global theme, we can use the theme_update function to make minor modifications. The theme_update function allows us to make or adjust specific plot elements in the same way as the theme function. However, with theme_update the changes are made globally.

Tip: More Themes

The ggthemes package provides a more extensive array of available themes, including theme_economist and theme_wsj for the popular newspapers as well as color scales such as scale_color_excel!

Legend Layout

You saw earlier how scaling layers can be used to control the legend appearance, including both the title and the display of legend information. We have also now seen how themes can be used to control the styling of plot elements, including the legend. For example, if we want to move the legend from the right side to the base of the plot, we could add a theme layer specifying the option legend.position = "bottom".

Additional legend control is provided via the guides function. We usually end up using a combination of guides and the guide_legend function to control the layout of categorical variables for plot aesthetics such as color, shape, and size, particularly where there are multiple categories. For example, suppose we have created a ggplot object, mapOfUSA; this is a map of the USA where each state is represented in a different color. To ensure that all 50 states appear in the legend, we would likely need to specify exactly how the fill color is represented. Instead of listing all 50 states in a single column, we could use the ncol argument to guide_legend to specify, say, 10 columns, as in the following example:

Click here to view code image

> mapOfUSA + guides(fill = guide_legend(title = "State",
+ nrow =10, title.position = "top"))

The code required to create the mapOfUSA object is provided on the book’s website, http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book/. Note that the call to guide_legend is linked directly to the fill aesthetic. This link means that we can also call guide_legend from within the aesthetic scale layers.

Tip: Removing the Legend

We can use the guides function to remove the legend by setting the aesthetic to "none" or FALSE—for example, guides(color = FALSE). Alternatively, we can use the aesthetic scale layers, setting the guide argument to FALSE instead—for example, scale_color_discrete(guide = FALSE).

The ggvis Evolution

As you have seen, the ggplot2 package is a fantastic package for creating high-quality static images. In recent years, however, many industries have seen a shift away from static graphics toward interactive web visualizations. Today there are several R packages such as rCharts that provide an interface to JavaScript graphical libraries. The ggvis package is built on top of vega and enables interactivity using a ggplot2-like syntax.

The ggvis package is still under development and does not fully replicate ggplot2. However, it is already a useful package. Listing 14.2 creates a very simple ggvis (non-interactive) version of the mpg against wt plot we explored during this hour. Note how we use the fill argument to vary the color (as opposed to color in ggplot2) by the wt variable. Note also the use of the piping operator from magrittr, which you were introduced to in Hour 12, “Efficient Data Handling in R.”

LISTING 14.2 A Simple Example Using ggvis

Click here to view code image

 1: > # Load the package
 2: > require(ggvis)
 3: >
 4: > # Vary the colour by the factor variable: cyl
 5: > ggvis(mtcars, x = ~wt, y = ~mpg, fill = ~cyl) %>%
 6: + layer_points()

The example in Listing 14.2 produces a static graphic, one much less appealing than its ggplot2 counterpart. However, this example doesn’t do ggvis justice. The ggvis package is at its best when graphics are interactive and accessed from a web browser. In Hour 24, “Building Web Applications with Shiny,” you will see how interactive graphics can be embedded within a simple web application that we build entirely with R code.

Summary

In this hour, you have discovered the immensely popular graphical package ggplot2. Along the way you have been introduced to the concept of the grammar of graphics and the concept of layered graphics. You saw how to quickly create stylish plots using qplot and take a layered approach to graphics with ggplot. In the “Activities” section, you have a chance to try out many of the techniques you just read about.

In Hour 15, “Lattice Graphics,” we look at the lattice approach to graphics, and see how it can be used to create highly customized panel plots.

Q&A

Q. I’m still confused as to whether I should use qplot or ggplot. What does everyone else use?

A. The ggplot function follows the grammar of graphics. The qplot function does not. As such, you will find that the principled ggplot fans tend to be more vocal on social media and in help forums. However, most of Hadley Wickham’s own examples were written with qplot. Besides, there are enough ggplot2 users these days for it not to matter which you choose.

Q. Is it worth taking the time to learn more about ggplot2 if ggvis is going to supersede it?

A. It has taken some time for ggvis to get to where it is today, and yet it still feels very much like a package under development when compared with ggplot2. The decision boils down to whether you ever need to produce static graphics. If you do, and most people do, then ggplot2 is worth the investment. There are also initiatives underway that allow us to convert ggplot2 graph outputs to interactive formats, such as the ggplotly function from the plotly package.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. Which of the following is not a ggplot2 function for adding layers to a plot?

A. main

B. xlab

C. ylim

D. scale_x_log10

2. Which of the following lines creates an orange histogram?

A. qplot(Wind, data = airquality, binwidth = 5, fill = "orange")

B. qplot(Wind, data = airquality, binwidth = 5, fill = I("orange"))

C. qplot(Wind, data = airquality, binwidth = 5, aes(fill = "orange"))

3. True or false? In order to create a paneled plot with qplot, you must explicitly add either a facet_grid or facet_wrap layer to your plot.

Answers

1. A. To add a main title as a layer, we use the ggtitle function. We haven’t seen the scale_x_log10 function in this hour, but it can be used to create an X axis in base 10 log.

2. B. When using qplot, you must use the I function whenever you are not using variables to control an aesthetic. The aes function is used when referencing variables in a layered approach and is never used within qplot.

3. False. If using qplot, you can use the facets argument to create a paneled plot.

Activities

1. Create a histogram of the Wind column from airquality. Use the binwidth argument to adjust the width of the bins.

2. Create a boxplot of the Wind values for each Month using airquality.

3. Create a plot of Ozone against Wind from airquality. Ensure that the plot has appropriate titles and axis labels:

[image: Image] Ensure that the Wind axis begins at zero.

[image: Image] Add a linear smoothing line to the plot, removing the error bars.

4. Create a scatter plot of Height against Weight using demoData. Use a different color to distinguish between males and females and a different plotting symbol dependent on whether the subject smokes or not.

5. Re-create the basic plot of Height against Weight using demoData. This time, panel/facet the plot to create a 2×2 grid such that the first column contains data for nonsmokers and the first row contains data for females.

6. Using the maps and mapproj packages, import the state data using map_data("state") and create a plot of the USA, where each state is represented by a different color.

[image: Image] Ensure that there is sufficient space for the legend by moving it to the bottom of the plot. Spread the states across 10 columns.

[image: Image] Transform the plot in order to view the country with a Mercator projection.

Hour 15. Lattice Graphics

What You’ll Learn in This Hour:

[image: Image] How to create simple lattice graphics

[image: Image] How to show structure in data using groups and panels

[image: Image] How to create custom graphics

[image: Image] How to control styles and legends

In the previous two hours, you saw how to create graphics using either the base graphic system or the ggplot2 package. In this hour, we will look at a third way of creating graphics: using the lattice package. This graphic system is well suited to plotting highly grouped data, with the code designed to closely resemble the modeling capabilities of R that we’ll need later in Hour 16, “Introduction to R Models and Object Orientation.”

In this hour, we’ll look at how to create simple lattice graphics, building up to more fine control of styling and the creation of highly customized plots.

The History of Trellis Graphics

As mentioned in Hour 1, “The R Community,” the R language can be considered an implementation of the S language, originally developed at AT&T Bell Labs. A good analytic software needs strong graphical capabilities, so the base graph system was created (the evolution of which was described in Hour 13, “Graphics”).

During the 1990s, researchers at AT&T designed a new graphic system, whose evolution is detailed in books such as the landmark 1993 book Visualizing Data by William Cleveland. Following the release of the book, William Cleveland and Rick Becker evolved the system, eventually implementing the ideas in the S language. They named the graphic system “trellis” because the display style (panels arranged in regular grids) reminded the authors of garden trelliswork.

The Lattice Package

The lattice package in R, which can be thought of as a port of the S Trellis graphic system, was created by Deepayan Sarkar of the University of Wisconsin. Like ggplot2, it is based on Paul Murrell’s grid package and therefore requires the grid add-on package. One of the design aims of lattice was to be, as far as possible, backward compatible with code created in trellis, although a number of significant changes were made.

Like trellis, the lattice system is designed primarily for the visualization of multivariable datasets. The prominent design feature is the arrangement of graphics in a series of “panels,” set out in a regular grid, with each “panel” graphing a subset of the data. This provides strong capabilities, in particular, for understanding how a response depends on a range of explanatory variables.

Creating a Simple Lattice Graph

Because lattice is a recommended package, the first thing we need to do is to load the package, providing access to its capabilities. We can do this using either the library or require function:

Click here to view code image

> # Load the lattice package
> require(lattice)
Loading required package: lattice

To create a lattice graphic, we need three things:

[image: Image] A lattice plotting function

[image: Image] A formula specifying the relationship between variables to create

[image: Image] The data to plot, typically contained in a data frame

For our lattice plotting function, let’s start with xyplot, which allows us to create a scatter plot. To define the relationship between variables to graph, we use the ~ symbol in the form (Y axis ~ X axis). As with the previous hour, let’s start by creating a scatter plot of mpg vs. wt using the mtcars data frame.

Click here to view code image

> xyplot(mpg ~ wt, data = mtcars)

The resulting plot can be seen in Figure 15.1.

[image: Image]

FIGURE 15.1 A simple scatter plot of mpg vs. wt

Here, we specified the data frame containing our data using the data argument, and we specified mpg ~ wt as the relationship to visualize.

Note: Working with Vectors

Like ggplot2 functions, we can specify vector data inputs to our lattice function, so the preceding command could be replaced by xyplot(mtcars$mpg ~ mtcars$wt). However, it is more common to specify the name of the data frame using the data argument so that we can refer to variables directly.

Lattice Graph Types

Unlike qplot from the ggplot2 package, which selects the most appropriate graph type to create, with the lattice package we specify the graph type we want based on the function we select. In the preceding example we used the xyplot function to create a scatter plot, but there are many others to choose from. A complete list of lattice graph functions can be seen in Table 15.1.

[image: Image]

TABLE 15.1 Lattice Graph Functions

Note that there are four types of lattice graph functions: univariate, bivariate, 3D, and data. When we choose a lattice graph function, the type of function we use determines the structure of the formula we must use to specify the plotting variables.

Univariate Lattice Graphics

The lattice package contains two univariate graphic functions that allow us to plot a single variable. We specify the variable we want to plot using a formula that only has a variable on the right, such as ~ mpg. Let’s see a simple example using the histogram function. The created histogram can be seen in Figure 15.2.

Click here to view code image

> histogram(~ mpg, data = mtcars)

[image: Image]

FIGURE 15.2 A histogram of mpg

Tip: Controlling Binning

As with other implementations (such as hist or geom_histogram), a default binning mechanism is used. With the histogram function we can specify the number of bins to use with the nint argument.

The densityplot function allows us to produce a density plot of a single variable. Let’s see a densityplot of the wt variable. The resulting density plot can be seen in Figure 15.3.

Click here to view code image

> densityplot(~ wt, data = mtcars)

[image: Image]

FIGURE 15.3 A density plot of wt

Tip: Controlling the Points

The default behavior with densityplot is to add “jittered” points along the X axis indicating the positions of the observations. Although this is highly useful, we can control (or suppress) these points using the plot.points argument to densityplot, which accepts four possible inputs, as listed in Table 15.2.

[image: Image]

TABLE 15.2 Inputs to the plot.points Argument

Bivariate Lattice Graphics

The lattice package contains five bivariate graph functions: qq, barchart, xyplot, bwplot, dotplot, and strippplot. As seen with the earlier xyplot example, we specify the relationship with a two-sided formula with the structure Y ~ X. When you are using these functions, it is important to understand which variables are (by default) placed on the Y axis (specified by the left side of the formula) and which variables are placed on the X axis (specified by the right side of the formula). These variables are listed in Table 15.3.

[image: Image]

TABLE 15.3 Bivariate Graph Axes Definitions

From Table 15.3 we can see that for the functions bwplot, dotplot, stripplot, and barchart, the factor variable is by default on the Y axis. Let’s see an example using dotplot with our mtcars data, this time looking at how the miles per gallon (mpg) varies based on the number of carburetors (carb). The output can be seen in Figure 15.4.

Click here to view code image

> dotplot(carb ~ mpg, data = mtcars)

[image: Image]

FIGURE 15.4 A dot plot of carb vs mpg

Note: The Use of Factor Axes

In the preceding example, we specified carb as the (factor) variable on the Y axis. In fact, carb is a numeric variable. Where a factor is expected, the provided variable will be converted to a factor.

Transposing the Axes

We previously noted that the functions bwplot, dotplot, stripplot, and barchart specify the categorical variable on the Y axis and the numeric variable on the X axis. This is based on the design in the book Visualizing Data by William Cleveland, but this behavior may be unexpected. For example, boxplots are more commonly produced with the numeric variable on the Y axis and the categorical variable on the X axis. Each of these functions has the argument horizontal, which, by default, is set to TRUE (producing “horizontal” charts). We can instead set the value of horizontal to FALSE to create vertical charts, but we also need to change the order of the variables in the formula (with the categorical variable on the X axis). Let’s see an example using the bwplot function. The resulting plot can be seen in Figure 15.5.

Click here to view code image

> bwplot(mpg ~ carb, data = mtcars, horizontal = FALSE)

[image: Image]

FIGURE 15.5 A vertical box and whisker plot of mpg vs. carb

3D Lattice Graphics

The lattice graph functions cloud and wireframe can be used to plot 3D scatter plots and surfaces, respectively. When you’re specifying the variables to graph, your formula should be of the format Z ~ X * Y, with the Z variable used as the “height” of the plot. Let’s use the cloud function to create a 3D scatter plot of some variables from our mtcars data, which can be seen in Figure 15.6.

Click here to view code image

> cloud(mpg ~ wt * hp, data = mtcars)

[image: Image]

FIGURE 15.6 A 3D scatter plot of mpg vs. wt and hp

An alternative way to provide data for a 3D lattice graph function is in the form of a matrix. When a matrix is provided, the lattice graph functions will use the rows and columns of the matrix as the X and Y axes, and use the value in each cell as the height of the plot. Let’s see an example using the internal volcano matrix, which contains topological information for Maungawhau, one of 50 active volcanoes in the Auckland volcanic field. This time we’ll use the wireframe function to create a 3D surface plot. The resulting 3D plot can be seen in Figure 15.7.

Click here to view code image

> dim(volcano) # Dimensions of the volcano matrix
[1] 87 61
> wireframe(volcano, shade = TRUE)

[image: Image]

FIGURE 15.7 A 3D surface plot of the volcano matrix

Tip: Controlling the Color Shading

Note the use of the shade argument in this example, which specifies that color shading should be used on our 3D surface using an illumination model with a single light source. We can additionally control the colors used with the shade.colors.palette argument, and the light source itself using the light.source function. For more information, see the help file for the panel.3dwire function (?panel.3dwire).

When creating 3D graphics in this way, you’ll often want to control the perspective of the graph—in other words, the view point from which you are looking at the graph. For example, in the previous graph we cannot really see the crater of the volcano, but we could rotate the graph so we’re looking at the other side of the volcano. We can achieve this using the screen argument, which accepts a list with elements x, y, and z specifying the rotation to apply. Let’s use the screen argument to view the volcano from a different perspective so we can see the crater. This can be seen in Figure 15.8.

Click here to view code image

> wireframe(volcano, shade = TRUE,
+ screen = list(x = -60, y = -40, z = -20))

[image: Image]

FIGURE 15.8 A 3D surface plot of the volcano matrix with the volcano’s crater visible

“Data” Lattice Graphics

Two lattice graph functions can be used to graph the structure of a data frame: splom and parallelplot. To use these functions, we specify the data frame in a one-sided formula (~Data). Let’s first look at the splom function, which creates a scatter-plot matrix (analogous to the pairs function seen in previous hours). Instead of using the whole dataset, we’ll select four columns from the mtcars data to plot. In Figure 15.9, we can see that each of our four variables are plotted against each other in a matrix of scatter plots:

Click here to view code image

> splom(~ mtcars[,c("mpg", "wt", "cyl", "hp")])

[image: Image]

FIGURE 15.9 A scatter-plot matrix of the mpg, wt, cyl, and hp variables from mtcars

Tip: The pairs Function

The pairs function is the base graphics equivalent of the splom function, and can also produce a scatter-plot matrix of our data.

Plotting Subsets of Data

All lattice graph functions contain a subset argument that allows you to filter the data as you’re plotting. This is useful for plotting sections of the data without having to create a filtered dataset before plotting. Let’s see an example of this, where we’ll create a scatter plot of mpg vs. wt using only manual cars (where am == 1). The resulting plot can be seen in Figure 15.10.

Click here to view code image

> xyplot(mpg ~ wt, data = mtcars, subset = am == 1)

[image: Image]

FIGURE 15.10 Using the subset argument to graph a section of the data

Graph Options

As with base and ggplot2 graphics, each of the lattice graphics listed in Table 15.1 accepts common graph options that control aspects of the graph. The option names generally follow the conventions used in the graphics package.

[image: Image]

FIGURE 15.11 Adding titles and axis controls for a scatter plot

Titles and Axes

First, let’s use arguments such as main, xlab, and xlim to control our plot titles and axes, as seen in Figure 15.11. For now, we’ll use the xyplot function, but this works for all lattice graph functions.

Click here to view code image

> xyplot(mpg ~ wt, data = mtcars, main = "Miles per Gallon vs Weight",
+ xlab = "Weight (lb/1000)", ylab = "Miles/(US) Gallon",
+ xlim = c(1, 6), ylim = c(10, 40))

Plot Types and Formatting

As with the graphics system, we can use the type argument to control the type of (scatter) plot created and use arguments such as col and lwd to control the style of the elements graphed, as seen in Figure 15.12. For this example, let’s use a different dataset—we’ll use the cranlogs package to extract data on package downloads. First, let’s install the cranlogs package from CRAN:

Click here to view code image

> install.packages ("cranlogs")

[image: Image]

FIGURE 15.12 Scatter plot of downloads over time

Next, let’s load the library and download some data using the cran_downloads function. For this exercise, we’ll download the CRAN logs for lattice and ggplot2 over the last month:

Click here to view code image

> library(cranlogs)
> cranData <- cran_downloads(packages = c("lattice", "ggplot2"), when = "last-month")
> head(cranData)
 date count package
1 2015-07-30 2100 lattice
2 2015-07-31 1804 lattice
3 2015-08-01 858 lattice
4 2015-08-02 874 lattice
5 2015-08-03 2234 lattice
6 2015-08-04 2991 lattice

Now we’ll create a scatter plot of the number of downloads (count) vs. date for the lattice package.

Click here to view code image

> xyplot(count ~ date, data = cranData, subset = package == "lattice",
+ main = "Lattice package downloads over the last month",
+ ylab = "Number of Downloads", xlab = "Date",
+ type = "b", col = "red", lwd = 2, cex = 2, pch = 16)

Caution: Background Colors of Plot Characters

Using the base graphic system, we can use plot characters with filled backgrounds using pch values 21 to 25. When we use these plot characters, we use the bg argument to control the background color of each plot symbol. In lattice, we can also use pch values 21 to 25, but the argument for controlling the background color is fill instead of bg.

Multiple Variables

When we use the lattice graph functions, we can choose to plot multiple variables. We achieve this by specifying multiple variables in the formula of the format Y1 + Y2 ~ X1 + X2. By default, this will superimpose the variables onto the same plot using different colors for each variable, as see in Figure 15.13. In this example, we are plotting Miles per Gallon (mpg) on the Y axis vs. two X axes: Displacement (disp) and Gross Horsepower (hp).

Click here to view code image

> xyplot(mpg ~ disp + hp, data = mtcars, auto.key = TRUE, pch = 16, cex = 2)

[image: Image]

FIGURE 15.13 Scatter plot with multiple X axes plotted on the same graph

Caution: Mismatched legend

In this example, we used the pch and cex arguments to make the plot clearer. We also use the auto.legend argument to automatically create a legend for the plot that indicates that the disp variable is represented with blue points and the hp variable is represented with pink points. Although this allows us to identify each variable, notice that the legend doesn’t completely match the plot (the legend shows empty circles). Later in this hour, you’ll see how to fix this issue.

As you can see in Figure 15.13, the two variables on the X axis (disp and hp) appear superimposed on the same graph, and the color of the plotting symbols allows us to distinguish between the two variables. We can use the outer argument to control whether the multiple variables should be represented as groups on the same plot (the default behavior) or should be split into separate plots. We can specify that separate plots should be created by specifying outer = TRUE, as shown in Figure 15.14.

Click here to view code image

> xyplot(mpg ~ disp + hp, data = mtcars, pch = 16, cex = 2, outer = TRUE)

[image: Image]

FIGURE 15.14 Scatter plot with multiple X axes plotted in different “panels”

As you can see, the two graphs are produced in separate “panels,” each with the same X and Y axis scales. This is very similar to the “facets” you saw in Hour 14, “The ggplot2 Package for Graphics.” You’ll see more on panels later in this hour.

Groups of Data

If we have groups in our data, we can represent them by varying plot aspects using the groups argument. Let’s start with a simple example using our mtcars data. Here, we will plot mpg vs. wt, but vary the color of the plot based on the number of cylinders (cyl) using the groups argument. This can be seen in Figure 15.15.

Click here to view code image

> xyplot(mpg ~ wt, data = mtcars, groups = cyl,
+ pch = 16, cex = 2, auto.key = TRUE)

[image: Image]

FIGURE 15.15 Scatter plot with levels of cyl grouped

If we use a grouping variable together with multiple variables, the outer argument is set to TRUE, such that the multiple variables are split into panels. This can be seen in Figure 15.16, where we group by cyl but also use multiple X axis variables:

Click here to view code image

> xyplot(mpg ~ disp + hp, data = mtcars, groups = cyl,
+ pch = 16, cex = 2, auto.key = TRUE)

[image: Image]

FIGURE 15.16 Scatter plot with multiple X axes plotted in different “panels” and the plot grouped by cyl

Note: Plot Layout

When we create graphs in multiple panels, such as in this example, the layout of the plots is determined based on the size of the plot device available. For example, in RStudio, we may see different panel layouts by resizing the plot window. We can control the layout of panels explicitly using the layout argument. This argument also allows us to create multiple pages of plots when our partitioning variable has a high number of levels.

Tip: More Control of the Legend

The auto.key argument can, instead, accept a list of settings. This can be used to further control the format and placement of the legend. For example, we can place the legend on the right side of the plot with auto.key = list(space = "right").

Using Panels

As you’ve seen already in this hour, the lattice package is able to create graphics in separate “panels.” We can specify a variable to be used to partition our data into panels directly in the formula. To achieve this, we simply append a | symbol to our formula and specify the variable by which to partition the graph. Let’s first revisit the data we downloaded that compared recent downloads of the lattice and ggplot2 packages. A simple plot of count versus date can be seen in Figure 15.17.

Click here to view code image

> xyplot(count ~ date | package, data = cranData, type = "o")

[image: Image]

FIGURE 15.17 Scatter plot of downloads partitioned by package (lattice vs. ggplot2)

As you can see, the plot is now partitioned into two separate panels based on the package variable. The axis scales are the same for each panel, with the levels of the package variable (“ggplot2” and “lattice”) displayed at the top of each plot.

Tip: Alternating Axis Ticks

The default behavior of lattice is to alternate the tick marks between panels, which explains why the X axis ticks appear at the top of the graph for the “lattice” panel. We can control this behavior with the alternating attribute of the scales argument, which is described further in the help file for the xyplot function.

Controlling the Strip Headers

Let’s see another simple example, where we’ll attempt to create a plot of Miles per Gallon (mpg) vs. Weight (wt) partitioned on levels of cylinder (cyl). This can be seen in Figure 15.18.

Click here to view code image

> xyplot(mpg ~ wt | cyl, data = mtcars,
+ main = "Miles per Gallon vs Weight by Number of Cylinders")

[image: Image]

FIGURE 15.18 Scatter plot of miles per gallon vs. weight partitioned by number of cylinders

In Figure 15.18 we created a graph containing three panels, corresponding to the three levels of the cyl variable. However, the labels at the tops of each panel (the “strip headers”) are not correctly formed. Instead, the text “cyl” is repeated for each strip header, along with some darker orange segments. The strip header labeling worked in the previous example (Figure 15.17) but not this example because of the class of the partitioning variable. In Figure 15.17, the partitioning variable (package) was a factor variable. In this more recent example (Figure 15.18), the partitioning variable (cyl) is a numeric variable. To ensure the strip headers are correct for our data, we need to ensure our partitioning (or “by”) variables are factors. We can use the factor function directly to fix this, as seen in Figure 15.19.

Click here to view code image

> xyplot(mpg ~ wt | factor(cyl), data = mtcars,
+ main = "Miles per Gallon vs Weight by Number of Cylinders")

[image: Image]

FIGURE 15.19 Scatter plot of miles per gallon vs. weight partitioned by number of cylinders (fixing headers)

Tip: More Control of the Strip Header

We can further control the strip headers in one of two ways:

[image: Image] Using the factor function to further define labels and the order of levels

[image: Image] Using the strip argument to the lattice functions

More information on the factor function can be found in the factor help file (?factor). More information on the use of the strip argument can be found in the help file for the strip.default function (?strip.default).

Multiple “By” Variables

In the preceding examples, we used a single “by” variable to create a partitioned plot. If we want to use more than one variable, we list them separated by the asterisk (*) symbol. Therefore, if we want to create a plot of Miles per Gallon (mpg) vs. Weight (wt) partitioned on levels of cylinder (cyl) and Automatic/Manual indicator (am), we include both cyl and am in the formula. This can be seen in Figure 15.20. Here, instead of providing am directly as a factor, the ifelse function is used to create a variable containing the values “Automatic” and “Manual.”

Click here to view code image

> xyplot(mpg ~ wt | factor(cyl) * ifelse(am == 0, "Automatic", "Manual"),
+ data = mtcars, cex = 1.5, pch = 21, fill = "lightblue",
+ main = "Miles per Gallon vs Weight \nby Number of Cylinders and Transmission Type")

[image: Image]

FIGURE 15.20 Scatter plot of miles per gallon vs. weight partitioned by number of cylinders and transmission type

Panel Functions

Each lattice graph function operates in a similar fashion. First, the data is partitioned based on the formula specified, and the panels are created based on the number of partitions to be plotted. Then, the data for each panel is passed to a “panel function” that draws each subset of data. The panel function is specified with the panel argument to each lattice function. The default panel function for each lattice graph function follows a specific naming convention: panel.functionName. Therefore, the default panel function for xyplot is panel.xyplot. The panel.xyplot help file lists the arguments to panel.xyplot as follows:

Click here to view code image

panel.xyplot(x, y, type = "p", groups = NULL, pch, col, col.line, col.symbol,
font, fontfamily, fontface, lty, cex, fill, lwd, horizontal = FALSE, ...,
grid = FALSE, abline = NULL, jitter.x = FALSE, jitter.y = FALSE, factor = 0.5,
amount = NULL, identifier = "xyplot")

Note that the first two arguments are x and y, corresponding to the X and Y data to plot for each panel. Let’s further explore the workings of the panel functions using a simple example. Here, we will re-create our plot of mpg vs. wt by cyl, but will replace the default panel function (panel.xyplot) with a simple function of our own. The resulting graph is shown in Figure 15.21.

Click here to view code image

> myPanel <- function(x, y, ...) {
+ cat("Panel Function Called!\n")
+ }
> xyplot(mpg ~ wt | factor(cyl), data = mtcars, panel = myPanel)
Panel Function Called!
Panel Function Called!
Panel Function Called!

[image: Image]

FIGURE 15.21 Empty (!) scatter plot of miles per gallon vs. weight partitioned by number of cylinders

In this example, we have replaced the default panel function with myPanel, which prints a short message but does nothing else. In particular, note that myPanel does nothing with x and y (that is, no graph elements are produced). The result is that our call prints our simple message three times, one for each panel of data drawn. Because myPanel performs no graphing, each panel is left empty.

Let’s change the myPanel function now so that it performs some graphical routines. We can achieve this be reinserting the panel.xyplot function call within myPanel. The resulting graph can be seen in Figure 15.22.

Click here to view code image

> myPanel <- function(x, y, ...) {
+ panel.xyplot(x, y, ...)
+ }
> xyplot(mpg ~ wt | factor(cyl), data = mtcars, panel = myPanel)

[image: Image]

FIGURE 15.22 Scatter plot of miles per gallon vs. weight partitioned by number of cylinders

Now the plot is again created, but this time xyplot is using our myPanel function to pass the inputs on to panel.xyplot.

Using Other Panel Functions

Now that we have xyplot using our panel function, we may choose to alter the graph created in each panel. A simple way to do that is to include other “panel” functions. Let’s use the apropos function to list all the available panel.* functions:

Click here to view code image

> apropos("^panel")
 [1] "panel.3dscatter" "panel.3dwire" "panel.abline"
 [4] "panel.arrows" "panel.average" "panel.axis"
 [7] "panel.barchart" "panel.brush.splom" "panel.bwplot"
[10] "panel.cloud" "panel.contourplot" "panel.curve"
[13] "panel.densityplot" "panel.dotplot" "panel.error"
[16] "panel.fill" "panel.grid" "panel.histogram"
[19] "panel.identify" "panel.identify.cloud" "panel.identify.qqmath"
[22] "panel.levelplot" "panel.levelplot.raster" "panel.linejoin"
[25] "panel.lines" "panel.link.splom" "panel.lmline"
[28] "panel.loess" "panel.mathdensity" "panel.number"
[31] "panel.pairs" "panel.parallel" "panel.points"
[34] "panel.polygon" "panel.qq" "panel.qqmath"
[37] "panel.qqmathline" "panel.rect" "panel.refline"
[40] "panel.rug" "panel.segments" "panel.smooth"
[43] "panel.smoothScatter" "panel.spline" "panel.splom"
[46] "panel.stripplot" "panel.superpose" "panel.superpose.2"
[49] "panel.superpose.plain" "panel.text" "panel.tmd.default"
[52] "panel.tmd.qqmath" "panel.violin" "panel.wireframe"
[55] "panel.xyplot"

The set of panel functions available includes the default panel functions for each of the lattice graph functions listed in Table 15.1 (such as panel.histogram and panel.bwplot). However, there are many other panel functions listed that we can use to perform alternative behaviors within each panel. As a simple example, let’s use the panel.abline function to add vertical and horizontal reference lines as the median x and y points in each panel. We can achieve this by specifying the h and v inputs to panel.abline, as seen next. The output can be seen in Figure 15.23.

Click here to view code image

> myPanel <- function(x, y, ...) {
+ medX <- median(x, na.rm = TRUE) # Median of X values
+ medY <- median(y, na.rm = TRUE) # Median of Y values
+ panel.abline(v = medX, h = medY, lwd = 2, col = "red") # Add reference lines
+ panel.xyplot(x, y, ...) # Draw the points
+ }
> xyplot(mpg ~ wt | factor(cyl), data = mtcars, panel = myPanel, pch = 16)

[image: Image]

FIGURE 15.23 Scatter plot of miles per gallon vs. weight by number of cylinders with reference lines at the medians

There are many other panel.* functions we could use in a similar manner. A selection of these are listed in Table 15.4.

[image: Image]

TABLE 15.4 Sample of Useful Panel Functions

Using Other Panel Functions

In the previous section you saw a range of “panel” functions we can use to customize our graphics. Let’s have a closer look at a few of the panel functions mentioned:

Click here to view code image

> panel.points
function (...)
lpoints(...)
<bytecode: 0x0efed2c8>
<environment: namespace:lattice>
> panel.text
function (...)
ltext(...)
<bytecode: 0x0f80702c>
<environment: namespace:lattice>
> panel.lines
function (...)
llines(...)
<bytecode: 0x2f2a1acc>
<environment: namespace:lattice>

Many of the panel.* functions use low-level graph calls to add elements to the graph. These are “lattice” equivalents of the low-level graph functions you saw in Hour 13. Table 15.5 lists a few of these low-level graph functions.

[image: Image]

TABLE 15.5 Low-Level Lattice Graph Functions

Let’s see an example using the ltext function to add some text in each panel. Here, we’ll use the lm function to fit a linear regression line in each panel and use ltext to report the intercept and slope. The resulting graph can be seen in Figure 15.24.

Click here to view code image

> myPanel <- function(x, y, ...) {
+ myLm <- lm(y ~ x) # Fit a linear regression line
+ panel.abline(myLm, col = "red") # Add the regression line
+ panel.xyplot(x, y, ...) # Draw the points
+ params <- paste(c("Intercept:", "Slope:"), # Parameters
+ signif(coef(myLm), 3), collapse="\n")
+ ltext(max(x), max(y), params, adj = 1, cex = .8) # Add text to plot
+ }
> xyplot(mpg ~ wt | factor(cyl), data = mtcars, panel = myPanel, pch = 16)

[image: Image]

FIGURE 15.24 Scatter plot of miles per gallon vs. weight by number of cylinders with linear regression line

This example correctly calculates and prints the parameters of the regression line. In this example, we used the maximum X and Y positions to place the text, which doesn’t produce a good output. We could “hard-code” the positions of the text, but then we’ll not be able to reuse our code if the data changes. We can resolve this issue by passing another variable to the panel function directly, as discussed next.

Passing Additional Arguments

In the previous example, we saw that positioning the text is difficult. Let’s resolve this by passing the positions as additional arguments to the lattice call. If we list these also as inputs to the panel function, the arguments will be available to us. Here we’ll specify inputs xPos and yPos to the panel function and pass them directly into our high level xyplot call. The result can be seen in Figure 15.25.

Click here to view code image

> myPanel <- function(x, y, xPos, yPos, ...) {
+ myLm <- lm(y ~ x) # Fit a linear regression line
+ panel.abline(myLm, col = "red") # Add the regression line
+ panel.xyplot(x, y, ...) # Draw the points
+ params <- paste(c("Intercept:", "Slope:"), # Parameters
+ signif(coef(myLm), 3), collapse="\n")
+ ltext(xPos, yPos, params, adj = 1, cex = .8) # Add text to plot
+ }
> xyplot(mpg ~ wt | factor(cyl), data = mtcars, panel = myPanel, pch = 16,
+ xPos = max(mtcars$wt), yPos = max(mtcars$mpg))

[image: Image]

FIGURE 15.25 Scatter plot of miles per gallon vs. weight by number of cylinders with linear regression line (and label justified on the plot)

Controlling Styles

Earlier, in Figure 15.13, you saw the use of the auto.key argument to automatically add a legend to our graphics. However, you also saw that the style of the legend didn’t directly reflect the styling used in the plot. Let’s see another simple example of this by adding a grouping variable to our plot. Figure 15.26 shows the resulting plot, where the plot character is varied based on the transmission type.

Click here to view code image

> xyplot(mpg ~ wt | factor(cyl), data = mtcars,
+ pch = c(15, 16), col = c("navy", "orange"),
+ groups = ifelse(am == 0, "Auto", "Manual"), auto.key = TRUE)

[image: Image]

FIGURE 15.26 Scatter plot of miles per gallon vs. weight by number of cylinders grouped by transmission type

In this graph, we specify that the two groups levels should be represented by specific colors (navy and orange) and plot characters (filled squares and filled circles). The plot seems to be created correctly, but the styles in the legend produced do not match.

This situation occurs because the styling of lattice graphics is controlled by underlying stylesheets (or “themes”). When the auto.key option is set, the legend is constructed based on these underlying styles and not by the style parameters used in the lattice call.

Previewing the Styles

We can see the styles currently in use for lattice graphics using the show.settings function. This function produces a set of graphics to visualize the range of styles in use, as seen in Figure 15.27.

> show.settings()

[image: Image]

FIGURE 15.27 Visualization of the current lattice styles in use

From this visualization, we can see a number of the characters shown in the preceding figures. Here are some examples:

[image: Image] The histogram[plot.polygon] style matches the style of the histogram we created in Figure 15.2.

[image: Image] The dot.[symbol, line] style matches the style of the dot plot we created in Figure 15.4.

[image: Image] The strip.background style controls the color of the strip header on each plot. The default color is the light orange color on the bottom of this visualization, but the second level (the pale green) was seen when we used multiple by variables in Figure 15.20.

[image: Image] The superpose.symbol style shows the default plot symbols and colors, which are also the ones used to create the legend (blue open circle, pink open circle).

Creating a Theme

The styles themselves are stored as nested lists of vectors. To create a theme, it is easiest to create a copy of the existing styles and then alter specific aspects of them. We can create a copy of the current styles using the trellis.par.get function, as shown here:

Click here to view code image

> myTheme <- trellis.par.get() # Get the list of styles

> names(myTheme) # Look at the element names
 [1] "grid.pars" "fontsize" "background" "panel.background"
 [5] "clip" "add.line" "add.text" "plot.polygon"
 [9] "box.dot" "box.rectangle" "box.umbrella" "dot.line"
[13] "dot.symbol" "plot.line" "plot.symbol" "reference.line"
[17] "strip.background" "strip.shingle" "strip.border" "superpose.line"
[21] "superpose.symbol" "superpose.polygon" "regions" "shade.colors"
[25] "axis.line" "axis.text" "axis.components" "layout.heights"
[29] "layout.widths" "box.3d" "par.xlab.text" "par.ylab.text"
[33] "par.zlab.text" "par.main.text" "par.sub.text"

> myTheme$superpose.symbol # Look at the superpose.symbol element
$alpha
[1] 1 1 1 1 1 1 1

$cex
[1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8

$col
[1] "#0080ff" "#ff00ff" "darkgreen" "#ff0000" "orange" "#00ff00" "brown"

$fill
[1] "#CCFFFF" "#FFCCFF" "#CCFFCC" "#FFE5CC" "#CCE6FF" "#FFFFCC" "#FFCCCC"

$font
[1] 1 1 1 1 1 1 1

$pch
[1] 1 1 1 1 1 1 1

Once we have our styles, we can update the elements we need. For example, let’s change the default styles for the points. Let’s also change the default color of the strip header:

Click here to view code image

> ss <- myTheme$superpose.symbol # Extract the superpose.symbol element
> names(ss) # Names of the superpose.symbol element
[1] "alpha" "cex" "col" "fill" "font" "pch"
> ss$col # Current colors
[1] "#0080ff" "#ff00ff" "darkgreen" "#ff0000" "orange" "#00ff00" "brown"
> ss$col <- c("orange", "navy", "green", "red", "grey") # Update plot colors
> ss$pch <- c(16, 15, 17, 18, 19) # Updated plot symbols
> myTheme$superpose.symbol <- ss # Update the styles
> myTheme$strip.background$col # Current strip header color
[1] "#ffe5cc" "#ccffcc" "#ccffff" "#cce6ff" "#ffccff" "#ffcccc" "#ffffcc"
> myTheme$strip.background$col <- c("lightgrey", "lightblue", "lightgreen")

We can use the show.settings function to check the changes we’ve made to our stylesheet. The changes above can be seen in Figure 15.28.

> show.settings(myTheme)

[image: Image]

FIGURE 15.28 Visualization of our updated stylesheet

Using a Theme

Now we can use our theme to create with our plot using the par.settings argument. This way, the styles in the plot and legend will match. To see this, let’s use our previous example, but this time using our new theme. The resulting plot can be seen in Figure 15.29.

Click here to view code image

> xyplot(mpg ~ wt | factor(cyl), data = mtcars, par.settings = myTheme,
+ groups = ifelse(am == 0, "Auto", "Manual"), auto.key = TRUE)

[image: Image]

FIGURE 15.29 Scatter plot of miles per gallon vs. weight by number of cylinders grouped by transmission type (using custom stylesheet)

Tip: Overwriting Default Settings

In the last section we created a new theme and used it in our graph with the par.settings argument. If instead we wanted to overwrite the default theme globally, we can use the trellis.par.set function as follows: trellis.par.set(theme = myTheme). Unlike ggplot2 this change only applies to current active devices, so care must be taken when exporting to multiple devices.

Summary

The lattice package provides a rich set of graphic functions that are particularly useful for visualizing relationships in grouped data. In this hour, you saw how to create simple lattice graphics and control the appearance of the graph using standard options. You also saw how the grouping and, in particular, panel capabilities of lattice can help you to better explore levels of information in your data. With base graphics, ggplot2, and lattice, R has an incredible array of graphical capabilities to suit the needs of the R user community.

Q&A

Q. We’ve seen the base, ggplot2 and lattice systems. Which graph system should I use?

A. This is a difficult question to answer. A familiarization with the base graphic system is strongly recommended, because it is still (perhaps) a preferred system to create highly bespoke graphics. There are also elements of base graphics that are reflected throughout ggplot2 and lattice. Beyond that, it is good advice to learn at least one of ggplot2 or lattice. In terms of capability, the ggplot2 and lattice packages have almost 100% overlap, so when choosing between them it’s a question of style and future direction. Lattice is an older system, and those users familiar with the S-PLUS Trellis capabilities may find it a more natural fit. However, ggplot2 is the more modern implementation, with more support and documentation and more ongoing development.

Q. Can I stop each panel having the same X and Y axis limits?

A. Yes. The scales argument to each lattice graph allows you to control a number of aspects of the axes, including the relationship between them. The scales argument itself takes a list of controls, which can include an element called relation that controls the relationship between axes. In particular, relation = "same" is the default, whereas relation = "free" specifies that each panel can be drawn on a different scale.

Q. What does the latticeExtra package do?

A. The latticeExtra package extends the lattice package, adding many new features. Notable features include the addition of new plot types, new panel functions (including one with a transparent smoother), and more styles.

Q. How do I control the ordering of panels?

A. There are two ways to control the panel order. First, the order of panels will reflect the order of levels in the “by” variables. By default, the order of the levels will be alphabetical, so a variable may have levels ordered “High > Low > Medium.” The factor function can help you order the levels correctly. The other thing to note is that, by default, panels are positioned on the device from the bottom left to the top right. If you wish to change this, you can use the as.table input to the lattice functions. Setting as.table = TRUE will result in panels positioned from the top left to the bottom right.

Q. Can I place more than one graph on the same page?

A. Yes. Each lattice graph can be saved as an object and then placed on a page using the print.trellis function. For more information, see the print.trellis help file.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. How do you specify the variables to plot with a univariate lattice graph function?

2. Which lattice function creates a scatter-plot matrix of a data frame?

3. How do you specify multiple “by” variables for a lattice graph?

4. What argument can be used to automatically add a legend?

5. How can you customize the content in each graph panel?

Answers

1. You use a one-sided formula, such as histogram(~ Y).

2. The splom function can be used to create a scatter-plot matrix of a data frame.

3. You specify multiple “by” variables with the * symbol. For example, to partition a plot of Y vs. X by variables BY1 and BY2, you would specify the formula as Y ~ X | BY1 * BY2.

4. You can use the auto.key argument to add a legend, although care must be taken to ensure the styles match that of the plot.

5. You can create a “panel” function and then provide it as the panel input to a lattice graph function.

Activities

1. Using the airquality data frame, create a histogram of the Wind variable.

2. Create a scatter plot of Ozone vs. Wind using the xyplot function. Add titles and change the style of the plotting symbol.

3. Extend this example by varying the color of the plotting symbol by Month. Add a legend to your plot.

4. Change this graph so that, instead, each Month of data is produced in a separate panel.

5. Use a panel function to add a linear regression line to each panel.

Hour 16. Introduction to R Models and Object Orientation

What You’ll Learn in This Hour:

[image: Image] How to fit a simple statistical model

[image: Image] How to assess the model’s appropriateness

[image: Image] The basic concepts of object orientation

The R Language (and, before that, S) was created by statisticians to enable them to perform statistical analyses. As such, R is primarily a statistical software and provides the richest set of analytic methods available in any technology. In this hour, you see how to fit a simple linear model and assess its performance using a range of textual and graphical methods. Beyond this, you’ll be introduced to “object orientation” and see how the R statistical modeling framework is built on this concept. In Hour 17, “Common R Models,” we’ll extend this by looking at other modeling approaches, such as nonlinear, survival, and time series models. For each model type we will explain some of the basic principles behind the model and any associated terminology. However, the focus of both this hour and Hour 17 is on the practical implementation of the models as opposed to the mathematics behind the models.

Statistical Models in R

Statistical modeling is a vital technique that allows us to understand and confirm whether, and how, responses are influenced by other data. R provides the richest set of statistical modeling capabilities and was designed from the outset with modeling in mind, making it the perfect environment in which to fit and assess models. In fact, at the time of writing, approximately 2,500 packages are available on CRAN that supply model-fitting functions (based on an analysis of package descriptions). The majority of statistical model-fitting routines are designed in a similar fashion, allowing us to change our model-fitting approach without having to relearn a completely new syntax. In many ways, this consistent design and approach to model fitting is every bit as valuable as the range of models available. Let’s focus first on simple linear models and then move on to more complex model-fitting approaches.

Simple Linear Models

A linear model allows us to relate a response, or “dependent,” variable to one or more explanatory, or “independent,” variables using a linear function of parameters. For a linear model, the dependent must be continuous; however, the independent variables may be either continuous or discrete.

The lm function in R allows us to fit a range of linear models. However, we’ll start with a simple linear regression of one continuous dependent variable and one continuous independent variable. In this case, our model is of the form Y = α + β * X + ε, where the Y term represents our dependent variable, and X represents our independent variable(s). The α and β are parameters to be estimated and ε is our error term. For this hour, let’s use the mtcars data to fit simple models, starting with a linear regression of mpg versus wt, which can be visualized in Figure 16.1.

Click here to view code image

> plot(mtcars$wt, mtcars$mpg, main = "Miles per Gallon vs Weight",
+ xlab = "Weight (lb/1000)", ylab = "Miles per Gallon", pch = 16)

[image: Image]

FIGURE 16.1 A scatter plot of mpg versus wt

Note: Base Graphics

For this section, we will use the base graphics system to produce plots, because that is the system in which most model-fitting “diagnostic” plots are implemented.

This example creates a scatter plot of mpg versus wt. From the plot, it is clear that a relationship exists between mpg and wt that looks approximately linear, with miles per gallon reducing based on increased vehicle weights.

Fitting the Model

To create the plot in Figure 16.1, we stated our x and y variables explicitly using the $ syntax. However, we can also create the same basic plot using formula and data arguments, plot(mpg ~ wt, data = mtcars). The lm function works in much the same way. The first argument to lm (and, in fact, most model-fitting functions) is a “formula” defining the specific relationship to model. As with lattice graphics, we use the ~ symbol to establish a relationship as part of a formula. To specify a linear relationship between two variables, we use Y ~ X, which corresponds to a model of Y = α + β * X + ε. It should be noted, in particular, that specifying Y ~ X denotes a relationship that includes an intercept term (α). Let’s go ahead and fit our linear model of mpg versus wt using the lm function. We will save the output from the model fit as an object and print the value of the object.

Click here to view code image

> model1 <- lm(mpg ~ wt, data = mtcars) # Fit the model
> model1

Call:
lm(formula = mpg ~ wt, data = mtcars)

Coefficients:
(Intercept) wt
 37.285 -5.344

Note: The data Argument

Note that lm, like the majority of model-fitting functions in R, accepts a data argument that specifies the data frame from which the model variables are taken. If preferred, we can omit this argument and fit the model by specifying vector inputs, such as lm(Y ~ X) or, in our example, lm(mtcars$mpg ~ mtcars$wt).

Tip: Removing the Intercept

As mentioned, the default behavior when specifying a model of Y ~ X is to include an intercept term. If appropriate, we can remove the intercept term by instead defining the formula as Y ~ X – 1.

Assessing a Model in R

In the previous section, we fitted a simple linear regression of mpg versus wt. Printing the resulting object from the lm function, we see a concise text output containing two elements:

[image: Image] The “call” that was made to the function. (A model always knows how it was created.)

[image: Image] The estimated coefficients of the model (α = 37.285 and β = -5.344).

The next step is to assess whether our model is a “good” model and look for areas of improvement. To assess a model’s appropriateness, we can investigate the following:

[image: Image] The overall measures of fit, such as the Residual Standard Error

[image: Image] Plots of “predicted” (or “fitted”) values and model “residuals” (where the residuals values are calculated by subtracting the fitted values from the observed responses)

[image: Image] Metrics on the influence of each independent variable

Clearly, the printed output from our model object provides very little insight into the model fit itself. For that, we need to use further functions that allow us to explore other aspects of our model.

Model Summaries

As seen in the previous section, the printed output from a model is rather concise, reporting only the function call and the estimated parameters. We can generate a more detailed textual output from our model using the summary function, which accepts a model object as the input. The output from this is shown in Listing 16.1.

LISTING 16.1 Output from Summary of Model

Click here to view code image

 1: > summary(model1) # Summary of the lm model
 2:
 3: Call:
 4: lm(formula = mpg ~ wt, data = mtcars)
 5:
 6: Residuals:
 7: Min 1Q Median 3Q Max
 8: -4.5432 -2.3647 -0.1252 1.4096 6.8727
 9:
10: Coefficients:
11: Estimate Std. Error t value Pr(>|t|)
12: (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
13: wt -5.3445 0.5591 -9.559 1.29e-10 ***
14: ---
15: Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
16:
17: Residual standard error: 3.046 on 30 degrees of freedom
18: Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
19: F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

As you can see, the summary function results in considerably more metrics. The information returned is shown in Table 16.1, which describes the output shown in Listing 16.1.

[image: Image]

TABLE 16.1 Metrics from Summary of Model

There are a small number of additional arguments we can provide to the summary function, including the correlation input, which allows us to additionally include the correlation matrix of estimated parameters, as shown in the following example. For more information, see the help file for ?summary.lm.

Model Diagnostic Plots

In Hour 13, “Graphics,” we introduced the plot function, which allows us to produce scatter plots of our data. In fact, we used the plot function earlier in this hour to create the scatter plot in Figure 16.1. We can also use the plot function to create diagnostic plots for model objects, such as our model1 object. By default, four diagnostic plots will be created, so we will first use the mfrow layout parameter to create a 2×2 plot surface that is displayed in Figure 16.2:

Click here to view code image

> par(mfrow = c(2, 2)) # Set up a 2x2 Graph Page
> plot(model1) # Create diagnostic plots for model1

[image: Image]

FIGURE 16.2 Diagnostic plots for linear regression

The four plots created by the call to the plot function are described in Table 16.2.

[image: Image]

TABLE 16.2 Diagnostic Plots Created

Tip: Additional Arguments to plot

We can provide a number of additional arguments to plot. Most of these are concerned with the formatting of each plot (such as the id.n input, which controls the number of “extreme” values to be identified on each plot). Perhaps the most interesting is the which argument, which controls which plots are to be produced by plot. By default, which is set to c(1:3, 5), indicating the index of the four plots to be created. If, instead, we specify which = 1:6, the plot function will create six plots (the four described previously plus two that visualize Cook’s distance measures). For more information, see the help file for ?plot.lm.

Extracting Model Elements

R provides three functions that will return key elements of a linear model object (and, in fact, the majority of model types). The three functions are described in Table 16.3.

[image: Image]

TABLE 16.3 Model Extractor Functions

The use of these functions can be seen here:

Click here to view code image

> coef(model1) # Model coefficients
(Intercept) wt
 37.285126 -5.344472
> head(resid(model1)) # Fitted Values
 Mazda RX4 Mazda RX4 Wag Datsun 710
 -2.2826106 -0.9197704 -2.0859521
 Hornet 4 Drive Hornet Sportabout Valiant
 1.2973499 -0.2001440 -0.6932545
> head(fitted(model1)) # Residuals (observed - fitted)
 Mazda RX4 Mazda RX4 Wag Datsun 710
 23.28261 21.91977 24.88595
 Hornet 4 Drive Hornet Sportabout Valiant
 20.10265 18.90014 18.79325

Let’s use the resid function to create scatter plots of our residuals versus the other nine variables from mtcars (seen in Figure 16.3):

Click here to view code image

> whichVars <- setdiff(names(mtcars), c("wt", "mpg")) # Names of other variables
 in mtcars
> par(mfrow = c(3, 3)) # Set plot layout
> for (V in whichVars) { # Loop through create
 scatter plots
+ plot(mtcars[[V]], resid(model1), main = V, xlab ="", pch = 16)
+ lines(loess.smooth(mtcars[[V]], resid(model1)), col = "red")
+ }

[image: Image]

FIGURE 16.3 Plots of model residuals versus other variables in mtcars

From these plots, it seems that there are other variables we should include in our model—we’ll do that later in this hour.

Models as List Objects

In the previous sections, you saw a number of ways of accessing information from a model:

[image: Image] Printing the contents of the model object

[image: Image] Using the summary function to create a more detailed textual output

[image: Image] Using the plot function to create a range of diagnostic plots

[image: Image] Using functions resid, coef, and fitted to extract key model elements

These approaches all use the information stored in the model object (returned from the call to lm). From the “Value” section of the lm help file (?lm), we can see that the function returns “an object of class lm,” which is a “list” containing a number of components. Because our object is, fundamentally, a list, we can show the names of its elements using the names function (as seen in Hour 4, “Multi-Mode Data Structures”). Let’s check the class of our model1 object and see the elements it contains:

Click here to view code image

> class(model1) # The class of model1
[1] "lm"
> is.list(model1) # Is model1 a list?
[1] TRUE
> names(model1) # The element names of model1
 [1] "coefficients" "residuals" "effects" "rank"
 [5] "fitted.values" "assign" "qr" "df.residual"
 [9] "xlevels" "call" "terms" "model"

The “Value” section of the lm help file also describes these elements; this information can be seen in Table 16.4.

[image: Image]

TABLE 16.4 Model Elements

Given that our object is a list and we know the element names, we can directly extract elements using the $ symbol, as shown here:

Click here to view code image

> model1$coefficients # Model Coefficients
(Intercept) wt
 37.285126 -5.344472
> quantile(model1$residuals, # Specific quantiles of residuals
+ probs = c(0.05, 0.5, 0.95))
 5% 50% 95%
-3.8071897 -0.1251956 6.1794815

Model Summaries as List Objects

You have seen that the summary function allows us to produce a detailed textual summary of our model fit. In fact, the summary function (when applied to an lm object) also returns a list object that can be queried. This is shown in the following example:

Click here to view code image

> sModel1 <- summary(model1) # Summary of model1
> class(sModel1) # Class of summary object
[1] "summary.lm"
> is.list(sModel1) # Is it a list?
[1] TRUE
> names(sModel1) # Element names
 [1] "call" "terms" "residuals" "coefficients"
 [5] "aliased" "sigma" "df" "r.squared"
 [9] "adj.r.squared" "fstatistic" "cov.unscaled"
> sModel1$adj.r.squared # Adjusted R Squared
[1] 0.7445939
> sModel1$sigma^2 # Estimate variance
[1] 9.277398

The elements of this object are described in Table 16.5 (taken from the summary.lm help file).

[image: Image]

TABLE 16.5 Summary Model Elements

Adding Model Lines to Plots

At the start of this hour, we created a scatter plot of mpg vs. wt (refer to Figure 16.1). We can add a linear regression line to this plot based on our model fit using the abline function (which you also saw earlier in Hour 13). The following code adds a solid line representing our model fit; the resulting plot can be seen in Figure 16.4.

Click here to view code image

> plot(mtcars$wt, mtcars$mpg, main = "Miles per Gallon vs Weight",
+ xlab = "Weight (lb/1000)", ylab = "Miles per Gallon", pch = 16)
> abline(model1)

[image: Image]

FIGURE 16.4 Scatter plot of mpg versus wt with overlaid regression line

Caution: Additional Arguments to plot

When our models are more complex, involving multiple variables or nonlinear relations, a simple abline call will not work and other approaches must be taken. However, for simple models such as the one in this example, it works well.

Making Model Predictions

Once we have a model, we can make predictions using the predict function. If we supply only the model object to predict, then fitted values are returned:

Click here to view code image

> head(predict(model1)) # Model Predictions using model1
 Mazda RX4 Mazda RX4 Wag Datsun 710
 23.28261 21.91977 24.88595
 Hornet 4 Drive Hornet Sportabout Valiant
 20.10265 18.90014 18.79325
> head(fitted(model1)) # Fitted Values of model1
 Mazda RX4 Mazda RX4 Wag Datsun 710
 23.28261 21.91977 24.88595
 Hornet 4 Drive Hornet Sportabout Valiant
 20.10265 18.90014 18.79325

We can, instead, provide a data frame containing the set(s) of independent variables for which out-of-sample predictions are to be made. This data frame is supplied as the newdata input to predict, as shown here:

Click here to view code image

> wtDf <- data.frame(wt = 1:6) # Independent Variables
> predVals <- predict(model1, newdata = wtDf) # Make predictions using
 model1
> data.frame(wt = wtDf$wt, Pred = round(predVals, 1)) # Form as data frame
 wt Pred
1 1 31.9
2 2 26.6
3 3 21.3
4 4 15.9
5 5 10.6
6 6 5.2

Other arguments to the predict function allow us to customize our predictions in a number of ways. For example, we can use the se.fit and interval arguments to provide standard errors and confidence intervals related to our predictions, as shown here:

Click here to view code image

> predict(model1, newdata = wtDf, se.fit = TRUE, interval = "confidence")
$fit
 fit lwr upr
1 31.940655 29.18042 34.700892
2 26.596183 24.82389 28.368481
3 21.251711 20.12444 22.378987
4 15.907240 14.49018 17.324295
5 10.562768 8.24913 12.876406
6 5.218297 1.85595 8.580644

$se.fit
 1 2 3 4 5 6
1.3515519 0.8678067 0.5519713 0.6938618 1.1328743 1.6463754

$df
[1] 30

$residual.scale
[1] 3.045882

Multiple Linear Regression

Figure 16.3 showed a plot of the residuals from our model versus other variables in the mtcars data frame. We can include more than one independent variable in a model by separating variables by a + symbol on the right side of the formula. Therefore, we can specify a formula as Y ~ X1 + X2, which corresponds to a model of Y = α + β1 * X1 + β2 * X2 + ε. Here, α, β1 and β2 are parameters to be estimated and ε is our error term. Let’s define a new model including both wt and the hp variable:

Click here to view code image

> model2 <- lm(mpg ~ wt + hp, data = mtcars) # Fit new model
> summary(model2)

Call:
lm(formula = mpg ~ wt + hp, data = mtcars)

Residuals:
 Min 1Q Median 3Q Max
-3.941 -1.600 -0.182 1.050 5.854

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.22727 1.59879 23.285 < 2e-16 ***
wt -3.87783 0.63273 -6.129 1.12e-06 ***
hp -0.03177 0.00903 -3.519 0.00145 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.593 on 29 degrees of freedom
Multiple R-squared: 0.8268, Adjusted R-squared: 0.8148
F-statistic: 69.21 on 2 and 29 DF, p-value: 9.109e-12

You can see from this output that the coefficient of the hp variable is significant at the 1% level, so including it would initially seem to be a good idea.

Updating Models

In the last example, we created a new model (model2) including two independent variables (wt and hp). It is common, when model fitting, to create a new model by varying the aspects of a previous model. That could include the following:

[image: Image] Adding or removing a model term

[image: Image] Removing outlying observations

[image: Image] Changing a model-fitting option

Instead of creating new models directly, we can create new models by updating existing models with the update function. To achieve this, we supply an existing model and identify what to change. As an example, let’s re-create model2, this time using the update function:

Click here to view code image

> model2 <- update(model1, mpg ~ wt + hp) # Create model2 based on model1
> model2

Call:
lm(formula = mpg ~ wt + hp, data = mtcars)

Coefficients:
(Intercept) wt hp
 37.22727 -3.87783 -0.03177

Although this example is very simple, when we have more complex models, this approach can be very efficient.

Tip: Updating Formula

When updating the model in this example, we specified the new formula as mpg ~ wt + hp. However, we can reduce the amount of typing using the period character to denote all formula elements of the previous model. Therefore, we could rewrite the previous example as follows:

Click here to view code image

> model2 <- update(model1, . ~ . + hp) # Create model2 based on model1

Again, when we have large models, this can be a far more efficient way of developing models.

Comparing Nested Models

In the previous section, we created a new model, model2, with an added term (hp). An initial look at the summary from model2 suggests that hp should be included in our model. Note that the independent variables in model1 are a subset of those in model2. The models are otherwise identical. In cases such as this, we say that model1 is nested within model2. Instead of looking at the models in isolation, we can compare two (or more) nested models using the following approaches:

[image: Image] Creating comparative diagnostic plots

[image: Image] Computing analysis of variance tables

Comparative Diagnostic Plots

Because we can access the information in each model, either directly or using functions such as resid and fitted, we can create plots that overlay data from two or more models. Let’s start by creating a plot of residuals vs. fitted values for each of our two models. The output can be seen in Figure 16.5.

Click here to view code image

> # Extract elements
> res1 <- resid(model1)
> fit1 <- fitted(model1)
> res2 <- resid(model2)
> fit2 <- fitted(model2)

> # Calculate axis range
> resRange <- c(-1, 1) * max(abs(res1), abs(res2))
> fitRange <- range(fit1, fit2)

> # Create plot for model1 > add points for model2
> plot(fit1, res1, xlim = fitRange, ylim = resRange,
+ col = "red", pch = 16, main = "Residuals vs Fitted Values",
+ xlab = "Fitted Values", ylab = "Residuals")
> points(fit2, res2, col = "blue", pch = 16)

> # Add reference and smooth lines
> abline(h = 0, lty = 2)
> lines(loess.smooth(fit1, res1), col = "red")
> lines(loess.smooth(fit2, res2), col = "blue")
> legend("bottomleft", c("mpg ~ wt", "mpg ~ wt + hp"), fill = c("red", "blue"))

[image: Image]

FIGURE 16.5 Scatter plot of residuals vs. fitted values for two linear models

We can use a similar approach to see how different models deal with variables in our data. For example, let’s see how the addition of the hp variable in model2 has helped to deal with the relationship between the model1 residuals and hp shown in Figure 16.3. The resulting plot can be seen in Figure 16.6.

Click here to view code image

> # Create plot for model1 > add points for model2
> plot(mtcars$hp, res1, ylim = resRange,
+ col = "red", pch = 16, main = "Residuals vs Fitted Values",
+ xlab = "Fitted Values", ylab = "Residuals")
> points(mtcars$hp, res2, col = "blue", pch = 16)

> # Add reference and smooth lines
> abline(h = 0, lty = 2)
> lines(loess.smooth(mtcars$hp, res1, span = .8), col = "red")
> lines(loess.smooth(mtcars$hp, res2, span = .8), col = "blue")
> legend("bottomleft", c("mpg ~ wt", "mpg ~ wt + hp"), fill = c("red", "blue"))

[image: Image]

FIGURE 16.6 Scatter plot of residuals vs hp for two linear models

Analysis of Variance

We can create an analysis of variable table for one or more linear models using the anova functions. For this to make statistical sense, the models provided should be nested. For each model, the residual degrees of freedom and sum of squares is reported. In addition, an F test is performed for each step, with the p-value report. Let’s create an analysis of variance table to compare model1 and model2:

Click here to view code image

> anova(model1, model2)
Analysis of Variance Table

Model 1: mpg ~ wt
Model 2: mpg ~ wt + hp
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 30 278.32
2 29 195.05 1 83.274 12.381 0.001451 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

You can see from the p-value (the value below Pr(>F)) that the inclusion of the hp variable significantly improved the model fit (assuming a p-value of 0.05).

Interaction Terms

We may wish to test whether there is a significant interaction term in the model. For example, we may hypothesize that wt has a different effect on mpg depending on differing values of hp. To test an interaction term, we specify it using the : symbol. Therefore, we can specify a formula as Y ~ X1 + X2 + X1:X2, which corresponds to a model of Y = α + β1 * X1 + β2 * X2 + β2 * X1 * X2 + ε. Here, α, β1, β2, and β3 are parameters to be estimated and ε is our error term. Let’s update model2 to include this interaction term.

Click here to view code image

> model3 <- update(model2, . ~ . + wt:hp)
> summary(model3)

Call:
lm(formula = mpg ~ wt + hp + wt:hp, data = mtcars)

Residuals:
 Min 1Q Median 3Q Max
-3.0632 -1.6491 -0.7362 1.4211 4.5513

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.80842 3.60516 13.816 5.01e-14 ***
wt -8.21662 1.26971 -6.471 5.20e-07 ***
hp -0.12010 0.02470 -4.863 4.04e-05 ***
wt:hp 0.02785 0.00742 3.753 0.000811 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.153 on 28 degrees of freedom
Multiple R-squared: 0.8848, Adjusted R-squared: 0.8724
F-statistic: 71.66 on 3 and 28 DF, p-value: 2.981e-13

Assess Addition of Interaction Term

From the preceding summary output, the interaction terms certainly seem highly significant, as are the other parameters when assessed in the presence of the interaction. Let’s compare our models with a quick graphic, seen in Figure 16.7. This time, we’ll add horizontal reference lines at the 5% and 95% residual quantiles.

Click here to view code image

> # Extract elements for model 3
> res3 <- resid(model3)
> fit3 <- fitted(model3)

> # Calculate axis range
> resRange <- c(-1, 1) * max(resRange, abs(res3))
> fitRange <- range(fitRange, fit3)

> # Create plot for model1 > add points for model2
> plot(fit1, res1, xlim = fitRange, ylim = resRange,
+ col = "red", pch = 16, main = "Residuals vs Fitted Values",
+ xlab = "Fitted Values", ylab = "Residuals")
> points(fit2, res2, col = "blue", pch = 16)
> points(fit3, res3, col = "black", pch = 16)

> # Add reference and smooth lines
> abline(h = 0, lty = 2)
> lines(loess.smooth(fit1, res1), col = "red")
> lines(loess.smooth(fit2, res2), col = "blue")
> lines(loess.smooth(fit3, res3), col = "black")

> # Add 5% and 95% reference lines for each model
> refFun <- function(res, col) abline(h = quantile(res, c(.05, .95)), col = col, lty = 3)
> refFun(res1, "red")
> refFun(res2, "blue")
> refFun(res3, "black")

> legend("bottomleft", c("mpg ~ wt", "mpg ~ wt + hp", "mpg ~ wt + hp + wt:hp"),
+ fill = c("red", "blue", "black"))

[image: Image]

FIGURE 16.7 Scatter plot of residuals vs fitted values for three linear models

The addition of the interaction term certainly seems to have improved our model. As a last check, let’s create an analysis of the variance table for our three models:

Click here to view code image

> anova(model1, model2, model3)
Analysis of Variance Table

Model 1: mpg ~ wt
Model 2: mpg ~ wt + hp
Model 3: mpg ~ wt + hp + wt:hp
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 30 278.32
2 29 195.05 1 83.274 17.969 0.0002207 ***
3 28 129.76 1 65.286 14.088 0.0008108 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this case, the F test and corresponding p-values are derived by testing each model against the largest model provided (in this case model3). The significance of the two comparisons supports our claim that model3 is an improvement over each of the previous models.

Tip: Linear Combinations Including Interactions

In the previous section, you saw that we can create models with linear combinations of variables and interaction terms using a formula such as Y ~ X1 + X2 + X1:X2. Another way of writing this is as Y ~ X1*X2, which expands to Y ~ X1 + X2 + X1:X2. This works for any number of variables; for example, we could use Y ~ X1*X2*X3 to create a model of Y ~ X1 + X2 + X3 + X1:X2 + X1:X3 + X2:X3 + X1:X2:X3!

Factor Independent Variables

So far in this hour, we have used only continuous independent variables. In fact, the lm function allows us to include factor variables as independent variables. In the mtcars dataset, there are a number of variables we could treat as factor variables, each of which may be influential in our model. Let’s first look at the residuals from our current model (model3) versus some of these factor variables, seen in Figure 16.8. Let’s focus on three variables that we’ll treat as categorical:

[image: Image] The vs variable, an indicator for whether the engine is a “straight” (0) or “V” engine (1)

[image: Image] The am variable, an indicator of the transmission type: 0 for automatic, 1 for manual.

[image: Image] The cyl variable, which contains the number of cylinders (4, 6, or 8).

[image: Image]

FIGURE 16.8 Model residuals versus vs, am, and cyl

These variables are actually stored as numeric, so we will need to convert them to factors first:

Click here to view code image

> par(mfrow = c(1, 3))
> plot(factor(mtcars$vs), resid(model3), col = "red",
+ xlab = "0 = Straight Engine \ 1 = 'V Engine'", ylab = "Residuals",
+ main = "Residuals versus\n'V Engine' Flag")
> plot(factor(mtcars$am), resid(model3), col = "red",
+ xlab = "0 = Automatic \ 1 = Manual", ylab = "Residuals",
+ main = "Residuals versus\nTransmission Type")
> plot(factor(mtcars$cyl), resid(model3), col = "red",
+ xlab = "Number of Cylinders", ylab = "Residuals",
+ main = "Residuals versus\nNumber of Cylinders")

Including Factors

Let’s add cyl to our model and see what impact it has. To achieve this, we will specify cyl as a factor variable; otherwise, it would be handled as a continuous independent variable.

Click here to view code image

> model4 <- update(model3, . ~ . + factor(cyl))
> summary(model4)

Call:
lm(formula = mpg ~ wt + hp + factor(cyl) + wt:hp, data = mtcars)

Residuals:
 Min 1Q Median 3Q Max
-3.5309 -1.6451 -0.4154 1.3838 4.4788

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 47.337329 4.679790 10.115 1.67e-10 ***
wt -7.306337 1.675258 -4.361 0.000181 ***
hp -0.103331 0.031907 -3.238 0.003274 **
factor(cyl)6 -1.259073 1.489594 -0.845 0.405685
factor(cyl)8 -1.454339 2.063696 -0.705 0.487246
wt:hp 0.023951 0.008966 2.671 0.012865 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.203 on 26 degrees of freedom
Multiple R-squared: 0.888, Adjusted R-squared: 0.8664
F-statistic: 41.21 on 5 and 26 DF, p-value: 1.503e-11

The coefficients are reported for cyl = 6 and cyl = 8, with the first level (cyl = 4) taken as the baseline. This is because “treatment” contrasts are the default contrast method for unordered factors. The treatment “contrast” method contrasts each level with a baseline level, taken (by default) as the first level of the variable.

Tip: Control of Contrasts

There are five contrast methods available in R: contr.treatment (the default), contr.sum, contr.poly, contr.helmert, and contr.SAS. Each of the contrast options is represented by a function that is used to create a contrast matrix of the appropriate size. The following is an example for a factor with three levels:

Click here to view code image

> contr.treatment(3) # Matrix of dummy variables to use for a 3-level factor
 (like cyl)
 2 3
1 0 0
2 1 0
3 0 1

We view and set the default contrast using options("contrasts").

From the model output, it is clear that the cyl variable is not significant in the model. This is further supported by an analysis of variance, which shows that very little additional variance is explained with the addition of the cyl variable between model3 and model4:

Click here to view code image

> anova(model1, model2, model3, model4)
Analysis of Variance Table

Model 1: mpg ~ wt
Model 2: mpg ~ wt + hp
Model 3: mpg ~ wt + hp + wt:hp
Model 4: mpg ~ wt + hp + factor(cyl) + wt:hp
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 30 278.32
2 29 195.05 1 83.274 17.1624 0.0003219 ***
3 28 129.76 1 65.286 13.4552 0.0011040 **
4 26 126.16 2 3.606 0.3716 0.6932114

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

One interesting thing from the summary output, however, is that the significance of the hp variable (and the interaction term) were slightly lessened with the inclusion of cyl. The reason for this is that hp and cyl are highly correlated (as seen in Figure 16.9), so the “information” provided by hp is very similar to that supplied by cyl.

Click here to view code image

> plot(factor(mtcars$cyl), mtcars$hp, col = "red",
+ xlab = "Number of Cylinders", ylab = "Gross Horsepower",
+ main = "Gross Horsepower vs Number of Cylinders")

[image: Image]

FIGURE 16.9 Gross horsepower vs. number of cylinders (cyl versus hp)

We could, as a next step, replace hp with cyl in the model and also look at interaction terms between wt and cyl.

Variable Transformations

If we look back at Figure 16.1, which plotted mpg versus wt, there is a suggestion of curvature. Let’s see this plot again, this time alongside of plot of log(mpg) versus wt. This can be seen in Figure 16.10.

Click here to view code image

> par(mfrow = c(1, 2))
> plot(mtcars$wt, mtcars$mpg, pch = 16, xlab = "Weight (lb/1000)",
+ ylab = "Miles per Gallon", main = "MPG Gallon versus Weight")
> lines(loess.smooth(mtcars$wt, mtcars$mpg), col = "red")
> plot(mtcars$wt, log(mtcars$mpg), pch = 16, xlab = "Weight (lb/1000)",
+ ylab = "log(Miles per Gallon)", main = "Logged MPG versus Weight")
> lines(loess.smooth(mtcars$wt, log(mtcars$mpg)), col = "red")

[image: Image]

FIGURE 16.10 Scatter plots of miles per gallon and logged miles per gallon versus weight

Based on this visualization, we may decide to try to model logged miles per gallon. If we want to transform any of our dependent or independent variables, we can apply a transformation function directly in the formula. Let’s create a simple model of logged miles per gallon versus weight horsepower. We’ll look at the detailed summary output and also create some diagnostic plots (seen in Figure 16.11).

Click here to view code image

> lmodel1 <- lm(log(mpg) ~ wt, data = mtcars)
> summary(lmodel1)

Call:
lm(formula = log(mpg) ~ wt, data = mtcars)

Residuals:
 Min 1Q Median 3Q Max
-0.210346 -0.085932 -0.006136 0.061335 0.308623

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.83191 0.08396 45.64 < 2e-16 ***
wt -0.27178 0.02500 -10.87 6.31e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1362 on 30 degrees of freedom
Multiple R-squared: 0.7976, Adjusted R-squared: 0.7908
F-statistic: 118.2 on 1 and 30 DF, p-value: 6.31e-12

> par(mfrow = c(2, 2)) # Set plot layout
> plot(lmodel1) # Create diagnostics plots

[image: Image]

FIGURE 16.11 Diagnostic plots for log model fit

If we want to overlay this model onto our original data, it is better to exponentiate some predicted results and use the lines function to add the line to the plot. Let’s compare the original model of mpg vs. wt with the new model of log(mpg) vs. wt. The output can be seen in Figure 16.12.

Click here to view code image

> plot(mtcars$wt, mtcars$mpg, pch = 16, xlab = "Weight (lb/1000)",
+ ylab = "Miles per Gallon", main = "MPG Gallon versus Weight")
> abline(model1, col = "red") # Add (straight) model line (based on earlier
 model1 object)

> wtVals <- seq(min(mtcars$wt), max(mtcars$wt), length = 50) # Weights to
 predict at
> predVals <- predict(lmodel1, newdata = data.frame(wt = wtVals)) # Make
 predictions
> lines(wtVals, exp(predVals), col = "blue") # Add (log) model
 line
> legend("topright", c("mpg ~ wt", "log(mpg) ~ wt"), fill = c("red", "blue"))

[image: Image]

FIGURE 16.12 Scatter plot of miles per gallon versus weight, overlaid with two models

Caution: Inhibiting Interpretation

If we want to transform dependent or independent variables, it is worth noting that some model formula syntax has special meaning. For example, if we wanted to model a response Y against a continuous variable X, we’d use Y ~ X. However, if we instead wanted to model Y against “X – 1” (the values of X with 1 subtracted), we might try Y ~ X – 1. However, this syntax denotes a model of Y against X without an intercept term. If we literally want to model Y against “X – 1”, we need to include the I function, which inhibits the interpretation of the formula. Therefore, our formula would become Y ~ I(X – 1). For more information on the formula syntax, including the I function, see the ?formula help file.

R and Object Orientation

In the preceding sections, we used functions such as summary and plot to understand our models. However, we have seen these functions used in earlier hours to summarize and graph other objects. In addition to the outputs from summary related to the preceding models, consider the following uses of the summary function:

Click here to view code image

> summary(mtcars$mpg) # Summary of a numeric vector
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 10.40 15.42 19.20 20.09 22.80 33.90
> summary(factor(mtcars$cyl)) # Summary of a factor vector
 4 6 8
11 7 14
> summary(mtcars[,1:4]) # Summary of a data frame
 mpg cyl disp hp
 Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
 Median :19.20 Median :6.000 Median :196.3 Median :123.0
 Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
 Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0

In these examples, the summary function produces different output depending on the type of object it is provided. The summary help file describes it as a “generic” function, which provides “methods” for many “classes” of objects. But what does this mean?

Object Orientation

Many features of the R language are based on the object-oriented programming paradigm. To describe object orientation, let’s consider the following:

[image: Image] If someone asks us to open a door, we would turn the handle.

[image: Image] If someone asks us to open a bottle, we would twist the top.

[image: Image] If someone asks us to open a box, we would lift the lid.

For each of these statements, the “command” is the same: “open.” However, we behave differently based on the type of object we are to “open.” The idea behind object-oriented programming is similar. Here, the “command” is called a “method,” and the “type” of object is called the “class” of the object. We have seen a number of examples of this behavior in this hour, such as the previous summary function uses, which are described in Table 16.6.

[image: Image]

TABLE 16.6 Summary Methods

R contains a number of systems for object-oriented programming. The majority of the statistical modeling functionality available in R is based on the “S3” system, which implements generic functions and uses a simple naming convention. When a method is called, the class of the object is appended to the name of the method, separated by a period character, and the process is redirected to this function. So when we perform a summary of an object of class “factor,” we instead call function summary.factor, as shown in the following example:

Click here to view code image

> cylFactor <- factor(mtcars$cyl)
> class(cylFactor)
[1] "factor"
> summary(cylFactor)
 4 6 8
11 7 14
> summary.factor(cylFactor)
 4 6 8
11 7 14

Note: Using R Classes

In Hour 21, “Writing R Classes,” and Hour 22, “Formal Class Systems,” we will look more closely at S3 and other object-oriented programming systems provided by R.

Linear Model Methods

For most of this hour, we’ve been using functions such as summary and plot to evaluate linear models, which we fitted with the lm function. The “class” of these objects can be seen with the class function:

> class(model1)
[1] "lm"
> class(model2)
[1] "lm"
> class(model3)
[1] "lm"
> class(model4)
[1] "lm"

Using this fact, we now know the names of the functions we have been calling throughout the previous sections of this hour, many of which are summarized in Table 16.7.

[image: Image]

TABLE 16.7 Methods for “lm” Objects

Perhaps the most important reason to understand this mechanism is to know which is the relevant help file to read to understand the options available to us. For example, if we’re using the summary function for an lm object, we know that summary.lm is the help file we need to refer to.

Summary

In this hour, you saw how to fit a series of simple linear models in R. This includes the way in which we define our linear model via the use of a “formula” as well as a number of ways to assess the appropriateness of our model using textual and graphical means. We also introduced the concept of object-oriented programming by looking at the behavior of generic functions such as print, summary, and plot when given linear model outputs. Although we focused on linear models in this hour, the concepts and approach we used is similar across a wide range of statistical models provided by R. In the next hour, we’ll look at some of these models and see how similar the approach is to the fitting of linear models covered in this hour.

Q&A

Q. Can we return different types of residuals from our model fits?

A. Yes. Other types of residuals (such as Pearson and partial residuals) can be also be returned from the resid function. See the ?residuals.lm help file for more information.

Q. What other high-level metrics relating to model fit are available?

A. A number of additional metrics are available, such as Akaike’s Information Criteria (?AIC), Bayesian Information Criteria (?BIC), and Log-Likelihood (?logLik). This is not an exhaustive list, and we recommend searching the www.r-project.org site for specific methods if they have not been covered here.

Q. How do I extract the variance-covariance matrix of model parameters?

A. The vcov function allows you to extract the variance-covariance matrix of parameters given a model.

Q. How does lm deal with missing values?

A. The handling of missing values in lm is controlled by the na.action argument. By default, the na.action argument is set to na.omit, which removes rows including at least one missing based on the variables involved in the model.

Q. Can I perform polynomial regression using lm?

A. Yes. You can include independent variables in a polynomial manner. However, care must be taken because the ^ symbol in a formula has a particular meaning (it represents parameter crossing, as described in the ?formula help page). Therefore, to include variables in a polynomial manner you need the I function (for example, mpg ~ wt + I(wt^2)). An alternative approach is to use the poly function, which allows you to specify this as mpg ~ poly(wt, 2, raw = T).

Q. Is there functionality for stepwise regression in R?

A. Yes. The step function can be used to perform stepwise regression, which uses AIC as the basis for deciding which steps to take.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. How can we fit a model of Y against X without an intercept term?

2. What would a formula of Y ~ X1*X2 denote?

3. Which function can you use to extract the residuals from a model fit?

4. What help file would you refer to if you wanted to control the behavior of the plot function when producing diagnostic plots of a linear model?

5. What are the default contrast methods in R?

Answers

1. You would use Y ~ X – 1.

2. This denotes a model of Y against X1, X2 and the interaction of X1 and X2. Therefore, Y ~ X1*X2 is equivalent to Y ~ X1 + X2 + X1:X2.

3. You can use the resid function to extract residuals from a linear model.

4. If you are using the plot function with an object of class “lm” (which contains a linear model output), then the plot.lm help file would be the one to refer to.

5. The default contrast methods for an (unordered) factor variable in R are “treatment” contrasts, where the first level of the factor is taken as the baseline (as described in the ?contr.treatment help file).

Activities

1. Using the airquality data frame, fit a linear model of Ozone versus Wind.

2. Create detailed textual summaries and diagnostic plots to assess your model fit.

3. Use the update function to add Temp as an independent variable. Evaluate your new model and create an analysis of variance of these nested models.

4. Assess the inclusion of an interaction term (Wind:Temp) in your model.

5. Add Month as a categorical independent variable in your model.

Hour 17. Common R Models

What You’ll Learn in This Hour:

[image: Image] How to fit GLM Models

[image: Image] How to fit Nonlinear Models

[image: Image] How to fit Survival Models

[image: Image] How to fit Time Series Models

In Hour 16, “Introduction to R Models and Object Orientation,” we explored the ways in which we can fit and assess statistical models in R. To achieve this, we used a simple linear modeling approach using the lm function. However, as mentioned, R has the most rich analytic feature set in any technology today. In this hour, we’ll extend the ideas of the previous hour to other modeling approaches. Specifically, we’ll look at Generalized Linear Models, Nonlinear Models, Time Series Models, and Survival Models. We’ll finish this hour by looking at other modeling approaches provided by R, and see where to access further information on these model types.

Note: Theory versus Code

In this hour, we provide a high-level overview of the theory for each modeling approach and then show how the models can be implemented in R. Consequently, we will not spend too much time on the detailed theory, or on the assessment of model performance, beyond that which helps you understand how methods can be applied to model objects.

Generalized Linear Models

In Hour 16, we used the lm function to fit Linear Models to our data. The “linear” aspect, here, refers to the fitting of a dependent variable against a linear function of independent variables. Here’s an example:

Y = θ0 + θ1X1 + θ2X2 + ... + θNXN + ε

Here, our Dependent Variable (Y) is modeled against N Independent Variables (X1 to XN), with parameters (θ0 to θN) to be estimated by the model-fitting process. With the Linear Model, such as that fit by the lm function, we make a number of assumptions. In particular, we assume that the Dependent Variable (Y) is continuous and Normally distributed. Furthermore, we assume the errors (ε) are independent and identically distributed such that E(ε) = 0 and var (ε) = σ2. We also assume that the errors (ε) are Normally distributed with mean 0 and variance σ2 for the purposes of tests.

GLM Definition

The Linear Model, described here, can be considered a special case of the Generalized Linear Model (GLM) framework. The GLM approach allows us to fit models where

[image: Image] The Dependent Variable may not be continuous and Normally distributed.

[image: Image] The variance of the Dependent Variable may depend on the mean.

The GLM framework uses four elements to fit a model:

[image: Image] A probability distribution from the exponential family

[image: Image] A “linear predictor” to be modeled

[image: Image] A “link function” defining how the linear predictor is related to the Dependent Variable

[image: Image] A “variance function” explaining how the variance depends on the mean

In the GLM framework, the Dependent Variable (Y) is assumed to be generated from a specific distribution from the exponential family, a large range of distributions. A number of common distributions are listed in Table 17.1.

[image: Image]

TABLE 17.1 Selection of Distributions from the Exponential Family

The linear predictor is of the following form:

γ = θ0 + θ1X1 + θ2X2 + ... + θNXN

Here, the linear predictor (γ) is linearly related to N Independent Variables (X1 to XN), with parameters (θ0 to θN) to be estimated by the model-fitting process.

The link function (g) is of the format g(μ) = γ and specifies how the linear predictor (γ) is related to the mean of the Dependent Variable, E(Y) = μ.

The variance function (V) explains how the variance of the Dependent Variable var (Y), depends on its mean (μ), specified as var (Y) = ϕV(μ). The variance function is typically dictated by the selected probability distribution.

Fitting a GLM

We can use the glm function to fit a Generalized Linear Model (GLM) in R. The key inputs to the glm function are listed in Table 17.2.

[image: Image]

TABLE 17.2 Key Inputs to glm

The formula, data, and na.action inputs are similar to the arguments seen with the lm function. Here, the formula describes the linear predictor we wish to model. The family input describes the link and variance function to be applied by the GLM framework. The family argument is typically specified as a character string or function. Some common examples are seen in Table 17.3, with further detail found in the ?family help file.

[image: Image]

TABLE 17.3 GLM Family Inputs

Fitting Gaussian Models

In Hour 16, we used the lm function to fit Linear Models to our data. This is, perhaps, the simplest case of the GLM framework, where

[image: Image] The probability distribution is Gaussian.

[image: Image] The link function is the identity function (because the linear predictor describes the Dependent Variance directly, without transformation).

Thus, we can re-create a model from the previous chapter by instead using the glm function, as shown here:

Click here to view code image

> lmModel <- lm(mpg ~ wt * hp + factor(cyl), data = mtcars) # Model fit with lm
> lmModel

Call:
lm(formula = mpg ~ wt * hp + factor(cyl), data = mtcars)

Coefficients:
 (Intercept) wt hp factor(cyl)6 factor(cyl)8 wt:hp
 47.33733 -7.30634 -0.10333 -1.25907 -1.45434 0.02395

> glmModel <- glm(mpg ~ wt * hp + factor(cyl), data = mtcars) # Model fit with glm
> glmModel

Call: glm(formula = mpg ~ wt * hp + factor(cyl), data = mtcars)

Coefficients:
 (Intercept) wt hp factor(cyl)6 factor(cyl)8 wt:hp
 47.33733 -7.30634 -0.10333 -1.25907 -1.45434 0.02395

Degrees of Freedom: 31 Total (i.e. Null); 26 Residual
Null Deviance: 1126
Residual Deviance: 126.2 AIC: 148.7

We can see that the coefficients of both models match, as do the residuals produces from the models:

Click here to view code image

> all(signif(resid(lmModel), 10) == signif(resid(glmModel), 10))
[1] TRUE

Note: Default Family

Note here that “gaussian” is the default value of the family input, so we do not need to specify it here.

The glm Object

As with our earlier lm examples, the glm function returns an object that can be interrogated using a series of standard methods. A number of these standard methods can be seen in Table 17.4.

[image: Image]

TABLE 17.4 Common GLM Methods

Detailed Summary

We can see a detailed model summary using the summary function, as shown here:

Click here to view code image

> summary(glmModel)

Call:
glm(formula = mpg ~ wt * hp + factor(cyl), data = mtcars)

Deviance Residuals:
 Min 1Q Median 3Q Max
-3.5309 -1.6451 -0.4154 1.3838 4.4788

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 47.337329 4.679790 10.115 1.67e-10 ***
wt -7.306337 1.675258 -4.361 0.000181 ***
hp -0.103331 0.031907 -3.238 0.003274 **
factor(cyl)6 -1.259073 1.489594 -0.845 0.405685
factor(cyl)8 -1.454339 2.063696 -0.705 0.487246
wt:hp 0.023951 0.008966 2.671 0.012865 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 4.852119)

 Null deviance: 1126.05 on 31 degrees of freedom
Residual deviance: 126.16 on 26 degrees of freedom
AIC: 148.71

Number of Fisher Scoring iterations: 2

Diagnostic Plots

We can use the plot function to generate diagnostic plots of our model fit, as seen in Figure 17.1.

> par(mfrow = c(2, 2))
> plot(glmModel)

[image: Image]

FIGURE 17.1 Diagnostic plots for GLM

Functions such as coef, resid, and fitted can be used to extract model aspects, as seen in the following example. This includes the creation of a plot of residuals versus fitted values, as seen in Figure 17.2.

Click here to view code image

> coef(glmModel) # Model Coefficients
 (Intercept) wt hp factor(cyl)6 factor(cyl)8 wt:hp
 47.33732893 -7.30633653 -0.10333117 -1.25907265 -1.45433929 0.02395121
>
> res1 <- resid(glmModel) # Extract residuals
> fit1 <- fitted(glmModel) # Extract fitted values
> yRange <- c(-1, 1) * max(abs(res1)) # Calculate Y axis Range
> xRange <- range(fit1) # Calculate X axis Range
> xRange <- xRange + c(-1, 1) * diff(xRange)/5 # Extend X axis Range
>
> plot(fit1, res1, type = "n", # Empty plot with axes specified
+ ylim = yRange, xlim = xRange,
+ xlab = "Fitted Values", ylab = "Residuals",
+ main = "Residuals vs Fitted Values")
> text(fit1, res1, row.names(mtcars), cex=1.2) # Add text based on car names
> abline(h = 0, lty = 2) # Add horizontal reference line at 0

[image: Image]

FIGURE 17.2 Plot of residuals versus fitted values for GLM

Logistic Regression

Logistic regression, or Logit Regression, is part of the GLM framework and can be implemented with the glm function. We use logistic regression to model the probability of some event occurring, based on a “dichotomous” Dependent Variable (that is, a variable with two levels specifying whether an event occurred). To achieve this, we model the log odds, so our link function (g) relates the Dependent Variable (Y) to the linear predictor (γ) via the logit function. Thus, [image: Image]. The Variance Function (V) is V(μ) = μ(1 – μ).

Fitting a Logistic Regression

We fit a Logistic Regression using the glm function by specifying the binomial family. Our response variable must contain values 0 and 1 (or FALSE and TRUE). As a simple example, let’s model the am variable from the mtcars data based on wt. Here, we model the log-odds of the car having a manual transmission (am == 1) rather than an automatic transmission (am == 0), given the wt variable. The odds of interest can be calculated as the ratio of the probability of a manual transmission over that of an automatic one. Thus, log-odds are obtained through log transformation from the odds:

Click here to view code image

> lrModel <- glm(am ~ wt - 1, data = mtcars, family = binomial)
> summary(lrModel)

Call:
glm(formula = am ~ wt - 1, family = binomial, data = mtcars)

Deviance Residuals:
 Min 1Q Median 3Q Max
-0.9397 -0.8525 -0.7549 1.4023 1.5541

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
wt -0.2388 0.1166 -2.049 0.0405 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 44.361 on 32 degrees of freedom
Residual deviance: 39.717 on 31 degrees of freedom
AIC: 41.717

Number of Fisher Scoring iterations: 4

Note: Removing the Intercept

We’ve removed the intercept in this example to better understand the resulting model coefficients.

Caution: Modeling Factor Levels

If the Dependent Variable specified is a two-level factor variable, R will model the probability of the second level occurring (so the first level is set as 0, and the second level as 1). If our Dependent Variable is a factor with levels “0” and “1,” this works as expected; however, care should be taken if you are using an unordered factor where the levels are defined alphabetically. For example, in the following, we would be modeling the probability of Y being “Low” instead of “High” because of the default alphabetic ordering of the factor levels:

Click here to view code image

> lrDf <- data.frame(Y = sample(c("Low", "High"), 10, T), X = rpois(10, 3))
> lrObj <- glm(Y ~ X, data = lrDf, family = binomial) # Logistic Model
> levels(lrDf$Y) # Ordering of levels
[1] "High" "Low"

Predictions from a Logistic Regression

When we use the predict function, we are (by default) predicting on the scale of the linear predictors (that is, we’re not directly predicting the responses). As such, the prediction function for our logistic example will return the log-odds of a car having a manual transmission. If we wish to see the predictions on the scale of the response, we set the type input to "response", which instead returns the probabilities.

Click here to view code image

> newDf <- data.frame(wt = 1:5)
> round(predict(lrModel, newDf), 4) # Log Odds
 1 2 3 4 5
-0.2388 -0.4776 -0.7164 -0.9552 -1.1940
> round(predict(lrModel, newDf, type = "response"), 4) # Probability
 1 2 3 4 5
0.4406 0.3828 0.3282 0.2778 0.2325

Coefficients from a Logistic Regression

As with predictions, the coefficients from a Logistic Regression are reported on the scale of the linear predictor. If we want to interpret the estimated effects as relative odds ratios, we simply exponentiate our coefficients as follows:

Click here to view code image

> round(coef(lrModel), 3) # Log-Odds
 wt
-0.239
> round(exp(coef(lrModel)), 3) # Odds
 wt
0.788

So, for every single unit increase in Weight, the odds of the car being manual (am = 1) are exected to decrease by a factor of 21% (e.g. Weight = 1, Odds = 0.79; Weight = 2, Odds = 0.79^2 = 0.62).

Tip: Confidence Intervals for Coefficients

The confint function will provide confidence intervals for coefficients in a glm (and lm) model. For example, we could provide estimates and confidence intervals for model coefficients on the log-odds scale using the following:

Click here to view code image

> cbind(coef(lrModel), confint(lrModel))
Waiting for profiling to be done...
 [,1] [,2]
2.5 % -0.2388045 -0.48456168
97.5 % -0.2388045 -0.02093423

Poisson Regression

We can use Poisson regression, another example from the GLM framework, to model count data. This way, we can model the number of independent “events” to occur within a fixed “interval.” For a Poission regression, the link function (g) relates the Dependent Variable (Y) to the linear predictor (γ) via the log function, so g(μ) = log μ. The Variance Function (V) is V(μ) = μ.

Let’s fit a simple Poisson regression using glm. For this example, we’ll use the InsectSprays data frame, which has the counts of the number of insects based on the use of a variety of insecticides (see the ?InsectSprays help file for more information). Before we fit the model, let’s have a look at the data (seen here and in Figure 17.3):

Click here to view code image

> head(InsectSprays)
 count spray
1 10 A
2 7 A
3 20 A
4 14 A
5 14 A
6 12 A
> plot(factor(InsectSprays$spray), InsectSprays$count,
+ xlab = "Insecticide", ylab = "Insect Count",
+ main = "Insect Count by Insecticide")

[image: Image]

FIGURE 17.3 Plot of InsectSprays data

Let’s fit a simple Poisson model of count versus spray with no intercept term. We achieve this with glm by specifying poisson as the family input:

Click here to view code image

> prModel <- glm(count ~ factor(spray) - 1, data = InsectSprays, family = poisson)
> summary(prModel)

Call:
glm(formula = count ~ factor(spray) - 1, family = poisson, data = InsectSprays)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.3852 -0.8876 -0.1482 0.6063 2.6922

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
factor(spray)A 2.67415 0.07581 35.274 < 2e-16 ***
factor(spray)B 2.73003 0.07372 37.032 < 2e-16 ***
factor(spray)C 0.73397 0.20000 3.670 0.000243 ***
factor(spray)D 1.59263 0.13019 12.233 < 2e-16 ***
factor(spray)E 1.25276 0.15430 8.119 4.71e-16 ***
factor(spray)F 2.81341 0.07071 39.788 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 2264.808 on 72 degrees of freedom
Residual deviance: 98.329 on 66 degrees of freedom
AIC: 376.59

Number of Fisher Scoring iterations: 5

Note: Including the Intercept

Note that, by suppressing the intercept, all levels of the factor variable are estimated (as opposed to the standard use of contrasts, where the first level would be set as the baseline). If, instead, we included an intercept term, then spray “A” would be set as the baseline and other coefficients would be interpreted in relation to this level:

Click here to view code image

> summary(glm(count ~ factor(spray), data = InsectSprays, family = poisson))$coef
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.67414865 0.0758098 35.2744434 1.448048e-272
factor(spray)B 0.05588046 0.1057445 0.5284477 5.971887e-01
factor(spray)C -1.94017947 0.2138857 -9.0711059 1.178151e-19
factor(spray)D -1.08151786 0.1506528 -7.1788745 7.028761e-13
factor(spray)E -1.42138568 0.1719205 -8.2676928 1.365763e-16
factor(spray)F 0.13926207 0.1036683 1.3433422 1.791612e-01

We can exponentiate the coefficients to see them on the scale of the response (that is, counts). Let’s see the exponentiated coefficients next to the confidence intervals:

Click here to view code image

> lc <- cbind(Est = coef(prModel), confint(prModel))
Waiting for profiling to be done...
> round(exp(lc), 2)
 Est 2.5 % 97.5 %
factor(spray)A 14.50 12.45 16.76
factor(spray)B 15.33 13.22 17.66
factor(spray)C 2.08 1.37 3.01
factor(spray)D 4.92 3.77 6.28
factor(spray)E 3.50 2.55 4.67
factor(spray)F 16.67 14.46 19.08

GLM Extensions

So far we have looked at some Generalized Linear Model examples. Specifically, we have seen an example of a General Linear Model, a Logistic Regression, and a Poisson Regression. There are many related approaches and extensions that may be useful, including the following:

[image: Image] We have bypassed the fitting of Analysis of Variance models, which can be achieved with the aov function (see the ?aov help file for details).

[image: Image] There are many other distributions supported by glm, which can be seen in the ?family help file.

[image: Image] There are many extensions to the glm function itself, such as the glm.nb function from the MASS package, which includes the estimation of the additional parameter “theta.”

[image: Image] Extensions such as Generalized Estimating Equations (GEEs) allow for correlations between observations and are implemented in packages such as gee and geepack.

[image: Image] Mixed models allow for random effects in the linear predictor and can be fit using packages such as lme4, nlme, and glmm.

[image: Image] Generalized Additive Models (GAMs) allow the linear predictor to use smoothing functions applied to the Independent Variables. They are implemented in the gam package.

Nonlinear Models

The Generalized Linear Modeling approach allows us to fit a range of models where a Dependent Variable is related to a set of Independent Variables in a linear manner. However, R provides a range of functionality for fitting models where the function is a Nonlinear combination of parameters and depends on one or more Independent Variables.

Nonlinear Regression

The simplest form of Nonlinear model is a Nonlinear regression, which we can fit in R via least-squares estimation using the nls function. For Nonlinear regression,

Y = f(θ0, ..., M, X1,...,N) + ε

Here, our Dependent Variable (Y) is modeled against N Independent Variables (X1 to XN) and M parameters (θ0 to θM) to be estimated by the model-fitting process. We assume the errors (ε) are independent and identically distributed such that E(ε) = 0 and var(ε) = σ2. We also assume that the errors (ε) are Normally distributed with mean 0 and variance σ2 for the purposes of the tests.

Fitting a Nonlinear Regression

We can fit a Nonlinear model using least squares estimation with the nls function. The primary arguments accepted by nls can be seen in Table 17.5.

[image: Image]

TABLE 17.5 Key Inputs to the nls Function

When we fit a Nonlinear model, it is common to define the relationship in terms of a function that accepts independent variables and parameters and returns a response.

As a very simple example, just to illustrate the use of nls, let’s fit our earlier linear model (of mpg vs wt). First, we’ll define a function we can use in our model fit and illustrate the use of the function with a two possible sets of input parameters (seen in Figure 17.4):

Click here to view code image

> linFun <- function(wt, a, b) a + b * wt
> plot(mtcars$wt, mtcars$mpg,
+ main = "Miles per Gallon versus Weight",
+ xlab = "Weight", ylab = "Miles per Gallon")
> lines(1:6, linFun(1:6, a = 40, b = -6), col = "red")
> lines(1:6, linFun(1:6, a = 35, b = -4.5), col = "blue")
> legend("topright", paste("Model", 1:2), fill = c("red", "blue"))

[image: Image]

FIGURE 17.4 Plot of miles per gallon versus weight with two candidate models

If we want to fit this as a Nonlinear(!) model, we use the nls function as follows:

Click here to view code image

> nlsMpg <- nls(mpg ~ linFun(wt, a, b), data = mtcars)
Warning message:
In nls(mpg ~ linFun(wt, a, b), data = mtcars) :
 No starting values specified for some parameters.
Initializing 'a', 'b' to '1.'.
Consider specifying 'start' or using a selfStart model

Unfortunately, our model process fails because we have not provided starting values for the parameters (a and b). We can provide these as a named list or named vector of inputs. Based on the previous graph, let’s choose a = 40 and b = -5 as suitable starting parameters for our model:

Click here to view code image

> nlsMpg <- nls(mpg ~ linFun(wt, a, b), data = mtcars,
+ start = c(a = 40, b = -5))
> nlsMpg
Nonlinear regression model
 model: mpg ~ linFun(wt, a, b)
 data: mtcars
 a b
37.285 -5.344
 residual sum-of-squares: 278.3

Number of iterations to convergence: 1
Achieved convergence tolerance: 1.765e-09

As you can see, we have successfully fit our model and retrieved the parameters we would have achieved using a linear model (with the lm function):

Click here to view code image

> coef(nlsMpg) # Coefficients from the nls fit
 a b
37.285126 -5.344472
> coef(lm(mpg ~ wt, data = mtcars)) # Coefficients from the lm fit
(Intercept) wt
 37.285126 -5.344472

Let’s switch to using a more appropriate example.

Nonlinear Regression of the Puromycin Data

The Puromycin data frame in R contains data on the reaction velocity versus substrate concentration in an enzymatic reaction with Puromycin (an antibiotic). The data contains measurements involving untreated and treated cells. Let’s look at the data before we perform any model fitting, including a plot of the data in Figure 17.5:

Click here to view code image

> head(Puromycin) # A look at the data
 conc rate state
1 0.02 76 treated
2 0.02 47 treated
3 0.06 97 treated
4 0.06 107 treated
5 0.11 123 treated
6 0.11 139 treated
> plot(Puromycin$conc, Puromycin$rate, pch = 21, cex = 1.5, # Plot the data
+ xlab = "Instantaneous reaction rates (counts/min/min)",
+ ylab = "Substrate Concentrations (ppm)",
+ main = "Instantaneous reaction rates vs Substrate Concentrations",
+ bg = ifelse(Puromycin$state == "treated", "red", "blue"))
> legend("bottomright", c("Treated", "Untreated"), fill = c("red", "blue"))

[image: Image]

FIGURE 17.5 Plot of reaction rates versus concentration from the Puromycin data

Let’s attempt to fit a Michaelis-Menten model to this data, which is one of the best-known models of enzyme kinetics. Given the preceding plot, we’ll fit separate models for “Treated” and “Untreated.” First, we’ll define the function and look at some possible starting values, overlaid on the previous plot. The output can be seen as Figure 17.6.

Click here to view code image

> micmen <- function(conc, Vm, K) Vm * conc / (K + conc) # Define function
> X <- seq(0, 1.1, length = 25) # Set of Concentrations
>
> lines(X, micmen(xConcs, 200, 0.1), col = "pink") # Treated: Vm = 200, K = 0.1
> lines(X, micmen(xConcs, 210, 0.03), col = "pink") # Treated: Vm = 210, K = 0.03
> lines(X, micmen(xConcs, 210, 0.05), col = "red") # Treated: Vm = 210, K = 0.05
>
> lines(X, micmen(xConcs, 150, 0.05), col = "lightblue") # Untreated: Vm = 150, K = 0.05
> lines(X, micmen(xConcs, 170, 0.1), col = "lightblue") # Untreated: Vm = 170, K = 0.1
> lines(X, micmen(xConcs, 165, 0.05), col = "blue") # Untreated: Vm = 165, V = 0.05

[image: Image]

FIGURE 17.6 Plot of reaction rates versus concentration with candidate starting parameters

Based on this, let’s fit Nonlinear models to both the “Treated” and “Untreated” data:

Click here to view code image

> mmTreat <- nls(rate ~ micmen(conc, Vm, K), data = Puromycin,
+ start = c(Vm = 210, K = 0.05), subset = state == "treated")
> mmUntreat <- nls(rate ~ micmen(conc, Vm, K), data = Puromycin,
+ start = c(Vm = 165, K = 0.05), subset = state == "untreated")
> round(coef(mmTreat), 3) # Coefficients for Treated data
 Vm K
212.684 0.064
> round(coef(mmUntreat), 3) # Coefficients for Untreated data
 Vm K
160.280 0.048

Tip: Self-Starting Functions

In these examples, we need to specify starting values for our model fit. However, there are a number of “self-starting” functions in R that deduce starting values as part of the modeling process. These functions start with “SS” and can be listed using the following syntax:

Click here to view code image

> apropos("^SS")
 [1] "SSasymp" "SSasympOff" "SSasympOrig" "SSbiexp"
 [5] "SSD" "SSfol" "SSfpl" "SSgompertz"
 [9] "SSlogis" "SSmicmen" "SSweibull"

Notice the SSmicmen function, which is a “self-starting” function that implements the Michaelis-Menten model. As such, we could simplify the preceding call as follows:

Click here to view code image

> nls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin, subset = state == "treated")
Nonlinear regression model
 model: rate ~ SSmicmen(conc, Vm, K)
 data: Puromycin
 Vm K
212.68371 0.06412
 residual sum-of-squares: 1195

Number of iterations to convergence: 0
Achieved convergence tolerance: 1.93e-06

Making Predictions

We can use the predict function to make predictions from a Nonlinear model and then use the lines function to add the model lines to our plot. The result of this can be seen in Figure 17.7.

Click here to view code image

> plot(Puromycin$conc, Puromycin$rate, pch = 21, cex = 1.5,
+ xlab = "Instantaneous reaction rates (counts/min/min)",
+ ylab = "Substrate Concentrations (ppm)",
+ main = "Instantaneous reaction rates vs Substrate Concentrations",
+ bg = ifelse(Puromycin$state == "treated", "red", "blue"))
>
> predDf <- data.frame(conc = seq(0, 1.1, length = 25)) # Set of
 Concentrations
> lines(predDf$conc, predict(mmTreat, predDf), col = "red") # Model for Treated
 data
> lines(predDf$conc, predict(mmUntreat, predDf), col = "blue") # Model for
 Untreated data
> legend("bottomright", c("Treated", "Untreated"), fill = c("red", "blue"))

[image: Image]

FIGURE 17.7 Plot of reaction rates versus concentration with Nonlinear model fits

Extended Model

We could extend our example to fit a single model that includes both the treated and untreated data. At the same time, we could add a new parameter to explain the difference in Vm between the two states. The outcome can be seen in Figure 17.8.

Click here to view code image

> # Add new parameter to out function (vTrt)
> micmen <- function(conc, state, Vm, K, vTrt) {
+ newVm <- Vm + vTrt * (state == "treated")
+ newVm * conc / (K + conc) # Define function
+ }
> mmPuro <- nls(rate ~ micmen(conc, state, Vm, K, vTrt), data = Puromycin,
+ start = c(Vm = 160, K = 0.05, vTrt = 50))
> summary(mmPuro)

Formula: rate ~ micmen(conc, state, Vm, K, vTrt)

Parameters:
 Estimate Std. Error t value Pr(>|t|)
Vm 166.60396 5.80742 28.688 < 2e-16 ***
K 0.05797 0.00591 9.809 4.37e-09 ***
vTrt 42.02591 6.27214 6.700 1.61e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.59 on 20 degrees of freedom

Number of iterations to convergence: 5
Achieved convergence tolerance: 9.239e-06

>
> plot(Puromycin$conc, Puromycin$rate, pch = 21, cex = 1.5,
+ xlab = "Instantaneous reaction rates (counts/min/min)",
+ ylab = "Substrate Concentrations (ppm)",
+ main = "Instantaneous reaction rates vs Substrate Concentrations",
+ bg = ifelse(Puromycin$state == "treated", "red", "blue"))
> xConc = seq(0, 1.1, length = 25) # Set of Concentrations
> trtPred <- data.frame(conc = xConc, state = "treated")
> untrtPred <- data.frame(conc = xConc, state = "untreated")
>
> lines(predDf$conc, predict(mmPuro, trtPred), col = "red") # Model for Treated
 data
> lines(predDf$conc, predict(mmPuro, untrtPred), col = "blue") # Model for
 Untreated data
> legend("bottomright", c("Treated", "Untreated"), fill = c("red", "blue"))

[image: Image]

FIGURE 17.8 Plot of reaction rates versus concentration with Nonlinear model fit

If we extract the coefficients from our model, we can see the highly significant vTrt variable:

Click here to view code image

> round(cbind(Est = coef(mmPuro), confint(mmPuro)), 3)
Waiting for profiling to be done...
 Est 2.5% 97.5%
Vm 166.604 154.617 179.252
K 0.058 0.046 0.072
vTrt 42.026 28.957 55.199

Nonlinear Model Extensions

The previous section contained a very simple introduction to the Nonlinear model-fitting features of R. There are a number of extensions, including the following:

[image: Image] The gnls function, which additionally allows for the correlated errors. For more information, see the ?gnls help file.

[image: Image] The gnm package, which fits Generalized Nonlinear models (analogous to the glm function for Nonlinear fits).

[image: Image] The nlme package, which provides functionality for fitting Nonlinear Mixed Effects models.

Survival Analysis

Earlier in this hour, you saw how logistic regression can be used to model the probably of an event occurring. Survival analysis, instead, allows us to model the time until an event happens. For example, Survival analysis is used heavily in the field of medicine to understand the time until an event occurs, such as failure of an organ following transplant or time until death for someone with a terminal disease. We are interested in how a set of covariates may influence the time to event.

The ovarian Data Frame

Throughout this section we’ll use a data frame called ovarian, which contains data from a randomized trial comparing two treatments for ovarian cancer. This data frame can be found in the survival package:

Click here to view code image

> library(survival)
> head(ovarian)
 futime fustat age resid.ds rx ecog.ps
1 59 1 72.3315 2 1 1
2 115 1 74.4932 2 1 1
3 156 1 66.4658 2 1 2
4 421 0 53.3644 2 2 1
5 431 1 50.3397 2 1 1
6 448 0 56.4301 1 1 2

The columns from the ovarian data frame are described in Table 17.6.

[image: Image]

TABLE 17.6 Columns of the ovarian Data Frame

Censoring

When we are analyzing the time until an event occurs, a particular challenge is that the data may be “censored.” In this case, the event has not yet occurred, so we record the last times at which we know the events had not yet occurred and flag these observations. Consider if we wanted to understand the time an organ survives following a transplant. There are three possible outcomes:

[image: Image] The organ is still functioning, so the failure of this organ has not yet occurred.

[image: Image] The patient died as a result of something other than the organ failing.

[image: Image] The organ failed, so the “event” has occurred.

In the first two situations, the time is “censored” as we know the time until the “event” had not occurred, but cannot observe the time until the “event” itself.

In the case of our ovarian data frame, the time and “censor” flag are recorded in the futime and fustat variables.

Click here to view code image

> aggregate(ovarian$futime, list(State = ovarian$fustat),
+ function(x) c(Min = min(x), Median = median(x), Max = max(x)))
 State x.Min x.Median x.Max
1 0 377.0 786.5 1227.0
2 1 59.0 359.0 638.0

Here, the censored times are those with State 0. We can create an object that combines these variables into a single object with the Surv function, as follows:

Click here to view code image

> ovSurv <- Surv(ovarian$futime, event = ovarian$fustat)
> ovSurv
[1] 59 115 156 421+ 431 448+ 464 475 477+ 563 638 744+ 769+ 770+
[15] 803+ 855+ 1040+ 1106+ 1129+ 1206+ 1227+ 268 329 353 365 377+

Note the + suffix for censored values (that is, observations where the event has not yet occurred).

Estimating the Survival Function

Much of Survival analysis is concerned with modeling and estimating the “Survival Function” (S), which provides the probability that an individual will survive a certain time (t). Formally,

S(t) = P(T > t) for times T ≥ 0

Consider the graphical representation of an example of a Survival Function shown in Figure 17.9.

[image: Image]

FIGURE 17.9 Example of a Survival Function

Note that the probability of surviving past time t = 40 in Figure 17.9 is 39%. There are other characteristics of a Survival Function as t ranges from 0 to ∞, such as the following:

[image: Image] The Survival Function is decreasing (or at least is non-increasing).

[image: Image] Typically, the probability of surviving past time 0 is 1, so S(0) = 1.

[image: Image] The probability of surviving at time ∞ is 0, so S(∞) = 0.

We can estimate the Survival Function using either non-parametric or parametric approaches.

Kaplan-Meier Estimate

The “Kaplan-Meier” estimator (or “product limit” estimator) is the most popular non-parametric method statistic used to estimate the Survival Function. We can produce a Kaplan-Meier estimate in R using the survfit function. The first argument to the survfit function should be a formula with a survival object (such as the one we produced earlier) on its left hands side. To estimate a single Survival Function, we specify “1” on the right side, as follows:

Click here to view code image

> kmOv <- survfit(ovSurv ~ 1)
> kmOv
Call: survfit(formula = ovSurv ~ 1)

records n.max n.start events median 0.95LCL 0.95UCL
 26 26 26 12 638 464 NA

The survfit function returns an object of class “survfit,” which has a few methods available. The summary method returns the estimated Survival Function along with confidence intervals:

Click here to view code image

> summary(kmOv)
Call: survfit(formula = ovSurv ~ 1)

 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 59 26 1 0.962 0.0377 0.890 1.000
 115 25 1 0.923 0.0523 0.826 1.000
 156 24 1 0.885 0.0627 0.770 1.000
 268 23 1 0.846 0.0708 0.718 0.997
 329 22 1 0.808 0.0773 0.670 0.974
 353 21 1 0.769 0.0826 0.623 0.949
 365 20 1 0.731 0.0870 0.579 0.923
 431 17 1 0.688 0.0919 0.529 0.894
 464 15 1 0.642 0.0965 0.478 0.862
 475 14 1 0.596 0.0999 0.429 0.828
 563 12 1 0.546 0.1032 0.377 0.791
 638 11 1 0.497 0.1051 0.328 0.752

The plot method allows us to produce a graph of the Kaplan-Meier estimate, seen in Figure 17.10.

Click here to view code image

> plot(kmOv, col = "blue",
+ main = "Kaplan-Meier Plot of Ovarian Data",
+ xlab = "Time (t)", ylab = "Survival Function S(t)")

[image: Image]

FIGURE 17.10 Kaplan-Meier plot of ovarian data

Parametric Methods

We can estimate the Survival Function using parametric methods with probability distributions such as Weibull, Exponential, and Log-Normal. In this case, we use maximum likelihood estimation to estimate the (unknown) parameters of the selected distribution. Let’s use the Weibull distribution to model the Survival, such that S(t) = exp (– α * tγ). We can fit a parametric survival model using the survreg function, which has a dist input for specifying the distribution:

Click here to view code image

> wbOv <- survreg(ovSurv ~ 1, dist = "weibull")
> summary(wbOv)

Call:
survreg(formula = ovSurv ~ 1, dist = "weibull")
 Value Std. Error z p
(Intercept) 7.111 0.293 24.292 2.36e-130
Log(scale) -0.103 0.254 -0.405 6.86e-01

Scale= 0.902

Weibull distribution
Loglik(model)= -98 Loglik(intercept only)= -98
Number of Newton-Raphson Iterations: 5
n= 26

If we want to plot the line, there are two possible options:

[image: Image] Manually transform the parameters into a Weibull curve

[image: Image] Use the predict function

Let’s use the predict function, which allows us to produce a number of predictions from a “survfit” object. We can specify “quantile” predictions using type = "quantile", using the p argument to specify the quantiles for which to provide predictions. Because we have no covariates, we need to provide a “dummy” dataset for the newdata argument as follows:

Click here to view code image

> pct <- seq(.0,.99,by=.01) # Quantiles at which to predict
> dummyDf <- data.frame(1) # Dummy dataset
> predOv <- predict(wbOv, newdata = dummyDf, # Make Quantile predictions
+ type = "quantile", p = pct)
> head(predOv)
[1] 0.00000 19.28838 36.22041 52.46544 68.33554 83.97347

This returns a set of predicted time points for the specified quantiles. We can overlay these predictions onto our Kaplan-Meier plot, the output of which can be seen in Figure 17.11.

Click here to view code image

> plot(kmOv, col = "blue",
+ main = "Kaplan-Meier Plot of Ovarian Data",
+ xlab = "Time (t)", ylab = "Survival Function S(t)")
> lines(predOv, 1 - pct, col = "red")
> legend("bottomleft", c("Kaplan-Meier", "Weibull"), fill = c("blue", "red"))

[image: Image]

FIGURE 17.11 Survival plot of ovarian data with Kaplan-Meier and Weibull

Adding Covariates

We can easily add independent variables in the parametric model fit by specifying them on the right side of our formula. Let’s model survival against age using our ovarian data:

Click here to view code image

> wbOv2 <- survreg(ovSurv ~ age, dist = "weibull", data = ovarian)
> summary(wbOv2)

Call:
survreg(formula = ovSurv ~ age, data = ovarian, dist = "weibull")
 Value Std. Error z p
(Intercept) 12.3970 1.4821 8.36 6.05e-17
age -0.0962 0.0237 -4.06 4.88e-05
Log(scale) -0.4919 0.2304 -2.14 3.27e-02

Scale= 0.611

Weibull distribution
Loglik(model)= -90 Loglik(intercept only)= -98
 Chisq= 15.91 on 1 degrees of freedom, p= 6.7e-05
Number of Newton-Raphson Iterations: 5
n= 26

Let’s again use the predict function to create estimated Survival curves from different age groups. The output can be seen in Figure 17.12.

Click here to view code image

> ageDf <- data.frame(age = 10*4:6) # Set of ages for predictions
> theCols <- c("red", "blue", "green") # Colors to use
> predOv <- predict(wbOv2, newdata = ageDf, # Make Quantile predictions
+ type = "quantile", p = pct)
> matplot(t(predOv), 1-pct, xlim = c(0, 1200), # Matrix plot of predicted survival
+ type = "l", lty = 1, col = theCols,
+ main = "Parametric Estimation of Survival Curve by Age",
+ xlab = "Time (t)", ylab = "Survival Function S(t)")
> legend("bottomleft", paste("Age =", ageDf$age), fill = theCols)

[image: Image]

FIGURE 17.12 Estimated survival by age

Proportional Hazards

Proportional Hazards regression (or “Cox” regression) provides an excellent framework for modeling time to event data when we want to test many independent variables. In particular, Proportional Hazards regression provides a framework for understanding how differing levels of covariates increase the “risk” on a subject.

Proportional Hazards regression focuses on models of the “Hazard” Function (h), which can be considered as the probability of an event during an infinitesimally small period of time, and thus represents the “risk” of an event occurring at a specific point in time given that it hasn’t happened up to that point.

When we introduce Independent Variables into a Proportional Hazards regression, we can consider the Survival Model to have two components:

[image: Image] An underlying baseline Hazard Function describing the “risk” over time at baseline levels of covariates

[image: Image] The effect parameters describing how the Hazard varies due to other (non-baseline) levels of covariates

For a Proportional Hazards model to be suitable, the “Proportional Hazards condition” must hold, which states that covariates are related to the hazard in a multiplicative sense. We’ll check this assumption later.

To fit a Proportional Hazards model in R, we use the coxph function, and again we define the model to fit as a formula with a survival object on the left side:

Click here to view code image

> coxModel <- coxph(ovSurv ~ age + factor(rx), data = ovarian)
> summary(coxModel)
Call:
coxph(formula = ovSurv ~ age + factor(rx), data = ovarian)

 n= 26, number of events= 12

 coef exp(coef) se(coef) z Pr(>|z|)
age 0.14733 1.15873 0.04615 3.193 0.00141 **
factor(rx)2 -0.80397 0.44755 0.63205 -1.272 0.20337

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 exp(coef) exp(-coef) lower .95 upper .95
age 1.1587 0.863 1.0585 1.268
factor(rx)2 0.4475 2.234 0.1297 1.545

Concordance= 0.798 (se = 0.091)
Rsquare= 0.457 (max possible= 0.932)
Likelihood ratio test= 15.89 on 2 df, p=0.0003551
Wald test = 13.47 on 2 df, p=0.00119
Score (logrank) test = 18.56 on 2 df, p=9.341e-05

The age variable is significant in our model, but not the rx variable. Because the model is based on the hazard, the coefficients of the model can be interpreted in relation to the baseline level for each covariate. In fact, the coefficients returned are the log-hazards relative to the baseline, so the exponentiated coefficients (also reported) are the relative risk of change.

[image: Image] For factor variables, the exp(coef) values are the risks relative to the baseline level. So, in our example, the risk in treatment group 2 is approximately 45% of that of group 1.

[image: Image] For continuous variables, the exp(coef) values are the risks relative to a unit change in the covariate. So, in our example, the increased risk for a subject 5 years older than another is exp(5 * 0.147) = 2.085.

Tip: Testing the Proportional Hazards Assumption

We can use the cox.zph function to test the assumption of Proportional Hazards. We look for small p-values as an indication that the proportionality assumption is not met.

Click here to view code image

> cox.zph(coxModel)
 rho chisq p
age -0.0918 0.113 0.736
factor(rx)2 0.2072 0.518 0.472
GLOBAL NA 0.729 0.695

So, it looks like the assumption holds for our model.

Plotting a Proportional Hazards Model

The plot and survfit functions can be used together to produce survival plots on the basis of a Proportional Hazards model. First of all, we call survfit with our model object. Note that we are including only the significant age variable in this model:

Click here to view code image

> coxModel <- coxph(ovSurv ~ age, data = ovarian)
> coxSurv <- survfit(coxModel)
> summary(coxSurv)
Call: survfit(formula = coxModel)

 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 59 26 1 0.988 0.0142 0.961 1.000
 115 25 1 0.974 0.0244 0.927 1.000
 156 24 1 0.955 0.0364 0.886 1.000
 268 23 1 0.933 0.0482 0.844 1.000
 329 22 1 0.897 0.0621 0.783 1.000
 353 21 1 0.862 0.0724 0.732 1.000
 365 20 1 0.824 0.0819 0.678 1.000
 431 17 1 0.775 0.0934 0.612 0.982
 464 15 1 0.724 0.1032 0.548 0.958
 475 14 1 0.673 0.1112 0.487 0.931
 563 12 1 0.596 0.1226 0.398 0.892
 638 11 1 0.520 0.1287 0.321 0.845

Now we can use the plot function to produce our survival curves, as seen in Figure 17.13.

Click here to view code image

> plot(coxSurv, col = "blue", xlab = "Time (t)",
+ ylab = "Survival Function S(t)",
+ main = "Proportional Hazards Model")

[image: Image]

FIGURE 17.13 Estimated survival using Proportional Hazards model

We can provide a new data frame to the survfit function if we want to produce Survival curves for different sets of covariates. For example, let’s produce different Survival curves for the different age values as we did for the parametric model fits. We’ll overlay the original parametric model fits for these age values using dashed lines for comparison. The output can be seen in Figure 17.14.

Click here to view code image

> coxSurv <- survfit(coxModel, newdata = ageDf) # Survival curves for age
 values
> plot(coxSurv, col = theCols, xlab = "Time (t)", # Plot the survival curves
+ ylab = "Survival Function S(t)",
+ main = "Proportional Hazards Model")
> matlines(t(predOv), 1-pct, # Add parametric curves
+ type = "l", lty = 2, col = theCols)
> legend("bottomleft", paste("Age =", ageDf$age), fill = theCols)

[image: Image]

FIGURE 17.14 Estimated survival for different ages using Proportional Hazards model

Survival Model Extensions

R provides a rich set of capabilities for the analysis of time to event data. The best source of information is the Survival Analysis Task View (https://cran.r-project.org/web/views/Survival.html), which lists over 200 packages that are related the study of survival data.

Time Series Analysis

R is used heavily in areas such as quantitative finance and econometrics; unsurprisingly, it provides a wide range of time series analysis functionality. Although a number of packages provide time series analysis capabilities, we will focus here on the functions loaded in the basic stats package that is loaded when we start R. In this section, we will see

[image: Image] How to create and manage time series objects

[image: Image] How to perform simple decomposition and smoothing

[image: Image] How to fit an ARIMA model

Time Series Objects

We can create a time series object in R with the ts function. Once created, these objects can be used in a range of analytic and graphical routines. The ts function accepts a vector or matrix containing the data.

As an example, the website boxofficemojo.com reports daily gross income for film releases. One of the highest grossing films of 2015 was Avengers: Age of Ultron, which grossed over $425m in its first month (May 2015). The daily takings during that first month are as follows:

Click here to view code image

> ultron <- c(84.4, 56.5, 50.3, 13.2, 13.1, 9.4, 8.6, 21.2, 33.8, 22.7,
+ 5.4, 6, 4.3, 4, 10, 17.2, 11.6, 3.4, 3, 2.3, 2.4, 5.4, 8.3, 8, 6.5,
+ 1.9, 1.4, 1.4, 2.9, 4.9, 3.6)

If we wanted to create a time series of this data, we could use the ts function. We often specify time series elements such as the “start” date/time of the series, but for this example we’ll simply specify the data and the frequency as 7 (that is, weekly data).

Click here to view code image

> tsUltron <- ts(ultron, frequency = 7)
> tsUltron
Time Series:
Start = c(1, 1)
End = c(5, 3)
Frequency = 7
 [1] 84.4 56.5 50.3 13.2 13.1 9.4 8.6 21.2 33.8 22.7 5.4 6.0 4.3
[14] 4.0 10.0 17.2 11.6 3.4 3.0 2.3 2.4 5.4 8.3 8.0 6.5 1.9
[27] 1.4 1.4 2.9 4.9 3.6

Once we have a time series object created, we can use the plot function to create a simple time series plot, as shown in Figure 17.15.

Click here to view code image

> plot(tsUltron, main = "Daily Box Office Daily for Avengers: Age of Ultron",
+ xlab = "Week during May 2015", ylab = "Daily Gross ($m)")
> points(tsUltron, pch = 21, bg = "red")

[image: Image]

FIGURE 17.15 Time series plot of daily grossing of Avengers: Age of Ultron

If, as in this example, the data is not linear, we may want to apply a transformation. For example, let’s apply a log transformation to our example, which can be seen in Figure 17.16.

Click here to view code image

> plot(log(tsUltron), main = "Daily Box Office Daily for Avengers: Age of Ultron",
+ xlab = "Week during May 2015", ylab = "Log Daily Gross ($m)")
> points(log(tsUltron), pch = 21, bg = "red")

[image: Image]

FIGURE 17.16 Time series plot of (logged) daily grossing of Avengers: Age of Ultron

Tip: Selecting a Subset of the Time Series

If we want to subset a time series, we can use the window function. To specify the subset, we need to provide a start and/or end relative to the frequency. So, to select only data for the first week, we request the series up to the seventh element of the first week, as follows:

Click here to view code image

> window(tsUltron, end = c(1, 7))
Time Series:
Start = c(1, 1)
End = c(1, 7)
Frequency = 7
[1] 84.4 56.5 50.3 13.2 13.1 9.4 8.6

Decomposing Time Series

A common task in the field of time series analysis is decomposition, where we attempt to separate a time series into components. This could include

[image: Image] A seasonal element (for example, weekly, monthly, or annually)

[image: Image] An overall trend

[image: Image] Remaining data not fully explained by the first two elements

We can perform a simple seasonal decomposition in R using the stl function, which uses loess smoothers to decompose a time series into seasonal, trend, and irregular components. Let’s use the stl function to perform a simple decomposition of our Age of Ultron data, which we can graph directly using the plot function. The resulting graphic can be seen in Figure 17.17.

Click here to view code image

> stlUltron <- stl(log(tsUltron), s.window = "periodic")
> plot(stlUltron, main = "Decomposition of the Ultron Time Series")

[image: Image]

FIGURE 17.17 Decomposition of (logged) daily grossing of Avengers: Age of Ultron

The output from the stl function is an object of class “stl.” It includes a time.series element we can query or plot directly:

Click here to view code image

> window(stlUltron$time.series, end = c(1, 7))
Time Series:
Start = c(1, 1)
End = c(1, 7)
Frequency = 7
 seasonal trend remainder
1.000000 0.4330473 3.598952 0.403568367
1.142857 0.8490648 3.441404 -0.256228394
1.285714 0.7104135 3.283857 -0.076264998
1.428571 -0.2510144 3.131462 -0.300230859
1.571429 -0.4588637 2.979068 0.052408283
1.714286 -0.6741455 2.868556 0.046299129
1.857143 -0.6085021 2.758045 0.002219731

We can also use this to remove components from our time series. For example, we could remove the seasonal element from our time series and then plot the remaining data, as seen in Figure 17.18.

Click here to view code image

> seUltron <- log(tsUltron) - stlUltron$time.series[,"seasonal"]
> plot(seUltron,
+ main = "Logged Daily Box Office Gross\n(Weekly seasonality removed)",
+ xlab = "Weeks in May 2015", ylab = "Logged Daily Box Office Gross ($m)")

[image: Image]

FIGURE 17.18 Logged daily grossing of Avengers: Age of Ultron with seasonality removed

Note: Outlying Value

The large spike in this time series was May 25, 2015, which was Memorial Day, so figures were higher than expected for a Monday.

Smoothing

We may want to perform some smoothing on our time series to provide short-term forecasts. Exponential smoothing techniques apply exponentially, decreasing weights to less recent observations, and therefore can be a more appropriate approach than using moving averages. However, simple exponential smoothing can only be used for data without systematic trend or seasonality.

The Holt-Winters method can be applied to time series, which contain both trend and seasonality. This approach can be performed using the HoltWinters function in R. The primary inputs to the HoltWinters function are described in Table 17.7.

[image: Image]

TABLE 17.7 Key Inputs to the HoltWinters Function

Let’s use the Holt-Winters method with our Age of Ultron data. The results are visualized in Figure 17.19.

Click here to view code image

> hwUltron <- HoltWinters(log(tsUltron))
> plot(hwUltron)

[image: Image]

FIGURE 17.19 Holt-Winters filtering of the logged daily box office takings for Avengers: Age of Ultron

Once we have used the Holt-Winters method, we can make predictions using the predict function, which accepts the argument n.ahead to specify the number of predictions to make. We can also specify the argument prediction.interval to request for (95% by default) prediction intervals. Because we have the actual values, we have overlaid these too, as shown in Figure 17.20.

Click here to view code image

> predUltron <- predict(hwUltron, n.ahead = 7, # Predict 7 days with
 H-W method
+ prediction.interval = TRUE)
> plot(hwUltron, predUltron, col = "red", # Plot data and
 predictions
+ col.predicted = "blue", col.intervals = "blue",
+ lty.intervals = 2)
> actuals <- c(1.08, 1.26, .97, .95, 1.84, 2.66, 1.84) # Actual values
> tsActuals <- ts(actuals, frequency = 7, start = c(5, 4)) # Create time series
> lines(log(tsActuals), col = "darkgreen") # Add line
> points(log(tsActuals), pch = 4, col = "darkgreen") # Add points
> legend("bottomleft", c("Original Data", "Holt-Winters Filter", "Actual Data"),
+ fill = c("red", "blue", "grey"))

[image: Image]

FIGURE 17.20 Holt-Winters predictions versus actual logged daily box office takings for Avengers: Age of Ultron

Autocorrelations

Although smoothing approaches can provides us with a mechanism for generating short-term forecasts, to understand the mechanisms for a time series we must first investigate its autocorrelation. That is, the cross-correlation of a time series with lagged values of the same series. We can create a plot of the Autocorrelation Function (a “correlogram”) using the acf function in R. We can also create Partial Autocorrelation plots using the pacf function. Both of these plots can be seen in Figure 17.21.

Click here to view code image

> par(mfrow = c(1, 2))
> acf(log(tsUltron), main = "Autocorrelation")
> pacf(log(tsUltron), main = "Partial Autocorrelation")

[image: Image]

FIGURE 17.21 Correlograms of logged daily box office takings for Avengers: Age of Ultron

Tip: The forecast Package

The forecast package provides excellent resources for time series analysis. Among other things, it provides enhanced versions of acf and pacf called Acf and Pacf.

Fitting ARIMA Models

An Autoregressive Integrated Moving Average (or “ARIMA”) Model can be fit to understand and predict time series data. The ARIMA Model consists of three components:

[image: Image] AR: Autoregressive

[image: Image] I: Integrated (differencing that can be applied)

[image: Image] MA: Moving Average

We can fit an ARIMA Model in R using the arima function, which accepts a time series object. We specify the order of the time series using a vector of length three (p, d, q), which specifies

[image: Image] p, the AR order

[image: Image] d, the degree of differencing

[image: Image] q, the MA order

Based on these autocorrelations, let’s fit an ARIMA (1, 0, 1) Model to our time series:

Click here to view code image

> arimaUltron <- arima(log(tsUltron), order = c(1, 0, 1))
> arimaUltron

Call:
arima(x = log(tsUltron), order = c(1, 0, 1))

Coefficients:
 ar1 ma1 intercept
 0.7627 0.3782 2.1785
s.e. 0.1428 0.1883 0.5470

sigma^2 estimated as 0.3278: log likelihood = -27.46, aic = 62.93

We can see a visual representation of the time series fit using the tsdiag function, which produces diagnostic plots for time series fits. Specifically, it will plot standardized residuals, an autocorrelation of the residuals, and p-values from a Portmanteau test. This output is shown in Figure 17.22.

> tsdiag(arimaUltron)

[image: Image]

FIGURE 17.22 Diagnostic plots from ARIMA (1, 0, 1) fit

The residuals still exhibit signs of seasonality, which is understandable since we are fitting an ARIMA Model to a time series with seasonality. At this point, we could de-trend the time series and remove the seasonal trend (for example, using the stl function) and then refit the model. Alternatively, we could fit a seasonal ARIMA Model using the seasonal argument to arima, which also accepts a vector of length 3 (specifying the autoregressive, differencing, and moving average components of the seasonal element to the time series). Let’s fit a seasonal ARIMA model to our data, as seen in Figure 17.23.

Click here to view code image

> sarimaUltron <- arima(log(tsUltron), order = c(1, 0, 1),
+ seasonal = list(order = c(1, 0, 1)))
> tsdiag(sarimaUltron)

[image: Image]

FIGURE 17.23 Diagnostic plots from seasonal ARIMA (1, 0, 1) fit

Predicting from ARIMA Models

We can predict values from an ARIMA Model using the predict function, which accepts an n.ahead input. Let’s see our model predictions plotted against the real observations. The output can be seen in Figure 17.24.

Click here to view code image

> predUltron <- predict(sarimaUltron, n.ahead = 7, # Predict next 7 days with
 ARIMA model
+ prediction.interval = TRUE)
> plot(log(tsUltron), type = "n",
+ main = "Predictions from ARIMA(1,0,1) Model",
+ ylab = "Logged Daily Box Office Takings",
+ xlab = "Day", xlim = c(1, 6.3), ylim = c(-1, 5))
> lines(log(tsUltron), col = "red") # Add original data
> lines(predUltron$pred, col = "blue") # Add predictions
> lines(predUltron$pred - 2 * predUltron$se, col = "blue", lty = 2) # Add errors
> lines(predUltron$pred + 2 * predUltron$se, col = "blue", lty = 2) # Add errors
> lines(log(tsActuals), col = "darkgreen") # Add line
> points(log(tsActuals), pch = 4, col = "darkgreen") # Add line
>
> legend("bottomleft",
+ c("Original Data", "ARIMA Predictions", "Actual Data"),
+ fill = c("red", "blue", "grey"))

[image: Image]

FIGURE 17.24 Time series predictions from ARIMA Model

Tip: Covariates

We can add covariates to an ARIMA Model using the xreg input to the arima function.

Note: Time Series Analysis Extensions

The Time Series Task View, found at https://cran.r-project.org/web/views/TimeSeries.html, lists a wider range of packages that allow the user to perform a range of time series tasks and analyses.

Summary

This hour covered a range of modeling approaches that can be used to study different data types. Specifically, we saw how the glm function allows us to fit Generalized Linear Models, looked at the nls function for Nonlinear Model Nonlinearfits, used the survival package to model time-to-event data, and covered a few of the time series analysis capabilities of R. The capabilities seen in this and the previous hour demonstrate only a small portion of the analytic functionality provided by R.

Q&A

Q. Is there a way of fitting Generalized Linear Models on very large data sizes?

A. Although limitations exist, the biglm package provides the function bigglm, which allows out-of-memory Generalized Linear Model fitting.

Q. Can I create my own “self-starting” functions?

A. Yes, the selfStart function can be used to define a self-starting function that can then be used in a function such as nls.

Q. How do I define left or interval censored data?

A. The Surv function allows you to specify left, right, or interval censored data using the time, time2, and type arguments.

Q. Does R provide ARCH time series modeling capabilities?

A. Yes, there are a number of packages (such as fGarch) that implement (G)ARCH models.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. What argument in glm controls the probability distribution to use?

2. How would you fit a logistic regression?

3. Under what condition would you not have to specify starting values in an nls fit?

4. In which package would you find the coxph function?

5. How would you fit a “seasonal ARIMA” model?

Answers

1. The family argument.

2. You specify a dichotomous response variable and select “binomial” as the distribution.

3. When you are using a “self-starting” modeling function.

4. In the survival package.

5. Using the arima function, specifying the order and seasonal inputs.

Activities

1. Using the mtcars data frame, fit a logistic model of vs versus other variables in the data.

2. For a (Nonlinear) logistic function of circumference versus age from the Orange data frame, either specify the model function directly or use the SSlogis function.

3. Fit a Cox Proportional Hazards regression model to the lung data frame from the survival package.

4. Fit an ARIMA model of the LakeHuron time series.

Hour 18. Code Efficiency

What You’ll Learn in This Hour:

[image: Image] How to profile code to find the bottlenecks

[image: Image] How to vectorize code

[image: Image] What initialization is and how it makes code more efficient

[image: Image] How to handle memory usage

[image: Image] The basics of Rcpp

Up to this point we have thought a lot about the data analysis workflow in R—how we can read in data, analyze the data, and produce professional graphics—but we have not really thought about the impact of what we are doing and how long it will take to run the code in practice. Although we have already looked at packages such as dplyr and data.table that will help us to make working with data more efficient, we should do more to ensure our code is performant and robust. In this chapter, we are going to look at some of the techniques we can use to improve the efficiency and, importantly, the professionalism of our R code.

Determining Efficiency

Before we dive in and start spending large amounts of time making our code more efficient, it’s worth thinking about where we should start on improving our code and how we know if a change has made a difference. We will start by looking at ways in which we can profile code to find out where the slow points are and then look at functions we can use to see how long it takes to run our code.

Tip: Making Accurate Changes

As well as making updates that ensure that our code runs faster, we also need to ensure that any changes do not impact the accuracy. Although it would be great to have a function that is 1,000 times faster, it is no use if this adversely changes what the function does. At a basic level, we can simply compare the output of different variants of the function. For more professional and robust code, we can use a unit test framework such as testthat to continuously check our changes. See Hour 20, “Advanced Package Building,” for more information on unit testing.

Profiling Code

Profiling allows us to determine where the bottlenecks are in code, what is actually slowing us down. Profiling allows us to see which lines or functions we are spending the most time running. The benefit of this is that by knowing where our code is slowest, we can spend our time on increasing the efficiency of the right components of our code. After all, there is little point in increasing the efficiency of a line of code that is only a tiny percentage of the overall running time. You may as well put your time and effort into making changes in the right place.

A number of different packages are available for profiling R code, but here we will use the Rprof function available in base R. When we use this function, we run our code between start and close instances. This will then check at a specified interval what function is being run by our code. The output is returned to file, and we can then analyze it to determine where our code was spending most of its time. In more recent versions of R, it is possible to return this output at the line level so that we can see which lines of code we spent the most time on.

As an example, we will profile the function in Listing 18.1 shown in the next section. Because this function will run quite quickly, we will run the function a number of times using replicate.

Click here to view code image

> tmp <- tempfile()
> Rprof(filename = tmp, line.profiling = TRUE)
> replicate(100, f1(100))
> Rprof(NULL)
> summaryRprof(filename = tmp, lines = "show")
$by.line
 self.time self.pct total.time total.pct
#9 0.06 100 0.06 100

In this example, we have included line profiling, which makes it much easier to see which line the most time was spent on. In this particular case, the output returns only one line (line 9), which would indicate that the most time is spent performing the ifelse inside of the for loop (see Listing 18.1 in the next section). This suggests that this is the component we should focus on trying to improve. Note that the specific output you see in this case will depend on exactly how long the code takes to run, which will depend upon the machine used and the operating system, among other things.

Benchmarking

If we are going to start making changes to code, we want to know that it is making a difference and actually speeding up our functions. Benchmarking tools let us time the running of code, typically at the nanosecond level. Just as with profiling, there are a number of ways of doing this, but here we will use the microbenchmark package, which is widely used for code analysis. Using the microbenchmark function, we can pass any number of functions to be run. Each will be run a specified number of times, as defined by the times argument. We need to run a function more than once to determine the average time to run because there may be faster and slower occurrences, which would impact our results if we compared on a single run. The microbenchmark function helps us handle this and returns a series of statistics, such as the median and upper and lower quantiles of all the times.

As an example of benchmarking, we will start with the function defined in Listing 18.1. This is a simple function that samples 0 and 1 to give a vector of the length specified by the argument len. We will use this function as an example throughout this hour to show how we can improve our code. We can use this function in the microbenchmark function by simply passing the function call—for example, f1(100). By default, this will be replicated 100 times.

Click here to view code image

> microbenchmark(f1(100))
Unit: microseconds
 expr min lq mean median uq max neval
 f1(100) 597.087 616.146 731.2236 624.21 662.5125 2026.94 100

As you can see, the output to this function is a series of summary statistics for the running time of each replicate. The main value of interest is the median, though in some instances the spread may also be of interest.

LISTING 18.1 Sampling Function

Click here to view code image

 1: f1 <- function(len){
 2:
 3: x <- NULL
 4:
 5: for(i in seq_len(len)){
 6:
 7: s <- runif(1)
 8:
 9: x[i] <- ifelse(s > 0.5, 1, 0)
10:
11: }
12:
13: x
14:
15: }

Tip: How Fast Is Fast Enough?

Before you start to make changes to your code, it is worth having an aim for how much you are looking to speed up your code by. How long will be sufficient to wait for your code to run? There are many small changes you can make to improve efficiency, but this will typically take more of your time than it is worth for the speed up you will achieve. Having an aim will allow you to focus on the changes that will help you achieve that rather than endlessly making changes for minimal gains.

Initialization

When you first start writing code, and particularly if you have a background in other languages such as C++, you are likely to write lots of loops. You have seen functions, such as the apply family of functions, that allow you to write some of these actions in an alternative way that would be recommended for production code.

However, sometimes you do just need to use a for loop. One of the common pitfalls when you do this is to create an object and then simply append to it each time you work around the loop. You can see an example of this in Listing 18.1. In this example, you can see that on line 3 an object called x is created, and then inside the for loop, on line 9, we append to this for each iteration of the loop. In R, this makes our code much slower because a copy is made of the vector at each iteration.

A very simple way to speed this up is to prevent R from making the copy each time. We can do this via initialization, or pre-allocation. This simply means that we create the object (in this case, a vector) before we start our loop as an object of the appropriate type and size (for instance, a numeric vector of length 10 or character vector of length 5). Now each time we work around our loop, we simply overwrite the values. This alternative implementation can be seen in Listing 18.2.

LISTING 18.2 Initialized Sampling Function

Click here to view code image

 1: f2 <- function(len){
 2:
 3: x <- numeric(len)
 4:
 5: for(i in seq_len(len)){
 6:
 7: s <- runif(1)
 8:
 9: x[i] <- ifelse(s > 0.5, 1, 0)
10:
11: }
12:
13: x
14:
15: }

Let’s compare this to the original version of the function using microbenchmark.

Click here to view code image

> microbenchmark(f1(100), f2(100))
Unit: microseconds
 expr min lq mean median uq max neval
 f1(100) 582.059 616.6960 637.9074 631.3575 651.883 744.434 100
 f2(100) 532.576 567.5805 642.1922 583.8910 602.401 2666.544 100

You can see that this has made the function faster, though in this case there is still a significant amount more we can do to improve the efficiency.

Tip: Creating the Correct Type

In this example, we have used the function numeric to create a numeric vector of 0s. We can also create character and logical vectors with the functions character and logical, respectively. The advantage of this is that the vector is of the correct type before we start, and this will prevent R from having to convert the object to a different type. It can also help us out because we don’t need to change the value unless we want to change it from 0 (for numeric), "" (for character), or FALSE (for logical).

Vectorization

As stated in the previous section, one of the common pitfalls when starting to write R code, especially for those coming to R from other programming languages, is to use a for loop to perform an action over a vector of values. In R this is actually often unnecessary and makes our code run much slower. Instead, we can use R’s vectorization to perform a series of actions at the same time. This will not only make the code much faster, but is a much more professional approach to take in coding in R.

What Is Vectorization?

Vectorization allows us to perform an action on an array of values, such as a vector, simultaneously. As an example, suppose we wanted to multiply the values 1 to 10 by 4. Rather than first multiply 1 by 4 and then 2 by 4 and so on, we can use vectorization to perform all 10 calculations at the same time. In R we would do the following:

Click here to view code image

> 4 * (1:10)
[1] 4 8 12 16 20 24 28 32 36 40

As you can see, we were able to perform 10 calculations with just a single expression and no need for any loops. This will significantly speed up the code, as you will see when we look again at the example from Listing 18.1.

Note that in this particular example the brackets are not strictly necessary, but they help to make your code much clearer to read, particularly for someone picking up your code for the first time. Because we are looking at efficiency, it is worth mentioning that brackets will slow down your code very slightly, so where your preference is for very fast code, you may want to remove them. However, this will not generally be the primary cause of slow-running code, and in the latest versions of R the difference is barely measurable.

How Code Can Be Vectorized

Vectorization in R is very simple because most functions have been designed to accept a vector of values as input rather than a single, scalar value. As an example, think about the paste function introduced in Hour 6, “Common R Utility Functions.” We actually made use of vectorization there to create a vector of values that were the strings of fruits with numeric values pasted together:

Click here to view code image

> fruits <- c("apples", "oranges", "pears")
> nfruits <- c(5, 9, 2)
> paste(fruits, nfruits, sep = " = ")
[1] "apples = 5" "oranges = 9" "pears = 2"

So rather than having to loop round and paste the fruit to the number in turn, we do it all in one step. Some functions have even been written as a vectorized version of functions that you know. For instance, the function ifelse used in the examples in this hour is a vectorized version of the if/else structure introduced in Hour 7, “Writing Functions: Part I.” Other examples include pmin and pmax, which we can use to find the minimum and maximum, respectively, for each value in a vector of values. Here’s an example:

> pmin(0, -1:1)
[1] -1 0 0
> pmax(-1:1, 1:-1)
[1] 1 0 1

Let’s now return to our sampling function that we have been improving. You saw how we could initialize this function in Listing 18.2, but we can actually remove the loop here altogether by vectorizing the code. There are multiple ways we can do this, and two are shown in Listing 18.3.

LISTING 18.3 Vectorized Sampling Function

Click here to view code image

 1: f3 <- function(len){
 2:
 3: s <- runif(len)
 4:
 5: x <- ifelse(s > 0.5, 1, 0)
 6:
 7: x
 8:
 9: }
10:
11:
12: f4 <- function(len){
13:
14: x <- numeric(len)
15:
16: s <- runif(len)
17:
18: x[s > 0.5] <- 1
19:
20: x
21:
22: }

In the first of these functions, f3, we have used the ifelse function. Rather than generate a single value from a uniform distribution, we have generated a complete vector of values that we will use in a single step (line 3). We can then use the vectorized ifelse (line 5) to test all values and return the appropriate 1 or 0 for each value in the vector. Before we look at the second way of doing this, let’s compare f3 to our previous implementations:

Click here to view code image

> microbenchmark(f1(100), f2(100), f3(100))
Unit: microseconds
 expr min lq mean median uq max neval
 f1(100) 570.696 593.6045 999.40998 601.1185 616.8795 32061.20 100
 f2(100) 524.512 533.8590 598.32525 550.7200 562.4485 1758.27 100
 f3(100) 30.056 32.2560 47.34957 33.7220 36.8370 1211.40 100

Just looking at the median values here, you can see that this is a massive improvement over the original version, and even the initialized version. This approach gives us huge improvements in the running of our code, but in actual fact the second approach we can take to vectorizing this function will make even more gains.

Take a look at the function f4 that we defined in Listing 18.3 (starting on line 12). In this example, we are again initializing a vector that we will return. Just like in f3, we have generated our uniform samples in a single step, but rather than using ifelse, we have directly subscripted the vector x based on the values in the vector s. You might also notice that we have only done this to generate the values that need to be 1. This is because the initialization creates a vector of 0s, so we can cut out a step by only making a single change that we need. If we compare the two vectorized versions, we will see that this is faster yet.

Click here to view code image

> microbenchmark(f3(100), f4(100))
Unit: microseconds
 expr min lq mean median uq max neval
 f3(100) 28.956 29.690 31.40153 30.057 30.973 59.012 100
 f4(100) 9.530 10.264 11.19091 10.630 11.363 50.583 100

Although there are vectorized functions that will speed up compared to the non-vectorized versions, it is sometimes better to work directly on the vector using basic subscripting methods.

Tip: Don’t Remove Error Handling

Functions such as pmin and pmax are slower because they include a variety of arguments and checks for the data types and such. As you can see, the direct version is much faster, but that doesn’t mean we should start to remove all error handling from our functions. If you are sharing your code, it is much better practice—and key to production level code—to include the error handling and make other parts of your code more efficient with the methods you have seen here.

Using Alternative Functions

Often we don’t actually need to do much to our code other than use an alternative function that has solved the problem for us or is more specific in its implementation. It is quite possible that someone has already done what you are trying to do and solved the problem already, so it is always worth searching available resources for an alternative function or package. As a reminder of some of the ways in which you can search for functions and packages, take a look at Hour 2, “The R Environment.”

The example we have been using in this hour is a great illustration of such a case. The function we wrote in Listing 18.1 is designed to randomly sample a series of 0s and 1s. In Hour 6, you were introduced to the sample function. Clearly someone has already implemented the problem we are trying to solve, and it is likely that they have already put in the effort to make it as efficient as possible. A final version of this function, f5, is given in Listing 18.4, where we have simply changed the implementation to use the sample function. Let’s compare this final implementation to all the other variants we have seen in this hour.

Click here to view code image

> microbenchmark(f1(100), f2(100), f3(100), f4(100), f5(100))
Unit: microseconds
 expr min lq mean median uq max neval
 f1(100) 574.727 582.4245 672.98853 596.7200 616.8795 1895.354 100
 f2(100) 524.146 545.4050 638.65877 554.0190 568.3130 1768.899 100
 f3(100) 30.423 32.6220 36.03099 33.7220 39.0365 78.806 100
 f4(100) 10.263 10.9970 23.79963 11.5465 12.0965 1211.766 100
 f5(100) 6.231 7.5145 9.31053 8.4310 10.4470 16.862 100

LISTING 18.4 Using the sample Function

Click here to view code image

 1: f5 <- function(len){
 2:
 3: sample(0:1, size = len, replace = TRUE)
 4:
 5: }

Obviously, if you don’t know that the function exists, you can’t use it. A great way to find functions that can help you solve a problem is to read other people’s code and take a look online at the ways in which people solve similar problems to your own. Many resources are available that can help you out, and we have tried to introduce many useful functions to you in the appropriate places in this book.

Managing Memory Usage

When it comes to memory usage in R, there is actually very little we need to do to manage it ourselves. Although memory in R is taken up by temporary objects, it is automatically made available when it is needed. There is no need for us to manually free the memory on a regular basis. One of the main things we need to do is consider what objects we have created and how we will work with them.

Suppose we are working with big data sets. The packages you saw in Hour 12, “Efficient Data Handling in R,” have been designed to use memory in an efficient manner, so they are strongly recommended in this case. If you do find that you are getting errors due to a lack of available memory, the first thing to do is to take a look at what objects you have created in your current R session, the size of those objects, and whether you can remove them.

In RStudio, this is made simple with the environment pane. This pane gives us summary information about all the objects in our environment, what each object is, and, importantly, its size.

Tip: Checking the Size of Objects

To see the size of an object in the environment pane, you will need to use the grid view. In the top-left corner of the pane, you will see a menu labeled either “Grid” or “List.” If it says “List,” you can use this to menu to switch your view. If you are not using RStudio, you will need to use the object.size function on each object. Remember that you can use a function such as sapply to do this for a number of objects at the same time.

We can remove objects from our session either using the interface in RStudio or programmatically using the function rm. For example, to remove object x, we would run

> rm(x)

If the object is large, we may want to force R to make the memory available again. We do this in R by using the function gc for garbage collection. This is usually done automatically when needed without the need for us to intervene.

Tip: Restart to Clear Completely

If you have been working on an analysis and creating objects to test out your method, you may want to restart R to completely clear the workspace of any unused objects, including classes and unused packages or functions. If you have been writing a script, it will be easy to re-run all of your code and get back to where you were in a completely clean environment.

Integrating with C++

We have been looking at some of the ways in which you can rewrite your code in R to make it more efficient, but in some instances it is simply not possible to improve the speed of your code using R. In those instances, you may want to turn to other tools that are more suitable for the task. In R, one of the simplest ways to extend code with much faster alternatives is by using C++, and more specifically the Rcpp package.

C++ is a statically typed language, which means we have to specify object types when they are created; it is also compiled, which tends to make it a much faster language than R. Although it has always been possible to integrate C and C++ code in R, the Rcpp package has made this much more accessible; you only need to take a look at the length of the list of reverse dependencies to see how popular it now is.

When to Think about C++ and Rcpp

Adding C++ code to your R packages obviously requires that you start to learn another programming language, so it may not always be the answer. The overhead in learning C++ in the first place may be larger than the gains it will give you. However, if you already know C++ or you find that there are a number of cases where your code could benefit from being written in C++, you may find that it is worth the effort.

There are two main cases when C++ will be beneficial to your code:

[image: Image] When you have no choice but to use a for loop. For example, when there is a dependency on the previous value in the loop.

[image: Image] When what you want to do has already been implemented efficiently in C++.

The advantage of using Rcpp for your C++ implementations is that it has solved many problems for you in terms of passing data between R and C++, handling the memory usage, and providing many commonly used R functions to C++. This means that rather than having to learn how to do all of these things yourself in C++, you can simply use existing, well-tested functionality.

A Basic Function

We won’t go into lots of detail here on how to start writing C++ code, but we will introduce some of the basics with the aim of demonstrating how you can use the Rcpp package to integrate your C++ code with R in an easy way. To continue the theme of this hour, we will implement the sampling function. This actually uses a number of features specific to C++, so it’s a helpful introduction. You can see an example of this implementation in Listing 18.5.

LISTING 18.5 Implementing with Rcpp

Click here to view code image

 1: #include <Rcpp.h>
 2: using namespace Rcpp;
 3:
 4: // [[Rcpp::export]]
 5: IntegerVector sampleInC(int len){
 6:
 7: // Initialize x to create output
 8: IntegerVector x(len);
 9:
10: // Initialize and create s by using the Rcpp runif function
11: NumericVector s = runif(len);
12:
13: // Loop to do sampling, using if...else...
14: for(int i = 0; i < len; ++i) {
15:
16: if(s[i] > 0.5)
17: x[i] = 1;
18: else
19: x[i] = 0;
20: }
21:
22: // Explicitly return x
23: return x;
24: }

Differences Between R and C++

First of all, you should be aware of the key differences between R and C++ that you will come across when defining functions:

[image: Image] You must declare the types of all objects, including the type of input and output objects and the type of any intermediate objects created.

[image: Image] All expressions end with a semicolon.

[image: Image] You define for loops in a different way, specifying the start value, the end condition, and the increment.

[image: Image] Counting of indexes starts at zero in C++.

You saw all of these features in the code in Listing 18.5.

Writing a Function

We can write a C++ function directly in R using cppFunction; however, once our C++ function is more than a line or two long, this can be tricky, so it is much more sensible to write our function as a C++ script and then source this using sourceCpp. This is the approach we take here, so the code in Listing 18.5 should be saved in a file ending .cpp.

Tip: Rcpp and RStudio

Support for Rcpp is well integrated with RStudio. If you open a new script and instead of selecting R select “C++ File,” you will get the template structure for Rcpp. You can then source this by using the Source button at the top of the script, which will run sourceCpp for you.

The first four lines of Listing 18.5 (1 to 4) need to be at the top of any C++ script, where you want to use Rcpp. These lines make the functionality of Rcpp available to C++. They also allow R to recognize this as a function you want to be available in R.

Data Types

Starting on line 5 of Listing 18.5 we have our function definition. You will notice that in C++ we do not use the function keyword, but we have stated IntegerVector before the function name (sampleInC). This is to indicate to C++ that the return value of the function will be an integer vector. It is very important in C++ to get this correct. You will also notice that we have specified that the argument len will be of type int, which means we will pass an integer to the function. All of this is done for us in R, so we need to remember to include it when we write C++. The definition of various data types for scalars, vectors, and matrices are shown in Table 18.1. Note that some of these types are specific to Rcpp and are not the standard type definitions for C++.

[image: Image]

TABLE 18.1 Data Types in Rcpp

When you look through the remainder of the code, you will notice that this is very similar to the original example in Listing 18.1. We have created our vector, x, and the samples, and we will return to them in the next section. Just like in the R version, we have used a for loop with an if/else structure, which is the same as the R equivalent of the if/else structure, although different from the ifelse function we have used in this hour. The main difference is the structure of the for loop.

Loops in C++

In C++ we define a for loop in a different manner. First of all, we create an object and give it a starting value. Notice that in the example in Listing 18.5, line 14, this is initialized to 0. This is because we are going to index a vector, and the counting starts at 0 in C++. This is very important to remember when working with C++. The next component of the for loop is the condition that will cause the loop to stop. In this case, we are looping while the object i is less than the length of the final vector. Note the “less than” here. Because we start counting at 0, the final element will be len-1. The final component is the increment for the loop. Note the syntax here of ++i. In C++, this is special notation for adding one to the value of the object. So in this example, we are adding one to the value of i on each iteration.

Returning from Functions

To return from a function in R, we can optionally use the function return. In C++, this is not the case; we must use the keyword return. We must also ensure that what we return is of the same type that we stated the function would return. In this case we specified, on line 5 of Listing 18.5, that we would return an IntegerVector, so this is what we must return. Here, we are returning x, which we declared to be an IntegerVector on line 8.

Using R Functions in C++

You might have noticed that in the function in Listing 18.5 we used the function runif. This is because Rcpp provides many additional functions to C++ that you are familiar with in R, including distribution functions. In fact, thanks to the way the distribution functions are implemented, they make use of the same random number generation, meaning that you can still test your functions comparing to an R implementation.

Other than the distribution functions, we can implement in C++ vectorized versions of standard arithmetic operators (+, -, *, /, etc.) and many mathematical functions such as sin, cos, and so on, along with round, abs, ceiling, and floor.

In addition to the statistical distributions, there are also implementations of summary functions, such as mean, sd, var, sum, and diff. This is not an exhaustive list, and it is worth checking the vignette for Rcpp Sugar (vignette("Rcpp-sugar")) to see other functions that are available.

The advantage of this is that we can implement our R functions using Rcpp in a much faster way. Obviously to get the most from C++ you will need to learn more of the language itself, but as a means of quickly getting the benefits of speed gains, this is a great start.

Tip: Learning More

In this hour, we have only touched on the basics of C++, specifically for working with Rcpp. There are many available resources, but a good starting point is the user documentation provided with Rcpp. For a list of all the vignettes available in this package, you can use vignette(package = "Rcpp").

Summary

In this hour, we looked at many of the methods you can use to not only make your code more efficient but also more professional. The more you use R, the more you will find that you implement many of these approaches—in particular, vectorization—without thinking about them as being a way to speed up your code. You will also find more and more functions that help you write more efficient code. We also briefly introduced the Rcpp package, which can be beneficial when other approaches we have suggested are not possible or simply make no difference. One of the key points to remember when you are adapting your code is to ensure that you test whether it is still performing in the same way. Although this can simply be an informal test, you will see in Hour 20 that you can, and should, make use of test frameworks to continuously verify that you are not adversely changing your code.

Q&A

Q. I don’t mind waiting for my code to finish running. Do I need to do any of this?

A. If you are happy with the speed of your code, you don’t need to make any changes; however, many of these points are what will make your code more professional and suitable for wider production usage. It is advisable that you take all of these points into consideration when writing R code (many you may be doing already), and eventually they will become a natural part of your R code.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. Before you jump into changing your code, what should you do and what function can you use to help you do it?

2. Why should you initialize when writing for loops?

3. Why are vectorized functions, such as pmin, slower than working directly with a vector?

4. Do you need to handle memory usage in R?

5. What are the main differences between R and C++?

Answers

1. Before making any changes, you should first profile your code to determine where the slowest components are. You can do this in R using the Rprof function, which will generate a series of summary statistics to show where your code spends most of its time.

2. Initializing objects when you are writing for loops means that R will not continuously make copies of the objects you are adding values to. This is more efficient because you are simply writing over a value.

3. Vectorized functions are typically slower because they contain several function arguments and a series of error checks on the arguments. This is to ensure that the function is run in the way intended, and if incorrect arguments are passed, a more informative error message is returned. For code that you will reuse regularly and particularly share with others, this error checking is vital and shouldn’t be removed to make small speed gains.

4. No, this is done automatically when a temporary object is no longer being used. The main reason to manage memory would be to remove large objects that you no longer need but that you previously created.

5. There are four points that you should keep in mind:

A. You must declare the type of all objects.

B. All expressions end with a semicolon.

C. Loops are defined in a different way.

D. Indexes start counting from 0!

Activities

1. Write a function that takes a vector of input and, using a loop, iterates around all of the values, calculating the sum up to that value (that is, the cumulative sum) so that when you pass the vector of values 1 to 10, you get the following return value:

Click here to view code image

[1] 1 3 6 10 15 21 28 36 45 55

2. Use microbenchmark to determine the median time it takes to run your function.

3. Use any of the initialization and vectorization techniques to improve the speed of your function, using microbenchmark to check that you are making the code more efficient.

4. Can you find a function in R that will do this for you? Compare the speed of that function to your most efficient version.

5. Have a go at writing this function in C++ using Rcpp. If you are finding the cumulative sum a little tricky, start out with just taking the sum of all the values in the vector.

Hour 19. Package Building

What You’ll Learn in This Hour:

[image: Image] Why you should build R packages

[image: Image] What an R package contains

[image: Image] What you need to include in all the directories and files

[image: Image] Things to consider for maintaining good quality code

[image: Image] How to easily create documentation with roxygen2

[image: Image] How to build a package with devtools

In this hour, we will look at one of the key aspects for professionalizing your code: package building. When you put your code into a package, it helps you to ensure that your code is of a high standard and you are adhering to good practices such as documenting your code. In the next hour, we will look at some further components such as incorporating unit tests, but we will focus here on making sure our code is well written and documented. This is the starting point for high quality, professional code that is easy to share and reuse.

Why Build an R Package?

Most of us don’t think about writing our own packages when we work with R despite the fact that we use other packages on a regular basis, as you have done in the previous hours in this book. We typically start out by writing code in one or more R scripts that contain lots of library/require calls or calls to source at the top of the script. This type of coding can cause us problems for many reasons.

Code written in this way is difficult to share. We have to determine all of the files that we need to run the code and all of the package dependencies. We also have to spend time explaining to our colleagues what the code does and how to use it if we do not document it. It can be difficult to know which version is the latest because we might have slightly different versions stored in different places. What’s more, it can often be difficult to be certain that the code has not been affected by a change we have made.

However, as we know from using other R packages, we can solve many of these challenges. An R package allows us to keep all of our code and documentation in a single place and implement a more formal approach to testing. Building an R package allows us to do the following:

[image: Image] Keep track of versions of our code and easily know whether we are using the same or different versions.

[image: Image] Keep documentation with the code and save time in having to explain how to use functions and the workflow of the code.

[image: Image] Easily provide demo code and examples.

[image: Image] Easily use test frameworks to ensure that any changes to the code do not change the output of the function.

[image: Image] Easily incorporate and call functions written in other languages such as C++.

Overall the advantages of converting our code to be structured as an R package are huge and well worth considering, and as you will see in this hour, it is very simple to do using tools such as devtools and roxygen2.

The Structure of an R Package

As you know, R packages contain various components and objects, including functions and documentation. You will see the basic structure and components in this hour, and in Hour 20, “Advanced Package Building,” we will look at some of the additional components such as unit tests.

The basic structure of a package contains four components:

[image: Image] A DESCRIPTION file

[image: Image] A NAMESPACE file

[image: Image] An R directory

[image: Image] A man directory

We will look at all these components in turn, but before we do we will cover how to create the correct package structure—in particular, how to set up a package for working with RStudio.

Creating the Package Structure

Traditionally, we created the package structure by using a function called package.skeleton. Although we can still use this function, it is much better to use the create function in the package devtools. The devtools package has been created to simplify the package-building process by wrapping up functionality such as creating and building packages.

Tip: Creating a Package Project

In RStudio, you may also create an R package from the project menu in the top-right corner. By selecting New Project > New Directory > R Package, you will be given a menu that allows you to give the package name as well as the location for the package on your file system, and you can optionally select existing R files that will be included in the package.

The purpose of the create function is to set up the basic structure of an R package. As you will see later in this hour, it has been designed around a workflow whereby we add our own R code separately and document packages using roxygen2. As an example, as stated earlier, an R package requires a man directory. This will not be created when we run create but will instead be created when we generate our documentation.

To create the package structure, we simply give the name of the package by defining the file path to where the package directory should be created. Here’s an example:

Click here to view code image

> create("../simTools", rstudio = TRUE)
Creating package simTools in .
No DESCRIPTION found. Creating with values:

Package: simTools
Title: What the package does (one line)
Version: 0.1
Authors@R: "First Last <first.last@example.com> [aut, cre]"
Description: What the package does (one paragraph)
Depends: R (>= 3.1.2)
License: What license is it under?
LazyData: true
Adding RStudio project file to simTools

You will see here that we have specified that the package structure should be created in a directory called simTools. Although it is not strictly necessary, it is good practice to give the directory the same name as your final package. You will also see in this code that a default DESCRIPTION file has been created that includes this package name. We will return to this shortly, but for now it is sufficient to note that a default set of values has been provided to this file.

You may also notice in the preceding code we have set an option called rstudio. If you are working in RStudio, you may find that this is a handy feature because it creates an RStudio package project. You can then open this from the projects menu by selecting Open Project and then navigating to and selecting the .Rproj file created. This is in fact the default behavior of this function. If you don’t want to create an RStudio project you will need to set this option to FALSE.

Having run create, or using the project menu, you will now have a directory at the specified location that contains the directories and files listed (with the exception of the man directory). We will look at each of these in turn in the following sections.

Tip: Additional Package Files

Having used create or the project menu system, you may notice that some hidden files have been created. You will need to have your explorer window set up to show hidden files, which include .gitignore and .Rbuildignore. These files allow us to include files within our package locally but stop git and/or the R build process from using these files. By default, the .Rproj files will be listed in these files.

The DESCRIPTION File

The first file in an R package is the DESCRIPTION file. This file is used to list important package information, including the authors and the current maintainer of the package, the version number, and the license for the package. It is in this file that we also specify any package dependencies.

You will have noticed when we ran the create function that a DESCRIPTION file was being created with certain default values. We can actually specify options for devtools to automatically populate some of these fields for us, but for occasional packages it is simple enough to update the file. An example of a DESCRIPTION file for the simTools package for which we created the structure is given in Listing 19.1.

LISTING 19.1 Example of a DESCRIPTION File

Click here to view code image

Package: simTools
Title: Simulation Analysis Tools
Version: 1.0-0
Authors@R: c(
 person("Aimee", "Gott", email = "agott@mango-solutions.com", role = c("aut", "cre")),
 person("Andy", "Nicholls", email = "anicholls@mango-solutions.com", role = "aut"),
 person("Rich", "Pugh", email = rpugh@mango-solutions.com, role = "ctb")
)
Description: A series of tools for simulation analysis used for learning about
 distributions.
Depends:
 R (>= 3.1.2)
Imports:
 ggplot2 (>= 1.0.0)
License: GPL-2
LazyData: true

Tip: Package License

Note that the default License is the relatively open GPL-2, the same license as R itself. There are several standard licenses for R packages that are listed on the R-Project website, https://www.r-project.org/Licenses/, although it is not necessary to apply one of these licenses. Licenses should be chosen carefully as they describe what others can do with your code.

The NAMESPACE File

The NAMESPACE file is now a compulsory file when you develop a package. It allows us to specify which functions in our package will be “exported” so that the end user can see them. This is useful if we want to have some utility functions that we want to use in our code but we don’t want the end user to see them. It also allows us to import namespaces from other packages (that is, make the user-visible functions in another package available to our package). We will return to this topic later in this hour because it is possible to allow the “roxygen” headers we add to our functions to handle this for us.

The R Directory

The R directory is where all our R functions will be stored. When we have simply used the create function, this directory will be empty and we can start to add R script files (that is, files ending in “.R”). You could add all your functions in a single file, though it is good practice to include multiple R scripts for individual groups of functionality. It is worth noting, however, that you will often see a file called utils.R. This is typically where short utility functions (of just a couple lines) that are not intended to be used by the end user are stored.

For our sample package, we will create a function called sampleFromData. The code for this function can be seen in Listing 19.2. This code should be contained in an R script in the R directory.

LISTING 19.2 R Function for the simTools Package

Click here to view code image

sampleFromData <- function(data, size, replace = TRUE, ...){
 if (!is.numeric(size)) {
 stop("Size must be a numeric integer value")
 }

 lengthData <- nrow(data)

 if (!replace & size > lengthData){
 stop("Cannot sample greater than the data size without replacement")
 }

 # Sample a number of rows from the given dataset
 samples <- sample(seq_len(lengthData), size = size, replace = replace, ...)
 invisible(data[samples,])

}

The man Directory

The man directory is where we store all the files that contain the user documentation for the functions in our package. We can, and should, create help files for all functions in a package. We must document any exported functions, i.e. functions that an end user will see.

Although you will be familiar with the HTML format of help files from running ?mean, for instance, this is not the way in which we write help files. They are written in a TeX-like format and saved in files ending with an .Rd extension. We need to generate one file for each of the functions and the package itself. Generating these files can be quite time consuming, and it is easy to forget to update the files if you make changes to the function itself. For these reasons we will instead generate the documentation using a package called roxygen2. We will return to this topic later in the hour.

Code Quality

When it comes to putting our code into a package, the quality of the code is of huge importance. Typically code in a package will be shared, will be returned to later, or is collecting together a large amount of functionality—or all these things. As such, it is vital that we think about the quality of our code.

Code quality doesn’t just refer to whether the code works or not, but relates to the styling, documentation, and usability of the code. All these can be taken account by following some guidelines for writing code. At Mango, code quality is vital, and since there is typically more than one developer working on the code at a time, using a consistent style makes it much easier to work on the code in a collaborative manner. We have introduced many good coding practices throughout this book, and if you follow these practices you will be well on your way to high-quality, well-written code. Although we suggest some guidelines for styling in this section, you do not need to follow these guidelines specifically. However, we recommend that you decide on a consistent way to style your code and stick with it.

As mentioned, all of the R code for our packages is stored in the R directory in a series of files. These files should have descriptive names that help you to identify the contents when you return to the code. Also, they should all take the file extension “.R” (note the capitalization). The functions and objects referenced in these files should be named in a way that helps to inform the user of their purpose. A consistent means of naming the objects should be used. A popular convention, and one that is used at Mango, is lowerCamelCase, where each new word is capitalized.

In terms of the documentation, all functions should have a “roxygen” header, which will be discussed further in the next section. The code itself should be well commented to clarify its purpose, with comments for roughly every 10 lines of code.

When it comes to the layout of the code, it is considered a good practice to indent and space the code in a consistent manner. It is typical to include spaces after operators such as + or * as well as after a comma. It is convention to indent code inside a function call as well as inside for loops and if/else structures. We recommend two spaces for each indentation.

In addition to the styling of our code and the coding practices we have discussed, such as not appending in a for loop, we should also consider what our code does to the R session. It is considered bad practice to do anything inside a function that changes the environment in any way, including the assignment of objects and changing options or settings. If there is a need to make a change (for instance, if you need to change the working directory), your function should set it back to the original value before exiting.

Automated Documentation with roxygen2

To the end user, the most important part of your package is the documentation. A package that is well documented is much easier for someone to pick up and work with, and it’s much easier to return to when you need to update or change the functionality in the future.

Package documentation can take many forms, though the most widely used, and the aspect we will focus on here, is the function help files. We can also write user guides, known as vignettes, which we will look at in Hour 20.

From reading help files for other functions, you will be familiar with the format of this documentation. Function help files list all the arguments and they detail the purpose and usage of each. We can also add information about the output of each function, additional details about the function, who wrote the function, and so on.

We are going to generate the documentation using roxygen headers. These headers go above the function to which they refer. This makes it much simpler to produce the documentation because we can do it alongside the function development. It is also easier to update if we make a change to the function because the header is there while we are working on the function.

Tip: Document as You Write

As you will see, it is very simple to create the roxygen headers for functions. As such, it is a good habit to write them even if you are not thinking of putting your functions into a package. This means that the code is well documented and easy for you or others to work with. It also means that if you do decide to turn the code into a package, it is already documented, so you don’t have to go back and do so.

Function Headers

We include a roxygen header above the function definition. Each line of the roxygen header starts with the symbols #'. This allows R to treat the lines as comments, but they will be recognized by roxygen as function headers. Following this we use special tags to indicate a particular component of the help file. Some tags and their uses are shown in Table 19.1.

[image: Image]

TABLE 19.1 roxygen2 Header Tags

Some components do not need their tags explicitly written out because the first three paragraphs without tags are treated in a special way. The first three paragraphs are as follows:

1. The title of the help page (short, one sentence)

2. The description for the help page (brief description of the function)

3. The details section, which can provide much more information about the function, what it implements, and so on

For including special formatting we can use LaTeX formatting components. If you are not familiar with LaTeX, this won’t impact your ability to write documentation unless you need to include mathematical formulas. The main thing to point out is usage of %. In LaTeX the % symbol indicates a comment, so we actually need to use \% if we don’t want everything after it to be treated as a comment.

Listing 19.3 shows how this might look for a sample function in the simTools package we created earlier. Notice that, although we have not included the complete function definition again, this header goes directly above the function definition, in this case the one given in Listing 19.2.

LISTING 19.3 Roxygen Header for the sampleFromData Function

Click here to view code image

 1: #' Sample from a dataset
 2: #'
 3: #' This function has been designed to sample from the rows of a two
 4: #' dimensional data set returning all columns of the sampled rows.
 5: #'
 6: #' @param data The matrix or data.frame from which rows are to be
 7: #' sampled.
 8: #' @param size The number of samples to take.
 9: #' @param replace Should values be replaced? By default takes the
10: #' value TRUE.
11: #' @param ... Any other parameters to be passed to the sample
12: #' function.
13: #'
14: #' @return Returns a dataset of the same type as the input data with
15: #' \code{size} rows.
16: #'
17: #' @author Aimee Gott <agott@@mango-solutions.com>
18: #'
19: #' @export
20: #' @examples
21: #' sampleFromData(airquality, 100)
22: #'
23: sampleFromData <- function(data, size, replace = TRUE, ...){

One of the key tags, which you can see here on line 19, is @export. This tag is what makes this function visible to the end user. When we generate the documentation, the NAMESPACE file will be automatically updated to indicate that it will be exported, meaning that we do not need to manually generate the NAMESPACE file. There are similar tags, @import and @importFrom, that allow us to specify functions or packages that we need to make available to run our functions.

Other tags to note include @param, which can be seen on lines 6, 8, 9, and 11. This tag is used to identify the arguments of the function. Notice that following the tag we give the name of the argument, and after a space the text that describes that particular argument. As you can see, the text can span multiple lines, and text is treated as belonging to the last tag until another, new tag is encountered.

You may also notice that in giving an email address in line 17 we have used @@. This is due to the fact that the @ symbol is used before a tag, so we need to indicate that we really want an @ symbol by duplication of the symbol.

Documenting the Package

In addition to documenting our functions using roxygen2, we can also document the package itself. Obviously in this case we do not have a function to put the header above. The typical approach to this documentation is to create a single file named with the package name. In the example we have used in this hour, that would be a file named simTools.R. The header itself is then contained above the statement NULL or NA.

An example of package documentation for the example we have used in this hour is given in Listing 19.4. Just like with the function documentation, the first line is the title of the help page, and the second is the description text. We can also include tags such as @author, @examples, and even @references, as we would in function headers.

LISTING 19.4 Roxygen Header for the simTools Package

Click here to view code image

 1: #' A package for performing common simulation tasks
 2: #'
 3: #' This package provides a series of tools for common simulation tasks such as
 4: #' sampling from a data frame and generating plots of simulation experiments.
 5: #'
 6: #' @author Aimee Gott \email{agott@@mango-solutions.com}
 7: #' @docType package
 8: #' @name simTools
 9: NULL

The main difference is that we need to include the tags @docType and @name. For the first of these tags, we identify that the specific documentation is for a package. You can see this in line 7 of the example in Listing 19.4. As you will see in Hour 20, we will also use this tag when documenting other package components such as data. The tag @name is used to label the help document. This is what the user will call to see the help document for the package, and it takes the name of the package itself, as you can see in line 8 of Listing 19.4.

Creating and Updating the Help Pages

Once we have created the headers for all of the functions and for the package, we can generate the Rd files. The function roxygenize, in the roxygen2 package, can be used to do this, but there is also a function available in devtools called document. Both functions work in the same way, but here we will demonstrate the use of document.

As you saw with the function create earlier in this hour, we need only point to the top level of the package directory to generate, or update where it already exists, the package documentation.

Click here to view code image

> document("../simTools")
Updating simTools documentation
Loading simTools
Writing NAMESPACE
Writing sampleFromData.Rd
Writing simTools.Rd

You can see from the output messages that this updates the NAMESPACE file along with the Rd files for the functions and the package itself. When we’re working with RStudio, it is actually possible to open the Rd files and preview them. After opening an Rd file in RStudio, simply click the Preview button to see the HTML preview in the Help tab. Figure 19.1 shows the preview of the help file defined in Listing 19.3.

[image: Image]

FIGURE 19.1 HTML preview of the simFromData help page

As part of the package building workflow, this stage should be completed before the build and check stages we will see in the next section. In practice, it is common to cycle around all of these stages multiple times in the process of creating and testing a package.

Tip: Documenting with Projects

As mentioned previously, if we are developing a package as a project in RStudio, we have quick access to a number of build features through the Build tab, which is made available in a package project. This includes the option to generate package documentation. This can be done by either selecting the Document option, typically in the More drop-down menu of the Build tab, or using the keyboard shortcut Ctrl+Shift+D.

Building a Package with devtools

Once we have put together all of the components of our package, whether that is simply R code and help files, as we have seen here, or additional components as we will see in Hour 20, we need to go through the process of preparing the package to be shared and then building it. Traditionally this was entirely done by using a series of command-line tools. We now have an easier way to handle this in the form of the package devtools. The package itself still uses the command-line tools but provides us with a simple, familiar interface to them.

Caution: Building a Package in Windows

In order to build packages in Windows, you will need to have installed RTools. This is an additional component available on CRAN that provides the command-line tools needed for R package development. It’s important to make sure that the correct version of R is installed and that the system path has been set up correctly. For details of how to install RTools, see the Appendix, “Installation,” of this book.

Checking

The first thing we should do before building our package to share is to run a series of checks. Before a package can be made available on CRAN, it must pass a series of checks relating to the structure of the package, aspects of the code, the documentation, and even whether the examples run without error. Even if we don’t intend to make a package available on CRAN, it is good practice to run these checks and ensure that our own package passes all of them. We can run these checks in devtools with the function check.

You can see an example of running check and partial output in Listing 19.5. As you can see from the output in line 2, the first thing that check does is run the document function. This ensures that the documentation is up to date because there are a number of documentation-related checks. The package is then built into a source version. This is to ensure that there are no files included in the check that would not be present in the final version of the package. The checks themselves then start from line 20. In the lines shown in Listing 19.5, checks are being run against the DESCRIPTION and NAMESPACE files. In these cases, they pass the checks, which you can see from the OK line ending.

LISTING 19.5 Running the check Function

Click here to view code image

 1: > check("../simTools")
 2: Updating simTools documentation
 3: Loading simTools
 4: Writing NAMESPACE
 5: Writing sampleFromData.Rd
 6: Writing simTools.Rd
 7: "C:/PROGRA~1/R/R-31~1.2/bin/i386/R" --vanilla CMD build
 8: "C:\Users\agott\Documents\simTools" --no-manual --no-resave-data
 9:
10: * checking for file 'C:\Users\agott\Documents\simTools/DESCRIPTION' ... OK
11: * preparing 'simTools':
12: * checking DESCRIPTION meta-information ... OK
13: * checking for LF line-endings in source and make files
14: * checking for empty or unneeded directories
15: * building 'simTools_1.0-0.tar.gz'
16:
17: "C:/PROGRA~1/R/R-31~1.2/bin/i386/R" --vanilla CMD check \
18: "C:\Users\agott\AppData\Local\Temp\RtmpwNk65n/simTools_1.0-0.tar.gz" --timings
19:
20: * using log directory 'C:/Users/agott/AppData/Local/Temp/RtmpwNk65n/simTools.Rcheck'
21: * using R version 3.1.2 (2014-10-31)
22: * using platform: i386-w64-mingw32 (32-bit)
23: * using session charset: ISO8859-1
24: * checking for file 'simTools/DESCRIPTION' ... OK
25: * this is package 'simTools' version '1.0-0'
26: * checking package namespace information ... OK
27: * checking package dependencies ... OK
28: ...

Where there are any issues, they will be raised with an ERROR, WARNING, or NOTE, depending on the severity. You should try to solve all issues that are raised; many can be solved easily, particularly those that relate to inaccurate documentation. However, although it is very important to resolve any ERRORs that are raised, it is less important for WARNINGs and NOTEs if you are not going to share your code, or at least not going to make it widely available or available on CRAN. For packages to be used in production code, we would recommend that you strive to resolve, or at least understand, all issues that are raised by the checks.

This check function can be repeatedly re-run until you are satisfied with the output and ready to build the package.

Building

We are now at a point where we can build the package. We do this using the build function in devtools. When building the package, we need to consider the type of package we want or need to create. We can either generate a source package or a binary package. A source package contains the source files for the code, whereas the binary versions have been compiled for either the Windows or OS X operating system. If you plan to share your code with other Windows (or OS X) users, you will typically want to create the binary package.

The only difference if we want to create the binary version of the package is that we set the value of the argument binary to be TRUE. An example of running the build function, along with the output generated, is shown in Listing 19.6.

LISTING 19.6 Building the Package

Click here to view code image

 1: > build("../simTools", binary = TRUE)
 2: "C:/PROGRA~1/R/R-31~1.2/bin/i386/R" --vanilla CMD INSTALL \
 3: "C:\Users\agott\Documents\simTools" --build
 4: * installing to library 'C:/Users/agott/AppData/Local/Temp/RtmpwNk65n/file105078613584'
 5: * installing *source* package 'simTools' ...
 6: ** R
 7: ** preparing package for lazy loading
 8: ** help
 9: *** installing help indices
10: ** building package indices
11: ** testing if installed package can be loaded
12: *** arch - i386
13: *** arch - x64
14: * MD5 sums
15: packaged installation of 'simTools' as simTools_1.0-0.zip
16: * DONE (simTools)
17: [1] "C:/Users/agott/Documents/simTools_1.0-0.zip"

You can see from this example that when we generate the binary version of the package, it is first installed and then packaged up in the installed format. The package name and version number are taken from the DESCRIPTION file values that we set previously, so we do not need to separately inform the build function of these values. Because we have built a Windows binary package, you will notice on lines 15 and 17 that the package has the file extension .zip. If we had instead built a source package, it would have had the extension .tar.gz.

Installing

After we have built our package, whether that is in the form of a binary package or a source package, we are then ready to install it. The package that you have built is in the same format as any other package you would install, and as such can be installed, loaded, and used in the same way, as you can see below:

Click here to view code image

> install.packages("../simTools_1.0-0.zip", repos = NULL)
Installing package into 'C:/Users/agott/Documents/R/win-library/3.1'
(as 'lib' is unspecified)
package 'simTools' successfully unpacked and MD5 sums checked
> library(simTools)
> simDat <- sampleFromData(airquality, 2)
> simDat
 Ozone Solar.R Wind Temp Month Day
58 NA 47 10.3 73 6 27
36 NA 220 8.6 85 6 5

Summary

In this hour, we have looked at all the components required to create a simple R package with the basic components required. We have introduced some of the good practices for package development, including considerations around the code itself as well as how we can provide useful documentation components. We have looked at what is required to build a package and how to build one. In the next hour, we will discuss how to add further components to our packages to make them more production ready, including unit tests and user guides.

Q&A

Q. I use another package in my code. What do I need to do to make sure it is available for my package?

A. When it comes to dependencies of your code, you can list them in one of a number of ways. A package is typically listed under Depends or Imports, Suggests or LinkingTo. You use LinkingTo to specify that your function requires the C code of another package. A package listed as Suggests is one that is needed to run unit tests or examples, or for only very specific functionality as an option in maybe only one function in your package. Any package that contains functions required for the running of your package should be listed in either Depends or Imports. It is now best practice to use only the Imports field, although there are some occasions when Depends is still needed; hence, it is still available.

Q. Who should be listed as an author of a package?

A. This is entirely up to you. Typically an author has made substantial contributions to a package, whereas a contributor has made only a small contribution, such as a bug fix. The one role to consider with care is who is listed as the creator or maintainer (cre) or the package. This is the person who can be contacted by the R Core team or by users of the package. It is important that a single person is named in this role and that an email address is provided that can be used to contact the maintainer.

Q. I am just writing a couple of functions. Should I create a package from them?

A. When you are getting started with package building, you might find that it helps you to learn how to do so by creating a small package first. In general, although you may not actually build the package or want to share it further, by following the practices in this chapter and organizing code in this way, you make it much easier to work with, which means it’s easy to create a package if you need to later.

Q. Can I use roxygen headers even if I am not creating a package?

A. Yes, and we would strongly recommend that you do. Documenting functions you write in this way makes them much easier to work with and return to, as well as to convert into a package at a later date.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. What are the minimum required components for an R package?

2. How can you generate help documentation for functions?

3. What extra tags do you need to document a package?

4. What is the difference between a source package and a binary package?

5. If you don’t plan to make a package available on CRAN, do you need to ensure that all of the checks pass?

6. How do you install a package that you have developed?

Answers

1. At a minimum, you require the directories man and R and the files NAMESPACE and DESCRIPTION.

2. You can generate documentation for functions by including roxygen headers in the function R scripts. You use special tags that start with the @ symbol to document components of the function.

3. For the overall package documentation, you need to include the additional tags @docType and @name. The name tag should give the package name, which is what the user will call to access the help file. The docType tag simple needs to state the package.

4. A source package contains all the source code for the package but excludes the additional files that may be included in the package as you develop, such as RStudio project files. The binary package is the packaged-up version for a specific operating system such as Windows or OS X.

5. Although it is not a requirement to run the checks if you are not submitting to CRAN, it is good practice to do so. It is particularly recommended if you will be sharing your code with others or if it is intended to be used in production code. A package that passes the checks is generally considered to be of a higher quality than a package that does not.

6. You install a package that you have developed in the same way that you would install any other package you have been provided in source or binary format. Take a look back at Hour 2, “The R Environment,” for a reminder on how to do this.

Activities

1. Use devtools to create a skeleton package for a package called summaryTools.

2. Add in the appropriate location of an R function called numericSummary. This function should take two arguments: a numeric vector and the argument na.rm. The function should call a helper function that generates numeric summaries, including the mean and standard deviation. It should also call a helper function that returns the number and proportion of missing values. The numericSummary function should return all this information in a suitable format.

3. Use roxygen2 to create headers to document all three of the functions you have just written. Choose carefully which of these functions need to be visible to the end user.

4. Update the DESCRIPTION file and all other package documentation.

5. Build and check your package. Once you have resolved any issues raised by the check and have rebuilt the package, install it and then try calling your function.

Hour 20. Advanced Package Building

What You’ll Learn in This Hour:

[image: Image] What you can do to extend an R package

[image: Image] Why testing is important and how to use testthat

[image: Image] How to include datasets in a package

[image: Image] How to include a user guide in a package

[image: Image] What you need to do to use C++ code in a package

In the last hour, you saw how to put all of your code together in the form of a package to simplify the sharing and maintenance of code, as well as to aid in the development of high-quality, production-ready code. There are, however, a number of ways you can extend a package to make it more robust to changes and easier for users to get started with. You will see the most common of these extra components in this hour.

Extending R Packages

We have now managed to create a package that contains all the functions we need and even contains the help files for those functions—so why do we need to add more? Surely this is sufficient. In many respects, this is true. We can simply share our package as it is with no need to do anything more, but there are many advantages to the extensions you will see in this hour.

The first additional component we will cover is a test framework. As you have seen throughout this book, once we have code we may want to update it to make it more efficient or simply change the functionality as we find bugs or need new features. A test framework becomes a vital component here for ensuring that we do not introduce more errors into our code or revert back to issues we have already resolved.

There are many instances when we may need to share data with our end users. This may be simply for examples; it may be data relevant to the field that we want to share, or it may be reference data required by functions in the code. This last point is particularly common in the development of code for analytics. Whatever the reason for needing to share the data, we can incorporate it all in our package so there is no need to also send out data separately to the package we have developed.

The next component we’ll implement is the user guide. Whether you are just sharing code with colleagues or you plan to share widely with the R community, the end users of your package are going to need to know how to use it. The individual function help files will help users with questions of “How do I use this function?” and “What are all the options for this function?” However, they will not typically help with the overall workflow of your package. A user guide is aimed at helping to get users started with a general workflow for your package. Just as with data, we have written this anyway and intended to simply email it to people who need it, but incorporating it in the package ensures that it is up to date and always available for the end users.

The final additional component we cover in this hour is C++ code, or more specifically, code we have written with Rcpp. This is not going to be a component that you will include in every package you write, but as you saw in Hour 18, “Code Efficiency,” you may have chosen to incorporate such code into a function for efficiency, so you need to know how to include such code in an R package.

As you can probably see, inclusion of these two components, data and C++ code, will be dependent upon the package itself and its requirements and implementation. When it comes to the user guide and unit tests, they are again optional. However, it is considered to be a best practice to include these components, and we would recommend that you get into the habit of including them as standard in any package you write. As you will see in this hour, they are very simple to add, with devtools functionality available to help you with the package structure, and they don’t take much additional effort once you are familiar with them.

Developing a Test Framework

Whenever we develop code, we test it in some way. As we start out this might just be with an ad-hoc running of a function to ensure it does what we expect. Usually this is with small amounts of data, and typically we test the main functionality we have implemented. As we write more code and begin to change it to handle any issues that arise, we might write a script that can be run regularly where there are known expected outputs we are looking for. This is the beginning of a test framework. For all development, but especially production development, it is recommended that these informal tests are formalized so that they can easily be re-run with specific cases at any point. We can then include these tests within a package so that they are always kept together, and even the end user can run them to ensure the package is still working as it should.

An Introduction to testthat

There are a number of options for providing a test framework in R, but the one introduced here, testthat, is both widely used and easy to get started with. Before we consider how to include tests in an R package, we will simply look at how to write what are known as “unit tests” using testthat.

As an example in this hour, we will implement tests for the function we included in the R package that we developed in the previous hour, sampleFromData. This function is defined in Listing 19.2 and simply randomly samples rows from a dataset we provide. You will also notice that this function includes some error handling by checking that sensible arguments have been provided.

While we write the tests, we will need to consider what we might test. We will return to this topic shortly, but for now we will simply write some tests to ensure that data is returned as expected. If we were to ask you to check that this function worked correctly, you would most likely pick a simple dataset and test the function with argument values that are easy to check the output of. For example, you might try the following:

Click here to view code image

> library(mangoTraining)
> set.seed(20)
> testData <- sampleFromData(demoData, 3)
> testData
 Subject Sex Age Weight Height BMI Smokes
29 29 M 44 81 175 26.4 Yes
26 26 F 25 58 175 18.9 No
10 10 M 23 71 188 20.1 No

In this case, we have used the function set.seed, which allows us to set the value of the random seed to ensure that we can consistently reproduce the random sampling in this function. However many times we run all these lines of code, we will consistently reproduce these same sampled rows. This is a really useful function when it comes to testing. We use testthat to formalize this test and to check for us that the correct data is returned.

We create individual tests using functions named with the pattern expect_. The names are then appended with elements such as equal, named, is, and error, among others. All of the functions follow a similar pattern whereby we provide the object we want to test as the first argument, followed by the value we want to test against as the second argument. In the preceding example, we might ensure that the correct three rows are returned with tests such as these:

Click here to view code image

> expect_is(testData, "data.frame")
> expect_named(testData, c("Subject", "Sex", "Age", "Weight", "Height", "BMI", "Smokes"))
> expect_equal(testData[,"Subject"], c(29, 26, 10))

So we have checked that the correct structure is returned, that it has the correct columns, and that the elements of the Subject column are correct. We could extensively test the whole returned structure, but in this case, because rows are unique based on the subject number, we can be confident that the same data has been returned if the subject values are the same each time. You will notice that if you run all of these statements, nothing is returned when the output is as expected. Only if the test fails will you see any output.

We can write such statements to test a range of functionality in the sampleFromData function. Typically we want to test that arguments work as expected and change the output in some way, and we want to ensure that errors and warnings are thrown when expected. It is also highly recommended that we write a test for what the correct behavior should be whenever a bug is identified. This will help us to resolve the bug and ensure that we don’t do anything that puts the bug back into our code.

Rather than simply writing a script full of expect_ statements, we use a function called test_that to group expectations together. Therefore, we would typically group the statements we wrote previously as a test for expected default behavior, for instance, which would mean that our test script might look something like the example given in Listing 20.1.

LISTING 20.1 Example of a Test Script for sampleFromData

Click here to view code image

 1: context("sampleFromData must return data frames of the correct format")
 2:
 3: test_that("Default arguments return correctly", {
 4:
 5: require(mangoTraining)
 6:
 7: set.seed(20)
 8:
 9: testData <- sampleFromData(demoData, 3)
10:
11: expect_is(testData, "data.frame")
12:
13: expect_named(testData,
14: c("Subject", "Sex", "Age", "Weight", "Height", "BMI", "Smokes"))
15:
16: expect_equal(testData[,"Subject"], c(29, 26, 10))
17:
18: })
19:
20: test_that("Throws an error correctly", {
21:
22: expect_error(sampleFromData(airquality, "Subject"),
23: "Size must be a numeric integer value")
24:
25: })

You can see that lines 5 to 16 are the same as we previously ran, but this time they are inside the test_that function. As you can see on line 3, the first argument is a character string to indicate what the purpose of this group of tests is, and the second is the group of code, contained inside curly brackets, that is to be run, including all of the expectations. In this example, we have included a second test_that function call that we are using to test that the function handles errors correctly. We can have as many test_that groups as we want in a single script. It is a best practice to collect test_that statements in a script for a single function or group of functionality so that tests are organized in an easy-to-find way. We will look in the next section at how to structure tests for a package.

You will also notice in this example that on line 1 we have called a function context and that it contains a character string. This is simply a way of grouping together a series of test_that statements. The context indicates that all of the following tests are related to a specific piece of functionality—in this case, the sampleFromData function.

When it comes to running these tests, we can make use of the functions test_file and test_dir. The function test_file will run all of the tests in a single file, whereas the function test_dir will run all of the scripts in a single directory. As an example, suppose that we had saved the code in Listing 20.1 as the file test-sampleFromData.R. We would run all of these tests with the following lines:

Click here to view code image

> test_file("test-sampleFromData.R")
sampleFromData must return data frames of the correct format :

Notice that the context has been used to label all the tests that have been run, and the . in the output indicates that a test has been run and has passed.

Incorporating Tests into a Package

Although we could simply write tests in a script that we can run as we did earlier, if we are writing a package it is much better to include the tests in the package. This way, we always know where to find tests for specific code, we can very easily re-run the tests for the whole package after we have made changes, and we can easily provide the tests to others who may want to re-run them. This final point is quite common in controlled environments where it is necessary to be certain that there have not been changes to the software or environment that impact the results of running specific code.

As you saw in the last hour, components of a package are structured in a specific way, and tests are no exception. Although the devtools functions we have seen so far have not created this for us, we can add a test structure to a package we have already created with the function use_testthat. Thus, to add the test structure to the package we started to develop in Hour 19, “Package Building,” we can run the following line:

Click here to view code image

> use_testthat("../simTools")

This will create in the package structure a directory called “tests,” which contains a file, testthat.R, that houses the required code to run the tests for the package and doesn’t need to be changed, as well as a directory called “testthat.” It is in this directory that we should store all our test scripts. We can include as many or as few scripts as we want, but all files need to start with “test-”.

When you use devtools to set up the correct package structure for tests, you will also find that it updates the DESCRIPTION file to include testthat as a suggested package. The package is only included as a suggestion because it is not a requirement to have testthat to run your code; however, if someone wants to run your tests, they will need this package.

Once we have included tests inside our package, we no longer need to use the test_file and test_dir functions in testthat to run them. As with all the other components of package building, we can run the tests from RStudio using the Build tab options, or we can use the devtools function test. Running the tests in the simTools package would become

Click here to view code image

> test("../simTools")
Testing simTools
sampleFromData must return data frames of the correct format :

As you can see, the output is just the same as if we had run test_file. When we have structured the tests in this format, they will be run when we run the package checks from Hour 19. However, it is good practice to run your tests before this point if you have made changes to the code so that you don’t get to building your package before you realize that you have introduced an error. Given the ease with which we can run tests inside a package, it won’t take a lot of effort to run test on a regular basis.

Tip: Test-Driven Development

One means of code development that you might find useful is an idea known as test-driven development. In this approach to development, we start by writing tests for what we want our package to do that will initially fail, and then we develop the code. When the test passes, we have completed that component. This is a useful way to develop code if you have a large number of requirements or if you are adding requirements, because you can always see what you have done so far and what is left to do.

Including Data in Packages

As you will know from using other R packages, it is not only code that can be incorporated but also data. This is useful if you have a dataset that you want to be able to use for examples or that you want to make available to others for a specific purpose or even as a reference dataset for functionality in your package. Just as with all other components of a package, we can use devtools to simplify adding data to a package.

Where we add the data will depend on what its purpose is. Data that we want to be available to end users or available for examples or user guides should be stored in the “data” directory. If we haven’t yet added data, this won’t exist in our package structure but will be added when we run the use_data function. This function, in the devtools package, both sets up the correct structure and adds the data we want to include in an appropriately compressed format. The dual purpose of this function means that it is slightly different in usage from other devtools functions for which we simply provide the file path to the package. As an example, let’s create a simple dataset that we will add to our package:

Click here to view code image

> exampleData <- data.frame(ID = 1:10, Value = rpois(10, lambda = 5))
> use_data(exampleData, pkg = "../simTools")
Saving exampleData to data/exampleData.rda

You will notice here that in the use_data function, we have first listed the data objects we want to have included. Because we can provide any number of data objects, we need to specify the package in which to include the data using the pkg argument. This will create the “data” directory for us as well as compress the data and add it to the package structure.

With the data in this format, we can now load the package and see the data, just as we use data in any other package, by giving the name of the data set. Note that it retains the name we gave the object when it was created (in this case, exampleData).

If you were to run the package checks now, you would find that this creates a warning in the check because any object that can be seen by the user must have a corresponding help file. So the next step we need to take is to provide the documentation. As you saw in Hour 19, we can use roxygen2 to create package documentation, and this extends to help files for data sets. This is very similar to how we document a function, but we use an alternative tag, @format, to describe the structure of the dataset. In addition, rather than giving the function call after the header, we give the name of the dataset. As an example, consider Listing 20.2, where we have created simple documentation for the dataset we just added to the package. This header needs to be saved in an R script in the R directory. As discussed in the previous hour, the naming of these files is up to you but it is generally good practice to name so that it is easy to identify the file.

LISTING 20.2 Roxygen Header for a Dataset

Click here to view code image

 1: #' Simple example of including data
 2: #'
 3: #' This is a simple example of how we can include data in a package
 4: #' and provide the corresponding documentation.
 5: #'
 6: #' @format A data.frame with 10 rows and two columns:
 7: #' \describe{
 8: #' \item{ID}{Unique identity variable}
 9: #' \item{Value}{Simulated value (g)}
10: #' }
11: #'
12: #' @source Simulated data
13: "exampleData"

You will see that we have documented each column of the data. It is a good idea here to state what the column of data contains as well as any units relevant to that column—for instance, “inches” or “pounds” if you were giving measurements of distance or weight. You might also notice in this example that we have used the tag @source, which is a handy way of detailing where the data came from—obviously, in this case, the data was simply simulated, but this may be details of the location of the original data.

Tip: Adding More Data

We can still use the use_data function to add datasets later in the package development, even if we have already set up the package structure. We use the function in the same way, but the function itself won’t create (or overwrite) a data directory.

If we want to include reference data that is used by a function in our package but is not visible to the end user, we save the data in a file named sysdata.rda in the R directory. Again, we can use the use_data function to incorporate such data, but in this instance we add the argument internal = TRUE. Unlike the user-visible data in the data directory, we do not need to document this data. Including a dataset in this way would look like the following:

Click here to view code image

> hiddenData <- data.frame(ID = 1:5, Ref = rnorm(5))
> use_data(hiddenData, pkg = "../simTools", internal = TRUE)
Saving hiddenData to R/sysdata.rda

Including a User Guide

In R, a user guide is typically referred to as a vignette and is typically a means of extending the package help files to describe the typical workflow of your package or to give extended details of what you have implemented in your package. If you are sharing your package with others, you will typically need to provide some form of documentation to help them get started. By including this in the package itself, you can be sure that it is always available to the users, that you can easily keep it up to date, and that the code in the vignette actually runs without error because it is checked as part of the package checks.

You can see the vignettes available for a package by using the browseVignettes function. This will allow you to navigate vignettes for all packages or for a specific package. Here is an example:

Click here to view code image

> #browse all vignettes
> browseVignettes()
> # browse for a specific package
> browseVignettes("roxygen2")

A package can include multiple vignettes, which is useful if you want to include more detailed information about specific components of your package.

Including a Vignette in a Package

When it comes to writing a vignette, we now have multiple options for the tools we use. Traditionally we used Sweave, which requires knowledge of LaTeX, a markup language that allows us to combine text, R code, and mathematical expressions. Since R version 3.0.0, we can use any package to create a vignette that can produce HTML of PDF files. This means that we can now use the package knitr, which allows us to use R Markdown for our vignettes. In this section, we will look at how to incorporate a vignette in a package and get started with creating one.

As with all other aspects of our package, we are going to use devtools to help us get started. It is now a best practice to include package vignettes in a vignettes directory. We can of course create this directory directly; however, the use_vignette function will not only create that directory but it will add all the required components to the DESCRIPTION file, and it will create a template vignette file for us to start working with. To get started on a quick-start guide to using our simTools package, we would run the following line:

Click here to view code image

> use_vignette("QuickStart", pkg = "../simTools")

The first argument here gives the name of the vignette that we want to create so that the template file takes the correct filename. There will now be a vignette directory containing the file QuickStart.Rmd. You will also find that the package knitr has been added to the list of suggested packages in the DESCRIPTION file and that a new field, VignetteBuilder, will also have been added with knitr listed as the required package to build the vignette.

The vignette file incorporated in your package will be checked when you run the usual package checks, and it will be built into an HTML file when you build the package. During development of the vignette itself, the easiest way to preview the file you are creating is to simply use the Knit button in RStudio. First of all, open the file that was created for you. This is a “.Rmd,” or RMarkdown, file. We will return to how to write this in the next section, but you will initially find that the file has been populated with some sample text. In RStudio, opening this file will have given you some alternative options across the top of the file viewer, one of which being “Knit.” Selecting this option, you will build the file into the corresponding HTML file and a preview will be opened in the Viewer tab.

Tip: Building Vignettes Without RStudio

If you don’t want to use the built-in options in RStudio, you can build your vignettes by running the function build_vignettes in the devtools package. This is used the same as other devtools functions, passing the package as the main argument. This will create the directory inst/docs, which will contain the .Rmd file, an R script, and the built HTML vignette.

Writing a Vignette

R Markdown is simple to read and write markup language that allows us to incorporate text, R code, and output in a single file. In this section, we introduce the basics of markdown. For more details on creating documentation and reports in R, see Hour 23, “Dynamic Reporting.”

Because the step we took in the previous section created a sample file for us, we will start with this. All R Markdown documents use a header at the top of the file to give details such as the title, author, and date, as well as details on the type of file to generate. For a vignette we also have some extra components. Listing 20.3 shows what this template header looks like. As you can see, we have the title and author components that we can update as well as the date (which in this case updates dynamically). We can optionally remove these components, if we don’t want the date to appear, for instance. The remainder of the header gives instructions relating to building the vignette and creating an index of vignettes, as we saw when we ran browseVignettes. The only thing that we need to change here is on line 7, where we need to update the Vignette Title text to match the title on line 2.

LISTING 20.3 Vignette Header

Click here to view code image

 1: ---
 2: title: "Vignette Title"
 3: author: "Vignette Author"
 4: date: "`r Sys.Date()`"
 5: output: rmarkdown::html_vignette
 6: vignette: >
 7: %\VignetteIndexEntry{Vignette Title}
 8: %\VignetteEngine{knitr::rmarkdown}
 9: %\VignetteEncoding{UTF-8}
10: ---

The actual content of the guide is up to you to determine, but a useful guide to produce would walk the user through the main workflow. How do you get started using your package? What are the main functions in your package that a user should look at? There is no need to go into all of the details about all the function arguments, but this type of guide will point a user in the right direction, and they can then use your function help files for more details. As an example, we might produce a guide for our simTools package that guides the user to the sampleFromData function as a starting point for their simulation.

When it comes to starting to write the document, we need to know the basics of markdown. It is quite a limited markup language, but that shouldn’t prevent you from being able to create a functional user guide to your package. Some examples of markdown syntax can be seen in Table 20.1.

[image: Image]

TABLE 20.1 Basic Markdown Notation

An example of how a user guide for the simTools package might look can be seen in Listing 20.4. You will notice that the file created for us by devtools contains text, which can be deleted, and that also includes examples of many of these features.

LISTING 20.4 Example of User Guide Content

Click here to view code image

 1: This guide is intended as a means of quickly getting started with the package
 2: **simTools**. It will introduce the main workflow of the package.
 3:
 4: ## Getting Started
 5:
 6: The main function in the **simTools** package is `sampleFromData`. This function will
 7: allow you to generate random samples from a given data set. It is useful for
 8: simulation experiments.
 9:
10: ### Loading the package
11:
12: Before starting you will need to load the package in the usual way using either
13: `library` or `require`.
14:
15: ### Running the main function
16:
17: Once the package is loaded we can run the function as follows:

One of the main components of interest to the reader of your vignette will be examples of code and how to run the functions in your package. We include code in vignettes in special code blocks. An example of a code block is shown in Listing 20.5. We use the triple back ticks to mark the start and end of the code block, as you can see on lines 1 and 5. You will also notice the {r} after the back ticks on line 1. This indicates that the code in this block should be executed as R code. We can also include options for the code block inside these curly brackets. We will return to this in Hour 23.

LISTING 20.5 Including a Code Block

Click here to view code image

 1: ```{r}
 2: library(mangoTraining)
 3: example1 <- sampleFromData(demoData, size = 5)
 4: example1
 5: ```

Inside the code block we can include any executable code we want, including code that generates graphics. Note that the code will be checked during the standard package checks as well as the build, and any packages used to run examples in the vignette need to be included in the suggests field in your DESCRIPTION file as a minimum. When this code block is included in our vignette, it will include not only the code run but also the output generated. An example of how the code block in Listing 20.5 would be rendered is shown in Figure 20.1.

[image: Image]

FIGURE 20.1 Example of the HTML version of code blocks in vignettes

We can include as much text and as many code blocks as we want into a vignette, but it is worth remembering the reader. If you find your vignette is quite long, you may want to split it into multiple files so it does not seem as long and difficult to read. However, this is entirely up to you.

Code Using Rcpp

You saw in Hour 18 that we could easily incorporate code written in C++ using the package Rcpp. If we have done this and we then wanted to put that code into our packages, we would need to know how to include the code in our packages. As you have seen in the previous section, devtools has simplified all aspects of incorporating additional package components, and the function use_rcpp will help us at this point.

Any source code that is not R code is included in a directory called src. The use_rcpp function will create this directory for us, along with handling the updating of the DESCRIPTION file. As an example, in our simTools package we would run the following:

Click here to view code image

> use_rcpp("../simTools")
Adding Rcpp to LinkingTo and Imports
Creating src/ and src/.gitignore
Next, include the following roxygen tags somewhere in your package:
#' @useDynLib simTools
#' @importFrom Rcpp sourceCpp

You will notice that this also tells us to add some roxygen tags in the package. You can include this anywhere in the package, but the most sensible place would be in the overall package help file. These two tags will ensure that the C++ code is loaded when the package is loaded.

At this point, we can include the .cpp files, which we discussed in Hour 18, in the source directory. As an example, suppose that we included the sampleInC function that we wrote in Listing 18.5 of Hour 18 in our package. Including this in a .cpp file in the src directory with the same structure that we saw previously, we cause the check and build process for the R package to create the appropriate additional files in both the src and R directories for us. If we are simply using this function in other R functions and we do not intend the end user to see the function, this is all we need to do and we can start to use the function in our code. The function will not be exported but will be available to any code that requires it.

If we want to export this function to be visible to the end user, we will need to include an equivalent roxygen header in the .cpp file. This will be identical to the headers for R functions as we saw in Hour 19, but we use the C++ comment character to indicate the header rather than the R comment character. An example of what the file header would look like can be seen in Listing 20.6.

LISTING 20.6 Including a Code Block

Click here to view code image

 1: #include <Rcpp.h>
 2: using namespace Rcpp;
 3:
 4: //' Sample a series of 0s and 1s
 5: //'
 6: //' @param len A single integer giving the final length.
 7: //' @export
 8: // [[Rcpp::export]]

After you have updated the file, you will need to update the package documentation in the usual manner before building your package. You will then have the function sampleInC available to the end user and a corresponding help file for the user to reference. Of course, just like R functions, it is beneficial to include this header for all functions but simply omit the @export tag if you do not want the function to be available to the end user.

Summary

In this hour, you saw how to improve packages, making them more robust, user friendly, and easier to manage. Although these components are not a requirement of a package, they are considered to be best practices, and we would recommend that you get into the habit of structuring your packages in this way, in particular with tests and user guides. In the next hour, we will introduce classes and how to develop our own classes to make code more robust and user friendly.

Q&A

Q. Do I really need to include tests? Isn’t it going to take a long time?

A. You do not need to include any of the package components mentioned in this hour; however, it is good practice to include tests and a vignette. Tests will help you to ensure the quality of your code and make it much easier to make changes to the code in the future knowing that they will not impact the code adversely. The first time you write tests it may take you longer as you get used to the structure, but this will quickly become second nature, and if you do it as you write the code rather than all at the end, it won’t add much to the development time.

Q. Can I include data in a .csv file in my package?

A. Yes, you can include any raw data file that you like in your package, but this is done in a slightly different way. In this case, you should create a directory in the inst directory to contain the data (for instance, inst/extdata). You can then access this data using the system.file function and pointing to the rawdata directory of the package, like so:

Click here to view code image

system.file("extdata", "myFile.csv", package = "simTools")

Q. I know LaTeX. Can I use this for my vignette instead of markdown?

A. Yes, you can. You simply create your vignette in an .Rnw file rather than an .Rmd file. You will need to include lines 7–9 in Listing 20.3 in your document header.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. Why should you include tests in a package?

2. How would you include data in your package that is not intended to be seen by the end user?

3. What are user guides known as in R?

4. What is the simple markup language that you can use for vignettes?

5. In which directory do you put C++ code?

Answers

1. Tests help you to ensure that your code does what it is meant to do. If you make changes to the code, you can re-run the tests to ensure that the code still runs as expected. You can also write tests for any bugs you identify so that you can continually check that they don’t end up back in your code due to changes that you make.

2. You can include data in your package using the use_data function. You can ensure that this is only available to the package by using the argument internal = TRUE, which will store the data in the R directory rather than the data directory.

3. Longer user guides in R are referred to as vignettes. You can see all of the package vignettes by using the browseVignettes function.

4. You use the markup language markdown. We can also use LaTeX for writing vignettes.

5. Any C++ code, or other compiled code, is included in the src directory.

Activities

1. In the activities for the last hour we developed a package called summaryTools and we wrote two functions for this package. Using the methods introduced in this hour, add a test framework and tests for each of the functions you created.

2. Update both functions to include some simple error checking of the arguments. Ensure that the tests you have written still pass, and add further tests to test the error handling.

3. Create a simple dataset, summaryData, that contains three columns: ID, which should be a numeric factor that is unique for each row; Group, which is a random sample of the values “A” and “B” to identify the group each value is in; and finally “Observed,” which is a sample from a random normal distribution.

4. Include this data in your package and ensure that it is well documented.

5. Create a simple vignette for your package that explains how the user should run your functions.

6. Rebuild and check your package, ensure that all tests pass, and that you can access the data and vignette once your package is loaded.

Hour 21. Writing R Classes

What You’ll Learn in This Hour:

[image: Image] What a class is

[image: Image] How to create an S3 class

[image: Image] Generic functions and methods

[image: Image] Inheritance in S3

[image: Image] Documenting in S3

[image: Image] Limitations of S3

Now that you have seen how to build an R package, we will take a closer look at the class structures available in R and the benefits of implementing such structures in an R package. Classes and object orientation are concepts that will be more than familiar to anyone who has majored in computer science. Any readers familiar with these concepts will also be aware that despite many common themes between languages, there is no standard cross-language approach to object orientation.

It may come as no surprise to learn that R has several takes on what constitutes object-oriented programming. In this hour, we take a general look at some key features of object-oriented programming before focusing in on R’s S3 implementation. In Hour 22, “Formal Class Systems,” we will look more closely at some of the other options available to us in R.

What Is a Class?

In Hour 16, “Introduction to R Models and Object Orientation,” and Hour 17, “Common R Models,” you saw how to build and compare various types of models in R. In order to do so we took advantage of R’s S3 class structure. Our model objects had classes such as lm and survreg. We used the print, plot, and summary functions to analyze the models. For each class of object, the print, plot, and summary functions behaved in different ways, producing output appropriate to the class of model. Functions that behave differently depending on the class of input are known as “methods.”

The class and method concepts are fundamental to object-oriented programming. When we refer to a “class system” in R, we are talking about an object-oriented system, of which R has several.

Object Orientation in R

Back in Hour 1, “The R Community,” we discussed the history of S and its impact on R today. Nowhere is this impact felt more greatly than on R’s class system, particularly when it comes to modeling. Another claim we made in Hour 2, “The R Environment,” was that R is “loosely” object-oriented. In R, everything is an object and has a name and a class. There is also a clear distinction between data objects and function objects. The distinction between objects and functions that act on objects is the basis of an object-oriented programming environment. However, the functions that we write do not have to be associated with a particular class of object. We must therefore choose to use the object-oriented features available in R. In R today, there are actually four common class implementations: S3, S4, reference classes (a.k.a R5), and R6. The “S” in S3 and S4 refers directly to S, whereas the numbers refer to the S versions within which the classes were unveiled. Those that use the term “R5” for reference classes or R6 are simply continuing the number sequence. The terms have absolutely nothing to do with R versions.

Despite the sequential release of new class structures in R, the vast majority of R packages on CRAN today either implement an S3 system or no system at all. The S3 system is particularly appealing for package developers with an analytical background due to its relative simplicity and less rigid rules. This makes it more accessible when sharing code with other analysts. As you will see in Hour 22, the more rigid structures of the other class systems lend themselves more toward application development in R. However, even these implementations could be considered relaxed when compared with traditional object-oriented development languages such as Java.

Why Bother with Object Orientation?

In order to write professional-level code, we need to ensure that we are following good programming practice. Everyone tends to have their own definition of precisely what this means, but the central concepts are based around

[image: Image] Readability

[image: Image] Maintainability

[image: Image] Efficiency

In Hour 18, “Code Efficiency,” we looked closely at code efficiency. In Hour 19, “Package Building,” we then discussed code quality and talked about how adherence to a naming convention, regular commenting, and consistent layout and spacing can improve readability. In Hour 20, “Advanced Package Building,” we looked at building a test framework to help improve the maintainability of our code. Object orientation builds upon the theme of maintainability.

It is much easier to develop, test, and hence maintain modular code. We write modular code by ensuring that functions remain small and, where possible, have a single purpose. The modular approach facilitates the development of unit tests. In many cases, just writing modular code is sufficient to ensure that our code base is maintainable. The concept of object-oriented programming extends the idea of modular code and introduces other useful concepts such as type checking and inheritance.

Fundamentally, a class structure lets us define a consistent behavior for objects of that class. Once we can be sure that an object is of a particular structure, we can construct methods (functions) that understand this structure and react accordingly.

Class Example

Let’s imagine for a second that the data.frame class did not exist. Hopefully you would agree that with only vectors, matrices, arrays, and lists to store information, analyzing data would be pretty tough! We are used to thinking of data as a rectangular structure with a number of rows and columns. Each column contains a different type of information in which we are interested (dates, times, numeric values, character, and so on). Given that vectors, matrices, and arrays are all single-mode objects and can only store data of a single type, the only option available to us would be to store our data as a list. However, a list can store any object, whereas we only want to store columns of data. We therefore need to impose some rules on our list:

[image: Image] Every element must be a vector (to ensure we have “columns” containing a single type of data)

[image: Image] Each vector must have the same length (to ensure that we have a fixed dimension)

[image: Image] Each “column” should have a name attribute (for easy referencing of columns)

These rules ensure that our list functionally behaves like a rectangular data structure, but we also need it to look like one. We therefore impose the further rule:

[image: Image] The list looks like a rectangular data structure

To see what an object looks like, we usually just type its name and press Enter. In R, typing an object’s name is a shortcut for calling the print function on the object. When we say, “the list looks like a rectangular data structure” what we really mean is, “when we call print on the object, it looks like a rectangular data structure.” In summary, we have defined three rules that specify the structure of a data frame object and one rule that defines how the print function should behave when we pass it a data frame object. In other words, we have defined a “data frame” class and a print method for this class.

We don’t just want to print data frames, however. Once we have defined the structure, we can also define what happens when we call subset on the structure. We can write additional methods such as head and tail, which return the first and last few rows of data, respectively. We can write nrow, ncol, and dim methods. We can also define what happens when we call plot or aggregate. What we get from defining classes is structure and control. So long as we create an object of the right structure, we know that our methods will function as expected.

Inheritance

In object-oriented programming, inheritance is extremely useful to us because it keeps our code modular and saves us from duplicating code. When programmers talk about the benefits of inheritance, they typically talk about defining animals. Let’s imagine we want to define a cat object and a dog object. Cats and dogs have a lot in common. Among the many things they do, they eat and they sleep. However, a cat meows and a dog barks. Defining cats and dogs separately results in duplication; for each animal we must define what it means to eat and what it means to sleep. The idea of inheritance allows us to define an object hierarchy. First, we define what it means to be an “animal” object. An animal eats and an animal sleeps. We say that “cat” and “dog” objects inherit these properties from the “animal” object. We can then define the additional “meows” property for cats and “barks” property for dogs. Should we ever need to change what it means to eat or sleep, we need only make a single change to the “animal” object.

Each of the object-oriented systems in R benefits from inheritance. Consider the data.table class from the data.table package you saw in Hour 12, “Efficient Data Handling in R.” We can think of a data.table object as a data frame that, among other things, prints nicely when there are many rows. There are actually only a handful of methods that respond specifically to data.table objects. The rest of the functionality is inherited primarily from the data.frame class. Where a method has not been defined for the data.table class, R defaults to the method for the data.frame class. Beyond that, R defaults to the default method for an S3 object (of which data.frame objects belong). For example, calling summary on a data.table object still returns a statistical summary of each column as it would for a data.frame object, even though no summary method has been specifically written for the data.table class. Inheritance is a powerful idea that enables us to easily build upon the work of others.

Note: Multi-Level Hierarchy

The tbl_df class actually inherits from a tbl class, which in turn inherits from a data.frame. This is an example of multi-level hierarchy. We can use this property to build hierarchical class structures.

Why Use S3?

We begin our tour of R classes by looking at R’s most common class implementation, S3. Each of the basic data structures we have looked at throughout the book use an S3 structure. Standard linear models, generalized linear models, survival models, and mixed effects models all use an S3 class structure. We therefore know that we can print, plot, or summarize these objects in a consistent manner. By developing our own packages with S3, we can take advantage of this consistency by defining our own print, plot, and summary methods for a new class of object. We can also use S3 to create new methods specific to our new class of object.

The S3 class implementation is a form of generic function object-oriented programming. In generic function object-oriented programming, we call generic functions that then determine which function is appropriate to use with our object. For example, when we pass an object of class lm to the generic plot method, the method determines that the plot.lm function should be used. This type of implementation is rare among programming languages and is often frowned upon by experienced software developers. However, like R itself, the S3 class system is relatively straightforward to learn and is extremely popular among data scientists and statisticians alike. The implementation strikes a nice balance between the full flexibility of the R language and the more controlled rigor of other object-oriented programming languages.

Creating a New S3 Class

In most object-oriented programming environments, we begin by formally defining the structure of the class. We also place restrictions on each element of the class. However, S3 implements a lazy form of object-oriented programming that allows us to instantiate (create instances of) a new class without formally defining the class.

Instantiating S3 objects is incredibly straightforward. Remember that every object in R has a class. We can query the class of an object using the class function. Here’s an example:

> x <- 5
> class(x)
[1] "numeric"

The same class function can be used to change the class of an object. In the following example, we change the class of our numeric x value to a new class called superNumber.

Click here to view code image

> class(x) <- "superNumber"
> x
[1] 5
attr(,"class")
[1] "superNumber"

In this ad-hoc manner, we can change the class of any object to anything we like, whether we have defined the new class or not. Note that the class of an object is returned as an attribute. Objects can have several attributes that are returned via the attributes function:

> attributes(x)
$class
[1] "superNumber"

Tip: Removing a Class

We can return an object without its class attribute using the unclass function. The unclass function removes the class attribute, leaving only the underlying object and any attributes, as shown here:

Click here to view code image

> aDF <- data.frame(X = 1:3, Y = rnorm(3))
> aDF
 X Y
1 1 0.52409671
2 2 -2.26076788
3 3 -0.01967972
> unclass(aDF)
$X
[1] 1 2 3

$Y
[1] 0.52409671 -2.26076788 -0.01967972

attr(,"row.names") [1] 1 2 3

Note that unclass returns a new object and does not affect the original object.

A More Formal Approach to Creating Classes

As you have seen, it is very easy to change the class of an object. However, it is not considered good practice to do so, nor is it particularly useful, especially if our goal is writing packages. A more standard approach is to define the structure that our class should take and then write a function that creates objects of that class. This is known as a “constructor” function. Traditionally, functions that generate objects of a particular class are named after the class of object that they create. For example, the ts function creates time series (ts) objects.

Because we are introducing a formal method for creating a class, let’s start with a more formal example and write a class for modular arithmetic. If you are not familiar with modular arithmetic, consider time as specified by a typical 12-hour clock. Imagine it is three o’clock (we ignore a.m. and p.m. for this example). In 10 hours’ time, we will say it’s one o’clock. We won’t say it’s 13 o’clock. A 12-hour clock is an example of “mod 12” arithmetic. We call the number 12 our “modulus.” Numbers must always be between 0 and 11 (when we hit 12, we restart at zero). We now define this formally in R using an S3 class structure. In lines 1 to 11 in Listing 21.1, we create a new class called modInt. Our object consists of an integer value and a modulus attribute. Some examples are also provided to illustrate the behavior of the constructor function.

LISTING 21.1 Writing a Function to Generate a New Class

Click here to view code image

 1: > modInt <- function(x, modulus) {
 2: + # Create the object from the starting number and modulus, "mod"
 3: + # Divide by the modulus to get new number appropriate for that modulus
 4: + object <- x %% modulus
 5: + # Assign a class attribute to the object
 6: + class(object) <- "modInt"
 7: + # Store the modulus as an attribute
 8: + attr(object, "modulus") <- modulus
 9: + # Return the new object
10: + object
11: + }
12: > # Examples
13: > modInt(3, 12)
14: [1] 3
15: attr(,"class")
16: [1] "modInt"
17: attr(,"modulus")
18: [1] 12
19: > modInt(13, 12)
20: [1] 1
21: attr(,"class")
22: [1] "modInt"
23: attr(,"modulus")
24: [1] 12

We have now created a constructor function that generates objects of our chosen modInt class. On its own this could perhaps be a useful function. However, to really see the benefit of the S3 class structure, we need to define some generic functions.

Generic Functions and Methods

Generic functions are functions that can behave differently depending on the class of object passed to them. The precise behavior is controlled by further functions known as methods. You saw the generic methods print, plot, and summary in Hour 16. If we inspect the source code of the print function, for example, we see that it calls the UseMethod function. It is the UseMethod function that determines which method function to call.

Click here to view code image

> print
function (x, ...)
UseMethod("print")
<bytecode: 0x00000000094cda60>
<environment: namespace:base>

As you saw in Hour 16, the S3 class structure provides a simple naming convention that we can use to create methods for a new class. The naming convention is as follows:

[genericFunction].[class]

A dot (.) is used to separate out the generic function from the class. The function print.lm defines what happens when we call the print function on an object with class lm. Let’s return to our sample modInt class that we defined in Listing 21.1. The two examples from line 12 onward were functional but not particularly nice to look at. We start by defining a print method to control the appearance of modInt objects. In order to do so, we create a function called print.modInt, shown next, and let R’s S3 class system do the rest:

Click here to view code image

> print.modInt <- function(aModIntObject){
+ # Extract the relevant components from the object
+ theValue <- as.numeric(aModIntObject)
+ theModulus <- attr(aModIntObject, "modulus")
+ # Print the object in the desired form
+ cat(theValue, " (mod ", theModulus, ")\n", sep = "")
+ }
> x <- modInt(3, 12)
> x
3 (mod 12)

Note: Naming Conventions

In the print.modInt function, we use the argument name aModIntObject. This is to illustrate that we should pass a modInt object to the function. However, it is much better practice to follow the naming convention of the generic function that will call the method (in this case, print). The print function takes x and an ellipsis (...), and in practice these are the arguments that a print.modInt function would take. The primary benefit of following this convention is that the help files are much easier to follow. A user unfamiliar with classes is far more likely to type ?print than they are to type ?print.modInt. Further, the names should be in the same order as the generic and adhere to any default values defined in the generic. Following these conventions will vastly improve the usability of your class.

Note: Updating Methods

As with any function, the impact of updating a method is immediate. For example, if we update the print method for a class, then the next time we print an object of that class, it will print differently.

We can see what methods have been defined for a class via the class argument to the methods function:

Click here to view code image

> methods(class = "modInt")
[1] print
see '?methods' for accessing help and source code

The same function can be used to query all methods for a particular generic:

Click here to view code image

> methods("plot")
 [1] plot.acf* plot.data.frame* plot.decomposed.ts* plot.default
 [5] plot.dendrogram* plot.density* plot.ecdf plot.factor*
 [9] plot.formula* plot.function plot.hclust* plot.histogram*
[13] plot.HoltWinters* plot.isoreg* plot.lm* plot.medpolish*
[17] plot.mlm* plot.ppr* plot.prcomp* plot.princomp*
[21] plot.profile.nls* plot.raster* plot.spec* plot.stepfun
[25] plot.stl* plot.table* plot.ts plot.tskernel*
[29] plot.TukeyHSD*
see '?methods' for accessing help and source code

Defining Methods for Arithmetic Operators

Mathematical operators can also be used as generic functions. We define an operator in exactly the same way we do any generic function:

[operator].[class]

Returning to our modInt example, we can use the + operator to define what happens when we add two modInt objects together. The function and some examples are shown in Listing 21.2. Note than when defining methods that involve operators, we place back ticks around the function name to avoid errors.

Caution: Defining Each Operator Separately!

Defining a method for + does not automatically create a method for -, *, or /. These must be defined separately.

LISTING 21.2 Defining Operator Methods

Click here to view code image

 1: > # Define a new method 'add' method for the modInt class
 2: > `+.modInt` <- function (x, y){
 3: + # We can only add objects that are of the same modulus
 4: + if(attr(x, "mod") != attr(y, "mod")){
 5: + stop("Cannot add numbers of differing modulus")
 6: + }
 7: + # Add the numbers together
 8: + totalNumber <- as.numeric(x) + as.numeric(y)
 9: + # Ensure a number in the correct modulus is returned
10: + theResult <- modInt(totalNumber, attr(x, "mod"))
11: + # Next step useful for inheritance (later)
12: + class(theResult) <- class(x)
13: + theResult
14: + }
15: >
16: > # Examples
17: > a <- modInt(7, 12)
18: > b <- modInt(9, 12)
19: > a + b
20: 4 (mod 12)
21: > c <- modInt(3, 4)
22: > a + c
23: Error in `+.modInt`(a, c) : Cannot add numbers of differing modulus

Caution: Operations on Different Classes of Objects

If we try to use an arithmetic operator such as + to combine objects of differing classes, R will attempt to use the method that is higher up the search path. This often results in an error. Attempting to combine S3 classes via an operator in this way is generally not recommended.

Lists vs. Attributes

Usually S3 classes are generated as lists (for example, the data.frame and lm classes). However, to create our modInt example, we used an attribute. This slightly simplifies numeric operations on objects of the modInt class and ensures that our numbers behave like regular integers in cases where we have not defined a method. However, it is just as easy to define the structure as a list, as the following example shows. Here, we create a modIntList class and a suitable print method:

Click here to view code image

> # Define a new modIntList class using a list structure
> modIntList <- function(x, modulus) {
+ # Define a list with two elements containing the number and modulus
+ object <- list(number = x %% modulus,
+ modulus = modulus)
+ # Assign a class attribute to the object
+ class(object) <- "modIntList"
+ # Return the new object
+ object
+ }
>
> # Now define the print method
> print.modIntList <- function(aModIntListObject){
+ # Extract the relevant components from the object
+ theValue <- aModIntListObject$number
+ theModulus <- aModIntListObject$modulus
+ # Print the object in the desired form
+ cat(theValue, " (mod ", theModulus, ")\n", sep = "")
+ }
>
> # Examples
> modIntList(14, 6)
2 (mod 6)

The modInt and modIntList examples are relatively straightforward examples of using classes. Generally we recommend using lists to create S3 classes. A list enables us to easily store different types of objects within our class. The list approach is also more similar to the S4 “slot” approach that we will discuss in Hour 22.

Creating New Generics

When generating your own classes, you might find it sufficient to use existing generics such as print, plot, and summary. However, it can sometimes be useful to define new generic functions, particularly if you want others to build on your work.

We can use the UseMethod function to create our own generic functions. New generics should call the UseMethod function and do nothing else. The methods themselves should do all the work. Always define a default method using [genericFunction].[default]. The default method is invoked in the absence of any other methods. If there is no obvious “one size fits all” default, then a default method that returns a sensible error message should be defined.

Consider writing a generic version that mimics the mathematical square operation. For a numeric value x, this is just x2. But what would such a function do for a character value or an object in our modInt class? In Listing 21.3 we define a new generic named square along with some methods for the cases we have just highlighted. Having very simply defined the generic in line 2, we proceed to define some methods starting with the default method. Some examples of the new generics are shown toward the end of the listing.

LISTING 21.3 Creating a New Generic

Click here to view code image

 1: > # Define a new generic
 2: > square <- function(x) { UseMethod("square", x) }
 3: >
 4: > # Define default method!
 5: > square.default <- function(x) x^2
 6: >
 7: > # Define some more methods
 8: > square.character <- function(x) paste(x, x, sep = "")
 9: >
10: > square.modInt <- function(x) {
11: + # Standard square
12: + simpleSquare <- as.numeric(x)^2
13: + # Use correct modulus
14: + modInt(simpleSquare, attr(x, "mod"))
15: + }
16: >
17: > # Check functionality
18: > square(2)
19: [1] 4
20: > square("A")
21: [1] "AA"
22: > x <- modInt(3, 4)
23: > square(x)
24: 1 (mod 4)

Inheritance in S3

One of the primary reasons for implementing a class structure is that it enables others to build upon it. Inheritance is a concept that allows us to take a class that has previously been defined and extend it. The benefit is that we need only define a handful of new generic functions. The rest are inherited from the base class. As we discussed earlier in the hour, a good example of this is the data.table class of object used by data.table. The data.table class extends/inherits from the data.frame class. We can see this inheritance when looking at the class of a data.table object:

Click here to view code image

> airDT <- data.table(airquality)
> class(airDT)
[1] "data.table" "data.frame"

As you saw in Hour 12, the data.table class changes the way a data frame prints. This is because the author has written a new print method specifically for the class. Other data.frame operations are unaffected by the extension. The summary and plot functions behave in exactly the same way for a data.table object as they do for a data.frame object.

When we query the class of a data.table object, a vector of classes is returned. To construct a new class that inherits from an existing class, we overwrite the class of our object with a vector of classes. For example, if we want to create a clockTime class representing integers as “mod 12” from our modInt class, we do so as follows:

Click here to view code image

> clockTime <- function(x){
+ # Fix x as mod 12
+ x <- modInt(x, 12)
+ # Define inheritance
+ class(x) <- c("clockTime", class(x))
+ x
+ }
> theTime <- clockTime(13)
> class(theTime)
[1] "clockTime" "modInt"

Earlier in the hour we defined a print method for our class. We also defined a method for the new square generic, the + operator. All of these are perfectly functional for our class, though for a clockTime class we expect a slightly different print method. In Listing 21.4 we define a new print method and add two instances of this class together. When we add them together, the modInt method is used because we haven’t defined a `+.clockTime`. However, the result still prints in the clockTime format due to inheritance.

LISTING 21.4 Inheritance in Action

Click here to view code image

 1: > # Define a new print method for the clockTime class
 2: > print.clockTime <- function(aClockTimeObject){
 3: + cat(as.numeric(aClockTimeObject), ":00\n", sep = "")
 4: + }
 5: >
 6: > # Examples
 7: > time1 <- clockTime(5)
 8: > time2 <- clockTime(42)
 9: > time1
10: 5:00
11: > time2
12: 6:00
13: >
14: > # Add together to demonstrate inheritance
15: > time1 + time2
16: 24: 11:00

The example on line 15 works because of a sensible step that we took earlier when defining the `+.modInt` method in Listing 21.2. In line 12 we overwrote the class of the return object with the original class of one of the two objects we started with. If we hadn’t done so, then adding the two clockTime objects would return a modInt object, and we would lose one of the primary benefits of inheritance.

Note: Extending the Class Hierarchy

We can continue to extend classes indefinitely. However, it is rare to see S3 classes extended more than three or four times.

Tip: Checking Inheritance

Occasionally we may need to check that an object inherits from a particular class in order to ensure that a particular method will behave as expected.

Documenting S3

When building packages, it is important to document everything you can. You will see in Hour 22 that documenting more complex classes requires us to use new roxygen2 tags; S3, on the other hand, is much more straightforward. To start with, the class itself has no formal definition, so the only things we can document are the class constructor function, the methods, and any generics that we define. Each of these is a regular R function, and so we use standard tags such as @param and the others listed in Table 19.1 of Hour 19.

Technically we don’t have to generate help files for every method that we define, particularly if the method follows the argument-naming structure of the generic; you may notice that several of the methods in base R do not have help files (try ?print.lm, for example). However, it’s always good practice to create documentation, and roxygen2 makes it so easy, so why wouldn’t you?! Though this may be obvious, it is also helpful to mention in the title and description that the method relates to a particular class of object.

Limitations of S3

One of the reasons that the S3 concept is not popular among software developers is that we cannot formally define a new class of object before instantiating the object, whereas in most class implementations it is common to check that the components of an object are of the expected structure for the class object. The lack of a formal class definition leaves S3 open to user error, unless we decide to go the extra mile and write checks for both the constructor function and the individual methods. Not only does this involve a lot of duplication, we may soon find that half our code base is dedicated to error handling. If the prevention of user error matters that much, it’s time to step up to S4 classes or beyond.

The concept of inheritance is also fairly weak in S3; we have to be very careful to ensure that our methods allow for inheritance and do not force the creation of objects of one particular class. In class systems such as S4, inheritance is more formal, and type checking and validity are passed from the parent class through to the child class.

Summary

Following on from Hours 19 and 20, where you saw how to construct an R package, you have now seen how classes—and S3 classes in particular—can be used to improve package maintainability and add structure to our code base.

In Hour 22, we look at the more formal forms of object orientation available in R, starting with S4 classes. This will open the door to new concepts such as validity checking, multiple dispatch, and message-passing object orientation.

Q&A

Q. If S3 was the first implementation in S, isn’t it time to move on to something more advanced?

A. Perhaps. Many people don’t like S3, saying, “It’s lazy,” “It’s not a proper class implementation,” and so on. However, most of the good bits of R use S3 classes, and it’s usually better to try to build on top of the good bits!

Q. I’ve heard that S3 isn’t actually a class system at all. Is this true?

A. It’s not a very strict system, but it is, nevertheless, a class system. Technically it is an informal form of generic function object-oriented programming.

Q. If an S3 method takes the form [genericFunction].[class], what is going on with data.frame?

A. R has its quirks! It can be confusing to understand what is going on with functions such as print.data.frame. To confuse things even more, it is entirely possible to create a frame class and define a print.data method for that class, but I suggest you don’t! The overall message here is that R is flexible, and though a period can indicate the presence of an S3 class implementation, it can also just be part of an object’s name. That said, it’s good practice not to use periods when naming variables.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. True or false? S3 and S4 classes were first introduced in S version 3 and S version 4, respectively.

2. Which of the following should be used to plot the object myLm of lm class?

A. plot

B. plot.lm

C. plot.myLm

D. myLm.plot

3. How do you find out what methods are available for an S3 class?

4. What is the name of the function used to define new generics?

5. True or false? You must document an S3 method when building an R package.

Answers

1. True. This is another case of R inheriting behavior from S.

2. A. Technically plot.lm can be used directly; however, directly invoking a method is generally discouraged.

3. You use the methods function and specify the class= option.

4. The UseMethod function enables us to create new generics. We define a generic by writing a function that calls UseMethod.

5. False. However, you really should document it, particularly if the method does anything sophisticated.

Activities

1. Define a new S3 class. The aim of the class is to store simulated data from various known statistical distributions. In order to construct the new class, create the following items:

[image: Image] A constructor function that takes inputs n and distribution, representing the number of values to sample and the distribution to sample from. Ensure that the function has the option for other parameter arguments, as needed.

[image: Image] A print method that displays a table of summary statistics for the simulated data (mean, median, standard deviation, min, and max).

[image: Image] A plot method that draws a histogram of the random numbers, with a default title that states from which distribution the data has been simulated and how many values have been simulated.

Hour 22. Formal Class Systems

What You’ll Learn in This Hour:

[image: Image] S4 classes

[image: Image] Reference classes

[image: Image] R6 classes

[image: Image] Other available class systems

In Hour 21, “Writing R Classes,” you were introduced to the concept of classes, and we walked through the basic features of an S3 class in R. The S3 system provides a soft introduction to classes, allowing much of the flexibility that we have become accustomed to with R. In order to provide this flexibility, however, some of the main benefits of a more formal class system have been sacrificed. When developing S3 classes, we still need to be very careful to check that the input values are handled appropriately. Further, inheritance is not formally defined and we must be careful to write functions that allow for it.

During this hour, we look closely at two alternative class systems available in R: the S4 system and Reference Classes. Along the way, you will be introduced to new concepts such as validity checking, multiple dispatch, message-passing object orientation, and mutable objects.

S4

The S4 system was introduced in S version 4. Like S3, the S4 system is a form of generic function object-oriented programming. However, the system is much more formal and requires that we define the class structure before instantiating objects. This makes it easier to write methods because it is not possible to pass an object with the wrong structure to an S4 method.

The S4 system also benefits from a more formal form of inheritance that is specified when we define a class. When we extend an S4 class, all of the type and structure checking from the parent class is passed on to the child, thus reducing the need for duplicate code. Finally, S4 supports something called multiple dispatch, meaning that generic functions can operate based on multiple inputs.

Instances of S4 structures are rare in the base and recommended R packages, though the structure is used in several of the additional packages available on CRAN and throughout the BioConductor package repository. There is a tendency for S4 package names to end in 4, particularly where they implement something that has already been implemented in an S3 structure. This is not strictly adhered to, however.

Working with S4 Classes

It is slightly easier to find information about S4 classes and methods than it is with S3. To start with, we can find out if any object is an S4 object using the function isS4, to which we pass any R object. The isS4 function simply returns TRUE if an object is an S4 object and FALSE otherwise. Once we know that we have an S4 object and have ascertained the class (using the class function), we can call upon a number of other useful functions to find out more information about the class. Table 22.1 lists three functions that can be used to find out more information about a class. The table also describes their usage, with an example of usage for the merMod class contained within the lme4 modeling package.

[image: Image]

TABLE 22.1 Querying S4 Classes

If we are working with a new package, we can find out what classes it contains using the getClasses function—for example, getClasses("package:lme4"). The same function can also be used to list all classes currently defined within in an R session. Similarly, the getGenerics function can be used to list all available generics within a package or an R session generally.

A list of all the methods available for a generic function may be obtained via the showMethods function. Here’s an example:

Click here to view code image

> showMethods("tail")
Function: tail (package utils)
x="ANY"
x="Matrix"
x="sparseVector"

The methods function you saw in Hour 21 also works with S4 classes.

Tip: Help with S4

Constructors and generics are named R functions, and we can find help in the standard way, either via the RStudio GUI or by typing ?functionName. Unlike S3 classes, S4 classes are formally defined and can therefore be documented. We use a special syntax of the form class?className in order to find out more about the class.

Defining an S4 Class

In the previous section, we stated that an S4 class must first be defined before we can instantiate objects. In other words, we cannot simply take an object and assign it a new class as we could with S3. This means that S4 classes can take longer to construct; however, the more formal definition provides us with benefits, such as the following:

[image: Image] Type-checking

[image: Image] Validity

Type-checking and validity ensure that when we define a class, objects within that class adhere to a particular structure and type. Unlike with S3, we can therefore assume that the structure is correct when we write methods for our class. This saves us from having to write additional error-handling steps within the methods and avoids duplication of code, thereby improving the maintainability of our code.

Setting the Class

To formally define an S4 class, we use the setClass function. The setClass function lives in the methods package, which is loaded by default when we start R interactively. Structurally, you can think of an S4 class as being a bit like an R list, where each element of the list is an R object with its own type and structure. In S4 terminology, we refer to these elements as “slots.” The formal structure of an S4 class requires that we define the required structure for each slot—for example, integer, numeric, character, matrix, and so on. The two primary arguments to the setClass function are therefore the name of the class and a slots argument that defines the structure of the class. The slots argument expects either a list or a named character vector, where the names represent the names of the slots and the data represents the object type.

Caution: Loading the methods Package

When we start R in interactive mode, the methods package is loaded by default. However, R can also be executed in batch mode via Rscript, which does not load the methods package by default. When integrating an S4 structure into your own package, you should add a dependency on the methods package.

Let’s start by looking back at the modInt structure that we defined in Hour 21. We take the basic concept of the structure and define it instead as an S4 class named modInt4. For any object in our class, we must store two important pieces of information: the base number and its modulus. Each of these is integer, so we specify their structure using the integer class. Note that although modular arithmetic only works with integer values, we don’t actually need to store the data as integer, because numeric would suffice. However, we later use the data type to illustrate the impact of this formal definition.

Click here to view code image

> setClass("modInt4", slots=c(x = "integer", modulus = "integer"))

Caution: Change in Definition

Historically, S4 slots were defined via a representation argument within the setClass function. A representation function was then used to define both the slot structure and any inheritance. Although this functionality is now deprecated, representation is still the second argument to setClass for compatibility reasons. The S3methods, access, and version arguments are similarly deprecated. Further information is provided within the setClass help file.

We also use the setClass function to define inheritance, which we’ll return to later in the hour.

Creating a New S4 Instance

Once we have formally defined a class, we can begin to create objects of that class. As with S3, it is good practice to do so via a class constructor function, though again it is not necessary. To generate an S4 object, the constructor function must include a call to the new function. The new function does the hard work of creating a prototype object from the class definition and populating the slots with any inputs we provide. The call to new ensures that our class has the required slots and that the information contained within each slot is of the correct type.

The first argument is the Class argument. This tells R what class is to be instantiated. Any slot names for the class are passed via an ellipsis (...). In the following example we create a constructor function for the modInt4 class that we previously defined. The final line contains the required call to the new function.

Click here to view code image

> modInt4 <- function(x, modulus){
+ # Divide by the modulus to get new number appropriate for that modulus
+ x <- x %% modulus
+ # Create a new instance
+ new("modInt4", x = x, modulus = modulus)
+ }

Having defined the constructor, we are now ready to create objects of our class. The following examples demonstrate the behavior of the type checking. In the first example, we pass the non-integer pi value and the integer 12L. We use L to ensure that the value is stored as integer as opposed to numeric.

Because pi is non-integer, the object cannot be created, and we receive an appropriate error message. In the second example, we pass two integer values that are actually stored as numeric in R. Again, the object cannot be created because both x and modulus must be of integer type. In the final example, we pass 4L and 12L. Both are integers, and our object is successfully created. Note that by default the name of the class is printed along with each of the slots.

Click here to view code image

> # Try to create some objects of our class
> modInt4(pi, 12L)
Error in validObject(.Object) :
 invalid class "modInt4" object: invalid object for slot "x" in class "modInt4":
 got class "numeric", should be or extend class "integer"

> modInt4(4, 12)
Error in validObject(.Object) :
 invalid class "modInt4" object: 1: invalid object for slot "x" in class "modInt4":
 got class "numeric", should be or extend class "integer"
invalid class "modInt4" object: 2: invalid object for slot "modulus" in class "modInt4":
 got class "numeric", should be or extend class "integer"

> modInt4(4L, 12L)
An object of class "modInt4"
Slot "x":
[1] 4

Slot "modulus":
[1] 12

Here we match the name of the constructor function to the name of the class as well as the names of the arguments to the names of the class slots. This is a very simple example of a class, and it makes sense to do so. However, the constructor function can take any arguments so long as the arguments that are eventually passed to new match those we defined using setClass. A good example of this is the lmer function in lme4, which takes arguments such as formula and data, fits a linear mixed-effects model, and generates an object of class merMod, which contains slots such as theta and beta.

Validity

As you have seen, the slot structure of an S4 class provides a handy mechanism for checking that the information provided is of the correct type. Occasionally we may need to provide some additional checks to ensure that an object conforms to expectations. Consider the data frame definition that we provided in Hour 21. A data frame consists of a list of vectors, but these vectors must also be of consistent length. In the S4 framework, we can provide such a check using a validity function.

A validity function is simply a function that contains all the checks we require in order to ensure that an object is of the correct structure. There are no naming restrictions on validity functions; however, it is standard practice to include the name of the class within the name. The “lowerCamelCase” convention is most commonly used, and periods should be avoided because they can falsely imply an S3 structure.

We now define a validity function for our modInt4 class. The check ensures that the two values are positive integers and that the base number is less than the modulus. Validity functions should return TRUE if the object is considered valid and FALSE if any of the checks are violated. The validity function should expect an S4 object as its only argument. It is good practice to name the argument object.

Click here to view code image

validModInt4Object <- function(object) {
 # Define checks
 # Note that the class definition already ensures that x and mod are integer
 xNonNeg <- object@x >= 0
 modulusPositive <- object@modulus > 0
 xLessThanEqualToModulus <- object@x <= object@modulus
 # Combine checks
 isObjectValid <- xNonNeg & modulusPositive & xLessThanEqualToModulus
 # Return TRUE or FALSE
 isObjectValid
}

Once we have defined the check, we need to link it to our class. We do so via the setValidity function. The setValidity function expects two main arguments:

[image: Image] Class—The name of the class as a character string

[image: Image] method—The name of the validity function

We can now link the validModInt4Object validity function to our modInt4 class, like so:

Click here to view code image

> setValidity("modInt4", validModInt4Object)
Class "modInt4" [in ".GlobalEnv"]

Slots:

Name: x modulus
Class: integer integer

Note: Defining Validity with setClass

In addition to setValidity, we can use the validity argument to the setClass function to link the function to the class that it checks.

Methods

As with S3, the S4 framework implements generic function object orientation. In order to define a method for our class, we must first define a generic. We then link the method back to the generic and our class using the setMethod function. Let’s look first at the setMethod function. Table 22.2 lists the three required arguments to setMethod, along with a description of how they are used.

[image: Image]

TABLE 22.2 The setMethod Function

As with S3, a number of generic functions are available “out of the box.” In particular, S4 objects have a default show method, equivalent to print in S3. We can define a new show method to control how an object prints to screen. In the following example, we define a new show method for the modInt4 class and then use the setMethod function to link the method to the class and generic function:

Click here to view code image

> showModInt4 <- function(object){
+ # Extract the relevant components from the object
+ theValue <- object@x
+ theModulus <- object@modulus
+ # Print the object in the desired form
+ cat(theValue, " (mod ", theModulus, ")\n", sep = "")
+ }
>
> # Link the previous function to the show generic and modInt4 class
> setMethod("show", signature = "modInt4", showModInt4)
[1] "show"
>
> # Display an object
> modInt4(3L, 12L)
3 (mod 12)

The more formal S4 framework and validity checking ensures that any object of modInt4 class is of the correct structure and that any slots are of the correct type. The show method requires no additional checking. It is very clear and straightforward to follow.

Caution: Editing Methods

Methods must be linked to a generic and class via setMethod. If we redefine a method, we must then call setMethod again to relink the method to the generic and class.

Defining New Generics

In the previous example, we defined a new method for an existing generic, show. As with S3 classes, it is also possible to define new generics. We do so via the setGeneric function, which has two main arguments, as described in Table 22.3.

[image: Image]

TABLE 22.3 Main Arguments to setGeneric

In the following example, we first define a function called square4, an S4 equivalent of the square function we defined in Hour 21. We then turn the function into a generic with setGeneric.

> square4 <- function(x){
+ x^2
+ }
> setGeneric("square4")
[1] "square4"

Once the generic has been created, we can define new methods, which we link to classes via the setMethod function:

Click here to view code image

> squareModInt4 <- function(x) {
+ # Standard square
+ simpleSquare <- as.integer(x@x^2) # Ensure value is valid
+ # Use correct modulus
+ modInt4(simpleSquare, x@modulus)
+ }
>
> # Link the modInt4 method to the square4 generic and modInt4 class
> setMethod("square4", signature = "modInt4", squareModInt4)
[1] "square4"
>
> # Test the method
> a <- modInt4(5L, 12L)
> a
5 (mod 12)
> square4(a)
1 (mod 12)

It is important to ensure that argument names match between the methods and the generic. If they don’t, this is not only bad practice, but R throws a warning to tell you that it has changed the argument name in the method to match the generic.

Multiple Dispatch

In the following example, we create a new generic, add, and define what happens when we add two objects of class modInt4. This is an example of multiple dispatch, whereby a generic function can dispatch (pick a method) based on multiple arguments. Note that although we provide two objects of the same class, the multiple dispatch mechanism could be used to define what happens when we add objects of a different class. As in the previous example, we start by defining a function, add, and then turn it into a generic with setGeneric.

> add <- function(a, b){
+ a + b
+ }
> setGeneric("add")
[1] "add"

The add function we defined acts as the default method for the generic. Next, we define a method for our modInt4 object. Because the add function requires two objects, we must be careful to define an appropriate signature to ensure that the generic dispatches correctly.

Click here to view code image

> # Define a function that adds modInt4 objects
> addModInt4Objects <- function(a, b){
+ # Sometimes we still need to define checks within the method
+ if(a@modulus != b@modulus){
+ stop("Cannot add numbers of differing modulus")
+ }
+ # Add the numbers together
+ totalNumber <- a@x + b@x
+ # Return the correct class
+ theResult <- modInt4(totalNumber, a@modulus)
+ theResult
+ }
>
> # Link the previous function to the add generic and modInt4 class
> setMethod("add", signature = c(a = "modInt4", b = "modInt4"),
+ addModInt4Objects)
[1] "add"
>
> # Test the function
> p <- modInt4(3L, 12L)
> q <- modInt4(7L, 12L)
> add(p, q)
10 (mod 12)
> add(q, q)
2 (mod 12)

Inheritance

You were introduced to the idea of inheritance in the previous hour. It is possible for S3 objects to inherit from one another, but as with much of S3 it is not formally defined. Inheritance is much better defined for S4 classes. We specify the inheritance when defining the class with setClass using the contains argument. Though the argument name may seem counterintuitive, we use contains to specify superclasses—in other words, classes that our class inherits from.

Consider the example of the 12-hour clock and the clockTime class we discussed in Hour 21. We define an S4 equivalent that inherits from modInt4 as follows:

Click here to view code image

> setClass("clockTime4", contains = "modInt4")

At this point, our class is exactly the same as the modInt4 class and contains slots x and modulus. It has also inherited all of the methods from the modInt4 class without us having to think about inheritance when defining the modInt4 methods.

Click here to view code image

> getSlots("clockTime4")
 x modulus
"integer" "integer"
>
> methods(class = "clockTime4")
[1] add show
see '?methods' for accessing help and source code

In Listing 22.1 we walk through a complete example, defining the class as we did earlier and then walking through some of the possible follow-on actions. In particular, we define a constructor function (lines 5 through 10) and a validity function (lines 14 through 17) to ensure that the modulus is equal to 12. We also define the print (show) method (lines 31 through 36). If we felt the need, we could define any additional methods specific to our clockTime4 class.

LISTING 22.1 Building a clockTime4 Class

Click here to view code image

 1: > # Define the class
 2: > setClass("clockTime4", contains = "modInt4")
 3: >
 4: > # Define constructor
 5: > clockTime4 <- function(x){
 6: + # Ensure that x is in mod 12
 7: + x <- x %% 12L
 8: + # Create a new instance
 9: + new("clockTime4", x = x, modulus = 12L)
10: + }
11: >
12: > # Define validity
13: > # Existing modInt4 validity is inherited
14: > validclockTime4Object <- function(object) {
15: + isMod12 <- object@modulus == 12L
16: + isMod12
17: + }
18: >
19: > # Link the validity function with the clockTime4 class
20: > setValidity("clockTime4", validclockTime4Object)
21: Class "clockTime4" [in ".GlobalEnv"]
22:
23: Slots:
24:
25: Name: x modulus
26: Class: integer integer
27:
28: Extends: "modInt4"
29: >
30: > # Redefine show method
31: > showclockTime4 <- function(object){
32: + # Print the object in the desired form
33: + cat(object@x, ":00\n", sep = "")
34: + }
35: > setMethod("show", signature = "clockTime4", showclockTime4)
36: [1] "show"
37: >
38: > # Test the class
39: > clockTime4(5L)
30: 5:00
41: > clockTime4(13L)
42: 1:00

Listing 22.1 highlights another property of S4 inheritance, which is that validity is also inherited. This significantly cuts down on the amount of checking we have to do.

Documenting S4

The formal declaration of an S4 class requires some additional effort when it comes to documenting the class with roxygen2. The call to setClass should be documented with a standard title and description of the class. Each slot should be documented using the @slot tag.

Click here to view code image

#' An S4 Class that implements modular arithmetic
#'
#' @slot x An integer value in the specified \code{modulus}
#' @slot modulus An integer value representing the modulus for \code{x}
setClass("modInt4", slots=c(x = "integer", modulus = "integer"))

We must document S4 methods, but we have a choice as to whether to document in the class, in the generic, or separately within its own specific help file. Generally the decision as to where to document the method depends on how complicated the method is and how the method is to be used. Clearly we can only document the method via the generic if we created the generic ourselves, however.

We can control where the method is documented using either the @describeIn tag or @rdname tag. For example, to document the addModInt4Objects function within the help file for the add generic, we first create an roxygen2 header for the generic add function and separately add a single roxygen2 header line above the function definition for addModInt4Objects that contains a @describeIn tag.

Click here to view code image

#' @describeIn add Adds two modInt4 objects of the same modulus
addModInt4Objects <- function(a, b){
 # Sometimes we still need to define checks within the method
 if(a@modulus != b@modulus){
 stop("Cannot add numbers of differing modulus")
 }
 # Add the numbers together
 totalNumber <- a@x + b@x
 # Return the correct class
 theResult <- modInt4(totalNumber, a@modulus)
 theResult
}

Reference Classes

Reference Classes were developed by John Chambers and have been available in the methods package since R version 2.12. Because they were the first new class implementation in R and because they followed S3 and S4, they are often referred to as “R5” classes. However, unlike with the S3 and S4 classes, the number 5 has nothing to do with the R version and is essentially meaningless.

Reference Classes are quite different from S3 and S4 and implement a much more common form of object-orientated programming known as message-passing object orientation. In message-passing object orientation, methods belong to the class and generic functions are not required. Message-passing object orientation is also used in Python, C++, and Java.

Creating a New Reference Class

Much like S4, we begin by defining the class. We do so via the function setRefClass. In terms of usage, the main difference between setClass and setRefClass is that with setRefClass we use the term “fields” instead of “slots.” The similarity extends to inheritance, for which we use the contains argument.

One important difference with Reference Classes is that we save the output of the setRefClass function as an object. The object should have the same name as the class as defined by the first argument to setRefClass. We’ll walk through Reference Classes using a variant on the modular arithmetic example that we used for S3 and S4 classes. However, message-passing object orientation is very different from generic function object orientation, and in practice message-passing object orientation is typically used to solve a different kind of problem. In particular, message-passing tends to be better suited to software development.

Click here to view code image

> modIntRef <- setRefClass("modIntRef",
+ fields=c(x = "integer", modulus = "integer"))

This is the first time we have created a class as an object. Like with any R object, we can type its name to see what it looks like and query its class.

> class(modIntRef)
[1] "refObjectGenerator"
attr(,"package")
[1] "methods"

The object that we have created is a refObjectGenerator object. The refObjectGenerator object is a function that generates new objects from the class. The object that it generates is an environment much like a package environment or the global environment. The subject of environments is an advanced topic, but in essence an environment is a lot like a list, and we can access elements using the $ syntax myEnvironmentName$ObjectName. It can be very useful to think of Reference Classes and the objects we create from them as lists. We store all relevant information for the class in this list, including the fields, inheritance, and methods. There is no need for generic functions.

Caution: S4 or Reference Class?

Reference Classes are actually implemented as S4 classes with the data stored in an environment. Because the Reference Classes system is built on top of the S4 system, the isS4 function also returns TRUE for Reference Class objects.

Defining the class effectively creates our constructor function for us. We can instantiate new modIntRef objects using the modIntRef function that was created by the call to setRefClass.

Click here to view code image

> a <- modIntRef(x = 3L, modulus = 12L)
> a
Reference class object of class "modIntRef"
Field "x":
[1] 3
Field "modulus":
[1] 12

Because Reference Classes are based on S4 classes, we can use the new function to generate classes directly, though the practice is generally discouraged. The new function is also a method for our class, however, and can be invoked in the standard Reference Class manner.

Click here to view code image

> b <- modIntRef$new(x = 4L, modulus = 6L)
> b
Reference class object of class "modIntRef"
Field "x":
[1] 4
Field "modulus":
[1] 6

Tip: What Does a Reference Class Contain?

Because Reference Class objects are environments, we can use the objects function to see what they contain. Here’s an example:

Click here to view code image

> objects(a)
[1] "copy" "field" "getClass" "modulus" "show" "x"

Defining Methods

With Reference Classes, methods are stored as part of the object that defines the class. They can be accessed and modified using className$methods syntax. We can also think of the methods element itself as another list, where each element is a defined method. Because there are no generic functions, we can generally name methods in any way we like, though some methods have a special meaning (for example, initialize).

Tip: Using setRefClass to Define Methods

Methods can also be defined directly when calling setRefClass.

In the following sections, we look at redefining our modular arithmetic class using a Reference Class context. We briefly revisit some of the key themes we have just seen with S4 classes.

Initialization

The initialize method is the Reference Class equivalent to a constructor function. However, instead of generating an object containing the required fields (slots), we generate each field separately using a special assignment operator, <<-. When we call the new function, the class structure does the rest for us, ensuring that new objects of our class contain the correct fields.

Caution: The <<- Operator

The <<- operator assigns directly to a function’s parent environment. This can make it difficult to track what a function is doing; therefore, the use of <<- should generally be avoided.

In Listing 22.2 we create an initialize method for our modIntRef class based on the constructor function we defined earlier for modInt4 objects. We must explicitly create both x and modulus using the <<- assignment operator, even though the modulus argument is unaltered by the function. This is due to scoping, but it is not something we will explore any further.

LISTING 22.2 Defining an initialize Method

Click here to view code image

 1: > modIntRef$methods(list(initialize = function(x, modulus){
 2: + # Create the object from the starting number, x and modulus, modulus
 3: + # Divide by the modulus to get new number appropriate for that modulus
 4: + # Assign fields *if* they are provided (ensures we can copy the object)
 5: + if (!missing(x)) {
 6: + x <<- x %% modulus
 7: + }
 8: + if (!missing(modulus)) {
 9: + modulus <<- modulus
10: + }
11: + }))

Notice the syntax in the first line of Listing 22.2. We are updating the methods argument to modIntRef by defining a list. All methods are stored as a named list of method names. When creating new methods, however, we do not need to redefine old methods. Another important step here is to ensure that variables are only assigned if they are provided by the user. This enables us to create a template object if required but also enables us to copy the object later on.

Mutable Objects

Mutability is quite a common term in object-oriented programming; however, it may be unfamiliar if you come from an analytic background. Generally R is not mutable, meaning that we do not directly edit or change objects when we execute functions. Instead, we have to force R to overwrite an object. For example, suppose we define a vector, x, that we want to sort:

> x <- c(1, 3, 2)

We can use the sort function to sort x, but the operation does not actually update x:

> sort(x)
[1] 1 2 3
> x
[1] 1 3 2

To overwrite x, we need to assign the result back to x, like so:

> x <- sort(x)
> x
[1] 1 2 3

Because R stores values in memory, what we actually do here is copy the result to memory before overwriting x. Reference Classes are mutable, meaning that the methods we define directly update the object. This is a behavior you briefly saw in Hour 12, “Efficient Data Handling in R,” when working with the data.table package. We referred to mutable behavior as “updating by reference.”

The fact that Reference Classes are mutable changes the way in which we think about objects. Methods are applied directly to an object in order to change it. For that reason, the application of Reference Classes usually differs from standard S3 or S4 applications. We must therefore write methods in a similar vein to the initialize function defined in Listing 22.2 by updating fields directly.

Method Definition

When developing methods for a Reference Class, we are working within the class’s environment. At the time the method is called, we can be sure that all the fields we require exist and are of the correct type and structure, as defined by the initialize function. We do not therefore need to pass field names to any methods we write. Arguments that are not available as fields in our class are passed in the standard way.

Let’s look at an example of defining and calling a method. In Listing 22.3 we define an addNumber method that adds a number to an object of the modIntRef class. The number is provided by the user of our function, but the x and modulus values that we refer to in lines 3 and 5 come from the class fields. Note that we use the double-headed assignment arrow, <<-, to update x in the original object. From line 8 onward, we demonstrate the mutability of the object by adding 1 and then 10 to the object, which is updated directly.

Caution: Local Variables

As with any R function, we can create temporary objects within the body of our function. These objects are removed once the function has finished executing. Due to functional scoping, you should avoid naming dummy variables after field names because the function can be confusing. If you do, R throws a warning at the point at which the method is defined.

LISTING 22.3 Defining Methods

Click here to view code image

 1: > modIntRef$methods(list(addNumber = function(aNumber){
 2: + # Add aNumber to x locally
 3: + x <<- x + aNumber
 4: + # Ensure x is correct for the modulus
 5: + x <<- x %% modulus
 6: + }))
 7: >
 8: > a <- modIntRef$new(x = 3L, modulus = 12L)
 9: > a
10: Reference class object of class "modIntRef"
11: Field "x":
13: [1] 3
13: Field "modulus":
14: [1] 12
15: > a$addNumber(1L)
16: > a
17: Reference class object of class "modIntRef"
18: Field "x":
19: [1] 4
20: Field "modulus":
21: [1] 12
22: > a$addNumber(10L)
23: > a
24: Reference class object of class "modIntRef"
25: Field "x":
26: [1] 2
27: Field "modulus":
28: [1] 12

Copying Reference Class Objects

For the immutable objects we worked with in previous hours, copying an object was very straightforward. Once we have copied an object, all links between the new object and the original object are lost. For example, consider an object, y, that we clone from another object, x, in the following example:

> x <- 5
> y <- x

The object y is a clone of x, and at this point both objects have the same value, 5. However, there is no link between them. We can change the value of x to 6, but y still retains the value 5, as you can see here:

> x <- 6
> x
[1] 6
> y
[1] 5

Mutable objects do not behave like this. Consider the object a that we created and modified in Listing 22.3. The object has the modIntRef class and is therefore mutable. Now let’s try to copy a in the traditional way to create a new object, b:

Click here to view code image

> # Remind ourselves of the value of a
> a
Reference class object of class "modIntRef"
Field "x":
[1] 2
Field "modulus":
[1] 12
> # Create b as a copy of a in the traditional way
> b <- a
> b
Reference class object of class "modIntRef"
Field "x":
[1] 2
Field "modulus":
[1] 12

Now we add 1 to a using our addNumber method:

Click here to view code image

> a$addNumber(1L)
> a
Reference class object of class "modIntRef"
Field "x":
[1] 3
Field "modulus":
[1] 12
> b
Reference class object of class "modIntRef"
Field "x":
[1] 3
Field "modulus":
[1] 12

The object b has also been updated! This is updating by reference and is a property of mutable objects. It can be extremely useful, but to those unfamiliar with the concept, it is also a potentially dangerous trap. Luckily all Reference Classes inherit from a base envRefClass object that has a copy method. The copy method enables us to copy in the traditional manner. Here’s an example:

Click here to view code image

> a <- modIntRef$new(x = 3L, modulus = 12L)
> b <- a$copy()
> b
Reference class object of class "modIntRef"
Field "x":
[1] 3
Field "modulus":
[1] 12

Documenting Reference Classes

It is actually much simpler to document a Reference Class system than an S4 system. This is because methods are stored with the class as opposed to being linked via generic functions. We therefore need only document the class. A special @field tag is used for documenting class fields.

R6 Classes

The R6 class system was developed by Winston Chang and first released to CRAN in 2014. The name builds on the “R5” nickname given to R’s standard Reference Class implementation. The R6 implementation is essentially a variant of the Reference Class implementation that does not rely on S4 classes.

The R6 system is not part of base R. It is contained within a package called R6 that must be installed from CRAN. Once it is loaded, we can create a new instance of an R6 class by using the R6Class function. After that, the syntax of the R6 system is extremely similar to that of R’s standard Reference Class system. We instantiate new objects using the new method and can define an initialize method to check inputs and construct the class.

Public and Private Members

One potential advantage of using the R6 implementation is that it contains the notion of public and private fields and methods, an object-oriented programming concept generally known as encapsulation. The terminology gets very confusing very quickly, but the basic idea is to distinguish between members (fields or methods) that are accessible from anywhere (public) and members that are only accessible from within the class itself (private).

The benefits of encapsulation are probably best described elsewhere, but the main aim is to provide control over what others have access to in your class. Because private methods are not generally available, no other classes can depend on them. This leaves you free to adjust or change the method at a later date. In contrast, a public method is one that you are happy for someone else to use and build upon.

An R6 Example

The example in Listing 22.4 walks through a brief but complete example of creating an R6 class with public and private methods. The example contains a complete definition of the class, modInt6, and three public methods: initialize, show, and square. To illustrate the concept of private methods, a private method, adjustForModulus, has also been defined. This method ensures that the value of x is always less than the modulus. The method is accessed by the public square method via private$adjustForModulus and updates by reference when called.

One of the main differences in terms of usage between R6 and standard Reference Classes is the use of self to refer to the object instead of the double-headed assignment arrow, <<-.

LISTING 22.4 Defining an R6 Class

Click here to view code image

 1: > library("R6")
 2: > modInt6 <- R6Class("modInt6",
 3: + # Define public elements
 4: + public = list(
 5: + # Fields
 6: + x = NA,
 7: + modulus = NA,
 8: + # Methods
 9: + initialize = function(x, modulus){
10: + if (!missing(x)) {
12: + self$x <- x %% modulus
13: + }
14: + if (!missing(modulus)) {
15: + self$modulus <- modulus
16: + }
17: + },
18: + show = function(){
19: + cat(self$x, " (mod ", self$modulus, ")", sep = "")
20: + },
21: + square = function(){
22: + self$x <- self$x^2
23: + # Use private method to ensure x < modulus
24: + private$adjustForModulus()
25: + }
26: +),
27: + # Define private methods
28: + private = list(
29: + # Function to ensure correct modulus
30: + adjustForModulus = function(){
31: + self$x <- self$x %% self$modulus
32: + }
33: +)
34: +)
35: > a <- modInt6$new(3L, 12L)
36: > a$show()
37: 3 (mod 12)
38: > # Now square a
39: > a$square()
40: > a$show()
41: 9 (mod 12)

There is plenty more that R6 classes can offer; however, the usage is very similar to that of standard Reference Classes.

Note: Active Bindings

The notion of active bindings is also supported in R6. Active bindings look like fields but call a function each time they are accessed.

Other Class Systems

The object-oriented programming options available in R are by no means limited to the set you have seen in the past two hours. The R.oo package has been around since 2001 and provides convenience wrappers for setting up S3 classes as well as an Object class from which you are able to extend in order to create objects that can be modified by reference.

Another relatively popular alternative is the proto package. The proto package enables prototype programming, a form of object-oriented programming with no classes! Beyond that, there are a few more packages that implement forms of object-oriented programming, but we won’t describe them all here. No doubt more will be written in the future.

Summary

Following on from Hour 21, where we were introduced you to the concept of writing an S3 class, we have now looked in greater detail at R’s more formal class systems, S4 and Reference Classes, including a brief tour of the R6 implementation and some of the other options available. Each of the implementations has its advantages and disadvantages, and it is up to you to decide which, if any, is of most use to you. It’s worth bearing in mind, however, that R has been written in order to be flexible and fast to type. It has not been written in order to facilitate object-oriented programming!

In the “Activities” section, you now have the opportunity to build your own S4 and Reference Classes and develop methods for these classes.

Q&A

Q. What’s best for me? S3, S4, standard Reference Classes, or R6?

A. If you’re starting out with classes, then S3 or S4 classes are a good place to start because they’re not too dissimilar from standard R coding. If you’re comfortable with the concepts of object-oriented programming, however, then one of the two forms of reference classes discussed in this hour will give you a lot more control. However, be aware that as the level of control increases, flexibility tends to be reduced.

Q. If S3 classes have the convention [genericFunction].[class], what are the S4 and Reference Class naming conventions?

A. There is no required naming convention due to the different dispatch mechanism used by setMethod for S4 classes and the message-passing approach used in Reference Classes. The “lowerCamelCase” naming convention is extremely popular for classes and indeed any objects in R. There is also a growing trend of using underscores to separate words within an object name.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. True or false? An S4 object is a special type of list.

2. True or false? A Reference Class object is a special type of list.

3. What is multiple dispatch?

4. What is a mutable object?

5. What is the difference between a slot and a field?

Answers

1. False. It can be helpful to think of an S4 object as being like a list, but it is not. For one thing, we access elements using @ as opposed to $.

2. False. A Reference Class object may appear even more like a list than an S4 object due to the $ syntax we use. However, it is actually an environment, not a list.

3. In generic function object orientation, method dispatch controls which method is selected when a generic function is called. When the dispatch mechanism can depend on multiple arguments, we call this multiple dispatch.

4. A mutable object is simply one that can be changed. In R, we typically deal with immutable objects. Instead of changing an object, we overwrite it with a new value. Reference Class objects are mutable, however.

5. We say “slots” when working with S4 classes and “fields” when working with all forms of reference class, but they essentially refer to the same thing.

Activities

1. Define a new S4 class. The aim of the class is to store simulated data from various known statistical distributions. In order to construct the new class, you need to create the following:

[image: Image] A constructor function that takes inputs n and distribution, representing the number of values to sample and the distribution to sample from. Ensure that the function has the option for other parameter arguments, as needed.

[image: Image] A print method that displays a table of summary statistics for the simulated data (mean, median, standard deviation, min, and max).

[image: Image] A new generic combine method that enables two objects (provided they are of the same distribution) to be combined to form a new set of samples, where the total number of samples is the sum of the number of samples from the original objects.

2. Define a new Reference Class. The aim of the class is to store financial account information:

[image: Image] Define the class as standardAccount. The class should have a single field, balance, that defaults to $50 (a minimum initial deposit to set up the account).

[image: Image] Write methods called deposit and withdraw that update the account balance field when called. The withdraw method should not allow the balance to go into the red (that is, fall below zero).

[image: Image] Extend the class by creating a new class, goldAccount. The goldAccount class should allow an overdraft of $1,000.

Hour 23. Dynamic Reporting

What You’ll Learn in This Hour:

[image: Image] What dynamic reporting is

[image: Image] How to create a report in R

[image: Image] Including R code in reports

[image: Image] The basics of markdown and LaTeX

Up to this point you have seen the fundamentals of the R language as well as aspects of R that allow us to ensure that we write high-quality, well-documented, and easily shareable code. In this hour, we are going to take a look at one of the ways you can extend your use of R, specifically for simplifying the generation of reports that rely heavily on R-generated output.

What Is Dynamic Reporting?

We all produce reports for a variety of reasons on a regular basis. If you have used R to manipulate data, perform analysis, or produce graphics, you are likely at some point to have copied results or inserted a graphic into a report. This usually means that you have all of your analysis saved in one place and your final report in another, and you need to ensure that you keep both up to date. This can be particularly challenging if your data changes on short notice and you need to quickly regenerate your report, or if you need to produce the same report on a regular basis.

Dynamic reporting, also commonly referred to as automated reporting or reproducible reporting, is a means by which we can generate a report entirely in R. The content of the report and the code to perform any manipulation or analysis are stored together. There are a number of advantages to writing reports in this way, including the following:

[image: Image] No need to copy and paste into a separate report

[image: Image] Easy to track what code was used for the analysis in a report

[image: Image] Simple to re-run the report if the data changes

[image: Image] Easy to run reports that need to be produced on a regular basis

Traditionally, we did this in R using Sweave. Sweave allows us to combine R code inside LaTeX documents. LaTeX is a markup language that is used commonly in scientific reporting. It was designed for writing technical documents and requires a TeX installation. Although a very powerful tool, it has quite a steep learning curve. More recently the package knitr was introduced to R. Although it still allows users to produce documents using LaTeX, it also allows us to use Markdown, which is another markup language. Markdown is much simpler to get started with, having a restricted syntax. Also, rather than only producing static PDF documents, it allows us to generate HTML or Microsoft Word files as well as PDF. This makes it very simple to embed any HTML content that we want into reports, and as you will see in the final hour of this book, this means we can generate interactive documents.

An Introduction to knitr

As just mentioned, the package knitr has been designed to simplify the way in which we generate documents in R. You already saw the package knitr in Hour 20, “Advanced Package Building,” when we generated a user guide for a package.

Although we commonly think of reports as long documents that contain an analysis or summary of results that we can produce in Microsoft Word or similar software, we can also think about reports as being presentations that we typically produce using Microsoft PowerPoint or other similar software. We can use knitr to produce both types of documents, in either PDF or HTML format, primarily depending on whether we choose to use LaTeX or Markdown to write our documents (although Markdown is more flexible in the file type that can be produced).

Simple Reports with RMarkdown

You have already seen the basics of RMarkdown in Hour 20. Markdown itself is a simple, plain-text markup language that has a number of variants that are all very similar. RMarkdown is the variant that allows us to include chunks of R code inside a document to be rendered to HTML. Note that the RStudio options make it very simple to render an RMarkdown document as a PDF, which requires a Tex installation, or as a Microsoft Word document. In this hour, we will only work with HTML documents for simplicity.

A Basic RMarkdown Document

To create an RMarkdown document, we need to create a file with the extension .Rmd. Using RStudio, we can create a template RMarkdown document that includes sample RMarkdown content. We can create this file by selecting R Markdown from the “File > New File” menu. This presents an options window that allows us to select the type of document that we want to generate. An example of this options window is shown in Figure 23.1. As you can see, you can select the type of document you want to create as well as the output you want to generate. In this case, we will simply use the default document and create HTML output. You will also notice that this screen allows you to insert the title of the document and the author name. Adding these components on this screen will automatically insert them correctly into the document header. After you click OK, a template document will be opened.

[image: Image]

FIGURE 23.1 RMarkdown file creation options in RStudio

All RMarkdown documents begin with a header that defines certain components, such as the title, author, and date, as well as the output format and any options for the output format such as styling. An example of the header is shown in Listing 23.1, lines 1 to 5.

LISTING 23.1 RMarkdown Example

Click here to view code image

 1: ---
 2: title: "Automated Reporting"
 3: author: "Aimee Gott"
 4: output: html_document
 5: ---
 6:
 7: The following report contains an analysis of the data from 2015.
 8:
 9: ## Analysis
10: A simple linear model was fitted to the data to determine the main factors that
11: contribute to a change in the dependent variable. We can see below some simple
12: summaries of the data.
13:

After this header we can simply start writing our document. This could be plain text, but we can also format the text using the Markdown formatting options you saw in Table 20.1 in Hour 20. An example of how a Markdown document might look can be seen in Listing 23.1.

Tip: Creating Presentations

As you will have noticed from the options in Figure 23.1, you can also create a presentation using Markdown. Selecting the HTML presentation options will control all of the setup for you. The main difference to note is that new slides are started with a new Level 1 or Level 2 heading; otherwise, all markdown formatting and code chunks are the same.

Building an HTML File

Because we are writing our document in a markup language, we will need to build the RMarkdown file to generate the HTML. The easiest way to do this is using the interface in RStudio. You will notice that after opening an RMarkdown file you have the additional option at the top of your file viewer labelled “Knit HTML.” Before generating the HTML, you will need to save the RMarkdown file with the extension .Rmd. Selecting the “Knit HTML” option will generate the corresponding HTML file and open a preview for you, as well as save the HTML file in the same location as the RMarkdown file. This HTML file can be opened by any web browser and can be shared in the same way as any other static file.

Including R Code and Output

We include sections of R code in documents inside code “chunks”. These chunks in RMarkdown are indicated by three back ticks at the start and end of the chunk. We also use curly brackets to indicate that the code is R code and include any additional options we wish to set. Three examples of code chunks are shown in Listing 23.2.

LISTING 23.2 RMarkdown Code Chunks

Click here to view code image

 1: ```{r, collapse = TRUE}
 2: library(mangoTraining)
 3: summary(pkData$Conc)
 4: ```
 5:
 6: ```{r, echo = FALSE}
 7: library(ggplot2)
 8: qplot(Time, Conc, data = pkData)
 9: ```
10:
11: ```{r, echo = FALSE}
12: library(knitr)
13: kable(head(pkData))
14: ```

As you can see in these examples, we can include any executable R code inside these chunks, whether the code generates console output or graphics output. The final code chunk, in lines 11 to 14, even includes table output. The knitr function kable will convert data output to Markdown table code, resulting in an HTML table in your document.

You will also notice in these code chunks that we have set some options inside the curly brackets, called collapse and echo. The first of these, collapse, keeps the code and output in the same box in the output. This is useful if you have a number of lines of code and output that you want to group together. This is useful in vignettes, but in general you would not want to include the R code in a formal document. In this case, the echo option is particularly useful. The echo option controls whether the code is returned in the document as well as the output. You will notice that this has been set in the second two code chunks, on lines 6 and 11. In these cases, when the document is created you will see that only the output appears (in these cases, a graphic and a table).

Tip: Setting Up Your Document

You will notice that in the sample code chunks here, each chunk loads an R package that is then used. It is actually good practice to include all these components in a single code chunk at the start of the document, as you would any other R script. We would recommend that you also include in this chunk any sourcing of additional R scripts or reading of data. As you will see in Table 23.1, there are options you can set to ensure that this chunk is run but no output included in the report.

[image: Image]

TABLE 23.1 knitr Options for Code Chunks

There are many more options you can set to control the behavior and output of code chunks, whether this is how or if the code is run or the look of graphics output. Some of the most commonly used options can be seen in Table 23.1.

Tip: Additional Code Chunk Options

We can set many more options for a code chunk. The easiest way to see all these options is to take a look at the knitr webpage at http://yihui.name/knitr/. This site is maintained by the package author, Yihui Xie, and includes a complete listing of all the options that can be set. To see these options, navigate to the Options page.

The final thing to mention in relation to including R code is how to include code inline—that is, in the body of the text. This is again done inside back ticks, but this time just one at each end of the code. We need to indicate that this is R code that should be executed, but otherwise we can include a line of code that will be run when the document is built. For example, we may have the following line in our RMarkdown document:

Click here to view code image

The median concentration for dose group 25 was `r median(pkData$Conc[pkData$Dose==25])`

In this instance, the median value would be inserted for us on creation of the document. This makes it very simple to reference values in the text and not have to worry about having to update the text if the data changes. An example of how the HTML for the content shown in this hour may look can be seen in Figure 23.2.

[image: Image]

FIGURE 23.2 Extract of a rendered HTML file generated from RMarkdown

Reporting with LaTeX

When it comes to creating documents in LaTeX, you will need to ensure that you first have a TeX installation. This is separate software that is not supplied with R, and the exact requirements will depend on your operating system. Windows users can install MiKTeX, OS X users will need to install MacTex, and Linux users TeX Live. For the remaining sections, it is assumed that you have been able to install the appropriate software for your operating system.

As previously mentioned, LaTeX is a markup language that is widely used in scientific reporting. One of its primary advantages is that it’s very simple to incorporate scientific notation into documents. A full introduction to LaTeX is beyond the scope of this book, but we will introduce some of the basics here. More specifically, we will focus on how to generate LaTeX documents from R and how to include R code and output, which will be new to those already familiar with LaTeX.

A Basic LaTeX Document

When we are generating documents using LaTeX in R, we create .Rnw files. These are Sweave files, but they can be converted to PDF using knitr, giving us all the options available in the knitr package. We can open a Sweave file from the RStudio New File menu by selecting R Sweave. In RStudio, this will open a document that contains some initial LaTeX tags for us to get started with. The whole document begins with the tag \documentclass, which identifies the type of document we will produce. The next tag in the template will be \begin{document}, followed by \end{document}. It is between these tags that we will contain all the content of our document.

To add content to our document, we must again use specific format options. Table 23.2 shows the main LaTeX tags required for the components equivalent to those we introduced in Markdown in Hour 20.

[image: Image]

TABLE 23.2 Basic LaTeX Notation

As an example of how a LaTeX document might look, Listing 23.3 shows the LaTeX equivalent of Listing 23.1.

LISTING 23.3 A Basic LaTeX Document

Click here to view code image

 1: \documentclass{article}
 2:
 3: \title{Automated Reporting with LaTeX}
 4: \author{Aimee Gott}
 5: \date{}
 6:
 7: \begin{document}
 8:
 9: \maketitle
10:
11: The following report contains an analysis of the data from 2015.
12:
13: \section{Analysis}
14: A simple linear model was fitted to the data to determine the main factors that
15: contribute to a change in the dependent variable. We can see below some simple
16: summaries of the data.
17: \end{document}

You will notice that just like the Markdown document, we have a header that gives the document type, the title, and the author. It is also worth noting that to have the header appear in your document, you will need to include the \maketitle tag, shown on line 9.

Tip: Creating the PDF

Just like for Markdown documents, much functionality has been incorporated into RStudio, and this includes compiling the PDF. Rather than any knit option, however, you will see the option “Compile PDF.” This will require the TeX installation we mentioned. To ensure that you are using knitr, and therefore have all knitr options available, you will need to check the Sweave global options. From the Tools menu select “Global Options”, and then select the “Sweave” tab. You will notice in this menu system the option for how to weave the files (that is, Weave Rnw files using). Ensure that this is set to knitr. If you created the file before changing these options, you will need to remove the concordance line that will have been inserted by RStudio.

Including Code in a LaTeX Document

Just as with Markdown, we can include R code in our documents by incorporating code chunks. When we are using knitr, we have all the same chunk options, but in terms of the code the only difference is the way in which a code chunk is identified. Listing 23.4 gives the same code chunks as we included for Markdown in Listing 23.2.

LISTING 23.4 Sweave Code Chunks

Click here to view code image

 1: <<collapse = TRUE>>=
 2: library(mangoTraining)
 3: summary(pkData$Conc)
 4: @
 5:
 6: <<echo = FALSE>>=
 7: library(ggplot2)
 8: qplot(Time, Conc, data = pkData)
 9: @
10:
11: <<echo = FALSE>>=
12: library(knitr)
13: kable(head(pkData))
14: @

As you can see, the code chunks when we are writing Sweave documents start with << >>=, with any options being set inside the inner < >. We can use all the same knitr code chunk options listed in Table 23.1. The code chunks end with the @ symbol. We can include in the code chunks any executable R code that generates any form of output, including graphics, and using the kable function again we can generate a table, this time in LaTeX format.

As with Markdown, we can also include inline code. The Sweave equivalent is \Sexpr. As an example, we might have the following line in our document:

Click here to view code image

The median concentration for dose group 25 was
\Sexpr{median(pkData$Conc[pkData$Dose==25])}

Anything inside the Sexpr will be executed as a single line of code and the output inserted into the text when the PDF is compiled. An example of the PDF that would be generated from the examples in this hour can be seen in Figure 23.3.

[image: Image]

FIGURE 23.3 Extract of the output PDF file created from the Sweave content shown

Summary

You have now seen the basics of how to generate a static report in R. There are many more things you can do to these reports, such as including styles to ensure that the reports look well presented and, where necessary, follow a required company or institution template. However, here we have introduced the basics of what can be done. In the final hour, we are going to see how to extend some of these ideas to generate interactive web applications and interactive reports.

Q&A

Q. I am just starting out creating reports in R. Which should I learn, Markdown or LaTeX?

A. If you have never used LaTeX before, I would recommend starting with Markdown. Its limited syntax means that it is much easier to get started with, but allows the flexibility to create documents in a number of formats. However, if you need to include a large number of mathematical formulas or a more sophisticated layout in your documents, you may find that it is more beneficial to learn LaTeX. You can include formulas in a Markdown document, but this requires an additional component, mathjax, that allows you to write LaTeX inside a Markdown document.

Q. Can I customize the style of my documents?

A. The styling or template you use will depend on the type of document you are creating, but it is straightforward to do. If you are creating an HTML file, you will need to have or create a CSS file that defines the styles for components of HTML. You can then simply add this information to the header of your Markdown document. If you are using LaTeX, you will need to create a LaTeX-style file to apply to your documents. This can be challenging to do initially, but if the style already exists, you will typically only need to change the type of document that is created in the documentclass option.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. What are the two markup languages you have seen for creating documents from R?

2. How do you refer to blocks of R code in a document?

3. Do you have to include R code in your final document?

4. What file extension do you give to Markdown files and Sweave files, respectively?

Answers

1. The two markup languages are Markdown (or more specifically, RMarkdown) and LaTeX.

2. Blocks of R code are referred to as “code chunks.”

3. No, you can set the option echo to be FALSE, and this will prevent the code from appearing in the final document.

4. You give the extension .Rmd to RMarkdown files and .Rnw to Sweave files.

Activities

1. Create a simple RMarkdown document that has the following attributes:

[image: Image] Has a title, your name, and today’s date

[image: Image] Has three sections—introduction, analysis, and conclusion—each containing a paragraph of simple text

[image: Image] Includes a code chunk that generates a plot of Ozone against Wind from the airquality data

[image: Image] Fits a simple linear model of Ozone against Wind, returning the coefficients of the model in a table

[image: Image] Ensures that none of the R code or any warnings or messages are displayed in the final document

2. Generate the HTML file for the RMarkdown document you have just created.

3. Try creating this same document using LaTeX.

Hour 24. Building Web Applications with Shiny

What You’ll Learn in This Hour:

[image: Image] The structure of a simple application

[image: Image] The basics of reactive programming

[image: Image] Creating interactive documents

[image: Image] Sharing Shiny applications

In this final hour, we are going to look at another of the tools that allows you to extend your R code, in particular giving you the ability to interactively share your analysis and results. Although you might initially be put off by the idea of building a web application, we are going to introduce a package that allows you to generate web applications entirely in R, writing only R code. This is currently one of the most popular packages available in R, with more and more packages being added to CRAN that use this framework.

A Simple Shiny Application

The package we are going to use to generate web applications is shiny. This package has been available through CRAN for almost three years, but its widespread usage has grown rapidly over the last year. One of the main reasons it has become so popular is that it makes the power of a web application available to R users without the need to learn HTML or JavaScript. In this section, we look at the basics of creating an application.

Structure of a Shiny Application

Before we get started with writing code, it is worth getting familiar with the components that make up a Shiny application. During development we need to think about two main components: First of all, the user interface. What will the application look like? How will components be arranged on the page? Second of all, we need to think about what is called “the server.” What will the application do? When an option is changed, what needs to happen?

It is possible—and for bigger applications, recommended—to build a Shiny application in two scripts named ui.R and server.R, but here we will work in just a single file. Throughout this hour, we are simply going to create a ui object and a server object that will be passed to the function shinyApp. We are going to contain all these components in a single script. If we save this script as app.R, we will obtain some shortcuts in RStudio that allow us to run the application at the click of a button.

You can see an example of how the file will look in RStudio in Figure 24.1. In the script app.R, you can see the overall structure of the script and the outlines for the ui and server components, which we will return to in the next sections, along with the call to the shinyApp function. Also, you can see the Run App button at the top of the script window. By selecting the drop-down menu, you can see the options available in this graphic. This controls whether the app is opened in a separate window, in the viewer pane, or in your default web browser. As you can see in the example in Figure 24.1, this particular application, which at this point is empty, will open in the viewer pane.

[image: Image]

FIGURE 24.1 Example of the app.R file in RStudio and the additional Run App options

Having seen the empty components of a Shiny application, we now need to think about what will go into them. We start off by looking at the user interface, which is controlled by the ui object.

The ui Component

As stated earlier, the ui object is where we define how our application is going to look. It is here that we specify the input components, the type of outputs, and how they will all be arranged.

As a very simple example, let’s consider an application that has a simple text input and uses it as the title for a histogram, which we will also output in the application. The code for this application can be seen in Listing 24.1.

LISTING 24.1 A Simple User Interface

Click here to view code image

 1: library(shiny)
 2:
 3: ui <- fluidPage(
 4:
 5: textInput(inputId = "title", label = "Enter title text:"),
 6:
 7: plotOutput(outputId = "histogram")
 8:
 9:)
10:
11: server <- function(input, output){}
12:
13: shinyApp(ui = ui, server = server)

You will notice that the only component we have changed here is the ui object. We will return to the server object in the next section. The ui object is created initially by a call to the function fluidPage. This is a function that controls the layout of the application. There are many more layout options that are beyond the scope of this hour.

Let’s consider the elements we have contained in our ui object. The first element we have provided is the textInput function, which creates a text input box in the application. This is one of many input functions that includes check boxes, numeric selectors and sliders, and drop-down selections, to name a few. All of these input functions follow the same structure, with the first two arguments always being the same, as shown in line 5 of Listing 24.1. The first argument is inputId. This is the name we are going to use to refer to this element in the code for our application. Each input object needs to have a unique name so that it can be identified, and you will see how this name is used in the next section. The next argument is label. This is a character string that appears in the user interface to tell the user what the purpose of the component is. If this is not included, the user won’t know what they are supposed to put into this text box or what it will do.

Note: Input Functions and Shiny Documentation

The shiny package is maintained by RStudio, who provides extensive documentation both in the shiny package and online. For more information on all the available input functions, as well as outputs and layouts, see the documentation available on the Shiny web pages at shiny.rstudio.com.

Before we consider the next component, notice that on line 5 of Listing 24.1 there is a comma to end the line. This is because we are about to provide another argument to the function fluidPage. Although it is easy to forget to include commas and brackets in the correct places, when we start creating the Shiny application, it does get much easier. A good indicator of a missed comma is the error message Unexpected symbol, although the latest versions of RStudio now includes in-editor error checking to help you identify a missed component a little easier.

The final component in the user interface object is an output function. In this case, we are returning a plot, so we are using the plotOutput function. Just as with inputs, there are a variety of output objects we can create, and the output function we will use depends on the object we are creating. Outputs can include text, tables, and images as well as HTML. Just like with the input object, we need to give an output object a name. Here, we have used the argument outputId to give a unique name to this component. You will see how this is used in the next section.

At this point we can run the application, but you will notice that the only thing you see is the text entry. Entering text will not do anything because we haven’t told the application what to do with that text. We don’t have a plot at the moment because we haven’t told the application to create one. We will do all of this with the server component.

The server Component

The server element of a Shiny application is the part that controls what the application does. In our simple example it would control what output is generated and what happens when we change the plot title. The server component is actually a function with two arguments: input and output. We must always use these exact arguments. You can see this in both Figure 24.1 and Listing 24.1, line 11. Inside the function we then create the output objects that will be rendered in the user interface. Let’s continue the example we started in the last section. Listing 24.2 shows the extended code with the server function now completed.

LISTING 24.2 Adding the server Function

Click here to view code image

 1: library(shiny)
 2:
 3: ui <- fluidPage(
 4:
 5: textInput(inputId = "title", label = "Enter title text:"),
 6:
 7: plotOutput(outputId = "histogram")
 8:
 9:)
10:
11: server <- function(input, output){
12:
13: output$histogram <- renderPlot({
14:
15: hist(rnorm(100), main = input$title, xlab = "Simulated Data")
16:
17: })
18: }
19:
20: shinyApp(ui = ui, server = server)

You can see on line 13 that we have created an element in the output list called histogram. This is going to be an output object that is passed to an output function—in this case, it is being passed to the plotOutput function in the ui object. The name of the element that we create in the server needs to match the name we have given to the output function in the user interface so that the object will be displayed.

We create the objects themselves by using “render” functions. There is a corresponding render function for each output function we use in the user interface. Inside of the render function we put all of the code that we need to create the output object. In this case we have included a call to the function hist, which generates some random normal data to plot. Included in this function call is the reference to input$title. Here, we are asking Shiny to get the input object named title that we created in the user interface. Again, notice that the name matches the inputId element that we gave in the ui object (line 5 of Listing 24.2). This means that when the plot is created, it will take the value of the input$title element and pass it to the main argument of hist. As you will see when you run this application, whenever we change the title, the plot will update to have the new value of input$title.

This is now a complete application with inputs and reactive outputs. If you run this application, you will see something similar to Figure 24.2; note that the layout may be slightly different depending on window size. You will notice that as you change the text in the text input box, the application updates the graphic to include this new text.

[image: Image]

FIGURE 24.2 Complete application generated from code in Listing 24.2

Although this is just a simple application, we can extend the number of inputs and outputs to generate much more complex applications, with multiple inputs contributing to multiple outputs. One of the great advantages of shiny is that it is based entirely in R, so we have access to all the manipulation, visualization, and analysis tools we have seen throughout this book. All of them can be run from a Shiny application, with their outputs returned and updated as inputs change. An example of a more extensive application built on shiny is shown in Figure 24.3. This application has been extended further with the package shinydashboard and contains a number of pages that allow the user to interact with their data in different ways. To get to an application of this kind, we need to look at another concept that is going to help us a lot as we build bigger and more complex applications.

[image: Image]

FIGURE 24.3 Example of a more extensive Shiny application

Reactive Functions

You might have noticed when running the application in Listing 24.2 that every time you changed the title, the plot was regenerated, and this caused the data to be resampled. This was because both the simulation of the data and the updating of the plot were contained within the same “reactive” function, in this case a “render” function. Therefore, when the input element changed, shiny knew to update the plot, but this also re-simulated the data. If you look back at the code, you will notice that in line 15 we have both the rnorm function and the input$title object. We can actually change this behavior by working with multiple reactive functions.

Why Do We Need Reactive Functions?

Hopefully at this point you can see that a reactive function is useful. In this example, it may be undesirable to the end user that the data re-simulates just because we want to change the title. But suppose that the simulation was very large, or we wanted to read in a large dataset, or even perform a complex analysis before generating a graphic. We don’t want changing the title to be connected to re-running all of these components. Reactive functions therefore allow us to separate out each of the components of our application so that we can run the code as few times as possible.

When we start to develop larger applications, it is vital that we think about what is being run and how often. It’s so important, in fact, that we should start to practice this with small applications that we create. When it comes to a Shiny application, we want to run code as little as possible. For any application, you need to consider, how often do I want to run this section of code? Do I really want to run it each time I change any option?

It is important to be aware that any element that is contained within the input list (for example, input$title) is a reactive value. A reactive value must be contained inside a reactive function in a Shiny application. We didn’t mention this earlier, but the render functions are actually reactive functions, which is why they can appear here. There are, however, a number of other reactive functions that we can use to aid the development of our applications and to reduce how often code is run.

Creating a Simple Reactive Function

As mentioned earlier, all of the render functions are reactive functions, but it is often the case that there is some action we want to perform separately to generating the output. This could be reading in data, manipulating data, fitting a model, or all of these components. The simplest and most versatile function for performing these actions is the function reactive.

This function allows us to create a function that will only be called again when any of the inputs inside the function are changed. Consider the example we have been working with, but let’s add in an extra component that tells our application how many random normal values to simulate. Instead of putting this simulation inside the renderPlot function, we are going to contain it inside a reactive function. The code we would use to do this can be seen in Listing 24.3.

LISTING 24.3 Incorporating Reactive Functions

Click here to view code image

 1: library(shiny)
 2:
 3: ui <- fluidPage(
 4:
 5: numericInput(inputId = "num", label = "Number of Simulations:", value = 100),
 6:
 7: textInput(inputId = "title", label = "Enter title text:"),
 8:
 9: plotOutput(outputId = "histogram")
10:
11:)
12:
13: server <- function(input, output){
14:
15: data <- reactive(rnorm(input$num))
16:
17: output$histogram <- renderPlot({
18:
19: hist(data(), main = input$title, xlab = "Simulated Data")
20:
21: })
22: }
23:
24: shinyApp(ui = ui, server = server)

The main thing to notice here is how we have incorporated the reactive function. You will notice on line 15 that we have created an object called data. This is in fact a function object that we will call later. We have then included the call to rnorm inside the reactive function. At the point that we want to use this data, in the call to hist on line 19, we now call this data function. The difference now is that the data function will only regenerate the simulated data when the input$num value changes, rather than each time the hist function is called. You will be able to see this behavior if you run this code and try changing both the numeric value and the title.

You can have as many reactive functions as you want in an application, and you can even have nested reactive functions. For instance, you may have a renderPlot function that plots the output from a model. This renderPlot may call a reactive function that fits the model, which in turn calls a reactive function that reads in or simulates your data. In addition, some other reactive functions are available in the shiny package that will handle reactive values differently. For more information, take a look at the help files for the functions isolate, observeEvent, and eventReactive.

Interactive Documents

In the last hour, you saw how to create dynamic documents that allow you to generate a report or even a presentation entirely from R, mixing both the document content and the R code. Here, you have now seen another means of sharing analysis, in the form of Shiny applications. However, we can in fact combine the two. We are able to create a document that includes Shiny components. We can quickly open a template document of the correct format from RStudio using the New R Markdown menu you saw in Hour 23, “Dyanmic Reporting.” Instead of selecting the Document option, we can instead choose Shiny. You will notice that this gives you the additional “runtime” option in the document header.

We include Shiny components inside an R code chunk in the same way we would include any other code. When it comes to the Shiny component, we include inputs in exactly the same way. We can use an inputPanel function to group together all of the inputs. In a Shiny document, we don’t need to include the usual output functions; we simple include the render functions that would usually be in the server function. So if we wanted to include the same inputs and outputs as we have seen in this hour, but inside a markdown document, our code chunk would look like the following:

Click here to view code image

```{r, echo=FALSE}
inputPanel(
  numericInput(inputId = "num", label = "Number of Simulations:", value = 100),

  textInput(inputId = "title", label = "Enter title text:")
)

data <- reactive(rnorm(input$num))

renderPlot({

    hist(data(), main = input$title, xlab = "Simulated Data")

    })
```

An example of how this would render in the document can be seen in Figure 24.4. The important thing to note is that this is no longer a static file. Because we have a Shiny element in the document, we need to have an R session available to run it. You will notice that the options in RStudio are no longer “Knit,” but “Run Document.”

[image: Image]

FIGURE 24.4 A Shiny element inside a reactive document

If you have an existing Shiny application and you simply want to embed it into a document, you can do so by using the shinyAppDir function, pointing to the location of your Shiny application and setting elements such as the width and height of the application in the document.

Sharing Shiny Applications

Creating a Shiny application that will allow you to share your work is very simple and flexible, but an important thing to consider is how you are going to share your application. Up to this point you have probably just run your examples on your own machine with your own version of R. If you want to allow others to work with you and run analysis or investigate outcomes, you need to be able to provide your application. You can of course simply send the files to other users or incorporate the application into an R package, but this requires the users to have R installed and all of the correct packages. However, often the reason you want to create a Shiny application is to share what you are doing with non-R users.

The best way to share your application in this case is to have your application hosted on a server that allows you to send a single URL to the end users. There are a couple of ways you can do this. First of all, you can have your application hosted by RStudio with shinyapps.io. This is a service for which you can sign up, with one of a range of packages that allows you to have RStudio host your application for you. Alternatively, you can host your application on your own server using Shiny Server. There is both a free and a pro version available, with the pro version adding features such as authentication. Much more information about all of these services is available from the RStudio website, which will allow you to determine the best approach for you.

Summary

In this final hour, we introduced the basics of the package shiny, giving you enough tools to get started. There is much, much more that you can do with a Shiny application that is beyond the scope of this hour. The shiny package is maintained by RStudio, which offers extensive material describing some of the features not covered here, including controlling the layout of an application, many more of the input and output options, how you can work with data, and how you can customize your application with CSS components, just to name a few. Everything you have seen in this book has given you the foundations to go on and learn more about what can be done with R and understand for yourself the corresponding documentation. In the final two hours, we have introduced just two of the popular means of sharing R with non-R users, but what can be achieved goes far beyond our coverage. Hopefully this has given you a taste of what is possible so that you can jump in and try it out for yourself.

Q&A

Q. Can I open my Shiny application in my web browser?

A. Yes, you can. You can do this by changing the default option in the Run App drop-down menu, or you can use the Open in New Window button in the viewer window/pane.

Q. Why can’t I run any other code while my Shiny app is running?

A. While you are running your Shiny application, your R session will be blocked. This is because while the app is active, R code is being run and re-run. Because you can’t run multiple processes at the same time in R, you cannot run any other code while you run your Shiny application.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. Which component controls what the application will look like?

2. What two arguments do you need to give to all input functions?

3. There are two arguments you must give to a server function. Which of the following options is not required?

A. input

B. output

C. session

4. What are the main benefits of using a reactive function?

Answers

1. The ui component controls how the application will look to the end user.

2. All of the input functions, whether text, a number, or a drop-down menu, start with the arguments inputId and label. The argument inputId is used by the application to reference the objects, whereas the label argument is used in the user interface to tell the user the purpose of the element.

3. Both the input and output arguments are required arguments to the server function that you need to give in exactly this format. You can optionally use the session argument to pass session information to the Shiny application server function.

4. One of the main benefits of using a reactive function is that you can break up the running of the application. Rather than tasks being re-run when they do not need to be, you can use reactive functions to ensure that they are only re-run when an input option is changed.

Activities

1. Create an application that takes three inputs:

[image: Image] A numeric slider of values between 1 and 500

[image: Image] A drop-down menu to select color values

[image: Image] A text string to give the plot title

2. Update the application to return a histogram of simulated values using all of the preceding options.

3. Extend the application to include a check box that adds a vertical reference line at the median value of the data.

4. Ensure that the data is not re-simulated each time an option is changed.

5. Use the available documentation to update the layout of the application to ensure that all the inputs are in a column on the left and outputs in a column to the right.

Appendix: Installation

This appendix provides some details for installing R on Windows, OS X, and Linux distributions. Instructions for installing the Rtools component required for building R packages on Windows are also provided. Up-to-date instructions are maintained on the book’s website, http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book/.

Installing R

R is installed from a central repository named CRAN. Most users typically navigate to CRAN via www.r-project.org, although you can also navigate directly to CRAN.

1. Click the “download R” link on the R Project main page.

2. Choose the most local CRAN mirror. Each mirror is exactly the same, so it does not actually matter which one you choose, although it helps reduce traffic if you choose a local mirror.

3. From the main home page of CRAN, there are three options, depending on your operating system. Click the appropriate link.

Installing R on Windows

The following steps describe the process of installing R on Windows:

1. There are three available “subdirectories.” Click the link to “base.”

2. At the top of the page the most recent R release on Windows is available for download via a link—for example, “Download R 3.2.2 for Windows.” Click the link to download the installer to a temporary location (or choose “run” if presented with the option).

3. Choose your language and follow the instructions in the wizard.

[image: Image] When presented with the option to configure startup options, as shown in Figure A.1, it is advised that you select No and accept the defaults.

[image: Image]

FIGURE A.1 Startup Options

[image: Image] Keep clicking Next through all the options, assuming you are happy with what the wizard is going to do.

[image: Image] When you are ready, click the Finish button.

Installing R on Mac OS X

Carefully read the notes at the top of the page before downloading R on OS X.

The first link under the Files heading contains a link to the most recent version of R available on OS X—for example, R-3.2.2.pkg. Select this link and run the installer.

1. Once the file has downloaded, run the .pkg file.

2. Choose your language and follow the instructions in the wizard.

[image: Image] Keep clicking Next through all the options, assuming you are happy with what the wizard is going to do.

[image: Image] When you are ready, click the Finish button.

Installing R on Linux

Choose the appropriate link for your Linux distribution. Each distribution contains its own instructions and/or README file for installing R. For Debian and Ubuntu, the latest stable version of R is available in official repositories. An example of the help for Ubuntu is shown in Figure A.2. Detailed instructions for downloading and installing R are provided on the home page.

[image: Image]

FIGURE A.2 Installing R on Ubuntu

Installing Rtools for Windows

Building packages requires a number of additional command-line tools that are not available by default on Windows. You can access them by installing Rtools, a set of development utilities available on CRAN. Linux users will typically install r-base-dev (Debian) or similar in the same way you would install R. OS X users will typically need to install XCode, available via the AppStore, and then install Command Line Tools from within XCode. Up-to-date instructions for installing these additional components are maintained on the book’s website, http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book/.

You can navigate directly to CRAN. Otherwise, start by navigating to the R-Project website.

1. Click the “download R” link.

2. Choose the most local CRAN mirror.

From the main home page of CRAN:

1. Click the Download R for Windows link.

2. Click the Rtools link (https://cran.rstudio.com/bin/windows/Rtools/).

3. There is a table of Rtools versions available for download. You must install the correct version of Rtools for the version of R you are using. The “R Compatibility” column lists which versions of R are appropriate for each Rtools release. See Figure A.3 for an example.

[image: Image]

FIGURE A.3 Rtools download table

As an example of which version to download, if you are using R 3.1.2, you will need to install Rtools31.

4. Click the appropriate version of Rtools.

5. If you are asked whether you wish to run or save the .exe file, choose “run.”

6. Once the file has downloaded, click Run.

7. Choose your language and follow the instructions in the wizard. Pay attention to the following:

[image: Image] When you are asked to choose a location for the installation, as shown in Figure A.4, Rtools typically downloads directly to C:\. If you wish to change this, do so at this point. It is good practice to include the version number (excluding the period) in the name of the destination directory. For example, save Rtools 3.3 to Rtools33. This will help keep track of Rtools versions when you are working with multiple versions of R.

[image: Image]

FIGURE A.4 The Select Destination Location screen

[image: Image] In order to build C .dll files, ensure that all components are selected when you are presented with this option. Do not install the “Extras to Build 32 bit R: TCL/TK” or “Extras to Build 64 bit R: TCL/TK” unless you actually intend to do so (it is not advised that you do).

[image: Image] During the install process, you will be asked if you want to update your system path (see Figure A.5). This is important to be able to build packages; if you choose not to let the install process handle this, you will need to add it manually. Check the box to save the version information to the registry.

[image: Image]

FIGURE A.5 The Select Additional Tasks screen

8. When you are ready, click the Install button.

Installing the RStudio IDE

RStudio is installed from RStudio’s own website, www.rstudio.com. Please be aware that these instructions may change as RStudio changes its website. Specifically, buttons may be moved or their names changed.

1. The RStudio home page has traditionally contained one or more obvious links in order install the RStudio IDE. The IDE is currently available via a link that states “Powerful IDE for R.” Select the link to take you to the RStudio IDE download page.

2. You are presented with the option of installing the Desktop or Server version of the IDE. Select the “Desktop” link (see Figure A.6).

[image: Image]

FIGURE A.6 Install RStudio Desktop button

3. The “Desktop” link takes you to the appropriate section of the page, where you are presented with the option to download the Open Source edition or the Commercial License version. Assuming you do not wish to purchase the commercial version at this time, click the DOWNLOAD RSTUDIO DESKTOP button.

4. Clicking the DOWNLOAD RSTUDIO DESKTOP button takes you to a page with a number of links to installers for the open-source version of RStudio Desktop. Scroll down through the page until you see an installer that is appropriate for your operating system (for example, RStudio 0.99.484 – Windows Vista/7/8/10). Click the link to download the installer.

5. Run the installer. If you are on Mac OS X, you are presented with an install wizard:

[image: Image] Navigate through the wizard, clicking Next to accept the default options.

[image: Image] When you are ready, click the Finish button to install RStudio.

Index

Symbols & Numerics

%>% (pipe operator), 271-273

: (colon), interaction terms, 396

... (ellipsis), 157-159

= (equal sign), 19

$ (dollar sign)

referencing list elements, 77-79

shortened $ referencing, 78-79

\\ (double backslash), 21

/ (forward slash), 21

& operator, 144-145

[] (square brackets), 43

double square bracket referencing, 76-77

~ (tilde), formula relationships, 381

3D lattice graphics, 352-354

A

abline function, 389-390

acf function, 448

active bindings, 544

adding

columns, 266, 277-278

list elements, 79-80

rows, 278-279

aggregate function, 252

specifying variables, 254-256

using with a formula, 252-254

multiple return values, 253-254

summarizing by multiple variables, 252-253

summarizing multiple columns, 253

aggregating data, 246

data.table package, 280-282

dplyr package, 268-271

grouped data, 269-270

analysis of variance, comparing nested models, 395

anova function, 395

appending, 237-238. See also combining

applications, Shiny

server component, 564-566

sharing, 570

structure, 561-562

ui component, 562-564

apply functions, 181-195, 250-251

applying to data frames, 193-195

example, 184-186

lapply, 195-204

order of “apply” inputs, 201-203

using with vectors, 199-201

margin values, 183-184

multiple margins, 186-187

passing extra arguments to “applied” function, 188-191

sapply function, 204-208

returns, 205-207

tapply

multiple grouping variables, 209-210

multiple returns, 210-212

return values, 212

using with higher dimension structures, 187-188

xapply, 182

arguments, 116

apply function, 183

breaks, 111

defining, 132-133

ellipsis, passing graphical parameters, 159-161

for merge function, 238

named arguments, 131

arima function, 449

ARIMA models, in time series analysis, 448-451

arrange function, 263

arrays, 34, 58-60

creating, 58-60

subscripting, 60

as.numeric function, 121

assessing models, 382

abline function, 389-390

extractor functions, 385-386

interaction terms, 396-398

as list objects, 386-388

plot function, 383-385

predict function, 390-391

summary function, 382-383

assignment arrows, 19-20

attributes

of data frames, querying, 87

of lists, 72-73

of matrices, 52-54

of single mode data structures, comparing, 60-62

of vectors, 41-43

autocorrelations, in time series analysis, 448

axis limits, setting for plots, 294-295

B

bar charts, 291

Becker, Rick, 345

benchmarking, 457-458

bigmemory package, 282

binaries, installing packages from, 26

bivariate lattice graphics, 350-351

blank inputs, 44-45, 74

boxplots, 290

breaks argument, 111

bugs, reporting, 8

building packages, 471-472, 482-485

C

c function, creating vectors, 35-36

C++

incorporating code in R, 501-502

integrating with, 464-468

using R functions in, 467-468

capturing input definitions, 164-167

case sensitivity for file paths, 219

cast function, 245-246

categorical data, 108-112

cbind function, 49

censoring in survival analysis, 431-432

Chambers, John, 2, 535

character data

manipulating, 123-124

searching and replacing, 124-125

character value inputs, 48, 57-58, 76

checking

function inputs, 136, 155-157

multivalue inputs, 162-164

packages, 482-484

classes, 505-509

creating, constructor functions, 510-511

example of, 507-508

extending, 518

generics, 511-516

creating, 515-516

naming conventions, 512

methods

defining for arithmetic operators, 513-514

updating, 513

object orientation, 506-508

inheritance, 508

R6, 542-544

active bindings, 544

example of, 543-544

private members, 542

public members, 542

Reference Classes, 535-542

creating, 535-537

documenting, 542

methods, defining, 537-540

objects, copying, 540-542

removing, 510

S3, 509

creating, 509-511

documenting, 518

inheritance, 516-518

limitations of, 518-519

lists versus attributes, 514-515

naming conventions, 512

S4, 523-535

defining, 525-529

documenting, 534-535

inheritance, 532-534

methods, 529-530

multiple dispatch, 531-532

summary function and, 405

writing, 505

Cleveland, William, 345

clipboard, 219

closing graphics devices, 288

code

C++, incorporating in R, 501-502

improving efficiency

benchmarking, 457-458

initialization, 458-459

integrating with C++, 464-468

with memory management, 463-464

using alternative functions, 462-463

vectorization, 459-462

including in documents

LaTex documents, 556

RMarkdown documents, 550-552

profiling, 456

quality of, 476-477

coef function, 385-386

coefficients from logistic regression, 419-420

colon (:), interaction terms, 396

color function, 288

colors, specifying, 288

column index, 55

columns

adding, 266, 277-278

referencing, 179-180

selecting, 264-266

selecting from data frames, 88

subscripting, 88-90

combining

data.tables, 279-280

lists, 80

plot types, 318-321

vectors, 49-51

comment blocks, 15

comparing

attributes and lists, 514-515

nested models, 393-395

R and C++, 465-466

reshape and reshape2 packages, 245

single mode data structures, 60-62

conferences, 6

confint function, 420

connecting

to Excel from R, 228

to R from Excel, 226

constructor functions, 510-511

continuation prompts, 15

continuous variables, creating factors, 111-112

contrast methods, 400

controlling

aesthetics in ggplot2 package, 322-324

layout, 305-308

grid layouts, 306-307

layout function, 307-308

strip headers, 363-364

styles for lattice graphics, 372-376

converting objects, 156-157

coordinate systems, 338-339

copying Reference Class objects, 540-542

core packages, 23

counting records, 281

covariates, in survival analysis, 436

coxph function, 438-439

CRAN, 7

METACRAN website, 24

navigating to, 573

packages

finding, 23-24

installing, 25-26

create function, 472-474

creating

arrays, 58-60

classes

constructor functions, 510-511

S3, 509-511

data frames, 86-87

data.tables, 273-274

date objects, 103-104

factors, 108-110

from continuous data, 111-112

functions, 130-136, 151-155

error messages, 152-153

warnings, 153-155

generics, 515-516

lattice graphs, 346-355

lists, 71-72

with element names, 71

empty lists, 69

non-empty lists, 70

matrices, 49-52

with a single vector, 51-52

package structure, 472-474

reactive functions, 567-568

Reference Classes, 535-537

sequence of integers, 37-38

sequence of numeric values, 38-39

sequence of repeated values, 39-41

tbl_df objects, 262-263

themes for lattice graphics, 374-376

time objects, 104-105

vectors, 35-41

with c function, 35-36

CSV files, reading, 220

custom functions

applying over dimensions, 191-192

passing extra arguments, 192-193

custom plots, 333-339

aes function, 333-336

coordinate systems, 338-339

ggplot function, 333

multiple data frames, 336-338

cut function, 111

D

data, including in packages, 494-496

data aggregation

aggregate function, 252

apply functions, 250-251

calculating differences from baseline, 257-258

“for” loops, 250

data argument (lm function), 381

data frames, 86-93

apply functions, 193-195

attributes, querying, 87

columns, selecting, 88

creating, 86-87

factors, creating, 108-110

graphing, 97-98

lapply function, 203-204

referencing as a matrix, 90-92

returning top and bottom of data, 93-94

sorting, 236-237

splitting, 197-199

subscripting, 92-93

summarizing, 96

viewing, 94-96

working with multiple, 336-338

“data” lattice graphics, 354-355

data munging, 235

data types, 33-34

factors, 108-112

manipulating levels, 110-111

numeric factors, 109

reordering, 110

DataCamp, 5

data.table package, 273-282

aggregation, 280-282

columns

adding, 277-278

renaming, 277-278

rows, adding, 278-279

setting a key, 274-275

subscripting, 275-276

data.tables

counting records, 281

creating, 273-274

merging, 279-280

date objects, creating, 103-104

dates

lubridate package, 107-108

manipulating, 105-106

DBI (database interface), 225-226

decomposition, in time series analysis, 443-445

defining

function arguments, 132-133

keys, 274-275

methods

for arithmetic operators, 513-514

for Reference Classes, 537-540

S4 classes, 525-529

S4 generics, 530-531

time zones, 105

deleting packages, 24

deparse function, 166

dependencies, 27

descending sorts, 237

DESCRIPTION file, 474-475

developing a test framework, 490-494

incorporating tests into packages, 493-494

test_that function, 490-493

devices (graphics)

closing, 287-288

creating, 287-288

devtools, building packages, 482-485

diagnostic plots, 383-385

comparing, 387-394

in GLM framework, 416

for time series analysis, 449-450

diff function, 106

difftime function, 106

dimensions

dropping, 56

functions, applying, 191-192

dimnames function, 53-54

distribution types, GLM framework, 412

distributions

hist function, 160-162

statistical distributions, 119-120

documentation. See also dynamic reporting; reporting

interactive documents, 569-570

package documentation, generating, 477-482

function headers, 478-480

help pages, 480-482

R Documentation, 5

R manuals, 4-5

Reference Classes, 542

S3 class system, 518

S4 class system, 534-535

vignettes

including in packages, 496-498

markdown notation, 499

writing, 498-501

double square bracket referencing, 76-77

dplyr package, 261-273

aggregation, 268-271

grouped data, 269-270

merge function, 267-268

mutate function, 266

pipe operator, 271-273

sorting, 263

subscripting, 264-266

with filter function, 264

with select function, 264-265

tbl_df objects, creating, 262-263

dropping dimensions, 56

duplicated function, 241-242

dynamic reporting, 547-548

LaTex, 553-556

RMarkdown, 548-552

code chunks, including, 550-552

HTML files, building, 550

dynamic typing, 19

E

EARL (Effective Applications of the R Language) conference, 6

Eclipse, 13

efficiency of code, improving

benchmarking, 457-458

initialization, 458-459

integrating with C++, 464-468

with memory management, 463-464

profiling, 456

using alternative functions, 462-463

vectorization, 459-462

elements

extracting from named lists, 84

list elements

adding, 79-80

referencing, 76-79

ellipsis, 157-159

passing graphical parameters, 159-161

empty lists, creating, 69

errors

bugs, reporting, 8

returning, 152-153

escape sequences, 21

estimating survival function in survival analysis, 432-436

example

of apply function, 184-186

of classes, 507-508

of merge function, 239

of R6 class system, 543-544

Excel

connecting to R, 226

reading structured data, 226-227

XLConnect package, 228-231

exporting text files, 220

extending

classes, 518

packages, 489-490

extensions

to GLM framework, 422-423

to nonlinear models, 430

to survival analysis, 441

to time series analysis, 452

extracting elements from named lists, 84

extractor functions, 385-386

F

facet_grid function, 329-331

facet_wrap function, 331-332

factor variables

in linear models, 398-401

in logistic regression, 419

factors, 108-112

creating, 108-110

from continuous data, 111-112

manipulating levels, 110-111

numeric factors, 109

reordering, 110

ff package, 282

file.choose function, 217

filter function, 264

finding

duplicate values, 241-242

packages, 23-24

fitted function, 385-386

flow control, if/else statements, 136-146

& and | operators, 144-145

example, 145-146

mixing conditions, 143

multiple test values, 139-140

nested statements, 138-139

returning early, 145

reversing logical values, 142-143

summarizing to a single logical, 140-141

switching with logical input, 141-142

using one condition, 139

for function, 174-176

loop variable, 175-176

“for” loops, 174, 250

foreign package, 222

formulas, using with aggregate function, 252-254

multiple return values, 253-254

summarizing by multiple variables, 252-253

summarizing multiple columns, 253

fread function, 221

function keyword, 130-131

functions

abline, 389-390

acf, 448

aes, 333-336

aggregate, 252-254

aggregate function, specifying variables, 254-256

anova, 395

apply, 181-195, 250-251

applying to data frames, 193-195

example, 184-186

margin values, 183-184

multiple margins, 186-187

passing extra arguments to “applied” function, 188-191

using with higher dimension structures, 187-188

arguments, 116

defining, 132-133

named arguments, 131

arima, 449

arrange, 263

as.numeric, 121

c, creating vectors, 35-36

calling, 116

shortened argument calling, 162-161

cast, 245-246

cbind, 49

coef, 385-386

color, 288

confint, 420

constructor functions, 510-511

coxph, 438-439

create, 472-474

creating, 130-136, 151-155

cut, 111

deparse, 166

diff, 106

difftime, 106

dimnames, 53-54

distribution functions, 119-120

duplicated, 241-242

error handling, 462

error messages, creating, 152-153

extractor functions, 385-386

facet_grid, 329-331

facet_wrap, 331-332

file.choose, 217

filter, 264

fitted, 385-386

for, 174-176

loop variable, 175-176

fread, 221

gather, 247-248

gc, 464

get, 164

ggplot, 333

glm, 413

logistic regression, 418-419

methods for, 415-416

Poisson regression, 420-422

grep, 124-125

group_by, 269-271

gsub, 124-125

head, 93-94

help, 28-29

hist, 160-162

HoltWinters, 446-447

I, 404

ifelse, 461

if/else structure, 136-146

example, 145-146

mixing conditions, 143

multiple test values, 139-140

nested statements, 138-139

returning early, 145

reversing logical values, 142-143

summarizing to a single logical, 140-141

switching with logical input, 141-142

using one condition, 139

inputs

capturing, 164-167

checking, 136, 155-157, 162-164

ellipsis, 157-159

is.x, 122

lapply, 195-204

order of “apply” inputs, 201-203

using with data frames, 203-204

using with vectors, 199-201

layout, 307-308

legend, 302-304

length, 41-42, 53

library, 27

lines, 299-300

in nonlinear models, 428

lm, 380-381

methods for, 406-407

logRange, 155

ls.str, 18-19

mathematical functions, 117-118

matrix, 51-52

melt, 243-245

merge, 238-241, 267-268

inner joins, 240

outer joins, 240-241

missing data functions, 122-123

mode, 34

mutate, 266

names, 42-43, 386-388

naming, 132

nchar, 123

ncol, 53

nested calls, 41

nls, 423-425

nrow, 53

objects, 18

odbcConnectAccess, 224

order, 236-237

output, saving, 131

pacf, 448

panel functions, 365-371

par, 304-305

paste, 124, 157-158

plot, 291-299, 383-385

in GLM framework, 416

parameters, setting, 304-305

in proportional hazards regression, 439-441

in survival analysis, 434

in time series analysis, 442-443

plyr, 213

points, 299-300

predict, 390-391

in ARIMA models, 450-451

in logistic regression, 419

in nonlinear models, 428

in survival analysis, 435

in time series analysis, 447

qplot, 314-315

layers, 316

rbind, 50, 237-238

reactive, 566-568

read.table, 218

remove.packages, 24

rep, 39-41

replace, 122

resid, 385-386

return objects, 134-136

Rprof, 456

runif, 157

sapply, 204-208

returns, 205-207

save, 22

scoping rules, 133-134

searchpaths, 17-18

select, 264-265

self-starting, 427

separate, 249

seq, 38-39

split, 195-197

spread, 248

sqlcolumns, 224

statistical summary functions, 118-119

stl, 443-445

stop, 152

structure, 129-130

substitute, 166

substring, 123

summary, 96, 382-383, 405

classes and methods, 405

in GLM framework, 415-416

with names function, 388

in survival analysis, 433-434

survfit, 433-434

in proportional hazards regression, 439-441

switch, 159

table function, 121

tail, 94

tapply, 208-213

multiple grouping variables, 209-210

multiple returns, 210-212

return values, 212

test_that, 490-493

text, 300-302

ts, 441-443

tsdiag, 449-450

update, 392-393

UseMethod, 512

warning, 153

warnings, 153-155

while, 180-181

window, 443

xapply, 182

G

garbage collection, 464

gather function, 247-248

Gaussian model fitting, 414

gc function, 464

generating

classes with constructor function, 510-511

documentation

with LaTex, 553-556

with RMarkdown, 548-552

package documentation with roxygen headers, 477-482

function headers, 478-480

help pages, 480-482

reports, 547-548

generics, 511-516

creating, 515-516

multiple dispatch, 531-532

naming conventions, 512

S4, defining, 530-531

Gentleman, Robert, 3

get function, 164

ggplot function, 333

ggplot2 package, 313

aes function, 333-336

aesthetics, 321-329

controlling, 322-324

grouped data, 327-329

legend, 324-327

combining plot types, 318-321

custom plots, 333-339

coordinate systems, 338-339

working with multiple data frames, 336-338

ggplot function, 333

global themes, 340-341

legend layout, 341

paneling, 329-333

facet_grid function, 329-331

facet_wrap function, 331-332

philosophy of, 313-314

plots

changing, 317-320

as objects, 316-317

qplot function, 314-315

layers, 316

theme layers, 339-340

ggvis package, 342

GitHub, installing packages from, 26-27

GLM (Generalized Linear Model) framework

defined, 412-413

distribution types, 412

extensions, 422-423

Gaussian model fitting, 414

glm function, 413

logistic regression, 417-420

methods for, 415-416

Poisson regression, 420-422

glm function, 413

logistic regression, 418-419

methods for, 415-416

Poisson regression, 420-422

Global Environment. See workspaces

global themes, 340-341

graphical parameters, passing, 159-161

graphics

colors, 288

devices

closing, 288

creating, 287-288

ggplot2 package, 313

aes function, 333-336

aesthetics, 321-329

combining plot types, 318-321

custom plots, 333-339

ggplot function, 333

global themes, 340-341

legend layout, 341

philosophy of, 313-314

plots as objects, 316-317

qplot function, 314-315

theme layers, 339-340

ggvis package, 342

high-level graphics functions, plot, 291-299

lattice graphics, 345

3D, 352-354

bivariate, 350-351

“data” graphics, 354-355

graph options, 356-358

graph types, 347

graphs, creating, 346-355

groups of data, representing, 360-362

panels, 362-371

plotting multiple variables, 358-360

plotting subsets of data, 355

styles, controlling, 372-376

themes, creating, 374-376

transposing the axes, 351-352

univariate, 348-350

layout, controlling, 305-308

grid layouts, 306-307

layout function, 307-308

low-level graphics functions, 299-304

legend, 302-304

lines, 299-300

points, 299-300

text, 300-302

parameters, 304-305

trellis graphics, 345

univariate graphics, 289-291

graphing

bar charts, 291

data frames, 97-98

hist function, 160-162

Greek letters, adding to plots, 294

grep function, 124-125

grid layouts, 306-307

group_by function, 269-271

grouped data, 327-329

gsub function, 124-125

H

head function, 93-94

help function, 28-29

help pages, generating, 480-482

Help pane (RStudio), 28-29

high-level graphics functions, plot, 291-299

hist function, 160-162

histograms, 289

HoltWinters function, 446-447

Holt-Winters method, 446-447

HTML files, building, 550

I

I function, 404

IDEs (integrated development environments), 13

Eclipse, 13

Notepad++, 13

R GUI, 11-12

RStudio, 12-13

ifelse function, 461

if/else statements

& and | operators, 144-145

example, 145-146

mixing conditions, 143

multiple test values, 139-140

nested statements, 138-139

returning early, 145

reversing logical values, 142-143

structure, 136-146

summarizing to a single logical, 140-141

switching with logical input, 141-142

using one condition, 139

Ihaka, Ross, 3

Import Wizard, 218

importing text files, 218

improving code efficiency

benchmarking, 457-458

initialization, 458-459

integrating with C++, 464-468

with memory management, 463-464

profiling, 456

using alternative functions, 462-463

vectorization, 459-462

incorporating tests into packages, 493-494

independent variables

factor variables as, 398-401

indexed printing, 36

inheritance, 508

in S3, 516-518

in S4, 532-534

inhibiting formula interpretation, 404

initialization, 458-459

inner joins, 240

inputs

ellipsis, 157-159

function inputs

capturing, 164-167

checking, 136, 155-157, 162-164

order of “apply” inputs, 201-203

list subscripting inputs

blank inputs, 74

negative integer inputs, 75

positive integer inputs, 74-75

vector subscripting inputs, 44

blank inputs, 44-45

character values, 48

logical values, 46-47

negative integer, 45-46

positive integers, 45

installing

packages, 24-27

from binaries, 26

from CRAN, 25-26

from source, 26-27

R, 573

on Linux, 574-575

on Mac OS X, 574

on Windows, 573-574

RStudio, 577-578

Rtools on Windows, 575-577

integers, creating sequence of, 37-38

interaction terms, 396-398

interactive documents, 569-570

intercepts, removing, 381

is.x functions, 122

iteration, loops

“for” loops, 250

nested loops, 177-179

performance, 180

referencing data with, 176-177

“while” loops, 176-177

J

J function, 275-276

joins

inner joins, 240

merging data in dplyr package, 267-268

outer joins, 240-241

K

Kaplan-Meier estimates, 433-434

keys

defining, 274-275

numeric keys, 276-277

keywords, function, 130-131

knitr package, 548

L

lapply function, 195-204

order of “apply” inputs, 201-203

using with data frames, 203-204

using with vectors, 199-201

LaTex, 548

dynamic reporting, 553-556

lattice graphics, 345

3D, 352-354

bivariate, 350-351

“data” graphics, 354-355

graph options

plot types and formatting, 357-358

title and axes, 356-357

graphs

creating, 346-355

types, 347

groups of data, representing, 360-362

panels, 362-371

controlling strip headers, 363-364

functions, 365-371

multiple “by” variables, 364-365

plotting multiple variables, 358-360

plotting subsets of data, 355

styles

controlling, 372-376

previewing, 373

themes, creating, 374-376

transposing the axes, 351-352

univariate, 348-350

layers in quick plots, 316

layout

controlling, 305-308

layout function, 307-308

grid layouts, 306-307

legend function, 302-304

length function, 41-42, 53

library function, 27

licenses for R packages, 475

limitations of S3, 518-519

linear models, 380-381

assumptions, 411-412

factor variables, 398-401

interaction terms, 396-398

methods for, 406-407

multiple linear regression

comparing nested models, 393-395

creating new models, 391-392

updating existing models, 392-393

variable transformations, 402-404

lines function, 299-300

in nonlinear models, 428

lines on plots, adding, 389-390

Linux

installing R, 574-575

installing Rtools, 575

list objects, models as, 386-388

listing

empty lists, creating, 69

non-empty lists, creating, 70

objects, 18-19

lists, 68-86

attributes, 72-73

combining, 80

creating, 71-72

with element names, creating, 71

elements

adding, 79-80

referencing, 76-79

motivation for using, flexible simulation, 83-84

named lists, 81-82

extracting elements from, 84

printing, 72, 85-86

subscripting, 73

blank inputs, 74

character value inputs, 76

logical value inputs, 75

negative integer inputs, 75

positive integer inputs, 74-75

subsetting, 73

unnamed lists, 81

lm function, 380-381

methods for, 406-407

loading packages, 27-28

logical values

as list subscripting input, 75

as matrix subscripting input, 56-57

reversing, 142-143

specifying, 36

as vector subscripting input, 46-47

logistic regression, 417-420

logRange function, 155

loop variable, 175-176

loops

in C++, 467

“for” loops, 174, 250

initialization, 458-459

nested loops, 177-179

performance, 180

referencing data with, 176-177

“while” loops, 174

low-level graphics functions, 299-304

legend, 302-304

lines, 299-300

points, 299-300

text, 300-302

ls.str function, 18-19

lubridate package, 107-108

M

Mac OX S

installing R, 574

installing RStudio, 577-578

installing Rtools, 575

mailing lists, 4

manipulating. See also sorting

character data, 123-124

dates, 105-106

factor levels, 110-111

times, 105-106

manuals, 4-5

margin values (apply function), 183-184

Markdown, 548. See also RMarkdown

masking, 27-28

mathematical functions, 117-118

matrices, 34, 49-58

attributes, 52-54

column index, 55

creating, 49-52

with a single vector, 51-52

dropping dimensions, 56

referencing data frames as, 90-92

subscripting, 55

character values, 57-58

logical values, 56-57

transposing, 50-51

matrix function, 51-52

melt function, 243-245

memory management, 463-464

merge function, 238-241, 267-268

inner joins, 240

outer joins, 240-241

merging data.tables, 279-280

METACRAN website, 24

methods, 512

defining for arithmetic operators, 513-514

for GLM framework, 415-416

for linear models, 406-407

parametric methods in survival analysis, 434-435

for Reference Classes, defining, 537-540

S4, 529-530

summary function and, 405

updating, 513

microbenchmark package, 457-458

Microsoft Excel. See Excel

missing data functions, 122-123

mode function, 34

models, 379

assessing, 382

abline function, 389-390

extractor functions, 385-386

interaction terms, 396-398

as list objects, 386-388

plot function, 383-385

predict function, 390-391

summary function, 382-383

GLM framework

defined, 412-413

distribution types, 412

extensions, 422-423

Gaussian model fitting, 414

glm function, 413

logistic regression, 417-420

methods for, 415-416

Poisson regression, 420-422

linear models, 380-381

assumptions, 411-412

factor variables, 398-401

interaction terms, 396-398

methods for, 406-407

variable transformations, 402-404

multiple linear regression

comparing nested models, 393-395

creating new models, 391-392

updating existing models, 392-393

nonlinear regression

assumptions, 423

extensions, 430

nls function, 423-425

Puromycin data example, 425-429

survival analysis, 430

censoring in, 431-432

estimating survival function, 432-436

extensions, 441

ovarian data frame example, 431

proportional hazards regression, 437-441

time series analysis

ARIMA models, 448-451

autocorrelations, 448

decomposition, 443-445

extensions, 452

smoothing, 446-447

ts function, 441-443

modes. See data types

motivation for using lists, flexible simulation, 83-84

multimode data structures, 36, 67-68

data frames, 86-93

apply functions, 193-195

attributes, querying, 87

columns, selecting, 88

columns, subscripting, 88-90

creating, 86-87

graphing, 97-98

lapply function, 203-204

referencing as a matrix, 90-92

returning top and bottom of data, 93-94

sorting, 236-237

splitting, 197-199

subscripting, 92-93

viewing, 94-96

working with multiple, 336-338

lists, 68-86

attributes, 72-73

creating, 71-72

with element names, creating, 71

empty lists, creating, 69

motivation for using, 83-84

named lists, 81-82

non-empty lists, creating, 70

printing, 72, 85-86

subscripting, 73

unnamed lists, 81

multiple dispatch, 531-532

multiple linear regression

comparing nested models, 393-395

creating new models, 391-392

updating existing models, 392-393

Murrell, Paul, 313

mutable objects, 538-539

mutate function, 266

N

named arguments, 131

named lists, 81-82

extracting elements from, 84

names function, 42-43, 386-388

NAMESPACE file, 475-476

naming

functions, 132

generics, 512

objects, 20

S3 classes, 512

variables, 241

navigating to CRAN, 573

nchar function, 123

ncol function, 53

negative integer inputs, 45-46, 75

nested calls, 41

nested loops, 177-179

nested models, comparing, 393-395

nicknames, 7

nls function, 423-425

non-empty lists, creating, 70

nonlinear regression

assumptions, 423

extensions, 430

nls function, 423-425

Puromycin data example, 425-429

Notepad++, 13

nrow function, 53

numeric factors, 109

numeric keys, 276-277

numeric values

creating sequence of, 38-39

simulating, 83-84

O

object orientation, 505-508

inheritance, 508

R and, 405-406

objects, 16-22. See also packages

converting, 156-157

date objects, creating, 103-104

listing, 18-19

mutable objects, 538-539

naming, 20

packages, 17

search path, 17-18

plots as, 316-317

Reference Class objects, copying, 540-542

removing from workspace, 20

return objects, 134-136

saving, 22

tbl_df objects, creating, 262-263

time objects, creating, 104-105

workspaces, 19-22

objects function, 18

odbcConnectAccess function, 224

online resources, 4-5

operating systems

Mac OX S

installing R, 574

installing RStudio, 577-578

installing Rtools, 575

Windows

building packages, 482

clipboard, 219

operators, 117-118

&, 144-145

arithmetic operators, defining methods for, 513-514

pipe, 248, 271-273

order function, 236-237

outer joins, 240-241

output of functions, saving, 131

ovarian data frame example (survival analysis), 431

P

pacf function, 448

packages, 7, 17, 23-28

bigmemory, 282

building, 471-472

with devtools, 482-485

checking, 482-484

code quality, 476-477

data, including, 494-496

data.table, 273-282

aggregation, 280-282

columns, adding, 277-278

columns, renaming, 277-278

merging data tables, 279-280

rows, adding, 278-279

setting a key, 274-275

subscripting, 275-276

deleting, 24

dependencies, 27

documentation, generating with roxygen headers, 477-482

dplyr, 261-273

aggregation, 268-271

merge function, 267-268

mutate function, 266

pipe operator, 271-273

sorting, 263

subscripting, 264-266

dplyr package, creating tbl_df objects, 262-263

extending, 489-490

ff, 282

finding, 23-24

foreign, 222

ggplot2, 313

aes function, 333-336

aesthetics, 321-329

combining plot types, 318-321

paneling, 329-333

philosophy of, 313-314

plots as objects, 316-317

qplot function, 314-315

ggplot2 package

ggplot function, 333

global themes, 340-341

legend layout, 341

theme layers, 339-340

ggvis package, 342

installing, 24-27, 485

from binaries, 26

from CRAN, 25-26

from source, 26-27

knitr, 548

lattice, 346

licenses, 475

loading, 27-28

lubridate, 107-108

masking, 28

METACRAN website, 24

microbenchmark, 457-458

proto, 544

Rcpp, 501-502

repositories, 23

reshape, 243

cast function, 245-246

melt function, 243-245

RODBC, 223-225

sas7bdat, 223

search path, 17-18

Shiny, 561-566

applications, 561-566

interactive documents, 569-570

reactive functions, 566-568

sharing applications, 570

structure, 472-476

creating, 472-474

DESCRIPTION file, 474-475

NAMESPACE file, 475-476

tests, incorporating, 493-494

tidyr, 246-249

gather function, 247-248

separate function, 249

spread function, 248

vignettes, 496-498

markdown notation, 499

writing, 498-501

XLConnect, 228-231

zoo, 123

Packages pane (RStudio), 24

paneling, 329-333

facet_grid function, 329-331

facet_wrap function, 331-332

with lattice graphics, 362-371

controlling strip headers, 363-364

functions, 365-371

multiple “by” variables, 364-365

par function, 304-305

parameters, setting for plotting functions, 304-305

parametric methods in survival analysis, 434-435

passing graphical parameters, 159-161

paste function, 124, 157-158

performance, loop performance, 180

pipe operator, 248, 271-273

plot function, 291-299, 383-385

in GLM framework, 416

paneling, facet_grid function, 329-331

parameters, setting, 304-305

in proportional hazards regression, 439-441

qplots, layers, 316

in survival analysis, 434

in time series analysis, 442-443

plots

custom plots, 333-339

aes function, 333-336

coordinate systems, 338-339

ggplot function, 333

mulltiple data frames, 336-338

diagnostic plots, 383-385

comparing, 387-394

in GLM framework, 416

for time series analysis, 449-450

lines on, adding, 389-390

in nonlinear models, 428-429

as objects, 316-317

paneling, 329-333

quick plots, 314-315

faceting, 333

layers, 316

symbols, 296-297

types, 298-299

changing, 317-320

types, combining, 318-321

plyr function, 213

points function, 299-300

Poisson regression, 420-422

positive integer inputs, 45, 74-75

POSIX functions, 105

pre-allocation, 458-459

predict function, 390-391

in ARIMA models, 450-451

in logistic regression, 419

in nonlinear models, 428

in survival analysis, 435

in time series analysis, 447

previewing lattice graphics styles, 373

printing

indexed printing, 36

lists, 72, 85-86

profiling code, 456

proportional hazards regression, 437-441

proto package, 544

Puromycin data example (nonlinear regression), 425-429

Q

qplot function, 314-315

faceting, 333

layers, 316

QQ plots, 289

quality of code, 476-477

querying

data frame attributes, 87

vector attributes, 41-43

quotes, 34

object naming conventions, 20

development of, 3, 7-8

installing, 573

on Linux, 574-575

on Mac OS X, 574

on Windows, 573-574

nicknames, 7

object orientation and, 405-406

resources, 4-6

syntax, 14-16

user events, 6

versions, 7-8

R

R Console, 14-15

R Consortium, 3, 5-6

R Development Core Team, 3

R Documentation, 5

R GUI, 11-12

R models. See models

R6 class system, 542-544

active bindings, 544

example of, 543-544

private members, 542

public members, 542

rbind function, 50, 237-238

Rcpp package, 464-468, 501-502

.RData format, 221

reading

CSV files, 220

structured data from Excel, 226-227

text files, 218-220

read.table function, 218

recommended packages, 23

records, counting, 281

re-creating simulated values, 120

Reference Classes, 535-542

creating, 535-537

documenting, 542

methods, defining, 537-540

objects, copying, 540-542

referencing

columns, 179-180

data frames as a matrix, 90-92

data with loops, 176-177

list elements, 76-79

with $, 77-79

double square bracket referencing, 76-77

regular expressions, 124, 182

relational databases, 223-226

DBI, 225-226

RODBC package, 223-225

remove.packages function, 24

removing

classes, 510

intercepts, 381

objects from workspace, 20

renaming columns, 277-278

reordering factors, 110

rep function, 39-41

repeated values, creating sequence of, 39-41

replace function, 122

reporting

bugs, 8

dynamic reporting, 547-548

LaTex, 553-556

RMarkdown, 548-552

repositories

CRAN

METACRAN website, 24

packages, finding, 23-24

for packages, 23

representing groups of data, 360-362

reshape package, 243

cast function, 245-246

melt function, 243-245

resid function, 385-386

restoring R sessions, 221

restructuring, 242-249

with reshape package, 243

cast function, 245-246

melt function, 243-245

with tidyr package, 246-249

gather function, 247-248

spread function, 248

return objects, 134-136

returning error messages, 152-153

reversing logical values, 142-143

RExcel, 13

RMarkdown, dynamic reporting, 548-552

code chunks, including, 550-552

HTML files, building, 550

RODBC package, 223-225

rows, adding, 278-279

roxygen headers, generating documentation with, 477-482

function headers, 478-480

help pages, 480-482

Rprof function, 456

RStudio, 12-13

data frames, viewing, 94-96

Help pane, 28-29

Import Wizard, 218

Installing, 577-578

packages, loading, 27-28

Packages pane, 24

script window, 132

sessions, restoring, 221

Source pane, 16

text files

importing, 218

reading, 218-220

Rtools, installing on Windows, 575-577

runif function, 157

R Console, 14-15

R Consortium, 3, 5-6

R Development Core Team, 3

R Documentation, 5

R GUI, 11-12

R models. See models

R6 class system, 542-544

active bindings, 544

example of, 543-544

private members, 542

public members, 542

rbind function, 50, 237-238

Rcpp package, 464-468, 501-502

.RData format, 221

reading

CSV files, 220

structured data from Excel, 226-227

text files, 218-220

read.table function, 218

recommended packages, 23

records, counting, 281

re-creating simulated values, 120

Reference Classes, 535-542

creating, 535-537

documenting, 542

methods, defining, 537-540

objects, copying, 540-542

referencing

columns, 179-180

data frames as a matrix, 90-92

data with loops, 176-177

list elements, 76-79

with $, 77-79

double square bracket referencing, 76-77

regular expressions, 124, 182

relational databases, 223-226

DBI, 225-226

RODBC package, 223-225

remove.packages function, 24

removing

classes, 510

intercepts, 381

objects from workspace, 20

renaming columns, 277-278

reordering factors, 110

rep function, 39-41

repeated values, creating sequence of, 39-41

replace function, 122

reporting

bugs, 8

dynamic reporting, 547-548

LaTex, 553-556

RMarkdown, 548-552

repositories

CRAN

METACRAN website, 24

packages, finding, 23-24

for packages, 23

representing groups of data, 360-362

reshape package, 243

cast function, 245-246

melt function, 243-245

resid function, 385-386

restoring R sessions, 221

restructuring, 242-249

with reshape package, 243

cast function, 245-246

melt function, 243-245

with tidyr package, 246-249

gather function, 247-248

spread function, 248

return objects, 134-136

returning error messages, 152-153

reversing logical values, 142-143

RExcel, 13

RMarkdown, dynamic reporting, 548-552

code chunks, including, 550-552

HTML files, building, 550

RODBC package, 223-225

rows, adding, 278-279

roxygen headers, generating documentation with, 477-482

function headers, 478-480

help pages, 480-482

Rprof function, 456

RStudio, 12-13

data frames, viewing, 94-96

Help pane, 28-29

Import Wizard, 218

Installing, 577-578

packages, loading, 27-28

Packages pane, 24

script window, 132

sessions, restoring, 221

Source pane, 16

text files

importing, 218

reading, 218-220

Rtools, installing on Windows, 575-577

runif function, 157

S

S, development of, 1-3

S3 class system, 406, 509

classes, creating, 509-511

documenting, 518

inheritance, 516-518

limitations of, 518-519

lists versus attributes, 514-515

naming conventions, 512

S4 class system, 523-535

defining classes, 525-529

documenting, 534-535

generics, defining, 530-531

inheritance, 532-534

methods, 529-530

multiple dispatch, 531-532

sapply function, 204-208

returns, 205-207

Sarkar, Deepayan, 346

sas7bdat package, 223

save function, 22

saving

function output, 131

workspace objects, 22

workspaces, 221-222

scoping rules for functions, 133-134

script window (RStudio), 132

scripting, 16

search path, 17-18

masking, 28

searching and replacing character data, 124-125

searchpaths function, 17-18

select function, 264-265

selecting columns from data frames, 88

self-starting functions, 427

separate function, 249

seq function, 38-39

sequence of repeated values, creating, 39-41

server component of Shiny applications, 564-566

sharing Shiny applications, 570

Shiny package, 561-566

applications

server component, 564-566

sharing, 570

structure, 561-562

ui component, 562-564

interactive documents, 569-570

reactive functions, 566-568

shortened $ referencing, 78-79

simulated values, re-creating, 120

simulating numeric values, 83-84

single mode data structures, 34-35. See also multimode data structures

arrays, 58-60

creating, 58-60

comparing, 60-62

matrices, 49-58

attributes, 52-54

column index, 55

creating, 49-52

dropping dimensions, 56

subscripting, 55

transposing, 50-51

vectors, 35-49

attributes, 41-43

combining, 49-51

creating, 35-41

lapply function, 199-201

subscripting, 43-49

smoothing in time series analysis, 446-447

sorting

with arrange function, 263

data frames, 236-237

descending sorts, 237

Source pane (RStudio), 16

special characters, adding to plots, 294

specifying

colors, 288

logical values, 36

variables for aggregate function, 254-256

split function, 195-197

splitting data frames, 197-199

S-PLUS, 3

spread function, 248

sqlcolumns function, 224

statistical distributions, 119-120

statistical models. See models

Statistical Sciences, Inc., 3

statistical summary functions, 118-119

missing data, 122-123

stl function, 443-445

stop function, 152

structure

of functions, 129-130

of if/else statements, 136-146

of R packages, 472-476

creating, 472-474

DESCRIPTION file, 474-475

NAMESPACE file, 475-476

of Shiny applications, 561-562

tidy structure, 243

structured data, reading from Excel, 226-227

styles for lattice graphics

controlling, 372-376

previewing, 373

subscripting, 60-62

arrays, 60

columns, 88-90

data frames, 92-93

data.tables, 275-276

with filter function, 264

lists, 73

blank inputs, 74

character value inputs, 76

logical values, 75

negative integer inputs, 75

positive integer inputs, 74-75

matrices, 55

character values, 57-58

logical values, 56-57

with select function, 264-265

vectors, 43-49

blank inputs, 44-45

character values, 48

logical values, 46-47

negative integers, 45-46

positive integers, 45

subsets of time series, 443

subsetting lists, 73

substitute function, 166

substring function, 123

summarizing data frames, 96

summary function, 96, 382-383, 405

classes and methods, 405

in GLM framework, 415-416

with names function, 388

in survival analysis, 433-434

survfit function, 433-434

in proportional hazards regression, 439-441

survival analysis, 430

censoring in, 431-432

estimating survival function, 432-436

extensions, 441

ovarian data frame example, 431

proportional hazards regression, 437-441

switch function, 159

symbols, plotting symbols, 296-297

syntax

comment blocks, 15

continuation prompts, 15

lists

named lists, 81-82

unnamed lists, 81

R Console, 14-15

T

table function, 121

tail function, 94

tapply function, 208-213

multiple grouping variables, 209-210

multiple returns, 210-212

return values, 212

Task Views, 23-24

tbl_df objects, creating, 262-263

test framework, developing, 490-494

incorporating tests into packages, 493-494

test_that function, 490-493

test_that function, 490-493

test-driven development, 494

text files, 217-223

exporting, 220

importing, 218

reading, 218-220

text function, 300-302

theme layers, 339-340

themes, creating for lattice graphics, 374-376

tidy data, 243

tidyr package, 246-249

gather function, 247-248

separate function, 249

spread function, 248

tilde (~), formula relationships, 381

time

lubridate package, 107-108

manipulating, 105-106

time objects, creating, 104-105

time series analysis

ARIMA models, 448-451

autocorrelations, 448

decomposition, 443-445

extensions, 452

smoothing, 446-447

ts function, 441-443

time zones, defining, 105

titles, labeling on plots, 293-294

transforming variables, 402-404

transposing matrices, 50-51

trellis graphics, 345

ts function, 441-443

tsdiag function, 449-450

U

ui component of Shiny applications, 562-564

univariate graphics, 289-291

lattice, 348-350

unnamed lists, 81

update function, 392-393

updating methods, 513

UseMethod function, 512

user events, 6

V

variables

continuous variables, creating factors, 111-112

factor variables

in linear models, 398-401

in logistic regression, 419

loop, 175-176

naming, 241

plotting, 358-360

specifying for aggregate function, 254-256

transforming, 402-404

univariate graphics, 289-291

lattice, 348-350

vectorization, 459-462

vectors, 15, 34-49

attributes, 41-43

combining, 49-51

creating, 35-41

with c function, 35-36

lapply function, 199-201

subscripting, 43-49

blank inputs, 44-45

character values, 48

logical values, 46-47

negative integers, 45-46

positive integers, 45

versions of R, 7-8

nicknames, 7

viewing data frames, 94-96

vignettes, 477

including in packages, 496-498

markdown notation, 499

writing, 498-501

Visualizing Data, 345

visualizing data frames, 97-98

W

warnings for functions, returning, 153-155

websites

METACRAN, 24

R Documentation, 5

R Project website, 3

which argument (plot function), 385

while function, 180-181

“while” loops, 174

white space, 45

Wickham, Hadley, 213, 242, 261, 313

window function, 443

Windows operating system

building packages, 482

clipboard, 219

installing R, 573-574

installing RStudio, 577-578

installing Rtools, 575

working directory, 21

workspaces, 19-22

objects

removing, 20

saving, 22

saving, 221-222

working directory, 21

writing

classes, 505

generics, 511-516

object orientation, 506-508

S3, 509

vignettes, 498-501

X

xapply function, 182

X-axis, labeling on plots, 293-295

XCode, installing Rtools, 575

XLConnect package, 228-231

Y-Z

Y-axis, labeling on plots, 293-295

zoo package, 123

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

OEBPS/Images/image00641.jpeg

OEBPS/Images/image00883.jpeg
LIST | Input speciiying the subset orf 1li:

8t to return |

OEBPS/Images/image01125.jpeg
% PLORE oo ATRCANL = ZPOLELIN,. 31, B 5 TpOaRiif, 2, PR aPRARIIN,. B
> myList
$P1

1] 1222100114

$P3
1] 0140232216

$P5
[1] E4 966465365

OEBPS/Images/image00642.jpeg

OEBPS/Images/image00884.jpeg
» PN R L TR PRennii
SVEC

[11 5782439012

suAT

L1 L2
[, mar o
(2.1 "B "E"
4 4w g

OEBPS/Images/image00639.jpeg
Function

Description

inner_join
left_join
right_join
full join
semi_join

anti_join

Inner join, only matching rows retained
Left join; retains all rows from x and matching rows from y.
Right join; retains all rows from y and matching rows from x
Full join; retains all rows from both x and y

Find rows of x that have a matching row in y

Find rows of x that do not have a matching row in y

OEBPS/Images/image00881.jpeg
R B EEAEE AR SEpCY- SR
> emptyList <- list()

2 Ways of Creating an unnamed list containing a vector and a matrix
unnamedList <- list(aVector, aMatrix)
unnamedList <- list(c(s, 7, 8, 2, 4, 3, 9, 0, 1, 2),

matrix(LETTERS[1:6], nrow = 3))

T vV

2 Ways of Creating a named list containing a vector and a matrix
namedList <- 1list(VEC = aVector, MAT = aMatrix)
namedList <- list(VEC = c(5, 7, 8, 2, 4, 3, 9, 0, 1, 2),

MAT = matrix(LETTERS[1:6], nrow = 3))

VvV
'

OEBPS/Images/image01123.jpeg
® ERRLCIAEAN,, A, DARaR
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
BaEarnr oy Fabalrssast BUREIEHNAEE HRREE RS R R a e

OEBPS/Images/image00640.jpeg
Frequency

15 20 25 30 35

10

Histogram of x

Sample Quantiles

Normal Q-Q Plot

o
%00

-2 -1 0 1

Theorefical Quantiles

OEBPS/Images/image00882.jpeg
o b i =00 EEpCy LHEE
list ()

> unnamedList # A list with unnamed elements
[
[11 5782439012

(1211

L1 2]
[1,] "an npn
[2,] "B" "E"
[3,] "cr npn

> namedList # A list with element names
SVEC
[11 5782439012

$MAT

L1 2]
[1,] "an npn
[2,] "B" n"En
S

OEBPS/Images/image01124.jpeg
R B ARDAY MO SUOCESOR VAT TON TRREE A CAumoe: Or D0
> apply(iris[,-5], 2, median, na.rm = TRUE
Sepal.Length Sepal.Width Petal.Length Petal.Width

£ 80 2 00 4 3% 1 20

OEBPS/Images/image00645.jpeg
Frequency

15 20 25 30 35

10

5

Histogram of Random Normal Data

Simulated Normal Data

Concentration

1000 1500 2000

500

Concentration against Time

0o

om0 0comAmE0 O

°

@omm o 00

o Jo

Time

OEBPS/Images/image00643.jpeg
x4

gl

oL

S0
[04:1)x

00

S0

[

10

Index

OEBPS/Images/image00885.jpeg
N PESLARE B SWRRIANE 4 Gt ¥ ERLER. cREh Chemenh
> subList # Print the new object
SVEC

[11 5782439012

> length (subList) # Number of elements in the list
1
> class (subList) # Check the "class" of the object

[1] "list"

OEBPS/Images/image00644.jpeg
airquality$Ozone

150

100

50

x
x
x
x
X x
%
x
S %
x%
x * x
X X% X

% X

airquality$Wind

20

OEBPS/Images/image00886.jpeg
% SMALIAK & WAL EAL N, BEOM = 4 ¥ CUERLE R OUMEXTR AR
> aMatrix # Print the matrix
[,11 [.2]1 [.3]
n, 1 3 5
2,1 2 4 6

> mode (aMatrix) # Mode of data held in this object
[1] "numeric"

> class (aMatrix) # Type (or "class") of object
1] "matrix"

OEBPS/Images/image00887.jpeg
> namedList
SVEC
1] 5782439012

SHAT

L1l L2
@1 man vpr
2.1 "B "EN
3.1 "cn nEn
> namedList [-1] # Return all but the first element
SHAT

L1l L2
@1 v vpr
2.1 "B "EN
i) WER N

OEBPS/Images/image00648.jpeg
23

23

24

7

24

25

25

OEBPS/Images/image00890.jpeg
% DNy #2508 ORLEONE SRk
SVEC

[11 5782439012

$MAT

L1 2]
[1,] "an npn
[2,1 "B" "E
[3,1 "cv g

> namedList [[1]] # The first element
[1] 5782435012
> namedList [[2]] # The second element

1) 2]
[1,1 "an o
[2,1 "B" "E"
[3,1 "cv g

> mode (namedList[[2]]) # The mode of the second element
11] “chsracter™

OEBPS/Images/image00649.jpeg
Concentration

2000

1500

1000

500

Concentration against Time

DDBESDE DD B> D>

10 15 20

Time

OEBPS/Images/image00891.jpeg
% ST ok - ERELEn & SANE Coutainsng 1 mismsnE
SVEC
1] 5782439012

> namedList [[1]] # Return the first element of the list (a vector)
1] 5782439012

OEBPS/Images/image00646.jpeg
o @00

0002 00Sh

T
000k

T
00s

°
°
T

0

sz == ssoqgeieardlouoogereayd

°

oo

o @

ooaozamon

© coomm omen ¢

T T
00s2

T
0051

T T
00s 0

ouopgereayd

15 20

10

10

25

pkDataSTime[pkData$Dose

pkDataSTime

OEBPS/Images/image00888.jpeg
> namedList
SVEC
1] 5782439012

SMAT

1] 2]
[1,1 "an o
[2,1 "B" "E"
[3,1 "cv g

> namedList [c(T, F)] # Vector of logical values
SVEC
[1] 5782439012

OEBPS/Images/image00647.jpeg
20

19

18

17

16

15

13

12

1

10

14

OEBPS/Images/image00889.jpeg
> namedList
SVEC
[11 5782439012

suAT

L1 L2
[, mar o
(2.1 "B "E"
3.1 "cr e

> namedList ["MAT"] # Vector of Character values
suAT
L1 2]
[, mar o
12,1 "B" "E"
13 q g g

OEBPS/Images/image00630.jpeg
Split on first
and second
Dimensions

max (for each pair of values)

|

OEBPS/Images/image00872.jpeg
2 A

1112345

> AGE

[1] 18 35 25 NA 23

> AGE >= 25

[1] FALSE TRUE TRUE NA FALSE
> ID [AGE >= 25]

[1] 2 3 NA

OEBPS/Images/image01114.jpeg
> above3 <- function(vec) {
¢+ sum(vec > 3)
¢}

> above3(c(1, 6, 5,
1] 2

3)) # Try out our function

OEBPS/Images/image00631.jpeg
— & —

£ ©
2133‘Vm\¥3
ol - —F
-H-[-]—~f—~H
5122|vm|v5
ﬁn
a1
=3
+
”n o
S
SEEE
EEE
3 : B
NEEE

OEBPS/Images/image00873.jpeg
L2l 8 2 AR Ba TR S
(1] TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
1] -1 0123

1154321

(1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
11123123123

(1] "A" A" wA" "AY

T Sneiike Cheiae AGTERY W g v e

OEBPS/Images/image01115.jpeg
* APRLVNRAL .4, KEOVEA; R NUEDED OF BRUSE A0 SREh s
1] 1220 3

OEBPS/Images/image00628.jpeg
3
Split by
A BLELE
4

OEBPS/Images/image00870.jpeg
PR ach bl X JMIED SRRy
(11232

> median(X) # Median of X
1] a

OEBPS/Images/image01112.jpeg
% SPEEY ISR Rt

.

0%
5%
50%
95%
100%

probs
1
o

L
.00
.00
.00
.15
00

® o w ko

c(o, .05

2]

[.3]
o

0 o w ok

Sy, JUARLALN,
-5,

.95,

1,

na.rm

TRUE)

Column quantiles

OEBPS/Images/image00629.jpeg
B —
Split on third
Dimension

—>min—> | 1

OEBPS/Images/image00871.jpeg
BC
23
X[2:5]

B C <NA> <NA>
2 3 NA WA
X[c("an, "cv, "EM)]

A C<NA>

1 2

NA

OEBPS/Images/image01113.jpeg
 Dymas

L1
[, 5
2,1 1
(&) 2
14,1 2

2]

3

7
3
2

L3

(4]

wow e

OEBPS/Images/image00634.jpeg
Number of Return values
from Function

Number of Grouping Variables

Always one value

Always retums the same
number of values (> 1)

Retums a variable number
of values

1 2
A vector A matrix

Alist A “matrix of lists”
Alist or, if the A “matrix of lists"
function happens or, if the function
to return all single happens to return
values, a vector all single values, a

matrix

>2
An array

An “array of lists”

An “array of lists”
o, if the function
happens to return
all single values, an
array

OEBPS/Images/image00635.jpeg
x| 9 - ™
| Home | nsen

air_summary.xisx [Group] - Microsoft Excel

[EST0ALC

Pagelayout Formulas Data Review View Developer GoldMine c@o@ =

T E A w ==l S Geners - ¥ g = F O ;]: 5 od
e i | - 5, v | 58| ol Fak O | 5 0l o) 5 sl
Atignment 5 humber 5 styes celts | Editing
I

4] A B c D E F G H 1 i K L ™M N P Q =
5 =
= MR omneT Histogram of Ozone Levels in New York
[5 23.61538
ol S asam May to September 1973
s 7 5911538
5 8 59.96154
7 5 3144828
8 e
]
10
u
2 E g
13| g™
11 £
5
<0
17 2
i
19
204
2 -
2 r 7 T |
| 0 50 100 150
= ‘Ozone (ppb)
>
264
2z Bl
28 -
W 4% W[data | Summary /€1 [l I I v |
Ready | 73 |

OEBPS/Images/image00632.jpeg
Number of Return Values from Function

Return Structure

Always 1 value

Always retums the same number of
values (> 1)

Retums a variable number of values

A vector (with element names if the list elements
were named).

A matrix with output corresponding to each element
in the columns (with column names specified by the
list element names, if they exist) and the multiple
return values from the function across rows (with
row names specified by the named outputs from the
function, if they exist).

It depends. If the function retums a variable number
of values across the summaries, a list will be
returned (that is, no simplification is performed). If
it so happens that the retum values are the same,
then sapply will simplify the return structure as
described previously.

OEBPS/Images/image00874.jpeg
% Ehle Ao &) THELIQT) T HAEARES Weaa

[EORREN 20 n3n "Hello"
> (1, 2, 3, TRUE, FALSE) # Multiple modes
12310

> c(1, 2, 3, TRUE, FALSE, "Hello") # Multiple modes

Bt W - _— . e

OEBPS/Images/image00633.jpeg
Margin Description
X The data to summarize, typically a vector

INDEX Afactor, or list of factors, by which to apply the function to x
FUN The function to be applied to x

Other arguments to FUN

OEBPS/Images/image00875.jpeg
® FMRCAE e ahuaag
+ Day = c("Saturday", "Sunday", "Monday",
+ Date = c("Jul 4", "Jul 5", "Jul 6", "Jul 7",
+ TempF = c(75, 86, 83, 83, 87)
‘)
> weather
Day Date TempF
[1,] "saturday" "Jul 4" "75"
[2,] "Sunday" "Jul 5" "g6"
[3,] "Monday" "Jul 6" "83"
[4,] "Tuesday" "Jgul 7" "83"
[5,] "Wednesday" "Jul 8" "g7n

"Tuesday", "Wednesday"),

naul &),

OEBPS/Images/image01117.jpeg
* APRLNRAL %, MECEIONIVEC] NURLYRE 27 Ay
11 1220 3

OEBPS/Images/image00876.jpeg
® IRCIEN LR] #TH0M PO DL THS SaLrax
[1] "character"

OEBPS/Images/image01118.jpeg
> aboveN <- function(vec, N) {
+ sum(vec > N)
.

}

> someValues <- c(1, 6, 5, 1, 2, 3)

> aboveN(someValues, N = 3) # Number > 3
] 2
> aboveN(someValues, N = 5) # Number > 4

F1] ¥

OEBPS/Images/image01116.jpeg
> apply (myMat, 2, function(vec) ({
+ sum(vec > 3)

+ b

11 1220 3

OEBPS/Images/image00637.jpeg
Argument Usage

data The name of the dataset, a data frame object

key The key column to create in the output (that is, the new column name of the
variable)

value The value column to create in the output (that is, the new column name for the

observed value)

The columns that will be used for the gathering

OEBPS/Images/image00879.jpeg
* BANRELINL S RIELIVEC B AVeCERTs MEL
> namedList
SVEC

[1] 5782435012

AT

SMAT

1 2]
[1,1 "an o
[2,1 "B" "E"
En 2 ceww e

OEBPS/Images/image01121.jpeg
* ARRELIAITODNILEY
Ozone Solar.R Wind Temp Month Day

a1
36
12
18
N
28

o n e whE

> apply (airquality,

190
118
149
313
nA
nA

ozone Solar.R

21 E

205 0

7

8.
12.
ph i
14.
14.

4

W:

67
72
74
62
56
66

5

2, median,

ind
o7

Temp
29 0

na.

PR

rm =
Month
20

TRUE)
Day
16 0

¥ FAREC FEw LOWR;

Median of each column

OEBPS/Images/image00638.jpeg
Function

Description

Usage

starts_with
ends_with
contains
matches

num_range

one_of

everything

Names starting with x
Names ending in x

Contains string x

Regular expression matching

Variables numerically from
x1 to xn

Variables provided in a
vector

Selects all variables

starts_with(x, ignore.case = TRUE)

ends_with(x, ignore.case = TRUE)
contains (x, ignore.case = TRUE)

matches (x, ignore.case = TRUE)

num_range("x", 1:n, width = 2)

one_of ("

everything ()

OEBPS/Images/image00880.jpeg
> namedList <- list(VEC

=ci(5, 7,8, 2, 4, 3, 9, 0, 1, 2),
. MAT = matrix(LETTERS[1:6], nrow = 3))
> namedList

SVEC

1] 5782439012

SHAT

L1l L2
@1 v vpr
2.1 "B vEN
Fao'] Mpe Bge

OEBPS/Images/image01122.jpeg
2 HRARLITIN,

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 ER] 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 ! 0.2 setosa

2 1.6 34 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 225 0.4 setosa

> apply(iris, 2, median, na.rm = TRUE)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

N nA NA nA nA

Warning messages:

1: In mean.default (sort (x, partial = half + OL:1L) [half + OL:1L])
argument is not numeric or logical: returning NA

2: In mean.default (sort (x, partial = half + OL:1L) [half + OL:1L])
argument is not numeric or logical: returning NA

3: In mean.default (sort (x, partial = half + OL:1L) [half + OL:1L])
argument is not numeric or logical: returning NA

4: In mean.default (sort (x, partial = half + OL:1L) [half + OL:1L])
argument is not numeric or logical: returning NA

5: In mean.default (sort (x, partial = half + OL:1L) [half + OL:1L])

SErgament A araot s loiar looleads et M

OEBPS/Images/image00877.jpeg
® AYRECOE e RN, T, o0, 2, 8,09, 8.8,
> aMatrix <- matrix(LETTERS[1:6], nrow
> unnamedList <- list(aVector, aMatrix)
> unnamedList

[

[11 5782439012

(1211

L1 2]
[1,] "an npn
[2,] "B" "E"
TR

OEBPS/Images/image01119.jpeg
% AL o NETRE NS WAL

[.1] [,2) [,3] [.4] [,5]
n, 5 6 4 2 |
2,1 1 7 3 1 6
3,1 2 3 0 3 4
4, 2 2 4 3 4
> apply(myMat, 2, aboveN, N = 3) # Number > 3

12203
> apply (myMat, 2, aboveN, N
1] 12001

1) # Number > 4

OEBPS/Images/image00636.jpeg
Argument

Usage

x
y

by

by .x
by.y
all
all.x
all.y

suffixes

First dataset to merge
Second dataset to merge

Character vector of columns to merge by
The columns in x to merge by

The columns in y to merge by

Logical flag—include all rows

Logical flag—include all rows from x
Logical flag—include all rows from y

Column name suffix for matching column names

OEBPS/Images/image00878.jpeg
% BIUSIRSGLAEE S AARLIERR, oL, B, S0, 3, B 8, L, A,
. matrix(LETTERS[1:6], nrow = 3))
> unnamedList

[

[11 5782439012

(1211

L1 2]
[1,] "an npn
[2,] "B" "EM
e Her 56

OEBPS/Images/image01120.jpeg
> apply (myMat, 2, function(vec, N) {
+ sum(vec > N)

+}ow=3)

1] 12203

OEBPS/Images/image00663.jpeg
Locations of Earthquakes off Fiji

-0

apmye

185

180

175

170

185

Longitude

OEBPS/Images/image00905.jpeg
HEACRL 5 heECBLAREAN; XS SiaRir] T ¥Rriorm g F-TeRt
> theTest # Print the output

Welch Two Sample t-test

data: 1:10 and c(7:20
t = -5.4349, 4f = 21.982, p-value = 1.855e-05
alternative hypothesis: true difference in means is not equal to
95 percent confidence interval
-11.052802 -4.947198
sample estimates:
mean of x mean of y
£ € 13 E

OEBPS/Images/image00664.jpeg
Miles per US Gallon
8

Miles per Gallon vs Weight
Automobiles (1973-74 models)

4

4
Weight (1b/1000)

Humber of

OEBPS/Images/image00661.jpeg
mpg

oyl

OEBPS/Images/image00903.jpeg
* DRALISREE &= TPOLRIL00, X T RiMLUACE INNUeY OL SEEDEES . VSLhae oY
day from a Poisson distribution

> nExtremes [1:5] # First 5 numbers

1] a3 5.7.3

> # Define function that simulates "N" extreme values
> exFun <- function(N) round(rweibull(N, shape = 5, scale = 1000)
> extremeValues <- lapply(nExtremes, exFun) # Apply the function to our simulated

numbers
> extremevValues[1:5] # First 5 simulated outputs
{585}
numeric (0)

(211
[1] 1305 948 1077

(211
[1] 676 516 865 614 970

(1411
[1] 618 1217 818 1173 1205 1105 519

[s11
[1] 1026 933 657

OEBPS/Images/image00662.jpeg
g

10

OEBPS/Images/image00904.jpeg
% FROIAI\NEPP- LY LSRR, TEOgLR] T BRSO TOXEsEE “Of BAROLEENIY. SECE NI
m 3

> median (sapply (extremeValues, sum)) # Average extreme value

[1] 2634

OEBPS/Images/image00665.jpeg
Miles per Gallon vs Weight

Automobiles (1973-74 models)
©
B
Number of Cylinders
e ¢
S| . s
3 5 -
® * A
;20 w n Displacement (cu.in.)
E L 7
s = - > 2
= b [] .0
- ® w0
= m
o

4
Weight (1b/1000)

OEBPS/Images/image00666.jpeg
Miles per Gallon vs Weight
Automobiles (1973-74 models)

MlssperpeGalon

Displacement (cu.in)
0
® 0
@0
@0

.
e

a0
b u
n
n .4
L]
u -8

4
Weight (Ib/1000)

OEBPS/Images/image00908.jpeg
N HENERRE. T PEAOL VL aubiak

Welch Two Sample t-test

data: 1:10 and c(7:20)

t = -5.4349, df = 21.982, p-value = 1.855e-05

alternative hypothesis: true difference in means is not equal to
95 percent confidence interval:

-11.052802 -4.947108

sample estimates:
mean of x mean of y
£ 5 13 &

OEBPS/Images/image00667.jpeg
les per US Gallon
8

Miles per Gallon vs Weight
Automobiles (1973-74 models)

4
Weight (Ib/1000)

Humber of cylinders.
s
BO
.e

Displacement (cu.in)
® 0
® 200
[=)
@0
@0

OEBPS/Images/image00909.jpeg
v o+ o+ +v

WSO S DALy, TIRee ® CERALE N GALe SLEn

Day = c("Saturday", "Sunday", "Monday", "Tuesday", "Wednesday"),
Date = c("Jul 4", "Jul 5", "Jul 6", "Jul 7", "Jul 8"),
TewpF = c(75, 86, 83, 83, 87)

)

weather # Print the data frame

Day Date TempF
saturday Jul 4 75

Sunday Jul 5 86
Monday Jul 6 83
Tuesday Jul 7 83
Nadoseday Jul B @

OEBPS/Images/image00906.jpeg
DRENE L EOEIRR). T NEEaE OEOLARE SLemente
[1] "statistic" ‘"parameter" "p.value" "conf.int" "estimate"
61 anll ST AR TE RaEhEAe R AR

OEBPS/Images/image00907.jpeg
* FasInatyp wasus ¥ EATRIAnSE. A pTEa LU
[1] 1.855282e-05

OEBPS/Images/image00670.jpeg
Miles B e aalon

Miles per Gallon vs Weight
Automobiles (1973-74 models)
) G

3

s

4 6

4

4

6

2 4 6 2 4
Weight (1b/1000)

OEBPS/Images/image00912.jpeg
% AEDgUHIMEAEDeLL E L
a1 s

> names (weather) # Column names

[1] "Day" "Date" "TempF"

OEBPS/Images/image00671.jpeg
'S Gallon

LI

Miles per Gallon vs Weight
Automobiles (1973-74 models)
2

2 4
Weight (Ib/1000)

OEBPS/Images/image00913.jpeg
* MEaLOSL FoTaR MOOLE CALA STane
Day Date TempF

1 saturday dul 4 75
2 Sunday Jul 5 86
3 Monday Jul 6 83
4 Tuesday Jul 7 83
5 Wednesday Jul 8 87
> weather[[3]] # The "third" column

[1] 75 86 83 83 87
> weather$TempF # The "TempF" column
[1] 75 86 83 83 87

OEBPS/Images/image00668.jpeg

OEBPS/Images/image00910.jpeg
* prant.aetanltiseatoarl

$pay

[1] Saturday Sunday Monday Tuesday Wednesday
Levels: Monday Saturday Sunday Tuesday Wednesday

$Date
[1] Jul 4 Jul 5 Jul 6 Jul 7 Jul 8

Levels: Jul 4 Jul 5 Jul 6 Jul 7 Jul 8

$TempF
[1] 75 86 83 83 87

attr(,"class")
181 Sdukw: Ermmem®

OEBPS/Images/image00669.jpeg
Mlssperdegalon

Miles per Gallon vs Weight
Automobiles (1973-74 models)
)

2 4
Weight (Ib/1000)

OEBPS/Images/image00911.jpeg
* ORCE. tram it
Error in data.frame (X = 1:5, Y = 1:2)
RS Jan i BRI SR petain G 9

OEBPS/Images/image00652.jpeg
0002

0051

T
000k

ouopgereayd

20

15

10

pkDataSTime

OEBPS/Images/image00894.jpeg
> aList <- list(first second

> alist$s # Returns the second

&y FOAIR

&y SENEER

m 2
> aList$fi # Returns the first
11

> alist§fo # Returns the fourth
1] 4

OEBPS/Images/image00653.jpeg
27 e

g ;
0002 0054 000k 005 0
suoogereayd

: E3em

52 EEagem

282 esmERR OGN 3
0002 00G4 000k 005 0

ouopgereayd

20

15

10

20

15

10

pkDataSTime

pkDataSTime

OEBPS/Images/image00895.jpeg
® empryLaec
e8]
[1] "A" "BW mgn wpn wgn

> emptyList[[1]] <- LETTERS[1:5
> emptyList

[
R e T

¥ NEpLY syuh,

Add an element

Updated (non)empty list

OEBPS/Images/image00650.jpeg
Type Description

P Points (default)
1 Lines
b Both points and lines
c Just the lines component of a type b plot
o Overlaid lines and points
Histogram like vertical bars
s Step plot (horizontal first)
s Step plot (vertical first)

n No plotting

OEBPS/Images/image00892.jpeg
& SARRenTES F R T arrinal Saak,
SVEC
1] 5782439012

SMAT

1] 2]
[1,1 "an o
[2,1 "B" "E"
[3,1 "cv g

> namedList [[1]] # Return the first element
1] 5782439012
> namedList$VEC # Return the "VEC" element

[1] 782439012

OEBPS/Images/image00651.jpeg
15

10

05

00

05 00 05 10 18

40

type = "0’

05 o0 05 10 18

40

type="1" type="b"

o 3 3 b g 4

T T — T — T B —

6 10 P 10 P 10 4+ 8 8 10

ndex ndex index index
B

6 10 PR 10 PR 10 4+ 8 8 0

ndex Index index index

OEBPS/Images/image00893.jpeg
* Brasmschumt. ¥ WAL VLIS B0 SlNnt S
(1]
[11 5782439012

(1211

L1 2]
[1,] "an npw
[2,] "B" "E"
[3,] "cr npn

> unnamedList[[1]] # First element
[11 5782439012

> namedList # List with element names
SVEC
[11 5782439012

suAT

L1 21
[, mar o
12,1 "B" "E"
(3,1 "er e

> namedList$VEC # The "VEC" element
1] 5 782439012

OEBPS/Images/image00654.jpeg
subj1$Conc

600

500

400

300

200

100

® Subject 1
O Subject 2

T
10

subj1STime

15

20

OEBPS/Images/image00655.jpeg
Function

Purpose

Main Arguments

title
text
points
lines
abline
mtext
axis
legend

polygon

Add a main title
Add text to the plot area
Add points to the plot area
Add lines to the plot area
Add straight reference lines
Add text to the plot margin
Add an axis

Add a legend

Add a polygon

A character string
X, Y positions + vector of text
X, Y positions

X, Y positions

Coefficients or reference values
An axis number and text

An axis number and positions
X, Y position + legend info

X, Y positions

OEBPS/Images/image00897.jpeg
* EpCyIaNL €= fiRtly 3 BACTAAER W Sy ek
> emptyList # Empty list

list ()

> emptyList[[3]] <- "Hello" # Assign to third element
> emptyList

[n

NULL

(1211
NULL

[
[1] "Hello"

OEBPS/Images/image00656.jpeg
Outer margin 3

p uiBrew 1NQ

Figure Region

Plot Region

z uiBrew 1INQ

Outer margin 1

OEBPS/Images/image00898.jpeg
> listl <- list(A A ¥ OUNRLELISLE
> list2 <- list(C 4) 4 Create list2

> c(listl, list2) # Combine the lists
$A

11

$B
m 2

sC
m 3

$D
1] 4

OEBPS/Images/image00896.jpeg
% SEptyDIimt =~ MIELA) T RACTRALE TON SEpCyLIRE

> emptyList # Eupty list
list ()

> emptyList$ABC <- LETTERS[1:5] # Add an element

> emptyList # Updated (non)empty list
$ABC

s ——

OEBPS/Images/image00659.jpeg
Bdw

18

10

OEBPS/Images/image00901.jpeg
% DENRCANE S JENEATEE B AeCton; MRS

AEALTIN O CEWRER TR AN

> namedList # Print the list
SVEC
[11 5782439012

$MAT
L1 2] 3]
(e 1 ich 5
(2,1 2 4 6
> length (namedList) # Number of elements
m 2
> names (namedList) # Element names

S

OEBPS/Images/image00660.jpeg
mpg

18

10

oyl

OEBPS/Images/image00902.jpeg
> namedList (1] o SEEERC, TOR STEE.
SVEC
[11 5782439012

> namedList$VEC # Return the first element
[11 5782439012

> namedList$NEW <- 1:5 # Add a new element
> namedList

SVEC
[11 5782439012

$MAT

1 2] 3]
(e8] 1 < 5
(2,1 2 4 6
SNEW

1] 123 4 5

OEBPS/Images/image00657.jpeg
Frequency

Sample Quantiles

15

10

¥

2

Histogram of x

Theoretical Quantiles

- ¥ 4 !
— T
2 1 o 1 2
x
Normal Q-Q Plot
e o &
@ e ot e T g o
Y R
R gl e o0° o
T T T T T T T T T T T
2 4 0 1 2 0 20 40 60 80 100

OEBPS/Images/image00899.jpeg
P HERERSOLANE K5 AREIAVAOTOL. SESLTAE]L N TERRES TR G ANT

> unnamedList # Print the list
[
1] 5782439012

(211
1) 2] 3]

m. 1 3 5

2,1 2 4 6

> length (unnamedList) # Number of elements
a2

> names (unnamedList) # No element names

NULL

OEBPS/Images/image00658.jpeg
Histogram of x

Normal Q-Q Plot

sapueno apdues

o st ok

ouenbas 4

100

8
8
2
8

Theoretical Quanties

OEBPS/Images/image00900.jpeg
> unnamedList (1] L. TIDRAE LI ek
[
1] 5782439012

> unnamedList [[1]] # Return the first element
1] 5782439012

> unnamedList[[3]] <- 1:5 # Add a new element

> unnamedList
[
[1] 5782435012

(211

[,11 [.2]1 [.3]
[, 1 g 5
2,1 2 4 6

(211
1] 12345

OEBPS/Images/image00685.jpeg

OEBPS/Images/image00683.jpeg
Wikis

154

104

carb

OEBPS/Images/image00925.jpeg
* NmALDRrL 30,

Day Date TempF
1 saturday Jul 4 75
2 Sunday Jul 5 86
3 Monday Jul 6 83
i Sukadsviaer ¥ G

¥ e,

+1ive

OEBPS/Images/image00684.jpeg

OEBPS/Images/image00605.jpeg
Attribute Vectors Matrices Arrays
Mode single mode Single mode Single mode
Structure No structure Two-dimensional Ndimensional

Length function
Subscripting

Returns # elements

X

[Input]

Returns # elements

X

[Input

Input]

Returns # elements

X [Input, Input,
EEDUE,. wow 1

OEBPS/Images/image00604.jpeg
Input

Effect

Blank
A vector of positive integers
A vector of negative integers
A vector of logical values

A vector of character values

Al values of the vector are returned.
Used as an index of values to return.

Used as an index of values to omit.

Only corresponding TRUE values are returned.

Refers to the element names of values to retum.

OEBPS/Images/image00603.jpeg
Function Usage

mode Returns the (data) mode of the vector
length Returns the number of elements in the vector
names Returns the elements’ names in a vector (or NULL if there are no names

assigned)

OEBPS/Images/image00602.jpeg
Files Plots Packages Help Viewer
e 248

R: Arithmetic Mean +

mean {base}
Arithmetic Mean

Description

‘Generic function for the (timmed) arithmetic mean
Usage

mean(x, ...)

$## Default 53 mechod:
mean(x, trim

0, na.m = FALSE, ...)

Arguments

=0

R Documentation [~

x An= object. Currently there are methods for numeric/logical vectors and date, date-time and

time interval objects. Complex vectors are allowed for czim = 0, only.

crim the fraction (0 to 0.5) of obsenvations to be trimmed from each end of x before the mean is
‘computed. Values of trim outside that range are taken as the nearest endpoint. ~

OEBPS/Images/image00601.jpeg
Install Packages.

Install from: 2 Configuring Repositories
Repository (CRAN, CRANextra) =
Packages (separate multiple with space or comma):
Install o Library:
(C/Progrom Files/R/R-32.0/lirery Defoult]

Install dependencies

OEBPS/Images/image00600.jpeg
@ The Comprehensive RAr: X \

&« C' fi | & https;//cran.rstudio.com

R Homepage
The R Journal

Softare
R Sources
R Binaries
Packages

Other.

Documentation
anuals

EAQs
Contributed

hitpsi/cran studio.com/veb/views/

CRAN Task Views

Bayesian Bayesian Inference
ChemPhys Chemometrics and Computational Physics
ClinicalTrials Clinical Trial Design. Monitoring, and Analysis
Cluster Cluster Analysis & Finite Mixture Models
DifferentialEquations Differential Equations
Distributions Probability Distributions
Econometrics Econometrics
Environmetrics Analysis of Ecological and Environmental Data
ExperimentalDesign Design of Experiments (DoE) & Analysis of Experimental Data
Finance Empirical Finance
Genetics Statistical Genetics

aphics Graphic Displays & Dynamic Graphics & Graphic Devices & Visualization
HighPerformanceComputing High-Performance and Parallel Computing with R
Machinel caming Machine Learning & Statistical Learning
Medicallmaging Medical Image Analysis
MetaAnalysis Meta-Analysis
Multivariate Multivariate Statistics
Naturall anguageProcessing Natural Language Processing
NumericalMathematic Numerical Mathematics
OfficialSttistics Official Statistics & Survey Methodology

Dlnsimizatinonand Matheawtiosl Droornmiios.

A,
Ny

b

Lt |[o]@] R

OEBPS/Images/image00599.jpeg
@ Quit R Session

OEBPS/Images/image00598.jpeg
© Untitiedr*
£ Osourceonsave | Q /'~ | £ “HRun

1 # Set working directory
setwd ("C: /Users/username/Documents /STY/Hour_2")

3
4 # Load required libraries
5 Tibrary(dplyr)

6 Tibrary(ggplot2)
7
8

Create some objects
ol x <- 5
10 y< 6
11 z< x-y

=0

5 [source ~

OEBPS/Images/image00597.jpeg
R version 3.2.0 (2015-04-16) -- "Full of Ingredients"
Copyright (C) 2015 The R Foundation for Statistical Computing
pPlatform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.

Type 'demo()’ for some demos, 'help()' for on-line help, or
*help.start()' for an HTML browser interface to help.
Type 'q()’ to quit R.

>

OEBPS/Images/image00596.jpeg
@ Rstugio

Ele Edit Code View Plots Session Build Debug Tools Help

Q-l-la 8
Source 50
Console =5
R version 3.2.0 (2015-04-16) -- "Full of Ingredients"

Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'lTicence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()’ for on-line help, or
*help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>

Environment _ History
@ [#ImportDataset~ &

1 Globs! Emironment-

Environment is empty

Files Plots Packages Help Viewer

& Bxport~

Project:(None) -

=0
List-

OEBPS/Images/image00688.jpeg
wkis

a5

20

25

20

5

OEBPS/Images/image00689.jpeg
Miles/(US) Gallon

1

Miles per Gallon vs Weight

‘Weight (1b/1000)

OEBPS/Images/image00686.jpeg

OEBPS/Images/image00687.jpeg
= B Lo 200 w0
s [
= Gigas o s[™ m
i B s 8 1204
W o e H 000 "0
— I I
R
B
e - o o ef mo
.
P
i cooamne el
7o I s B
il bty
w g Bloged B oo
S &
s =B i
Fas o 4 5%
el B BB 5 Es
4 og2° o Bl &
—— | e
5 = E =

‘Scatter Plot Matrix

OEBPS/Images/image00692.jpeg
o

disp

154

104

200 ;0 s

100

disp+hp

OEBPS/Images/image00693.jpeg
voo

Wakii

154

104

OEBPS/Images/image00690.jpeg
Number of Downloads

2000

2500

2000

1000

Lattice package downloads over the last month

Augoz

Aug 10

Date

Aug 17

Aug2s

OEBPS/Images/image00691.jpeg
disp
hp

154

104

200 00
disp+hp

200

100

OEBPS/Images/image00674.jpeg
®

WiseperdEgalon

MPG vs Weight Automobiles (1973-74 models)

By Number of Cylinders
G

5 2 3 4 5
Weight (Ib/1000)

OEBPS/Images/image00675.jpeg
lat

170

Wik

175

OEBPS/Images/image00672.jpeg
mpg

18

10

e

OEBPS/Images/image00914.jpeg
weather$TempC <- round(

weather
Day
saturday
sunday
Monday
Tuesday
Wi nday:

(weatherSTempF - 32)

Date TempF TempC

Jul
Jul
Jul
Jul
il

4

® 9o

75
86
83
83
87

20
30
28
28
31

<

OEBPS/Images/image00673.jpeg
e aln

Sdw

OEBPS/Images/image00915.jpeg

OEBPS/Images/image00595.jpeg
TLINUX FOUNDATION COLLABORATIVE PROJECTS.

‘R :consortium

consortium

ABOUT R CONSORTIUM

“The R Consarum i a group of organizations
‘supporing the R ecosystem.

SUPPORTING THE R COMMUNITY,

THE R FOUNDATION & ORGANIZATIONS
DEVELOPING, MAINTAINING &
DISTRIBUTING R SOFTWARE

LEARN MORE

Frequenty asked questons about the R Consortum.

OEBPS/Images/image00594.jpeg
{Home]

Download
CRAN

R Project

AboutR
Contributors
What's New?
Malling Lists
Bug Tracking
Conferences
Search

R Foundation

Foundation
Board
Members
Donors
Donate

Documentation

Manuals

The R Project for Statistical
Computing

Getting Started

Ris a free software environment for statistical computing and graphics. It compiles
and runs on a wide variety of UNIX platforms, Windows and MacOS. To download
R, please choose your preferred CRAN mirror.

It you have questions about R like how to download and install the software, or what
the license terms are, please read our answers to frequently asked questions before
you send an email.

News

+ The R Journal Volume 7/1 is available.

« Rversion 3.2.1 (World-Famous Astronaut) has been released on 2015-06-18.
« Rversion 3.1.3 (Smooth Sidewalk) has been released on 2015-03-09.

« useR! 2015, wil take place at the University of Aalborg, Denmark, June 30 - July
3,2015

- useR! 2014, took place at the University of California, Los Angeles, USA June 30
- July 3, 2014

OEBPS/Images/image00593.jpeg
JMC Algorithm Interface 5/5/76
© ABC: General
(FORTRAN)
Algorithm

XABC: FORTRAN
Subroutine to provide
interface between
XABC ABC and Language
and/or utility programs.

XABC (INSTR, OUTSTR)

OEBPS/Images/image00592.jpeg

OEBPS/Images/image00591.jpeg

OEBPS/Images/image00590.jpeg
SAMS

OEBPS/Images/image00916.jpeg
> weather
Day Date TempF TempC

1 saturday Jul 4 75 24
2 Sunday Jul 5 86 30
3 Monday Jul 6 83 28
4 Tuesday Jul 7 83 28
5 Wednesday Jul 8 87 31
> weather$TempF [] # All values of TempF column

[1] 75 86 83 83 87

OEBPS/Images/image00677.jpeg
Function Type Description

histogram Univariate Univariate histogram
densityplot Univariate Univariate density line plot
aa Bivariate Normal QQ plot
barchart Bivariate Bar chart

xyplot Bivariate Scatter plot

bwplot Bivariate Box and whisker plot
dotplot Bivariate Label dot plot
stripplot Bivariate Categorical scatter plot
cloud 3D 3D scatter plot
wireframe 3D 3D surface plot

splom Data Scatter matrix plot
parallelplot Data Multivariate parallel plot

OEBPS/Images/image00919.jpeg
* MBALOaTSIewpy
[1] 75 86 83 83 87

> weather§TempF [c(F, T, F, F, T)] # Logical subscript
[1] 86 87

OEBPS/Images/image00678.jpeg
24

IejoLJo uaaad

104

s

0

2

E

1

10

mpg

OEBPS/Images/image00920.jpeg
% NOALOATSISNDE 1 FRALOSESTRERY 28R ¥ lOOuOoal SUDRCTIRE
[1] 86 87

OEBPS/Images/image00917.jpeg
* NRALOATRISNEE 1 233 | @ FLTRE 3 VEUAR OF RaeCTRIRE SOt
[1] 75 86 83

OEBPS/Images/image00676.jpeg
THEE

e

10

OEBPS/Images/image00918.jpeg
> weather5TempF [-(1:
1] 83 87

L 3 m R IThe TIrEL 3 VAUSS bE EORCTepl cotim

OEBPS/Images/image00681.jpeg
Right Hand Side of Formula

Function Left Hand Side of Formula
xyplot Numeric, factor, or date variable Numeric, factor, or date variable
buplot Factor variable Numeric variable
dotplot Factor variable Numeric variable
stripplot Factor variable Numeric variable
barchart Factor variable Numeric variable

aq

Numeric variable

A factor variable with two levels

OEBPS/Images/image00923.jpeg

OEBPS/Images/image00682.jpeg
qies

25

i

10

mpg

OEBPS/Images/image00924.jpeg
* WERLOSE L . 1
Day Date TempF TempC

saturday Jul
Sunday Jul
Monday Jul
Tuesday Jul
WedoRaiay Tl

® 9 an

75
86
83
83
87

A8 LG, MATLE

20
30
28
28
31

OEBPS/Images/image00679.jpeg
Density

05

04

03

0z

01

% @000l @ B o

OEBPS/Images/image00921.jpeg
* SRALHATIOEY | SeatusrsTespy » B8 . @ lOgieal Subecxapt
[1] Sunday Wednesday
bkvales Mondey Diticdae Bundiy Toeuday Wedousdey

OEBPS/Images/image00680.jpeg
Input

Behavior

"jitter"
"rugn
TRUE
FALSE

Adds “jittered” points along the X axis (default)
Adds a “rug" plot (vertical lines) along the X axis
Adds a row of points along the X axis (with no jitter)

Suppresses the printing of any points along the X axis

OEBPS/Images/image00922.jpeg
* DICAINEALUAE] ¥ FONUAr-Os oW
s
> ncol (weather) # Number of columns
1] 4

OEBPS/Images/image00705.jpeg
i,

73 3 E
Intercept 396 Intercept 28.4 Intercept 235
Siope: 565 Siope: 278 Siope: 215
s 5

P a W 6

OEBPS/Images/image00625.jpeg
Margin Description

1 Rows of a structure

2 Columns of a structure

3 Third dimension (if our structure has at least three dimensions)
4 Fourth dimension (if our structure has at least four dimensions)

OEBPS/Images/image00624.jpeg
Argument Description
X A data object with dimensions to which we will apply the functions
MARGIN The “Margin” over which to apply the function (see next)

FUN The function to apply

Other arguments to the function

OEBPS/Images/image00623.jpeg
Function Usage

apply Applies functions over dimensions of an array
lapply Applies functions over elements of a list or vector

sapply Applies functions over elements of a list or vector, then simplifies the output
tapply Applies functions to a vector for each level of one or more factors

mapply Multivariate version of sapply

rapply Recursive version of Lapply

eapply Applies functions over named elements of an “environment”

vapply Similar to sapply with a pre-specified type of return value

OEBPS/Images/image00622.jpeg
002

[

091

sojes

T
ork

ozL

004

Day

OEBPS/Images/image00621.jpeg
200

180

160

140

120

100

OEBPS/Images/image00620.jpeg
zs

T
0

{(sajes)6o|

gy

v

Day-1

OEBPS/Images/image00619.jpeg
00z

o8k

o091

sajles

T
ork

ozk

[

Day

OEBPS/Images/image00618.jpeg
Frequency

200

150

50

Histogram of X

XAXIS LABEL

OEBPS/Images/image00617.jpeg
New Title

0oL
‘Kouanbai4

OEBPS/Images/image00706.jpeg
il

1

10

OEBPS/Images/image00616.jpeg
Frequency

200

150

100

50

Nice Red Histogram

mom(1000)

OEBPS/Images/image00707.jpeg
@eocooa] ——
6000000 e ——
000000 e —
0000000 e ———
6000000 e —
Gocooaa e ——
6000000 o e—
superpose symbol suparposeline stip baciground swipshingle
- old
Hell

ot ymbol, ne] box o, rectangle, umbrels]

‘sda line, 1]

pr——

plot[symbal,fine]

plot shinglelplot polygan istogramplot polygan] barchartplot palygon]

superpose polygon

regions.

OEBPS/Images/image00710.jpeg
Miles per Gallon

30

2

2

15

10

Miles per Gallon vs Weight

?

Weight (Ib/1000)

OEBPS/Images/image00711.jpeg
Lines

Information

7-8
11-13

15
17

18

19

The function call, describing how the model was created.
Distribution of residuals of the model in the form.

Table of model coefficients, including each parameter estimate, standard error,
T-statistic, and corresponding (two-sided) pvalue. Each pvalue is suffixed with a
“significance star” display, reporting the significance level of the pvalue.
Key for significance based on the two-sided pvalue for each coefficient.

The Residual Standard Error (RSE) calculated as the square root of the
estimated variance of the error, together with the degrees of freedom (number of
observations minus number of parameters) on which the RSE was based.

The Multiple R-squared and Adjusted Rsquared values, designed to describe the
fraction of variance explained by the model.

The Fistatistic for the whole model, along with the corresponding pvalue.

OEBPS/Images/image00708.jpeg
LRI] S—
PR e —
e —
PR e —
Aasaaan e —
T Ve ——
Ceeeeee o e—
superpose symbol suparposeline stip baciground swipshingle
- old
Hell

ot ymbol, ne] box o, rectangle, umbrels]

‘sda line, 1]

pr——

plot[symbal,fine]

plot shinglelplot polygan istogramplot polygan] barchartplot palygon]

superpose polygon

regions.

OEBPS/Images/image00709.jpeg
il

1

10

OEBPS/Images/image00714.jpeg
Function Description

resid Extracts the residuals from the model
fitted Extracts the fitted values from the model

coef Extracts the coefficients from the model

OEBPS/Images/image00715.jpeg
-

asec

OEBPS/Images/image00712.jpeg
4202488

15

Residuals vs Fitted Normal Q-Q

‘Scale-Location

[E——

Standardiad 1

005

010

Leverage.

015

020

OEBPS/Images/image00713.jpeg
Position

Description

Top left

Top right

Bottom left

Bottom right

A scatter plot of model residuals versus fitted values. A horizontal reference
line is added at O. By default, a loess smooth line is added and the more
“extreme” (highest absolute residual) points are identified with the row
names from the input data.

A Normal Quantile-Quantile (QQ) plot of the (standardized) model residuals
allows us to assess whether the residuals are normally distributed.

A Scale-Location (or “S-L") plot of the square root of absolute (standardized)
residuals versus fitted values.

A plot of (standardized) residuals versus each observation’s “leverage”

(the *hat” values calculated with the 1m. influence function) with Cook’s
distance overlaid as contour lines.

OEBPS/Images/image00694.jpeg
voo

hp

disp

104

200 ;0 s

100

disp+hp

OEBPS/Images/image00695.jpeg
count

Sep14 Sep21 Sep28 Oct05

qoplo2 Tafice

<000 -

2000

Sep1é Sep21 Sep2s 005

date

OEBPS/Images/image00615.jpeg
Letter Purpose First Argument Example

d Probability denmsity function X (quantiles) dnorm(1.64)

p Cumulative probability density q (quantiles) pnorm(1.64)
function

a Quantile function p (probabilities) qnorm(0.95)

r Random sampling n (sample size) rnorm(100)

OEBPS/Images/image00614.jpeg
R Code Distribution R Code
Normal norm Poisson pois
Binomial binom Exponential exp
Uniform unif Weibull weibull
Beta beta Gamma gamma
F £ Chi-Squared chisq

OEBPS/Images/image00613.jpeg
Function Purpose Function Purpose

mean Mean min Minimum

median Median max Maximum

sd Standard deviation Range Range of values (minimum, maximum)

var Variance Length Length of the vector (that is, number
of elements)

mad Median absolute sum Total sum

deviation

OEBPS/Images/image00612.jpeg
Function Purpose Function Purpose

sqrt Square root sin/cos/tan Sine/cosine/tangent
log Logarithm asin/acos/atan Arcsine/cosine/tangent

exp Exponential abs Absolute

OEBPS/Images/image00611.jpeg
Argument

Description

Default

x

breaks

labels

include.lowest

right

dig.lab

ordered_result

Numeric vector on which to base category.

Either a vector of cut points or a single number
giving the number of category bins.

Labels for the levels of the resulting category.

Logical: Should lowest value be placed in
adjacent bin?

Logical: Should intervals be closed on the right
(as opposed to on the left)?

Number of digits used in default break labels.

Logical: Should result be an ordered factor?

NULL (derived)
FALSE

TRUE

FALSE

OEBPS/Images/image00610.jpeg
20 25 30 35 40

15 20 25

10

05

<os 7 §
iy
o oo 8
o o 885 ooy
SepalLength 8% ®ocbly "8
woilBten * 0 o0 of [52 5
o 02 ° pgotlle o g
oo By 3o
og’s J
1 e 2 N §
) 00 oo oo | | g8 oo H o
1 0 e ° °%. o ol | e o Lol B . s
1% o5 B850 o S & kel |l g | |d f §
4 o o %o 5 © a®fing 8 o° o ® 0888_ Boooo o 2 8 8|
° 8% o o B0 9o of 8898 ° %0 "o 8 8|
T8 8 8° E g o L o g H
w8 R
ﬂgggcéggog o2 Egsgsﬁgo
o, 5 Bagie, eqedac
| oBgaster Petal Length ggéﬂa
R L e i
] o Byl g 0% g8 oo o g
| @, %@ %o g 8 8%° o ™ % 8|
ool g o 8 BBogoo aBmefo o 8|
4 ° o0 Bdues® o o °gofea® ofBl © g H
o B L © gn Petal Wicth g °
B og 9 ogo of | ot g
| o & ° oBgooBBgo8 oo | |odlic i
S —— —— s Species
s R | P | P N
45 5055 60 65 70 75 80 1203 4 5 6 7 w15 20 25 a0

75

65

15 20 25 30

10

OEBPS/Images/image00609.jpeg
© Rstudio

-/ &~ =]
0 Untitiedt” s
] Fiter
SepalLength
L1
15 58
16 57
1 57
) 55

37 55

SepalWidth

0
a
38
2
35

Petallength

12
15
17
14
13

Ele Edit Code View Plots Session Build Debug Tools Help

PetalWidth

02
04
03
02
02

setosa

setosa

setosa

setosa

setosa

setosa

=

OEBPS/Images/image00608.jpeg
© Rstudio

Code View Plots Session Build Debug Tools Help

Eile dit
Q- - a

0 Untitledt” x| []irs

i Fiter
SepalLength

2 s

52 64

56 57

&7 56

9 62

79 60

8 54

£ 60

107)

SepalWidth

23
2
28
30
2
20
30
34
25

Petallength

13
a5
a5
a5
a5
a5
a5
a5
a5

PetalWidth

03
15
13
15
15
15
15
15
17

a5
Species
setosa
verscolor
verscolor
verscolor
verscolor
verscolor
verscolor

OEBPS/Images/image00607.jpeg
@ Rstudio (| B
File Edit Code View Plots Session Build Debug Tools Help
@- 3 E &) Project (None) =
1 Untitedt* x| [iis 1 || Environment | History
g Filter Files Plots Packages Help Viewer =
Sepallength * SepalWidth | Petallength < PetalWidth | Species s -
1 51 35 14 02 el L &0 =
: s [7] ReEdgar Andersonis is Data ~
2 19 30 14 02 setos i =
3 47 22 13 -] po— iris {datasets} R Documentation
4 T 1 15 02 setosa .
5 50 35 14 02 setosa Edgar Anderson's Iris Data
3 54 39 17 04 setosa i
7 16 34 14 03 setosa DEacHpten
8 50 34 15 02 setosa This famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of
° 7 20 14] - the variables sepal length and width and petal length and width, respectively, for 50 flowers |
from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.
10 19 1 15 01 setosa
1 54 37 15 02 setosa Usage
u 18 3 15 02/ setosa 4 .
Showing 1to 12 of 150 enries i
Console D:/Projects/Cashflow Analysis/ Format
= 21F1S (] irisis adataframe with 150 cases (rows) and 5 variables (columns) named
. C Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, and Species.
> view(iris) o gth, Sep ; g i
5 iri=3 gives the same data aranged as a 3-dimensional array of size 50 by 4 by 3, as o
& = = i - ' v

OEBPS/Images/image00606.jpeg
Input

Effect

Blank

A vector of positive integers
A vector of negative integers
A vector of logical values

A vector of character values

Al values of the list are returned.

Used as an index of list elements to return.
Used as an index of list elements to omit.

Only corresponding TRUE elements are returned.

Refers to the names of elements to return.

OEBPS/Images/image00696.jpeg
il

1

10

Miles per Gallon vs Weight by Number of Cylinders

ol ET] ol
: o

o
2 3 4 5 PO

OEBPS/Images/image00699.jpeg
i,

1

10

OEBPS/Images/image00700.jpeg
i,

1

10

OEBPS/Images/image00697.jpeg
il

1

10

Miles per Gallon vs Weight by Number of Cylinders

73 3 i
8

oge

2 3 4 5 2 3 4

OEBPS/Images/image00698.jpeg
PN

Miles per Gallon vs Weight

by Number of Cylinders and Transmission Type

i
; ;

=

L

-

® k2o

B L s
g i

4 08 s L
o

] & o

OEBPS/Images/image00703.jpeg
Function Description
lpoints Adds points to the plot
1lines Adds lines to the plot
ltext Adds text to the plot
lpolygon Adds polygons to the plot
lrect Adds rectangles to the plot

OEBPS/Images/image00704.jpeg
Hes

5]
bt 288
Scpetars
. ntgent 229
Sicpe: 219
L .
DN
+ s

OEBPS/Images/image00701.jpeg
Hes

1

10

OEBPS/Images/image00702.jpeg
Function

Description

panel .abline
panel . lmline
panel.loess
panel .average
panel .grid
panel.fill
panel . rug
panel .polygon
panel .text
panel .points

panel.lines

Adds straight reference lines to the panel
Adds a linear regression line to the panel

Adds a loess smooth line to the panel

Adds lines at the mean (or other function) Y points for each unique X
Adds grid lines to the panel

Adds a background color to the panel

Adds a rug plot to either, o both, axes

Adds a polygon to the panel

Adds text at X/Y coordinates to the panel

Adds points at X/Y coordinates to the panel

Adds lines at X/Y coordinates to the panel

OEBPS/Text/nav.xhtml

 Guide

 		Start Here

 		Table of Contents

 		Cover

 Table of contents

 		About This E-Book

 		Title Page

 		Copyright Page

 		Contents at a Glance

 		Table of Contents

 		Preface

 		Who Should Read This Book?

 		What Should You Expect from This Book?

 		How Is This Book Organized?

 		About the Sample Code

 		Contacting the Authors

 		About the Authors

 		Dedications

 		Acknowledgments

 		We Want to Hear from You!

 		Reader Services

 		Hour 1. The R Community

 		A Concise History of R

 		The Birth of S

 		The Birth of R

 		The R Community

 		Mailing Lists

 		R Manuals

 		Online Resources

 		The R Consortium

 		User Events

 		R Development

 		Versions of R

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 2. The R Environment

 		Integrated Development Environments

 		The R GUI

 		The RStudio IDE

 		Other Development Environments

 		R Syntax

 		The Console

 		Scripting

 		R Objects

 		R Packages

 		The Search Path

 		Listing Objects

 		The R Workspace

 		Using R Packages

 		Finding the Right Package

 		Installing an R Package

 		Loading an R Package

 		Internal Help

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 3. Single-Mode Data Structures

 		The R Data Types

 		The mode Function

 		Vectors, Matrices, and Arrays

 		Vectors

 		Creating Vectors

 		Vector Attributes

 		Subscripting Vectors

 		Matrices

 		Creating Matrices

 		Matrix Attributes

 		Subscripting Matrices

 		Subscripting Matrices: Blanks, Positives, and Negatives

 		Dropping Dimensions

 		Subscripting Matrices: Logical Values

 		Subscripting Matrices: Character Values

 		Arrays

 		Creating Arrays

 		Array Attributes

 		Subscripting Arrays

 		Relationship Between Single-Mode Data Objects

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 4. Multi-Mode Data Structures

 		Multi-Mode Structures

 		Lists

 		What Is a List?

 		Creating an Empty List

 		Creating a Non-Empty List

 		Creating a List with Element Names

 		Creating a List: A Summary

 		List Attributes

 		Subscripting Lists

 		Subsetting the List

 		Reference List Elements

 		Adding List Elements

 		A Summary of List Syntax

 		Motivation for Lists

 		Value

 		Data Frames

 		Creating a Data Frame

 		Querying Data Frame Attributes

 		Selecting Columns from the Data Frame

 		Selecting Columns from the Data Frame

 		Subscripting Columns

 		Referencing as a Matrix

 		Summary of Subscripting Data Frames

 		Exploring Your Data

 		The Top and Bottom of Your Data

 		Viewing Your Data

 		Summarizing Your Data

 		Visualizing Your Data

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 5. Dates, Times, and Factors

 		Working with Dates and Times

 		Creating Date Objects

 		Creating Objects That Include Times

 		Manipulating Dates and Times

 		The lubridate Package

 		Working with Categorical Data

 		Creating Factors

 		Manipulating Factor Levels

 		Creating Factors from Continuous Data

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 6. Common R Utility Functions

 		Using R Functions

 		Functions for Numeric Data

 		Mathematical Functions and Operators

 		Statistical Summary Functions

 		Simulation and Statistical Distributions

 		Logical Data

 		Missing Data

 		Character Data

 		Simple Character Manipulation

 		Searching and Replacing

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 7. Writing Functions: Part I

 		The Motivation for Functions

 		A Closer Look at an R Function

 		Creating a Simple Function

 		Naming a Function

 		Defining Function Arguments

 		Function Scoping Rules

 		Return Objects

 		The If/Else Structure

 		A Simple R Example

 		Nested Statements

 		Using One Condition

 		Multiple Test Values

 		Summarizing to a Single Logical

 		Switching with Logical Input

 		Reversing Logical Values

 		Mixing Conditions

 		Control And/Or Statements

 		Returning Early

 		A Worked Example

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 8. Writing Functions: Part II

 		Errors and Warnings

 		Error Messages

 		Warning Messages

 		Checking Inputs

 		The Ellipsis

 		Using the Ellipsis

 		Passing Graphical Parameters Using the Ellipsis

 		Checking Multivalue Inputs

 		Using Input Definition

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 9. Loops and Summaries

 		Repetitive Tasks

 		What Is a Loop?

 		The for Function

 		The while Function

 		The “apply” Family of Functions

 		The Set of “apply” Functions

 		The apply Function

 		The “Margin”

 		A Simple apply Example

 		Using Multiple Margins

 		Using apply with Higher Dimension Structures

 		Passing Extra Arguments to the “applied” Function

 		Using apply with Our Own Functions

 		Passing Extra Arguments to Our Functions

 		Applying to Data Frames

 		The lapply Function

 		The split Function

 		Splitting Data Frames

 		Using lapply with Vectors

 		The Order of “apply” Inputs

 		Using lapply with Data Frames

 		The sapply Function

 		Returns from sapply

 		Why Not Just Stick with sapply?

 		The tapply Function

 		Multiple Grouping Variables

 		Multiple Returns

 		Return Values from tapply

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 10. Importing and Exporting

 		Working with Text Files

 		Reading in Text Files

 		Reading in CSV Files

 		Exporting Text Files

 		Faster Imports and Exports

 		Efficient Data Storage

 		Proprietary and Other Formats

 		Relational Databases

 		RODBC

 		DBI

 		Working with Microsoft Excel

 		Connecting to R from Excel

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 11. Data Manipulation and Transformation

 		Sorting

 		Sorting Data Frames

 		Descending Sorts

 		Appending

 		Merging

 		A Merge Example

 		Missing Data

 		Duplicate Values

 		Restructuring

 		Restructuring with reshape

 		Melting

 		Casting

 		Restructuring with tidyr

 		Data Aggregation

 		Using a “for” Loop

 		Using an “apply” Function

 		The aggregate Function

 		Using aggregate with a Formula

 		Using aggregate by Specifying Columns

 		Calculating Differences from Baseline

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 12. Efficient Data Handling in R

 		dplyr: A New Way of Handling Data

 		Creating a dplyr (tbl_df) Object

 		Sorting

 		Subscripting

 		Adding New Columns

 		Merging

 		Aggregation

 		The Pipe Operator

 		Efficient Data Handling with data.table

 		Creating a data.table

 		Setting a Key

 		Subscripting

 		Adding New Columns and Rows

 		Merging

 		Aggregation

 		Too Large for data.table

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 13. Graphics

 		Graphics Devices and Colors

 		Devices

 		Colors

 		High-Level Graphics Functions

 		Univariate Graphics

 		The plot Function

 		Aesthetics

 		Low-Level Graphics Functions

 		Points and Lines

 		Text

 		Legends

 		Other Low-Level Functions

 		Graphical Parameters

 		Controlling the Layout

 		Grid Layouts

 		The layout Function

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 14. The ggplot2 Package for Graphics

 		The Philosophy of ggplot2

 		Quick Plots and Basic Control

 		Using qplot

 		Titles and Axes

 		Working with Layers

 		Plots as Objects

 		Changing Plot Types

 		Plot Types

 		Combining Plot Types

 		Aesthetics

 		Control of Aesthetics

 		Scales and the Legend

 		Working with Grouped Data

 		Paneling (a.k.a Faceting)

 		Using facet_grid

 		Using facet_wrap

 		Faceting from qplot

 		Custom Plots

 		Working with ggplot

 		Coordinate Systems

 		Themes and Layout

 		Tweaking Individual Plots

 		Global Themes

 		Legend Layout

 		The ggvis Evolution

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 15. Lattice Graphics

 		The History of Trellis Graphics

 		The Lattice Package

 		Creating a Simple Lattice Graph

 		Lattice Graph Types

 		Plotting Subsets of Data

 		Graph Options

 		Titles and Axes

 		Plot Types and Formatting

 		Multiple Variables

 		Groups of Data

 		Using Panels

 		Controlling the Strip Headers

 		Multiple “By” Variables

 		Panel Functions

 		Controlling Styles

 		Previewing the Styles

 		Creating a Theme

 		Using a Theme

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 16. Introduction to R Models and Object Orientation

 		Statistical Models in R

 		Simple Linear Models

 		Fitting the Model

 		Assessing a Model in R

 		Model Summaries

 		Model Diagnostic Plots

 		Extracting Model Elements

 		Models as List Objects

 		Adding Model Lines to Plots

 		Making Model Predictions

 		Multiple Linear Regression

 		Updating Models

 		Comparing Nested Models

 		Interaction Terms

 		Assess Addition of Interaction Term

 		Factor Independent Variables

 		Including Factors

 		Variable Transformations

 		R and Object Orientation

 		Object Orientation

 		Linear Model Methods

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 17. Common R Models

 		Generalized Linear Models

 		GLM Definition

 		Fitting a GLM

 		Fitting Gaussian Models

 		The glm Object

 		Logistic Regression

 		Poisson Regression

 		GLM Extensions

 		Nonlinear Models

 		Nonlinear Regression

 		Nonlinear Model Extensions

 		Survival Analysis

 		The ovarian Data Frame

 		Censoring

 		Estimating the Survival Function

 		Proportional Hazards

 		Survival Model Extensions

 		Time Series Analysis

 		Time Series Objects

 		Decomposing Time Series

 		Smoothing

 		Autocorrelations

 		Fitting ARIMA Models

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 18. Code Efficiency

 		Determining Efficiency

 		Profiling Code

 		Benchmarking

 		Initialization

 		Vectorization

 		What Is Vectorization?

 		How Code Can Be Vectorized

 		Using Alternative Functions

 		Managing Memory Usage

 		Integrating with C++

 		When to Think about C++ and Rcpp

 		A Basic Function

 		Using R Functions in C++

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 19. Package Building

 		Why Build an R Package?

 		The Structure of an R Package

 		Creating the Package Structure

 		The DESCRIPTION File

 		The NAMESPACE File

 		The R Directory

 		The man Directory

 		Code Quality

 		Automated Documentation with roxygen2

 		Function Headers

 		Documenting the Package

 		Creating and Updating the Help Pages

 		Building a Package with devtools

 		Checking

 		Building

 		Installing

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 20. Advanced Package Building

 		Extending R Packages

 		Developing a Test Framework

 		An Introduction to testthat

 		Incorporating Tests into a Package

 		Including Data in Packages

 		Including a User Guide

 		Including a Vignette in a Package

 		Writing a Vignette

 		Code Using Rcpp

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 21. Writing R Classes

 		What Is a Class?

 		Object Orientation in R

 		Why Bother with Object Orientation?

 		Why Use S3?

 		Creating a New S3 Class

 		A More Formal Approach to Creating Classes

 		Generic Functions and Methods

 		Defining Methods for Arithmetic Operators

 		Lists vs. Attributes

 		Creating New Generics

 		Inheritance in S3

 		Documenting S3

 		Limitations of S3

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 22. Formal Class Systems

 		S4

 		Working with S4 Classes

 		Defining an S4 Class

 		Methods

 		Defining New Generics

 		Multiple Dispatch

 		Inheritance

 		Documenting S4

 		Reference Classes

 		Creating a New Reference Class

 		Defining Methods

 		Copying Reference Class Objects

 		Documenting Reference Classes

 		R6 Classes

 		Public and Private Members

 		An R6 Example

 		Other Class Systems

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 23. Dynamic Reporting

 		What Is Dynamic Reporting?

 		An Introduction to knitr

 		Simple Reports with RMarkdown

 		A Basic RMarkdown Document

 		Building an HTML File

 		Including R Code and Output

 		Reporting with LaTeX

 		A Basic LaTeX Document

 		Including Code in a LaTeX Document

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Hour 24. Building Web Applications with Shiny

 		A Simple Shiny Application

 		Structure of a Shiny Application

 		The ui Component

 		The server Component

 		Reactive Functions

 		Why Do We Need Reactive Functions?

 		Creating a Simple Reactive Function

 		Interactive Documents

 		Sharing Shiny Applications

 		Summary

 		Q&A

 		Workshop

 		Quiz

 		Answers

 		Activities

 		Appendix: Installation

 		Installing R

 		Installing R on Windows

 		Installing R on Mac OS X

 		Installing R on Linux

 		Installing Rtools for Windows

 		Installing the RStudio IDE

 		Index

 		Code Snippets

OEBPS/Images/image00717.jpeg
Name

Description

residuals

coefficients

aliased

sigma

af

fstatistic

r.squared

adj .r.squared

cov.unscaled

correlation

symbolic.cor

na.action

call

terms

The weighted residuals, the usual residuals rescaled by the square root of
the weights specified in the call to 1m.

A p x 4 matrix with columns for the estimated coefficient, its standard
error, T-statistic, and corresponding (two-sided) pvalue. Aliased
coefficients are omitted.

Named logical vector showing if the original coefficients are aliased.
The square root of the estimated variance of the random error

672 = 1/(n-p) Sum(wli] R[i]A2), where R[] is the ith residual, residualsi].
Degrees of freedom, a three-vector (p, n-p, p*), the first being the number
of non-aliased coefficients, the last being the total number of coefficients.

For models including norvintercept terms, a three-vector with the value of
the F-statistic with its numerator and denominator degrees of freedom.

RA2, the “fraction of variance” explained by the model RA2 = 1 -
Sum(R[i]"2) / Sum((yLi} y*)12), where y* is the mean of y[i] if there is an
intercept, and zero otherwise.

The preceding RA2 statistic “adjusted,” penalizing for higher p.

A p x p matrix of (unscaled) covariances of the coeff], }

Gy P

The correlation matrix corresponding to the preceding cov.unscaled, if
correlation = TRUE is specified.

Only if correlation is true, the value of the argument symbol ic. cor.

Information returned by mode1 . rame on the special handling of NAs
(where relevant). Identical to the na.action value returned from the
model object.

The function call that was made to create the model.

Independent variables of the model.

OEBPS/Images/image00718.jpeg
Miles per Gallon vs Weight

les per Gal

Weight (Ib/1000)

OEBPS/Images/image00716.jpeg
Name

Description

coefficients
residuals
fitted.values
rank

weights

df .residual
call

terms
contrasts
xlevels
offset

Y

x

model

na.action

call

terms

A named vector of coefficients
The residuals (that is, response minus fitted values)

The fitted mean values

The numeric rank of the fitted linear model

The specified weights (only for weighted fits)

The residual degrees of freedom

The matched call

The terms object used

The contrasts used (only where relevant)

A record of the levels of the factors used in fitting (only where relevant)
The offset used (missing if none were used)

If requested, the response used

If requested, the model matrix used

If requested (the default), the model frame used

Information retumed by model . frame on the special handling of NAs
(where relevant)

The function call that was made to create the model

Independent variables of the model

OEBPS/Images/image00721.jpeg
Residuals

K]

Residuals vs Fitted Values

= mpg~wt+np

= mpg - wt

W mpg ~ wi+hp +wthp

T T T T T
10 15 20 2% 20

Fitted Values

OEBPS/Images/image00722.jpeg
Residuals versus.
Humber of Cylinders.

Residuals versus.
Transmission Type

Residuals versus.
 Engine’ Flag

bt

OEBPS/Images/image00719.jpeg
Residuals

K]

Residuals vs Fitted Values

= mpg~wt

™ mpg ~wi+hp

T
10

15

Fitted Values

OEBPS/Images/image00720.jpeg
Residuals

K]

Residuals vs Fitted Values

= mpg~wt

™ mpg ~wi+hp

T T T T T T
50 100 150 200 250 300

Fitted Values

OEBPS/Images/image00725.jpeg
Residuals vs Fitted Normal Q-Q

24 20 28 30 32 34 4 0 1 2
Fitied values Thesraticsl Quanties
‘Scale-Location
i o]
24 20 28 30 32 34 000 005 010 015 020

Fitted values Leverage.

OEBPS/Images/image00723.jpeg
Gross Horsepower

100 180 200 250 300

50

(Gross Horsepower vs Number of Cylinders

Number of Cylinders

OEBPS/Images/image00724.jpeg
MPG Gallon versus Weight Logged MPG versus Weight

Miles per G
log(Miles per Gallon)

Weight (15/1000) Weight (1b/1000)

OEBPS/Images/image01437.jpeg
® Depcy- Tphaiel;

> Rprof (filename = tmp, line.profiling = TRUE
> replicate (100, £1(100))

> Rprof (NULL)

> summaryRprof (filename = tmp, lines = "show"

$by.line
self.time self.pct total.time total.pct
4o 0.06 100 0.06 100

OEBPS/Images/image01438.jpeg
Moo e et L
Unit: microseconds

expr min 1q mean median ug max neval
£1(100) 597.087 616.146 731.2236 624.21 662.5125 2026.94 100

OEBPS/Images/image01436.jpeg
R

FESGIEOD. & PESHACE INATINL IS, - AUANG 8 J Y YAt Oam 7 SN mta
ARTMA model

prediction.interval = TRUE)
plot (log (tsUltron), type = "n",

main = "Predictions from ARIMA(1,0,1) Model",

ylab = "Logged Daily Box Office Takings",

xlab = "Day", xlim = (1, 6.3), ylim = c(-1, 5))
lines(log(tsUltron), col = "red") # Add original data
lines (predultrongpred, col = "blue") # Add predictions
lines(predultrongpred - 2 * predUltrongse, col = "blue", lty = 2) # Add errors
lines(predultrongpred + 2 * predUltrongse, col = "blue", lty = 2) # Add errors
lines(log(tsActuals), col = "darkgreen") # Add line
points (log(teActuals), pch = 4, col = "darkgreen") # Add line

> legend ("bottomleft",

c(vOriginal Data", "ARIMA Predictions", "Actual Data"),
EUIT o ct¥end?, SPIoer. YGEawryy

OEBPS/Images/image01441.jpeg
2 IACEODMECON AL (2001 F2AE00LT
Unit: microseconds

expr min 1q mean median ug
£1(100)

£2(100)

max neval
582.059 616.6960 637.9074 631.3575 651.883 744.434 100

532.576 567.5805 642.1922 583.8910 602.401 2666.544 100

OEBPS/Images/image01442.jpeg
* &% 110
1] 4 8 12 16 20 24 28 32 36 40

OEBPS/Images/image01439.jpeg
1: f1 <- function(len){

2:

3: x <- NULL

4

5: for(i in seq_len(len)){
6:

7 & <- runif(1)

a:

9 x[1] <- ifelse(s > 0.5, 1, 0)
10:

11:)

12:

13: x

OEBPS/Images/image01440.jpeg
1: £2 <- function(len){

2

3: x <- numeric(len)

4

5 for(i in seq_len(len)){
6

7 8 <- runif(1)

8:

9: x[i] <- ifelse(s > 0.5, 1, 0)
10:

11:)

12:

13: x

14:

15: }

OEBPS/Images/image01445.jpeg
> microbenchmark(rl(100),
Unit: microseconds

expr min
£1(100) 570.696
£2(100) 524.512
£3(100) 30.0%56

1g
593.6045
533.8590
32.2560

E At L)

mean
999.40998
598.32525

47.34957

FANERR] Y

median
601.1185
550.7200

33.7220

ugq
616.8795
562.4485

36.8370

max neval

32061.20
1758.27
1211.40

100
100
100

OEBPS/Images/image01443.jpeg
% STULER Bl dppias, T"OISODENT, “TReSEel)
> nfruits <- c(5, 9, 2)

> paste(fruits, nfruits, sep = " = ")

F1] anlen BT YorRoges e g* SHeird & 90

OEBPS/Images/image01444.jpeg
£3 <- function(len){
& <- runif(len)

x <- ifelse(s > 0.5, 1, 0)

£4 <- function(len){
% <- numeric(len)
& <- runif(len)

x[s > 0.5] <- 1

OEBPS/Images/image01426.jpeg
% PARGISOOIERESLEOOy, e TERLEY. ROy Sibtace Daliy LoD AvanOETec Ao o Dittont,
. xlab = "Week during May 2015", ylab = "Log Daily Gross ($m)")
i Golotallba tEtiEsaaY . Db - i, B SEedty

OEBPS/Images/image01427.jpeg
1. 7))

* NLIDOWALNILEDON, o
Time Series:

start = c(1, 1)

Bnd = c(1, 7)
Frequency = 7

[1] 84.4 56.5 50.3 13.2 13.1 9.4 8.

OEBPS/Images/image01430.jpeg
REtGtIvR oS O EELIERON) - RE AL RO OO - NETA M L eeaROnRL Y 1
plot (seUltron,
main = "Logged Daily Box Office Gross\n(Weekly seasonality removed)",
adak w"Weaka LooNEy S0IEY, vial's "Looged Daily Bk OEELca Grogs [Sia}™)

OEBPS/Images/image01431.jpeg
® SEgLeRon. O RO LERLnCRER L MO0 BRI Eronl !
s gkt tron)

OEBPS/Images/image01428.jpeg
% SELGETRE W= REAlOgiEIitEDn), SO0, W TDEGAENCT
> plot(stlUltron, main = "Decomposition of the Ultron Time Series")

OEBPS/Images/image01429.jpeg
* N M LA ROy LA - SRR .
Time Series:
start = (1,

End = c(1,
Frequency

000000
.142857
.285714
.428571
.571429
.714286
aE7143

P oas ER O B

1y

7)

N

seasonal

0.
0.
0.

-0.

-0.

-0.

-

4330473
8490648
7104135
2510144
4588637
6741455
6085021

trend

.598952
.441404
.283857
.131462
.979068
.868556
mER04E

end = c(l

remainder

403568367
-0.
-o0.
-0.
.052408283
.046299129
002210731

256228394
076264998
300230859

7))

OEBPS/Images/image01434.jpeg
> arimaUltron <- arima(log(tsUltron), order = c(1, 0, 1))
> arimaUltron

call:
arima(x = log(tsUltron), order = c(1, 0, 1))

Coefficients:
ar1 mal intercept

0.7627 0.3782 2.1785

s.e. 0.1428 0.1883 0.5470

bionity sstisated @u 6.9998: 1log likelihood - -99.46, aic - E2.93

OEBPS/Images/image01435.jpeg
» HEITEAGLLIOND £ RIAGRLAONIESLEON], SO Gldle e X
+ seasonal - list(order - c(1, 0, 1)))
§ EediEd iR el

OEBPS/Images/image01432.jpeg
FERERLEEAD € = PERIACE (Mg LEITn, DOEeaC.

T ¥radaot T oaym with

H-W method
prediction.interval = TRUE)
plot (hwUltron, predultron, col = "red", # Plot data and
predictions
col.predicted = "blue", col.intervals = "blue",
1ty.intervals = 2)
actuals <- c(1.08, 1.26, .97, .95, 1.84, 2.66, 1.84) # Actual values
tsActuals <- ts(actuals, frequency = 7, start = c(5, 4)) # Create time series
lines(log(tsActuals), col = "darkgreen") # Add line
points (log (teActuals), pch = 4, col = "darkgreen") # Add points
> legend ("bottomleft", c("Original Data", "Holt-Winters Filter", "Actual Data"),

£ill = c("red”, "blue'

S—_—

OEBPS/Images/image01433.jpeg
% PRIINLTEW w Olhe ALE
> acf (log (tsUltron), main = "Autocorrelation")
i DAk floglEaiition),. HaId - VHEEETAT AiEoeire bl

OEBPS/Images/image01456.jpeg
e R st
Updating simTools documentation
Loading simTools

Writing NAMESPACE

Writing sampleFrombata.Rd
Neiting simTools.Bd

OEBPS/Images/image01459.jpeg
> install.packages("../simTools_1.0-0.zip", repos = NULL,

Installing package into 'C:/Users/agott/Documents/R/win-library/3.1
(as 'lib' is unspecified

package 'simTools' successfully unpacked and MD5 sums checked

> library (simTools)

> simDat <- sampleFromData(airquality, 2)

> simbat
Ozone Solar.R Wind Temp Month Day
58 NA 47 0.3 73 6 27

2 NA 290 8.6 8E € E

OEBPS/Images/image01460.jpeg
e L B o
> set.seed (20)
> testData <- sampleFromData(demoData, 3)
> testData

Subject Sex Age Weight Height BMI Smokes
29 20 M 44 81 175 26.4 Yes
26 26 F 25 58 175 18.9 No
10 10 M 23 21 188 20 1 No

OEBPS/Images/image01457.jpeg
> check("../simTools"

Updating simTools documentation

Loading simTools

Writing NAMESPACE

Writing sampleFrombata.Rd

Writing simTools.Rd

PROGRA~1/R/R-31~1.2/bin/i386/R" --vanilla CMD build

8: "C:\Users\agott’ \simTools" 1 a

w N

* checking for file '
* preparing 'simTools
* checking DESCRIPTION meta-information ... OK

* checking for LF line-endings in source and make files
* checking for empty or unneeded directories

* building 'simTools 1.0-0.tar.gz

Users\agott\Docunent s\ simTools/DESCRIPTION'

17: "C:/PROGRA~1/R/R-31~1.2/bin/i386/R" --vanilla CMD check \
"C:\Users\agott\AppData\Local\Temp\Rtmpwlk65n/sinTools_1.0-0.tar.gz"
---timings

19:

20: * using log directory 'C:/Users/agott/AppData/Local/Temp/RtmpwNk65n/
- simTools.Rcheck '

21: * using R version 3.1.2 (2014-10-31

* using platform: 1386-w6d4-mingw32 (32-bit

* using session charset: IS08859-1

* checking for file 'simTools/DESCRIPTION' ... OK

* this is package 'simTools' version '1.0-0

* checking package namespace information ... OK

* checking package dependencies ... OK

OEBPS/Images/image01458.jpeg
1: > build("../simTools", binary = TRUE)
PROGRA~1/R/R-31~1.2/bin/i386/R" --vanilla CMD INSTALL \
3: "C:\Users\agott\Documents\simTools" --build

4: * installing to library 'C:/Users/agott/AppData/Local/Temp/RtmpwNk6sn/
=£i1€105078613584"

* installing *source* package 'simTools'

6: ** R
** preparing package for lazy loading
8: ** help

*++ installing help indices
** building package indices

** testing if installed package can be loaded

**+ arch - 1386

**+ arch - x64

* MD5 sums

15: packaged installation of 'simTools' as simTools_1.0-0.zip
* DONE (simTools)

[1] "C:/Users/agott/Documents/sinTools_1.0-0.zip"

OEBPS/Images/image01463.jpeg
R RBAL R N LR BT
sanpla¥ronbata amet return. data frames of fhes corrsct Eormat

OEBPS/Images/image01464.jpeg

OEBPS/Images/image01461.jpeg
* SNPNCEL CRATMEETAEMN, TORE&.LREnm)
> expect_named (testData, c("Subject”, "Sex", "Age", "Weight", "Height", "BMI",
- "Smokes"))

> expect equal (testDatal[,"Subject"], c(29, 26, 10))

OEBPS/Images/image01462.jpeg
context ("sampleFromData must return data frames of the correct format")
test_that ("Default arguments return correctly”, {

require (nangoTraining)

set.seed(20)

testData <- sampleFromData(demoData, 3)

expect_is(testData, "data.frame

expect_named (testData,
c("Subject”, "Sex", "Age", "Weight", "Height", "BMI", "Smokes"))

expect_equal (testDatal, "Subject"], c(29, 26, 10))
bh
test_that ("Throws an error correctly", {

expect_error (sampleFromData (airquality, "Subject"),
"Size must be a mumeric integer value")

)

OEBPS/Images/image01465.jpeg
B MR Lot
Testing simTools
PRy i MU Sy e G Qe et IO SOy SO Ly L L Ll e

OEBPS/Images/image01448.jpeg
£5 <- function(len){

3: sample(0:1, size = len, replace = TRUE)

OEBPS/Images/image01449.jpeg
1: include <Repp.h>
using namespace Rcpp;

// [[Repp: :export]]
Integervector sampleInC(int lem) {

// Initialize x to create output
8: IntegerVector x(lem);

// Initialize and create s by using the Rcpp runif function
NumericVector s = runif (len);

// Loop to do sampling, using if...else.
for(int 1 = 0; i < len; ++i) {

if(s[i] > 0.5)
x[i] =
else

x[4]

// Explicitly return x
return x;

OEBPS/Images/image01446.jpeg
it i i S A T T LS L
Unit: microseconds

expr min 1q mean median ug max neval
£3(100) 28.956 29.690 31.40153 30.057 30.973 59.012 100
£4(100) 9.530 10.264 11.19091 10.630 11.363 50.583 100

OEBPS/Images/image01447.jpeg
* EOATTREncaRnEl TRASON ., SRR, SEA00L . SR80, ERAZA0L
Unit: microseconds

expr min 1q mean median ug max neval
£1(100) 574.727 582.4245 672.98853 596.7200 616.8795 1895.354 100
£2(100) 524.146 545.4050 638.65877 554.0190 568.3130 1768.899 100
£3(100) 30.423 32.6220 36.03099 33.7220 39.0365 78.806 100
£4(100) 10.263 10.9970 23.79963 11.5465 12.0965 1211.766 100
£5(100) 6.231 7.5145 9.31053 8.4310 10.4470 16.862 100

OEBPS/Images/image01452.jpeg
Package: simTools

Title: Simulation Analysis Tools

Version: 1.0-0

AuthorseR: c(
person("Almee", "Gott", email = "agottemango-solutions.com”, role = c("aut", "cre")),
person("Andy", "Nicholls", email = "anicholls@mango-solutions.com", role = "aut"),
person("Rich”, "Pugh", email = rpugh@mango-solutions.com, role = "ctb"
)

Description: A series of tools for simulation analysis used for learning about
aistributions.

Depends:

R (>= 3.1.2)
Imports:
ggplot2 (
License: GPL-2
LazyDat

1.0.0)

true

OEBPS/Images/image01453.jpeg
sampleFromData <- function(data, size, replace = TRUE, ...){
if (1is.numeric(size)) {
stop("Size must be a numeric integer value")

}

lengthpata <- nrow(data)

if (ireplace & size > lengthbata) {
stop("Cannot sample greater than the data size without replacement")

4 Sample a number of rows from the given dataset
samples <- sample(seq_len(lengthData), size = size, replace = replace,
invisible (data[samples, 1)

OEBPS/Images/image01450.jpeg

OEBPS/Images/image01451.jpeg
> create("../simTools", rstudio = TRUE
Creating package simTools in
No DESCRIPTION found. Creating with values:

Package: simTools
Title: What the package does (ome line

Version: 0.1

AuthorseR: "First Last <first.lasteexample.com> [aut
Description: What the package does (one paragraph
Depends: R (>= 3.1.2)

License: What license is it under?

LazyData: true

Adding mEtudio profect Fils to PiaTools:

ore] ®

OEBPS/Images/image01454.jpeg
B
w0
w0
w0
w0
w0
w0
w0
w0
a0
w0
w0
a0
w0
w0
a0
w0
w0
a0
w0
w0
a0

sample from a dataset

This function has been designed to sample from the rows of a two
dimensional data set returning all columns of the sampled rows.

@param data The matrix or data.frame from which rows are to be
sampled.

@param size The number of samples to take.

@param replace Should values be replaced? By default takes the
value TRUE.

@param ... Any other parameters to be passed to the sample
function.

@return Returns a dataset of the same type as the input data with
\code{size} rows.

@author Aimee Gott <agott@emango-solutions.com>
@export.

@examples
sampleFromData (airquality, 100)

sampleFromData <- function(data, size, replace = TRUE, ...){

OEBPS/Images/image01455.jpeg
A package for performing common simulation tasks

This package provides a series of tools for common simulation tasks such as
sampling from a data frame and generating plots of simulation experiments.

@author Aimee Gott \email{agott@emango-solutions.com}
adocType package
@name simTools

OEBPS/Images/image01477.jpeg
® SlRRRIA v THIDArMEEber
> x

a1 s

attr(,"class")

T8} Swuperlmibers

OEBPS/Images/image01236.jpeg

OEBPS/Images/image01478.jpeg
% BURSY- PACKIROMMRE W FoR, X B EROSNIN
> aDF

X ¥

1 0.52409671

2 -2.26076788

3 -0.01967972

> unclass (aDF)

$X

123

kel il

$Y
[1] 0.52409671 -2.26076788 -0.01967972

NS L ep— W . T

OEBPS/Images/image01476.jpeg
"simTool:

s")

OEBPS/Images/image01239.jpeg
¥ B¥LAEcping ©= DESUD DY SSRILER, L
> # Extract maximum mpg by for each cyl category
> filter (cylGrouping, mpg == max (mpg))

Source: local data frame [3 x 11.

Groups: cyl

mpg cyl disp hp drat wt geec vs am gear cark
121.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
233.9 4 71.1 654.221.83519.90 1 1 4 1
21929 8 400.0 175 2. 08 3 845 17.06 0 0 3 2

OEBPS/Images/image01481.jpeg
print.modInt <- function(aModIntObject){
Extract the relevant components from the object
thevValue <- as.numeric (aModIntObject)
theModulus <- attr(aModIntObject, "modulus")
Print the object in the desired form
cat (thevalue, " (mod ", theModulus, ")\n", sep =

T+ ¥y TV

}

> x <- modInt(3, 12)
x

3 (mod 12)

OEBPS/Images/image01240.jpeg
* MRCAER Ui RO . IMANNTEOYTY, = At L
local data frame [32 x 12
eyl

Sourc
Group:

mpg cyl disp hp drat wt gsec vs am gear carb meanMPGbyCyl

1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 19.74286
2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 19.74286
3 22.8 4 108.0 93 3.852.32018.61 1 1 4 1 26.66364
4 21.4 6258.0 110 3.083.21519.44 1 0 3 1 19.74286
5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 15.1000¢
6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 19.74286
7 14.3 8 360.0 245 3.21 3.570 15.84 0 O 3 4 15.1000¢
8 24.4 4 146.7 62 3.693.19020.00 1 0 4 2 26.66364
9 22.8 4 140.8 953.923.15022.90 1 0 4 2 26.66364
10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 19.74286

OEBPS/Images/image01482.jpeg
% ICOCCE YA
[print
Sahade: et Nale s iR el

i

ks

OEBPS/Images/image01237.jpeg
> cylGrouping <- group_by(carData, cyl)
> head (cylGrouping)
Source: local data frame [6 x 11

Groups: cyl
mpg cyl disp hp drat wt gsec vs am gear carb
121.0 6 160 110 3.90 2.620 16.46 ©0 1 4 4
221.0 6 160 110 3.90 2.875 17.02 0 1 4 4
322.8 4 108 93 3.852.320 18.61 1 1 4 1
421.4 6 2581103.083.21519.44 1 0 3 1
518.7 8 360 175 3.15 3.440 17.02 0 0 3 2
618.1 6 225105 2.76 3.460 20.22 1 0 3 1
> filter(cylGrouping, carb == 4
Source: local data frame [10 x 11
Groups: cyl
mpg cyl disp hp drat Wt gsec vs am gear carb
1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
3 14.3 8 360.0 245 3.213.570 15.84 0 0 3 4
4 19.2 6 167.6 123 3.923.44018.30 1 0 4 4
5 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
6 10.4 8472.0 205 2.93 5.250 17.98 0 0 3 4
7 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
8 14.7 8 440.0 230 3.23 5.34517.42 0 0 3 4
9 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
10 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4

OEBPS/Images/image01479.jpeg
modInt <- function(x, modulus) {

Create the object from the starting number and modulus, "mod"

Divide by the modulus to get new number appropriate for that modulus
object <- x ¥% modulus

Assign a class attribute to the object

class (object) <- "modInt"

Store the modulus as an attribute

attr (cbject, "modulus") <- modulus

Return the new object

object

> # Examples
> modInt (3, 12)
[EVRE)

attr (,"class")
{1] "modInt"
attr (, "modulus")
m 12

> modInt (13, 12)
o1

attr (,"class")
(1] "modInt"
attr (, "modulus")
24: 1] 12

OEBPS/Images/image01238.jpeg
* MPOSIINACYREYCY.) SN Gy LArop g, ST N] ., LA (DR . R U
> mpgSummaryByCyl
source: local data frame [3 x 4]

cyl min(mpg) median(mpg) max (mpg)
1 4 21.4 26.0 33.9
2 6 17.8 19.7 21.4
) 10 4 1E o 19 2

OEBPS/Images/image01480.jpeg
* Pratn
function (x, ...)
UseMethod ("print")
<bytecode: 0x00000000094cda60>
O SN VRO, Sa——

OEBPS/Images/image01243.jpeg
1: > 4 Create a data.table and define the key
> demoDT <- data.table(demoData
> setkey(demoDT, Sex, Smokes
> head (demoDT)
Subject Sex Age Weight Height BMI Smokes

1: 3 P 23 72 170 25.1 No
2: 6 F 20 67 169 23.5 No
3: 12 F 32 77 182 23.1 Yo
4: 15 F 27 73 172 24.8 No
5: 23 F 26 82 175 26.8 No
6: 26 F 25 58 175 18.9 o

OEBPS/Images/image01485.jpeg
* RS AIOE. DN TOLAILLINE SSRNE AT R Nk SLTnCEure.
> modIntList <- function(x, modulus) {
Define a list with two elements containing the number and modulus
object <- list(number = x ¥% modulus
modulus = modulus)
Assign a class attribute to the object
class (object) <- "modIntList"
Return the new object
object

A

> # Now define the print method

> print.modIntList <- function (aModIntListObject){
Extract the relevant components from the object
thevalue <- aModIntListObject$number

theModulus <- aModIntListObject$modulus

Print the object in the desired form

cat (theValue, " (mod ", theModulus, ")\n", sep =

A

> # Examples
> modIntList (14, 6)
2 Fesdk &%

OEBPS/Images/image01244.jpeg
% CORELST [NRE mn *¥CEl
subject Sex Age Weight Height BMI Smokes
3 F 23 72 170 25.1 No
6 29 67 169 23. No
12 32 77 182 23. No
15 27 73 172 24. No
23 26 82 175 26. No
26 25 58 175 18. No
28 28 69 172 23. No
30 33 61 175 19. No
17 a1 62 172 20. Yes
o7 26 a2 190 22

1:
2:
3:
4:
5:
6:
7:
8

s Mmoo
nolobhlomohn

Yes

OEBPS/Images/image01241.jpeg
> # A standard workflow, mean mpg by cyl for manual cars
> # The traditional way:

> carsByCyl <- arrange(mtcars, cyl)

> groupByCyl <- group_by(carsBycyl, cyl

5: > manualCars <- filter (groupByCyl, am == 1

> summarize (nanualCars, Mean.MPG=mean (mpg))

Source: local data frame [3 x 2]

cyl Mean.Mpa

10: 1 4 28.07500
11: 2 6 20.56667
12: 3 8 15.40000
13: >

A

4: > 4 Using pipes
> mtcars ¥>%

+ arrange(cyl) %>%

+ group_by(cyl) %>%

+ filter(am == 1) %>%

+ summarize (Mean.MPG=mean (mpg)
Source: local data frame [3 x 2

cyl Mean.MPG
1 4 28.07500
2 6 20.56667
3 8 15.40000

N Nk AN B MCE E0 ELOE

OEBPS/Images/image01483.jpeg
% ISCROCS Rk

1]
[s]
191
3]
7]
[21]
[25]
[29]
Gike

plot.
plot.
plot.
plot.
plot.
plot.
plot.
plot.

e T

actx
dendrogram*
formula*
HoltWinters*
mlm*
profile.nls*
stlx
TukeyHSD*

plot.
plot.
plot.

plot

plot.
plot.
plot.

data.frame*
density*
function
soreg*
ppr*
raster*
tablex

plot.
plot.
plot.
plot.
plot.
plot.
plot.

e SRR he e EotE BeaE

decomposed. ts* plot.
plot.
plot.
plot.
plot.
plot.
plot.

ecdf
helust*
Im*
preomp*
spec
ts

default
factor*
histogram®
medpolish*
princomp*
stepfun
tskernel*

OEBPS/Images/image01242.jpeg
® AR CRT SRR TRIODELA . ST

> dji

248:
249:
250:
251:
252

e wn e

Date
12/31/2014
12/30/2014
12/29/2014
12/26/2014
12/24/2014

01/08/2014
01/07/2014
01/06/2014
01/03/2014
01/02/2014

DJI.Open

17987.
18035,
.58
18038.
18035.

18046

16527.
16429.
16474.
16456.
16572.

66
02

30
73

66
02
04
89
17

DJI.High

18043

18073
18103

16528
16562.
16532.
16518.
16573.

.22
18035.
.04
.45
18086.

02

24

88
32
99
74
07

DJI.Low DJI.Close DJT.Volume DJT.Ad].Close

17820.
17959.
18021.
18038.
18027.

16416.
16429.
16405.
16439.
16416.

88
70
57
30
78

69
02
52
30
49

17823
17983

18053

16462.
16530.
16425.
16469.
16441.

.07
.07
18038.
27
18030.

23

21

74
91
10
99
a5

82840000
47490000
53870000
52570000
42870000

103260000
81270000
89380000
72770000
80960000

17823.
17983.
18038.
18053
18030.

16462.
16530.
16425.
16469.
16441.

OEBPS/Images/image01484.jpeg
> # Define a new method 'add' method for the modInt class
> “+.modInt” <- function (x, y){

+ % We can only add objects that are of the same modulus
+ if(attr(x, "mod") != attr(y, "mod")){

+ stop ("Cannot add numbers of differing modulus"

+)

+ # Add the numbers together

+ totalNumber <- as.numeric(x) + as.numeric(y

+ % Ensure a number in the correct modulus is returned
+ theResult <- modInt(totalNumber, attr(x, "mod")

+ ¥ Next step useful for inheritance (later]

+ class(theResult) <- class(x

+ theResult

+}

> # Examples

> a <- modInt(7, 12)
> b <- modInt(9, 12)
>a+b

(mod 12)

> ¢ <- modInt(3, 4)
>a+c

-

Error in “+.modInt"(a, c) : Cannot add numbers of differing modulus

OEBPS/Images/image01245.jpeg
% SWy emnnrl
[1] "sex" "Smokes"
> demoDT[J("F", "Yes"),]

Subject Sex Age Weight Height BMI Smokes
1: 17 F a1 62 172 20.9 Yes
% 57 P 26 82 100 22 € Yes

OEBPS/Images/image01466.jpeg
% SEINPIADALA S~ DARESGCINBRCIL = 110, Naiue
> use_data(exampleData, pkg = "../simTools")
NrinG adaailerabi. 16 datal e ienets . Bl

IPQdNiI0, SAmDUa. = Nyl

OEBPS/Images/image01467.jpeg
#' Simple example of including data
2: 4
#' This is a simple example of how we can include data in a package
4: #' and provide the corresponding documentation.

w0
#' @format A data.frame with 10 rows and two columns:
#' \describe(

4 \item({ID}{Unique identity variable}
4 \item{Value}{simulated value (g)}
#}

o

#' @source Simulated data
"exampleData”

OEBPS/Images/image01228.jpeg
% SELEMIOREDEES, B

* Qe e Ry S SIRIVEGSOE To nYE e 0N DR
source: local data frame [2 x 11

mwpg cyl disp hp drat wt gsec vs am gear carb
1 26.0 4 120.3 914.432.14016.7 0 1 5 2

5304 4 051 112 3.77 1.512 16.9 1 1 & 2

OEBPS/Images/image01470.jpeg
e vignette ("QuickStart"

rkg

s8imTools")

OEBPS/Images/image01229.jpeg
* ERAREEIORTTREA, WG, ML, By R EALIINIDEL ROSRE fRalomn

Source: local data frame [32 x 3

mwpg wt cyl

1 21.0 2.620 6
2 21.0 2.875 6
3 22.8 2.320 4
4 21.43.215 6
5 18.7 3.440 8
6 18.13.460 6
7 14.33.570 8
8 24.43.190 4
9 22.83.150 4
10 19.2 3.440 6
> select (carData, -vs, -am) # Return everything except these columns

Source: local data frame [32 x 9

mpg cyl disp hp drat wt gsec gear carb

1 21.0 6 160.0 110 3.90 2.620 16.46 4 4
2 21.0 6 160.0 110 3.90 2.875 17.02 4 4
3 22.8 4 108.0 93 3.852.320 18.61 4 1
4 21.4 6 258.0 110 3.08 3.215 19.44 3 1
5 18.7 8 360.0 175 3.15 3.440 17.02 3 2
6 18.1 6 225.0 105 2.76 3.460 20.22 3 1
7 14.3 8 360.0 245 3.21 3.570 15.84 3 4
8 24.4 4 146.7 62 3.69 3.190 20.00 4 2
9 22.8 4 140.8 95 3.92 3.150 22.90 4 2
10 19.2 6 167.6 123 3.92 3.440 18.30 4 4

OEBPS/Images/image01471.jpeg
title: "Vignette Title"
3: author: "Vignette Author"

date: "“r Sys.Date()"

rmarkdown: :html_vignette

output

vignette: >
%\VignetteIndexEntry{Vignette Title}
%\VignetteEngine {knitr: : rmarkdown
%\VignetteEncoding{UTF-8}

OEBPS/Images/image01226.jpeg
arrange (carbata, carb, -cvl)

OEBPS/Images/image01468.jpeg
% PAOCELUALE €= SALE. CIAMRITY = 3:0, BSL & IuQruis;)
> use_data(hiddenData, pkg = "../simTools", internal = TRUE)
Siiing Blddecrate. B8 B eradata., e

OEBPS/Images/image01227.jpeg
® SR x° BAALMELCETIMER, S
> cyla
Source: local data frame [11 x 11

4)

mwpg cyl disp hp drat wt gsec vs am gear carb
22.8 108.0 93 3.852.320 18.61 1 1 4

24. 146.7 62 3.69 3.190 20.00
22. 140.8 95 3.92 3.150 22.90
32. 78.7 66 4.08 2.200 19.47
30. 75.7 52 4.93 1.615 18.52
33. 71.1 65 4.22 1.835 19.90
a1, 120.1 97 3.70 2.465 20.01
27. 79.0 66 4.08 1.935 18.90
o 26. 120.3 91 4.43 2.140 16.70
10 30. 95.1 113 3.77 1.513 16.90
11 21 121 .0 100 4 11 2. 780 18 €0

@ S0 n e W=

b b oLk R
chworrYY®Yo
O
VE N R NRE RN W WL
R o R B RERR R
kR R ORPROO
bR W e R R R
bbb E e e DN

OEBPS/Images/image01469.jpeg
FREONEA R ViomatEan
browseVignettes ()
browse for a specific package

T L |

OEBPS/Images/image01232.jpeg
1 : > # Fabricate two datasets to merge
2 : > beerData <- data.frame(ID = c(1, 2, 3), Beer = c(75, 64, 92)
3 : > diaperData <- data.frame(ID = c(1, 3, 4), Diapers = c(51, 68, 32)
4 : > beerbata
5 1D Beer
6:1 1 75
7:2 2 64
8:3 3 92
9 : > diaperbata
10 1D Diapers
B O 51
12 :2 3 68
13 :3 4 32
14 : >
15 : > # Rows of beerData that have a corresponding "ID" in diaperData
> semi_join(beerData, diaperData, by = "ID")
D Beer
18:1 1 75
19:2 3 o2
20 : > # Rows of beerbata that do not have a corresponding "ID" in diaperData
21 : > anti_join(beerbata, diaperbata, by = "ID")
22 : 1D Beer
23 : 1 2 64
24 : > # An inner join of the two datasets
25 : > inner_join(beerData, diaperData, by = "ID")
26 : 1D Beer Diapers
27:1 1 75 51

28 :2 3 92 68

OEBPS/Images/image01474.jpeg
> use_rcpp("../simTools"
Adding Repp to LinkingTo and Imports

Creating src/ and src/.gitignore

Next, include the following roxygen tags somewhere in your package:
#' GuseDynLib simTools

PRt T S G ey Y

OEBPS/Images/image01233.jpeg
* SEEGSIIESICALEALA, SME ARG
source: local data frame [1 x 1]

mean (mpg)
1 20 09062

OEBPS/Images/image01475.jpeg
1: #include <Rcpp.h>
using namespace Rcpp;

//* sample a series of 0s and 1s
s
//* @param len A single integer giving the final length.

OEBPS/Images/image01230.jpeg
¥ FOLlCAlinby. &= PuEhis{oociure, CYRS = SRnanee (e cen). . BEiE: o bk,
> fullCarbata
Source: local data frame [32 x 13]

mwpg cyl disp hp drat wt gsec vs am gear carb type pwrawt
1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 41.98473
2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Mazda RX4 Wag 38.26087
3 22.8 4108.0 933.852.32018.61 1 1 4 1 Datsun 710 40.08621
4 21.4 6 258.01103.083.21519.44 1 0 3 1 Hornet 4 Drive 34.21462
5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 Hormet Sportabout 50.87209
6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Valiant 30.34682
7 14.3 8 360.0 245 3.21 3.570 15.84 0 O 3 4 Duster 360 68.62745
8 24.4 4146.7 62 3.69 3.190 20.00 1 0 4 2 Merc 240D 19.43574
9 22.8 4140.8 953.923.15022.90 1 0 4 2 Merc 230 30.15873
10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 Merc 280 35.75581

OEBPS/Images/image01472.jpeg
This guide is intended as a means of quickly getting started with the package

1:
It will introduce the main workflow of the package.

simTools.

Getting Started
The main function in the **simTools** package is “sampleFromData. This

= function will
allow you to generate random samples from a given data set. It is useful for

8: simulation experiments.

Loading the package
Before starting you will need to load the package in the usual way using either

“library” or “require’.

###4 Running the main function

Once the package is loaded we can run the function as follows:

OEBPS/Images/image01231.jpeg
FONILRI \ECALN] o

SELLFSEAEA S MICAERICATInLE, TYPA
drat - NULL, gsec = NULL,
pwrawt = hp/Wwt, pWr2wt.Sq = pwrawt*2)

v v

head (fullCarData, 3)
source: local data frame [3 x 12]

mwpg cyl disp hp wt vs am gear carb type pwrawt pwrawt.Sq
121.0 6 160110 2.620 0 1 4 4 Mazda RX4 41.98473 1762.718
2 21.0 6 160 110 2.875 0 1 4 4 Mazda RX4 Wag 38.26087 1463.894
21998 4 108 93 2.320 1 1 4 1 Datsun 710 40 08621 1606 904

OEBPS/Images/image01473.jpeg
x
1library (mangoTraining]
3: examplel <- sampleFromData(demoData, size = 5)

examplel

OEBPS/Images/image01234.jpeg
* BUMERIISRICREUALR , OGRS - DGR RO . JERE INPO L)
Source: local data frame [1 x 3]

min(mpg) median(mpg) max (mpg]
1 10 4 19 2 23 g

OEBPS/Images/image01235.jpeg
% NPOIgRRTY &~ BN LR TR TIER, M
> mpgSummary
Source: local data frame [1 x 3]

e () o NSeNEE L])

Min Median Max
1 104 19.2 33 0

OEBPS/Images/image01257.jpeg
* aAmmoor i
+ by = list(Sex,

e

M

F
M
7

2 RMECHART, BRigul o D BEIORE] . SRaL. WeiohE
Smokes) |
Sex Smokes Mean.Height

o

Yo
Yes
Yes

2775
173.
173
181

3158
7500
0000
0000

Mean.Weight
74.10526
69.87500
74.25000
29 00000

s iNeIonCl .

OEBPS/Images/image01499.jpeg

OEBPS/Images/image01258.jpeg
2 AL L, MeSDNE L ORE Ry e

> head (demoDT,
subject Sex Age Weight Height

ol e e

1

M

EEE]

5)

43
22
23
25
~g

57
71
72
76
a2

166
179
170
188
176

% WEEhiWeTont e 0y

= Sex]

BMI Smokes MeanWeightBySex

20.
22.
25.
21
e

7

Y

No
Yo
Yo
Yo
No

4.
74.
70.
.13043

74

4

13043
13043
30000

13043

OEBPS/Images/image01500.jpeg
 HeLINER L EINCET.
x modulus

"integer" "integer"

> methods (class = "clockTimed"

[1] add show
T P o

——

OEBPS/Images/image01497.jpeg
> squareModInt4 <- function(x) {
+ % Standard square

+ simpleSquare <- as.integer (xex*2) # Ensure value is valid
+ 4 Use correct modulus

+ modIntd (simpleSquare, x@modulus)

.

}

> # Link the modIntd method to the squared generic and modIntd clas
> setMethod ("squared”, signature = "modIntd", squareModIntd)

[1] "squared"

> # Test the method

a <- modInt4 (SL, 12L)

a

(mod 12)

squared (a)

{wiod: 12}

A

OEBPS/Images/image01256.jpeg
® ARmcotl , DEsniieighLl. O
Sex Smokes vi

M No 177.3158

F No 173.7500

M Yes 173.0000

F Yes 181 0000

SR SR, SOREHlY

2l cdi el

OEBPS/Images/image01498.jpeg
® » DLihe & Tonerlon Thal SOOR Bpnabs ooisors
> addModIntdobjects <- function(a, b)
+ # Sometimes we still need to define checks within the method
if (a@modulus != bemodulus) {
stop ("Cannot add numbers of differing modulus"
}
Add the numbers together
totalNumber <- a@x + bax
Return the correct class
theResult <- modIntd (totalNumber, a@modulus
theResult

e A A A

Link the previous function to the add generic and modIntd class

setMethod ("add", signature = c(a = "modInt4”, b = "modInt4")
addModInt4objects)

1] "addr

MSERE S W

> # Test the function
> p <- modInt4 (3L, 12L)
> q <- modInt4 (7L, 12L

> add(p, q)
10 (mod 12)
> add(q,)

2 (mod 12)

OEBPS/Images/image01261.jpeg
* PO EYRLIRIErapns e pae Tl
> hist (rnorm(100))
¢ BRI B takakad tealvEk Vi asevEu

OEBPS/Images/image01503.jpeg
¥ BUAS SLARE LRAL SREUNEEREN Eocilier AriLinmens
4

#' ®@slot x An integer value in the specified \code{modulus}

#' ®slot modulus An integer value representing the modulus for \code{x]
oy integer®il

setClass ("modInt4d (x = "integer", modulus

OEBPS/Images/image01262.jpeg
* SmpLaicosoraiy, 10
[1] "wheat3" "lightbluel" "wheat" "olivedrabl" "lightblued" "grey11"
T ihae ngrey3on FEirabiickan SpaschanEes®

OEBPS/Images/image01504.jpeg
T NOSSCTLANTI An Raoa Leo Nowinbs ONectR of FUR e o
addModInt4Objects <- function(a, b)
Sometimes we still need to define checks within the method
if (a@modulus != bamodulus) {
stop ("Cannot add numbers of differing modulus")

}

Add the numbers together

totalNumber <- a@x + bax

Return the correct class

theResult <- modInt4(totalNumber, aemodulus
theResult

OEBPS/Images/image01259.jpeg
demoDT$Height.Sq <- demoDTS$]

' T$SHeight'

OEBPS/Images/image01501.jpeg
> # Define the class

setClass ("clockTime4", contains = "modIntd"

Define constructor
clockTimed <- function(x){
Ensure that x is in mod 12
X <= x %% 12L
Create a new instance
new("clockTimed", x = x, modulus = 12L)

Ve bbbty

Define validity
Existing modIntd validity is inherited
validclockTime4Object <- function(object) {
isMod12 <- objectemodulus == 12L
isMod12

e e vV

Link the validity function with the clockTimed class
> setvalidity("clockTimed", validclockTime4Object!

OEBPS/Images/image01260.jpeg

OEBPS/Images/image01502.jpeg
Class "clockTime4" [in ".GlobalEnv"]
slots:

Name * modulus
Class: integer integer

Extends: "modInt4"
Redefine show method

> showclockTimed <- function (object) {
+ % Print the object in the desired form
o

cat (objectax, ":00\n", sep = ")
+}
> setMethod("show", signature = "clockTimed",
[1] "show"

> # Test the class
> clockTime4 (SL)
5:00

> clockTimed (13L)
1:00

showclockTimed)

OEBPS/Images/image01265.jpeg
X OEICRE oo RGPS RLIE e T E, NLAS
» boxplot iz asndar)

AlEcTERe & ST

OEBPS/Images/image01263.jpeg
® PR, Svn o . DREEAANINIGIS
[1] "#00FFOO"

255)

OEBPS/Images/image01505.jpeg
% BEATOERAL K- SALERLT AR L RO IOCEeE " .
5 Einlduunix & Mintegerh modulows Cinbegur il

OEBPS/Images/image01264.jpeg
X <- rnorm{100)

hist (x, col
qgnorm (x)
qaline (x)

"lightblue")

OEBPS/Images/image01506.jpeg
* A e EOLUERRCLIX = 3L, WOOLiUR e A

> a
Reference class object of class "modIntRef"
Field "x":

m 3

Field "modulus":

F1] a3

OEBPS/Images/image01507.jpeg
B RS R ETAEAE B i e B S8
> b

Reference class cbject of class "modIntRef"
Field "x"
m] a
Field "modulus”:
[1] 6

OEBPS/Images/image01246.jpeg
- e B

SECENY yanaL, SR, WeLghty
demoDT[J ("M,

c(76,

M),

Subject Sex Age Weight Height

1
31
13
-

M

M
M
M

25
25
21
o~

76
76
77
-

188
174
180
P

BMI Smokes
21.4 No
25.1 No
23.6 No
PYICE No

OEBPS/Images/image01488.jpeg
> clockTime <- function(x){
¢+ # Fix x as wod 12
¢ x <- modInt(x, 12)
+ # Define inheritance
+ class(x) <- c("clockTime", class (x))
fox
+)

> theTime <- clockTime(13)

> class (theTime)

1] "clockTime" "modInt"

OEBPS/Images/image01247.jpeg
® SELETSY\sODL. Neipgus)
> demoDTI. (72) ,1

Subject Sex Age Weight Height BMI Smokes
1 2 B 923 PPy 170 28 1 No

OEBPS/Images/image01489.jpeg
4# Define a new print method for the clockTime class
print.clockTime <- function(aClockTimeObject) {
cat (as.numeric (aClockTimeObject), ":00\n", sep =

Examples
timel <- clockTime(s)
time2 <- clockTime (42
timel

:00

time2

100

N

Add together to demonstrate imheritance
> timel + timez
24: 11:00

OEBPS/Images/image01486.jpeg
1: > 4 Define a new generic
> square <- function(x) { UseMethod("square", x) }

> # Define default method!
> square.default <- function(x) x*2

> # Define some more methods
> square.character <- function(x) paste(x, x, sep = "

> square.modInt <- function(x) {
+ % standard square

+ simpleSquare <- as.mumeric(x)*2

+ % Use correct modulus

+ modInt(simpleSquare, attr(x, "mod"))
+

Check functionality
square (2)

[ES I

> square ("a")

[1] "aar

> % <- modInt(3, 4)

> square (x)

1 (mod 4)

OEBPS/Images/image01487.jpeg
» RAOOY € DAL, TAULE | RITana ity
> class (airdT)
PEl deee. SEbIaR YaEEE. Yo

OEBPS/Images/image01250.jpeg

OEBPS/Images/image01492.jpeg
> modInt4 <- function(x, modulus){

+ 4 Divide by the modulus to get new number appropriate for that modulus
¢+ X <= x ¥ modulus

+ # Create a new instance

+ new("modIntd", x = x, modulus = modulus)

N

}

OEBPS/Images/image01251.jpeg
> # Create a list containing airquality data for each available month
2: > airsplit <- split (airquality, airquality$Month

> # Bind these together into a single data table
> alrDT <- rbindlist (airSplit

> airDT
7: Ozone Solar.R Wind Temp Month Day
1 4 190 7.4 67 5 1

9: 2: 36 18 8.0 72 5 2
3: 12 149 12.6 74 5 3
;18 313 11.5 62 5 4

5: NA WA 14.3 56 5 s

49: 30 193 6.9 70 9 26
150: NA 145 13.2 77 9 27
151: 14 101 14.3 75 9 28
152: 18 131 8.0 76 9 29
153: 20 223 11.5 68 9 30

> # Now assume two new records arrive but with missing columns
month10 <- data.table(Ozone = c(24, 28), Month = 10, Day = 1:2

Bind this to our original data
newAirDT <- rbindlist(list(airDT, month10), fill = TRUE
> tail (newAirDT)

Ozone Solar.R Wind Temp Month Day

1. mA 145 13.2 77 9 27
22 1 101 14.3 75 9 28
3: 18 131 8.0 76 9 29
4 20 223 11.5 68 9 30
5. 24 N NA NA 10 1
6: 28 NA NA NA 10 2

OEBPS/Images/image01493.jpeg
® @ Sy CO CIRSbE BOne ODISCILE OF SN SRR
> modIntd (pi, 12L)
Error in validObject (.Object)
invalid class "modIntd" object: invalid object for slot "x" in class "modInta":
got class "numeric", should be or extend class "integer"

> modIntd (4, 12)
Error in validObject (.Object)

invalid class "modIntd" object:
- "modInta "

invalid object for slot "x" in class

got class "numeric", should be or extend class "integer"

invalid class "modInt4" object: 2: invalid object for slot "modulus" in class
-rmodIntd” :

got class "numeric", should be or extend class "integer"

> modIntd (4L, 12L)

An object of class "modInt4"
Slot "x":

] a

slot "modulus
1] ‘33

OEBPS/Images/image01248.jpeg
> demoDT [, HeightInM.sq

> head (demoDT;
subject Sex Age Weight Height

1

LI A I
n R W

M

5z 2R

43
22
23
25
29
"o

57
71
72
76
82
7

(Height”2) /10000

166
179
170
188
175
160

BMI Smokes

20.
22.
25.
21.
26.
Py

7

S

No
No
No
No
No
No

HeightInM.sg

2.
.2041
.8900
.5344
.0625
BEE1

DWW N W

7556

OEBPS/Images/image01490.jpeg
* Eoowsstooony Stail e
Function: tail (package utils)

b aparnaVactors

OEBPS/Images/image01249.jpeg
list (as.numeric (Sex) ,

> demoDT[, c("SexNum", "SmokesNum"
was.numeric (Smokes))]

2: > head (demoDT)
subject Sex Age Weight Height BMI Smokes HeightInM.sq SexNum SmokesNum

1: 1M 43 57 166 20.7 No 2.7556 2 e
2: 26 F 25 58 175 18.9 No 3.0625 1 i,
6: 3: 30 F 33 61 175 19.9 No 3.0625 1 1
:4: 22 M 27 61 170 21.0 No 2.8900 2 bt
5: 17 F a1 62 172 20.9 Yes 2.9584 1 2
9: 6: 1 M o2 64 170 22.0 No 2.8900 2 1

OEBPS/Images/image01491.jpeg

OEBPS/Images/image01254.jpeg
® ® FAACULEES TS aan e gt
> demoDT <- data.table (demoData)
> demoDT[, mean(Height)]

[1] 176.1515

OEBPS/Images/image01255.jpeg
* SENOUTl . IEniNsLgnt). 2Y = Bex)
sex v1
1: M 176.5652
F 175 2000

OEBPS/Images/image01252.jpeg
1: > § Create data tables and define the keys accordingly
> demoDT <- data.table(demoDatal

3: > setkey(demoDT, Subject

> pkDT <- data.table (pkDatal

> setkey (pkDT, Subject)

> # Merge the two data tables together
> allPKDT <- merge (demoDT, pkDT!

> allPKDT
Subject Sex Age Weight Height BMI Smokes Dose Time Conc

1: 1M 43 57 166 20.7 No 25 0 0.00
2: M 43 57 166 20.7 No 25 1 660.13
3: 1M 43 57 166 20.7 No 25 6 178.92
4: 1M 43 57 166 20.7 No 25 12 88.99
5: 1M 43 57 166 20.7 No 25 24 42.71
161: 33 M 30 80 180 24.8 No 25 0 0.00
162: 3 M 30 80 180 24.8 No 25 1 453.13
163: 33 M 30 80 180 24.8 No 25 6 205.30
164: 33 M 30 80 180 24.8 No 25 12 146.69
165: 33 M 30 80 180 24.8 No 25 24 46.84

OEBPS/Images/image01494.jpeg
validModInt4Object <- function(object) {
Define checks
Note that the class definition already ensures that x and mod are integer
xNonNeg <- objectax >= 0
modulusPositive <- objectamodulus > 0
xLessThanEqualToModulus <- objectax <= objectemodulus
Combine checks
isObjectvalid <- xNonNeg & modulusPositive & xLessThanEqualToModulus
Return TRUE or FALSE
isobjectvalid

OEBPS/Images/image01253.jpeg
% PENOUT Pty

Subject Sex Age Weight Height BMI Smokes Dose Time Conc
1M 43 57 166 20.7 No 25 0 0.00
43 57 166 20. No 25 1 660.13
43 57 166 20. No 25 6 178.92
43 57 166 20. No 25 12 88.99
43 57 166 20. No 25 24 42.71

oW oe
i

ER]

Ry

161: 33
162: 33
163: 33
164: 33
165 Y

30 80 180 24.
30 80 180 24.
30 80 180 24.
30 80 180 24.
29 80 180 24

No 25 0 0.00
No 25 1 453.13
No 25 6 205.30
No 25 12 146.69
No 25 924 46 84

=== ==
Y

OEBPS/Images/image01495.jpeg
2 BREERLIOSEY L DEMEHEE " (N SN LI SR R
Class "modIntd" [in ".GlobalEnv']

slots:

Name : x modulus
Mlsees FNEEGRE Lot

OEBPS/Images/image01496.jpeg
> showModInt4 <- function(object){
+ # Extract the relevant components from the object
+ thevalue <- objectex

+ theModulus <- objectemodulus

+ 4 Print the object in the desired form

+ cat(thevalue, " (mod ", theModulus, ")\n", sep =
.

Link the previous function to the show generic and modInt4 class
> setMethod ("show", signature = "modInt4", showModIntd)

[1] "show"

> # Display an object

> modIntd (3L, 12L)

3 (mod 12)

OEBPS/Images/image01037.jpeg
gaFun <- function(X) {
addOne <- X + 1
minusone <- X - 1
c(ADD = addOne, MINUS = minusOne)

}

result2 <- gaFun(1)

OEBPS/Images/image01279.jpeg
MRl &= PEORLAIDEDAEARSUDIACE
subj2 <- pkbata [pkDatagsubject == 2,]

plot (subj1$Time, subjlgConc, pch = 16, col = "blue")
points (subj2$Time, subj2§Conc, pch = 0, col = "red")

> legend ("topright", legend = c("Subject 1", "Subject 2"),
S m Gi16., 0}, GOl = G{bIaaY., Tredu)y

OEBPS/Images/image01521.jpeg

OEBPS/Images/image01038.jpeg
> logRange <- function(X) {

+ logX <- log(X) 4 Takes logs of X

+ round(range(logX), 2) # Return (rounded) range of values
+)

> logRange (1:5) # Only positive integers

[1] 0.00 1.61

> logRange (-2:2) # Positive and negative integers
[1] NaN NaN

Warning message:

TSR IR R Bleauce

OEBPS/Images/image01280.jpeg
BOSN PRCKADS WLl CORALE. S RTopas prob,

require (ggplot2)

theme_set (theme_bw (base_size= 14))

B

wt,

v

mpg,

P

mtcars)

Set the theme to a white background (more
later)

OEBPS/Images/image01522.jpeg
: library(shiny)

ui <- fluidpage(

textInput (inputTd = "title", label = "Enter title text

plotoutput (outputId = "histogram")

server <- function(input, output){}

shinyApp (ui = ui, server = server)

OEBPS/Images/image01277.jpeg
% PROCADETRIART IS, ProabasCods, LYD8 = "800
s tuxbi{pkbatadTine: phkDatafCone: phkiataibous)

OEBPS/Images/image01519.jpeg
1: \documentclass{article}

\title{Automated Reporting with LaTeX}
\author{Aimee Gott}

5: \date{}
6:

\begin{document }
a:

\maketitle

The following report contains an analysis of the data from 2015.

\section{Analysis}
A simple linear model was fitted to the data to determine the main factors that
contribute to a change in the dependent variable. We can see below some simple

summaries of the data.
\end{document }

OEBPS/Images/image01036.jpeg
® SLLARIDON S TER R, 8] Y AL DAENIDOVALLER.
> someMissings <- c(NA, 1:4) # Some missing values
> all(allMissings > 0)

(1] ma

> all(someMissings > 0)

1] NA

OEBPS/Images/image01278.jpeg
» AADIRTYNSDLINT).
> maxData <- filter(group_by(pkData, Time), Conc
> plot (pkDatasTime, pkDatagConc, pch = 16)

S EEE T — " ARGE. ToE ek, GEERSE:w 0.5

max (Conc), Time != 0)

OEBPS/Images/image01520.jpeg
<<collapse = TRUE>>=
1library (mangoTraining)
3: summary (pkData$Conc)

<<echo = FALSE>>=
7: library(ggplot2)
aplot(Time, Conc, data

<<echo = FALSE>>=
library (knitr)
kable (head (pkData))

- pkpata)

OEBPS/Images/image01041.jpeg
> logRange <- function(X) {

+ if (any(X <= 0)) stop("Negative Values found!")

+ cat("Made it this far!i\n")

+ logX <- log(X) # Takes logs of X

+ round(range (logX), 2) # Return (rounded) range of values

N
)

> logRange (1:5) # Only positive integers

Made it this far!!

[1] 0.00 1.61

> logRange (-2:2) # Positive and negative integers
REroedn loamaiaalagsa) » WegaElve: Valsas Boana)

OEBPS/Images/image01283.jpeg
R BREGE ARSI RNE, X RO BERR. = BEREER] % LEERES HAUE PRISRE
> ggsave (file = "carPlot.png", carPlot) # save object as a png
e W e L e T P

OEBPS/Images/image01525.jpeg
“77{r, echo=FALSE}

input Panel (
numericInput (inputId = "num", label = "Number of Simulations:", value = 100),
textInput (inputTd = "title", label = "Enter title text

data <- reactive (rnorm(input$num))
renderplot ({

hist (data(), main = input§title, xlab = "Simulated Data")

h

OEBPS/Images/image01042.jpeg
> logRange <- function(X) {

+ if (any(X <= 0)) {

+ warning ("Some values were <= 0. We will remove them")

+ X<-X[X>0]

+)

+ logX <- log(X) # Takes logs of X

+ round(range (logX), 2) # Return (rounded) range of values
v

logRange (1:5) # Only positive integers

[1] 0.00 1.61

> logRange (-2:2) # Positive and negative integers
[1] 0.00 0.69

Warning message:

T

) : Some values were

O e Wil T then

OEBPS/Images/image01284.jpeg
% ¥ AONUER CHEL VARIAOLE A6 DT Dlont Type Wy Shxiog SH-EHE S
> mtcarsgcyl <- factor (mtcarsfeyl)
i RO, e, dtE - Eaite. ouod - YearsioEny

OEBPS/Images/image01039.jpeg
logRange <- function(X) {

+ stop("Negative Values found!") # Return an error message
+ logX <- log(X) # Takes logs of X
+ round(range (logX), 2) # Return (rounded) range of values

+

}

> logRange(1:5) # Only positive integers

Error in logRange(1:5) : Negative Values found!

> logRange (-2:2) # Positive and negative integers
Error in logRange(-2:2) : Negative Values found!

OEBPS/Images/image01281.jpeg
1: > 4 Version 1: Using a single call to gplot
> gplot(x = wt, y = mpg, data = mtcars,
+ main = "Miles per Gallon vs Weight\nAutomobiles (1973-74 models)",
+ xlab = "Weight (1b/1000)",
+ ylab = "Miles per US Gallon",
+ xlim = c(1, 6),
+ ylim = c(0, 40))
> # Version 2: gplot with additional layers
> gplot(x = wt, y = mpg, data = mtcars) +
+ ggtitle("Miles per Gallon vs Weight\nAutomobiles (1973-74 models)")
+ xlab ("Weight (1b/1000)") +
+ ylab("Miles per US Gallon") +
+ xlim(c(1, 6)) +
+ ylim(c(0, 40))

OEBPS/Images/image01523.jpeg
1: library(shiny)

ui <- fluidPage(

textInput (inputld = "title", label = "Enter title text:"),

plotoutput (outputId = "histogram")

server <- function(imput, output){
outputghistogram <- renderplot ({
hist (rnorm(100), main = input§title, xlab = "Simulated Data")

b

shinyApp (ui = ui, server = server)

OEBPS/Images/image01040.jpeg
logRange <- function(X) {

+ if (any(X <= 0)) stop("Negative Values found!"
+ logX <- log(X) # Takes logs of X
+ round(range (logX), 2) # Return (rounded) range of values

+

}

> logRange(1:5) # Only positive integers
[1] 0.00 1.61

> logRange (-2:2) # Positive and negative integers
Biror Indoglanoel-9:2) : Begative: Yaluss EounAl

OEBPS/Images/image01282.jpeg
T vV

- CTRALE, & SARLE TAUE AL Ravm
basicCarPlot <- gplot(wt, mpg,
Modify the plot to include a
basicCarPlot <- basicCarPlot +

ggtitle("Miles per Gallon vs
Now print the plot
e

&k &N an. ouiedr
data = mtcars)
title

Weight\nAutomobiles

(1973-74 models) ")

OEBPS/Images/image01524.jpeg
1: library(shiny)

ui <- fluidPage(

numericInput (inputld = "num", label = "Number of Simulations:", value = 100),

textInput (inputld = "title", label = "Enter title text:"),

plotoutput (outputTd = "histogram")

server <- function(imput, output){
data <- reactive (rnorm(input$num))
outputghistogram <- renderplot ({
hist(data(), main = input$title, xlab = "Simulated Data")

b

shinyApp (ui = ui, server = server)

OEBPS/Images/image01045.jpeg
logRange <- function(X) {
if (any(X <= 0)) stop("Negative Values found!")
Takes logs of X

Return (rounded) range of values

N

+ logX <- log(X)

+ round(range (logX), 2)
N

> logRange (LETTERS) # A Character vector
i ode Tools) & ShdcNetis ruRatt ot Tial Pt Tee

OEBPS/Images/image01043.jpeg
> logRange <- function(X) {
+ lessTest <- X <= 0 # Test for values <= 0
+ if (any(lessTest)) {
. nless <- sum(lessTest) # How many values
+ outMessage <- paste (nLess, "values were <= 0. We will remove them"
. warning (outMessage!
+ X<-X[X>0]
¢}
+ logX <- log(X) # Takes logs of X
+ round(range (logX), 2) # Return (rounded) range of values
v
}

> logRange(1:5) # Only positive integers
[1] 0.00 1.61

> logRange (-2:2) # Positive and negative integers
[1] 0.00 0.69

Warning message:

e P ——

) : 3 values were <= 0. We will remove them

OEBPS/Images/image01285.jpeg
> grep (""geom", objects ("package:ggplot2"), value = TRUE)

[1] "geom_abline" "geom_area” "geom_bar" "geom_bin2d"
[5] "geom blank" "geom_boxplot" "geom contour" "geom_crossbar"
[9] "geom demsity" "geom density2d" "geom_dotplot" "geom errorbar"
[13] "geom errorbarh" "geom fregpoly" "geom_hex" "geom_histogram"
[17] "geom hline" ngeom_: "geom_line" "geom_linerange"
[21] "geom map" "geom_path" "geom_point " "geom_pointrange
[25] "geom polygon" "geom quantile" "geom raster" "geom_rect"

[29] "geom ribbon" "geom_rug" "geom_segment" "geom_smooth"
[33] "geom step" "geom_text" "geom_tilen "geom_violin"

[37] "geom vliner

OEBPS/Images/image01044.jpeg
> logRange <- function(X) {

+ lessTest <- X <= 0 # Test for values

+ if (all(lessTest)) stop("All values are <= 0") # Stop if all <= 0

+ if (any(lessTest)) {

. nless <- sum(lessTest) # How many values

+ outMessage <- paste(nLess, "values were <= 0. We will remove them")

. warning (outMessage)

+ X<-X[X>0]

v}

+ logX <- log(X) # Takes logs of X

+ round(range (logX), 2) # Return (rounded) range of values
}

> logRange(1:5) # Only positive integers

[1] 0.00 1.61

> logRange(-2:2) # Positive and negative integers

[1] 0.00 0.69

Warning message:

In logRange(-2:2) : 3 values were <= 0. We will remove them
> logRange (- (1:5)) # All negative integers

Kiitie bn TohlEeael<I1eEy] a1l vaToes ape es b

OEBPS/Images/image01286.jpeg
mpg,

data

mtcars)

+ geom

boxplot()

OEBPS/Images/image01287.jpeg

OEBPS/Images/image01026.jpeg
R RN SN N PRk R 00 228
> X >0 # Is X greater than 0?
[1] FALSE FALSE FALSE TRUE TRUE

> 1(X > 0) # Reverse logical values

[1] TRUE TRUE TRUE FALSE FALSE

OEBPS/Images/image01268.jpeg
> plot(airguality$SWind, airquality$Ozone, pch

OEBPS/Images/image01510.jpeg
modIntRef$methods (1ist (addNumber = function (aNumber) {
Add aNumber to x locally
% <<- x + alumber
Ensure x is correct for the modulus
% <<- x ¥% modulus

2l

R ER]

> a <- modIntRef¢new(x = 3L, modulus = 12L)
>a

Reference class object of class "modIntRef"
Field "x"
m 3
Field "modulus":

11 12

> agaddNumber (1L)

>a

Reference class object of class "modIntRef"
Field "x":

1 4

Field "modulus":

1] 12

> agaddNumber (10L)

>a

Reference class object of class "modIntRef"
Field "x":

m 2

Field "modulus":

1] 12

OEBPS/Images/image01027.jpeg
> posOrNeg <- function(X) {

+ if (all(X > 0)) cat("\nAll values of X are greater than 0"

+ if (1all(X > 0)) cat("\nNot all values of X are greater than 0")
+ if (any(X > 0)) cat("\nAt least 1 value of X is greater than 0")
+ if (tamy(X > 0)) cat("\nNo values of X are greater than 0"

N

}

posOrNeg (1:5) # A1l > 0

All values of X are greater than 0
At least 1 value of X is greater than 0
> posOrNeg (-2:2) # Some > 0, Some <= 0

Not all values of X are greater than 0
At least 1 value of X is greater than 0
) #All<=o0

> posoriNeg (- (

Not all values of X are greater than 0
o vatuse o ¥ are greater thaw b

OEBPS/Images/image01269.jpeg
® SANLAE, NN 8 SHESLOOTER AC EAEOo NOruRl, DEER . BLAN W CREVRAAESY NOEaL i
> require (mangoTraining)
> plot (pkData$Time, pkDatagConc,
main = "Concentration against Time", xlab = "Time",
N ylab = "Concentration")

OEBPS/Images/image01511.jpeg
* o BEO0 SUTRELTAR Ok KV et &
>a

Reference class cbject of class "modIntRef"
Field "x":

a2
Field "modulus”:
] 12

> # Create b as a copy of a in the traditional way
>b<a

> b

Reference class object of class "modIntRef"

Field "x"
m] 2
Field "modulus":
1] 13

OEBPS/Images/image01266.jpeg
% SFNCREIDA £ SRR CHEIN LORIMRY W SPROARL,, PaLI
s hesailat bvalussoariiar: datacs guniarBatul

OEBPS/Images/image01508.jpeg
k ORsCERIRl
1] "copy" nfield" ngetClass" "modulus" "show" ny

OEBPS/Images/image01267.jpeg
* QeoaasPoonGCec TERLG igeam.)
> barplot (genderCount)

OEBPS/Images/image01509.jpeg
modIntRef$methods (List (initialize = function(x, modulus){
Create the object from the starting number, x and modulus, modulus
Divide by the modulus to get new number appropriate for that modulus
Assign fields *if* they are provided (ensures we can copy the object)
if (imissing(x)) {
% <<= x %% modulus
}
if (imissing(modulus)) {
modulus <<- modulus
}
h)

O

OEBPS/Images/image01030.jpeg
> logVector <- function(vec) {

+ if (all(vec > 0) & all(log(vec) <= 2)) cat("Numbers in range")
+ else cat("Numbers not in range")

+)

> logVector(1:10) # Some logged values are greater than 2
Numbers not in range

> logVector (1:5) # All values are in range

Nunberis 150 e

OEBPS/Images/image01272.jpeg
® PEOCADEDRLAGT YOS (REDREARLNE w35 o R ASUINC PR ERRRORS
N vlim = range (pkDatasConc))

251,

OEBPS/Images/image01514.jpeg
> library("R6")
> modInté <- R6Class ("modInté",
+ # Define public elements
public = list(
Fields
x = NB,
modulus = NA,
Methods
initialize = function(x, modulus){
if (imissing(x)) {
self$x <- x ¥% modulus
}
if (imissing(modulus)) {
self$modulus <- modulus
}
)
show = function() {
cat(self$x, " (mod ", self$modulus, ")", sep = "
1

square = function(){

B

OEBPS/Images/image01031.jpeg
logVector <- function(vec) {
if (all(vec > 0) && all(log(vec) <= 2)) cat("Numbers in range")
else cat ("Numbers not in range")

+ o+ v

}
> logVector(-2:2)
Numbers not in range

OEBPS/Images/image01273.jpeg
® PEOCADEDRLAGT Mo, proatagbons,
. main = "Concentration against Time", xlab = "Time",
. ylab = "Concentration", pch = 24, col = "navyblue",
5 B e allowr sk soay

OEBPS/Images/image01515.jpeg
selfsx <- self$x”2
Use private method to ensure x < modulus
privatesadjustForModulus ()
}
).
Define private methods
private = list(
Function to ensure correct modulus
adjustForModulus = function(){
self$x <- self$x % self$modulus

S EEE o EE o+

)

> a <- modInté$new(3L, 12L)
> agshow ()

3 (mod 12)

> # Now square a

> agsquare ()

> agshow ()

9 (mod 12)

OEBPS/Images/image01028.jpeg
+ o+ v

Y

betweenvValues <- function(X, Min = 1, Max = 10} {
if (X >= Min & X <= Max) cat(paste("X is between”, Min, "and", Max))
if (X < Min | X > Max) cat (paste("X is NOT between", Min, "and", Max))

}

betweenvalues (5)

is between 1 and 10

betweenvalues (5, Min = -2, Max = 2)

R et oo

OEBPS/Images/image01270.jpeg
&
p

expression("Concentration ("*mu*"g/ml)")

OEBPS/Images/image01512.jpeg
e oo T o

> a

Reference class cbject of class "modIntRef"
Field "x":

[ED]

Field "modulus”:

Reference class cbject of class "modIntRef"
Field "x"
[ED]
Field "modulus”:
1] ‘33

OEBPS/Images/image01029.jpeg
> logVector <- function(vec, logIt = FALSE) {

+ if (all(vec > 0) & logIt) vec <- log(vec)

+ vec

+)

> logVector (1:5, logIt = TRUE) # Logs the data

[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379

> logVector (-5:5, logIt = TRUE) # Doesn't log the data because first condition not
-net

11

Aoy o 0 1 2 3 4 5

OEBPS/Images/image01271.jpeg

OEBPS/Images/image01513.jpeg
B NRERCtannlE oAl WEAON 8 T
> b <- agcopy ()

> b

Reference class object of class "modIntRef
Field "x"
3
Field "modulus":
1] 12

OEBPS/Images/image01034.jpeg
> summaryFun <- function(vec, digits = 3
+ N <- length(vec) 4 Calculate the number of values in "vec"
+ if (N == 0) return(NULL) # Return NULL if "vec" is empty
N
+ testMissing <- is.na(vec) # Look for missing values
+ if (all(testMissing)) {
+ output <- ¢(N = N, nMissing = N, pMissing = 100
+ return (output) # Return simple summary if all missing
values
£}
N
+ 1nMiss <- sum(testMissing) # Calculate the number of missing values
+ pMiss <- 100 * nMiss / N # Calculate the percentage of missing
values
+ vec <- vec [!testMissing] # Remove missing values from the vector
+ someStats <- c(Mean - mean(vec), Median - median(vec), SD - sd(vec)
+ Min = min(vec), Max = max(vec)) # Calculate a number of statistics
N
+ output <- c(someStats, N = N, nMissing = nMiss, pMissing = pMiss
+ round(output, digits = digits
+
> summaryFun (c()) # Empty Vector
NULL
> summaryFun (rep (NA, 10)) # Vector of missing values
N nMissing pMissing
10 10 100

> summaryFun (1:10) # Basic numeric vector

Mean Median sD Min Max N nMissing pMissing

5.500 5.500 3.028 1.000 10.000 10.000 0.000 0.000
> summaryFun (airquality$Ozone) # Vector containing missings

Mean Median sD Min Max N nMissing pMissing

42 120 131 .500 232 988 1.000 168 000 153 000 27 000 24 183

OEBPS/Images/image01035.jpeg
> testMissing <- function(X) {

+ if (X > 0) cat("Success")

v}

> testMissing(NA)

Error in if (X > 0) cat("Success")
missing value where TRUE/FALSE needed

OEBPS/Images/image01032.jpeg
verboseFunction <- function(X) {

+ if (all(X > 0)) output <- X 4 if all values of X > 0, set output to X

v else {

. X[X<=01]<- 0.1 # Set all values <=0 to 0.1

. output <- log(X) # Take logs of the X input data, set as output
£}

+ output # Return the value of output

¢}

> verboseFunction (-2:2) # call our function

[1] -2.3025851 -2.3025851 -2.3025851 0.0000000 0.6931472

OEBPS/Images/image01274.jpeg
» X @~ EOOrmiaie)
s plobie: byvow & SO mibew Eypase: S18E]

OEBPS/Images/image01033.jpeg
verboseFunction <- function(X) {
if (all(x > 0)) return(x) # Return early if all values of X are > O

.

.

+ # Carry on if not returned already

+ X [X<=0] < 0.1 # Set all values <=0 to 0.1
+ log(x) # Return the logged X values
¢}

> verboseFunction (-2:2)

[1] -2.3025851 -2.3025851 -2.3025851 0.0000000 0.6931472

OEBPS/Images/image01275.jpeg
SunleEts. & EeTa e LIKEALESIUD et
subject2 <- pkData[pkDatagSubject == 2,]
plot (pkData$Time, pkDatagConc, type = "n")
points (subject1$Time, subjectisConc, pch = 16)
lines (subject2$Time, subject2$Conc)

OEBPS/Images/cover01526.jpeg
SamsTeach Yourself

OEBPS/Images/image01517.jpeg
@S e W e

{r, collapse = TRUE}
1library (mangoTraining)
sunmary (pkDatagConc)

~*{r, echo - FALSE}
1library (ggplot2)
: gplot (Time, Conc, data = pkData)

~>{r, echo - FALSE}
: library (knitr)
: kable (head (pkData))

OEBPS/Images/image01276.jpeg
¥ ROLIOEN = I PEDAERECO0G. , S5Y
s abline{v: s pkDatadrine [pkiutaptons

a2
s fakBabatCone) Ji- Aty wa)

OEBPS/Images/image01518.jpeg
TR MEGIAH . COnGaULEAL LA, SO, NORE SEOUR- 2N MAe T
madlan (ukDat 28Cons [OkDatatluaas=25 1) ™

OEBPS/Images/image01516.jpeg
2: title: "Automated Reporting"
author: "Aimee Gott"
4: output: html_document

The following report contains an analysis of the data from 2015.

#4 Analysis
A simple linear model was fitted to the data to determine the main factors that

contribute to a change in the dependent variable. We can see below some simple

summaries of the data.

OEBPS/Images/image01059.jpeg
> aFunction <- function(x, inputWithLongName) {
+ % + inputWithLongName
¢}

aPunction (x

i b O &

OEBPS/Images/image01301.jpeg
r + Cyl)

OEBPS/Images/image01060.jpeg
aFunction <- function(x, inputWithLongName, ...) {
x + inputWithLongName

}

N
N
> aFunction(x = 1,

=2)
a1 3

> aFunction <- function(.
+ X + inputWithLongName

x, inputWithLongName) {

+)
> aFunction(x = 1, i = 2)
Error in aFunction(x = 1, i = 2)
ArCENEE YSEpEENithIahaNaae” Ay iEedhg. With Do-daEanlt

OEBPS/Images/image01302.jpeg
carPlot + racet wrap(~ carb)

OEBPS/Images/image01057.jpeg
histFun <- function(X, addLine = TRUE, col = "lightblue", main = "Histogram")
hist (X, col = col, main = main)
if (addLine) abline (v = median(x), lwd = 2)

T v v

)

s BeNEPOR{COSERTI000Y. Saadic e YREW TLELEYY

OEBPS/Images/image01299.jpeg

OEBPS/Images/image01058.jpeg
v v

histFun <- function(X, addLine = TRUE, ...)
hist (X,
if (addLine) abline (v = median(X), lwd = 2)

)

histFun (rnorm(1000), col = "plum®, xlab = "X AXIS LABEL")

OEBPS/Images/image01300.jpeg

OEBPS/Images/image01063.jpeg
* DR STH D SHoiCh

[1] "norm"

> match.arg ("NORM", choices = c("morm", "pois", "unif"))

Error in match.arg("NORM", choices = c("norm", "pois", "unif"))
targ' should be one of "norm", "pois", "unif"

£ OEET, TPOaIns, THRLETId

OEBPS/Images/image01305.jpeg

OEBPS/Images/image01064.jpeg
> genRandoms <- function(N, dist, ...) {

+ dist <- match.arg(dist, choices = c("morm", "pois", "unif")) # Check dist
+ switch(dist,

. "morm" = rnorm(N, ...),

. "pois" = rpois(N, ...),

. "unif" = runif (N, ...))

+)

> genRandoms (10, "norm", mean = 5)
[1] 4.503535 4.971087 3.758512 4.580493 6.297477 2.688116 5.637076
[8] 4.921771 4.408372 4.484797

> genRandoms (10, "Normal", mean = 5)

Error in match.arg(dist, choices = c("norm", "pois", "unif"))
TEEeT HAWTH Ba Gk of EEEE, oata. Ranifte

OEBPS/Images/image01061.jpeg
> genRandoms <- function(N, dist, ...) {
+ switch(dist,

. "norm" = rnorm(N,

. "pois" = rpois (N,

. "unif" = runif (N,

v}

> genRandoms (10, "norm", mean

[1] 4.152562 4.330108 6.580539 5.708272 5.872492 4.533635 4.295672
[8] 5.654961 3.838976 4.474047
i Denlandenalio, "Hofealy, weEE STE)

OEBPS/Images/image01303.jpeg
> ggplot ()

OEBPS/Images/image01062.jpeg
genRandoms <- function(N, dist, ...) {

+ switch(dist,

+ "morm" = rnorm(N, ...),

+ "pois" = rpois(N, ...),

+ "unif" = runif(N, ...),

+ stop (paste ("Distribution \"", dist, "\" not recognized")))

+)

> genRandoms (10, "norm", mean = 5)
[1] 3.213303 5.564620 4.029048 6.004051 4.965648 3.395951 5.754919
[8] 5.019788 5.627128 4.528970

> genRandoms (10, "Normal", mean = 5)

Error in genRandoms (10, "Normal", mean = 5)
Diarsisatica VISR G Tatbanlied

OEBPS/Images/image01304.jpeg

OEBPS/Images/image01065.jpeg
switch(dist,
"norm" = rnorm(N,
"pois" = rpois (N,
"unif" = runif (N,

}

genRandoms (10, "norm", mean =
[1] 6.243477 4.173172 6.449329
[8] 4.464281 6.497654 3.584767
> genRandoms (10, "Normal", mean
Brror in match.arg(dist) : ‘arg'

N
N
N
N
N
N

genRandoms <- function(N, dist = c("norm",
dist <- match.arg(dist) # Check validity if "dist" input

3.768405 5.283295 4.849446 5.190646

should be one of

OEBPS/Images/image01066.jpeg
genRandoms <- function(N, dist = c("morm", "pois”, "unif"), ...) {
dist <- match.arg(dist) # Check validity if "dist" input
randFun <- get(pasteo("r", dist)) # Get the function
randFun (N, ...) # Run the function

}

genRandoms (10, "norm®, mean = 5)

[1] 5.698743 5.463239 6.596608 4.385926 5.288524 6.200866 5.537720
[8] 3.854999 4.781841 5.588260

> genRandoms (10, "pois", lambda = 3)

1] 5311223221

vy v

OEBPS/Images/image01308.jpeg
% BRASEIORER = eI M., ¥ . SREEE
+ geom smooth(method = "lm", se = FALSE, col = "red

B¥E.. BIER W iR 1
aes (shape NULL))

OEBPS/Images/image01067.jpeg
P SEES r
> sales <- c(100, 120, 150, 130, 160, 210, 120)
% DIOEIDGE Waleh. TUom cogey

OEBPS/Images/image01309.jpeg
T+ T VY

T CTRALE. & COpY Wi tOE REEATS Baba T0 S8 NEe0. AR K “EDarme
require (dplyr) # To use select function
carCopy <- mtcars ¥>¥ select (-cyl)

Use layers to control the color of points
ggplot () +

geom_point (data = carCopy, aes(x = wt, y = mpg), color = "lightgrey") +
geom_point (data = mtcars, aes(x = wt, y = mpg)) +
facet_grid(- cyl) + # Note that cyl only exists in mtcars not carCopy

ggtitle ("MPG vs Weight Automobiles (1973-74 models)\nBy Number of Cylinders") +
xlab ("Weight (1b/1000)") +
STab M las Der U8 Gallciv}

OEBPS/Images/image01306.jpeg
* HEEOLIALA & H-AAre, ASELE = ML, ¥
+ geom point(shape = 17, size = 3) +
+ geom smooth(method = "lm", se = FALSE, col = "red")

mpgl) +

OEBPS/Images/image01307.jpeg
B RRRETIURER S NEORER,, ASRAE = Mo X 1 BELL ¥
+ geom point(aes(shape = cyl), size = 3) +
+ geom smooth(method = "lm", se = FALSE, col = "red")

OEBPS/Images/image01048.jpeg
> logRange <- function(X) {

+ if (1is.numeric(X) | !is.vector(X)) stop("Need a numeric vector!")
+ if (any(X <= 0)) stop("Negative Values found!")

+ logX <- log(X) # Takes logs of X

+ round(range (logX), 2) # Return (rounded) range of values

}

> logRange (1:10) # A Numeric vector
[1] 0.0 2.3

> logRange (LETTERS) # A Character vector

Error in logRange (LETTERS) : Need a numeric vector!

> logRange (airquality) # A Data Frame
Brror in logRange (airquality) : Need a nmumeric vector!

OEBPS/Images/image01290.jpeg

OEBPS/Images/image01049.jpeg
% SHSTEN E LTS,

> charNums
"1.65m

1]

n2.03n

ng.aan

> is.numeric (charNums)

[1] FALSE

"2.03%,

n3.51n

"9.88",

> convertNums <- as.numeric(charNums)
> is.numeric (convertNums)
[1] TRUE
> is.matrix(convertiums)

[1] FALSE

> matNums <- as.matrix(convertNums)
> is.matrix (matNums)
[1] TRUE

> matNums

L1

wo N

.65
.03
.88
51

TR)

=

*

*

Create character vector

Is it numeric?

Convert to numeric
Is it numeric now?

Is it a matrix?

Convert to matrix
Is it a matrix now?

Print the matrix

OEBPS/Images/image01291.jpeg

OEBPS/Images/image01046.jpeg
> apropos ("“is\\.") # Show all

1]
(4]
171
(o]
s3]
(6]
9]
[22]

"is.
"is.
"is.
"is.
i
i
"is.

"is.

array"
character”
double”
environment"

.finite
.integern

listn
matrix"

objects starting with
"is.atomic"
"is.complex"
"is.element"
"is.expression"
"is.function”
"is.language"
"is.loaded"

"is.mts"

"is.

.callr

.data.frame"

"is.empty.model"
is.factor"

is.infinite"
"is.leaf"
.logical"
"is.na"

OEBPS/Images/image01288.jpeg

OEBPS/Images/image01047.jpeg
 cEELRES T2 JALLBINUREtOr.
[1] "a" "b" "cw "Qn "em WEW ngw whu n
(6] "
> mode (letters) # It's a character vector
[1] "character"

W wkn wln e mpe ngn

g mn mgn wEw mgn wyn g ngn

> is.vector (letters) # Is it a vector?
[1] TRUE

> is.character(letters) # Is it a character?
[1] TRUE

> is.matrix(letters) # Is it a matrix?
[1] FALSE

> is.numeric (letters) # Is it numeric?

[1] FALSE

OEBPS/Images/image01289.jpeg
.
g

HESARIR = 2000, ¥ = O4ah, SALR & QUAkeR, B1E6 = WRG..

ggtitle ("Locations of Earthquakes off Fiji") +
Mlab (O ianaitaden) & Flab(staritade™)

£OL S aapED]

OEBPS/Images/image01052.jpeg
e bl L
function (..., sep = " ", collapse = NULL)
NULL

OEBPS/Images/image01294.jpeg

OEBPS/Images/image01053.jpeg
SN BE Noe K ORIRCUE, T0 S FOOVRILEC TN SOAERCTar. YeoLooe:.
sep a character string to separate the terms. Not NA_character_.

collapse an optional character string to separate the results. Not
wNA character .

OEBPS/Images/image01295.jpeg
¥+ v NV

carPlot

+
scale_shape_discrete ("Number of cylinders") +
scale_size_continuous ("Displacement (cu.in.)",

range = c(4,8),

breaks = seq(100, 500, by = 100)
limits = c(0, 500)

OEBPS/Images/image01050.jpeg
e bl Lol # ArguienEe Ot tenLc

function (n, min = 0, max = 1)

NULL

> runif(n = 10, min = 1, max = 100)
[1] 84.95420 51.39096 66.54084 91.43757 88.51552 66.70264 45.44668

call runif

[8] 19.76205 82.41349 36.74277

OEBPS/Images/image01292.jpeg
» ¥ EINSER A DINLE POk

> carPlot <- gplot(x = wt, y = mpg, data = mtcars, shape = cyl, # cyl is a factor
. main = "Miles per Gallon vs Weight\nAutomobiles (1973-74 models)",

xlab = "Weight (1b/1000)",

ylab = "Miles per US Gallon",

xlim = c(1, 6),
ylim = c(0, 40))

T T

> # Edit plotting symbols and print
carPlot + scale shape manual ("Number of\nCylinders", values = c(3,5,2))

OEBPS/Images/image01051.jpeg
% ETIREA co-oEppaat, “UANEORET. “RSRERCS. - TRSRCIRE ")

> paste ("I like", fruits[1])

[1] "I like apples"

> paste ("I like", fruits[1], "and", fruits[2])

[1] "I like apples and bananas"

> paste ("I like", fruits[1], "and", fruits[2], "and", fruits[3])

[1] "I like apples and bananas and pears"

> paste ("I like", fruits[1], "and", fruits[2], "and", fruits[3], "and", fruits[4])
P NEY IR et e il hknate Sl Ceace and Descbae¥

OEBPS/Images/image01293.jpeg
® » FRBAER X DRRLC POE
> carPlot <- gplot(x = wt, y = mpg, data = mtcars

. shape = cyl, size = disp,

. main = "Miles per Gallon vs Weight\nAutomobiles
wmodels) ",

. xlab = "Weight (1b/1000)"

. ylab = "Miles per US Gallon",

. xlim = c(1, 6),

. ylim = c(0, 40))

.
%

Change legend titles via scale layers
carPlot +
scale_shape_discrete ("Number of Cylinders") +
scale size continuous ("Displacement (cu.in.)")

(1973-74

OEBPS/Images/image01054.jpeg
> genRandoms <- function(N, dist, mean = 0, sd = 1, lambda, min, max) |
+ switch(dist,

. "morm" = rnorm(N, mean = mean, sd = sd),

. "pois" = rpois(N, lambda = lambda),

. "unif" = runif(N, min = min, max = max))

v}

> genRandoms (10, "norm", mean = 5)

[1] 4.071533 5.212119 5.610405 6.527552 4.519315 4.333632 4.518676
[8] 5.242985 3.050987 5.969838

> genRandoms (10, "unif", min = 1, max = 10)

[1] 2.830932 8.213797 5.294915 1.089826 4.190719 9.482410 2.877680
[8] 1.398005 9.294324 9.313718

OEBPS/Images/image01055.jpeg
> genRandoms <- function(N, dist, ...) {
+ switch(dist,

. "norm" = rnorm(N, ...),

. "pois" = rpois(N, ...),

. "unif" = runif (N, ...))

v}

> genRandoms (10, "norm", mean = 5)

[1] 4.812319 4.330495 5.369091 4.205875 5.072567 4.029603 5.116522
[8] 4.163062 6.231766 5.481158

> genRandoms (10, "unif", min = 1, max = 10)

[1] 2.141485 5.552706 5.114769 2.800839 9.396432 8.006636 3.249285
[8] 7.320116 4.525931 9.238757

OEBPS/Images/image01297.jpeg
MO LEOA teeloed
result!

Not the desired
e SR

HEMALAGAER. W PUNAES, ® W T, ¥ ROUS, 90N &N LineT)

gplot (data = pkData, x = Time, y = Conc, geom = "path")

OEBPS/Images/image01056.jpeg
> hist (rnorm(1000),

main

OEBPS/Images/image01298.jpeg
% BPLO AL W PEINEN,. X, . TR, ¥
N ylab = "Concentration")

£oRg: S

TRAEAY s SEOUR s BUDIRCE.

OEBPS/Images/image01296.jpeg

OEBPS/Images/image00839.jpeg
% UL E:N, AL, BAd.R, Sk T
(11 L2] [L3] (4]

mi1 1 3 2 1

21 2 2 4 1

.1 3 1 6 1

OEBPS/Images/image01081.jpeg
for (variable in set_of values) {
do this

OEBPS/Images/image01323.jpeg
> splom(=~

mtcars|,c(

OEBPS/Images/image00840.jpeg
» oI Lo, Azl, BiE, $2, 3
1) 2] [L3] [L4)

(o) 1 = 2 1,
(2,1 2 2 4 1
3,1 3 T 2 1

Warning message:
In cbind(1:3, 3:1, c(2, 4), 1)
b oE rewe BE cewlt o iernokcasnciiipie of sedkors el fava 5

OEBPS/Images/image01082.jpeg
> for (i in 1:5) {
+ cat("\n Hello") # Say Hello
d

Hello
Hello
Hello
Hello
Hello

OEBPS/Images/image01324.jpeg
mtcars,

subset

OEBPS/Images/image00837.jpeg
> letters [1 1l # First 5 (lower case) letters
[1] "an "bn nen ndn wew
- LETTERS [1:5] # First 5 (upper case) letters
1] man wmw nwgw npm wge

OEBPS/Images/image01079.jpeg
VO MO0 Rk aun 208 BN
Reach into the bag
Remove a single potato chip
it the gotato ohiip

OEBPS/Images/image01321.jpeg
¥ MANIVOLCEGR) ¥ NANEREIOOR SF DD TOLCAND MmET
[1] 87 61
¢ wlieE PRt e TR Al TR

OEBPS/Images/image00838.jpeg
® FRLORLI:N, Bk, Chd. R, K1 TRl AL
1) 2] 3] [.4]

.1 103 2 1

[2,1 2 2 4 1

;.1 3 1 6 1

OEBPS/Images/image01080.jpeg
HRLOL EONEN SES NLALE SONPRAEEE. 0 R e s
Reach into the bag
Remove a single potato chip
it the gotato ohiip

OEBPS/Images/image01322.jpeg
% MAEWCLTRERG VLo, SO s TR ..
N screen = list(x = -60, y = -40, z = -20))

OEBPS/Images/image00843.jpeg
% DREFAN LTSI, TEE - 2, RO 5)
1) 2] 3] [.4]

n,] 1 4 7 10

2,1 2 5 8 11

3.1 3 6 9 12

OEBPS/Images/image01085.jpeg
> for (let in LETTERS[1:5]) {
+ cat("\n The Letter", let)
+}

The Letter
The Letter
The Letter
The Letter
R AR

500wy

OEBPS/Images/image00844.jpeg
® BALLaE doad, DrON = 3, MCOR 8 N1 3 BELAULE SeRRwLEE s areoww DAL
(11 L2] [3] (4]

1,1 1 4 ¥ Ao

2,1 2 5 8 11

3.1 3 6 9 12

OEBPS/Images/image00841.jpeg
R FRABNIIGS, Aih. BhAe Re Bla BEEVRRL
1 2] 3]

.1 12 3
(2.1 3 2 1
3.1 2 4 6
4.1 101 1

OEBPS/Images/image01083.jpeg
= far [1 1In

OEBPS/Images/image01325.jpeg
® XYRLOEAEPY CiuL, QAEA & WLOALE, RN 8 THLLEE DAY DRLAS W WRLONG.
. xlab = "Weight (1b/1000)", ylab = "Miles/(US) Gallon",
% xlim = c(1, 6), ylim = c(10, 40))

OEBPS/Images/image00842.jpeg
R BRAINIA:S, Ak, BhAe Re Bke FEE R AL
1) [2] [L3] [,4)

.1 103 2 1
2,1 2 2 4 1
3.1 3 1 6 1

> t(rbind(1:3, 3:1, c(2, 4, 6), rep(1, 3)))
1) 2] 3] [.4]

.1 103 2 1

[2,1 2 2 4 1

;.1 3 15 6 5

OEBPS/Images/image01084.jpeg
> for (i in 1:5) {
+ cat("\n i has been set to the value of", i
¢}

has been set to the value of
has been set to the value of
has been set to the value of
has been set to the value of
has been set to the value of

e R e
n R W o e

OEBPS/Images/image00845.jpeg
® EALLIRAEILE, DEOH = 4, HFON = INDN)
(11 L2] [L3] (4]

1,1 1 2 k- 4

2,1 5 6 » 8

3.1 9 10 11 12

OEBPS/Images/image00846.jpeg
* BURELOE- £ Bk, B, Ay M, Xy
> X <- matrix(aVector, nrow = 3)
> X
1 2] [L3] (4]
1,1 4 @ L a
2,1 5 6 5 6
3,1 2 T 0 9
> mode (X)

[1] "numeric"

£

4 SEWER & ¥aDhen
Create a matrix
Print the matrix

The mode of the matrix

OEBPS/Images/image01088.jpeg
> for (M in unique(airquality$Month))

+ ozoneValues <- airquality$Ozone [airquality§Month =

+ theMean <- round(mean(ozoneValues, na.rm = TRUE),

+ cat("\n Average Ozone for month", M, . theMean]

Average Ozone for month 5 = 23.62
Average Ozone for month &

Average Ozone for month 7 = 59.12
Average Ozone for month 8 = 59.96
Aincage Dichs Bor mbdth #aat A%

2

M] # Subset the data

Ccalculate and round
the mean

Print the message

OEBPS/Images/image00847.jpeg
I et N
il 13

OEBPS/Images/image01089.jpeg
for (M in unique(airquality$Month))

cat("\n\n Month =", M, "\n) # Write Month Number
subData <- airquality [airqualitygMonth == M,] # Subset the data

theMean <- round (mean(subDataOzone, na.rm = TRUE), 2) # Calculate the mean
cat("\n Average Ozone =\t", theMean) # Print the message
theMean <- round (mean(subData$Wind, na.rm = TRUE), 2) # Calculate the mean
cat("\n Average Wind = theMean) # Print the message

theMean <- round (mean(subDatagSolar.R, na.rm = TRUE), 2) # Calculate the mean
cat("\n Average Solar.R =\t", theMean) # Print the message

R S S

Average Ozone = 23.62
Average Wind = 11.62
Average Solar.R = 181.3

OEBPS/Images/image01086.jpeg
¥ SRR IO Ty
Ozone Solar.R Wind Temp Month Day

a1
36
12
18
nA
Py

A A

190
18
149
313
NA
NA

2%

8.
2%
i
14.
A

4

67
72
74
62
56
I

S N R i

OEBPS/Images/image01087.jpeg
% » SETLOEN SUNNREY- ok Meoes §

> ozoneValues <- airquality$Ozone [airquality$Month # Subset the data
> theMean <- round(mean(ozoneValues, na.rm = TRUE), 2) # Calculate the mean
> cat ("\n Average Ozone for month § =", theMean) # Print the message

Average Ozone for month 5 = 23.62

> # Perform summary for Month 6

> ozoneValues <- airquality$Ozone [airquality$Month 1 # Subset the data

> theMean <- round(mean(ozoneValues, na.rm = TRUE), 2) # Calculate the mean
> cat("\n Average Ozone for month 6 theMean) # Print the message

Average Ozone for month 6 = 29.44

> # Perform summary for Month 7

> ozoneValues <- airquality$Ozone [airquality$Month # Subset the data

> theMean <- round(mean(ozoneValues, na.rm = TRUE), 2) # Calculate the mean
> cat("\n Average Ozone for month 7 =", theMean) # Print the message

Avecags Ozons Sormoath Tw 59 1R

OEBPS/Images/image00828.jpeg
x X & TROCOT Gk MR Lo suneet.
[11 694368190348745

> outliers # Index of values to omit

11 4 7 91115

> Y [-outliers] # Omit the values specified in outliers
[1] 6 9 4 6 8 938 7 4

OEBPS/Images/image01070.jpeg
Aol T T AGe & DI

> substitute(x <- 1 + 2) # Capture the call

X <= 1+2

> deparse (substitute(x <- 1 + 2)) # Convert this to character
(1] "x <- 1 + 2"

OEBPS/Images/image01312.jpeg
% DEERIEVRR P OO Rl B Oue teDSngiTaERe
N nrow

VEEAEWS,,
0, title.position = "top"))

OEBPS/Images/image00829.jpeg
® & & OEIOANRL VRO O

1] 68317

> c(T, T, F, F, T) # Vector of logical values

[1] TRUE TRUE FALSE FALSE TRUE

> X [c(T, T, F, F, T) 1 # Return corresponding TRUE values only
1] 6 8 7

OEBPS/Images/image01071.jpeg
nicePlot <- function(X, Y) {
xLab <- deparse (substitute (X))
yLab <- deparse (substitute (¥))
plot (X, Y, type = "o", xlab =
}

nicePlot (Day, Sales)

Capture X input
Capture Y input
xLab, ylab = yLab)

OEBPS/Images/image01313.jpeg
1: > 4 Load the package
> require (ggvis)

4: > # Vary the colour by the factor variable: cyl

ggvis(mtcars, x = -wt, y = ~mpg, £ill = ~cyl) %>%
layer_points ()

i

OEBPS/Images/image00826.jpeg
T NN VECTOE Or YR ETER.

N =
1] 68317

> X [c(1:2, 4:5)] # Omit 3rd value using positive integers
1] 6817

>X [-3] # Omit 3rd value using negative integers

1] 6 817

OEBPS/Images/image01068.jpeg

OEBPS/Images/image01310.jpeg
.

&5 €= map oRLal nwl ¥ NELIACE WAR conTaiuaben. LOr Bew Eeataun
nzmap <- ggplot (nz, aes(x-long, y=lat, group-group)) +
geom_polygon(fill="white", colour="black"

Now let's add a projection
nzmap + coord map("cylindrical")

OEBPS/Images/image00827.jpeg
R R BSYtay RE 3 LRSS o8 Aln YRlues
1 637
> X [-c(2, 4)] # Omit 2nd and 4th values
1] 6 3 7

OEBPS/Images/image01069.jpeg
nicePlot <- function(X, Y) {
plot (X, Y, type = "o")

T T v

}

i BESEDIGE N, BELaE)

OEBPS/Images/image01311.jpeg
® RREvloR &
¢+ facet_grid(~ cyl) +

+ theme(

. strip.background = element_rect(colour = "grey50", £ill = NA),
. panel.grid.minor = element_blank(),

. panel.grid.major = element_blank ()

"

OEBPS/Images/image00832.jpeg
> X
a1 s
>X [
a1 s
>X [
nle
>X [
1] 6

317
<= 6]

6]

17

=3 &X<=7]
7

& SEOTORL NeCERE.

Values less than or equal to 6

Values that are not equal to 6

Values between 3 and 7

OEBPS/Images/image01074.jpeg
> addFun <- function(x, y) {

+ warning("This is a warning!")
+oxay

+}

> addFun(1, 2)

m 3

Warning message :

I addTaEll . A & THie i E eEraiog

OEBPS/Images/image00833.jpeg
o W NACEOE Ak S0 A
[1] 1001 1002 1003 1004 1005

> AGE # Vector of ages
[1] 18 35 26 42 22
> GENDER # Vector of genders

[1] "M" "EW M npw npw

> AGE [AGE > 25] # Vectors of AGE that are greater than 25
[1] 35 26 42
> ID [AGE > 25] # ID where AGE is greater than 25

[1] 1002 1003 1004
> ID [AGE > 25 & GENDER

"E"] 4 ID where AGE is greater than 25 and GENDER is

[1] 1002 1004

OEBPS/Images/image01075.jpeg
addFun <- function(x, y) {

+ warning("This is a warning!", immediate. = T
+oxay

+}

> addFun(1, 2)

Warning in addFun(1, 2) : This is a warning!

1] 3

OEBPS/Images/image00830.jpeg
® & T SEEInAl. VRS
11 68317

> X >5 # Logical statement
[1] TRUE TRUE FALSE FALSE TRUE

where is X > 52

> X [X >5] # Subset where values of X are greater than S
1] 6 8 7

OEBPS/Images/image01072.jpeg
* Jag¥an. oo FHECticnEl FLop)tTont: Frany Mannane Sacwlr)
> logFun(-2:2)
YR (O peo S I

e e B

OEBPS/Images/image01314.jpeg
» ¥ SaaN Lo SALLies ERcteom
> require (lattice)
il Peatsad. GRakEdE: TRt

OEBPS/Images/image00831.jpeg
BN A UESALAL ' Loan &
[1] FALSE TRUE FALSE FALSE TRUE

>X >= 6 # Greater than or equal to 6
[1] TRUE TRUE FALSE FALSE TRUE

>X <6 # Less than 6

[1] FALSE FALSE TRUE TRUE FALSE

>X <=6 # Less than or equal to 6
[1] TRUE FALSE TRUE TRUE FALSE

>X == 6 # X is equal to 6

[1] TRUE FALSE FALSE FALSE FALSE

>X 1= 6 # X is not equal to 6

[1] FALSE TRUE TRUE TRUE TRUE
>X >2&X<=6 #Between 2 (exclusive) and 6 (inclusive
[1] TRUE FALSE TRUE FALSE FALSE

>X <2 | X>6 #Less than 2 or greater than 6

[1] FALSE TRUE FALSE TRUE TRUE

OEBPS/Images/image01073.jpeg
® JOg¥an. ¢ AHACEAMINE] BLOp]UTonr BRIy Mannane DALRET. S
> logFun(-2:2)
R e e

OEBPS/Images/image01315.jpeg

OEBPS/Images/image00834.jpeg
b ok

o BV

bl Lol B Al A N e

¥
BCDE
8317

Xlc(man, nen, vEm)]
cE
9 7

"B",

e,

"D,

"E")

500 SR T

Original vector

Reference based on names

OEBPS/Images/image00835.jpeg
AF VO F YV OOV e FEV e RV
LK DB KR ONWAN® P N

X B

c(an,

e,

nEn)

]

all values returned

Positives: Positions to return

Negatives: Positions to omit

Logical: TRUE values returned

Character: Named elements returned

OEBPS/Images/image01316.jpeg

OEBPS/Images/image01077.jpeg
genRandoms <- function(N, dist = c("norm", "pois", "unif")

dist <- match.arg(dist)
dist

Check validity if "dist" input

wl 4

OEBPS/Images/image01319.jpeg

OEBPS/Images/image00836.jpeg
> letters
[1] "an "on
[14] "nn nom

> LETTERS
[1] "an "Bn
"

nen

pn

wen
-

nan
g

wpn
e

nen

npn

g
"

ngn

ngn

e
_—

ngn
wen

nan
"

e

wyn

win
-

nin

nyn

wgn
P

e

ngn
g

wen

nn

g
n

win
nyn

g
g

.

g

e
.

OEBPS/Images/image01078.jpeg
POTTOE R C AR 1T o L)
performaction (df[2,1)
performaction (df[3,1)
performaction (Af[4,1)

Perform
perform
perform

*owow

perform

action
action
action
action

on
on
on

on

first row
second row
third row

fourth row

OEBPS/Images/image01320.jpeg
> cloud(mpg ~ wt * hp, data

mtcars)

OEBPS/Images/image01317.jpeg

OEBPS/Images/image01076.jpeg
> getDots <- function(...

+ et Loy
+}

> getDots (1, 2)
{555}

[ESEES

(211
a] 2

> getDots(x = 1, y = 2)
$x
nl 1

24
1l &

OEBPS/Images/image01318.jpeg

OEBPS/Images/image00861.jpeg
SENAmRE AL = LAREL JORLOTELE: Al TEIIRRR[LE
x

ABCD

4754

656

G

OEBPS/Images/image01103.jpeg
> myArray
> myArray

i
[.1]
n, 2
2,1 a
3.1 a
D2
[.1]
n, o
2,1 a
3.1 5

BT arTayl TPOLEiLR, A). B

boLe 28

2] [,3]
2 4
31
11

2] [,3]
6 3
31
5 1

> dim(myArray)

1] 3 3 2

Ae ApF ® CINALS JETRY.

Print myArray

Dimensions of myArray

OEBPS/Images/image00862.jpeg
A LEyTAn, “eNl, & ¥ ESAttarR Sor TowE, LAk WY Coliamn
ABCD

ad4754

21009

OEBPS/Images/image01104.jpeg
* SppiY ImyArzay, Si1. %1, W)
(1] [2) [L3]

n, 2 6 4

2,1 4 5 9

3.1 4 B i

OEBPS/Images/image00859.jpeg
® B ¥ OERDIDAL, BREDLX
1) 2] [L3] (4]

1,1 4 7 5 a

2,1 5 6 5 6

3,1 2 1 0 9

>X [e(T, F,),] # Logical for rows, blank for columns
1) [2] [L3] [,4)

1,1 4 7 5 a

2.1 2 1 0 9

OEBPS/Images/image01101.jpeg
* SHEGY URVSRE., &, M @ EORCHine
1] 210 2

OEBPS/Images/image00860.jpeg
xRk e % # 1st column
1] 452

>X [, 1] 1=5 # Where is the 1st column not 5
[1] TRUE FALSE TRUE

>X [X [, 1] .1 # Use to subscript the data
1) 2] 3] [.4]

.l 4 7 5

2.1 2 1 0

OEBPS/Images/image01102.jpeg
7 DEna
L1

1,1
(2,1
(3,1
(4]

5

1
2
2

2]

6

2
3
2

> apply (myMat ,

[,
(2,1
[3,]
4.1

L1

5

1
2
2

[2]

6

=
3
2

L3

(4]

wow e

2), median)

(4]
2

1
3
3

aean 2

[,5]
2

3
4
a

Median by row AND column

OEBPS/Images/image00865.jpeg
R BURSERE S Hils Secds Ts Bk £ Redly 95 KnW, X SERNER 8 VRRREL
> X <- array(rep(aVector, 3), dim = c(3, 4, 3)) # Create a 3D array
> X # Print the array

VY

1) 2] 3] [.4]

1.1 4 % 5 4
(2,1 & 6 E 6
(3.1 2 x 0 9
]

1) 2] 3] [.4]

1.1 4 7 E 4
(2,1 & 6 E 6
(3.1 2 z 0 9
g3

1) 2] 3] [.4]
el 4 7 E 4
(2,1 L 6 5 6
3,1 2 X 0 9

OEBPS/Images/image00863.jpeg
n

L

T BT ROERTEm,

Characters ror columns

OEBPS/Images/image01105.jpeg
® EyMatid, €55 WA
> myMat

11 L2l (3]

g 5 6 4

1 om 3

0 2 3 o0

2 "

T ADL A SLERMR] TALDN I8 oML %,
4 Print the matrix

(.41 5]
2 2

16
3 a4
3 4

2

OEBPS/Images/image00864.jpeg
® BUREEOEEr BN, Beifs B Hu T, Wl 9, A0, M1 0% SEWAER & VEOROL
> X <- array(aVector, dim = c(3, 4)) # Create a 2D array (matrix)
> X # Print the matrix
11 L2] [L3] (4]
(e8] 4 7 = 4
2,1 5 6 5 6

3.1 2 1 0 9

OEBPS/Images/image01106.jpeg
B BERSY IRk B, NREL ¥ RENIOOL SSeRnaiae
1] 5NA 4 3 6

OEBPS/Images/image01107.jpeg
% e NyRAL ekl BRI 00, cosm
1] wA

OEBPS/Images/image00626.jpeg
N| o« 4|VWl
N| | ® Slml
| mlio 4.|VW.|V
6732|vm|v
5122|vm|v

ZE

=35

£3

no
NEEE
NEERD
<t|®w|o| =
of~]o|w
o -«

OEBPS/Images/image00868.jpeg
aoe v
[P

o
ow

v

x2

PN

c
5
5
o

:2

1

Blank / Blank / Positive

Negative / Positive / Positive

OEBPS/Images/image01110.jpeg
% DLOGRTNAL WS EALIixl: TPRARi00, 3. 060l e 3F @ CTERDR A& 100 % 3 warcly

> head (biggerMat) # First few rows
1] [L2] 3]

(e8] 4 2 3

2,1 5 ich 5

3,1 4 T 1

4,1 5 @ 3

5.1 3 ich 4

6,1 1 5 4

> apply (biggerMat, 2, quantile) # Column quantiles
1] [L2] 3]

0% o o o

25% 2 2 2

50% 3 3 3

75% 4 a4 4

1008 B8 8 8

OEBPS/Images/image00627.jpeg
vje |~ |

rlo|w |~

aa|o|n

_—
Split by
Row

—>min—>

—>min—>

—>min—>

—>min—>

OEBPS/Images/image00869.jpeg
PEEE B, By
> X

[1] 265128943194

> length (xX)
a1 12

> dim(x)
NULL

> dim(X) <- (3, 4)
> X
1) 2] 3] [.4]

m. 2 1 g -
2,1 6 2 4 9
3.1 L 8 3 4

> dim(X) <- (2, 3, 2)
> X

-
L1 2] 3]
(o] 5 2
(2,1 1 8
Pe2
L1 2] 3]
(e8] 3 9

*

Create a vector
Print the vector

Vector has 12 elements

Vectors have no "dimension”

Assign a dimension (3 x 4)
Print X - it is now a matrix

Assign a new dimension (2 x 3 x 2)
Print X - it is now a 3D array

OEBPS/Images/image01111.jpeg
% BEOORENAL LASIDIN LT 300, R0E | KR) e e M

> head (biggerMat) # First few rows
1] [L2] 3]

(e8] 4 2 NA

2,1 5 3 NA

3,1 4 T 1

4,1 5 3 3

[5,] NA ©NA a

6,1 1 NA a

> apply (biggerMat, 2, quantile, na.rm = TRUE) # Column quantiles
1] [L2] 3]

0% o o o

25% 2 2 1

50% 3 3 3

75% 4 a4 a

17008 8 8 8

OEBPS/Images/image00866.jpeg
% IioeAR; ¥ Ro0ecerL Saay
[1] "numeric"

> length (x) # Number of elements in array
(11 36
> dim(x) # Dimension of array

1] 3 4 3

OEBPS/Images/image01108.jpeg
% AN TNV Rk, SR-EN W TEMRD ¥ MEELIGL Of na Solumn
1] 6

OEBPS/Images/image00867.jpeg
SENnENeS AL - LARELIGLERIR (3200 DETIREN AL, (BETRED, Y, ARV
x

. X1
ABCD
4754
5656
21009
. X2

ABCD
4754
5656
21009
<}

o n e
0o o & O

OEBPS/Images/image01109.jpeg
* AIQRIApRLY) TR SRRLE N AT Arpaand.

function (X, MARGIN, FUN, ...)

NULL
> apply (myMat, 2, max, na.rm = TRUE) # Maximum of each column

1] B 6 436

OEBPS/Images/image00850.jpeg
* ETROPSETLE ‘% Yredisncy @y A0 DIOup S0 eOCsT

1 2]
m. 75 68
2,1 52 49

3,1 38 30

OEBPS/Images/image01092.jpeg
290.44

Average Ozone
Average Wind = 10.27
Average Solar.R = 190.17

Month = 7

Average Ozone = 59.12
Average Wind = 8.94
Average Solar.R = 216.48
Month = 8
Average Ozone 59.96
Average Wind = 8.79
Average Solar.R = 171.86
Month = 9
Average Ozone = 31.45
Average Wind = 10.18

Stk B 167.43

OEBPS/Images/image00851.jpeg
> freqMatrix # Original matrix - no row/column names
11 2]

1.1 75 68

2,1 52 49

3.1 38 30

> dimnames (fregMatrix) <- list(c("18-35", "26-35", "36+"),

+ c("Female", "Male")) # Assign dimension names

> freqMatrix # Resulting matrix
Female Male

18-35 75 68

26-35 52 49

— 28 10

OEBPS/Images/image01093.jpeg
* AlTHUALLbyRNADRIL-Nl, woThE NRagooolran
[1] 7.4 8.0 12.6 11.5 14.3

> airquality$"Wwind"[1:5] # Also works

[1] 7.4 8.0 12.6 11.5 14.3

> whichColumn <- "Wind" # set value of whichColumn

> airquality$whichColumn # Reference using whichColumn
NULL

OEBPS/Images/image00848.jpeg
® SRS w ATENIEAYE. QL AR WALLhS
] 34

> dim(X) [1] # Number of rows

a1 3

> dim(X) [2] # Number of columns

1] 4

OEBPS/Images/image01090.jpeg
Month = 6

Average Ozone
Average Wind =
Average Solar.R

Month = 7

Average Ozone
Average Wind =
Average Solar.R

Month = 8

Average Ozone
Average Wind =
Average Solar.R

Month = 9

Average Ozone
Average Wind =
adrar e e

29.44
10.27
190.17

59.12
8.94
216.48

59.96
8.79
171.86

31.45
10.18
167.43

OEBPS/Images/image00849.jpeg
* BEomiR; & NORRErioL Lowe
n1 s
> ncol (X) # Number of columns
1] 4

OEBPS/Images/image01091.jpeg
.
.
.
.
.
.

T T

for (M in unique(airqualitygMonth))
cat ("\n\n Month =", M, "\n =) # Write Month Number
subData <- airquality [airquality§Month == M,] # Subset the data
for (column in c("Ozonme", "Wind", "Solar.R")) { # Iterate over columns
theMean <- round(mean(subData[[column]], na.rm = TRUE), 2) # Calculate the
mean
cat("\n Average", column, "=\t", theMean # Print the message
}
}
Month = 5
Average Ozone = 23.62
Average Wind = 11.62
Average Solar.R = 181.3

Month = 6

OEBPS/Images/image00854.jpeg
® 2k » 3 RLEDK TOE TOWS,
1) 2] 3] [,4]
n, 4 7 5 4
2,1 5 6 E 6
3.1 2 T 0 9

blank ror columns

OEBPS/Images/image00855.jpeg
® % L3R , BiL, 3, & § ¥ TOOREIRE TDWE, VRS TR SOLnEnN
1) 2] 3]

m. 4 5 4

2.1 5 B i

OEBPS/Images/image00852.jpeg
% DO CEROIRL L)
[n
[1] "18-35" "26-35" "3+

T BLASONLOR DANEE O SESONALTAN
(1211

[1] "Female" "Male"

OEBPS/Images/image01094.jpeg
ST &= £ N8t Mot dhoex toot
while (index < 6) {

cat ("\n Hello") # Write a message

index <- index + 1 # Update the value of index

R

Hello
Hello
Hello
Hello
Hello

OEBPS/Images/image00853.jpeg

OEBPS/Images/image01095.jpeg
® JOoex = & ARG YaIOe Ot Jocew B0 4
> while(index < 6) {

+ cat("\n Setting the value of index from", index) # Write a message

+ index <- index + 1 # Update the value of index
+ cat(" to", index) # Write a message

.

Setting the value of index from 1 to 2
Setting the value of index from 2 to 3
Setting the value of index from 3 to 4
Setting the value of index from 4 to §
BeEbing Vi valte o8 Shitee Bra Kt &

OEBPS/Images/image01096.jpeg
bt bl Yo £
function (x, na.rm = FALSE)
NULL

> median(airquality$Wind)
1] 9.7

Median of Wind column

OEBPS/Images/image00857.jpeg
¥ FEAL 4 COLMmE = TNEUIaE A WAL

First column - returns a vector

OEBPS/Images/image01099.jpeg
® EyMab &° FALLIEIZPOIALAN, A, DIow E & x CreAlbE A Nifpe: maioie

> mymat # Print myMat
[1] 2] [,3] [.4] [,5]
(e8] 5 6 4 2 o
2,1 1 7 3 1 6
3,1 2 ich 0 3 4
4,1 2 2 4 3 4
> dim (myMat) # Dimensions of myMat

[1] 4 B

OEBPS/Images/image00858.jpeg
r B by 23 # Returns a vector

1] 452

> X [, 1, drop = FALSE] # Use drop to maintain dimensions
L1

OEBPS/Images/image01100.jpeg
* EpplyOaL,..%, BARE » CRER MO
[1] 5 743 6

OEBPS/Images/image01097.jpeg
> apropos (" [a-z]?apply$") # Find all objects ending in "apply"
(1] "apply" "eapply" "lapply" "mapply" "rapply"
e e Ry S

OEBPS/Images/image00856.jpeg
® 20k 5“1 Y AU ROFFIONE, “EVER COC-cosumae
(1] [.2] [,3]

n, 4 5 4

2,1 5 5 6

3.1 2 0 9

OEBPS/Images/image01098.jpeg
P ALIRLSEPLY)
function (X, MARGIN, FUN,
NULL

OEBPS/Images/image00762.jpeg
Tag

Purpose

eparam

ereturn
@author

@seealso

@examples
@import/@importFrom

@export

Identifies each of the function arguments and the corresponding
help text

Details the output of the function
Indicates who wrote the function

Other functions for which the user should look at the help
documentation

Code examples of running the function
Indicate a package or function within a package to be imported

Indicates that this function should be exported (that is, made
isible to the end user)

OEBPS/Images/image01004.jpeg
> plusAndMinus <- function(x, y) {
¢ PLUS <- x +y # Define "PLUS"
¢+ MINUS <- x - y # Define "MINUS"
+ list (PLUS, MINUS) # Return "PLUS" and "MINUS" in a list
.
}

> plusAndMinus (x = 1:5, y = 1:5) # Call function
[
1] 2 4 6 810

(211
11 000O0O0

OEBPS/Images/image00763.jpeg
‘sampleFromData {simTools) R Documentation

Sample from a dataset

Description

This function has been designed to sample from the rows of a two dimensional data set returning all columns of the
sampled rows

Usage

sanpleFronData (data, size, replace

Arguments

data The matix or data frame fiom which rows are to be sampled.

size The number of samples to take.

zeplace Should values be replaced? By default takes the value TRUE.
Any other parameters to be passed to the sample function

Value

Retums a dataset of the same type as the input data vith s1ze rows

Author(s)

Aimee Gott <agott@mango-solutions.com>

Examples

sampleFrombata (airquality, 100)

[Package simTools version 1.00]

OEBPS/Images/image01005.jpeg
> plusAndMinus <- function(x, y) {

¢ PLUS <- x +y # Define "PLUS"

¢+ MINUS <- x - y # Define "MINUS"

+ list (plus = PLUS, minus = MINUS) # Return "PLUS" and "MINUS" in a list

¢}

> output <- plusAndMinus(x = 1:5, y = 1:5) # Call function, saving the output
> output # Print the output

splus

1] 2 4 6 810

$minus
aj]ooooo

> output$plus # Print the "plus" element
1] 2 4 6 8 10

OEBPS/Images/image00760.jpeg
Logged Daily Box Office Takings

El

Predictions from ARIMA(1,0,1) Model

= Original Data
B ARINA Predictions
O Actual Data

T T
1 2

Day

OEBPS/Images/image01002.jpeg
plusAndMinus <- function(x, y) {
PLUS < x +y

. Define "PLUS"
+ MINUS <- x -y

.

.

Define "MINUS"
Return "PLUS"
Return "MINUS"

PLUS
MINUS

v}

> plusAndMinus(x = 1:5, y = 1:5) # Call function

1] 0000 O

o ow ow

OEBPS/Images/image00761.jpeg
Data Type Scalar Vector Matric
Integer Int Integervector IntegerMatrix
Numeric double Numericvector NumericMatrix
Character string CharactervVector CharacterMatrix
Logical Bool LogicalVector LogicalMatrix

OEBPS/Images/image01003.jpeg
plusAndMinus <- function(x, y) {
PLUS < x +y

. Define "PLUS"
+ MINUS <- x -y

.

.

Define "MINUS"
Return "MINUS"
Return "PLUS"

MINUS
PLUS

o ow %

v}
> plusAndMinus (x = 1:5, y = 1:5) # Call function
1] 2 4 6 8 10

OEBPS/Images/image00764.jpeg
Format

Code

Example

Level 1 Heading
Level 2 Heading
Level 3 Heading
italic

Bold
Superscript

Strikethrough

Bulleted List

Numbered List

Hyperlink

Quote

heading text

heading text
heading text
italic, _italic_
pold, _bold _
text*superscript®

~~strikethrough~~

* Item 1
* Item 2

1. Item 1
2. Item 2

[Text as link]
(http://www.example .com

> This is a block quote

> That can span multiple lines

Introduction
Loading the Package

Main Functions

The **devtools** package
Multiply by 4*2

This ~~large-~ small
document

* Load package
* Run sampleFromData

1. Load package
2. Run sampleFromData

[R] (www.r-project.org

> All R Markdown documents
> use a header.

OEBPS/Images/image00765.jpeg
Running the main function

Once the package is loaded we can run the function as follows:

Library (mangoTraining)

examplel <- sampleFromData(demoData, size = 5)

examplel

#% Subject Sex Age Weight Height

#4 15 15 F 22 73
25 25 m o3 ss
w4 4 Mo 76
21 2 mo26 sa
20 2 mo2a se

172
175
188
183
180

BMI Smokes
2.8 Mo
2.7 Mo
2.4 Mo
5.6 Mo
2.8 Yes

OEBPS/Images/image01007.jpeg
LF-L Ae Ruohan WOdey. L8Leh VoY R G Tl SO S 8o fancy JAr
BEoe f willolunt boy-the exa:of sods

OEBPS/Images/image00766.jpeg
Function

Description

Usage

getClass

getSlots

findClass

Returns an object containing the definition of a
specified class.

Returns a named character vector, where the
names represent the class slots and the values
represent the required object type for the slot.

Useful when working with class extensions. The
function returns the package name and physical
location on disk for which the class is defined.

getClass ("merMod")

getslots ("merMod")

findClass ("merMod")

OEBPS/Images/image01008.jpeg
WKy BN CSD AL RO
IF I have enough money, I will also buy a candy bar

OEBPS/Images/image01006.jpeg
summaryFun <- function(vec, digits = 3) {

Create some summary statistics
theMean <- mean (vec)

theMedian <- median(vec

theMin <- min(vec)

theMax <- max(vec)

Combine them into a single vector and round the values
output <- c(Mean = theMean, Median = theMedian, Min = theMin, Max = theMax)
round (output, digits = digits)

vy r ¥+ ¥y v

> X <- rnorm(50) ¥ Generate 50 samples from a normal distribution
> summaryFun(X¥) # Produce summaries of the vector

Mean Median Min Max
-0.214 -0 051 -2 €33 1. 764

OEBPS/Images/image00769.jpeg
Recommended format for authoring (you can switch to PDF
or Word output anytime).

PDF output requires TeX (MiKTeX on Windows, MacTeX
2013+ on 05X, TeX Live 2013+ on Linu).

word

Previewing Word documents requires an installation of MS
Word (or Libre/Open Office on Linwd).

(o) (A==

OEBPS/Images/image01011.jpeg
MY NV +& &ty

posOrNeg <- function(X) {
if (x > 0) {
cat ("X is Positive")
}
else {
cat ("X is Negative")

}

posOrNeg(1) # is 1 positive or negative?
is Positive
posOrNeg(-1) 4 is -1 positive or negative?
is Negative
posOrNeg(0) # is 0 positive or negative?

T TR

OEBPS/Images/image00770.jpeg
Option

Arguments

Practical Use

echo

eval

include

comment

out.width

out .height

TRUE/FALSE

TRUE/FALSE

TRUE/FALSE

" /NA

character string
e.g. "locm"

character string
e.g. "ecm"

Controls whether the R code appears in the output.
Generally used to generate the report content without
including code that is not required.

Controls whether or not a code chunk is evaluated.
Useful for displaying code that you don't actually want
to run.

Determines whether a chunk is included in the final
report. When this is set to FALSE, the code chunk

is run but no output is included in the report. This is
useful for chunks that perform setup operations, such
as loading packages.

The characters in front of each line of code output.
Setting this to NA will prevent any characters from
being printed before code output.

The width of output graphics in the final document.
Note that the argument must include the units as

well as the value.

The height of output graphics in the final document.
Note that the argument must include the units as

well as the value.

OEBPS/Images/image01012.jpeg
ERT &
> if (X > 0) {

+ cat("X is Positive")

+)

X is Positive

> else {

Error: unexpected 'else’ in "else’
> cat("X is Negative")

X is Negative

>}

Error: unexpected '

OEBPS/Images/image00767.jpeg
Argument

Description

£

signature

definition

The name of the generic function for which we are setting the method.

Typically a named vector or list of classes that are to be passed to the
method. For simpler methods it can just be the name of the class to which the
method applies.

A function definition that describes what happens when the generic function is
called with the objects specified in the signature.

OEBPS/Images/image01009.jpeg
SF-L AAYE Roohan TOaeY. RS VO GRR TE NOUE ST 8oPaooy PaL
BLSE {
IF they have my favorite type of candy bar I will just buy that
ELSE I will just buy the can of soda

OEBPS/Images/image00768.jpeg
Function Description

name A character string representing the name of the generic function.

def Leave blank if the function has already been defined. Alternatively, define the
generic function with this argument.

OEBPS/Images/image01010.jpeg
if (something 1is TRUE) do this
else do this instead

OEBPS/Images/image00751.jpeg
Daily Box Office Daily for Avengers: Age of Ultron

Log Daily Gross ($m)

Week during May 2015

OEBPS/Images/image00993.jpeg
* B Ere + BEiab LOM Uppes. B0k Maorion
function (x, diag = FALSE)
{

X <- as.matrix(x)

if (diag) row(x) <= col(x)

else row(x) < col(x)

OEBPS/Images/image00752.jpeg
Decomposition of the Ultron Time Series.

|euoseas

pusy

Japulewal

time

OEBPS/Images/image00994.jpeg
kR SRRV s 2R R T84, FEN SGUON SURELAOn
1] 23456

OEBPS/Images/image00749.jpeg
Survival Function S(t)

02

00

Proportional Hazards Model

40 600 800 1000

Time ()

OEBPS/Images/image00991.jpeg
* QEUDYCEMGE,, TOEWNE, COLENETBtEione]
[1] "green" "blue” "orange" "brown" "yellow'
(€] MISGhEblieY SravwbiteY Viadiasnbiows

OEBPS/Images/image00750.jpeg
Daily Box Office Daily for Avengers: Age of Ultron

80
L

60
L

40
L

Daily Gross ($m)

2
L

Week during May 2015

OEBPS/Images/image00992.jpeg
® MYMAaL T N ERES EEELY,

1] [L2] 3]

1,1 1 6 3

2,1 1 : 8

3,1 5 4 &

> upper . tri (myMat) # Upper triangle
L1 L2 3]

[1,] FALSE TRUE TRUE
[2,] FALSE FALSE TRUE
[3,] FALSE FALSE FALSE

> myMat [upper.tri(myMat)] # Values from upper triangle
[1] 6 3 8

OEBPS/Images/image00755.jpeg
Observed /Fitted

Holt-Winters filtering

20

25

30 35 40

T

45

50

OEBPS/Images/image00753.jpeg
Logged Daily Box Office Gross ($m)

40

s

30

25

20

15

10

05

Logged Daily Box Office Gross
(WeeKly seasonality removed)

Weeks in May 2015

OEBPS/Images/image00995.jpeg
> addOne <- function(x) x + 1
> addone (x = 1:5) # Call the addOne function
[1] 23 45 6

OEBPS/Images/image00754.jpeg
Input Description

x The time series object (of class ts).

alpha The alpha parameter of the HoltWinters filter.

beta The beta parameter of the HoltWinters filter. If it's set to FALSE, the
function will perform exponential smoothing.

gamma The gamma parameter of the HoltWinters filter. If it's set to FALSE, a non-
seasonal model is fitted.

seasonal Version of the method to apply: “additive” (default) or “multiplicative.”

OEBPS/Images/image00996.jpeg
R R T TESALR A vmEtoe

> median (X) # The median of the vector is 3
m 3
> £ind ("median") # Where is the "median" function?

[1] "package:stats"

> median <- function(input) "Hello" # Create a new "median" function

> median (X) # The median of the vector is "Hello"

[1] "Hello"

> find ("median") # Where is the "median" function?

[1] ".GlobalEnv" "package:stats"

> rm(median) # Remove the new "median" function from the
workspace

> median (X) # The median of the vector is 3

1] 3

OEBPS/Images/image00997.jpeg
addNumber <- function(x, number) {
X + number

}

addNumber (x = 1:5, number = 2)
1] 3456 7

.
.

OEBPS/Images/image00758.jpeg
z P N | 1
‘ T T ‘ T T ‘ T T ‘ T
«
ACF of Residusls

S

3

=
P values for Ljung Box statistic

OEBPS/Images/image01000.jpeg
T v v

addNumber <- function(x, number = 0) {
theAnswer <- x + number # Create "theAnswer" by adding "x" and "number
theAnsver # Return the value

OEBPS/Images/image00759.jpeg
S —

- \ i il
IALEEE r
:
I
QS
3
g

OEBPS/Images/image01001.jpeg
* ODEERE £ ACONOIOATL X =018, Mmbm = # SALL TOR SUNELAON “Cramn g
"output" object

> output # Look at value of "output"

11 23456

> theAnswer # "theAnswer" object does not exist
Brror: object 'theAnswer' not found

OEBPS/Images/image00756.jpeg
Observed /Fitted

Holt-Winters filtering

Original Data
Holt-Winters Fiter
Actual Data

T T T
3 4 5

OEBPS/Images/image00998.jpeg
* MOCHRTMONCE L o CALALIG WALR DD ST OUENIER

Error in addNumber() : argument "x" is missing, with no default

> addNumber (x = 1:5) # Calling with only the "x" argument
Error in addNumber(x = 1:5) : argument "number" is missing, with no default
> addNumber (number = 2) # Calling with only the "number" argument
Error in addNumber (number = 2) : argument "x" is missing, with no default

> addNumber (x = 1:5, number = 2) # Calling with both arguments
1] 34 B:6 7

OEBPS/Images/image00757.jpeg
ACF

02 00 02 04 06 08 10

04

Autocorrelation

Partial Autocorrelation

Partial ACF

00 02 04 08

02

04

Lag

OEBPS/Images/image00999.jpeg
> addNumber <- function(x, number = 0) {
¢ x + number

¢}

> addNumber (x
112345
> addNumber (x = 1:5, number = 1) # Call function with number = 1

[1] 23 456 6

1:5) # call function with default (number = 0)

OEBPS/Images/image00784.jpeg
® Learning Labs!
Learn online with videos,
live code editing, and quizzes

Learning Labs are interactive, self-paced courses
designed to teach learners of all types.

Visit informit.com/learninglabs to see available labs,
tryout full samples, and order today.

e Yty s s wa

Try It Vurself
Adding Forms to Web Pages

® Read the complete text of the book = Watch an expert instructor show you how
online in your web browser to perform tasks in easy-to-follow videos

PEARSON =
o Sams o Yaursa Qs a0 it 24 s A Q

Given the HTHIL markup <p allgn="center™>,
what s the component that s represented
by alior’?

= Try your hand at coding in an interactive ~ ® Test yourself with interactive quizzes
code-editing sandbox in select products

ALWAYS LEARNING PEARSON

OEBPS/Images/image00785.jpeg
o
w

REGISTER YOUR PRODUCT at informit.com/register
Access Additional Benefits and SAVE 35% on Your Next Purchase

* Download available product updates.

* Access bonus material when applicable.

* Receive exclusive offers on new editions and related products.

(Just check the box to hear from us when setting up your account.)

* Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world's foremost
education company. At InformiT.com you can

+ Shop our books, eBooks, software, and video training.

+ Take advantage of our special offers and promotions (informit.com/promotions).

* Sign up for special offers and content newsletters (informit.com/newsletters).

+ Read free articles and blogs by information technology experts.

* Access thousands of free chapters and video lessons.

Connect with InformIT-Visit informit.com/community
Learn about InformIT community events and programs.

noBen
informit.com

the trusted technology learning source

Addison-Wesley - Cisco Press + IBM Press « Microsoft Press « Pearson IT Certification « Prentice Hall Que « Sams - VMware Press

ALWAYS LEARNING PEARSON

OEBPS/Images/image00782.jpeg
Setup - Rtools < (=]

‘Select Additional Tasks.
‘Which addtionel tasks should be performed?

Select the addiional tasks you would ke Setup to perform whie insaling Riools,
then dick Next.

Edit the system PATH.

C:\Progrom Fies\inteluntekR) Management Engine CompeanertsiDAL;

[runcated]
] Save version nformation to registry

<Bck || nea> cancel

OEBPS/Images/image01024.jpeg
> logVector <- function(vec, logIt = FALSE) {
¢+ if (logIt) vec <- log(vec)

+ vec

v}

> logVector (1:5)

11 12345

> logVector(1:5, logIt = TRUE
[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379

call the function with loglt = TRUE

OEBPS/Images/image00783.jpeg
(a)

Desktop

Run RStu

OEBPS/Images/image01025.jpeg
R RN SN & AR &0 S22
> X >0 # Is X greater than 0?

[1] FALSE FALSE FALSE TRUE TRUE

> all(X > 0) # Are all values of X greater than 0?
[1] FALSE

> any(X > 0) # Are any values of X greater than 0?
[1] TRUE

OEBPS/Images/image00787.jpeg
ERIRELR S T AnRumae At QEEQLACE I8 40D S0 THR BEel Rehhn
objects ("package:graphics”) # Assumes nothing about the search path

OEBPS/Images/image00788.jpeg
> # Print the current working directory

N e

> getwd()
{1] "C:/Users/username/Desktop/STY"
4: > # Change the current working directory using an absolute path

> setwd ("C: /Users/username/Desktop")
> getwd ()
[1] "C:/Users/username/Desktop"

> # Change the current working directory using a relative path
9: > setwd ("STY")

> getwd ()
[1] "C:/Users/username/Desktop/STY"

OEBPS/Images/image00786.jpeg
16:

> search()

1]
(4]
171
(o]

".GlobalEnv"

"tools:rstudio” "package:stats"

"package:graphics" "package:grDevices" "package:utils"
"package:datasets" "package:methods" "Autoloads"

"package:base"

> searchpaths ()

1]
(2]
(3]
(4]
(5]
161
7
(8]
[9]
[10]

".GlobalEnv"
"tools: rstudio”

"C:/Program Files/R/R-3.
"C:/Program Files/R/R-3.
"C:/Program Files/R/R-3.
Program Files/R/R-3.
Program Files/R/R-3.
:/Program Files/R/R-3.

"Autoloads"

[T

.2/library/stats"
.2/library/graphics"
.2/library/grbevices"
.2/library/utils"
.2/1ibrary/datasets"
.2/1ibrary/methods"

"C:/PROGRA~1/R/R-31~1.2/library/base"

OEBPS/Images/image00791.jpeg
* BumericYmctor = Bli, 8, A%, A B & B % VEOROE OF SOEMLACN

> numericVector # Print the numeric vector
1] 26842940
> mode (numericVector) # What is the mode of "numericVector"?

[1] "numeric"

> c("Hello", "There") # Vector of characters
[1] "Hello" "There"

> c(F, T, T, F, F, T, F, F) # Vector of logicals

[1] FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
> c(3+41, 5491, 3+71) # Vector complex numbers
[1] 3+4i 5+9i 3+7i

OEBPS/Images/image00792.jpeg
R RO A By
> X

1] 1.2 3 4 5 6 7 8 910
> clX, X, X, X, ¥)

1] T 23 4 54 7 & 510
[25] 5 6 7 8 910 1 2 3 4
149] 9 10

10)

. CLERLE. & RIEpLS VSOLOT 4 DURREACH
4 Print the vector

Combine vectors
345 6 7 8 910 1 2
7 8 910 1 2 3 4 5 6

OEBPS/Images/image00789.jpeg
xR S AN T

a1 e

> "Hello" # character

[1] "Hello"

>4>5 # logical (is 4 greater than 5)
[1] FALSE

>3 +4i # complex

1] 3+4i

OEBPS/Images/image00790.jpeg
R RNE ER ¥ RERION. % JNUNREACE YaLUSTH %
> X # Print the value of X

e

> mode (X) # The mode of X

[1] "numeric"

> X < 10 # Logical statement: is X less than 107
[1] TRUE
> mode(X < 10) # The mode of this data

[1] "*logicil™

OEBPS/Images/image00773.jpeg
Automated Reporting with LaTeX

Aimee Gott

The following report contains an analysis of the data from 2015.

1 Analysis

A simple linear model was fitted to the data to determine the main factors that
contribute to a change in the dependent variable. We can sce below some simple
summaries of the data.

1ibrary (mangoTraining)
sumnary (pkData$Conc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 47.45 194.30 355.70 506.00 2240.00

u

OEBPS/Images/image01015.jpeg
il T e e e

- function(X) {

cat("X is Positive")

}
else {
cat(nm)

posorNeg (1)
is Positive
SOROLNLLDY

is 1 positive or negative?

BN § LN S ARSIV

OEBPS/Images/image00774.jpeg
@oppR =0
Q Z-| 8 P RunApp - % - | =

library(shiny) Run in Window

¥ Runin Viewer Pane

ui <- fluidrage() Run Extemal

server <- function(input, output){}

al
2
3
4
5
6
7 shinyApp(ui = ui, server = server)
8

OEBPS/Images/image00771.jpeg
Automated Reporting

Aimee Gott

The following report contains an analysis of the data from 2015

Analysis

Asimple linear model was fitted to the data to determine the main factors that contribute to a change in the.
dependent variable. We can see below some simple summaries of the data.

library (mangoTraining)
summary (pkDatasConc)

2000-
B0
B H
8 i
1000 o
H 5
. % O
so- 4]
! .
l 1
0- .]

0 5 10 15 20 25
Time

OEBPS/Images/image01013.jpeg
oI S

W .
if (X > 0) {
cat ("X is Positive")
} else { # Nom
cat ("X is Negative")

}

T DEECEENE

"else" on same line as closing } of "if"

OEBPS/Images/image00772.jpeg
Format

Code

Example

Level 1 heading
Level 2 heading
Level 3 heading
Italic

Bold
Superscript
Bulleted list

Numbered list

\section{}
\subsection{}
\subsubsection{}
\emph{ }

\textbf{}
$text*superscript$

\begin{itemize}
\item \end{itemize}

\begin{enumerate}
\item \end{enumerate}

\section{Introduction}
\subsection{Loading the Package}
\subsubsection{Main Functions}
This is \emph{really} important
The \textbf{devtools} package
Multiply by $4%2%

\begin{itemize}

\item Load package
\item Run sampleFromData
\end{itemize}

\begin{enumerate}

\item Load package
\item Run sampleFromData
\end{enumerate}

OEBPS/Images/image01014.jpeg
posOrNeg <-
if (X > 0
cat ("X

else {
if (x
else caf

posOrNeg (1)
is Positive
posOrNeg (0)
is Zero

function(X) {

) {

is Positive")

- 0) cat("X is Zero"
t("X is Negative")

is 1 positive or negative?

is 0 positive or negative?

OEBPS/Images/image00775.jpeg
Enter title text:

Histogram of Simulated Data|

Histogram of Simulated Data

20

15

10

Frequency

Simulated Data

OEBPS/Images/image00776.jpeg
Testing a Hypothesis

Inputs

Data can fit many distributions. Using
datasets from the last exercise lets
investigate what the distribution looks
like.

Choose a dataset:

Mr Claus

Select Column:

PresentValue

Select Plot Type:

Histogram

[Add median line

@ Add density curve

Histogram of PresentValue

O

PresentValue

OEBPS/Images/image01018.jpeg
posOrNeg <- function(X) {
if (X > 0) cat("X is Positive"
else cat ("X is Negative")

posOrNeg(-2:2) # is 1 positive or negative?
is Negative
Warning message:
In if (X > 0) cat("X is Positive") else cat("X is Negative"
the condition has length > 1 and only the first element will be used

.
.
)
x

OEBPS/Images/image00777.jpeg
Including a Shiny Component

The following is an example of how we can include a shiny component inside a markdown document

Number of Simulations: Enter title text:

100 =

15

Frequency
0

Simulated Data

OEBPS/Images/image01019.jpeg
R RN SN N PRk R 00 228
> X >0 # Is X greater than 07
[1] FALSE FALSE FALSE TRUE TRUE

OEBPS/Images/image01016.jpeg
Lol A S

0s0rNeg <- function(X) {
cat ("X is Positive")
posOrNeg(1) # is 1 positive or negative?

is Positive
SONOTERGIDY | Bdu 0 PoRltive s SeGative’

OEBPS/Images/image01017.jpeg
> X
> X
1]

> X
> X
11

>0
TRUE

>0
FALSE

»or LERE
Is X greater than 03

Set X to 0
Is X greater than 07

OEBPS/Images/image00780.jpeg
[R compatibaliry’ [Frozen>
R3 23t mnd bt o
[R31xt032x [Yes.
S0xwilx Yes
R-21510R30x e
Ro21410R2151 ¥es
R213xorR2.14x ‘s
[R213x [Yes
R [Yes
[R210xorR211x [Yes.
R29xor210x ¥es
[R28xorR29x
R27xorR28x

26xorR27x
[R 2.6 x R 2.5.x or (untested) earlier

OEBPS/Images/image01022.jpeg
> logVector <- function(vec, logIt = FALSE) {
+ if (logIt == TRUE) vec <- log(vec)
+ else vec <- vec

+ vec
¢}

> logVector (1:5)

1112345

> logVector (1:5, logTt = TRUE) # Call the function with logIt = TRUE
[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379

OEBPS/Images/image00781.jpeg
el Setup - Rtools

‘Select Destination Location
‘Where shouid Riools be nstalled?

B o et s e kg

o continue, click Next. I you would ike o selecta diferent foder, clck Browse.

tools33

Atleast 1.2 M8 o free disk space s requred.

e s e

OEBPS/Images/image01023.jpeg
> logVector <- function(vec, logIt = FALSE) {
¢+ if (logIt
+ vec

TRUE) vec <- log(vec)

+)

> logVector (1:5)

112345

> logVector (1:5, logTt = TRUE) # Call the function with logIt = TRUE
[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379

OEBPS/Images/image00778.jpeg
el Setup - R for Windows 3.2.2 < (=]

‘Startup options
D0 you want to ustomize the startup options?
Please specy yes or 1o, then cck Next.

s (customized sartup)
® o (eccept defouts)

ez s e

OEBPS/Images/image01020.jpeg
R RN SN & BAE. &8 S22
> X >0 # Is X greater than 0?

[1] FALSE FALSE FALSE TRUE TRUE

> all(X > 0) # Are all values of X greater than 0?
[1] FALSE

> any(X > 0) # Are any values of X greater than 0?
[1] TRUE

OEBPS/Images/image00779.jpeg
Installation

To obtain the latest R packages, add an entry ke

deb hetps:/ /<oy favorite.cran.mirror /bin/ inux/ubunty vivid/
or

deb hetpz:/ /<y favorite. cran.mirrors bin/Linux/ubuntu trusty/
or

deb hecps:// <y favorite.cran.mirror> /bin/ Linux/ubunty precise/

or

in your fetc/apsources lst fle, replacing by the actual URL of your favorite CRAN miffor. See htips /cran r-project org/mirors him for the fistof
|CRAN mirrors. To instal the complete R system, use:

sudo apt-get update
sudo apt-get install r-base

Users who need to compil R packages from source [e g package maintainers, or anyone instaling packages with nstall packages(] should
also nstal the r-base-dev package:

Zudo apt-get install r-baze-dev

The R packages for Ubuntu othenwise behave like the Debian ones. One may find addiional information n the Debian README fl located at
hitps /icran R-project org/bintinudebian

OEBPS/Images/image01021.jpeg
> posOrNeg <- function(X) {
+ if (all(X > 0)) cat("All values of X are > 0")
+ else {
. if (any(X > 0)) cat("At least 1 value of X is > 0)
. else cat("No values are > 07)
N
}

+)

> posorNeg(-2:2)

At least 1 value of X is > 0
> posorNeg(1:5)

All values of X are > 0

> posOrNeg(-(1:5))
Sl G & g

OEBPS/Images/image00804.jpeg
E ROES SRR
> rep(X, 5) # Repeat the X vector 5 times

1] 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2
[25] 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6
149] 9 10

OEBPS/Images/image00805.jpeg
* TEpil:1n; &) E oy o W L M
[11] 1 2 32 4 5 6 7 @8 510 1 2 3 4 5 6 7 8 510 1 2
[25] 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6

[49] 9 10

OEBPS/Images/image00806.jpeg
R EBRS Lo B T Us T, By S
it Tan sk ViR SAiNEs THe dde B

OEBPS/Images/image00809.jpeg
R EERE O, Y, RN, BACH =)
Eis San whi Vis ey Sis Tn edn AR

OEBPS/Images/image00810.jpeg
RIS TNy, B TR i B 3 Bapeatb Comvsctor .3 tiwes
[1] "A" "B ngn AW wRw wgn waw wpw new

> rep(c("A", "B", "C"), c(4, 1, 3)) # Repeat each value a specific number of
tines
[1] "A" AW AW wAW npw ngw ngw wgn

> rep(c("A", "B", "C"), each = 3) # Repeat each value 3 times
i R Bk Axe WisEe ine e paTEG

OEBPS/Images/image00807.jpeg
B EBS Gl N T8 e s Ty A1
i RS S e W ke W R e ve

OEBPS/Images/image00808.jpeg
® EERS Gl Ny, TBs TS s EERIT. SL)
Eis San wki Vis Sevi Sy Thawce BeHE

OEBPS/Images/image00813.jpeg
R 25" 910 Fe'Re S GE X STOEEE RORUNIEE NERLDE
> X 4 Print the vector

1] 68317

> mode (X) # The mode of the vector
[1] "numeric"

OEBPS/Images/image00814.jpeg
% sEngthity & MR Ob e Leneot
1] 5

OEBPS/Images/image00811.jpeg
® TARL SATR.. TR, TR e TADLE, 33
AT USRSk A SR hne e BavRey

OEBPS/Images/image00812.jpeg
* FORUBEERLCRS AL Y, BT # NSEtOPED Spear

> repTimes <- rep(3, 3) # Number of times to repeat the vector
> rep(theVector, repTimes) # Repeat the vector

[1] "A" WAW ®WAW wBm wgm mgw mow wom mow

OEBPS/Images/image00795.jpeg
1]
[e]
37]
[55]
(731
1911

1
19
37
55
73
91

w SNELeN

2
20
38
56
74
92

3
21
39
57
75
93

of values from

1
22
40
58
76
94

5
23
a1
59
77
95

6
24
42
60
78
96

7
25
43
61
79
97

o BRG

8 o
26 27
a1 a5
62 63
80 81
08 99

10
28
46
64
82

100

1
20
a7
65
83

12
30
48
66
84

13
31
a9
67
85

14
32
50
68
86

15
33
51
69
87

16
N
52
70
88

17
35
53
7
89

18

54
72

OEBPS/Images/image00793.jpeg
> cil,

8}

win

> e(1,
1112310
> e(1,

11

-

e

2

2,

i)

3,

3,

TSR

nan

TRUE, FALSE)

TRUE, FALSE,

-

nan

-

"Hello"

"Hello")
WTRUE"

T WAL SN

Multiple modes

Multiple modes
WFALSE" "Hello"

OEBPS/Images/image00794.jpeg
% 525 Gkhs W' Re Bedy, B Sy B B BHL B OSCEEES ROOTRER TERIRLANT PHAELARY
> X # Print the vector
1] 1 2 3 4 5 6 7 8 9 10

OEBPS/Images/image00798.jpeg
® SEgiL, 39, B
1] ‘T LB
[13] 7.0 7.5

Snlp w SEgGERCE Srom.d. r0 100y 8-§
.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.
.0 8.5 9.0 9.510.0

® v

> seq(2, 20, by = 2) # Sequence from 2 to 20 by 2
[1] 2 4 6 81012 14 16 18 20

> seq(s, -5, by = -2) # Sequence from 5 to -5 by -2
9] & 3 2% ~%.-B

OEBPS/Images/image00799.jpeg
» BEgiL-A, Bt WY W 0.3 i AegUAnOE tBOE 1A In SoA Y U3
[1] 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.04.3 4.6 4.9 5.2 5.5
[16]) 5.8 6.1 6.4 6.7 7.0 7.3 7.6 7.9 8.2

OEBPS/Images/image00796.jpeg
® AR
1] 2 4 6 8 10 12 14 16 18 20

OEBPS/Images/image00797.jpeg
R A
[EVIREY
> seq(1,
1 1

OEBPS/Images/image00802.jpeg
% PARLTRELAG .. Bl ESDARL CHELIOT R T iime
[1] "Hello" "Hello" "Hello" "Hello" "Hello"

OEBPS/Images/image00803.jpeg
R R E EAE, Ho Wy BB By 5%, B A0L

> rep(X, 5) # Repeat the X vector 5 times

1] 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2
[25] 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6

149] 9 10

OEBPS/Images/image00800.jpeg
* BARiL1-A, W-4, tAOgth s 107 "¢ SEOLADCE OF 00 VAIISS Srom L4 Lo0R ok
[1] 1.300000 2.088889 2.877778 3.666667 4.455556 5.244444
[7] 6.033333 6.822222 7.611111 8.400000

OEBPS/Images/image00801.jpeg
R R R EAEe Fao Wy BB By 5% B A0L
> X
1] 1 2 3 4 5 6 7 8 910

*

SESULE A IR TeGhen O THERLAeN
Print the vector

*

> c(X, X, X, X, X

1] 1 2 3 4 5 6 7 8 910 1 2
[25] 5 6 7 8 910 1 2 3 4 5 6
149] 9 10

*

Combine vectors
4 5 6 7 8 910 1 2 3
8 910 1 2 3 4 5 6 7 8

S w

OEBPS/Images/image00815.jpeg
R X eo\h &, B, 1, A,
> Y

[1] 4 SNA 1NA O

> length (Y)

1] 6

OEBPS/Images/image00816.jpeg
* M S Wy By LT B CRARER A RIEDAR YRCTOE
> X # Print the vector

5] 6.8 A 0%

> names (X) # Element names of X
NULL

OEBPS/Images/image00817.jpeg
* gEcarires. ¥ TEMIUADCy O Qenoar
[1] 165 147

OEBPS/Images/image00820.jpeg
VECTOR | Input speciliiyving the subset of dat:

a to return |

OEBPS/Images/image00821.jpeg
o TR VARLOL ER i &

1] 68317

> X[1 # Using square brackets

1] 68317

> X() # Error when using round brackets
I T e T e g

OEBPS/Images/image00818.jpeg
* gEnterires s Sivaoale
> genderFreq
Female Male

ANE, MR S PRI % TEARE A VECLOE SIEN SN TR

165 147

> genderFreq <- c(165, 147) # Create a vector with no element
names

> genderFreq

[1] 165 147

> names (genderFreq) <- c("Female", "Male") # Assign element names

> genderFreq
Female Male
SRE

OEBPS/Images/image00819.jpeg
* gendetFrec
Female Male

165 147
> names (genderFreq)
[1] "Female" "Male"

¥RTRE T amcrar.

Return the element names

OEBPS/Images/image00824.jpeg
R IR B° BNhe A 0 T EAENED TLRER PPURUN
> X [index] # 1st, 3rd and Sth elements
1] 6 3 7

OEBPS/Images/image00825.jpeg
B Bl BRL
1] 6 817

. 4:5)) T BERLEn Do THE, S5, RDRAng SCO AemenCh

OEBPS/Images/image00822.jpeg
R Rowons; A, 3, 3

Ty ® SRR S AN AREROL

> X # Print the values
1] 68317

> X [] # Blank input
1] 6 8317

OEBPS/Images/image00823.jpeg
N > A NEARE TR - TRioes

1] 68317
» Llell, 3.8) 1
1] 6 3 7

1st, 3rd and Sth elements

OEBPS/Images/image01338.jpeg
myPanel <- function(x, y, ...) {
cat ("Panel Function Called!\n")

}
xyplot(mpg ~ wt | factor(cyl), data = mtcars, panel = myPanel)
Panel Function Called!

.
.

Panel Function Called!
B i Rl

OEBPS/Images/image01339.jpeg
v v

myPanel <- function(x, y, ...) {
panel.xyplot (x, y, ...)

}

xyplot (mpg ~ wt | factor(cyl), data = mtcars, panel = myPanel)

OEBPS/Images/image01336.jpeg
0, "Rutomatic", "Manual"),

> xyplot (mpg ~ wt | factor(cyl) * ifelse(am
+ data - mtcars, cex - 1.5, pch = 21, £ill - "lightblue",
+ main = "Miles per Gallon vs Weight \nby Number of Cylinders and Transmission

-Type")

OEBPS/Images/image01337.jpeg
PEORL-XEYPIALAK, ¥y SVDS

font, fontfamily,

grid
T

FALSE,
NULL,

+ groups

fontface, lty, cex,

abline = NULL, jitter.x

JAEHEIPIEE

R LEE)

IO, BESL., ENE,

£i11, 1wd, horizontal = FALSE,

B0 LEI, COL . SYEOOL,

- FALSE, jitter.y = FALSE, factor = 0.5

OEBPS/Images/image01342.jpeg
% PAORL . EEOEN
function (...)

lpoints(...)

<bytecode: OxOefed2c8>
<environment: namespace:lattice>
> panel.text

function (..

ltext(...)

<bytecode: 0x0£80702c>
<environment: namespace:lattice>
> panel.lines

function (..

1lines (..
<bytecode
PRI | Loer e S AE IR R Lo, [1 O

ox2f2alace>

OEBPS/Images/image01343.jpeg
LIRS

> myPanel <- function(x, y,
¢ mylm <- Im(y ~ %) # Fit a linear regression line
+ panel.abline(mylm, col = "red") # Add the regression line

+ panel.xyplot(x, y, ...) # Draw the points

+ params <- paste(c("Intercept:" # Parameters

. signif (coef (myLm), 3), collapse=

+ ltext(max(x), max(y), params, adj = 1, cex = .8) # Add text to plot

+)

> xyplot(mpg ~ wt | factor(cyl), data = mtcars, panel = myPanel, pch = 16)

OEBPS/Images/image01340.jpeg
> apropos (")
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
—

1]

(4]

71
(o]
s3]
(6]
9]
[22]
[25]
28]
[31]
[34]
[37]
[40]
143]
[46]
[49]
[52]
[55]

panel")
3dscatter”
arrows"
barchart"

cloud”
densityplot®
£i110

identify"
levelplot®
lines”

loess”

pairs"

polygon”
qqmathline”

rug”
smoothscatter”
stripplot"
superpose.plain”
tmd. qqmath”
T

"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel ..
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel .

3dwire"
average"
brush.splom"
contourplot"
dotplot"

grid"
identify.cloud”
levelplot.raster”
1link.splom”
mathdensity"
parallel”

ag"

rect"

segments"

spline”
superpose”

textr

violin"

"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel.
"panel .

abline"
axis"

buplot"

curver

error"
histogram"
identify.qqmath”
linejoin"
Inline"

number"

points"

qgmath”

refline

smooth"

splom”
superpose.2"
tmd. defaultn
wireframe"

OEBPS/Images/image01341.jpeg
)1

> myPanel <- function(x, y,
+ medX <- median(x, na.rm = TRUE) # Median of X values
+ medY <- median(y, na.rm = TRUE) # Median of Y values
+ panel.abline(v = medX, h = medY, lwd = 2, col = "red") # Add reference lines
+ panel.xyplot(x, y, .. # Draw the points

v}

> xyplot(mpg ~ wt | factor(cyl), data = mtcars, panel = myPanel, pch = 16)

OEBPS/Images/image01344.jpeg
.
.
.
.
.
.
.

myPanel <- function(x, y, xPos, yPos,

myLm <- lm(y ~ x) # Fit a linear regression line
panel.abline (mylm, col = "red") # Add the regression line
panel.xyplot (x, y, ...) # Draw the points

params <- paste(c("Intercept:", "Slope:"), # Parameters

signif (coef (myLm), 3), collapse="\n")
1ltext (xPos, yPos, params, adj = 1, cex = .8) # Add text to plot

}
xyplot (mpg ~ wt | factor(cyl), data = mtcars, panel = myPanel, pch = 16,
xPos = max(mtcarsswt), yPos = max(mtcarss$mpg))

OEBPS/Images/image01345.jpeg
> xyplot (mpg ~ wt | factor(cyl), data = mtcars,
+ pch = c(15, 16), col = c("navy", "orange"),
+ groups = ifelse(am == 0, "Auto", "Manual"), auto.key = TRUE)

OEBPS/Images/image01327.jpeg
B B L
> cranData <- cran_downloads (packages = c("lattice", "ggplot2"), when -
w"last-month")
> head (cranData)
date count package
1 2015-07-30 2100 lattice
2 2015-07-31 1804 lattice
3 2015-08-01 858 lattice
4 2015-08-02 874 lattice
5 2015-08-03 2234 lattice
€ 2015-08-04 2991 lattice

OEBPS/Images/image01328.jpeg
Aoriceny & Qake, Gepa.

SSCENHRALS, SAORNE
main

BACKION,
"Lattice package downloads over the last month",
ylab

"lattice’,
"Number of Downloads"
S B

. xlab =
ey

"Date",
apad® Ted & 2 oex 0T ok s

OEBPS/Images/image01326.jpeg

OEBPS/Images/image01331.jpeg
* XYRLOLANDY ““iwL, QALA W NLOALR, SEoups
R T DI N ———

o £

OEBPS/Images/image01332.jpeg
* XYRLOEANDPY CHANE. SOy COELE = ISECATE, STOupE s eh,
N pch = 16, cex auto.key = TRUE)

OEBPS/Images/image01329.jpeg

OEBPS/Images/image01330.jpeg
%
%

plot (mpg ~ disp

+ hp, data

\tcars, pch

TRUE)

OEBPS/Images/image01335.jpeg
| factor(cyl), data = mtcars,
sMileE D Gullon v Welght by Wibet: of Cylindsze™)

OEBPS/Images/image01333.jpeg
> xXyplot (count ~ date | package, data = cranData, type = "o"

OEBPS/Images/image01334.jpeg
> xyplot (mpg ~ wt | cyl, data = mtcars,
iy & S les per- el lon ve-Neloht: by Bosber of Cvlindare®

OEBPS/Images/image01356.jpeg
% MOC L LECORL LI O EEEEN. . Mone. oS cimnEn

(Intercept) W
37.285126 -5.344472
> quantile(modell$residuals, # Specific quantiles of residuals
. probs = c(0.05, 0.5, 0.95)
5% 50% 95%

-3 8071897 -0 1251056 € 179481%

OEBPS/Images/image01357.jpeg
% SNDORLY & REREGIROORLLF ¥ Sumery OO acml.

> class (sModell) # Class of summary object
[1] "summary.lm"

> is.list (sModell) # Is it a list?

[1] TRUE

> names (sModel1) # Element names
[1] "call "terms" "residuals" "coefficients"
[5] "aliased" "sigman nagn "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

> sModell$adj.r.squared # Adjusted R Squared

[1] 0.7445939

> sModell§sigma*2 # Estimate variance

[1] 9.277398

OEBPS/Images/image01360.jpeg
A A

BETE v DALALCEENONE &
predvals <- predict (modell, newdata = wtDf

data. frame (wt

wt

A e W o e

Pred
31,
26.
21.
15.
10.

.

b b w0

wEDESWE,

1:6)

Pred

round (predvals,

1))

L
#

#

AOOSDRIONILE WAL AR

Make predictions using
model1

Form as data frame

OEBPS/Images/image01361.jpeg
¥ PESSLCT ML, DENOSLE. W PN, S AL W TRUN, SRUEEVEL S TERnEROaon
3313
fit lur upr
31.940655 29.18042 34.700892
26.596183 24.82389 28.368481
21.251711 20.12444 22.378987
15.907240 14.49018 17.324295
10.562768 8.24913 12.876406
5.218207 1.85595 8.580644

RANL AN

$se.£it
1; 2 3 4 5 6
1.3515519 0.8678067 0.5519713 0.6938618 1.1328743 1.6463754

$af
(] 30

$residual.scale
[1] 3.045882

OEBPS/Images/image01358.jpeg
% PAOLISECRIENNE, NECAERPIERG. WELLH W HIies PAn Gation Ve ReLpuLtr
. xlab = "Weight (1b/1000)", ylab = "Miles per Gallon", pch = 16)
T T R

OEBPS/Images/image01359.jpeg
% PARGUPTEGLCL (OARELET @ NOOEL VERGIELIPEN TR0 NENS

Mazda RX4 Mazda RX4 Wag Datsun 710
23.28261 21.91977 24.88595

Hornet 4 Drive Hornet Sportabout valiant
20.10265 18.90014 18.79325

> head (fitted(modell)) # Fitted Values of modell

Mazda RX4 Mazda RX4 Wag Datsun 710
23.28261 21.91977 24.88595

Hornet 4 Drive Hornet Sportabout valiant

20 10265 18 90014 18 70326

OEBPS/Images/image01364.jpeg

OEBPS/Images/image01365.jpeg
T RSEITACE Mheunty
resl <- resid(modell)
£itl <- fitted (modell)
res2 <- resid(model2)
£it2 <- fitted (model2)

Calculate axis range
resRange <- c(-1, 1) * max(abs(resl), abs(res2))
fitRange <- range(fitl, fit2)

Create plot for modell > add points for modelz

plot (fit1, resl, xlim = fitRange, ylim = resRange,
col = "red", pch = 16, main = "Residuals vs Fitted Values",
xlab = "Fitted Values", ylab = "Residuals")

"blue", pch = 16)

points (£it2, res2, col

Add reference and smooth lines

abline(h = 0, 1ty = 2)

lines (loess.smooth(fit1, resl), col = "red")

lines (loess.smooth(fit2, res2), col = "blue")

Tegund I"bottoaletl™: cl%mgg & WEN Topa ok w el Fill e elroeany

"blue"))

OEBPS/Images/image01362.jpeg
* BOURAA E-AmiEpg SOWE . SMER
> summary (model2)

NECRTRlL ¥ Aoh TeF ROl

call:
lm(formula = mpg ~ wt + hp, data = mtcars)

Residuals:
Min 1Q Median 3Q Max
-3.941 -1.600 -0.182 1.050 5.854

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.22727 1.59879 23.285 < 2e-16 ***
Wt -3.87783 0.63273 -6.129 1.12e-06 ***
hp -0.03177 0.00903 -3.519 0.00145 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '

Residual standard error: 2.593 on 29 degrees of freedom
Multiple R-squared: 0.8268, Adjusted R-squared: 0.8148
F-statistic: 69.21 on 2 and 29 DF, p-value: 9.109e-12

OEBPS/Images/image01363.jpeg
® WOl e MESALe EOueLT. OO < MR SR
> model2

Call:
lm(formula = mpg ~ wt + hp, data = mtcars)

Coefficients:
(Intercept) Wt hp
a7 29797 _3 87783 -0 03177

¥ EhAALE TOORAS SAEsd WoeoO0e LY

OEBPS/Images/image01346.jpeg
% myTiene € RESLAANCPET-OREIE ¥ AL LAR ANt Of Soylen

> names (myTheme) # Look at the element names

[1] "grid.pars" "fontsize" "background"

[5] "clip" "add.line" "add. text"

[9] "box.dot" "box. rectangle" "box.umbrella"
[13] "dot.symbol" "plot.line" "plot . symbol"
[17] "strip.background" ‘"strip.shingle" "strip.border"
[21] "superpose.symbol" "superpose.polygon" "regions"

[25] "axis.line" "axis. text" "axis.components"
[29] "layout.widths" "box.3d" "par.xlab. text"
[33] "par.zlab.text" "par.main.text" "par.sub. text"

> myTheme§superpose . symbol # Look at the superpose.symbol
salpha

I 2 ey

Scex
[1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8

$col
[1] "#00BOFE" "4#EFOOFf" "darkgreen" "#££0000" "orange"

$£i11
[1] "$CCFFFF" "#FFCCFF" "4CCFFCC" "#FFESCC" "#CCEGFF" "4FFFFCC"

$font
[3y 1 1508 8

$pch
[& s vin (. A . e .

"panel.background"
"plot.polygon"
"dot . line"
"reference.line"
"superpose. line"
"shade . colors"
"layout.heights"
"par.ylab. text"

element

"#00££00" "brown"

"$FFCCCCT

OEBPS/Images/image01349.jpeg
B PARGIRECRIRPNL, NECUIHENES.. DR w RAEE PeE TRAIL TR e
N xlab = "Weight (1b/1000)", ylab = "Miles per Gallon", pch = 16)

OEBPS/Images/image01350.jpeg
® BOURLE B AMIERD CUWE, SALE » MECRERL b FiE RO NOom.
> modell

call:
lm(formula = mpg ~ wt, data = mtcars

Coefficients:
(Intercept) W
37 2gE € 344

OEBPS/Images/image01347.jpeg
% BN ¢ NIDNMRERUDRLDORE - SIEUGE & BRLTARL DO STRELDOSS: SO0 St

> names (ss) # Names of the superpose.symbol element
[1] "alpha" "cex" "col" "fill" "font" "pch"

> ss$col # Current colors

[1] "$00BOFf" "#EfOOFf" "darkgreen" "#££0000" ‘"orange" "#00f£00" "brown’

> ss§col <- c("orange", "navy", "green", "red", "grey") # Update plot colors
> ss¢pch <- c(16, 15, 17, 18, 19) # Updated plot symbols

> myTheme$superpose .symbol <- ss # Update the styles

> myTheme$strip.background$col 4 Current strip header color

[1] "#ffeScc" "fccffce" "HoofFfE" "hoceGEE" "#Efccff" "hffcccet "#Efffcct

> myTheme$strip.background$col <- c("lightgrey", "lightblue", "lightgreen"

OEBPS/Images/image01348.jpeg
> xyplot (mpg

P

ifelse(am

~ wt | factor(cyl), data

0,

"Auto" ,

mtcars, par.settings

SRGEIYY, ERES R

OEBPS/Images/image01353.jpeg
% COmEImItmLt) L

(Intercept) W
37.285126 -5.344472
> head(resid (modell)) # Fitted Values
Mazda RX4 Mazda RX4 Wag Datsun 710
-2.2826106 -0.9197704 -2.0859521
Hornet 4 Drive Hornet Sportabout Valiant
1.2973499 -0.2001440 -0.6932545
> head(fitted (modell)) # Residuals (observed - fitted:
Mazda Rx4 Mazda RX4 Wag Datsun 710
23.28261 21.91977 24.88595
Hornet 4 Drive Hornet Sportabout Valiant

20 10265 18 90014 18 7932E

OEBPS/Images/image01354.jpeg
R PERIRER R IR IR AR . CIVWE s "ML ¥ OO D6 Shuer NErAanaes
in mtears

> par (mfrow = c(3, 3)) # Set plot layout

> for (V in whichvars) { # Loop through create
scatter plots

+ plot(ntcars[[V]], resid(modell), main = V, xlab pch = 16)

+ lines(loess.smooth(mtcars[[V]], resid(modell)), col = "red")

OEBPS/Images/image01351.jpeg
> summary(modell) # Summary of the lm model

2:
call:
Im(formula = mpg ~ wt, data = mtcars
Residuals:
Min 1Q Median 3Q Max

-4.5432 -2.3647 -0.1252 1.4096 6.8727

Coefficients:
Estimate Std. Error t value Pr(>|t|

(Intercept) 37.2851 1.8776 19.858 < 2e-16 ***

Wt -5.3445 0.5591 -9.559 1.20e-10 ***

Signif. codes: 0 '#**' 0.001 '**' 0.01 '*' 0.05
Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

OEBPS/Images/image01352.jpeg
 FREIDRIDN v a1, BIL FORRTE R ARL RENph ARge
s pilcktandutls $ Preate tiagnost i wloks for wodell

OEBPS/Images/image01355.jpeg
* Canmnimormii) » 198 CLAAN 0T BORELL

(1] "lm"
> is.list(modell) # Is modell a list?

[1] TRUE

> names (modell) 4 The element names of modell

[1] "coefficients" "residuals" neffects” "rank"

[5] "fitted.values" "assign" "qre "df .residual”

18] "xlevels" Noally [— Smatiaty

OEBPS/Images/image01136.jpeg
> list(

.
.
.
.

rnorm(1, mean
rnorm(2, mean
rnorm(3, mean
rnorm(4, mean

+ rnorm(s, mean

+)
[
] 1o.

(211
[y s

(311
i 11

(1411
] 1o.

[s11
1] 10.

14959

10,
10,
10,
10,
10)

657469 10.553303

589963 9.413120 8.167623

888139 11.593488 10.516855 8.704328

054616 9.215351 8.950647 12.330512 11.402705

OEBPS/Images/image01378.jpeg
> plot (mtcarsSwt, mtcarsSmpg, pch = 16, xlab = "Weight (1b/1000)"
ylab = "Miles per Gallon", main = "MPG Gallon versus Weight"
abline (modell, col = "red") # Add (straight) model line (based on earlier

modell object)

wtvals <- seq(min(mtcars§wt), max(mtcars$wt), length = 50) # Weights to
predict at

predvals <- predict (lmodell, newdata = data.frame(wt = wtVals)) # Make
predictions

lines(wtvals, exp(predvals), col = "blue") # Add (log) model
line

legend ("topright", c("mpg ~ wt", "log(mpg) ~ wt"), £ill = c("red", "blue")

OEBPS/Images/image01137.jpeg
e bl LT i
function (n, mean = 0, sd = 1)
NULL

OEBPS/Images/image01379.jpeg
* BUNRLY \NECarupnpg)

Min. 1st Qu.
15.42

10.40

Median
19.20

Mean
20.09

> summary (factor (mtcarsgeyl))

46 8
117 14

> summary (mtcars[,1:4])

mpg
Min.
1st Qu.
Median
Mean
3rd Qu.
Max

:10.
:15.
:19.
:20.
:22.

a3

40
43
20
09
80
90

eyl

Min.

1st Qu.

Median
Mean

3rd Qu.:

Max

® ® ok

.000
.000
.000
.188
.000
000

¥ NIRNREY OF. R SUNALLE VROLOE

3rd Qu.
22.80

Max.

33

.90

Summary of a factor vector

Summary of

disp
Min. 7S
1st Qu.:120.
Median :196.
Mean :230.
3rd Qu.:326.
Max 472

a data frame

Min.

Median
Mean

o G b

Max

1st Qu.:

3rd Qu.

hp

52.
9.
:123.
:146.
:180.

q3c

OEBPS/Images/image01376.jpeg
PR RLERN . S4d, Sl
plot (mtcars$wt, mtcars$mpg, pch = 16, xlab = "Weight (1b/1000)"

ylab = "Miles per Gallon", main = "MPG Gallon versus Weight")

lines (loess.smooth (mtcars$wt, mtcarsmpg), col = "red")

plot (mtcars$wt, log(mtcars$mpg), pch = 16, xlab = "Weight (1b/1000)"
ylab = "log(Miles per Gallon)", main = "Logged MPG versus Weight")

Tineelonts, Batoth [RECEraRWt, Likilntcaratila)). Gal & Tad")

OEBPS/Images/image01377.jpeg
% JNOORLY BT ARLAOINRG) D, SRES = ORI
> summary (lmodell)

call:
Im(formula = log(mpg) ~ wt, data = mtcars)

Residuals:
Min 10 Median 3Q Max
-0.210346 -0.085932 -0.006136 0.061335 0.308623

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.83191 0.08396 45.64 < 2e-16 ***

Wt -0.27178 0.02500 -10.87 6.31e-12 ***

Signif. codes: 0 '*#**' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1362 on 30 degrees of freedom
Multiple R-squared: 0.7976, Adjusted R-squared: 0.7908
F-statistic: 118.2 on 1 and 30 DF, p-value: 6.3le-12

> par(mfrow - c(2, 2)) # Set plot layout
5 pigt{Tacdelly Fhasts dEaoncntiis slake

OEBPS/Images/image01140.jpeg
* ARPRAY ARIOUALICY s AT, D IR . IR
$0zone
] 31.s

sSolar.R
1] 205

$Wind
11 5.9

sTemp
79

$Month
a1 7

spay
1 16

OEBPS/Images/image01382.jpeg
® BLLIRIOn L CATRRLO [ANNOOR LYy 10
[1] TRUE

ot o R b bt e ML L

OEBPS/Images/image01141.jpeg
* APRLIRLCUSLEYy . CHESE,
Ozone Solar.R Wind Temp

"numeric" "numeric" "numeric® "numeric"

> lapply (airquality, class

$0zone

[1] "integer"

$Solar.R
[1] "integer"

$Wind
[1] "numeric"

$Temp
[1] "integer"

$Month
[1] "integer"

sDay
[1] "integery

Month

"numeric”

Day
"numeric"

OEBPS/Images/image01383.jpeg
e A oo

call:
glm(formula = mpg ~ wt * hp + factor(cyl), data = mtcars)

Deviance Residuals:
Min 10 Median 3Q Max
-3.5309 -1.6451 -0.4154 1.3838 4.4788

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 47.337329 4.679790 10.115 1.67e-10 ***
Wt -7.306337 1.675258 -4.361 0.000181 ***

hp -0.103331 0.031907 -3.238 0.003274 **
factor(cyl)6 -1.259073 1.489594 -0.845 0.405685
factor(cyl)8 -1.454339 2.063696 -0.705 0.487246

wt:hp 0.023951 0.008966 2.671 0.012865 *

Signif. codes: O '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 4.852119)
Null deviance: 1126.05 on 31 degrees of freedom
Residual deviance: 126.16 on 26 degrees of freedom

AIC: 148.71

Soabes bE Pikes Baiae It ieg. .5

OEBPS/Images/image01138.jpeg
% SMDRCYAERG, EDOEW,
[mn
[1] 1.9426009 1.8262583 0.1884595 1.4762483 2.0212584

N

(1211
[1] 2.645383 3.043144 1.695631 4.477111 2.971221

(211
[1] 4.867099 3.672042 2.692047 3.536524 3.824870

[14]]
[1] 3.036099 3.144917 5.886947 3.608181 3.019367

(1511
[1] 5.687332 4.494956 7.157720 4.400202 4.305453

OEBPS/Images/image01380.jpeg
® SYITRCEDE K= SACLOTiINECaYEEOL]
> class (cylFactor)

[1] "factor"

> summary (cylFactor)

16 8

11 7 14

> sumary. factor (cylFactor)

16 8

o]

OEBPS/Images/image01139.jpeg
% LaLL

+ roorm(1, m = 5),
+ roorm(2, n = 5),
+ roorm(3, n = 5),
+ roorm(4, m = 5),
+ roorm(5, n = 5)
v)

[
[1] 1.2239254 -0.1562233 1.4224185 -0.3247553 1.1410843

(1211
[1] 1.463952 1.688394 3.556110 1.551967 2.321124

(211
[1] 1.769828 1.675941 4.261242 4.319232 2.919246

[14]]
[1] 3.494910 3.947846 4.628861 6.180002 3.930983

(511
[1] 6.544864 6.321452 5.322152 6.530955 4.578760

OEBPS/Images/image01381.jpeg
® OGS ST DY SR, Ak DRPLODICYET . TRER S SECATR)l FPonel SAt mbthoon
> lmModel

call:
lm(formula = mpg ~ wt * hp + factor(cyl), data = mtcars

Coefficients:
(Intercept) Wt hp factor(cyl)é factor(cyl)s wE :hp
47.33733 -7.30634 -0.10333 -1.25907 -1.45434 0.02395

> glmModel <- glm(mpg ~ wt * hp + factor(cyl), data = mtcars) # Model fit with glm
> glmModel

call: glm(formula = mpg ~ wt * hp + factor(cyl), data = mtcars

Coefficients:
(Intercept) W hp factor(cyl)é factor(cyl)s wt
47.33733 -7.30634 -0.10333 -1.25907 -1.45434 0.02395

Degrees of Freedom: 31 Total (i.e. Null); 26 Residual
Null Deviance: 1126
] ATC: 148 7

OEBPS/Images/image01144.jpeg
% BapRLY \PLLh AELINUR A E YN, A gualitysiontal, eetan)
5 6 71 8 9
11 E 97 B E 8. E 10 3

OEBPS/Images/image01145.jpeg
* BApRAY\ITAR,, CLANM)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

gy R Y R Wik PP ReEELe

OEBPS/Images/image01142.jpeg
® SEppEY

function (X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE
{
FUN <- match.fun (FUN.
answer <- lapply(X = X, FUN = FUN,
if (USE.NAMES && is.character(X) && is.null(names(answer))) names (answer) <- X
if (!identical(simplify, FALSE) && length(answer)
simplifyzarray(answer, higher = (simplify == "array")

else answer

OEBPS/Images/image01384.jpeg
e i B e A & Moan. Comcsioiautn

(Intercept) W hp factor(cyl)6 factor(cyl)8s Wt :hp
47.33732893 -7.30633653 -0.10333117 -1.25907265 -1.45433929 0.02395121
resl <- resid(glmModel) # Extract residuals
fitl <- fitted(glmModel) # Extract fitted values
yRange <- ¢(-1, 1) * max(abs(res1)) # Calculate Y axis Range
xRange <- range(fitl) # Calculate X axis Range
xRange <- xRange + c(-1, 1) * diff (xRange)/5 # Extend X axis Range
plot (fitl, resl, type = "n", # Empty plot with axes specified
ylim = yRange, xlim = xRange,
xlab = "Fitted Values", ylab = "Residuals",
main = "Residuals vs Fitted Values")
text(fitl, resl, row.names(mtcars), cex-1.2) # Add text based on car names
T Ty R onad Beslsontal SeEsisice Tioe e o

OEBPS/Images/image01143.jpeg
% ARPRAY ARPLLEASLTINUR A by, AT gualityontal, etan)
$°5°
n] 11.s

56"
1] 9.7
$7°

1] 8.6

$"8”
[l s.6

$°9°
11 10.3

OEBPS/Images/image01385.jpeg
® BTN, S GBI SN, <y, AL ORI, SARLLY S PINOmat
> summary (1rModel)

call:
glm(formula = am ~ wt - 1, family = binomial, data = mtcars)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.9397 -0.8525 -0.7549 1.4023 1.5541

Coefficients:
Estimate Std. Error z value Pr(>|z|)
Wt -0.2388 0.1166 -2.049 0.0405 *

Signif. codes: O '***! 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 44.361 on 32 degrees of freedom
Residual deviance: 39.717 on 31 degrees of freedom

AIC: 41.717

inber: o Piler: Booring: i tecationgsi

OEBPS/Images/image01386.jpeg
Rk SEDECSS DRLR-LEANSLT w SpEpamic T oN", THAgRSl, A8, 1. & = TpoiRiad, &e
> 1robj <- glm(Y ~ X, data = 1rDf, family = binomial) # Logistic Model
> levels (1rDESY) # Ordering of levels

[1] "High" "Low"

OEBPS/Images/image01367.jpeg
* SOEOTE OO L L. DRI
Analysis of Variance Table

Model 1: mpg ~ wt
Model 2: mpg ~ wt + hp

Res.Df RSS Df Sum of Sq F Pr(>F
1 30 278.32
2 20 195.05 1 83.274 12.381 0.001451 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05

OEBPS/Images/image01126.jpeg
% SPEINN o BRASE IRCRONALL T E YR RATEL,
> $°5°

8}
[14]
[27]

56"

m
114)
127

57"

m
114)
fany

7.4
10.9
8.0

13.8
10.3

4.9
12.0

8.0 12.6 11.5 14.3 14.
13.2 11.5 12.0 18.4 11.
12.0 14.9 5.7 7.
9.7 16.1 9. 14.
11.5 14.9 20.7 9.2 11.
11.5 14.9 8.

9. 210.9 4.6 10.
14.3 6.9 10.3

7. 4 7.4

ALEdUaLL BRI,

8.6 13.8 20.1

9.

1.

2

9%

7

16.

13.

3

ER

11.

11.

12.

16.

1.

1.

1.

OEBPS/Images/image01368.jpeg
* WOCRLA T TnOUaLelMmsld, . o FomEam
> summary (mode13)

call:
1m (formula

mpg ~ Wt + hp + wt:hp, data = mtcars)

Residuals:
Min 1Q Median 3Q Max
-3.0632 -1.6491 -0.7362 1.4211 4.5513

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 49.80842 3.60516 13.816 5.0le-1d ***
Wt -8.21662 1.26971 -6.471 5.20e-07 ***
-0.12010 0.02470 -4.863 4.04e-05 ***
0.02785 0.00742 3.753 0.000811 ***

Signif. codes: O '***' 0.001 '**' 0.01 '*' 0.05 '

Residual standard error: 2.153 on 28 degrees of freedom
Multiple R-squared: 0.8848, Adjusted R-squared: 0.8724
F-statistic: 71.66 on 3 and 28 DP, p-value: 2.98le-13

OEBPS/Images/image01366.jpeg
v T VvV

SEEREE FROE LOT- MECE L, of MO DRAGER SOE MO
plot (mtcars$hp, resl, ylim = resRange,

col = "red", pch = 16, main - "Residuals vs Fitted Values",
xlab = "Fitted Values", ylab = "Residuals")
points (mtcarsshp, res2, col = "blue", pch = 16)

Add reference and smooth lines
abline(h = 0, 1ty = 2)

lines (loess.smooth(mtcarsshp, resl, span = .8), col = "red")
lines (loess.smooth(mtcarsshp, res2, span = .8), col = "blue")
Tmouod {¥bol bonlefi® s ol & wEN

Sopgswt wipts il e olicedss

"blue"))

OEBPS/Images/image01129.jpeg
ol e e St et Ll B bt !

> length (spAir)

a1 s

> names (spAir’

1 rse

ngn mn

ngn

> head (spAir[[1]])
Ozone Solar.R Wind Temp Month Day

a1
36
12
18
nA
g

A A

190
118
149
313
nA
NA

s

8.
12.
1.
14.
14

4

ngn

67
72
74
62
56
Py

5

NN SREN

¥ ORLEL, TR GAte

Length of list

Element names

First element

OEBPS/Images/image01371.jpeg
T T

T VT v

PREARAERN = S4d, Al

plot (factor (mtcars$vs), resid(model3), col = "red",
xlab = "0 = Straight Engine \ 1 = 'V Engine'", ylab = "Residuals",
main = "Residuals versus\n'V Engine' Flag")
plot (factor (mtcars$am), resid(model3), col = "red",
xlab = "0 = Automatic \ 1 = Manual®, ylab = "Residuals"
main = "Residuals versus\nTransmission Type")

plot (factor (mtcarsscyl), resid(models), col = "red",
xlab = "Number of Cylinders", ylab = "Residuals",
il - AT e e T BULIRAS TR

OEBPS/Images/image01130.jpeg
* SEEpLYERhLT, DeAS, B %

$°5>
Ozone Solar.R Wind Temp Month Day
a1 190 7.4 67 5 1
2 36 18 8.0 72 5 2
12 49 12.6 74 5 3
Ch
Ozone Solar.R Wind Temp Month Day
32 mA 286 8.6 78 6 1
33 mA 287 9.7 T4 6 2
34 mA 242 16.1 67 6 3
Ch
Ozone Solar.R Wind Temp Month Day
62 135 269 4.1 84 71
63 49 248 9.2 85 7 2
64 32 236 9.2 81 7 3
Cht:
Ozone Solar.R Wind Temp Month Day
03 39 83 6.9 81 8 1
04 9 2413.8 81 8 2
o5 16 77 7.4 82 8 3
579"
Ozone Solar.R Wind Temp Month Day
124 96 167 6.9 91 9 1
125 78 197 5.1 92 9 2

196 73 183 2.8 93 R

OEBPS/Images/image01372.jpeg
* BOURES & NDUAESGNDOSLE
> summary (model4)

call:

lm(formula = mpg ~ wt + hp

= o FRRCEOCACYALL

+ factor (cyl) + wt:hp, data

Residuals:
Min 10 Median 3Q Max
-3.5309 -1.6451 -0.4154 1.3838 4.4788
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 47.337329 4.679790 10.115 1.67e-10 ***
Wt -7.306337 1.675258 -4.361 0.000181 ***
hp -0.103331 0.031907 -3.238 0.003274 **
factor (cyl)6 -1.259073 1.489594 -0.845 0.405685
factor (cyl)8 -1.454339 2.063696 -0.705 0.487246
0.023951 0.008966 2.671 0.012865 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05

Residual standard error: 2.203 on 26 degrees of freedom

Multiple R-squared: 0.888

¥-statintic

41.21 on 5 and 26 DF,

Adjusted R-squared:
Sewalun:. 1.500m-11

0.8664

mtcars)

OEBPS/Images/image01127.jpeg
> lapply(split(airquality$Wind, alrqualitySMonth), median)

OEBPS/Images/image01369.jpeg
& RCERCh SiREnLE SO Hoees 3
> res3 <- resid(model3)
> £it3 <- fitted(model3)

Calculate axis range
resRange <- c(-1, 1) * max(resRange, abs(res3))
fitRange <- range(fitRange, fit3)

> # Create plot for modell > add points for model2
> plot (fit1, resl, xlim = fitRange, ylim = resRange,

+ col = "red", pch = 16, main - "Residuals vs Fitted Values",
+ xlab = "Fitted Values", ylab = "Residuals")

> points (fit2, res2, col = "blue", pch = 16)

> points(£it3, res3, col = "black", pch = 16)

Add reference and smooth lines
abline (h = 0, lty = 2)

lines(loess.smooth(fitl, resl), col = "red")
lines(loess.smooth(fit2, res2), col = "blue
lines(loess.smooth(fit3, res3), col = "black")

> # Add 5% and 95% reference lines for each model

> refFun <- function(res, col) abline(h = quantile(res, c(.05, .95)), col = col,
-1ty = 3)

> refFun(resl, "red")

> refFun(res2, "blue")

> refFun(res3, "black")

legend ("bottomleft", c("mpg ~ WE", "mpg ~ Wt + hp", "mpg ~ wt + hp + wt:hp"),
£411 = c{"red”. "blue". "black’})

:

OEBPS/Images/image01128.jpeg
> with(airquality, lapply(split (Wind, Month), median))

OEBPS/Images/image01370.jpeg
? BREE BENE Lt BOOEAR, NOredal
Analysis of Variance Table

Model 1: mpg ~ Wt
Model 2: mpg ~ wt + hp
Model 3: mpg ~ wt + hp + wt:hp
Res.Df RSS Df Sum of Sq F Pr(>F
30 278.32
20 195.05 1 83.274 17.969 0.0002207 ***
28 120.76 1 65.286 14.088 0.0008108 ***

won =

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05

OEBPS/Images/image01133.jpeg
% SMDREY AT ROy
[n
[1] 0.8168998

(1211
[1] -0.8863575 -0.3315776

(211
[1] 1.1207127 0.2987237 0.7796219

[14]]
[1] 1.4557851 -0.6443284 -1.5531374 -1.5977095

(1511
[1] 1.8050975 -0.4816474 0.6203798 0.6121235

-0.1623110

OEBPS/Images/image01375.jpeg
* RPPRIANCLOR I CRERGEI L, BECHIRRN., .
. xlab = "Number of Cylinders", ylab = "Gross Horsepower",
% O ETRRN 7 T P o L T e, F T [T 1

TEWLL

OEBPS/Images/image01134.jpeg
£ ok
rnorm(1),
rnorm(2) ,
rnorm(3),
rnorm(4) ,
rnorm(s)

T+ vV

v)
[
[1] 0.8118732

(1211
[1] 2.196834 2.049190

1211
[1] 1.6324456 0.2542712 0.4911883

[141]
[1] -0.32408658 -1.66205024 1.76773385 0.02580105

[s11
[1] 1.1285108 -2.3803581 -1.0602656 0.9371405 0.8544517

OEBPS/Images/image01131.jpeg
> lapply (spAir, function(df
+ apply(df[,1:4], 2, median, na.rm = TRUE
+)
55>

Ozone Solar.R Wind Temp

18.0 194.0 11.5 66.0

576
Ozone Solar.R Wind Temp
23.0 188.5 9.7 8.0
527>
Ozone solar.R Wind Temp
60.0 253.0 8.6 84.0
s8>
Ozone Solar.R Wind Temp
52.0 197.5 8.6 82.0
570>
Ozone Solar.R Wind Temp

23 0 192.0 10.3 TE. O

OEBPS/Images/image01373.jpeg
CHOLT-EISEEMDINAT P MALELE NhothEEr vaIlAbien T8 HEE SOn R 3N, TaCtDY
(like cyl)

OEBPS/Images/image01132.jpeg
* BpLiEjAsTomalityinsad, 4t iflronalilEyssonts, subalrgualityyreog, 21
$°5.(56,69.7]~

[1] 7.4 11.5 14.3 14.9 8.6 13.8 20.1 8.6 9.7 9.2 10.9 13.2 11.5 12.0 18.4
11.5 9.7

[18] 9.7 9.7 12.0 16.6 14.9 8.0 12.0

$°6.(56,69.7]
1] 16.1 9.2

$°7.(56,69.7]
numeric (0)

OEBPS/Images/image01374.jpeg
¥ DOV (DT, BOORLE. MOSELY, NOORLRL
Analysis of Variance Table

Model 1: mpg ~ Wt

Model 2: mpg ~ wt + hp

Model 3: mpg ~ wt + hp + wt:hp

Model 4: mpg ~ wt + hp + factor(cyl) + wt:hp
Res.Df RSS Df Sum of Sq F Pr(>F

1 30 278.32

2 20 195.05 1 83.274 17.1624 0.0003219 ***

3 28 120.76 1 65.286 13.4552 0.0011040 **

4 26 126.16 2 3.606 0.3716 0.6932114

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05

OEBPS/Images/image01135.jpeg
® DR IR,,
[n
[1] 11.46073

(211
[1] 8.586901

(311
[1] 10.583188

(1411
[1] 11.947693

[s11
[1] 10.277954

RGN, WD - 101

10.567403

8.693201 9.459614

10.053590 10.351663 9.329023

10.691171 10.823795 12.145065

7 .653056

OEBPS/Images/image01158.jpeg
> for (i in 1:100) {

+ cat("\n Hello") # Writing a message
+ if (runif(1) > .9) {

- cat(" - STOP!!")

. break # 90% chance of stopping each time
¢}

¢}

Hello

Hello

Hello

Hello

Hello

Hello

Hello

Hello

Hello - STOD! !

OEBPS/Images/image01400.jpeg
% BRITEAE & DANIERES 'S BIOMEGIEORC, Y, B SAER W Faremy e,
¢ start = c(Vm = 210, K = 0.05), subset = state == "treated"
> mmUntreat <- nls(rate ~ micmen(conc, Vm, K), data = Puromycin,
+ start = c(Vm = 165, K = 0.05), subset = state == "untreated"
> round (coef (umTreat), 3) # Coefficients for Treated data

v K

212.684 0.064

> round (coef (mmUntreat), 3) # Coefficients for Untreated data
o K

160 280 0. 048

OEBPS/Images/image01159.jpeg
* DApRAY \FPOLE, B
[
[2

lambda = 5:1)

(211
] 73

(311
] 411

(1411
1] 1024

[s11
11 3010 2

OEBPS/Images/image01401.jpeg
> apropos (""Ss")

[1] "ssasymp" "SSasympOff" "SSasympOrig" "SSbiexp"
[5] "ssp" "SSfoln "SSEpln "sSgompertz”
[9] "sslogis" wSSmicmen"® "SSweibull®

OEBPS/Images/image01156.jpeg
* R TEPpLY IALEQUALLTYRNITO,
. 1list(airquality§Month, cut(airquality$Temp, 3)), quantile
> class (X)
[1] "matrix"
> X

(56,69.7] (69.7,83.3] (83.3,97

5 Numeric,5 Numeric,5 NULL
6 Numeric,5 Numeric,5 Numeric,5
7 NULL Numeric,5 Numeric,5
8 NULL Numeric,5 Numeric,5
o Numeric,5 Numeric,5 Numeric,5
> X[1,1]

[

0% 25% 50% 75% 100%
2 400 9 .700 11 500 13 . 92E 20 100

OEBPS/Images/image01398.jpeg
o+ 4+ 4+ v R W

ARRELFRTOMyCan] T RADEE BB BN
conc rate state

0.02 76 treated
0.02 47 treated
0.06 97 treated
0.06 107 treated
0.11 123 treated
0.11 139 treated
plot (Puromycingconc, Puromycingrate, pch = 21, cex = 1.5, # Plot the data
xlab = "Instantaneous reaction rates (counts/min/min)"
ylab = "Substrate Concentrations (ppm)"
main = "Instantaneous reaction rates vs Substrate Concentrations"
bg = ifelse(Puromycingstate == "treated", "red", "blue")
Sagend [*hot tomrlght": o Fresbadh;: Whkrsated®): Eill w olfredi: Bluss)

OEBPS/Images/image01157.jpeg
% SLE € MO ELINUACSEY: ALITgRR AR YEOnLD)
s Yplvials: :diu)

OEBPS/Images/image01399.jpeg
WEoma - Tonsclan (oo, YN, Bl Y& Yoond g (XS esn)

X <- seq(0, 1.1, length

1ines (X, micmen(xConcs,
1ines (X, micmen(xConcs,
1ines (X, micmen(xConcs,

1ines (X, micmen(xConcs,
1ines (X, micmen(xConcs,
VIREEEE: R TR

= 25)

200,
210,
210,

150,
170,
165,

0.1), col = "pink")
0.03), col = "pink")
0.05), col = "red")

0.05), col = "lightblue")
0.1), col = "lightblue")
0.05), col = "blue")

§ Derlne Fonal o

Set of Concentrations

Vo =
Treated: Vm =

Untreated: Vm
Untreated: Vm
T

*

200, K
210, K

210, K =

150,
170,
165,

0.03
0.05

0.05
0.1
0.05

OEBPS/Images/image01162.jpeg
tapply(Y, list (X1, X2), mean)

OEBPS/Images/image01404.jpeg
HANG. TN PATERLEL o oulk SDIRChaon AWELE)
micmen <- function(conmc, state, Vm, K, vTrt) {
newvm <- Vm + VIrt * (state == "treated")

newvm * conc / (K + conc) # Define function

L B &

mmPuro <- nls(rate - micmen(conc, state, Vm, K, vIrt), data = Puromycin,
start = c(Vm = 160, K = 0.05, vIrt = 50))
> summary (mmPuro)

Formula: rate ~ micmen(conc, state, Vm, K, vIrt)

Parameters:
Estimate Std. Error t value Pr(>|t|)

Vm 166.60396 5.80742 28.688 < 2e-16 ***

K 0.05797 0.00591 9.809 4.37-09 ***

VIrt 42.02591 6.27214 6.700 1.61e-06 ***

Signif. codes: 0 '+**' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

OEBPS/Images/image01163.jpeg
> djiData <- read.table("djiData.csv", header= TRUE

> head (djiData,3)
Date DJI.Open DJI.High

1 12/31/2014
2 12/30/2014
3 12/29/2014

17987.66
18035.02
18046.58

18043.22
18035.02
18073.04

sep =

DJI.Low DJI.Close DJI.Volume

17820.88
17959.70
18021.57

17823.07
17983.07
18038.23

82840000
47490000
53870000

"

DJI.Adj.Close
17823.07
17983.07
18038.23

OEBPS/Images/image01405.jpeg
Residual standard error: 10.59 on 20 degrees of freedom

Number of iterations to convergence: 5
Achieved convergence tolerance: 9.239e-06

> plot (Puromycin§conc, Puromycingrate, pch = 21, cex = 1.5

+ xlab = "Instantaneous reaction rates (counts/min/min)"

+ ylab - "Substrate Concentrations (ppm)"

+ main = "Instantanecus reaction rates vs Substrate Concentrations"

+ bg = ifelse(Puromycingstate == "treated", "red", "blue")

> xConc = seq(0, 1.1, length = 25) # Set of Concentrations

> trtPred <- data.frame(conc = xConc, state = "treated")

> untrtPred <- data.frame(conc = xConc, state = "untreated"

> lines(predDf$conc, predict (mmPuro, trtPred), col = "red") # Model for Treated
data

> lines(predDf$conc, predict (mmPuro, untrtPred), col = "blue") # Model for
Untreated data

»¢ 1gound (*bottontight": o(*Treated”; "Uotraated®) fill e cirred®: "hlas")

OEBPS/Images/image01160.jpeg
> testMissing <- function(X) {

+ if (X > 0) cat("Success")

v}

> testMissing(NA)

Error in if (X > 0) cat("Success")
missing value where TRUE/FALSE needed

OEBPS/Images/image01402.jpeg
P ARLEREE o LR a0, Y, K SAEE = FAromy e,
Nonlinear regression model
model: rate ~ SSmicmen(conc, Vm, K
data: Puromycin
v K
212.68371 0.06412
residual sum-of-squares: 1195

Number of iterations to convergence: 0
Ailifaved GeEverglson tolelanse: T 938508

subset = state

"treated")

OEBPS/Images/image01161.jpeg
® RAFINRIngN € TEpINR, Bl T3 ALl SIAEIDO VELUSE.
> someMissings <- c(NA, 1:4) # Some missing values
> all(allMissings > 0)

[1] NA

> all(someMissings > 0)

[1] NA

OEBPS/Images/image01403.jpeg
T T v

PIAL Uy COIC,. TITORYRINSTRES, DL & 4k, CAK = .8
xlab = "Instantaneous reaction rates (counts/min/min)",
ylab = "Substrate Concentrations (ppm)
main = "Instantaneous reaction rates vs Substrate Concentrations"
bg = ifelse(Puromycingstate == "treated", "red", "blue")
predDf <- data.frame(conc = seq(0, 1.1, length = 25)) # Set of
Concentrations
lines (predDf$conc, predict (mmTreat, predDf), col = "red") # Model for Treated
data
lines (predDf$conc, predict (mmUntreat, predDf), col = "blue") # Model for
Untreated data
legend ("bottomright™, c("Treated", "Untreated"), fill = c("red", "blue")

OEBPS/Images/image01164.jpeg

OEBPS/Images/image01165.jpeg
> system.file(package = "mangoTraining", "extdata/djiData.csv")
] #e:/brogran Pilen/BiB-3 9 9]} iibrary fusndfrainingl axtdataldiiData: cuvh

OEBPS/Images/image01407.jpeg
* ARSI LYR]
> head (ovarian)
futime fustat age resid.ds rx ecog.ps
59 72.3315 2
15 74.4932
156 66.4658
421 53.3644
431 50.3397
248 €6 4301

A A
ok ok Rk
NEVENEN
TN
s gooss me geoes

OEBPS/Images/image01166.jpeg

OEBPS/Images/image01408.jpeg
.

SO EOAEA lOVariany UL, JONESALY

function (x) c(Min =

State
o
'

%.Min x.Median

377.0
€9 0

786.5
260 0

min(x),
X.Max
1227.0
€38 0

Median = median (x),

Max

bt Tt bl 2

max (x))

OEBPS/Images/image01406.jpeg
* SDUNELCHIDO RN & POSTIWINLDE., SOUETOE AWy Ly
Waiting for profiling to be dome...

Est 2.5% 97.5%
Vm 166.604 154.617 179.252
K 0.058 0.046 0.072

YTt 492 026 928 97 EE 100

OEBPS/Images/image01147.jpeg
> # Function that can return a variable number of values > list output
> sapply (myList, function(X) X [X > 2]

$P1

m1 3

$P3
1] 3334

$PS
1] 35446

> # Function that can return a variable number of values
> # BUT it happens that the return values are of the same
> # length in this instance > simplification occurs
> sapply (myList, function(X) min(X) :max(X)

P1 P3PS
] o1 3

12 4
3.1 2 3 5
3 4 6

OEBPS/Images/image01389.jpeg
¥ SHIOWICONE SATROHRLE s, SHDEE S CRanaL)
Waiting for profiling to be dome...
1] [.2]
2.5 % -0.2388045 -0.48456168
97 E % -0 2388045 -0 02003423

OEBPS/Images/image01148.jpeg
® DALLGAE £ ShMEy
+ B3 = matrix(rpois(s,
+ P5 = matrix(rpois(s,
‘)
> matList
$P3

(1] 2] 3] [,4]
n, 8 z L 4
2,1 4 2 8 2
$PS

(11 L2) 3] (4]
n, 5 4 3 2

2.1 1 7 7 1

3), nrow
5), nrow

2),
2)

OEBPS/Images/image01390.jpeg
B o) o i i) Yo fed
count spray

1 10 A
2 7 A

3 20 A

1 u A

5 14 A

6 12 A

> plot (factor (InsectSprays$spray), InsectSprays§count,
+ xlab = "Insecticide", ylab = "Insect Count",

" e Suuect Bount by Tassctioidet)

OEBPS/Images/image01387.jpeg
% DENTLL. £= ARa. CEAme ML W ole8
> round (predict (lrModel, newDf), 4) # Log 0Odds
1 2 3 1 5

-0.2388 -0.4776 -0.7164 -0.9552 -1.1940

> round (predict (lrModel, newDf, type
1 2 3 4 5

0 4406 0 3828 0 3282 0. 2778 0. 2325

"response"), 4) # Probability

OEBPS/Images/image01146.jpeg
HFLant B SHRERFL = FPOARAE, T, R4 = IPOIALE, #i. FE W zpoieas., 8
> # Function that (always) returns a single value > vector output

> sapply (myList, median

P1 P3 P5

13 4

> # Function that (always) returns 2 values > matrix output
> sapply (myList, range
P1 P3 PS
1] o i3
2,1 3 4 6

> # Function that (always) returns 5 values > matrix output
> sapply (myList, quantile!

P1 P3 PS
ox 0 1 3
255 0 3 4
505 1 3 4
75% 2 3 5
1005 3 4 6

OEBPS/Images/image01388.jpeg
% FOHOC(CORE IRTICENAL . 2L » Hogtaas
W

-0.239

> round(exp (coef (1rModel)), 3) # 0dds
W

0 788

OEBPS/Images/image01151.jpeg
® FApRAY AT OUALICY SR,
. 1list(airqualityMonth, cut(airquality$Temp, 3)), median)
(56,69.7] (69.7,83.3] (83.3,97)
11.50 8.0 nA
12.65 9. 9.2
nA 9. 7.4
nA 10. 7.4
19 05 10 €0

WSRO SR
o b N

OEBPS/Images/image01393.jpeg
* ESRS CULDRS ML W CORE SRENOee).

Waiting for profiling to be dome...

> round (exp(lc), 2)

Bst 2.5 % 97.5 %
factor (spray)A 14.50 12.45 16.76
factor (spray)B 15.33 13.22 17.66
factor (spray)C 2.08 1.37 3.01
factor (spray)D 4.92 3.77 6.28
factor (spray)E 3.50 2.55 4.67
Favtor {sprav)?® 16.67 14 86 19.08

O L

OEBPS/Images/image01152.jpeg
* DEppOY LTINS,

. 1list(airquality§Month, cut(airquality$Temp, 3), cut(airquality§solar.R
-2)),
. median)

.+ (6.67,170]

(56,69.7] (69.7,83.3] (83.3,97]

5 12.60 10.3 N
6 9.20 8.0 N
7 N 8.6 11.45
8 N 9.7 8.60
] 13.45 10.3 7.40

.+ (170,334]

(56,69.7] (69.7,83.3] (83.3,97]

5 10.90 1.15 N
3 16.10 12.65 9.2
7 N 9.70 7.4
3 n 10.90 8.0
" —— I — & 2

OEBPS/Images/image01394.jpeg
B AREEL % ERRERIANE, B Mk BT XL
> plot (mtcars$wt, mtcarssmpg,

. main = "Miles per Gallon versus Weight",

. xlab = "Weight", ylab = "Miles per Gallon")

> lines(1:6, linFun(1:6, a = 40, b = -6), col = "red")

> lines(1:6, linFun(1:6, a = 35, b = -4.5), col = "blue")
i Laoand (P topeighE™:. Saata i Model™; T:2]), Fill W eisced®.

"blue"))

OEBPS/Images/image01149.jpeg
* DEORSY VLT HURAAEY NGNS, s aua L EY IO, s
5 6 7 8 9
115 97 B E 8 6 10.3

OEBPS/Images/image01391.jpeg
Z PENOCGEL K= oA SAEE CIEASEOrINpEAN]L S le UaLa s INRECERDIAYS ;. SANLLY = PolENOn
> summary (priodel)

call:

glm(formula = count ~ factor(spray) - 1, family = poisson, data = InsectSprays)

Deviance Residuals:
Min 10 Median 3Q Max
-2.3852 -0.8876 -0.1482 0.6063 2.6922

Coefficients:
Estimate Std. Error z value Pr(>|z|)

factor(spray)A 2.67415 0.07581 35.274 < 2e-16 ***
factor(spray)B 2.73003 0.07372 37.032 < 2e-16 ***
factor (spray)C 0.73397 0.20000 3.670 0.000243 ***
factor(spray)D 1.59263 0.13019 12.233 < 2e-16 ***
factor(spray)E 1.25276 0.15430 8.110 4.71e-16 ***
factor(spray)F 2.81341 0.07071 39.788 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 2264.808 on 72 degrees of freedom
Residual deviance: 98.320 on 66 degrees of freedom

AIC: 376.59

Nk s el Bebihar TR aRat B

OEBPS/Images/image01150.jpeg
% BappLY \RpLLh AU A Ey eI, A gualitysiontal, eatan)
5 6 71 8 9
115 07 B E 8. € 10.3

OEBPS/Images/image01392.jpeg
% NEERSLY MR CoURL S CARELUL INDERY L SRER. W IINRCCNRIRYR, CRNLLY W PRTREH] I RNt
Estimate Std. Error z value pr(>|z|)

(Intercept) 2.67414865 0.0758098 35.2744434 1.448048e-272

factor (spray)B 0.05588046 0.1057445 0.5284477 5.971887e-01

factor (spray)C -1.94017947 0.2138857 -9.0711059 1.17815le-19

factor (spray)D -1.08151786 0.1506528 -7.1788745 7.028761e-13

factor (spray)E -1.42138568 0.1719205 -8.2676928 1.365763e-16

factor (spray)F 0.13926207 0.1036683 1.3433422 1.791612e-01

OEBPS/Images/image01155.jpeg
® FApRAY AT OUALICY S,
1list (airquality$Month, cut (airquality$Temp

WETINE TN SeksaEe

(56,69.7]
Numeric,5
Numeric,5
NULL
NULL
Woamaric:E

(69.7,83.3]
Numeric,5
Numeric,5
Numeric,5
Numeric,5
Somaric &

(83.3,97]
NULL
Numeric,5
Numeric,5
Numeric,5
onmyd o b

3)), quantile)

OEBPS/Images/image01153.jpeg
* TEppEYLLIOURLIEIRNING, SLEOuRLEEYSRORLi duant i,
55

0% 25% 505 75% 100%
5.70 8.90 11.50 14.05 20.10

56"
0% 25% so¥ 7% 100%
1.7 8.0 9.711.5 20.7

$75
0v 25% So% 75% 100%
4.1 6.5 8.610.9 1a.9

s8*
0v 25% So% 75% 100%
2.3 6.6 8.611.215.5

520"
ov 25 s0x 755 100w
g el EedSl oy oouca Sl iis

OEBPS/Images/image01395.jpeg
* DOEMDD € BaRuEpg e EIONIRiNE, 3,01, SAbk = BLCATN)
Warning message:
In nls(mpg - linFun(wt, a, b), data = mtcars)

No starting values specified for some parameters.
Initializing 'a’, 'b' to '1.'.
B oottt TREEEECEE TR BT R

OEBPS/Images/image01154.jpeg
% ARV ARPLLL ASLIgURTSEYSRLOL,. Atgualitywontal, SRankiie
55
0% 25% 50% 75% 100%
5.70 8.90 11.50 14.05 20.10

X
0v 25% So% 75% 100%
1.7 8.0 9.7 115 20.7

37
0v 25% So% 75% 100%
4.1 6.9 8.610.9 1a.9

X
0v 25% So% 75% 100%
2.3 6.6 8.611.215.5

59"
ov 25+ s0v 755 1l00%
B = Roaad Litea oG el

OEBPS/Images/image01396.jpeg
2NN S ALEARD S JADFUINE, X, Sk, BALS
+ start = c(a = 40, b = -5)
> nlsMpg
Nonlinear regression model

model: mpg ~ linFun(wt, a, b)

data: mtcars
a b

37.285 -5.344

residual sum-of-squares: 278.3

Number of iterations to convergence: 1
Sl evail G rataitce Ealuraste 1L oTELE- DY

mtcars,

OEBPS/Images/image01397.jpeg
® ROEhIEaEpD,
a b
37.285126 -5.344472
> coef (Im(mpg ~ wt, data = mtcars)
(Intercept) W
By atier

FIORLRATIAILR SIDN The nia Tar

Coefficients from the 1m fit

OEBPS/Images/image00938.jpeg
lestedList <- list(A A 'Y EAakE A DARLad. 8%
> nestedList # Print the nested list
SA

SIS

$B
BC
n1 s

BD
a] e

> nestedListBC # Extract the C element within the B element
[1] 3

OEBPS/Images/image01180.jpeg
® ALLONS CREINCEAIANE IR TN, TERE

> head(air)

Ozone Solar.R Wind Temp Month Day
a1 190 7.4 67 5
36 18 8.0 72
12 49 12.6 74
18 313 11.5 62
nA VA 14.3 56
g NA 14 9 €6

A A
LR RN

OEBPS/Images/image01422.jpeg
vy T v

CAXBIEN & SUDVEACLOONHDN L, TMEOALS = Bgeit)

plot (coxsurv, col = theCols, xlab = "Time ()",
ylab = "Survival Function S(t)",
main = "Proportional Hazards Model"

matlines (t(predov), 1-pct,

type = "1", lty = 2, col = theCols

legend ("bottomleft", paste ("Age

. aGaDESEnE). FLIL

& DALV, “CREVIREL SRR SO
values

Plot the survival curves

Add parametric curves

theCols)

OEBPS/Images/image00939.jpeg
¥ ERALusc ®AOm SUsd SArassb
Day Date TempF TempC

1 saturday Jul 4 75 24
2 Sunday Jul 5 86 30

3 Monday Jul 6 83 28

4 Tuesday Jul 7 83 28

5 Wednesday Jul 8 87 31

> col <- "TempC" # The column we want to select
> weather[[coll] # Return the TempC column

[1] 24 30 28 28 31

OEBPS/Images/image01181.jpeg
v T v

b o]
averageOzone <- aggregate (data

air, Ozone ~ Month, mean, na.rm

Graphic as png
png ("0zone_Levels.png")

hist(airgozone, col = "lightblue",
main = "Histogram of Ozone Levels in New York\nMay to September 1973"
xlab = "Ozone (ppb) ")

A R}

OEBPS/Images/image01423.jpeg
® patzom e~ R0k %, A6, 0.3, -2, 0.3, B8, B8, 2190, AN AL.T,
+ 5.4, 6, 4.3, 4, 10, 17.2, 11.6, 3.4, 3, 2.3, 2.4, 5.4, 8.3, 8, 6.5,
+ 1.9, 1.4, 1.4, 2.9, 4.9, 3.6)

OEBPS/Images/image00936.jpeg
% SUEGRLY YLLAu)

Sepal.Length

Min.

1st Qu.

Median
Mean

3rd Qu.:

Max

.300
.100
.800
.843
.400
900

¥ REOCIGE. S TAECHAL. DuNmSrY
Sepal.Width

Min.

1st Qu.

Median
Mean

3rd Qu.:

Max

oW

£28
.800
.000
.057
.300
400

000

Petal.Length

Min.

1st Qu.

Median
Mean

3rd Qu.:

Max

AR

= E
.600
.350
.758
.100
900

000

Petal.Width

Min.

1st Qu.:

Median
Mean

3rd Qu.:

Max

O BB S

;0.
.300
.300
.199
.800
€00

100

species
setosa 50
versicolor:50
virginica :50

OEBPS/Images/image01178.jpeg
® EaAL SRR ThALRT BRSNS
air <- read_excel("airquality.xlsx", sheet - "data"
head(air, 3)

Ozone Solar.R Wind Temp Month Day

a 190 7.4 67 5 1
36 18 8.0 72 5 2
192 149 12 € 74 £ a3

OEBPS/Images/image01420.jpeg
* SRR, ¥ CORBOLOVENE Y o Ao, Oabtd = OUREa,
> coxSurv <- survfit (coxModel

> summary (coxSurv)

call: survfit(formula = coxModel

time n.risk n.event survival std.err lower 95% CI upper 95% CI

59 26 1 .988 0.0142 0.961 1.000
115 25 974 0.0244 .927 1.000
156 24 955 0.0364 .886 -000
268 23 .933 0.0482 .844 .000
329 22 .897 0.0621 .783 -000
353 21 .862 0.0724 .732 -000
365 20 .824 0.0819 .678 .000
431 17 775 0.0934 .612 .982
464 15 724 0.1032 .548 .958
475 1 673 0.1112 .487 .931
563 12 .596 0.1226 .398 .892
€38 s E20 0. 1287 a9 - a4c

e R R R R RR R R R
coocookrRRR K

OEBPS/Images/image00937.jpeg
catter-plot matrix

of 1ris

OEBPS/Images/image01179.jpeg

OEBPS/Images/image01421.jpeg
% PARLICORNBIN,, FO. & DUAEET, BLAD = TINEM (R
. ylab = "Survival Function S(t)",
% B - o el Hitasda MeaRin

OEBPS/Images/image00942.jpeg
* ERALOAE" L, CLEAYY,
Day TempC

1 saturday 24

2 Sunday 30

3 Monday 28

4 Tuesday 28

5 Wednesday 31

> weather [, "TempC"

[1] 24 30 28 28 31

1

e L

1

¥ 2 SRIOE SUDSENEDE 8 SAEN R

1 column - returns a vector

OEBPS/Images/image01184.jpeg
% SOILASLIGnR. SLYSRLON a0
1] 1.7 2.3 2.8 3.4 4.0 4.1 4.6 4.6 4.6 4.6

OEBPS/Images/image00943.jpeg
* NRALHAY L rampoc, Sfopcs B of 3 GRS RRERIR RN AN
Tempc

24

30

28

28

27

o W=

OEBPS/Images/image01185.jpeg
> myvec <- c(63, 31, 48, 82, 51, 20, 72, 99, 84, 53]
> order (myVec)
1] 6 2 3 510 1 7 4 9 8

OEBPS/Images/image00940.jpeg
* ERALONE Koo B8 TR

Day TempC
saturday =~ 24
sunday 30
Monday 28
Tuesday 28

WL

31

"TempC") |

B, ROMR,

2 columns

OEBPS/Images/image01182.jpeg
» AN Ean

createsheet (airWB, "Summary")

Write summary data
writeWorksheet (airWB,

Add graphic

createName (airWB, "PlotGoesHere",
> addImage(airWB, filename = "Ozone_Levels.png", name

T T pep e

averageOzone, "Summary”, startRow = 2, startCol

TRUE)

"Summary! E2")

"PlotGoesHere",

2)

OEBPS/Images/image01424.jpeg
* FMULEERRCRS EEinLbTen, requenoy = 1

> tsUltron
Time Series:
start = c(1, 1)
End = c(5, 3)
Frequency = 7

[1] 84.4 56.5 50.3 13.2 13.1
[14] 4.0 10.0 17.2 11.6 3.4

[27] 1.4 1.4

2.9 4.9 3.6

9.
3.

4
o

8.6 21.2 33.8 22.7

2.3

2.4

5.4

8.3

OEBPS/Images/image00941.jpeg
EEREOeT R IR,

Day TempC
saturday =~ 24
sunday 30
Monday 28
Tuesday 28

WL

31

"TempC") |

F 8 YROEQD Slmsante

OEBPS/Images/image01183.jpeg
* » SNy SGEIVA BRAEL W0 LA
> setActivesheet (airWB, "Summary")
> saveWorkbook (airWB, "air summary.xlsx")

OEBPS/Images/image01425.jpeg
% PARLSENNLCEON, MLl W TILAYE Ok OLTIEE DAY SO ATSOIEIE . Agw o Uetron,
. xlab = "Week during May 2015", ylab = "Daily Gross ($m)")
i GOloRNERTIEEcE, Tl = 91,50 = Nemari

OEBPS/Images/image00944.jpeg
% YU " ORERCSERMNIE 5 “Rcd. € =0s)
> resultl <- myDESY [myDESX > 0]
i BanulEs eo myiE [YDERE ». 0. T

OEBPS/Images/image00945.jpeg
% DYDALEN £ EA"IRLRC AR =L TA0IREDR 1T, T ANIESIASAL TS
> myDates <- as.Date(myDates, format = "%Y-sm-sd")

> myDates

[1] "2015-06-21" "2015-09-11" "2015-12-31"

» myDates [2:3]

[1] "2015-09-11" "2015-12-31"

class (myDates)

[1] "Date"

OEBPS/Images/image01187.jpeg
1:

3:
4
5:
6:
7:
8:
9:

10:
11:
12:
13:

> sortedByWindandDescTemp <- airquality[order(airquality§Wind,
> head (sortedByWindandDescTemp, 10)

53
121
126
117
99
62
127
98
66
54

Ozone Solar.R Wind Temp Month Day

N
118
73
168
122
135
o1
66
64
N

59
225
183
238
255
269
189

A
175

o1

1.

7

Daa b o bW

76
o4
93
81
89
84
93
87
83
76

6

22
29

-airquality$Temp),]

OEBPS/Images/image00946.jpeg
* Em-dstaadlis, oxagan
[1] "2015-06-21"

"1500-01-01")

OEBPS/Images/image01188.jpeg
MEE CALA SETIYAN WAk
jan <- data.frame (Month
feb <- data.frame (Month

rbind (jan,
Month Value

Jan
Feb

16.4
cE o

feb)

month
- "Jan",
- "Febn,

value
Value

46.4)
55.2)

OEBPS/Images/image01186.jpeg
1: > sortedByWind <- airquality[order(airquality$Wind),
> head (sortedByWind, 10)
Ozone Solar.R Wind Temp Month Day

53 NA 59 1.7 76 6 22
121 118 225 2.3 94 8 29
126 73 183 2.8 93 9 3
17 168 238 3.4 81 8 25
99 122 255 4.0 89 8 7
62 135 269 4.1 84 7
54 NA 91 4.6 76 6 23
66 64 175 4.6 83 7 s
98 66 A 4.6 87 8 6
127 o1 189 4.6 93 9 a

OEBPS/Images/image00927.jpeg
> weather| 1:4

2
3
4

.

¥ Ve,

Day Date TempF TempC
1 saturday Jul 4

sunday Jul s
Monday Jul 6
sty L ¥

75

24
30
28
28

Blank

OEBPS/Images/image01169.jpeg
* IWLACOQDATR)

> system.time (longData <- read.csv("longData.csv"))
user system elapsed

118 04 1.03 119 31

OEBPS/Images/image01411.jpeg
* SOUNAYY VENC)
call: survfit(formula = ovSurv -~ 1

time n.risk n.event survival std.err lower 95% CI upper 95% CI

59 26 1 0.962 0.0377 0.890 1.000
15 25 0.923 0.0523 0.826 1.000
156 24 1 o0.885 0.0627 0.770 1.000
268 23 1 0.846 0.0708 0.718 0.997
329 22 1 0.808 0.0773 0.670 0.974
353 21 1 0.769 0.0826 0.623 0.949
365 20 1 0.731 0.0870 0.579 0.923
431 17 1 0.688 0.0919 0.529 0.894
464 15 1 0.642 0.0965 0.478 0.862
475 14 1 0.59 0.0999 0.429 0.828
563 12 1 o0.546 0.1032 0.377 0.791
€38 11 14 0.497 0. 1051 0 328 0. 752

OEBPS/Images/image00928.jpeg
weather

Day Date TempF TempC

saturday Jul 4
sunday Jul
Monday Jul
Tuesday Jul

Wednesday Jul

weather[c(F, T,

F,

Day Date TempF TempC

sunday Jul 5
Wedussday Jal B

75 24
86 30
83 28
83 28
87 31
F, T),

8 30
87 31

1

#2508 OELIME oAk

Logical, Blank

OEBPS/Images/image01170.jpeg
FRjbomgnaral

system. time (Load("longData.RData"))
user system elapsed
0.78 0.03 0.81

rm(longData)

system. time (Load("longData.RData"))
user system elapsed
081 0.03 0. 84

OEBPS/Images/image01412.jpeg
® PaRbiXNY, POk % CRLUNT,
+ main = "Kaplan-Meier Plot of Ovarian Data",
i RIEE W ne TN EE - Bl Foasttdn SR

OEBPS/Images/image01167.jpeg

OEBPS/Images/image01409.jpeg
% SVRDLY o MUEVIOVASIADACUCLIEG, SVSOL = OWElangengLebl

> ovsurv

1 59 115 156 421+ 431 448+ 464 475 477+ 563 638 744+ 769+
-770+

[15] 803+ 855+ 1040+ 1106+ 1129+ 1206+ 1227+ 268 329 353 365 377+

OEBPS/Images/image00926.jpeg
MPAEOEEL "3y 9 4

Day Date TempC

sunday Jul 5
Monday Jul 6
Tuesday Jul 7
Wedussday Jal B

30
28
28
31

¥ OTAm,

1ve

OEBPS/Images/image01168.jpeg
APDOTAER & GAEd - SEAEE[IH = LIERDRODED, JSius = SnDEELLONnneReY))
write.csv(longData, "longData.csv", row.names = F)

save (longData, file = "longData.RData")

AEERDRIanaDate, File S YloeaDat nde®]

OEBPS/Images/image01410.jpeg
o I s Lt e A
> kmov
Call: survfit(formula = ovSurv ~ 1)

records n.max n.start events median 0.95LCL 0.95UCL
a6 g e 192 638 464 NA

OEBPS/Images/image00931.jpeg
* FEACOAEYIAY. L MesCHELGTEODE. B BROL ¥ ARSI Y o
[1] Sunday Wednesday
Levels: Monday Saturday Sunday Tuesday Wednesday

> weather [weather$TempF > 85 ,] # All data where TewpF > 85
Day Date TempF TempC
Sunday gul 5 86 30
5 Wednesday Jul 8 87 31

> weather [weather$TempF > 85 , c("Day", "TempF")] # 2 columns where TempF > 85
Day TempF
sunday 86
5 Wadimsday' 87

OEBPS/Images/image01173.jpeg
1

SETAOLEUAEA N BEURRAURS LI
nwableData[1:3, c("TABLE NAME",

TABLE_NAME
MSysAccessObjects
MSysACEs
vetadbaia

TABLE_TYPE
SYSTEM TABLE
SYSTEM TABLE
SYSTEM TABLE

"TABLE_TYPE")]

Preview main information

OEBPS/Images/image01415.jpeg
PO, £UL & TR0,

main = "Kaplan-Meier Plot of Ovarian Data",

xlab = "Time (t)", ylab = "Survival Function §(t)"
lines(predov, 1 - pct, col = "red")
Ywomeid [Vhottonlebtn s o("Eaplan-Meiars: "Waibeil %y -£iii:

c("blue™

n"red"))

OEBPS/Images/image00932.jpeg
st R

1] 1s0

A A

head(iris)

5.

RIS
o 4l

1

T MONOAT, UE SONN TooSLIn

Return only the first 6 rows
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

3

T Y

.5

1

SR

4

0.

Y

2

setosa
setosa
setosa
setosa
setosa
[P—

OEBPS/Images/image01174.jpeg
1
2
3

Dremuacy. &=

keyorderInfo <- sqlQuery (nWind

"SELECT OrderlD,

head (keyOrderInfo, 3)
OrderID EmployeeID Orderbate ShipCountry

10248
10249
10250

5 1996-07-04
6 1996-07-05
4 1996-07-08

TS ONER N, CTWEEDBES,
orderQuery]

France
Germany
Brazil

A pronnLry. TRIN DraaEn

OEBPS/Images/image00929.jpeg
mos W=

MESLOSE L MAREDACSTRERN Y A5,

Day Date TempF TempC

Sunday Jul 5 86
Wednesday Jul 8 87

weather[weather$Day

30
31

Day Date TempF TempC

saturday Jul 4 75
Monday Jul 6 83
Tuesday Jul 7 83
Padompde: Sul B 89

24
28
28
31

.

"Sunday" ,

T RogLeRt, RiNDK

Logical, Blank

OEBPS/Images/image01171.jpeg

OEBPS/Images/image01413.jpeg
PNEDR - BUINESQIORAGEY Lod,, RAmh S TERERLES.

> summary (wbOv)

call:

survreg(formula = ovsurv ~ 1, dist = "weibull"
value std. Error z P

(Intercept) 7.111 0.203 24.202 2.36e-130

Log(scale) -0.103 0.254 -0.405 6.86e-01

Scale= 0.902

Weibull distribution
Loglik(model)= -98 Loglik(intercept only)= -98
Number of Newton-Raphson Iterations: 5

.

OEBPS/Images/image00930.jpeg
% EALLEE] NEALIALSIENEE 3 35, SiTRRYT. SDMpCEr]l woi00Acel,. Caragtes
Day TempC

2 sunday 30

E Wadimeday' 31

OEBPS/Images/image01172.jpeg
B ARRERENNROLRG.
> nWind <- odbcConnectAccess (“Northwind.mdb”)

OEBPS/Images/image01414.jpeg
% PEL € BEQL-9, 88 0Yn. 003 ¥ ANanELIER SE WHACH O PEEMLct
> dummyDf <- data.frame (1) # Dummy dataset

> predov <- predict (wbOv, newdata = dummyDf, # Make Quantile predictions

+ type = "quantile", p = pct

> head (predov

11

0.00000 19.28838 36.22041 52.46544 68.33554 83.97347

OEBPS/Images/image00935.jpeg

OEBPS/Images/image00933.jpeg
% PRmQALELN, A) 7 EALUEIL onay TOm SArmL & S

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
5 4.0 2.0 o T ——

OEBPS/Images/image01175.jpeg
N

[1] TRUE

[1] "Ozone"

aQuery <-

1 8
2 6
3 o1
4w

[1] TRUE

library (DBI)
library (RSQLite)
Create a new SQLite database in-memory
4: > dbiCon <- dbConnect (SQLite(), dbname = ":memory:")

ozone Solar.R

19
78
320
66

We create a SQLite DB

"airquality"

> # Check what columns (fields)
> dbListFields (dbiCon,
"Solar.R"

"Temp"

Wind Temp Month Day

20.1
18.4
16.6
16.6

61
57
73
57

3

s
s
3

9
18
22
25

> dbClearResult (dbiQuery) # Be tidy!

> # Write airquality to the DB as a new table
> dbiiriteTable (dbiCon,

airquality)

> # Send a query and return the result
"SELECT * FROM airquality WHERE Month
dbiQuery <- dbSendQuery (dbiCon, aQuery)

dbFetch (dbiQuery)

"Month"

are in the airquality table
"airquality")
"Wind"

"Day"

5 AND Wind > 15"

OEBPS/Images/image00934.jpeg
® ERLLINEIN
Sepal.Length Sepal.Width Petal.Length Petal.Width

145
146
147
148
149
150

> tail(iris,

149
150

6

5.
2)

bWy

7

¥ BRI cEeY TOR SRaL § sowe

3.

Return

LLwnw
ok oino

3

5.

5.
only the last 2 rows

EREERY

7

2

Fon RN

Sepal.Length Sepal.Width Petal.Length Petal.Width

6
5

52
9

3.
A

4
0

s
5

.4
1

2.3
1.8

Species
virginica
virginica
virginica
virginica
virginica
virginica

Species
virginica
Avasaiea

OEBPS/Images/image01176.jpeg

OEBPS/Images/image01418.jpeg
¥ CORNGONL ¥~ COEPOIOEEITY S g8 F SRULOTEX), THER S SWarian)

> summary (coxModel)
call:

coxph (formula = ovSurv - age + factor(rx), data = ovarian)

26, number of events= 12

coef exp(coef) se(coef) z Pr(>|z|)

age 0.14733 1.15873 0.04615 3.193 0.00141 **

factor (rx)2 -0.80397 0.44755 0.63205 -1.272 0.20337

Signif. codes: O '***! 0.001 '**' 0.01 '*' 0.05 '.' 0.1

exp (coef) exp(-coef) lower .95 upper .95
age 1.1587 0.863 1.0585 1.268
factor (rx)2 0.4475 2.234 0.1207 1.545

Concordance= 0.798 (se = 0.091)

Rsquare= 0.457 (max possible= 0.932)

Likelihood ratio test= 15.89 on 2 df, p=0.0003551
Wald test - 13.47 on 2 4f, p=0.00119
gitice {IoGtink) TEEECS 1I-EE o T HEE, .341e-05

1

OEBPS/Images/image01177.jpeg
% FNOEALY AT IEOELY
> # What sheets does the workbook contain?
> excel_sheets ("airquality.xlsx")

1] "data"

OEBPS/Images/image01419.jpeg
* S paCosicont

rho chisq P
age -0.0918 0.113 0.736
factor(rx)2 0.2072 0.518 0.472
GL.OBAL NA 0 720 0. E9E

OEBPS/Images/image01416.jpeg
® MOCWE © BUEVENG BV Age, Rk = W EEd . Ve e
> summary (wbOv2)

call:

survreg (formula = ovSurv - age, data = ovarian, dist = "weibull")
Value std. Error z P

(Intercept) 12.3970 1.4821 8.36 6.05e-17

age -0.0962 0.0237 -4.06 4.88e-05

Log(scale) -0.4919 0.2304 -2.14 3.27e-02

Scale= 0.611

Weibull distribution

Loglik (model)= -90 Loglik (intercept only)= -98
Chisq= 15.91 on 1 degrees of freedom, p= 6.7€-05

Number of Newton-Raphson Iterations: S

e

OEBPS/Images/image01417.jpeg
% SOeLL - b CEARG IOeT W ANec Ny a S8C Of ADEN LOr Pradlat o

T vV

v v

theCols <- c("red", "blue", "green") # Colors to use
predov <- predict (wbOv2, newdata = ageDf, # Make Quantile predictions
type = "quantile", p = pet)
matplot (t (predov), 1-pct, xlim = c(0, 1200), # Matrix plot of predicted survival
type = "1, lty = 1, col = theCols,
main = "Parametric Estimation of Survival Curve by Age",
xlab = "Time (t)", ylab = "Survival Function §(t)")
SR B ERLaEEY, DS (T Aae =Y. anabEtEaey . EITL = EhReSLE)

OEBPS/Images/image00960.jpeg
¥ FAChEERLIAGR e SAQLODIRYRALIDNE,, MYeAR = TAabLinge)
> factorRatings

[1] Poor Average Good Poor ~ Good Good Good Poor
[9] Average Poor ~ Average Good Average Average Average Average
[17] Good Average Poor Good

bl Do Kvibane Hoad:

OEBPS/Images/image01202.jpeg
T vV

HEEL ACEDEN TREpRACETE
replicateMeans <-

cast (fryMelt, time + treatment + subject + variable ~
head (replicateMeans,

3)

time treatment subject variable

1
1
1

1
1
1

3
3
3

potato
buttery
grassy

(all)
8.45
0.00
0.00

., mean)

OEBPS/Images/image00961.jpeg
>y == "A"
[1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE

OEBPS/Images/image01203.jpeg
fSElgoLaN e s RIADEERY, BITRAERT, AT Migns, “IS.towiil
head (dj iHighLow, 3)

Date DJI.High DJI.Low

1 12/31/2014 18043.22 17820.88
2 12/30/2014 18035.02 17959.70
3 12/29/2014 18073.04 18021.57

OEBPS/Images/image00958.jpeg
> x <= c("B", "B", "CW,
> x

{11 "B" "BY
> mode (x)
[
> class(x)
(]

new nan man

ncharacter”

ncharacter”

>y <- factor(x)

>y

[11 BBCAAABCC
aBC

> mode (y)

11
> class(y)
11

Levels:

"numeric"

"factor"

wan, mAW, wAW, wgw, ncn,

wpn wgn wow ww

nen)

OEBPS/Images/image01200.jpeg
> # Create two new columns based on the rep variable
> fryReCast <- cast(fryMelt, ... ~ rep)
> head (fryReCast, 3)
time treatment subject variable 1 2
5:1 1 3 3 potato 2.9 14
2 3, 3 buttery 0.0 0
7:3 1 1 3 grassy 0.0 0

OEBPS/Images/image00959.jpeg
® EREINOECr ST ERRES, TRVSLageT, oot

> myRatings <- sample(ratings, 20, replace = TRUE)
> factorRatings <- factor(myRatings)

> factorRatings

[1] Poor Average Good Poor ~ Good Good Good Poor
[9] Average Poor Average Good Average Average Average Average
[17] Good Average Poor Good

fevsla: Lvevaps Good Seor:

OEBPS/Images/image01201.jpeg
FRCcApC tranch CTLaN.,

id.var = c("time",

formula

time treatment subject variable

1
1
1

1
1
1

- rep:
3 potato
3 buttery
3 grassy

"treatment",

1
2.9
0.0
0.0

"subject”,

2
14.0
0.0
0.0

vrepn),

OEBPS/Images/image00964.jpeg
¥ SEREGCROELERREINON] T RINBERE LAY, OEARET, TS

> factorRatings

[1] Negative Other Other Negative Other Other Other
[9] Other Negative Other Other Other Other Other
[17] Other Other Negative Other

bralas NEGEEive Dikies

Negative
other

OEBPS/Images/image00965.jpeg
BEER S Rk, 28 Afs $HediY. AT. A0, Sk An, ZAS
> cut (ages, breaks = 3)

(1] (19,25.3] (31.7,38] (31.7,38] (19,25.3] (19,25.3] (25.3,31.7]
[7] (25.3,31.7) (19,25.3] (19,25.3] (31.7,38]

(19 25.31 (25.3.31.7] (31.7.38]

Ruwaii

OEBPS/Images/image00962.jpeg
* ERCLOERRL OON LCAnLOLEREIT0N

Warning message:

In *[<-.factor™ (“*tmp*>, factorRatings
fivalid EaEres TEval,. DA GESsEited

AR W CEeambaee

"Poor”, value = "Negative")

OEBPS/Images/image01204.jpeg
SOALORTEEINT = Oabhed e gaia,

> head(gatheredDdI, 4)
Date DI Value

S Rt

2014-12-31 DJI.High 18043.

2014-12-30 DJI.High 18035
2014-12-29 DJI.High 18073
2014-12-26 DJI.High 18103

22
.02
.04
.45

Ky LT, VELOSsTYAILE", BUL-RIOR, SOE-Low

OEBPS/Images/image00963.jpeg
% VLR ERCROERSLIOMN;

[1] "Poor" "Average" "Good"

> levels(factorRatings) <- c("Negative", "Average", "Positive")

> factorRatings

[1] Negative Average Positive Negative Positive Positive Positive
[8] Negative Average Negative Average Positive Average Average
[15] Average Average Positive Average Negative Positive

favstas Wonstdve Ruasyan Toul Elve

OEBPS/Images/image01205.jpeg
SRORICELIOIINE - BRLEADIORLONCeINGl L, Sy DNE VAL W TRiaE)
head (backToOriginal, 3)

Date DJI.High DJI.Low
01/02/2014 16573.07 16416.49

2 01/03/2014 16518.74 16439.30

01/06/2014 16532.99 16405.52

OEBPS/Images/image01206.jpeg
¥ PACEATRS ¥ GACE - RTINSO

> Packages

Source

1 reshape 0.8.5

2

tddyx D.3.:0

YoEeRuape. 888

ot AL B e

OEBPS/Images/image00967.jpeg
® GRcifakd, DIREEN w OLiB, 38, A0, ANLl, SEDNLE = CfPTIREIRY, YA, T3ERTL)
[1] 18-25 30+ 30+ 18-25 18-25 25-30 25-30 18-25 18-25 30+
ety du i e

OEBPS/Images/image01209.jpeg
* CREINODEOE € AR EOECRCIAT (ATl LEYeMonL): * CHIRELSE CRAEWROLEE VR T 0Ok
Month

> # Use character values to reference named elements
> head(windMedians [charMonths]

5 5 5 5 5 5
11 E 11 . E 11.5 11 . € 11.5 11.E

OEBPS/Images/image00726.jpeg
MPG Gallon versus Weight

. W mpg ~wt
. B log(mpg) ~wt

Weight (16/1000)

OEBPS/Images/image00968.jpeg
* IO ERNEILS
function (x, size, replace = FALSE, prob = NULL)
NULL

OEBPS/Images/image01210.jpeg
¥ ALTHUALLEYARCLLEON A, ST Nt aOE | Fhaasonthe.) v 00 MecwIn N

column
> airquality$DiffWind <- airquality$Wind - airquality$MedianWind # Calculate
differences
> head(airquality, 3) # First few rows
Ozone Solar.R Wind Temp Month Day MeanWind DiffWind MedianWind
1 190 7.4 67 5 1 1.5 -4 1.5
2 36 18 8.0 72 5 2 1.5 -3.5 1.5
3 12 49 12.6 74 5 3 1.5 i 1.5
> tail(airquality, 3) # Last few rows
Ozone Solar.R Wind Temp Month Day MeanWind DiffWind MedianWind
151 14 101 14.3 75 9 28 10.3 4.0 10.3
152 18 131 8.0 76 9 29 10.3 -2.3 10.3

163 920 592 11 .6 €8 o 20 10 3 1 9 10 3

OEBPS/Images/image01207.jpeg
* HEERTACE: TACKAIAN, Soures, Jabe
Package Version

1 reshape 0.8.5

2 tidyr 0.2.0

£ TACKATS" .

"Version®),

sep

OEBPS/Images/image00966.jpeg
* URCiagan, DLREEH = OLiE, 38, A0, ANEly
[1] (18,25] (30,Inf] (30,Inf] (18,25] (18,25] (25,30] (25,30] (18,25] (18,25]
[10] (30,1Inf]

Levels: (18,25] (25.30] (30, Inf]

OEBPS/Images/image01208.jpeg
? SEAALIOUALILY! ¥ ¥ianb airoumtaby
Ozone Solar.R Wind Temp Month Day

1 a1 190 7.4 67 5 1
2 36 18 8.0 72 5 2
3 12 149 12.6 74 5 3
1 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 s
6 28 NA 14.9 66 5 6

> windMedians <- tapply(airquality§Wind, airquality$Month, median)
> windMedians

5 6 71 8 9
11 E 07 B8 € B € 10.3

OEBPS/Images/image00949.jpeg
;3
o

POSIXct (myTimes,

format

OEBPS/Images/image01191.jpeg

OEBPS/Images/image00950.jpeg
 DpSmERs Fot
[1] "2015-06-22" "2015-09-12" "2016-01-01"

OEBPS/Images/image01192.jpeg
10
11
12
13
14
15

PRI N TEILRER WO A e e nEE S

pk2and3 <- pkData [pkDatagSubject ¥int 2:3

demoland2

Subject Sex Age Weight Height BMI Smokes

1
2
pk2and3

M
M

43
22

Subject Dose Time

2

25
25
25
25
25
25
25
25
25
e

o
1
6

12

24
o

12
o

57
71

cone

0.
445,
129.
93.
6.
o
500.
146.
116.
€8

00
55
31
33
1
00
65
04
93
oE

166 20.7
179 22.2

No
No

OEBPS/Images/image00947.jpeg
* EYDSLEN £ R1203h08ax, ARIEDRLL., AOIRLANST
> myDates <- as.character (myDates)

> myDates <- as.Date (myDates, format = "%¥Y3m¥d")
> myDates

[1] "2015-06-21" "2015-09-11" "2015-12-31"

OEBPS/Images/image01189.jpeg
* ARRELORMOLIRL®,
Subject Sex Age Weight Height BMI Smokes

1
2
3

A A ol e

1M
2 M
3 F
head (pkData,

Subject Dose

1

VT

25
25
25
25
25
25
oE

43
22
23
7)
Ti

3)

ne
o
1,
6
12
24

57
7
72

conc

0.
660.
178.
8.
<,
0.
445

42

00
13
92
99

00
cE

166 20.7 No
179 22.2 No
170 25.1 No

OEBPS/Images/image00948.jpeg
% AR £ SRR AR =) RN SO0 T "ERIR DN A A0SR AR e, "ENIRTIA R A0 TRRCEN
> myTimes <- as.POSIXct (myTimes, format = "sY-sm-3d ¥H:%M:%S")

> myTimes

[1] "2015-06-21 14:22:00 BST" "2015-09-11 10:23:32 BST" "2015-12-31 23:59:59 GMT"

> class (myTimes)
[1] "POSIXct" "POSIXt"

OEBPS/Images/image01190.jpeg

OEBPS/Images/image00953.jpeg
* LS EIE AT TALen, NN DR TR0 AT 0N, VEItE - TReakE ™)
Time differences in weeks
[1] -1.857143 9.857143 25.714286

OEBPS/Images/image01195.jpeg
% ZEBCHL IS LISNIOPLLIEALS € MDA OA D DR YN,
> isMonthValueADuplicate[1:10] # View first 10 records
[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

OEBPS/Images/image00954.jpeg

OEBPS/Images/image00951.jpeg
* MEREOAYRIINORLEN)

[1] "Sunday" "Friday" "Thursday"
> months (myDates)
[1] "June" "September" "December"

> quarters (myDates)
iy WEAC Maaw EEE

OEBPS/Images/image01193.jpeg
* WELON (SEnClanas. FEIANc)
Subject Sex Age Weight Height BMI Smokes Dose Time Conc

2 M 22 71 179 22.2 No 25 0 0.00
22 71 179 22. No 25 6 129.31
22 71 179 22. No 25 12 93.33
22 71 179 22. No 25 24 46.11
PYY 21 179 29 No 25 1 445 GG

AL
=== =

OEBPS/Images/image00952.jpeg
* LS EIDRIEyEaLen, A8 DR TR0 ER e T 0N
Time differences in days
[1] -13 69 180

OEBPS/Images/image01194.jpeg
* BELOELOMCTANOE, PEASRaE, Rt =
Sex Age Weight Height

g R OAR BEGEOE RS e

subject.
i,

bW ww e NN NN

43
22

57
7
71
71
71
71
A
A
NA
A
NA

166
179
179
179
179
179
nA
nA
nA
nA
NA

TRUE)

BMI Smokes Dose Time

20
22
22
22
22
22

ZEEEELb bbb

No
No
No
No
No
No

<NA>

<NA>
<NA>
<NA>
<NAs

N
25
25
25
25
25
25
25
25
25
oE

NA

12
24

12

a ko

o4

445,
116.

500.
146.
6B

OEBPS/Images/image00955.jpeg
» DRLER BN 2RAR- AR AL e TARERADR IR,y AN
> myDates <- ymd (myDates)

> myDates

[1] "2015-06-21 UTC" "2015-09-11 UTC" "2015-12-31 UTC"

OEBPS/Images/image00956.jpeg
Ny TINES €TI0 A0:00", 305N 0., "ARCRN AT
myTimes <- hms (myTimes)

myTimes

[1] "14H 22M 0S" "10H 23M 32S" "23H 59M 59S"

OEBPS/Images/image01198.jpeg
> # Let's begin by loading the package and looking at the data

> library (reshape)
3: > head(french fries, 3)
time treatment subject rep potato buttery grassy rancid painty

5: 61 1 1 3 1 2.9 0.0 o 0.0 5.5
25 1 7 3 2 4.0 0.0 o 1.1 0.0
62 1 2 10 1 11.0 6.4 o 0.0 0.0

> tail(french fries, 3)
time treatment subject rep potato buttery grassy rancid painty

695 10 3 78 2 3.3 o o 2.5 1.4
666 10 3 86 1 2.5 o o 7.0 10.5
696 10 3 86 2 2.5 o o 8.2 9.4

Now we 'melt' having identified the ID variables
> fryMelt <- melt(french fries,
c("time", "treatment", "subject”, "rep"))

3 id.vars

Our new data is long and thin
> head (fryMelt, 3)
time treatment subject rep variable value

T d ok 3 1 potato 2.9
2 1 1 3 2 potato 14.0
31 1 10 1 potato 11.0
> tail(fryMelt, 3)

time treatment subject rep variable value
3478 10 3 78 2 painty 1.4
3479 10 3 86 1 painty 10.5
3480 10 3 86 2 painty 9.4

OEBPS/Images/image00957.jpeg
PEEIsALEYe - R L VAR LA, B N
newYearEve + seconds(2)

[1] "2016-01-01 00:00:01 UTC"
newYearEve + months(3)

[1] "2016-03-31 23:59:59 UTC"
newYearEve - years (1)

[1] "2014-12-31 23:59:59 UTC"

OEBPS/Images/image01199.jpeg

OEBPS/Images/image01196.jpeg
% SEEgUELILY LIGUDS L AL AL T O EYRIED) .o
Ozone Solar.R Wind Temp Month Day

1 a1 190 7.4 67 5 1

32 nA 286 78

62 135 269 84

03 39 83 81

124 96 167 01

boe

RN
"

o o b oo

"

OEBPS/Images/image01197.jpeg
* R CTEALN OALS WILH & HiplicaEe acorne. san &l
> duplicateData <- data.frame(ID = c(1,2,2,3,4), Score = c(57, 45, 45, 63, 54))
> duplicateData
D score

157
45
45
63

54
Remove the duplicate record
duplicateData[!duplicated (duplicateData),]

1D score

1 57

2 s
3 e
a4 ca

vonoe W=
[T

e N

OEBPS/Images/image00740.jpeg
Substrate Concentrations (ppm)

200

150

100

50

Instantaneous reaction rates vs Subscrate Concentrations

.

T T T T
02 04 0 08

Instantaneous reaction rates (counts/min/min)

10

OEBPS/Images/image00982.jpeg
B ST
[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

OEBPS/Images/image01224.jpeg
90
B
85
08
15
76

ve

HHEHORORKHOO

Wt
2.620
2.875
2.320
3.215
3.440
3.460

qsec vs am gear carb

16.
17.
18.
19.
17.
20.

46 01 4 4
02 01 4 4
6111 4 1
44 10 3 1
02 00 3 2
22 1 0 3 1

am gear carb

cocoooookrk

1 : > library(dplyr)

ris

3 : > # Create a tbl_df object from mtcars
4 : > head(ntcars)

5 : mwpg cyl disp hp drat
6 : Mazda RX4 21.0 6 160 110 3.
7 : Mazda RX4 Wag 21.0 6 160 110 3.
8 : Datsun 710 22.8 4 108 93 3.
9 : Hormet 4 Drive 21.4 6 258 110 3.
10 : Hornet Sportabout 18.7 8 360 175 3.
11 : Valiant 18.1 6 225 105 2.
12 : >

13 : > carData <- tbl_df (mtcars)

14 : > carData

15 : Source: local data frame [32 x 11]

16

17 mpg cyl disp hp drat Wt gsec
18 : 1 21.0 6 160.0 110 3.90 2.620 16.46
19 : 2 21.0 6 160.0 110 3.90 2.875 17.02
20 : 3 22.8 4 108.0 93 3.85 2.320 18.61
21 : 4 21.4 6 258.0 110 3.08 3.215 19.44
22 : 5 18.7 8 360.0 175 3.15 3.440 17.02
23 : 6 18.1 6 225.0 105 2.76 3.460 20.22
24 : 7 14.3 8 360.0 245 3.21 3.570 15.84
25 : 8 24.4 4 146.7 62 3.69 3.190 20.00
26 : 9 22.8 4 140.8 95 3.92 3.150 22.90
27 : 10 19.2 6 167.6 123 3.92 3.440 18.30
28

29 : >

30 : > class(carData) # A

=object

31 : [1] "tbl_df" ntb1n "data.frame"

AR AW L L e

dbl_df object is just an

PO

extension to a data.frame

OEBPS/Images/image00741.jpeg
Substrate Concentrations (ppm)

200

150

100

50

Instantaneous reaction rates vs Substrate Concentrations.

.

= Treated
W Untreated

T T T T T
02 04 0 08 10

Instantaneous reaction rates (counts/min/min)

OEBPS/Images/image00983.jpeg
% MRETADS & ORaRiage, TN
> missingObs <- is.na(age)

TRUE)

> age <- replace(age, missingObs, meanAge)

> age

[1] 38.00000 20.00000 35.55556 41.00000 46.00000 49.00000 43.00000
[8] 23.00000 28.00000 32.00000

OEBPS/Images/image01225.jpeg
* SLTEOON L CITAES, SIS, BFL
Source: local data frame [32 x 11

mpg cyl disp hp drat wt gsec vs am gear cark
1 22.8 4 108.0 93 3.852.32018.61 1 1 4 1
2 32.4 78.7 66 4.08 2.200 19.47 1 1
3 33.9 4 71.1 654.221.83519.90 1 1 4 1
4 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
5 27.3 4 79.0 66 4.081.93518.90 1 1 4 1
6 21.4 6 258.0 110 3.08 3.21519.44 1 0 3 1
7 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
8 24.4 4 146.7 62 3.693.190 20.00 1 0 4 2
9 22.8 4 140.8 953.923.15022.90 1 0 4 2
10 30.4 4 75.7 52 4.931.61518.52 1 1 4 2

OEBPS/Images/image00738.jpeg
Miles per Gallon versus Weight

g B Hiodel 1
B = Hodel2
&
- T T T T
2 3 4 5

Weight

OEBPS/Images/image00980.jpeg
* TANISIAOR « 201

FALSE TRUE
6 3
> table(age < 30, useNA = "ifany")

FALSE TRUE <NA>
€ q 1

OEBPS/Images/image01222.jpeg
* NIOONRNLEDN. £° ROOTECOALEL LS SE RO LUINERC, m AL LEYRNLIE L.

N

noE W

windMedians

Month MedianWind

5

1.

10

1list (Month

airquality§Month), median)

OEBPS/Images/image00739.jpeg
Substrate Concentrations (ppm)

200

150

100

50

Instantaneous reaction rates vs Substrate Concentrations

.
4 . .
.
. . .
o} .
.
.
.
.
.
= Treated
T8 m Unireated
T T T T T T
00 02 04 05 08 10

Instantaneous reaction rates (counts/minmin)

OEBPS/Images/image00981.jpeg
® BpmCR- Gi38, 29, AN, 0T, 88 A9 A%, 20 A%, 34)
> age == NA
[1] NA NA NA NA NA NA NA NA NA NA

OEBPS/Images/image01223.jpeg
* ALTHUALLEY S~ DAEONIAIEOUSIEY, NADGBINCLLETN]
> head (airquality)
Month Ozone Solar.R Wind Temp Day MedianWind
5 a1 190 7.4 67 1 1.
36 18 8.0 72 11
12 149 12.6 74 seil
18 313 11.5 62 1.
NA WA 14.3 56 11
~a NA 14 0 €6 11

A A
v e w N

OEBPS/Images/image00744.jpeg
Example Survival Function

o

80

90 vo

(1)S UonoUN 4 [EAIAING

zo

00

80

60

Time ()

OEBPS/Images/image00745.jpeg
Survival Function S(t)

10

08

08

04

02

00

Kaplan-Meier Plot of Ovarian Data

200

40 600 800 1000

Time ()

1200

OEBPS/Images/image00742.jpeg
Substrate Concentrations (ppm)

200

150

100

50

Instantaneous reaction rates vs Substrate Concentrations

.

= Treated
W Untreated

T T T T T
02 04 06 08 10

Instantaneous reaction rates (counts/min/min)

OEBPS/Images/image00984.jpeg
* SgEiiiR-Da A0l)
[1] 38 20 41 46 49 43 23 28 32

OEBPS/Images/image00743.jpeg
Variable Description

futime Survival time

fustat Censoring status

age Age (years)

resid.ds Residual disease present (1 = no, 2 = yes)
rx Treatment group

ecog.ps ECOG performance status

OEBPS/Images/image00985.jpeg
% ETIGEA o APDLAR, SRR, DTS
> nchar (£ruits)
1] 22

OEBPS/Images/image00986.jpeg
* BUDSEIIDGISIMLER, L. 8L
[1] "apples"

> fruits <- substring(fruits, c(1, 9, 18), c(6, 15, 22))
> fruits

1] Foumies® loraoces® Speazas

OEBPS/Images/image00747.jpeg
Survival Function S(t)

10

08

08

04

02

00

Parametric Estimation of Survival Curve by Age

200 40 600 800 1000

Time ()

1200

OEBPS/Images/image00989.jpeg
* CHLCATALLLOON xRl gTARns, THANAT, TOrRngeT, TTEQT, TYsLsons,
. "lightblue", "navyblue", "indianred")

> grep("red", colourStrings, value = TRUE)

1] "red" T

OEBPS/Images/image00748.jpeg
Survival Function S(t)

10

08

08

04

02

00

Proportional Hazards Model

200 40 600 800 1000 1200

Time ()

OEBPS/Images/image00990.jpeg
> colourstrings <- c("green", "blue", "orange", "red", "yellow",
+ "lightblue", "navyblue", "indianred")
4: > grep("*red", colourstrings, value = TRUE)
[1] "red"
6: > grep("red$", colourstrings, value = TRUE)
[1] "indianred"
> grep("r+", colourStrings, value = TRUE)
[1] "green" "orange" "red" "indianred"
> grep("e{2}", colourStrings, value = TRUE)

[1] "green"

OEBPS/Images/image00987.jpeg
* pantach, “ADPLeRTy
[1] "5 apples"

> nfruits <- c(5, 9, 2)

> paste (nfruits, fruits)

[1] "5 apples" "9 oranges" "2 pears"

OEBPS/Images/image00746.jpeg
Survival Function S(t)

10

08

08

04

02

00

Kaplan-Meier Plot of Ovarian Data

Kaplan-Meier
B Weibull

T
200

400

600

Time ()

800

1000

1200

OEBPS/Images/image00988.jpeg
R PRGSO, BLTIELA, O gt
[i] Mapples:w B¢ Soranges:-w:-0% Vpesrs « G5

OEBPS/Images/image00729.jpeg
Distribution

Description

Normal

Binomial

Poisson

Continuous probability distribution, defined by a mean and variance

Discrete probability distribution of a number of successes in a sequence of n
independent yes/no experiments, which yields success with probability p

Discrete probability distribution for the number of (independent) events
occurring in a specified interval

OEBPS/Images/image00971.jpeg
"blue"))

OEBPS/Images/image01213.jpeg
JRoean, MAR.TN

* AHSTAGRLEICOAE IO, SRRy SSNOULR, SALE 8 ALLOUELEEN.. FHT
-TRUE)
Month Wind Ozone
511.5 18
el 23
60
52
e

o W=

S

OEBPS/Images/image00730.jpeg
Method Description

formula Formula specifying the model (that is, relationship) to be fitted.

data (Optional) Data frame containing the data (if variables are referenced directly).

family A description of the error distribution and link function to be used in the
model.

na.action A function that controls the behavior when missing values are encountered. By

default, observations involved in the model that include at least one missing
value are excluded using the na.omit function.

OEBPS/Images/image00972.jpeg

OEBPS/Images/image01214.jpeg
& EDOR._af - Wina, Mauen Ao mant .
aggregate (Wind ~ Month, data = airquality, FUN = range, na.rm = TRUE)
Month Wind.1 Wind.2

1 5 5.7 201
2 6 7 2007
3 7 4.1 149
4 8 2.3 15.5
5 s 2.8 16.6

> # Range of Wind AND Ozone values by Month

> aggregate (cbind (Wind, Ozone) ~ Month, data = airquality, FUN = range, na.rm =
= TRUE)

Month Wind.1 Wind.2 Ozone.l Ozone.2
1 5 5.7 20.1 1 115
2 6 8.0 20.7 12 71
3 7 4.1 149 7 135
4 8 2.3 15.5 9 168
5 9 2.8 16.6 7 %6

Range of Wind AND Ozone values by Month AND grouped Temp
aggregate (cbind(Wind, Ozone) ~ Month + cut(Temp, 2), data = airquality,
FUN - range, na.rm = TRUE)

+

Month cut(Temp, 2) Wind.1 Wind.2 Ozone.l Ozone.2
1 5 (56,76.5] 6.9 20.1 1 a1
2 6 (56,76.5] 9.2 20.7 12 37
3 7 (56,76.5] 6.9 14.3 10 16
s 8 (56,76.5] 7.4 14.3 9 23
5 ° (56,76.5] 6.9 16.6 7 30
6 5 (76.5,97] 5.7 14.9 a5 115
7 6 (76.5,97] 8.0 14.9 21 71
8 7 (76.5,97] 4.1 14.9 135
o 8 (76.5,97] 2.3 15.5 168
10 9 (76.5.97] 2.8 15.5 16 96

OEBPS/Images/image00727.jpeg
Object “Class”

Action

Numeric vector

Factor vector

Data Frame

Output from Linear Model

Numeric summaries (quantiles plus the mean)
Frequency count of levels
Summary of each column

Detailed summary of the model fit

OEBPS/Images/image00969.jpeg
* SANDLEIE.
NULL)

REEWE y, TYMAONT, TOINEL, NN, 22X

Hr DOERCN

TR, Pros

OEBPS/Images/image01211.jpeg
* ADOTEOETE LA S EED, OB B RIFUALLIEY . FIND BEdan)
Month Wind
511.5

N W=

10

OEBPS/Images/image00728.jpeg
Method

Function Called

Action

print

summary
plot
anova

update

predict

print.lm

summary . lm
plot.lm
anova.lm

update.lm

predict.lm

Concise summary of model. (print is executed invisibly when
we run the name of the object.)

Detailed summary of the model fit.
Diagnostic plots illustrating the model fit.
Analysis of variance for the model, or many nested models.

Used to change some aspect of the model to create a new
model.

Used to make predictions based on the model.

OEBPS/Images/image00970.jpeg

OEBPS/Images/image01212.jpeg
¥ ASOIEORLE A S RmE s SR TeR - AL, BRRER
Month cut (Temp, 2) Wind

5 (56,76.5] 11.
(56,76.5] 9.
(56,76.5] 10.
(56,76.5] 12.
(56,76.5] 10.
(76.5.87] 1D
(76.5,97] 9.
(76.5,97] 8
(76.5,971 8.
(76.5. 971 7

AR LLEY o TN . WL L)

R D SR AR N SSVERR A

OEBPS/Images/image00733.jpeg
Residuals vs Fitted

S e T § e
o O CRE e
L = g -4 P
5 w3 oW 2 a4 0 1 2
Prediced vluss Thecrstical Qusiies
. Scale-Location
. s fodme—
81 o e i B T

Predicted values

OEBPS/Images/image00975.jpeg
* Bpmcx- Gi38, 30, 89.0%. 88 49, A%, 2% 4%, 34)
> median (age)

[1] 39.5

> mad (age)

[1] 10.3782

> range (age)

[1] 20 49

OEBPS/Images/image00734.jpeg
Residuals

Residuals vs Fitted Values

Fiat 128

Toyota Corolia
Pontiac Firebird

Chrysler Imperial e o0y

D
Nommﬂmwe Lotus Europa
Maddfab L Merc 230
280

Merc

Di
Iiazda RX4 Wag

nerc MEGESIC
el Porsche 914-2

16K CRABBBR e T T Honda Civic

AVC Javelin Flatxi-9

Datsun 710
Toyota Corona

10 15 20 2% £ £

Fitted Values

OEBPS/Images/image00731.jpeg
Family Link Function Variance Function

gaussian Identity: () = p VW) = 1

binomial Vi) = p(L - 1)

u
logit: g(k) = logit() = log (1—'”)
poisson log: g() = log(u) Vi) =u

OEBPS/Images/image00973.jpeg

OEBPS/Images/image01215.jpeg
* AJOIEOELE | ana. s Rembh, OabE

N
N

noE W=

FUN

- function(X) {

o (MIN =

h

min(X), MAX

Month Wind.MIN Wind.MAX

5

5.

S

o

2

Wk

20.
20.
1.
15.
—

n o L b

AIEAUALALY

max (X))

OEBPS/Images/image00732.jpeg
Method

Action

print

summary
plot
anova
update
predict
resid
fitted
coef

deviance

Concise summary of model. (print is called invisibly when we run the
name of the object.)

Detailed summary of the model fit.

Diagnostic plots illustrating the model fit.

Analysis of Variance for the model, or many nested models.
Change some aspect of the model to create a new model.
Make predictions based on the model.

Extract residuals from the model.

Extract fitted values of the model.

Extract model coefficients.

Retum the deviance of the model.

OEBPS/Images/image00974.jpeg
» BpCEAgaL, %, XY & 0.0
> x

[1] 1.0 1.52.0 2.5 3.0 3.54.0
> sqrt (x)

[1] 1.000000 1.224745 1.414214 1.581139 1.732051 1.870829 2.000000

> log(x)

[1] 0.0000000 0.4054651 0.6931472 0.9162907 1.0986123 1.2527630 1.3862944
> sin(x)

[1] 0.8414710 0.9974950 0.9092974 0.5984721 0.1411200 -0.3507832 -0.7568025

OEBPS/Images/image00735.jpeg
9(n) = logit(y) = log (1%

OEBPS/Images/image01216.jpeg
ALTTNELICYRRIDO) » SAALINCUER. o S THUA L CY ORI,

* ARSIAgALE]IAREEYENin.
=median)
Month aveWind

5 115

o W=

10

OEBPS/Images/image01217.jpeg
* SHGTATRLEIISEE AYENioN = ALIGUSLICYERADO) o
list (Month = airquality§Month, TempGroup

N

Bt AR ENTAS SR HERES e Wmab

Month TempGroup aveWind

5

(56,76.5]
(56,76.5]
(56,76.5]
(56,76.5]
(56,76.5]
(76.5,97]
(76.5,97]
(76.5,97]
(76.5,97]
(76.5. 971

1.

9.
10.
12.
10.

cut (airquality$Temp, 2)), median)

OEBPS/Images/image00736.jpeg
Insect Count by Insecticide

UNog joasu|

nsadicide

OEBPS/Images/image00978.jpeg
% S8 ORELEAC AT, ERI |
{8 B 8

OEBPS/Images/image01220.jpeg
* ARCEEOELE IRELNION & SAEARLIEYeNAn) .
+ list(Month = airquality§Month), range)
Month Wind.1 Wind.2

5 5.7 20.
20.
14.
15.
16

noE won
e
W

AN

o

OEBPS/Images/image00737.jpeg
Argument

Description

formula
data
start

na.action

Formula specifying the relationship to be modeled
Data frame containing the columns used in the model
Named list or vector of starting values for the model

Function that controls the behavior in the presence of missing values

OEBPS/Images/image00979.jpeg
> ag®
[1] 38 20 NA 41 46 49 43 23 28 32

> age < 30

[1] FALSE TRUE NA FALSE FALSE FALSE FALSE TRUE TRUE FALSE
> sum(age < 30, na.rm = TRUE)

i 3

OEBPS/Images/image01221.jpeg
BESTRRLE A ATaE L
list (Month = airquality$Month),

BRI OURLEEFPNAE o

c(MIN = min(X), MAX = max(X))
h

Month Wind.MIN Wind.MAX
5 5.7 20,
20.
1a.
1s.
A

.
+ function(X) {
.
.

noE W=
S
Wb

n o L b

o

OEBPS/Images/image00976.jpeg
e shd, bt]

[1] -0.23515046 -1.79043043 -0.03287786 -0.24937333 -1.00660505
> rpois(5, lambda = 3)

[1] 4 6 63 1

> rexp(5)

[1] 3.2443094 1.1198132 0.9365825 0.2731334 0.4363149

OEBPS/Images/image01218.jpeg
* ARSTAALE]ISEE (EVENinG. = AL gUSLIEYRRCNC, ATAOEONN § SLTANALEEYNIIORN] .
+ 1list (Month = airquality§Month), median, na.rm = TRUE)
Month aveWind aveOzone
5 115 18
23
60
52
na

noE W

10

OEBPS/Images/image00977.jpeg
® SR AAON, RIEE w8
[1] 28 46 20 49 23
-sample (age, size = 5, replace = TRUE)
[1] 20 20 23 28 41

OEBPS/Images/image01219.jpeg
¥ APOIEORLE IALIQUALISY L, Oy TN, TTEOe .
+ list(Month = airquality$Month), median, na.rm = TRUE)
Month Wind Ozone
511.5 18
9.7 23
8.6 60
8.6 52
10.2 9213

noE W=

6
7
8
9

