Orchestrating Docker

Manage and deploy Docker services to containerize
applications efficiently

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Orchestrating Docker

Manage and deploy Docker services to containerize
applications efficiently

Shrikrishna Holla

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Orchestrating Docker

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book

is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015
Production reference: 1190115

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-478-7

www . packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Shrikrishna Holla

Reviewers
Amit Mund

Taichi Nakashima

Tommaso Patrizi

Acquisition Editor
Larissa Pinto

Content Development Editor
Parita Khedekar

Technical Editor
Tanmayee Patil

Copy Editor
Vikrant Phadke

Project Coordinator
Neha Thakur

Proofreaders
Simran Bhogal

Maria Gould
Ameesha Green

Paul Hindle

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Shrikrishna Holla is a full-stack developer based in Bangalore and Chennai,
India. He loves biking, listening to music, and occasionally, sketching. You can find
him frequently in hackathons, wearing a hoodie and sipping Red Bull, preparing
for an all-nighter.

He currently works as a product developer for Freshdesk, a cloud-based customer
support platform.

You can get in touch with him on Twitter (esrikrishnaholla) or find him at the
Docker IRC channel (#docker on Freenode) with the shrikrishna handle.

I would like to thank the creators of Docker, without whom this
book wouldn't have seen the light of the day. To my editors, Parita
and Larissa, it has been a long journey, but you have been extremely
supportive and helpful week after week. To my parents, you have
been, are, and will always be my inspiration— the final ray of light
in the darkest dungeon. To my sisters, for the soothing words of
advice whenever I've had the blues. To all my teachers, who helped
me to choose my path. To my friends, who help me forget all my
worries. To the countless people who have given me encouragement,
suggestions, and feedback, I couldn't have done this without you.
To my readers, thank you for trusting me with your learning.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Amit Mund has been working on Linux and other technologies for automation
and infrastructure monitoring since 2004. He is currently associated with Akamai
Technologies. He has previously worked for website-hosting teams at Amazon
and Yahoo!

I would like to thank my family, my mentors from Bhawanipatna,
and my friends and colleagues for helping me in my learning and
development throughout my professional career.

Taichi Nakashima is a Tokyo-based web developer and software engineer. He
is also a blogger and he loves Docker, Golang, and DevOps. Taichi is also an OSS
contributor. You can find his contributions at https://github.com/tcnksm.

Tommaso Patrizi is Docker fan who used the technology since its first release
and had machines in production with Docker since Version 0.6.0. He has planned
and deployed a basic private PaaS with Docker and Open vSwitch.

Tommaso is an enthusiastic Ruby and Ruby on Rails programmer. He strives for
simplicity, which he considers to be the perfect synthesis between code effectiveness,
maintainability, and beauty. He is currently learning the Go language.

Tommaso is a system administrator. He has broad knowledge of operating
systems (Microsoft, Linux, OSX, SQL Server, MySql, PostgreSQL, and PostGIS),
virtualization, and the cloud (vSphere, VirtualBox, and Docker).

www.it-ebooks.info

https://github.com/tcnksm
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.

com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[B]PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content
* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Unboxing Docker 5
Installing Docker 7
Installing Docker in Ubuntu 7
Installing Docker in Ubuntu Trusty 14.04 LTS 7
Installing Docker in Ubuntu Precise 12.04 LTS 8
Upgrading Docker 9
Mac OSX and Windows 10
Upgrading Boot2Docker 12
OpenStack 12
Installation with DevStack 13
Installing Docker for OpenStack manually 13
Nova configuration 14
Glance configuration 15
Docker-OpenStack flow 15
Inception: Build Docker in Docker 16
Dependencies 16
Building Docker from source 17
Verifying Installation 18
Useful tips 19
Giving non-root access 20
UFW settings 20
Summary 21
Chapter 2: Docker CLI and Dockerfile 23
Docker terminologies 23
Docker container 24
The docker daemon 24

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Docker client
Dockerfile
Docker registry

Docker commands

The daemon command
The version command
The info command

The run command
Running a server

The search command
The pull command
The start command
The stop command
The restart command
The rm command
The ps command

The logs command
The inspect command
The top command
The attach command
The kill command
The cp command

The port command
Running your own project
The diff command
The commit command
The images command
The rmi command
The save command
The load command
The export command
The import command
The tag command
The login command
The push command
The history command
The events command
The wait command
The build command
Uploading to Docker daemon

25
25
25
25
26
27
27

28
30

33
34
34
34
35
35
36
37
37
39
40
40
40
41
42
43
43
44
46
46
46
46
47
47
48
48
48
48
49
50
51

www.it-ebooks.info

Lii]

http://www.it-ebooks.info/

Table of Contents

Dockerfile 54
The FROM instruction 55
The MAINTAINER instruction 55
The RUN instruction 55
The CMD instruction 56
The ENTRYPOINT instruction 57
The WORKDIR instruction 59
The EXPOSE instruction 59
The ENV instruction 59
The USER instruction 60
The VOLUME instruction 60
The ADD instruction 60
The COPY instruction 61
The ONBUILD instruction 62

Docker workflow - pull-use-modify-commit-push 65

Automated Builds 66
Build triggers 68
Webhooks 68

Summary 69

Chapter 3: Configuring Docker Containers 71

Constraining resources 72
Setting CPU share 73
Setting memory limit 73
Setting a storage limit on the virtual filesystem (Devicemapper) 74

Devicemapper configurations 76

Managing data in containers with volumes 77
Data-only container 78
Using volumes from another container 78
Use case — MongoDB in production on Docker 79

Configuring Docker to use a different storage driver 80
Using devicemapper as the storage driver 80
Using btrfs as the storage driver 80

Configuring Docker's network settings 81
Configuring port forwarding between container and host 84
Custom IP address range 84

Linking containers 85
Linking containers within the same host 85
Cross-host linking using ambassador containers 86

Use case - a multi-host Redis environment 87

Summary 88

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 4: Automation and Best Practices 89
Docker remote API 920
Remote API for containers 91
The create command 91
The list command 92
Remote API for images 93
Listing the local Docker images 93
Other operations 94
Getting system-wide information 94
Committing an image from a container 95
Saving the image 96
How docker run works 96
Injecting processes into containers with the Docker
execute command 97
Service discovery 98
Using Docker names, links, and ambassador containers 98
Using links to make containers visible to each other 99
Cross-host linking using ambassador containers 99
Service discovery using etcd 100
Docker Orchestration 102
Docker Machine 103
Swarm 103
Docker Compose 104
Security 106
Kernel namespaces 107
Control groups 107
The root in a container 108
Docker daemon attack surface 110
Best practices for security 110
Summary 111
Chapter 5: Friends of Docker 113
Using Docker with Chef and Puppet 114
Using Docker with Chef 114
Installing and configuring Docker 115
Writing a Chef recipe to run Code.it on Docker 115
Using Docker with Puppet 115
Writing a Puppet manifest to run Code.it on Docker 116
Setting up an apt-cacher 116
Using the apt-cacher while building your Dockerfiles 117
Setting up your own mini-Heroku 118
Installing Dokku using a bootstrapper script 118

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Installing Dokku using Vagrant 118
Configuring a hostname and adding the public key 119
Deploying an application 120
Setting up a highly available service 121
Installing dependencies 122
Getting and configuring the Vagrantfile 123
Getting discovery tokens 123
Setting the number of instances 125
Spawning instances and verifying health 125
Starting the service 126
Summary 129
Index 131

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Get started with Docker, the Linux containerizing technology that has revolutionized
application sandboxing. With this book, you will be able to learn how to use Docker
to make your development faster and your deployment of applications simpler.

This guide will show you how to build your application in sandboxed Docker
containers and make them run everywhere — your development machine, your
private server, or even on the cloud, with a fraction of the cost of a virtual machine.
Build a Paa$S, deploy a cluster, and so on, all on your development setup.

What this book covers

Chapter 1, Unboxing Docker, teaches you how to get Docker running in
your environment.

Chapter 2, Docker CLI and Dockerfile, helps you to acclimatize to the Docker
command-line tool and start building your own containers by writing Dockerfiles.

Chapter 3, Configuring Docker Containers, shows you how to control your containers
and configure them to achieve fine-grained resource management.

Chapter 4, Automation and Best Practices, covers various techniques that help manage
containers — co-ordinating multiple services using supervisor, service discovery,
and knowledge about Docker's security.

Chapter 5, Friends of Docker, shows you the world surrounding Docker. You will be
introduced to open source projects that use Docker. Then you can build your own
PaaS and deploy a cluster using CoreOS.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

What you need for this book

This book expects you to have used Linux and Git before, but a novice user will
find no difficulty in running the commands provided in the examples. You need
to have an administrative privilege in the user account of your operating system
in order to install Docker. Windows and OSX users will need to install VirtualBox.

Who this book is for

Whether you are a developer or a sysadmin, or anything in between, this book
will give you the guidance you need to use Docker to build, test, and deploy your
applications and make them easier, even enjoyable.

Starting from the installation, this book will take you through the different
commands you need to know to start Docker containers. Then it will show you
how to build your own application and take you through instructions on how to
fine-tune the resource allocations to those containers, before ending with notes
on managing a cluster of Docker containers.

By sequentially working through the steps in each chapter, you will quickly master
Docker and be ready to ship your applications without needing to spend sleepless
nights for deployment.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"We can set environment variables with the ENvV directive."

A block of code is set as follows:

WORKDIR code.it
RUN git submodule update --init --recursive
RUN npm install

Any command-line input or output is written as follows:

$ docker run --d -p '8000:8000' -e 'NODE PORT=8000' -v
'/var/log/code.it:/var/log/code.it' shrikrishna/code.it .

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Go to
Settings in your repository."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

[31]

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/B02634 47870S_Graphics.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http: //www.packtpub. com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all

media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.comif you are having a problem
with any aspect of the book, and we will do our best to address it.

[4]

www.it-ebooks.info

https://www.packtpub.com/sites/default/files/downloads/B02634_4787OS_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/B02634_4787OS_Graphics.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Unboxing Docker

Docker is a lightweight containerization technology that has gained widespread
popularity in recent years. It uses a host of the Linux kernel's features such as
namespaces, cgroups, AppArmor profiles, and so on, to sandbox processes into
configurable virtual environments.

In this chapter, you will learn how to install Docker on various systems, both in
development and in production. For Linux-based systems, since a kernel is already
available, installation is as simple as the apt-get install or yum install
commands. However, to run Docker on non-Linux operating systems such as OSX
and Windows, you will need to install a helper application developed by Docker Inc.,
called Boot2Docker. This will install a lightweight Linux VM on VirtualBox, which
will make Docker available through port 2375, assigned by the Internet Assigned
Numbers Authority (IANA).

At the end of this chapter, you will have installed Docker on your system, be it in
development or production, and verified it.

This chapter will cover the following points:

* Introducing Docker

* Installing Docker

* Ubuntu (14.04 and 12.04)

* Mac OSX and Windows

* OpenStack

* Inception: building Docker in Docker

* Verifying installation: Hel1lo World output

* Introducing Docker

www.it-ebooks.info

http://www.it-ebooks.info/

Unboxing Docker

Docker was developed by DotCloud Inc. (Currently Docker Inc.), as the framework
they built their Platform as a Service (PaaS) upon. When they found increasing
developer interest in the technology, they released it as open source and have since
announced that they will completely focus on the Docker technology's development,
which is good news as it means continual support and improvement for the platform.

There have been many tools and technologies aimed at making distributed
applications possible, even easy to set up, but none of them have as wide an

appeal as Docker does, which is primarily because of its cross-platform nature and
friendliness towards both system administrators and developers. It is possible to set
up Docker in any OS, be it Windows, OSX, or Linux, and Docker containers work the
same way everywhere. This is extremely powerful, as it enables a write-once-run-
anywhere workflow. Docker containers are guaranteed to run the same way, be it

on your development desktop, a bare-metal server, virtual machine, data center, or
cloud. No longer do you have the situation where a program runs on the developer's
laptop but not on the server.

The nature of the workflow that comes with Docker is such that developers

can completely concentrate on building applications and getting them running
inside the containers, whereas sysadmins can work on running the containers in
deployment. This separation of roles and the presence of a single underlying tool
to enable it simplifies the management of code and the deployment process.

But don't virtual machines already provide all of these features?

Virtual Machines (VMs) are fully virtualized. This means that they share minimal
resources amongst themselves and each VM has its own set of resources allocated to
it. While this allows fine-grained configuration of the individual VMs, minimal
sharing also translates into greater resource usage, redundant running processes

(an entire operating system needs to run!), and hence a performance overhead.

Docker, on the other hand, builds on a container technology that isolates a process
and makes it believe that it is running on a standalone operating system. The process
still runs in the same operating system as its host, sharing its kernel. It uses a layered
copy-on-write filesystem called Another Unionfs (AUFS), which shares common
portions of the operating system between containers. Greater sharing, of course,

can only mean less isolation, but vast improvements in Linux process's resource
management solutions such as namespaces and cgroups have allowed Docker

to achieve VM-like sandboxing of processes and yet maintain a very small

resource footprint.

[6]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Let's take a look at the following image:

App B

Bins/Libs 4ppls

Bins/Libs

Guest 0S

This a Docker vs VM comparison. Containers share the host's resources with other
containers and processes, and virtual machines have to run an entire operating
system for every instance.

Installing Docker

Docker is available in the standard repositories of most major Linux distributions.
We will be looking at the installation procedures for Docker in Ubuntu 14.04 and
12.04 (Trusty and Precise), Mac OSX, and Windows. If you are currently using

an operating system not listed above, you can look up the instructions for your
operating system at https://docs.docker.com/installation/#installation.

Installing Docker in Ubuntu

Docker is supported by Ubuntu from Ubuntu 12.04 onwards. Remember that you
still need a 64-bit operating system to run Docker. Let's take a look at the installation
instructions for Ubuntu 14.04.

Installing Docker in Ubuntu Trusty 14.04 LTS

Docker is available as a package in the Ubuntu Trusty release's software
repositories under the name of docker. io:

$ sudo apt-get update
$ sudo apt-get -y install docker.io

That's it! You have now installed Docker onto your system. However, since

the command has been renamed docker. io, you will have to run all Docker
commands with docker. io instead of docker.

[71

www.it-ebooks.info

https://docs.docker.com/installation/#installation
http://www.it-ebooks.info/

Unboxing Docker

The package is named docker . io because it conflicts with another
KDE3/GNOME2 package called docker. If you rather want to run
commands as docker, you can create a symbolic link to the /usr/
local/bin directory. The second command adds autocomplete
Vs rules to bash:

$ sudo 1n -s /usr/bin/docker.io /usr/local/bin/docker

$ sudo sed -1 'Sacomplete -F _docker docker' \
> /etc/bash _completion.d/docker.io

Installing Docker in Ubuntu Precise 12.04 LTS

Ubuntu 12.04 comes with an older kernel (3.2), which is incompatible with some
of the dependencies of Docker. So we will have to upgrade it:
$ sudo apt-get update

$ sudo apt-get -y install linux-image-generic-lts-raring linux-
headers-generic-lts-raring

$ sudo reboot

The kernel that we just installed comes with AUFS built in, which is also a Docker
requirement.

Now let's wrap up the installation:

$ curl -s https://get.docker.io/ubuntu/ | sudo sh

This is a curl script for easy installation. Looking at the individual pieces of this
script will allow us to understand the process better:

1. First, the script checks whether our Advanced Package Tool (APT) system
can deal with https URLs, and installs apt -t ransport -https if it cannot:

Check that HTTPS transport is available to APT

if [! -e /usr/lib/apt/methods/https]; then apt-get
update apt-get install -y apt-transport-https

fi

2. Then it will add the Docker repository to our local key chain:

$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80
--recv-keys 36A1D7869245C8950F966E92D8576A8BA88D21E9

1
‘Q You may receive a warning that the package isn't trusted.

Answer yes to continue the installation.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

3. Finally, it adds the Docker repository to the APT sources list, and updates
and installs the 1xc-docker package:

$ sudo sh -c¢ "echo deb https://get.docker.io/ubuntu docker
main)\

> /etc/apt/sources.list.d/docker.list"
$ sudo apt-get update
$ sudo apt-get install 1lxc-docker

Docker versions before 0.9 had a hard dependency on LXC (Linux
Containers) and hence couldn't be installed on VMs hosted on
OpenVZ. But since 0.9, the execution driver has been decoupled
from the Docker core, which allows us to use one of numerous
isolation tools such as LXC, OpenVZ, systemd-nspawn, libvirt-Ixc,

libvirt-sandbox, gemu/kvm, BSD Jails, Solaris Zones, and even

2 chroot! However, it comes by default with an execution driver for

Docker's own containerization engine, called libcontainer, which is
a pure Go library that can access the kernel's container APIs directly,
without any other dependencies.

To use any other containerization engine, say LXC, you can use
the-e flag, like so: $ docker -d -e 1lxc.

Now that we have Docker installed, we can get going at full steam! There is
one problem though: software repositories like APT are usually behind times
and often have older versions. Docker is a fast-moving project and a lot has
changed in the last few versions. So it is always recommended to have the
latest version installed.

Upgrading Docker

You can upgrade Docker as and when it is updated in the APT repositories. An
alternative (and better) method is to build from source. The tutorial for this method
is in the section titled Inception: Docker in Docker. It is recommended to upgrade to the
newest stable version as the newer versions might contain critical security updates
and bug fixes. Also, the examples in this book assume a Docker version greater than
1.0, whereas Ubuntu's standard repositories package a much older version.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Unboxing Docker

Mac OSX and Windows

Docker depends on the Linux kernel, so we need to run Linux in a VM and install
and use Docker through it. Boot2Docker is a helper application built by Docker Inc.
that installs a VM containing a lightweight Linux distribution made specifically to
run Docker containers. It also comes with a client that provides the same Application
Program Interface (API) as that of Docker, but interfaces with the docker daemon
running in the VM, allowing us to run commands from within the OSX/Windows
terminal. To install Boot2Docker, carry out the following steps:

1. Download the latest release of Boot2Docker for your operating system
from http://boot2docker.io/.

2. The installation image is shown as follows:

800 Install Docker for Mac OS X [}

Welcome to the Docker for Mac OS X Installer

@ Introduction Docker for Mac OS X
® Destination Select This installer will guide you through the steps to install Docker for Mac
085 X v0.12.0.

@ Installation Type

@ Installation To continue, click Continue.

@ Summary

Go Back | Continue |

3. Run the installer, which will install VirtualBox and the Boot2Docker
management tool.

Run Boot2docker. The first run will ask you for a Secure Shell (SSH) key passphrase.
Subsequent runs of the script will connect you to a shell session in the virtual machine.
If needed, the subsequent runs will initialize a new VM and start it.

Alternately, to run Boot2Docker, you can also use the terminal command
boot2docker:

$ boot2docker init # First run

[10]

www.it-ebooks.info

http://boot2docker.io/
http://www.it-ebooks.info/

Chapter 1

$ boot2docker start
$ export DOCKER HOST=tcp://$ (boot2docker ip 2>/dev/null) :2375

You will have to run boot2docker init only once. It will ask you for an SSH
key passphrase. This passphrase is subsequently used by boot2docker ssh
to authenticate SSH access.

Once you have initialized Boot2Docker, you can subsequently use it with the
boot2docker start and boot2docker stop commands.

DOCKER_HOST is an environment variable that, when set, indicates to the Docker client
the location of the docker daemon. A port forwarding rule is set to the boot2Docker
VM's port 2375 (where the docker daemon runs). You will have to set this variable in
every terminal shell you want to use Docker in.

Bash allows you to insert commands by enclosing subcommands
within >~ or $ (). These will be evaluated first and the result will
be substituted in the outer commands.

If you are the kind that loves to poke around, the Boot2Docker default user is docker
and the password is tcuser.

The boot2Docker management tool provides several commands:

$ boot2docker

Usage: boot2docker [<options>] {help|init|up|ssh|save|down|poweroff |reset
|restart|config|status|info
|ip|delete|download|version} [<args>]

When using boot2Docker, the DOCKER_HOST environment variable has to be available
in the terminal session for Docker commands to work. So, if you are getting the

Post http:///var/run/docker.sock/vl.12/containers/create: dial unix
/var/run/docker.sock: no such file or directory error, it means that the
environment variable is not assigned. It is easy to forget to set this environment
variable when you open a new terminal. For OSX users, to make things easy, add
the following line to your .bashrc or .bash_profile shells:

alias setdockerhost='export DOCKER HOST=tcp://$ (boot2docker ip
2>/dev/null) :2375"

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Unboxing Docker

Now, whenever you open a new terminal or get the above error, just run the
following command:

$ setdockerhost

|e 00) shrikrishna — ssh — 205x46 e’

bash bash bash

This image shows how the terminal screen will look like when you have logged into
the Boot2Docker VM.

Upgrading Boot2Docker
1. Download the latest release of the Boot2Docker Installer for OSX from
http://boot2docker.io/.

2. Run the installer, which will update VirtualBox and the Boot2Docker
management tool.

To upgrade your existing virtual machine, open a terminal and run the
following commands:

$ boot2docker stop
$ boot2docker download

OpenStack

OpenStack is a piece of free and open source software that allows you to set up a
cloud. It is primarily used to deploy public and private Infrastructure as a Service
(IaaS) solutions. It consists of a pool of interrelated projects for the different
components of a cloud setup such as compute schedulers, keychain managers,
network managers, storage managers, dashboards, and so on.

[12]

www.it-ebooks.info

http://boot2docker.io/
http://www.it-ebooks.info/

Chapter 1

Docker can act as a hypervisor driver for OpenStack Nova Compute. Docker support
for OpenStack was introduced with the Havana release.

But... how?

Nova's Docker driver embeds a tiny HTTP server that talks to the Docker Engine's
internal Representational State Transfer (REST) API (you will learn more on this
later) through a UNIX TCP socket.

Docker has its own image repository system called Docker-Registry, which can

be embedded into Glance (OpenStack's image repository) to push and pull Docker
images. Docker-Registry can be run either as a docker container or in a
standalone mode.

Installation with DevStack

If you are just setting up OpenStack and taking up the DevStack route, configuring
the setup to use Docker is pretty easy.

Before running the DevStack route's stack. sh script, configure the virtual driver
option in the localrc file to use Docker:

VIRT DRIVER=docker

Then run the Docker installation script from the devstack directory. The socat
utility is needed for this script (usually installed by the stack. sh script). If you
don't have the socat utility installed, run the following:

$ apt-get install socat
$./tools/docker/install docker.sh

Finally, run the stack. sh script from the devstack directory:

$./stack.sh

Installing Docker for OpenStack manually
Docker can also be installed manually if you already have OpenStack set up or in
case the DevStack method doesn't work out:

1. Firstly, install Docker according to one of the Docker installation procedures.

If you are co-locating the docker registry alongside the Glance service,
run the following command:

$ sudo yum -y install docker-registry

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Unboxing Docker

In the /etc/sysconfig/docker-registry folder, set the REGISTRY PORT
and SETTINGS_FLAVOR registries as follows:

$ export SETTINGS FLAVOR=openstack
$ export REGI STRY PORT=5 042

In the docker registry file, you will also need to specify the OpenStack
authentication variables. The following commands accomplish this:

$ source /root/keystonerc_admin

$ export OS_GLANCE URL=http://localhost:9292

By default, /etc/docker-registry.yml sets the local or alternate
storage_path path for the openstack configuration under /tmp. You
may want to alter the path to a more permanent location:
openstack:

storage: glance

storage alternate: local

storage path: /var/lib/docker-registry

2. In order for Nova to communicate with Docker over its local socket,
add nova to the docker group and restart the compute service to pick
up the change:

$ usermod -G docker nova

$ service openstack-nova-compute restart

3. Start Redis (used by the Docker Registry), if it wasn't started already:
$ sudo service redis start

$ sudo chkconfig redis on
4. Finally, start the registry:

$ sudo service docker-registry start

$ sudo chkconfig docker-registry on

Nova configuration

Nova needs to be configured to use the virt Docker driver.

Edit the /etc/nova/nova.cont configuration file according to the following options:

[DEFAULT]

compute driver = docker.DockerDriver

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Alternatively, if you want to use your own Docker-Registry, which listens on a port
different than 5042, you can override the following option:

docker registry default port = 5042

Glance configuration

Glance needs to be configured to support the Docker container format. Just add
Docker to the list of container formats in the Glance configuration file:
[DEFAULT]

container formats = ami,ari,aki,bare,ovf,docker

1
‘\Q Leave the default formats in order to not break an existing

glance installation.

Docker-OpenStack flow

Once you configured Nova to use the docker driver, the flow is the same as that in
any other driver:

$ docker search hipache

Found 3 results matching your query ("hipache")

NAME DESCRIPTION

samalba/hipache https://github.com/dotcloud/hipache

Then tag the image with the Docker-Registry location and push it:

$ docker pull samalba/hipache
$ docker tag samalba/hipache localhost:5042/hipache
$ docker push localhost:5042/hipache

The push refers to a repository:

[localhost:5042/hipache] (len: 1)

Sending image list

Pushing repository localhost:5042/hipache (1 tags)
Push 100% complete

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Unboxing Docker

In this case, the Docker-Registry (running in a docker container with a port mapped
on 5042) will push the images to Glance. From there, Nova can reach them and you
can verify the images with the Glance Command-Line Interface (CLI):

$ glance image-list

Only images with a docker container format will be bootable. The
/~— image basically contains a tarball of the container filesystem.

You can boot instances with the nova boot command:

$ nova boot --image "docker-busybox:latest" --flavor ml.tiny test

M The command used will be the one configured in the image. Each
Q container image can have a command configured for the run. The
driver does not override this command.

Once the instance is booted, it will be listed in nova 1ist:

$ nova list

You can also see the corresponding container in Docker:

$ docker ps

Inception: Build Docker in Docker

Though installing from standard repositories is easier, they usually contain older
versions, which means that you might miss critical updates or features. The best
way to remain updated is to regularly get the latest version from the public GitHub
repository. Traditionally, building software from a source has been painful and
done only by people who actually work on the project. This is not so with Docker.
From Docker 0.6, it has been possible to build Docker in Docker. This means that
upgrading Docker is as simple as building a new version in Docker itself and
replacing the binary. Let's see how this is done.

Dependencies

You need to have the following tools installed in a 64-bit Linux machine (VM or
bare-metal) to build Docker:

e Git
e Make

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Git is a free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency. It is used
here to clone the Docker public source code repository. Check out git-scm.org
for more details.

The make utility is a software engineering tool used to manage and maintain
computer programs. Make provides most help when the program consists of
many component files. A Makefile file is used here to kick off the Docker
containers in a repeatable and consistent way.

Building Docker from source

To build Docker in Docker, we will first fetch the source code and then run a few
make commands that will, in the end, create a docker binary, which will replace
the current binary in the Docker installation path.

Run the following command in your terminal:
$ git clone https://git@github.com/dotcloud/docker

This command clones the official Docker source code repository from the Github
repository into a directory named docker:

$ cd docker
$ sudo make build

This will prepare the development environment and install all the dependencies
required to create the binary. This might take some time on the first run, so you
can go and have a cup of coffee.

M If you encounter any errors that you find difficult to debug, you can
Q always go to #docker on freenode IRC. The developers and the
Docker community are very helpful.

Now we are ready to compile that binary:

$ sudo make binary

This will compile a binary and place it in the . /bundles/<version>-dev/binary/
directory. And voila! You have a fresh version of Docker ready.

Before replacing your existing binary though, run the tests:

$ sudo make test

[17]

www.it-ebooks.info

git-scm.org
http://www.it-ebooks.info/

Unboxing Docker

If the tests pass, then it is safe to replace your current binary with the one you've
just compiled. Stop the docker service, create a backup of the existing binary, and
then copy the freshly baked binary in its place:

sudo service docker stop

alias wd='which docker!'

sudo cp $(wd) $(wd)

sudo cp $(pwd) /bundles/<version>-dev/binary/docker-<version>-dev $(wd)

sudo service docker start

“©» v »n n Wn

Congratulations! You now have the up-to-date version of Docker running.

a1

~ OSX and Windows users can follow the same procedures as SSH in
the boot2Docker VM.

Verifying Installation

To verify that your installation is successful, run the following command in your
terminal console:

$ docker run -i -t ubuntu echo Hello World!

The docker run command starts a container with the ubuntu base image. Since this
is the first time you are starting an ubuntu container, the output of the container will
be something like this:

Unable to find image 'ubuntu' locally
Pulling repository ubuntu
e54ca5efa2e9: Download complete
511136ea3c5a: Download complete
d7ac5e4£1812: Download complete
2f4b4d6a4a06: Download complete
83ff768040a0: Download complete
6c37f792ddac: Download complete

Hello World!

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

When you issue the docker run ubuntu command, Docker looks for the ubuntu
image locally, and it's not found, it will download the ubuntu image from the
public docker registry. You will also see it say Pulling dependent layers.

This means that it is downloading filesystem layers. By default, Docker uses AUFS, a
layered copy-on-write filesystem, which means that the container image's filesystem
is a culmination of multiple read-only filesystem layers. And these layers are shared
between running containers. If you initiate an action that will write to this filesystem,
it will create a new layer that will be the difference of the underlying layers and the
new data. Sharing of common layers means that only the first container will take

up a considerable amount of memory and subsequent containers will take up an
insignificant amount of memory as they will be sharing the read-only layers.

This means that you can run hundreds of containers even on a relatively
low-powered laptop.

®00 @} shrikrishna — bash — 88x9
FDLMC219-MacBook-Pro:~ shrikrishna$ docker run -i -t --rm ubuntu echo Hello World!
Hello World!

FDLMC219-MacBook-Pro: ~ shrikrishna$

Once the image has been completely downloaded, it will start the container and
echo Hello World! in your console. This is another salient feature of the Docker
containers. Every container is associated with a command and it should run that
command. Remember that the Docker containers are unlike VMs in that they do not
virtualize the entire operating system. Each docker container accepts only a single
command and runs it in a sandboxed process that lives in an isolated environment.

Useful tips

The following are two useful tips that might save you a lot of trouble later on.
The first shows how to give the docker client non-root access, and the second shows
how to configure the Ubuntu firewall rules to enable forwarding network traffic.

[% You do not need to follow these if you are using Boot2Docker.]

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Unboxing Docker

Giving non-root access

Create a group called docker and add your user to that group to avoid having to
add the sudo prefix to every docker command. The reason you need to run a docker
command with the sudo prefix by default is that the docker daemon needs to run
with root privileges, but the docker client (the commands you run) doesn't. So, by
creating a docker group, you can run all the client commands without using the
sudo prefix, whereas the daemon runs with the root privileges:

$ sudo groupadd docker # Adds the docker group

$ sudo gpasswd -a $(whoami) docker # Adds the current user to the
group

$ sudo service docker restart

You might need to log out and log in again for the changes to take effect.

UFW settings

Docker uses a bridge to manage network in the container. Uncomplicated Firewall
(UFW) is the default firewall tool in Ubuntu. It drops all forwarding traffic. You will
need to enable forwarding like this:

$ sudo vim /etc/default/ufw

Change:

DEFAULT FORWARD POLICY="DROP"
to

DEFAULT FORWARD POLICY="ACCEPT"

Reload the firewall by running the following command:

$ sudo ufw reload

Alternatively, if you want to be able to reach your containers from other hosts, then
you should enable incoming connections on the docker port (default 2375):

$ sudo ufw allow 2375/tcp

Downloading the example code

M You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
Q have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you

[20]

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Chapter 1

Summary

I hope this introductory chapter got you hooked to Docker. The upcoming chapters
will take you into the Docker world and try to dazzle you with its awesomeness.

In this chapter, you learned some history and some basics on Docker and how it
works. We saw how it is different from and advantageous over VM.

Then we proceeded to install Docker on our development setup, be it Ubuntu, Mac,
or Windows. Then we saw how to replace OpenStack's hypervisor with Docker. Later,
we built Docker from source, within Docker! Talk about eating your own dog food!

Finally, we downloaded our first image and ran our first container. Now you can
pat your self on the back and proceed to the next chapter, where we will cover the
primary Docker commands in depth and see how we can create our own images.

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

In the last chapter, we set up Docker in our development setup and ran our first
container. In this chapter, we will explore the Docker command-line interface. Later
in the chapter, we will see how to create our own Docker images using Dockerfiles
and how to automate this process.

In this chapter, we will cover the following topics:

* Docker terminologies

* Docker commands

* Dockerfiles

* Docker workflow — pull-use-modify-commit-push workflow
* Automated builds

Docker terminologies

Before we begin our exciting journey into the Docker sphere, let's understand the
Docker terminologies that will be used in this book a little better. Very similar in
concept to VM images, a Docker image is a snapshot of a system. The difference
between a VM image and a Docker image is that a VM image can have running
services, whereas a Docker image is just a filesystem snapshot, which means that
while you can configure the image to have your favorite packages, you can run
only one command in the container. Don't fret though, since the limitation is one
command, not one process, so there are ways to get a Docker container to do
almost anything a VM instance can.

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

Docker has also implemented a Git-like distributed version management system for
Docker images. Images can be stored in repositories (called a registry), both locally and
remotely. The functionalities and terminologies borrow heavily from Git—snapshots
are called commits, you pull an image repository, you push your local image to a
repository, and so on.

Docker container

A Docker container can be correlated to an instance of a VM. It runs sandboxed
processes that share the same kernel as the host. The term container comes from the
concept of shipping containers. The idea is that you can ship containers from your
development environment to the deployment environment and the applications
running in the containers will behave the same way no matter where you run them.

The following image shows the layers of AUFS:

Application

Node.js MongoDB

Base Image

\ Host Kernel /

This is similar in context to a shipping container, which stays sealed until delivery
but can be loaded, unloaded, stacked, and transported in between.

The visible filesystem of the processes in the container is based on AUFS (although you
can configure the container to run with a different filesystem too). AUFS is a layered
filesystem. These layers are all read-only and the merger of these layers is what is
visible to the processes. However, if a process makes a change in the filesystem, a new
layer is created, which represents the difference between the original state and the new
state. When you create an image out of this container, the layers are preserved. Thus,

it is possible to build new images out of existing images, creating a very convenient
hierarchical model of images.

The docker daemon

The docker daemon is the process that manages containers. It is easy to get this
confused with the Docker client because the same binary is used to run both the
processes. The docker daemon, though, needs the root privileges, whereas the
client doesn't.

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Unfortunately, since the docker daemon runs with root privileges, it also introduces
an attack vector. Read https://docs.Docker.com/articles/security/ for
more details.

Docker client

The Docker client is what interacts with the docker daemon to start or manage
containers. Docker uses a RESTful API to communicate between the client and
the daemon.

REST is an architectural style consisting of a coordinated set of
architectural constraints applied to components, connectors, and

data elements within a distributed hypermedia system. In plain
’ words, a RESTful service works over standard HTTP methods

such as the GET, POST, PUT, and DELETE methods.

Dockerfile

A Dockerfile is a file written in a Domain Specific Language (DSL) that contains
instructions on setting up a Docker image. Think of it as a Makefile equivalent
of Docker.

Docker registry

This is the public repository of all Docker images published by the Docker
community. You can pull images from this registry freely, but to push images,
you will have to register at http://hub.docker.com. Docker registry and Docker
hub are services operated and maintained by Docker Inc., and they provide
unlimited free repositories. You can also buy private repositories for a fee.

Docker commands

Now let's get our hands dirty on the Docker CLI. We will look at the most common
commands and their use cases. The Docker commands are modeled after Linux and
Git, so if you have used either of these, you will find yourself at home with Docker.

Only the most commonly used options are mentioned here. For the complete
reference, you can check out the official documentation at https://docs.docker.
com/reference/commandline/cli/.

[25]

www.it-ebooks.info

https://docs.Docker.com/articles/security/
http://hub.docker.com
https://docs.docker.com/reference/commandline/cli/
https://docs.docker.com/reference/commandline/cli/
http://www.it-ebooks.info/

Docker CLI and Dockerfile

The daemon command

If you have installed the docker daemon through standard repositories, the
command to start the docker daemon would have been added to the init script
to automatically start as a service on startup. Otherwise, you will have to first run
the docker daemon yourself for the client commands to work.

Now, while starting the daemon, you can run it with arguments that control
the Domain Name System (DNS) configurations, storage drivers, and execution
drivers for the containers:

$ export DOCKER HOST="tcp://0.0.0.0:2375"

$ Docker -d -D -e 1lxc -s btrfs --dns 8.8.8.8 --dns-search example.com

_ You'll need these only if you want to start the daemon yourself.
& Otherwise, you can start the docker daemon with $§ sudo
s service Docker start.For OSX and Windows, you need to
run the commands mentioned in Chapter 1, Installing Docker.

The following table describes the various flags:

Flag Explanation
-d This runs Docker as a daemon.
-D

This runs Docker in debug mode.

-e [option]

This is the execution driver to be used. The default execution
driver is native, which uses 1ibcontainer.

-s [optionl]

This forces Docker to use a different storage driver. The default
value is ", for which Docker uses AUFS.

--dns [option(s)]

This sets the DNS server (or servers) for all Docker containers.

--dns-search
[option(s)]

This sets the DNS search domain (or domains) for all Docker
containers.

-H [option(s)]

This is the socket (or sockets) to bind to. It can be one or more of
tcp://host:port, unix:///path/to/socket, £d://*
or fd://socketfd.

If multiple docker daemons are being simultaneously run, the client honors the
value set by the DOCKER_HOST parameter. You can also make it connect to a specific

daemon with the -1 flag.

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Consider this command:

$ docker -H tcp://0.0.0.0:2375 run -it ubuntu /bin/bash

The preceding command is the same as the following command:

$ DOCKER_HOST="tcp://0.0.0.0:2375" docker run -it ubuntu /bin/bash

The version command

The version command prints out the version information:

$ docker -v
Docker version 1.1.1, build bd609d2

The info command

The info command prints the details of the docker daemon configuration such
as the execution driver, the storage driver being used, and so on:

$ docker info # The author is running it in boot2docker on 0SX
Containers: 0

Images: 0

Storage Driver: aufs

Root Dir: /mnt/sdal/var/lib/docker/aufs

Dirs: 0

Execution Driver: native-0.2

Kernel Version: 3.15.3-tinycore64

Debug mode (server): true

Debug mode (client): false

Fds: 10

Goroutines: 10

EventsListeners: 0

Init Path: /usr/local/bin/docker

Sockets: [unix:///var/run/docker.sock tcp://0.0.0.0:2375]

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

The run command

The run command is the command that we will be using most frequently. It is used
to run Docker containers:

$ docker run [options] IMAGE [command] [args]

Flags

Explanation

-a, --attach=[]

Attach to the stdin, stdout, or stderr files (standard input,
output, and error files.).

-d, --detach

This runs the container in the background.

-i, --interactive | This runs the container in interactive mode (keeps the stdin file
open).

-t, --tty This allocates a pseudo tty flag (which is required if you want
to attach to the container's terminal).

-p, --publish=[] This publishes a container's port to the host
(ip:hostport:containerport).

--rm This automatically removes the container when exited (it cannot
be used with the -d flag).

--privileged This gives additional privileges to this container.

-v, --volume=I[]

This bind mounts a volume (from host => /host:/
container; from docker => /container).

--volumes-from=[]

This mounts volumes from specified containers.

-w, --workdir="" This is the working directory inside the container.
--name="" This assigns a name to the container.

-h, --hostname="" | This assigns a hostname to the container.

-u, --user="" This is the username or UID the container should run on.
-e, --env=[] This sets the environment variables.

--env-file=[]

This reads environment variables from a new line-delimited file.

--dns=1[1]

This sets custom DNS servers.

--dns-search=[]

This sets custom DNS search domains.

--link=[] This adds link to another container (name:alias).

-c, --cpu- This is the relative CPU share for this container.

shares=0

--cpuset="" These are the CPUs in which to allow execution; starts with 0.
(For example, 0 to 3).

-m, --memory="" This is the memory limit for this container
(<number><b|k|m|g>).

--restart="" (v1.2+) This specifies a restart policy in case the container

crashes.

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Flags Explanation

--cap-add="" (v1.2+) This grants a capability to a container (refer to Chapter 4,
Security Best Practices).

--cap-drop="" (v1.2+) This blacklists a capability to a container (refer to Chapter
4, Security Best Practices).

--device="" (v1.2+) This mounts a device on a container.

While running a container, it is important to keep in mind that the container's
lifetime is associated with the lifetime of the command you run when you start the
container. Now try to run this:

$ docker run -dt ubuntu ps
b1d037dfcf£6b076bde360070d3af04019269e44929df61c93dfcdfaf29492c9

$ docker attach bld037

2014/07/16 16:01:29 You cannot attach to a stopped container, start

it first

What happened here? When we ran the simple command, ps, the container ran
the command and exited. Therefore, we got an error.

The attach command attaches the standard input and output to a
7 running container.

Another important piece of information here is that you don't need to use the whole
64-character ID for all the commands that require the container ID. The first couple
of characters are sufficient. With the same example as shown in the following code:

$ docker attach b1do03

2014/07/16 16:09:39 You cannot attach to a stopped container, start
it first

$ docker attach bldo

2014/07/16 16:09:40 You cannot attach to a stopped container, start
it first

$ docker attach bld

2014/07/16 16:09:42 You cannot attach to a stopped container, start
it first

$ docker attach bl

2014/07/16 16:09:44 You cannot attach to a stopped container, start
it first

$ docker attach b

2014/07/16 16:09:45 Error: No such container: b

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

A more convenient method though would be to name your containers yourself:

$ docker run -dit --name OD-name-example ubuntu /bin/bash
1b21af96c38836d£8a809049fb3a040db571ccO0cef000a54ebce978clb5567ea
$ docker attach OD-name-example

root@lb21af96c388:/#

The -1 flag is necessary to have any kind of interaction in the container, and
the -t flag is necessary to create a pseudo-terminal.

The previous example also made us aware of the fact that even after we exit

a container, it is still in a stopped state. That is, we will be able to start the
container again, with its filesystem layer preserved. You can see this by running
the following command:

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
eb424£f5a9d3f ubuntu:latest ps 1 hour ago Exited OD-name-example

While this can be convenient, you may pretty soon have your host's disk space
drying up as more and more containers are saved. So, if you are going to run a
disposable container, you can run it with the --rm flag, which will remove the
container when the process exits:

$ docker run --rm -it --name OD-rm-example ubuntu /bin/bash
root@0fc99b2e35fb: /# exit

exit

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Running a server

Now, for our next example, we'll try running a web server. This example is chosen
because the most common practical use case of Docker containers is the shipping of
web applications:

$ docker run -it --name OD-pythonserver-1 --rm python:2.7 \
python -m SimpleHTTPServer 8000;
Serving HTTP on 0.0.0.0 port 8000

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Now we know the problem; we have a server running in a container, but since the
container's IP is assigned by Docker dynamically, it makes things difficult. However,
we can bind the container's ports to the host's ports and Docker will take care of
forwarding the networking traffic. Now let's try this command again with the -p flag:

$ docker run -p 0.0.0.0:8000:8000 -it --rm --name OD-pythonserver-2 \
python:2.7 python -m SimpleHTTPServer 8000;

Serving HTTP on 0.0.0.0 port 8000

172.17.42.1 - - [18/Jul/2014 14:25:46] "GET / HTTP/1.1" 200 -

Now open your browser and go to http://localhost:8000. Voila!

If you are an OS X user and you realize that you are not able to access http://
localhost:8000, it is because VirtualBox hasn't been configured to respond to
Network Address Translation (NAT) requests to the boot2Docker VM. Adding
the following function to your aliases file (bash_profile or .bashrc) will save a
lot of trouble:

natboot2docker ()
VBoxManage controlvm boot2docker-vm natpfl \

"$1,tcp,127.0.0.1,%2,,83";

removeDockerNat () {
VBoxManage modifyvm boot2docker-vm \
--natpfl delete $1;

}

After this, you should be able to use the $ natboot2docker mypythonserver
8000 8000 command to be able to access the Python server. But remember to run
the $ removeDockerDockerNat mypythonserver command when you are done.
Otherwise, when you run the boot2Docker VM next time, you will be faced with a
bug that won't allow you to get the IP address or the ssh script into it:

$ boot2docker ssh

ssh exchange identification: Connection closed by remote host
2014/07/19 11:55:09 exit status 255

Your browser now shows the /root path of the container. What if you wanted to
serve your host's directories? Let's try mounting a device:

root@eb53f7ec79fd: /# mount -t tmpfs /dev/random /mnt

mount: permission denied

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

As you can see, the mount command doesn't work. In fact, most kernel capabilities that
are potentially dangerous are dropped, unless you include the - -privileged flag.

However, you should never use this flag unless you know what you are doing.
Docker provides a much easier way to bind mount host volumes and bind mount
host volumes with the -v and -volumes options. Let's try this example again in the
directory we are currently in:

$ docker run -v $(pwd):$(pwd) -p 0.0.0.0:8000:8000 -it -rm \

--name OD-pythonserver-3 python:2.7 python -m SimpleHTTPServer 8000;
Serving HTTP on 0.0.0.0 port 8000

10.0.2.2 - - [18/Jul/2014 14:40:35] "GET / HTTP/1.1" 200 -

You have now bound the directory you are running the commands from to the
container. However, when you access the container, you still get the directory
listing of the root of the container. To serve the directory that has been bound to
the container, let's set it as the working directory of the container (the directory the
containerized process runs in) using the -w flag:

$ docker run -v $(pwd):$(pwd) -w $(pwd) -p 0.0.0.0:8000:8000 -it \ --name
OD-pythonserver-4 python:2.7 python -m SimpleHTTPServer 8000;

Serving HTTP on 0.0.0.0 port 8000
10.0.2.2 - - [18/Jul/2014 14:51:35] "GET / HTTP/1.1" 200 -

Boot2Docker users will not be able to utilize this yet, unless you use
guest additions and set up shared folders, the guide to which can be
found at https://medium.com/boot2docker-lightweight -
4 linux-for-docker/boot2docker-together-with-
% virtualbox-guest-additions-dale3ab2465c. Though this
’ solution works, it is a hack and is not recommended. Meanwhile, the

Docker community is actively trying to find a solution (check out
issue #64 in the boot2Docker GitHub repository and #4023 in the
Docker repository).

Now http://localhost:8000 will serve the directory you are currently running in,
but from a Docker container. Take care though, because any changes you make are
written into the host's filesystem as well.

[32]

www.it-ebooks.info

https://medium.com/boot2docker-lightweight-linux-for-docker/boot2docker-together-with-virtualbox-guest-additions-da1e3ab2465c
https://medium.com/boot2docker-lightweight-linux-for-docker/boot2docker-together-with-virtualbox-guest-additions-da1e3ab2465c
https://medium.com/boot2docker-lightweight-linux-for-docker/boot2docker-together-with-virtualbox-guest-additions-da1e3ab2465c
http://www.it-ebooks.info/

Chapter 2

M Since v1.1.1, you can bind mount the root of the host to a container using
Q $ docker run -v /:/my host:ro ubuntu ls /my host, but
mounting on the / path of the container is forbidden.

The volume can be optionally suffixed with the :ro or : rw commands to mount the
volumes in read-only or read-write mode, respectively. By default, the volumes are
mounted in the same mode (read-write or read-only) as they are in the host.

This option is mostly used to mount static assets and to write logs.
But what if I want to mount an external device?

Before v1.2, you had to mount the device in the host and bind mount using the -v
flag in a privileged container, but v1.2 has added a - -device flag that you can use
to mount a device without needing to use the - -privileged flag.

For example, to use the webcam in your container, run this command:
$ docker run --device=/dev/video0:/dev/video0

Docker v1.2 also added a --restart flag to specify a restart policy for containers.
Currently, there are three restart policies:

* no: Do not restart the container if it dies (default).

* on-failure: Restart the container if it exits with a non-zero exit code. It can
also accept an optional maximum restart count (for example, on-failure:5).

* always: Always restart the container no matter what exit code is returned.
The following is an example to restart endlessly:
$ docker run --restart=always code.it

The next line is used to try five times before giving up:

$ docker run --restart=on-failure:5 code.it

The search command

The search command allows us to search for Docker images in the public registry.
Let's search for all images related to Python:

$ docker search python | less

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

The pull command

The pull command is used to pull images or repositories from a registry. By default,
it pulls them from the public Docker registry, but if you are running your own
registry, you can pull them from it too:

$ docker pull python # pulls repository from Docker Hub

$ docker pull python:2.7 # pulls the image tagged 2.7

$ docker pull <path to_registry>/<image or repository>

The start command

We saw when we discussed docker run that the container state is preserved
on exit unless it is explicitly removed. The docker start command starts a
stopped container:

$ docker start [-i] [-al] <container(s)>

Consider the following example of the start command:

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
e3c4b6b39cff ubuntu:latest python -m 1h ago Exited OD-pythonserver-4
81bb2a92ab0c ubuntu:latest /bin/bash 1h ago Exited evil rosalind
d52fef570d6e ubuntu:latest /bin/bash 1h ago Exited prickly morse
eb424f5a9d3f ubuntu:latest /bin/bash 20h ago Exited OD-name-example

$ docker start -ai OD-pythonserver-4

Serving HTTP on 0.0.0.0 port 8000

The options have the same meaning as with the docker run command.

The stop command

The stop command stops a running container by sending the SIGTERM signal and
then the SIGKILL signal after a grace period:

SIGTERM and SIGKILL are Unix signals. A signal is a form of
* interprocess communication used in Unix, Unix-like, and other
POSIX-compliant operating systems. SIGTERM signals the
process to terminate. The SIGKILL signal is used to forcibly
kill a process.

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

docker run -dit --name OD-stop-example ubuntu /bin/bash

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
679ece6f2all ubuntu:latest /bin/bash 5h ago Up 3s OD-stop-example
$ docker stop OD-stop-example

OD-stop-example

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES

You can also specify the -t flag or - -time flag, which allows you to set the wait time.

The restart command

The restart command restarts a running container:

$ docker run -dit --name OD-restart-example ubuntu /bin/bash

$ sleep 15s # Suspends execution for 15 seconds

$ docker ps

CONTAINER ID IMAGE COMMAND STATUS NAMES

cc5d0ae0b599 ubuntu:latest /bin/bash Up 20s OD-restart-example

$ docker restart OD-restart-example

$ docker ps

CONTAINER ID IMAGE COMMAND STATUS NAMES
cc5d0ae0b599 ubuntu:latest /bin/bash Up 2s OD-restart-example

If you observe the status, you will notice that the container was rebooted.

The rm command

The rm command removes Docker containers:

$ Docker ps -a # Lists containers including stopped ones
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES

cc5d0ae0b599 ubuntu /bin/bash 6h ago Exited OD-restart-example
679ece6f2all ubuntu /bin/bash 7h ago Exited OD-stop-example
e3c4b6b39cff ubuntu /bin/bash 9h ago Exited OD-name-example

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

We seem to be having a lot of containers left over after our adventures. Let's remove
one of them:
$ dockerDocker rm OD-restart-example

cc5d0ae0b599

We can also combine two Docker commands. Let's combine the docker ps -a -g
command, which prints the ID parameters of the containers in the docker ps -a,
and docker rmcommands, to remove all containers in one go:

$ docker rm $(docker ps -a -q)

67%9ece6f2all

e3c4b6b39cff

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES

This evaluates the docker ps -a -gcommand first, and the output is used by
the docker rm command.

The ps command

The ps command is used to list containers. It is used in the following way:

$ docker ps [option(s)]

Flag Explanation

-a, --all This shows all containers, including stopped ones.

-q, --quiet | This shows only container ID parameters.

-s, --size This prints the sizes of the containers.

-1, This shows only the latest container (including stopped containers).
--latest

-n="" This shows the last # containers (including stopped containers). Its
default value is -1.

--before="" | This shows the containers created before the specified ID or name.
It includes stopped containers.

--after="" This shows the containers created after the specified ID or name. It
includes stopped containers.

The docker ps command will show only running containers by default. To see all
containers, run the docker ps -a command. To see only container ID parameters,
run it with the -q flag.

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The logs command

The 1ogs command shows the logs of the container:

Let us look at the logs of the python server we have been running
$ docker logs OD-pythonserver-4

Serving HTTP on 0.0.0.0 port 8000

10.0.2.2 - - [18/Jul/2014 15:06:39] "GET / HTTP/1.1" 200 -
“CTraceback (most recent call last):

File

KeyboardInterrupt

You can also provide a --tail argument to follow the output as the container
is running.

The inspect command

The inspect command allows you to get the details of a container or an image.
It returns those details as a JSON array:

$ Docker inspect ubuntu # Running on an image
{

"Architecture": "amdé64",

"Author": n"n,

"Comment": "",

"DockerVersion": "0.10.0",

lIIdll H
"e54ca5efa2e962582a223¢ca9810£7£f1b62ea%b5¢3975d14a5da79d3b£6020£37",

"Os": "linux",

"Parent":
"6c37£792ddacad573016e6aea7£c9fb377127b4767ce6104c9£869314al12041e",

"Size": 178365

H

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

Similarly, for a container we run the following command:

$ Docker inspect OD-pythonserver-4 # Running on a container
{
IIArgsll: [
"_mn,
"SimpleHTTPServer",
IISOOOII

"Name": "/OD-pythonserver-4",
"NetworkSettings": {
"Bridge": "DockerO",
"Gateway": "172.17.42.1",
"IPAddress": "172.17.0.11",
"IPPrefixLen": 16,
"PortMapping": null,
"Ports": {
"8000/tcp": [
{
"HostIp": "0.0.0.0",
"HostPort": "8000"

"Volumes": {

" /home/Docker": "/home/Docker"
}I
"VolumesRW": {

" /home/Docker": true

H

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Docker inspect provides all of the low-level information about a container or image.
In the preceding example, find out the IP address of the container and the exposed
port and make a request to the IP:port. You will see that you are directly accessing
the server running in the container.

However, manually looking through the entire JSON array is not optimal. So the
inspect command provides a flag, - £ (or the --follow flag), which allows you to
specify exactly what you want using Go templates. For example, if you just want to
get the container's IP address, run the following command:

$ docker inspect -f '{{.NetworkSettings.IPAddress}}' \
OD-pythonserver-4;
172.17.0.11

The {{.NetworksSettings.IPAddress}} is a Go template that was executed over the
JSON result. Go templates are very powerful, and some of the things that you can do
with them have been listed at http://golang.org/pkg/text/template/.

The top command

The top command shows the running processes in a container and their statistics,
mimicking the Unix top command.

Let's download and run the ghost blogging platform and check out what processes
are running in it:

$ docker run -d -p 4000:2368 --name OD-ghost dockerfile/ghost
ece88c79b0793b0a49e3d23e2b0b8e75d89¢c519e5987172951ea8d30d96a2936

$ docker top OD-ghost-1

PID USER COMMAND

1162 root bash /ghost-start
1180 root npm

1186 root sh -c node index
1187 root node index

Yes! We just set up our very own ghost blog, with just one command. This brings
forth another subtle advantage and shows something that could be a future trend.
Every tool that exposes its services through a TCP port can now be containerized
and run in its own sandboxed world. All you need to do is expose its port and bind
it to your host port. You don't need to worry about installations, dependencies,
incompatibilities, and so on, and the uninstallation will be clean because all you
need to do is stop all the containers and remove the image.

[39]

www.it-ebooks.info

http://golang.org/pkg/text/template/
http://www.it-ebooks.info/

Docker CLI and Dockerfile

Ghost is an open source publishing platform that is beautifully
@’@‘\ designed, easy to use, and free for everyone. It is coded in Node.
g js, a server-side JavaScript execution engine.

The attach command

The attach command attaches to a running container.

Let's start a container with Node.js, running the node interactive shell as a daemon,
and later attach to it.

Node js is an event-driven, asynchronous 1/O web framework that runs
— applications written in JavaScript on Google's V8 runtime environment.

The container with Node.js is as follows:

$ docker run -dit --name OD-nodejs shykes/nodejs node

8e0da647200efe33a9dd53d45ea38e3af3892b04aa8b7a6el67b3c093e522754

$ docker attach OD-nodejs

console.log('Docker rocks!') ;Docker rocks!

The kill command

The ki11 command kills a container and sends the SIGTERM signal to the process
running in the container:

Let us kill the container running the ghost blog.

$ docker kill OD-ghost-1

OD-ghost-1

$ docker attach OD-ghost-1 # Verification

2014/07/19 18:12:51 You cannot attach to a stopped container, start
it first

The cp command

The cp command copies a file or folder from a container's filesystem to the host path.
Paths are relative to the root of the filesystem.

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

It's time to have some fun. First, let's run an Ubuntu container with the /bin/
bash command:

$ docker run -it -name OD-cp-bell ubuntu /bin/bash
Now, inside the container, let's create a file with a special name:
touch $(echo -e '\007"')

The \ 007 character is an ASCII BEL character that rings the system bell when printed
on a terminal. You might have already guessed what we're about to do. So let's open
a new terminal and execute the following command to copy this newly created file
to the host:

$ docker cp OD-cp-bell:/$(echo -e '\007') $(pwd)

Ry For the docker cp command to work, both the container path and the
Q host path must be complete, so do not use shortcuts such as ., ,, *, and
SO on.

So we created an empty file whose filename is the BEL character, in a container. Then
we copied the file to the current directory in the host container. Just one last step is
remaining. In the host tab where you executed the docker cp command, run the
following command:

$ echo *

You will hear the system bell ring! We could have copied any file or directory from
the container to the host. But it doesn't hurt to have some fun!

. If you found this interesting, you might like to read http://www.
% dwheeler.com/essays/fixing-unix-linux-filenames.html.
% This is a great essay that discusses the edge cases in filenames, which

can cause simple to complicated issues in a program.

The port command

The port command looks up the public-facing port that is bound to an exposed
port in the container:

$ docker port CONTAINER PRIVATE PORT
$ docker port OD-ghost 2368

4000

[41]

www.it-ebooks.info

http://www.dwheeler.com/essays/fixing-unix-linux-filenames.html
http://www.dwheeler.com/essays/fixing-unix-linux-filenames.html
http://www.it-ebooks.info/

Docker CLI and Dockerfile

Ghost runs a server at the 2368 port that allows you to write and publish a blog
post. We bound a host port to the 0D-ghost container's port 2368 in the example
for the top command.

Running your own project

By now, we are considerably familiar with the basic Docker commands. Let's up the
ante. For the next couple of commands, I am going to use one of my side projects.
Feel free to use a project of your own.

Let's start by listing out our requirements to determine the arguments we must pass
to the docker run command.

Our application is going to run on Node.js, so we will choose the well-maintained
dockerfile/nodejs image to start our base container:

* We know that our application is going to bind to port 8000, so we will
expose the port to 8000 of the host.

* We need to give a descriptive name to the container so that we can reference
it in future commands. In this case, let's choose the name of the application:

$ docker run -it --name code.it dockerfile/nodejs /bin/bash
[root@3b0d5a04cdcd:/data 1$ cd /home
[root@3b0d5a04cdcd: /home 1$

Once you have started your container, you need to check whether the dependencies
for your application are already available. In our case, we only need Git (apart from
Node,js), which is already installed in the dockerfile/nodejs image.

Now that our container is ready to run our application, all that is remaining is for
us to fetch the source code and do the necessary setup to run the application:

$ git clone https://github.com/shrikrishnaholla/code.it.git

$ cd code.it && git submodule update --init --recursive

This downloads the source code for a plugin used in the application.
Then run the following command:

$ npm install

Now all the node modules required to run the application are installed.
Next, run this command:

$ node app.js

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Now you can go to localhost:8000 to use the application.

The diff command

The diff command shows the difference between the container and the image it is
based on. In this example, we are running a container with code. it. In a separate
tab, run this command:

$ docker diff code.it

C /home

A /home/code.it

The commit command

The commit command creates a new image with the filesystem of the container.
Just as with Git's commit command, you can set a commit message that describes
the image:

$ docker commit [OPTIONS] CONTAINER [REPOSITORY [:TAG]]

Flag Explanation

-p, --pause This pause the container during commit (availabe from v1.1.1+
onwards).

-m, This is a commit message. It can be a description of what the

--message="" | jmage does.

-a, This displays the author details.

--author=""

For example, let's use this command to commit the container we have set up:

$ docker commit -m "Code.it - A browser based text editor and
interpreter" -a "Shrikrishna Holla <s**a@gmail.com>" code.it
shrikrishna/code.it:v1l

1
‘\Q Replace the author details and the username portion of the image name

in this example if you are copying these examples.

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

The output will be a lengthy image ID. If you look at the command closely, we have
named the image shrikrishna/code.it:v1. This is a convention. The first part of an
image/repository's name (before the forward slash) is the Docker Hub username of the
author. The second part is the intended application or image name. The third part is a
tag (usually a version description) separated from the second part by a colon.

. Docker Hub is a public registry maintained by Docker, Inc. It
% hosts public Docker images and provides services to help you
" build and manage your Docker environment. More details about
it can be found at https://hub.docker. con.

A collection of images tagged with different versions is a repository. The image
you create by running the docker commit command will be a local one, which
means that you will be able to run containers from it but it won't be available
publicly. To make it public or to push to your private Docker registry, use the
docker push command.

The images command

The images command lists all the images in the system:

$ docker images [OPTIONS] [NAME]

Flag Explanation

-a, --all This shows all images, including intermediate layers.

-f, --filter=[] | This provides filter values.

--no-trunc This doesn't truncate output (shows complete ID).

-q, --quiet This shows only the image IDs.

Now let's look at a few examples of the usage of the image command:

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
shrikrishna/code.it v1 a7cb6737a2f6 6m ago 704.4 MB

This lists all top-level images, their repository and tags, and their virtual size.

Docker images are nothing but a stack of read-only filesystem layers. A union
filesystem, such as AUFS, then merges these layers and they appear to be
one filesystem.

[44]

www.it-ebooks.info

https://hub.docker.com
http://www.it-ebooks.info/

Chapter 2

In Docker-speak, a read-only layer is an image. It never changes. When running a
container, the processes think that the entire filesystem is read-write. But the changes
go only at the topmost writeable layer, which is created when a container is started.
The read-only layers of the image remain unchanged. When you commit a container,
it freezes the top layer (the underlying layers are already frozen) and turns it into

an image. Now, when a container is started this image, all the layers of the image
(including the previously writeable layer) are read-only. All the changes are now
made to a new writeable layer on top of all the underlying layers. However, because
of how union filesystems (such as AUFS) work, the processes believe that the
filesystem is read-write.

A rough schematic of the layers involved in our code . it example is as follows:

xyz / code it : Our application added

dockerfile / nodejs : With latest version of nodejs

dockerfile / python : With Python and pip

dockerfile / ubuntu : With build-essential, curl, git,
htop, vim, wget

ubuntu : 14.04 => Base Image

Host Kernel

At this point, it might be wise to think just how much effort is to
be made by the union filesystems to merge all of these layers and
* provide a consistent performance. After some point, things inevitably
% break. AUFS, for instance, has a 42-layer limit. When the number of
g layers goes beyond this, it just doesn't allow the creation of any more
layers and the build fails. Read https://github.com/docker/
docker/issues/1171 for more information on this issue.

The following command lists the most recently created images:

$ docker images | head

The -£ flag can be given arguments of the key=value type. It is frequently used
to get the list of dangling images:

$ docker images -f "dangling=true"

This will display untagged images, that is, images that have been committed or
built without a tag.

[45]

www.it-ebooks.info

https://github.com/docker/docker/issues/1171
https://github.com/docker/docker/issues/1171
http://www.it-ebooks.info/

Docker CLI and Dockerfile

The rmi command

The rmi command removes images. Removing an image also removes all the
underlying images that it depends on and were downloaded when it was pulled:

$ docker rmi [OPTION] {IMAGE(s)]

Flag Explanation
-f, --force This forcibly removes the image (or images).
--no-prune This command does not delete untagged parents.

This command removes one of the images from your machine:

$ docker rmi test

The save command

The save command saves an image or repository in a tarball and this streams to
the stdout file, preserving the parent layers and metadata about the image:

$ docker save -o codeit.tar code.it

The -o flag allows us to specify a file instead of streaming to the stdout file. It is
used to create a backup that can then be used with the docker load command.

The load command

The 1oad command loads an image from a tarball, restoring the filesystem layers
and the metadata associated with the image:

$ docker load -i codeit.tar

The -1 flag allows us to specify a file instead of trying to get a stream from the
stdin file.

The export command

The export command saves the filesystem of a container as a tarball and streams
to the stdout file. It flattens filesystem layers. In other words, it merges all the
filesystem layers. All of the metadata of the image history is lost in this process:

$ sudo Docker export red panda > latest.tar

Here, red_panda is the name of one of my containers.

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The import command

The import command creates an empty filesystem image and imports the contents of
the tarball to it. You have the option of tagging it the image:

$ docker import URL|- [REPOSITORY[:TAG]]

URLs must start with http.
$ docker import http://example.com/test.tar.gz # Sample url

If you would like to import from a local directory or archive, you can use the -
parameter to take the data from the stdin file:

$ cat sample.tgz | docker import - testimage:imported

The tag command

You can add a tag command to an image. It helps identify a specific version of
an image.

For example, the python image name represents python: latest, the latest version
of Python available, which can change from time to time. But whenever it is updated,
the older versions are tagged with the respective Python versions. So the python:2.7
command will have Python 2.7 installed. Thus, the tag command can be used to
represent versions of the images, or for any other purposes that need identification
of the different versions of the image:

$ docker tag IMAGE [REGISTRYHOST/] [USERNAME/]NAME [:TAG]

The REGISTRYHOST command is only needed if you are using a private registry of
your own. The same image can have multiple tags:

$ docker tag shrikrishna/code.it:vl shrikrishna/code.it:latest

1
~ Whenever you are tagging an image, follow the username/

repository:tag convention.

Now, running the docker images command again will show that the same image
has been tagged with both the v1 and latest commands:

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
shrikrishna/code.it vl a7cb6737a2f6 8 days ago 704.4 MB
shrikrishna/code.it latest a7cb6737a2f6 8 days ago 704.4 MB

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

The login command

The 1login command is used to register or log in to a Docker registry server. If no
server is specified, https://index.docker.io/v1/ is the default:

$ Docker login [OPTIONS] [SERVER]
Flag Explanation
-e, --email="n Email
-p, --password="" Password
-u, --username="" Username

If the flags haven't been provided, the server will prompt you to provide the details.
After the first login, the details will be stored in the $HOME/ . dockercfg path.

The push command

The push command is used to push an image to the public image registry or a
private Docker registry:

$ docker push NAME [:TAG]

The history command

The history command shows the history of the image:

$ docker history shykes/nodejs

IMAGE

6592508b0790
0a2ff988ae20
43c5d81f45de
b750£e79269d
27c£78414709

CREATED

15
15
15
16
16

months
months
months
months

months

ago
ago
ago
ago

ago

CREATED BY

/bin/sh -c wget http://nodejs.
/bin/sh -c apt-get install ...

/bin/sh -c apt-get update
/bin/bash

The events command

Once started, the events command prints all the events that are handled by the
docker daemon, in real time:

$ docker events [OPTIONS]

SIZE
15.07 MB
25.49 MB
96.48 MB
77 B
175.3 MB

[48]

www.it-ebooks.info

https://index.docker.io/v1/
http://www.it-ebooks.info/

Chapter 2

Flag Explanation
--since="" This shows all events created since timestamp (in Unix).
--until="" This stream events until timestamp.

For example the events command is used as follows:
$ docker events

Now, in a different tab, run this command:

$ docker start code.it

Then run the following command:

$ docker stop code.it

Now go back to the tab running Docker events and see the output. It will be along

these lines:

[2014-07-21 21:31:50 +0530 IST]

c7£2485863b2c7d0071477e6cb8c8301021ef9036a£d4620702a0de08a4b3£7b:

dockerfile/nodejs:latest) start

[2014-07-21 21:31:57 +0530 IST]

c7£2485863b2c7d0071477e6cb8c8301021ef9036a£d4620702a0de08a4b3£7b:

dockerfile/nodejs:latest) stop

[2014-07-21 21:31:57 +0530 IST]

c7£2485863b2c7d0071477e6cb8c8301021ef9036a£d4620702a0de08a4b3£7b:

dockerfile/nodejs:latest) die

You can use flags such as --since and --until to get the event logs of
specific timeframes.

The wait command

The wait command blocks until a container stops, then prints its exit code:

$ docker wait CONTAINER (s)

(from

(from

(from

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

The build command

The build command builds an image from the source files at a specified path:

$ Docker build [OPTIONS] PATH | URL | -

Flag Explanation

-t, --tag="" This is the repository name (and an optional tag) to be applied to
the resulting image in case of success.

-q, --quiet This suppresses the output, which by default is verbose.

--rm=true This removes intermediate containers after a successful build.

--force-rm This always removes intermediate containers, even after

unsuccessful builds.

--no-cache This command does not use the cache while building the image.

This command uses a Dockerfile and a context to build a Docker image.

A Dockerfile is like a Makefile. It contains instructions on the various configurations
and commands that need to be run in order to create an image. We will look at
writing Dockerfiles in the next section.

M It would be a good idea to read the section about Dockerfiles first and
Q then come back here to get a better understanding of this command
and how it works.

The files at the PATH or URL paths are called context of the build. The context is used
to refer to the files or folders in the Dockerfile, for instance in the ADD instruction
(and that is the reason an instruction such as ADD ../file.txt won't work. It's

not in the context!).

When a GitHub URL or a URL with the git: // protocol is given, the repository is
used as the context. The repository and its submodules are recursively cloned in your
local machine, and then uploaded to the docker daemon as the context. This allows
you to have Dockerfiles in your private Git repositories, which you can access from
your local user credentials or from the Virtual Private Network (VPN).

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Uploading to Docker daemon

Remember that Docker engine has both the docker daemon and the Docker client.
The commands that you give as a user are through the Docker client, which then
talks to the docker daemon (either through a TCP or a Unix socket), which does
the necessary work. The docker daemon and Docker host can be in different hosts
(which is the premise with which boot2Docker works), with the DOCKER_HOST
environment variable set to the location of the remote docker daemon.

When you give a context to the docker build command, all the files in the local
directory get tared and are sent to the docker daemon. The PATH variable specifies
where to find the files for the context of the build in the docker daemon. So when
you run docker build ., all the files in the current folder get uploaded, not just the
ones listed to be added in the Dockerfile.

Since this can be a bit of a problem (as some systems such as Git and some IDEs such
as Eclipse create hidden folders to store metadata), Docker provides a mechanism

to ignore certain files or folders by creating a file called .dockerignore in the PATH
variable with the necessary exclusion patterns. For an example, look up https://
github.com/docker/docker/blob/master/.dockerignore.

If a plain URL is given or if the Dockerfile is streamed through the stdin file, then
no context is set. In these cases, the ADD instruction works only if it refers to a remote
URL.

Now let's build the code. it example image through a Dockerfile. The instructions
on how to create this Dockerfile are provided in the Dockerfile section.

At this point, you would have created a directory and placed the Dockerfile inside it.
Now, on your terminal, go to that directory and execute the docker build command:
$ docker build -t shrikrishna/code.it:docker Dockerfile .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM Dockerfile/nodejs

---> 1535da87b710

[51]

www.it-ebooks.info

https://github.com/docker/docker/blob/master/.dockerignore
https://github.com/docker/docker/blob/master/.dockerignore
http://www.it-ebooks.info/

Docker CLI and Dockerfile

Step 1 : MAINTAINER Shrikrishna Holla <s**a@gmail.com>
---> Running in e4be61c08592
---> 4cOeabc44a95
Removing intermediate container e4be61c08592
Step 2 : WORKDIR /home
---> Running in 067e8951cb22
---> 8lead6b62246

Removing intermediate container 067e8951cb22

Step 7 : EXPOSE 8000
---> Running in 20le07ec35d3
---> 1db6830431cd
Removing intermediate container 20le07ec35d3
Step 8 : WORKDIR /home
---> Running in cdl128a6£f090c
---> ba05b89b9ccl
Removing intermediate container cdl28a6f090c
Step 9 : CMD ["/usr/bin/node", "/home/code.it/app.js"]
---> Running in 6da5d364e3el
---> 03le%9ed9352c
Removing intermediate container 6da5d364e3el
Successfully built 03le9ed9352c

Now, you will be able to look at your newly built image in the output of
Docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
shrikrishna/code.it Dockerfile 031le9ed9352c 21 hours ago 1.02 GB

To see the caching in action, run the same command again

$ docker build -t shrikrishna/code.it:dockerfile .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM dockerfile/nodejs
---> 1535da87b710
Step 1 : MAINTAINER Shrikrishna Holla <s**a@gmail.com>
---> Using cache

---> 4cOeabc44ad5

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Step 2 : WORKDIR /home
---> Using cache
---> 8lead6b62246
Step 3 : RUN git clone https://github.com/shrikrishnaholla/code.
it.git
---> Using cache
---> adb4843236d4
Step 4 : WORKDIR code.it
---> Using cache
---> 755d248840bb
Step 5 : RUN git submodule update --init --recursive
---> Using cache
---> 2204a519efd3
Step 6 : RUN npm install
---> Using cache
---> 501e028d7945
Step 7 : EXPOSE 8000
---> Using cache
---> 1db6830431cd
Step 8 : WORKDIR /home
---> Using cache
---> ba05b89b9ccl
Step 9 : CMD ["/usr/bin/node", "/home/code.it/app.js"]
---> Using cache
---> 03le%9ed9352c
Successfully built 03le9ed9352c

M Now experiment with this caching. Change one of the lines in the
middle (the port number for example), or add a RUN echo "testing
cache" line somewhere in the middle and see what happens.

An example of building an image using a repository URL is as follows:

$ docker build -t shrikrishna/optimus:git url \ git://github.com/
shrikrishnaholla/optimus

Sending build context to Docker daemon 1.305 MB

Sending build context to Docker daemon

Step 0 : FROM dockerfile/nodejs

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

---> 1535da87b710
Step 1 : MAINTAINER Shrikrishna Holla
---> Running in d2aae3dbaé8c
---> 0e8636eac25b
Removing intermediate container d2aae3dbaé8c

Step 2 : RUN git clone https://github.com/pesos/optimus.git
/home/optimus

---> Running in 0b46e254e90a

Step 5 : CMD ["/usr/local/bin/npm", "start"]
---> Running in 0e0lc71faalb
---> 0£0dd3deaeé65

Removing intermediate container 0e0lc7l1faalb

Successfully built 0£f0dd3deae65

Dockerfile

We have seen how to create images by committing containers. What if you want to
update the image with new versions of dependencies or new versions of your own
application? It soon becomes impractical to do the steps of starting, setting up, and
committing over and over again. We need a repeatable method to build images. In
comes Dockerfile, which is nothing more than a text file that contains instructions
to automate the steps you would otherwise have taken to build an image. docker
build will read these instructions sequentially, committing them along the way,
and build an image.

The docker build command takes this Dockerfile and a context to execute the
instructions, and builds a Docker image. Context refers to the path or source code
repository URL given to the docker build command.

A Dockerfile contains instructions in this format:

Comment

INSTRUCTION arguments

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Any line beginning with # will be considered as a comment. If a # sign is present
anywhere else, it will be considered a part of arguments. The instruction is not
case-sensitive, although it is an accepted convention for instructions to be uppercase
so as to distinguish them from the arguments.

Let's look at the instructions that we can use in a Dockerfile.

The FROM instruction

The FroM instruction sets the base image for the subsequent instructions. A valid
Dockerfile's first non-comment line will be a FROM instruction:

FROM <image>:<tag>

The image can be any valid local or public image. If it is not found locally,the bocker
build command will try to pull it from the public registry. The tag command is
optional here. If it is not given, the latest command is assumed. If the incorrect tag
command is given, it returns an error.

The MAINTAINER instruction

The MAINTAINER instruction allows you to set the author for the generated images:

MAINTAINER <name>

The RUN instruction

The rRUN instruction will execute any command in a new layer on top of the current
image, and commit this image. The image thus committed will be used for the next
instruction in the Dockerfile.

The RUN instruction has two forms:

¢ The RUN <commands form

e TheRUN ["executable", "argl", "arg2"...] form

In the first form, the command is run in a shell, specifically the /bin/sh -c
<command> shell. The second form is useful in instances where the base image doesn't
have a /bin/sh shell. Docker uses a cache for these image builds. So in case your
image build fails somewhere in the middle, the next run will reuse the previously
successful partial builds and continue from the point where it failed.

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

The cache will be invalidated in these situations:

* When the docker build command is run with the --no-cache flag.

* When a non-cacheable command such as apt -get update is given. All
the following RUN instructions will be run again.

¢ When the first encountered DD instruction will invalidate the cache for all
the following instructions from the Dockerfile if the contents of the context
have changed. This will also invalidate the cache for the rRUN instructions.

The CMD instruction

The cMD instruction provides the default command for a container to execute. It has
the following forms:

e ThecMD ["executable", "argl", "arg2"...] form
e ThecMmp ["argl", "arg2"...] form
e ThecMD command argl arg2 ..form

The first form is like an exec and it is the preferred form, where the first value is the
path to the executable and is followed by the arguments to it.

The second form omits the executable but requires the ENTRYPOINT instruction to
specify the executable.

If you use the shell form of the cMD instruction, then the <command> command will
execute in the /bin/sh -c shell.

If the user provides a command in docker run, it overrides the
L CMD command.

The difference between the RUN and cMD instructions is that a RUN instruction actually
runs the command and commits it, whereas the cMD instruction is not executed
during build time. It is a default command to be run when the user starts a container,
unless the user provides a command to start it with.

For example, let's write a Dockerfile that brings a Star wars output to your terminal:

FROM ubuntu:14.04

MAINTAINER shrikrishna

RUN apt-get -y install telnet

CMD ["/usr/bin/telnet", "towel.blinkenlights.nl"]

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Save this in a folder named star wars and open your terminal at this location. Then
run this command:

$ docker build -t starwars .

Now you can run it using the following command:

$ docker run -it starwars

The following screenshot shows the starwars output:

Thus, you can watch Star Wars in your terminal!

This Star Wars tribute was created by Simon Jansen, Sten Spans, and
% Mike Edwards. When you've had enough, hold Ctrl +]. You will be
'~ given a prompt where you can type close to exit.

The ENTRYPOINT instruction

The ENTRYPOINT instruction allows you to turn your Docker image into an
executable. In other words, when you specify an executable in an ENTRYPOINT,
containers will run as if it was just that executable.

The ENTRYPOINT instruction has two forms:

1. The ENTRYPOINT ["executable", "argl", "arg2"...] form.

2. The ENTRYPOINT command argl arg2 ..form.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

This instruction adds an entry command that will not be overridden when
arguments are passed to the docker run command, unlike the behavior of the

cMD instruction. This allows arguments to be passed to the ENTRYPOINT instruction.
The docker run <image> -argcommand will pass the -arg argument to the
command specified in the ENTRYPOINT instruction.

Parameters, if specified in the ENTRYPOINT instruction, will not be overridden by
the docker run arguments, but parameters specified via the cMD instruction will
be overridden.

As an example, let's write a Dockerfile with cowsay as the ENTRYPOINT instruction:

The cowsay is a program that generates ASCII pictures of a cow with
@’é‘\ a message. It can also generate pictures using premade images of other
’ animals, such as Tux the Penguin, the Linux mascot.

FROM ubuntu:14.04

RUN apt-get -y install cowsay
ENTRYPOINT ["/usr/games/cowsay"]

CMD ["Docker is so awesomoooooooo!"]

Save this with the name Dockerfile in a folder named cowsay. Then through
terminal, go to that directory, and run this command:

$ docker build -t cowsay .
Once the image is built, run the following command:

$ docker run cowsay

The following screenshot shows the output of the preceding command:

cker run shrikr

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

If you look at the screenshot closely, the first run has no arguments and it used
the argument we configured in the Dockerfile. However, when we gave our own
arguments in the second run, it overrode the default and passed all the arguments
(The -£ flag and the sentence) to the cowsay folder.

If you are the kind who likes to troll others, here's a tip: apply the
. instructions given at http://superuser.com/a/175802 to set
% up a pre-exec script (a function that is called whenever a command is
. executed) that passes every command to this Docker container, and
place it in the .bashrc file. Now cowsay will print every command
that it execute in a text balloon, being said by an ASCII cow!

The WORKDIR instruction

The WORKDIR instruction sets the working directory for the RUN, cMD, and ENTRYPOINT
Dockerfile commands that follow it:

WORKDIR /path/to/working/directory

This instruction can be used multiple times in the same Dockerfile. If a relative path
is provided, the WORKDIR instruction will be relative to the path of the previous
WORKDIR instruction.

The EXPOSE instruction

The ExPOSE instruction informs Docker that a certain port is to be exposed when a
container is started:

EXPOSE portl port2 ..

Even after exposing ports, while starting a container, you still need to provide port
mapping using the -p flag to Docker run. This instruction is useful when linking
containers, which we will see in Chapter 3, Linking Containers.

The ENV instruction

The ENV command is used to set environment variables:

ENV <key> <value>

This sets the <key> environment variable to <values. This value will be passed
to all future RUN instructions. This is equivalent to prefixing the command with
<key>=<values.

[59]

www.it-ebooks.info

http://superuser.com/a/175802
http://www.it-ebooks.info/

Docker CLI and Dockerfile

The environment variables set using the ENV command will persist. This means that
when a container is run from the resulting image, the environment variable will be
available to the running process as well. The docker inspect command shows the
values that have been assigned during the creation of the image. However, these can
be overridden using the $ docker run -env <key>=<value>command.

The USER instruction

The USER instruction sets the username or UID to use when running the image
and any following the RUN directives:

USER xyz

The VOLUME instruction

The vOLUME instruction will create a mount point with the given name and mark it
as holding externally mounted volumes from the host or from other containers:

VOLUME [path]

Here is an example of the VOLUME instruction:
VOLUME ["/data"]

Here is another example of this instruction:
VOLUME /var/log

Both formats are acceptable.

The ADD instruction

The ADD instruction is used to copy files into the image:
ADD <src> <dest>
The ADD instruction will copy files from <src> into the path at <dests>.

The <src> path must be the path to a file or directory relative to the source
directory being built (also called the context of the build) or a remote file URL.

The <dest> path is the absolute path to which the source will be copied inside
the destination container.

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

If you build by passing a Dockerfile through the stdin file (docker
. build - < somefile), there is no build context, so the Dockerfile can
% only contain a URL-based ADD statement. You can also pass a compressed
L archive through the stdin file (docker build - < archive.tar.
gz). Docker will look for a Dockerfile at the root of the archive and the
rest of the archive will get used as the context of the build.

The ADD instruction obeys the following rules:

* The <src> path must be inside the context of the build. You cannot use
ADD ../file as .. syntax, as itis beyond the context.

* If <src>isa URL and the <dest> path doesn't end with a trailing slash
(it's a file), then the file at the URL is copied to the <dest > path.

* If <src>isa URL and the <dest> path ends with a trailing slash (it's a
directory), then the content at the URL is fetched and a filename is inferred
from the URL and saved into the <dest>/filename path. So, the URL
cannot have a simple path such as example. com in this case.

* If <src> is a directory, the entire directory is copied, along with the
filesystem metadata.

* If <src> isalocal tar archive, then it is extracted into the <dest > path.
The result at <dest> is union of:

° Whatever existed at the path <dest>.

o

Contents of the extracted tar archive, with conflicts in favor of the
path <src>, on a file-by-file basis.

* If <dest> path doesn't exist, it is created along with all the missing
directories along its path.

The COPY instruction

The COPY instruction copies a file into the image:

COPY <src> <dest>

The Ccopy instruction is similar to the ADD instruction. The difference is that the
COPY instruction does not allow any file out of the context. So, if you are streaming
Dockerfile via the stdin file or a URL (which doesn't point to a source code
repository), the COPY instruction cannot be used.

[61]

www.it-ebooks.info

example.com
http://www.it-ebooks.info/

Docker CLI and Dockerfile

The ONBUILD instruction

The ONBUILD instruction adds to the image a trigger that will be executed when the
image is used as a base image for another build:

ONBUILD [INSTRUCTION]

This is useful when the source application involves generators that need to compile
before they can be used. Any build instruction apart from the FROM, MAINTAINER,
and ONBUILD instructions can be registered.

Here's how this instruction works:

1. During a build, if the oNBUILD instruction is encountered, it registers a
trigger and adds it to the metadata of the image. The current build is not
otherwise affected in any way.

2. Alist of all such triggers is added to the image manifest as a key named
onBuild at the end of the build (which can be seen through the Docker
inspect command).

3. When this image is later used as a base image for a new build, as part of
processing the FROM instruction, the onBuild key triggers are read and
executed in the order they were registered. If any of them fails, the FROM
instruction aborts, causing the build to fail. Otherwise, the FROM instruction
completes and the build continues as usual.

4. Triggers are cleared from the final image after being executed. In other
words they are not inherited by grand-child builds.

Let's bring cowsay back! Here's a Dockerfile with the ONBUILD instruction:

FROM ubuntu:14.04

RUN apt-get -y install cowsay

RUN apt-get -y install fortune

ENTRYPOINT ["/usr/games/cowsay"]

CMD ["Docker is so awesomoooooooco!"]

ONBUILD RUN /usr/games/fortune | /usr/games/cowsay

Now save this file in a folder named onBuild, open a terminal in that folder,
and run this command:

$ Docker build -t shrikrishna/onbuild .
We need to write another Dockerfile that builds on this image. Let's write one:

FROM shrikrishna/onbuild

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

RUN apt-get moo
CMD ['/usr/bin/apt-get', 'moo']

The apt -get moo command is an example of Easter eggs typically
= found in many open source tools, added just for the sake of fun!

Building this image will now execute the ONBUILD instruction we gave earlier:

$ docker build -t shrikrishna/apt-moo apt-moo/

Sending build context to Docker daemon 2.56 kB

Sending build context to Docker daemon

Step 0 : FROM shrikrishna/onbuild

Executing 1 build triggers

Step onbuild-0 : RUN /usr/games/fortune | /usr/games/cowsay
---> Running in 887592730£3d

/ It was all so different before \

\ everything changed. /
\ A_/\
\ (o00)\
(_ N\ JAVAN
|- |

---> df0led4caldc?

---> df0led4caldc?
Removing intermediate container 887592730£3d
Step 1 : RUN apt-get moo

---> Running in fc596cb91lc2a

()

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

..."Have you mooed today?"...
---> 623cdléa5la’7
Removing intermediate container £fc596cb9lc22a
Step 2 : CMD ['/usr/bin/apt-get', 'moo']
---> Running in 22aaOb4l1l5af4
---> 7e03264fbb76
Removing intermediate container 22aaOb4l5af4

Successfully built 7e03264£fbb76

Now let's use our newly gained knowledge to write a Dockerfile for the code. it
application that we previously built by manually satisfying dependencies in

a container and committing. The Dockerfile would look something like this:

Version 1.0

FROM dockerfile/nodejs

MAINTAINER Shrikrishna Holla <s**a@gmail.com>

WORKDIR /home
RUN git clone \ https://github.com/shrikrishnaholla/code.it.git

WORKDIR code.it
RUN git submodule update --init --recursive
RUN npm install

EXPOSE 8000

WORKDIR /home
CMD ["/usr/bin/node", "/home/code.it/app.js"]

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Create a folder named code. it and save this content as a file named Dockerfile.

It is good practice to create a separate folder for every Dockerfile even
if there is no context needed. This allows you to separate concerns
. between different projects. You might notice as you go that many
% Dockerfile authors club RUN instructions (for example, check out the
s Dockerfiles in dockerfile.github. io). The reason is that AUFS
limits the number of possible layers to 42. For more information,
check out this issue at https: //github.com/docker/docker/
issues/1171.

You can go back to the section on Docker build to see how to build an image out
of this Dockerfile.

Docker workflow - pull-use-modify-
commit-push

Now, as we are nearing the end of this chapter, we can guess what a typical Docker
workflow is like:

1. Prepare a list of requirements to run your application.

2. Determine which public image (or one of your own) can satisfy most of
these requirements, while also being well-maintained (this is important as
you would need the image to be updated with newer versions whenever
they are available).

3. Next, fulfill the remaining requirements either by running a container and
executing the commands that fulfill the requirements (which can be installing
dependencies, bind mounting volumes, or fetching your source code), or by
writing a Dockerfile (which is preferable since you will be able to make the
build repeatable).

4. Push your new image to the public Docker registry so that the community
can use it too (or to a private registry or repository if needs be).

[65]

www.it-ebooks.info

dockerfile.github.io
https://github.com/docker/docker/issues/1171
https://github.com/docker/docker/issues/1171
http://www.it-ebooks.info/

Docker CLI and Dockerfile

Automated Builds

Automated Builds automate the building and updating of images from GitHub

or BitBucket, directly on Docker Hub. They work by adding a commit hook to your
selected GitHub or BitBucket repository, triggering a build and an update when you
push a commit. So you need not manually build and push an image to Docker Hub
every time you make an update. The following steps will show you how to do this:

1. To set up an Automated Build, log in to your Docker Hub account.

G ~
Edit Profile

Change Password

Email Addresses
Organizations
Subscriptions
Notifications

Authorized Services

Linked Accounts

Billing

N

Link your GitHub or BitBucket account through the Link Accounts menu.
3. Select Automated Build in the Add Repository menu.

s ? ~ Your Repositories

Repository

Show: Al 4 Sortby: LastUpdated % Automated Build
Summary

Repositories

o @ shrikrishna/octo

Manage
Settings

4. Select the GitHub or BitBucket project that has the Dockerfile you want to
build. (You will need to authorize Docker Hub to access your repositories.)

5. Select the branch that contains the source code and the Dockerfile (the default
is the master branch).

6. Give the Automated Build a name. This will be the name of the repository
as well.

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

7. Assign an optional Docker tag to the Build. The default is the 1astest tag.
8. Specify where the Dockerfile is located. The default is /.

OO0 g =

L R .U hitps:/ | registry. hub.docker.com /bul ds.'Qnhuh.'shnknsnnnnol!aroptim_us_r

and Name

shrikrishna =/ cptimus -
New unique Repo name; 3 - 30 characters. Only lowarcase letters, Bgits and _ - . characters ara allowed
Tags

Type Name Dockerfile Location Docker Tag Name

ornch = [= ; e]

® pubtic
o' Anyone can pull, and i3 listed and searchable on the docker index.
Private
& Only you can pull, and is not listed on the docker index.

Active

& When active we will Buiki whan new pushes occur

Once configured, the automated build will trigger a build and you will be able to see
it in the Docker Hub Registry in a few minutes. It will stay in sync with your GitHub
and BitBucket repository until you deactivate the Automated Build yourself.

The build status and history can be seen in the Automated Builds page on your
profile in Docker Hub.

800 o aiis =
& =¥ __1 hnm_.f-'llﬂi;trv.hub.docktr.:pm.'un’shrlkmnnl.-'upnmJs."bulld;_hlnu-:v_n’j"g.jl';lt.?.f
AUTOMATED BUILD REPOSITORY Updatoed & seconds 400
shrikrishna / optimus Bull this repository dackar pul shrikrishnaloptimus
No description sat s
] 0 L[]
Information Build Details Tags

Build Details

Build Details Edit Bulkd Datalls ~ Links
Source Projct Page

Type HName Dockerile Location Tag Name Source Aapositary

Branch mastar ' latest
Files
Dockerfile

Builds History
Settin

bulld id Status Created Date Last Updated a8

behyxsvbvubiszadaten Bulldng 2014-08-02 12:28:54 2014-08-02 12:26:56 Description
Automated Build
Wabhasks
Cokaboratars
Buiks Triggars
Repesitory Links
Maka Private
Fialas

www.it-ebooks.info

http://www.it-ebooks.info/

Docker CLI and Dockerfile

Once you've created an Automated Build, you can deactivate or delete it.

You cannot, however, push to an Automated Build with the Docker
% push command. You can only manage it by committing code to
A~ . . .
your GitHub or BitBucket repository.

You can create multiple Automated Builds per repository and configure them to
point to specific Dockerfile or Git branches.

Build triggers

Automated Builds can also be triggered via a URL on Docker Hub. This allows you
to rebuild an Automated Build image on demand.

Webhooks

Webhooks are triggers that are called upon a successful build event. With a
webhook, you can specify a target URL (such as a service that notifies you) and
a JSON payload that will be delivered when the image is pushed. Webhooks are
useful if you have a continuous-integration workflow.

To add a webhook to your Github repository, follow these steps:

1. Go to Settings in your repository.

<? Code
Q@ Issues 2
Pull Requests 0

Wiki

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

2. From the menu bar on the left, go to Webhooks and Services.

Options
Collaborators
Webhooks & Services

Deploy keys

3. Click on Add Service.

Services i Add service v

Services are pre-built integrations that perform certain actions when events occur on GitHub. For more information
on services check out our Service Hooks Guide.

¢ Travis Cl £ X

4. In the text box that opens, enter Docker and select the service.

Services i= Add service ~

Services are pre-built integrations that perform certain actions v Avaliable Services

on services check out our Service Hooks Guide.

‘ Docke |

5. You're all set! Now a build will be triggered in Docker Hub whenever
you commit to the repository.

Travis Cl

Summary

In this chapter, we looked at the Docker command-line tool and tried out the
commands available. Then we figured out how to make builds repeatable using
Dockerfile. Also, we automated this build process using Docker Hub's Automated
Build service.

In the next chapter, we will try to gain more control over how our containers run
by looking at the various commands that help us configure them. We will look at
restraining the amount of resources (CPU, RAM, and storage) consumable by
the container.

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Docker
Containers

In the previous chapter, we saw all the different commands available in Docker.
We took a look at examples covering how to pull images, run containers, attach
images to containers, commit, and push an image to the repositories. We also
learned how to write Dockerfiles to make building an image a repeatable process.

In this chapter, we will look closer at gaining control over how our containers run.
Although Docker containers are sandboxed, this doesn't prevent a stray rogue
process in one of the containers from hogging the resources available to other
containers, including the host. For instance, beware of this command (don't run it):

$ docker run ubuntu /bin/bash -c¢ ": (){ :|:& };:"

You would fork bomb the container as well as the host you run it on by running
the preceding command.

The Wikipedia definition of a fork bomb is as follows:

"In computing, a fork bomb is a denial-of-service attack wherein a process
continually replicates itself to deplete available system resources, causing resource
starvation and slowing or crashing the system."

Since Docker is expected to be used in production, the possibility of one container
stalling all others would be fatal. So there are mechanisms to limit the amount of
resources that a container can take ownership of, which we will be looking at in
this chapter.

In the previous chapter, we had a basic introduction to volumes when we talked
about the docker run. We will now explore volumes in more detail and discuss why
they are important and how to use them best. We will also try to change the storage
driver being used by the docker daemon.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Docker Containers

Another aspect is networking. While inspecting running containers, you might have
noticed that Docker randomly chooses a subnet and allots an IP address (the default
is usually the range 172.17.42.0/16). We will try to override this by setting our own
subnet and explore other options available that help manage the networking aspects.
In many scenarios, we will need to communicate between containers (imagine one
container running your application and another running your database). Since IP
addresses are not available at build time, we need a mechanism to dynamically
discover the services running in other containers. We will be looking at ways to
achieve this, both when the containers are running in the same host and when

they are running in different hosts.

In short, in this chapter, we will be covering the following topics:

* Constraining resources

° CPU
° RAM
° Storage

* Managing data in containers with volumes
* Configuring Docker to use a different storage driver
* Configuring networking

° Port forwarding

° A custom IP address range
* Linking containers

° Linking within the same host using container links

° Cross-host linking using ambassador containers

Constraining resources

It is imperative for any tool that promises sandboxing capabilities to provide
a mechanism to constrain resource allocation. Docker provides mechanisms
to limit the amount of CPU memory and RAM that a container can use when
it is being started.

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Setting CPU share

The amount of CPU share a container takes up can be controlled using the -c option
in the docker run command:

$ docker run -c 10 -it ubuntu /bin/bash

The value, 10, is the relative priority given to this container with respect to other
containers. By default, all containers get the same priority, and hence the same ratio
of CPU processing cycles, which you can check out by running $ cat /sys/fs/
cgroup/cpu/docker/cpu. shares (add SSH to the boot2Docker VM before doing
this if you are on OS X or Windows). However, you can give your own priority
values when you run containers.

Is it possible to set CPU shares when a container is already running? Yes. Edit the
file at /sys/fs/cgroup/cpu/docker/<container-ids>/cpu.shares and enter the
priority you want to give it.

If the location mentioned doesn't exist, find out where cpu cgroup

is mounted by running the command $ grep -w cgroup /
’ proc/mounts | grep -w cpu.

However, this is a hack, and might change in the future if Docker decides to change
the way CPU sharing is implemented.More information about this can be found at
https://groups.google.com/forum/#!topic/docker-user/-pP8-KgJJGg.

Setting memory limit
Similarly, the amount of RAM that a container is allowed to consume can also be
limited while starting the container:

$ docker run -m <value><optional unit>

Here, unit can be b, k, m, or g, representing bytes, kilobytes, megabytes, and
gigabytes, respectively).

An example of a unit can be represented as follows:
$ docker run -m 1024m -dit ubuntu /bin/bash

This sets a memory limit of 1 GB for the container.

[73]

www.it-ebooks.info

https://groups.google.com/forum/#!topic/docker-user/-pP8-KgJJGg
http://www.it-ebooks.info/

Configuring Docker Containers

As in the case with limiting CPU shares, you can check the default memory limit
by running this line of code:

$ cat /sys/fs/cgroup/memory/docker/memory.limit in bytes

18446744073709551615

As the filename states, the preceding code prints the limit in bytes. The value
shown in the output corresponds to 1.8 x 1010 gigabytes, which practically means
that there is no limit.

Is it possible to set a memory limit when a container is already running?

As with CPU shares, memory limit is enforced by the cgroup file, which means
that we can change the limit on the fly by changing the value of the container's
cgroup memory file:

$ echo 1073741824 > \
/sys/fs/cgroup/memory/docker/<container id>/memory.limit in bytes

If the location of the cgroup file doesn't exist, find out where the
& file is mounted by running $ grep -w cgroup /proc/mounts
’ | grep -w memory.

This is also a hack, and might change in the future if Docker decides to change the
way memory limiting is internally implemented.

More information about this can be found at https://groups.google.com/
forum/#!topic/docker-user/-pP8-KgJJGg.

Setting a storage limit on the virtual
filesystem (Devicemapper)

Limiting disk usage can be a bit tricky. There is no direct way to limit the amount

of disk space a container can use. The default storage driver, AUFS, doesn't support
disk quotas, at least not without hacks (the difficulty is because AUFS does not have
its own block device. Visit http: //aufs.sourceforge.net/aufs.html for in-depth
information on how AUFS works). At the time of writing this book, Docker users who
need disk quota opt for the devicemapper driver, which will allow each container to
use up to a certain amount of disk space. But a more generic mechanism that works
across storage drivers is under progress and may be introduced in future releases.

[74]

www.it-ebooks.info

https://groups.google.com/forum/#!topic/docker-user/-pP8-KgJJGg
https://groups.google.com/forum/#!topic/docker-user/-pP8-KgJJGg
http://aufs.sourceforge.net/aufs.html
http://www.it-ebooks.info/

Chapter 3

The devicemapper driver is a Linux kernel framework used to map
L block devices to higher-level virtual block devices.

The devicemapper driver creates a thin pool of storage blocks based on two block
devices (think of them as virtual disks), one for data and another for metadata. By
default, these block devices are created by mounting sparse files as loopback devices.

A sparse file is a file that contains mostly empty space. So a sparse file
of 100 GB might actually just contain a few bytes in the beginning and
_ the end (and occupy just these bytes on the disk), and yet be visible to
% an application as a 100 GB file. When reading sparse files, the filesystem
L transparently converts the empty blocks into real blocks filled with zero
bytes at runtime. It tracks the location of the written and empty blocks
through the file's metadata. In UNIX-like operating systems, a loopback
device is a pseudo-device that makes a file accessible as a block device.

A thin pool is called so because it only marks storage blocks as used (from the pool)
when you actually write to the blocks. Each container is provisioned a base thin
device of a certain size, and the container is not allowed to accumulate data more
than that size limit.

What are the default limits? The default limit for the thin pool is 100 GB. But
since the loopback device used for this pool is a sparse file, it will initially not
take up this much space.

The default size limit for the base device created for each container and image is 10
GB. Again, since this is sparse, it will not initially take up this much space on the
physical disk. However, the amount of space it takes up increases with the increase
in the size limit because, the larger the size of the block device, the greater is the
(virtual) size of the sparse file, and the metadata it needs to store is more.

How can you change these default values? You can change these options using the
- -storage-opts option, which is available when running the docker daemon,
with the dm (for devicemapper) prefix.

. Before running any of the commands in this section, back up all your
images with docker save and stop the docker daemon. It might
s also be wise to completely remove /var/lib/docker (the path
where Docker stores image data).

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Docker Containers

Devicemapper configurations

The various configurations available are as follows:

dm.basesize: This specifies the size of the base device, which is used by
containers and images. By default, this is set to 10 GB. The device created
is sparse, so it will not initially occupy 10 GB. Instead, it will fill up as and
when data is written into it, until it reaches the 10 GB limit:

$ docker -d -s devicemapper --storage-opt dm.basesize=50G

dm.loopdatasize: This is the size of the thin pool. The default size is 100 GB.
It is to be noted that this file is sparse, so it will not initially take up this space;
instead, it will fill up gradually as more and more data is written into it:

$ docker -d -s devicemapper --storage-opt
dm.loopdatasize=1024G

dm.loopmetadatasize: As mentioned earlier, two block devices are created,
one for data and another for metadata. This option specifies the size limit

to use when creating this block device. The default size is 2 GB. This file is
sparse too, so it will not initially take up the entire size. The recommended
minimum size is 1 percent of the total pool size:

$ docker -d -s devicemapper --storage-opt
dm.loopmetadatasize=10G

dm. £s: This is the filesystem type to use for the base device. The ext4 and
xfs filesystems are supported, although ext4 is taken by default:

$ docker -d -s devicemapper --storage-opt dm.fs=xfs

dm.datadev: This specifies a custom block device to use (instead of loopback)
for the thin pool. If you are using this option, it is recommended to specify
block devices for both data and metadata to completely avoid using the
loopback device:

$ docker -d -s devicemapper --storage-opt dm.datadev=/dev/sdbl
\-storage-opt dm.metadatadev=/dev/sdcl

There are more options available, along with a neat explanation of how all of
this works at https://github.com/docker/docker/tree/master/daemon/
graphdriver/devmapper/README . md.

Another great resource is a blog post on resizing containers by Docker contributor
Jérome Petazzoni at http://jpetazzo.github.i0/2014/01/29/docker-device-
mapper-resize/.

[76]

www.it-ebooks.info

https://github.com/docker/docker/tree/master/daemon/graphdriver/devmapper/README.md
https://github.com/docker/docker/tree/master/daemon/graphdriver/devmapper/README.md
http://jpetazzo.github.io/2014/01/29/docker-device-mapper-resize/
http://jpetazzo.github.io/2014/01/29/docker-device-mapper-resize/
http://www.it-ebooks.info/

Chapter 3

If you switch storage drivers, the older containers and images will no
s longer be visible.

At the beginning of this section, it was mentioned that there is a possibility to have
quotas and still use AUFS through a hack. The hack involves creating a loopback
filesystem based on the ext4 filesystem on demand and bind mounting it as a
volume specifically for the container:

DIR=$ (mktemp -d)

DB_DIR=(mktemp -d)

dd if=/dev/zero of=$DIR/data count=102400
yes | mkfs -t ext4 $DIR/data

mkdir $DB_DIR/db

v v v v »u» »n

sudo mount -o loop=/dev/loop0 $DIR/data $DB_DIR

You can now bind mount the $DB_DIR directory to the container with the -v
option of the docker run command:

$ docker run -v $DB DIR:/var/lib/mysql mysql mysqgld safe.

Managing data in containers with
volumes

Some salient features of a volume in Docker are mentioned as follows:
* A volume is a directory that is separated from the container's root
filesystem.

e Itis managed directly by the docker daemon and can be shared across
containers.

* A volume can also be used to mount a directory of the host system inside
a container.

* Changes made to a volume will not be included when an image is updated
from a running container.

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Docker Containers

* Since a volume is outside the filesystem of the container, it doesn't have the
concept of data layers or snapshots. Hence, reads and writes happen directly
on the volume.

e If multiple containers use the same volume, the volume persists until there
is at least one container using it.

Creating a volume is easy. Just start a container with the -v option:

$ docker run -d -p 80:80 --name apache-1 -v /var/www apache.

Now note that volumes have no ID parameter, so you cannot exactly name a
volume like you name a container or tag an image. However, the clause that says
that a volume persists until at least one container uses it can be exploited, which
introduces the concept of data-only containers.

Since Docker version 1.1, if you so wish, you can bind mount the whole
filesystem of the host to a container using the -v option, like this:
% $ docker run -v /:/my host ubuntu:ro ls /my host.

L
However, it is forbidden to mount to / of the container, so you cannot
replace the root filesystem of the container, for security reasons.

Data-only container

A data-only container is a container that does nothing except exposing a volume
that other data-accessing containers can use. Data-only containers are used to
prevent volumes from being destroyed if containers accessing the volume

stop or crash due to an accident.

Using volumes from another container

Once we start a container with a -v option, we have created a volume. We can share
the volumes created by a container with other containers using the - -volumes-from
option. Possible use cases of this option can be backing up databases, processing
logs, performing operations on user data, and so on.

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Use case — MongoDB in production on Docker

As a use case, say you want to use MongoDB in your production environment,
you would be running a MongoDB server as well as a cron job, backing up your
database snapshots at regular intervals.

MongoDB is a document database that provides high performance,
& high availability, and easy scalability. You can get more information
about MongoDB at http: //www.mongodb. org.

Let's see how make the MongoDB setup using docker volumes:

1. Firstly, we need a data-only container. The task of this container is only to
expose the volume where MongoDB stores the data:

$ docker run -v /data/db --name data-only mongo \
echo "MongoDB stores all its data in /data/db"

2. Then we need to run the MongoDB server, which uses the volume created
by the data-only container:

$ docker run -d --volumes-from data-only -p 27017:27017 \
--name mongodb-server mongo mongod

& The mongod command runs the MongoDB server and is usually
= run as a daemon/service. It is accessed through port 27017.

3. Lastly, we will need to run the backup utility. In this case, we are just
dumping the MongoDB data store to the current directory on the host:

$ docker run -d --volumes-from data-only --name mongo-backup \
-v $(pwd) : /backup mongo $(mkdir -p /backup && cd /backup &&
mongodump)

This is by no means an exhaustive example of setting up MongoDB in
* production. You might need a process that monitors the health of the
% MongoDB server. You will also need to make the MongoDB server
g container discoverable by your application containers (which we will
learn in detail later).

[79]

www.it-ebooks.info

http://www.mongodb.org
http://www.it-ebooks.info/

Configuring Docker Containers

Configuring Docker to use a different
storage driver

Before using a different storage driver, back up all your images with docker save
and stop the docker daemon. Once you have backed up all your important images,
remove /var/lib/docker. Once you change the storage driver, you can restore the
saved images.

We are now going to change our default storage driver, AUFS, to two alternative
storage drivers - devicemapper and btrfs.

Using devicemapper as the storage driver

It is easy to switch to the devicemapper driver. Just start the docker daemon
with the - s option:

$ docker -d -s devicemapper

Additionally, you can provide various devicemapper driver options with the
--storage-opts flag. The various available options and examples for the
devicemapper drivers have been covered under the Constraining resources
storage section of this chapter.

If you are running on RedHat/Fedora that doesn't have AUFS out of

the box, Docker will have been using devicemapper driver, which
’ is available.

Once you have switched the storage driver, you can verify the change in it by
running docker info.

Using btrfs as the storage driver

To use btrfs as the storage driver, you have to first set it up. This section assumes
you are running it on an Ubuntu 14.04 operating system. The commands may vary
according to the Linux distribution you are running. The following steps will set
up a block device with the btrfs filesystem:

1. Firstly, you need to install btrfs and its dependencies:
apt-get -y btrfs-tools

2. Next, you need to create a block device of the btrfs filesystem type:
mkfs btrfs /dev/sdb

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

3. Now create the directory for Docker (you should have backed up all
important images and cleaned /var/lib/docker by this point.):

mkdir /var/lib/docker

4. Then mount the btrfs block device at /var/1lib/docker:
mount /dev/sdb var/lib/docker

5. Check whether the mount is successful:
$ mount | grep btrfs

/dev/sdb on /var/lib/docker type btrfs (rw)

Source: http://serverascode.com/2014/06/09/
s docker-btrfs.html.

Now you can start the docker daemon with the -s option:

$ docker -d -s btrfs

Once you have switched the storage driver, you can verify the change in it by
running the docker info command.

Configuring Docker's network settings

Docker creates a separate network stack for each container and a virtual bridge
(dockero0) to manage network communication within the container, between the
container and the host, and between two containers.

There are a few network configurations that can be set as arguments to the docker
run command. They are as follows:

e __dns: A DNS server is what resolves a URL, such as http://www.docker.
io, to the IP address of the server that is running the website.
* --dns-search: This allows you to set DNS search servers.

A DN search server resolves abc to abc . example. comif example.
com is set as the DNS search domain. This is useful if you have a lot
+ of subdomains in your corporate website that you need to access
% frequently. It is too painful to repeatedly keep typing the entire URL.
= If you try to access a site that is not a fully qualified domain name (for
example, xyz.abc . com.), it adds the search domains for the lookup.
Source : http://superuser.com/a/184366.

[81]

www.it-ebooks.info

http://serverascode.com/2014/06/09/docker-btrfs.html
http://serverascode.com/2014/06/09/docker-btrfs.html
http://www.docker.io
http://www.docker.io
http://superuser.com/a/184366
http://www.it-ebooks.info/

Configuring Docker Containers

* -hor --hostname: This allows you to set the hostname. This will be added as
an entry to the /etc/hosts path against the host-facing IP of the container.

* --link: This is another option that can be specified while starting a
container. It allows containers to communicate with other containers
without needing to know their actual IP addresses.

* --net: This option allows you to set the network mode for the container.

It can have four values:
° bridge : This creates a network stack for the container on the docker
bridge.
° none : No networking stack will be created for this container. It will
be completely isolated.
° container:<name|id> : This uses another container's network stack.

° host : This uses the host's network stack.

a1

~ These values have side effects such as the local system services being
accessible from the container. This option is considered insecure.

* --expose: This exposes the container's port without publishing it on the host.

* --publish-all: This publishes all exposed ports to the host's interfaces.

* --publish: This publishes a container's port to the host in the following
format: ip:hostPort:containerPort | ip::containerPort |
hostPort:containerPort | containerPort.

sl If --dns or --dns-search is not given, then the /etc/resolv.

Q conf file of the container will be the same as the /etc/resolv.
conf file of the host the daemon is running on.

However, there are some configurations that can be given to the docker daemon
process too when you run it. They are mentioned as follows:

These options can only be supplied when starting the docker daemon

and cannot be tweaked once it is running. This means you must provide
’ these arguments along with the docker -d command.

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

- -ip: This option allows us to set the host's IP address at the container-facing
dockero0 interface. As a result, this will be the default IP address used when
binding container ports. For example this option can be shown as follows:

$ docker -d --ip 172.16.42.1

--ip-forward: This is a Boolean option. If it is set to £alse, the host running
the daemon will not forward the packets between containers or from the
outside world to the container, completely isolating it (from a network
perspective).

This setting can be checked using the sysct1 command:

$ sysctl net.ipv4.ip forward
net.ipv4.ip_ forward = 1.

--icc: This is another Boolean option that stands for inter-container
communication. If it is set to false, the containers will be isolated from
each other, but will still be able to make general HTTP requests to package
managers and so on.

How do you enable communication only between those two
%»‘ containers you need? Through links. We will explore links in
detail in the Linking containers section.

-b or --bridge: You can make Docker use a custom bridge instead of
docker0. (The creation of a bridge is out of the scope of this discussion.
However, if you are curious, you can find more information at http://
docs.docker.com/articles/networking/#building-your-own-bridge.)

-H or --host: This option can take multiple arguments. Docker has

a RESTful APIL The daemon acts as a server, and when you run client
commands such as run and ps, it makes GET and POST requests to the
server, which performs the necessary operations and returns a response.
The -H flag is used to tell the docker daemon the channels it must listen
to for client commands. The arguments can be as follows:

° TCP sockets, represented in the form of tcp://<host>:<port>
° UNIX socket in the form of unix:///path/to/socket

[83]

www.it-ebooks.info

http://docs.docker.com/articles/networking/#building-your-own-bridge
http://docs.docker.com/articles/networking/#building-your-own-bridge
http://www.it-ebooks.info/

Configuring Docker Containers

Configuring port forwarding between
container and host

Containers can make connections to the outside world without any special
configurations, but the outside world is not allowed to peek into them. This is

a security measure and is fairly obvious, since the containers are all connected
to the host through a virtual bridge, thus effectively placing them in a virtual
network. But what if you were running a service in a container that you wanted
to expose to the outside world?

Port forwarding is the easiest way to expose services running in containers. It is
always advisable to mention in the Dockerfile of an image the ports that need to

be exposed. In earlier versions of Docker, it was possible to specify which host port
the Dockerfile should be bound to in the Dockerfile itself, but this was dropped
because sometimes, services already running in the host would interfere with the
container. Now, you can still specify in a Dockerfile the ports that are intended to
be exposed (with the EXPOSE instruction), but if you want to bind it to ports of
your choice, you need to do this when starting the container.

There are two ways to start a container and bind its ports to host ports. They are
explained as follows:

* -P or --publish-all:Starting a container using docker run with the
-p option will publish all the ports that were exposed using the EXPOSE
instruction in the image's Dockerfile. Docker will go through the exposed
ports and bind them to a random port between 49000 and 49900.

* -p or --publish: This option allows you to explicitly tell Docker which
port on which IP should be bound to a port on a container (of course, one
of the interfaces in the host should have this IP). Multiple bindings can be
done by using the option multiple times:

1. docker run -p ip:host port:container port

2. docker run -p ip::container port

3. docker run -p host port:container port

Custom IP address range

We've seen how to bind a container's port to a host's port, how to configure a
container's DNS settings, and even how to set the host's IP address. But what if
we wanted to set the subnet of the network between the containers and the host
ourselves? Docker creates a virtual subnet in one of the available private ranges
of IP addresses provided by RFC 1918.

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Setting your own subnet range is marvelously easy. The --bip option of the docker
daemon can be used to set the IP address of the bridge as well as the subnet in which
it is going to create the containers:

$ docker -d --bip 192.168.0.1/24

In this case, we have set the IP address of 192.168.0.1 to the docker daemon and
mentioned that it has to assign IP addresses to the containers in the subnet range
192.168.0.0/24 (thatis, from 192.168.0.2 t0 192.168.0.254, a total of 252
possible IP addresses).

That's it! There are more advanced network configurations and examples at
https://docs.docker.com/articles/networking/. Be sure to check them out.

Linking containers

Binding container ports to host ports is all okay if you just have a plain web server
that you want to expose to the Internet. Most production systems, however, are
made of lots of individual components that are constantly communicating with

each other. Components such as the database servers must not be bound to publicly
visible IPs, but the containers running the frontend applications still need to discover
the database containers and connect to them. Hardcoding a container's IP addresses
in the application is neither a clean solution nor will it work because IP addresses are
randomly assigned to the containers. So how do we solve this problem? The answer
is as follows.

Linking containers within the same host

A link can be specified when starting the container using the - -1ink option:

$ docker run --link CONTAINER IDENTIFIER:ALIAS .

How does this work? When a link option is given, Docker adds an entry to the
container's /etc/hosts file, with the ALIAS command as the hostname and the
IP address of the container named CONTAINER IDENTIFIER.

The /etc/hosts file can be used to override DNS definitions, that is, to
point a hostname to a certain IP address. During hostname resolution, /
Y~ . .
etc/hosts is checked before making a request to a DNS server.

[85]

www.it-ebooks.info

https://docs.docker.com/articles/networking/
http://www.it-ebooks.info/

Configuring Docker Containers

For example the command line code is shown below:

$ docker run --name pg -d postgres

$ docker run --link pg:postgres postgres-app

The preceding command runs a PostgreSQL server (whose Dockerfile exposes
port 5432, PostgeSQL's default port) and the second container will link to it with
the postgres alias.

PostgreSQL is a fully ACID-compliant, powerful open source
S object-relational database system.

Cross-host linking using ambassador
containers

Linking containers works fine when all the containers are within the same host, but
Docker's containers might often be spread across hosts, and linking in these cases fails
because the IP address of a container running in a different host is not known by the
docker daemon running in the current host. Besides, links are static. This means that
if a container restarts, its IP address changes and all containers linked to it will lose
the connection. A portable solution is to use ambassador containers.

The following diagram displays the ambassador container:

Host 1
Database link Ambassador
server container
Exposed port
bind
Host port
Host 2
Application link Ambassador
container container

Multi host setup

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

In this architecture, the database server in one host is exposed to the other. Here too,
if the database container changes, only the ambassador container in the host1 phase
needs to be restarted.

Use case - a multi-host Redis environment

Let's set up a multi-host Redis environment using the progrium/ambassadord
command. There are other images that can be used as ambassador containers as
well. They can be searched for either using the docker search command or at
https://registry.hub.docker.com.

Redis is an open source, networked, in-memory, key-value data store
with optional durability. It is known for its fast speed, both for reads
and writes.

In this environment, there are two hosts, Host 1 and Host 2. Host 1 has an IP address
of 192.168.0.100 and is private (not exposed to the public Internet). Host 2 is at
192.168.0.1 and is bound to a public IP. This is the host that runs your frontend

web application.

. To try this example, start two virtual machines. If you use Vagrant,
% I suggest using an Ubuntu image with Docker installed. If you
=" have Vagrant v1.5, you can use Phusion's Ubuntu image by
running $ vagrant init phus ion/ubuntu-14.04-amd64.

Host 1

In the first host, run the following command:

$ docker run -d --name redis --expose 6379 dockerfile/redis

This command starts a Redis server and exposes port 6379 (which is the default
port the Redis server runs at), but doesn't bind it to any host port.

The following command starts an ambassador container, links to the Redis server
and binds the port 6379 to port 6379 of its private network's IP address (which in
this case happens to be 192.168.0.100). This is still not public because the host is
private (not exposed to public Internet):

$ docker run -d --name redis-ambassador-hl \
-p 192.168.0.100:6379:6379 --link redis:redis \

progrium/ambassadord --links

[87]

www.it-ebooks.info

https://registry.hub.docker.com
http://www.it-ebooks.info/

Configuring Docker Containers

Host 2

In another host (another VM if you are using Vagrant in development), run the
following command:

$ docker run -d --name redis-ambassador-h2 --expose 6379 \

progrium/ambassadord 192.168.0.100:6379

This ambassador container listens to the port of the destination IP, which in this case
is Host 1's IP address. We have exposed port 6379 so that it can be now hooked to
by our application container:

$ docker run -d --name application-container \
--link redis-ambassador-h2:redis myimage mycommand

This would be the container that would be exposed to the public on the Internet.
As the Redis server is running in a private host, it cannot be attacked from outside
the private network.

Summary

In this chapter, we saw how to provision resources such as CPU, RAM, and storage
in a Docker container. We also discussed how to use volumes and volume containers
to manage persistent data produced by applications in containers. We realized what
goes into switching storage drivers used by Docker and the various networking
configurations and their relevant use cases. Lastly, we saw how to link containers
both within a host and across hosts.

In the next chapter, we will look at the tools and approaches that will help when
we are thinking about deploying our application using Docker. Some of the things
we will be looking at are coordination of multiple services, service discovery, and
Docker's remote API. We will also cover security considerations.

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Automation and Best
Practices

At this point, we now know how to set up Docker in our development environments,
are comfortable with the Docker commands, and have a good idea about the kind of
situations Docker is suitable for. We also have an idea on how to configure Docker
and its containers to suit all our needs.

In this chapter, we will focus on the various usage patterns that will help us deploy
our web applications in production environments. We will begin with Docker's
remote API because logging in to a production server and running commands is
always considered dangerous. So, it is best to run an application that monitors and
orchestrates the containers in a host. There are a host of orchestration tools available
for Docker today, and with the announcement of v1.0, Docker also announced a
new project, libswarm, which gives a standard interface to manage and orchestrate
distributed systems, which will be another topic we will be delving into.

Docker developers recommend running only one process per container. This is
difficult if you want to inspect an already running container. We will look at a
command that allows us to inject a process into an already running container.

As your organization grows, so does the load, and you will need to start thinking
about scaling. Docker in itself is meant to be used in a single host, but by using a
host of tools such as etcd and coreos, you can easily run a bunch of Docker hosts
in a cluster and discover every other container in that cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Automation and Best Practices

Every organization that has a web application running in production knows the
importance of security. In this chapter, we are going to talk about the security aspects
with respect to not only the docker daemon, but also the various Linux features

used by Docker. To summarize, in this chapter, we will look at the following;:

* Docker remote API
* Injecting processes into containers with the Docker exec command
* Service discovery

* Security

Docker remote API

The Docker binary can run both as a client and as a daemon. When Docker is run as
a daemon, it attaches itself to a Unix socket at unix: ///var/run/docker.sock by
default (this can be changed when starting docker, of course) and accepts commands
over REST. The same Docker binary can then be used to run all the other commands
(which is nothing but the client making REST calls to the docker daemon).

A diagram of the docker daemon is shown as follows:

[eXeXe)
$ sudo docker -d docker domain
> (background
process)
[eXeXe)
$ docker ps

This section will mainly be explained with examples as we have already encountered
the working of these operations when we looked at the Docker commands.

To test these APIs, run the docker daemon at a TCP port like this:

$ export DOCKER HOST=tcp://0.0.0.0:2375
$ sudo service docker restart

$ export DOCKER DAEMON=http://127.0.0.1:2375 # or IP of your host

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

This is not going to be a reference guide, since we have already
+ covered the features available with Docker when we disussed Docker
commands in Chapter 2, Docker CLI and Dockerfile. Instead, we will
be covering a select few APIs and you can look up the rest at docs..
docker.com/reference/api/docker remote api.

Before we start, let's ensure that the docker daemon is responding to our requests:

$ curl $DOCKER DAEMON/ ping
OK

Alright, everything is fine. Let's get going.

Remote API for containers

Let's first look at the a few endpoints available that help create and manage containers.

The create command

The create command creates a container:

$ curl \

> -H "Content-Type: application/json" \

> -d '{"Image":"ubuntu:14.04",\

> "Cmd": ["echo", "I was started with the API"]}' \
> -X POST $DOCKER DAEMON/containers/create?\

> name=api container;

{"Id":"4el45a6a54f9f6bed4840ac730cdeb6dc93233659e7eafae947efde5caf583f
c3", "Warnings":null}

The curl utility is a simple Unix utility that can be used to construct
s HTTP requests and analyze responses.

Here we make a POST request to the /containers/create endpoint and pass a
JSON object containing the details of the image we want the container to be based
upon and the command we expect the container to run.

[91]

www.it-ebooks.info

docs.docker.com/reference/api/docker_remote_api
docs.docker.com/reference/api/docker_remote_api
http://www.it-ebooks.info/

Automation and

Best Practices

Type of request: POST

The gson data sent along with the POST request:

Parameter

Type

Explanation

config

JSON

Describes the configuration of the container to start

Query parameters for the POST request:

Parameter | Type

Explanation

name

String

This assigns a name to the container. It must match
the /? [a-zA-20-9_-]+ regular expression.

The following table shows the status code of the responses:

Status code

Meaning

201

No error

404 No such container
406 Impossible to attach (container not running)
500 Internal server error

The list command

The 1ist command gets a list of containers:

$ curl $DOCKER DAEMON/containers/json?all=1\&limit=1

[{"Command":"echo 'I was started with the
API'","Created":1407995735,"Id":"96bdcel493715c2ca8940098db04b99e3629
4a333ddacab0e04f62b98flec3ae”, "Image": "ubuntu:14.04", "Names": ["/api ¢
ontainer"],"Ports":[],"Status":"Exited (0) 3 minutes ago"}

This is a GET request API. A request to /containers/json will return a JSON
response containing a list of containers that fulfill the criteria. Here, passing the
all query parameter will list containers that are not running as well. The 1imit
parameter is the number of containers that will be listed in the response.

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

There are query parameters that you can provide with these API calls, which can
fine-tune the responses.

Type of Request: GET

Parameter | Type Explanation
all 1/True/true or | This tells whether all containers should be shown. Only
0/False/false | running containers are shown by default.
limit Integer This shows the last [11] containers, including non running
containers.
since Container ID This only shows containers started since [x], including
non running ones.
before Container ID This only shows containers started before [x], including
non running ones.
size 1/True/true or | This tells whether container sizes should be shown in the
0/False/false | responses or not.

Status codes of the response follow relevant Request For Comments (RFC) 2616:

Status code Meaning

200 No error

400 Bad parameter and client error
500 Server error

Other endpoints for containers can be read about at docs . docker.com/reference/
api/docker remote api v1.13/#21-containers.

Remote API for images

Similar to containers, there are APIs to build and manage images as well.

Listing the local Docker images

The following command lists the local images:

$ curl $DOCKER_DAEMON/images/json

[93]

www.it-ebooks.info

docs.docker.com/reference/api/docker_remote_api_v1.13/#21-containers
docs.docker.com/reference/api/docker_remote_api_v1.13/#21-containers
http://www.it-ebooks.info/

Automation and Best Practices

[{"Created":1406791831,“Id":"7e03264fbb7608346959378f270b32bf31daca14d15e
9979a5803ee32e9d2221", "ParentId":"623cdl6a51la7fb4ecd539eble5d9778
c90d£f5b96368522b8ff2aafcf9543bbf2", "RepoTags": ["shrikrishna/apt-
moo:latest"],"Size":0,"VirtualSize":281018623}
,{"Created":1406791813,"Id":"c5£4£852c7£37edcb75a0b712a16820bb8c729a6
a5093292e5f269a19e9813f2", "ParentId":"ebe887219248235baa0998323342£f7f
5641cf5bff7c43e2b802384c1lcb0dd498", "RepoTags": ["shrikrishna/onbuild:1
atest"],"Size":0,"VirtualSize":281018623}
,{"Created":1406789491,"Id":"0£0dd3deae656e50a78840e58£63a5808ac53cb4
dc87d416fc56aaf3ab90c937", "ParentId":"061732a839%adlaelle9c7dcaal83105
138e2785954ea9e51£894f4a8e0dcl46c", "RepoTags": ["shrikrishna/optimus:g
it url"],"Size":0,"VirtualSize":670857276}

This is a GET request API. A request to /images/json will return a JSON response
containing a list that contains details of the images that fulfill the criteria.

Type of request: GET

Parameter | Type Explanation

all 1/True/true or | This tells whether even intermediary containers
0/False/false | should be shown. False by default.

filters JSON These are used to provide a filtered list of images.

Other endpoints for images can be read about at docs.docker.com/reference/
api/docker remote api v1.13/#22-images

Other operations

There are other APIs too, such as the ping API we checked at the beginning of this
section. Some of them are explored in the following section.

Getting system-wide information

The following command gets the system-wide information on Docker. This is the
endpoint that handles the docker info command:

$ curl $DOCKER DAEMON/info

{“Containers":41,“Debug“:l,“Driver":"aufs“,“DriverStatus":[["Root
Dir","/mnt/sdal/var/lib/docker/aufs"], ["Dirs","225"]], "ExecutionDrive
r":"native-
0.2","IPv4Forwarding":1, "Images":142, "IndexServerAddress":"https://in
dex.docker.io/v1l/","InitPath":"/usr/local/bin/docker", "InitShal":"", "
KernelVersion":"3.15.3-

tinycore64", "MemoryLimit":1, "NEventsListener":0, "NFd":15, "NGoroutines
":15,"Sockets": ["unix:///var/run/docker.sock", "tcp://0.0.0.0:2375"],"
SwapLimit":1}

[94]

www.it-ebooks.info

docs.docker.com/reference/api/docker_remote_api_v1.13/#22-images
docs.docker.com/reference/api/docker_remote_api_v1.13/#22-images
http://www.it-ebooks.info/

Chapter 4

Committing an image from a container

The following command commits an image from a container:

$

>

curl \

-H "Content-Type: application/json" \

-d '{"Image":"ubuntu:14.04",\

"Cmd": ["echo", "I was started with the API"]}' \

-X POST $DOCKER DAEMON/commit?\

container=96bdcel49371\

\&m=Created%20with%20remote%20api\&repo=shrikrishna/api image;

{"Id":"5b84985879a84d693£f9f7aa%bbcf8ee8080430bb782463e340b241lea760a5a
sbll}

Commit is a POST request to the /commit parameter with data about the image

it's based on and the command associated with the image that will be created on
commit. Key pieces of information include the container ID parameter to commit,
the commit message, and the repository it belongs to, all of which are passed as

query parameters.

Type of request: POST

The gson data sent along with the POST request:

Parameter

Type

Explanation

config

JSON

This describes the configuration of the container to commit

The following table shows query parameters for the POST request:

Parameter Type Explanation

container Container The 1D of the container you intend to commit
ID

repo String The repository to create the image in

tag String The tag for the new image

m String Commit message

author String Author information

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

Automation and Best Practices

The following table shows the status code of the responses:

Status code Meaning

201 No error

404 No such container
500 Internal server error

Saving the image

Get a tarball backup of all the images and metadata of a repository from the
following command:

$ curl $DOCKER DAEMON/images/shrikrishna/code.it/get > \

> code.it.backup.tar.gz

This will take some time, as the image has to be first compressed into a tarball
and then streamed, but then it will be saved in the tar archive.

Other endpoints can be read about at docs.docker.com/reference/api/docker_
remote api v1.13/#23-misc.

How docker run works

Now that we have realized that every Docker command that we run is nothing
but a series of RESTful operations carried out by the client, let's enhance our
understanding of what happens when you run a docker run command:

1. To create an AP], /containers/create parameter is called.

2. If the status code of the response is 404, it means the image doesn't exist. Try
to pull the image using /images/create parameter and go back to step 1.

3. Get the 1D of the created container and start it using /containers/ (id) /
start parameter.

The query parameters to these API calls will depend on the flags and arguments
passed to the docker run command.

[96]

www.it-ebooks.info

docs.docker.com/reference/api/docker_remote_api_v1.13/#23-misc
docs.docker.com/reference/api/docker_remote_api_v1.13/#23-misc
http://www.it-ebooks.info/

Chapter 4

Injecting processes into containers with
the Docker execute command

During the course of your explorations of Docker, you may have wondered whether
the single command per container rule enforced by Docker is limiting its capabilities.
In fact, you might be forgiven for assuming that a Docker container runs only a
single process. But no! A container can run any number of processes, but can only
start with one command and the container lives as long as the process associated
with the command does. This restriction has been enforced because Docker believes
in the philosophy of one app per container. Instead of loading everything in a single
container, a typical Docker-reliant application architecture will consist of multiple
containers, each running a specialized service, all linked together. This helps keep
the container light, makes debugging easier, reduces the attack vectors, and ensures
that if one service goes down, others aren't affected.

Sometimes, however, you might need to look into the container while it is running,.
Over time, a number of approaches have been taken by the Docker community to
debug running containers. Some members loaded SSH into the container and ran
a process management solution such as supervisor to run the SSH + application
server. Then came tools such as nsinit and nsenter that helped spawn a shell in
the namespace the container was running in. However, all of these solutions were
hacks. So with v1.3, Docker decided to provide the docker exec command, a safe
alternative that could debug running containers.

The docker exec command, allows a user to spawn a process inside their Docker
container via the Docker API and CLI, for example:

$ docker run -dit --name exec_example -v $(pwd):/data -p 8000:8000
dockerfile/python python -m SimpleHTTPServer

$ docker exec -it exec_example bash

The first command starts a simple file server container. The container is sent to

the background with the -d option. In the second command, with docker exec,

we log in to the container by creating a bash process inside it. Now we will be able
to inspect the container, read the log (if we have logged in to a file), run diagnostics
(if the need to inspect arises because of a bug), and so on.

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Automation and Best Practices

Docker still hasn't moved from its one-app-per-container philosophy.

% The docker exec command exists just to provide us with a way to
o= inspect containers, which otherwise would've required workarounds or

hacks.

Service discovery

Docker assigns an IP to a container dynamically from a pool of available addresses.
While this is good in some ways, it creates a problem when you are running
containers that need to communicate with each other. You just cannot know when
building an image what its IP address is going to be. Your first instinct might be to
start the containers, then log in to them (via docker exec), and set the IP addresses
of the other containers manually. But remember, this IP address can change when a
container restarts, so then you would have to manually log in to each container and
enter the new IP address. Could there be a better way? Yes, there is.

Service discovery is a collection of everything that needs to be done to let services
know how to find and communicate with other services. Under service discovery,
containers do not know their peers when they are just started. Instead, they discover
them dynamically. This should work both when the containers are in the same host
as well as when they are in a cluster.

There are two techniques to achieve service discovery:

* Using default Docker features such as names and links

* Using a dedicated service such as Etcd or Consul

Using Docker names, links, and ambassador
containers

We learned how to link conatiners in the section titled Linking Containers in Chapter 3,
Configuring Docker Containers. To refresh your memory, this is how it works.

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Using links to make containers visible to each other

The use of links is shown in the following diagram:

| Redis |<ﬂ>| App |

Link allows a container to connect to another container without any need to
hardcode its IP address. It is achieved by inserting the first container's IP address
in /etc/hosts when starting the second container.

A link can be specified when starting the container using the - -1ink option:

$ docker run --link CONTAINER IDENTIFIER:ALIAS . . .

You can find out more about linking in Chapter 3, Configuring Docker Containers.

Cross-host linking using ambassador containers

The following diagram represents cross-host linking using ambassador containers:

Host 1
Database link Ambassador
server container
Exposed port

bind
Host port

Host 2

Application link Ambassador
container container

Multi host setup

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Automation and Best Practices

Ambassador containers are used to link containers across hosts. In this architecture,
you can restart/replace the database container without needing to restart the
application container.

You can find out more about ambassador containers in Chapter 3, Configuring
Docker Containers.

Service discovery using etcd

Why do we need specialized solutions for service discovery? While ambassador
containers and links solve the problem of finding containers without needing to
know their IP addresses, they do have one fatal flaw. You still need to manually
monitor the health of the containers.

Imagine a situation where you have a cluster of backend servers and frontend

servers linked to them via ambassador containers. If one of the servers goes down,

the frontend servers still keep trying to connect to the backend server, because as far as
they are concerned, that is the only available backend server, which is of course wrong.

Modern service discovery solutions such as etcd, Consul, and doozerd do more

than merely providing the right IP addresses and ports. They are, in effect, distributed
key-value stores, but are fault tolerant and consistent and handle master election in
the event of failure. They can even act as lock servers.

The etcd service is an open source, distributed key-value store developed by CoreOS.
In a cluster, the etcd client runs on each machine in the cluster. The etcd service
gracefully handles master election during network partitions and the loss of the
current master.

Your applications can read and write data to the etcd service. Common examples
for etcd services are storing database connection details, cache settings, and so on.

Features of the etcd service are listed here:

* Simple, curlable API (HTTP + JSON)
* Optional Secure Sockets Layer (SSL) client certificate authentication
* Keys support Time To Live (TTL)

The Consul service is a great alternative to the et cd service. There is
@’@‘\ no reason why one should be chosen over the other. This section is just
g meant to introduce you to the concept of service discovery.

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

We use the etcd service in two stages as follows:

1. We register our services with the etcd service.

2. We do a lookup to find services thus registered.

The following diagram shows the etcd service:

App 1

I'm at
{IP:172.16.1.145
PORT : 12345 }

Where is Appl

App2

Appl is at
{IP:172.16.1.145
PORT : 12345}

This seems like a simple task to do, but building a solution that is fault tolerant and
consistent is not simple. You will also need to be notified in case of failure of a service.
If you run the service discovery solution itself in a naive centralized manner, it might
become a single point of failure. So, all instances in a cluster of service discovery
servers need to be synchronized with the right answer, which makes for interesting
approaches. The team at CoreOS developed a consensus algorithm called Raft to solve
this problem. You can read more about it at http: //raftconsensus.github. io.

Let's look at an example to get a lay of the land. In this example, we will run the
etcd server in a container and see how easy it is to register a service and discover it.

1. Step 1: Run the etcd server:
$ docker run -d -p 4001:4001 coreos/etcd:v0.4.6 -name myetcd

2. Step 2: Once the image is downloaded and the server starts, run the
following command to register a message:

$ curl -L -X PUT http://127.0.0.1:4001/v2/keys/message -d
value="Hello"

{“action" :"set", "node": { "key":"/message", "value":"Hello", "modified
Index":3,"createdIndex":3}}

This is nothing but a PUT request to the server at the /v2/keys/message
path (message being the key here).

[101]

www.it-ebooks.info

http://raftconsensus.github.io
http://www.it-ebooks.info/

Automation and Best Practices

3. Step 3: Get the key back with the following command:

$ curl -L http://127.0.0.1:4001/v2/keys/message

{“action" :"get", "node": { "key":"/message", "value":"Hello", "modified
Index":4,"createdIndex":4}}

You can go ahead and experiment by changing the value, trying an invalid key,
and so on. You will find that the responses are in JsON, which means you can
easily integrate it with your application without needing to use any libraries.

But how would I use it in my application? If your application needs to run multiple
services, they can be connected together with links and ambassador containers, but
if one of them becomes unavailable or needs to be redeployed, a lot of work needs
to be done to restore the links.

Now imagine that your services use the etcd service. Every service registers its

IP address and port number against its name and discovers other services by

their names (that are constant). Now, if a container restarts because of a crash/
redeployment, the new container will register against the modified IP address.
This will update the value that the etcd service returns for subsequent discovery
requests. However, this means that a single etcd server can also be a single point
of failure. The solution for this is to run a cluster of etcd servers. This is where the
Raft consensus algorithm, developed by CoreOS (the team that created etcd service),
comes in. A complete example of an application service being deployed with the
etcd service can be found at http://jasonwilder.com/blog/2014/07/15/
docker-service-discovery/

Docker Orchestration

As soon as you go beyond simple applications to complex architectures, you will
start using tools and services such as etcd, consul, and serf, and you will notice
that all of them come with their own set of APIs, even though they have overlapping
features. If you set up your infrastructure to one set of tooling and find a need to
switch, it takes considerable effort, sometimes even changes in the code, to switch
vendors. Such situations can lead to vendor lock-in, which would ruin a promising
ecosystem that Docker has managed to create. To provide a standard interface to
these service providers so that they can almost be used as plug-and-play solutions,
Docker has released a suite of orchestration services. In this section, we will take

a look at them. Note, however, that at the time of writing this book, these projects
(Machine, Swarm, and Compose) are still in Alpha and in active development.

[102]

www.it-ebooks.info

http://jasonwilder.com/blog/2014/07/15/docker-service-discovery/
http://jasonwilder.com/blog/2014/07/15/docker-service-discovery/
http://www.it-ebooks.info/

Chapter 4

Docker Machine

Docker Machine aims to provide a single command to take you from
zero-to-Docker project.

Before Docker Machine, if you intended to start working with Docker on a new host,
be it a virtual machine or a remote host in an infrastructure provider such as Amazon
Web Services (AWS) or Digital Ocean, you would have to log in to the instance, and
run the setup and configuration commands specific to the operating system running
init.

With Docker Machine, whether provisioning the docker daemon on a new laptop,
on virtual machines in the data center, or on a public cloud instance, the same,
single command gets the target host ready to run Docker containers:

$ machine create -d [infrastructure provider] [provider options]
[machine namel]

Then you can manage multiple Docker hosts from the same interface regardless
of their location and run any Docker command on them.

Apart from this, the machine also has pluggable backends, which makes adding
support to infrastructure providers easy, while retaining the common user-facing
API. Machine ships by default with drivers to provision Docker locally with
Virtualbox as well as remotely on Digital Ocean instances.

Note that Docker Machine is a separate project from the Docker Engine. You can find
the updated details about this project on its Github page at https://github.com/
docker/machine.

Swarm

Swarm is a native clustering solution provided by Docker. It takes Docker Engine
and extends it to enable you to work on a cluster of containers. With Swarm, you can
manage a resource pool of Docker hosts and schedule containers to run transparently
on top, automatically managing workload and providing failover services.

To schedule, it takes the container's resource requirements, looks at the available
resources in the hosts, and tries to optimize placement of workloads.

[103]

www.it-ebooks.info

https://github.com/docker/machine
https://github.com/docker/machine
http://www.it-ebooks.info/

Automation and Best Practices

For example, if you wanted to schedule a Redis container requiring 1 GB of
memory, here is how you would schedule it with Swarm:

$ docker run -d -P -m 1lg redis

Apart from resource scheduling, Swarm also supports policy-based scheduling
with standard and custom constraints. For instance, if you want to run your
MySQL container on an SSD-backed host (in order to ensure better write and
read performance), you can specify that as follows:

$ docker run -d -P -e constraint:storage=ssd mysql

In addition to all of this, Swarm provides high-availability and failover. It
continuously monitors the health of the containers, and if one were to suffer an
outage, automatically rebalances by moving and restarting the Docker containers
from the failed host to a new one. The best part is that regardless of whether you
are just starting with one instance or have scaled up to 100 instances, the interface
remains the same.

Like Docker Machine, Docker Swarm is in Alpha and is continuously evolving,.
Head over to its repository on Github to know more about it: https://github.com/
docker/swarm/.

Docker Compose

Compose is the last piece of the puzzle. With Docker Machine, we have provisioned
the Docker daemons. With Docker Swarm, we can rest assured that we'll be able to
control our containers from anywhere and that they'll remain available if there are
any failures. Compose helps us compose our distributed applications on top of this
cluster.

Comparing this to something we already know might help us understand how all
of this works together. Docker Machine acts just as an operating system acts with
respect to a program. It provides a place for containers to run. Docker Swarm acts
like a programming language runtime to a program. It manages resources, provides
exception handling, and so on for containers.

Docker Compose is more like an IDE, or a language syntax, that provides a way
to express what the program needs to do. With Compose, we specify how our
distributed apps must run in the cluster.

[104]

www.it-ebooks.info

https://github.com/docker/swarm/
https://github.com/docker/swarm/
http://www.it-ebooks.info/

Chapter 4

We use Docker Compose by writing a YAML file to declare the configurations and
states of our multi-container app. For example, let's assume we have a Python app
that uses a Redis DB. Here is how we would write the YaAML file for Compose:

containers:
web:
build:
command: python app.py
ports:
- "5000:5000"
volumes:
- .:/code
links:
- redis
environment :
- PYTHONUNBUFFERED=1
redis:
image: redis:latest
command: redis-server --appendonly yes

In the preceding example, we defined two applications. One is a Python application
that needs to be built from the Dockerfile in the current directory. It has a port (5000)
exposed and has either a volume or a piece of code bind mounted to the current
working directory. It also has an environment variable defined and is linked to the
second application container, redis. The second container uses the redis container
from the Docker registry.

With the configuration defined, we can start both the containers with the
following command:

$ docker up

With this single command, the Python container gets built using the Dockerfile,
and the redis image gets pulled from the registry. However, the redis container
is started first, because of the links directive in the Python container's specification
and because the Python container depends on it.

As with Docker Machine and Docker Swarm, Docker Compose is a "work in
progress" and its development can be tracked at https://github.com/docker/
docker/issues/9459.

More information about swarm can be found at http://blog.docker.
com/2014/12/announcing-docker-machine-swarm-and-compose-for-
orchestrating-distributed-apps/.

[105]

www.it-ebooks.info

https://github.com/docker/docker/issues/9459
https://github.com/docker/docker/issues/9459
http://blog.docker.com/2014/12/announcing-docker-machine-swarm-and-compose-for-orchestrating-distributed-apps/
http://blog.docker.com/2014/12/announcing-docker-machine-swarm-and-compose-for-orchestrating-distributed-apps/
http://blog.docker.com/2014/12/announcing-docker-machine-swarm-and-compose-for-orchestrating-distributed-apps/
http://www.it-ebooks.info/

Automation and Best Practices

Security

Security is of prime importance when it comes to deciding whether to invest in a
technology, especially when that technology has implications on the infrastructure
and workflow. Docker containers are mostly secure, and since Docker doesn't
interfere with other systems, you can use additional security measures to harden
the security around the docker daemon. It is better to run the docker daemon in
a dedicated host and run other services as containers (except services such as ssh,
cron, and so on).

In this section, we will discuss Kernel features used in Docker that are pertinent to
security. We will also consider the docker daemon itself as a possible attack vector.

Image credit http://xkcd.com/424/

[Zucast conrenr IN THE RUSHTO CLEAN
VP THE DEB|AN -OPENSSL
F'I‘HSCD, A NUMBER OF OTHER,

MAJOR SECURITY HOLES
HAVE BEEN UNCOVERED:

2

SYSTEM SECURITY PROBLEM

VULNERABLE. TO CERTAIN
FEDORA CORE| 1 ronER. RINGS

70,

XANDROS GIVES ROGT ACCESS IF
// do_not_cresh (); (eze PO) ASKED IN STERN VOICE

GENTCO VULNERABLE T0 FLATTERY

ﬁi

VULNERABLE TO JEFF
OLPC 05 | GoOLDBLUM'S POWERBOOK

GIVES RoOT ALLESS IF USER
SAYS ELVISH WORD FOR ‘FRIEND"

TURNS OUT DISTRO 15
UBUNTU ACTUALLY TusT WINDOWS VISTA,
WITH A FEW CLSTOM THEMES

ent_311 (),
Hprosent 2 SLACKWARE

ny

[106]

www.it-ebooks.info

http://xkcd.com/424/
http://www.it-ebooks.info/

Chapter 4

Kernel namespaces

Namespaces provide sandboxing to containers. When a container is started,
Docker creates a set of namespaces and cgroups for the container. Thus, a container
that belongs to a particular namespace cannot see or affect the behavior of another
container that belongs to other namespaces or the host.

The following diagram explains containers in Docker:

Containerl Container2 Container3
etho etho etho
172.16.42.2 172.16.42.3 172.16.42.4

dockerO

172.16.42.1
HOST 192.168.0.100

public

internet
or

VPN

etho

The kernel namespace also creates a network stack for the container, which can be
configured to the last detail. The default Docker network setup resembles a simple
network, with the host acting as the router and the dockero bridge acting as an
Ethernet switch.

The namespace feature is modeled after OpenVZ, which is an operating system level
virtualization technology based on the Linux kernel and operating system. OpenVZ is
what is used in most of the cheap VPSes available in market today. It has been around
since 2005, and the namespace feature was added to the kernel in 2008. It has been
subjected to production use since then, so it can be called "battle hardened."

Control groups

Control groups provide resource management features. Although this has nothing
to do with privileges, it is relevant to security because of its potential to act as the
first line of defence against denial-of-service attacks. Control groups have been
around for quite some time as well, so can be considered safe for production use.

For further reading for control groups, refer to https://www.kernel.org/doc/
Documentation/cgroups/cgroups. txt.

[107]

www.it-ebooks.info

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.it-ebooks.info/

Automation and Best Practices

The root in a container

The root command in a container is stripped of many privileges. For instance, you
cannot mount a device using the mount command by default. On the other end of
the spectrum, running a container with the - -privileged flag flag will give the
root user in the container complete access to all the privileges that the root user

in the host does. How does docker achieve this?

You can think of the standard root user as someone having a wide range of
capabilities. One of them, is the net_bind service service that binds to any
port (even below 1024). Another, the cap sys_admin service, is what is needed
to mount physical drives. These are called capabilities, tokens used by a process
to prove that it is allowed to perform an operation.

Docker containers are started with a reduced capability set. Hence, you will find
that you can perform some root operations but not others. Specifically, it is not
possible for a root user in an unprivileged container to do the following:

* Mount/unmount devices

* Managing raw sockets

* Filesystem operations such as creating device nodes and changing
file ownerships

Before v1.2, if you needed to use any capability that was blacklisted, the only
solution was to run the container with the --privileged flag. But v1.2 introduced
three new flags, - -cap-add, --cap-drop, and --device, to aid us to run a container
that needed specific capabilities without compromising on the security of the host.

The - -cap-add flag adds a capability to the container. For example, let's change the
status of a container's interface (which requires the NET_ADMIN service capability):

$ docker run --cap-add=NET ADMIN ubuntu sh -c "ip link eth0 down"

The - -cap-drop flag blacklists a capability in a container. For example, let's blacklist
all but the chown command in a container, and then try to add a user. This will fail
as it needs the CAP_CHOWN service:

$ docker run --cap-add=ALL --cap-drop=CHOWN -it ubuntu useradd test

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

useradd: failure while writing changes to /etc/shadow

The - -devices flag is used to mount an external/virtual device directly on the
container. Before v1.2, we had to mount it on the host and bind mount with the -v
flagin a - -privileged container. With the - -device flag, you can now use a device
in a container without needing to use the --privileged container.

For example, to mount the DVD-RW device of your laptop on the container, run
this command:

$ docker run --device=/dev/dvd-rw:/dev/dvd-rw ...

More information about the flags can be found at http://blog.docker.com/tag/
docker-1-2/.

There were additional improvements introduced with the Docker 1.3 release. A
--security-opts flag was added to the CLI, which allows you to set custom
SELinux and AppArmor labels and profiles. For example, suppose you had a policy
that allowed a container process to listen only to Apache ports. Assuming you had
defined this policy in svirt_apache, you can apply it to the container as follows:

$ docker run --security-opt label:type:svirt apache -i -t centos \
bash

One of benefits of this feature is that users will be able to run Docker in Docker
without having to use the docker run --privileged container on the kernels
supporting SELinux or AppArmor. Not giving the running container all the host
access rights as the - -privileged container significantly reduces the surface area
of potential threats.

Source: http://blog.docker.com/2014/10/docker-1-3-signed-images-
process-injection-security-options-mac-shared-directories/.

You can see the complete list of enabled capabilities at https://github.com/docker/
docker/blob/master/daemon/execdriver/native/template/default template.

go.

. For the inquisitive mind, the complete list of all available capabilities
can be found in the Linux manual page for capabilities. It can also be
s found online at http://man7.org/linux/man-pages/man7/

capabilities.7.html.

[109]

www.it-ebooks.info

http://blog.docker.com/tag/docker-1-2/
http://blog.docker.com/tag/docker-1-2/
http://blog.docker.com/2014/10/docker-1-3-signed-images-process-injection-security-options-mac-shared-directories/
http://blog.docker.com/2014/10/docker-1-3-signed-images-process-injection-security-options-mac-shared-directories/
https://github.com/docker/docker/blob/master/daemon/execdriver/native/template/default_template.go
https://github.com/docker/docker/blob/master/daemon/execdriver/native/template/default_template.go
https://github.com/docker/docker/blob/master/daemon/execdriver/native/template/default_template.go
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://www.it-ebooks.info/

Automation and Best Practices

Docker daemon attack surface

The docker daemon takes care of creating and managing containers, which includes
creating filesystems, assigning IP addresses, routing packets, managing processes,
and many more tasks that require root privileges. So it is imperative to start the
daemon as a sudo user. This is the reason the docker daemon binds itself to a Unix
socket by default, instead of a TCP socket, which it used until v5.2.

One of the end goals of Docker is to be able to run even the daemon as a non-root
user, without affecting its functionalities, and delegate operations that do require
root (such as filesystem operations and networking) to a dedicated subprocess
with elevated privileges.

If you do want to expose Docker's port to the outside world (to make use of the
remote API), it is advised to ensure that only trusted clients are allowed access.
One straightforward way is to secure Docker with SSL. You can find ways of
setting this up at https://docs.docker.com/articles/https.

Best practices for security
Now let's summarize some key security best practices when running Docker in
your infrastructure:

* Always run the docker daemon in a dedicated server.

* Unless you have a multiple-instance setup, run the docker daemon on a
Unix socket.

* Take special care about bind mounting host directories as volumes as it is
possible for a container to gain complete read-write access and perform
irreversible operations in these directories.

* If you have to bind to a TCP port, secure it with SSL-based authentication.
* Avoid running processes with root privileges in your containers.

* There is absolutely no sane reason why you will ever need to run a
privileged container in production.

* Consider enabling AppArmor/SELinux profiles in the host. This enables
you to add an additional layer of security to the host.

¢ Unlike virtual machines, all containers share the host's kernel. So it is
important to keep the kernel updated with the latest security patches.

[110]

www.it-ebooks.info

https://docs.docker.com/articles/https
http://www.it-ebooks.info/

Chapter 4

Summary

In this chapter, we learned about the various tools, APIs, and practices that help
us deploy our application in a Docker-based environment. Initially, we looked at
the Remote API and realized that all Docker commands are nothing but a result
of REST-based calls to the docker daemon.

Then we saw how to inject processes to help debug running containers.

We then looked at various methods to achieve service discovery, both using native
Docker features such as links, and with the help of specialized config stores such
as the etcd services.

Finally, we discussed various aspects of security when using Docker, the various
kernel features it relies on, their reliability, and their implications on the security
of the host the containers run on.

In the next chapter, we will be taking the approach of this chapter further, and
checking out various open source projects. We will learn how to integrate or use
them to fully realize the potential of Docker.

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Friends of Docker

Up until now, we have been busy learning all about Docker. One major factor
influencing the lifetime of open source projects is the community around it. The
creators of Docker, Docker Inc. (the offshoot of dotCloud), take care of developing
and maintaining Docker and its sister projects such as libcontainer, libchan, swarm,
and so on (the complete list can be found at github.com/docker). However, like any
other open source project, the development is open (in GitHub), and they

accept pull requests.

The industry has embraced Docker as well. Bigwigs such as Google, Amazon,
Microsoft, eBay, and RedHat actively use and contribute to Docker. Most popular
[aaS solutions such as Amazon Web Services, Google Compute Cloud, and so on
support creating images preloaded with and optimized for Docker. Many start-ups
are betting their fortunes on Docker as well. CoreOS, Drone.io, and Shippable are
some of the start-ups that are modeled such that they provide services based around
Docker. So you can rest assured that it's not going away any time soon.

In this chapter, we will discuss some of the projects surrounding Docker and how to
use them. We will also be looking at projects you may already be familiar with that
can facilitate your Docker workflow (and make your life a lot easier).

Firstly, we will talk about using Chef and Puppet recipes with Docker. Many of
you might already be using these tools in your workflow. This section will help you
integrate Docker with your current workflow, and ease you into the Docker ecosystem.

Next, we will try to set up an apt-cacher so that our Docker builds won't spend a
lot of time fetching frequently used packages all the way from Canonical server.
This will considerably reduce the time it takes to build images from Dockerfiles.

www.it-ebooks.info

github.com/docker
http://www.it-ebooks.info/

Friends of Docker

One of the things that gave Docker so much hype in the early stages was how easy
some things that have been known to be hard seemed so easy when implemented
with Docker. One such project is Dokku, a 100-line bash script that sets up a mini-
Heroku like PaaS. We will set up our own PaaS using Dokku in this chapter. The
very last thing we will be covering in this book is deploying a highly available
service using CoreOS and Fleet.

In short, in this final leg of our journey, we will be looking at the following topics:

* Using Docker with Chef and Puppet
* Setting up an apt-cacher
* Setting up your own mini-Heroku

* Setting up a highly available service

Using Docker with Chef and Puppet

When businesses started moving into the cloud, scaling became a whole lot easier as
one could go from a single machine to hundreds without breaking a sweat. But this
also meant configuring and maintaining these machines. Configuration management
tools such as Chef and Puppet arose from the need to automate deploying
applications in public/ private clouds. Today, Chef and Puppet are used every day
by start-ups and corporates all over the world to manage their cloud environments.

Using Docker with Chef

Chef's website states the following;:

" Chef turns infrastructure into code. With Chef, you can automate how you
build, deploy, and manage your infrastructure. Your infrastructure becomes as
versionable, testable, and repeatable as application code."

Now, assuming that you have already set up Chef and are familiar with the Chef
workflow, let's see how to use Docker with Chef using the chef-docker cookbook.

You can install this cookbook with any of the cookbook dependency managers. The
installation instructions for each of Berkshelf, Librarian, and Knife are available at
the Chef community site for the cookbook (https://supermarket.getchef.com/
cookbooks/docker).

[114]

www.it-ebooks.info

https://supermarket.getchef.com/cookbooks/docker
https://supermarket.getchef.com/cookbooks/docker
http://www.it-ebooks.info/

Chapter 5

Installing and configuring Docker

Installing Docker is simple. Just add the recipe [docker] command to your run-list
(the list of configuration settings). An example is worth a million words, so let's see
how to write a Chef recipe to run the code. it file (our sample project) on Docker.

Writing a Chef recipe to run Code.it on Docker

The following Chef recipe starts a container based on code . it:

Include Docker recipe
include recipe 'docker'

Pull latest image
docker image 'shrikrishna/code.it'

Run container exposing ports
docker container 'shrikrishna/code.it' do
detach true
port '80:8000'
env 'NODE_PORT=8000"
volume '/var/log/code.it:/var/log/code.it’
end

The first non-comment statement includes the Chef-Docker recipe. The docker image
'shrikrishna/code.it' statement is equivalent to running the $ docker pull
shrikrishna/code. it command in the console. The block of statements at the end
of the recipe is equivalent to running the $ docker run --d -p '8000:8000' -e
'NODE_PORT=8000' -v '/var/log/code.it:/var/log/code.it' shrikrishna/
code. it command.

Using Docker with Puppet

PuppetLabs's website states the following:

"Puppet is a configuration management system that allows you to define the state
of your IT infrastructure, then automatically enforces the correct state. Whether
you're managing just a few servers or thousands of physical and virtual machines,
Puppet automates tasks that sysadmins often do manually, freeing up time and
mental space so sysadmins can work on the projects that deliver greater business
value."

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Friends of Docker

Puppet's equivalent of Chef cookbooks are modules. There is a well-supported module
available for Docker. Its installation is carried out by running this command:

$ puppet module install garethr-docker

Writing a Puppet manifest to run Code.it on Docker

The following Puppet manifest starts a code . it container:

Installation
include 'docker'

Download image
docker: :image {'shrikrishna/code.it':}

Run a container
docker::run { 'code.it-puppet':

image => 'shrikrishna/code.it',
command => 'node /srv/app.js',
ports => '8000",

volumes => '/var/log/code.it'

}

The first non-comment statement includes the docker module. The docker: : image
{'shrikrishna/code.it"':} statement is equivalent to running the $ docker pull
shrikrishna/code. it command in the console. The block of statements at the end
of the recipe is equivalent to running the $ docker run --d -p '8000:8000' -e
'NODE_PORT=8000' -v '/var/log/code.it:/var/log/code.it' shrikrishna/
code.it node /srv/app.js command.

Setting up an apt-cacher

When you have multiple Docker servers, or when you are building multiple
unrelated Docker images, you might find that you have to download packages every
time. This can be prevented by having a caching proxy in-between the servers and
clients. It caches packages as you install them. If you attempt to install a package that
is already cached, it is served from the proxy server itself, thus reducing the latency
in fetching packages and greatly speeding up the build process.

Let's write a Dockerfile that sets up an apt-caching server as a caching proxy server:

FROM ubuntu
VOLUME ["/var/cache/apt-cacher-ng"]
RUN apt-get update ; apt-get install -yg apt-cacher-ng

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

EXPOSE 3142

RUN echo "chmod 777 /var/cache/apt-cacher-ng ;" +
"/etc/init.d/apt-cacher-ng start ;" +

"tail -f /var/log/apt-cacher-ng/*" >> /init.sh

CMD ["/bin/bash", "/init.sh"]

This Dockerfile installs the apt -cacher-ng package in the image and exposes port
3142 (for the target containers to use).

Build the image using this command:

$ sudo docker build -t shrikrishna/apt cacher ng

Then run it, binding the exposed port:

$ sudo docker run -d -p 3142:3142 --name apt cacher
shrikrishna/apt cacher ng

To see the logs, run the following command:

$ sudo docker logs -f apt cacher

Using the apt-cacher while building your
Dockerfiles

So we have set up an apt-cacher. We now have to use it in our Dockerfiles:

FROM ubuntu

RUN echo 'Acquire::http { Proxy "http://<host's-docker0-ip-
here>:3142"; };' >> /etc/apt/apt.conf.d/0lproxy

In the second instruction, replace the <host ' s-docker0-ip-here> command

with your Docker host's IP address (at the dockero interface). While building

this Dockerfile, if it encounters any apt-get install installation command for a
package that has already been installed before (either for this image or for any other
image), instead of using Docker's or Canonical package repositories, it will fetch
the packages from the local proxy server, thus speeding up package installations in
the build process. If the package being installed is not present in the cache, then it is
fetched from Canonical repositories and saved in the cache.

N An apt-cacher will only work for Debian-based containers
(such as Ubuntu) that use the Apt package management tool.

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Friends of Docker

Setting up your own mini-Heroku

Now let's do something cool. For the uninitiated, Heroku is a cloud PaaS, which
means that all you need to do upon building an application is to push it to Heroku
and it will get deployed on https://www.herokuapp.com. You don't need to worry
how or where your application runs. As long as the PaaS supports your technology
stack, you can just develop locally and push the application to the service to have it
running live on the public Internet.

There are a lot of PaaS providers apart from Heroku. Some popular providers are
Google App Engine, Red Hat Cloud, and Cloud Foundry. Docker was developed

by one such PaaS provider —dotCloud. Almost every PaaS works by running the
applications in predefined sandboxed environments, and this is something Docker
excels at. Today, Docker has made setting up a PaaS easier, if not simple. The project
that proved this was Dokku. Dokku shares the usage pattern and terminologies
(such as buildpacks, slug builder scripts) with Heroku, which makes it easier to
use. In this section, we will be setting up a mini-Paa$S using Dokku and pushing our
code. it application.

The next steps should be done on either a Virtual Private Server

(VPS) or a virtual machine. The host you are working from
T should have git and SSH set up.

Installing Dokku using a bootstrapper script

There is a bootstrapper script that will set up Dokku. Run this command inside the
VPS/ virtual machine:

$ wget -qO- https://raw.github.com/progrium/dokku/v0.2.3/bootstrap.sh
| sudo DOKKU TAG=v0.2.3 bash

Users on version 12.04 will need to runthe $ apt-get install

-y python-software-properties command before running
’ the preceding boot strapper script.

The bootstrapper script will download all the dependencies and set up Dokku.

Installing Dokku using Vagrant

Step 1: Clone Dokku:

$ git clone https://github.com/progrium/dokku.git

[118]

www.it-ebooks.info

https://www.herokuapp.com
http://www.it-ebooks.info/

Chapter 5

Step 2: Set up SSH hosts in your /etc/hosts file:

10.0.0.2 dokku.app

Step 3: Set up SSH Config in ~/.ssh/config

Host dokku.app
Port 2222

Step 4: Create a VM

Here are some optional ENV arguments to set up:

- “BOX NAME"

- “BOX URI"

- “BOX_ MEMORY"

- “DOKKU DOMAIN"

H* H H= H H*

- “DOKKU IP~.
cd path/to/dokku

vagrant up
Step 5 : Copy your SSH key using this command:
$ cat ~/.ssh/id rsa.pub | pbcopy

Paste your SSH key in the dokku-installer at http: //dokku.app (Which points
to 10.0.0.2 as assigned in the /etc/hosts file). Change the Hostname field on
the Dokku Setup screen to your domain and then check the box that says Use
virtualhost naming. Then, click on Finish Setup to install your key. You'll be
directed to application deployment instructions from here.

You are now ready to deploy an app or install plugins.

Configuring a hostname and adding the
public key

Our PaaS will be routing subdomains to applications deployed with the same name.
This means that the machine where Dokku has been set up must be visible to your
local setup as well as to the machine where Dokku runs.

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Friends of Docker

Set up a wildcard domain that points to the Dokku host. After running the
bootstrapper script, check whether the /home/dokku/VHOST file in the Dokku
host is set to this domain. It will only be created if the hostname can be resolved
by the dig tool.

In this example, I have set my Dokku hostname to dokku. app by adding the
following configuration to my /etc/hosts file (of the local host):

10.0.0.2 dokku.app

I have also set up an SSH port forwarding rule in the ~/ . ssh/config file (of the
local host):

Host dokku.app
Port 2222

. According to Wikipedia, Domain Information Groper (dig)
% is a network administration command-line tool used to query
= DNS name servers. This means that given a URL, dig will
return the IP address of the server that the URL points to.

If the /home/dokku/VHOST file hasn't been automatically created, you will have to
manually create it and set it to your preferred domain name. If this file is missing
when you deploy your application, Dokku will publish the application with a port
name instead of the subdomain.

The last thing to do is to upload your public ssh key to the Dokku host and associate
it with a username. To do so, run this command:

$ cat ~/.ssh/id rsa.pub | ssh dokku.app "sudo sshcommand acl-add
dokku shrikrishna"

In the preceding command, replace the dokku.app name with your domain name
and shrikrishna with your name.

Great! Now that we're up and ready;, it's time to deploy our application.

Deploying an application

We now have a PaaS of our own where we can deploy our applications. Let's deploy
the code. it file there. You can also try deploying your own application there:

$ cd code.it

$ git remote add dokku dokku@dokku.app:codeit

$ git push dokku master

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Counting objects: 456, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (254/254), done.
Writing objects: 100% (456/456), 205.64 KiB, done.
Total 456 (delta 34), reused 454 (delta 12)
————— > Building codeit ...

Node.js app detected

————— > Resolving engine versions

————— > Application deployed:
http://codeit.dokku.app

That's it! We now have a working application in our PaaS. For more details about
Dokku, you can check out its GitHub repository page at https://github.com/
progrium/dokku.

If you want a production-ready PaaS, you must look up Deis at http://deis.io/,
which provides multi-host and multi-tenancy support.

Setting up a highly available service

While Dokku is great to deploy occasional side projects, it may not be suitable for
larger projects. A large-scale deployment essentially has the following requirements:

* Horizontally scalable: There is only so much that can be done with a single
instance of a server. As the load increases, an organization on the hockey
stick growth curve will find itself having to balance the load among a cluster
of servers. In the earlier days, this meant having to design data centers.
Today, this means adding more instances to the cloud.

* Fault tolerant: Just as road accidents occur even when there are extensive
traffic rules in place to avoid them, crashes might occur even after you take
extensive measures to prevent them, but a crash in one of the instances must
not create service downtime. A well-designed architecture will handle failure
conditions and will make another server available to take the place of the
server that crashed.

[121]

www.it-ebooks.info

https://github.com/progrium/dokku
https://github.com/progrium/dokku
http://deis.io/
http://www.it-ebooks.info/

Friends of Docker

* Modular: While this may not seem so, modularity is a defining feature of
a large-scale deployment. A modular architecture makes it flexible and
future-proof (because a modular architecture will accommodate newer
components as the scope and the reach of the organization grow).

This is by no means an exhaustive list, but it marks the amount of effort it takes
to build and deploy a highly available service. However, as we have seen until

now, Docker is used in a single host, and there are no tools available in it (until
now) to manage a cluster of instances running Docker.

This is where CoreOS comes in. It is a minimal operating system built with the
single intention of being the building block in large-scale deployments of services on
Docker. It comes with a highly available key-value config store called etcd, which is
used for configuration management and service discovery (discovering where each
of the other components is located in the cluster). The etcd service was explored in
Chapter 4, Automation and Best Practices. It also comes with fleet, a tool that leverages
etcd to provide a way to perform actions on the entire cluster as opposed to doing
so on individual instances.

You can think of fleet as an extension of the systemd suite that
operates at the cluster level instead of the machine level. The

systemd suite is a single-machine init system whereas fleet
’ is a cluster init system. You can find out more about fleet at

https://coreos.com/using-coreos/clustering/.

In this section, we will try to deploy our standard example, code. it, on a three-node
CoreOS cluster in our local host. This is a representative example and an actual
multi-host deployment will take a lot more work, but this serves as a good starting
point. It also helps us appreciate the great work that has been done over the years,
both in terms of hardware and software, to make it possible, even easy, to deploy a
high-availability service, a task that had until only a few years ago been only possible
in huge data centers.

Installing dependencies

Running the preceding example requires the following dependencies:

1. VirtualBox: VirtualBox is a popular type of virtual machine management
software. Installation executables for your platform can be downloaded from
https://www.virtualbox.org/wiki/Downloads.

2. Vagrant: Vagrant is an open source tool that can be considered a virtual
machine equivalent for Docker. It can be downloaded from https: //www.
vagrantup.com/downloads.html.

[122]

www.it-ebooks.info

https://coreos.com/using-coreos/clustering/
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
http://www.it-ebooks.info/

Chapter 5

3. Fleetctl: Fleet is, in short, a distributed init system, which means that it will
allow us to manage services in a cluster level. Fleetctl is a CLI client to interface
to run the fleet commands. To install fleetctl, run the following commands:
$ wget \ https://github.com/coreos/fleet/releases/download/v0.3.2/

fleet -v0.3.2-darwin-amd64.zip && unzip fleet-v0.3.2-darwin-amdé64.
zip

$ sudo cp fleet-v0.3.2-darwin-amd64/fleetctl /usr/local/bin/

Getting and configuring the Vagrantfile

Vagrantfiles are the Vagrant equivalent of Dockerfiles. A Vagrantfile contains
details such as the base virtual machine to get, the setup commands to run, the
number of instances of the virtual machine image to start, and so on. CoreOS has
a repository that contains the Vagrantfile that can be used to download and use
CoreOS within virtual machines. This is the ideal way to try out CoreOS's features
in a development environment:

$ git clone https://github.com/coreos/coreos-vagrant/

$ cd coreos-vagrant

The preceding command clones the coreos-vagrant repository, which contains the
Vagrantfile that downloads and starts CoreOS-based virtual machines.

Vagrant is a piece of free and open source software used to create
. and configure virtual development environments. It can be seen
% as a wrapper around virtualization software such as VirtualBox,
L KVM, or VMware, and around configuration management
software such as Chef, Salt, or Puppet. You can download Vagrant
from https://www.vagrantup.com/downloads.html.

Before starting the virtual machines though, we have some configuring to do.

Getting discovery tokens

Each CoreOS host runs an instance of the etcd service to coordinate the services
running in that machine and to communicate with services running in other
machines in the cluster. For this to happen, the etcd instances themselves need to
discover each other.

[123]

www.it-ebooks.info

https://www.vagrantup.com/downloads.html
http://www.it-ebooks.info/

Friends of Docker

A discovery service (https://discovery.etcd.io) has been built by the CoreOS
team, which provides a free service to help the etcd instances communicate with
each other by storing peer information. It works by providing a unique token that
identifies the cluster. Each etcd instance in the cluster identifies every other etcd
instance with this token using the discovery service. Generating a token is easy and
is done by sending a GET request to discovery.etcd.io/new:

$ curl -s https://discovery.etcd.io/new

https://discovery.etcd.io/5cfcf52e78¢c320d26dcc7ca3643044ee

Now open the file named user-data.sample in the coreos-vagrant directory and
find the commented-out line that holds the discovery configuration option under
the etcd service. Uncomment it and provide the token that is returned from the
previously run curl command. Once this is done, rename the file to user-data.

The user-data file is used to set configuration parameters for
the cloud-config program in CoreOS instances. Cloud-config is
inspired by the cloud-config file from the cloud-init project,
which defines itself as the DE-facto multi-distribution package that
- handles early initialization of a cloud instance (cloud-init docs).
& In short, it helps configure the various parameters such as ports to
= be opened, and in the case of CoreOS, the et cd configurations, and
so on. You can find out more at:

https://coreos.com/docs/cluster-management/setup/
cloudinit-cloud-config/ and http://cloudinit.
readthedocs.org/en/latest/index.html.

The following is an example of the code of CoreOS:

coreos:
etcd:

generate a new token for each unique cluster from https://
discovery.etcd.io/new

WARNING: replace each time you 'vagrant destroy'

discovery: https://discovery.etcd.io/5cfcf52e78c320d26dcc7¢cal36430
44ee

addr: Spublic_ipv4:4001

peer-addr: s$public_ ipv4:7001
fleet:

public-ip: $public ipv4
units:

[124]

www.it-ebooks.info

https://discovery.etcd.io
discovery.etcd.io/new
https://coreos.com/docs/cluster-management/setup/cloudinit-cloud-config/
https://coreos.com/docs/cluster-management/setup/cloudinit-cloud-config/
http://cloudinit.readthedocs.org/en/latest/index.html
http://cloudinit.readthedocs.org/en/latest/index.html
http://www.it-ebooks.info/

Chapter 5

1
‘Q You will have to generate a new token each time you run

the cluster. Simply reusing the token will not work.

Setting the number of instances

In the coreos-vagrant directory, there is another file called config.rb.sample.
Find the commented line in this file that reads $num_instances=1. Uncomment it
and set the value to 3. This will make Vagrant spawn three instances of CoreOS.
Now save the file as config. rb.

The cnfig. rb file holds the configurations for the Vagrant
s environment and the number of machines in the cluster.

The following is the code example for Vagrant instances:

Size of the CoreOS cluster created by Vagrant
$num_instances=3

Spawning instances and verifying health

Now that we have the configurations ready, it's time to see a cluster running in your
local machine:

$ vagrant up

Bringing machine 'core-01' up with 'virtualbox' provider...
Bringing machine 'core-02' up with 'virtualbox' provider...
Bringing machine 'core-03' up with 'virtualbox' provider...

==> core-01l: Box 'coreos-alpha' could not be found. Attempting to find
and install...

core-01l: Box Provider: virtualbox
core-01l: Box Version: >= 0

core-01: Adding box 'coreos-alpha' (v0) for provider: virtualbox

1]
1]
\"

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Friends of Docker

After the machines are created, you can SSH into them to try out the following
commands, but you will need to add ssh keys to your SSH agent. Doing so will
allow you to forward your SSH session to other nodes in the cluster. To add the
keys, run the following command:

$ ssh-add ~/.vagrant.d/insecure private key

Identity added: /Users/CoreOS/.vagrant.d/insecure private key (/Users/
CoreOS/.vagrant.d/insecure private key)

$ vagrant ssh core-01 -- -A

Now let's verify that the machines are up and ask fleet to list the machines running
in the cluster:

$ export FLEETCTL TUNNEL=127.0.0.1:2222

$ fleetctl list-machines

MACHINE IP METADATA
daacffld... 172.17.8.101 -
20dddafc... 172.17.8.102 -
eac327le... 172.17.8.103 -

Starting the service

To run a service in your newly started cluster, you will have to write the unit-files
files. Unit files are configuration files that list the services that must be run in each
machine and some rules on how to manage these services.

Create three files named code.it.1.service, code.it.2.service, and code.
it.3.service. Populate them with the following configurations:

code.it.l.service

[Unit]
Description=Code.it 1
Requires=docker.service
After=docker.service

[Servicel]

ExecStart=/usr/bin/docker run --rm --name=code.it-1 -p 80:8000
shrikrishna/code. it

ExecStartPost=/usr/bin/etcdctl set /domains/code.it-1/%$H:%i
running

ExecStop=/usr/bin/docker stop code.it-1
ExecStopPost=/usr/bin/etcdctl rm /domains/code.it-1/%H:%1i

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[X-Fleet]
X-Conflicts=code.it.*.service

code.it.2.service

[Unit]
Description=Code.it 2
Requires=docker.service
After=docker.service

[Service]

ExecStart=/usr/bin/docker run --rm --name=code.it-2 -p 80:8000
shrikrishna/code. it

ExecStartPost=/usr/bin/etcdctl set /domains/code.it-2/%H:%i
running

ExecStop=/usr/bin/docker stop code.it-2
ExecStopPost=/usr/bin/etcdctl rm /domains/code.it-2/%H:%1i

[X-Fleet]
X-Conflicts=code.it.2.service

code.it.3.service

[Unit]
Description=Code.it 3
Requires=docker.service
After=docker.service

[Servicel]

ExecStart=/usr/bin/docker run --rm --name=code.it-3 -p 80:8000
shrikrishna/code.it

ExecStartPost=/usr/bin/etcdctl set /domains/code.it-3/%H:%i
running

ExecStop=/usr/bin/docker stop code.it-3
ExecStopPost=/usr/bin/etcdctl rm /domains/code.it-3/%$H:%1

[X-Fleet]
X-Conflicts=code.it.*.service

You might have noticed a pattern in these files. The ExecStart parameter holds the
command that must be executed in order to start the service. In our case, this means
running the code. it container. ExecStartPost is the command that is executed once
the Execstart parameter succeeds. In our case, the service's availability is registered
in the etcd service. Conversely, the ExecStop command will stop the service, and the
ExecStopPost command executes once the ExecStop command succeeds, which in
this case means removing the service's availability from the etcd service.

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Friends of Docker

X-Fleet is a CoreOS-specific syntax that tells fleet that two services cannot run on
the same machine (as they would conflict while trying to bind to the same port).
Now that all the blocks are in place, it's time to submit the jobs to the cluster:

$ fleetctl submit code.it.l.service code.it.2.service
code.it.3.service

Let's verify that the services have been submitted to the cluster:

$ fleetctl list-units

UNIT LOAD ACTIVE SUB DESC MACHINE
code.it.l.service - - - Code.it 1 -
code.it.2.service - - - Code.it 2 -
code.it.3.service - - - Code.it 3 -

The machine column is empty and the active status is not set. This means our
services haven't started yet. Let's start them:

$ fleetctl start code.it.{1,2,3}.service

Job code.it.l.service scheduled to daacffld.../172.17.8.101
Job code.it.l.service scheduled to 20dddafc.../172.17.8.102
Job code.it.l.service scheduled to eac327le.../172.17.8.103

Let's verify that they are running by executing the $ fleetctl list-units
file again:

$ fleetctl list-units

UNIT LOAD ACTIVE SUB DESC
MACHINE

code.it.l.service loaded active running Code.it 1
daacffld.../172.17.8.101

code.it.l.service loaded active running Code.it 2
20dddafc.../172.17.8.102

code.it.l.service 1loaded active running Code.it 3
eac327le.../172.17.8.103

Congratulations! You have just set up your very own cluster! Now head over to
172.17.8.101,172.17.8.102,0r172.17.8.103 in a web browser and see the
code. it application running!

We have only set up a cluster of machines running a highly available service in
this example. If we add a load balancer that maintains a connection with the etcd
service to route requests to available machines, we will have a complete end-to-end
production level service running in our systems. But doing so would veer off the
topic, so is left as an exercise for you.

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

With this, we come to the end. Docker is still under active development, and so
are the projects like CoreOS, Deis, Flynn, and so on. So, although we have seen
great stuff coming out over the past few months, what is coming is going to be
even better. We are living in exciting times. So, let's make the best of it and build
stuff that makes this world a better place to live in. Happy shipping!

Summary

In this chapter, we learned how to use Docker with Chef and Puppet. Then we set
up an apt-cacher to speed up package downloads. Next, we set up our own mini
PaaS with Dokku. In the end, we set up a high-availability service using CoreOS

and Fleet. Congratulations! Together, we have gained the necessary knowledge of
Docker to build our containers, "dockerize" our applications and even run clusters.
Our journey ends here. But for you, dear reader, a new journey has just begun. This
book was meant to lay the groundwork to help you build the next big thing using
Docker. I wish you all the success in the world. If you liked this book, give me a hoot
at @srikrishnaholla on Twitter. If you didn't like it, let me know how I can make
it better.

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

.dockerignore file
about 51
URL 51
/etc/hosts file 85

A

ADD instruction

<dest> path 60

<src> path 60

about 60, 61

rules 61
Amazon Web Services (AWS) 103
ambassador containers

multi-host Redis environment,

setting up 87, 88

used, for cross-host linking 86, 87, 100,
Another Unionfs (AUFS) 6
AppArmor 109
Application Program Interface (API) 10
apt-cacher

about 113

setting up 116, 117

used, for building Dockerfiles 117
apt-get moo command 63
attach command 29, 40
Automated Builds

about 66-68

triggering 68

webhooks, using 68, 69

Index

B

Boot2Docker
about 5,10
installing 10
reference link 32
upgrading 12
URL, for downloading 10
bootstrapper script
used, for installing Dokku 118
btrfs
using 80, 81
build command
--force-rm flag 50
--no-cache flag 50
-q flag 50
--quiet flag 50
--rm=true flag 50
--tag=""flag 50
-t flag 50
about 50

C

Chef
about 114
code.it, executing on Docker 115
Docker, configuring 115
Docker, installing 115
Docker, using with 114
Chef community site
URL, for cookbook 114
cloud-config file 124

www.it-ebooks.info

http://www.it-ebooks.info/

CMD instruction
about 56, 57
forms 56
cnfig.rb file 125
Command-Line Interface (CLI) 16
commit command
-aflag 43
--author=""flag 43
--message="" flag 43
-m flag 43
--pause flag 43
-p flag 43
about 43, 44
Compose
about 104, 105
reference link 105
configurations, devicemapper driver
dm.basesize 76
dm.datadev 76
dm.fs 76
dm.loopdatasize 76
dm.loopmetadatasize 76
Consul service 100
containers
about 24
cross-host linking, ambassador
container used 86, 87
data, managing with volumes 77, 78
data-only container 78
image, committing 95
linking 85
linking, within same host 85, 86
port forwarding, configuring 84
volumes, using 78
context 50
control groups
about 107
URL 107
COPY instruction 61
CoreOS 100, 122
cowsay 58
cp command 40, 41
CPU share
reference link 73
setting 73

create command
about 91
POST request, creating 92
curl utility 91
custom IP address range
setting 84, 85
custom project
running 42, 43
uploading, to docker daemon 51-53

D

daemon command
-d flag 26
-D flag 26
--dns [option(s)] flag 26
--dns-search [option(s)] flag 26
-e [option] flag 26
-H [option(s)] flag 26
-s [option] flag 26
about 26, 27
data-only container 78
dependencies, highly available service
Fleetctl 123
installing 122
Vagrant 122
VirtualBox 122
devicemapper driver
about 74
configurations 76, 77
URL, for configurations 76
using, as storage driver 80
DevStack
OpenStack, installing with 13
diff command 43
discovery service
about 124
URL 124
discovery tokens
obtaining 123-125
DNS search server 81
Docker
about 5
Boot2Docker, upgrading 12
building, from source 17,18
building, in Docker 16

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

configuring, for different storage driver 80
for Mac OSX 10-12
for Windows 10-12
installation, verifying 18, 19
installing 7
installing, for OpenStack manually 13, 14
installing, in Ubuntu 7
installing, in Ubuntu
Precise 12.04 LTS 7-9

upgrading 9
URL 25, 44
URL, for installation 7
using, with Chef 114
using, with Puppet 115,116
versus Virtual Machines (VMs) 6

Docker client 25

Docker commands
about 25
attach command 40
build command 50
commit command 43, 44
cp command 40, 41
daemon command 26, 27
diff command 43
events command 48, 49
export command 46
history command 48
images command 44, 45
import command 47
info command 27
inspect command 37-39
kill command 40
load command 46
login command 48
logs command 37
port command 41, 42
ps command 36
pull command 34
push command 48
restart command 35
rm command 35, 36
rmi command 46
run command 28-30
save command 46
search command 33
start command 34

stop command 34, 35
tag command 47
top command 39, 40
version command 27
wait command 49
docker daemon
about 24, 25
custom project, uploading 51-53
reference link 25
using 110
Docker, dependencies
Git 17
Make 17
Dockerfile
about 25, 54, 55
ADD instruction 60, 61
building, apt-cacher used 117
CMD instruction 56, 57
COPY instruction 61
ENTRYPOINT instruction 57-59
ENYV instruction 59, 60
EXPOSE instruction 59
FROM instruction 55
MAINTAINER instruction 55
ONBUILD instruction 62-65
RUN instruction 55, 56
USER instruction 60
VOLUME instruction 60
WORKDIR instruction 59
Docker Hub 44
Docker Machine
about 103
URL 103
Docker-OpenStack flow 15,16
Docker-Registry 13, 25
Docker, tips
non-root access, providing 20
Uncomplicated Firewall (UFW), setting 20
Dokku
about 114
installing, bootstrapper script used 118
installing, Vagrant used 118
URL 119, 121
Domain Information Groper (dig) 120
Domain Name System (DNS) 26
Domain Specific Language (DSL) 25

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

E

ENTRYPOINT instruction 57-59
ENYV instruction 59, 60
etcd service
about 100, 122
reference link 102
using 100-102
events command
--since="" flag 49
--until="" flag 49
about 48, 49
exec command
used, for injecting processes into
containers 98
export command 46
EXPOSE instruction 59

F

Fleetctl

about 123

URL, for downloading 123
fork bomb 71
FROM instruction 55

G

GET request
all parameter 93, 94
before parameter 93
filters parameter 94
limit parameter 93
since parameter 93
size parameter 93

Ghost 40

Git
about 17
URL 17

Glance
about 13
configuring 15

H

Havana 13

Heroku
about 118
URL 118
highly available service
dependencies, installing 122
setting up 121,122
Vagrantfile, configuring 123
history command 48
host
port forwarding, configuring 84

image
committing, from containers 95
committing, with POST request 95
saving 96
images command
-aflag 44
--all flag 44
-f flag 44
--filter=[] flag 44
--no-trunc flag 44
-q flag 44
--quiet flag 44
about 44, 45
import command 47
info command
about 27
used, for getting system-wide
information 94
Infrastructure as a Service (IaaS) 12
inspect command 37-39
installation, Boot2Docker 10
installation, Docker
about 7
in Ubuntu 7
in Ubuntu Precise 12.04 LTS 8, 9
in Ubuntu Trusty 14.04 LTS 7, 8
verifying 18, 19
installation, Dokku
bootstrapper scrip used 118
Vagrant used 119

Internet Assigned Numbers Authority

(IANA) 5

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

K

kernel namespace 107
kill command 40

L

larger projects, deployment requisites
fault tolerant 121
horizontally scalable 121
modular 122
libcontainer 9
libswarm 89
links
used, for making containers visible 99
list command
about 92, 93
GET request 93
load command 46
local Docker images
GET request 94
listing 93, 94
URL 94
login command 48
logs command 37

Mac OSX
Docker, installing 10-12
MAINTAINER instruction 55
Make 17
memory limit
reference link 74
setting 73, 74
mini-Heroku
about 114
application, deploying 120, 121
Dokku installing, bootstrapper script
used 118
Dokku installing, Vagrant used 119
hostname, configuring 119, 120
public key, adding 119, 120
setting up 118
MongoDB
about 79
URL 79

using 79

MySQL container 104

N

Network Address Translation (NAT) 31
network settings

configuring 81-83

custom IP address range 84, 85
port forwarding, configuring 84
reference link 85

Node.js 40
Nova

about 14
configuring 14, 15

nsenter 97
nsinit 97

(0

ONBUILD instruction 62-65
OpenStack

about 12,13

Docker, installing manually 13, 14
Glance, configuring 15

installing, with DevStack 13
Nova, configuring 14, 15

P

ping API 94

Platform as a Service (PaaS) 6
port command 41

port forwarding

-p or --publish option 84
-P or --publish-all option 84
configuring, between container and host 84

PostgreSQL 86
POST request

about 95

author parameter 95
config parameter 92, 95
container parameter 95
m parameter 95

name parameter 92
repo parameter 95

tag parameter 95

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

ps command

--cap-drop flag 108

-a flag 36 --devices flag 109
--after=""flag 36 --privileged flag 108
--all flag 36 using 108, 109
--before=""flag 36 run command
-1flag 36 about 28-30
--latest flag 36 used, for running server 30-33
-n=""flag 36 working with 96
-q flag 36 run command, arguments
--quiet flag 36 -b or --bridge 83
-s flag 36 --dns 81
--size flag 36 --dns-search 81
about 36 --expose 82
pull command 34 -H or --host 83
Puppet -h or --hostname 82
about 115 --icc 83
Docker, using with 115,116 -ip 83
Puppet manifest, writing 116 --ip-forward 83
push command 48 -link 82
--net 82
R --publish 82
--publish-all 82
REGISTRYHOST command 47 run command, flags
remote API -a 28
about 90, 91 —attach=[] 28
ping APT 94 < 28
reference link 91 —cap-add="" 29
remote API, for containers —cap-drop="" 29
about 91 ~-cpuset="" 28
create command 91 --cpu-shares=0 28
list command 92, 93 -d 28
remote API, for images —-detach 28
about 93 --device="" 29
local Docker images, listing 93, 94 —dns=[] 28
Request For Comments (RFC) 93 —-dns-search=[] 28
resources e 28
constraining 72 —env=[] 28
CPU share, setting 73 —env-file=[] 28
memory limit, setting 73, 74 _h 28
storage limit, setting on virtual —hostname="" 28
filesystem 74,75 4 28
Representational State Transfer (REST) 13 —interactive 28
restart command 35 ~link=[] 28
rm command 35, 36 -m 28

rmi command 46
root command
--cap-add flag 108

--memory="" 28
--name="" 28

-p 28

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

--privileged 28
--publish=[] 28
--restart="" 28
--rm 28

-t 28

--tty 28

-u 28

--user="" 28

-v 28
--volume=[] 28
--volumes-from=[] 28
-w 28
--workdir="" 28
RUN instruction
about 55, 56
forms 55

S

save command 46

search command 33

Secure Shell (SSH) 10

Secure Sockets Layer (SSL) 100
security

about 106

best practices 110

control groups 107

docker daemon, using 110
kernel namespace 107

root command, using 108, 109
SELinux 109

service discovery

about 98

ambassador containers, using 98
Compose 104, 105

Docker Machine 103

etcd service, using 100-102
Swarm 103, 104

sparse file 75

start command 34

stop command 34, 35

storage driver

btrfs, using 80, 81
devicemapper driver, using 80
using 80

storage limit

setting, on virtual filesystem 74, 75

supervisor 97

Swarm
about 103, 104
reference link 104, 105

T

tag command 47
terminologies, Docker
about 23,24
Docker client 25
Docker container 24
docker daemon 24, 25
Dockerfile 25
Docker-Registry 25
Time To Live (TTL) 100
top command 39, 40

U

Ubuntu
Docker, installing 7
Ubuntu Precise 12.04 LTS
Docker, installing 8, 9
Ubuntu Trusty 14.04 LTS
Docker, installing 7, 8
Uncomplicated Firewall (UFW)
setting 20
UNIX TCP socket 13
user-data file 124
USER instruction 60

\'

Vagrant
about 122,123
URL, for downloading 122,123
used, for installing Dokku 119
Vagrantfile
configuring 123

discovery tokens, obtaining 123-125

health, verifying 125,126
instances, setting 125
instances, spawning 125, 126
service, starting 126-129
version command 27
virtual filesystem
storage limit, setting on 74, 75

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Virtual Machines (VMs) W

about 6

versus Docker 6 wait command 49
Virtual Private Network (VPN) 50 webhooks
Virtual Private Server (VPS) 118 about 68
VirtualBox using 68, 69

about 5,122 Windows

URL, for installing 122 Docker, installing 10-12
VOLUME instruction 60 WORKDIR instruction 59
volumes workflow, Docker 65

features 77,78

used, for managing data in
containers 77,78

used, for MongoDB setup 79

using, from containers 78

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Orchestrating Docker

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

community experience distilled

[open source

PUBLISHING

Configuration Management with

Chef-Solo
ISBN: 978-1-78398-246-2 Paperback: 116 pages

A comprehensive guide to get you up and running
with Chef-Solo

1. Explore various techniques that will help you
save time in infrastructure management.

Configuration Management
with Chef-Solo

2. Use the power of Chef-Solo to run your servers
and configure and deploy applications in an
automated manner.

3. This book will help you to understand the need
for the configuration management tool and
provides you with a step-by-step guide
to maintain your existing infrastructure.

Mastering Kali Linux for Advanced

Penetration Testing
ISBN: 978-1-78216-312-1 Paperback: 356 pages

A practical guide to testing your network's security
with Kali Linux, the preferred choice of penetration
testers and hackers

1. Conduct realistic and effective security tests

: s on your network.
Mastering Kali Linux for

Advanced Penetration Testing 2. Demonstrate how key data systems are
stealthily exploited, and learn how to identify
attacks against your own systems.

3. Use hands-on techniques to take advantage
of Kali Linux, the open source framework
of security tools.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Building Virtual Pentesting Labs
for Advanced Penetration Testing
ISBN: 978-1-78328-477-1 Paperback: 430 pages

Build intricate virtual architecture to practice any
penetration testing technique virtually

1. Build and enhance your existing pentesting
methods and skills.

Building Virtual Pentesting Labs
for Advanced Penetration Testing

2. Get a solid methodology and approach
to testing.

3. Step-by-step tutorial helping you build
complex virtual architecture.

Kali Linux — Assuring Security by
Penetration Testing
ISBN: 978-1-84951-948-9 Paperback: 454 pages

Master the art of penetration testing with Kali Linux

1. Learn penetration testing techniques with an
in-depth coverage of Kali Linux distribution.

2. Explore the insights and importance of testing
Kali Linux — Assuring Security your corporate network systems before the
by Penetration Testing hackers strike.

3. Understand the practical spectrum of security
tools by their exemplary usage, configuration,
and benefits.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Unboxing Docker
	Installing Docker
	Installing Docker in Ubuntu
	Installing Docker in Ubuntu Trusty 14.04 LTS
	Installing Docker in Ubuntu Precise 12.04 LTS

	Upgrading Docker
	Mac OSX and Windows
	Upgrading Boot2Docker

	OpenStack
	Installation with DevStack
	Installing Docker for OpenStack manually
	Nova configuration
	Glance configuration
	Docker-OpenStack flow

	Inception: Build Docker in Docker
	Dependencies
	Building Docker from source

	Verifying Installation
	Useful tips
	Giving non-root access
	UFW settings

	Summary

	Chapter 2: Docker CLI and Dockerfile
	Docker terminologies
	Docker container
	The docker daemon
	Docker client
	Dockerfile
	Docker registry

	Docker commands
	The daemon command
	The version command
	The info command
	The run command
	Running a server

	The search command
	The pull command
	The start command
	The stop command
	The restart command
	The rm command
	The ps command
	The logs command
	The inspect command
	The top command
	The attach command
	The kill command
	The cp command
	The port command

	Running your own project
	The diff command
	The commit command
	The images command
	The rmi command
	The save command
	The load command
	The export command
	The import command
	The tag command
	The login command
	The push command
	The history command
	The events command
	The wait command
	The build command
	Uploading to Docker daemon?

	Dockerfile
	The FROM instruction
	The MAINTAINER instruction
	The RUN instruction
	The CMD instruction
	The ENTRYPOINT instruction
	The WORKDIR instruction
	The EXPOSE instruction
	The ENV instruction
	The USER instruction
	The VOLUME instruction
	The ADD instruction
	The COPY instruction
	The ONBUILD instruction

	Docker workflow - pull-use-modify-commit-push
	Automated Builds
	Build triggers
	Webhooks

	Summary

	Chapter 3: Configuring Docker Containers
	Constraining resources
	Setting CPU share
	Setting memory limit
	Setting a storage limit on the virtual filesystem (Devicemapper)
	Devicemapper configurations

	Managing data in containers with volumes
	Data-only container
	Using volumes from another container
	Use case – MongoDB in production on Docker

	Configuring Docker to use a different storage driver
	Using devicemapper as the storage driver
	Using btrfs as the storage driver

	Configuring Docker's network settings
	Configuring port forwarding between container and host
	Custom IP address range

	Linking containers
	Linking containers within the same host
	Cross-host linking using ambassador containers
	Use case - a multi-host Redis environment

	Summary

	Chapter 4: Automation and Best Practices
	Docker remote API
	Remote API for containers
	The create command
	The list command

	Remote API for images
	Listing the local Docker images

	Other operations
	Getting system-wide information
	Committing an image from a container
	Saving the image

	How docker run works

	Injecting processes into containers with the Docker execute command
	Service discovery
	Using Docker names, links, and ambassador containers
	Using links to make containers visible to each other
	Cross-host linking using ambassador containers

	Service discovery using etcd
	Docker Orchestration
	Docker Machine
	Swarm
	Docker Compose

	Security
	Kernel namespaces
	Control groups
	The root in a container
	Docker daemon attack surface
	Best practices for security

	Summary

	Chapter 5: Friends of Docker
	Using Docker with Chef and Puppet
	Using Docker with Chef
	Installing and configuring Docker
	Writing a Chef recipe to run Code.it on Docker

	Using Docker with Puppet
	Writing a Puppet manifest to run Code.it on Docker

	Setting up an apt-cacher
	Using the apt-cacher while building your Dockerfiles

	Setting up your own mini-Heroku
	Installing Dokku using a bootstrapper script
	Installing Dokku using Vagrant
	Configuring a hostname and adding the public key
	Deploying an application

	Setting up a highly available service
	Installing dependencies
	Getting and configuring the Vagrantfile
	Getting discovery tokens
	Setting the number of instances
	Spawning instances and verifying health
	Starting the service

	Summary

	Index

