3
Quick answers to common problems

Jenkins Continuous
Integration Cookbook

Over 80 recipes to maintain, secure, communicate, test, build,
and improve the software development process with Jenkins

Alan Mark Berg open source

Jenkins Continuous
Integration Cookbook

Over 80 recipes to maintain, secure, communicate,
test, build, and improve the software development
process with Jenkins

Alan Mark Berg

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

Jenkins Continuous Integration Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2012
Production Reference: 1080612

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-849517-40-9
www . packtpub.com

Cover Image by Faiz Fattohi (faizfattohi@gmail . com)

Credits

Author
Alan Mark Berg

Reviewers
Dr. Alex Blewitt

Florent Delannoy

Michael Peacock

Acquisition Editor
Usha lyer

Lead Technical Editor
Azharuddin Shaikh

Technical Editors
Merin Jose

Lubna Shaikh

Copy Editor
Brandt D'Mello

Project Coordinator
Leena Purkait

Proofreader
Jonathan Todd

Indexers
Tejal Daruwale

Hemangini Bari

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Alan Mark Berg, Bsc, MSc, PGCE, has been the lead developer at the Central Computer
Services at the University of Amsterdam for the last 12 years. In his famously scarce spare
time, he writes. Alan has a degree, two Master's, and a teaching qualification. He has also
co-authored two books about Sakai (http://sakaiproject.org)—a highly successful
open source learning management platform used by many millions of students around the
world. Alan has also won a Sakai Fellowship.

In previous incarnations, Alan was a technical writer, an Internet/Linux course writer, a
product line development officer, and a teacher. He likes to get his hands dirty with the
building and gluing of systems. He remains agile by ruining various development and
acceptance environments.

I would like to thank Hester, Nelson, and Lawrence. | felt supported and
occasionally understood by my family. Yes, you may pretend you don't know
me, but you do. Without your unwritten understanding that 2 a.m. is a
normal time to work and a constant supply of sarcasm is good for my soul,
I would not have finished this or any other large-scale project.

Finally, | would like to warmly thank the Packt Publishing team, whose
consistent behind the scenes effort improved the quality of this book.

About the Reviewers

Dr. Alex Blewitt is a technical architect, working at an investment bank in London. He has
recently won an Eclipse Community Award at EclipseCon 2012 for his involvement with the
Eclipse platform over the last decade. He also writes for InfoQ and has presented at many
conferences. In addition to being an expert in Java, he also develops for the iOS platform, and
when the weather's nice, he goes flying. His blog is at http://alblue.bandlem. com, and
he can be reached via @alblue on Twitter.

Florent Delannoy is a French software engineer, now living in New Zealand after
graduating with honors from a MSc in Lyon. Passionate about open source, clean code,
and high quality software, he is currently working on one of New Zealand's largest domestic
websites with Catalyst I.T. in Wellington.

I would like to thank my family for their support and my colleagues
at Catalyst for providing an amazingly talented, open, and supportive
workplace.

http://alblue.bandlem.com

Michael Peacock (www.michaelpeacock.co.uk) is an experienced senior/lead
developer and Zend Certified Engineer from Newcastle, UK, with a degree in Software
Engineering from the University of Durham.

After spending a number of years running his own web agency, managing the development
team, and working for Smith Electric Vehicles on developing its web-based vehicle telematics
platform, he currently serves as head developer for an ambitious new start-up: leading the
development team and managing the software development processes.

He is the author of Drupal 7 Social Networking, PHP 5 Social Networking, PHP 5 E-=Commerce
Development, Drupal 6 Social Networking, Selling online with Drupal E-Commerce, and
Building Websites with TYPO3. Other publications in which Michael has been involved include
Mobile Web Development and Drupal for Education and E-Learning, both of which he acted as
technical reviewer for.

Michael has also presented at a number of user groups and conferences including PHPNE,
PHPNW10, CloudConnect, and ConFoo,

You can follow Michael on Twitter: www . twitter.com/michaelpeacock, or find out more
about him through his blog: www.michaelpeacock. co.uk.

http://www.michaelpeacock.co.uk/
http://www.twitter.com/michaelpeacock
http://www.michaelpeacock.co.uk/

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

@ PACKTL i1

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why Subscribe?
» Fully searchable across every book published by Packt

» Copy and paste, print, and bookmark content
» On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents

Preface 1
Chapter 1. Maintaining Jenkins 7
Introduction 8
Using a sacrificial Jenkins instance 9
Backing up and restoring 13
Modifying Jenkins configuration from the command line 18
Reporting overall disc usage 21
Deliberately failing builds through log parsing 24
A Job to warn about the disc usage violations through log parsing 27
Keeping in contact with Jenkins through Firefox 30
Monitoring through JavaMelody 32
Keeping a track of the script glue 36
Scripting the Jenkins command-line interface 37
Global modifications of Jobs with Groovy 40
Signaling the need to archive 42
Chapter 2: Enhancing Security 45
Introduction 45
Testing for OWASP's top ten security issues 47
Finding 500 errors and XSS attacks in Jenkins through fuzzing 50
Improving security via small configuration changes 53
Looking at the Jenkins user through Groovy 56
Working with the Audit Trail plugin 58
Installing OpenLDAP with a test user and group 61
Using Script Realm authentication for provisioning 64
Reviewing project-based matrix tactics via a custom group script 67
Administering OpenLDAP 70
Configuring the LDAP plugin 74

Table of Contents

Installing a CAS server 77
Enabling SSO in Jenkins 83
Chapter 3: Building Software 85
Introduction 85
Plotting alternative code metrics in Jenkins 88
Running Groovy scripts through Maven 93
Manipulating environmental variables 97
Running AntBuilder through Groovy in Maven 102
Failing Jenkins Jobs based on JSP syntax errors 106
Configuring Jetty for integration tests 111
Looking at license violations with RATs 114
Reviewing license violations from within Maven 117
Exposing information through build descriptions 121
Reacting to the generated data with the Post-build Groovy plugin 123
Remotely triggering Jobs through the Jenkins API 126
Adaptive site generation 129
Chapter 4: Communicating Through Jenkins 135
Introduction 136
Skinning Jenkins with the Simple Theme plugin 137
Skinning and provisioning Jenkins using a WAR overlay 140
Generating a home page 145
Creating HTML reports 148
Efficient use of views 151
Saving screen space with the Dashboard plugin 153
Making noise with HTML5 browsers 155
An eXtreme view for reception areas 158
Mobile presentation using Google Calendar 160
Tweeting the world 163
Mobile apps for Android and iOS 166
Getting to know your audience with Google Analytics 169
Chapter 5: Using Metrics to Improve Quality 173
Introduction 174
Estimating the value of your project through Sloccount 176
Looking for "smelly" code through code coverage 179
Activating more PMD rulesets 183
Creating custom PMD rules 188
Finding bugs with FindBugs 193
Enabling extra FindBugs rules 197

Table of Contents

Finding security defects with FindBugs 199
Verifying HTML validity 203
Reporting with JavaNCS$S 205
Checking style using an external pom.xml 207
Faking checkstyle results 210
Integrating Jenkins with Sonar 213
Chapter 6: Testing Remotely 217
Introduction 217
Deploying a WAR file from Jenkins to Tomcat 219
Creating multiple Jenkins nodes 222
Testing with Fitnesse 226
Activating Fitnesse HtmlUnit Fixtures 230
Running Selenium IDE tests 234
Triggering Failsafe integration tests with Selenium Webdriver 240
Creating JMeter test plans 244
Reporting JMeter performance metrics 246
Functional testing using JMeter assertions 249
Enabling Sakai web services 253
Writing test plans with SoapUl 256
Reporting SoapUlI test results 259
Chapter 7: Exploring Plugins 265
Introduction 265
Personalizing Jenkins 267
Testing and then promoting 270
Fun with pinning JS Games 274
Looking at the GUI Samples plugin 277
Changing the help of the file system scm plugin 280
Adding a banner to Job descriptions 283
Creating a RootAction plugin 288
Exporting data 291
Triggering events on startup 293
Triggering events when web content changes 295
Reviewing three ListView plugins 297
Creating my first ListView plugin 301
Appendix: Processes that Improve Quality 309
Avoiding group think 309
Considering test automation as a software project 310
Offsetting work to Jenkins nodes 311

Table of Contents

Learning from history

Test frameworks are emerging
Starve QA/ integration servers
And there's always more

Final comments

Index

311
312
313
313
314

315

Preface

Jenkins is a Java-based Continuous Integration (Cl) server that supports the discovery of
defects early in the software cycle. Thanks to over 400 plugins, Jenkins communicates with
many types of systems, building and triggering a wide variety of tests.

Cl involves making small changes to software, and then building and applying quality
assurance processes. Defects do not only occur in the code but also appear in the naming
conventions, documentation, how the software is designed, build scripts, the process of
deploying the software to servers, and so on. Continuous integration forces the defects to
emerge early, rather than waiting for software to be fully produced. If defects are caught in
the later stages of the software development lifecycle, the process will be more expensive.
The cost of repair radically increases as soon as the bugs escape to production. Estimates
suggest it is 100 to 1000 times cheaper to capture defects early. Effective use of a Cl server,
such as Jenkins, could be the difference between enjoying a holiday and working unplanned
hours to heroically save the day. As you can imagine, in my day job as a Senior Developer
with aspirations to Quality Assurance, | like long boring days, at least for mission-critical
production environments.

Jenkins can automate the building of software regularly, and trigger tests pulling in the results
and failing based on defined criteria. Failing early through build failure lowers the costs, increases
confidence in the software produced, and has the potential to morph subjective processes into
an aggressive metrics-based process that the development team feels is unbiased.

The following are the advantages of Jenkins:

» Itis proven technology that is deployed at a large scale in many organizations.

» Itis an open source technology, so the code is open to review and has no
licensing costs.

» It has a simple configuration through a web-based GUI, which speeds up Job creation,
improves consistency, and decreases the maintenance costs.

» Itis a master slave topology that distributes the build and testing effort over slave
servers with the results automatically accumulated on the master. This topology
ensures a scalable, responsive, and stable environment.

Preface

>

It has the ability to call slaves from the cloud. Jenkins can use Amazon
services or an Application Service Provider (ASP), such as CloudBees
(http://www.cloudbees.com/).

There is no fuss in installation, as installation is as simple as running only a single
download file named jenkins.war.

It has over 400 plugins supporting communication, testing, and integration to
numerous external applications
(https://wiki.jenkins-ci.org/display/JENKINS/Plugins).

It is a straightforward plugin framework—for Java programmers, writing plugins is
straightforward. Jenkins plugin framework has clear interfaces that are easy to
extend. The framework uses Xstream for persisting configuration information as XML
(http://xstream.codehaus.org/) and Jelly for the creation of parts of the GUI
(http://commons.apache.org/jelly/).

It has the facility to support running Groovy scripts, both in the master and remotely
on slaves. This allows for consistent scripting across operating systems. However, you
are not limited to scripting in Groovy. Many administrators like to use Ant, Bash, or
Perl scripts.

Though highly supportive of Java, Jenkins also supports other languages.

Jenkins is an agile project; you can see numerous releases in the year, pushing
improvements rapidly (http://jenkins-ci.org/changelog). There is also a
highly stable long-term support release for the more conservative. Hence, there is a
rapid pace of improvement.

Jenkins pushes up code quality by automatically testing within a short period after
code commit, and then shouting loudly if build failure occurs.

Jenkins is not just a continual integration server but also a vibrant and highly active
community. Enlightened self-interest dictates participation. There are a number of
ways to do this:

>

Participate on the Mailing lists and Twitter
(https://wiki.jenkins-ci.org/display/JENKINS/Mailing+Lists).
First, read the postings, and as you get to understand what is needed, participate
in the discussions. Consistently reading the lists will generate many opportunities
to collaborate.

Improve code, write plugins
(https://wiki.jenkins-ci.org/display/JENKINS/Help+Wanted).

Test Jenkins, especially the plugins, and write bug reports, donating your test plans.
Improve documentation by writing tutorials and case studies.

Sponsor and support events.

Preface

What this book covers

Chapter 1, Maintaining Jenkins, describes common maintenance tasks, such as backing up
and monitoring.

Chapter 2, Enhancing Security, details how to secure Jenkins and the value of enabling Single
Sign On (SSO).

Chapter 3, Building Software, explores the relationship between Jenkins builds and the Maven
pom.xml file.

Chapter 4, Communicating Through Jenkins, reviews effective communication strategies for
different target audiences, from developers and project managers to the wider public.

Chapter 5, Using Metrics to Improve Quality, explores the use of source code metrics.

Chapter 6, Testing Remotely, details approaches to set up and run remote stress and
functional tests.

Chapter 7, Exploring Plugins, reviews a series of interesting plugins and shows how easy it is
to create your first plugin.

Appendix, Processes That Improve Quality, discusses how the recipes in this book support
quality processes.

What you need for this book

This book assumes you have a running an instance of Jenkins.
In order to run the recipes provided in the book, you need to have the following software:
Recommended

» Maven 2; http://maven.apache.org/docs/2.2.1/release-notes.html
» Jenkins: http://jenkins-ci.org/

» Javaversion1.6: http://java.com/en/download/index.jsp
Optional

» VirtualBox: https://www.virtualbox.org/
» SoapUl: http://www.soapui.org/
» JMeter: http://jmeter.apache.org/

Helpful

» A local subversion repository

» OS of preference: Linux/Ubuntu

Preface

There are numerous ways to install Jenkins: as a Windows service, using the repository
management features of Linux such as apt and yum, using Java Web Start, or running
directly from a WAR file. It is up to you to choose the approach that you feel is most
comfortable. However, you could run Jenkins from a WAR file using HTTPS from the
command line, pointing to a custom directory. If any experiments go astray, then you
can simply point to another directory and start fresh.

To use this approach, first set the environment variable JENKINS HOME to the directory you
wish Jenkins to run under. Next, run a command similar to the following;:

Java -jar jenkins.war -httpsPort=8443 -httpPort=-1

Jenkins will start to run over https on port 8443. The http port is turned off by setting
httpPort=-1, and the terminal will display logging information.

You can ask for help through the following command:
Java -jar jenkins.war -help

A wider range of installation instructions can be found at
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenking

For a more advanced recipe describing how to set up a virtual image under VirtualBox
with Jenkins, you can use the Using a sacrificial Jenkins instance recipe in Chapter 1,
Maintaining Jenkins.

Who this book is for

This book is for Java developers, software architects, technical project managers, build
managers, and development or QA engineers. A basic understanding of the Software
Development Life Cycle, some elementary web development knowledge, and basic application
server concepts are expected to be known. A basic understanding of Jenkins is also assumed.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text are shown as follows: "On the host OS, create a directory named
workspacej."

A block of code is set as follows:

<?xml version='1.0' encoding='UTF-8'?>

<org.jvnet.hudson.plugins.thinbackup.ThinBackupPluginImpl>
<fullBackupSchedule>1 0 * * 7</fullBackupSchedule>
<diffBackupSchedule>1 1 * * *</diffBackupSchedule>

—a1

Preface

<backupPath>/home/aberg/backups</backupPath>
<nrMaxStoredFull>61l</nrMaxStoredFull>
<cleanupDiff>true</cleanupDiff>
<moveOldBackupsToZipFile>true</moveOldBackupsToZipFile>
<backupBuildResults>true</backupBuildResults>
<excludedFilesRegex></excludedFilesRegex>
</org.jvnet.hudson.plugins.thinbackup.ThinBackupPluginImpls>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

#!/usr/bin/perl
use File::Find;
my $content = "/var/lib/jenkins";
my $exclude pattern = '*.*\. (war) | (class) | (jar)$"';
find(\&excluded file summary, $content);
sub excluded file summary {
if ((-f SFile::Find::name)&&(SFile::Find: :name
=~/$exclude pattern/)) {
print "$File::Find: :name\n";
}
}

Any command-line input or output is written as follows:

mvn license:format -Dyear=2012

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Within the VirtualBox,
right-click on the Ubuntu image, selecting properties."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

Preface

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http: //www.packtpub.com/support, selecting your book, clicking on

the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website, or
added to any list of existing errata, under the Errata section of that title.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub . com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

—s1

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com

Maintaining Jenkins

This chapter provides recipes that help you to maintain the health of your Jenkins server.

In this chapter, we will cover the following recipes:

>

Using a sacrificial Jenkins instance

Backing up and restoring

Modifying the Jenkins configuration from the command line
Reporting about the overall disc usage
Deliberately failing builds through log parsing
A Job to warn about the disc usage violations
Keeping in contact with Jenkins through Firefox
Monitoring through JavaMelody

Keeping a track of the script glue

Scripting the Jenkins command-line interface
Global modifications of Jobs with Groovy

Signaling the need to archive

Maintaining Jenkins

Introduction

Jenkins is feature-rich and is vastly extendable through plugins. Jenkins talks with numerous
external systems, and its Jobs work with many diverse technologies. Maintaining Jenkins in a
rich environment is a challenge. Proper maintenance lowers the risk of failures, a few of which
are listed as follows:

>

New plugins causing exceptions: There are a lot of good plugins being written with

a rapid version change. In this situation, it is easy for you to accidentally add new
versions of the plugins with new defects. There have been a number of times when
the plugin suddenly stopped working, while it was being upgraded. To combat the risk
of plugin exceptions, consider using a sacrificial Jenkins instance before releasing to
a critical system.

Disks overflowing with artifacts: If you keep a build history, which includes artifacts
such as war files, large sets of JAR files or other types of binaries, then your disk
space is consumed at a surprising rate. Disc costs have decreased tremendously, but
disk usage equates to longer backup times and more communication from the slave
to the master. To minimize the risk of disk overflowing, you will need to consider your
backup and restore policy and the associated build retention policy expressed in the
advanced options of Jobs.

Script spaghetti: As Jobs are written by various development teams, the location and
style of the included scripts vary. This makes it difficult for you to keep track. Consider
using well-defined locations for your scripts, and a scripts repository managed
through a plugin.

Resource depletion: As memory is consumed, or the number of intense Jobs
increase, Jenkins slows down. Proper monitoring and quick reaction reduce their
impact.

A general lack of consistency between Jobs due to organic growth: Jenkins is easy
to install and use. The ability to seamlessly turn on plugins is addictive. The pace of
adoption of Jenkins within an organization can be breathtaking. Without a consistent
policy, your teams will introduce lots of plugins and lots of ways of performing the
same work. Conventions improve the consistency and readability of Jobs and thus
decrease the maintenance.

The recipes in this chapter are designed to address the risks mentioned. They represent

only one set of approaches. If you have comments or improvements, feel free to contact me
through my Packt Publishing e-mail address, or it would even be better if you still add tutorials
to the Jenkins community wiki.

Chapter 1

Signing up to the community

create an account at the following URL:
https://wiki.jenkins-ci.org/display/JENKINS/
Issue+Tracking

.\‘Q To add community bug reports, or to modify wiki pages, you will need to

Using a sacrificial Jenkins instance

Continuous Integration (Cl) servers are critical in the creation of deterministic release cycles.
Any long-term instability in the Cl server will reflect in the milestones of your project plans.
Incremental upgrading is addictive and mostly straightforward, but should be seen in the light
of the Jenkins wider role.

Before the release of plugins into the world of your main development cycle, it is worth
aggressively deploying to a sacrificial Jenkins instance, and then sitting back and letting the
system run the Jobs. This gives you enough time to react to any minor defects found.

There are many ways to set up a sacrificial instance. One is to use a virtual image of Ubuntu
and share the workspace with the Host server (the server that the virtual machine runs on).
There are a number of advantages to this approach:

>

Saving state: At any moment, you can save the state of the running virtual image
and return to that running state later. This is excellent for short-term experiments that
have a high risk of failure.

Ability to share images: You can run your virtual image anywhere that a player can
run. This may include your home desktop or a hard core server.

Use a number of different operating systems: Good for node machines running
integration tests or functional tests with multiple browser types.

Swap workspaces: By having the workspace outside the virtual image, you can
test different version levels of the OS against one workspace. You can also test one
version of Jenkins against different workspaces, with different plugin combinations.

The long-term support release

\ The community manages support of the enterprise through the release
~ of a long-term supported version of Jenkins. This stable release version is
Q older than the newest version and thus misses out on some of the newer
features. You can download it from: http://mirrors.jenkins-ci.
org/war-stable/latest/jenkins.war.

Maintaining Jenkins

This recipe details the use of VirtualBox (http://www.virtualbox.org/), an Open source
virtual image player with a guest Debian OS image. The virtual image will mount a directory

on the host server. You will then point Jenkins to the mounted directory. When the guest OS is
restarted, it will automatically run against the shared directory.

Ubuntu as the example OS.

Getting ready

You will need to download and install VirtualBox. You can find the detailed instructions at
http://www.virtualbox.org/manual. To download and unpack a Ubuntu virtual
image, you can refer to the following URL: http://sourceforge.net/projects/
virtualboximage/files/Ubuntu%20Linux/11.04/ubuntu 11.04-x86.7z/
download.

[Throughout the rest of this book, recipes will be cited using]
S

Note that the newer images will be available at the time of reading. Feel free to try the most
modern version; it is probable that the recipes might still work.

. Security considerations
AY
“Q If you consider using other OS images a bad security practice, then

you should create a Ubuntu image from a boot CD as mentioned at:
https://wiki.ubuntu.com/Testing/VirtualBox

How to do it...

1. Run VirtualBox and click on the New icon in the top-left hand corner. You will now see
a wizard for installing virtual images.

2. Onthe Welcome screen, click on the Next button.

Set the Name to Jenkins Ubuntu_11.04. The OS Type will be automatically
updated. Click on the Next button.

Set Memory to 2048 MB, and click on Next.

5. Select Use existing hard disk. Browse and select the unpacked VDI image by clicking
on the folder icon.

[

6. Press the Create button.

Chapter 1

7. Start the virtual image by clicking on the Start icon.

P

Start

8. Login to the guest OS with username and password as Ubuntu reverse.
9. Change the password of user Ubuntu from a terminal.

passwd

10. Install the Jenkins repository, as explained at http://pkg.jenkins-ci.org/
debian/.

11. Update the OS in case of security patches (this may take some time depending
on bandwidth):

apt-get update
apt-get upgrade

12. Install the kernel dkms module.

sudo apt-get install dkms

13. Install Jenkins.

sudo apt-get install jenkins

14. Install the kernel modules for VirtualBox.
/etc/init.d/vboxadd setup

15. Select Install Guest additions using the Devices menu option.

B
Machine [] Help
o ﬁ Appli CD/DVD Devices >
USB Devices >
Network Adapters...

Shared Folders...

[[] Enable Remote Display

16. Add the Jenkins user to the vboxsf group.
sudo gedit /etc/group

vboxsf:x:1001:Jenkins

s

Maintaining Jenkins

17. Modify the JENKINS HOME variable in /etc/default/Jenkins to point to the
mounted shared directory:

sudo gedit /etc/default/Jenkins
JENKINS HOME=/media/sf workspacej

18. On the host OS, create the directory workspacej.
19. Within the VirtualBox, right-click on the Ubuntu image, selecting properties.

20. Update the Folder Path to point to the directory that you have previously created. In
the following screenshot, the folder was created under my home directory.

[x] Jenkins_test - Settings
B General Shared Folders
System
Display Folders List
& storage Name Path Auto-Mount | Access | &
Audi < Machine Folders
; Nuhl: . work...cej fhome/alan/workspacej Yes Full
etworl =
¢ serial Ports
& uss Edit Share
T shared Folders Folder Path: [/hnme/alan/workspa(eﬂ | v
Folder Name: [workspacej]
[Read-only
¥ Auto-mount
Cancel OK
Sel = = move the
moUse Over d Sertngs ITenT o get more mjormacon.

21. Restart VirtualBox, and start the Ubuntu Guest OS.

22. On the Guest OS, run a web browser, and visit http://localhost:8080. You will
see a locally running instance of Jenkins, ready for your experiments.

Your recipe first installs a virtual image of Ubuntu, changes the password so that it is harder
for others to log in, and updates the guest OS for security patches.

The Jenkins repository is added to the list of known repositories in the Guest 0S. This involved
locally installing a repository key. The key is used to verify that the packages, which are
automatically downloaded, belong to a repository that you have agreed to trust. Once the trust
is enabled, you can install through standard package management the most current version
of Jenkins, and aggressively update it later.

Sk

Chapter 1

You need to install the additional code called guest additions so that VirtualBox can share
folders from the host. Guest additions depend on Dynamic Kernel Module Support (DKMS).
DKMS allows bits of code to be dynamically added to the kernel. When you ran the command
/etc/init.d/vboxadd setup, VirtualBox added guest addition modules through DKMS.

Warning: If you forget to add the DKMS module, then sharing
e folders will fail without any visual warning.

The default Jenkins instance now needs a little reconfiguration:

» The jenkins user needs to belong to the the vboxsf group to have permission to
use the shared folder

» The /etc/init.d/jenkins startup script pointsto /etc/default/jenkins and
picks up the values of specific properties, such as JENKINS HOME.

Next, you added a shared folder to the guest OS from the VirtualBox GUI, and finally you had
restarted VirtualBox and the guest OS to guarantee that the system was in a fully-configured
and correctly initialized state.

There are a number of options for configuring VirtualBox with networking. You can find a good
introductory text at: http://www.virtualbox.org/manual/ch06.html

There's more...

Two excellent sources of virtual images are:

» http://virtualboximages.com/

» http://virtualboxes.org/images/

See also

» Monitoring through JavaMelody

Backing up and restoring

A core task for the smooth running of Jenkins is the scheduled backing up of its workspace.
Not necessarily backing up all the artifacts, but at least the Jenkins configuration and the
testing history are recorded by individual plugins.

Maintaining Jenkins

Backups are not interesting unless you can restore. There are a wide range of stories on
this subject. My favorite (and | won't name the well-known company involved) is the one in
which somewhere in the early 70S, a company brought a very expensive piece of software
and a tape backup facility to back up all the marketing results being harvested through
their mainframes. However, not everything was automated. Every night, a tape needed to

be moved into a specific slot. A poorly paid worker was allocated time. For a year, the worker
would professionally fulfill the task. One day, a failure occurred and a backup was required.
The backup failed to restore. The reason was that the worker also needed to press the record
button every night, but this was not part of the tasks assigned to him. There was a failure

to regularly test the restore process. The process failed, not the poorly paid person. Hence,
learning the lessons of history, this recipe describes both backup and restore.

Currently, there is more than one plugin for backups. | have chosen the thinBackup
plugin (https://wiki.jenkins-ci.org/display/JENKINS/thinBackup) as it
allows for scheduling.

The rapid evolution of plugins, and the validity of recipes

\ Plugins improve aggressively, and you may need to update them weekily.
~ However, it is unlikely that the core configuration changes. But, it's quite likely
Q that extra options will be added, increasing the variables that you input in the
GUI. Therefore, the screen grabs shown in this book may be slightly different
from the most modern version, but the recipes should remain intact.

Getting ready

Create a directory with read, write permissions for Jenkins, and install the ThinBackup plugin.

. Murphy as a friend
AY

~ You should assume the worst for all of the recipes in this book: aliens
attacking, coffee on motherboard, cat eats cable, cable eats cat.
Please make sure that you are using a sacrificial Jenkins instance.

How to do it...

1. Click on the ThinBackup link in the Manage Jenkins page.

£® "% ThinBackup
Backup your global and job specific configuration

2. Click on the link to Settings by the Toolset icon.

Sz

Chapter 1

3. Add the details as shown in the next screenshot. Here, /data/Jenkins/backups is
a placeholder for the directory that you have previously created.

Backup Configuration
Backup settings
Backup directory [,’dataf’jenkinsL’hackups]ﬁ
Backup schedule for full backups []_ 0*%7].ﬁ.
Backup schedule for differential backups [1_ 1x%x*].ﬁ.
Max number of backup sets [51] .ﬁ.
Files excluded from backup (regular expression) [] .@.
Backup build results 'ij}"
Clean up differential backups 'ﬁ'
Move old backups to ZIP files 'ﬁ'

Click on Save.
5. Click on the Backup now icon.

6. From the command line, visit your backup directory. You should now see an extra
sub-directory named FULL- {timestamp}, where {timestamp} is the time to the
second that the full backup was created.

7. Click on the Restore icon.

A select box restore backup form will be shown with the dates of the backups. Select
the backup just created. Click on the Restore button.

Restore Configuration

Restore options

restore backup from 2011-08-11 19:41

9. To guarantee the consistency, restart the Jenkins server.

]

Maintaining Jenkins

The backup scheduler uses the cron notation (http://en.wikipedia.org/wiki/
Cron). 1 0 * * 7 means every seventh day of the weekat 00:01 2AM. 1 1 * * * implies
that differential backup occurs once per day at 1.01 A .M. Every seventh day, the previous
differentials are deleted.

Differential backups contain only files that have been modified since the last full backup.
The plugin looks at the last modified date to work out which files need to be backed up.
The process can sometimes go wrong if another process changes the last modified date,
without actually changing the content of the files.

61 is the number of directories created with backups. As we are cleaning up the differentials
through the option Clean up differential backups, we will get to around 54 full
backups, roughly a year of archives before cleaning up the oldest.

Backup build results were selected, as we assume that we are doing the cleaning within the
Job. Under these conditions, the build results should not take much space. However, in case
of misconfiguration, you should monitor the archive for disc usage.

Cleaning up differential backups saves you doing the clean-up work by hand.

Moving old backups to ZIP files saves space, but might temporarily slow down your
Jenkins server.

Restore is a question of returning to the restore menu and choosing the date. | can't repeat
this enough; you should practice a restore occasionally to avoid embarrassment.

Full backups are the safest as they restore to a known state.
Therefore, don't generate too many differential backups between
full backups; that's a false economy.

Here are a couple more points for you to think about.

Checking for permission errors

If there are permission issues, the plugin fails silently. To discover these types of issues,
you will need to check the Jenkins log file /var/log/jenkins/jenkins. log, for *NIX
distributions and for log-level SEVERE. For example:

SEVERE: Cannot perform a backup. Please be sure jenkins/hudson has write
privileges in the configured backup path {0}.

6]

Chapter 1

Testing exclude patterns

The following Per1 script will allow you to test the exclude pattern. Simply replace the
Scontent value with your Jenkins workspace location, and the $Sexclude pattern with the
pattern you wish to test. The script will print a list of the excluded files.

#!/usr/bin/perl
use File::Find;
my $content = "/var/lib/jenkins";
my $exclude pattern = '“.*\.(war) | (class) | (jar)$';
find(\&excluded file summary, S$content);
sub excluded file summary

if ((-f $File::Find::name)&&(S$SFile::Find::name =~/S$Sexclude
pattern/)) {

print "$File::Find::name\n";
}

Downloading the example code

* You can download the example code files for all Packt books you have
%&‘ purchased from your account at http://www.packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

You can find the documentation for the standard Per1 module file at:
http://perldoc.perl.org/File/Find.html.

For every file and directory under the location mentioned in $content, the
line find (\&excluded file summary, $content) ; calls the function
excluded file summary.

The exclude pattern ' * . *\ . (war) | (class) | (jar) $' ignores all war, class,
and jar files.

EPIC Perl
a1

~ If you are a Java Developer who occasionally writes Perl
scripts, then consider using the EPIC plugin for Eclipse
(http://www.epic-ide.org/).

» Reporting about the overall disc usage
» A Job to warn about the disc usage violations

[}

Maintaining Jenkins

Modifying Jenkins configuration from the

command line

You may be wondering about the XML files at the top level of the Jenkins workspace. These
are configuration files. config.xml is the main one, dealing with the default server values,
but there are also specific ones for any plugins that have values set through the GUL.

There is also a jobs sub-directory underneath the workspace. Each individual Job
configuration is contained in a sub-directory with the same name as the Job. The Job-specific
configuration is then stored in config.xml within the sub-directory. There is a similar
situation for the user's directory with one sub-directory per user, with the user information
stored in its own config.xml file.

Under a controlled situation, where all the Jenkins servers in your infrastructure have the
same plugins and version levels, it is possible for you to test on one sacrificial machine and
then push the configuration files to all the other machines. You can then restart the servers
with the Command-Line Interface (CLI).

This recipe familiarizes you with the main XML configuration structure and provides hints
about the plugin API, based on the details of the XML.

Getting ready

You will need a fresh install of Jenkins with security enabled.

How to do it...

1. Inthe top-level directory of Jenkins, look for the file named config.xml. Go to
the line that has the <numExecutor> tag, and edit it by changing the number
from 2 to 3, as follows:

<numExecutors>3</numExecutorss>

2. Restart the server. You will see that the number of executors has increased from a
default of 2 to 3.

Build Queue
Mo builds in the gueue,
Build Executor Status

Master
1| Idle

2 | Idle
3 Idle

Chapter 1

3. Look for the file named thinBackup.xml. You will not find it unless you have
installed the thinBackup plugin.

4. Replay the recipe Back up and Restoring, and look again. You will now find the
following XML file.

<?xml version='1.0' encoding='UTF-8'?>

<org.jvnet.hudson.plugins.thinbackup.ThinBackupPluginImpl>
<fullBackupSchedule>1 0 * * 7</fullBackupSchedule>
<diffBackupSchedule>1 1 * * *</diffBackupSchedules>
<backupPath>/home/aberg/backups</backupPath>
<nrMaxStoredFull>61l</nrMaxStoredFulls>
<cleanupDiff>true</cleanupDiff>
<moveOldBackupsToZipFile>true</moveOldBackupsToZipFile>
<backupBuildResults>true</backupBuildResults>
<excludedFilesRegex></excludedFilesRegex>

</org.jvnet.hudson.plugins.thinbackup.ThinBackupPluginImpls>

Jenkins uses Xstream (http://xstream.codehaus.org/) to persist its configuration
into a readable XML format. The XML files in the workspace are configuration files for
plugins, tasks, and an assortment of other persisted information. config.xml is the main
configuration file. Security settings and global configuration are set here and reflect changes
made through the GUI. Plugins use the same structure, and the XML values correspond to
member values in underlying plugin classes. The GUI itself is created from XML through the
Jelly framework (http://commons.apache.org/jelly/).

By restarting the server, you should be certain that any configuration changes are picked up
during the initialization phase.

Here are a few things for you to consider.

Turning off security

When you are testing new security features, it is easy to lock yourself out of Jenkins. You will
not be able to log in again. To get around this problem, modify useSecurity to false in
config.xml, and restart Jenkins. The security features are now turned off.

Maintaining Jenkins

Finding JavaDoc for custom plugin extensions

The following line of code is the first line of the thin plugin configuration file thinBackup.
xml, mentioning the class from which the information is persisted. The class name is a great
Google search term. Plugins can extend the functionality of Jenkins, and there may be useful
methods exposed for administrative Groovy scripts.

<org.jvnet.hudson.plugins.thinbackup.ThinBackupPluginImpls>

The effects of adding garbage

Jenkins is great at recognizing rubbish configuration as long as it is recognizable as a valid
XML fragment. For example, add the following line of code to config.xml:

<garbage>yeuch blllllllaaaaaa</garbage>

When you reload the configuration, you will see the following error at the top of the manage
Jenkins screen:

£ You have data stored in an older format and/or unreadable data ‘ Manzge || Dismiss ‘

Pressing the Manage button will return you to a detailed page of the debug information,
including the opportunity to reconcile the data.

Unreadable Data

It is acceptable to leave unreadable data in these files, as Jenkins will safely ignore it. To avoid the log messages at Jenkins startup you can
permanently delete the unreadable data by resaving these files using the button below.

Type Name Error
hudson.model.Hudson NonExistentFieldException: No such field hudson.model.Hudson.garbage
Discard Unreadzble Datz

From this, you can notice that Jenkins is developer-friendly when reading corrupted
configuration that it does not understand.

See also

» Using a sacrificial Jenkins instance

» Participating in the community - Maven archetypes and plugins,
Chapter 8, Exploring Plugins

Chapter 1

Reporting overall disc usage

Organizations have their own way of dealing with increasing disc usage. Policy ranges from
no policy, depending on ad-hoc human interactions, to the most state of the art software
with central reporting facilities. Most organizations sit between these two extremes with
mostly ad-hoc intervention, with some automatic reporting for the more crucial systems.
With minimal effort, you can make Jenkins report disc usage from the GUI, and periodically
run Groovy scripts that trigger helpful events.

This recipe highlights the disk usage plugin and uses the recipe as a vehicle to discuss the
cost of keeping archives stored within the Jenkins workspace.

The disc usage plugin is the strongest in combination with an early warning system that
notifies you when soft or hard disc limits are reached. The recipe: A Job to warn of disc usage
violations through log parsing details a solution. Both the recipes show that configuring
Jenkins requires little effort. Each step might even seem trivial. The power of Jenkins is that
you can build complex responses out of a series of simple steps and scripts.

Getting ready

You will need to install the disc usage plugin.

How to do it...

1. Press the Disk usage link under the Manage Jenkins page.

/ @ Disk usage

[. Displays per-project disk usage

2. After clicking on the Disk Usage link, Jenkins displays a page with each project and
the builds and Workspace disc usage summary. Click on the top of the table to sort
the workspace by file usage.

& Disk usage

Builds:1GB, Workspace:6GB

Project name Builds Workspace |
Total 1GB 6GB
Sakai CLE trunk 12MB 2GB
Sakai 2.7.2 12MB 2GB
uPortal _trunk 392MB 1GB
Sakai OAE 229MB 361MB
Hippo trunk 233MB 271ME
Sakai tool opensyllabus 40MB 255MB
uPortal porilet Calendarlasig trunk 36ME 105MB

s

Maintaining Jenkins

Adding a plugin in Jenkins is very simple. The question is what are you going to do with
the information.

It is easy for you to forget a tick box in a build, perhaps an advanced option is enabled where
it should not be. Advanced options can at times be problematic, as they are not displayed
directly in the GUI. You will need to hit the advanced button first, before reviewing. On a Friday
afternoon, this might be one step too far.

Advanced options include artifact retention choices, which you will need to correctly configure
to avoid overwhelming disc usage. In the previous example, the workspace for the Sakai

CLE is 2GB. The size is to do with the Job having its own local Maven repository, as defined
by the advanced option Use a private Maven repository. The option is easy for you to miss.

In this case, there is nothing to be done, as trunk pulls in snapshot JARs, which might cause
instability for other projects.

Build
Maven Version 2.2.1 -
Root POM pom.xml ®
Goals and options -Ppack-demo clean install @
MAVEN_OPTS -Xmx512m -XX:MaxPermSize=128m E3 @
Alternate settings file .ﬁ.
[1ncremental build - only build changed modules 'ﬁ'
[[] pisable automatic artifact archiving L :x'
[T Build modules in parallel | :.-'I
Use private Maven repository ':;'

The simple act of being able to sort disc usage points the offending Jobs out to you, ready for
further inspection of their advanced configuration.

=

Chapter 1

There's more...

If you are keeping a large set of artifacts, it is an indicator of a failure of purpose of your use

of Jenkins. Jenkins is the engine that pushes a product through its life cycle. For example,

when a job builds snapshots every day, then you should be pushing the snapshots out to

where developers find them most useful. That is not Jenkins but a Maven repository or a
repository manager such as Artifactory (http://www.jfrog.com/products.php), Apache
Archiva (http://archiva.apache.org/) or Nexus (http://nexus.sonatype.org/).
These repository managers have significant advantages over dumping to disc. They have the
following advantages:

» Speed builds by acting as a cache: Development teams tend to work on similar or
the same code. If you build and use the repository manager as a mirror, then the
repository manager will cache the dependencies, and when Job Y asks for the same
artifact, the download will be local.

» Acts as a mechanism to share snapshots locally: Perhaps some of your
snapshots are only for local consumption. The repository manager has facilities
to limit the access.

» GUI interface for ease of artifact management: All the three repository managers
have intuitive GUIs, making your management tasks as easy as possible.

With these considerations in mind, if you are seeing a build-up of artifacts in Jenkins, where
they are less accessible and beneficial than deployed to a repository, consider this a signal for
the need to upgrade your infrastructure.

For further reading, see: http://maven.apache.org/repository-management . html.

Retention policy

Jenkins can be a significant consumer of disk space. In the Job configuration,
you can decide to either keep artifacts or remove them automatically after
a given period of time. The issue with removing artifacts is that you will also
~ remove the results from any automatic testing. Luckily, there is a simple trick
Q for you to avoid this. When configuring a Job, click on Discard Old Builds, and
then the Advanced checkbox, define the Max # of builds to keep with the
artifacts. The artifacts are then removed after the number of builds specified,
but the logs and results are kept. This has one important consequence; you
have now allowed the reporting plugins to keep displaying a history of tests
even though you have removed the other more disc consuming artifacts.

» Backing up and restoring

s

http://maven.apache.org/repository-management.html
http://maven.apache.org/repository-management.html

Maintaining Jenkins

Deliberately failing builds through log

parsing

Scenario: You have been asked to clean up the code removing depreciated Java methods
across all the source contained under a Jenkins Jobs; that is a lot of code. If you miss some
residue defects, then you will want the Jenkins build to fail.

What you need is a flexible log parser that can fail or warn about issues found in the build
output. To the rescue: This recipe describes how you can configure a log parsing plugin that
spots unwanted patterns in the console output and fails Jobs.

Getting ready

You will need to install the Log Parser Plugin as mentioned at:

https://wiki.jenkins-ci.org/display/JENKINS/Log+Parser+Plugin

How to do it...

1. Create the log_rules directory owned by Jenkins, under the Jenkins workspace.
2. Addthe file named depreciated.rule to the log rules directory with one line:
error /DEPRECATED/
3. Create a Job with a source code that gives deprecated warnings on compilation. In
the following example, you are using the Roster tool from the Sakai project:
o Jobname: Sakai Roster2 Test
o Check Maven 2/3 Project
o Sourcecode Management: Subversion

o Repository URL: https://source.sakaiproject.org/contrib/
roster2/trunk

o Build
o Maven Version: 2.2 .1 (or whatever your label is for this version)
o Goals and options: clean install

4. Run the build. It should not fail.

=

https://source.sakaiproject.org/contrib/roster2/trunk
https://source.sakaiproject.org/contrib/roster2/trunk
https://source.sakaiproject.org/contrib/roster2/trunk

Chapter 1

5. Asshown in the next screenshot, visit the Manage configuration page for Jenkins,
and to the Console Output section, add a description and location of the parsing
rules file that was mentioned in step 2.

Console Output Parsing

Parsing Rules Description Kill Depreciated

Parsing Rules File /yar/lib/jenkins/log_rules/depreciated.rule

6. Check the Console output (build log) parsing box in the Post-build Actions section
of your Job.

7. Check the Mark build Failed on Error checkbox.

Select Kill Deprecated from the Select Parsing Rules list box.

Console output (build log) parsing

Mark build Unstable on Warning [
Mark build Failed on Error

Select Parsing Rules Kill Depreciated -

9. Build the Job; it should now fail.

10. Click on the Parsed Console Output link in the left-hand menu. You will now be able
to see the parsed errors.

A Back to Project Parsed Console Output
l’_:‘\\ Status
|— Error (2)

i Beginning of log

E Console Output (2 Errors in this section)

® 1 [WARNING] DEPRECATED
[systemProperties]: Use
systemPropertyVariables instead.

ij:, Edit Build Information

D Parsed Console Output

Taq this build ® 2 [WARNING] DEPRECATED
- [systemProperties]: Use
» Redeploy Artifacts systemPropertyVariables instead.
47" | See Fingerprints
. |7 Warning (0)
4d Previous Build
|— Info (0]

=]

Maintaining Jenkins

The global configuration page allows you to add files, each with a set of parsing
rules. The rules use regular expressions mentioned in the home page of the plugin
(https://wiki.jenkins-ci.org/display/JENKINS/Log+Parser+Plugin).

The rule file you used is composed of one line: error /DEPRECATED/.

If the pattern DEPRECATED (a case-sensitive test) is found in the console output, then the
plugin considers this as an error, and the build fails. More lines to test can be added to the
file. The first rule found wins. Other levels include warn and ok.

The source code pulled in from Sakai (http://www.sakaiproject .org) contains
deprecated method and triggers the pattern.

The rules file has the distinct . rules extension in case you want to write an exclude rule
during backups.

Once the plugin is installed, you can choose a Job between the rule files previously created.

_ This plugin empowers you to periodically scan for the obvious link
% and adapt to the new circumstances. You should consider sweeping
i systematically through a series of rule files failing suspect builds, until
a full clean-up to in-house style has taken place.

Two other examples of the common log patterns that are an issue, but do not normally fail a
build are:

» MD5 check sums: If a Maven repository has an artifact, but not its associated MD5
checksum file, then the build will download the artifact even if it already has a copy.
Luckily, the process will leave a warning in the console output.

» Failure to start up custom integration services: These failures might be logged at
the warn or info level when you really want them to fail the build.

» A Job to warn about the disc usage violations through log parsing

=]

Chapter 1

A Job to warn about the disc usage

violations through log parsing

The disk usage plugin is unlikely to fulfill all of your disc maintenance requirements. This
recipe will show how you can strengthen disc monitoring by adding a custom Per1 script to
warn about the disc usage violations.

The script will generate two alerts: a hard error when the disc usage is above an acceptable
level, and a softer warning when the disc is getting near to that limit. The log parser plugin will
then react appropriately.

R Using Perl is typical for a Jenkins Job, as Jenkins plays well and
% adapts to most environments. You can expect Perl, Bash, Ant,
i Maven, and a full range of scripts and binding code to be used in

the battle to get the work done.

Getting ready

If you have not already done so, create a directory owned by Jenkins under the Jenkins
workspace named log_rules. Also, make sure that the pPer1l scripting language is
installed on your computer and is accessible by Jenkins. Perl is installed by default on
Linux distributions. Activestate provides a decent Per1 distribution for MAC and
Windows (http://www.activestate.com/downloads).

How to do it...

1. Add afile to the 1og_rules directory named disc.rule with the following
two lines:

error /HARD LIMIT/
warn /SOFT LIMIT/

2. \Visit the Manage configuration page for Jenkins, and add a description as DISC_
USAGE to the Console Output section. Point to the location of the Parsing Rules file.

3. Add the following Per1 script to a location of choice named disc_limits.pl,
making sure that the Jenkins user can read the file.

use File::Find;

my S$content = "/var/lib/jenkins";

if (S#ARGV != 1) {
print " [MISCONFIG ERROR] usage: hard soft (in Bytes)\n";
exit (-1);

}

e

Maintaining Jenkins

my Stotal bytes=0;
my Shard limit=$ARGV[O0];
my $soft limit=$ARGV[1];

find(\&size summary, $content);

if ($total bytes >= $hard limit)
print " [HARD_LIMIT ERROR] S$total_bytes >=
$hard limit (Bytes)\n";
}elsif ($total bytes >= $soft limit) {
print " [SOFT LIMIT WARN] $total bytes >= $soft limit (Bytes)\n";
lelse{
print " [SUCCESS] total bytes = $total_ bytes\n";

}

sub size summary {
if (-f $File::Find: :name) {
Stotal bytes+= -s $File::Find::name;
}
}

Modify the Scontent variable to point to the Jenkins workspace.
5. Create a free-style software project Job.

Under the build section, add the build Step / Execute Shell. For the command,
add perl disc limits.pl 9000000 2000000.

7. Feel free to change the hard and soft limits (9000000 2000000).

8. Check the Console output (build log) parsing in the Post-build Actions section.
9. Check the Mark build Unstable on Warning checkbox.

10. Check the Mark build Failed on Error checkbox.

11. Select DISC_USAGE from the Select Parsing Rules combo box.

Console output (build log) parsing

Mark build Unstable on Warning

Mark build Failed on Error

Select Parsing Rules | DISC USAGE 2

12. Run the build a number of times.

=]

Chapter 1

13. Under build history on the left-hand, select the trend link. You can now view trend
reports and see a timeline of success and failure.

£# Build History (trend)

@ #3 Aug 12, 2011 2:50:24 PM

& #2 Aug 12, 2011 2:39:28 PM

& #1 Aug 12, 2011 2:35:10 PM

[—'_'E RSS for all Ej RSS for failures

The Perl script expects two command-line inputs: hard and soft limits. The hard limit is the
value in bytes that the disc utilization under the Scontent directory should not exceed. The
soft limit is a smaller value in bytes that triggers a warning rather than an error. The warning
gives the administrators time to clean up before the hard limit is reached.

The Perl script transverses the Jenkins workspace and counts the size of all the files. The
script calls the method size summary for each file or directory underneath the workspace.

If the hard limit is less than the content size, then the script generates the log output

[HARD LIMIT ERROR]. The parsing rules will pick this up and fail the build. If the soft limit is
reached, then the script will generate the output [SOFT LIMIT WARN]. The plugin will spot
this due to the rule warn /SOFT LIMIT/, and then signal a Job warn.

Welcome to the wonderful world of Jenkins. You can now utilize all of the installed features
at your disposal. The Job can be scheduled, e-mails can be sent out on failure. You can also
tweet, add entries to Google calendar, trigger extra events, for example disc-cleaning builds,
and so on. You are mostly limited by your imagination and 21st century technologies.

» Backing up and restoring

Maintaining Jenkins

Keeping in contact with Jenkins through

Firefox

If you are a Jenkins administrator, then it is your role to keep an eye on the ebb and flow of
the build activity within your infrastructure. Builds can occasionally freeze or break due to
non-coding reasons. If a build fails, and this is related to infrastructural issues, then you will
need to be warned quickly. Jenkins can do this in numerous ways. Chapter 5, Communicating
Through Jenkins is dedicated to the different approaches for different audiences. From e-mail,
Twitter, and speaking servers, you can choose a wide range of prods, kicks, shouts, and pings.
| could even imagine a Google summer of code project with a remotely controlled

buggy moving to the sleeping administrator and then toting.

This recipe is one of the more pleasant ways for you to be reached. You will pull in the Jenkins
RSS feeds using a Firefox add-on. This allows you to view the build process, while going about
your everyday business.

Getting ready

You will need Firefox 5 or later installed on your computer and an account on at least one
Jenkins instance, with a history of running Jobs.

. A plug for the developers
AY

5 If you like the add-on and want more features in the future, then it is
enlightened in the self-interest to donate a few bucks at the add-on
author's website.

How to do it...

Select the Firefox tab at the top-left hand side of the browser.

In the Search box (top-right) with the title Search all add-ons, search for Jenkins.
Click on the Install button for the Jenkins Build monitor.

Restart Firefox.

Select the Firefox tab at the top left-hand side of the browser.

Enable the Add-On Bar by selecting Options, and then Add-On Bar. Now, at the
bottom right-hand side of Firefox, you will see a small Jenkins icon.

o o~ wbd e

7. Right-click on the icon.

Select the preferences, and the Feeds screen appears.

Chapter 1

9. Add arecognizable, but short, name for your Jenkins instance. For example, P1ugin

test server.

10. Add a URL using the following structure for Feed URL:

http://host:port/rssAll e.g.: http://localhost:8080/rssAll.

7 5 —— %
Options . " e

Feeds I Displayl Notification! Netwnrkl Miscl

Name Feed URL

Plugin test Server http:/hostX:8080/rssAll
Developers only Ser... http://host¥:8080/rssAll

I 5 Poll Interval {in minutes)

I G
I Enable executor monitoring

CK

|

11. Check Enable executor monitoring.

12. Click on the OK button. An area in the Add-On tool bar will appear with the name
Plugin test Server of the Feed URL(s) displayed, and a health icon. If you hover your
mouse over the name, then a more detailed status information will be displayed.

€4 8 7 Plugin test Server 8¢ < Developers only Server

Jenkins provides RSS feeds to make its status information accessible to a wide variety

of tools. The Firefox add-on polls the configured feed and displays the information in a

digestible format.

To configure for a specific crucial Job, you will need to use the following structure:

http://host:port/job/job name/rssaAll.

To view only the build failures, replace rssaAll with rssFailed. To view only the last build,

replace rssAll with rssLatest.

Es

Maintaining Jenkins

There's more...

If security is enabled on your Jenkins instances, then most of your RSS feeds will be
password-protected. To add a password, you will need to modify the Feed URL to the
following structure:

http://username:passwordehost :port/path

N Warning

Q The negative aspect of using this add-on is that any Feed URL
password is displayed in plain text during editing.

Chapter 5, Communicating Through Jenkins:

» Visualizing schedules - the Google calendar
» Shouting at developers through Twitter

Monitoring through JavaMelody

JavaMelody (http://code.google.com/p/javamelody/) is an open source project that
provides comprehensive monitoring. The Jenkins plugin monitors both the Master instance of
Jenkins and also its nodes. The plugin provides a detailed wealth of the important information.
You can view the evolution charts ranging from a day or weeks to months of the main quantities,
such as the CPU or the memory. Evolution charts are very good at pinpointing the scheduled
Jobs that are resource-hungry. JavaMelody allows you to keep a pulse on the incremental
degradation of resources. It eases the writing of reports by exporting statistics in a PDF format.
Containing over 25 years of human effort, JavaMelody is feature-rich.

This recipe shows you how easy it is to install a JavaMelody plugin (https://wiki.
jenkins-ci.org/display/Jenkins/Monitoring)and discusses the troubleshooting
strategies and their relationship with the generated metrics.

N Community partnership

Q If you find this plugin useful, consider contributing back to either the
plugin or the core JavaMelody project.

Getting ready

You will need to have installed the JavaMelody plugin.

=

Chapter 1

How to do it...

1. Click on the Monitoring Hudson/Jenkins master link on the Manage Jenkins page.
You will now see the detailed monitoring information.

Update

J~|PDF @ Online help Choice of period : |5 Day |17 Week |7 Month |5 Year & All |5 Customized

Used nemory - 1 day % CPU - 1 day Http sessions - 1 day
. | L]
189 H - T 5 T T |
[0=k A 0.0
18:00 18:00 00:00 D6 0D] 18:00 ©0:00 0B 0D
B Maan B Haximun Maan; 54 M B vean M Hazimun Maan; IAm B tean B Maximm Mean: 158 m
Haxinum: 125 M Haximun: S083 m Maximun: 1006 m
Active threads - 1 day Hittp hits per minute - 1 day Http mean times (ms) - 1 day
A _ 50 il 0D eeeras e s o
| 204
ois qu_..m L “ ” l e
: 1g:00 00;90 0600 1800 o080 0690 18:00 ©0:00 0590
Mean B Haximun Mean: [Mean M Maximun Mean: 1 tean B Maximun Mean: 7
Hascinum; [Haximun; 45 Maximun; 351
% of http errors - 1 day
40 T
it | E;
18:00 0080 0600
Mean [l Maximun Mean: 673 m
Haximiin: 29583 m
@ Other charts
hnpstaﬂstics http - 1 day
R % of cumulative Hits Mean time Max time Standard 9% of cumulative cpu | Mean epu time % of system Mean size
@ time (mas) (ms) deviation time (ms) EFFOI (Khb)
hitp global 100] 619 8 788 63 100 3 0.16 2
hitp o o 1) 1 0] 0.00 0
‘warning
hitp severe i1l 4 655 788 534 43 47 25.00 20
0 hits/min on 13 requests # Details
() statistics http system errors - 1 day
% of cumulative [. |Mean time (Aax time| Standard % of cumulative | Mean cpu
Error g Hits 0ty o o
time {ms) (ms) deviation cpu time time (ms)
— = — - —————
hudsun_szcurrt_?_%_.ccungmedExcgphon_. anonymous is missing 100 1 1 1 0 0 0
the Read permission
0 hits/min on 1 errors [Details Last errors

Read the online help at the URL

http://host:port/monitoring?resource=help/help.html,
where the host and port point to your server.

http://host:port/monitoring/nodes.

Review the monitoring of the node processes directly, by visiting

s

Maintaining Jenkins

JavaMelody has the advantage of running as the Jenkins user and can gain access to all
the relevant metrics. Its main disadvantage is that it runs as part of the server and will stop
monitoring as soon as there is a failure. Because of this disadvantage, you should consider
JavaMelody as part of the monitoring solution and not the whole.

There's more...

Monitoring is the foundation for comprehensive testing and troubleshooting. This section
explores the relationship between these issues and the measurements exposed in the plugin.

Troubleshooting with JavaMelody - memory

Your Jenkins server can at times have memory issues due to greedy builds, leaky plugins, or
some hidden complexity in the infrastructure.

JavaMelody has a comprehensive range of memory measurements, including a heap dump
and a memory histogram.

The Java virtual machine divides the memory into various areas, and to clean up, it removes
objects that have no references to other objects. Garbage collection can be CPU-intensive
when it is busy, and the nearer you get to full memory, the busier the garbage collection
becomes. To an external monitoring agent ,this looks like a CPU spike that is often difficult to
track down. Just because the garbage collector manages memory, it is also a fallacy to believe
that there is no potential for memory leakage in Java. Memory can be held too long by many
common practices, such as custom caches or calls to native libraries.

Slow-burning memory leaks will show up as gentle slopes on the memory-related evolution
graphs. If you suspect that you have a memory leak, then you can get the plugin to force a full
garbage collection through the link Execute the garbage collector. If it is not a memory leak,
then the gentle slope will abruptly fall.

Memory issues can also express themselves as large CPU spikes as the garbage collector
frantically tries to clean up, but can barely clean enough space. The garbage collector can
also pause the application while comprehensively looking for no longer referenced objects,
and cause large response times for web browser requests. This can be seen through the mean
and max times under the Statistics labeled http - 1 day.

S E

Chapter 1

Troubleshooting with JavaMelody - painful Jobs
You should consider the following points:

» Offload work: For a stable infrastructure, offload as much work as possible
from the master instance. If you have scheduled the tasks, keep the heaviest
ones separate in time. Time separation not only evens out load, but also makes
finding the problematic build easier through the observation of the evolution
charts of JavaMelody. Also consider spatial separation; if a given node or a
labeled set of nodes show problematic issues, then start switching around
machine location of Jobs, and view their individual performance characteristics
through http://host:port/monitoring/nodes.

» Hardware is cheap: Compared to paying for human hours, buying an extra
8GB is cheap.

A common gotcha is to add the memory to the server, but forget
s to update the init scripts to allow Jenkins to use more memory.

» Review the build scripts: Javadoc generation, custom Ant scripts can fork JVMs, and
reserve memory are defined within their own configuration. Programming errors can
also be the cause of the frustration. Don't forget to review JavaMelody's report on the
Statistic system error log and Statistic http system errors.

» Don't forget external factors: Factors include backups, cron Jobs, updating the
locate database, and network maintenance. These will show up as periodic patterns
in the evolution charts.

» Strength in numbers: Use the JavaMelody in combination with the disk usage
plugin and others to keep a comprehensive overview of the vital statistics. Each
plugin is simple to configure, but their usefulness to you will grow quicker than the
maintenance costs of adding extra plugins.

Chapter 7, Testing Remotely:

» Running a script to obtain the monitoring information

Maintaining Jenkins

Keeping a track of the script glue

There are negative implications for backing up and especially restoring if maintenance scripts
are scattered across the infrastructure. It is better to keep your scripts in one place, and

then run them remotely through the nodes. Consider placing your scripts under the Master
Jenkins home directory. It would be even better for the community if you can share the less-
sensitive scripts online. Your organization can reap the benefits; the scripts will then get some
significant peer review and improvements.

In this recipe, we explore the use of the Scriptler plugin to manage your scripts locally and
download useful scripts from an online catalog.

Getting ready

You will need to install the Scriptler plugin (https://wiki.jenkins-ci.org/display/
JENKINS/Scriptler+Plugin).

How to do it...

1. Click on the Scriptler link under the Manage Jenkins page. You will notice the text in
bold: Currently you do not have any scripts available, you can import scripts from a
remote catalog or create your own.

2. Click on the link on the left-hand side of Remote Script catalogs.

3. Click on the icon of the floppy disk for get ThreadDump. If the script is not available,
then choose another script of your choice.

4. You have now returned to the Scriptler main page. You will see three icons. Choose
the furthest right to execute the script.

5. You are now in the Run a script page. Select a node and hit the Run button.

If the script fails with a message startup failed, then
please add a new line between entry.key and for, and
Yo . . .
the script will then function correctly.

6. To write a new Groovy script or to upload the one that you have on your local system,
click on the Add a new Script link on the left-hand side.

NEQ

Chapter 1

This plugin allows you to easily manage your Groovy scripts, and enforces a standard place
for all Jenkins administrators to keep their code, making it easier for you to plan backups and
indirectly share knowledge.

The plugin creates a directory named scriptler under the Jenkins workspace and
persists the meta information about the files that you have created in the scriptler.xml
file. A second file, scriptlerweb-catalog.xml, mentions the list of online files that you
can download.

All the local scripts are contained in the sub-directory scripts.

There's more...

If enough people use this plugin, then the list of online scripts will radically increase the
process of generating a significant library of reusable code. Therefore, if you have interesting
Groovy scripts, then upload them. You will need to create a new account the first time to log in
at: http://scriptlerweb.appspot.com/login.gtpl.

Uploading your scripts allows people to vote on them and to send you feedback. The free peer
review can only improve your scripting skills and increase your recognition in a wider community.

See also

» Scripting the Jenkins command-line interface
» Global modifications of Jobs with Groovy
» Scripting the global build reports

Scripting the Jenkins command-line

interface

The Jenkins Command-Line Interface (CLI), https://wiki.jenkins-ci.org/display/
JENKINS/Jenkins+CLI, allows you to perform a number of maintenance tasks on remote
servers. Tasks include moving the Jenkins instances on and offline, triggering builds and
running Groovy scripts. This makes for easy scripting of the most common chores.

In this recipe, you will log on to a Jenkins instance and run a Groovy script that looks for files
greater than a certain size, and log off. The script represents a typical maintenance task. You
can imagine chaining a second script to the first, to remove the large files found.

Eis

Maintaining Jenkins

, Atthe time of writing this chapter, the interactive Groovy shell was
% not working from the CLI. This is mentioned in the bug report:
T~ http://issues.hudson-ci.org/browse/HUDSON-5930.

Getting ready

Download the CLI JAR file from http://host/jnlpJars/jenkins-cli.jar.

Add the following script to a directory under the control of Jenkins and call it
large files.groovy.

root = jenkins.model.Jenkins.instance.getRootDir ()
count = 0
size =0
maxsize=1024*1024*32
root.eachFileRecurse () { file -»>
count++
size+=file.size () ;
if (file.size() > maxsize) (
println "Thinking about deleting: ${file.getPath()}"
// do things to large files here

}

println "Space used ${size/(1024*1024)} MB Number of files ${count}"

How to do it...

1. Run the next command from a terminal, replacing http://host with the real
address of your server, for example http://localhost:8080.

java -jar jenkins-cli.jar -s http://host login --username
username

2. Input your password.
Look at the online help:
java -jar jenkins-cli.jar -s http://host help

4. Run the Groovy script. The command-line output will now mention all the
oversize files.

java -jar jenkins-cli.jar -s http://host groovy look.groovy

5. Logout.

java -jar jenkins-cli.jar -s http://host logout.

NED

http://host
http://host
http://host
http://host

Chapter 1

The CLI allows you to work from the command line and perform standard tasks. Wrapping the
CLl in a shell script, such as bash, allows you to script maintenance tasks a large number of
Jenkins instances at the same time. This recipe performs a lot of drudgework. In this case, it
reviews X thousand files for oversized artifacts, saving you time that you can better spend on
more interesting tasks.

Before performing any commands, you need to first authenticate through the 1ogin command.

Reviewing the script root jenkins.model .Jenkins.instance.getRootDir () uses the
Jenkins framework to obtain a java.io.File file, which points to the Jenkins workspace.

The maximum file size is set to 32MB through maxsize=1024*1024%32.

The script visits every file under the Jenkins workspace, using the standard Groovy method
root.eachFileRecurse () { file ->.

You can find the current JavaDoc for Jenkins at:
o http://javadoc.jenkins-ci.org/
There's more...

The authentication used in this recipe can be improved. You can add your SSH public key
under http://localhost:8080/user/{username}/configure (where username is
your username), by cutting and pasting into the SSH Public Keys section. You can find detailed
instructions at: https://wiki.jenkins-ci.org/display/JENKINS/Jenkins+CLI.

At the time of writing, there were some issues with the key approach. See https://issues.
jenkins-ci.org/browse/JENKINS-10647. Feel free to resort back to the method used
in this recipe, which has proven to work stably, though less securely.

/ The CLI is easily-extendable, and therefore over time, the CLI's
‘ command list increases. It is therefore important that you
A . . .
occasionally check the in-built help.

» Global modifications of Jobs with Groovy
» Scripting global build reports

https://issues.jenkins-ci.org/browse/JENKINS-10647

Maintaining Jenkins

Global modifications of Jobs with Groovy

Jenkins is not only a continuous integration server but also a rich framework with an exposed
internal structure available from within the script console. You can programmatically iterate
through the Jobs, plugins, node configuration, and a variety of rich objects. As the number of
Jobs increase, you will notice that scripting becomes more valuable. For example, imagine
that you need to increase custom memory settings across 100 Jobs. A Groovy script can do
that in seconds.

This recipe is a representative example: You will run a script that iterates through all Jobs. The
script then finds one specific Job by its name, and then updates the description of that Job
with a random number.

Getting ready

Log in to Jenkins with an administrative account.

How to do it...

1. Create an empty Job named MyTest.
2. Within the Manage Jenkins page, click on the Script console link.
3. Cut and paste the following script into the text area input.

import java.util.Random
Random random = new Random/()

hudson.model.Hudson. instance.items.each { job ->
println ("Class: ${job.class}")
println ("Name: ${job.name}")
println ("Root Dir: ${job.rootDir}")
println ("URL: ${job.url}")
println ("Absolute URL: ${job.absoluteUrl}")
if ("MyTest".equals (job.name)) {
println ("Description: ${job.description}")
job.setDescription("This is a test id:
${random.nextInt (99999999) }")

=)

Chapter 1

4. Click on the run button. The results should be similar to the following screenshot:

Name:

Result:

Result

Class: class hudson.matrix.MatrixProject

MyTest

Root Dir: fvar/lib/jenkins/jobs/MyTest

URL: job/MyTest/

Absolute URL: http://localhost:8080/job/MyTest s
Description: This i1s a test id: 75447531
[hudson.matrix.MatrixProject@575b132[MyTest]]

5. Run the script a second time, and you will notice that the random number in the
description has now changed.

6. Copy and run the following script:

for (slave in hudson.model.Hudson.instance.slaves) ({

println
println
println
println

}

"Slave
"Slave
"Slave
"Slave

class: ${slave.class}"

name: ${slave.name}"

URL: ${slave.rootPath}"

URL: ${slave.labelString}\n"

7. If you have no slave instances on your Jenkins master, then no results are returned.
Otherwise, the output will look similar to the following screenshot:

Build Queue

Mo builds in the queue.

Build Executor Status

#
1| Idle

2 | Idle

1| Idle
2 | Idle

ODG-QA1 (offline)

Master

Matrix

Result

Slave class: class hudson.slaves.DumbSlave
Slave name: Matrix

Slave URL: /data/ELO/jenkins_root

Slave URL: matrix

Slave class: class hudson.slaves.DumbSlave
Slave name: 0ODG-0QAl

Slave URL: null

Slave URL: Stress_tests

@l

Maintaining Jenkins

Jenkins has a rich framework, which is exposed to the script console. The first script iterates
through Jobs whose parent is AbstractItem (http://javadoc.jenkins-ci.org/
hudson/model /AbstractItem.html). The second script iterates through instances of slave
objects (http://javadoc.jenkins-ci.org/hudson/slaves/SlaveComputer.htm).

There's more...

For the hardcore Java developer: If you don't know how to do a programmatic task, then
an excellent source of example code is the Jenkins subversion directories for plugins
(https://svn.jenkins-ci.org/trunk/hudson/plugins/).

If you are interested in donating your own plugin, review

the information at: https://wiki.jenkins-ci.org/

display/JENKINS/Hosting+Plugins

» Scripting the Jenkins command-line interface
» Scripting the global build reports

Signaling the need to archive

Each development team is unique. Teams have their own way of doing business. In many
organizations, there are one-off tasks that need to be done periodically, for example at the
end of each year.

This recipe details a script that checks for the last successful run of any Job, and if the year

is different to the current year, then a warning is set at the beginning of the Jobs description.
Thus, hinting to you it is time to perform some action, such as archiving and then deleting. You
can, of course, programmatically do the archiving. However, for high value actions, it is worth
forcing interceding, letting the Groovy scripts focus your attention.

Getting ready

Log in to Jenkins with an administrative account.

Chapter 1

How to do it...

Within the Manage Jenkins page, click on the Script console link, and run the following script:

import hudson.model.Run;
import java.text.DateFormat;

def warning='[ARCHIVE] '
def now=new Date ()

for (job in hudson.model.Hudson.instance.items) {
println "\nName: ${job.name}"
Run lastSuccessfulBuild = job.getLastSuccessfulBuild()
if (lastSuccessfulBuild != null) {
def time = lastSuccessfulBuild.getTimestamp () .getTime ()
if (now.year.equals (time.year)) {
println ("Project has same year as build");
}else {
if (job.description.startsWith (warning)) {
println ("Description has already been changed") ;
lelse{
job.setDescription ("${warning}${job.description}™")

}

Any project that had its last successful build in another year than this will have the word
[ARCHIVE] in red, added at the start of its description.

Project Simple Job

[ARCHIVE] Yet another project

Reviewing the code listing:

A warning string is defined, and the current date is stored in now. Each Job in Jenkins is
programmatically iterated through the for statement.

Maintaining Jenkins

Jenkins has a class to store information about the running of builds. The runtime
information is retrieved through job.getLastSuccessfulBuild (), and is stored
in the lastSuccessfulBuild instance. If no successful build has occurred, then
lastSuccessfulBuildis setto null, otherwise it has the runtime information.

The time of the last successful build is retrieved, and then stored in the time instance
through lastSuccessfulBuild.getTimestamp () .getTime ().

The current year is compared with the year of the last successful build, and if they are
different and the warning string has not already been added to the front of the Job
description, then the description is updated.

Javadoc
a1

~ You will find the Job API mentioned at http://javadoc.jenkins-
ci.org/hudson/model/Job.html and the Run information at
http://javadoc.jenkins-ci.org/hudson/model /Run.html.

Before writing your own code, you should review what already exists. With 300 plugins,
Jenkins has a large, freely-available, and openly licensed example code base. Although in
this case the standard APl was used, it is well worth reviewing the plugin code base. In this
example, you will find part of the code re-used from the lastsuccessversioncolumn
plugin (https://github.com/jenkinsci/lastsuccessversioncolumn-plugin/
blob/master/src/main/java/hudson/plugins/lastsuccessversioncolumn/
LastSuccessVersionColumn. java).

M If you find any defects while reviewing the plugin code
Q base, please contribute to the community through
patches and bug reports.

» Scripting the Jenkins command-line interface
» Global modifications of Jobs with Groovy

Enhancing Security

In this chapter, we will cover:

» Testing for OWASP's top ten security issues

v

Finding 500 errors and XSS attacks in Jenkins through fuzzing
» Improving security via small configuration changes

» Looking at the Jenkins user through Groovy

» Working with the Audit Trail plugin

» Installing OpenLDAP with a test user and group

» Using the Script Realm authentication for provisioning

» Reviewing Project-based Matrix tactics via a custom group script
» Administering OpenLDAP

» Configuring the LDAP plugin

» Installing a CAS server

» Enabling SSO in Jenkins

Introduction

In this chapter, we will discuss the security of Jenkins, taking into account that it can live in a
rich variety of infrastructures.

The only perfectly secure system is the system that does not exist. For real services,

you will need to pay attention to the different surfaces available to attack. The primary
surfaces of Jenkins are its web-based graphical user interface and its trust relationships
with its slave nodes.

Enhancing Security

Online services need vigorous attention to their security surface. For Jenkins, there are two
main reasons why:

» Jenkins has the ability to talk to a wide range of infrastructure, either through its
plugins or the master slave topology

» The rate of code change around the plugins is high and open to accidental inclusion
of security-related defects

A counterbalance is that the developers using the Jenkins frameworks apply well-proven
technologies, such as Xstream (http://xstream.codehaus.org/) for configuration
persistence and Jelly (http://commons.apache.org/jelly/) for rendering the GUI.
This use of well-known frameworks minimizes the number of lines of supporting code,
and the code that is used is well tested, limiting the scope of vulnerabilities.

Another positive is that Jenkins code is freely available for review, and the core community
keeps a vigilant eye. It is unlikely that anyone contributing to a code would deliberately add
defects or unexpected license headers. However, trust but verify.

The first half of this chapter is devoted to the Jenkins environment. In the second half, you will
see how Jenkins fits into the wider infrastructure.

LDAP is widely available and the de facto standard for Enterprise directory services. We shall
use LDAP for Jenkins authentication and authorization, and later Single Sign On (SS0O) by
JASIG's Central Authentication Server (CAS, http://www.jasig.org/cas). CAS allows
you to sign on once and then go to other services without logging in again. This is useful

for when you want to link from Jenkins to other password-protected services such as an
organization's internal wiki or code browser. Just as importantly, CAS can connect behind

the scenes to multiple types of authentication providers, such as LDAP, databases, textfiles,
and an increasing number of other methods. This indirectly allows Jenkins to use many logon
protocols on top of the ones its plugins already provide.

. Security advisories
)

~ There is an e-mail list and RSS feed for Jenkins-related security advisories.
You can find the link to the advisory feeds at https://wiki.jenkins-
ci.org/display/JENKINS/Security+Advisories.

=)

Chapter 2

Testing for OWASP's top ten security issues

This recipe details the automatic testing of Jenkins for well-known security issues with

wa3af, a penetration testing tool from the Open Web Application Security Project (OWASP,
http://w3af.sourceforge.net). The purpose of OWASP is to make application security
visible. The OWASP top ten list of insecurities includes:

» A2-Cross Site Scripting (XSS): An XSS attack can occur when an application returns
an unescaped input to a client's browser. The Jenkins administrator can do this by
default, through the Job description.

» A6-Security Misconfiguration: A Jenkins plugin gives you the power to write custom
authentication scripts. It is easy to get the scripts wrong by misconfiguration.

» AT7-Insecure Cryptographic Storage: There are over 300 plugins for Jenkins, each
storing their configuration in separate XML files. It is quite possible that there is a rare
mistake with the storage of passwords in plain text. You will need to double check.

» A9-Insufficient Transport Layer Protection: Jenkins runs by default over HTTP. It
can be a hassle and involves extra costs to obtain a trusted certificate. You might be
tempted to not implement TLS, leaving your packets open.

Jenkins has a large set of plugins written by a motivated, diffuse, and hardworking community.
It is possible, due to the large churn of code, that security defects are inadvertently added.
Examples include leaving passwords in plain text in configuration files or using unsafe
rendering that does not remove suspicious JavaScript. You can find the first type of defect by
reviewing the configuration files manually. The second type is accessible to a wider audience,
and thus is more readily crackable.

You can attack the new plugins by hand. There are helpful cheat sheets available on the
Internet (http://ha.ckers.org/xss.html). The effort is tedious; automated tests can
cover more ground and be scheduled as part of a Jenkins Job.

OWASP Store front

Each year, OWASP publishes a list of the top ten most common security
." attack vectors for web applications. They publish this document and a wide
Q range of books through http://lulu.com. At lulu.com, you have
free access to the PDF versions of OWASP's documents or you can buy
cheap on-demand printed versions. You can find the official store front at
http://www.lulu.com/spotlight/owasp.

@1

http://w3af.sourceforge.net).The
http://w3af.sourceforge.net).The

Enhancing Security

Getting ready

Penetration tests have the potential to damage a running application. Make sure that you have a
backed up copy of your Jenkins workspace; you might have to reinstall. Please also turn off any
enabled security within Jenkins; this allows w3af to freely roam the security surface.

Please download the newest version of w3af from SourceForge (http://w3af.
sourceforge.net/), and also download and read the OWASP top 10 list of well-known
attacks at https://www.owasp.org/index.php/Category:OWASP Top Ten Project.

w3af has both a Windows and *NIX installation package; use the OS install of choice.

. Warning: The Debian package for w3af is older and more
% unstable than the SourceForge package for Linux. Therefore,
i please do not use the apt-get and yum methods of installation,
but rather use the downloaded package from SourceForge.

How to do it...

Run w3af.
Under the Profiles tab, select OWASP_TOP10.

Under the Target: address window, fill in http://localhost:8080/, changing the
hostname to suit your environment.

4. Click on the Start button. The penetration tests will now take place and the
Start button will change to Stop. At the end of the scan, the Stop button will
change to Clear.

‘w3af - localhost
Profiles Edit Tools Configuration Help
H] = 3 o =
WO 3 B @ & & w =
Scan config | Log | Results | Exploit
Profiles Target: [http://localhost:8080/ J ‘ il clear‘ "E““
empty_profile Plugin Active
e audit =
dit_high_risk
audithigh s b bruteforce [J
bruteforce .
b discovery =
Fast_scan .
) b evasion [
Full_audit
- . b grep =
fFull_audit_manual_disc - . . i
b mangle O The Open Web Application Security Project (OWASP) is a

sitemap worldwide Free and open community Focused onimproving

web_infrastructure the security of application software. OWASP searched for
and published the ten most common security flaws. This
profile search for this top 10 security flaws. For more
information about the security flaws: http://www.owasp.org/
index.php/OWASP_Top_Ten_Project .

Plugin Active
b output =

9136 Ao =0

=

http://localhost:8080/�

Chapter 2

View the attack history by selecting the Log tab.
Review the results by clicking on the Results tab.
After the first scan, select full_audit under Profiles.
Click on the Clear button.

© ® N o O

Add http://localhost:8080/ as Target:.
10. Click on the Start button.

11. Wait until the scan has finished, and review the results in the Results tab.

w3af is written by security professionals. It is a pluggable framework with extensions
written for different types of attacks. The profiles define which plugins and their associated
configurations you are going to use in the penetration test.

You first attack using the OWASP_TOP10 profile, and then attack again with a fuller set
of plugins.

The results will vary according to your setup. Depending on the plugin, security issues that do
not exist are occasionally flagged. You will need to verify by hand any issues mentioned.

At the time of writing, no significant defects were found using this approach. However, the tool
pointed out slow links and generated server-side exceptions. This is the sort of information
you would want to note in the bug reports.

Consistently securing your applications requires experienced attention to detail. Here are a
few more things for you to review:

Target practice with Webgoat

The top ten list of security defects can at times seem difficult to understand. If you have
some spare time and you like practicing against a deliberately insecure application, you
should try Webgoat (https://www.owasp.org/index.php/Category: OWASP
WebGoat Project).

Webgoat is well documented, with a hints system and links to video tutorials; it leaves little
room for misunderstanding the attacks.

@]

Enhancing Security

More tools of the trade
w3af is a powerful tool but works better in conjunction with other tools, including:

» Nikto (http://cirt.net/nikto2): A Perl script that quickly summarizes system
details and looks for the most obvious of defects.

» Skipfish (http://code.google.com/p/skipfish/): A C program that bashes
away with many requests over a prolonged period. You can choose from different
dictionaries of attacks. This is an excellent poor man's stress test. If your system
stays up, you know that it has reached a minimal level of stability.

» Wapiti (http://wapiti.sourceforge.net/): A Python-based script, it discovers
attackable URLs and then cycles through a list of evil parameters.

Jenkins is flexible so that you can call a wide range of tools through scripts running in Jobs,
including the security tools mentioned.

See also

» Finding 500 errors and XSS attacks in Jenkins through fuzzing

» Improving security via small configuration changes

Finding 500 errors and XSS attacks in

Jenkins through fuzzing

This recipe describes using a fuzzer to find server-side errors and XSS attacks in your Jenkins
servers.

A fuzzer goes through a series of URLs, appends different parameters blindly, and checks the
response from servers. The inputted parameters are variations of scripting commands such
as <scripts>alert ("random string") ;</scripts. An attack vector is found if the
server's response includes the unescaped version of the script.

Cross Site Scripting attacks are currently one of the more popular forms of attack
(http://en.wikipedia.org/wiki/Cross-site scripting). The attack involves
injecting script fragments into the client's browser so that the script runs as if it comes from
a trusted website. For example, once you have logged in to an application, it is probable that
your session ID is stored in a cookie. The injected script might read the value in the cookie
and then send the information to another server ready for an attempt at reuse.

Chapter 2

A fuzzer discovers the links on the site it is attacking and the form variables that exist within
the site's web pages. For the web pages discovered, it repeatedly sends input based on
historic attacks and lots of minor variations. If responses are returned with the same random
strings sent, then the fuzzer knows it has found an evil URL.

Getting ready

Back up your sacrificial Jenkins server and turn off its security. Expect the application to be
unstable by the end of the attack.

You will need the Python programming language installed on your computer. To download and
install Wapiti, you will need to follow the instructions found at http://www.ict-romulus.
eu/web/wapiti/home.

If you are attacking your local machine from your local machine, then
% you can afford to turn off its networking. The attack will stay in the
s)
Loopback network driver, and no packets should escape to the Internet.

How to do it...

1.

Within the src directory of Wapiti, run the following command:

python wapiti.py http://localhost:8080 -m
"-all,xss,exec" -x http://localhost:8080/pluginManager/* -v2

A number of server-side errors will be reported to the console. You can confirm

that the URL is causing an error by using your favorite web browser to visit the URL
mentioned. For example, http://localhost:8080/computer/createltem?na
me=%2Fe%00&Submit=0K&mode=dummy?2.

View the result of your browsing, for example:

java.lang.NullPointerException
at hudson.model.ComputerSet.doCreateItem
(ComputerSet.java:246)

Run the following command:

python wapiti.py http://localhost:8080 -m
"-all,xss,permanentxss" -x
http://localhost:8080/pluginManager/*

View the results, as follows:

[*] Loading modules : mod crlf, mod exec,
mod file, mod sql, mod xss, mod backup,
mod htaccess, mod blindsqgl, mod permanentxss, mod nikto

[+] Launching module xss

Enhancing Security

[+] Launching module permanentxss

Found permanent XSS in
http://localhost:8080/?auto refresh=true
attacked by
http://localhost:8080/view/All/editDescription
with fields description=
<script>alert ('5npc2bivvu')</script>&Submit=diwan3xigb
injected from
http://localhost:8080/view/All/submitDescription

Wapiti loads in different modules. By default, all modules are used. You will have to be
selective for version 2.2.1 on Ubuntu Linux, as this causes Wapiti to crash or time out.

To load Wapiti in specific modules, use the -m option.
-m "-all,xss,exec" tells Wapiti to ignore all modules, except the xss and exec modules.

The exec module is very good at finding 500 errors in Jenkins. This is mostly due to
unexpected input that Jenkins does not handle well. This is purely a cosmetic set of issues.
However, if you start to see errors associated with resources such as files or database
services, you should give the issues higher priority and send in bug reports.

The -x option specifies which URLs to ignore. In this case, we don't want to create work
for the plugin manager. If we do, it will then generate a lot of requests to an innocent
external service.

-v2 sets the verbosity of logging up to its highest so that you can see all the attacks.

In the second run of Wapiti, you also used the permanentxss module, which finds a bona
fide XSS attack through the editing of descriptions. You will be eliminating this issue in the
next recipe, Improving security via small configuration changes.

. Poor man's quality assurance
AY
“Q Fuzzers are good at covering a large portion of an application's URL space,

triggering errors that would be costly, in terms of time, to search out. Consider
automating through a Jenkins job as a part of a project's QA process.

=

Chapter 2

To confirm that the attack found is possible, add <script>alert ('I am a potential
attack') ;</script> to the description of a Job. When you next visit the Job, you will see
an alert box pop up. This implies that you have managed to inject JavaScript into your browser.

| am a potential attack

See also

» Testing for OWASP's top ten security issues
» Improving security via small configuration changes

Improving security via small configuration

changes

This recipe describes modest configuration changes that strengthen the default security
settings of Jenkins. The reconfiguration includes removing the ability to add JavaScript or
HTML tags to descriptions, masking passwords in console output, and adding a one-time
random number, which makes it more difficult for a form input to be forged. The combination
of tweaks strengthens the security of Jenkins considerably.

Getting ready

You will need to install the Escaped Markup plugin (https://wiki.jenkins-ci.
org/display/JENKINS/Escaped+Markup+Plugin)and the Mask Passwords plugin
(https://wiki.jenkins-ci.org/display/JENKINS/Mask+Passwords+Plugin).

-

Enhancing Security

How to do it...

1. Add <scriptsalert('I am a potential attack');</script>tothe
description of a job. When you next visit the job, you will see an alert box pop up.

2. Visit the Jenkins configuration page (http://localhost:8080/configure).
3. Tick the Enable security box.
4. Select Escaped HTML, under Markup Formatter.

Enable security

TCP port for JNLP slave agents () fyed - @ Random O Disable
Markup Formatter Raw HTML
Raw HTML

[T Disable syntax highlighting

5. Press the Save button.

6. To confirm that the attack has been removed, visit the job whose description you
have previously modified in step 1. You will now see escaped HTML.

Project Test

<script=alert('l am a potential attack'); </script=>
Hello World

7. Create a job.
8. Click on the Mask passwords tickbox and add the following variables:
o Name: MyPassword

o Password: changeme

Mask passwords

Password Parameters, or any other type of build parameters selected for masking in Hudson's/Jenkins’ main configuration screen
{Manage Hud = Configure System), will be automatically masked.

Name Mypassword Password sessssss

Build

Command ache This is MyPasgaword $MyPassword

Execute shell @

=

Chapter 2

9. Add an Execute shell build with the following Command:
echo This is MyPassword $MyPassword

10. Run the job.

11. Review the Console Output.

Jenkins = MyPassword » #1

3 Back to Project

o
0, status Q Console Output
= Changes
Started by user Alan
E Console Qutput ln -5 2011-08-21_12-17-5& /var/lib/jenkins/jcbs/MyPassword/builds/1l failed: -1
P Building on master
== Edit Build Information [workspace] § /bin/sh -xe /tmp/hudson23799583651254255.sh

+ echo This is MyPassword *&*#+we+

This iz MyDPassword *e#&wwww

ln -= builds/Z011-08-21 12-17-5¢ /var/lib/jenkins/jobs/MyPasswords/builds/../lastSuccessful failed: -1
ln -z builds/Z011-08-21_12-17-5& fwar/lib/jenkins/jobs/MyDassword/builds/../lastStable failed: -1
Finished: SUCCESS

12. Return to the Jenkins configuration page and click on Prevent Cross Site Request
Forgery exploits, making sure the Default Crumb Issuer is selected.

Prevent Cross Site Request Forgery exploits

Crumb
rum Crumb Algorithm

® Default Crumb Issuer

O Enable proxy compatibility

The escaped HTML plugin takes its input from your Job description and escapes any tags by
parsing the text through a Jenkins utility class. This action not only removes the risk of running
unsolicited JavaScript, but also removes some flexibility for you as the administrator of the
Job. You can no longer add formatting tags, such as font.

The Mask Passwords plugin removes the password from the screen or the console, replacing
each character of the password with the letter "x", thus avoiding accidental reading. You
should also always keep this plugin turned on, unless you find undocumented side effects or
need to debug a Job.

s

Enhancing Security

Cross Site Request Forgery (http://en.wikipedia.org/wiki/Cross-site
request_forgery) occurs, for example, if you accidentally visit a third-party location.

A script at that location then tries to make your browser perform an action (such as delete

a Job) by making your web browser visit a known URL within Jenkins. Jenkins, thinking that
the browser is doing your bidding, then complies with the request. Once the nonce feature is
turned on, Jenkins avoids CSRF by generating a random one-time number called a nonce that
is returned as part of the request. The number is not easily known and is also invalidated after
a short window of time, limiting the risk of replay attacks.

Jenkins is a pleasure to use. This is because Jenkins makes it easy to get the work done

and can talk through plugins with a multitude of infrastructure. This implies that in many
organizations, the number of administrators increases rapidly as the service organically
grows. Think about turning on the HTML escaping early, before the group of administrators get
used to the flexibility of being able to add arbitrary tags.

Consider occasionally replaying the recipe Finding 500 errors and XSS attacks in Jenkins
through fuzzing to verify the removal of this source of potential XSS attacks.

See also

» Testing for OWASP's top ten security issues
» Finding 500 errors and XSS attacks in Jenkins through fuzzing

Looking at the Jenkins user through Groovy

Groovy scripts run as the user jenkins. This recipe highlights the power of, and danger to,
the Jenkins application.

Getting ready

Log in to your sacrificial Jenkins instance as an administrator.

How to do it...

1. Run the following script from the Script Console (http://localhost:8080/script):
def printFile(location) ({
pub = new File(location)
if (pub.exists()){

Chapter 2

println "Location ${location}"
pub.eachLine{line-> println line}
}
else{
println "${location} does not exist"

}

printFile ("/etc/passwd")
printFile("/var/lib/jenkins/.ssh/id_rsa")
printFile("C:/Windows/System32/drivers/etc/hosts")

Review the output.

For a typical *NIX system, it will be similar to this:
PRIVATE KEY - Jenkins

MIIEpQIBAAKCAQEAWHV36wytKHYeZAaRZdAgON5Bg80vurst 1TLmDtMuYNIN8mU8O
Some Randomness

Users on System

root:x:0:0:root:/root:/bin/bash
sys:xX:3:3:8ys:/dev:/bin/sh

mysqgl:x:114:127:MySQL Server,,,:/var/lib/mysqgl:/bin/false

And for a Windows system, it will be:

/etc/passwd does not exist
/var/lib/jenkins/.ssh/id rsa does not exist
Location C:/Windows/System32/drivers/etc/hosts
Copyright (c) 1993-2006 Microsoft Corp.

#

This is a sample HOSTS file used by Microsoft TCP/IP for
Windows.

The script you have run is not as benign as it first seems. Groovy scripts can do anything the
jenkins user has the power to do. A method is defined; it reads in a file. The file's location
is passed in as a string input. The script then prints out the content. If the file does not exist,
that is also mentioned. Three locations are tested. It is trivial for you to add a more detailed
set of locations.

The existence of files clearly defines the type of OS being used and the structure of the
disc partitioning.

7}

Enhancing Security

The /etc/passwd file typically does not contain passwords. The passwords are hidden in
a shadow password file, safely out of reach. However, the usernames and whether the
username has a real login account (not /bin/false) suggest accounts to try and crack
using dictionary attacks.

You can save the configuration effort if you generate a private and public key for Jenkins.

This allows a script to run with a user's permission, without needing a password logon. It is
typically used by Jenkins to control its slave nodes. Retrieving the keys through a Groovy script
represents further dangers to the wider infrastructure.

If any plugin stores passwords, in plain or decipherable text, then you can capture and parse
the plugin's XML configuration files.

Not only can you read files but also change permissions and write over binaries, making the
attack harder to find and more aggressive.

There's more...

The best approach to limiting risk is to limit the number of logon accounts that have the power
to run Groovy scripts in the Script console and to periodically review the audit log.

Limiting administrator accounts is made easier by using a matrix-based strategy, where you
can decide the rights of each user or group. A refinement on this is a Project-based matrix
strategy, where you can choose permissions per job. However, the Project-based matrix
strategy costs you considerably more administration.

Warning: Since version 1.430 of Jenkins, there are extra permissions
% exposed to the matrix-based security strategy, to decide which group or
e user can run Groovy scripts. Expect more permission additions over time.

» Working with the Audit Trail plugin
» Reviewing Project-based Matrix tactics via a custom group script

Working with the Audit Trail plugin

Jobs can fail. It speeds up debugging if you can see who the last person running the job was
and what their changes were. This recipe ensures that you have auditing enabled and that
a set of audit logs are created that contain a substantial history of events rather than the
meager log size defined by default.

NED

Chapter 2

Getting ready

Install the Audit Trail plugin from the following location:

https://wiki.jenkins-ci.org/display/JENKINS/Audit+Trail+Plugin

How to do it...

1. Visit the Jenkins configuration screen (http://localhost:8080/configure).

2. Modify the default settings for the audit trail, to allow for a long observation. Change
Log File Size MB to 128 and Log File Count to 40.

Audit Trail
Log Location fvar/libfjenkins/audit.log
Log File Size MB 1
Log File Count 1
URL Patterns to Log ={{?:configSubmit|doDelete| postBuildResult| cancel Queue
Log how each build is triggered

The audit plugin creates a log recorder named Audit Trail (https://wiki.jenkins-ci.
org/display/JENKINS/Logger+Configuration). You can visit the log recorders pager
under http://localhost:8080/1og/?. The output from the log recorder is filtered via the
URL patterns to log, as seen in the Jenkins configuration screen. You will find that the logfile
format is more readable than most, with a date/time stamp at the beginning, a description of
what is happening in the middle of the log, and the user who acted, at the end. For example:

Jul 18, 2011 3:18:51 PM job/Fulltests 1/ #3 Started by user Alan
Jul 18, 2011 3:19:22 PM /job/Fulltests 1/configSubmit by Alan

It is now clear who has done what and when.

Enhancing Security

There's more...

Here are a couple more things you should consider:

A complementary plugin—JobConfigHistory

A complementary plugin that keeps track of configuration changes and displays the
information within the job itself is called the JobConfigHistory plugin (https://wiki.
jenkins-ci.org/display/JENKINS/JobConfigHistory+Plugin). The advantage of
this plugin is that you get to see who has made those crucial changes. The disadvantage is
that it adds an icon to a potentially full GUI, leaving less room for other features.

Missing Audit Logs

For a security officer, it helps to be mildly paranoid. If your audit logs suddenly go missing, it may
well be a sign that a cracker wishes to cover their trail. This is also true if one file goes missing,
or there is a gap in time of the audit. Even if this is caused by issues with configuration or a
damaged file system, you should investigate. Missing logs should trigger a wider review of the
server in question. At the very least, the audit plugin(s) is not behaving as expected.

Consider adding a small reporting script for these highly valued logs. For example, consider
modifying the recipe in Chapter 3, Building Software, to parse the logfile and make metrics
that are then displayed graphically. This enables you to view, over time, the ebb and flow of
your team's work. Of course, the data can be faked, but that would require effort.

Swatch

You can imagine a situation where you do not want Groovy scripts to be run by certain users
and want to be e-mailed in case of their unwanted actions. If you want to react immediately
to specific log patterns and do not already have infrastructure in place, consider using
Swatch, an open source product that is freely available in most *NIX distributions
(http://sourceforge.net/projects/swatch/, http://www.jaxmag.com/itr/
online artikel/psecom, id, 766,nodeid,147.html).

Swatch is a Perl script that periodically reviews logs. If a pattern is found, it reacts with an
e-mail or by executing commands.

See also

» Improving security via small configuration changes
» Looking at the Jenkins user through Groovy

&)

Chapter 2

Installing OpenLDAP with a test user and

group

Lightweight Directory Access Protocol (LDAP) provides a highly popular Open Standards
Directory Service. It is used in many organizations to display user information to the world.
LDAP is also used as a central service to hold user passwords for authentication and can
contain information necessary for routing mail, POSIX account administration, and various
other pieces of information that external systems may require. Jenkins can directly connect
to LDAP for authentication or indirectly through the CAS SSO server (http://www.jasig.
org/cas), which then uses LDAP as its password container. Jenkins also has an LDAP Email
plugin (https://wiki.jenkins-ci.org/display/JENKINS/LDAP+Email+Plugin)
that pulls its routing information out of LDAP.

Because LDAP is a common Enterprise service, Jenkins may also encounter LDAP while
running integration tests, as a part of the built-in applications testing infrastructure.

This recipe shows you how to quickly install an OpenLDAP (http://www.openldap.org/)
server named slapd and then add organizations, users, and groups via LDAP Data
Interchange Format (LDIF)—a simple text format for storing LDAP records
(http://en.wikipedia.org/wiki/LDAP Data_ Interchange Format).

Getting ready

This recipe assumes that you are running a modern Debian-based Linux operating system,
such as Ubuntu.

R For detailed instructions on installing OpenLDAP on Windows,
% please referto http://www.userbooster.de/en/
A support/feature-articles/openldap-for-

windows-installation.aspx.

Save the following LDIF entries to the file basic_example.1ldif, and place it in your
home directory:

dn: ou=mycompany,dc=nodomain
objectClass: organizationalUnit

ou: mycompany

dn: ou=people, ou=mycompany, dc=nodomain
objectClass: organizationalUnit

[ei-

Enhancing Security

ou: people

dn: ou=groups,ou=mycompany,dc=nodomain
objectClass: organizationalUnit
ou: groups

dn: uid=testerl, ou=people, ou=mycompany, dc=nodomain
objectClass: inetOrgPerson

uid: testerl

sn: Tester

cn: I AM A Tester

displayName: testerl Tester

userPassword: changeme

mail: testerl.tester@dev.null

dn: cn=dev,ou=groups, ou=mycompany, dc=nodomain
objectclass: groupofnames

cn: Development

description: Group for Development projects

member: uid=testerl, ou=people,dc=mycompany, dc=nodomain

How to do it...

1. Install the LDAP server slapd. Fill in the administrative password when asked.
sudo apt-get install slapd ldap-utils

2. Add the LDIF records from the command line; you will then be asked for the
administrator's password you filled in, in step 1.
ldapadd -x -D cn=admin,dc=nodomain -W -f ./basic example.ldif

LDIF is a textual expression of the records inside LDAP.

Distinguished name (dn) is a unique identifier per record and is structured so objects reside
in an organizational tree structure.

ObjectClasses such as organizational unit define a set of required and optional attributes.
In the case of the organizational unit, the attribute ou is required. This is useful for bundling
attributes that define a purpose, such as creating an organizational structure belonging to a
group or having an e-mail account.

&

Chapter 2

In the recipe, we have imported using the default dn of the admin account (dn:

cn=admin, dc=nodomain). The account was created during package installation. To use
another account, you will need to change the value of the -D option mentioned in step 2 of
the recipe.

The default dn of the admin account may vary depending on which version of slapd you
have installed.

The LDIF creates an organizational structure with three organizational units:

» dn: ou=mycompany, dc=nodomain
» dn:ou=people, ou=mycompany, dc=nodomain—Location to search for people

» dn:ou=groups, ou=mycompany, dc=nodomain—Location to search for groups

Auser, dn: uid=testerl, ou=people, ou=mycompany, dc=nodomain, is created
for testing. The list of attributes the record must have is defined by the objectClass
inetOrgPerson.

A group, dn: cn=dev, ou=groups, ou=mycompany, dc=nodomain, is created via the
objectClass groupofnames. The user is added to the group via adding the member attribute
pointing to the dn of the user.

Jenkins looks for the username and to which groups the user belongs. In Jenkins, you can
define which projects a user can configure, based on their group information. Therefore, you
should consider adding groups that match your Jenkins Job structures such as development,
acceptance, and also a group for those needing global powers.

There's more...

What is not covered by this LDIF example is the adding of objectClasses and Access Control
Lists (ACLs).

» ObjectClasses: LDAP uses objectClasses as a sanity check on the incoming record
creation requests. If the required attributes do not exist in a record or are of the
wrong type, then LDAP will reject the data. Sometimes, it's necessary to add new
objectClasses; you can do this with graphical tools. The recipe Administering
OpenLDAP has an example of one such tool.

» Access Control Lists: ACLs define which user or which group can do what. For
information on this complex subject area, please review http://www.openldap.
org/doc/admin24/access-control.html. You can also review the man entry on
your OpenLDAP server from the command line—man slapd.access

(&5}

Enhancing Security

See also

» Administering OpenLDAP
» Configuring the LDAP plugin

Using Script Realm authentication for

provisioning

For many Enterprise applications, provisioning occurs during the first login of the user. For
example, a directory with content could be made, a user added to an e-mail distribution list,
an Access Control List modified, or an e-mail sent to the marketing department.

This recipe will show you how to use two scripts—one to log in through LDAP and perform
example provisioning, and the other to return the list of groups a user belongs to. Both scripts
use Perl, which makes for compact code.

Getting ready

You need to have installed the Perl and the Net::LDAP modules. For a Debian distribution,
you should install the libnet-ldap-perl package (http://1ldap.perl.org/FAQ.html). You
also need to have installed the Script Realm plugin (https://wiki.jenkins-ci.org/
display/JENKINS/Script+Security+Realm).

How to do it...

1. As aJenkins user, place the following code in a file and save it under a directory
that is controlled by a Jenkins user with executable permissions. Name the file
login.pl. Verify that the Shome variable is pointing to the correct workspace.

#!/usr/bin/perl
use Net: :LDAP;
use Net::LDAP::Util gw(ldap error text);

my $dn part="ou=people, ou=mycompany, dc=nodomain";
my $home="/var/lib/jenkins/userContent";

my $user=$ENV{'U'};

my $pass=$ENV{'P'};

my $ldap = Net::LDAP->new("localhost");
my Sresult =$ldap->bind
("uid=Suser, $dn_part", password=>$pass) ;

=

Chapter 2

if ($result->code) {
my Smessage=ldap_ error text ($result->code) ;
print "dn=$dn\nError Message: Smessage\n";
exit (1) ;

}

Do some provisioning

unless (-e "Shome/Suser.html")
open (HTML, ">$home/$Suser.html") ;

print HTML
"Hello S%user here is some information";

close (HTML) ;

}

exit (0) ;
As a Jenkins user, place the following code in a file and save it under a directory that
is controlled by a Jenkins user with executable permissions. Name the file group.pl.

#!/usr/bin/perl
print "guest,all";
exit (0) ;

Configure the plugin via the Jenkins configuration screen, under the subsection
Security Realm:

o Check Authenticate via custom script

o Login Command: /var/lib/Jenkins/login.pl

o Groups Command: /var/lib/Jenkins/group.pl

o Groups Delimiter: ,

Press the Save button.
Log in as testerl, with the password changeme.

Visit the provisioned content at http://localhost:8080/userContent/
testerl.html.

/userContent/tester1.htm

Lo [& htep://localhost: 8¢

Hello testerl here is some information

Enhancing Security

The file login.pl pulls in the username and password from the environment variables
U and P. The script then tries to self bind the user to a calculated unique LDAP record.
For example, the distinguished name of the user testerl is:

uid=testerl, ou=people, ou=mycompany,dc=nodomain

Self binding happens when you search for your own LDAP record and at

the same time authenticate as yourself. This approach has the advantage
i of allowing your application to test a password's authenticity without using
a global administration account.

If authentication fails, an exit code of 1 is returned. If authentication succeeds, the
provisioning process takes place followed by an exit code of 0.

If the file does not already exist, it is created. A simple HTML file is created during the
provisioning process. This is just an example; you can do a lot more, from sending e-mail
reminders to full account provisioning across the breadth of your organization.

The group.pl script simply returns two groups that include every user, guest, and many
more. guest is a group intended for guests only. all is a group that all users belong to,
including the guests. Later, if you want to send e-mails out about the maintenance of services,
you can use an LDAP query to collect e-mail addresses via the all group.

LDAP servers are used for many purposes, depending on the schemas used. You

can route mail, create login accounts, and so on. These accounts are enforced by
common authentication platforms, such as Pluggable Authentication Modules (PAM),
in particular PAM_LDAP (http://www.padl.com/0SS/pam_ ldap.html and
http://www.yolinux.com/TUTORIALS/LDAP Authentication.html).

At the University of Amsterdam, we use a custom schema so that user records have an
attribute for the counting down of records. A scheduled task performs an LDAP search on the
counter and then decreases the counter by one. The task notes when the counter reaches
certain numbers and then performs actions, such as sending out e-mail warnings.

You can imagine using this method in conjunction with a custom login script. Once a
consultant logs in to Jenkins for the first time, they are given a certain period of grace before
their LDAP record is moved to a to be ignored branch.

http://www.padl.com/OSS/pam_ldap.html
http://www.padl.com/OSS/pam_ldap.html

Chapter 2

See also

» Reviewing Project-based Matrix tactics via a custom group script

Reviewing project-based matrix tactics via a

custom group script

Security best practices dictate that you should limit the rights of individual users to the level
that they require.

This recipe explores the Project-based Matrix strategy. In this strategy, you can assign
individual users or groups different permissions on a job-by-job basis.

The recipe uses custom realm scripts to allow you to log in with any name and a password
whose length is greater than five characters and to place the test users in their own unique
group. This will allow you to test out the Project-based Matrix strategy.

Getting ready

You will need to install the Script Realm plugin and also have Perl installed with the URI
module (http://search.cpan.org/dist/URI/URI/Escape.pm). The URI module is
included in modern Perl distributions, so in most situations, the script will work out of the box.

How to do it...

1. Copy the following script to the file login2.pl, in the Jenkins workspace, making
sure that Jenkins can execute the script:

#!/usr/bin/perl

my $user=$ENV{'U'};
my $pass=$ENV{'P'};
my S$min=5;

if (
(length($user) < $min) || (length($pass) < $min))
//Do something here for failed logins
exit (-1);
}
exit (0) ;

Enhancing Security

2. Copy the following script to the file group2 . p1, in the Jenkins workspace, making
sure that Jenkins can execute the script:

#!/usr/bin/perl

use URI;

use URI: :Escape;

my Sraw_user=$ENV{'U'};

my S$group=uri_escape ($raw_user) ;
print "grp_ s$group";

exit (0) ;

3. Configure the plugin via the Jenkins configuration screen under the subsection
Security Realm.
4. Tick the Authenticate via custom script checkbox and add the following details:
o Login Command: /var/lib/Jenkins/login2.pl
o Groups Command: /var/lib/Jenkins/group2.pl
a Groups Delimiter: ,

5. Check the Project-based Matrix Authorization Strategy checkbox.

Add a user, called adm_alan, with full rights.

@ project-based Matrix Authorization Strategy

Overall Slave Job Run View SCM
AdministerRead Configure Delete Create Create Delete Configure Read Build Workspace Delete Update Create Delete Configure Tag

& adm_alan M
Anonymous O O o 0o o o o 0O 0 O O o 0O o o O

User/group

7. Press the Save button.

8. Trytologin as adm_alan with a password less than five characters.

9. Loginas adm_alan with any password greater than five characters.

10. Create a new Job with the name project matrix test, with no configuration.
11. Check the Enable project-based security checkbox within the Job.

&)

Chapter 2

12. Add the group grp_proj_tester, with full rights (that is, all tickboxes checked).

Enable project-based security

Job Run SCM
User/group " .
Delete/Configure Read BuildWorkspace Delete Update Tag

& agrp_proj_tester ad
Anonymaous O O O O O O O O

Userfgroup to add: []

13. Loginas user I_cant_see_you. Note that you cannot view the recently created job,
project matrix test.

14. Log in as proj_tester. Note that you can now view and configure
project matrix test.

login2.pl allows any username/password combination to succeed, if it is at least the
length defined in the $min variable.

group?2 .pl reads the username from the environment, and then escapes the name to make
sure that no evil scripting is accidentally run later.

group2 .pl places the user in the group grp username. For example, if proj tester logs
in, they will belong to the group grp proj tester.

The group script allows us to log in as arbitrary users and view their permissions. In the
Project-based Matrix strategy, the permissions per user or group are defined at two levels:

1. Globally, via the Jenkins configuration page. This is where you should define your
global accounts for system-wide administration.

2. Per project, via the job configuration screen. The global accounts can gain extra
permissions per project but cannot lose permissions.

In this recipe, you logged in with a global account, adm_alan, that behaved as a root admin.
Then you logged in as I _cant see_ you—this has no extra permissions at all and can't even
see the job from the front page. Finally, you logged in as proj_tester, who belonged to the
group grp_proj_tester, which has full powers within the specific job.

Using the per-project permissions, you can not only limit the powers of individual users but
also shape which projects they view. This feature is particularly useful for Jenkins masters
that have a wealth of jobs.

Enhancing Security

There's more...

Here are a few more things you should consider:

My own custom security flaw

| expect you have already spotted this. The login script has a significant security flaw. The
username input, as defined by the U variable, has not been checked for malicious content. For
example, the username could be:

<script>alert ('Do something');</script>

Later on, if an arbitrary plugin displays the username as part of a custom view, then if

the plugin does not safely escape, the username is run in the end user's browser. This
example shows how easy it is to get security wrong. You are better off using well-known and
trusted libraries when you can. For example, the OWASP's Java specific AntiSamy library
(https://www.owasp.org/index.php/Category:OWASP AntiSamy Project) does
an excellent job of filtering input in the form of CSS or HTML fragments.

For Perl, there are numerous excellent articles on this subject, including the following one:

http://www.perl.com/pub/2002/02/20/css.html

Static code review, tainting, and untainting

Static code review is the name for tools that read code that is not running and review for
known code defects of this. PMD and FindBugs are excellent examples (http://fsmsh.
com/2804 . com).

A number of these generic tools can review your code for security defects. One of the
approaches taken is to consider input tainted if it comes from an external source, such as the
Internet or directly from input from files. To untaint, the input has to first be passed through a
regular expression and unwanted input safely escaped, removed, and/or reported.

» Using the Script Realm authentication for provisioning

Administering OpenLDAP

This recipe is a quick start to LDAP administration. It details how you can add or delete user
records from the command line and highlights the use of an example LDAP browser. These
skills are useful for maintaining an LDAP server for use in integration tests or for Jenkins
account administration.

[

http://fsmsh.com/2804.com

Chapter 2

Getting ready

To try this out, you will need Perl installed with the Net::LDAP modules. For example,
for a Debian distribution, you should install the 1ibnet -1dap-perl package
(http://1dap.perl.org).

You will also need to install the LDAP browser—JXplorer (http://jxplorer.org/).

How to do it...

1. To add a user to LDAP, you will need to write the following LDIF record to a file named
basic_example.ldif:
dn: uid=testerl2l,
ou=people, ou=mycompany, dc=nodomain
objectClass: inetOrgPerson
uid: testerl2l
sn: Tester
givenName: Testerl2l Tester
cn: Testerl2l Tester
displayName: Testerl2l Tester
userPassword: changeme
mail: 121.tester@dev.null

2. Add a new line at the end of the record and copy the aforementioned record into the
textfile, replacing the number 121 with 122, wherever it occurs in the second record.

3. Run the following 1dapadd command, inputting the LDAP administrator's password
when asked:

ldapadd -x -D cn=admin,dc=nodomain -W -f ./basic_example2.1ldif

4. Run JXplorer, connecting with the following values:
o HOST: localhost

o Level: Anonymous

5. Select the Schema tab, and then select the objectClass account.

Enhancing Security

6. In Table Editor, you will see attributes mentioned with MAY or MUST:

BEEE UXplorer
File Edit View Bookmark Search LDIF Options Tools Security Help
] By o5
g < I+]
#4 Results | 9§ Schema | HTML View Table Editor |
=f§ Explore : attribute type value
World description
¢ Bgschema host
o &L attributeTypes localityName
oY IdapSyntaxes organizationName
o L matchingRules organizationalUnitName
¢ 94 objectClasses seeAlso
userid
:; account
‘|objectClass synthetic_JXplorer_schema_object
‘|objectClass top
olD 0.9.2342,19200300.100.4.5
o~ I certificationAuthority sup top
o &4 certificationAuthority-\ || STRUCTURAL
oI5 country i
o- &4 cRLDistributionPoint
4] =% chE]ect [Tv | Submit || Reset || Change Class || Properties

|Connected To 'ldap://localhost:389'

7. Disconnect from the anonymous account by selecting File | Disconnect.
8. Reconnect as the admin account by selecting File | Connect:

o Host: Localhost

o Level: User+Password

o User DN: cn=admin, dc=nodomain

o Password: your password

9. Under the Explore tab, select testerl.

10. In the Table Editor, add the value 1021 XT to the postalCode.

11. Click on Submit.

12. Select the LDIF menu option, at the top of the screen, and select Export Subtree.

13. Click on the OK button and write the name of the file that you are going to export to
the LDIF.

14. Click on Save.

15. Create an executable script with the following code and run it:

#!/usr/bin/perl

use Net::LDAP;

use Net::LDAP::Util gw
(ldap_error text) ;

=

Chapter 2

my S$number users=2;
my Scounter=0;
my $start=100;

my $ldap = Net::LDAP->
new ("localhost") ;
$ldap->bind("cn=admin, dc=nodomain",
password=>"your password") ;

while (S$Scounter < $number_users){
Scounter++;
Stotal=Scounter+$start;
my S$Sdn="uid=tester$total, ou=people,
ou=mycompany, dc=nodomain";
my Sresult = $ldap->delete($dn);
if ($result->code) {
my Smessage=
ldap error text ($result->code) ;
print "dn=$dn\nError Message: Smessage\n";
}
}

In the recipe, you have performed a range of tasks. First, you have used an LDIF file to
add two users. This is a typical event for an LDAP administrator in a small organization.
You can keep the LDIF file and then make minor modifications to add or delete users,
groups, and so on.

Next, you have viewed the directory structure anonymously through an LDAP browser, in this
case, JXplorer. JXplorer runs on a wide range of operating systems and is open source. Your
actions indicate that LDAP is an Enterprise directory service, where things are supposed to
be found even by anonymous users. The fact that pages render fast in JXplorer indicates that
LDAP is a read-optimized database that returns search results efficiently.

Using an LDAP browser generally gets more frustrating as the number of objects to render
increases. For example, at the University of Amsterdam, there are more than 60,000 student
records under one branch. Under these circumstances, you are forced to use command-line
tools or be very careful with search filters.

Being able to view objectClasses, knowing which attributes are optional and that you may use
and which attributes are required and that you must use, helps you to optimize your records.

Next, you bind (perform some action) as an admin user and manipulate the testeri1 record.
For small organizations, this is an efficient means of administration. Exporting the record to
LDIF allows you to use the record as a template for further importing of records.

(75}

Enhancing Security

The deletion script is an example of programmatic control. This gives you a lot of flexibility for
large-scale generation, modification, and deletion of records, by changing just a few variables.
Perl was chosen because of its lack of verbosity. The use of these types of scripts is typical for
the provisioning of integration tests.

Within the deletion script, you will see that the number of users to delete is set to 2 and
the starting value of the tester accounts is 100. This implies that the two records you had
previously generated are going to be deleted, for example, tester101 and tester102.

The script binds once, as the admin account, and then loops through a number of records
using Scounter as a part of the calculation of the distinguished name of each record. The
delete () method is called for each record, and any errors generated will be printed out.

There's more...

You should consider deleting users' Perl script as an example of how to provision or clean
up an LDAP server that is needed for integration tests, efficiently. To create an add rather
than a delete script, you could write a similar script replacing my S$result = $1dap-
>delete ($dn) ; with something similar to:

my Sresult = $ldap->add($dn, attrs => [@$SwhatToCreate 1);
(Where @swhatTOCreate is a hash containing attributes and objectClasses).

For more examples, refer to http://search.cpan.org/~gbarr/perl-1ldap/lib/Net/
LDAP/Examples.pod#OPERATION - Adding a new Record.

» Installing OpenLDAP with a test user and group
» Configuring the LDAP plugin

Configuring the LDAP plugin

LDAP is the standard for Enterprise directory services. This recipe explains how to attach
Jenkins to your test LDAP server.

Getting ready

This recipe assumes that you have performed the Installing OpenLDAP with a test user and
group recipe.

7

Chapter 2

How to do it...

Enter the Jenkins configuration screen. Select Enable security.
Tick the LDAP checkbox.

Add the Server value 127.0.0.1

Press the Advance button.

ok 0Nk

Add the following details:
o User Search Base: ou=people, ou=mycompany, dc=nodomain
o User Search filter: uid={0}

o Group Search base: ou=groups, ou=mycompany, dc=nodomain

The test LDAP server supports anonymous binding—you can search the server without
authenticating. Most LDAP servers allow this approach. However, some servers are configured
to enforce specific information security policies. For example, your policy might enforce being
able anonymously to verify that a user's record exists, but you may not be able to retrieve
specific attributes, such as their e-mail or postal address.

Anonymous binding simplifies configuration, otherwise you will need to add account details
for a user in LDAP with the rights to perform the searches. This account, having great LDAP
powers, should never be shared and can present a chink in your security armor.

The User Search filter, uid={ 0}, searches for users whose uid equals their username. Many
organizations prefer to use cn instead of uid; the choice of attribute is a matter of taste. You
can even imagine an e-mail attribute being used to uniquely identify a person, as long as that
attribute cannot be changed by the user.

The security realm
When you log in to an instance of the Java class, hudson.

~\l security.LDAPSecurityRealm is called. The code is defined
in a Groovy script, which you can find under WEB-INF/security/
LDAPBindSecurityRealm.groovy, within the Jenkins .war file.
For further information visit http://wiki.hudson-ci.org/
display/HUDSON/Standard+Security+Setup.

Enhancing Security

There's more...

Here are a few more things for you to think about:

The difference between misconfiguration and bad credentials

While configuring the LDAP plugin for the first time, your authentication process might fail
due to misconfiguration. Luckily, Jenkins produces error messages. For the Debian Jenkins
package, you can find the logfile at /var/log/jenkins/jenkins. log; for the Windows
version running as a service, you can find the relevant logs through the Events Viewer by
filtering on Jenkins source.

The two main errors consistently made are:

1.

Misconfigured DN: A misconfigured DN for either User Search Base or Group Search
Base will have the relevant log entry similar to the following:

org.acegisecurity.AuthenticationServiceException:
LdapCallback; [LDAP: error code 32 - No Such Object];
nested exception is javax.naming.NameNotFoundException:
[LDAP: error code 32 - No Such Object];
remaining name 'ou=people,dc=mycompany ,dc=nodomain'

Bad Credentials: If the user does not exist in LDAP, you have either typed in the
wrong password or you have accidently searched the wrong part of the LDAP tree; the
log error will start with the following text:

org.acegisecurity.BadCredentialsException: Bad credentials

Searching
Applications retrieve information from LDAP in a number of ways:

>

Anonymously for generic information. This approach works only for information
that is exposed to the world. However, the LDAP server can limit the search queries
to specific IP addresses as well. The application will then be dependent on the
attributes that your organization is prepared to disclose. If the information security
policy changes, the risk is that your application might break accidently.

Self-bind: The application binds as a user and then searches with the user's rights.
This approach is the cleanest. However, it is not always clear in the logging whether
the application is behind these actions.

Using an application-specific admin account with many rights: The account gets all
the information that your application requires, but if disclosed to the wrong people,
can cause significant issues quickly.

If the LDAP server has an account-locking policy, it is simple
i for a cracker to lock out the application.

7@

Chapter 2

In reality, the approach chosen is defined by the already defined Access Control policy of your
Enterprise directory service.

Review plugin configuration

Currently, there are over 300 plugins for Jenkins. It is possible, though
M unlikely, that occasionally passwords are being stored in plain text in the
Q XML configuration files in the workspace directory or plugins directory.
Every time you install a new plugin that requires a power user's account,
you should double check the related configuration file. If you see a plain
textfile, you should write a bug report attaching a patch to the report.

» Installing OpenLDAP with a test user and group

» Administering OpenLDAP

Installing a CAS server

Yale CAS (http://www.jasig.org/cas) is a Single Sign-on Server. It is designed as a
campus-wide solution and, as such, is easy to install and relatively simple to configure to
meet your specific infrastructural requirements. CAS allows you to sign in once, and then
automatically use lots of different applications without logging in again. This is made for
a much more pleasant user interaction across the range of applications used by a typical
Jenkins user during their day.

Yale CAS has helper libraries in Java and PHP that make integration of third-party applications
straightforward.

Yale CAS also has the significant advantage of having a pluggable set of handlers that
authenticate across a range of backend servers, such as LDAP, OpenID (http://openid.
net/), and RADIUS (http://en.wikipedia.org/wiki/RADIUS).

In this recipe, you will install the complete version of a CAS server running from within a
Tomcat 7 server. This recipe is more detailed than the rest in this chapter, and it is quite
easy to misconfigure. To help, the modified configuration files mentioned in this recipe will be
downloadable from the Packt website.

(77}

http://openid.net/

Enhancing Security

Getting ready

Download Yale CAS (http://www.jasig.org/cas/download)and unpack it.
This recipe was written with version 3.4.8, but it should work for earlier or later versions,
with little modification.

Install Tomcat 7 (http://tomcat.apache.org/download-70.cgi). The recipe assumes
that the installed Tomcat server is initially turned off.

How to do it...

1. Inthe unpacked Tomcat directory, edit conf/server.xml, and comment out the
port 8080 configuration information:

<l--

<Connector port="8080" protocol="HTTP/1.1"

-->

2. Add the following code underneath the text needed to enable port 9443 with SSL:

<Connector port="9443"
protocol="org.apache.coyote.httpll.HttpllProtocol"
SSLEnabled="true" maxThreads="150"
scheme="https" secure="true"
keystoreFile="${user.home}/.keystore"
keystorePass="changeit"
clientAuth="false" sslProtocol="TLS" />

3. Asthe user that Tomcat will run under, create a self-signed certificate via:
keytool -genkey -alias tomcat -keyalg RSA

Note: If keytool is not found on your PATH, you might have to
s fill in the full location to the bin directory of your Java folder.

4. From underneath the root directory of the unpacked CAS server, copy the file
modules/cas-server-uber-webapp-3.x.x (Where x.x is the specific
version number) to the Tomcat webapps directory, making sure the file is
renamed to cas.war.

5. Start Tomcat.

Loginvia https://localhost:9443/1login/cas, with the username equal to
the password, for example, smile/smile.

7. Stop Tomcat.

Chapter 2

8. Either modify the webapps/cas/Web-INF/deployerConfigContext.
xml file or replace with the example file previously downloaded
from the Packt website. To modify, you will need to comment out
SimpleTestUsernamePasswordAuthenticationHandler

<!l--
<bean class=
"org.jasig.cas.authentication.handler.support.
SimpleTestUsernamePasswordAuthenticationHandler" />

-->

9. Underneath the commented-out code, add the configuration information for LDAP:

<bean class=
"org.jasig.cas.adaptors.ldap.
BindLdapAuthenticationHandler">
<property name="filter" value="uid=%u" />
<property name="searchBase"
value="ou=people, ou=mycompany, dc=nodomain" />
<property name="contextSource" ref="contextSource" />
</bean>
</list>
</propertys>
</bean>

10. Beneath </bean>, add an extra bean configuration, replacing the password value
with that of yours:

<bean id="contextSource" class=
"org.springframework.ldap.core.support.LdapContextSource" >
<property name="pooled" value="false"/>
<property name="urls">
<list>
<value>ldap://localhost/</value>
</list>
</propertys>
<property name="userDn" value="cn=admin, dc=nodomain"/>
<property name="password" value="adminpassword"/>
<property name="baseEnvironmentProperties">
<map>
<entry>
<key>
<value>java.naming.security.
authentication</values>
</key>
<value>simple</value>
</entry>
</map>
</propertys>
</bean>

Enhancing Security

11. Restart Tomcat.

12. Log invia https://localhost:9443/cas/login, using the testerl account. If
you see a page similar to the following, congratulations, you now have a running SSO!

Ji& CAS —Central Authentications...][+* } A d
|"_‘ [GIEIGEHY https://localhost:9443/cas/login V|G'] [-:_IV| Q] @

JASIG

Central Authentication Service (CAS)

Enter your NetID and Password

NetID:

Password:

O warn me before logging me into other

sites.

LOGIN clear

For security reasons, please Log Out and Exit your web browser when you are done accessing services that require authentication!

Languages:
English | Spanish | French | Russian | Nederlands | Svenskt | Italiana | Urdu | Chinese
(Simplified) | Deutsch | Japanese | Croatian | Czech | Slovenian | Catalan | Macedonian | Polish

Copyright @ 2005 - 2010 Jasig, Inc. Al rights reserved.
Powered by Jasiq Central Authentication Service 3.4.8 LY

By default, Tomcat runs against port 8080, which happens to be the same port number as
Jenkins. To change the port number to 9443 and turn on SSL, you must modify conf/server.
xml. For SSL to work, Tomcat needs to have a keystore with a private certificate, using the
variable ${user.home} to point to the home directory of the Tomcat user, for example:

keystoreFile="${user.home}/.keystore" keystorePass="changeit"

The protocol you choose is TLS, which is a more modern and secure version of SSL. For
further details, see http://tomcat .apache.org/tomcat-7.0-doc/ssl-howto.html.

Next, you generate a certificate and place it in the Tomcat user's certificate store, ready
for Tomcat to use. Your certificate store might contain many certificates; the alias tomcat
uniquely identifies the appropriate certificate.

Within the downloaded CAS package, there are two CAS WAR files. The larger WAR file
contains the libraries for all the authentication handlers, including the required LDAP handler.

(&)

Chapter 2

The default setup allows you to log in with the same values for username and password. This
setup is for demonstration purposes. To replace or chain together handlers, you have to edit
webapps/cas/Web-INF/deployerConfigContext .xml. For more in-depth details, read
https://wiki.jasig.org/display/CASUM/LDAP.

If at any time you are having problems with configuration, the best place to check is in
Tomcat's main log, the 1logs/catalina.out. For example, a bad username or password will
generate an error similar to the following:

WHO: [username: test]

WHAT: error.authentication.credentials.bad

ACTION: TICKET GRANTING TICKET NOT CREATED

APPLICATION: CAS

WHEN: Mon Aug 08 21:14:22 CEST 2011

CLIENT IP ADDRESS: 127.0.0.1

SERVER IP ADDRESS: 127.0.0.1

There's more...

Here are a few more things you should consider:

Backend authentication

Yale CAS has a wide range of backend authentication handlers, and it is straightforward for a
Java developer to write his own. The following table mentions the current handlers. Expect the
list to expand.

Note: Using well-supported third-party frameworks, such as JAAS
and JDBC implementations, you can connect to a much wider set
T~ of services than mentioned in the table.

Active Directory Connect to your windows infrastructure.

JAAS JAAS implements a Java version of the standard Pluggable Authentication
Module (PAM) framework. This allows you to pull in other authentication
mechanisms, such as Kerberos.

LDAP Connect to your Enterprise directory services.
RADIUS Connect to Radius.
Trusted Is used to offload some of the authentication to an Apache server or

another CAS server.

Generic A set of small generic handlers, such as a handler to accept a user from
a list or from a file.

s

Enhancing Security

JDBC Connect to databases, and there are even drivers for spreadsheets and
LDAP.

Legacy Supports the CAS2 protocol.

SPNEGO Simple and Protected GSSAPI Negotiation Mechanism allows the CAS

server to negotiate between protocols with a backend service, possibly
allowing transitioning between backend services.

X.509 Certificates Require a trusted client certificate.

An alternative installation recipe using ESUP CAS

The ESUP consortium also provides a repackaged version of CAS, which includes additional
ease-of-use features, including an out of the box demonstration version. However, the ESUP
version of the CAS server lags behind the most current version. If you want to compare the two
versions, you can find the ESUP installation documentation at http://esup-casgeneric.
sourceforge.net/install-esup-cas-quick-start.html.

The ESUP package is easier to install and configure than this recipe,
s however, it includes an older version of CAS.

Trusting LDAP SSL

Having SSL enabled on your test LDAP server avoids sniffable passwords being sent over the
wire, but you will need to get the CAS server to trust the certificate of the LDAP server. Here's a
relevant quote from the Jasig Wiki:

Please note that, your JVM needs to trust the certificate of your SSL enabled LDAP
server or CAS will refuse to connect to your LDAP server. You can add the LDAP
server's certificate to the JVM trust store ($JAVA HOME/jre/lib/security/
cacerts) to solve that issue.

A few useful resources
There are many useful resources on the Jasig Wiki (https://wiki.jasig.org/), including:
» Securing your CAS server: https://wiki.jasig.org/display/CASUM/
Securing+Your+New+CAS+Server

» Connecting CAS to a database: https://wiki.jasig.org/display/CAS/
Examples+to+Configure+CAS

» Creating a high availability infrastructure: http://www.ja-sig.org/wiki/
download/attachments/22940141/HA+CAS.pdf?version=1

Chapter 2

See also

>

Enabling SSO in Jenkins

Enabling SSO in Jenkins

In this recipe, you will enable CAS in Jenkins through the use of the Cas1 plugin. For the CAS
protocol to work, you will also need to build a trust relationship between Jenkins and the CAS
server. The Jenkins plugin trusts the certificate of the CAS server.

Getting ready

To try this out, you will need to have installed a CAS server, as described in the recipe
Installing a CAS server.

How to do it...

1.

© PN oA W

You will need to export the public certificate of the CAS server. You do this from a
Firefox 6 web browser by visiting http://localhost:9443.

In the address bar, you will see a Tomcat icon on the left-hand side. Click on the icon,
and a security pop-up dialog will appear.

Click on the More information button.

Click on the View Certificate button.

Select the Details tab.

Click on the Export button.

Choose a location for your public certificate to be stored.

Press Save.

Import the certificate into the Java keystore by using the command-line option:

sudo keytool -import -alias myprivateroot -keystore
./cacerts -file location of exported certificate

. To configure your CAS setting, visit the Jenkins Config Screen.
. Under Access Control, check the CAS protocol version 1 checkbox, and fill in the

following details:

CAS Server URL: https://localhost:9443
Hudson Host Name: localhost:8080

&)

Enhancing Security

12. Log out of Jenkins.
13. Log in to Jenkins. You will now be redirected to the CAS server.
14. Log in to the CAS server. You will now be redirected back to Jenkins.

The CAS plugin cannot verify the client's credentials unless it trusts the CAS server certificate.
If the certificate is generated by a well-known trusted authority, their root certificates are most
likely already in the default keystore (cacerts). This comes pre-packaged with your Java
installation. However, in the CAS installation recipe, you had created a self-signed certificate.

The configuration details for the CAS plugin are trivial. Note that you left the the Roles Validation
script blank. This implies that your matrix-based strategies will have to rely on users being given
specific permissions rather than groups defined by a customized CAS server.

Congratulations, you have a working SSO in which Jenkins can play its part seamlessly with a
large array of other applications and authentication services.

» Installing a CAS server

Building Software

In this chapter, we will cover the following recipes:

>

Plotting alternative code metrics in Jenkins
Running Groovy scripts through Maven
Manipulating environmental variables

Running AntBuilder through Groovy in Maven
Failing Jenkins Jobs based on JSP syntax errors
Configuring Jetty for integration tests

Looking at license violations with RATs
Reviewing license violations from within Maven
Exposing information through build descriptions
Reacting to the generated data with the Post-build Groovy plugin
Remotely triggering Jobs through the Jenkins API

Adaptive site generation

Introduction

This chapter reviews the relationship between Jenkins and Maven builds and also a small
amount of scripting with Groovy and Ant.

Jenkins is the master of flexibility. It works well across multiple platforms and technologies.
Jenkins has an intuitive interface with clear configuration settings. This is great for getting
the job done. However, it is also important that you clearly define the boundaries between the
Jenkins plugins and the Maven build files.

Building Software

A lack of separation will make you unnecessarily dependent on Jenkins. If you know that you
will always run your builds through Jenkins, then you can afford to place some of the core
work in the Jenkins plugins, gaining interesting extra functionality. However, if you want to
always be able to build, test, and deploy directly, then you will need to keep the details in the
pom.xml. You will have to judge the balance in where you add the configuration. It is easy to
have the feature creep as you use more of the Jenkins plugin's feature set. The Ul is easier
to configure than writing a long pom.xm1. The improved readability translates into fewer
configuration-related defects. It is also simpler for you to use Jenkins for most of the common
tasks, such as transporting artifacts, communicating, and plotting the trends of tests.

An example of the interplay between Jenkins and Maven is the use of Jenkins

Publish Over SSH Plugin (https://wiki.jenkins-ci.org/display/JENKINS/
Publish+Over+SSH+Plugin). You can configure to transfer files or add a section of the
pom.xml, as follows:

<builds>
<plugins>
<plugin>
<artifactIds>maven-antrun-plugin</artifactIds>
<configurations>
<tasks>
<scp file="${user}:${pass}@${host}:${file.remote}"
localTofile="${file.local}"/>
</tasks>
</configurations>
<dependencies>
<dependency>
<groupId>ant</groupIlds>
<artifactIdsant-jsch</artifactId>
<version>1.6.5</version>
</dependency>
<dependency>
<groupld>com.jcraft</groupIld>
<artifactId>jsch</artifactIds>
<version>0.1.42</versions>
</dependency>
</dependencies>
</plugin>
</plugins>
</builds>

Remembering the dependencies on specific JARs and versions which the Maven plugin uses
at times feels like magic. The Jenkins plugins simplify details.

Later in the chapter, you will be given the chance to run Groovy scripts with AntBuilder. Each
approach is viable, and the use depends more on your preferences rather than one choice.

~[ee]

Chapter 3

Jenkins plugins work well together. For example, the promoted builds plugin
(https://wiki.jenkins-ci.org/display/JENKINS/Promoted+Builds+Plugin)
signals when a build has met a certain criteria, placing an icon by a successful build. You
can use this feature to signal, for example, to the QA team that they need to test the build
or system administrators to pick up the artifacts and deploy.

Promotions

I know what I like

Last promoted build is @ #1, 38 sec ago. (permalink)

Other plugins can also be triggered by promotion, including the SSH plugin. However,
Maven is not aware of the promotion mechanism. As Jenkins evolves, expect more
plugin interrelationships.

Jenkins is well-versed choreographing of actions. You should keep the running time of a Job to a
minimum and offset heavier Jobs to nodes. Heavy Jobs tend to be clustered around document
generation or testing. Jenkins allows you to chain Jobs together, and hence Jobs will be coupled
to specific Maven goals, such as integration testing (http://Maven.apache.org/guides/
introduction/introduction-to-the-lifecycle.html#Lifecycle Reference).
Under these circumstances, you are left with the choice of writing a number of build files,
perhaps as a multi-module project (http://Maven.apache.org/plugins/Maven-
assembly-plugin/examples/multimodule/module-source-inclusion-simple.
html) or a thicker pom.xml, with different goals ready to be called across Jobs. Keep It Simple
Stupid (KISS) biases the decision towards a larger, single file.

A template pom.xml

The recipes in this chapter will include pom.xml examples. To save page space, only
the essential details will be shown. You can download the full examples from the Packt
Publishing website.

The examples were tested against Maven 2.2.1. You will need to install this version on your
Jenkins server, giving it the label 2.2 . 1.

To generate a basic template for a Maven project, you have two choices. You can

create a project through the archetype goal (http://Maven.apache.org/guides/
introduction/introduction-to-archetypes.html). Or you can start off with a
simple pom.xml file, as shown in the following code:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://Maven.apache.org/maven-v4 0 0.xsd">

Building Software

<modelVersion>4.0.0</modelVersions>
<grouplds>org.berg</groupIlds>
<artifactId>ch3.builds.xxx</artifactId>
<version>1.0-SNAPSHOT</versions>
<name>Template</name>

</project>

The template looks simple, but is only part of a larger effective pom.xml. It is combined with
the default values that reside hidden in Maven. To view the expanded version, you will need to
run the following command:

mvn help:effective-pom

Unless otherwise stated, the fragments mentioned in the recipes should be inserted into
the template, just before the </project> tag, updating your groupID, artifactID, and
version values to your own taste.

Setting up a File System SCM

In the previous chapters, you used recipes that copied the files into the workspace.

This is easy to explain, but is OS-specific. You can also do the file copying through the

File System SCM plugin (https://wiki.jenkins-ci.org/display/JENKINS/
File+System+SCM), which is OS-agnostic. You will need to install the plugin, ensuring that
the files have the correct permissions, so that the Jenkins user can copy. In Linux, consider
placing the files beneath the Jenkins home directory: /var/l1ib/Jenkins.

Plotting alternative code metrics in Jenkins

This recipe details how to plot custom data using the plot plugin (https://wiki.jenkins-
ci.org/display/JENKINS/Plot+Plugin). This allows you to expose numeric build
data visually.

Jenkins has many plugins that create views of the test results generated by builds. The
Analysis collector plugin pulls in the results from a number of these plugins to create an
aggregated summary and history (https://wiki.jenkins-ci.org/display/JENKINS/
Analysis+Collector+Plugin). This is great for plotting the history of the standard result
types, such as JUnit, FindBugs, JMeter, and NCSS. There is also a plugin (http://docs.
codehaus.org/display/SONAR/Hudson+and+Jenkins+Plugin) that supports pushing
data to Sonar (http://www.sonarsource.org/). Sonar specializes in reporting a project's
code quality. However, despite the wealth of options, there may come a time when you will
need to plot custom results.

Scenario: You want to know the history of how many hits or misses are generated in your
custom cache during integration testing. Plotting over builds will give you an indicator of
whether the code change is improving or degrading performance.

(e

https://wiki.jenkins-ci.org/display/JENKINS/File+System+SCM
https://wiki.jenkins-ci.org/display/JENKINS/File+System+SCM
https://wiki.jenkins-ci.org/display/JENKINS/Analysis+Collector+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Analysis+Collector+Plugin

Chapter 3

In this recipe, a simple Perl script will generate random cache results.

Getting ready

In the Plugin Manager section of Jenkins, for example http://localhost:8080/
pluginManager/available, install the Plot plugin.

Create the directory ch3 .building software/plotting.

How to do it...

1.

Create the file ch3 .building software/plotting/hit and miss.pl, adding
to it the following contents:

#!/usr/bin/perl
my Sworkspace = $ENV{'WORKSPACE'};

open (P1, ">$workspace/hits.properties") || die;
open (P2, ">$workspace/misses.properties") || die;
print P1 "YVALUE=".rand(100) ;

print P2 "YVALUE=".rand(50) ;

Create a freestyle Job with the Job named ch3.plotting.

In the Source Code Management section, check File System, adding for Path the
fully qualified path to your plotting directory, for example /var/1ib/Jenkins/
cookbook/ch3.building software/plotting.

In the Build section, add a build step for the Execute shell, or in the case of a
Windows system, Execute Windows batch command.

For the command, add perl hit and miss.pl.
In the Post-build Actions section, select the Plot build data checkbox.
Add the following values to the newly expanded region:

o Plot group: Cache Data

o Plottitle: Hits and misses

o Plot y-axis label: Number of hits or misses

o Plot style: Stacked Area

Add a Data series file misses.properties with Data series legend label Misses.
Add a Data series file hits.properties with Data series legend label Hits.

]

Building Software

10. At the bottom of the Configuration page, click on the Save button.

Post-build Actions

[0 agaregate downstream test resuits

Archive the artifacts

oo

Build other projects

&

Plot build data

Delete Plot

Plot group [Cache Data

| @

Plot title [H\rj and misses

@

Number of builds to include [

®

Plot y-axis label [Number of hits or misses

| @

Plot style Stacked Area | T

Build Descriptions as labels [7]

%)
®

Data series file [misses.prupertias

2

(O] Load data from properties file

@

Data series legend label [Misses

| @

O Load data from csv file

O Load data from xmil file using xpath

@
@

Delete Data Series

Data series file [hifj_propertiEE

)

® Load data from properties file

@

Data series legend label [Hits

| @

O Load data from csv file

@] Load data from xml file using xpath

A new data series definton

@
@

Delete Data Series

®eee

11. Run the job multiple times.

5]

Chapter 3

12. Review the Plot link.

E’.Cache Data

Jump to | Plot 1: Hits and misses & |

Hits and misses

MNumber of hits or misses

o+ F F F F T F F F T+ F F o+ T T o+ T T+ F T o+ T w F T w T v o+ T T
. oo Q@ oo o@ e e @G Ao e @ oo & e @ & Qe e 2 o oo oo oo
¢ o ¢ v ¢ O @O 0 ¥ U O O O & U O ¥ T & U ¥ T T T T ¥ L T T T @
LI I S S > SO T T N SO NN SO T - s N O T T - SO s N N TN ¢ SO - S s N 2 N 1 O SO SO N > B
H oMo m o N W o~ omom o oo oo W m o o o moF N W o omo@ o o
¥ ¥ % ¥ * % ¥ # ¥ o o H o o o P T N N O T Y o O N S B 1

¥ % o k& 0k X * ® k¥ kx ¥ ¥ Ok ok ¥ k ok kx ¥ X

D #16
o #17

uil

W Misses [Hits

The Perl script generates two property files: hits and misses. The hits file contains YVALUE
between 0 and 100, and the misses file contains YVALUE between 0 and 50. The numbers are
generated randomly. The plot plugin then reads values out of the property YVALUE.

The two property files are read by the plot plugin. The plugin keeps track of the history and
their values displayed in a trend graph values. You will have to experiment with the different
graphic types to find the optimum plot for your custom measurements.

There are currently two other data formats that you can use: XML and CSV. However, until
the online help clearly explains the structures used, | would recommend staying with the
properties format.

Perl was chosen for its coding brevity and because it is platform-agnostic. The script could
have also been written in Groovy and run from within a Maven project. You can see a Groovy
example in the Running Groovy scripts through Maven recipe.

i

Building Software

There's more...

The plot plugin allows you to choose between a number of plot types, including Area, Bar, Bar
3D, Line, Line 3D, Stacked Area, Stacked Bar, Stacked Bar 3D, and Waterfall. If you choose
the right graph type, you can generate beautiful plots.

If you want to add these custom graphs to your reports, you will need to save them. You can
do so by right-clicking on the image in your browser.

You may also wish for a different graph size. You can generate an image by visiting the following
URL: http://host/job/JobName/plot/getPlot?index=n&width=x&height=y.

The width and height define the size of the plot. n is an index number pointing to a specific
plot. If you have only one plot, then n is equal to 0. If you have two plots configured, then n
could be either 0 or 1. To discover the index, visit the plots link, examine the Jump to select
box, and minus one from the highest Plot number.

"",Cache Data

Jump to | Plot 1: Hits and Misses 7 |

-

To generate a graph in a PNG format having dimensions of 800x600 based on the Job in this
recipe, you would use a URL similar to the following:

localhost:8080/job/ch3.plotting/plot/getPlot?index=0&width=800&height
=600

M To download the image without logging in yourself, you can also
Q use the scriptable authentication method mentioned in the recipe
Remotely triggering Jobs.

» Running Groovy scripts through Maven
» Adaptive site generation
» Remotely triggering Jobs through the Jenkins API

[

Chapter 3

Running Groovy scripts through Maven

This recipe describes how to use the gmaven plugin (http://docs.codehaus.org/
display/GMAVEN/Home) to run Groovy scripts.

The ability to run Groovy scripts in builds allows you to consistently use one scripting language
in Maven and Jenkins. Groovy can be run in any Maven phase. Maven can execute the Groovy
source code from within the build file, at another file location, or from a remote web server.

N Maintainability of scripting

~

For later re-use, consider centralizing your Groovy code outside the
build files.

Getting ready

Create the directory ch3 .building software/running groovy.

How to do it...

1. Add the following fragment just before the </project> tag within your template file
(mentioned in the introduction), making sure the pom.xml file is readable by Jenkins.

<builds>
<plugins>
<plugins>
<groupIds>org.codehaus.gmaven</groupIld>
<artifactId>gmaven-plugin</artifactId>
<version>1l.3</version>
<executions><execution>
<id>run-myGroovy</id>
<goals><goal>execute</goal></goals>
<phases>verify</phase>
<configurations>
<classpath>
<element>
<groupId>commons-lang</groupIds>
<artifactId>commons-lang</artifactIds>
<versions>2.6</version>
</element>
</classpath>
<source>
import org.apache.commons.lang.SystemUtils
if (!SystemUtils.IS 0OS_UNIX)
{ fail("Sorry, Not a UNIX box") }
def command="1ls -1".execute()
println "OS Type ${SystemUtils.OS NAME}"

55}

Building Software

println "Output:\n ${command.text}"
</source>
</configurations>
</execution></executions>
</plugin>
</plugins>
</build>

2. Create a free-style job with the Job name ch3 .groovy verify.

3. Inthe Source Code Management section, check File System, adding for Path the
fully qualified path to your plotting directory, for example /var/l1ib/jenkins/
cookbook/ch3.building software/running groovy.

4. In the Build section, add a build step for Invoke top-level Maven targets. In the
newly expanded section, add:

o Maven Version: 2.2.1
o Goals: Verify

5. Run the Job. If your system is on a *NIX box, then similar output will be seen to
the following:

0S Type Linux
Output:
total 12
-rwxrwxrwx 1 jenkins jenkins 1165 2011-09-02 14:26 pom.xml
drwxrwxrwx 1 jenkins jenkins 312 2011-09-02 14:53 target

On a Windows system, with Jenkins properly configured, the script will fail with the
following message:

Sorry, Not a UNIX box

You can execute the gmaven-plugin multiple times during a build. In the example, the
phase verify is the trigger point.

To enable the Groovy plugin to find the imported classes outside its core features, you will
need to add an element in the <classpaths>. The source code is contained within the
<source> tag.

import org.apache.commons.lang.SystemUtils

if (!SystemUtils.IS 0S _UNIX) { fail("Sorry, Not a UNIX box")}
def command="ls -1".execute ()

println "OS Type ${SystemUtils.OS_NAME}"

println "Output:\n ${command.text}"

=

Chapter 3

The import statement works as the dependency is mentioned in the <classpath> tag.

The systemutils class
(http://commons.apache.org/lang/api-2.6/org/apache/commons/lang/
SystemUtils.html) provides helper methods, such as the ability to discern which OS you
are running, the Java version, and the user's home directory.

The fail method allows the Groovy script to fail the build. In this case, when you are not
running the build on a *NIx OS, then most times you will want your builds to be 0S-agnostic.
However, during integration testing, you may want to use a specific OS to perform functional
tests with a specific web browser. The check will stop the build in case your tests find
themselves on the wrong node.

Once you are satisfied with your Groovy code, consider compiling the
code into the underlying Java byte code. You can find full instructions

at the following URL:
Y

http://docs.codehaus.org/display/GMAVEN/
Building+Groovy+Projects

There's more...

Here are a number of tips that you might find useful.

Keeping track of warnings

It is important to review your log files, not only on failure but also for the warns. In this case,
you will see the two warnings:

[WARNING] Using platform encoding (UTF-8 actually) to copy

[WARNING] JAR will be empty - no content was marked for inclusion!

The platform encoding warning states that the files will be copied using the default
platform encoding. If you change the servers and the default encoding on the server is
different, then the results of the copying may also be different. For consistency, it is better to
enforce a specific coding by adding the lines:

<properties>
<project.build.sourceEncoding>UTF8</project.build.sourceEncoding>
</properties>

Please update your template file to take this into account.

The JAR warning is because we are only running a script and have no content to make a JAR.
If you had called the script in an earlier phase than the packaging of the JAR, you would not
have triggered the warning.

[55]-

Building Software

Where's my source?
There are two other ways to point to Groovy scripts to be executed. The first is to point to the
file system, for example:

<source>${script.dir}/scripts/do_some good.Groovy</sources>
The other approach is to connect to a web server through a URL similar to the following;:
<sources>http://localhost/scripts/test.Groovy</source>

Using a web server to store Groovy scripts adds an extra dependency to the infrastructure.
However, it is also great for centralizing code in an SCM with web access.

Maven phases

Jenkins lumps work together in Jobs. It is coarsely grained for building with pre and

post build support. Maven is much more refined, having 21 phases as trigger points.

See http://Maven.apache.org/guides/introduction/introduction-to-the-
lifecycle.html.

Goals bundle phases, for example, for the site goal there are four phases: pre-site, site,
post-site, and site-deploy, all of which will be called in order by mvn site or directly by
using the syntax mvn site:phase.

The idea is to chain together a series of lightweight Jobs. You should farm out any heavy Jobs,
such as integration tests or a large amount of JavaDoc generation, to a slave node. You should
also separate by time to even load and aid in diagnosing issues.

For 2.2.1 and 3.0.3, you can find the XML wiring the lifecycle code at the following URLs:

» http://svn.apache.org/viewvc/maven/maven-2/tags/maven-2.2.1/
maven-core/src/main/resources/META-INF/plexus/components.
xml?view=markup

» http://svn.apache.org/viewvc/maven/maven-3/tags/maven-3.0.3/
maven-core/src/main/resources/META-INF/plexus/components.
xml?view=markup

You will find the Maven phases mentioned in components .xml under the line:

<!-- START SNIPPET: lifecycle -->

5]

Chapter 3

Maven plugins bind to particular phases. For site generation, the <reporting> tag
surrounds the majority of the configuration. The plugins configured under reporting generate
useful information, whose results are saved under the target/site directory. There are

a number of plugins that pick up the generated results and then plot their history. Jenkins
plugins, in general, do not perform the tests, but consume the results. There are exceptions,
such as the sloccount plugin (https://wiki.jenkins-ci.org/display/JENKINS/
SLOCCount+Plugin) and the task scanner plugin (https://wiki.jenkins-ci.org/
display/JENKINS/Task+Scanner+Plugin). These differences will be explored later in
Chapter 5, Using Metrics to Improve Quality.

The Groovy plugin is useful in all the phases as it is not specialized to any specific task, such
as packaging or deployment. It gives you a uniform approach to reacting to situations that are
outside the common functionality of Maven.

The differences between Maven versions

There are differences between the behavior of Maven 2.2 and 3, especially
~ around site generation. They are summarized at https://cwiki.
apache.org/MAVEN/Maven-3x-compatibility-notes.html.

You will find the plugin compatibility list at https://cwiki.apache.
org/MAVEN/Maven-3x-plugin-compatibility-matrix.html.

» Running AntBuilder through Groovy in Maven

» Reacting to the generated data with the the Post-build Groovy plugin

» Adaptive site generation

Manipulating environmental variables

This recipe shows you how to pass variables from Jenkins to your build Job and how different
variables are overwritten. It also describes one way of failing the build if crucial information
has not been correctly passed.

Jenkins has a number of plugins for passing information to builds including the Setenv plugin
(https://wiki.jenkins-ci.org/display/JENKINS/Setenv+Plugin), Envfile
plugin (https://wiki.jenkins-ci.org/display/JENKINS/Enviile+Plugin),

and the Envinject plugin (https://wiki.jenkins-ci.org/display/JENKINS/
EnvInject+Plugin). The Envinject plugin was chosen for this recipe as it is reported to
work with nodes and offers a wide range of property injection options.

Building Software

Getting ready

Install the Envinject plugin. Create the recipe directory named.

How to do it...

1. Create a pom.xml file that is readable by Jenkins, with the following contents:

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4
http://maven.apache.org/maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>
<grouplds>org.berg</groupIlds>

.0.0

<artifactId>ch3.jenkins.builds.properties</artifactIds>

<version>1.0-SNAPSHOT</version>
<name>${name. from.jenkins}</name>
<propertiess
<project.build.sourceEncoding>
UTF8
</project.build.sourceEncoding>
</propertiess>
<builds>
<plugins><plugin>
<grouplds>org.codehaus.gmaven</grouplds>
<artifactId>gmaven-plugin</artifactIds>
<version>1l.3</version>
<executions><execution>
<id>run-myGroovy</id>
<goals><goal>execute</goal></goals>
<phase>verify</phase>

<configurations>
<source>
def environment = System.getenv ()
println "----Environment"

environment.each{ println it }

println "----Property"

println (System.getProperty ("longname"))
println "----Project and session"
println "Project: ${project.class}"
println "Session: ${session.class}"
println "longname: ${project.properties
println "Project name: ${project.name}"

println "JENKINS HOME:
${project .properties.JENKINS HOME}"

.longname}"

5]

Chapter 3

</source>
</configurations>
</execution></executions>
</plugin></plugins>
</build>
</project>

Create a file named my . properties and place it in the same directory as the pom.
xml file, adding the following contents:

project.type=prod
secrets.file=/etc/secrets
enable.email=true

JOB_URL=I AM REALLY NOT WHAT I SEEM

Create a blank free-style Job with the Job name ch3.environment.

In the Source Code Management section, check File System, adding for Path the
fully qualified path to your directory, for example: /var/1lib/jenkins/cookbook/
ch3.building software/environment

In the Build section, add a build step for Invoke top-level Maven targets. In the
newly expanded section, add:

o Maven Version: 2.2.1

o Goals: Verify

Click on the Advanced button, and add Properties: 1ongname=SuperGood.

Inject the values in my . properties, by clicking on the Prepare an environment for
the job (near the top of the Job configuration page).

For Properties File Path, add /full path/my.properties, for example:
/home/var/lib/cookbook/ch3 .building software/environment/
my.properties.

Prepare an environment for the job

Keep Jenkins Environment Variables

Keep Jenkins Build Variables

Properties File Path [!full_path{my_properties

Properties Content

Building Software

9. Run the job. The build will fail with an output similar to the following:

----Project and session

Project: class org.apache.Maven.model.Model

Session: class org.apache.Maven.execution.MavenSession
longname: SuperGood

[INFO] —mmmmmmmmmmmm oo o e oo e o e e e e
[ERROR] BUILD ERROR

[INFO] —mmmmmmmmmmmm oo o e oo e e e e e e

[INFO] Groovy.lang.MissingPropertyException: No such property:
name for class: scriptl1l315151939046

10. In the Build section for Invoke top-level Maven targets, click on the Advanced
button. In the newly expanded section, add an extra property name . from.
jenkins=The build with a name

11. Run the Job. It should now succeed.

The Envinject plugin is useful for injecting properties into builds.

In the recipe, Maven is run twice. The first time when it is run without the variable name .
from.jenkins defined, the Jenkins Job fails. The second time when it is run with the
variable defined, the Jenkins job succeeds.

Maven expects that the variable name . from. jenkins is defined, or the name of the project
will also not be defined. Normally, this would not be enough to stop your job from succeeding.
However, when running the Groovy code, the line println "Project name: ${project.
name } " specifically the call project .name will fail the build. This is great for protecting
against missing property values.

The Groovy code can see instances of the project org.apache.Maven.model .Model and
session class org.apache.Maven.execution.MavenSession. The project instance

is a model of the XML configuration that you can programmatically access. You can get the
property longname by referencing it through project .properties.longname. Your
Maven goal will fail if the property does not exist. You can also get at the property through the
call Ssystem.getProperty ("longname")). However, you cannot get to the property by
using the environment call System.getenv ().

It is well worth learning the various options, they are:

» Keep Jenkins Environment Variables and Keep Jenkins Build Variables: Both these
options affect which Jenkins-related variables your Job sees. It is good to keep your
environment as clean as possible, as it will aid you in debugging later.

» Properties Content: You can override specific values in the properties files.

100

Chapter 3

» Environment Script File Path: It points to a script that will set up your environment.
This is useful if you want to detect specific details of the running environment and
configure your build accordingly.

» Populate build cause: You enable Jenkins to set the BUILD CAUSE environment
variable. This variable contains information about which event triggered the job.

Maven has a plugin for reading properties (http://mojo.codehaus.org/properties-
maven-plugin/). To choose between property files, you will need to set a variable in the
plugin configuration, and call it as part of the Jenkins Job. For example:

<builds>
<plugins>
<plugin>
<groupld>org.codehaus.mojo</grouplds>
<artifactIdsproperties-maven-plugin</artifactId>
<version>1l.0-alpha-2</version>
<executions>
<execution>
<phase>initialize</phase>
<goals>
<goals>read-project-properties</goals>
</goals>
<configuration>
<files>
<file>${fullpath.to.properties}</file>
</files>
</configurations>
</execution>
</executions>
</plugin>
</plugins>
</builds>

If you use a relative path to the properties file, then the file can reside in your Revision
control system. If you use a full path, then the property file can be stored on the Jenkins
server. The second option is preferable if sensitive passwords, such as for database
connections, are included.

Jenkins has the ability to ask for variables when you run a Job manually. This is called

a Parameterized build (https://wiki.jenkins-ci.org/display/JENKINS/
Parameterized+Build). At the build time, you can choose your property files by selecting
from a choice of property file locations.

Building Software

See also

» Running AntBuilder through Groovy in Maven

Running AntBuilder through Groovy in Maven

Jenkins interacts with an audience with a wide technological background. There are many
developers who became proficient in Ant scripting before moving on to using Maven.
Developers may be happier with writing an Ant task than editing a pom.xm1l file. There are
mission-critical Ant scripts that still run in a significant proportion of organizations.

In Maven, you can run Ant tasks directly with the ant -run plugin (http://maven.apache.
org/plugins/maven-antrun-plugin/) or through Groovy (http://docs.codehaus.
org/display/GROOVY/Using+Ant+from+Groovy). Antrun represents a natural
migration path. This is the path of least initial work.

The Groovy approach makes sense for the Jenkins administrators who use Groovy as part
of their tasks. Groovy, being a first-class programming language, has a wide range of control
structures that are hard to replicate in Ant. You can partially do this by using the Ant -
contrib library (http://ant-contrib.sourceforge.net). However, Groovy, being a
mature programming language, is much more expressive.

This recipe details how you can run two Maven pom's involving Groovy and Ant. The first pom
shows you how to run the simplest of the Ant tasks within Groovy, and the second performs an
Ant contrib task to secure copy files from a large number of computers.

Getting ready

Create the directory named ch3 .building software/antbuilder.

How to do it...

1. Create a template file, and call it pom_ant simple.xml.

2. Change the values of groupId, artifactId, version, and name to suit
your preferences.

3. Add the following XML fragment just before the </project> tag:

<builds>
<plugins><plugin>
<groupIds>org.codehaus.gmaven</grouplds>
<artifactId>gmaven-plugin</artifactIds>
<version>1l.3</versions>

102

Chapter 3

<executions>
<execution>
<id>run-myGroovy-test</id>
<goals><goal>execute</goal></goals>
<phase>test</phase>

<configurations>
<source>
def ant = new AntBuilder()
ant.echo ("\n\nTested ----> With Groovy")
</source>
</configurations>
</executions>
<execution>

<id>run-myGroovy-verify</id>
<goals><goal>execute</goal></goals>
<phase>verify</phase>
<configurations>
<source>
def ant = new AntBuilder()
ant.echo ("\n\nVerified at ${new Date() }")
</source>
</configurations>
</executions>
</executions>
</plugin></plugins>
</build>

Run mvn test. Review the output. Notice that there are no warnings about the empty
JAR files.

Run mvn verify. Review the output. It should look similar to the following:
[INFO] [surefire:test {execution: default-test}]
[INFO] No tests to run.
[INFO] [Groovy:execute {execution: run-myGroovy-test}]
[echo]
[echo]
[echo] Tested ----> With Groovy
[INFO] [jar:jar {execution: default-jar}]
[WARNING] JAR will be empty - no content was marked for inclusion!
[INFO] Building jar:ch3.jenkins.builds-1.0-SNAPSHOT.jar
[INFO] [Groovy:execute {execution: run-myGroovy-verify}]
[echo]
[echo]
[echo] Verified at Fri Sep 16 11:25:53 CEST 2011
[INFO] [install:install {execution: default-install}]

Building Software

[INFO] Installing /target/ch3.jenkins.builds-1.0-SNAPSHOT.jar to
ch3.jenkins.builds/1.0-SNAPSHOT/ch3.jenkins.builds-1.0-SNAPSHOT.
jar

[INFO] === === m i m i m o o o e e e e
[INFO] BUILD SUCCESSFUL

[INFO] === === m i m i m o o o e e e e
[INFO] Total time: 4 seconds

Create a second template file named pom_ant contrib.xml.

Change the values of groupId, artifactId, version, and name to suit
your preferences.

8. Add the following XML fragment just before the </project> tag:

<builds>
<plugins><plugin>
<groupIds>org.codehaus.gmaven</groupIds>
<artifactId>gmaven-plugin</artifactId>
<version>1l.3</version>
<executions><execution>
<ids>run-myGroovy</id>
<goals><goal>execute</goal></goals>
<phase>verify</phase>
<configurations>
<source>
def ant = new AntBuilder()
host="Myhost series"
print "user: "
user = new String(System.console () .readPassword())
print "password: "

pw = new String(System.console () .readPassword())

for (i in 1..920) {
counterStr=String.format ('%$02d"',1)

ant.scp(trust:'true',file:"${user}:
${pw}${host}${counterstr}:
/${full path to location}",

localTofile:"${myfile}-${counterStr}", verbose:"true")
}
</source>
</configurations>
</executions></executions>
<dependencies>
<dependencys>

104

Chapter 3

<groupIds>ant</groupld>
<artifactIdsant</artifactIds
<version>1.6.5</versions>

</dependency>

<dependencys>
<groupIdsant</groupld>
<artifactIdsant-launcher</artifactIds>
<version>1l.6.5</versions>

</dependency>

<dependencys>
<groupIdsant</groupld>
<artifactIdsant-jsch</artifactIds>
<version>1l.6.5</version>

</dependency>

<dependencys>
<groupIds>com.jcraft</groupIld>
<artifactId>jsch</artifactIds>
<version>0.1.42</version>

</dependency>

</dependencies>
</plugin></plugins>
</build>

The code is only representative. To make it work, you will
i have to configure it to point to the files on real servers.

Groovy runs basic Ant tasks without the need of extra dependencies. An AntBuilder instance
(http://Groovy.codehaus.org/Using+Ant+Libraries+with+AntBuilder)is
created, and then the Ant echo task is called. Under the bonnet, Groovy calls the Java classes
that Ant uses to perform the echo command. Within the echo command, a date is printed by
directly creating an anonymous object, for example:

ant.echo ("\n\nVerified at ${new Date()}").

You configured the pom.xml to fire off the Groovy scripts in two phases: the test phase and
then later in the verify phase. The test phase occurs before the generation of a JAR file, and
thus avoids creating a warning about an empty JAR. As the name suggests, this phase is
useful for testing before packaging.

Building Software

The second example script highlights the strength of combining Groovy with Ant. The SCP task
(http://Ant.apache.org/manual /Tasks/scp.html) is run a large number of times
across many servers. The script first asks for the USERNAME and password, avoiding storage
on your file system or your revision control system. The Groovy script expects you to inject the
variables host: full path to location and myfile.

Notice the similarity between the Ant SCP task and the way it is expressed in the
pom_ant contrib.xml file.

There's more...

Creating custom property files on the fly allows you to pass on information from one Jenkins
Job to another.

You can create property files through AntBuilder using the echo task. The following code
creates a file named value . properties with two lines: x=1 and y=2.

def ant = new AntBuilder()

ant.echo (message: "x=1\n", append: "false", file:
"values.properties™")

ant.echo (message: "y=2\n", append: "true", file: "values.properties")

The first echo command sets append to false so that every time a build occurs, a new
properties file is created. The second echo appends its message.

You can remove the second append attribute as the
e default value is set to true.
See also

» Running Groovy scripts through Maven

Failing Jenkins Jobs based on JSP syntax

errors

Java Server Pages (http://www.oracle.com/technetwork/java/overview-138580.
html) is a standard that makes the creation of simple web applications straightforward. You
write HTML, such as pages, with extra tags interspersed with Java coding into a text file. If you do
this in a running web application, then the code recompiles on the next page call. This process
supports Rapid Application Development (RAD), but the risk is that developers make messy
and hard-to-read JSP code that is difficult to maintain. It would be nice if Jenkins could display
metrics about the code to defend the quality.

106

Chapter 3

JSP pages are compiled on the fly for the first time when a user request for the page is
received. The user will perceive this as a slow loading of the page, and this may deter them
from future visits. To avoid this situation, you can compile the JSP page during the build
process, and place the compiled code in the WEB-INF/classes directory or packaged in the
WEB-INF/11ib directory of your web app. This approach has the advantage of a faster first
page load.

A secondary advantage of having a compiled source code is that you can run a number of
statistic code review tools over the code base and obtain testability metrics. This generates
the testing data that is ready for Jenkins plugins to display.

This recipe describes how to compile JSP pages based on the maven-jetty-jspc-plugin
plugin (http://jetty.codehaus.org/jetty/jspc-maven-plugin/). The compiled
code will work with the Jetty server, which is often used for integration tests.

Warning: The JSP mentioned in this recipe is
i deliberately insecure, ready for testing later in this book.

. Tomcat specific precompiling and deploying
AY
“@ A complementary plugin specifically for Tomcat deployment is the

tomcat-maven-plugin plugin (http://tomcat.apache.
org/Maven-plugin.html).

Getting ready

Create the directory named ch3 .building software/jsp_example.

How to do it...

1. Create a war project from a Maven archetype by typing the following command:

mvn archetype:generate

2. Choose Maven-archetype-webapp (142):
3. Enter the values:

o groupld: ch3 .packt.builds

o artifactld: jsp example

o version: 1.0-SNAPSHOT

o package: ch3 .packt.builds

4. Press Enter to confirm the values.

Building Software

5. Editthe jsp_example/pom.xml file, adding the following build section:

<builds>
<finalName>jsp example</finalName>
<plugins>
<plugin>
<groupld>org.mortbay.jetty</groupIlds>
<artifactIds>maven-jetty-jspc-plugin</artifactIds>
<version>6.1.14</version>
<executions>
<execution>
<id>jspc</id>
<goals><goal>jspc</goal></goals>
<configuration></configurations
</execution>
</executions>
</plugin>
<plugin>
<groupIds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-war-plugin</artifactIds>
<configuration>
<webXml>${basedir}/target/web.xml</webXml>
</configurations>
</plugin>
</plugins>
</builds>

6. Replace the src/main/webapp/index. jsp file with the following code:

<html>
<head>

<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">

<title>Hello World Example</title>
</head>
<body>
<%
String evilInput= null;
evilInput = request.getParameter ("someUnfilteredInput") ;
if (evilInput==null) {evilInput="Hello Kind Person";}
5>
<form action="index.jsp">
The big head says: <%=evilInput%><p>

108

Chapter 3

Please add input:<input type='text'
name="'someUnfilteredInput's>

<input type="submit"s>
</form>
</body>
</html>

7. Create a WAR file by using the command mvn package.

Modify . /src/main/webapp/index. jsp so that it is no longer a valid JSP file, by
adding the line 1 £; underneath the line starting with if (evilInput==null).

9. Run the command mvn package. The build will now fail with an understandable error
message similar to the following:

[INFO] : org.apache.jasper.JasperException: PWC6033: Unable to
compile class for JSP

PWC6197: An error occurred at line: 4 in the jsp file: /index.jsp
PWC6199: Generated servlet error:

Syntax error on token "if", delete this token

Failure processing jsps

The Maven plugin seeing the index . jsp page compiles it into a class with the name jsp.
index_jsp, placing the compiled class under WEB- INF/classes. The plugin then defines
the class as a servlet in WEB-INF/web.xml with a mapping to /index. jsp. For example:

<servlets>
<servlet-name>jsp.index jsp</servlet-names>
<servlet-class>jsp.index_jsp</servlet-class>
</servlet>

<servlet-mapping>
<servlet-names>jsp.index jsp</servlet-name>
<url-pattern>/index.jsp</url-patterns>
</servlet-mapping>

Building Software

There's more...

Here are a few things that you should consider.

Different server types

By default, the Jetty Maven plugin (version 6.1.14) loads JSP2.1 libraries with JDK1.5. This will
not work for all server types. For example, if you deploy the .war file generated by this recipe
to a Tomcat 7 server, it will fail to deploy properly. If you look in the 1logs/catalina.out,
you will see the following error:

javax.servlet.ServletException: Error instantiating servlet class jsp.
index jsp

Root Cause

java.lang.NoClassDefFoundError: Lorg/apache/jasper/runtime/
ResourcelInjector;

This is because different servers have different assumptions about how the JSP code is
compiled and which libraries they depend on to run. For Tomcat, you will need to tweak the
compiler used and the Maven plugin dependencies. For more details, review the following link:
http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin.

Eclipse templates for JSP pages

Eclipse is a popular open source IDE for Java developers (http://www.eclipse.org/). If
you are using Eclipse with its default template for the JSP pages, then your pages may fail to
compile. This is because the default compiler does not like the meta information mentioned
before the <html > tag. For example:

<%@ page language="java" contentType="text/html;charset=UTF-8"
pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.o0rg/TR/html4/loose.dtd" >

Simply remove the lines before compiling, or change the JSP compiler that you use.

See also

» Configuring Jetty for integration tests

Chapter 3

Configuring Jetty for integration tests

Jenkins plugins that keep a history of tests are normally consumers of the data generated
within Maven builds. For Maven to automatically run integration, performance, or functional
tests, it will need to hit a live test server. You have two main choices:

1. Deploy your artifacts, such as .war files, to a live server. You can do this using the
Maven-wagon plugin (http://mojo.codehaus.org/wagon-maven-plugin/),
or through a Jenkins plugin, such as an aptly named deploy plugin
(https://wiki.jenkins-ci.org/display/JENKINS/Deploy+Plugin).

2. Run the lightweight Jetty server within the build. This simplifies your infrastructure.
However, the server will be run as part of a Jenkins Job, consuming the potentially
scarce resources. This will limit the number of parallel executors that Jenkins can run,
decreasing the maximum throughput of Jobs.

This recipe runs the web application developed in the recipe named Failing Jenkins Jobs
based on JSP syntax errors, tying Jetty into integration testing by bringing the server up just
before tests are run, and then shutting down afterwards. The build creates a self-signed
certificate. Two Jetty connectors are defined for HTTP and for the secure TLS traffic. To create
a port to telnet, the shutdown command is also defined.

Getting ready

Follow the recipe Failing Jenkins Jobs based on JSP syntax errors, generating a . war file.
Copy the project to the directory named ch3 .building software/jsp jetty.

How to do it...

1. Add the following XML fragment just before </pluginss> tag within the pom.xm1 file.
<plugin>
<grouplds>org.codehaus.mojo</grouplds>
<artifactIdskeytool-maven-plugin</artifactIds>
<executions>
<execution>
<phase>generate-resources</phase>
<id>clean</id>
<goals>
<goal>clean</goals>
</goals>
</execution>
<execution>

<phase>generate-resources</phase>

Building Software

<id>genkey</id>
<goals>
<goal>genkey</goals>
</goals>
</executions>
</executions>
<configurations>
<keystore>
${project.build.directory}/jetty-ssl
</keystore>
<dname>cn=HOSTNAME< /dname>
<keypass>jetty8</keypass>
<storepass>jetty8</storepass>
<alias>jetty8</alias>
<keyalg>RSA</keyalg>
</configurations>
</plugin>
<plugins>
<groupIds>org.mortbay.jetty</groupIlds>

.keystore

<artifactId>jetty-maven-plugin</artifactIds>

<version>8.0.0.MO</version>
<configurations>

<webApp>${basedir}/target/jsp example.war</webApp>

<stopPort>8083</stopPort>
<stopKey>stopmeplease</stopKey>
<connectors>

<connector implementation=

"org.eclipse.jetty.server.nio.SelectChannelConnector">

<port>8082</port>
</connectors>
<connector implementation=

"org.eclipse.jetty.server.ssl.SslSocketConnector">

<port>9443</port>
<keystore>

${project.build.directory}/jetty-ssl.keystore

</keystore>
<password>jetty8</password>
<keyPassword>jetty8</keyPassword>
</connectors>
</connectors>
</configurations>
<executionss>
<execution>
<ids>start-jetty</id>

Chapter 3

<phase>pre-integration-test</phase>
<goals>
<goal>run</goals>
</goals>
<configurations>
<daemon>true</daemon>
</configurations>
</executions>
<execution>
<id>stop-jetty</id>
<phases>post-integration-test</phase>
<goals>
<goal>stop</goals>
</goals>
</executions>
</executions>
</plugin>

2. Runthe command mvn jetty:run. You will now see the console output from the
Jetty server starting up.

3. Using a web browser, visit the location https://localhost: 9443. After passing
through the warnings about the self-signed certificate, you will see the web
application working.

Press Ctrl+C to stop the server.

5. Runmvn verify. You will now see the server starting up, and then stopping.

Within the <executionss> tag, Jetty is run in the Maven pre-integration-test phase and
later stopped in the Maven post-integration-test phase. In the generate-resources phase,
Maven uses the keytool plugin to create a self-signed certificate. The certificate is stored
in a Java key store with a known password and alias. The key encryption is set to RSa
(http://en.wikipedia.org/wiki/RSA %28algorithm%209). If the Common Name
(CN) is not correctly set in your certificate, then your web browser will complain about the
certificate. To change the Distinguished Name (DN) of the certificate to the name of your
host, modify <dname >cn=HOSTNAME< /dname >

Jetty is configured with two connector types: port 8082 for HTTP and port 9443 for secure
connections. These ports are chosen as they are above port 1023, so that you do not need
administrative rights to run the build. The port numbers also avoid the ports used by Jenkins.
Both the Jetty and Keytool plugin use the keystore tag to define the location of the key store.

Building Software

Using self-signed certificates causes extra work for functional testers. Every time they
encounter a new version of the certificate, they will need to accept, in their web browser, the
certificate as a security exception. It is better to use certificates from well-known authorities.
You can achieve it with this recipe by removing the key generation and pointing the keystore
tag to a known file location.

The generated . war file is pointed to by the webapp tag, and Jetty runs the application.

Maven 3 is fussier about defining plugin versions than Maven 2.2.1. There are good reasons
for this. If you know that your build works well with a specific version of a Maven, then this
defends against unwanted changes. For example, the Jetty plugin used in this recipe is held
at version 8.0.0.MO. As you can see from the bug report (http://jira.codehaus.org/
browse/JETTY-1071), configuration details have changed over versions.

Another advantage is that if the plugin version is too old, then the plugin will be pulled out of
the central plugin repository. When you next clean up your local repository, this will break your
build. This is what you want, as this clearly signals the need to review and then upgrade.

See also

» Failing Jenkins Jobs based on JSP syntax errors

Looking at license violations with RATs

This recipe describes how to search any Job in Jenkins for license violations. It is based on the
Apache RATs project (http://incubator.apache.org/rat). You can search for license
violations by running a RAT JAR file directly, with a contributed ANT task or through Maven.

In this recipe, you will be running directly through a . jar file. The report output goes to the
console, ready for Jenkins plugins like the log parser plugin to process the information.

Getting ready

Log in to Jenkins.

How to do it...

1. Create a free-style Job named License Check.
2. Under the Source Code Management, check Subversion.

Chapter 3
3. Fillinhttp://svn.apache.org/repos/asf/incubator/rat/main/trunk for
the URL.
Set Check-out Strategy to Use 'svn update' as much as possible.
5. Under the Post steps section, check Run only if build succeeds.

Add a Post-build step for Execute Shell (we assume that you are running a NIX
system). Add the following text to the Execute Shell text area, replacing the jar
version with the correct value.

java -jar ./apache-rat/target/apache-rat-0.8-SNAPSHOT.jar --help
java -jar ./apache-rat/target/apache-rat-0.8-SNAPSHOT.jar -d
${JENKINS HOME}/jobs/License Check/workspace -e '*.js' -e
'*target*!

7. Press the Save button.
Run the Job.

9. Review the path to the workspace of your Jobs. Visit the Configure Jenkins screen, for
example http://localhost:8080/configure. Just under the Home Directory,
press the Advance button. The Workspace Root Directory values become visible.

Workspace Root Directory S{IENKINS_HOMED}/workspace/${ITEM_FULLNAME}|

Specify where Jenkins would store job workspaces on the master node. This value can include the following variables.

® 5;JENKINS_HOME} — Jenkins home directory
® :!ITEM ROOTDIR} — Root directory of a job for which the workspace is allocated.
® :[ITEM FULLNEME]} — '/'-separated job name, like "foo/bar".

Changing this value allows you to put workspaces on SSD, SCSI, or even ram disks. Default value is $ {ITEM ROOTDIR}/workspace.

The RATs source code is compiled and run twice: the first time to print the help out, and the
second time to check the license headers.

The code base is changing, and over time it expects the number of options to increase. You
will find the most up-to-date information by running help.

The -d option tells the application in which directory is your source code. In this example, you
have used the variable $ { JENKINS HOME} to define the top level of the path. Next, we assume
that the job is found under the . /job/jobname/workspace directory. You checked that this
assumption is true in step 9 of the recipe. If incorrect, you will need to adjust the option. To
generate a report for another project, simply change the path by replacing the Job name.

Building Software

The -e option excludes certain file name patterns from review. You have excluded JavaScript
files *.js and *target* for all the generated files under the target directory. In a complex
project, expect a long list of exclusions.

Warning: Even If the directory to check does not exist, the build
. will still succeed with an error reported similar to:
% ERROR: /var/lib/Jenkins/jobs/License_Check/workspace
Finished: Success
You will have to use a log parsing plugin to force failure.

A complimentary Maven plugin for updating licenses in source code is the Maven-license-
Plugin plugin (http://code.google.com/p/maven-1license-plugin). YOU can use it
to keep your source code license headers up to date. To add/update the source code with the
license src/etc/header. txt, add the following XML fragment to your build section.

<plugins>
<groupld>com.mycila.maven-license-plugin</groupId>
<artifactId>maven-license-plugin</artifactIds>
<configurations>
<header>src/etc/header. txt</headers>
</configurations>
</plugin>

You will then need to add your own license file: src/etc/header. txt.

A powerful feature is that you can add variables to expand. In the following example, ${year}
will get expanded.

Copyright (C) ${year} Licensed under this open source License
To format your source code, you would then run the following command:

mvn license:format -Dyear=2012

» Reviewing license violations from within Maven

» Reacting to the generated data with the Post-build Groovy plugin

Chapter 3

Reviewing license violations from within
Maven

Getting ready

Create the directory named ch3 .building software/license maven.

How to do it...

1. Create a template pom.xml file.

2. Change the values of groupId, artifactId, version, and name to suit
your preferences.
3. Add the following XML fragment just before the </project> tag:
<pluginRepositoriess
<pluginRepository>
<ids>apache.snapshots</id>
<urls>http://repository.apache.org/snapshots/</urls>
</pluginRepositorys>
</pluginRepositories>
<builds>
<plugins><plugin>
<grouplds>org.apache.rat</groupIld>
<artifactIds>apache-rat-plugin</artifactIds>
<version>0.8-SNAPSHOT</versions>
<executions><execution>
<phase>verify</phase>
<goals><goal>check</goal></goals>
</execution></executions><configurations>
<excludeSubProjects>false</excludeSubProjectss>
<numUnapprovedLicenses>97</numUnapprovedLicenses>
<excludes>
<excludes>**/ . */**</exclude>
<exclude>**/target/**/*</exclude>
</excludes>
<includes>
<include>**/src/**/* .css</include>
<include>**/src/**/* html</include>
<includes>**/src/**/*.java</include>
<includes>**/src/**/* . js</include>
<includes>**/src/**/*.jsp</include>
<include>**/src/**/* . properties</include>

Building Software

<include>**/src/**/* .sh</include>
<includes>**/src/**/* . txt</include>
<include>**/src/**/* .vin</include>
<includes>**/src/**/* .xml</include>
</includes>
</configurations>
</plugin></plugins>

</build>

Create a Maven 2/3 project with project name ch3.BasicLTI license.

5. Under the Source Code Management section, tick Subversion with the URL
repository https://source.sakaiproject.org/svn/basiclti/trunk.

Warning: Please do not spam the Subversion repository.
i Double-check that there are no build triggers activated.

6. Under the Build section, set:
o Root POM: pom.xml

o Goals and options: clean

7. Under the Post Steps section, invoke the top-level Maven targets:
o Maven Version: 2.2.1

o Goals: verify

Click on the Advanced button.
9. Inthe expanded section, set:
o POM: full path to your RATs pom file, for example:

o /var/lib/cookbook/ch3.building software/license maven /
pom.xml

o Properties: rat .basedir=${WORKSPACE}

10. Under the Post Steps section, add to the Execute shell a copy command to move
the report into your workspace, for example:

cp /var/lib/cookbook/ch3.building software/license /target/rat.txt
${WORKSPACE}

Chapter 3

11. Run the Job. You can now visit the Workspace and view . /target/rat.txt.
The file should look similar to the following:

Notes: 0
Binaries: 0
Archives: 0

Standards: 128

Apache Licensed: 32

Generated Documents: 0

JavaDocs are generated and so license header is optional

Generated files do not required license headers

96 Unknown Licenses

You have pulled the source code from an open source project; in this case, from the
subversion repository of the Sakai Foundation (www . sakaiproject.org).

Background information: Sakai is a Learning Management System (LMS) that is used
daily by millions of students. The Sakai Foundation represents over 80 organizations, mostly
universities.

The source code includes different licenses, which are checked by the RATs Maven plugin.
The plugin is called during the verify phase and checks the workspace location of your Job as
defined by the ${WORKSPACE} variable that Jenkins injected.

excludeSubProjects set to false tells RATs to visit any subproject as well as the
master project. numUnapprovedLicenses is the number of unapproved licenses that are
acceptable before your Job fails.

The excludes exclude the target directory and any other directory. The includes override
specific file types under the src directory. Depending on the type of frameworks used in your
projects, the range of includes will change.

Building Software

For information on customizing RATs for specific license types, visit:

http://incubator.apache.org/rat/apache-rat-plugin/
examples/custom-license.html

Here are a few more useful tips to review:

A

Multiple approaches and anti-patterns

There were multiple approaches to configuring the Jenkins Job. You could avoid copying

the RATs report file by fixing its location in the Maven plugins configuration. This has the
advantage of avoiding a copying action. You could also use the Multiple SCM plugin
(https://wiki.jenkins-ci.org/display/JENKINS/Multiple+SCMs+Plugin) to
first copy the source code into the workspace. You should also consider splitting into two Jobs,
and then pointing the RATs Job at the source codes workspace. The last approach is a best
practice, as it cleanly separates the testing.

Snapshots

Unlike fixed versions of artifacts, snapshots have no guarantee that their details will not vary
over time. Snapshots are useful if you want to test the latest and greatest features. However,
for the most maintainable code, it is much better to use fixed versions.

To defend the base-level stability, consider writing a Job that triggers a small Groovy script
inside a pom.xml to visit all your projects. The script needs to search for the word SNAPSHOT
in the version tag, and then write a recognizable warning for the Post-build Groovy plugin to
pick up, and if necessary, fail the Job. Using this approach, you can incrementally tighten the
boundaries, giving developers time to improve their builds.

» Looking at license violations with RATs
» Reacting to the generated data with the Post-build Groovy plugin

120

Chapter 3

Exposing information through build

descriptions

The setter plugin allows you to gather information out of the build log and add it as a
description to a build's history. This is useful as it allows you later to quickly assess the historic
cause of the issue, without drilling down into the console output. This saves many mouse
clicks. You can now see the details immediately in the trend report without needing to review
all the build results separately.

The setter plugin uses the Regex expressions to scrape the descriptions. This recipe shows
you how.

Getting ready

Install the Description Setter plugin (https://wiki.jenkins-ci.org/display/
JENKINS/Description+Setter+Plugin). Create a directory for the recipe files named
ch3.building software/descriptions

How to do it...

1. Create a template pom.xml file.

2. Change the values of groupId, artifactId, version, and name to suit
your preferences.

3. Add the following XML fragment just before the </project> tag:

<builds>
<plugins><plugin>
<groupIlds>org.codehaus.gmaven</grouplds>
<artifactId>gmaven-plugin</artifactId>
<version>1l.3</versions>
<executions><execution>
<id>run-myGroovy</id>
<goals><goal>execute</goal></goals>
<phase>verify</phase>
<configurations>
<source>
if (new Random() .nextInt (50) > 25){
fail "MySevere issue: Due to little of resource X"
} else {

println "Great stuff happens because: This world is
fully resourced"

}

</source>

Building Software

</configurations>
</execution></executions>
</plugin></plugins>
</build>
Create a Maven 2/3 project with a Job named ch3 .descriptions.

5. Inthe Source Code Management section, check File System, adding for Path the
fully qualified path to your directory, for example: /var/1lib/Jenkins/cookbook/
ch3.building software/description.

6. Tick Set build Description, and add the following values to the expanded options.
o Regular expression: Great stuff happens because: (.*)
o Regular expression for failed builds: MySevere issue: (.*)
o Description for failed builds: The big head says failure: "\1"

7. Run the Job a number of times, and review the build history. You will see that the
description of each build varies.

Build History {trend)

& #7 Oct3, 2011 11:23:26 AM

This world is fully
resourced

@ #6 Oct3, 2011 11:23:12 AM
The big head says failure:
"Due to little of resource
o

& #5 Oct3, 2011 11:23:04 AM

This world is fully
resourced

The Groovy code is called as part of the install goal. The code either fails the Job with the
pattern MySevere Issue or prints the output to the build with the pattern Great stuff
happens because.

if (new Random() .nextInt (50) > 25)({

fail "MySevere issue: Due to little of resource X"
} else {

println "Great stuff happens because: This world is fully
resourced"

As a Post-build action, the description setter plugin is triggered. On success of the build, it
looks for the pattern Great stuff happens because: (.*).

122

Chapter 3

(.*) pulls in any text after the first part of the pattern into the variable "\ 1", which is later
expanded in the setting of the description of the specific build.

The same is true for the failed build, apart from some extra text that is added before the
expansion of "\ 1". You defined this in the configuration of Description for failed builds.

It is possible to have more variables than just \ 1 by expanding the regex expressions.
For example, if the console output was fred is happy, then the pattern (.*) is (.*)
generates "\1" equal to fred and "\2" equal to happy.

There's more...

The plugin gets its ability to parse the text from the Token Macro plugin
(https://wiki.jenkins-ci.org/display/JENKINS/Token+Macro+Plugin).
The token macro plugin allows the macros to be defined in the text, which are then
expanded by calling a utility method. This approach of using utility plugins simplifies
the plugin creation and supports consistency.

See also

» Reacting to the generated data with the Post-build Groovy plugin

Reacting to the generated data with the

Post-build Groovy plugin

Build information is sometimes left obscure in log files or reports that are difficult for Jenkins
to expose. This recipe will show you one approach of pulling those details into Jenkins.

The Post-build Groovy plugin allows you to run Groovy scripts after the build has run. Since the
plugin runs within Jenkins, it has a programmatic access to services, such as being able to
read console input or change a builds summary page.

This recipe uses a Groovy script within a Maven pom. xm1 file to output a file to the console.
The console input is then picked up by the Groovy code from the plugin, and vital statistics is
displayed in the build history. The build summary details are also modified.

Getting ready

Follow the recipe Reviewing license violations from within Maven. Add the Groovy
Post-build plugin (https://wiki.jenkins-ci.org/display/JENKINS/
Groovy+Postbuild+Plugin).

Building Software

How to do it...

1. Update the pom.xml file by adding the following XML fragment just before the </
plugins> tag:
<plugins>
<groupIlds>org.codehaus.gmaven</grouplds>
<artifactId>gmaven-plugin</artifactIds>
<version>1l.3</version>
<executions><execution>
<id>run-myGroovy</id>
<goals><goal>execute</goal></goals>
<phase>verify</phase>
<configurations>
<source>
new File("${basedir}/target/rat.txt") .eachLine({
line-> println line}
</source>
</configurations>
</execution></executions>
</plugin>

2. Update the configuration of the ch3 .BasicLTI license Job under the Post-build
Actions section. Check Groovy Postbuild. Add the following script to the Groovy script
text input.
def matcher = manager.getMatcher (manager.build.logFile, "™ (.*)

Unknown Licenses\$")
if (matcher?.matches ())
title="Unknown Licenses: ${matcher.group (1) }"
manager .addWarningBadge (title)
manager .addShortText (title, "grey", "white", "Opx", "white")

manager.createSummary ("error.gif")
.appendText ("<h2>${title}</h2>", false, false, false, "grey")

manager .buildUnstable ()

}

3. Make sure that the select box If the script fails: is set to Do Nothing.
4. Click on Save.

124

Chapter 3

5. Run the Job a number of times. In the Build History, you will see results similar to the
following screenshot:

Build History (trend)
#34 Oct8. 2011 120743 PM i\LIr-wcx'.-'r Licenses:

(=1}

#33 Oct8. 2011 1:07-18 PM iUI'ﬁl'Cwl' Licenses:

[7=]
=}

#32 Oct8. 2011 1:06:33 PM iLIr-ﬂ‘cxw Licenses:

[1=]
[~r]

#31 Oct8. 2011 12:15:17 PM iLIMrcwr Licenses:

(=]
(=1}

The results are also summarized.

Jenkins & scarch @, Alan |log out |

Jenkins » BasicLTI license » #34 ENABLE AUTO REFRESH

nt Back to Project —

O, status . Build #34 (Oct 8, 2011 1:07:43 PM)

— T Started 4 min 38 sec ago
= Changes Took 25 sec

[&add description
'H Console Output

Revision: 93057

“~» Edit Buid Information
MNo changes.

D Taq this build

Bedeploy Artifacts
HIECEROY ANTECS Started by user Alan (4 times)

&7 | See Fingerprints

4 Previous Buid Unknown Licenses: 96

OSSNl

The RATs licensing report is saved to the location target /rat . txt. The Groovy code then
reads the RATs file and prints it out to the console, ready to be picked up by the Post-build
plugin. You could have done all the work in the Post-build plugin, but you might later want to
re-use the build.

After the build is finished, the Post-build Groovy plugin runs. A number of Jenkins services are
visible to the plugin:

» manager.build.logFile gets the log file, which now includes the
licensing information.

Building Software

» manager.getMatcher checks the log file for patterns matching "* (. *) Unknown
Licenses\$". The symbol * checks for the beginning of the line, and \ $ checks for
the end of the line. Any line with the pattern Unknown Licenses at the end of the
line will be matched with anything before that stored in matcher.group (1). It sets
the title string to the number of Unknown licenses.

» manager.addWarningBadge (title) adds a warning badge to the build history
box, and the title is used as text that is displayed as the mouse hovers over the icon.

» manager.addShortText adds visible text next to the icon.

» Asummary is created through the manager.createSummary method. An image
that already exists in Jenkins is added with the title.

You can add HTML tags to the summary. Consider this a
i security issue.
There's more...

Pulling information into a report by searching for a regular pattern is called scraping. The
stability of scraping relies on a consistent pattern being generated in the RATs report. If you
change the version of the RAT's plugin, the pattern might change and break your report. When
possible, it is more maintainable for you to use the stable data sources, such as XML files,
which have a well-defined syntax.

See also

» Exposing information through build descriptions
Chapter 2, Enhancing Security:

» Improving security through small configuration changes

Remotely triggering Jobs through the

Jenkins API

Jenkins has a remote API, which allows you to enable, disable, run, delete Jobs, and change
configuration. The API is increasing with the Jenkins version. To get the most up-to-date
details, you will need to review http://yourhost/job/Name of Job/api/. Where
yourhost is the location of your Jenkins server, and the Name of Job is the name of a Job
that exists on your server.

126

Chapter 3

This recipe details how you can trigger build remotely by using security tokens. This will allow
you to run other Jobs from within your Maven.

Getting ready

This recipe expects Jenkins security to be turned on so that you have to log in as a user. It
also assumes that you have a modern version of wget (http://www.gnu.org/s/wget/)
installed.

How to do it...

1.
2.

o N o o A

10.
11.
12.

13.
14.

Create a free-style project with Project named ch3 . RunMe.
Check This Build is parameterized and select String Parameter:
o Name:myvariable
o Default Value: Default
o Description: This is my example variable
Under the Build Triggers section, check Trigger builds remotely
(e.g., from scripts).
In the Authentication Token textbox, add changeme.
Click on the Save button.
Run the Job.
You will be asked for the variable myvariable. Click on Build.

Visit your personal configuration page, for example: http://localhost:8080/
user/your user/configure, where you replace your user with your Jenkins
username.

In the API Token section, click on the Show API Token... button.

Modify the token to apiToken.

Click on the Change API Token button.

From a terminal console, run wget to log in, and run the Job remotely. For example:
wget --auth-no-challenge --http-user=Alan --http-password=apiToken
http://localhost:8080/job/RunMe/build?token=changeme

Check the Jenkins Job to verify that it has run.

From a terminal console, run wget to log in, and run the Job. For example:

wget --auth-no-challenge --http-user=Alan --http-password=apiToken
http://localhost:8080/job/RunMe/buildWithParameters?token=changeme
\&Myvariable='Hello World'

Building Software

Warning: There are two obvious security issues in this recipe:
Short tokens are easy to guess. You should make your tokens large

and random.
S

The HTTP protocol can be packet sniffed by a third party. Use HTTPS
when transporting passwords.

To run a Job, you need to authenticate as a user and then obtain permission to run the
specific Job. This is achieved through apiTokens, which you should consider as passwords.

There are two remote method calls. The first is build, which runs the build without passing
parameters. The second is buildwWithParameters, which expects you to pass at least one
parameter to Jenkins. The parameters are separated by \ &.

The wget tool does the heavy lifting, otherwise you would have had to write some tricky
Groovy code. We have chosen simplicity and OS dependence for the sake of a short recipe
running an executable risk, making your build 0S-specific. The executable will depend on
how the underlying environment has been set up. However, sometimes you will need to make
compromises to avoid complexity. You can find the equivalent Java code at the following URL:

https://wiki.jenkins-ci.org/display/JENKINS/Remote+access+API

There are some excellent comments from the community at the end of the page.

Here are a few things that you should consider:

Running Jobs from within Maven

With little fuss, you can run wget through the maven-antrun-plugin plugin. The following
is the equivalent pom XML fragment.

<builds>
<plugin>

<groupIds>org.apache.maven.plugins</groupId>
<artifactId>Maven-antrun-plugin</artifactId>
<executions><execution>
<phase>compile</phase>

<configurations>

<tasks>
<exec executable="wget"s>

128

Chapter 3

<arg line="--auth-no-challenge --http-user=Alan --http-
password=apiToken
http://localhost:8080/job/RunMe/build?token=changeme" />

</exec>
</tasks>
</configurations>
<goals><goal>run</goal></goals>
</execution></executions>
</plugin>
</build>

Remotely generating Jobs

There is also a project that allows you to remotely create Jenkins Jobs through Maven
(http://evgeny-goldin.com/wiki/maven-jenkins-plugin). The advantage of
this approach is its ability to enforce consistency and re-use between Jobs. You can use one
parameter to choose Jenkins server and populate. This is useful for generating a large set of
consistently-structured Jobs.

See also

» Running AntBuilder through Groovy in Maven

Adaptive site generation

Jenkins is a great communicator. It can consume the results of the tests generated by builds.
Maven has a goal for site generation, where within the pom.xml file, many of the Maven
testing plugins are configured. The configuration is bounded by the reporting tag.

When run, a Jenkins Maven 2/3 software project Job does a number of things. It notes when
a site is generated and creates a shortcut icon in the Jobs home page. This is a highly-visible
icon that you can link with content.

/’6\ .
| | Maven-generated site
-

You can gain fine-grained control of Maven site generation by triggering the Groovy scripts that
structure sites in different Maven phases.

Building Software

In this recipe, you will use Groovy to generate a dynamic site menu that has different menu
links, depending on a random choice made in the script. A second script then generates a
fresh results page, per site generation. These actions are useful if you want to expose your
own custom test results. The recipe Reporting alternative code metrics in Jenkins describes
how you can plot custom results in Jenkins, enhancing the user's experience further.

Warning: This recipe works in version 2.2.1 of Maven or earlier. Maven 3
has a slightly different approach to site generation.

To enforce the Maven version from within your pom . xm1 file, you would
need to add <prerequisites><mavens>2.2.l</maven></
prerequisitess.

Getting ready

Create the directory named ch3 .building software/site for the recipe. Install

the copy data to workspace plugin (https://wiki.jenkins-ci.org/display/
JENKINS/Copy+Data+To+Workspace+Plugin). This will give you practice with another
useful plugin. You will use this plugin to copy the files mentioned in this recipe into the
Jenkins workspace.

How to do it...

1. Add the following XML fragment just before </project> within your template
pom.xml file (mentioned in the introduction), making sure that the pom.xml file is
readable by Jenkins.

R

<url>My host/my dir</urls
<description>This is the meaningful DESCRIPTION</descriptions
<builds>
<plugins><plugin>
<grouplds>org.codehaus.gmaven</groupIds>
<artifactId>gmaven-plugin</artifactId>
<version>1.3</version>
<executions>
<execution>
<id>run-myGroovy-add-site-xml</id>
<goals><goal>execute</goal></goals>
<phase>pre-site</phase>
<configuration>
<source>
site_xml.Groovy
</sources>
</configurations>
</execution>

130

Chapter 3

<executions>
<ids>run-myGroovy-add-results-to-site</id>
<goals><goal>execute</goal></goals>
<phase>site</phase>
<configurations>
<source>
site.Groovy
</source>
</configurations>
</executions>
</executions>
</plugin></plugins>
</build>

Create the file named site xml.Groovy within the same directory as your pom.
xml file, with the following contents:

def site= new File('./src/site')
site.mkdirs ()

def sxml=new File('./src/site/site.xml')
if (sxml.exists()) {sxml.delete()}

sxml << '<?xml version="1.0" encoding="ISO-8859-1"?>"'
sxml << '<project name="Super Project"s>'
sxml << '<body>'
def random = new Random()
if (random.nextInt (10) > 5){
sxml << ! <menu name="My super project"s'
sxml << ! <item name="Key Performance Indicators" href="/
our results.html"/>'
sxml << ' </menu>'
print "Data Found menu item created\n"
}
sxml << ! <menu ref="reports" />'
sxml << ' </body>"'
sxml << '</project>'

print "FINISHED - site.xml creation\n"

Add the file named site.Groovy within the same directory as your pom.xml file,
with the following contents:

def site= new File('./target/site')

site.mkdirs ()

def index = new File('./target/site/our_ results.html')
if (index.exists()){index.delete()}

Building Software

index <<

'<h3>ImportAnt results</h3>'

index << "${new Date() }\n"

index <<

def random

'!

new Random ()

for (i in 1..40) {
index << "<lisResult[${i}]=${random.nextInt (50) }\n"

}

index <<

'"

Create a Maven 2/3 project with the name ch3.site.

5. Under the Build section, fill in the following details:

o Maven Version: 2.2.1
o Root POM: pom.xml
o Goals and options: site

Under the Build Environment section, tick Copy data to workspace.

7. Add to Path to folder: the path to the directory where you have placed the files.

Run the job a number of times, reviewing the generated site. On the right-hand side,
you should see a menu section named My super project. For half of the runs, there
will be a sub-menu link named Key Performance Indicators.

Last Published: 2011-10-07

My super project
Key Performance Indicators
Project Documentation
* Project Infermation
About
Centinuous Integration
Dependencies
Issue Tracking
Mailing Lists
Plugin Management
Project License
Project Plugins
Project Summary
Project Team
Source Repository

BUill by ™
maven

- I am in control of my site -

About - I am in control of my site -

This is the meaningful DESCRIPTION

© 2011

Two Groovy scripts are run in two different phases of the site goal. The first generates the
site.xml file. Maven uses this to create an additional menu structure on the left-hand side
of the index page. The second Groovy script generates a page of random results.

132

Chapter 3

site xml.Groovy runs in the pre-site phase. site.Groovy executes during site
generation. site xml.Groovy generates the directory src/site, and then the file src/
site/site.xml. This is the file that the Maven site generation plugin uses to define the
left-hand side of a sites menu. For more details of the process, review http://Maven.
apache.org/guides/mini/guide-site.html.

The Groovy script then randomly decides in the line 1f (random.nextInt (10) > 5),
when to show an extra menu item for the results page.

site.Groovy generates a random results page of 40 entries. If an older results page exists,
the Groovy script deletes it. The script cheats a little by creating the target/site directory
first. If you want a much longer or shorter page, modify the number 40 in the line for (i
in 1..40) {.

After the build script is run, Jenkins sees that a site sits in the conventional place and adds an
icon to the Job.

existence of generated sites and publish the site icon. Free-style Jobs do not.

There's more...

Here is some more useful information:

[Warning: At the time of writing, only Maven 2/3 project jobs sense the]
Yo

Searching for example site generation configuration

Sometimes, there can be arbitrary XML magic in configuring site generation. One of the ways
to learn quickly is to use a software code search engine. For example, try searching for the
term <reportings>, using the Koders search engine (http://www.koders. com).

Maven 2 and Maven 3 - differences

Maven 3 is mostly backwardly-compatible with Maven 2. However, it does have some minor
differences that you can review at https://cwiki.apache.org/MAVEN/maven-3x-
compatibility-notes.html, and for the compatibility list of plugins: https://cwiki.
apache.org/MAVEN/maven-3x-plugin-compatibility-matrix.html

Under the bonnet, Maven 3 is a rewrite of Maven 2, with improved architecture and
performance. Emphasis has been placed on compatibility with Maven 2. You don't want to
break the legacy configuration, as that would cause unnecessary maintenance work. Maven
3 is a little bit fussier about the syntax than Maven 2 is. For example, it will complain if you
forget to add a version number for any of your dependencies or plugins.

The most visible change is the use of the maven-site-plugin plugin in Maven 3
reflected in the way the <reportings section is configured. For more details, you can
review http://Maven.apache.org/plugins/Maven-site-plugin-3.0-beta-3/.

Building Software

See also

» Running Groovy scripts through Maven
» Plotting alternative code metrics in Jenkins

Communicating
through Jenkins

In this chapter, we will cover the following recipes:

Skinning Jenkins with the Simple Theme plugin
Skinning and provisioning Jenkins using a WAR overlay
Generating a home page

Creating HTML reports

Efficient use of views

Saving screen space with the Dashboard plugin
Making noise with HTML5 browsers

An eXtreme view for reception areas

Mobile presentation using Google Calendar
Tweeting the world

Mobile apps for Android and I0S

Getting to know your audience with Google Analytics

Communicating through Jenkins

Introduction

This chapter explores communication through Jenkins, recognizing that there are different
target audiences.

Jenkins is a talented communicator. Its home page displays the status of all the jobs, allowing
you to make quick decisions. You can easily set up multiple views, prioritizing information
naturally. Jenkins, with its hoard of plugins, notifies you by e-mail, Twitter, and Google services.
It shouts at you through mobile devices, radiates information as you walk past big screens,
and fires at you with USB sponge missile launchers.

The primary audience is developers, but don't forget the wider audience that wants to
use the software being developed. This chapter includes recipes to help you reach this
wider audience.

When creating a coherent communication strategy, there are many Jenkins-specific details to
configure. Here are a few that will be considered in this chapter:

» Notifications: Developers need to know quickly when something is broken. Jenkins
has many plugins; you should select a few that suit the team's ethos.

» Mobile-friendly plugins: By firing notifications at well-known social media such as
Twitter, it ensures access to a global audience without the need for extra installation
tasks on the mobile device.

» Page decoration: A page decorator is a plugin that adds content to each page.
You can cheaply generate a corporate look and feel by adding your own stylesheets
and JavaScript.

» Overlaying Jenkins: Using the Maven WAR plugin, you can overlay your own content
over Jenkins. You can use this to add custom content and provision resources such
as home pages, which will enhance the corporate look and feel.

» Optimize the views: Front-page views are the lists of jobs that are displayed in a
tab. The front page is used by the audience to quickly decide which job to select for
review. Plugins expand the choice of view types and optimize information digestion.
This potentially avoids the need to look further, thereby saving precious time.

» Drive by notification: Extreme views that radiate information visually look great on
large monitors. If you place a monitor by watering holes such as receptions or coffee
machines, passersby will absorb the ebb and the flow of job status changes. The
view sublimely hints at the professionalism of your company and the stability of your
product's roadmap.

» Keeping track of your audience: If you are openly communicating, you should track
usage patterns so that you can improve services. Consider connecting your Jenkins
pages to Google Analytics or Piwik, an open source analytics application.

136

Chapter 4

Subversion repository

From this chapter onwards, you will need a Subversion repository. This will
. allow you to use Jenkins in the most natural way possible. If you do not
& already have a repository, there are a number of free or semi-free services
s you can sign up for on the Internet, for example, http://www.straw-
dogs.co.uk/09/20/6-free-svn-project-hosting-services/.
Alternatively, you can consider setting up Subversion locally, for example,
https://help.ubuntu.com/community/Subversion.

Skinning Jenkins with the Simple Theme

plugin
This recipe modifies the Jenkins look and feel through the themes plugin.

The Simple Theme plugin is a page decorator; it decorates each page with extra HTML tags.
The plugin allows you to upload a stylesheet and JavaScript file. The files are then reachable
through a local URL. Each Jenkins page is then decorated with HTML tags that use the URLs
to pull in your uploaded files. Although straightforward, when properly crafted, the visual
effects are powerful.

Getting ready

Install the themes plugin available at https://wiki.jenkins-ci.org/display/
JENKINS/Simple+Theme+Plugin.

How to do it...

1. Under the Jenkins userContent directory, create a file named my . j s, with the
following content:

document .write ("<hl id='test'>Example Location</hl>")

2. Create amy.css file in the Jenkins userContent directory, with the following content:
@charset "utf-8";
#test {

background-image: url
(/userContent/camera.png) ;
}

#main-table{
background-image:
url (/userContent/camera.png) !important;

Communicating through Jenkins

3. Browse through http://openiconlibrary.sourceforge.net/gallery2/ and
review the freely available icons. Download an icon and add it to the userContent
directory, renaming the icon to camera . png. For example, consider downloading
http://openiconlibrary.sourceforge.net/gallery2/open icon
library-full/icons/png/128x128/emblems/emblem-camera.png

4. Visit the Jenkins main configuration page /configure. Under the Theme section, fill
in the location of the CSS and JavaScript files:

o URL of theme CSS: /userContent/my.css
o URL of theme JS: /userContent/my.js

5. Press Save.

Return to the Jenkins home page, and review your work.

Jenkins

=" New Job

L People All| +

.+ Build History

The Simple Theme plugin is a page decorator. It adds the following information to every page:

</script>

<link rel="stylesheet" type="text/css"
href="/userContent/my.css" />

<script src="/userContent/my.js"
type="text/javascript">

The JavaScript writes a heading near the top of the generated pages with id="'test'. The
Cascading Style Sheet, having a rule triggered through the CSS locator #test, adds the
camera icon to the background.

The picture's dimensions are not properly tailored for the top of the screen; they are trimmed
by the browser. This is a problem you can solve later by experimenting.

138

Chapter 4

The second CSS rule is triggered for main-table, which is a part of the standard front page
generated by Jenkins. The full camera icon is displayed there.

On visiting other parts of Jenkins, you will notice that the camera icon looks out of context and
is oversized. You will need time to modify the CSS and JavaScript to generate better effects.
With care and custom code, you can skin Jenkins to fit your corporate image.

CSS 3 Quirks

There are quirks in the support for the various CSS standards between
i browser types and versions. For an overview, please visit the following page:

http://www.quirksmode.org/css/contents.html

Here are a few more things for you to consider:

CSS 3

CSS 3 has a number of new features; to draw a button around the header generated by the
JavaScript, change the #test section of the CSS file to:

test {
width: 180px; height: 60px;
background: red; color: yellow;
text-align: center;
-moz-border-radius: 40px; -webkit-border-radius: 40px;

}

Using Firefox, the CSS rule generated the following button:

Example

Location

. For the impatient, you can download a CSS 3 cheat sheet at the Smashing
% Magazine website: http://coding.smashingmagazine.com/wp-
S content/uploads/images/css3-cheat-sheet/css3-cheat-
sheet .pdf

Communicating through Jenkins

Included JavaScript library frameworks

Jenkins uses the YUl library (http://developer.yahoo.com/yui/). Decorated in each
HTML page, the core YUI library—yahoo-min. js—is pulled in ready for reuse. However, many
web developers are used to jQuery. You can also include the library by installing the jQuery
plugin (https://wiki.jenkins-ci.org/display/JENKINS/jQuery+Plugin). You
can also consider adding your favorite JavaScript library to the Jenkins /scripts directory
through a WAR overlay (see the next recipe).

Trust, but verify

With great power comes great responsibility. If your Jenkins deployment is maintained by only
a few administrators, you can most likely trust everyone to add JavaScript that has no harmful
side effects. However, if you have a large set of administrators, who use a wide range of Java
libraries, your maintenance and security risks increase rapidly. Please consider your security
policy, at least adding an audit plugin to keep track of actions.

See also

» Skinning and provisioning Jenkins using a WAR overlay

» Generating a home page

Skinning and provisioning Jenkins using a

WAR overlay

This recipe describes how to overlay the content onto the Jenkins WAR file. With a WAR
overlay, you can change the Jenkins look and feel ready for corporate branding and content
provisioning of home pages, among others. The basic example of adding your own custom
favicon. ico (the icon in your web browser's address bar) is used. It requires a nominal
effort to include more content.

Jenkins keeps its versions as dependencies in a Maven repository. You can use Maven to pull
in the WAR file, expand it, add content, and then repackage. This enables you to provision
resources, such as images, home pages, the icon in the address bar called a favicon,
robots. txt (which affects how search engines look through your content), and so on.

Be careful—using a WAR overlay will work cheaply if the structure and the graphical content
of Jenkins do not radically change over time. However, if the overlay does break the structure,
you might not spot this until you perform detailed functional tests.

You can also consider minimal changes through a WAR overlay, perhaps only changing
favicon.ico, adding images and userContent, and then using the Simple Theme plugin
(see the previous recipe) to do the styling.

140

Chapter 4

Getting ready

Create a directory named ch4 . communicating/war_ overlay for the files in this recipe.

How to do it...

1. Browse to the Maven repository, https://maven.glassfish.org/content/
groups/public/, and review the Jenkins dependencies.

2. Create the following pom.xml file. Feel free to update to a newer Jenkins version.

<project xmlns=
"http://maven.apache.org/POM/4.0.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>
<grouplds>nl.uva.berg</grouplds>
<artifactIdsoverlay</artifactIds>
<packaging>war</packaging>
<!-- Keep version the same as Jenkins as a hint -->
<version>1.437</version>
<name>overlay Maven Webapp</name>
<urls>http://maven.apache.org</urls>
<dependencies>
<dependency>
<grouplds>org.jenkins-ci.main</groupIlds>
<artifactIds>jenkins-war</artifactIds>
<version>1.437</version>
<types>war</types>
<scope>runtime</scope>
</dependency>
</dependencies>
<repositories>
<repositorys
<id>m.g.o-public</id>
<urls>
http://maven.glassfish.org/content/groups/public/
</urls>
</repositorys>
</repositories>
</projects>

3. Visita favicon. ico generation website, such as http://www.favicon.cc/.
Following their instructions, create your own favicon.ico. Alternatively, use the
example provided.

Communicating through Jenkins

4. Add favicon.ico to the location src/main/webapp.

5. Create the directory src/main/webapp/META-INF and add a file named
context .xml, with the following content:

<Context logEffectiveWebXml="true"path="/"></Context>

6. Inyour top-level directory, run the following command:
mvn package

7. Inthe newly generated target directory, you will see the overlay-1.437.war file.
Review the content, verifying that you have modified favicon.ico.

8. (Optional) Deploy the WAR file to a local Tomcat server, and verify and browse the
updated Jenkins server.

:‘;‘“ [ﬂ localhost:8080/overlay-1.437/

Jenkins has its WAR files exposed through a central Maven repository. This allows you to pull
in specific versions of Jenkins through standard Maven dependency management.

Maven uses conventions. It expects to find the content to overlay at either src/main/
webapp Of src/main/resources.

The context .xml file defines certain behaviors for a web application, such as database
settings. In this example, the setting logEffectiveWebXML is asking Tomcat to log specific
information on startup of the application (http://tomcat .apache.org/tomcat-
7.0-doc/config/context.html). The setting was recommended in the Jenkins Wiki
(https://wiki.jenkins-ci.org/display/JENKINS/Installation+via+Maven+
WAR+Overlay). The file is placed in the META - INF directory, because Tomcat picks up the
settings here without the need of a server restart.

The <packaging>war</packagings> tag tells Maven to use the WAR plugin for packaging.

You used the same version number in the name of the final overlayed WAR as the original
Jenkins WAR version. It makes it easier to spot if the Jenkins version changes. This again
highlights that using conventions aids readability and decreases the opportunity for mistakes.
When deploying from your acceptance environment to production, you should remove the
version number.

In the pom.xml file, you defined https://maven.java.net/content/groups/public/
as the repository in which to find Jenkins.

142

Chapter 4

The Jenkins WAR file is pulled in as a dependency of type—war and scope—runtime. The
runtime scope indicates that the dependency is not required for compilation but is for
execution. For more detailed information on scoping, refer to http://maven.apache.
org/guides/introduction/introduction-to-dependency-mechanism.
html#Dependency_ Scope

For further details about the WAR overlays, refer to http://maven.apache.org/
plugins/maven-war-plugin/.

Avoiding work

To limit maintenance efforts, it is better to install extra content
= rather than replace content that might be used elsewhere or

by third-party plugins.

There's more...

There are a lot of details that you need to cover if you wish to fully modify the look and feel of
Jenkins. The following sections mention some of the details:

Which types of content can you replace?
The Jenkins server deploys into two main locations:

» The first location is for the core application
» The second location is the workspace, which stores information that changes
To gain a fuller understanding of the content, review the directory structure. A useful

command in Linux is the tree command—it displays the directory structure. To install under
Ubuntu, use the following command:

apt-get install tree

For the Jenkins Ubuntu workspace, using the following command generates a tree view
of the workspace:

tree -d -L 1 /var/lib/Jenkins

» fingerprints: This is a directory to store checksums to uniquely identify files

» jobs: This directory stores Job configuration and build results

» plugins: This is the directory where plugins are deployed and mostly configured
» tools: This is the directory where tools such as Maven and Ant are deployed

» updates: This directory contains information about plugin updates

Communicating through Jenkins

» userContent: The contents of this directory are made available under /
userContent]

» users - This directory contains the user information displayed under /me
The default Ubuntu location of the webapp is /var/run/Jenkins/war. If you are running
Jenkins from the command line, then the option for placing the webapp is webroot.

» css - This is the location of Jenkins stylesheets

» executable - This is used for running Jenkins from the command line

» favicon.ico - This is the icon we replaced in this recipe

» help - This directory contains the help content

» images - This directory stores graphics in different sizes

» META-INF - This is the location for the manifest file and the pom.xm1 file that
generated the WAR

» robots.txt - This file is used to tell search engines where they are allowed to crawl
» scripts - This is the JavaScript library location
» WEB-INF - This is the main location for the servlet part of the web application

» winstone.jar - This is the servlet container; for more information, refer to
http://winstone.sourceforge.net/

Search engines and robots.txt

If you are adding your own custom content, such as user home pages, company contact
information, or product details, consider modifying the top-level file—robots . txt. At present,
it excludes search engines from all content.

we don't want robots to click "build" links
User-agent: *
Disallow: /

You can find the full details of the structure of the robots. txt file at
http://www.w3.0org/TR/html4/appendix/notes.html#h-B.4.1.1

Google uses richer structures that allow as well as disallow search engines from discovering
content; see https://developers.google.com/webmasters/control-crawl-
index/docs/robots_txt.

Chapter 4

The following robots . txt file allows access by the Google crawler to the directory /
userContent/corporate/. It is an open question if all web crawlers will honor the intent.

User-agent: *

Disallow: /

User-agent: Googlebot

Allow: /userContent/corporate/

» Skinning Jenkins with the Simple Theme plugin
» Generating a home page

Generating a home page

The user's home page is a great place to express your organization's identity. You can create a
consistent look and feel that expresses your team's spirit.

This recipe will explore the manipulation of home pages found under the /user/userid
directory and configured by the user through the Jenkins /me folder path.

Getting ready

Install the Avatar plugin (https://wiki.jenkins-ci.org/display/JENKINS/
Avatar+Plugin). Create a Jenkins account for the user fakeuser. You can configure
Jenkins with a number of authentication strategies; the choice will affect how you create a
user. One example is to use Project-based Matrix tactics, which were detailed in the Reviewing
Project-based Matrix tactics via a custom script recipe in Chapter 2, Enhancing Security.

How to do it...

1. Browse to the location http://en.wikipedia.org/wiki/Wikipedia:Public
domain image resources for a list of public domain sources of images.

2. Search for open source images at http://commons .wikimedia.org/wiki/
Main_ Page.

Communicating through Jenkins

3. Download the image from http://commons.wikimedia.org/wiki/
File%$3ACharles Richardson (W _H Gibbs 1888) .Jjpg, by clicking the link
Download Image File: 75 px.

Note: If the image is no longer available,
i choose another.

Download this file x
Page URL:
http:/fcommons.wikimedia.org/wiki/File%3ACharles_Richardson_(W_H_Gibbs_1888).jpg
File URL:
http:ffupload.wikimedia.org/wikipediafcommons/1/1c/Charles_Richardson_%28W _H_Gibbs
Attribution:

By W. H. Gibbs [Public domain], via Wikimedia Commons HTML

Attribution not legally required

Download image file:
75px | 100px | 120px | 240px | S00px | 640px | 800px | 1024px | Full resolution

4. Log in to your sacrificial Jenkins server as fakeuser, and visit its configuration page
athttp://localhost:8080/user/fakeuser/configure.

5. Upload the image under the Avatar section.

Avatar

Your avatar - » Upload an avatar: |_Browse...
| Upload

Images can be gif, jpg or png. Other types may notbe supporied.

6. Reviewthe URL http://localhost:8080/user/fakeuser/avatar/image.
Note: You will now be able to use this known URL whenever you
i want to display your Avatar.

7. Add the following text to the job's description:

<script type="text/JavaScript"s>
function changedivview ()

{

var elem=document.getElementById("divid") ;

146

Chapter 4

elem.style.display=
(elem.style.display=="'none')?
'block!': 'none';
}
</script>
<h2>0FFICIAL PAGE</h2>
<div id="divid">
<table border=5 bgcolor=golds>
<tr><td>HELLO WORLD </td> </tr>
</table>
</div>
<a href="javascript:;"
onClick="changedivview() ; ">Switch<p>

8. Visitthe /user/fakeuser page. You will have a link in the description, named
Switch. If you click on the link, the HELLO WORLD content will appear or disappear.

9. Copy the user directory for fakeuser to a directory fakeuser2, for example, /var/
lib/Jenkins/user/fakeuser2.

10. In the config.xml file found in the fakeuser2 directory, change the value of the
tag <fullName> from fakeuser to fakeuser2. Change the <emailAddress>
value to fakeuser2@dev.null.

11. Log in as fakeuser2 with the same password as fakeuser.
12. Visit the home page /user/fakeuser2. Note the update to the e-mail address.

The Avatar plugin allows you to upload an image to Jenkins. The image's URL is in a fixed
location. You can reuse the image with the Simple Theme plugin to add content without using
a WAR overlay.

There is a vast number of public domain and open source images freely available. Before
generating your own content, it is worth reviewing resources on the Internet. If you create
content, consider donating to an open source archive such as http://archive.org.

Unless you filter the description (see the recipe Exposing information through build
descriptions in Chapter 3, Building Software) for HTML tags and JavaScript, you can use
custom JavaScript or CSS animations to add eye candy to your personalized Jenkins.

Your fakeuser information is stored in /user/fakeuser/config.xml. By copying to
another directory and slightly modifying the config.xml file, you have created a new user
account. The format is readable and easy to structure into a template for the creation of yet
more accounts. You created the fakeuser2 account to demonstrate this point.

Communicating through Jenkins

By using the WAR overlay recipe and adding extra /user/username directories containing
customized config.xml files, you can control Jenkins user populations, for example, from
a central provisioning script or at the first login attempt, using a custom authorization script
(see Using the Script realm authentication for provisioning in Chapter 2, Enhancing Security).

There's more...

You can enforce consistency by using a template config.xml. This will enforce a wider
uniform structure. You can set the initial password to a known value or keep it blank. An
empty password only makes sense if the time from creation of the user to the first login is very
short. You should consider this a bad practice; a problem waiting to happen.

The description is stored under the description tag. The content is stored as a URL escaped
text. For example, <hl1>Description</hl> is stored as:

<description><hl>DESCRIPTION≪ /hl></description>

A number of plugins also store their configuration in the same config.xml. As you increase
the number of plugins in your Jenkins server, which is natural as you get to know the product,
you will need to occasionally review the completeness of your template.

» Skinning Jenkins with the Simple Themes plugin
» Skinning and provisioning Jenkins using a WAR overlay

» Reviewing Project-based Matrix tactics via a custom script, In Chapter 2,
Enhancing Security

Creating HTML reports

The left-hand menu of jobs on the front page is valuable real estate. The developer's eyes
naturally scan this area. This recipe describes how you can add a link from a custom HTML
report to the menu, getting the report more quickly noticed.

Getting ready

Install the HTML publisher plugin (https://wiki.jenkins-ci.org/display/JENKINS/
HTML+Publisher+Plugin). We assume that you have a Subversion repository with the
Packt code committed.

148

How to do it...

Create a free-style software project, naming it ch4 .html report.
Under the Source Code Management section, click on Subversion.

Chapter 4

Under the Modules section, add Repo/ch4 . communicating/html report to

Repository URL, where Repo is the URL to your Subversion repository.

4. Under the Post-build Actions section, check Publish HTML reports, adding the

following details:

o HTML directory to archive: target/custom report

o Index page[s]: index.html

o Report title: My HTML Report

o Tick the checkbox Keep past HTML reports

5. Press Save.

Run the job and review the left-hand menu. You will now see a link to your report:

Jenkins » ch4.html report

4 Back to Dashboard
., Status
:v Changes

h Workspace

@ Build Now

® Delete Project

7 Configure

-
£, My HTML Report
L)

Your Subversion repo contains an index.html file, which is pulled into the workspace of the
job. The plugin works as advertised and adds a link pointing to the HTML report. This allows

your audience to efficiently find your custom-generated information.

Communicating through Jenkins

There's more...

The example report is shown next:

<html>
<head>
<title>Example Report</title>
<link rel="stylesheet" type="text/css"
href="/css/style.css" />
</head>
<body>
<h2>Generated Report</h2>
Example icon:
<img title="A Jenkins Icon" alt="Schedule a build"
src="/images/24x24/clock.png" />
</body>
</html>

It pulls in the main Jenkins stylesheet—/css/style.css.

It is possible that, when you update a stylesheet in an application, you do not see the changes
in your browser until you have cleaned your browser cache. Jenkins gets around this latency
issue in a clever way. It uses a URL with a unique number that changes with each Jenkins
version. For example, for the css directory you have two URLs:

» /css

» /static/uniquenumber/css

Most Jenkins URLS use the latter form. Consider doing so for your stylesheets.
Note: The unique number changes per version, so you will
i need to update the URL with each upgrade.

When running the site goal in a Maven build, a local website is generated (http://maven.
apache.org/plugins/maven-site-plugin). This website has a fixed URL inside the
Jenkins job that you can point at with the My HTML Report link. This brings within easy reach
documentation such as test results.

» Efficient use of views

» Saving screen space with the Dashboard plugin

150

Chapter 4

Efficient use of views

Jenkins' addictive ease lends itself to creating a large number of jobs. This increases the
volume of information exposed to the developers. Jenkins needs to avoid chaos by utilizing the
browser space efficiently. One approach is to define minimal views. In this recipe, you will use
the DropDown toolbar plugin. This plugin removes the tab views and replaces them with one
select-box. This aids quicker navigation. You will also be shown how to provision lots of jobs
quickly, using a simple HTML form generated by a script.

Warning: In this recipe, you will be creating a large number of views,
“ which you may want to delete later. If you are using a VirtualBox image,
consider cloning the image and deleting after you have finished.

Getting ready

Install the DropDown ViewsTabBar plugin from https://wiki.jenkins-ci.org/
display/JENKINS/DropDown+ViewsTabBar+Plugin.

How to do it...

1. Cut and paste the following Perl Script into an executable file named create.pl:

#!/usr/bin/perl
Scounter=0;
Send=20;
$Shost="http://localhost:8080"';
while ($end > S$Scounter)
Scounter++;
print "<form action=Shost/
createltem?mode=copy method=POST>\n";
print "<input type=text
name=name value=CH4.fake.$counter>\n";
print "<input type=text
name=from value=Templatel >\n";
print "<input type=submit
value='Create CH4.fake.$counter's>\n";
print "</form>
\n";
print "<form action=Shost/job/
CH4 . fake.$Scounter/doDelete method=POST>\n";
print "<input type=submit
value='Delete CH4.fake.$counter's>\n";
print "</form>
\n";

}
2. Create an HTML file from the output of the Perl Script, for example:

perl create.pl > form.html

Communicating through Jenkins

In a web browser, as an administrator, log in to Jenkins.

Create the job Templatel, adding any details you wish. This is your template job,
which will be copied into many other jobs.

Load form.html into the same browser.
Click on all of the Create CH4.fake buttons.

Visit the front page of Jenkins, and verify that the jobs have been created and are
based on the Templatel job.

Create a large number of views with a random selection of jobs. Review the front
page, noting the chaos.

Visit the configuration screen, /configure. From the View Tab Bar select-box, select
the DropDownViewsTabBar provides a drop down menu for selecting views option.

10. In the subsection DropDown ViewsTabBar, check the Show Job Counts box.

SCM checkout retry count 0

Views Tab Bar

DropDownViews TabBar provides a drop down menu for selecting views.

DropDown ViewsTabBar

Show Job Counts ([

11. Press the Save button.

> W Mame 1

Once you have logged in to Jenkins as an administrator, you can create jobs. You can do
this through the GUI or by sending POST information. In this recipe, we copied a job named
Templatel to new jobs starting with the name CH4 . fake.

<form action=

152

http://localhost:8080/createltem?mode=copy method=POST>
<input type=text name=name value=CH4.fake.l>
<input type=text name=from value=Templatel >
<input type=submit value='Create CH4.fake.l's>
</form>

Chapter 4

The POST variables you used were name, for the name of the new job, and from, with the
name of your template job. The URL for the POST action is /createItem?mode=copy.

To change the hostname and port number, you will have to update the Shost variable found
in the Perl script.

To delete a job, the Perl script generated forms with actions pointing to /job/Jobname/
doDelete (for example, /job/CH4 . fake.1/doDelete). No extra variables were needed.

To increase the number of form entries, you can change the value of the $Send variable.

There's more...

Jenkins uses Stapler (http://stapler.java.net/what-is.html) to bind services to
URLs. Plugins also use Stapler. When you install plugins, the number of potential actions also
increases. This means that you can activate a lot of actions through the HTML forms similar
to this recipe. You will discover in Chapter 7, Exploring Plugins that writing binding code to
Stapler requires minimal effort.

See also

» Saving screen space with the Dashboard plugin

Saving screen space with the Dashboard

plugin

In the previous recipe, you discovered that you can save horizontal tab space using the
DropDown ViewsTabBar plugin. In this recipe, you will use the Dashboard view plugin
to condense the use of the horizontal space. Condensing the horizontal space aids in
assimilating information efficiently.

The Dashboard view plugin allows you to configure areas of a view, to display specific
functionality, for example, a grid view of the jobs or an area of the view that shows the subset
of jobs failing. The user can drag-and-drop the areas around the screen.

Note: The developers have made the dashboard easily
i extensible, so expect more choices later.

Communicating through Jenkins

Getting ready
Install the Dashboard view plugin (https://wiki.jenkins-ci.org/display/JENKINS/

Dashboard+View). Either create a few jobs by hand, or use the HTML form that provisioned
jobs in the previous recipe.

How to do it...

As a Jenkins administrator, log in to the home page of your Jenkins instance.

N

Create a new view by clicking on the + sign in the second tab, at the top
of the screen.

Choose the Dashboard View.

Under the Jobs sections, select a few of your fake jobs.
Leave the Dashboard Portlet as default.

Click on OK. You will now see a blank view screen.

In the left-hand menu, click on the link Edit View.

O N o ok w

In the Dashboard Portlets section of the view, select the following:
o Add Dashboard Portlet to the top of the view: Jobs Grid
o Add Dashboard Portlet to bottom of the view: Unstable Jobs

9. At the bottom of the configuration screen, press the OK button. You will now see the
dashboard view.

?adddescrimion
All | Dashbard | Test +
Jobs Grid {PEE
@ CHdfake £ | @ CHafake.10 £ | @ CHafake11 (<))
@ CH4fske13 [<3)]
Unstable Jobs {PEE
No unstable jobs

Note: You can expand or contract the areas of functionality

with the arrow icon.
Bl

Chapter 4

The Dashboard plugin divides the screen into areas. During the dashboard configuration, you
choose the Jobs Grid and the unstable Jobs Portlets. Other dashboard Portlets include a jobs
list, latest builds, slave statistics, test statistics (chart or grid), test trend chart, and so on.
There will be more choices as the plugin matures.

The Jobs Grid portlet saves spaces compared to the other views, as the density of jobs
displayed is high.

Warning: If you are also using the many views tab (see the previous

recipe), there is a little glitch. When you click on the Dashboard tag,
’ the original set of views is displayed, rather than the select-box.

The Dashboard plugin provides a framework for other plugin developers to create dashboard
views. One example of this type of usage is the Project Statistics Plugin (https://wiki.
jenkins-ci.org/display/JENKINS/Project+Statistics+Plugin).

See also

» Creating HTML reports
» Efficient use of views

Making noise with HTMLS5 browsers

This recipe describes how to send a custom sound to a Jenkins user's browser when an
event, such as a successful build, occurs. You can also send sound messages at arbitrary
times. Not only is this good for the developers who enjoy being shouted at, sang to by famous
actors, and so on, but also for the system administrators who are looking for a computer in a
large server farm.

Getting ready

Install the Jenkins Sounds plugin (https://wiki.jenkins-ci.org/display/JENKINS/
Jenkins+Sounds+plugin). Make sure that you have a compliant web browser installed, say
a current version of Firefox or Chrome.

Communicating through Jenkins

For more details of HTML5 compliancy in browsers, consider

reviewing http://en.wikipedia.org/wiki/

Comparison of layout engines %28HTML5%209.

How to do it...

1. Login as a Jenkins administrator, and visit the Configure System screen
at /configure.
2. Under the Jenkins Sound section, check Play through HTML5 Audio enabled
Browser.

3. Press the Save button.

4. Select the Job creation link, found on the Jenkins home page.

5. Create a New Job with the job name ch4 . sound.

6. Select Build a free-style software project.

7. Press OK.

8. In the Post-build Actions section, check the Jenkins Sounds option.

9. Add two sounds: EXPLODE and doh.

B Jenkins Sounds
Sunds On build result For previous build result Play sound '@'
| success - NB: Ab: Fa: Un: Su: | EXPLODE (WAVE) & -Delete
- g ®© ¥ ® ®©
On build result For previous build result Play sound 'ﬁ'

[Failure . NEB: Ab: Fa: Un: Su: [doh (WAVE) & | -Delete
- ¥ ¥ ¥ = —

10. Press Save.

11. Click on the Build Now link.

12.
13.

14.

156

On success, your browser will play the sound in the EXPLODE . wav file.

Edit your job so that it fails, for example, by adding a non-existent source
code repository.

Build the job again. On failure, your web browser will play the doh . wav file.

Chapter 4

You have successfully configured your job to play different sounds based on success or failure
of the build.

You can refine how the plugin reacts further by configuring which event transitions will trigger
a sound. For example, if the previous build result was a failure and the current build result is a
success. This is defined in the For previous build result set of checkboxes.

The plugin works as a page decorator. It adds the following JavaScript that asynchronously
polls for new sounds. Your browser is doing the majority of the work, freeing server resources.

<script src="/sounds/script" type="text/javascript"s>
</script>
<script type="text/javascript" defer="defer">

function sounds_ ajaxJsonFetcherFactory
(onSuccess, onFailure)

{

return function/()

new Ajax.Request ("/sounds/getSounds",
parameters: { version: VERSION },
onSuccess: function(rsp) {
onSuccess (eval ('x="'+rsp.responseText))
'
onFailure: onFailure
1)
}
}

if (AUDIO CAPABLE) (

_sounds_pollForSounds
(_sounds_ajaxJsonFetcherFactory) ;

}

</script>

There's more...

The Sound plugin also allows you to stream arbitrary sounds to connected web browsers. Not
only is this useful for practical jokes and motivational speeches directed at your distributed
team, you can also perform useful actions such as a ten-minute warning alert before
restarting a server.

You can find some decent sound collections at http://www.archive.org/details/
opensource_audio.

Communicating through Jenkins

For example, you can find a copy of the One Laptop per Child music library at
http://www.archive.org/details/OpenPathMusic44Vv2. Within the collection,
you will discover shenai . wav. First, add the sound somewhere on the Internet where
it can be found. A good place is the Jenkins userContent directory. To play the sound
on any connected web browser, you will need to visit the following address (replacing
localhost : 8080 with your own address):

http://localhost:8080/sounds/playSound?src=http://localhost:8080/
userContent/shenai.wav

» Keeping in contact with Jenkins through Firefox, Chapter 1, Maintaining Jenkins

An eXtreme view for reception areas

Agile projects emphasize the role of communication over the need to document. Information
radiators aid in returning feedback quickly. Information radiators have two main
characteristics: they change over time and the data presented is easy to digest.

The eXtreme Feedback plugin is one example of an information radiator. It is a highly visual
Jenkins view. If the layout is formatted consistently and displayed on a large monitor, it is ideal
for the task. Consider this also as a positive advertisement of your development process that
you can display behind your reception desk, or in a well-frequented social area such as near
the coffee machine or project room.

In this recipe, you will add the eXtreme Feedback plugin and modify its appearance, through
the HTML tags in the description.

Getting ready

Install the eXtreme Feedback plugin (https://wiki.jenkins-ci.org/display/
JENKINS/eXtreme+Feedback+Panel+Plugin).

How to do it...

1. Create a job with a descriptive name, such as Blackboard Report PRD Access, and
add the following description:

<centers
<p>Writes Blackboard sanity reports

and sends them to a list.
<table border="1" class="myclass">

158

Chapter 4

<tr><td>More Details</td></tr>
</tables>
</center>

2. Create a new view (/newView) named extreme. Check eXtreme FeedBack Panel.

3. Pressing the OK button, select between 6 and 24 already created jobs, including the
one previously created in this recipe.

4. Setthe Number of Columns to 2.

5. Refresh time in seconds to 20.

6. Click on Show Job descriptions.

7. Press OK.

8. Experiment with the settings. Optimizing the view depends on the monitors used and

the distance from the monitor that the audience will view.

ELACKBEOARD FB ELACKBOARD REPORT PRD ACCESS:

Writes Blackboard sanity reports
and sends them to a list.

00

FE TESTNG

100% 11 ()

HIPPO TRUNK MAVEN RAT

Responsible: -

Setting up and running this information radiator was simple. The results deliver a beautifully
rendered view of the dynamics of your software process.

Setting the refresh rate to 20 seconds is debatable. A long delay between updates dulls the
viewer's interest.

Communicating through Jenkins

You have written one description that is partially formatted. You can see that the information
area is easier to digest than the other projects. This highlights the need to write consistent
descriptions that follow in-house conventions, under a certain length to fit naturally on the
screen. A longer, more descriptive name of a job helps the viewer understand the job's
context better.

Information radiators are fun and take a rich variety of shapes and forms. From different views
displayed in large monitors, to USB sponge missile firing, and abuse from voices of famous
actors (see the Making noise with HTML5 browsers recipe).

A number of example electronic projects in Jenkins that are worth exploring are:

» LavaLamps - https://wiki.jenkins-ci.org/display/JENKINS/
Lava+Lamp+Notifier
» USB missile launcher - https://github.com/codedance/Retaliation

» Traffic lights - http://code.google.com/p/hudsontrafficlights/

Remember, let's be careful out there.

» Saving screen space with the Dashboard plugin
» Making noise with HTML5 browsers

Mobile presentation using Google Calendar

Jenkins plugins can push build history to different well-known social media services. Two of
the main services are Google Calendar (used in agendas) and Twitter. Modern Android or 10S
mobile devices have preinstalled applications for both these services, lowering the barrier to
adoption. In this recipe, we will configure Jenkins to work with Google Calendar.

Getting ready

Download and install the Google Calendar plugin (https://wiki.jenkins-ci.org/
display/JENKINS/Google+Calendar+Plugin). Make sure you have a test user account
for Gmail.

160

Chapter 4

How to do it...

N

9.

10.
11.

12.

Log in to Gmail and visit the Calendar page.
Create a new calendar, under the My Calendars section.
Add the Calendar name Test for Jenkins.

Click on Create Calendar. By default, the new calendar is private. Keep it private for
the time being.

Under the My Calendars section, click on the down-arrow icon next to Test for
Jenkins and select the option Calendar Settings.

Right-click on the XML button; copy the link location.

[XML |

Review the section Embed this calendar. It describes how to add your calendar to a
web page. Cut and paste the supplied code to an empty HTML page. Save and view it
in a web browser.

Log in to Jenkins as an administrator.
Create a new job named Test_G.
In the Post build section, check Publish job status to Google Calendar.

Add the calendar details you copied from the XML button to the
Calendar URL textbox.

Add your Gmail login name and password.

& Publish job status to Goegle Calendar

Calendar URL hitp=fwwnw . google.comicalendar/ feeds /2000000000000 00NNCOOOONONIEOG
Login [ywwww@xmxux.eon‘
Password

Which buikds to publish? @ a buis

Only successful buikds Only failing builds

13.
14.

Press Save.
Build your job, making sure it succeeds.

Communicating through Jenkins

15. Log in to Gmail and visit the Calendar page. You will now see the build's success has
been published.

TEST JENKINS -
x|
Add | Settings

B TEST_G build #1 succeeded

Other calendars
Sun, November 6, 2:44pm — 2:44pm

Delete Edit event »

Zpm

; apw%

By creating a calendar in Google and using just three configuration settings, you have exposed
selected Jenkins jobs to Google Calendar. With the same amount of configuration, you can
connect most modern smartphones and tablets to the calendar.

There's more...

In the plugins directory, under the Jenkins workspace, you will find an HTML file for help with
the configuration of Google plugins, named /plugins/gcal/help-projectConfig.html.

Replace the contents with the following;:

<div>

<p>
Add your local comments here:

</p>

</div>

162

Chapter 4

After restarting the Jenkins server, visit the plugin configuration /configure. You will now
see the new content.

Publish job status to Google Calendar 2]

Add your local comments here:

This example is an anti-pattern. If you need to change content for local needs, it is
much better to work with the community, adding to the Jenkins SCM, so everyone can
see and improve.

You will be told immediately that your content is not internationalized. It needs to be
translated into the languages that Jenkins supports natively. Luckily, at the bottom of every
Jenkins page, there is a link that volunteers can use to upload translations. The translation
effort requires minimal start-up effort and is an easy way to start with an open source project.

For more development details on how to use property files for
Internationalization in Jenkins, read https://wiki.jenkins-
I~ ci.org/display/JENKINS/Internationalization.

» Tweeting the world
» Mobile apps for Android and 10S

Tweeting the worlid

Open source code is malleable; you can download, modify, commit, and review the code and
form your own judgment on its quality. The Twitter channel is great for managers to see a
history of success and failures, as they try and form an opinion about whether the roadmap of
the product is realistic. Most modern social devices, such as Android or I0S mobile devices,
have Twitter apps built in. The only configuration needed is your user account information.
This recipe outlines how to make Jenkins tweet.

Communicating through Jenkins

. Sakai is an Open Source Learning Management System used by
a millions of students around the world, including the University of
s Amsterdam for whom | work. Sakai uses Jenkins to build its various
sub-projects; see @sakaibuilds.

Getting ready

Install the Twitter plugin (http://wiki.hudson-ci.org/display/HUDSON/
Twitter+Plugin)and download auth.jar from the same wiki page.

How to do it...

1.

164

From the command line, run:

java -jar auth.jar

Review the output, which will be similar to:

[Thu Nov 10 15:54:49 CET 2011]
Will use class twitter4j.internal.logging.StdOutLoggerFactory as
logging factory.

[Thu Nov 10 15:54:49 CET 2011]
Will use twitter4j.internal.http.HttpClientImpl as HttpClient
implementation.

Open the following URL and grant access to your account:
http://api.twitter.com/ocauth/authorize?oauth token=D1ztJbtlOzjNL5F
v7g50trQEdBW3WVRXXNQWwmhLnk

Log into twitter.com and follow the link mentioned in your output (starting with
http://api), copying the PIN number.

Enter your PIN number at the command line. You will now see two tokens that you
need as configuration in Jenkins, with command-line output similar to:

access token:136212584-Mhgl5s0kJopUJ31HOMt4S5Lm01lffKci8nErpTddd
access token secret:igfGaJaf5iSVJIpCc5wK31hKZsyP6SFWMvWoWhOEZ80

Visit the Jenkins Configure System page (/configure).

Chapter 4

6. Under Global Twitter Settings, update Token and TokenSecret. Check both Only
Tweet on Failure or Recovery and Include the Build URL in the Tweet.

Glebal Twitter Settings

Token 136212584-Mhgl5s0kJopUJ3 1 HOMt4S5LMOIfKciBnErpTdd)

TokenSecret

Only Tweet on Failure or Recovery? @]

Include the Build URL in the Tweet? g

7. Press the Save button.
Create a new job named Twitter.
9. Under the Post-build Actions section, check Twitter.
10. Under the new Advanced section, set Only Tweet on Failure or Recovery? to No.
11. Click on Save.

We used the Twitter OAuth API for authentication (https://dev.twitter.com/docs/
auth/oauth/faq).

OAuth is an authentication protocol that allows users
to approve applications to act on their behalf, without
’ sharing their password.

You need to be able to provide credentials so that your plugin can send tweets. The plugin
uses out of band agreements, known as oob. You can find the exact details of how oob works
on the Twitter development site, https://dev.twitter.com/docs/auth#oob.

In this recipe, you downloaded a JAR file that uses Twitter4J, a standard Twitter Java
framework (http://twitter4j.org). To create the credentials, you needed to fill in a PIN
number at the appropriate moment. You then added the returned token information to the
plugin, enabling encryption so that tweeting could commence. You configured the plugin to
supply as much information as possible in the tweet. The URL to the build information is a tiny
URL, which saves space to make the tweet as mobile-friendly as possible.

Communicating through Jenkins

There's more...

Almost all modern smartphones have an app for Twitter; however, if you want to compare with
a freely available one, then UberSocial (http://ubersocial.com/) is a good alternative.
The app runs on Blackberry, I0S, and Android.

You can also configure the Ubuntu desktop and most NIX desktops to receive tweets through
Gwibber (http://gwibber.com).

Sakai Hudson Server

FAILURE:reset-pass trunk $189 - http://t.cof
zASe2Cd6

Sakai Hudson Server

SUCCESS:assignment trunk $167 - http://t.co/
IKJIXGFF

Sakai Hudson Server
FAILURE:assignment trunk $166 - http://t.co/
TghF3ylo

o @ o

» Mobile presentation using Google Calendar
» Mobile apps for Android and iOS

Mobile apps for Android and iOS

There are a number of rich mobile apps for the notification of Jenkins job statuses. This recipe
points you to their home pages so that you can select your favorite.

166

http://ubersocial.com/

Chapter 4

Getting ready

You will need a Jenkins instance reachable from the Internet, or you can use

http://ci.jenkins-ci.org/, an excellent example of best practices. We also
assume that you have a mobile device.

How to do it...

1. As an administrator, visit the Configure System (/configure) screen.

2. Review the Jenkins URL; if it is pointing to 1ocalhost, change it so that your server
links can be reached from the Internet.

3. Visit the following app pages, and if compatible, install and use them:
o JenkinsMobi: http://www.jenkins-ci.mobi

o Blamer: http://www.androidzoom.com/android applications/
tools/blamer bavgz.html, https://github.com/mhussain/
Blamer

o Jenkins Mood widget: https://wiki.jenkins-ci.org/display/
JENKINS/Jenkins+Mood+monitoring+widget+for+Android

o Jenkins Mobile Monitor: http: //www.androidzoom.com/android
applications/tools/jenkins-mobile-monitor bmibm.html

o Hudson Helper: http://wiki.hudson-ci.org/display/HUDSON/Hud
son+Helper+iPhone+and+iPod+Touch+App

o Hudson Mobi: http://www.hudson-mobi .com/
o Hudson2Go Lite: http://www.androidzoom.com/android

applications/tools/hudson2go-lite nane.html

4. On your mobile device, search for Google Apps Marketplace or iTunes, and install any
new Jenkins apps that are free and have positive user recommendations.

Most of the apps pull in information using the RSS feeds from Jenkins, such as /rssLatest

and /rssFailed, and then load the linked pages through a mobile web browser. Unless the

Jenkins URL is properly configured, the links will break and 404-Page Not Found errors will be
returned by your browser.

You will soon notice that there is a delicate balance between the refresh rate of your app
potentially generating too many notifications, versus receiving timely information.

Communicating through Jenkins

The JenkinsMobi application runs in both Android and 10S operating systems. It gathers its
data using the remote APl with XML (http://www.slideshare.net/lucamilanesio/
jenkinsmobi-jenkins-xml-api-for-mobile-applications), rather than the more
raw RSS feeds. This choice allowed the app writers to add a wide range of features, making it
arguably the most compelling app in the collection.

There's more...

Here are a few more things for you to consider:

Android 1.6 and Hudson apps

Jenkins split up from the source code of Hudson relatively recently, due to an argument
about trademarking the Hudson name (http://en.wikipedia.org/wiki/

Jenkins $%28software%29). Most developers moved over to working with Jenkins. This left
much of the third-party Hudson code either less supported or rebranded to Jenkins. However,
Hudson and Jenkins have a large common base, including the content of the RSS feeds. This
may well diverge in detail over time. For older Android versions, such as Android 1.6, you will
not see any Jenkins apps in Google Apps Marketplace. Try looking for Hudson apps instead.
They mostly work on Jenkins.

VirtualBox and the Android-x86 project

There are a number of options for running Android apps. The easiest is to download
them through Google Apps Marketplace onto a mobile device. However, if you want

to play with Android apps in a sandbox on your PC, consider downloading the Android
SDK (http://developer.android.com/sdk/index.html), and use an emulator
and a tool such as adb (http://developer.android.com/guide/developing/
tools/adb.html) to upload and install apps.

You can also run a virtual machine through VirtualBox, VMware player, and so on, and install
an x86 image (http://www.android-x86.org). A significant advantage of this approach
is the raw speed of the Android OS and the ability to save the virtual machine in a specific
state. However, you will not always get Google Apps Marketplace preinstalled. You will either
have to find the . apk file for a particular app, yourself, or add other marketplaces, such as
SlideME (http://m.slideme.org). Unfortunately, secondary marketplaces give you much
less choice.

168

Chapter 4

2.2 [Running] - Oracle VM VirtualBox

AndAppStore

(2) Comics (144)
(2 Communications (435)

(2) Development (10)

(») Education (342)

(2) Games & Entertainment (1336)

(2) Graphic Apps (31)

(2) Internet (102)

(2) Multimedia (399) -

r

DG & [l Right Ctrl

The Windows 7 Android emulator, http://bluestacks.com/home . php, shows great
promise. Not only is it an emulator but it also provides a cloud service to move apps from
your mobile device into and out of the emulation. This promises to be an efficient approach
for development. However, if you do choose to use this emulator, please thoroughly review
the license you agree to during installation. BlueStacks wishes to obtain detailed information
about your system to help improve their product.

» Mobile presentation using Google Calendar

» Tweeting the world

Getting to know your audience with Google

Analytics

If you have a policy of pushing your build history or other information, such as home pages, to
the public, then you will want to know viewer habits. One approach is to use Google Analytics.
With Google Analytics, you can watch in real time as visitors arrive at your site. The detailed
reporting mentions things such as overall volume of traffic, browser types, if mobile apps are
hitting your site, entry points, country origins, and so on. This is particularly useful as your
product reaches key points in its roadmap and you want to gain insight in customer interest.

Communicating through Jenkins

In this recipe, you will create a Google Analytics account and configure tracking in Jenkins. You
will then watch traffic live.

Getting ready

Install the Google Analytics plugin (https://wiki.jenkins-ci.org/display/
JENKINS/Google+Analytics+Plugin).

Warning: If you are not the owner of your Jenkins URL, please
s ask for permission first, before creating a Google Analytics profile.

How to do it...

1. Log in with your Gmail account to Google Analytics
(http://www.google.com/analytics/).

2. Fillin the following details on the Create New Account page:
o Account Name: My Jenkins Server

o Website's URL: This will be same as the Jenkins URL on the /configure
screen of Jenkins

o Time zone: Select the correct value from the drop-down box

o Data Sharing Settings: Select the Do not share my Google Analytics
data option

o Setthe User Agreement—Your country or territory to the correct value

o Check the Terms and conditions box—Yes, | agree to the above terms
and conditions

3. Press Create Account.

4. You are now on the Accounts page for your newly created profile. Copy the Web
Property ID, which will look something like Ua-121212121212121-1.

The tracking status states the following;:
Tracking Not Installed
%@‘ The Google Analytics tracking code has not been detected on your

website's home page. For Analytics to function, you or your web
administrator must add the code to each page of your website.

5. Open a second browser and log in to Jenkins as an administrator.

170

Chapter 4

6. On the Jenkins Configure System screen (/configure), add the Profile ID that
you copied from the Google Analytics Web Property ID and set the Domain Name
equal to your Jenkins URL.

7. Press the Save button.
Visit the home page of Jenkins so that tracking is triggered.

9. Return to Google Analytics; you should still be on the Tracking code tab. Press Save
at the bottom of the page. You will now see that the warning about tracking not
installed has disappeared.

The plugin decorates each Jenkins page with a JavaScript page tracker, which includes
domain and Profile ID. The JavaScript is kept fresh by being pulled in from the Google
Analytics hosts.

<script type="text/javascript"s>
var gadsHost = (
("https:" == document.location.protocol) *?
"https://ssl." : "http://www.") ;
document .write (unescape ("%$3Cscript src='" + gadsHost +
"google-analytics.com/ga.js'
type='text/javascript'%3E%3C/script%3E")) ;

</scripts>
<script type="text/javascript"s>
var pageTracker = gat. getTracker ("TEST ID");

pageTracker. setDomainName ("TEST DOMAIN") ;
pageTracker. trackPageview() ;
</scripts>

Google Analytics has the ability to drill into the details of your web usage thoroughly. Consider
browsing Jenkins and reviewing the traffic generated through the real-time reporting feature.

The open source version of Google Analytics is Piwik (http://piwik.org/). You can set
up a server locally and use the equivalent Jenkins plugin (https://wiki.jenkins-ci.
org/display/JENKINS/Piwik+Analytics+Plugin) to generate statistics. This has the
advantage of keeping your usage data local and under your control.

As you would expect, the Piwik plugin is a page decorator injecting similar JavaScript as the
Google Analytics plugin.

See also

» Generating a home page

Using Metrics to
Improve Quality

In this chapter, we will cover the following recipes:

» Estimating the value of your project through Sloccount
» Looking for "smelly" code through code coverage
» Activating more PMD rulesets

» Creating custom PMD rules

» Finding bugs with FindBugs

» Enabling extra FindBug rules

» Finding security defects with FindBugs

» Verifying HTML validity

» Reporting with JavaNCSS

» Checking style using an external pom.xml

» Faking checkstyle results

» Integrating Jenkins with SONAR

X Some of the build files and code have deliberate mistakes,
& such as bad naming conventions, poor coding structures, or
s platform-specific encoding. These defects exist to give Jenkins

a target to fire tests against.

Using Metrics to Improve Quality

Introduction

This chapter explores the use of Jenkins plugins to display code metrics and fail builds.
Automation lowers costs and aids in consistency. The process does not get tired. If you decide
the success and failure criteria before a project starts, then this will remove a degree of
subjective debate from release meetings.

In 2002, NIST estimated that software defects were costing America around 60 billion
dollars per year (http://www.abeacha.com/NIST press release bugs cost.htm),
expecting the cost to have increased considerably since.

To save money and improve quality, you need to remove defects as early as possible in the
software lifecycle. Jenkins test automation creates a safety net of measurements. Another key
benefit is that once you have added tests, it is trivial to develop similar tests for other projects.

Jenkins works well with best practices such as Test Driven Development (TDD) or Behavior
Driven Development (BDD). Using TDD, you write tests that fail first, and then build the
functionality needed to pass the tests. With BDD, the project team writes the description of
tests in terms of behavior. This makes the description understandable to a wider audience.
The wider audience has more influence on the details of the implementation.

Regression tests increase confidence that you have not broken the code while refactoring the
software. The more coverage of code by tests, the more confidence. The recipe Looking for
"smelly" code through code coverage shows you how to measure coverage. You will also find
recipes on static code review through PMD and FindBugs. Static means that you can look

at the code without running it. PMD looks at the . java files for particular bug patterns. It is
relatively easy to write new bug detection rules using the PMD rules designer. FindBugs scans
the compiled . class files; you can review the application . jar files directly. FindBugs rules
are accurate, mostly pointing at real defects. In this chapter, you will use FindBugs to search
for security defects and PMD to search for design rule violations.

Also mentioned in this chapter is the use of Java classes with known defects. We will use the
classes to check the value of the testing tools. This is a similar approach to benchmarks for
virus checkers, where virus checkers parse files with known virus signatures. The advantage
of injecting known defects is that you get to understand the rules that are violated. This is a
great way to not only collect real defects found in your projects but also to characterize and
reuse real defects. Consider adding your own classes to projects to see if the QA process picks
up the defects.

174

Chapter 5

Good documentation and source code structure aids in the maintainability and readability
of your code. Sun coding conventions enforce a consistent standard across projects.

In this chapter, you will use Checkstyle and JavaNCSS to measure your source code
against Sun coding conventions (http://www.oracle.com/technetwork/java/
codeconv-138413.html).

The results generated by the Jenkins plugins can be aggregated into one report through the
violations plugin (https://wiki.jenkins-ci.org/display/JENKINS/Violations).
There are other plugins, specific to a given tool, for example, PMD or FindBugs plugins. The
plugins are supported by the Analysis Collector plugin (https://wiki.jenkins-ci.org/
display/JENKINS/Analysis+Collector+Plugin), which aggregates the other reports
into a consistent whole. The individual plugin reports can be displayed through the Portlets
dashboard plugin, which was discussed in the Saving screen space with the Dashboard
plugin recipe, Chapter 4, Communicating Through Jenkins.

Jenkins is not limited to testing Java; a number of the plugins, such as sloccount or the DRY
plugin (spots duplication of code), are language-agnostic. There is even specific support

for NUnit testing in .NET or compilation to other languages. If you are missing specific
functionality, then you can always build your own Jenkins plugin as detailed in Chapter 7,
Exploring Plugins.

There are a number of good introductions to software metrics; these include a wikibook

on the details of the metrics (http://en.wikibooks.org/wiki/Introduction to
Software Engineering/Quality/Metrics). A well written book is by Diomidis Spinellis
Code Quality: The Open Source Perspective, ISBN 0-321-16607-8.

In the last recipe of this chapter, you will link Jenkins projects to Sonar reports. Sonar is a
specialized tool that collects software metrics and breaks them down into an understandable
report. Sonar details the quality of a project. It uses a wide range of metrics, including the
results of tools such as FindBugs and PMD mentioned in this chapter. The project itself is
evolving rapidly. Consider using Jenkins for an early warning and to spot obvious defects, such
as a bad commit. You can then use Sonar for a deeper review.

When dealing with multi-module Maven projects, the Maven plugins
generate a series of results. The Maven 2/3 project type rigidly
* assumes that the results are stored in conventional locations, but
%i\ this does not always happen consistently. With freestyle projects,
’ you can explicitly tell the Jenkins plugins where to find the results
using regular expressions that are consistent with Ant filesets
(http://ant.apache.org/manual /Types/fileset.html).

Using Metrics to Improve Quality

Estimating the value of your project through

Sloccount

One way to gain insight into the value of a project is to count the number of lines of
code in the project, and divide the count between code languages. The sloccount
(http://www.dwheeler.com/sloccount/) command-line tool by Dr David Wheeler
does just that.

Getting ready

Install the sloccount plugin (https://wiki.jenkins-ci.org/display/JENKINS/
SLOCCount+Plugin). Create a new directory for this recipes code. Install sloccount on the
Jenkins instance as mentioned at http://www.dwheeler.com/sloccount. If you are
running on a Debian 0S, the following installation command will work:

sudo apt-get install sloccount

For details on how to install sloccount on other systems, please review
http://www.dwheeler.com/sloccount/sloccount.html.

How to do it...

1. Create a freestyle project naming it ch5.quality.sloccount, and add the
following code to it:
<h2>SLOCCOUNT REPORT Project</h2>
<h3>Compared to wider Sakai project</h3>

<script type="text/javascript" src
=http://www.ohloh.net/p/3551/widgets/project languages.js>
</script>

2. Under the Source Code Management section, check Subversion, adding for the
Repository URL: https://source.sakaiproject.org/svn/shortenedurl/
trunk.

3. Within the Build section, select Execute shell from Add build step. Add the following
command to it:

/usr/bin/sloccount -duplicates -wide -details . >./sloccount.sc

176

Chapter 5

4. Inthe Post-build Actions section, check Publish SLOCCount analysis results, adding
sloccount . sc to the text input SLOCCount reports.

5. Click on Save.

Run the job, and review the details.

SLOCCount Results
Files Folders Languages

File Language Lines Distribution
/api'src/javalorg/sakaiproject/shortenedurlmodel'RandomisedUrl java java 32 |
/api'src/javalorg/sakaiproject/shortenedurl'entity provider/ShortenedUr|Service Entity Provider java java 5 |
/api'src/javalorg/sakaiproject/shortenedurlapi'ShortenedUrService java java 13 |
Japi'pom.xmil xml 34 [
/api'src/javalorg/sakaiproject/shortenedurl’hbm/RandomisedUrl hbm.xmil xml 22]
/assembly/pom.xmi xml 76 |
fassembly/src/main/assembly/deploy . xmil xml 42 |
fddlpom.xmil xml 73 |
/ddlhibernate. cfg.xmil xml 9 []
/ddl'mysqgl'shortenedurk-ddl-1.1-SNAPSHOT-mysgl.sgl sql 8 |
/ddl'oracle/shortenedurl-ddl-1.1-SNAPSHOT-oracle sql sql 9 |
/docs/database/mysgl'shertenedurl-ddl-1.0.0-mysgl.sgl sqgl B8 |
/docs/database/mysgl'shortensdurl-indexes-only-mysgl.sgl sql 2 []
Jdocs/database/oracle’s hortenedurl-ddl-1.0.0-cracle.sgl sql 9]
/docs/database/oracle/s hortenedurl-indexes-only-cracle sql sql 2 |
fimpl'srcfjavalorg/sakaipreject'shortenedurlimpl/RandomisedUriService java java 186 I

The recipe pulls in realistic code, a Java-based service that makes shortened URLs
(https://confluence.sakaiproject.org/display/SHRTURL). The Jenkins plugin
converts the results generated by sloccount into detailed information. The report is divided
into a three-tabbed table summed and sorted by files, folders, and languages. From this
information, you can estimate the degree of effort it would take to recreate the project
from scratch.

Using Metrics to Improve Quality

The description of the Job includes a small amount of JavaScript pointing to Ohloh.net, a
trusted third-party service. Ohloh allows you to add widgets to your web page with statistics.
Ohloh is a well-known service with well-described privacy rules (http://www.ohloh.net/
about /privacy). However, if you do not have complete trust in the reputation of a third-
party service, then don't link in through a Jenkins description.

Project ch5.quality.sloccount

SLOCCOUNT REPORT Project

Compared to wider Sakai project

Languages

I Java 35%
| 17%
I Javascriot 10%
I e R
I Other %

@ed'rt description

Information about the Sakai Learning Management System can be found by visiting
http://www.ohloh.net/p/3551. The shortenedURL service is one small part
of this whole. The combined statistics allows visitors to gain a better understanding of
the wider context.

Here are a few more details to consider.

Software cost estimation

Sloccount uses the COCOMO model (http://en.wikipedia.org/wiki/COCOMO) to
estimate the cost of projects. You will not see this in the Jenkins report, but you can generate
the estimated costs if you run sloccount from the command line.

Cost is estimated as ef fort * personcost * overhead.

The element that changes the most over time is personcost (in dollars). You can change the
value with the command-line argument personcost.

178

Chapter 5

Goodbye Google code search, hello Koders.com

Google has announced that it has closed its source code search engine. Luckily,
koders.com, another viable search engine, announced that it will provide coverage of
the code bases described at ohloh.net. Between koders.com and ohloh.net, you will be
able to review a significant selection of open source projects.

» Knowing your audience with Google Analytic, Chapter 4, Communicating
Through Jenkins

Looking for "smelly” code through code

coverage

This recipe uses Cobertura (http://cobertura.sourceforge.net/) to find the code
that is not covered by unit tests.

With consistent practice, writing unit tests will become as difficult as writing debugging
information to stdout. Most popular Java-specific IDE's have built-in support for running unit
tests. Maven runs them as part of the test goal. If your code does not have regression tests,
the code is more likely to break during refactoring. Measuring code coverage can be used to
search for hotspots of non-tested code.

For more information, you can review http://onjava.com/onjava/2007/03/02/
statement-branch-and-path-coverage-testing-in-java.html.

Getting ready

Install the Cobertura code coverage plugin
(https://wiki.jenkins-ci.org/display/JENKINS/Cobertura+Plugin).

How to do it...

1. Generate a template project by using the following command:
mvn archetype:generate -DgroupId=nl.berg.packt.coverage
-DartifactId=coverage -DarchetypeArtifactId=maven-archetype-
quickstart -Dversion=1.0-SNAPSHOT

2. Test the code coverage of the unmodified project with the following command:

mvn clean cobertura:cobertura

Using Metrics to Improve Quality

3.

Review the output from Maven, and it will look similar to the following;:

TESTS

Running nl.berg.packt.coverage.AppTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.036 sec

Results :
Tests run: 1, Failures: 0, Errors: 0, Skipped: O

[INFO] [cobertura:cobertura {execution: default-cli}]

[INFO] Cobertura 1.9.4.1 - GNU GPL License (NO WARRANTY) -
Cobertura: Loaded information on 1 classes.

Report time: 107ms

[INFO] Cobertura Report generation was successful.

In a web browser, view /target/site/cobertura/index.html. Notice that

there is no code coverage.

Packages
Al

Coverage Report - nl.berg.packt.coverage

Package # Classes Line Coverage Branch Coverage

Complexity

Classes in this Package Line Coverage Branch Coverage

nl.berg. packt.coverage 1 Yy] NiA NIA

Complexity

oo I [v

App (0%)

nl.berg.packt.coverage

Classes

Report generated by Cobertura 1.9.4.1 on 12/8/11 10:40 AM.

1

Add the following content to src/main/java/nl/berg/packt/coverage/

Dicey.java:
package nl.berg.packt.coverage;
import java.util.Random;
public class Dicey ({
private Random generator;
public Dicey () {
this.generator = new Random() ;
throwDice () ;

180

Chapter 5

private int throwDice() {
int value = generator.nextInt(6) + 1;
if (value > 3){
System.out.println("Dice > 3");
lelse{
System.out.println("Dice < 4");

}

return value;

}

6. Modify src/test/java/nl/berg/packt/coverage/AppTest.java to

instantiate a new Dicey object, by changing the testApp () method to the following:

Public void testApp () {
new Dicey () ;
)i

assertTrue (true

}

Test the code coverage of the JUnit tests with the following command:

mvn clean cobertura:cobertura

Review the Maven output, noticing that print1n from within the Dicey constructor is
also included.

TESTS

Running nl.berg.packt.coverage.AppTest
Dice < 4
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.033 sec

In a web browser, view /target/site/cobertura/index.html. Your project now
has the code coverage, and you can see which lines of code have not yet been called.

Packages Coverage Report - nl.berg.packt.coverage
All 7 -
nlberg.packt.coverage Package #Classes Line Coverage Branch Coverage Complexity
nl.berg.packt. coverage 2 sex: [N sov [1.333
Classes in this Package * Line Coverage Branch Coverage Complexity
App = i A 1
Dicey oo S o« [15

nl.berg. packt.coverage

Classes

App (0%)
Dicey (88%)

Report generated by Cobertura 1.9.4.1 on 12/8/11 11:11 AM.

Using Metrics to Improve Quality

10. Add the following build section to your pom.xm1:

<builds>
<plugins>
<plugin>
<groupld>org.codehaus.mojo</grouplds>
<artifactIds>cobertura-maven-plugin</artifactIds>
<version>2.5.1</version>
<configuration>
<formats>
<format>xml</formats>
<formats>html</formats>
</formats>
</configuration>
</plugin>
</plugins>
</builds>

11. Test the code coverage of the JUnit tests with the following command:
mvn clean cobertura:cobertura

12. Visit the location target/site/cobertura, noting that results are now also being
stored in coverage . xml.

13. Run mvn clean to remove the target directory.

14. Add the Maven project to your subversion repository.

15. Create a new freestyle Jenkins Job named ch5.quality.coverage.

16. Under the Source Code Management section, check Subversion, adding your
subversion repository location for the Repository URL.

17. Under the build section for Goals and Options, set the value to clean cobertura:
cobertura.

18. Under the Post-Build actions section, check Pubish Cobertura Coverage Report,
adding ** /target/site/cobertura/coverage.xml for the Cobertura xml
report pattern input.

19. Click on Save.

20. Build the Job twice; this will generate a trend. Review the results.

Cobertura instruments the Java bytecode during compilation. The Maven plugin generates
both HTML and XML reports. The HTML report allows you to quickly review the code status
from the command line. The XML report is needed for parsing by the Jenkins plugin.

182

Chapter 5

You had placed the plugin configuration in the build section rather than the reporting section
to avoid having to run the site goal with its extra phases.

The free-style project was used so that the cobertura plugin picks up multiple XML reports.
This was defined by the pattern fileset **/target/site/cobertura/coverage.
xml, which states that any report that is called coverage .xml under any target/site/
cobertura directory underneath the workspace will be processed.

Maven ran clean cobertura:cobertura. The clean goal removes all target directories
including any previously compiled and instrumented code. The cobertura: cobertura goal
compiles and instruments the code, runs unit tests, and generates a report.

The testApp unit test called the constructor for the Dicey class. The constructor randomly
generates a number from 1 to 6. This mimics a dice and chooses between two branches of
an if statement. The cobertura report allows you to zoom in to the source code and discover
which choice was made. The report is good for identifying missed tests. If you refactor

the code, you will not have unit tests in these areas to spot when the code accidentally
changes behavior. The report is also good at spotting the code of greater complexity than its
surroundings. The more complex the code, the harder it is to understand, and the easier it

is to introduce mistakes (http://www.ibm.com/developerworks/java/library/j-
cg01316/index.html?ca=drs).

There's more...

An alternative open source tool to Cobertura is emma: http://emma.sourceforge.
net. Emma also has an associated Jenkins plugin: https://wiki.jenkins-ci.org/
display/JENKINS/Emma+Plugin. In Maven, you do not have to add any configuration
to pom.xml. You simply need to run the goals clean emma : emma package, and point the
Jenkins plugin at the results.

Activating more PMD rulesets

PMD has rules for capturing particular bugs. It bundles those rules into rulesets. For example,
there is a ruleset with a theme about Android programming another for code size or design. By
default, three non-controversial PMD rulesets are measured:

» Basic: Obvious practices that every developer should follow, such as don't ignore the
Exceptions that are caught

» Unusedcoded: Finds code that is never used lines that can be eliminated, avoiding
waste and aiding readability

» Imports: Spots unnecessary imports

Using Metrics to Improve Quality

This recipe shows you how to enable more rules. The main risk is that the extra rules generate
a lot of false positives, making it difficult to see real defects. The benefit is that you will
capture a wider range of defects, some of which are costly if they get to production.

Getting ready

Install the Jenkins PMD plugin (https://wiki.jenkins-ci.org/display/JENKINS/
PMD+Plugin).

How to do it...

1. Generate a template project by using the following command:
mvn archetype:generate -DgroupId=nl.berg.packt.pmd
-DartifactId=pmd -DarchetypeArtifactId=maven-archetype-quickstart
-Dversion=1.0-SNAPSHOT

2. Add the Java Class src/main/java/nl/berg/packt/pmd/PMDCandle. java
with the following content:

package nl.berg.packt.pmd;
import java.util.Date;

public class PMDCandle ({
private String MyIP = "123.123.123.123";

public void dontDontDoThisInYoourCode () {
System.out.println ("Logging Framework please") ;
try {
int x =5;
}catch (Exception e) {}
String myString=null;
if (myString.contentEquals ("NPE here")) ;

}

3. Test your unmodified project with the command:

mvn clean pmd:pmd

Review the directory target, and you will notice the results
basic.xml, imports.xml, unusedcode.xml, and the aggregated results
pmd.xml.

4. View the target/site/pmd.html file in a web browser.

184

5.

10.
11.

Chapter 5

Add the following reporting section to your pom.xml:
<reporting>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-jxr-plugin</artifactId>
<version>2.1l</version>
</plugin>
<plugin>
<groupld>org.apache.maven.plugins</groupIld>
<artifactIds>maven-pmd-plugin</artifactId>
<version>2.6</version>
<configurations>
<targetJddk>1.5</targetJddk>
<format>xml</formats>
<linkXref>true</linkXrefs>
<minimumTokens>100</minimumTokens>
<rulesets>
<ruleset>/rulesets/basic.xml</ruleset>
<ruleset>/rulesets/braces.xml</ruleset>
<ruleset>/rulesets/imports.xml</ruleset>
<ruleset>/rulesets/logging-java.xml</ruleset>
<ruleset>/rulesets/naming.xml</ruleset>
<ruleset>/rulesets/optimizations.xml</ruleset>
<ruleset>/rulesets/strings.xml</ruleset>
<ruleset>/rulesets/sunsecure.xml</ruleset>
<ruleset>/rulesets/unusedcode.xml</ruleset>
</rulesets>
</configuration>
</plugin>
</plugins>
</reporting>

Test your project with the following command:

mvn clean site

View the target/site/pmd.htm file in a web browser, and notice that extra
violations have now been found. This is due to the extra rules added to pom.xm1l.
Run mvn clean to remove the target directory.

Add the source code to your subversion repository.

Create a new Maven 2/3 Jenkins Job named ch5.quality.pmd

Under the Source Code Management section, check Subversion, adding your
subversion repository location for the Repository URL.

Using Metrics to Improve Quality

12. Within the build section for Goals and options, set the value to clean site.
13. Under the Build Settings section, check Publish PMD analysis results.
14. Click on Save.

15. To generate a trend, you will need to run the Job twice. Afterwards, review the results.

(3 Alan | log out

Jenkins » chi.guality. pmd « #1 » PMD Warnings » Type [fStmtsMustUseBraces » PMDCandle.java

A‘t Back to Project

Content of file PMDCandle.java

g
'L_% Status

':; Changes 01 package nl.berg.packt.pmd;
- 02 import java.util .Date;
a Console Output 03

il -) 04 public class PMDCandle {
= Edit Build Information o5 private String MyIP = "123.123.123.123";

i | T
|-- i Eppuld 07 public void dontDontDoThisInYoourCodel){
F PMD Warri 08 System,out.printlni “Logging Framework please");
_— @9 try {
¥ Redepioy Artifacts 10 it x =5;
11 }catch(Exception e){}
& | See Fingerprints 12 String myString=null;
13 if {(myString.conmtertEquals("NPE here"));
14 T
15
15 }
E Help us localize this page Page generated: Dec B, 2011 4:34:49 PM Jenkins ver. 1.442

The Maven PMD plugin tested a wide range of rulesets. By downloading the binary package
from the PMD website, you can find the paths of the rulesets by listing the contents of the
pmd. jar file. Under a *NIX system, the command to do this is:

unzip -1 pmd-version.jar | grep rulesets

You had added a standard candle, a Java class with known defects that trigger PMD warnings.
For example, there are multiple defects in the following two lines of code:

String myString=null;
if (myString.contentEquals ("NPE here")) ;

186

Chapter 5

The most significant defect is that a Java programmer needs to place the literal first, to avoid a
NullPointerException, for example:

"NPE here".contentEquals (myString)

Placing the literal first returns false when myString is null. There is an issue with the lack
of braces around the if statement. The same counts for the lack of a command to run when
the if statement is triggered.

Another trivial example is hardcoding infrastructural details into your source; for example,
passwords, IP addresses, and usernames. It is far better to move the details out into property
files that reside only on the deployment server. The following line tests PMD for its ability to
find this type of defect:

private String MyIP = "123.123.123.123";

Both FindBugs and PMD have their own set of bug pattern detectors. Neither will capture the
full range of defects. It is, therefore, worth running both the tools to capture the widest range
of defects. For a review of both products, visithttp: //www. freesoftwaremagazine.
com/articles/destroy annoying bugs part 1.

A couple of other static code review tools you may be interested in are QJPro
(http://gjpro.sourceforge.net/)and Jlint (http://jlint.sourceforge.net/).

There's more...

Out of the box, PMD tests for a sensible set of bug defects, however, each project is different,
and you will need to tweak.

Throttling down PMD rulesets

You can find the current PMD rulesets at
http://pmd.sourceforge.net/rules/index.html.

It is important to understand the meaning of the rulesets, and shape the Maven configuration
to include only the useful ones. If you do not do this, then for a medium-sized project, the
report will include thousands of violations, hiding the real defects. The report will then take
time to render in your web browser. Consider enabling a long list of rules only if you want to
use the volume as an indicator of project maturity.

To throttle down, exclude parts of your code, and systematically clean up the areas reported.

The "don't repeat yourself" principle

Cut-and-paste programming, cloning, and then modifying code makes for a refactoring
nightmare. If the code is not properly encapsulated, it is easy to have slightly different pieces
scattered across your code base. If you then want to remove known defects, it will require
extra effort.

Using Metrics to Improve Quality

PMD supports the Don't Repeat Yourself (DRY) principle by finding duplicate code. The trigger
point is configured through the minimumTokens tag. However, the PMD plugin does not pick
up the results (stored in cpd.xml). You will need to either install and configure the DRY plugin
(https://wiki.jenkins-ci.org/display/JENKINS/DRY+Plugin) or the Violations
Jenkins plugin.

If you have downloaded the PMD binary from its website

(http://sourceforge.net/projects/pmd/files/pmd/),
i then in the bin directory is cpdgui. It is a Java swing application
that allows you to explore your source code for duplications.

See also

» Creating custom PMD rules

Creating custom PMD rules

PMD has two extra features when compared to other static code review tools. The first is the
cpdgui tool, which allows you to look for the code that has been cut-and-pasted from part of
the code base to another. The second, and the one that we will explore in this recipe, is the
ability to design custom bug discovery rules for Java source code using Xpath.

Getting ready

Make sure that you have installed the Jenkins PMD plugin (https://wiki.jenkins-ci.
org/display/JENKINS/PMD+Plugin). Download and unpack the PMD distribution from
http://pmd.sourceforge.net. Visit the PMD bin directory, and verify that you have the
startup scripts designer.sh and designer.bat.

How to do it...

1. Create a Maven project from the command line using:

mvn archetype:generate -DgroupId=nl.berg.packt.pmdrule
-DartifactId=pmd design -DarchetypeArtifactId=maven-archetype-
quickstart -Dversion=1.0-SNAPSHOT

2. Inthe pom.xml just before the </project> tag, add a reporting section with the
following content:
<reportings>
<pluginss>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-jxr-plugin</artifactIds>

188

Chapter 5

<versions>2.l</version>
</plugins>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-pmd-plugin</artifactIds>
<versions>2.6</version>
<configurations>
<targetddk>1.6</targetddk>
<format>xml</formats>
<rulesets>
<ruleset>password ruleset.xml</ruleset>
</rulesets>
</configurations>
</plugin>
</plugins>
</reporting>

In the top-level directory, create the file password_ruleset.xml with the content:

<?xml version="1.0"?>

<ruleset name="STUPID PASSWORDS ruleset™"
xmlns="http://pmd.sf.net/ruleset/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://pmd.sf.net/ruleset/1.0.0
http://pmd.sf.net/ruleset _xml_ schema.xsd"
xsi:noNamespaceSchemalLocations=
"http://pmd.sf.net/ruleset _xml schema.xsd">
<descriptions>

Lets find stupid password examples

</description>

</ruleset>

Edit src/main/java/nl/berg/packt/pmdrule/App. java, so that the main
method is:

public static void main(Stringl[] args)

{

System.out.println("Hello World!");
String PASSWORD="secret";

}

Depending on your operating system, run pmd designer using either the startup
script bin/designer.shor bin/designer.bat

Click on the JDK option at the top left of the screen, selecting JDK 1.6 as the
Java version.

Using Metrics to Improve Quality

8.
In this example:

public class RuleTest

In the Source Code text area, add the example code you want to test against.

static final String PASSWORD="secret";

}

9. Forthe Query (if any) text area add:

//VariableDeclaratorId[@Image="'PASSWORD']

10. Click on Go. You will now see the result ASTVariableDeclarorID at line 2 column 20.

o3 PMD Rule Designer (v 4.3) |
JDK Actions

Source code:

:MPath Query (if any):

public class RuleTest {
static final String PASSWORD="secrat";

B

MVariableDeclaratorlld[@Image="PASSWORD']

-

fabstract Syntax Tree / XPath / Symbol Table |/Qata Flow Analysis |

Yooid
¢ ClassOrinterfaceBody
¢ ClassorinterfaceBodyDeclaration
¢ FieldDeclaration
¢ Type
¢ ReferenceType
ClassOrinterfaceType:String

LM AL E LT ar atuT i RaTE TE5T

| ‘IaSTVariableDeclaratorld at line 2 column 25

11. Under the Actions menu option at the top of the screen, select Create rule XML, and

add the following values:

o Rule name: No Password

o Rule msg: If we see a PASSWORD we should flag

o Ruledesc: Let's find stupid password examples

190

Chapter 5

12. Click on Create rule XML. The generated XML should have a fragment similar
to the following:

<rule name="NO_PASSWORD"

message="If we see a PASSWORD we should flag"
class="net.sourceforge.pmd.rules.XPathRule">
<description>
If we see a PASSWORD we should flag
</description>
<properties>

<property name="xpath">

<value>

<! [CDATA [

//VariableDeclaratorId[@Image="'PASSWORD']

11>

</value>

</propertys>
</propertiess>
<priority>3</prioritys>
<example>

<! [CDATA [

public class RuleTest
static final String PASSWORD="secret';

}
11>

</example>

</rule>

Rule name : |NO_PASSWORD |

Rule msg : [If we see a PASSWORD we should flag |
If we see a PASSWORD we should flag

Rule desc:

Create rule XML
<rule name="NO_PASSWORD"

message="lf we see a PASSWORD we should flag"
class="net.sourceforge, pmd.rules.XPathRule">
=description=
If we see a PASSWORD we should flag
=/description=
<properties=
=property name="xpath"=
=<value>
=![CDATA]
VariableDeclaratorld[@Image="PASSWORD']

Ed
=fvalue>
=/property=
=/properties=
<priority=3</priority=
<example=
<![CDATA]
public class RuleTest {
static final String PASSWORD="secret";

1=
=jexample=
<jrule=

Using Metrics to Improve Quality

13. Copy-and-paste the generated code into password ruleset.xml just before
</rulesets.

14. Commit the project to your subversion repository.
15. In Jenkins, create a Maven 2/3 Job named ch5.quality.pmdrule.

16. Under the Source Code Management section, check Subversion, adding your
subversion repository location for the Repository URL.

17. Within the build section for Goals and Options, set the value to clean pmd : pmd.
18. In the Build Settings section, check Publish PMD analysis results.

19. Click on Save.

20. Run the Job.

21. Review the PMD Warnings link.

PMD analyzes the source code and breaks it down into meta-data known as an Abstract
Syntax Tree (AST) - http://onjava.com/pub/a/onjava/2003/02/12/static_
analysis.html. PMD has the ability to use Xpath rules to search for patterns in the AST.
w3schools provides a gentle introduction to Xpath (http://www.w3schools.com/
xpath/). The designer tool enables you to write Xpath rules and tests your rules against a
source code example. For readability, it is important that the source code you test against
contains only the essential details. The rules are then stored in XML.

To bundle the XML rules together, you have to add the rules as part of a <ruleset> tag.

The Maven PMD plugin has the ability to read the rulesets from within its classpath, on the
local file system or through the http protocol from a remote server. You added your ruleset by
adding the configuration option.

<ruleset>password ruleset.xml</ruleset>

If you build up a set of rules, then you should pull all the rules into one project for ease
of management.

You can also create your own custom ruleset based on already existing rules, pulling out your
favorite bug detection patterns. This is achieved by the <rule> tag with a ref pointing to
the known rule; for example, the following pulls out the DuplicateImports rule from the
imports.xml ruleset:

<rule ref="rulesets/imports.xml/DuplicateImports"/>

The rule generated in this recipe tested for variables with the name PASSWORD. | have seen
the rule trigger a number of times in real projects.

192

Chapter 5

The PMD home page is a great place to learn about what is possible with the Xpath rules. It
contains descriptions and details of the rulesets; for example, for the logging rules, review
http://pmd.sourceforge.net/rules/logging-java.html.

It would be efficient if static code review tools could make recommendations about how to fix
the code. However, that is a little dangerous as the detectors are not always accurate. As an
experiment, | have written a small Perl script to first repair the literals and also discard some
wasting of resources. The code is a "Proof Of Concept", and thus is not guaranteed to work
correctly. It has the benefit of being succinct, see

https://source.sakaiproject.org/contrib/ga/trunk/static/cleanup/easy
wins_find java.pl.

See also

» Activating more PMD rulesets

Finding bugs with FindBugs

It is easy to get lost in the volume of defects found by static code review tools. Another Quality
Assurance attack pattern is to clean up the defects package by package, concentrating
developer time on the most used features.

This recipe will show you how to generate and report defects found by FindBugs for
specific packages.

Getting ready

Install the Jenkins FindBugs plugin (https://wiki.jenkins-ci.org/display/
JENKINS/FindBugs+Plugin).

How to do it...

1. From the command line, create a Maven project:

mvn archetype:generate -Dgroupld=nl.berg.packt.FindBugs all
-DartifactId=FindBugs all -DarchetypeArtifactId=maven-archetype-
quickstart -Dversion=1.0-SNAPSHOT

Using Metrics to Improve Quality

2. Inpom.xml, add a build section just before the </project> tag, with the following
content:

<builds>
<plugins>
<plugin>
<groupld>org.codehaus.mojo</grouplds>
<artifactId>FindBugs-maven-plugin</artifactIds>
<version>2.3.3</version>
<configurations>
<FindBugsXmlOutput>true</FindBugsXmlOutput>
<FindBugsXmlWithMessages>true</FindBugsXmlWithMessages>
<onlyAnalyze>
nl.berg.packt.FindBugs_all.candles.*
</onlyAnalyze>
<effort>Max</efforts>
</configuration>
</plugin>
</plugins>
</builds>

3. Create the directory src/main/java/nl/berg/packt/FindBugs_all/candles.

4. Inthe candles directory, include FindBugsCandle. java with the following content:
package nl.berg.packt.FindBugs all.candles;

public class FindBugsCandle
public String answer="41";

public boolean myBad() {
String guess= new String("41");
if (guess==answer){ return true; }
return false;

}

5. Create a free-style project with the name ch5.quality.FindBugs.

6. Under the Source Code Management section, check the Subversion radio box
adding Your Repository URL to the Repository URL.

7. Within the build section for Goals and options, set the value to clean compile
findBugs: findBugs.

8. Under the Build settings section, check Publish FindBugs analysis results.
9. Click on Save.

Chapter 5

10. Run the Job.
11. Review the results.

g Back to Project
1\. Status
= Changes

B Console Output

Tag this build

_’ FindBugs Warnings
Rede Artifacts

4= | See Fingerprints

B Next Buid

Jenkins » chS.quality findbugs » #1 « FindBugs Warnings » New Warnings ~ Category BAD PRACTICE

== Edit Build Information

New Warnings - Category BAD_PRACTICE

Summary
Total High Priority Normal Priority Low Priority
1 1] 1] 1
Details
Details

FindBugsCandle.java:8, ES COMPARING_STRINGS_WITH_EQ, Priority: Low

Comparison of String objects using == or != in nl.berg.packt.

_all.candles.| Candle.myBad()

This code compares java.lang. St ring objects for reference eguality using the == or = operators. Unless both strings are either constants in
a source file, or have been interned using the St ring. intern() method, the same string value may be represented by two different String
objects. Consider using the equal s(0Obj ect) method instead.

A handy feature of the FindBugs report is that for each warning you can view the offending code.

L\«]\,’_ Status

_:F Changes

B Next Buid

Jenkins » chd.guality findbugs » #1 » FindBugs Warnings » New Warnings » Category BAD PRACTICE ~ FindBugsCandle.java

ﬁ Back to Project

H Console Qutput

ol 04 public String answer="41";
== Edit Build Infermation s
= 3 . 05 public boolean myBad(){
Ll o7 String guess= new String("41");
* FindBugs Warnings 08 if (guess==answer){ return true; }
N W 4 =] return false;
- 10 }
11 }

87| See Fingerprints

Content of file FindBugsCandle.java

01 package nl.berg.packt.findbugs_all.candles;
02
02 public class FindBugsCandle {

Using Metrics to Improve Quality

In this recipe, you have created a standard Maven project and added a Java file with
known defects.

The pom.xml configuration forces FindBugs to report defects from the classes in the
nl.berg.packt.FindBugs all.candles package only.

The line in the standard candle with guess==answer is a typical programming defect. Two
references to objects are being compared rather than the values of their Strings. As the

guess object was created on the previous line, the result will always be false. These sorts of
defects can appear as subtle problems in programs. The JVM caches Strings, and occasionally
two apparently different objects are actually the same object.

There's more...

FindBugs is popular among developers and has plugins for a number of popular IDEs. Its
results are often used as part of wider reporting by other tools.

The FindBugs Eclipse plugin

The automatic install location for the Eclipse plugin is
http://findbugs.cs.umd.edu/eclipse

By default, the FindBugs Eclipse plugin has a limited number of rules enabled. To increase
the set tested, you will need to go to the Preferences menu option under Window, selecting
FindBugs from the left-hand menu. On the right-hand side, you will see the Reported (Visible)
bug categories under Reporter Configuration. You can now tweak the visible categories.

o Preferences

) FindBugs f=14 -

> General
B Ant analysis effort | Default 2 |
> CodePro ; i
> Help Reporter Configuration | Filter files | Plugins and misc. Settings | Detector configuration
> InstallfUpdate Minimum rank to report: -y
¥ Java (1is most severe, 20 s least) Minimum confidence to report: | Medium 3 |

> Appearance 15 (Of Concern)

» Build Path Reported (visible) bug categories Mark bugs with ... rank as:

* Code Style Malicious code vulnerability Scariest: | Warning 2 |

> Compiler

» Debug & Dodgy code Scary: | warning 2 |

» Editor 1 Bad practice Troubling: |Warning 2 |

105 & Of concern: | Warning = |

> Installed JREs
Junit
Properties Files Ec

Internationalization

& Performance

Plug-in Developmen
PMD

> Maven Security

> Mylyn [Multithreaded correctness
> Perl EPIC Experimental

>

>

196

Chapter 5

The Xradar and Maven dashboards

There are alternative Maven plugin dashboards for the accumulation of generated software
metrics. The Maven dashboard is one example (http://mojo.codehaus.org/dashboard-
maven-plugin/). You will need to connect it to its own database. There is a recipe for this

in Apache Maven 3 Cookbook, Srirangan, Packt Publishing (http: //www.packtpub.com/
apache-maven-3-0-cookbook), Setting up the Maven dashboard, Chapter 4, Reporting
and Documentation.

Xradar and QALab are other, arguably less popular, examples of dashboards.
(http://xradar.sourceforge.net/usage/maven-plugin/howto.html,
http://galab.sourceforge.net/multiproject/maven2-galab-plugin/index.
html).

See also

» Enabling extra FindBugs rules
» Finding security defects with FindBugs
» Activating more PMD rulesets

Enabling extra FindBugs rules

FindBugs has a wide range of auxiliary bug pattern detectors. These detectors are bundled
into one contributor project hosted at SourceForge (http://sourceforge.net/
projects/fb-contrib/).

This recipe details how to add the extra bug detectors to FindBugs from the fb-contrib
project and use the detectors to capture known defects.

Getting ready

It is assumed that you have followed the previous recipe, Finding bugs with FindBugs. You will
be using the recipe's Maven project as a starting point.

How to do it...

1. Copy the top-level pom.xml configuration to pom fb.xml.
2. Replace the FindBugs <plugins> section of pom_fb.xml with the following content:
<plugin>
<grouplds>org.codehaus.mojo</grouplds>
<artifactId>FindBugs-maven-plugin</artifactId>
<version>2.3.3</version>
<configuration>

Using Metrics to Improve Quality

<FindBugsXmlOutput>false</FindBugsXmlOutput>
<FindBugsXmlWithMessages>true</FindBugsXmlWithMessages>
<onlyAnalyze>

nl.berg.packt.FindBugs all.candles.*
</onlyAnalyze>
<pluginList>

http://downloads.sourceforge.net/project/

fb-contrib/Current/fb-contrib-4.6.1.jar

</pluginlList>
<efforts>Max</efforts
</configurations>
</plugin>

3. Inthe src/main/java/nl/berg/packt/fingbugs all/candles directory, add
the Java class FindBugsFBCandle. java with the following content:

package nl.berg.packt.FindBugs all.candles;

public class FindBugsFBCandle
public String FBexample () {
String answer="This is the answer";
return answer;

}

Commit the updates to your subversion repository.
5. Create a Jenkins Maven 2/3 Job with the name ch5.quality.FindBugs. fb.

6. Under the Source Code Management section, check the Subversion radio box,
adding the URL to your code for the Repository URL.

7. In the Build section, set the following:
o Root POM: pom fb.xml
o Goals and options: clean compile findbugs: findbugs

Under the Build Settings section, check Publish FindBugs analysis results.
9. Click on Save.
10. Run the Job.

11. When the Job is finished building, review the FindBugs Warnings link. You will now
see a new warning:

USBR_UNNECESSARY STORE BEFORE RETURN

198

Chapter 5

There's more...

The Java language has a number of subtle boundary cases that are difficult to understand
until explained by real examples. An excellent way to capture knowledge is to write examples
yourself, when you see issues in your code. Injecting standard candles is a natural way of
testing your team's knowledge and makes for target practice during the QA process.

The FindBugs project generated some of their detectors, based on the content of Java
puzzlers, Joshua Bloch and Neal Gafter (http://www.javapuzzlers.com/).

To include external detectors, you added an extra line to FindBugs' Maven configuration:

<pluginLists>
http://downloads.sourceforge.net/project/fb-contrib/Current/
fb-contrib-4.6.1.jar

</pluginLists>
It is worth visiting SourceForge to check for the most up-to-date version of the detectors.

Currently, it is not possible to use Maven's dependency management to pull in the detectors
through from a repository, though this might change.

In this recipe, you have added a Java class to trigger the new bug detection rules. The anti-
pattern is the unnecessary line with the creation of the answer object before the return. It is
more succinct to return the object anonymously, for example:

Return "This is the answer";

The ant-pattern triggers the USBR_UNNECESSARY STORE_BEFORE_RETURN pattern, which is
described on the home page of the fb-contrib project.

See also

» Finding bugs with FindBugs
» Finding security defects with FindBugs
» Activating more PMD rulesets

Finding security defects with FindBugs

In this recipe, you will use FindBugs to discover a security flaw in a Java Server Page and some
more security defects in a defective Java class.

Using Metrics to Improve Quality

Getting ready

Either follow the recipe Failing Jenkins Jobs based on JSP syntax errors, Chapter 3, Building
Software, or use the provided project downloadable from the Packt website.

How to do it...

1. Edit pom.xml by just swapping the <plugins> within <builds> to include the
FindBugs plugin, by adding the following content:
<pluginss>
<plugins>
<grouplds>org.codehaus.mojo</grouplds>
<artifactId>findBugs-maven-plugin</artifactIds>
<version>2.3.3</versions>
<configurations>
<FindBugsXmlOutput>true</FindBugsXmlOutput>
<FindBugsXmlWithMessages>true</FindBugsXmlWithMessagess>
<effortsMax</efforts
</configurations>
</plugin>
</plugins>

2. Create the directory structure src/main/java/nl/berg/packt/finbugs _all/
candles.

3. Add the Java file FindBugsSecurity. java with the following content:
package nl.berg.packt.FindBugs all.candles;

public class FindBugsSecurityCandle
private final String[] permissions={"Read", "SEARCH"};
private void infiniteLoop (int loops) {
infiniteLoop (99) ;

}

public String[] exposure ()
return permissions;

}

public static void main(String[] args) {
String[] myPermissions = new
FindBugsSecurityCandle () .exposure () ;
myPermissions [0] ="READ/WRITE";
System.out.println (myPermissions [0]) ;

200

Chapter 5

Commit the updates to your subversion repository.

5. Create a Maven 2/3 Jenkins Job with the name ch5.quality.FindBugs.
security.

6. Under the Source Code Management section, check the Subversion radio box,
adding your subversion repository location in the Repository URL text input.

7. Beneath the Build section for Goals and options, set the value to clean package
findbugs: findbugs.

Click on Save.
9. Runthe Job.

10. When the Job has completed, review the link FindBugs Warning. Notice that the JSP
package exists with one warning for XSS REQUEST PARAMETER TO JSP WRITER.
However, the link fails to find the location of the source code.

11. Copy src/main/webapp/index.jsp 0 jsp/jsp.index jsp.
12. Commit to your subversion repository.
13. Run the Job again.

14. View the results under the FindBugs Warning link. You will now be able to view the
JSP source code.

JSP's are first translated from text into Java source code and then compiled. FindBugs works
by parsing the compiled Java bytecode.

The original JSP project has a massive security flaw—it trusts input from the Internet. This
leads to a number of attack vectors, including XSS attacks (http://en.wikipedia.org/
wiki/Cross-site scripting). Parsing the input with white lists of allowed tokens is
one approach to diminishing the risk. FindBugs discovers the defect and warns with Xxss_
REQUEST PARAMETER TO JSP_WRITER. The Jenkins FindBugs plugin details the bug type.
The messages are displayed because you had turned them on in the configuration with the
following option:

<FindBugsXmlWithMessages>true</FindBugsXmlWithMessages>

The FindBugs plugin has not been implemented to understand the location of JSP files. When
clicking on a link to the source code, the plugin will look in the wrong place. A temporary
solution is to copy the JSP file to the location the Jenkins plugin expects.

The line number location reported by FindBugs also does not make sense. It is pointing to the
line in the . java file that is generated from the . jsp file, and not directly the JSP file. Despite
these limitations, FindBugs discovers useful information about JSP defects.

201

Using Metrics to Improve Quality

An alternative for JSP bug detection is PMD. From the command line,

you can configure it to scan JSP files only with the option —-jsponly;
g see http://pmd. sourceforge.net/jspsupport.html.

Although FindBugs has rules that sit under the category security, there are other bug
detectors that find security-related defects. The standard candle class includes two such
defects. The first is a recursive loop that will keep calling the same method from within itself:

private void infiniteLoop (int loops) {
infiniteLoop (99) ;

}

Perhaps the programmer intended to use a counter to force an exit after 99 loops, but the
code to do this does not exist. The end result, if this method is called, is that it will keep
calling itself until the memory reserved for the stack is consumed and the application fails.
This is also a security issue. If an attacker knows how to reach this code, they can bring down
the related application, a Denial Of Service attack.

The other attack captured in the standard candle is the ability to change the content within
an array that appears to be immutable. It is true that the reference to the array cannot be
changed, but the internal references to the array elements can. In the example, a motivated
cracker, having access to the internal objects, is able to change the READ permissions to
READ/WRITE permissions. To prevent this situation, consider making a defensive copy of the
original array passing the copy to the calling method.

The OWASP project provides a wealth of information on the

subject of testing security; see:
A

https://www.owasp.org/index.php/
Category:OWASP_Java Project

» Finding bugs with FindBugs

» Enabling extra FindBugs rules

» Activating more PMD rulesets

» Configuring Jetty for integration tests Chapter 3, Building Software

202

Chapter 5

Verifying HTML validity

This recipe tells you how to use Jenkins to test HTML pages for validity against HTML
and CSS standards.

You can upload and verify your HTML files against the W3C's unified validator
(http://code.w3.org/unicorn). The unified validator will check your web pages
for correctness against a number of aggregated services. The Jenkins plugin does this
for you automatically.

Getting ready

Install the Unicon Validation plugin (https://wiki.jenkins-ci.org/display/
JENKINS/Unicorn+Validation+Plugin). If you have not already done so, also install the
plot plugin (https://wiki.jenkins-ci.org/display/JENKINS/Plot+Plugin).

How to do it...

o o~ wbd

Create a free-style Job with the name ch5.quality.html.

Within the build section, add a build step by selecting Unicorn Validator.

For the Site to validate input, add a URL to a site that you are allowed to test.
Click on Save.

Run the Job.

Review the Workspace by clicking on the unicorn output.html and markup-

validator errors.properties. For the properties file content, you will see
content similar to YVALUE=2.

7. Configure the project. In the Post-build Actions section, check Plot build data, and
add the following details:

[m]

[m]

[m]

Plot group: validation Errors

Plot title: Markup Validation errors

Number of builds to Include: 40

Plot y-axis label: Exrrors

Plot style: Area

Data series file: markup-validator errors.properties
Verify that Load data from properties file radio box is checked
Data series legend label: Feed errors

8. Click on Save.

203

Using Metrics to Improve Quality

9. Run the Job.
10. Review the Plot link.

. English |

- W3C's Unified Validator

The W3C validators are developed with assistance from the Mozilla Foundation, and 2713
supperted by community donations. ~
. s e bt
moz'lla Donate and help us build better tools for a better web.

~ This document has not passed the test: W3C HTML Validator &
- Errors (20)

URI: http://www.uva.nl/start.cfm

Missing xmins attribute for element html. The value should be:

6 1 < htmldir="tr" lang="nl">
o http://www.w3.org/1999/xhtm|

...htmi?la=nl& styk

retum false;”...

...7dc=1324110892435" alt="" border="0" height="271" width="283">
<fdiv > <idivs</td>

74 103 there is no attribute "onSubmit"

114 249 end tag for "img" omitted, but OMITTAG NO was specified

121 14 «divid="c msmessage™> ID "cmsmessage” already defined

«div id=" c msmessageblock™ class="textblock teaser'><h3
class="patagraphh...

The Unicon validation plugin uses the validation service at W3C to generate a report on the
URL you configure. The returned report is processed by the plugin, and absolute counts of
the defects are taken. The summation is then placed in the property file, where the values
are then picked up by the plotting plugin (see the recipe Plotting alternative code metrics

in Jenkins in Chapter 3, Building Software). If you see a sudden surge in the warnings, then
review the HTML pages for repetitive defects.

There's more...

It is quite difficult to obtain a decent code coverage from unit testing. This is especially true for
larger projects where there are a number of teams with varying practices. You can increase
your automatic testing coverage of web applications considerably by using tools that visit

as many links in your application as possible. This includes HTML validators, link checkers,
search engine crawlers, and security tools. Consider setting up a range of tools to hit your
applications during integration testing, remembering to parse the logfiles for unexpected
errors. You can automate log parsing using the recipe Deliberately failing builds through log
parsing, Chapter 1, Maintaining Jenkins.

122 07 ID "cmsmessageblock” already defined

204

Chapter 5

Reporting with JavaNCSS

JavaNCSS (http://javancss.codehaus.org/) is a software metrics tool that calculates
two types of information. The first are totals for number of source code lines in a package
that are active, commented, or JavaDoc related. The second type calculates the complexity
of code, based on how many different decision branches exist.

The Jenkins JavaNCSS plugin ignores the complexity calculation and focuses on the more
understandable line counts.

Getting ready

Install the JavaNCSS plugin (https://wiki.jenkins-ci.org/display/JENKINS/
JavaNCSS+Plugin).

How to do it...

1. Create a Maven 2/3 project named ch5.quality.ncss.

2. Under the Source Code Management section, check the Subversion radio box.

3. Add the Repository URL https://source.sakaiproject.org/contrib/

learninglog/tags/1.0.

4. Review Build Triggers, making sure none are activated.

5. Under the build section for the Goals and options type, clean javancss:report.

6. Under the Build Setting section, check Publish Java NCSS Report.

7. Click on Save.

8. Run the Job.

9. Review the Java NCSS Report.

10. Review the top-level pom.xml configuration in the Workspace; for example:

http://localhost:8080job/ch5.quality.ncss/ws/pom.xml.
Java NCSS Report
Results
Package Classes Functions Javadocs NCSS JLC SLCLC MLCLC

org.sakaiproject.learninglog.tool 1 2 1 53 3 7 /]
org.sakaiproject.learninglog.impl 7 131 8 1161 26 34 36
org.sak ject.l log.impl.entity 4 45 4 357 13 5 o
org.sak ject.l log.impl.sql 4 23 o 34z o 7 79
org.sakaiproject.learninglog.api [75 (1] 193 (1] 4 3z
org.sal ject.l log.api.dat del 4 53 8 230 33 0 32
org.sal ject.l log.api.sql 1 15 o 47 o 6 o
org.sakaiproject.learninglog.cover 1 5 1 21 5 1] 16
Totals 28| 349| 22| 2404 80| 63| 215

205

Using Metrics to Improve Quality

The Job pulled in source code from Sakai's subversion repository. The project is a multi-module
with the APl separated from the implementation.

JavaNCSS needs no compiled classes or modifications to the Maven pom.xml. This makes
for a simple cycle. The Job ran a Maven goal, publishing the report through the JavaNCSS
Jenkins plugin.

Reviewing the report, it's observed that the implementation has many more numbers of lines
of active code relative to other packages. Documentation of APIs is vital for the reuse of the
code by other developers. Significantly, there are no JavaDoc lines in the API.

The abbreviations in the summary table have the following meanings:

» Classes: Number of classes in the package.
» Functions: Number of functions in the package.

» JavaDocs: The number of different JavaDoc blocks in the package. This is not fully
indicative, as most modern IDEs generate classes using boilerplate templates.
Therefore, you can have a lot of JavaDoc generated of poor quality, creating
misleading results.

» NCSS: Number of non-commented lines of source code.

» JLC: Number of lines of JavaDoc.

» SLCLC: Number of lines that include only a single comment.

» MLCLC: Number of lines of source code that are part of multi-line comments.

The build summary displays information about changes (deltas) between the current and the
last Jobs; for example:

classes (+28)

functions (+349)

ncss (+2404)

javadocs (+22)

javadoc lines (+80)

single line comments (+63)
multi-line comments (+215)

Within the summary, the + character signals that code has been added and the - character
that the code has been deleted. If you see a large influx of code, but a lower than usual influx
of JavaDoc, then either the code is auto-generated or is more likely being rushed to market.

206

Chapter 5

There's more...

When you get used to the implications of the relatively simple summary of JavaNCSS,
consider adding JDepend to your safety net of code metrics. JDepend generates a wider
range of quality-related metrics (http://clarkware.com/software/JDepend.html,
http://mojo.codehaus.org/jdepend-maven-plugin/plugin-info.html or
https://wiki.jenkins-ci.org/display/JENKINS/JDepend+Plugin).

One of the most important metrics that JDepend generates is that of cyclic dependency. If class
Ais dependent on class B, and in turn, class B is dependent on class A, then that is a cyclic
dependency. When there is such a dependency, it indicates that there is an increased risk of
something going wrong, such as a fight for a resource, an infinite loop, or synchronization issues.
Refactoring may be needed to eliminate the lack of clear responsibilities.

Checking style using an external pom.xml

If you just want to check the code style for the quality of its documentation without changing
its source, then inject your own pom.xml file. This recipe shows you how to do this for
checkstyle. Checkstyle is a tool that mostly checks documentation against well-defined
standards, such as the Sun coding conventions.

Getting ready

Install the checkstyle plugin (https://wiki.jenkins-ci.org/display/JENKINS/
Checkstyle+Plugin). Create a new directory in your subversion repository for this
recipes code.

How to do it...

1. Create a directory named OVERRIDE.

2. Create the file OVERRIDE /pom_checkstyle.xml with the following content:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupIds>nl.berg.packt.checkstyle</groupIld>
<artifactIds>checkstyle</artifactIds>
<packaging>pom</packaging>
<version>1.0-SNAPSHOT</versions>
<name>checkstyle</name>

207

Using Metrics to Improve Quality

<urls>http://maven.apache.org</urls>

<modules>
<module>api</module>
<module>help</module>
<module>impl</module>
<modules>util</module>
<module>pack</module>
<modules>tool</module>
<module>assembly</module>
<module>deploy</module>
<modules>bundle</module>
</modules>
<builds>
<plugins>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
<versions>2.8</version>
</plugin>
</plugins>
</build>
<propertiess
<project.build.sourceEncoding>
UTF-8
</project.build.sourceEncoding>
</properties>
</project>

3. Commit to the source code to your subversion repository.

Create a Maven 2/3 job with the name ch5.quality.checkstyle.override.

5. Under the Source Code Management section, check Subversion, add your
subversion repository URL to Repository URL, and the value . /OVERRIDE to Local
module directory (optional).

Click on the Add more locations... button.

7. For new Repository URL, add https://source.sakaiproject.org/svn/
profile2/tags/profile2-1.4.5.

8. In the Pre-Steps section, for the Add pre-build step, select the option Execute shell.

208

Chapter 5

9. Inthe command text area, add cp OVERRIDE/pom_checkstyle.xml.
10. Under the Build section, add the following details:

o Root POM: pom checkstyle.xml

o Goals and options: clean checkstyle:checkstyle

11. Under the Build Settings section, check Publish Checkstyle analysis results.
12. Click on Save.

13. Run the Job a number of times, and review the output.

The profile2 tool is used by many millions of users around the world within the Sakai
Learning Management System (http://sakaiproject.org). It's a realistic piece of
industrial-quality coding. It is a social hub for managing what others can see of your account
details. The project divides the code between implementation, APIl, and model.

In this recipe, you had created a replacement pom.xml file. You did not need to copy any of

the dependencies from the original pom.xml, as checkstyle does not need compiled code to
do its calculations. However, the location of the modules was needed for it to know where to
look for the code.

The injected pom.xml file is pulled into its own repository in the Jenkins workspace by
configuring the Local module directory (optional) option. This avoids the injected code
being overwritten when Jenkins pulls in the profile2 source code. The job then copies the
injected pom.xm1l file to the main workspace directory so that it can find the modules in the
correct relative location.

Checkstyle was not configured in detail in pom.xml, because we were only interested in the
overall trend. However, if you want to zoom in to the details, checkstyle can be configured to
generate results based on specific metric, such as the complexity of Boolean expressions or
the Non Commenting Source Statements (NCSS)—http://checkstyle.sourceforge.
net/config metrics.html.

You can view the statistics from most quality-measuring tools remotely by using the Jenkins
XML API. The syntax for checkstyle, PMD, FindBugs, and so on is
Jenkins HOST/job/ [Job-Name] / [Build-Number] / [Plugin-URL]Result/api/xml.

209

Using Metrics to Improve Quality

For example, a URL similar to the following will work in the case of this recipe:

localhost:8080/job/ch5.quality.checkstyle.override/11/
checkstyleResult/api/xml

The returned results for this recipe look similar to the following:

<checkStyleReporterResults>
<newSuccessfulHighScore>true</newSuccessfulHighScores>
<warningsDelta>38234</warningsDeltas>
<zeroWarningsHighScore>1026944</zeroWarningsHighScore>
<zeroWarningsSinceBuild>0</zeroWarningsSinceBuilds>
<zeroWarningsSinceDate>0</zeroWarningsSinceDate>
</checkStyleReporterResults>

To obtain the data remotely, you will need to authenticate. For information on how to perform
remote authentication, review the Remotely triggering Jobs recipe, Chapter 3, Building Software.

» Faking checkstyle results

Faking checkstyle results

This recipe details how you can forge checkstyle reports. This will allow you to hook in your
custom data to the checkstyle Jenkins plugin (https://wiki.jenkins-ci.org/
display/JENKINS/Checkstyle+Plugin), exposing your custom test results without

writing a new Jenkins plugin. The benefit of this method, when compared to custom plotting,

is the more logijcal test results location in Jenkins. A further benefit is that you can also
aggregate the fake results with other metrics summaries using the Analysis Collector Plugin
(https://wiki.jenkins-ci.org/display/JENKINS/Analysis+Collector+Plugin).

Getting ready

If you have not already done so, install checkstyle and create a new directory in your
subversion repository for the code.

Chapter 5

How to do it...

1.

Create a Perl script file named generate data.pl with the following content:

#!/usr/bin/perl
Srand=int (rand (9) +1) ;

print <<MYXML;
<?xml version="1.0" encoding="UTF-8"?>
<checkstyle version="5.4">
<file name="src/main/java/MAIN.java">
<error line="$rand" column="1" severity="error"
message="line=%rand" source="MyCheck"/>

</file>
</checkstyle>
MYXML
#Need this extra line for the print statement to work

Make the directory src/main/java.
Add the Java file src/main/java/MAIN. java with the following content:

//line 1
public class MAIN
//line 3
public static void main(String[] args) {
System.out.println("Hello World"); //line 5

}

//line 7

}

//line 9

Commit the files to your subversion repository.
Create a Jenkins free-style Job ch5.quality.checkstyle.generation.

Within the Source Code Management section, check Subversion adding Your repo
URL to the Repository URL.

Within the Build section, select build Step, Execute Shell. In the Command input,
add the command perl generate data.pl > my-results.xml.

In the Post-build Actions section, check Publish Checkstyle analysis results. In the
Checkstyle results text input, add my-results.xml.

Click on Save.

Using Metrics to Improve Quality

10. Run the Job a number of times, and review the results and trend.

New Warnings - High Priority
Details

Details

MAIN java:3, , Priority: High

line=9

No description available. Please upgrade to latest checkstyle version.

The details report is linked to the correct line number in an HTML version of the source code.

Content of file MAIN.java

1 /fline 1

2 public class MAIN {

3 /fline 3

4 public static wvoid main(String[] args) {

5 System.out.println("Hello World"); //line 5
6 }

7 /fline 7

g8}

9 //line 9

The plugins used in this chapter store their information in XML files. We chose the simplest
XML structure to fake the results. This happened to be from the checkstyle tool.

The Perl code creates a simple XML results file, which chooses a line between 1 and 9, which
then fails. The format outputted is similar to the following:

<checkstyle version="5.4">
<file name="src/main/java/MAIN.java"s>

<error line="9" column="1" severity="error" message="line=9"
source="MyCheck"/>

</file>

Chapter 5

The file location is relative to the Jenkins workspace. The Jenkins plugin opens the file found
at this location so that it can display it as source code.

For each error found, an <error> tag is created. The plugin maps the severity level error
to high.

You may not have to force your results into a fake format. First, consider the Xunit plugin
(https://wiki.jenkins-ci.org/display/JENKINS/xUnit+Plugin). Itis a utility
plugin that supports the conversion of the results from different regression test frameworks.
The plugin translates the different result types into a standardized JUnit format. You can find
the JUnit results schema at http://windyroad.org/dl/Open%20Source/JUnit .xsd.

See also

» Plotting alternative code metrics in Jenkins, Chapter 2, Building Software

» Checking style using an external pom.xml

Integrating Jenkins with Sonar

Sonar is a rapidly evolving application for reporting quality metrics and finding code hotspots.
This recipe details how, through a Jenkins plugin, to generate code metrics and push them
directly to a Sonar database.

Getting ready

Install the Sonar plugin (http://docs.codehaus.org/display/SONAR/
Hudson+and+Jenkins+Plugin).

Download and unpack Sonar. You can run directly from within the bin directory, by selecting
the OS directory underneath. For example, the Desktop Ubuntu startup script is bin/
linux-x86-32/sonar. sh. You now have an insecure default instance running on port
9000. For fuller installation instructions, review http://docs.codehaus.org/display/
SONAR/Install+Sonar.

How to do it...

1. Within the main Jenkins configuration (/configure), in the Sonar section, add
localhost for Name.

2. Click on Save.

3. Create a Maven 2/3 Job named ch5.quality.sonar.

Using Metrics to Improve Quality

4. Under the Source Code Management section for the Repository URL, add
https://source.sakaiproject.org/contrib/programmerscafe/
blogwow/tags/0.9.9.

Within the Build Triggers section, verify that no build triggers are selected.
Under the Build section for Goals and options, add clean install.

For the Post-build Actions section, check Sonar.

Click on Save.

Run the Job.

© ® N o O

10. Click on the Sonar link, and review the newly generated report.

Wersion 0.9.9 - 17 Dec 2011 12:53 - | ¥ime changes..)

Lines of code Classes Violations A Blocker 0
2,472 42 178 2 Critical 0
4,323 lines 12 packages . & Major 41 []
1,080 statements 178 methods Rules compliance ¥ Minor 81 I
42 files +108 accessors 91.7% N 5 S
Comments Duplications Package tangle index
17.3% 0.6% 0.0%
517 lines 24 lines
36.6% docu. API 2 blocks
137 undocu. API 1files
&7 commented LOCS Lcoma Response for Class

1.1 rclass 19 sclass

4.8% files having LCOM4>1
Complexity 15
2.7 imetnod oo ! 0
11.4 iclass s H
11.4 rite o 0 0

1 2 4 & g 10 12 2 3 4 5 10 0 5 10 20 20 50 30

Total: 479

® Methods O Classes

Code coverage Unit test success
24.4% 100.0%
21.9% line coverage 0 failures
31.3% branch coverage 0 errors

20 tests

1.9 sec

The source code is that of a blogging tool used in the programmer's café by the Sakai
Foundation. The blogging project is a multi-module project with some relatively complex
details. The programmer's cafés are events where new Sakai programmers get a chance to
learn programming Sakai tools (https://confluence.sakaiproject.org/display/
BOOT/Programmer%27s+Cafe).

214

Chapter 5

The default Sonar instance is pre-configured with an in-memory database. The Jenkins plugin
already knows the default configuration and requires little extra configuration. The Jenkins
Sonar plugin does not need you to reconfigure your pom.xml. The Jenkins plugin handles all
the details itself for generating results.

The Job first ran Maven to clean out the old compiled code from the workspace, and then ran
the install goal, which compiles the code as part of one of its phases.

The Jenkins Sonar plugin then makes direct contact with the Sonar database and adds the
previously generated results. You can now see the results in the Sonar application.

Sonar is a dedicated application for measuring software quality metrics. Like Jenkins, it has
a dedicated and active community. You can expect an aggressive roadmap of improvements.
Features, such as its ability to point out hotspots of suspicious code, a visually appealing
report dashboard, ease of configuration, and detailed control of inspection rules to view,
currently differentiate it from Jenkins.

Sonar plugins

It is easy to expand the features of Sonar by adding extra plugins. You can find the official set
mentioned at the following URL:
http://docs.codehaus.org/display/SONAR/Sonar+Plugin+Library

The plugins include a number of equivalent features to the ones you can find in Jenkins.
Where Sonar is noticeably different are its governance plugins. This is where code coverage is
used to defend the quality of a project.

Aggregating results using the Violations plugin

The Jenkins Violations plugin accepts the results from a range of quality metrics tools and
combines them into a unified report. This plugin is the nearest equivalent to Sonar within
Jenkins. Before deciding if you need an extra application in your infrastructure, it is worth
reviewing to see if it fulfills your quality metrics needs.

» Looking for "smelly" code through code coverage
» Activating more PMD rulesets
» Interpreting JavaNCSS

Testing Remotely

In this chapter, we will cover the following recipes:

» Deploying a WAR file from Jenkins to Tomcat
» Creating multiple Jenkins nodes

» Testing with Fitnesse

» Activating Fitnesse HtmIUnit Fixtures

» Running Selenium IDE tests

» Triggering failsafe integration tests with Selenium Webdriver
» Creating JMeter test plans

» Reporting JMeter performance metrics

» Functional testing using JMeter assertions

» Enabling Sakai web services

» Writing test plans with SoapUl

» Reporting SoapUl test results

Introduction

By the end of this chapter, you will have ran performance and functional tests against

web applications and web services. Two typical setup recipes are included. The first is the
deployment of a war file through Jenkins to an application server. The second is the creation
of multiple slave nodes, ready to move the hard work of testing away from the master node.

Remote testing through Jenkins considerably increases the number of dependencies in your
infrastructure, and thus the maintenance effort. Remote testing is problem domain-specific,
decreasing the size of the audience that can write tests.

Testing Remotely

This chapter emphasizes the need to make test writing accessible to a large audience.
Embracing the largest possible audience improves the chances that the tests defend the
intent of the application.

The technologies highlighted include:

>

Fitnesse: It is a server that runs different types of tests. The tests are written in a
wiki format. Having a wiki-like language to express and change tests on the fly gives
functional administrators, consultants, and the end users a place to express their
needs. You will be shown how to run Fitnesse tests through Jenkins. Fitnesse is also
a framework where you can extend Java interfaces to create new testing types. The
testing types are called fixtures. There are a number of fixtures available, including
ones for database testing, running tools from the command line, and functional
testing of web applications.

JMeter: It is a popular open source tool for stress testing. It can also be used to
functionally test through the use of assertions. JMeter has a GUI that allows you to
build test plans. The test plans are then stored in an XML format. JMeter is runnable
through Maven or Ant scripts. JMeter is very efficient, and one instance is normally
enough to hit your infrastructure hard. However, for super high load scenarios, JMeter
can trigger an array of JMeter instances.

Selenium: It is the de facto industrial standard for functional testing of web
applications. With Selenium IDE, you can record your actions within Firefox,
saving them in an HTML format to replay later. The tests can be re-run through
Maven using Selenium Remote Control (RC). It is common to use Jenkins slaves
with different OSs and browser types to run the tests. The alternative is to use
Selenium Grid (http://selenium-grid.seleniumhqg.org/).

Selenium Webdriver and TestNG unit tests: A programmer-specific approach to
functional testing is to write unit tests using the TestNG framework. The unit tests
apply the Selenium Webdriver framework. Selenium RC is a proxy that controls the
web browser. In contrast, the Webdriver framework uses native API calls to control
the web browser. You can even run the HtmlUnit framework, removing the
dependency of a real web browser. This enables 0S-independent testing, but
removes the ability to test for browser-specific dependencies. Webdriver supports
many different browser types.

SoapUl: It simplifies the creation of functional tests for web services. The tool can
read Web Service Definition Language (WSDL) files publicized by web services,
using the information to generate the skeleton for functional tests. The GUI makes it
easy to understand the process.

Chapter 6

Deploying a WAR file from Jenkins to Tomcat

The three main approaches to deploying web applications for integration tests are as follows:

» Runthe web app locally in a container such as Jetty, brought to life during a Jenkins
Job. The applications database is normally in-memory, and the data stored is not
persisted past the end of the Job. This saves cleaning up and eliminates unnecessary
dependency on the infrastructure.

» A nightly build is created where the application is rebuilt regularly through a
scheduler. This normally happens at night when no one is using the infrastructure,
hence the name. No polling of the SCM is needed. The advantage of this approach
are a distributed team that knows exactly when and at which fixed web address a new
build exists. This information simplifies writing deployment scripts.

» Deploy to an application server. First, package the web application in Jenkins, and
then deploy it to an application server. It is now ready for testing by a second Jenkins
Job. The disadvantage of this approach is that you are replacing an application on the
fly, and the host server might not always respond stably.

In this recipe, you will be using the Deploy plugin to deploy a war file to a remote Tomcat 7
server. This plugin can deploy across a range of server types and version ranges including
Tomcat, GlassFish, and JBoss.

Getting ready

Install the deploy plugin for Jenkins Deploy plugin (https://wiki.jenkins-ci.org/
display/JENKINS/Deploy+Plugin). Download the newest version of Tomcat 7 and
unpack it (http://tomcat.apache.org/download-70.cgi).

How to do it...

1. Create a Maven project for a simple WAR file using the following command line:

mvn archetype:generate -DgroupId=nl.berg.packt.simplewar
-DartifactId=simplewar -DarchetypeArtifactId=maven-archetype-
webapp -Dversion=1.0-SNAPSHOT

2. Commit the newly created project to your subversion repository.

3. Under the Tomcat root directory, edit conf /server.xml, changing the default
connector port number to 38887.
<Connector port="38887" protocol="HTTP/1.1"

connectionTimeout="20000"
redirectPort="8443" />

Testing Remotely

4.

10.
11.
12.

13.

14.
15.

220

From the command line, start Tomcat.

bin/startup.sh

Log in to Jenkins.
Create a Maven 2/3 project named ché . remote.deploy.

Under the Source Code Management section, check the subversion radio box,
adding your own subversion repository URL to Repository URL.

In the Build section, add clean package for Goals and options.

In the Post-build Actions section, check Deploy war/ear to a container, adding the
following configuration:

o WAR/EAR files: target/simplewar.war
o Container: Tomcat 7.x

o Manager user name: jenkins build

o Manager password: mylongpassword

o Tomcat URL: http://localhost:38887

Click on Save.
Run the build.
The build will fail with an output similar to the following:

java.io.IOException: Server returned HTTP response code: 401 for
URL: http://localhost:38887/manager/text/list

Edit conf/tomcat-users.xml, and add the following code before
</tomcat-users>:

<role rolename="manager-gui"/>

<role rolename="manager-script"/>

<role rolename="manager-jmx"/>

<role rolename="manager-status"/>

<user username="jenkins build" password="mylongpassword"
roles="manager-gui,manager-script,manager-jmx,manager-status"/>

Restart Tomcat.

In Jenkins, build the Job again. The build will now succeed. Reviewing the Tomcat log,
logs/catalina.out, will reveal an output similar to the following;:

Jan 06, 2012 1:31:39 PM org.apache.catalina.startup.HostConfig
deployWAR

INFO: Deploying web application archive /xxxxx/apache-
tomcat-7.0.23/webapps/simplewar.war

Chapter 6

16. With a web browser, visit http://localhost:38887/simplewar/.

= =
Hello World!

At the time of writing, the deploy plugin deploys to the following server types and versions:

» Tomcat 4.x/5.x/6.x/7.x
» JBoss 3.x/4.x
» GlassFish 2.x/3.x

In this recipe, Jenkins packages a simple WAR file and deploys to a Tomcat 7 instance. By
default, Tomcat listens on port 8080, as does Jenkins. By editing conf /server.xml, the
port was moved to 38887, avoiding conflict.

The Jenkins plugin calls the Tomcat Manager. After failing to deploy with a 401 not
authorized error, (http://www.w3.org/Protocols/rfc2616/rfc2616-secl0.
html), you created a Tomcat user in with the required roles. In fact, the new user has more
powers than is needed for deployment. The user has the power to review the JMX data for
monitoring. This helps you with debugging later.

When deploying in production, use an SSL connection to avoid sending passwords
unencrypted over the wire.

On startup, the Tomcat logs mention that the Apache Tomcat Native library is missing.

INFO: The APR based Apache Tomcat Native library which allows optimal
performance in production environments was not found on the java.library.
path: /usr/java/packages/lib/i386:/usr/1lib/i386-1linux-gnu/jni:/1lib/i386-
linux-gnu:/usr/lib/i386-1linux-gnu:/usr/lib/jni:/1lib:/usr/1lib

The library improves the performance, and it is based on Apache Portable Runtime Projects
effort (http://apr.apache.org/).

You can find the source code in bin/tomcat-native.tar.gz. The build instructions can
be found at http://tomcat.apache.org/native-doc/.

221

Testing Remotely

See also

» Configuring Jetty for integration tests, Chapter 3, Building Software

Creating multiple Jenkins nodes

Testing is a heavy weight process. If you want to scale your services, then you will need to plan
to offset most of the work to other nodes.

One evolutionary path for Jenkins in an organization is to start off with one Jenkins
master. As the number of Jobs increases, we need to push off the heavier Jobs, such
as testing, to slaves. This leaves the master the lighter and more specialized work of
aggregating the results.

This recipe uses the Multi slave config plugin (https://wiki.jenkins-ci.org/
display/JENKINS/Multi+slave+config+plugin) to install an extra Jenkins node
locally. It is Ubuntu-specific, allowing Jenkins to install, configure, and command the slave

through SSH.

Getting ready

In Jenkins, install the multi slave config plugin. You will also need to have a test instance
of Ubuntu as described in the recipe Using a sacrificial Jenkins instance, Chapter 1,
Maintaining Jenkins.

How to do it...

1. From the command line of the sacrificial Jenkins instance, create the user jenkins-
unix-nodex.

sudo adduser jenkins-unix-nodex

2. Generate a private key and a public certificate for Jenkins with an empty passphrase:

sudo -u jenkins ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/var/lib/jenkins/.ssh/id_
rsa):

Created directory '/var/lib/jenkins/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /var/lib/jenkins/.ssh/id
rsa.

Your public key has been saved in /var/lib/jenkins/.ssh/id rsa.pub

222

Chapter 6

8.
9.

Create the . ssh directory, copying the Jenkins public certificate to . ssh/
authorized keys.

sudo -u jenkins-unix-nodex mkdir /home/jenkins-unix-nodex/.ssh
sudo cp /var/lib/jenkins/.ssh/id rsa.pub /home/jenkins-unix-
nodex/.ssh/authorized keys

Change the ownership and group of authorized keys to
Jenkins-unix-nodex:jenkins-unix-nodex:
sudo chown jenkins-unix-nodex:jenkins-unix-nodex

.ssh/authorized keys

Test that you can log in without a password as jenkins to
Jenkins-unix-nodex.jenkins-unix-nodex.

%»‘ You will need to accept the host's certificate.

Y

sudo su jenkins
ssh jenkins-unix-nodex@localhost

The authenticity of host 'localhost (127.0.0.1)' can't be
established.

ECDSA key fingerprint is xx:yy:21:zz:46:dd:02:fa:1w:15:27:20:e6:74
:3e:a2.

Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'localhost' (ECDSA) to the list of
known hosts.

Log in through the Jenkins web interface.

Visit the MultiSlave Config Plugin under Manage Jenkins (localhost:8080/
multi-slave-config-plugin/?).

Click on Add Slaves.

Add unix-node01 to Create slaves by names separated with space.

10. Click on Proceed.
11. In the Multi Slave Config Plugin - Add slaves screen, add the following details:

o Description: T am a dumb Ubuntu node
a # of executors: 2

o Remote FS root: /home/Jenkins-unix-nodex/home/jenkins-unix-
nodex

o Setlabels: unix dumb functional

223

Testing Remotely

12. Select for Launch method Launch slave agents on Unix machines via SSH, adding
the following details:

o Host: localhost
o Username: Jenkins-unix-nodex

o Private key File: /var/1ib/Jenkins/.ssh/id _rsa

13. Click on Save.

14. Return to the main page. You will now see Build Executor Status include the Master
and unix-nodel.

Build Executor Status
Master
1| Idle

2 Ide

unix_node_localhost

1| Idle
2 Ilde

In this recipe, you have deployed one node locally to a *NIX box. A second user account
is used. The account is provisioned with the public key of the Jenkins user for easier
administration. Jenkins can now use ssh and scp without a password.

The Multi slave config plugin takes the drudgery out of deploying slave nodes. It allows you to
copy from one template slave and deploys a number of nodes.

Jenkins can run nodes in a number of different ways. Using SSH, the master runs a custom
script or through Windows services
(https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds). The
most reliable approach is through the SSH protocol. The strength of this approach is multifold.

» The use of SSH is popular, implying a small learning curve for a large audience.

» SSH is a reliable technology that has been battle-hardened over many generations.

» There are SSH daemons for most Operating Systems and not just for *NIX.
One alternative is to install Cygwin (http://www.cygwin.com/) with SSH
daemon on Windows.

224

Chapter 6

If you want to have your UNIX scripts running in Windows under Cygwin,
- consider installing the Cygpath plugin. The plugin converts UNIX style
paths to Windows style. For more information, visit:
IS
https://wiki.jenkins-ci.org/display/JENKINS/
Cygpath+Plugin

The configured node has three labels assigned: unix, dumb, and functional. When
creating a new Job, checking the setting Restrict where this project can be run and adding
one of the labels will ensure that the Job is run on a node with that label.

The Master calculates which node to run a Job based on a priority list. Unless otherwise
configured, Jobs created when there was only a master will still run on the master. Newer Jobs
will run by default on the slaves.

Consistency breeds reliability: When deploying more than one Jenkins node, it

saves effort if you are consistent with the structure of their environments. Consider
using a virtual environment starting from the same basic set of images. CloudBees
(http://www.cloudbees.com) is one example of a commercial service centered on
deployment of virtual instances.

There's more...

Since version 1.446 (http://jenkins-ci.org/changelog), Jenkins has a built-in

SSH daemon. This will decrease the amount of effort in writing the client-side code. The
command-line interface is accessible through the SSH protocol. You can set the port number
of the daemon through the Jenkins management web page, or leave the port number to float.

Jenkins publishes the port number using header information for X-SSH-Endpoint. To see
for yourself, telnet into Jenkins and Get the login page. Jenkins returns the port numbers
with other header information. For example, for *NIX systems from the command line, try
the following;:

telnet localhost 8080
GET /login

Jenkins' response will be similar to the following:

HTTP/0.9 200 OK

Server: Winstone Servlet Engine v0.9.10
Expires: 0

X-Hudson-Theme: default

Content-Type: text/html;charset=UTF-8
X-Hudson: 1.395

X-Jenkins: 1.447

225

Testing Remotely

X-Hudson-CLI-Port: 51485
X-Jenkins-CLI-Port: 51485
X-Instance-Identity: MIIBIjANBgkghkiG9w ...
X-SSH-Endpoint: localhost:48781

See also

» Using a sacrificial Jenkins instance, Chapter 1, Maintaining Jenkins

Testing with Fitnesse

Fitnesse (http://fitnesse.org) is a fully-integrated standalone wiki, and
acceptance-testing framework. You can write tests in tables and run them. Writing tests
in a wiki language widens the audience of potential test writers and decreases the initial
efforts in learning a new framework.

FrontPage ...

WELCOME TO FITNESSE!

Properties

Where Used

. THE FULLY INTEGRATED STAND-ALONE ACCEPTANCE TESTING FRAMEWORK AND WIKI.
Searc

Files

To add your first "page", click the Edit button and add a WikiWord to the page.
Versions

To Learn More...
A One-Minute Description | What is FitNesse? Start here.

Recent Changes

[
I
o]
=
@
=
a
[

A Two-Minute Example A brief example. Read this one next.

Test History User Guide Answer the rest of your questions here.

[

Acceptance Tests FitNesse's suite of Acceptance Tests

Rele 20111026

Front Page | User Guide
root (for global !path’s, etc.)

If a test passes, the table row is displayed in green. If it fails, it is displayed in red. The tests
can be surrounded by wiki content delivering context information, such as user stories, at the
same location as the tests. You can also consider creating mock-ups of your web applications
in Fitnesse next to the tests, and point the tests at those mock-ups.

This recipe describes how to run Fitnesse remotely and displays the results within Jenkins.

22

()

Chapter 6

Getting ready

Download the latest stable Fitnesse JAR from http://fitnesse.org/FrontPage.
FitNesseDevelopment . DownLoad. Install the Fitnesse plugins for Jenkins from
https://wiki.jenkins-ci.org/display/JENKINS/Fitnesse+Plugin.

* The release number used to test this recipe was

20111026 (http://fitnesse.org/.FrontPage.

FitNesseDevelopment .FitNesseRelease20111026).

How to do it...

1. Create the directories £it/logs, and place in the fit directory fitnesse. jar.
2. Run the Fitnesse help from the command line, and review the options.
java -jar fitnesse.jar -help

Usage: java -jar fitnesse.jar [-pdrleoal
-p <port number> {80}
-d <working directory> {.}
-r <page root directory> {FitNesseRoot}
-1 <log directory> {no logging}
-e <days> {14} Number of days before page versions expire
-o omit updates
-a {user:pwd | user-file-name} enable authentication.
-i Install only, then quit.
-c <command> execute single command.

3. Run Fitnesse from the command line, and review the startup output.

java -jar fitnesse.jar -p 39996 -1 logs -a tester:test

FitNesse (v20111026) Started...

port: 39996

root page: fitnesse.wiki.FileSystemPage at ./
FitNesseRoot

logger: /xxxxx/fit/logs

authenticator: fitnesse.authentication.OneUserAuthenticator

html page factory: fitnesse.html.HtmlPageFactory
page version expiration set to 14 days.
Using a web browser, visit http://localhost:39996.
5. Click on the Acceptance Test link.

Click on the Suite link. This will activate a set of tests. Depending on your
computer, the tests may take a few minutes to complete. The direct link is
http://localhost:39996/FitNesse.SuiteAcceptanceTests?suite

227

Testing Remotely

7. Click on the Test History link. You will need to log on as user tester with the password
as test. Review the log in the £it/logs directory. After running the suite again, you
will now see an entry similar to the following;:

127.0.0.1 - tester [06/Jan/2012:09:44:53 +0100] "GET /FitNesse.
SuiteAcceptanceTests?suite HTTP/1.1" 200 6086667
8. Login to Jenkins, and create a freestyle software project named ché . remote.

fitnesse.

9. Inthe Build section, select the Execute fitnesse tests option from the
Add Build step.

10. Check the option Fitnesse instance is already running, and add the following details:
o Fitnesses Host: 1localhost
o Fitnesses Port: 39996
o Target Page: FitNesse.SuiteAcceptanceTests
o Check the Is target a suite? option
o HTTP Timeout (ms): 180000

o Path to fithesse xml results file: fitnesse-results.xml

11. In the Post-build Actions section, check the Publish Fitnesse results report option.

12. Add the value fitnesse-results.xml to the input Path to fitnesse xml
results file.

13. Click on Save.
14. Run the Job.
15. Review the latest job by clicking on the link FitNesse Results.

Jenkins » ché.remote.finess » #5 ENABLE AUTO REFRESH
4% Back to Project —
. o
0, saus g Build #5 (Jan 6, 2012

Started 1 min 1 sec ago

> ch Took 47 sec
;| 10:18:16 AM) R
3 Console Output

=] add description
= Edit Build Information [=f

DM,

/ No changes.
[S——

@ FitNesse Results

é; Previous Build

Started by user Alan Mark Berg

Page generated: Jan 6, 2012 10:19:18 AM Jenkins ver. 1.446

228

Chapter 6

Fitnesse has a built-in set of acceptance tests, which it uses to check itself for regressions. The
Jenkins plugin calls the test and asks for the results to be returned in an XML format using an
HTTP GET request with the following URL: http://localhost:39996/FitNesse.SuitelAc
ceptanceTests?suite&format=xml. The results look similar to the following:

<testResults>
<FitNesseVersion>v20111026</FitNesseVersion>
<rootPath>SuiteAcceptanceTests</rootPath>
<result>
<counts>
<right>103</right>
<wrong>0</wrong>
<ignores>0</ignores>
<exceptions>0</exceptionss>
</counts>
<runTimeInMillis>94</runTimeInMillis>
<relativePageName>CopyAndAppendLastRow</relativePageName>
<pageHistoryLinks>
FitNesse.SuiteAcceptanceTests.SuiteFitDecoratorTests
.CopyAndAppendLastRow?pageHistory&resultDate=20120106102754
&format=xml
</pageHistoryLinks>
</result>

The Jenkins plugin then parses the XML and generates a report.

By default, there is no security enabled on Fitnesse pages. In this recipe, a username and
password were defined during startup. However, we did not take this further, and defined the
security permissions on the page. To activate, you will need to go to the properties link on the
left-hand side of a page, and check the security permission for secure-test.

You can also authenticate through a list of users in a text file or Kerberos/Active
Directory. For more details, review http://fitnesse.org/FitNesse.UserGuide.
SecurityDescription.

There is also a contributed plugin for LDAP authentication: https://github.com/
timander/fitnesse-ldap-authenticator

Consider applying security in depth: Adding IP restrictions through
a firewall on the Fitnesse server creates an extra layer of defense.
% For example, you can place an Apache server in front of the wiki,
T~ and enabling SSL/TLS ensures encrypted passwords. A thinner
alternative to Apache is nginx: http://wiki.nginx.org.

229

Testing Remotely

There's more...

Fitnesse is not the only open source storyteller. An alternative for stories is xPlanner
(http://xplanner.codehaus.org/, http://www.projectmagazine.com/
reviews/76-software/98-thinking-in-extremes-with-xplanner),
which is a web-based project planner based around iterating stories.

Unfortunately, at the time of writing, the last release was in 2006, so do not expect any
software updates soon.

See also

» Activating Fitnesse HtmlUnit Fixtures

Activating Fitnesse HtmlUnit Fixtures

Fitnesse is an extendable testing framework. It is possible to write your own testing types
known as fixtures, and call the new test types through Fitnesse tables. This allows Jenkins to
run alternative tests than the ones available.

This recipe shows you how to integrate Functional tests using an HtmlUnit fixture. The same
approach can be used for other fixtures as well.

Getting ready

This recipe assumes that you have already performed testing with the Fitnesse recipe.

How to do it...

1. Visithttp://chrispederick.com, and download and unpack
HtmlFixture-2.5.1.

2. Move the HtmlFixture-2.5.1/11ib directory to the FitNesseRoot directory.

3. CopyHtmlFixture-2.5.1/log4]j.properties to FitNesseRoot/log4j.
properties.

4. Start Fitnesse.
java -jar fitnesse.jar -p 39996 -1 logs -a tester:test
5. In aweb browser, visit http://localhost:39996/root?edit, and add the

following content, replacing FitHome with the fully qualified path to the home of your
fitnesse serverome:

lpath /FitHome/FitNesseRoot/lib/*

Ifixture com.jbergin.HtmlFixture

12.
13.

Visit http://localhost:39996. In the left-hand menu, click on Edit.
At the bottom of the page, add the text ThisIsMyPageTest.

Click on Save.

Click on the new ThislsMyPageTest link.

. Click on the Edit button on the left-hand menu.

. Add the following content after the line starting with ! contents:

!l!STORY! L)
This is an example of using HtmlUnit:
http://htmlunit.sourceforge.net/

T TRGTS !

! |HtmlFixture |
|http://localhost:8080/login| Login] |
|Print Cookies] |

|Print Response Headers| |

|Has Text|log in|

|Element Focus|search-box|input |

|set Vvalue|ch5] |

| Focus Parent Type|form|/search/| |

Click on Save.
Click on Test.

“;l‘—l‘_:l; =Y

Print Cookies JSESSIONID.6e9cb0fe=8d6d62e9c35a0708138aa380bab781c3

key: Server value: Winstone Serviet Engine v0.9.10

Test key: Expires value: 0

key: X-Hudson-Theme value: default

key: Content-Type value: text/html,charset=UTF-8

Properties
key: X-Hudson value: 1.395
Refactor i
key: X-Jenkins value: 1.446
Where Used key: X-Hudson-CLI-Port value: 37722
Search Print Response key: X-Jenkins-CLi-Port value: 37722
RIS key: X-Instance-ldentity value:
MIIBIANBGkqhKiGIWOBAQEFAAOCAQEAMIIBCGKCAQEASR4S
Versi MtdyM4tkDLHHehcE+pH1CDmiHIHWOUuQSHI8WRXWN73eYc9)
ersions /EQUARIKWR7qaK Tc Y TBISr27pbFSAvxJaluCzMYdBZjdg9hOyR
Recent Changes key: X-SSH-Endpoint value: localhost:54145

key: Connection value: Close

N key: Date value: Sun, 08 Jan 2012 12:09:35 GMT
Test History

LU -

key: X-Powered-By value: Serviet/2.5 (Winstone/0.9.10)

Chapter 6

231

Testing Remotely

14. In Jenkins, under New Job, copy the existing Job / copy from ché .remote.fitness
to the Job named ché . remote.fitness fixture.

15. In the Build section, under the Target sub-section, replace the Target Page text
FitNesse.SuiteAcceptanceTests with ThisIsMyPageTest.

16. Uncheck Is target a suite?
17. Click on Save.

18. Run the Job. It fails because of the extra debugging information sent with the results,
confusing the Jenkins plugin parser.

19. Visit the test page http://localhost:39996/ThisIsMyPageTest?edit, and
replace the contents of the test table with the following:
! |HtmlFixture |
|http://localhost:8080/login| Login| |
|Has Text|log in|
|Element Focus|search-box|input |
|Set Value|ch5|
| Focus Parent Type|form|/search/ |

20. Run the Jenkins Job again; the results will now be parsed.

Fixtures are written in Java. By placing the downloaded libraries in the Fitnesse 1ib directory,
you are making them accessible. You then defined the classpath and location of the fixture in
the root page, allowing the fixture to be loaded at the startup. For complete details, review the
readme HtmlFixture-2.5.1/README.

Next, you created the link using wiki camelcase notation to the non-existent
ThislsMyPageTest page. An HtmlUnit fixture test was then added.

First, you needed to import the fixture whose library path was defined in the root page.

| Import |

| com. jbergin]|
Next, some example descriptive wiki content was added to show that you can create a story
without affecting the tests. Finally, the tests were added.

The first row of the table, ! |HtmlFixture |, defines which fixture to use. The second row
stores the location to test.

Print commands, such as Print Cookies Or Print Response Headers, return information
that is useful for building tests.

232

Chapter 6

If you are not sure of a list of acceptable commands, then deliberately make a syntax error
and the commands will be returned as results. For example:

| Print something] |

The Has Text command is an assertion and will fail if the login is not found in the text of the
returned page.

By focusing on a specific element and then Set vValue, you can add input to a form.

During testing, if you want to display the returned content for a particular request, then
you need three columns instead; for example, the first row with three columns displays the
returned page, and the second row with two columns does not.

|http://localhost:8080/login| Login] |
|http://localhost:8080/login| Login|

Returning HTML pages as part of the results adds extra information to the results that the
Jenkins plugin needs to parse. This is prone to failure. Therefore, in step 19, you removed the
extra columns, ensuring reliable parsing.

Full documentation for this fixture can be found at http://htmlfixtureim.
sourceforge.net/documentation.shtml.

Fitnesse has the potential to increase the vocabulary of remote tests that Jenkins can
perform. A few interesting fixtures to review are listed as follows:

» RestFixture for REST services:
https://github.com/smartrics/RestFixture/wiki

» Webtestfixtures using Selenium for web-based functional testing:
http://sourceforge.net/projects/webtestfixtures/

» DBfit, which allows you to test databases:
http://gojko.net/fitnesse/dbfit/

» Testing with Fitnesse

233

Testing Remotely

Running Selenium IDE tests

Selenium IDE allows you to record your clicks within web pages and replay them in Firefox.
This is good for functional testing. The test plans are saved in an HTML format.

This recipe shows you how to replay the tests automatically using Maven and then Jenkins.
It uses an in-memory X server Xvfb (http://en.wikipedia.org/wiki/Xvfb) so that
Firefox can be run on an otherwise headless server. Maven runs the tests using Selenium
RC, which then acts as a proxy between the tests and the browser. Although we record with
Firefox, you can run the tests with the other browser types as well.

It is beyond the scope of this chapter to discuss Selenium Grid (http://selenium-grid.
seleniumhg.org/), other than to note that Selenium Grid allows you to run Selenium tests
in parallel across a number of OSs.

Getting ready

Install the Selenium HTML report plugin (https://wiki.jenkins-ci.org/display/
JENKINS/seleniumhtmlreport+Plugin)and Envinject plugin (https://wiki.
jenkins-ci.org/display/JENKINS/EnvInject+Plugin). Both Xvfb and Firefox are also
required. To install Xvfb in a Debian Linux environment, run sudo apt-get install xv£b.

How to do it...

1. From the command line, create a simple Maven project:

mvn archetype:generate -DgroupId=nl.berg.packt.selenium
-DartifactId=selenium html -DarchetypeArtifactId=maven-archetype-
quickstart -Dversion=1.0-SNAPSHOT

2. Inthe newly created pom.xml file, add the following build section just before the </
projects> tag:
<builds>
<plugins>
<plugin>
<grouplds>org.codehaus.mojo</groupIlds>
<artifactIds>selenium-maven-plugin</artifactIds>
<version>2.1l</version>
<executions>
<execution>
<id>xvfb</id>
<phase>pre-integration-test</phase>

Chapter 6

<goals>
<goal>xvfb</goal>
</goals>
</execution>
<execution>
<id>start-selenium</id>
<phase>integration-test</phase>
<goals>
<goal>selenese</goals>
</goals>
<configurations
<suites
src/test/resources/selenium/TestSuite.xhtml
</suite>
<browsers>*firefox</browsers>
<multiWindows>true</multiWindows>
<background>true</background>
<results>./target/results/selenium.html</resultss>
<startURL>http://localhost:8080/login/</startURL>
</configurations>
</executions>
</executions>
</plugin>
</plugins>
</build>

Create the file src/test/resources/log4j .properties with the
following content:

log4j.rootLogger=INFO, Al
log4j.appender.Al=org.apache.log4j.ConsoleAppender
log4j.appender.Al.layout=org.apache.log4j.PatternLayout

log4j.appender.Al.layout.ConversionPattern=%-4r [%t] %-5p %c
sm¥n

o°

X -

Make the directory src/test/resources/selenium.

Create the file src/test/resources/selenium/TestSuite.xhtml with the
following content:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.o0org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
lang="en">
<head>

235

Testing Remotely

<meta content="text/html; charset=UTF-8" http-equiv="content-

type" />
<title>My Test Suite</title>
</head>
<body>

<table id="suiteTable" cellpadding="1" cellspacing="1"
border="1" class="selenium">

<tbody>
<tr><td>Test Suite</td></tr>
<tr><td>

Just pinging Jenkins Login Page

</td></tr>

</tbody>

</table>
</body>
</html>

The HTML will render the following output:

Test Suite
ust pinging Jenkins Login Page

6. Create the test file src/test/resources/selenium/MyTest .xhtml with the
following content:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
lang="en">

<head profile="http://selenium-ide.openga.org/profiles/test-
case">

<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8" />

<title>MyTest</title>
</head>
<body>
<table cellpadding="1" cellspacing="1" border="1">
<thead>
<tr><td rowspan="1" colspan="3">MyTest</td></tr>
</thead>
<tbody>

236

10.

11.

12.

13.
14.
15.

16.

Chapter 6

<tr><tds>open</td><td>/login?from=%2F</td><td></td></tr>
<tr>
<td>verifyTextPresent</td>
<td>log in</td><td></td>
</tr>
</tbody>

</table>
</body>
</html>

The HTML will render the following output:

MyTest
open [login?from=%2F|
[verifyTextPresent|log in [

Run the Maven project from the command line, verifying that the build succeeds.

mvn clean integration-test -Dlog4j.configuration=file./src/test/
resources/log4j.properties

Run mvn clean, and then commit the project to your subversion repository.

Log in to Jenkins, and create a Maven 2/3 Job named ché . remote . selenium html.

In the global section (at the top of the configuration page), check Prepare an
environment for the job, adding DISPLAY=:20 for Properties Content.

In the Source Code Management section, check Subversion, adding your subversion
URL to Repository URL.

In the Build section, on one line, add to Goals and options:

clean integration-test -
Dlog4j.configuration=file./src/test/resources/log4j.properties

In the Post-build Actions section, check Publish Selenium HTML Report.
Add the text target /results to the input for Selenium test results location.

Check Set build result state to failure if an exception occurred while parsing
results file.

Click on Save.

237

Testing Remotely

17. Run the Job, and review the results.

Test suite results

result:

total Time:

numTestTotal:

numTestPasses:
numTestFailures:
numCommandPasses:
numCommandFailures:
numCommandErrors:

Selenium Version:

Selenium Revision:

Test Suite

Just pinging Jenkins Login Page
MyTestxhtm

MyTest

open Nogin?from=%2F
verifyTextPresent | log in

=
:
=}

mMOORORRO

info: Starting test /selenium-server/tests/MyTest.xhtml
info: Executing: |open | /login?from=%2F | |
info: Executing: |verifyTextPresent | log in | |

A primitive Selenium IDE test suite was created comprising two HTML pages. The first
TestSuite.xhtml defines the suite having HTML links to the tests. We have only one test
defined in MyTest . xhtml.

The test hits the login page for your local Jenkins and verifies that the login text is present.

pom.xml defines phases for bringing up and tearing down the Xvfb server. The default
configuration is for Xvfb to accept input on DISPLAY 20:

Maven assumes that the Xvfb binary is installed and does not try to download it as a
dependency. The same is true for the Firefox browser. This makes for fragile 0S-specific
configuration. In a complex Jenkins environment, it is this type of dependency that is the most
likely to fail. There has to be a significant advantage to automatic functional testing to offset
the increased maintenance effort.

The option Multiwindow is set to true as the tests run in their own Firefox window. The
option Background is set to true so that Maven runs the tests in the background. The
results are stored in the relative location, . /target/results/selenium.html ready
for the Jenkins plugin to parse. For more information on the selenium-maven-plugin, visit
http://mojo.codehaus.org/selenium-maven-plugin/.

238

Chapter 6

The Jenkins Job sets the DISPLAY variable to 20 so that Firefox renders within Xvfb.
It then runs the Maven Job, generating the results page. The results are then parsed
by the Jenkins plugin.

Two ways to increase the reliability of your automatic functional tests are:
» Use HtmlUnit, which does not need OS-specific configuration. However, you will then
lose the ability to perform cross-browser checks.

» Run Webdriver instead of Selenium RC. Webdriver using native API calls that function
more reliably. Similar to Selenium RC, Webdriver can be run against a number of
different browser types.

The next recipe will showcase using unit testing with Webdriver and HtmlUnit.

On my development Jenkins Ubuntu server, the Job running this recipe broke. The reason

was that the dependencies in the Maven plugin for Selenium did not like the newer version of
Firefox that was installed by an auto-update script. The resolution to the problem was to install
the binary for Firefox 3.63 under the Jenkins home directory, and point directly at the binary in
pom.xml, replacing:

<browser>*firefox</browsers>
With:
<browser>*firefox Path</browsers
Where the pPath is similarto /var/lib/Jenkins/firefox/firefox-bin.

Another cause of issues is the need to create a custom profile for Firefox that includes
helper plugins to stop pop ups or the rejection of self-signed certificates. For more complete
information, review http://seleniumhg.org/docs/.

An alternative to using Firefox as a browser is Chrome. There is a Jenkins
plugin that helps provision Chrome across Jenkins nodes

(https://wiki.jenkins-ci.org/display/JENKINS/
s ' .
ChromeDriver+plugin).

In the Maven pom. xm1 file, you will have to change the browser to *chrome.

» Triggering Failsafe integration tests with Selenium Webdriver

239

Testing Remotely

Triggering Failsafe integration tests with

Selenium Webdriver

Unit tests are a natural way for programmers to defend their code against regressions. Unit
tests are lightweight and easy to run. Writing unit tests should be as easy as writing print
statements. JUnit (http://www.junit.org/) is a popular unit test framework for Java;
TestNG (http://testng.org/doc/index.html) is another.

This recipe uses Webdriver and HtmlUnit in combination with TestNG to write simple and
automated functional tests. Using HtmlUnit instead of a real browser makes for stable OS
agnostic tests, which, although does not test browser compatibility, can spot the majority of
functional failures.

Getting ready

Create a project directory.

How to do it...

1. Create pom.xml with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupIds>nl.uva.berg</groupIds>
<artifactId>integrationtest</artifactIds>
<version>1.0-SNAPSHOT</versions>
<builds>
<pluginss>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactIds>
<version>2.3.2</versions>
</plugins>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactIds>
<version>2.10</versions>
</plugin>
</plugins>
</build>

240

Chapter 6

<dependencies>
<dependencys>
<grouplds>org.testng</groupIld>
<artifactId>testng</artifactIds>
<version>6.1.1</versions>
<scope>test</scope>
</dependency>
<dependencys>
<groupIds>org.seleniumhqg.selenium</groupId>
<artifactIdsselenium-htmlunit-driver</artifactIds>
<version>2.15.0</version>
</dependency>
</dependencies>
</project>

Create the directory named src/test/nl/berg/packt/webdriver by adding the
file TestIT. java with the following contents:

package nl.berg.packt.webdriver;

import org.openga.selenium.WebDriver;

import org.openga.selenium.htmlunit.HtmlUnitDriver;
import org.testng.Assert;

import org.testng.annotations.*;

import java.io.File;

import java.io.IOException;

public class TestIT {
private static final String WEBPAGE = "http://www.google.com";
private static final String TITLE = "Google";
private WebDriver driver;

@BeforeSuite
public void creatDriver () {
this.driver= new HtmlUnitDriver (true) ;

@Test
public void getLoginPageWithHTMLUNIT () throws IOException,
InterruptedException {
driver.get (WEBPAGE) ;
System.out.println ("TITLE IS
==>\""+driver.getTitle () +"\"");
Assert.assertEquals (driver.getTitle(), TITLE) ;

241

Testing Remotely
}

@AfterSuite
public void closeDriver () {
driver.close() ;

}
}

3. Inthe top-level project directory, run mvn clean verify. The build should succeed
with an output similar to the following;:

TITLE IS ==>"Google"
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
4.31 sec

Results :
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

Commit the code to your subversion repository.

Log in to Jenkins and create a new Maven 2/3 project named ché . remote.driver.
In the Source Code Management section, check Subversion.

Under Modules/Repository URL, add the location of your local subversion repository.
In the Build section for Goals and options, add clean verify.

© ® N o 0 A

Click on Save.

10. Run the Job. After a successful build, you will see a link to Latest Test Results, which
details the functional tests.

Maven uses the failsafe plugin (http://maven.apache.org/plugins/maven-
failsafe-plugin) to run integration tests. The plugin does not fail a build if its integration-
test phase contains failures. Rather, it allows the post-integration-test phase to run, allowing
teardown duties to occur.

pom.xml has two dependencies mentioned: one for TestNG and the other for HtmIUnit driver.
If you are going to use a real browser, then you will need to define their Maven dependencies.

For further details on how the failsafe plugin works with the TestNG framework, see
http://maven.apache.org/plugins/maven-failsafe-plugin/examples/
testng.html.

The Java class uses annotations to define in which part of the unit testing cycle the code will
be called. @BeforeSuite calls the creation of the Webdriver instance at the start of the
suite of tests. @afterSuite closes down the driver after the tests have run. etest defines a
method as a test.

242

Chapter 6

The test visits the Google page and verifies the existence of the title. HtmIUnit notices some
errors in the stylesheet and JavaScript of the returned Google page and resources; however,
the assertion succeeds.

The main weakness of the example tests is the failure to separate the assertions

from the navigation of web pages. Consider creating Java classes per webpage
(http://code.google.com/p/selenium/wiki/PageObjects). Page objects

return other page objects. The test assertions are then run in separate classes, comparing
the members of the Page objects returned with expected values. This design pattern supports
a greater degree of reusability.

An excellent framework in Groovy that supports the Page Object
e architecture is Geb (http://www.gebish.org/).

There's more...

80 percent of all sensory information processed by the brain is delivered through the eyes.
A picture can save a thousand words of descriptive text. Webdriver has the ability to capture
screenshots. For example, the following code for the Firefox driver saves a screenshot to
loginpage firefox.png:

public void getLoginPageWithFirefox () throws IOException,
InterruptedException {

FirefoxDriver driver = new FirefoxDriver() ;

driver.get ("http://localhost:8080/login) ;

FileUtils.copyFile(driver.getScreenshotAs (OutputType.FILE), new
File("loginpage firefox.png")):;

driver.close() ;

}

The most significant limitation is that screenshooting does not work with the HtmIUnit driver:
http://code.google.com/p/selenium/issues/detail?id=1361.

See also

» Running Selenium IDE tests
» Activating Fitnesse HtmlUnit fixtures

243

Testing Remotely

Creating JMeter test plans

JMeter (http://jmeter.apache.org) is an open source tool for stress testing. It allows
you to visually create a test plan, and hammer systems based on that plan.

JMeter can make many types of requests known as samplers. It can sample HTTP, LDAP,
databases, use scripts, and much more. It can report back visually with listeners.

A beginner's book on JMeter is Apache JMeter, Emily H. Halili, Packt Publishing
s (http://www.packtpub.com/beginning-apache-jmeter).

In this recipe, you will write a test plan for hitting web pages whose URLs are defined in a
textfile. In the next recipe, Reporting JMeter test plans, you will configure Jenkins to run
JMeter test plans.

Getting ready

Download and unpack a modern version of JMeter (http://jmeter.apache.org/
download jmeter.cgi). JMeter is a Java application, so will run on any system that has
Java correctly installed.

How to do it...

1. Create the subdirectory plans and example.

2. Create a CSVfile . /data/URLS. csv with the following content:
localhost, 80808, /login
localhost, 9080, /blah

3. Run the JMeter GUI; for example, . /bin/jmeter.sh or jmeter.bat, depending
upon the OS. The GUI will start up with a new test plan.

4. Right-click on Test Plan, then select Add/Threads (Users)/Thread Group.

5. Change the Number of Threads (users): to 2.

6. Right-click on Test Plan, then select Add | Config Element | CSV Data Set Config.
Add the following details:

o Filename: Full path to CSV file.
o Variable Names (comma-delimited): HOST, PORT, URL
o Delimiter (use "\t'for tab): ,

7. Right-click on Test Plan, then select Add | Config Element | HTTP cookie Manager.

8.
9.

10.

11.
12.
13.

Chapter 6

Right-click on Test Plan, then select Add | Listener | View Tree Results.

Right-click on Thread Group, then select Add | Sampler | HTTP request. Add the
following details:

o Name: ${HOST}:${PORT}${URL}
o Server Name or IP: ${HOST}
o Port Number: ${PORT}

o Under Optional Tasks, check Retrieve All Embedded Resources from
HTML Files.

9 & TestURLS
ﬂﬂ Cookie Manager

3 CSV File
¢ P Thread Group

£ F{HOSTH ${PORT}${URL}

WorkBench

Click on Test Plan and File | Save. Save the test plan to examples/jmeter
example.jmx.

Run the test plan by pressing CTRL+R.
Click on View Results Tree, and explore the responses.
Commit this project to your subversion repository.

JMeter uses threads to run requests in parallel. Each thread is supposed to approximately
simulate one user.

The test plan uses a number of elements:

>

>

The Thread group defines the number of thread that runs.

The Cookie manager keeps tracks of cookies per thread. This is important if you want
to keep a track through cookies between requests. For example, if a thread logs in to
a Tomcat server, then the unique Jsessionid needs to be stored for each thread.

The CSV Data Set Config element parses the content of a CSV file, putting values

in the HOST, PORT, and URL variables. A new line of the CSV file is read for each
thread, once per iteration. The variables are expanded in the elements by using the
${variable name} notation.

245

Testing Remotely

» The View Results Tree listener displays the results in the GUI as a tree of requests
and responses. This is great for debugging, but should be removed later.

A common mistake is to assume that a thread is equivalent to a user. The main difference is
that threads can respond faster than an average user. If you do not add delay factors in the
request, then you can really hammer your applications with a few threads. For example, a
delay of 25 seconds per click is typical for the online systems at the University of Amsterdam.

M If you are looking to coax out multi-threading issues in your
Q applications, then use a random delay element rather than a constant
delay. This is also a better simulation of a typical user interaction.

There's more...

Consider storing User-Agents and other browser headers in a textfile, and then picking the
values up for HTTP requests through the CSV Data Set Config element. This is useful if
resources returned to your web browser, such as JavaScript or images, depend on the User-
Agents. JMeter can then loop through the User-Agents, asserting that the resources exist.

See also

» Reporting JMeter performance metrics
» Functional testing using JMeter assertions

Reporting JMeter performance metrics

In this recipe, you will be shown how to configure Jenkins to run a JMeter test plan, and then
collect and report the results. The passing of variables from an Ant script to JMeter will also
be explained.

Getting ready

It is assumed that you have run through the last recipe, Creating JMeter test plans. You will
also need to install the Jenkins performance plugin (https://wiki.jenkins-ci.org/
display/JENKINS/Performance+Plugin).

How to do it...

1. Open ./examples/jmeter example.jmx in JMeter, and saveitas ./plans/
URL_ping.jmx.

2. Select CSV Data Set Config, changing Filename to ${ property (csv) }.

246

Chapter 6

3. Under the File menu, click on Save.

4. Create abuild.xml file at the top level of your project with the following content:

<project default="jmeter.tests">
<property name="jmeter" location="/var/lib/jenkins/jmeter" />
<property name="target" location="${basedir}/target" />
<echo message="Running... Expecting variables [jvarg,descl" />
<echo message="For help please read ${basedir}/README"/>
<echo message="[DESCRIPTION] ${desc}" />

<taskdef name="jmeter" classname=
"org.programmerplanet.ant.taskdefs.jmeter.JMeterTask"
classpath="${jmeter}/extras/ant-jmeter-1.0.9.jar" />

<target name="jmeter.init">
<mkdir dir="${basedir}/jmeter results"/>
<delete includeemptydirs="true">
<fileset dir="${basedir}/jmeter results" includes="+**/*" />
</delete>
</target>

<target name="jmeter.tests" depends="jmeter.init"
description="launch jmeter load tests">

<echo message="[Running] jmeter tests..." />

<jmeter jmeterhome="${jmeter}" resultlog="${basedir}
/jmeter results/LoadTestResults.jtl">

<testplans dir="${basedir}/plans" includes="*.jmx"/>
<jvmarg value="${jvarg}" />
<property name="csv" value="${basedir}/data/URLS.csv" />
</jmeter>
</target>
</projects>

Commit the updates to your subversion project.
Log in to Jenkins.

Create a new free-style job with the name ché6 . remote. jmeter.

® N o o

Under Source Code Management, check Subversion, and add your subversion
repository URL to Repository URL.

9. Within the Build section, add the build step Invoke Ant.

247

Testing Remotely

10. Press Advanced in the new Invoke Ant sub-section, adding the following for properties:

Jvarg=-Xmx512m
desc= This is the first iteration in a performance test
environment - Driven by Jenkins

11. In the Post-build Actions section, check Publish Performance test result report. Add
jmeter results/*.jtl to the Report Files input.

12. Click on Save.

13. Run the Job a couple of times, and review the results found under the Performance
trend link.

The build.xml file is an Ant script that sets up the environment, and then calls the JMeter
Ant tasks defined in the library /extras/ant-jmeter-1.0.9.jar. The JAR file is installed
as part of the standard JMeter distribution.

Any JMeter test plan found under the plans directory will be run. Moving the test plan from
the examples directory to the plans directory activates it. The results are aggregated in
jmeter results/LoadTestResults.jtl.

The Ant script passes the csv variable to the JMeter test plan, with the location of the csv
file ${basedir}/data/URLS.csv. ${basedir} automatically defined by Ant. As the name
suggests, it is the base directory of the Ant project.

You can call JMeter functions within its elements using the structure ${

functioncall (parameters) }. You had added the function call ${ property (csv) }
to the test plan CSV Data Set Config element. The function pulls in the value of CSV that was
defined in the Ant script.

The Jenkins Job runs the Ant script, which in turn runs the JMeter test plans and aggregates
the results. The Jenkins performance plugin then parses the results, creating a report.

To build complex test plans speedily, consider using the transparent proxy (http://jmeter.
apache.org/usermanual /component reference.html#HTTP Proxy Server) built
into JMeter. You can run it on a given port on your local machine, setting the proxy preferences
in your web browser to match. The recorded JMeter elements will then give you a good idea of
the parameters sent in the captured requests.

An alternative is BadBoy (http://www.badboysoftware.biz/docs/jmeter.htm),
which has its own built-in web browser. It allows you to record your actions in a similar way to
Selenium IDE, and then save to a JMeter plan.

248

Chapter 6

See also

» Creating JMeter test plans
» Functional testing using JMeter assertions

Functional testing using JMeter assertions

This recipe will show you how to use JMeter assertions in combination with a Jenkins Job.
JMeter can test the responses to its HTTP requests and other samplers with assertions.
This allows JMeter to fail Jenkins builds based on a range of JMeter tests. This approach
is especially important when starting from an HTML mockup of a web application, whose
underlying code is changing rapidly.

The test plan logs in and out of your local instance of Jenkins, checking size, duration, and
text found in the login response.

Getting ready

We assume that you have already performed the Creating JMeter test plans and Reporting
JMeter performance metrics recipes.

The recipe requires the creation of a user testerl in Jenkins.
Feel free to change the username and password. Remember to
g delete the test user once it is no longer needed.

How to do it...

1. Create a user in Jenkins named testerl with password testtest.

2. Run JMeter. In the Test Plan element, change Name to LoginLogoutPlan, and add
the following details for User Defined Variables:

o Name: USER; Value: testerl

o Name: PASS; Value: testtest

0/0
9 ; LoginLogoutPlan
i HTTP Cookie Manager Test Plan
¢ | Thread Group ‘| |Name: |LoginLogoutPlan
'(’_r'j_aceg_securih:_check Comments:
.(':"Imgnut
View Results Tree B User Defined Variables
E] WorkBench Name: Value
i| |USER testerl
B PASS testtest

249

Testing Remotely

3. Right-click on Test Plan, then select Add | Config Element | HTTP cookie Manager.
4. Right-click on Test Plan, then select Add | Listener | View Tree Results.

5. Right-click on Test Plan, then select Add | Threads (Users) | Thread Group.

6. Right-click on Thread Group, then select Add | Sampler | HTTP Request.

[a LoginLogoutPlan

;_;;; HTTP Cookie Manager Thread Group

¢ B Thre=2 i [Mama: [Thrazd croon
/’; Add ¥ Logic Controller »
/’,r Cut Ctrlx Config Element » npler error
i Ctrl-c Timer »
view COpy Ctrl-C
WorkBel Paste Ctrlv Pre Processors » PP = Stop Thread O Stop Test O
Reset Gui Sampler » AJP/1.3 Sampler
Remove Delete Post Processors b| Access Log Sampler
Open Assertions ¥ BSF Sampler
Mergt.a" Listener * BeanShell Sampler

: []Forever |1 Debug Sampler
FTP Request
HTTR\Request
IDBC Request
JMS Point-to-Point

Save Selection As...

Save Node As Image cCtrl-G Br
Save 5creen As Image Ctrl+shift-G

Disable JMS Publisher
Toggle Ctrl-T JMS Subscriber
Help JSR223 Sampler

JUnit Request

Java Request

LDAP Extended Request
LDAP Request

Mail Reader Sampler

SMTP Sampler
S0AP/XML-RPC Request
TCP Sampler

Test Action
WebService(SOAP) Request

7. Add the following details to HTTP Request Sampler:
o Name: /j aceqi security check
o Server Name or IP: localhost
o Port Number: 8080

o Path: /j acegi security check

8. Under the section Send Parameters With the Request, add the following details:
o Name: j username; Value: $ {USER}

o Name: j password; Value: $ {PASS}

9. Right-click on Thread Group, then select Add | Sampler | HTTP Request.

10. Add the following details to HTTP Request Sampler. If necessary, drag-and-drop the
newly created element so that it is placed after the /j _acegi security check.

250

Chapter 6

11. Add the following details to HTTP Request Sampler:
o Name: /logout
o Server Name or IP: localhost
o Port Number: 8080
o Path: /logout
12. Save the testplan to the location . /plans/LoginLogoutPlan without
assertions.jmx.
13. Commit the changes to your local subversion repository.

14. In Jenkins, run the previously created Job ché6.remote. jmeter. Notice that at
the Performance Report link, the /j acegi security check HTTP request
sampler succeeds.

15. Copy . /plans/LoginLogoutPlan without assertions.jmxto ./plans/
LoginLogoutPlan. jmx.

16. In JMeter, edit . /plans/LoginLogoutPlan. jmx.

17. Right-click on the JMeter element j _acegi_ security check, selecting Add |
Assertion | Duration Assertion.

18. In the newly created assertion, set Duration in milliseconds to 1000.

19. Right-click on the JMeter element j _acegi_ security check, selecting Add |
Assertion | Size Assertion.

20. In the newly created assertion, set Size in bytes: to 40000, checking Type of
Comparison to <.

21. Right-click on the JMeter element j_acegi_security check, selecting Add |
Assertion | Response Assertion with the following details:

a Inthe Apply to section, check Main Sample only

o Inthe Response Field to Test section, check Text Response

o Inthe Pattern Matching Rules section, check Contains

o For Patterns to Test, add <title>Dashboard [Jenkins]</title>

Apply to:
@ Main sample only ' Sub-samples only Main sample and sub-samples ' JMeter Variable

Response Field to Test
@ Text Response URL Sampled ' Response Code ' Response Message (_ Response Headers
Pattern Matching Rules

® Contains) Matches O Equals O Substring []Not

Patterns to Test

Patterns to Test

<title=Dashboard [Jenkins]</title=

251

Testing Remotely

22. Save the Test plan and commit to your local subversion repository.

23. Run from in JMeter (Ctrl+R), and review the View Results Tree. Notice that the Size
and Response assertions fail.

24. In Jenkins, run the previously created Job ché . remote . jmeter. Notice that within
the Performance Report link, /j acegi security check also fails.

The scaffolding from the previous recipe has not changed. Any JMeter test plan found under
the plans directory is called during the running of the Jenkins Job.

You created a new test plan with two HTTP request samplers. The first sampler posts to the
login URL /j _acegi security check with the variables j username and j_password.
The response contains a cookie with a valid session ID, which is stored in the cookie manager.
Three assertion elements were also added as children under the HTTP request login sampler.
If any of the assertions fail, then the HTTP request result fails. In Jenkins, you can configure
the Job to fail or to warn, based on definable thresholds.

The three assertions are typical for a test plan. These are:

» An assertion on the size of the result returned. The size should not be greater than
40,000 bytes.

» An assertion for duration. If the response takes too long, then you have a
performance regression that you want to check further.

» The most powerful assertion is for checking for text patterns. In this case, reviewing
details about the returned title. The JMeter element can also parse text against
regular patterns.

JMeter has the power to hammer away with requests. 200 threads, each firing one request
per second, is roughly equivalent to 5,000 users simultaneously logged in to an application,
clicking once every 25 seconds. A rough rule of thumb is that approximately 10 percent of the
membership of a site is logged to an application in the busiest hour of the year. Therefore,
200 threads hitting once a second is good for a total membership of 50,000 users.

The understanding of usage patterns is also important; the less you know about how your
system is going to be used, the larger a safety margin you will have to build in. It is not
uncommon to plan for a 100 percent extra capacity. The extra capacity may well be the
difference between you going on a holiday or not.

252

Chapter 6

. Toexpand its load creation capabilities, JMeter has the ability to run a
a number of JMeter slave nodes. For an official tutorial on this subject,
L review http://jmeter.apache.org/usermanual/jmeter
distributed testing step by step.pdf.

See also

» Creating JMeter test plans

» Reporting JMeter performance metrics

Enabling Sakai web services

Sakai CLE is an application used by many hundreds of universities around the world. Based
on more than a million lines of Java code, Sakai CLE allows students to interact with online
course and project sites. It empowers instructors to make those sites easily.

In this recipe, you will enable web services and write your own simple ping service. In the next
recipe, you will write tests for these services.

Getting ready

You can find links to the newest downloads under http://sakaiporject.org.http://
sakaiproject.org. Download and unpack Sakai CLE version 2.8.1 from http://
source.sakaiproject.org/release/2.8.1.

How to do it...

1. Edit sakai/sakai.properties to include the following content:

webservices.allowlogin=true
webservices.allow=. *
webservices.log-denied=true

2. Run Sakai from the root folder . /start-sakai.sh for *NIX systems or . /start-
sakai.bat for Windows. If Jenkins or another service is running on port 8080, Sakai
will fail with the following error:

2012-01-14 14:09:16,845 ERROR main org.apache.coyote.httpll.
HttpllBaseProtocol - Error starting endpoint
java.net.BindException: Address already in use:8080

3. Stop Sakai using . /stop-sakai.shor ./stop-sakai.bat.

253

Testing Remotely

4. Modify conf/server.xml to move the port number to 39955; for example:

<Connector port="39955" maxHttpHeaderSize="8192"
URIEncoding="UTF-8" maxThreads="150" minSpareThreads="25"
maxSpareThreads="75" enableLookups="false" redirectPort="8443"
acceptCount="100" connectionTimeout="20000"
disableUploadTimeout="true" />

5. Run Sakai from the root folder . /start-sakai.sh for NIX systems or . /start-
sakai .bat for Windows.

In a web browser, visit http://localhost:39955/portal.

Log in as user admin with the password as admin.

Log out.

© ® N O

Visit http://localhost:39955/sakai-axis/SakaiScript.jws?wsdl.

10. Create a simple unauthenticated web service by adding the following contentto . /
webapps/sakai-axis/PingTest.jws
public class PingTest
public String ping(String ignore) {
return "Insecure answer =>"+ignore;
}

public String pong(String ignoreMeAsWell) {
return youCantSeeMe () ;
}

private String youCantSeeMe ()
return "PONG";

}
}

11. To verify that the service is available, visit http://localhost:39955/sakai-
axis/PingTest.jws?wsdl

12. To verify that the REST services are available, visit http://localhost:39955/
direct.

The Sakai package is self-contained with its own database and Tomcat server. Its main
configuration file is sakai/sakai.properties. You updated it to allow the use of web
services from anywhere. In real-world deployments, the IP address is more restricted.

To avoid port conflict with your local Jenkins server, the Tomcat conf /server.xml file
was modified.

Chapter 6

Sakai has both REST and SOAP web services. You will find the REST services underneath
the /direct URL. The many services are described at /direct/describe. Services are
supplied one level down. For example, to create or delete users, you would need to use the
user service described at /direct/user/describe.

The REST services use the Sakai framework to register with Entitybroker
(https://confluence.sakaiproject.org/display/SAKDEV/
Entity+Provider+and+Broker). Entitybroker ensures consistent handling between
services, saving coding effort. Entitybroker takes care of supplying the services information
in the right format. To view who Sakai thinks you currently are in an XML format, visit
http://localhost:399955/direct/user/current .xml, and to view the JSON
format, replace current .xml with current . json.

The SOAP services are based on the Apache AXIS framework (http://axis.apache.org/
axis/). To create a new SOAP-based web service, you can drop a text file in the webapps/
sakai-axis directory with the extension . jws. Apache AXIS compiles the code on the fly the
first time it is called. This allows for rapid application development, as any modifications to the
text files are seen immediately by the caller.

The PingTest includes a class without a package. The class name is the same as the filename
with the . jws extension removed. Any public methods become web services. If you visit
http://localhost:39955/sakai-axis/SakaiScript.jws?wsdl, you will notice that
the youCantSeeMe method is not publicized; that is because it has a private scope.

Most of the interesting web services require logging in to Sakai through /sakai-axis/
SakaiLogin.jws using the method login, passing the username and password as strings.
The returned string is a GUID (a long random string of letters and numbers) that is needed to
pass to other methods as evidence of authentication.

To log out at the end of the transaction, use the method 1ogout, passing to it the GUID.

There's more...

Sakai CLE is not only a learning management system but also a framework that makes
developing new tools straightforward.

The programmer's café for new Sakai developers can be found at the following URL:
https://confluence.sakaiproject.org/display/BOOT/Programmer%27s+Cafe

Boot camps based on the programmer's café occur periodically at Sakai conferences or
through consultancy engagements. The boot camps walk developers through creating their
first Sakai tools using Eclipse as the standard IDE of choice.

255

Testing Remotely

Another related product is Sakai Open Academic Environment (OAE), which is also
mentioned at http://sakaiproject.org. Sakai OAE builds on the strengths of Sakai CLE
and works well with Sakai CLE using the hybrid mode. Hybrid mode allows both systems to
share courses.

You can find the description of the book Sakai CLE Courseware Management: The Official
Guide at the following URL:

http://www.packtpub.com/sakai-cle-courseware-management-for-
elearning-research/book

» Writing test plans with SoapUl
» Reporting SoapUl test results

Writing test plans with SoapUIl

SoapUl (http://www.soapui.org/) is a tool that allows the efficient writing of functional,
performance, and security tests, mostly for web services.

In this recipe, you will be using SoapUl to create a basic functional test against the Sakai
SOAP web service created in the last recipe.

Getting ready

As described in the previous recipe, we assume that you have Sakai CLE running on port
39955 with the PingTest service available.

To download and install SoapUl, visit http://www.soapui.org/Getting-Started/,
following the installation instructions.

For the Linux package to work with Ubuntu 11.10, you may have to uncomment the following
line in the SoapUl startup script:

JAVA OPTS="$JAVA OPTS -Dsoapui.jxbrowser.disable=true"

How to do it...

1. Start SoapUl.
2. Right-click on Projects, and select New SoapUI Project.
3. Fillin the dialog box with the following details:

o Project Name: SakaiSoapTests

256

Chapter 6

o Initial WSDL/WADL: http://localhost:39955/sakai-axis/

PingTest.jws?wsdl

o New soapUl Project

New soapUl Project
Creates a new soapUl Project in this workspace

o

Project Name: |SakaiSoapTe5ts |
Initial WSDUWADL: |http:/flocalhost: 39955/sakai-axis/PingTest jws?wsdl | | Browse... |
Create Requests: Create sample requests for all operations?

Create TestSuite: Creates a TestSuite for the imported WSDL or WADL

Create MockService:

Add REST Service:

Relative Paths:

Create Web TestCase: [| Creates a TestCase with a Web Recording session for functional web testing

[[] Creates a Web Service Simulation of the imported WSDL

[[] stores all file paths in project relatively to project file (requires save)

o N o o b

Check Create TestSuite.
Click on OK.

Click on OK for the Generate TestSuite dialog.

Click on OK for TestSuite to create.

In the left-hand side navigator, click on the + icon next to PingTestSoapBinding

TestSuite.

Projects
B sakaiSoapTests
£-B) SakaiSoapTests
EJ I PingTestSoapBinding
- B2 ping
B2 pong

- PingTestSoapBinding TestSuite|

Click on the + icon next to Ping TestCase.

10. Click on the + icon next to Test Steps (1).
11. Right-click on Ping, and select Open Editor.

12.

+
@

At the top of the editor, click on the Add assertion icon.

257

Testing Remotely

13.
14.
15.

16.

17.

18.
19.

Select Assertion Not Contains, and click on OK.
Add for content Insecure answer =>?, and click on OK.

In the left-hand side navigation, right-click on PingTestSoapBinding TestSuite,
selecting Show TestSuite Editor.

In the Editor, click on the Start tests icon.

>

Review the results. The ping TestCase fails due to the assertion, and the pong
TestCase succeeds.

Create the directory named src/test/soapui.

Right-click on SakaiSoapTest, then save the project as SakaiSoapTests-soapui-
project.xml inthe src/test/soapui directory.

® PingTestSoapBinding TestSuite

» X 2 60

. FWE
TestCases

& = L2}

ping TestCase

pong TestCase

Description Properties Setup Script TearDown Script

TestSuite Log

SoapUl takes the drudge work out of making test suites for SOAP services. SoapUl used the
PingTest WSDL file to discover the details of the service. The file contains information on the
location, and allowable parameters are used with the PingTest service.

From the WSDL file, SoapUl created a basic test for the Ping and Pong services. You added
an assertion under the Ping service, checking that the text Insecure answer =>? does not
exist in the SOAP response. As the text does exist, the assertion failed.

258

Chapter 6

SoapUl has a wide range of assertions that it can enforce, including checking for Xpath or
Xquery matches and checking for status codes or assertions tested by custom scripts.

Finally, the project was saved in XML format, ready for reuse in a Maven project in the
next recipe.

WSDL stands for Web Services Description Language

(http://www.w3.org/TR/wsdl). A WSDL file is an

XML file that supports the discovery of services.

There's more...

SoapUl does a lot more than functional tests for web services. It performs security tests by
checking the boundary input. It also has a load runner for stress testing.

Another important feature is its ability to build mock services from WSDL files. This allows

the building of tests locally while the web services are still being developed. Early creation of
tests reduces the number of defects that reach production-lowering costs. You can find an
excellent introduction to mock services at http://www. soapui.org/Service-Mocking/
mocking-soap-services.html.

See also

» Enabling Sakai web services
» Reporting SoapUl test results

Reporting SoapUIl test results

In this recipe, you will be creating a Maven project that runs the SoapUl test created in the
last recipe. A Jenkins project using the xUnit plugin (https://wiki.jenkins-ci.org/
display/JENKINS/xUnit+Plugin) will then parse the results, generating a detailed report.

Getting ready

Install the Jenkins xUnit plugin. Run both the Enabling Sakai web services and Writing test
plans with SoapUI recipes. You will now have Sakai CLE running and a SoapUl test plan ready
to use.

259

Testing Remotely

How to do it...

1. Create a project directory. At the root of the project, add a pom.xm1 file with the
following content:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>
<name>Ping regression suite</name>
<groupld>test.soapui</grouplds>
<artifactIds>test.soapui</artifactIds>
<version>1.0-SNAPSHOT</versions>
<packaging>jar</packaging>
<description>Sakai webservices test</descriptions>
<pluginRepositoriess
<pluginRepository>
<idseviwarePluginRepository</id>
<url>http://www.eviware.com/repository/maven2/</url>
</pluginRepository>
</pluginRepositories>
<builds>
<pluginss>
<plugins>
<groupldseviware</grouplds>
<artifactIds>maven-soapui-plugin</artifactIds>
<version>4.0.1l</versions>
<executionss>
<execution>
<id>ubyregression</id>
<goals>
<goal>test</goal>
</goals>
<phase>test</phase>
</execution>
</executionss>
<configurations>
<projectFiles>
src/test/soapui/SakaiSoapTests-soapui-project.xml
</projectFile>
<host>localhost:39955</host>
<outputFolders>
${project.build.directory}/surefire-reports
</outputFolders>

260

Chapter 6

9.

10.
11.

12.
13.
14.

<junitReport>true</junitReport>
<exportwAll>true</exportwAll>
<printReport>true</printReport>
</configurations>
</plugins>
</plugins>
</build>
</project>

Verify that you have correctly placed the SoapUl project at src/test/soapui/
SakaiSoapTests-soapui-project.xml.
Run from the command line:

mvn clean test

Log in to Jenkins.
Create a Maven 2/3 project named ché . remote . soapui.

Under the Source Code Management section, check Subversion, adding your
Repository URL.

In the Build section, under Goals and options, add clean test.

In the Post-build Actions section, check Publish testing tools result report.
Click on the Add button.

Select Junit.

Under the JUNIT Pattern, add ** /target/surefire-reports/TEST-
PingTestSoapBinding TestSuite.xml.

Click on Save.
Run the Job.
Click on the Latest Test Result link. You will see one failed and one succeeded job.

Test Result

1 failures

2 tests
Took 0.15 sec.

& add description

15.

You will find the complete details of the failure at http://localhost:8080/
job/ché6.remote.soapui/ws/target/surefire-reports/
PingTestSoapBinding TestSuite-ping TestCase-ping-0-FAILED.txt.

261

Testing Remotely

The Maven project uses the maven-soapui plugin (http://www.soapui.org/Test-
Automation/maven-2x.html). As the plugin is not available in one of the main Maven
repositories, you had to configure it to use the eviwarePluginRepository repository.

The SoapUl plugin was configured to pick up its plan from the project file src/test/
soapui/SakaiSoapTests-soapui-project.xml and save the results relative to
project.build.directory, which is the root of the workspace.

The options set were:

<junitReport>true</junitReport>
<exportwAll>true</exportwAll>
<printReport>true</printReport>

JunitReport set to true tells the plugin to create a JUnit report. exportwAll set to
true implies that the results of all tests are exported, not just the errors. This option is
useful during the debugging phase and should be set on unless you have severe disk space
constraints. printReport set to true ensures that Maven sends a small test report to the
console with an output similar to the following:

SoapUI 4.0.1 TestCaseRunner Summary

Total TestSuites: 1

Total TestCases: 2 (1 failed)

Total Request Assertions: 1

Total Failed Assertions: 1

Total Exported Results: 1

[ERROR] java.lang.Exception: Not Contains in [ping] failed;

[Response contains token [Insecure answer =>7?7]]

The ping test case failed as the assertion failed. The pong test case succeeded as the
service existed. Therefore, even without assertions, using the autogeneration feature of
SoapUl allows you to quickly generate a scaffold that ensures that all services are running.
You can always add assertions later as the project develops.

Creation of the Jenkins Job is straightforward. The xUnit plugin allows you to pull in many types
of unit test including the JUnit ones created from the Maven project. The location is set in step
10 as **/target/surefire-reports/TEST-PingTestSoapBinding TestSuite.xml.

262

Chapter 6

The custom reports option is yet another way of pulling in your own

custom data and displaying their historic trends within Jenkins. It works by
s parsing the XML results found by the plugin with a custom stylesheet. This
gives you a great deal of flexibility to add your own custom results.

The Ping service is dangerous as it does not filter the input, and the input is reflected back
through the output.

Many web applications use web services to load the content into a page, avoiding
reloading the full page. A typical example is when you type in a search term and alternative
suggestions are shown on the fly. With a little social engineering magic, a victim will end up
sending a request including scripting to the web service. On returning the response, the
script is run in the client browser. This bypasses the intent of the same origin policy
(http://en.wikipedia.org/wiki/Same origin policy). Thisis known asa
non-persistent attack, as the script is not persisted to storage.

Web services are more difficult to test than web pages for XSS attacks. Luckily, SoapUl
simplifies the testing process to a manageable level. You can find an introductory tutorial
on SoapUl security tests at http: //www. soapui.org/Security/working-with-
security-tests.html.

» Enabling Sakai web services
» Writing test plans with SoapUI

263

Exploring Plugins

In this chapter, we will cover the following recipes:

» Personalizing Jenkins

» Testing and then promoting

» Fun with pinning JS Games

» Looking at the GUI Samples plugin

» Changing the help of the File system scm plugin
» Adding a banner to Job descriptions

» Creating a RootAction plugin

» Exporting data

» Triggering events on startup

» Triggering events when web content changes
» Reviewing three ListView plugins

» Creating my first ListView plugin

Introduction

This chapter has two purposes. The first is to show a number of interesting plugins. The
second is to briefly review how plugins work. If you are not a programmer, then feel free
to skip the how plugins work discussion.

Exploring Plugins

When | started writing this book, there were over 300 Jenkins plugins available; at the time of
writing this page, there are more than 400. It is likely that there are plugins already available
that meet or nearly meet your needs. Jenkins is not only a Continuous Integration Server but
also a platform to create extra functionality. Once a few concepts are learned, a programmer
can adapt the available plugins to his/her organization's needs.

If you see a feature that is missing, it is normally easier to adapt an existing one than to
write from scratch. If you are thinking of adapting, then the plugin tutorial (https://wiki.
jenkins-ci.org/display/JENKINS/Plugin+tutorial)is a good starting point. The
tutorial gives relevant background information on the infrastructure you use daily.

There is a large amount of information available on plugins. Here are some key points:
» There are many plugins, and more will be developed. To keep up with these changes,
you will need to regularly review the available section of the Jenkins plugin manager.

» Work with the community: If you centrally commit your improvements, then they
become visible to a wide audience. Under the careful watch of the community, the
code is likely to be improved.

» Don't reinvent the wheel: With so many plugins, in the majority of situations, it is
easier to adapt an already existing plugin than write from scratch.

» Pinning a plugin occurs when you cannot update the plugin to a new version through
the Jenkins plugin manager. Pinning helps to maintain a stable Jenkins environment.

» Most plugin workflows are easy to understand. However, as the number of plugins you
use expands, the likelihood of an inadvertent configuration error increases.

» The Jenkins Maven Plugin allows you to run a test Jenkins server from within a Maven
build without any risk.

» Conventions save effort: The location of files in plugins matters. For example, you can
find the description of a plugin displayed in Jenkins at the file location /src/main/
resources/index.jelly.

» By keeping to Jenkins conventions, the amount of source code you write is minimized
and the readability is improved.

» The three frameworks that are heavily used in Jenkins are:
a Jelly for the creation of the GUI
o Stapler for the binding of the Java classes to the URL space
o Xstream for persistence of configuration into XML

266

Chapter 7

Personalizing Jenkins

This recipe highlights two plugins that improve the user experience: the green balls plugin
and the favorites plugin.

Jenkins has a wide international audience. At times, there can be subtle cultural differences
expressed in the way Jenkins looks. One example is when a build succeeds, a blue ball is
shown as the icon. However, many Jenkins users naturally associate the green from traffic
lights as the signal to go further.

The favorites plugin allows you select your favorite projects and display an icon in a view to
highlight your picks.

Getting ready

Install the green balls and favorite plugins (https://wiki.jenkins-ci.org/display/
JENKINS/Green+Balls, https://wiki.jenkins-ci.org/display/JENKINS/
Favorite+Plugin).

How to do it...

1. Create an empty new free-style job named ch7.plugin. favourit.

2. Build the Job a number of times, reviewing the build history. You will now see green
balls instead of the usual blue.

Build History rend

& #27 Thu Feb 09 16:16:51 CET 2012

& #26 Thu Feb 09 16:07:13 CET 2012

&) #25 Thu Feb 09 15:29:43 CET 2012

) #24 Thu Feb 09 14:48:52 CET 2012

Return to the main page.
To create a new view, click on the + icon.

Fill in FAV for the Name.

o o &~ W

Under the Job Filters section, check Use a regular expression to include jobs into
the view. Add . * for Regular expression.

267

Exploring Plugins

7. In the Columns section, make sure you have three columns: Name, Status,
and Favorite.

& usea regular expression to include jobs into the view

Regular expression | -

Add Job Filter ~ |
Columns
Name

[
Status

oo |
Favorite

o |

Add column

8. Click on OK.

9. You will find yourself in the FAV view. By clicking on the star icon, you can select/
deselect your favorite projects.

All | FAV | LAST | +

ch7.plugin.copy

ch?.plugin.copydata

©0 00"

ch?.plugin.escape 'i':/’
ch7.plugin.tavourit -i’:f

268

Chapter 7

The green balls plugin works as advertised. However, one limitation is that it does not
currently affect the standard list view, which still displays blue balls.

The favorites plugin allows you to select which project interests you the most and displays that
as a favorites icon. This reminds you that the project needs some immediate action.

If you are interested in working with the community, then these
i plugins are examples that you could add extra features to.

The opposite of a favorite project, at least temporarily, is a project whose build has failed. The
claims plugin (https://wiki.jenkins-ci.org/display/JENKINS/Claim+plugin)
allows individual developers to claim a failed build. This enables the mapping of workflow to
individual responsibilities.

Once the claims plugin is installed, you will be able to find a tickbox in the Post-Build Actions
section of a Job for Allow broken build claiming. Once enabled, if a build fails, you can claim
a specific build, adding a note about your motivation.

Jenkins » ch7.plugin.claim » #1

* Back to Project

O, statia O Build #1 (Feb 17, 2012 11:02:26 AM)
:’ Changes

n Console Qutput

:’ Edit Build Information E TR

é{% Started by user Alan Mark Berg
»

é{/ * This build was not claimed. Claim it.

269

Exploring Plugins

Within the Jenkins home page, there is now a link to a log that keeps a summary of all the
claimed builds. A project manager can now read a quick overview of issues. The log is a direct
link to the team members who deal with current issues.

Jenkins » Claim Report ENABLE AUTO REFRESH

& Newlob [#add description
. Build Date Failure Duration Status Description
& peoole

= f5.. L 0 ch?.plugin.daim #1 2 min 26 sec 2 min 26 sec dlaimed by Alan because: Bad commits, due to incarrect cherry picking
Build History

; Ion: SML
sM
P Manage Jenkins Legend [E) RSS for all E) RSS for failures [RSS for just latest builds

& vy views

#* Claim Report

The favorites plugin is elegant in its simplicity. The next recipe, Testing and then promoting,
will signal further, allowing you to incorporate complex workflows.

See also

» Testing and then promoting
» Fun with pinning JSGames

Testing and then promoting

You do not want the QA team to review a packaged application until it has been automatically
tested. To achieve this, you can use the promotion plugin.

Promotion is a visual signal in Jenkins. An icon is set next to a specific build to remind the
team to perform an action.

The difference between the promotion and the favorites plugin mentioned in the last recipe
is that the promotion plugin can be triggered automatically based on a variety of automated
actions. Actions include the running of scripts or the verification of the status of other up or
downstream jobs.

In this recipe, you will be writing two simple Jobs. The first Job will trigger the second Job,
and if the second Job is successful, then the first Job will be promoted. This is the core of a
realistic QA process - the testing Job promoting the packaging Job.

Getting ready

Install the promoted builds plugin
https://wiki.jenkins-ci.org/display/JENKINS/Promoted+Builds+Plugin.

270

Chapter 7

How to do it...

Create a free-style Job named ch7.plugin.promote action.

Run this Job and verify that it succeeds.

Create a free-style Job named ch7.plugin.to_be promoted.
Near the top of the configuration page, check Promote builds when....

ok 0Nk

Fill in the following details:
o Name:Verified by automatic functional testing
o Select Green star for Icon
o Check When the following downstream projects build successfully

o Jobnames: ch7.plugin.promote action

Promote builds when... @

Promotion process

Name yerified by automatic functional testing

Icon Green star -

D Restrict where this promotion process can be run

Criteria

D Only when manually approved

D Promote immediately once the build is complete

29

When the following downstream projects build successfully

Job names ch7.plugin.promote_action

D Trigger even if the build is unstable

D When the following upstream promotions are promoted @

In the Post-build Action section, check Build other projects.

Fillin ch7.plugin.promote action for projects to build.

o N o

Tick Trigger only if build succeeds.
9. Click on Save.
10. Build the Job.
11. Click on the Promotion Status link.

ﬂ? Promotion Status

271

Exploring Plugins

12. Review the build report.

Jenkins * ch7.plugin.to be promoted * Promotion Status

... Back to Dashboard

) Promotions
A Status
=& Changes i ? Verified by automatic functional testing
' Workspace
@ Build Now B S Hestony,
@ _Verified by automatic functional testing #1 promoted build #1 on Fri Feb 17 11:37:34 CET 2012
Q Delete Project
Last promoted build is @ #1 (permalink)
7 Configure

\i? Promotion Status

Build History {trend)
@ #1 Feb 17, 2012 11:37:29 AM * f

RSS for all E; RSS for failures

Promoted builds is similar to the favorites plugin, but with automation of workflow. You can
promote depending on job(s) triggered by the creation of artifacts. This is a typical workflow
when you want a Job tested for baseline quality before being picked up and reviewed.

The plugin has enough configuration options to make it malleable to most workflows. Another
example, for a typical development, acceptance, or production infrastructure, is that you

do not want an artifice to be deployed to production before development and acceptance
have also been promoted. The way to configure this is to have a series of Jobs with the

last promotion to production, depending on the promotion of upstream development and
acceptance jobs.

approved in Jobs configuration and add a list of approvers.

If you are relying on human intervention and have no automatic tests, consider using the
simplified promoted builds plugin (https://wiki.jenkins-ci.org/display/JENKINS/
Promoted+Builds+Simple+Plugin). As its name suggests, the plugin simplifies the
configuration and works well with a large subset of QA workflows. Simplifying the configuration
eases the effort of explaining, allowing use by a wider audience.

[If you want to add human intervention, then check Only when manually]
o

272

Chapter 7

You can configure the different types of promotion within the main Jenkins configuration page.

Promoted Builds

Promotion Levels Name ga build

Icon ga.gif

Automatically Keap

Name qA approved

Icon ga-green.gif

Automatically Keep

Warning: Use the Automatically Keep feature wisely. The option tells

Jenkins to keep the artifacts from the build for all time. If used as part of an

incremental build process, you will end up consuming a lot of disk space.

The plugin allows you to elevate promotions. There is a simple choice available through a link
on the left-hand side of the build. This feature allows you to add a series of players into the

promotion process.

Warning: When the final promotion occurs, for example, when you
set the promotion to Generally Available (GA), the promotion is

locked and can no longer be demoted.

Jenkins * ch7.plugin.simple » #1

t Back to Project

*
=
“ Console Qutput
‘:ﬂ Edit Build Information

L IEITRY
f Mo changes.
e

o

() Build #1 (Feb 17, 2012 1:16:45 PM)

'{dk Started by user Alan Mark Berg

| Promote Build L4

Q4 build
QA approved
GA release

273

Exploring Plugins

The ability of a user to promote depends upon the permissions granted to them. For example,
if you are using matrix-based security, then you will need to update its table before you can
see an extra option in the configuration page of the Job.

View SCM
‘Create DeleteConfigurePromote Tag

M B F O #
B B B | @ B

See also

» Personalizing Jenkins

Fun with pinning JS Games

This recipe shows you how to pin a Jenkins plugin. Pinning a plugin stops you from being able
to update its version within the Jenkins plugin manager.

Now that the boss has gone, life is not always about code quality. To let off pressure, consider
allowing access to your team to relaxation with the JS Games plugin.

Getting ready

Install the JS Games plugin
(https://wiki.jenkins-ci.org/display/JENKINS/JSGames+Plugin).

How to do it...

1. Checkout and review the tag jsgames-0.2 with the commands: :
git clone https://github.com/jenkinsci/jsgames-plugin
git tag

git checkout jsgames-0.2

2. Review the front page of Jenkins; you will see a link to JS Games.

‘l"“{” JS Games

Chapter 7

3. Click on the link and you will have the choice of two games: Mario Kart and Tetris.

JS Games

2 -

Mario Kart Tetris

Music: | ©ff = | Use mouse to select character. Use arrow Keys to control the cart.

WUSkllon] CUP REYCE

4. As a Jenkins administrator, visit the Manage Plugins section, and click on the
installed tab (http://localhost:8080/pluginManager/installed). Notice
that the JS Games plugin is not pinned.

5. From the command line, list the contents of the plugin directory (JENKINS_ HOME/
plugin), for example:

ls /var/lib/jenkins/plugins

The output will be similar to the following:

ant ant.jpi
jsgames jsgames.jpi
maven-plugin maven-plugin.jpi

6. Inthe plugins directory, create a file named jsgames. jpi.pinned. For example:
sudo touch /var/lib/jenkins/plugins/jsgames.jpi.pinned

sudo chown jenkins /var/lib/jenkins/plugins/jsgames.jpi.pinned

275

Exploring Plugins

7.

In your web browser, refresh the Installed Plugin page. You will now see that the
JSGames Plugin is pinned.

0.2 unpin @

Pinning a plugin stops a Jenkins administrator from updating to a new version of a plugin. To
pin a plugin, you need to create a file in the plugins directory with the same name as the
plugin ending with the extension pinned. See https://wiki.jenkins-ci.org/display/
JENKINS/Pinned+Plugins.

Roughly every week, a new version of Jenkins is released with bug fixes and feature updates.
This leads to delivering improvements quickly to the market, but also leads to failures at
times. Pinning a plugin implies that you can stop a plugin from being accidentally updated
until you have had time to assess the stability and value of the newer version. Pinning is a tool
to maintain the production server stability.

The source code includes a top-level pom.xml to control the Maven build process. By
convention, the four main source code areas are:

>

src/test: This is the code that tests during the build. For jsgames, there are a
bunch of JUnit tests.

src/main/java: This is the location of the Java code. Jenkins uses Stapler
(https://wiki.jenkins-ci.org/display/JENKINS/Architecture)to map
the data between the Java Objects in this directory and the views that Jenkins finds in
the directories below src/main/resources.

src/main/resources: This is the location of the view for the plugin. The GUI is
associated with the plugin you see when you interact in Jenkins; for example, the link
to JS Games. The view is defined using Jelly tags.

src/main/webapp: This is the location of resources, such as images, stylesheets,
and JavaScript. The location maps to the URL space. /src/main/webapp maps

to the URL /plugin/name_of plugin. For example, the location /src/main/
webapp/tetris/resources/tetris.js mapstothe URL /plugin/jsgames/
tetris/resources/tetris.js.

>

276

Creating a RootAction plugin

Chapter 7

Looking at the GUI Samples plugin

This recipe describes how to run a Jenkins test server through Maven. In the test server, you
will get to see the example GUI plugin. The GUI plugin demonstrates a number of tag elements
that you can use later in your own plugins.

Getting ready

Create a directory to keep the results of this recipe.

How to do it...

1.

In the recipe directory, add pom.xml with the following content:

<?xml version="1.0"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<grouplds>org.jenkins-ci.plugins</groupIds>
<artifactIds>plugin</artifactIds>
<version>1.449</version>
</parent>
<artifactId>Startup</artifactIds>
<version>1.0-SNAPSHOT</version>
<packagings>hpi</packaging>
<name>Startup</name>
<repositoriess>
<repositorys>
<id>m.g.o-public</id>
<urlshttp://maven.glassfish.org/content/groups/public/</urls>
</repository>
</repositories>
<pluginRepositories>
<pluginRepositorys>
<id>m.g.o-public</id>
<urlshttp://maven.glassfish.org/content/groups/public/</urls>
</pluginRepository>
</pluginRepositories>

</projects>

277

Exploring Plugins

2. From the command line, run mvn hpi : run. If you have a default Jenkins running on
port 8080, then you will see an error message similar to the following:

2012-02-05 09:56:57.827::WARN: failed SelectChannelConnector @
0.0.0.0:8080

java.net.BindException: Address already in use

at sun.nio.ch.Net.bind0 (Native Method)

3. If the server is still running, press Ctrl + C.
4. To run on port 8090, type the following command:
mvn hpi:run -Djetty.port=8090

5. The server will now run and generate a SEVERE error from the console.

SEVERE: Failed Inspecting plugin /DRAFT/Exploring plugins/hpi
run/./work/plugins/Startup.hpl

java.io.IOException: No such file: /DRAFT/Exploring plugins/hpi
run/target/classes

6. Visit localhost:8090. At the bottom of the page, review the version number
of Jenkins.

Page generated: Sun Feb 05 10:00:16 CET 2012 Jenkins ver. 1.449

7. Click on the Ul Samples link.

J Ul Samples

8. Review the various types of examples mentioned, such as AutoCompleteTextBox
(http://localhost:8090/ui-samples/AutoCompleteTextBox/).

For development purposes, the ability to run a test server from Maven is great. You can
change your code, compile, package, and then view it on a local instance of Jenkins, without
worrying about configuring or damaging a real server. You do not have to worry too much
about security, because the test server only runs as long as you are testing.

278

Chapter 7

The goal hpi : run tries to package and then deploy a plugin called Startup. However, the
package is not available, so it logs a complaint and then faithfully runs a Jenkins server. The
version number of the Jenkins server is the same as the version number defined in the pom.
xml <versions tag within the <parent> tag.

To avoid hitting the same port as your local instance of Jenkins, you set the jetty.port option.

Once Jenkins is running, visiting the GUI example plugin will show you many different GUI
elements written in the Jelly language. These elements will later come in handy for programming
your own plugins. The Jelly files used in plugins sit under the /src/main/resources directory.
Jenkins uses Stapler to bind any relevant classes found in src/main/java.

You can find the Jenkins workspace in the work folder. Any configuration changes you
make on the test server are persisted here. To have a fresh start, you will need to delete the
directory by hand.

For all the recipes in this chapter, we will pin the Jenkins version at 1.449. The reason for this
is two-fold:

» The dependencies take a lot of space. The Jenkins WAR file and test WAR file take
about 120 MB of your local Maven repository. Multiply this number by the number of
versions of Jenkins used, and you can quickly fill up GBs of disk space.

» Holding at a specific Jenkins version stabilizes the recipes.

Feel free to update to the newest and greatest Jenkins version; the examples in this chapter
should still work. In case of difficulty, you can always return to the known safe number.

Behind the scenes, Maven does a lot of heavy lifting. The pom.xm1 file defines the
repository http://maven.glassfish.org/content/groups/public/ to pull in the
dependencies. It calls version 1.449 of org. jenkins-ci.plugins.plugin. The version
number is in sync with the version number of Jenkins that Maven runs.

To discover which version numbers are acceptable, visit the following URL:

http://maven.jenkins-ci.org/content/groups/artifacts/org/jenkins-ci/
plugins/plugin/

The details of the Jenkins server and any extra plugins can be found relative to this
URLiNn1.449/plugin-1.449.pom. The ui-samples-plugin version is also pegged
at version 1.4409.

» Changing the help of the file system scm plugin

279

Exploring Plugins

Changing the help of the file system scm

plugin

This recipe reviews the inner workings of the file system scm plugin. This plugin allows you to
place the code in a local directory that is then picked up in a build.

Getting ready

Create a directory named ready for the code in this recipe.

How to do it...

1. Download the source of the plugin.

svn export -r 40275 https://svn.jenkins-ci.org/trunk/hudson/
plugins/filesystem scm

2. Inthe top-level directory, edit the pom.xml file by changing the version of <parent >
to1.4409.

<parent>
<grouplds>org.jenkins-ci.plugins</groupIld>
<artifactIds>plugin</artifactIds>
<version>1.449</version>

</parent>

3. Replace the content of src/main/webapp/help-clearWorkspace.html with
the following:
<div>
<p>
<h3>HELLO WORLD</h3>
</p>
</div>
4. Runmvn clean install. The unit tests fail with the following output:

Failed tests: testl (hudson.plugins.filesystem scm.
SimpleAntWildcardFilterTest): expected:<2> but was:<0>

Tests run: 27, Failures: 1, Errors: 0, Skipped: 0

5. Skip the failing tests by running mvn clean package -Dmaven.test .skip=true.
The plugin is now packaged.

280

Chapter 7

6. Upload the plugin . /target/filesystem scm.hpi in the Advanced section of
your plugin manager (http://localhost:8080/pluginManager/advanced).

Upload Plugin

“ou can upload a .hpi file to install a plugin from outside the central plugin repository.

File: Browse...
Upload |

7. Restart the Jenkins server.

Log in to Jenkins, and visit the list of installed plugins (http://localhost:8080/
pluginManager/installed).

9. Create a Maven 2/3 Job named ch7.plugins.filesystem scm.
10. Under Source Code Management, you now have a section called File system.

11. Click on the help icon. You will see your custom message.

@ File system
Path

Clear Workspace]

HELLO WORLD

12. To delete the plugin, remove the JPI file and the expanded directory from under
JENKINS HOME/plugins.

13. Restart Jenkins.

281

Exploring Plugins

Congratulations! You have updated the scm plugin.

First, you modified the plugin's pom.xml file, updating the version of the test Jenkins server.
Next, you modified its help file.

For each Java class, you can configure its GUI representation through an associated config.
jelly file. The mapping is from src/main/java/package path/classname.java to
src/main/resources/package path/classname/config.jelly.

For example, src/main/resources/hudson/plugins/filestem scm/FSSCM/
config.jelly configures the Jenkins GUI for src/main/java/hudson/plugins/
filesystem scm/FSSCM.java.

The location of the help files are defined in config.jelly with the attribute help in the
entry Jelly tag:

<f:entry title="Clear Workspace" help="/plugin/filesystem scm/
help-clearWorkspace.html">

<f:checkbox name="fs scm.clearWorkspace"
checked="${scm.clearWorkspace}"/>

</f:entry>

The src/main/webapps directory provides a stable Jenkins URL /plugin/name of
plugin for static content, such as images, stylesheets, and JavaScript files. This is why the
help files were stored here. Modifying help-clearWorkspace.html updated the help
pointed to by the entry tab.

The variable ${scm.clearworkspace} is a reference to the value of the clearWorkspace
member in the FSSCM instance.

Plugins generally ship with two types of Jelly files: global.jelly and config.jelly.
config.jelly files generate the configuration elements seen when configuring Jobs.
global.jelly files are rendered in the main Jenkins configuration page.

Data is persisted in XML files using the Xstream framework. You can find the data for Job
configuration under the working area of Jenkins within . /jobs/job_name/plugin_name.
xml, and . /work/name_of plugin.xml for the global plugin configuration.

» Looking at the GUI Samples plugin

282

Chapter 7

Adding a banner to Job descriptions

Scenario: Your company has a public-facing Jenkins instance. The owner does not want

the project owners to write unescaped tagging in the descriptions of projects. This poses

too much of a security issue. However, the owner does want to put a company banner at

the bottom of each description. You have 15 minutes to sort out the problem before the
management starts buying in unnecessary advice. Within the first five minutes, you ascertain
that the escape markup plugin (see Finding 500 errors and XSS attacks in Jenkins Through
Fuzzing, Chapter 2, Enhancing Security) performs the escaping of the description.

This recipe shows you how to modify the markup plugin to add a banner to all the descriptions.

Getting ready

Create a directory for your project.

How to do it...

1. Check out the escape-markup-plugin-0.1 tag of escaped-markup-plugin.
git clone https://github.com/jenkinsci/escaped-markup-plugin
cd escaped-markup-plugin
git checkout escaped-markup-plugin-0.1

2. Inthe top-level directory of the project, try to create the plugin by using the command
mvn install. The build fails.

3. Change the Jenkins plugin version in the pom.xml from 1.408 to 1.449:

<parent>
<grouplds>org.jenkins-ci.plugins</groupId>
<artifactId>plugin</artifactIds>
version>1.449</version>

</parent>

4. Build the plugin with mvn install. The build and tests will succeed. You can now
find the plugin at target /escaped-markup-plugin.hpi.

5. Install the plugin by visiting the Advanced tab under the plugin Manager
(http://localhost:8080/pluginManager/advanced).

In the Upload Plugin section, upload the escaped-markup-plugin.hpi file.
7. Restart the server; for example:

sudo /etc/init.d/jenkins restart

283

Exploring Plugins

8. Visit the Jenkins configuration page (http://localhost:8080/configure), and
review the markup formatters.

Raw HTML

Escaped HTML

Raw HTML
—" Disable syntax highlighting

9. Replace src/main/resources/index.jelly with the following:
<div>

This plugin escapes the description of project , user, view ,
and build to prevent from XSS.

Revision: Unescaped banner added at the end.
</div>

10. Replace the class definition of src/main/java/org/jenkinsci/plugins/
escapedmarkup/ EscapedMarkupFormatter.java with:

public class EscapedMarkupFormatter extends MarkupFormatter {

private final String BANNER= "\n<hr><h2>THINK BIG WITH xyz dot
blah</h2><hr>\n";

@DataBoundConstructor
public EscapedMarkupFormatter () {

}

@Override

public void translate (String markup, Writer output) throws
IOException {

output.write (Util.escape (markup) +BANNER) ;

@Extension

public static class DescriptorImpl extends
MarkupFormatterDescriptor {

@Override
public String getDisplayName () {
return "Escaped HTML with BANNER";

284

11.
12.

13.

14.

15.

16.
17.

Chapter 7

Build with mvn install. The build fails due to failed tests (which is a good thing).
Build again using the following command, this time skipping the tests:

mvn -Dmaven.test.skip=true -DskipTests=true clean install

Stop Jenkins; for example:

sudo /etc/init.d/jenkins stop

Delete the escaped markup plugin from the Jenkins plugin directory and the
expanded version in the same directory. For example:

sudo rm /var/lib/jenkins/plugins/escaped-markup-plugin.jpi
sudo rm -rf /var/lib/jenkins/plugins/escaped-markup-plugin
Copy the target/escaped-markup-plugin.hpi plugin to the Jenkins
plugin directory.

Restart Jenkins.

Visit the Installed plugins page at http://localhost:8080/pluginManager/
installed. You will now see an updated description of the plugin.

Enabled Name 1

Jenkins Escaped Markup Plugin

& This plugin escapes the description of project , user, view , and
build to prevent from XSS. Revision: Unescaped banner added at
the end.

18.

19.

20.
21.

In Jenkins, as an administrator, visit the configure page at
http://localhost:8080/configure.

For Markup Formatter, choose Escape HTML with Banner:

[Raw HTML
Escaped HTML with BANNER

—" Disable syntax highlighting

Click on Save.

Create a new Job named ch7.plugin.escape.

285

http://localhost:8080/pluginManager/installed

Exploring Plugins

22. Within the Jobs main page, you will now see the banner.

Jenkins = ¢h7.plugin.escape ENABLE AUTO REFRESH
* Back to Dashboard
O statue Project ch7.plugin.escape
A
“ Changes
THINK BIG WITH xyz dot blah
h’ Workspace
@ Build Now | @4add description
(O Detete Project
& Configure =)
Workspace
Build History (trend)

RSS fi Il RSS for fail I I

ﬂ or al B or failures | f Recent Changes
l=]

The markup plugin escapes the tags in descriptions so that arbitrary scripting actions cannot
be injected. The use of the plugin was explained in the recipe Finding 500 errors and XSS
attacks in Jenkins Through Fuzzing, Chapter 2, Security.

In this recipe, we adapted the plugin to escape a project's description, and then added a
banner. The banner contains arbitrary HTML.

First, you compiled and uploaded the markup plugin. Then, you modified the source to
include a banner at the end of a Job's description. The plugin was redeployed to a sacrificial
test instance that was ready for review. You could have also used the mvn hpi : run goal to
run Jenkins through Maven. There are multiple ways to deploy, including dumping the plugin
directly into the Jenkins plugin directory. Which of the deployment methods you decide to
use is a matter of taste.

The description of the plugin rendered is defined in src/main/resources/index.jelly.
You updated the file to accurately describe the new banner feature.

In Jenkins, extension points are Java interfaces or abstract classes that model a part of the
Jenkins functionality. Jenkins has a wealth of extension points (https://wiki.jenkins-
ci.org/display/JENKINS/Extension+points). You can even make your own extension
point (https://wiki.jenkins-ci.org/display/JENKINS/Defining+a+new+exten
sion+point).

286

Chapter 7

The markup plugin had minimal changes made to it to suite our purposes. We extended the
MarkupFormatter extension point.

Jenkins uses annotations. The @Override annotation tells the compiler to override the
method. In this case, we overrode the translate method and used a utility class to filter
the markup string using a Jenkins uti1ity method. At the end of the resulting string, the
banner string was added and passed to the Java writer. The writer is then passed back to
the calling method.

The text inside the selectbox (see step 19) of the plugin is defined in the
getDisplayName () method of the DescriptorImpl class.

Conclusion: Writing a new plugin, and understanding the Jenkins object model takes more
effort than copying a plugin that works and then tweaking it. The amount of code change
needed to add the banner feature to an already existing plugin was minimal.

There is a lot of documentation available for Jenkins. However, for the hardcore
programmer, the best source of details is reviewing the code. Examples include JavaDoc
(http://javadoc.jenkins-ci.org/) and the built-in code completion facilities of
IDEs, such as Eclipse. If you import the Jenkins plugin project into Eclipse as a Maven
project, then the newest versions of Eclipse will sort out the dependencies for you, enabling
code completion during the editing of files. In a rapidly-moving project such as Jenkins,
there is sometimes a lag between when a feature is added and when it is documented.

In this situation, the code needs to be self-documenting. Code completion in combination
with well-written JavaDoc eases a developer's learning curve.

@override
public void translate(String markup, Writer output) thro
output.write(Util.escape(markup)+BANNER) ;
util. =
} &
@Extensio © NO_SYMLINK: boolean - Util
public st ¥ RFC822_DATETIME_FORMATTER : FastDateFormat - Ut
@over] o8 SYMLINK_ESCAPEHATCH : boolean - Uil
publi ¥ XS_DATETIME_FORMATTER : FastDateFormat - Util
I & changeExtension(File dst, String ext) : File - ULil
} } & combine(long n, String suffix) : String - Uil
& copyFile(File src, File dst) : void - Uil
& copyStream(Inputstream in, OutputStream out) : void
& copyStream(Reader in, Writer out) : void - UEil

B P [T R T SR S S 1 S

¥
Press 'Ctrl+Space’ to show Template Proposals

287

Exploring Plugins

See also

» Finding 500 errors and XSS attacks in Jenkins Through Fuzzing, Chapter 2,
Enhancing security

» Changing the help of the file system scm plugin
» Creating a RootAction plugin

Creating a RootAction plugin

Before building your own plugin, it is worth seeing if you can adapt another's. In the Fun with
pinning JS Games recipe, the plugin created a link on the front page.

.}“{“ JS Games

In this recipe, we shall use the elements of the plugin to create a link in the Jenkins home page.

Getting ready

Create a directory to store your source code.

How to do it...

1. Create a copy of the pom.xml file from the Looking at the GUI Samples plugin and
hpi:run recipe, and replace:
<artifactId>Startup</artifactlId>
<version>1.0-SNAPSHOT</version>
<packaging>hpi</packaging>
<name>Startup</name>

with:
<artifactIdsrootaction</artifactIds>
<version>1.0-SNAPSHOT</version>
<packaging>hpi</packaging>
<name>Jenkins Root Action Plugin</name>

288

Chapter 7

Create the directories src/main/java/Jenkins/plugins/rootaction, src/
main/resources and src/main/webapp.

In src/main/java/Jenkins/plugins/rootaction, add the file
MyRootAction.java with the following content:

package jenkins.plugins.rootaction;
import hudson.Extension;
import hudson.model.RootAction;

@Extension
public class MyRootAction implements RootAction {

public final String getDisplayName () {
return "Root Action Example";

public final String getIconFileName ()
return "/plugin/rootaction/myicon.png";

//Feel free to modify the URL
public final String getUrlName () {
return "http://www.uva.nl";

}

In the src/main/webapp directory, add a PNG file named myicon.png. For an
example image, see http://www.iconfinder.com/icondetails/46509/32/
youtube icon.

Add the src/main/resources/index. jelly file with the following content:

<divs>
This plugin adds a root link.

</div>

In the top-level directory, run the following command:

mvn -Dmaven.test.skip=true -DskipTests=true clean install hpi:run
-Djetty.port=8090

289

Exploring Plugins

7. Visit the main page at http://localhost:8090.

Jenkins
5" New Job

&) Peovee

= Build History

Manage Jenkins
S Ma Jenking

u Root Action Example

Ul Samples
- Jl samples
Build Queue

No builds in the queue.

8. Click on the Root Action Example link; your browser is now sent to the main website
of the University of Amsterdam (http://www.uva.nl).

9. Review the Jenkins installed plugin page (http://localhost:8090/
pluginManager/installed).

You implemented the RootAction extension point. It is used to add links to the main menu
in Jenkins.

The extension point is easy to extend. The link name is defined in the getDisplayName
method, the location of an icon in the get IconFileName method, and the URL to link
to in getUrlName.

Conventions save programming effort. By convention, the description of the plugin is defined
in src/main/resources/index.jelly, and the link name in the pom.xml file under the
<name> tag next to the <packaging> tag. For example:

<artifactIdsrootaction</artifactIds>
<version>1.0-SNAPSHOT</version>
<packaging>hpi</packaging>
<name>Jenkins Root Action Plugin</name>

290

Chapter 7

The location of the details in the Jenkins Wiki are calculated as a fixed URL
(http://wiki.jenkins-ci.org/display/JENKINS/) with the plugin name,

after that with the spaces in the name replaced with + symbols. This is true for this

plugin as well, which has the link generated http://wiki.jenkins-ci.org/display/
JENKINS/Jenkins+Root+Action+Plugin.

Jenkins Root Action Plugin

This plugin adds a root link.

See also

» Fun with pinning JS Games

Exporting data

The job exporter plugin creates a property file with a list of project-related properties. This is a
handy glue for when you want Jenkins to pass the information from one job to another.

Getting ready

Install the Job exporter plugin
(https://wiki.jenkins-ci.org/display/JENKINS/Job+Exporter+Plugin).

How to do it...

1. Download the source code at a known version number.

svn export -r 40275 https://svn.jenkins-ci.org/trunk/hudson/
plugins/job-exporter

Create a free-style job named ch7.plugins.job_export.

In the build section, add a build step export runtime parameters.
Click on save.

Run the Job.

In the build History for the Job within the console output, you will see output similar to
the following:

o o M wbd

Started by user Alan Mark Berg

Building in workspace /var/lib/jenkins/workspace/ch7.plugins.job
export

291

Exploring Plugins

FHEFH R
#

job-exporter plugin started
hudson.version: 1.450
host:
id: 2012-02-02 15-58-51
duration: 2 ms
slave:
started: 2012-02-02T15:58:51
result: SUCCESS

summary: Executor #0 for master : executing ch7.plugins.job
export #1

executor: 0
elapsedTime: 3
number: 1
jobName: ch7.plugins.job export
we have 1 build cause:
Cause.UserIdCause Started by user Alan Mark Berg
user.id: Alan
user.name: Alan Mark Berg
user.fullName: Alan Mark Berg
user.emailAddress: xxx@yyy.nl

new file written: /var/lib/jenkins/workspace/ch7.plugins.job
export/hudsonBuild.properties

job-exporter plugin finished. That's All Folks!

FHEHHEE R
#

Finished: SUCCESS

7. Reviewing the newly created properties file; you will see a text similar to the following;:
#created by com.meyling.hudson.plugin.job exporter.ExporterBuilder
#Thu Feb 02 15:58:51 CET 2012
build.user.id=Alan

build.result=SUCCESS

292

Chapter 7

The Job exporter plugin gives Jenkins the ability to export Job-related information into a
properties file that can later be picked up for re-use by other Jobs.

Reviewing the code src/main/java/com/meyling/hudson/plugin/job exporter/
ExporterBuilder.java extends hudson. tasks.Builder, whose perform method

is invoked when a build is run. The perform method receives the hudson.model .Build
object when it is called. The Build instance contains information about the build itself.
Calling the build.getBuiltOnStr () method returns a string, which contains the name of
the node that the build is running on. The plugin uses a number of these methods to discover
the information that is later outputted to a properties file.

There's more...

While reviewing the plugin code, you can find interesting tricks ready for re-use in your own
plugin. The plugin discovered the environment variables by using the following method:

final EnvVars env = build.getEnvironment (new
LogTaskListener (Logger .getLogger (
this.getClass () .getName ()), Level.INFO)) ;

Here, EnvVars is of the class hudson.EnvVars
(http://javadoc. jenkins-ci.org/hudson/EnvVars.html). EnvVars even has a
method to get the environment variables from remote Jenkins nodes.

You can also find a list of all environment variables defined for Jenkins in the Jenkins
Management area under system info (http://localhost:8080/systemInfo).

See also

» My first ListView plugin

Triggering events on startup

Often when a server starts up, you will want to have a clean-up action performed. For
example, running a Job that sends an e-mail to all of the Jenkins admins warning them
of the startup event. You can achieve this with the startup trigger plugin.

Getting ready

Install the startup trigger plugin
(https://wiki.jenkins-ci.org/display/JENKINS/Startup+Trigger).

293

Exploring Plugins

How to do it...

1.

N ok eN

Download the source code.

svn export -r 40275 https://svn.jenkins-ci.org/trunk/hudson/
plugins/startup-trigger-plugin

Create a free-style Job named ch7.plugin.startup.

In the section Build Triggers, check Build when Jenkins first starts.

Click on Save.

Restart Jenkins.

Return to the project page; you will notice that a Job has been triggered.

Review the builds history console output. You will see an output similar to
the following:

Started due to Jenkins startup.

Building in workspace /var/lib/jenkins/workspace/ch7.plugins.
startup

Finished: SUCCESS

The startup trigger plugin runs a Job at startup. This is useful for administrative tasks, such as
reviewing the file system. It is also concise in its design.

The startup trigger plugin extends hudson.triggers.Trigger inthe /src/main/java/
org/jvnet/hudson/plugins/triggers/startup/HudsonStartupTrigger Java
class, and overrides the method start, which is later called during the startup of Jenkins.

The start method calls the parents start method, and if it is not a new instance, it will call
the project.scheduleBuild method that then starts the build.

@Override

public void start(BuildableItem project, boolean newInstance)

{

super.start (project, newlInstance);

// do not schedule build when trigger was just added to the job
if (!newInstance)

{

project.scheduleBuild(new HudsonStartupCause());

Chapter 7

The cause of the startup is defined in HudsonStartupCause, which itself extends hudson.
model . Cause. The plugin overrides the getShortDescription () method, returning the
string Started due to Hudson startup. The string is outputted to the console as part of
the logging.

@Override

public String getShortDescription()

{

return "Started due to Hudson startup.";

}

» Triggering events when web content changes

Triggering events when web content

changes

In this recipe, the URL trigger plugin will trigger a build if a web page changes its content.

Jenkins is deployed in varied infrastructures. There will be times when standard plugins
cannot be triggered by your system of choice. Web servers are well-understood technologies.
In most situations, the system to which you want to connect to has its own web interface.

If the application does not, then you can still set up a web page, which changes when the
application needs a reaction from Jenkins.

How to do it...

Create a new free-style Job named ch7.plugin.url.

In the Build Triggers section, check the [URLTrigger] - Poll with a URL checkbox.
Click on Add URL to monitor.

For URL, add http://www.google.com.

Check Inspect URL content.

o o s~ wbd e

Select Monitor a change of the content from Add a content nature.

Add a content nature -

Monitor a change of the content

Monitor the contents of a JSON path

— Monitor the contents of a TEXT response
Monitor the contents of an XML response

=

295

Exploring Plugins

7. For the schedule input, add the text *****_ This sets the schedule to once a minute.
8. Click on Save.
9. On the right-hand side, there is a link to URLTrigger Log. Click on this link.

m URLTrigger Log

10. You will now see the log information update once a minute with content similar
to the following:

Polling for the job ch7.plugin.url
Polling on master.

Polling started on Feb 9, 2012 4:55:45 PM
Invoking the url:

http://www.google.com

Inspecting the content
The content of the URL has changed.
Polling complete. Took 0.21 sec.
Changes found. Scheduling a build.

11. Delete the Job, as we don't want to poll Google every minute.

You configured the plugin to visit google.com once a minute, and downloaded and compared
the Google page for changes. A schedule of once a minute is aggressive; consider using
similar time intervals as for your SCM repositories, for example, once every five minutes.

As there are subtle differences in each Google page returned, the trigger is activated. This was
verified by looking in the URLTrigger Log.

The URLTrigger plugin can also be used for JSON and text or XML responses. In the future,
expect more options.

296

Chapter 7

There's more...

Part of the URI schema is for pointing to your local file system (http://en.wikipedia.
org/wiki/File URI_scheme). You get to see examples of this when you load a local file
into your web browser.

€& [file///C/PLUGINS/active-directory/README.TXT v

'?' ~ Google P |

sources are in git https://github.com/jenkinsci/active-directory-plugin

Changes in the local file system cannot be monitored by this plugin. If you reconfigure the Job
to point at the location £ile: ///, you will get the following error message:

java.lang.ClassCastException: sun.net.www.protocol.file.FileURLConnection
cannot be cast to java.net.HttpURLConnection

You will have to use the file system SCM plugin instead.

» Triggering events on startup

Reviewing three ListView plugins

The information radiated out by the front page of Jenkins is important. The initial perception of
the quality of your projects is likely to be judged by this initial encounter.

In this recipe, we will review the Last Success, Last Failure, and Last Duration columns that
you can add to the list view.

All | CLE 27 branches | CLE 2.8 branches | CLE 2x indies | CLE builkds | CLE contrib | OAE | RSF

5 w Name 1 Last Success Last Failure Last Duration
0 3\ announcement trunk 3 days 23 hr (£121) 11 min (#125) 8 min O sec
0 assignment trunk 2 days 22 hr (#243) N/A 9 min 34 sec
0 assignment2 trunk 23 days (#353) N/A 6 min 55 sec
Q basiclti trunk 4 days 1 hr (£333) N/A 15 min

In the next recipe, you will be shown how to write a plugin for your own column in the list view.

297

Exploring Plugins

Getting ready

Install the List View Columns plugin, Last Failure Version Column plugin (https://wiki.
jenkins-ci.org/display/JENKINS/Last+Failure+Version+Column+Plugin),
Last Success Description Column plugin (https://wiki.jenkins-ci.org/display/
JENKINS/Last+Success+Description+Column+Plugin), and the Last Success Version
Column plugin (https://wiki.jenkins-ci.org/display/JENKINS/Last+Success+
Version+Column+Plugin).

How to do it...

1. Install the source code locally in a directory of choice.
git clone https://github.com/jenkinsci/lastfailureversioncolumn-
plugin
git clone https://github.com/jenkinsci/lastsuccessversioncolumn-
plugin
svn export -r 40277

https://svn.jenkins-ci.org/trunk/hudson/plugins/
lastsuccessdescriptioncolumn

2. Check out the correct tag in the git source code:

cd lastfailureversioncolumn-plugin

git checkout lastfailureversioncolumn-1.1
cd ../lastsuccessversioncolumn-plugin

git checkout lastsuccessversioncolumn-1.1

3. InJenkins, create a new free-style Job named ch7.plugin.lastview. No further
configuration is needed.

4. Onthe Main Page, press the + tab next to the All tab.

All | =

s w Name |

5. Create a List View named LAST.

298

Chapter 7

6. Under Job Filters | Jobs, check the ch7.plugin.lastview checkbox.

Job Fllters

Status Filter [All selected jobs

Jobs [} ¢h7.plugin.copydata

ch?.plugin.lastview

B

ch?.plugins.filesystem_scm
ch?.plugins.job_export

ch?.plugins.startup

7. Click on OK. You will be returned to the main page with the LAST list view showing.

All | LAST |
s w Name 1 Last Success Last Fallure Last Duration Last Failure Version Last Success Description Last Success Version
d ch7.plugin. lastview N/A N/A NIA @ N/A N/A N/A

8. Click on the build icon to run the ch7.plugin.lastview Job.

)

9. Refresh your page. The Last Success Version column now has data with a link to the
build's history.

10. In the Last Success Description column, click on the N/A link.

11. On the right-hand side, click on add description.

12. Add the description for the build "This is my great description".
13. Click on Submit.

14. Return to the LAST list view by clicking on LAST in the breadcrumb displayed at the
top of the page.

Jenkins » LAST » ch7.plugin.lastview = #1

299

Exploring Plugins

15. The Last Success Description column is now populated.

Last Success Description

This is my great description

The three plugins perform similar functions; the only difference is a slight variation in the
details of the columns. The details are useful for making quick decision about projects. You
can give the casual viewer an oversight into the last significant action in the project without
them diving down into the source code. When a build succeeds, add a meaningful description
to the build, such as "Updated core libraries to work with modern browsers". This exposure of
information through the correct use of descriptions saves a significant amount of clicking.

Alle | Quick Review | =

w Name Last Success Description |

1\ Basic Executs Cherry picking from Branch X¥Z

Initial Code commit.

ch7.plugin.promote action @ Removed a number of obvious defects
@ Things can only get better

ch7.plugin.simple

There's more...

There is a healthy market of ListView plugins. These include:

» Extra Columns plugin: It adds options for counting the number of successful and
failed builds, a shortcut to the configure page of the project, an enable/disable
project button, and a project description button. Each one of these new columns
allows you to better understand the state of the project or perform actions efficiently.

» Cron Column plugin: It displays the scheduled triggers in the project and shows
whether they are enabled or disabled. This is useful if you want to compare the
system-monitoring information with the melody plugin.

» Emma Coverage plugin: It displays the code coverage results reported by the emma
plugin. This is especially useful if your organization has an in-house style guide where
the code needs to reach a specific level of code coverage.

» Progress Bar plugin: It displays a progress bar for running Jobs. This adds a feeling
of activity to the front page.

300

Chapter 7

See also

» Creating my first ListView plugin
» Efficient use of views, Chapter 4, Communicating Through Jenkins

» Saving screen space with the Dashboard plugin, Chapter 4, Communicating
Through Jenkins

» Monitoring through JavaMelody, Chapter 1, Maintaining Jenkins

Creating my first ListView plugin

In this final recipe, you will create your first custom ListView plugin. This allows you to
add an extra column to the standard list view with a column with comments. The code
for the content of the column is a placeholder, just waiting for you to replace with your
own brilliant experiments.

Getting ready

Create a directory that is ready for the code.

How to do it...

1. Create a top-level pom.xml file with the content of pom.xml from the Creating my
first RootAction plugin recipe. Change the <parent > section from:

<artifactId>Startup</artifactIds>

<version>1.0-SNAPSHOT</versions>

<packaging>hpi</packaging>
<name>Startup</name>

to the content:

<artifactIdscommentscolumn</artifactIds
<version>1.0-SNAPSHOT</version>
<packaging>hpi</packaging>
<name>Jenkins Fake Comments Plugins</names>

2. Createthe src/main/java/jenkins/plugins/comments directories.

301

Exploring Plugins

3. Inthe comments directory, add CommentsColumn. java with the following content:

package jenkins.plugins.comments;

import org.kohsuke.stapler.StaplerRequest;
import hudson.views.ListViewColumn;

import net.sf.json.JSONObject;

import hudson.Extension;

import hudson.model.Descriptor;

import hudson.model.Job;

public class CommentsColumn extends ListViewColumn {
public String getFakeComment (Job job)
return "Comments for "+job.getName ()+""+
"Short URL: "+job.getShortUrl()+"";

@Extension
public static final Descriptor<ListViewColumn> DESCRIPTOR = new
DescriptorImpl () ;

public Descriptor<ListViewColumn> getDescriptor () {
return DESCRIPTOR;

private static class DescriptorImpl extends
Descriptor<ListViewColumns> {

@Override

public ListViewColumn newInstance (StaplerRequest redq,
JSONObject formData) throws FormException {

return new CommentsColumn () ;

@Override
public String getDisplayName () {
return "FakeCommentsColumn";

}

4. Createthe src/main/resources/jenkins/plugins/comments/
CommentsColumn directory.

302

Chapter 7

5. Inthe CommentsColum directory, add column. jelly with the following content:
<j:jelly xmlns:j="jelly:core">
<j:set var="comment" value="${it.getFakeComment (job) }"/>
<td data="${comment }">${comment }</td>

</j:jelly>

6. Inthe CommentsColum directory, add columnHeader.jelly with the
following content:
<j:jelly xmlns:j="jelly:core">
<th>${%Fake Comment}</ths>
</j:jelly>
7. Inthe CommentsColumn directory, add columnHeader.properties with the
following content:
Fake\ Comment=My Fake Column [Default]

8. Inthe CommentsColumn directory, add columnHeader an.properties with the
following content:

Fake\ Comment=My Fake Column [an]

9. Inthe src/main/resources directory, add the plugin description index.jelly
file with the following content:

<div>

This plugin adds a comment to the sections mentioned in list
view.

</div>

10. In the top-level directory, run the following command:

mvn -Dmaven.test.skip=true clean install hpi:run -Djetty.port=8090

11. Visit the Jenkins Job creation page at http://localhost:8090/view/All/
newJob. Create a new free-style Job named ch7.plugin.list.

On the main Jenkins page, http://localhost: 8090, you will now have a view
with the column called My Fake Column [Default]. If you change the preferred
language of your web browser to Aragonese [an], then the column will now be
called My Fake Column [an].

[#add description
All | 4
S w Name | Last Success Last Failure Last Duration My Fake Column [an]
e . Comments for ch7. plugin. list
h7.plugin.list N/A N/A N/A . 3 " -
!J(chrplugnfs Full URL: http:/localhost:8090/ob/ch7. plugin.list/
lcon: SML
- Legend [[JRSSforall [[)RSS forfailures [) RSS for just latest builds

303

Exploring Plugins

In the default Firefox browser for Ubuntu, you can change the

preferred language under the Edit | Preferences | Content tab,
T~ in the section Languages.

Firefox Preferences

W =EN ¥ ® &8 0

General Tabs WMeELI8 Applications Privacy Security Sync Advanced

Fonts & Colors

) Block pop-up windows Exceptions...

& Load images automatically ' Exceptions...
& Enable JavaScript . Advanced...

Default Font: [serif :] Size: [16 :] [gdvanced...]

Languages

. # Colors...
Choose your preferred language for displaying pages

In this recipe, a basic ListView plugin was created with the following structure:

| L— plugins

| L— comments

| L— CommentsColumn.java
L— resources

— index.jelly

L— jenkins

Chapter 7

L— plugins
L— comments
L— CommentsColumn
|— columnHeader_an.properties
— columnHeader.jelly
|— columnHeader.properties
L— column.jelly

The one Java file included in the plugin is CommentsColumn. java under /src/main/
java/Jenkins/plugins/comments. The class extends the ListViewColumn
extension point.

The method get FakeComment expects an input of type Job and returns a String. This method
is used to populate the entries in the column.

The GUI in the ListView is defined under /src/main/resources/packagename/
Classname/. You find the GUI for /src/main/java/ Jenkins/plugins/comments/
CommentsColumn.java mapped to the /src/main/resources/Jenkins/plugins/
comments/CommentsColumn directory. In this directory, there are two Jelly files:
columnHeader.jelly and column.jelly.

As the name suggests, columnHeader . jelly renders the header of the column in the
ListView. Its contents are as follows:

<j:jelly xmlns:j="jelly:core">
<th>${%Fake Comment}</th>
</j:jelly>

FAKE Comment is defined in columnHeader .properties. The % sign tells Jelly to look in
different properties files depending on the value on the Language settings returned by the
web browser. In this recipe, we set the web browser's language value to an, and this translates
to looking for the columnHeader an.properties file first. If the web browser returns a
language that does not have its own properties file, then Jelly defaults to columnHeader.
properties.

columns.jelly has the following content:

<j:jelly xmlns:j="jelly:core">
<j:set var="comment" value="${it.getFakeComment (job) }"/>
<td data="${comment}">${comment}</td>

</j:jelly>

305

Exploring Plugins

it.getFakeComment calls the method getFakeComment on an instance of the
CommentsColumn class. It is the default name for the instance of the object. The type of
object returned is defined by convention by the file structure /src/main/resources/
Jenkins/plugins/comments/CommentsColumn.

The returned string is placed in the variable comment and then displayed inside a <td> tag.

If you are curious about the Jelly tags available in Jenkins, then

review https://wiki.jenkins-ci.org/display/
g JENKINS/Understanding+Jelly+Tags.

There's more...

If you want to participate in the community, then the Governance page is a necessary read
(https://wiki.jenkins-ci.org/display/JENKINS/Governance+Document). On
the subject of licensing, the page states:

The core is entirely in the MIT license, so are the most infrastructure code (that
runs the project itself), and many plugins. We encourage hosted plugins to use the
same MIT license, to simplify the story for users, but plugins are free to choose
their own licenses, so long as it's OSl-approved open-source license.

You can find the list of approved OSI licenses at http://opensource.org/licenses/
alphabetical.

The majority of plugins have a License. txt file in their top-level directory with an MIT
license (http://en.wikipedia.org/wiki/MIT License). For an example, review
https://github.com/jenkinsci/lastfailureversioncolumn-plugin/blob/
master/LICENSE. txt. It has a structure, which is similar to the following:

The MIT License
Copyright (c) 20xx, Name x, Name y..

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

306

Chapter 7

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

See also

» Reviewing three ListView plugins

307

Processes that
Improve Quality

Quality Assurance requires the expert to pay attention to a wide range of details. Rather
than being purely technical, many of these details relate to human behavior. Here are a
few hard-learned observations.

Avoiding group think

It is easy to be perfect on paper, defining the importance of a solid set of JavaDocs and unit
tests. However, the real world on its best days is chaotic. Project momentum, motivated by the
need to deliver, is an elusive force to push back against.

Related to project momentum is the potential of group think (http://en.wikipedia.
org/wiki/Groupthink) by the project team or resource owners. If the team has the wrong
collective attitude, then as a Quality Assurance professional, it is much harder to inject the
hard-learnt realism. Quality Assurance is not only about finding and capturing defects as
early as possible but also about injecting the objective criteria for success or failure into the
different phases of a project's cycle.

Consider adding measurable criteria into the Jenkins build. Obviously, if the code
fails to compile, then the product should not go to acceptance and then production.
Less obviously, are the rules around code coverage of unit tests worth defending in
release-management meetings?

Processes that Improve Quality

Try getting the whole team involved at the start of the project before any coding has taken
place, and agree on the metrics that fail a build. One approach is to compare a small
successful project to a small failed project. If there is a disagreement later, then the debate
is about the processes and numbers rather than personality.

See the Looking for smelly code through Code coverage recipe in Chapter 5, Using Metrics to
Improve Quality.

Considering test automation as a software

project

If you see automated testing as a software project and apply well-known principles, then you
will save on maintenance costs and increase the reliability of tests.

The Don't Repeat Yourself (DRY) principle is a great example. Under time pressure, it is
tempting to cut-and-paste similar tests from one area of the code base to another—DON'T.
Projects evolve bending the shape of the code base, and the tests need to be re-usable
to adapt to that change. Fragile tests push up maintenance costs. One concrete example
discussed briefly in Chapter 6, Testing Remotely is the use of page objects with Selenium
Webdriver. If you separate the code into pages, then when the workflow between pages
changes, most of the testing code remains intact.

See the Activating more PMD rulesets recipe in Chapter 5, Using Metrics to Improve Quality.

The Keep It Simple Stupid (KISS) principle implies keeping every aspect of the project as
simple as possible. For example, it is possible to use real browsers for automated functional
tests or use the HtmlUnit framework to simulate a browser. The second choice avoids the
need to set up an in-memory X server (or VNC - http://en.wikipedia.org/wiki/
Virtual Network Computing)and will also keep a track of browser versioning. These
extra chores decrease the reliability of running a Jenkins Job, but do increase the value of the
tests. Therefore, for small projects, consider starting with HtmlUnit. For larger projects, the
extra effort is worth the cost.

See the Triggering failsafe integration tests with Selenium Webdriver recipe in Chapter 3,
Building Software.

Consider if you need a standalone integration server or if you can get away with using a Jetty
server called during the integration goal in Maven. For an example recipe, see the Configuring
Jetty for integration tests recipe in Chapter 3, Building Software.

Appendix

Offsetting work to Jenkins nodes

Jenkins usage can grow virally in an organization. Testing and JavaDoc generation takes

up a lot of system resources. A master Jenkins is best used to report back quickly on Jobs
distributed across a range of Jenkins nodes. This approach makes it easier to analyze where
the failure lies in the infrastructure.

See the Monitoring through JavaMelody recipe in Chapter 1, Maintaining Jenkins.

See the Running multiple Jenkins nodes recipe in Chapter 6, Testing Remotely.

Learning from history

Teams tend to have their own coding habits. If a project fails because of the quality of the
code, try and work out which code metrics would have stopped the code from reaching
production or which mistakes are seen repeatedly; a few examples include the following:

>

Friday afternoon code failure: We are all human and have secondary agendas. By
the end of the week, a programmer may have their minds focused elsewhere than the
code. A small subset of programmers have their code quality affected, consistently
injecting more defects towards the tail end of their roster. Consider scheduling a
weekly Jenkins Job that has harsher thresholds for quality metrics pushing back near
the time of least attention.

Code churn: A warning for experienced quality assurers is the sudden surge

in code commits just before a product is moved from an acceptance environment
to production. This indicates that there is a last-minute rush. For some teams

with a strong sense of code quality, this is also a sign of extra vigilance. For other
less-disciplined teams, this could be a naive push towards destruction. If a project
fails and QA is overwhelmed due to a surge of code changes, then look at setting
up a warning Jenkins Job based on the commit velocity. If necessary, you can
display your own custom metrics.

See the Plotting alternative code metrics in Jenkins recipe in Chapter 3,
Building Software.

A rogue coder: Not all code bashers create code of the same uniform and high
quality. It is possible that there is consistent underachievement within a project.
Rogue coders are caught by human code review. However, for a secondary defense,
consider setting thresholds on static code review reports from FindBugs and PMD. If
a particular developer is not following the accepted practice, then builds will fail with
great regularity.

See the Finding bugs with Findbugs recipe in Chapter 5, Using Metrics to
Improve Quality.

311

Processes that Improve Quality

» The GUI does not make sense: Isn't it painful when you build a web application only
to be told at the last moment that the GUI does not quite interact in the way the
product owner expected? One solution is to write a mockup in Fitnesse, and surround
it with automatic-functional tests using fixtures. When the GUI diverges from the
planned workflow, Jenkins will start shouting.

See the Activating the Fitnesse HTMLUnit Fixtures recipe in Chapter 6,
Testing Remotely.

» Tracking responsibility: Mistakes are made and lessons need to be learned.
However, if there is no clear chain of documented responsibility, then it is difficult
to pin down who needs the learning opportunity. One approach is to structure the
workflow in Jenkins through a series of connected jobs, and use the promoted builds
plugin to make sure the right group verifies at the right point. This methodology is
also good for reminding the team of the short-term tasks.

See the Testing and then promoting recipe in Chapter 7, Exploring Plugins.

Test frameworks are emerging

In the past few years, there has been a lot of improvement in test automation. Static
code review is being used more thoroughly for security. Sonar is an all-encompassing
reporter of project quality, and new frameworks are emerging to improve on the old.
Here are a few implications:

» Sonar measures project quality: Its community is active. Sonar will evolve faster
than the full range of Jenkins quality metrics plugins. Consider using Jenkins plugins
for early warnings of negative quality changes and Sonar for the in-depth reporting.

See the Integrating Jenkins with SONAR recipe in Chapter 5, Using Metrics to
Improve Quality.

» Static code review tools are improving: FindBugs has moved comment making into
the cloud. More bug pattern detectors are being developed. Static code review tools
are getting better at finding security defects. Expect significantly improved tools over
time, possibly just by updating the version of your current tools.

See the Finding security defects with Findbugs recipe in Chapter 5, Using Metrics to
Improve Quality.

» Code searching: Wouldn't it be great if code search engines, such as koders, ranked
the position in their search results of a particular piece of code, based on the defect
density or coding practice? You could then search a wide range of open source
products for best practices. You could search for defects to remove and then send
patches back to the codes communities.

» The cloud: Cloudbee allows you to create on-demand slave nodes in the cloud. Expect
more kinds of cloud, such as integrations, around Jenkins.

Appendix

Starve QA/ integration servers

A few hundred years ago, coal miners would die because of the build-up of methane in the
mines. To give an early warning of this situation, canary birds were brought into the mines.
Being more sensitive, the birds would faint first, giving the miners enough time to escape.
Consider doing the same for your integration servers; deliberately starve them of resources. If
they fall over, you will have enough time to review before watching the explosion in production.

And there's always more

There are always more points to consider. Here are a few of the cherry-picked ones:

>

Blurring the team boundary: Tools such as Fitnesse and Selenium IDE make it easier
for non-Java programmers to write tests. The easier it is to write tests, the more likely
the tests reflect user behavior. Look for new Jenkins plugins that support tools that
lower the learning curve.

See the Running Selenium IDE tests recipe in Chapter 6, Testing Remotely.

Deliberately adding defects: By rotating through Jenkins builds and then deliberately
adding code that fails, you can test the alertness and response time of the team.

Warning: Before adding defects, make sure that the team has agreed to the process
or you might be getting angry e-mails late in the night.

Increasing code coverage with link crawlers and security scanners: A fuzzer
discovers the inputs of the application it is attacking, and then fires off an
unexpected input. Not only is this good for security testing, but also boundary testing.
If your server returns an unexpected error, then use this to trigger a more thorough
review. Fuzzers and link crawlers are a cheap way to increase the code coverage of
your tests.

See the Finding 500 errors and XSS attacks in Jenkins through Fuzzing recipe in
Chapter 2, Enhancing Security.

You can cover more testing surface if you use a data-driven testing approach. For
example, when writing JMeter test plans, you can use the CSV configuration element
to read in variables from textfiles. This allows JMeter to pull out parameters, such as
hostname and loop, through a series of hostnames. This enables one test plan to
attack many servers.

See the Creating JMeter test plans recipe in Chapter 6, Testing Remotely.

313

Processes that Improve Quality

The combination of Jenkins with aggressive automated testing acts as a solid safety net
around coding projects. The recipes in this book support best practices.

Producing quality requires a great attention to details. Jenkins can pay attention to many of
the details and shout loudly when violations occur.

Each project is different, and there are many ways to structure the workflow. Luckily, with over
400 plugins, Jenkins is flexible enough to adapt to even the most obscure infrastructures.

If you do not have the exact plugin that you want, then it is straightforward for a Java

programmer to adapt or create their own.

Without a thriving open source Jenkins community, none of this would

be possible. Jenkins is yet another positive example of the open source
" mentality working in practice. Well done to you, the Jenkins community.

314

Symbols

@AfterSuite 242
@BeforeSuite 242
<classpath> tag 95
<executions> tag 113
<html> tag 110

*NIX installation package 48
@Override annotation 287
<reporting> tag 97

<source> tag 94

A

Abstractlitem 42
Abstract Syntax Tree (AST)
URL 192
Access Control Lists. (ACLs) 63
ACLs 63
Active Directory 81
adaptive site generation, Jenkins 129-132
adb 168
alternative code metrics
plotting, in Jenkins 88-91
Analysis Collector plugin
about 88
URL 175, 210
Android 1.6
and Hudson apps 168
Android-x86 project
and VirtualBox 168, 169
Ant 85
AntBuilder
about 86
running, through Groovy in Maven 102-106
Ant-contrib library 102
AntiSamy library 70

Index

Ant script 246
Apache Archiva
URL 23
Apache AXIS framework
URL 255
applications retrieve information, from LDAP
anonymously 76
application-specific admin account 76
self-bind 76
archiving, Jenkins
need for 42
Artifactory
URL 23
Audit Logs
missing 60
Audit Trail plugin
about 58
installing 59
URL 59
working with 58, 59
Automatically Keep feature 273
automatic testing, of Jenkins
w3af, used 48, 49
Avatar plugin
installing 145
used, for generating home page 145, 146
working 147

backup, Jenkins
about 14
performing 14, 15
working 16
BadBoy
about 248
URL 248

bad credentials 76
banner
adding, to job description 283, 285
Behavior Driven Development (BDD) 174
Blamer
URL 167
blogging project 214
BlueStacks 169
bugs
finding, FindBugs used 193-195
build descriptions
information, exposing through 121-123

C

CAS 46
Cas1 plugin
about 83
working 84
CAS server. See also Yale CAS
installing 77-80
working 80, 81
CAS SSO server 61
Central Authentication Server. See CAS
cheat sheets 47
Checkstyle
about 175, 207
installing 207
URL 207, 210
checkstyle results
faking 210, 212
claims plugin 269, 270
CloudBees
about 225
URL 225
Cobertura code coverage plugin
about 179
installing 179
URL 179
used, for finding code 179-182
working 182
COCOMO model 178
code
finding, Cobertura code coverage plugin used
179-182
command, Jenkins Ubuntu workspace 143
Command Line Interface (CLI) 18

316

common log patterns

Failure to start up custom integration services

26

MD5 check sums 26
Common Name (CN) 113
community bug reports

adding 9
complementary plugin 60
configuring

Jetty, for integration tests 111-113
consistency breeds reliability 225
Continuous Integration (Cl) servers 9
Cron Column plugin 300
Cross Site Request Forgery

about 56

URL 56
css 144
CSS 3 139
CSS 3 cheat sheet 139
CSv 91
custom data

plotting, plot plugin used 88-91
custom group script

used, for reviewing Project-based Matrix

tactics 67, 68

working 69
custom ListView plugin

creating 301-303

working 304, 305
custom PMD rules

creating 188-192

working 192
custom security flaw 70
custom sounds

sending, HTML5 browsers used 155, 156
Cygpath plugin

about 225

URL 225
Cygwin

URL 224

D

Dashboard view plugin
about 153
installing 154
used, for saving screen space 153, 154

working 155
data
exporting, Job exporter plugin used 291, 292
DBfit
URL 233
Debian OS image 10
Denial Of Service attack 202
deploy plugin
installing 219
used, for deploying war file 219
Description Column plugin
URL 298
Description Setter plugin
about 122
installing 121
Descriptorimpl class 287
designer tool 192
dictionary attacks 58
disc monitoring
strengthening 27
disc usage
reporting 21, 22
disc usage plugin
about 21
installing 21
working 22
disc usage violations
warning, through log parsing 27, 28
Distinguished name (dn) 62, 113
DKMS 13
Don't Repeat Yourself (DRY) principle 187,
188, 310
DropDown toolbar plugin 151
DropDown ViewsTabBar plugin
installing 151
using 151, 152
working 152, 153
Dynamic Kernel Module Support (DKMS) 13

E

Eclipse 110
Eclipse templates
for JSP pages 110
emma 183
Emma Coverage plugin 300

Entitybroker
about 255
URL 255
Envfile plugin 97
Envinject plugin
about 97
environmental variables, manipulating 99-
101
installing 98, 234
URL 234
environmental variables
manipulating 97-101
EPIC Perl 17
EPIC plugin
about 17
URL 17
Escaped Markup plugin
installing 53
URL 53
working 55
ESUP CAS
used, for installing CAS server 82
ESUP consortium 82
ESUP package 82
events
triggering on startup, startup trigger plugin
used 293, 294
triggering when web content changes, URL
trigger plugin used 295
evil URL 51
evolution charts 32
exclude patterns
testing 17
exec module 52
executable 144
Extra Columns plugin 300
extra FindBugs rules
enabling 197, 198
working 199
eXtreme Feedback plugin
about 158
adding 158
installing 158
modifying 159
working 159

31

F

fail method 95
Failsafe integration tests

triggering, Selenium Webdriver used 240-243

working 242, 243
failsafe plugin
about 242
URL 242
using 242
favicon.ico 144
favorites plugin
about 267
installing 267, 268
working 269
file system scm plugin
about 88, 280
installing 280
setting up 88
uploading 281
working 282
FindBugs
about 88, 174
used, for finding bugs 193, 194
used, for finding security defects 199-201
working 196
FindBugs Eclipse Plugin
about 196
installing 196
URL 196
Firefox add-on
used, for pulling Jenkins RSS feeds 30, 31
Fitnesse
about 218, 226
running remotely 226, 227
URL 226
working 229
Fitnesse HtmlUnit fixtures
activating 230, 232
working 232
Fitnesse jar
downloading 227
Fitnesse plugins
downloading 227
fixtures 218, 230
functional testing
Jmeter assertions, using 249-252

318

working 252
fuzzer
about 50
used, for finding server-side errors and XSS
attacks 50, 51
working 52

G

Geb
URL 243
Generally Available (GA) 273
generated data
Postbuild Groovy plugin, used for reacting to
124-126
generate-resources phase 113
generic 81
getDisplayName() method 287
getShortDescription() method 295
gmaven plugin 93
Google Analytics plugin
about 169
installing 170
used, for tracking 170, 171
warning 170
working 171
Google Calendar plugin
about 160
installing 160
working 162, 163
green balls plugin
about 267
installing 267, 268
working 269
Groovy
about 85
AntBuilder, running through 102-106
Groovy plugin 97
Groovy scripts
about 37,56
running, through Maven 93, 94
source, locating 96
tips 95
used, for looking at Jenkin user 56
working 57
group 63
group2.pl 69

group think
avoiding 309

grp_proj_tester 69

grp_username 69

guest additions 13

GUID 255

GUI Samples plugin
about 277
running 277,278
working 278, 279

H

hard-learned observations, quality
improvement
final comments 314
group think, avoiding 309
history, learning from 311
key points 313
offsetting work, to Jenkins nodes 311
QA/ integration servers, starving 313
test automation, as software project 310
test frameworks, emerging 312
hash 74
help 144
history
learning from 311
hits file 91
home page
generating, Avatar plugin used 145-147
Host server 9
HTMLS5 browsers
used, for sending custom sounds 155
HtmlFixture-2.5.1
downloading 230
HTML publisher plugin
installing 148
used, for creating HTML reports 148-150
HTML reports
about 182
creating, with HTML publisher plugin 148-150
HtmlUnit fixture. See Fitnesse HtmlUnit
fixture
HtmlUnit framework 218, 310
HTML validity
verifying 203

Hudson2Go Lite

URL 167
Hudson apps

and Android 1.6 168
Hudson Helper

URL 167
Hudson Mobi

URL 167
HudsonStartupCause 295

images 144
import statement 95
information
exposing, through build descriptions 121-123
information radiators 158, 160
installing
Description Setter plugin 121
Envinject plugin 98
plot plugin 89
integration tests
Jetty, configuring for 111-113

J

JAAS 81
Jasig Wiki 82
JavaDocs 206
JavaMelody
about 32
installing 32
memory, troubleshooting 34
troubleshooting 35
URL 32
used, for monitoring 34
working 34
JavaNCS$S
about 175, 205
reporting 205
URL 205
JavaScript library frameworks 140
Java Server Pages. See JSP pages
JDBC 82
Jdepend
about 207
URL 207

319

Jelly
about 266
URL 46
Jelly framework
URL 19
Jelly tags 276
Jenkins
about 8, 85
adaptive site generation 129-132
alternative code metrics, plotting 88-91
archiving, need for 42-44
backing up 13-15
built-in SSH daemon 225
configuring, for Google Calendar 160, 161
Groovy scripts, running through Maven 93, 94
home page, generating 145, 147
integrating, with Sonar 213
JavaMelody, installing 32
Jetty, configuring for integration tests 111,
113
Job exporter plugin 291
Jobs 8
jobs, global modifications with Groovy 40-42
long-term support release 9
maintaining 8
mobile apps 166
overall disc usage, reporting 21-23
overview 86, 87
personalizing 267, 268
provisioning, WAR overlay used 140, 141
restoring 15
sacrificial instance 9
Scriptler plugin, installing 36
scripts, managing using Scriptler plugin 36,
37
server-side errors and XSS attacks, finding
using fuzzer 50, 51
skinning, Simple Theme plugin used 137
skinning, WAR overlay used 140, 141
SSO, enabling 83
testing remotely 217
tracking, Google Analytics plugin used 170,
171
tweeting 163-165
Jenkins API
jobs, triggering through 126-128

320

Jenkins command line interface
about 37
scripting 37, 39
working 39
Jenkins configuration
JavaDoc, finding for custom plugin extensions
20
modifying, from command line 18, 19
rubbish configuration 20
security, turning off 19
Jenkins FindBugs plugin
installing 193
URL 193
Jenkins JavaNCSS plugin
installing 205
URL 205
Jenkins jobs
anti-patterns 120
failing, based on JSP syntax errors 107, 109
multiple approaches 120
JenkinsMobi
URL 167
JenkinsMobi application 168
Jenkins Mobile Monitor
URL 167
Jenkins Mood widget
URL 167
Jenkins nodes
offsetting work to 311
Jenkins performance plugin
installing 246
Jenkins plugins
about 174
Analysis Collector Plugin 210
Audit Trail plugin 59
Avatar plugin 145
checkstyle 207
Cobertura code coverage 179
custom ListView plugin, creating 301
Dashboard view plugin 154
deploy plugin 219
DropDown ViewsTabBar plugin 151
Escaped Markup plugin 53
eXtreme Feedback plugin 158
favorites plugin 267
file system scm plugin 280

FindBugs 193
Google Analytics plugin 170
Google Calendar plugin 160
green balls plugin 267
GUI Samples plugin 277
HTML publisher plugin 148
JavaNCSS 205
JobConfigHistory plugin 60
JS games plugin 274
LDAP Email plugin 61
ListView plugins, reviewing 297
markup plugin 283
Mask Passwords plugin 53
multi slave config plugin 222
plot plugin 203
PMD plugin 184
promoted builds plugin 270
RootAction plugin 288
sloccount 176
Sonar plugin 213
Sounds plugin 155
startup trigger plugin 293
themes plugin 137
Twitter plugin 164
Unicon Validation plugin 203
URL trigger plugin 295

Jenkins PMD plugin
installing 184
URL 188
working 186

Jenkins RSS feeds

pulling, Firefox add-on used 30, 31

Jenkins server deployment 143
Jenkins-Sonar integration
about 213
results, aggregating 215
Jenkins Sounds plugin
installing 155
working 157
Jenkins Ubuntu workspace
command 143
fingerprints 143
jobs 143
plugins 143
tools 143
updates 143
userContent 144

users 144
Jenkins user
looking, through Groovy scripts 56, 57
Jenkins Violations plugin 215
Jenkins xUnit plugin
installing 259
Jetty
configuring, for integration tests 111-113
JLC 206
Jlint
URL 187
Jmeter
about 88, 218, 244, 252
samplers 244
URL 244
Jmeter assertions
used, for functional testing 249-252
Jmeter performance metrics
reporting 246, 247
working 248
Jmeter test plans
creating 244, 245
working 245, 246
JobConfigHistory plugin
about 60
URL 60
Job exporter plugin
about 291
installing 291
working 293
job.getLastSuccessfulBuild() 44
jobs
generating, remotely 129
running, from within Maven 128
triggering, through Jenkins APl 126-128
jobs, global modifications
Groovy used 40, 41
Jobs Grid portlet 155
Jquery plugin 140
JS games plugin
installing 274, 275
pinning 274
working 276
JSP pages
about 107
Eclipse templates 110

3

JSP syntax errors
Jenkins jobs, failing 107-109
Junit
about 88, 240
URL 240
Junit results schema
URL 213
JXplorer
about 71
URL 71
working 73

K

Keep It Simple Stupid (KISS) principle 87,
310
keytool 78
keytool plugin 113
Koders
about 133
URL 133
Koders.com 179

L

Last Failure Version Column plugin
URL 298
lastsuccessversioncolumn plugin 44
Lava Lamps
URL 160
LDAP 46, 61, 81
LDAP administration
about 70
working 73
LDAP Data Interchange Format. See LDIF
LDAP Email plugin 61
LDAP plugin
configuring 74
working 75
LDAP SSL 82
LDIF 61, 62
Learning Management System (LMS) 119
legacy 82
libnet-ldap-perl package 64
license violations
reviwing, from within Maven 117-119
viewing, with Rats 114-116

322

Lightweight Directory Access Protocol. See
LDAP
List View Columns plugin
URL 298
ListView plugins
Cron Column plugin 300
Emma Coverage plugin 300
Extra Columns plugin 300
Last Failure Version Column plugin 298

Last Success Description Column plugin 298

List View Columns plugin 298
Progress Bar plugin 300
reviewing 297-299
Success Version Column plugin 298
login2.pl 69
log parsing plugin
configuring 24, 25
installing 24
working 26
log_rules directory 24
long-term support release, Jenkins 9

main source code, JS games plugin
src/main/java 276
src/main/resources 276
src/main/webapp 276
src/test 276

maintenance, Jenkins
disks overflowing with artifacts 8
general lack of consistency 8
new plugins causing exceptions 8
resource depletion 8
script spaghetti 8

markup plugin
about 283
installing 283-286
used, for adding banner to job descriptions

283

working 286

Mask Passwords plugin
installing 53
URL 53
working 55

Master instance 32

Maven
about 85
AntBuilder, running through Groovy 102-106
Groovy scripts, running through 93, 94
jobs, running from within 128
license violations, reviewing from within 117-
119
phases 96
URL, for plugin compatibility list 97
URL, for version differences 97
Maven 2
about 133
versus Maven 3 133
Maven 2.2.1 114
Maven 3
about 114, 133
versus Maven 2 133
Maven dashboard
about 197
URL 197
Maven plugin 182
Maven PMD plugin 186
Maven repository 23
maven-soapui plugin
URL 262
Maven WAR plugin 136
META-INF 144
misconfiguration and bad credentials
differences 76
misconfigured DN 76
misses file 91
MIT license 306
MLCLC 206
mobile apps
about 166
Blamer 167
Hudson2Go Lite 167
Hudson Helper 167
Hudson Mobi 167
JenkinsMobi 167
Jenkins Mobile Monitor 167
Jenkins Mood widget 167
working 167
monitoring 34
multiple Jenkins nodes
creating 222-225

Multiple SCM plugin 120
multi slave config plugin
installing 222
working 224
Multi slave config plugin
using 222
MyTest.xhtml 238

NCSS 88, 206
Nexus

URL 23
nginx

about 229

URL 229
nightly build 219
Nikto

about 50

URL 50
nodes 32
nonce feature 56
non-persistent attack 263

0

ObjectClasses 62, 63
Ohloh
about 178
URL 178
oob 165
OpenLDAP
administering 70-72
installing, with test user and group 61-63
Open Web Application Security Project. See
OWASP
OWASP
about 47
URL 47
OWASP Store front 47
OWASP_TOP10 profile 49
OWASP top-ten list of insecurities
A2-Cross Site Scripting (XSS) 47
A6-Security Misconfiguration 47
AT7-Insecure Cryptographic Storage 47
A9-Insufficient Transport Layer Protection 47

323

P

PAM_LDAP
URL 66
Parameterized build 101
penetration tests 48
Perl 91
Perl script
about 29, 91
using 27
permission errors
checking 16
permissions, Project-based Matrix strategy
globally 69
per project 69
Ping service 263
PingTest 255
Piwik
URL 171
platform encoding warning 95
plot plugin
about 88
installing 89, 203
URL 203
used, for plotting custom data 88-91
working 92
Pluggable Authentication Modules (PAM) 66
plugins
about 14
key points 266
PMD 174
PMD rulesets
activating 183-185
basic 183
Don't Repeat Yourself (DRY) principle 187,
188
imports 183
throttling down 187
unusedcoded 183
URL 187
pom.xml 87, 88, 238
port 1023 113
port 8082 113
port 9443 113
Portlets dashboard plugin
URL 175
POSIX account administration 61

324

Post build Groovy Plugin
about 123

used, for reacting to generated data 124-126

post-integration-test phase, Maven 113
pre-integration-test phase, Maven 113
profile2 tool 209
programmer's cafés 214
Progress Bar plugin 300
Project-based Matrix strategy

about 67

permissions 69
Project-based Matrix tactics

reviewing, custom group script used 67-69
project value

estimating, sloccount used 176, 178
promoted builds plugin

installing 270, 271

working 272
promotion plugin

about 270

using 270
Publish Over SSH Plugin 86
Python programming language 51

Q

QA/ integration servers
starving 313

QALab
URL 197

QJPro
URL 187

QualityA 309

RADIUS 81
Rapid Application Development (RAD) 106
Rats

used, for looking at license violations 114-

116

real-time reporting feature 171
regex expressions 121,123
remote testing, through Jenkins 217
replay attacks 56
reporting, with JavaNCSS 205, 206
repository managers

advantages 23

Apache Archiva 23
Artifactory 23
Nexus 23
resources, CAS server
URLs 82
RestFixture
URL 233
restore, Jenkins
performing 15
working 16
robots.txt 144
Roles Validation script 84
RootAction plugin
creating 288, 289
working 290
root admin 69
Roster tool 24
rulesets 183

S

sacrificial instance
about 9
setting up 9
VirtualBox, downloading 10
VirtualBox, installing 10-12
sacrificial Jenkins instance
advantages 9
using 9
Sakai
about 119
URL 26
Sakai CLE 253, 255
Sakai Foundation 119
Sakai Learning Management System 209
Sakai Open Academic Environment (OAE) 256
Sakai package 254
Sakai Web services
enabling 253, 254
working 254
samplers 244
scraping 126
screen space
saving, Dashboard view plugin used 153-155
Scriptler plugin
about 36
installing 36

used, for managing scripts 36
working 37
Script Realm authentication
used, for provisioning 64, 65
Script Realm plugin
about 64
installing 64
URL 64
working 66
scripts 144
search engines and robots.txt 144
security
improving, via small configuration changes
53-55
security defects
finding, FindBugs used 199-201
Selenium 218
Selenium Grid
URL 218,234
Selenium HTML report plugin
installing 234
URL 234
Selenium IDE 234
Selenium IDE tests
running 234-237
working 238
selenium-maven-plugin
URL 238
Selenium Remote Control (RC) 218
Selenium Webdriver
about 218
used, for triggering Failsafe integration tests
240-242
Self binding 66
server-side errors
finding, fuzzer used 51
server types 110
Setenv plugin 97
setter plugin 121
Simple Theme plugin
about 137
used, for skinning Jenkins 137
working 138
Single Sign On (SSO) 46
size_summary method 29
Skipfish
about 50

325

URL 50
slapd 61
SLCLC 206
SlideME
URL 168
sloccount plugin 97
about 176
installing 176
URL 176
used, for estimating project value 176
working 177
snapshots 120
SoapUl
about 218, 256, 259
installing 256
URL 256
used, for writing SoapUl 256, 257
working 258
SoapUl test results
exportwAll 262
JunitReport 262
printReport 262
reporting 259-262
software cost estimation 178
Sonar
about 88, 175, 213
installing 213
Jenkins, integrating with 213
URL 213
Sonar plugins 215
SourceForge 48
URL 197
SPNEGO 82
SSO
enabling, in Jenkins 83
Stapler 153, 266, 276
start method 294
Startup 279
startup trigger plugin
about 293
installing 293
working 294
static code review 70
style
checking, external pom.xml used 207, 208
Success Version Column plugin
URL 298

326

Swatch 60
systemutils class 95

T

tainted 70
task scanner plugin 97
testApp unit test 183
test automation
considering, as software project 310
Test Driven Development (TDD) 174
test frameworks
cloud 312
code searching 312
emerging 312
Sonar measures project quality 312
static code review tools are improving 312
TestNG
about 240
URL 240
TestNG unit tests 218
test phase 105
test plans
writing, SoapUl used 256, 257
TestSuite.xhtml 238
themes plugin
installing 137
used, for modifying Jenkins look 137, 138
thinBackup plugin
about 14
installing 14
URL 14
Token Macro plugin 123
Tomcat 7
installing 78
Traffic lights
URL 160
translate method 287
troubleshooting
JavaMelody 34, 35
trusted 81
Twitter Java framework
URL 165
Twitter OAuth API
URL 165
Twitter plugin
installing 164

working 165

U

UberSocial
URL 166
Ubuntu
about 9, 61
installing 143
Ubuntu virtual image
URL 10
Unicon Validation plugin
installing 203
URL 203
working 204
unified validator 203
unit tests 240
untaint 70
URL trigger plugin
about 295
working 296
USB missile launcher
URL 160
user 63
utility method 123

Vv

verify phase 105
violations plugin
URL 175
VirtualBox
and Android-x86 project 168, 169
downloading 10
installing 10-12
URL 10
working 12
virtual images
sources 13

W

w3af 47
used, for automatic testing of Jenkins 48, 49
warning 48
working 49

w3schools
about 192
URL 192
Wapiti
about 50
URL 50
war file
deploying, from Jenkins to Tomcat 219, 221
warning, w3af 48
WAR overlay
about 140
used, for provisioning Jenkins 140-142
used, for skinning Jenkins 140-142
working 142
web applications deployment, for Integration
tests
approaches 219
webapp tag 114
Webgoat
about 49
URL 49
WEB-INF 144
Web Service Definition Language (WSDL) files
218
Web services. See Sakai Web services
Webtestfixtures
URL 233
wget tool 128
WIKI pages
modifying 9
Windows 7 Android emulator
URL 169
winstone.jar 144
workspace plugin 130
WSDL
URL 259

X

x86 image

installing 168
X.509 Certificates 82
XML 91
XML report 182
xPlanner

URL 230

321

Xradar
URL 197
XSS attacks
about 50
finding, fuzzer used 51
URL 201
X-SSH-Endpoint 225
Xstream
about 266
URL 19, 46
xUnit plugin. See also Jenkins xUnit plugin
URL 259
Xunit plugin
URL 213

328

Xvfb
URL 234

Y

Yale CAS. See also CAS server
about 77
advantages 77
backend authentication 81
downloading 78
installing, ESUP CAS used 82
LDAP SSL 82
resources 82
URL 77

YUI library 140

open source

community experience distilled

PUBLISHING

Thank you for buying
Jenkins Continuous Integration Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home

to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should

be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

NetBeans Platform 6.9
Ny Developer's Guide
\ ISBN: 978-1-84951-176-6 Paperback: 288 pages
"™

Create professional desktop rich-client Swing
applications using the world's only modular Swing
application framework

“e.
"\,‘?

1. Create large, scalable, modular Swing applications
NetBeans Platform 6.9 from scratch
Developer's Guide

2. Master a broad range of topics essential to have
in your desktop application development toolkit,
right from conceptualization to distribution

3. Pursue an easy-to-follow sequential and tutorial
approach that builds to a complete Swing
application

Apache Maven 3 Cookbook
ISBN: 978-1-84951-244-2 Paperback: 224 pages

Over 50 recipes towards optimal Java software
engineering with Maven 3

1. Grasp the fundamentals and extend Apache
Maven 3 to meet your needs

2. Implement engineering practices in your
application development process with Apache
Maven

Apache Maven 3
Cookbook

3. Collaboration techniques for Agile teams with
Apache Maven

4. Use Apache Maven with Java, Enterprise
Frameworks, and various other cutting-edge
technologies

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

NetBeans IDE 7 Cookbook

ISBN: 978-1-84951-250-3 Paperback: 308 pages

Over 70 highly focused practical recipes to maximize
your output with NetBeans

1. Covers the full spectrum of features offered by the
NetBeans IDE

2. Discover ready-to-implement solutions for
NetBeans IDE 7 developing desktop and web applications
Cookbook

3. Learn how to deploy, debug, and test your
software using NetBeans IDE

4. Another title in Packt's Cookbook series giving
clear, real-world solutions to common practical
problems

Java EE 6 Development with
NetBeans 7

ISBN: 978-1-84951-270-1 Paperback: 392 pages

Develop professional enterprise Java EE applications
quickly and easily with this popular IDE

1. Use features of the popular NetBeans IDE to
accelerate development of Java EE applications

Ja_wa EE 6 Development 2. Develop JavaServer Pages (JSPs) to display both
with NetBeans 7 static and dynamic content in a web browser

3. Covers the latest versions of major Java EE APIs
such as JSF 2.0, EJB 3.1, and JPA 2.0, and new
additions to Java EE such as CDI and JAX-RS

4. Learn development with the popular PrimeFaces
JSF 2.0 component library

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Maintaining Jenkins
	Introduction
	Using a sacrificial Jenkins instance
	Backing up and restoring
	Modifying Jenkins configuration from the command line
	Reporting overall disc usage
	Deliberately failing builds through log parsing
	A Job to warn about the disc usage violations through log parsing
	Keeping in contact with Jenkins through Firefox
	Monitoring through JavaMelody
	Keeping a track of the script glue
	Scripting the Jenkins command-line interface
	Global modifications of Jobs with Groovy
	 Signaling the need to archive

	Chapter 2:
Enhancing Security
	Introduction
	Testing for OWASP's top ten security issues
	Finding 500 errors and XSS attacks in Jenkins through fuzzing
	Improving security via small configuration changes
	Looking at the Jenkins user through Groovy
	Working with the Audit Trail plugin
	Installing OpenLDAP with a test user and group
	Using Script Realm authentication for provisioning
	Reviewing Project-based Matrix tactics via a custom group script
	Administering OpenLDAP
	Configuring the LDAP plugin
	Installing a CAS server
	Enabling SSO in Jenkins

	Chapter 3:
Building Software
	Introduction
	Plotting alternative code metrics in Jenkins
	Running Groovy scripts through Maven
	Manipulating environmental variables
	Running AntBuilder through Groovy in Maven
	Failing Jenkins Jobs based on JSP syntax errors
	Configuring Jetty for integration tests
	Looking at license violations with RATs
	Reviewing license violations from within Maven
	Exposing information through build descriptions
	Reacting to the generated data with the Post-build Groovy plugin
	Remotely triggering Jobs through the Jenkins API
	Adaptive site generation

	Chapter 4:
Communicating Through Jenkins
	Introduction
	Skinning Jenkins with the Simple Theme plugin
	Skinning and provisioning Jenkins using a WAR overlay
	Generating a home page
	Creating HTML reports
	Efficient use of views
	Saving screen space with the Dashboard plugin
	Making noise with HTML5 browsers
	An eXtreme view for reception areas
	Mobile presentation using Google Calendar
	Tweeting the world
	Mobile apps for Android and IOS
	Getting to know your audience with Google Analytics

	Chapter 5:
Using Metrics to Improve Quality
	Introduction
	Estimating the value of your project through Sloccount
	Looking for "smelly" code through code coverage
	Activating more PMD rulesets
	Creating custom PMD rules
	Finding bugs with FindBugs
	Enabling extra FindBugs rules
	Finding security defects with FindBugs
	Verifying HTML validity
	Reporting with JavaNCSS
	Checking style using an external pom.xml
	Faking checkstyle results
	Integrating Jenkins with Sonar

	Chapter 6:
Testing Remotely
	Introduction
	Deploying a WAR file from Jenkins to Tomcat
	Creating multiple Jenkins nodes
	Testing with Fitnesse
	Activating Fitnesse HtmlUnit Fixtures
	Running Selenium IDE tests
	Triggering Failsafe integration tests with Selenium Webdriver
	Creating JMeter test plans
	Reporting JMeter performance metrics
	Functional testing using JMeter assertions
	Enabling Sakai web services
	Writing test plans with SoapUI
	Reporting SoapUI test results

	Chapter 7:
Exploring Plugins
	Introduction
	Personalizing Jenkins
	Testing and then promoting
	Fun with pinning JS Games
	Looking at the GUI Samples plugin
	Changing the help of the file system scm plugin
	Adding a banner to Job descriptions
	Creating a RootAction plugin
	Exporting data
	Triggering events on startup
	Triggering events when web content changes
	Reviewing three ListView plugins
	Creating my first ListView plugin

	Appendix:
Processes that Improve Quality
	Avoiding group think
	Considering test automation as a software project
	Offsetting work to Jenkins nodes
	Learning from history
	Test frameworks are emerging
	Starve QA/ integration servers
	And there's always more
	Final comments

	Index

