

Praise for Site Reliability Engineering

 Google’s SREs have done our industry an enormous service by writing up the principles, practices and patterns — architectural and cultural — that enable their teams to combine continuous delivery with world-class reliability at ludicrous scale. You owe it to yourself and your organization to read this book and try out these ideas for yourself.

 Jez Humble, coauthor of Continuous Delivery and Lean Enterprise

 I remember when Google first started speaking at systems administration conferences. It was like hearing a talk at a reptile show by a Gila monster expert. Sure, it was entertaining to hear about a very different world, but in the end the audience would go back to their geckos.

 Now we live in a changed universe where the operational practices of Google are not so removed from those who work on a smaller scale. All of a sudden, the best practices of SRE that have been honed over the years are now of keen interest to the rest of us. For those of us facing challenges around scale, reliability and operations, this book comes none too soon.

 David N. Blank-Edelman, Director, USENIX Board of Directors, and founding co-organizer of SREcon

 I have been waiting for this book ever since I left Google’s
enchanted castle.
It is the gospel I am preaching to my peers at
work.

 Björn Rabenstein, Team Lead of Production Engineering at SoundCloud, Prometheus
developer, and Google SRE until 2013

 A thorough discussion of Site Reliability Engineering from the company that invented the concept. Includes not only the technical details but also the thought process, goals, principles, and lessons learned over time. If you want to learn what SRE really means, start here.

 Russ Allbery, SRE and Security Engineer

 With this book, Google employees have shared the processes they have taken, including the missteps, that have allowed Google services to expand to both massive scale and great reliability. I highly recommend that anyone who wants to create a set of integrated services that they hope will scale to read this book. The book provides an insider’s guide to building maintainable services.

 Rik Farrow, USENIX

 Writing large-scale services like Gmail is hard. Running them with high reliability is even harder, especially when you change them every day. This comprehensive “recipe book” shows how Google does it, and you’ll find it much cheaper to learn from our mistakes than to make them yourself.

 Urs Hölzle, SVP Technical Infrastructure, Google

Site Reliability Engineering

How Google Runs Production Systems

Edited by Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy

Site Reliability Engineering

Edited by Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy

Copyright © 2016 Google, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Editor: Brian Anderson

		Production Editor: Kristen Brown

		Copyeditor: Kim Cofer

		Proofreader: Rachel Monaghan

		Indexer: Judy McConville

		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Rebecca Demarest

		April 2016: First Edition

Revision History for the First Edition

		2016-03-21: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491929124 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Site Reliability Engineering, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-491-92912-4

[LSI]

Foreword

Google’s story is a story of scaling up. It is one of the great success stories of the computing industry, marking a shift towards IT-centric business. Google was one of the first companies to define what business-IT alignment meant in practice, and went on to inform the concept of DevOps for a wider IT community. This book has been written by a broad cross-section of the very people who made that transition a reality.

Google grew at a time when the traditional role of the system administrator was being transformed. It questioned system administration, as if to say: we can’t afford to hold tradition as an authority, we have to think anew, and we don’t have time to wait for everyone else to catch up. In the introduction to Principles of Network and System Administration [Bur99], I claimed that system administration was a form of human-computer engineering. This was strongly rejected by some reviewers, who said “we are not yet at the stage where we can call it engineering.” At the time, I felt that the field had become lost, trapped in its own wizard culture, and could not see a way forward. Then, Google drew a line in the silicon, forcing that fate into being. The revised role was called SRE, or Site Reliability Engineer. Some of my friends were among the first of this new generation of engineer; they formalized it using software and automation. Initially, they were fiercely secretive, and what happened inside and outside of Google was very different: Google’s experience was unique. Over time, information and methods have flowed in both directions. This book shows a willingness to let SRE thinking come out of the shadows.

Here, we see not only how Google built its legendary infrastructure, but also how it studied, learned, and changed its mind about the tools and the technologies along the way. We, too, can face up to daunting challenges with an open spirit. The tribal nature of IT culture often entrenches practitioners in dogmatic positions that hold the industry back. If Google overcame this inertia, so can we.

This book is a collection of essays by one company, with a single common vision. The fact that the contributions are aligned around a single company’s goal is what makes it special. There are common themes, and common characters (software systems) that reappear in several chapters. We see choices from different perspectives, and know that they correlate to resolve competing interests. The articles are not rigorous, academic pieces; they are personal accounts, written with pride, in a variety of personal styles, and from the perspective of individual skill sets. They are written bravely, and with an intellectual honesty that is refreshing and uncommon in industry literature. Some claim “never do this, always do that,” others are more philosophical and tentative, reflecting the variety of personalities within an IT culture, and how that too plays a role in the story. We, in turn, read them with the humility of observers who were not part of the journey, and do not have all the information about the myriad conflicting challenges. Our many questions are the real legacy of the volume: Why didn’t they do X? What if they’d done Y? How will we look back on this in years to come? It is by comparing our own ideas to the reasoning here that we can measure our own thoughts and experiences.

The most impressive thing of all about this book is its very existence. Today, we hear a brazen culture of “just show me the code.” A culture of “ask no questions” has grown up around open source, where community rather than expertise is championed. Google is a company that dared to think about the problems from first principles, and to employ top talent with a high proportion of PhDs. Tools were only components in processes, working alongside chains of software, people, and data. Nothing here tells us how to solve problems universally, but that is the point. Stories like these are far more valuable than the code or designs they resulted in. Implementations are ephemeral, but the documented reasoning is priceless. Rarely do we have access to this kind of insight.

This, then, is the story of how one company did it. The fact that it is many overlapping stories shows us that scaling is far more than just a photographic enlargement of a textbook computer architecture. It is about scaling a business process, rather than just the machinery. This lesson alone is worth its weight in electronic paper.

We do not engage much in self-critical review in the IT world; as such, there is much reinvention and repetition. For many years, there was only the USENIX LISA conference community discussing IT infrastructure, plus a few conferences about operating systems. It is very different today, yet this book still feels like a rare offering: a detailed documentation of Google’s step through a watershed epoch. The tale is not for copying — though perhaps for emulating — but it can inspire the next step for all of us. There is a unique intellectual honesty in these pages, expressing both leadership and humility. These are stories of hopes, fears, successes, and failures. I salute the courage of authors and editors in allowing such candor, so that we, who are not party to the hands-on experiences, can also benefit from the lessons learned inside the cocoon.

Mark Burgess

author of In Search of Certainty

Oslo, March 2016

Preface

Software engineering has this in common with having children: the
labor before the birth is painful and difficult, but the labor
after the birth is where you actually spend most of your effort. Yet
software engineering as a discipline spends much more time talking
about the first period as opposed to the second, despite estimates
that 40–90% of the total costs of a system are incurred after
birth.1 The popular
industry model that conceives of deployed, operational software as
being “stabilized” in production, and therefore needing much less
attention from software engineers, is wrong. Through this lens, then,
we see that if software engineering tends to focus on designing and
building software systems, there must be another discipline that
focuses on the whole lifecycle of software objects, from inception,
through deployment and operation, refinement, and eventual peaceful
decommissioning. This discipline uses — and needs to use — a wide
range of skills, but has separate concerns from other kinds of
engineers. Today, our answer is the discipline Google calls Site
Reliability Engineering.

So what exactly is Site Reliability Engineering (SRE)? We admit that
it’s not a particularly clear name for what we do — pretty much every
site reliability engineer at Google gets asked what exactly that is, and what they actually
do, on a regular basis.

Unpacking the term a little, first and foremost, SREs are
engineers. We apply the principles of computer science and
engineering to the design and development of computing systems:
generally, large distributed ones. Sometimes, our task is writing the
software for those systems alongside our product development
counterparts; sometimes, our task is building all the additional
pieces those systems need, like backups or load balancing, ideally so
they can be reused across systems; and sometimes, our task is figuring
out how to apply existing solutions to new problems.

Next, we focus on system reliability. Ben Treynor Sloss, Google’s VP
for 24/7 Operations, originator of the term SRE, claims that
reliability is the most fundamental feature of any product: a system
isn’t very useful if nobody can use it! Because reliability2 is so
critical, SREs are focused on finding ways to improve the design and
operation of systems to make them more scalable, more reliable, and
more efficient. However, we expend effort in this direction only up to
a point: when systems are “reliable enough,” we instead invest
our efforts in adding features or building new products.3

Finally, SREs are focused on operating services built atop our
distributed computing systems, whether those services are planet-scale
storage, email for hundreds of millions of users, or where Google
began, web search. The “site” in our name originally referred to SRE’s
role in keeping the google.com website running, though we now run
many more services, many of which aren’t themselves websites — from
internal infrastructure such as Bigtable to products for external
developers such as the Google Cloud Platform.

Although we have represented SRE as a broad discipline, it is no
surprise that it arose in the fast-moving world of web services, and
perhaps in origin owes something to the peculiarities of our
infrastructure. It is equally no surprise that of all the
post-deployment characteristics of software that we could choose to
devote special attention to, reliability is the one we regard as
primary.4 The domain of web services,
both because the process of improving and changing server-side
software is comparatively contained, and because managing change
itself is so tightly coupled with failures of all kinds, is a natural
platform from which our approach might emerge.

Despite arising at Google, and in the web community more generally, we
think that this discipline has lessons applicable to other communities
and other organizations. This book is an attempt to explain how we do
things: both so that other organizations might make use of what we’ve
learned, and so that we can better define the role and what the term
means. To that end, we have organized the book so that general
principles and more specific practices are separated where possible,
and where it’s appropriate to discuss a particular topic with
Google-specific information, we trust that the reader will indulge us
in this and will not be afraid to draw useful conclusions about their
own environment.

We have also provided some orienting material — a
description of Google’s production environment and a mapping between
some of our internal software and publicly available software — which
should help to contextualize what we are saying and make it more
directly usable.

Ultimately, of course, more reliability-oriented software and systems
engineering is inherently good. However, we acknowledge that smaller
organizations may be wondering how they can best use the experience
represented here: much like security, the earlier you care about
reliability, the better. This implies that even though a small
organization has many pressing concerns and the software choices you
make may differ from those Google made, it’s still worth putting
lightweight reliability support in place early on, because it’s less
costly to expand a structure later on than it is to introduce one
that is not present. Part IV contains a number of best
practices for training, communication, and meetings that we’ve found
to work well for us, many of which should be immediately usable by
your organization.

But for sizes between a startup and a multinational, there probably
already is someone in your organization who is doing SRE work, without
it necessarily being called that name, or recognized as such. Another
way to get started on the path to improving reliability for your
organization is to formally recognize that work, or to find these
people and foster what they do — reward it. They are people who stand
on the cusp between one way of looking at the world and another one:
like Newton, who is sometimes called not the world’s first physicist,
but the world’s last alchemist.

And taking the historical view, who, then, looking back, might be the
first SRE?

We like to think that Margaret Hamilton, working on the Apollo program
on loan from MIT, had all of the significant traits of the first
SRE.5 In her own words, “part of the culture was to learn from
everyone and everything, including from that which one would least
expect.”

A case in point was when her young daughter Lauren came to work with
her one day, while some of the team were running mission scenarios on
the hybrid simulation computer. As young children do, Lauren went
exploring, and she caused a “mission” to crash by selecting the DSKY
keys in an unexpected way, alerting the team as to what would happen
if the prelaunch program, P01, were inadvertently selected by a real
astronaut during a real mission, during real midcourse. (Launching
P01 inadvertently on a real mission would be a major problem, because
it wipes out navigation data, and the computer was not equipped to
pilot the craft with no navigation data.)

With an SRE’s instincts, Margaret submitted a program change request
to add special error checking code in the on­board flight software in
case an astronaut should, by accident, happen to select P01 during
flight. But this move was considered unnecessary by the “higher-ups”
at NASA: of course, that could never happen! So instead of adding
error checking code, Margaret updated the mission specifications
documentation to say the equivalent of “Do not select P01 during
flight.” (Apparently the update was amusing to many on the project,
who had been told many times that astronauts would not make any
mistakes — after all, they were trained to be perfect.)

Well, Margaret’s suggested safeguard was only considered unnecessary
until the very next mission, on Apollo 8, just days after the
specifications update. During midcourse on the fourth day of flight with
the astronauts Jim Lovell, William Anders, and Frank Borman on board,
Jim Lovell selected P01 by mistake — as it happens, on Christmas
Day — creating much havoc for all involved. This was a critical
problem, because in the absence of a workaround, no navigation data
meant the astronauts were never coming home. Thankfully, the
documentation update had explicitly called this possibility out, and
was invaluable in figuring out how to upload usable data and recover
the mission, with not much time to spare.

As Margaret says, “a thorough understanding of how to operate the
systems was not enough to prevent human errors,” and the change
request to add error detection and recovery software to the prelaunch
program P01 was approved shortly afterwards.

Although the Apollo 8 incident occurred decades ago, there is much in the preceding
paragraphs directly relevant to engineers’ lives today, and much that will
continue to be directly relevant in the future. Accordingly, for the systems
you look after, for the groups you work in, or for the organizations you’re
building, please bear the SRE Way in mind: thoroughness and dedication, belief
in the value of preparation and documentation, and an awareness of what could
go wrong, coupled with a strong desire to prevent it. Welcome to our emerging
profession!

How to Read This Book

This book is a series of essays written by members and alumni of
Google’s Site Reliability Engineering organization. It’s much more
like conference proceedings than it is like a
standard book by an author or a small number of authors. Each chapter
is intended to be read as a part of a coherent whole, but a good deal
can be gained by reading on whatever subject particularly interests
you. (If there are other articles that support or inform the text, we reference them so you can follow up accordingly.)

You don’t need to read in any particular order, though we’d suggest at
least starting with Chapters 2 and 3, which describe Google’s production
environment and outline how SRE approaches risk, respectively. (Risk
is, in many ways, the key quality of our profession.) Reading
cover-to-cover is, of course, also useful and possible; our chapters
are grouped thematically, into Principles (Part II),
Practices (Part III), and Management
(Part IV). Each has a small introduction
that highlights what the individual pieces are about, and references
other articles published by Google SREs, covering specific topics in more detail. Additionally, the companion website
to this book, https://g.co/SREBook, has a number
of helpful resources.

We hope this will be at least as useful and interesting to you as
putting it together was for us.

  —  The Editors

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by context.

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Using Code Examples

Supplemental material is available at https://g.co/SREBook.

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Site Reliability Engineering, edited by Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy (O’Reilly). Copyright 2016 Google, Inc., 978-1-491-92912-4.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Note

Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government, education, and individuals.

Members have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://bit.ly/site-reliability-engineering.

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This book would not have been possible without the tireless efforts of our
authors and technical writers. We’d also like thank the following internal
reviewers for providing especially valuable feedback: Alex Matey, Dermot Duffy, JC van Winkel,
John T. Reese, Michael O’Reilly, Steve Carstensen, and Todd Underwood. Ben Lutch
and Ben Treynor Sloss were this book’s sponsors within Google; their belief in
this project and sharing what we’ve learned about running large-scale services was
essential to making this book happen.

We’d like to send special thanks to Rik Farrow, the editor of ;login:, for
partnering with us on a number of contributions for pre-publication via USENIX.

While the authors are specifically acknowledged in each chapter, we’d like to
take time to recognize those that contributed to each chapter by providing
thoughtful input, discussion, and review.

Chapter 3: Abe Rahey, Ben Treynor Sloss, Brian Stoler, Dave O’Connor, David Besbris, Jill Alvidrez, Mike Curtis, Nancy Chang, Tammy Capistrant, Tom Limoncelli

Chapter 5: Cody Smith, George Sadlier, Laurence Berland, Marc Alvidrez, Patrick Stahlberg, Peter Duff, Pim van Pelt, Ryan Anderson, Sabrina Farmer, Seth Hettich

Chapter 6: Mike Curtis, Jamie Wilkinson, Seth Hettich

Chapter 8: David Schnur, JT Goldstone, Marc Alvidrez, Marcus Lara-Reinhold, Noah Maxwell, Peter Dinges, Sumitran Raghunathan, Yutong Cho

Chapter 9: Ryan Anderson

Chapter 10: Jules Anderson, Max Luebbe, Mikel Mcdaniel, Raul Vera, Seth Hettich

Chapter 11: Andrew Stribblehill, Richard Woodbury

Chapter 12: Charles Stephen Gunn, John Hedditch, Peter Nuttall, Rob Ewaschuk, Sam Greenfield

Chapter 13: Jelena Oertel, Kripa Krishnan, Sergio Salvi, Tim Craig

Chapter 14: Amy Zhou, Carla Geisser, Grainne Sheerin, Hildo Biersma, Jelena Oertel, Perry Lorier, Rune Kristian Viken

Chapter 15: Dan Wu, Heather Sherman, Jared Brick, Mike Louer, Štěpán Davidovič, Tim Craig

Chapter 16: Andrew Stribblehill, Richard Woodbury

Chapter 17: Isaac Clerencia, Marc Alvidrez

Chapter 18: Ulric Longyear

Chapter 19: Debashish Chatterjee, Perry Lorier

Chapters 20 and 21: Adam Fletcher, Christoph Pfisterer, Lukáš Ježek, Manjot Pahwa, Micha Riser, Noah Fiedel, Pavel Herrmann, Paweł Zuzelski, Perry Lorier, Ralf Wildenhues, Tudor-Ioan Salomie, Witold Baryluk

Chapter 22: Mike Curtis, Ryan Anderson

Chapter 23: Ananth Shrinivas, Mike Burrows

Chapter 24: Ben Fried, Derek Jackson, Gabe Krabbe, Laura Nolan, Seth Hettich

Chapter 25: Abdulrahman Salem, Alex Perry, Arnar Mar Hrafnkelsson, Dieter Pearcey, Dylan Curley, Eivind Eklund, Eric Veach, Graham Poulter, Ingvar Mattsson, John Looney, Ken Grant, Michelle Duffy, Mike Hochberg, Will Robinson

Chapter 26: Corey Vickrey, Dan Ardelean, Disney Luangsisongkham, Gordon Prioreschi, Kristina Bennett, Liang Lin, Michael Kelly, Sergey Ivanyuk

Chapter 27: Vivek Rau

Chapter 28: Melissa Binde, Perry Lorier, Preston Yoshioka

Chapter 29: Ben Lutch, Carla Geisser, Dzevad Trumic, John Turek, Matt Brown

Chapter 30: Charles Stephen Gunn, Chris Heiser, Max Luebbe, Sam Greenfield

Chapter 31: Alex Kehlenbeck, Jeromy Carriere, Joel Becker, Sowmya Vijayaraghavan, Trevor Mattson-Hamilton

Chapter 32: Seth Hettich

Chapter 33: Adrian Hilton, Brad Kratochvil, Charles Ballowe, Dan Sheridan, Eddie Kennedy, Erik Gross, Gus Hartmann, Jackson Stone, Jeff Stevenson, John Li, Kevin Greer, Matt Toia, Michael Haynie, Mike Doherty, Peter Dahl, Ron Heiby

We are also grateful to the following contributors, who either provided
significant material, did an excellent job of reviewing, agreed to be
interviewed, supplied significant expertise or resources, or had some
otherwise excellent effect on this work:

Abe Hassan, Adam Rogoyski, Alex Hidalgo, Amaya Booker, Andrew Fikes, Andrew Hurst, Ariel Goh, Ashleigh Rentz,
Ayman Hourieh, Barclay Osborn, Ben Appleton, Ben Love, Ben Winslow, Bernhard Beck, Bill Duane, Bill Patry, Blair Zajac, Bob Gruber, Brian
Gustafson, Bruce Murphy, Buck Clay, Cedric Cellier, Chiho Saito, Chris
Carlon, Christopher Hahn, Chris Kennelly, Chris Taylor, Ciara Kamahele-Sanfratello, Colin Phipps, Colm
Buckley, Craig Paterson, Daniel Eisenbud, Daniel V. Klein, Daniel Spoonhower, Dan Watson, Dave Phillips, David Hixson, Dina Betser, Doron Meyer, Dmitry Fedoruk, Eric Grosse, Eric Schrock, Filip
Zyzniewski, Francis Tang, Gary Arneson, Georgina Wilcox, Gretta Bartels, Gustavo
Franco, Harald Wagener, Healfdene Goguen, Hugo Santos, Hyrum Wright, Ian
Gulliver, Jakub Turski, James Chivers, James O’Kane, James Youngman, Jan
Monsch, Jason Parker-Burlingham, Jason Petsod, Jeffry McNeil, Jeff Dean, Jeff
Peck, Jennifer Mace, Jerry Cen, Jess Frame, John Brady, John Gunderman, John Kochmar, John Tobin,
Jordyn Buchanan, Joseph Bironas, Julio Merino, Julius Plenz, Kate Ward, Kathy Polizzi,
Katrina Sostek, Kenn Hamm, Kirk Russell, Kripa Krishnan, Larry Greenfield, Lea Oliveira, Luca
Cittadini, Lucas Pereira, Magnus Ringman, Mahesh Palekar, Marco Paganini, Mario Bonilla, Mathew Mills, Mathew
Monroe, Matt D. Brown, Matt Proud, Max Saltonstall, Michal Jaszczyk, Mihai Bivol, Misha Brukman, Olivier Oansaldi, Patrick Bernier, Pierre Palatin, Rob Shanley, Robert van Gent, Rory Ward, Rui Zhang-Shen, Salim Virji, Sanjay
Ghemawat, Sarah Coty, Sean Dorward, Sean Quinlan, Sean Sechrest, Shari Trumbo-McHenry, Shawn Morrissey,
Shun-Tak Leung, Stan Jedrus, Stefano Lattarini, Steven
Schirripa, Tanya Reilly, Terry Bolt, Tim Chaplin, Toby Weingartner, Tom Black, Udi Meiri, Victor Terron, Vlad Grama, Wes
Hertlein, and Zoltan Egyed.

We very much appreciate the thoughtful and in-depth feedback that we received from
external reviewers: Andrew Fong, Björn Rabenstein, Charles Border, David Blank-Edelman,
Frossie Economou, James Meickle, Josh Ryder, Mark Burgess, and Russ Allbery.

We would like to extend special thanks to Cian Synnott, original book
team member and co-conspirator, who left Google before this project was completed
but was deeply influential to it, and Margaret Hamilton, who so graciously allowed
us to reference her story in our preface. Additionally, we would like to extend special thanks to Shylaja Nukala, who generously gave of the time of her technical writers and supported their necessary and valued efforts wholeheartedly.

The editors would also like to personally thank the following people:

Betsy Beyer: To Grandmother (my personal hero), for supplying endless amounts of phone pep talks and popcorn, and to Riba, for supplying me with the sweatpants necessary to fuel several late nights. These, of course, in addition to the cast of SRE all-stars who were indeed delightful collaborators.

Chris Jones: To Michelle, for saving me from a life of crime on the high seas and for her uncanny ability to find manzanas in unexpected places, and to those who’ve taught me about engineering over the years.

Jennifer Petoff: To my husband Scott for being incredibly supportive during the two year process of writing this book and for keeping the editors supplied with plenty of sugar on our “Dessert Island.”

Niall Murphy: To Léan, Oisín, and Fiachra, who were considerably more patient than I had any right to expect with a substantially rantier father and husband than usual, for years. To Dermot, for the transfer offer.

1 The very fact that there is such large variance in these estimates tells you something about software engineering as a discipline, but see, e.g., [Gla02] for more details.
2 For our purposes, reliability is “The probability that [a system] will perform a required function without failure under stated conditions for a stated period of time,” following the definition in [Oco12].
3 The software systems we’re concerned with are largely websites and similar services; we do not discuss the reliability concerns that face software intended for nuclear power plants, aircraft, medical equipment, or other safety-critical systems. We do, however, compare our approaches with those used in other industries in Chapter 33.
4 In this, we are distinct from the industry term DevOps, because although we definitely regard infrastructure as code, we have reliability as our main focus. Additionally, we are strongly oriented toward removing the necessity for operations — see Chapter 7 for more details.
5 In addition to this great story, she also has a substantial claim to popularizing the term “software engineering.”

Part I. Introduction

This section provides some high-level guidance on what SRE is and why it is
different from more conventional IT industry practices.

Ben Treynor Sloss, the senior VP overseeing technical operations at Google — and the
originator of the term “Site Reliability Engineering” — provides his view on what SRE means, how it works, and how it
compares to other ways of doing things in the industry, in
Chapter 1.

We provide a guide to the production environment at Google in Chapter 2 as a way to help acquaint you with the
wealth of new terms and systems you are about to meet in the rest of
the book.

Chapter 1. Introduction

Written by Benjamin Treynor Sloss1

Edited by Betsy Beyer

Hope is not a strategy.

Traditional SRE saying

It is a truth universally acknowledged that systems do not run
themselves. How, then, should a system — particularly a complex
computing system that operates at a large scale — be run?

The Sysadmin Approach to Service Management

Historically, companies have employed systems administrators to run
complex computing systems.

This systems administrator, or sysadmin, approach involves assembling
existing software components and deploying them to work together to
produce a service. Sysadmins are then tasked with running the service
and responding to events and updates as they occur. As the system
grows in complexity and traffic volume, generating a corresponding
increase in events and updates, the sysadmin team grows to absorb the
additional work. Because the sysadmin role requires a markedly different
skill set than that required of a product’s developers, developers and
sysadmins are divided into discrete teams: “development” and
“operations” or “ops.”

The sysadmin model of service management has several advantages. For companies deciding how to run and staff a service, this approach is relatively
easy to implement: as a familiar industry paradigm, there are many
examples from which to learn and emulate. A relevant talent pool is
already widely available. An array of existing tools, software
components (off the shelf or otherwise), and integration companies are
available to help run those assembled systems, so a novice sysadmin
team doesn’t have to reinvent the wheel and design a system from
scratch.

The sysadmin approach and the accompanying development/ops split has a
number of disadvantages and pitfalls. These fall broadly into two
categories: direct costs and indirect costs.

Direct costs are neither subtle nor ambiguous. Running a service with
a team that relies on manual intervention for both change management
and event handling becomes expensive as the service and/or traffic to
the service grows, because the size of the team necessarily scales
with the load generated by the system.

The indirect costs of the development/ops split can be subtle, but are
often more expensive to the organization than the direct costs. These
costs arise from the fact that the two teams are quite different in
background, skill set, and incentives. They use different vocabulary
to describe situations; they carry different assumptions about both
risk and possibilities for technical solutions; they have different
assumptions about the target level of product stability. The split
between the groups can easily become one of not just incentives, but
also communication, goals, and eventually, trust and respect. This
outcome is a pathology.

Traditional operations teams and their counterparts in product
development thus often end up in conflict, most visibly over how
quickly software can be released to production. At their core, the
development teams want to launch new features and see them adopted by
users. At their core, the ops teams want to make sure the service
doesn’t break while they are holding the pager. Because most outages
are caused by some kind of change — a new configuration, a new feature
launch, or a new type of user traffic — the two teams’ goals are
fundamentally in tension.

Both groups understand that it is unacceptable to state their
interests in the baldest possible terms (“We want to launch anything,
any time, without hindrance” versus “We won’t want to ever change
anything in the system once it works”). And because their vocabulary
and risk assumptions differ, both groups often resort to a familiar
form of trench warfare to advance their interests. The ops team
attempts to safeguard the running system against the risk of change by
introducing launch and change gates. For example, launch reviews may
contain an explicit check for every problem that has ever caused
an outage in the past — that could be an arbitrarily long list, with not
all elements providing equal value. The dev team quickly learns how to
respond. They have fewer “launches” and more “flag flips,”
“incremental updates,” or “cherrypicks.” They adopt tactics such as
sharding the product so that fewer features are subject to the launch
review.

Google’s Approach to Service Management: Site Reliability Engineering

Conflict isn’t an inevitable part of offering a software
service. Google has chosen to run our systems with a different
approach: our Site Reliability Engineering teams focus on hiring
software engineers to run our products and to create systems to
accomplish the work that would otherwise be performed, often manually,
by sysadmins.

What exactly is Site Reliability Engineering, as it has come to be
defined at Google? My explanation is simple: SRE is what happens when
you ask a software engineer to design an operations team. When I
joined Google in 2003 and was tasked with running a “Production Team”
of seven engineers, my entire life up to that point had been software
engineering. So I designed and managed the group the way I would
want it to work if I worked as an SRE myself. That group has since
matured to become Google’s present-day SRE team, which remains true to
its origins as envisioned by a lifelong software engineer.

A primary building block of Google’s approach to service management is
the composition of each SRE team. As a whole, SRE can be broken down
 two main categories.

50–60% are Google Software Engineers, or more precisely, people who
 have been hired via the standard procedure for Google Software
 Engineers. The other 40–50% are candidates who were very close to the Google Software Engineering qualifications (i.e., 85–99% of the skill set required), and who in addition had a set of technical skills that is
 useful to SRE but is rare for most software engineers. By far, UNIX system internals and networking (Layer 1 to Layer 3)
expertise are the two most common types of alternate technical skills
we seek.

Common to all SREs is the belief in and aptitude for
developing software systems to solve complex problems. Within SRE, we
track the career progress of both groups closely, and have to date found no
practical difference in performance between engineers from the two
tracks. In fact, the somewhat diverse background of the SRE team
frequently results in clever, high-quality systems that are clearly
the product of the synthesis of several skill sets.

The result of our approach to hiring for SRE is that we end up with a
team of people who (a) will quickly become bored by performing tasks
by hand, and (b) have the skill set necessary to write software to
replace their previously manual work, even when the solution is
complicated. SREs also end up sharing academic and
intellectual background with the rest of the development
organization. Therefore, SRE is fundamentally doing work that has
historically been done by an operations team, but using engineers with
software expertise, and banking on the fact that these engineers are
inherently both predisposed to, and have the ability to, design and implement automation with software to replace human labor.

By design, it is crucial that SRE teams are focused on engineering.
Without constant engineering, operations load increases and teams
will need more people just to keep pace with the workload.
Eventually, a traditional ops-focused group scales linearly with
service size: if the products supported by the service succeed, the
operational load will grow with traffic. That means hiring more people
to do the same tasks over and over again.

To avoid this fate, the team tasked with managing a service needs to
code or it will drown. Therefore, Google places a 50% cap on the
aggregate “ops” work for all SREs — tickets, on-call, manual tasks,
etc. This cap ensures that the SRE team has enough time in their
schedule to make the service stable and operable. This cap is an upper
bound; over time, left to their own devices, the SRE team should end
up with very little operational load and almost entirely engage in
development tasks, because the service basically runs and repairs
itself: we want systems that are automatic, not just automated. In
practice, scale and new features keep SREs on their toes.

Google’s rule of thumb is that an SRE team must spend the remaining
50% of its time actually doing development. So how do we enforce that
threshold? In the first place, we have to measure how SRE time is
spent. With that measurement in hand, we ensure that the teams
consistently spending less than 50% of their time on development work
change their practices. Often this means shifting some of the
operations burden back to the development team, or adding staff to the
team without assigning that team additional operational
responsibilities. Consciously maintaining this balance between ops and
development work allows us to ensure that SREs have the bandwidth to
engage in creative, autonomous engineering, while still retaining the
wisdom gleaned from the operations side of running a service.

We’ve found that Google SRE’s approach to running large-scale systems
has many advantages. Because SREs are directly modifying code in their
pursuit of making Google’s systems run themselves, SRE teams are
characterized by both rapid innovation and a large acceptance of
change. Such teams are relatively inexpensive — supporting the same
service with an ops-oriented team would require a significantly larger
number of people. Instead, the number of SREs needed to run, maintain,
and improve a system scales sublinearly with the size of the
system. Finally, not only does SRE circumvent the dysfunctionality of
the dev/ops split, but this structure also improves our product
development teams: easy transfers between product development and SRE
teams cross-train the entire group, and improve skills of developers
who otherwise may have difficulty learning how to build a million-core
distributed system.

Despite these net gains, the SRE model is characterized by its own
distinct set of challenges. One continual challenge Google faces is
hiring SREs: not only does SRE compete for the same candidates as the
product development hiring pipeline, but the fact that we set the
hiring bar so high in terms of both coding and system engineering
skills means that our hiring pool is necessarily small. As our
discipline is relatively new and unique, not much industry information
exists on how to build and manage an SRE team (although hopefully this
book will make strides in that direction!). And once an SRE team is in
place, their potentially unorthodox approaches to service management
require strong management support. For example, the decision to stop
releases for the remainder of the quarter once an error budget is
depleted might not be embraced by a product development team unless
mandated by their management.

DevOps or SRE?

The term “DevOps” emerged in industry in late 2008 and as of this
writing (early 2016) is still in a state of flux. Its core
principles — involvement of the IT function in each phase of a system’s
design and development, heavy reliance on automation versus human effort,
the application of engineering practices and tools to operations
tasks — are consistent with many of SRE’s principles and practices. One
could view DevOps as a generalization of several core SRE principles
to a wider range of organizations, management structures, and
personnel. One could equivalently view SRE as a specific
implementation of DevOps with some idiosyncratic extensions.

Tenets of SRE

While the nuances of workflows, priorities, and day-to-day operations
vary from SRE team to SRE team, all share a set of basic
responsibilities for the service(s) they support, and adhere to the
same core tenets. In general, an SRE team is responsible for the
availability, latency, performance, efficiency, change management,
monitoring, emergency response, and capacity planning of their
service(s). We have codified rules of engagement and
principles for how SRE teams interact with their environment — not only
the production environment, but also the product development teams,
the testing teams, the users, and so on. Those rules and work
practices help us to maintain our focus on engineering work, as
opposed to operations work.

The following section discusses each of the core tenets of Google SRE.

Ensuring a Durable Focus on Engineering

As already discussed, Google caps operational work for SREs at 50% of
their time. Their remaining time should be spent using their coding
skills on project work. In practice, this is accomplished by
monitoring the amount of operational work being done by SREs, and
redirecting excess operational work to the product development teams:
reassigning bugs and tickets to development managers, [re]integrating
developers into on-call pager rotations, and so on. The redirection
ends when the operational load drops back to 50% or lower. This also
provides an effective feedback mechanism, guiding developers to build
systems that don’t need manual intervention. This approach works
well when the entire organization — SRE and development alike — understands why the safety valve mechanism exists, and supports the
goal of having no overflow events because the product doesn’t generate
enough operational load to require it.

When they are focused on operations work, on average, SREs should
receive a maximum of two events per 8–12-hour on-call shift. This target
volume gives the on-call engineer enough time to handle the event
accurately and quickly, clean up and restore normal service, and then
conduct a postmortem. If more than two events occur regularly per
on-call shift, problems can’t be investigated thoroughly and engineers
are sufficiently overwhelmed to prevent them from learning from these
events. A scenario of pager fatigue also won’t improve with scale.
Conversely, if on-call SREs consistently receive fewer than one event
per shift, keeping them on point is a waste of their time.

Postmortems should be written for all significant incidents, regardless of whether or not they paged; postmortems that did not
trigger a page are even more valuable, as they likely point to clear
monitoring gaps. This investigation should establish what happened in
detail, find all root causes of the event, and assign actions to
correct the problem or improve how it is addressed next time. Google
operates under a blame-free postmortem culture, with the goal of
exposing faults and applying engineering to fix these faults, rather
than avoiding or minimizing them.

Pursuing Maximum Change Velocity Without Violating a Service’s SLO

Product development and SRE teams can enjoy a productive working
relationship by eliminating the structural conflict in their
respective goals. The structural conflict is between pace of
innovation and product stability, and as described earlier, this
conflict often is expressed indirectly. In SRE we bring this conflict
to the fore, and then resolve it with the introduction of an
error budget.

The error budget stems from the observation that 100% is the wrong
reliability target for basically everything (pacemakers and anti-lock
brakes being notable exceptions). In general, for any software service
or system, 100% is not the right reliability target because no user
can tell the difference between a system being 100% available and
99.999% available. There are many other systems in the path between
user and service (their laptop, their home WiFi, their ISP, the power
grid…) and those systems collectively are far less than 99.999%
available. Thus, the marginal difference between 99.999% and 100% gets
lost in the noise of other unavailability, and the user receives no
benefit from the enormous effort required to add that last 0.001% of
availability.

If 100% is the wrong reliability target for a system, what, then, is
the right reliability target for the system? This actually isn’t a
technical question at all — it’s a product question, which should take
the following considerations into account:

	
What level of availability will the users be happy with, given how
they use the product?

	
What alternatives are available to users who are dissatisfied with
the product’s availability?

	
What happens to users’ usage of the product at different
availability levels?

The business or the product must establish the system’s availability
target. Once that target is established, the error budget is one minus
the availability target. A service that’s 99.99% available is 0.01%
unavailable. That permitted 0.01% unavailability is the service’s
error budget. We can spend the budget on anything we want, as long
as we don’t overspend it.

So how do we want to spend the error budget? The development team
wants to launch features and attract new users. Ideally, we would
spend all of our error budget taking risks with things we
launch in order to launch them quickly. This basic premise describes
the whole model of error budgets. As soon as SRE activities are
conceptualized in this framework, freeing up the error budget through
tactics such as phased rollouts and 1% experiments can optimize for
quicker launches.

The use of an error budget resolves the structural conflict of
incentives between development and SRE. SRE’s goal is no longer “zero
outages”; rather, SREs and product developers aim to spend the error
budget getting maximum feature velocity. This change makes all the
difference. An outage is no longer a “bad” thing — it is an expected
part of the process of innovation, and an occurrence that both
development and SRE teams manage rather than fear.

Monitoring

Monitoring is one of the primary means by which service owners keep
track of a system’s health and availability. As such, monitoring
strategy should be constructed thoughtfully. A classic and common
approach to monitoring is to watch for a specific value or condition,
and then to trigger an email alert when that value is exceeded or that condition occurs. However, this type of email alerting is not an
effective solution: a system that requires a human to read an email
and decide whether or not some type of action needs to be taken in
response is fundamentally flawed. Monitoring should never require a
human to interpret any part of the alerting domain. Instead, software
should do the interpreting, and humans should be notified only when
they need to take action.

There are three kinds of valid monitoring output:

Alerts

Signify that a human needs to take action immediately in
response to something that is either happening or about to happen,
in order to improve the situation.

Tickets

Signify that a human needs to take action, but not
immediately. The system cannot automatically handle the situation,
but if a human takes action in a few days, no damage will result.

Logging

No one needs to look at this information, but it is
recorded for diagnostic or forensic purposes. The expectation is
that no one reads logs unless something else prompts them to do so.

Emergency Response

Reliability is a function of mean time to failure (MTTF) and mean time
to repair (MTTR) [Sch15]. The most relevant metric in evaluating the effectiveness of
emergency response is how quickly the response team can bring the
system back to health — that is, the MTTR.

Humans add latency. Even if a given system experiences more actual
failures, a system that can avoid emergencies that require human
intervention will have higher availability than a system that requires
hands-on intervention. When humans are necessary, we have found that
thinking through and recording the best practices ahead of time in a
“playbook” produces roughly a 3x improvement in MTTR as compared to
the strategy of “winging it.” The hero jack-of-all-trades on-call
engineer does work, but the practiced on-call engineer armed with a
playbook works much better. While no playbook, no matter how
comprehensive it may be, is a substitute for smart engineers able to
think on the fly, clear and thorough troubleshooting steps and tips
are valuable when responding to a high-stakes or time-sensitive page.
Thus, Google SRE relies on on-call playbooks, in addition to exercises
such as the “Wheel of Misfortune,”2 to prepare engineers to react to on-call events.

Change Management

SRE has found that roughly 70% of outages are due to changes in a live
system. Best practices in this domain use automation to accomplish the
following:

	
Implementing progressive rollouts

	
Quickly and accurately detecting problems

	
Rolling back changes safely when problems arise

This trio of practices effectively minimizes the aggregate number of
users and operations exposed to bad changes. By removing humans from
the loop, these practices avoid the normal problems of fatigue,
familiarity/contempt, and inattention to highly repetitive tasks. As a
result, both release velocity and safety increase.

Demand Forecasting and Capacity Planning

Demand forecasting and capacity planning can be viewed as ensuring
that there is sufficient capacity and redundancy to serve projected
future demand with the required availability. There’s nothing
particularly special about these concepts, except that a surprising
number of services and teams don’t take the steps necessary to ensure
that the required capacity is in place by the time it is
needed. Capacity planning should take both organic growth (which stems
from natural product adoption and usage by customers) and inorganic
growth (which results from events like feature launches, marketing
campaigns, or other business-driven changes) into account.

Several steps are mandatory in capacity planning:

	
An accurate organic demand forecast, which extends beyond the lead
time required for acquiring capacity

	
An accurate incorporation of inorganic demand sources into the demand forecast

	
Regular load testing of the system to correlate raw capacity
(servers, disks, and so on) to service capacity

Because capacity is critical to availability, it naturally follows that
the SRE team must be in charge of capacity planning, which means they
also must be in charge of provisioning.

Provisioning

Provisioning combines both change management and capacity planning. In
our experience, provisioning must be conducted quickly and only when
necessary, as capacity is expensive. This exercise must also be done
correctly or capacity doesn’t work when needed. Adding new
capacity often involves spinning up a new instance or location, making
significant modification to existing systems (configuration files,
load balancers, networking), and validating that the new capacity
performs and delivers correct results. Thus, it is a riskier operation
than load shifting, which is often done multiple times per hour, and must be treated with a corresponding degree of extra caution.

Efficiency and Performance

Efficient use of resources is important any time a service cares about
money. Because SRE ultimately controls provisioning, it must also be
involved in any work on utilization, as utilization is a function of
how a given service works and how it is provisioned. It follows that
paying close attention to the provisioning strategy for a service, and
therefore its utilization, provides a very, very big lever on the
service’s total costs.

Resource use is a function of demand (load), capacity, and software
efficiency. SREs predict demand, provision capacity, and can modify the
software. These three factors are a large part (though not the
entirety) of a service’s efficiency.

Software systems become slower as load is added to them. A slowdown in
a service equates to a loss of capacity. At some point, a slowing
system stops serving, which corresponds to infinite slowness. SREs
provision to meet a capacity target at a specific response speed,
and thus are keenly interested in a service’s performance. SREs and
product developers will (and should) monitor and modify a service to
improve its performance, thus adding capacity and improving
efficiency.3

The End of the Beginning

Site Reliability Engineering represents a significant break from
existing industry best practices for managing large, complicated
services. Motivated originally by familiarity — “as a software engineer,
this is how I would want to invest my time to accomplish a set of
repetitive tasks” — it has become much more: a set of principles, a set
of practices, a set of incentives, and a field of endeavor within the
larger software engineering discipline. The rest of the book explores
the SRE Way in detail.

1 Vice President, Google Engineering, founder of Google SRE
2 See “Disaster Role Playing”.
3 For further discussion of how this collaboration can work in practice, see “Communications: Production Meetings”.

Chapter 2. The Production Environment at Google, from the Viewpoint of an SRE

Written by JC van Winkel

Edited by Betsy Beyer

Google datacenters are very different from most conventional
datacenters and small-scale server farms. These differences present
both extra problems and opportunities. This chapter discusses the
challenges and opportunities that characterize Google datacenters and
introduces terminology that is used throughout the book.

Hardware

Most of Google’s compute resources are in Google-designed datacenters with
proprietary power distribution, cooling, networking, and compute hardware
(see [Bar13]). Unlike
“standard” colocation datacenters, the compute hardware in a Google-designed
datacenter is the same across the board.1 To eliminate the confusion between server hardware and server
software, we use the following terminology throughout the book:

Machine

A piece of hardware (or perhaps a VM)

Server

A piece of software that implements a service

Machines can run any server, so we don’t dedicate specific machines to
specific server programs. There’s no specific machine that runs our
mail server, for example. Instead, resource allocation is handled by
our cluster operating system, Borg.

We realize this use of the word server is unusual. The common use of
the word conflates “binary that accepts network connection” with
machine, but differentiating between the two is important when
talking about computing at Google. Once you get used to our usage of
server, it becomes more apparent why it makes sense to use this
specialized terminology, not just within Google but also in the rest
of this book.

Figure 2-1 illustrates the topology
of a Google datacenter:

	
Tens of machines are placed in a rack.

	
Racks stand in a row.

	
One or more rows form a cluster.

	
Usually a datacenter building houses multiple clusters.

	
Multiple datacenter buildings that are located close together form
a campus.

[image: Example Google datacenter campus topology.]
Figure 2-1. Example Google datacenter campus topology

Machines within a given datacenter need to be able to talk with each
other, so we created a very fast virtual switch with tens of thousands
of ports. We accomplished this by connecting hundreds of Google-built
switches in a Clos network fabric [Clos53] named Jupiter [Sin15].
In its largest configuration, Jupiter supports 1.3 Pbps bisection
bandwidth among servers.

Datacenters are connected to each other with our globe-spanning
backbone network B4 [Jai13]. B4 is a software-defined networking
architecture (and uses the OpenFlow open-standard communications
protocol). It supplies massive bandwidth to a modest number of sites,
and uses elastic bandwidth allocation to maximize average bandwidth
[Kum15].

System Software That “Organizes” the Hardware

Our hardware must be controlled and administered by software that can
handle massive scale. Hardware failures are one notable problem
that we manage with software. Given the large number of hardware
components in a cluster, hardware failures occur quite frequently. In
a single cluster in a typical year, thousands of machines fail and
thousands of hard disks break; when multiplied by the number of
clusters we operate globally, these numbers become somewhat
breathtaking. Therefore, we want to abstract such problems away from
users, and the teams running our services similarly don’t want to be
bothered by hardware failures. Each datacenter campus has teams
dedicated to maintaining the hardware and datacenter infrastructure.

Managing Machines

Borg, illustrated in Figure 2-2, is a distributed cluster operating system [Ver15], similar to
Apache Mesos.2 Borg manages its jobs at the cluster level.

[image: High-level Borg cluster architecture.]
Figure 2-2. High-level Borg cluster architecture

Borg is responsible for running users’ jobs, which can either be
indefinitely running servers or batch processes like a MapReduce
[Dea04]. Jobs can consist of more than one (and sometimes
thousands) of identical tasks, both for reasons of reliability and
because a single process can’t usually handle all cluster
traffic. When Borg starts a job, it finds machines for the tasks and
tells the machines to start the server program. Borg then continually
monitors these tasks. If a task malfunctions, it is killed and
restarted, possibly on a different machine.

Because tasks are fluidly allocated over machines, we can’t simply rely on IP addresses and port numbers to refer to the tasks. We solve this problem with an extra level of indirection:
when starting a job, Borg allocates a name and index number to each
task using the Borg Naming Service (BNS). Rather than
using the IP address and port number, other processes connect to Borg
tasks via the BNS name, which is translated to an IP address and
port number by BNS. For example, the BNS path might be a string such as
/bns/<cluster>/<user>/<job name>/<task number>, which would resolve
to <IP address>:<port>.

Borg is also responsible for the allocation of resources to
jobs. Every job needs to specify its required resources (e.g., 3 CPU
cores, 2 GiB of RAM). Using the list of requirements for all jobs, Borg
can binpack the tasks over the machines in an optimal way that also
accounts for failure domains (for example: Borg won’t run all of a
job’s tasks on the same rack, as doing so means that the top of rack
switch is a single point of failure for that job).

If a task tries to
use more resources than it requested, Borg kills the task and
restarts it (as a slowly crashlooping task is usually preferable to a
task that hasn’t been restarted at all).

Storage

Tasks can use the local disk on machines as a scratch pad, but we have
several cluster storage options for permanent storage (and even
scratch space will eventually move to the cluster storage model). These are
comparable to Lustre and the Hadoop Distributed File System (HDFS),
which are both open source cluster filesystems.

The storage layer is responsible for offering users easy and reliable
access to the storage available for a cluster. As shown in
Figure 2-3, storage has many layers:

	
The lowest layer is called D (for disk, although D uses both
spinning disks and flash storage). D is a fileserver running on
almost all machines in a cluster. However, users who want to access
their data don’t want to have to remember which machine is storing
their data, which is where the next layer comes into play.

	
A layer on top of D called Colossus creates a cluster-wide
filesystem that offers usual filesystem semantics, as well as
replication and encryption. Colossus is the successor to GFS, the Google File System [Ghe03].

	
There are several database-like services built on top of Colossus:

	
Bigtable [Cha06] is a NoSQL database system that can handle
databases that are petabytes in size. A Bigtable is a sparse,
distributed, persistent multidimensional sorted map that is indexed
by row key, column key, and timestamp; each value in the map is
an uninterpreted array of bytes. Bigtable supports
eventually consistent, cross-datacenter replication.

	
Spanner [Cor12] offers an SQL-like interface for users that
require real consistency across the world.

	
Several other database systems, such as Blobstore, are
available. Each of these options comes with its own set of trade-offs
(see Chapter 26).

[image: Portions of the Google storage stack.]
Figure 2-3. Portions of the Google storage stack

Networking

Google’s network hardware is controlled in several ways. As discussed
earlier, we use an OpenFlow-based software-defined network. Instead of
using “smart” routing hardware, we rely on less expensive
“dumb” switching components in combination with a central (duplicated)
controller that precomputes best paths across the network. Therefore,
we’re able to move compute-expensive routing decisions away from the
routers and use simple switching hardware.

Network bandwidth needs to be allocated wisely. Just as Borg limits
the compute resources that a task can use, the Bandwidth Enforcer (BwE)
manages the available bandwidth to maximize the average available bandwidth. Optimizing bandwidth isn’t just about cost:
centralized traffic engineering has been shown to solve a number of
problems that are traditionally extremely difficult to solve through a
combination of distributed routing and traffic engineering [Kum15].

Some services have jobs running in multiple clusters, which are
distributed across the world. In order to minimize latency for
globally distributed services, we want to direct users to the closest
datacenter with available capacity. Our Global Software Load Balancer
(GSLB) performs load balancing on three levels:

	
Geographic load balancing for DNS requests (for example, to
www.google.com), described in Chapter 19

	
Load balancing at a user service level (for example, YouTube or
Google Maps)

	
Load balancing at the Remote Procedure Call (RPC) level, described in Chapter 20

Service owners specify a symbolic name for a service, a list of BNS
addresses of servers, and the capacity available at each of the locations (typically measured
in queries per second). GSLB then directs
traffic to the BNS addresses.

Other System Software

Several other components in a datacenter are also important.

Lock Service

The Chubby [Bur06] lock service provides a filesystem-like API
for maintaining locks. Chubby handles these locks across
datacenter locations. It uses the Paxos protocol for asynchronous
Consensus (see Chapter 23).

Chubby also plays an important role in master election. When a service
has five replicas of a job running for reliability purposes but only
one replica may perform actual work, Chubby is used to select which
replica may proceed.

Data that must be consistent is well suited to storage in Chubby. For
this reason, BNS uses Chubby to store mapping between BNS paths and
IP address:port pairs.

Monitoring and Alerting

We want to make sure that all services are running as
required. Therefore, we run many instances of our Borgmon monitoring
program (see Chapter 10). Borgmon regularly “scrapes” metrics from monitored servers.
These metrics can be used instantaneously for alerting and
also stored for use in historic overviews (e.g., graphs). We can use
monitoring in several ways:

	
Set up alerting for acute problems.

	
Compare behavior: did a software update make the server faster?

	
Examine how resource consumption behavior evolves over time, which
is essential for capacity planning.

Our Software Infrastructure

Our software architecture is designed to make the most efficient use
of our hardware infrastructure. Our code is heavily multithreaded, so
one task can easily use many cores. To facilitate dashboards,
monitoring, and debugging, every server has an HTTP server that
provides diagnostics and statistics for a given task.

All of Google’s services communicate using a Remote Procedure Call
(RPC) infrastructure named Stubby; an open source version, gRPC, is
available.3
Often, an RPC call is made even when a call to a subroutine in the
local program needs to be performed. This makes it easier to refactor
the call into a different server if more modularity is needed, or when
a server’s codebase grows. GSLB can load balance RPCs in the same way
it load balances externally visible services.

A server receives RPC requests from its frontend and sends RPCs to
its backend. In traditional terms, the frontend is called the client
and the backend is called the server.

Data is transferred to and from an RPC using protocol
buffers,4
often abbreviated to “protobufs,” which are similar to Apache’s
Thrift. Protocol buffers have many advantages over XML for serializing
structured data: they are simpler to use, 3 to 10 times smaller, 20 to
100 times faster, and less ambiguous.

Our Development Environment

Development velocity is very important to Google, so we’ve built a
complete development environment to make use of our infrastructure
[Mor12b].

Apart from a few groups that have their own open source repositories
(e.g., Android and Chrome), Google Software Engineers work from a
single shared repository [Pot16]. This has a few important practical
implications for our workflows:

	
If engineers encounter a problem in a component outside of their
project, they can fix the problem, send the proposed changes
(“changelist,” or CL) to the owner for review, and submit the CL
to the mainline.

	
Changes to source code in an engineer’s own project require a
review. All software is reviewed before being submitted.

When software is built, the build request is sent to build servers in
a datacenter. Even large builds are executed quickly, as many build
servers can compile in parallel. This infrastructure is also used for
continuous testing. Each time a CL is submitted, tests run on all
software that may depend on that CL, either directly or indirectly. If
the framework determines that the change likely broke other parts in
the system, it notifies the owner of the submitted change. Some
projects use a push-on-green system, where a new version is
automatically pushed to production after passing tests.

Shakespeare: A Sample Service

To provide a model of how a service would hypothetically be deployed
in the Google production environment, let’s look at an example service
that interacts with multiple Google technologies. Suppose we want to
offer a service that lets you determine where a given word is used
throughout all of Shakespeare’s works.

We can divide this system into two parts:

	
A batch component that reads all of Shakespeare’s texts,
creates an index, and writes the index into a Bigtable. This job
need only run once, or perhaps very infrequently (as you
never know if a new text might be discovered!).

	
An application frontend that handles end-user requests. This job is
always up, as users in all time zones will want to search in
Shakespeare’s books.

The batch component is a MapReduce comprising three phases.

The mapping phase reads Shakespeare’s texts and splits them into
 individual words. This is faster if performed in parallel by
 multiple workers.

The shuffle phase sorts the tuples by word.

In the reduce phase, a tuple of (word, list of locations) is created.

Each tuple is written to a row in a Bigtable, using the word as the key.

Life of a Request

Figure 2-4 shows how a user’s
request is serviced: first, the user points their browser to
shakespeare.google.com. To obtain the corresponding IP address, the
user’s device resolves the address with its DNS server (1). This
request ultimately ends up at Google’s DNS server, which talks to
GSLB. As GSLB keeps track of traffic load among frontend servers
across regions, it picks which server IP address to send to this user.

[image: Life of a request.]
Figure 2-4. The life of a request

The browser connects to the HTTP server on this IP. This server (named
the Google Frontend, or GFE) is a reverse proxy that terminates the
TCP connection (2). The GFE looks up which service is required (web
search, maps, or — in this case — Shakespeare). Again using GSLB, the
server finds an available Shakespeare frontend server, and sends that
server an RPC containing the HTML request (3).

The Shakespeare server analyzes the HTML request and constructs a
protobuf containing the word to look up. The Shakespeare frontend
server now needs to contact the Shakespeare backend server: the
frontend server contacts GSLB to obtain the BNS address of a suitable
and unloaded backend server (4). That Shakespeare backend server now
contacts a Bigtable server to obtain the requested data (5).

The answer is written to the reply protobuf and returned to the
Shakespeare backend server. The backend hands a protobuf containing
the results to the Shakespeare frontend server, which assembles the
HTML and returns the answer to the user.

This entire chain of events is executed in the blink of an eye — just a
few hundred milliseconds! Because many moving parts are involved, there
are many potential points of failure; in particular, a failing GSLB
would wreak havoc. However, Google’s policies of rigorous testing and
careful rollout, in addition to our proactive error recovery methods
such as graceful degradation, allow us to deliver the reliable service
that our users have come to expect. After all, people regularly use
www.google.com to check if their Internet connection is set up
correctly.

Job and Data Organization

Load testing determined that our backend server can handle about 100
queries per second (QPS). Trials performed with a limited set of users
lead us to expect a peak load of about 3,470 QPS, so we need at least
35 tasks. However, the following considerations mean that we need at
least 37 tasks in the job, or [image: upper N plus 2]:

	
During updates, one task at a time will be unavailable, leaving 36
tasks.

	
A machine failure might occur during a task update, leaving only 35
tasks, just enough to serve peak load.5

A closer examination of user traffic shows our peak usage is
distributed globally: 1,430 QPS from North America, 290 from South
America, 1,400 from Europe and Africa, and 350 from Asia and
Australia. Instead of locating all backends at one site, we
distribute them across the USA, South America, Europe, and
Asia. Allowing for [image: upper N plus 2] redundancy per region means that we end up
with 17 tasks in the USA, 16 in Europe, and 6 in Asia. However, we
decide to use 4 tasks (instead of 5) in South America, to lower the
overhead of [image: upper N plus 2] to [image: upper N plus 1]. In this case,
we’re willing to tolerate a small risk of higher latency in exchange
for lower hardware costs: if GSLB redirects traffic from one continent
to another when our South American datacenter is over capacity, we can
save 20% of the resources we’d spend on hardware. In the larger
regions, we’ll spread tasks across two or three clusters for extra
resiliency.

Because the backends need to contact the Bigtable holding the data, we need
to also design this storage element strategically. A backend in Asia
contacting a Bigtable in the USA adds a significant amount of latency,
so we replicate the Bigtable in each region. Bigtable replication
helps us in two ways: it provides resilience should a Bigtable server
fail, and it lowers data-access latency. While Bigtable only offers
eventual consistency, it isn’t a major problem because we don’t need to
update the contents often.

We’ve introduced a lot of terminology here; while you don’t need to
remember it all, it’s useful for framing many of the
other systems we’ll refer to later.

1 Well, roughly the same. Mostly. Except for the stuff that is different. Some datacenters end up with multiple generations of compute hardware, and sometimes we augment datacenters after they are built. But for the most part, our datacenter hardware is homogeneous.
2 Some readers may be more familiar with Borg’s descendant, Kubernetes — an open source Container Cluster orchestration framework started by Google in 2014; see http://kubernetes.io and [Bur16]. For more details on the similarities between Borg and Apache Mesos, see [Ver15].
3 See http://grpc.io.
4 Protocol buffers are a language-neutral, platform-neutral extensible mechanism for serializing structured data. For more details, see https://developers.google.com/protocol-buffers/.
5 We assume the probability of two simultaneous task failures in our environment is low enough to be negligible. Single points of failure, such as top-of-rack switches or power distribution, may make this assumption invalid in other environments.

Part II. Principles

This section examines the principles underlying how SRE teams typically
work — the patterns, behaviors, and areas of concern that influence the general
domain of SRE operations.

The first chapter in this section, and the most important piece to read if you
want to attain the widest-angle picture of what exactly SRE does, and how
we reason about it, is Chapter 3, Embracing Risk.
It looks at SRE through the lens of risk — its assessment,
management, and the use of error budgets to provide usefully neutral
approaches to service management.

Service level objectives are another foundational
conceptual unit for SRE. The industry commonly lumps disparate concepts
under the general banner of service level agreements, a tendency that makes it harder to think about these concepts clearly. Chapter 4, Service Level Objectives, attempts to disentangle indicators from
objectives from agreements, examines how SRE uses each of these terms, and
provides some recommendations on how to find useful metrics for your own
applications.

Eliminating toil is one of SRE’s most
important tasks, and is the subject of Chapter 5, Eliminating Toil. We define toil as mundane, repetitive
operational work providing no enduring value, which scales linearly with
service growth.

Whether it is at Google or elsewhere, monitoring is an
absolutely essential component of doing the right thing in production. If you
can’t monitor a service, you don’t know what’s happening, and if you’re blind
to what’s happening, you can’t be reliable. Read Chapter 6, Monitoring Distributed Systems, for some recommendations
for what and how to monitor, and some implementation-agnostic best practices.

In Chapter 7, The Evolution of Automation at Google, we examine SRE’s approach to automation,
and walk through some case studies of how SRE has implemented automation, both
successfully and unsuccessfully.

Most companies treat release engineering as an
afterthought. However, as you’ll learn in Chapter 8, Release Engineering, release engineering is not just critical to overall
system stability — as most outages result from pushing a change of some kind. It
is also the best way to ensure that releases are consistent.

A key principle of any effective software engineering, not only
reliability-oriented engineering, simplicity is a
quality that, once lost, can be extraordinarily difficult to recapture.
Nevertheless, as the old adage goes, a complex system that works
necessarily evolved from a simple system that works. Chapter 9, Simplicity, goes into this topic in detail.

Further Reading from Google SRE

Increasing product velocity safely is a core principle for any
organization. In “Making Push On Green a Reality” [Kle14], published in October 2014, we show that taking humans out of the
release process can paradoxically reduce SREs’ toil while increasing
system reliability.

Chapter 3. Embracing Risk

Written by Marc Alvidrez

Edited by Kavita Guliani

You might expect Google to try to build 100% reliable services — ones
that never fail. It turns out that past a certain point, however, increasing reliability is worse for a service (and its users) rather than better! Extreme reliability
comes at a cost: maximizing stability limits how fast new features can
be developed and how quickly products can be delivered to users, and
dramatically increases their cost, which in turn reduces the numbers of
features a team can afford to offer. Further, users typically don’t
notice the difference between high reliability and extreme reliability
in a service, because the user experience is dominated by
less reliable components like the cellular network or the device they
are working with. Put simply, a user on a 99% reliable smartphone
cannot tell the difference between 99.99% and 99.999% service
reliability! With this in mind, rather than simply maximizing uptime,
Site Reliability Engineering seeks to balance the risk of
unavailability with the goals of rapid innovation and efficient
service operations, so that users’ overall happiness — with features,
service, and performance — is optimized.

Managing Risk

Unreliable systems can quickly erode users’ confidence, so we want to
reduce the chance of system failure. However, experience shows that
as we build systems, cost does not increase linearly as reliability
increments — an incremental improvement in reliability may cost 100x
more than the previous increment. The costliness has two dimensions:

The cost of redundant machine/compute resources

The cost
associated with redundant equipment that, for example, allows us to
take systems offline for routine or unforeseen maintenance, or
provides space for us to store parity code blocks that provide a
minimum data durability guarantee.

The opportunity cost

The
cost borne by an organization when it allocates engineering resources
to build systems or features that diminish risk instead of features
that are directly visible to or usable by end users. These engineers
no longer work on new features and products for end users.

In SRE, we manage service
reliability largely by managing risk. We conceptualize risk as a
continuum. We give equal importance to figuring out how to engineer
greater reliability into Google systems and identifying the
appropriate level of tolerance for the services we run. Doing so
allows us to perform a cost/benefit analysis to determine, for
example, where on the (nonlinear) risk continuum we should place
Search, Ads, Gmail, or Photos. Our goal is to explicitly align the
risk taken by a given service with the risk the business is willing to
bear. We strive to make a service reliable enough, but no more
reliable than it needs to be. That is, when we set an availability
target of 99.99%,we want to exceed it, but not by much: that would
waste opportunities to add features to the system, clean up technical
debt, or reduce its operational costs. In a sense, we view the availability target as both a minimum and a maximum. The key advantage of this
framing is that it unlocks explicit, thoughtful risktaking.

Measuring Service Risk

As standard practice at Google, we are often best served by
identifying an objective metric to represent the property of a system
we want to optimize. By setting a target, we can assess our current
performance and track improvements or degradations over time. For
service risk, it is not immediately clear how to reduce all of the
potential factors into a single metric. Service failures can have many
potential effects, including user dissatisfaction, harm, or loss of
trust; direct or indirect revenue loss; brand or reputational impact;
and undesirable press coverage. Clearly, some of these factors are
very hard to measure. To make this problem tractable and consistent
across many types of systems we run, we focus on unplanned downtime.

For most services, the most straightforward way of representing
risk tolerance is in terms of the acceptable level of unplanned
downtime. Unplanned downtime is captured by the desired level of
service availability, usually expressed in terms of the number of
“nines” we would like to provide: 99.9%, 99.99%, or
99.999% availability. Each additional nine corresponds to an order of
magnitude improvement toward 100% availability. For serving systems,
this metric is traditionally calculated based on the proportion of
system uptime (see Equation 3-1).

Equation 3-1. Time-based availability

[image: dollar-sign availability equals StartFraction uptime Over left-parenthesis uptime plus downtime right-parenthesis EndFraction dollar-sign]

Using this formula over
the period of a year, we can calculate the acceptable number of
minutes of downtime to reach a given number of nines of availability.
For example, a system with an availability target of 99.99% can be
down for up to 52.56 minutes in a year and stay within its
availability target; see Appendix A for a table.

At Google, however, a time-based metric for availability is usually
not meaningful because we are looking across globally distributed services. Our approach to fault isolation makes it very likely
that we are serving at least a subset of traffic for a given service
somewhere in the world at any given time (i.e., we are at least partially “up” at all times). Therefore, instead of using metrics around
uptime, we define availability in terms of the request success rate.
Equation 3-2 shows how this yield-based metric is calculated over a rolling window (i.e.,
proportion of successful requests over a one-day window).

Equation 3-2. Aggregate availability

[image: dollar-sign availability equals StartFraction successful requests Over total requests EndFraction dollar-sign]

For example, a system that serves 2.5M requests in a day with a daily
availability target of 99.99% can serve up to 250 errors and still hit
its target for that given day.

In a typical application, not all requests are equal: failing
a new user sign-up request is different from failing a request polling for new
email in the background. In many cases, however, availability
calculated as the request success rate over all requests is a
reasonable approximation of unplanned downtime, as viewed from the
end-user perspective.

Quantifying unplanned downtime as a request success rate also makes
this availability metric more amenable for use in systems that do not typically serve end users directly.
Most nonserving systems (e.g., batch, pipeline, storage, and
transactional systems) have a well-defined notion of successful and
unsuccessful units of work. Indeed, while the systems discussed in
this chapter are primarily consumer and infrastructure serving
systems, many of the same principles also apply to nonserving systems
with minimal modification.

For example, a batch process that extracts, transforms, and inserts
the contents of one of our customer databases into a data warehouse to
enable further analysis may be set to run periodically. Using a
request success rate defined in terms of records successfully and
unsuccessfully processed, we can calculate a useful availability
metric despite the fact that the batch system does not run constantly.

Most often, we set
quarterly availability targets for a service and track our performance
against those targets on a weekly, or even daily, basis. This strategy
lets us manage the service to a high-level availability objective by
looking for, tracking down, and fixing meaningful deviations as they
inevitably arise. See Chapter 4 for more details.

Risk Tolerance of Services

What does it mean to identify the risk tolerance of a service? In a
formal environment or in the case of safety-critical systems, the risk
tolerance of services is typically built directly into the basic product or
service definition. At Google, services’ risk tolerance tends to
be less clearly defined.

To identify the risk tolerance of a service, SREs must work with the
product owners to turn a set of business goals into explicit
objectives to which we can engineer. In this case, the business goals
we’re concerned about have a direct impact on the performance and
reliability of the service offered. In practice, this translation is
easier said than done. While consumer services often have clear
product owners, it is unusual for infrastructure services (e.g.,
storage systems or a general-purpose HTTP caching layer) to have a similar structure of
product ownership. We’ll discuss the consumer and infrastructure cases
in turn.

Identifying the Risk Tolerance of Consumer Services

Our consumer services often have a product team that acts as
the business owner for an application. For example, Search, Google
Maps, and Google Docs each have their own product managers. These
product managers are charged with understanding the users and the
business, and for shaping the product for success in the marketplace. When
a product team exists, that team is usually the best resource to
discuss the reliability requirements for a service. In the absence of
a dedicated product team, the engineers building the system often play
this role either knowingly or unknowingly.

There are many factors to consider when assessing the risk tolerance
of services, such as the following:

	
What level of availability is required?

	
Do different types of failures have different effects on the service?

	
How can we use the service cost to help locate a service on the risk continuum?

	
What other service metrics are important to take into account?

Target level of availability

The target level of availability for a given Google service usually
depends on the function it provides and how the service is positioned
in the marketplace. The following list includes issues to
consider:

	
What level of
service will the users expect?

	
Does this service tie directly to revenue (either our revenue, or our customers’ revenue)?

	
Is this a paid service, or is it
free?

	
If there are competitors in the marketplace, what level of
service do those competitors provide?

	
Is this service targeted at
consumers, or at enterprises?

Consider the requirements of Google Apps for Work. The majority of its
users are enterprise users, some large and some small. These
enterprises depend on Google Apps for Work services (e.g., Gmail,
Calendar, Drive, Docs) to provide tools that enable their employees to
perform their daily work. Stated another way, an outage for a Google
Apps for Work service is an outage not only for Google, but also for
all the enterprises that critically depend on us. For a typical Google
Apps for Work service, we might set an external quarterly availability
target of 99.9%, and back this target with a stronger internal
availability target and a contract that stipulates penalties if we
fail to deliver to the external target.

YouTube provides a contrasting set of considerations. When Google
acquired YouTube, we had to decide on the appropriate availability
target for the website. In 2006, YouTube was focused on consumers and
was in a very different phase of its business lifecycle than Google was at the
time. While YouTube already had a great product, it was still changing and
growing rapidly. We set a lower availability target for YouTube than
for our enterprise products because rapid feature development was
correspondingly more important.

Types of failures

The expected shape of failures for a given service is another
important consideration. How resilient is our business to service
downtime? Which is worse for the service: a constant low rate of
failures, or an occasional full-site outage? Both types of failure may
result in the same absolute number of errors, but may have vastly
different impacts on the business.

An illustrative example of the difference between full and partial
outages naturally arises in systems that serve private information.
Consider a contact management application, and the difference between
intermittent failures that cause profile pictures to fail to render,
versus a failure case that results in a user’s private contacts being
shown to another user. The first case is clearly a poor user
experience, and SREs would work to remediate the problem quickly. In
the second case, however, the risk of exposing private data could
easily undermine basic user trust in a significant way. As a result, taking down the service entirely would be appropriate during the
debugging and potential clean-up phase for the second case.

At the other end of services offered by Google, it is sometimes
acceptable to have regular outages during maintenance windows. A number of years ago, the Ads
Frontend used to be one such service. It is used by advertisers and website
publishers to set up, configure, run, and monitor their advertising
campaigns. Because most of this work takes place during normal business
hours, we determined that occasional, regular, scheduled outages in
the form of maintenance windows would be acceptable, and we counted
these scheduled outages as planned downtime, not unplanned downtime.

Cost

Cost is often the key factor in determining the appropriate
availability target for a service. Ads is in a particularly
good position to make this trade-off because request successes and failures can
be directly translated into revenue gained or lost. In determining
the availability target for each service, we ask questions such as:

	
If we were to build and operate these systems at one more nine of
availability, what would our incremental increase in revenue be?

	
Does this additional revenue offset the cost of reaching that level of
reliability?

To make this trade-off equation more concrete, consider the following cost/benefit
for an example service where each request has equal value:

	Proposed improvement in availability target: 99.9% → 99.99%

	Proposed increase in availability: 0.09%

	Service revenue: $1M

	Value of improved availability: $1M * 0.0009 = $900

In this case, if the cost of improving availability by one nine is less than $900,
it is worth the investment. If the cost is greater than $900, the costs will
exceed the projected increase in revenue.

It may be harder to set these targets when we do not have a simple translation
function between reliability and revenue. One useful
strategy may be to consider the background error rate of ISPs on the
Internet. If failures are being measured from the end-user perspective
and it is possible to drive the error rate for the service below the
background error rate, those errors will fall within the noise for a
given user’s Internet connection. While there are significant
differences between ISPs and protocols (e.g., TCP versus UDP, IPv4 versus
IPv6), we’ve measured the typical background error rate for
ISPs as falling between 0.01% and 1%.

Other service metrics

Examining the risk tolerance of services in relation to metrics
besides availability is often fruitful. Understanding which metrics
are important and which metrics aren’t important provides us with
degrees of freedom when attempting to take thoughtful risks.

Service latency for our Ads systems provides an illustrative
example. When Google first launched Web Search, one of the service’s
key distinguishing features was speed. When we introduced AdWords,
which displays advertisements next to search results, a key
requirement of the system was that the ads should not slow down the
search experience. This requirement has driven the engineering goals
in each generation of AdWords systems and is treated as an invariant.

AdSense, Google’s ads system that serves contextual ads in response to
requests from JavaScript code that publishers insert into their
websites, has a very different latency goal. The latency goal for
AdSense is to avoid slowing down the rendering of the third-party page
when inserting contextual ads. The specific latency target, then, is
dependent on the speed at which a given publisher’s page renders. This
means that AdSense ads can generally be served hundreds of
milliseconds slower than AdWords ads.

This looser serving
latency requirement has allowed us to make many smart trade-offs in
provisioning (i.e., determining the quantity and locations of serving
resources we use), which save us substantial cost over naive
provisioning. In other words, given the relative insensitivity of the
AdSense service to moderate changes in latency performance, we are
able to consolidate serving into fewer geographical locations,
reducing our operational overhead.

Identifying the Risk Tolerance of Infrastructure Services

The requirements for building and running infrastructure components
differ from the requirements for consumer products in a number of
ways. A fundamental difference is that, by definition, infrastructure
components have multiple clients, often with varying needs.

Target level of availability

Consider Bigtable [Cha06], a
massive-scale distributed storage system for structured data. Some
consumer services serve data directly from Bigtable in the path of a
user request. Such services need low latency and high reliability.
Other teams use Bigtable as a repository for data that they use to
perform offline analysis (e.g., MapReduce) on a regular basis. These
teams tend to be more concerned about throughput than reliability.
Risk tolerance for these two use cases is quite distinct.

One approach to meeting the needs of both use cases is to engineer all
infrastructure services to be ultra-reliable. Given the fact that
these infrastructure services also tend to aggregate huge amounts of
resources, such an approach is usually far too expensive in practice.
To understand the different needs of the different types of users, you
can look at the desired state of the request queue for each type of
Bigtable user.

Types of failures

The low-latency user wants Bigtable’s request queues to be (almost always) empty
so that the system can process each outstanding request immediately upon
arrival. (Indeed, inefficient queuing is often a cause of high tail
latency.) The user concerned with offline analysis is more interested
in system throughput, so that user wants request queues to never be
empty. To optimize for throughput, the Bigtable system should never
need to idle while waiting for its next request.

As you can see, success and failure are antithetical for these sets of users.
Success for the low-latency user is failure for the user concerned with offline analysis.

Cost

One way to satisfy these competing constraints in a cost-effective
manner is to partition the infrastructure and offer it at multiple
independent levels of service. In the Bigtable example, we can build
two types of clusters: low-latency clusters and throughput clusters. The
low-latency clusters are designed to be operated and used by services that
need low latency and high reliability. To ensure short queue lengths
and satisfy more stringent client isolation requirements, the Bigtable
system can be provisioned with a substantial amount of slack capacity
for reduced contention and increased redundancy. The throughput
clusters, on the other hand, can be provisioned to run very hot and
with less redundancy, optimizing throughput over latency. In practice,
we are able to satisfy these relaxed needs at a much lower cost,
perhaps as little as 10–50% of the cost of a low-latency cluster. Given
Bigtable’s massive scale, this cost savings becomes significant very
quickly.

The key strategy with regards to infrastructure is to deliver services
with explicitly delineated levels of service, thus enabling the
clients to make the right risk and cost trade-offs when building their
systems. With explicitly delineated levels of service, the
infrastructure providers can effectively externalize the difference in
the cost it takes to provide service at a given level to clients. Exposing cost in this way motivates the clients to choose the level of
service with the lowest cost that still meets their needs. For
example, Google+ can decide to put data critical to enforcing user
privacy in a high-availability, globally consistent datastore (e.g., a
globally replicated SQL-like system like Spanner [Cor12]), while putting optional data (data that isn’t critical, but that enhances the user experience) in a cheaper, less reliable, less fresh, and eventually consistent datastore
(e.g., a NoSQL store with best-effort replication like Bigtable).

Note that we can run multiple classes of services using identical
hardware and software. We can provide vastly different service
guarantees by adjusting a variety of service characteristics, such as
the quantities of resources, the degree of redundancy, the
geographical provisioning constraints, and, critically, the
infrastructure software configuration.

Example: Frontend infrastructure

To demonstrate that these risk-tolerance
assessment principles do not just apply to storage infrastructure,
let’s look at another large class of service: Google’s frontend
infrastructure. The frontend infrastructure consists of reverse proxy
and load balancing systems running close to the edge of our network.
These are the systems that, among other things, serve as one endpoint
of the connections from end users (e.g., terminate TCP from the user’s browser). Given their critical role, we
engineer these systems to deliver an extremely high level of
reliability. While consumer services can often limit the visibility of
unreliability in backends, these infrastructure systems are not so
lucky. If a request never makes it to the application service frontend
server, it is lost.

We’ve explored the ways to identify the risk tolerance of both
consumer and infrastructure services. Now, we’ll discuss using that
tolerance level to manage unreliability via error budgets.

Motivation for Error Budgets1

Written by Mark Roth

Edited by Carmela Quinito

Other chapters in this book discuss how tensions can arise between product development
teams and SRE teams, given that they are generally evaluated on different
metrics. Product development performance is largely evaluated on
product velocity, which creates an incentive to push new code as quickly as
possible. Meanwhile, SRE performance is (unsurprisingly) evaluated based upon reliability
of a service, which implies an incentive to push back against a high rate of
change. Information asymmetry between the two teams further amplifies this
inherent tension. The product developers have more visibility into the time
and effort involved in writing and releasing their code, while the SREs have more
visibility into the service’s reliability (and the state of production in
general).

These tensions often reflect themselves in different opinions about the level
of effort that should be put into engineering practices. The following list presents some typical tensions:

Software fault tolerance

How hardened do we make the software to unexpected
events? Too little, and we have a brittle, unusable product. Too much, and we have
a product no one wants to use (but that runs very stably).

Testing

Again, not enough testing and you have embarrassing outages, privacy
data leaks, or a number of other press-worthy events. Too much testing, and you
might lose your market.

Push frequency

Every push is risky. How much should we work on reducing that
risk, versus doing other work?

Canary duration and size

It’s a best practice to test a new release on some
small subset of a typical workload, a practice often called canarying. How
long do we wait, and how big is the canary?

Usually, preexisting teams have worked out some kind of informal balance between
them as to where the risk/effort boundary lies. Unfortunately, one can rarely prove that this balance is optimal, rather than just a function of the negotiating skills of the engineers involved. Nor should such decisions be driven by politics, fear,
or hope. (Indeed, Google SRE’s unofficial motto is “Hope is not a
strategy.”) Instead, our goal is to define an objective metric,
agreed upon by both sides, that can be used to guide the negotiations
in a reproducible way. The more data-based the decision can be, the better.

Forming Your Error Budget

In order to base these decisions on
objective data, the two teams jointly define a quarterly error
budget based on the service’s service level objective, or SLO (see Chapter 4). The error budget
provides a clear, objective metric that determines how unreliable the
service is allowed to be within a single quarter. This metric removes
the politics from negotiations between the SREs and the product
developers when deciding how much risk to allow.

Our practice is then as follows:

	
Product Management defines an SLO, which sets an expectation of how
much uptime the service should have per quarter.

	
The actual uptime
is measured by a neutral third party: our monitoring system.

	
The
difference between these two numbers is the “budget” of how much
“unreliability” is remaining for the quarter.

	
As long as the
uptime measured is above the SLO — in other words, as long as there
is error budget remaining — new releases can be pushed.

For example, imagine that a service’s SLO is
to successfully serve 99.999% of all queries per quarter. This means
that the service’s error budget is a failure rate of 0.001%
for a given quarter. If a problem causes us to fail
0.0002% of the expected queries for the quarter, the problem spends
20% of the service’s quarterly error budget.

Benefits

The main benefit of an error budget is that it
provides a common incentive that allows both product development and
SRE to focus on finding the right balance between innovation and
reliability.

Many products use this control loop to manage release velocity: as
long as the system’s SLOs are met, releases can continue. If SLO violations occur frequently enough to expend the error budget, releases are temporarily halted while additional resources are invested in system testing and development to make the system more resilient, improve its performance, and so on. More subtle and effective approaches are available than this
simple on/off technique:2 for
instance, slowing down releases or rolling them back when the
SLO-violation error budget is close to being used up.

For example, if product development wants to skimp on testing or
increase push velocity and SRE is resistant, the error budget
guides the decision. When the budget is large, the product developers
can take more risks. When the budget is nearly drained, the product
developers themselves will push for more testing or slower push
velocity, as they don’t want to risk using up the budget and stall
their launch. In effect, the product development team becomes
self-policing. They know the budget and can manage their own risk.
(Of course, this outcome relies on an SRE team having the authority to actually
stop launches if the SLO is broken.)

What happens if a network outage or datacenter failure reduces the
measured SLO? Such events also eat into the error budget. As
a result, the number of new pushes may be reduced for the remainder of
the quarter. The entire team supports this reduction because everyone
shares the responsibility for uptime.

The budget also helps to highlight some of the
costs of overly high reliability targets, in terms of both
inflexibility and slow innovation. If the team is having trouble
launching new features, they may elect to loosen the SLO (thus
increasing the error budget) in order to increase innovation.

Key Insights

	
Managing service reliability is largely about managing risk, and
managing risk can be costly.

	
100% is probably never the right reliability target: not only is it
impossible to achieve, it’s typically more reliability than a
service’s users want or notice. Match the profile of the service to
the risk the business is willing to take.

	
An error budget aligns incentives and emphasizes joint ownership between SRE and product development. Error budgets make it easier to decide the rate of releases and to effectively defuse discussions about outages with stakeholders, and allows multiple teams to reach the same conclusion about production risk without rancor.

1 An early version of this section appeared as an article in ;login: (August 2015, vol. 40, no. 4).
2 Known as “bang/bang” control — see https://en.wikipedia.org/wiki/Bang–bang_control.

Chapter 4. Service Level Objectives

Written by Chris Jones, John Wilkes, and Niall Murphy with Cody Smith

Edited by Betsy Beyer

It’s impossible to manage a service correctly, let alone well, without
understanding which behaviors really matter for that service and how
to measure and evaluate those behaviors. To this end, we would like to
define and deliver a given level of service to our users, whether
they use an internal API or a public product.

We use intuition, experience, and an understanding of what users want
to define service level indicators (SLIs), objectives (SLOs), and
agreements (SLAs). These measurements describe basic properties of
metrics that matter, what values we want those metrics to have, and
how we’ll react if we can’t provide the expected service. Ultimately,
choosing appropriate metrics helps to drive the right action if
something goes wrong, and also gives an SRE team confidence that a
service is healthy.

This chapter describes the framework we use to wrestle with the
problems of metric modeling, metric selection, and metric
analysis. Much of this explanation would be quite abstract without an
example, so we’ll use the Shakespeare service outlined in
“Shakespeare: A Sample Service” to illustrate our main
points.

Service Level Terminology

Many readers are likely familiar with the concept of an SLA, but the
terms SLI and SLO are also worth careful definition, because in
common use, the term SLA is overloaded and has taken on a number of
meanings depending on context. We prefer to separate those meanings for clarity.

Indicators

An SLI is a service level indicator — a carefully defined
quantitative measure of some aspect of the level of service that is
provided.

Most services consider request latency — how long it takes to return
a response to a request — as a key SLI. Other common SLIs include the
error rate, often expressed as a fraction of all requests received,
and system throughput, typically measured in requests per second.
The measurements are often aggregated: i.e., raw data is collected
over a measurement window and then turned into a rate, average, or
percentile.

Ideally, the SLI directly measures a service level of interest, but
sometimes only a proxy is available because the desired measure may be
hard to obtain or interpret. For example, client-side latency is often the more user-relevant metric, but it might only be possible
to measure latency at the server.

Another kind of SLI important to SREs is availability, or the
fraction of the time that a service is usable. It is often defined in
terms of the fraction of well-formed requests that succeed, sometimes
called yield. (Durability — the likelihood that data will be
retained over a long period of time — is equally important for data
storage systems.) Although 100% availability is impossible, near-100%
availability is often readily achievable, and the industry commonly
expresses high-availability values in terms of the number of “nines” in
the availability percentage. For example, availabilities of 99% and
99.999% can be referred to as “2 nines” and “5 nines” availability, respectively,
and the current published target for Google Compute Engine
availability is “three and a half nines” — 99.95% availability.

Objectives

An SLO is a service level objective: a target value or range of values for a
service level that is measured by an SLI. A natural structure for
SLOs is thus SLI ≤ target or lower bound ≤ SLI ≤ upper bound. For example, we might decide that we will return Shakespeare
search results “quickly,” adopting an SLO that our average search
request latency should be less than 100 milliseconds.

Choosing an appropriate SLO is complex. To begin with, you don’t
always get to choose its value! For incoming HTTP requests from the
outside world to your service, the queries per second (QPS) metric is
essentially determined by the desires of your users, and you can’t really set an SLO for that.

On the other hand, you can say that you want the average latency per
request to be under 100 milliseconds, and setting such a goal could in
turn motivate you to write your frontend with low-latency behaviors of
various kinds or to buy certain kinds of low-latency equipment. (100
milliseconds is obviously an arbitrary value, but in general lower
latency numbers are good. There are excellent reasons to believe that
fast is better than slow, and that user-experienced latency above
certain values actually drives people away — see “Speed Matters” [Bru09] for more details.)

Again, this is more subtle than it might at first appear, in that
those two SLIs — QPS and latency — might be connected behind the
scenes: higher QPS often leads to larger latencies, and it’s common
for services to have a performance cliff beyond some load threshold.

Choosing and publishing SLOs to users sets expectations about how a
service will perform. This strategy can reduce unfounded complaints to
service owners about, for example, the service being slow. Without an
explicit SLO, users often develop their own beliefs about desired
performance, which may be unrelated to the beliefs held by the people
designing and operating the service. This dynamic can lead to both
over-reliance on the service, when users incorrectly believe that a
service will be more available than it actually is (as happened with
Chubby: see “The Global Chubby Planned Outage”),
and under-reliance, when prospective users believe a system is flakier
and less reliable than it actually is.

The Global Chubby Planned Outage

Written by Marc Alvidrez

Chubby [Bur06] is Google’s lock service for loosely coupled distributed
systems. In the global case, we distribute Chubby instances such that
each replica is in a different geographical region. Over time, we
found that the failures of the global instance of Chubby consistently
generated service outages, many of which were visible to end users. As
it turns out, true global Chubby outages are so infrequent that
service owners began to add dependencies to Chubby assuming that it
would never go down. Its high reliability provided a false
sense of security because the services could not function
appropriately when Chubby was unavailable, however rarely that
occurred.

The solution to this Chubby scenario is interesting: SRE makes sure
that global Chubby meets, but does not significantly exceed, its service level
objective. In any given quarter, if a true failure has not dropped
availability below the target, a controlled outage will be synthesized
by intentionally taking down the system. In this way, we are able to
flush out unreasonable dependencies on Chubby shortly after they are
added. Doing so forces service owners to reckon with the reality of
distributed systems sooner rather than later.

Agreements

Finally, SLAs are service level agreements: an explicit or implicit
contract with your users that includes consequences of meeting (or
missing) the SLOs they contain. The consequences are most easily
recognized when they are financial — a rebate or a penalty — but they
can take other forms. An easy way to tell the difference between an
SLO and an SLA is to ask “what happens if the SLOs aren’t met?”: if
there is no explicit consequence, then you are almost certainly
looking at an SLO.1

SRE doesn’t typically get involved in constructing SLAs, because SLAs
are closely tied to business and product decisions. SRE does, however,
get involved in helping to avoid triggering the consequences of missed
SLOs. They can also help to define the SLIs: there obviously needs to
be an objective way to measure the SLOs in the agreement, or
disagreements will arise.

Google Search is an example of an important service that doesn’t have
an SLA for the public: we want everyone to use Search as fluidly and
efficiently as possible, but we haven’t signed a contract with the
whole world. Even so, there are still consequences if Search isn’t
available — unavailability results in a hit to our reputation, as well
as a drop in advertising revenue. Many other Google services, such as
Google for Work, do have explicit SLAs with their users. Whether or
not a particular service has an SLA, it’s valuable to define SLIs and
SLOs and use them to manage the service.

So much for the theory — now for the experience.

Indicators in Practice

Given that we’ve made the case for why choosing appropriate metrics to measure your service is important, how do you go about identifying what metrics are meaningful to your service or system?

What Do You and Your Users Care About?

You shouldn’t use every metric you can track in your monitoring system
as an SLI; an understanding of what your users want from the system
will inform the judicious selection of a few indicators. Choosing too
many indicators makes it hard to pay the right level of attention to
the indicators that matter, while choosing too few may leave
significant behaviors of your system unexamined. We typically find
that a handful of representative indicators are enough to evaluate and
reason about a system’s health.

Services tend to fall into a few broad categories in terms of the SLIs
they find relevant:

	
User-facing serving systems, such as the Shakespeare search
frontends, generally care about availability, latency, and
throughput. In other words: Could we respond to the request? How
long did it take to respond? How many requests could be handled?

	
Storage systems often emphasize latency, availability, and
durability. In other words: How long does it take to read or
write data? Can we access the data on demand? Is the data still
there when we need it? See Chapter 26 for an
extended discussion of these issues.

	
Big data systems, such as data processing pipelines, tend to care
about throughput and end-to-end latency. In other
words: How much data is being processed? How long does it take the
data to progress from ingestion to completion? (Some pipelines may
also have targets for latency on individual processing stages.)

	
All systems should care about correctness: was the right answer
returned, the right data retrieved, the right analysis done?
Correctness is important to track as an indicator of system health,
even though it’s often a property of the data in the system rather
than the infrastructure per se, and so usually not an SRE
responsibility to meet.

Collecting Indicators

Many indicator metrics are most naturally gathered on the server side,
using a monitoring system such as Borgmon (see Chapter 10) or
Prometheus, or with periodic log analysis — for instance, HTTP 500
responses as a fraction of all requests. However, some systems should
be instrumented with client-side collection, because not measuring
behavior at the client can miss a range of problems that affect users
but don’t affect server-side metrics. For example, concentrating on
the response latency of the Shakespeare search backend might miss poor
user latency due to problems with the page’s JavaScript: in this case,
measuring how long it takes for a page to become usable in the browser
is a better proxy for what the user actually experiences.

Aggregation

For simplicity and usability, we often aggregate raw measurements. This
needs to be done carefully.

Some metrics are seemingly straightforward, like the number of
requests per second served, but even this apparently straightforward
measurement implicitly aggregates data over the measurement window.
Is the measurement obtained once a second, or by averaging requests
over a minute? The latter may hide much higher instantaneous request
rates in bursts that last for only a few seconds. Consider a system
that serves 200 requests/s in even-numbered seconds, and 0 in the
others. It has the same average load as one that serves a constant
100 requests/s, but has an instantaneous load that is twice as large
as the average one. Similarly, averaging request latencies may seem
attractive, but obscures an important detail: it’s entirely possible for
most of the requests to be fast, but for a long tail of requests to
be much, much slower.

Most metrics are better thought of as distributions rather than
averages. For example, for a latency SLI, some requests will be
serviced quickly, while others will invariably take longer — sometimes
much longer. A simple average can obscure these tail latencies, as
well as changes in them. Figure 4-1 provides an example: although a typical request is
served in about 50 ms, 5% of requests are 20 times slower!
Monitoring and alerting based only on the average latency would show
no change in behavior over the course of the day, when there are in
fact significant changes in the tail latency (the topmost line).

[image: 50th, 85th, 95th, and 99th percentile latencies for a system. Note that the Y-axis has a logarithmic scale.]
Figure 4-1. 50th, 85th, 95th, and 99th percentile latencies for a system. Note that the Y-axis has a logarithmic scale.

Using percentiles for indicators allows you to consider the shape of
the distribution and its differing attributes: a high-order
percentile, such as the 99th or 99.9th, shows you a plausible
worst-case value, while using the 50th percentile (also known as the
median) emphasizes the typical case. The higher the variance in
response times, the more the typical user experience is affected by
long-tail behavior, an effect exacerbated at high load by queuing
effects. User studies have shown that people typically prefer a
slightly slower system to one with high variance in response time, so
some SRE teams focus only on high percentile values, on the grounds
that if the 99.9th percentile behavior is good, then the typical experience is
certainly going to be.

A Note on Statistical Fallacies

We generally prefer to work with percentiles rather than the mean
(arithmetic average) of a set of values. Doing so makes it possible
to consider the long tail of data points, which often have
significantly different (and more interesting) characteristics than
the average. Because of the artificial nature of computing systems,
data points are often skewed — for instance, no request can have a
response in less than 0 ms, and a timeout at 1,000 ms means that there
can be no successful responses with values greater than the
timeout. As a result, we cannot assume that the mean and the median
are the same — or even close to each other!

We try not to assume that our data is normally distributed without
verifying it first, in case some standard intuitions and
approximations don’t hold. For example, if the distribution is not
what’s expected, a process that takes action when it sees outliers
(e.g., restarting a server with high request latencies) may do this
too often, or not often enough.

Standardize Indicators

We recommend that you standardize on common definitions for SLIs so that you don’t have to
reason about them from first principles each time. Any feature that
conforms to the standard definition templates can be omitted from the
specification of an individual SLI, e.g.:

	
Aggregation intervals: “Averaged over 1 minute”

	
Aggregation regions: “All the tasks in a cluster”

	
How frequently measurements are made: “Every 10 seconds”

	
Which requests are included: “HTTP GETs from black-box monitoring
jobs”

	
How the data is acquired: “Through our monitoring, measured
at the server”

	
Data-access latency: “Time to last byte”

To save effort, build a set of reusable SLI templates for each common
metric; these also make it simpler for everyone to understand what a
specific SLI means.

Objectives in Practice

Start by thinking about (or finding out!) what your users care about,
not what you can measure. Often, what your users care about is
difficult or impossible to measure, so you’ll end up approximating
users’ needs in some way. However, if you simply start with what’s
easy to measure, you’ll end up with less useful SLOs. As a result,
we’ve sometimes found that working from desired objectives backward
to specific indicators works better than choosing indicators and then
coming up with targets.

Defining Objectives

For maximum clarity, SLOs should specify how they’re measured and the
conditions under which they’re valid. For instance, we might say the
following (the second line is the same as the first, but relies on the
SLI defaults of the previous section to remove redundancy):

	
99% (averaged over 1 minute) of Get RPC calls will complete in less
than 100 ms (measured across all the backend servers).

	
99% of Get RPC calls will complete in less than 100 ms.

If the shape of the performance curves are important, then you can
specify multiple SLO targets:

	
90% of Get RPC calls will complete in less than 1 ms.

	
99% of Get RPC calls will complete in less than 10 ms.

	
99.9% of Get RPC calls will complete in less than 100 ms.

If you have users with heterogeneous workloads such as a bulk
processing pipeline that cares about throughput and an interactive
client that cares about latency, it may be appropriate to define
separate objectives for each class of workload:

	
95% of throughput clients’ Set RPC calls will complete in < 1 s.

	
99% of latency clients’ Set RPC calls with payloads < 1 kB will
complete in < 10 ms.

It’s both unrealistic and undesirable to insist that SLOs will be met
100% of the time: doing so can reduce the rate of innovation and
deployment, require expensive, overly conservative solutions, or
both. Instead, it is better to allow an error budget — a rate at
which the SLOs can be missed — and track that on a daily or weekly
basis. Upper management will probably want a monthly or quarterly
assessment, too. (An error budget is just an SLO for meeting other
SLOs!)

The rate at which SLOs are missed is a useful indicator for the
user-perceived health of the service. It is helpful to track SLOs (and
SLO violations) on a daily or weekly basis to see trends and get
early warning of potential problems before they happen. Upper
management will probably want a monthly or quarterly assessment, too.

The SLO violation rate can be compared against the error
budget (see “Motivation for Error Budgets”), with the
gap used as an input to the process that decides when to roll out new
releases.

Choosing Targets

Choosing targets (SLOs) is not a purely technical activity because of
the product and business implications, which should be reflected in
both the SLIs and SLOs (and maybe SLAs) that are selected. Similarly,
it may be necessary to trade off certain product attributes against
others within the constraints posed by staffing, time to market,
hardware availability, and funding. While SRE should be part of this
conversation, and advise on the risks and viability of different
options, we’ve learned a few lessons that can help make this a more
productive discussion:

Don’t pick a target based on current performance

While
understanding the merits and limits of a system is essential,
adopting values without reflection may lock you into supporting a
system that requires heroic efforts to meet its targets, and that
cannot be improved without significant redesign.

Keep it simple

Complicated aggregations in SLIs can obscure
changes to system performance, and are also harder to reason
about.

Avoid absolutes

While it’s tempting to ask for a system that
can scale its load “infinitely” without any latency increase and
that is “always” available, this requirement is unrealistic. Even a system
that approaches such ideals will probably take a long time to
design and build, and will be expensive to operate — and probably turn
out to be unnecessarily better than what users would be happy (or
even delighted) to have.

Have as few SLOs as possible

Choose just enough SLOs to provide
good coverage of your system’s attributes. Defend the SLOs you
pick: if you can’t ever win a conversation about priorities by
quoting a particular SLO, it’s probably not worth having that
SLO.2
However, not all product attributes are amenable to SLOs: it’s
hard to specify “user delight” with an SLO.

Perfection can wait

You can always refine SLO definitions and
targets over time as you learn about a system’s behavior. It’s
better to start with a loose target that you tighten than to
choose an overly strict target that has to be relaxed when you
discover it’s unattainable.

SLOs can — and should — be a major driver in prioritizing work for
SREs and product developers, because they reflect what users care
about. A good SLO is a helpful, legitimate forcing function for a
development team. But a poorly thought-out SLO can result in wasted
work if a team uses heroic efforts to meet an overly aggressive SLO,
or a bad product if the SLO is too lax. SLOs are a massive lever: use
them wisely.

Control Measures

SLIs and SLOs are crucial elements in the control loops used to manage
systems:

	
Monitor and measure the system’s SLIs.

	
Compare the SLIs to the SLOs, and decide whether or not action is
needed.

	
If action is needed, figure out what needs to happen in order to
meet the target.

	
Take that action.

For example, if step 2 shows that request latency is increasing, and
will miss the SLO in a few hours unless something is done, step 3
might include testing the hypothesis that the servers are CPU-bound,
and deciding to add more of them to spread the load. Without the SLO,
you wouldn’t know whether (or when) to take action.

SLOs Set Expectations

Publishing SLOs sets expectations for system behavior. Users (and
potential users) often want to know what they can expect from a
service in order to understand whether it’s appropriate for their use
case. For instance, a team wanting to build a photo-sharing website
might want to avoid using a service that promises very strong
durability and low cost in exchange for slightly lower availability,
though the same service might be a perfect fit for an archival records
management system.

In order to set realistic expectations for your users, you might
consider using one or both of the following tactics:

Keep a safety margin

Using a tighter internal SLO than the SLO
advertised to users gives you room to respond to chronic problems
before they become visible externally. An SLO buffer also makes
it possible to accommodate reimplementations that trade
performance for other attributes, such as cost or ease of
maintenance, without having to disappoint users.

Don’t overachieve

Users build on the reality of what you offer,
rather than what you say you’ll supply, particularly for
infrastructure services. If your service’s actual performance is
much better than its stated SLO, users will come to rely on its
current performance. You can avoid over-dependence by
deliberately taking the system offline occasionally (Google’s
Chubby service introduced planned outages in response to being
overly available),3
throttling some requests, or designing the system so that it isn’t
faster under light loads.

Understanding how well a system is meeting its expectations helps
decide whether to invest in making the system faster, more available,
and more resilient. Alternatively, if the service is doing fine, perhaps
staff time should be spent on other priorities, such as paying off
technical debt, adding new features, or introducing other products.

Agreements in Practice

Crafting an SLA requires business and legal teams to pick appropriate consequences and penalties for a breach. SRE’s role is to help them
understand the likelihood and difficulty of meeting the SLOs contained
in the SLA. Much of the advice on SLO construction is also
applicable for SLAs. It is wise to be conservative in what you
advertise to users, as the broader the constituency, the harder it is
to change or delete SLAs that prove to be unwise or difficult to work
with.

1 Most people really mean SLO when they say “SLA.” One giveaway: if somebody talks about an “SLA violation,” they are almost always talking about a missed SLO. A real SLA violation might trigger a court case for breach of contract.
2 If you can’t ever win a conversation about SLOs, it’s probably not worth having an SRE team for the product.
3 Failure injection [Ben12] serves a different purpose, but can also help set expectations.

Chapter 5. Eliminating Toil

Written by Vivek Rau

Edited by Betsy Beyer

If a human operator needs to touch your system during normal operations, you have a bug. The definition of normal changes as your systems grow.

Carla Geisser, Google SRE

In SRE, we want to spend time on long-term engineering project work instead of
operational work. Because the term operational work may
be misinterpreted, we use a specific word: toil.

Toil Defined

Toil is not just “work I don’t like to do.” It’s also not simply
 equivalent to administrative chores or grungy work. Preferences as to
 what types of work are satisfying and enjoyable vary from person to
 person, and some people even enjoy manual, repetitive work. There
 are also administrative chores that have to get done, but should not
 be categorized as toil: this
 is overhead. Overhead is often work not directly tied to
 running a production service, and includes tasks like team meetings, setting and
 grading goals,1 snippets,2 and HR
 paperwork. Grungy work can sometimes have long-term value, and in
 that case, it’s not toil, either. Cleaning up the entire
 alerting configuration for your service and removing clutter may be
 grungy, but it’s not toil.

So what is toil? Toil is the kind of work tied to running a
production service that tends to be manual, repetitive, automatable,
tactical, devoid of enduring value, and that scales linearly as a
service grows. Not every task deemed toil has all
these attributes, but the more closely work matches one or more of the following descriptions, the more likely it is to be toil:

Manual

This includes work such as manually running a script that
automates some task. Running a script may be quicker than
manually executing each step in the script, but the hands-on
time a human spends running that script (not the elapsed time) is
still toil time.

Repetitive

If you’re performing a task for the first time ever,
or even the second time, this work is not toil. Toil is work you
do over and over. If you’re solving a novel problem or inventing
a new solution, this work is not toil.

Automatable

If a machine could accomplish the task just as well
as a human, or the need for the task could be designed away, that
task is toil. If human judgment is essential for the task,
there’s a good chance it’s not toil.3

Tactical

Toil is interrupt-driven and reactive, rather than
strategy-driven and proactive. Handling pager alerts is toil. We
may never be able to eliminate this type of work completely, but
we have to continually work toward minimizing it.

No enduring value

If your service remains in the same state
after you have finished a task, the task was probably toil. If
the task produced a permanent improvement in your service, it
probably wasn’t toil, even if some amount of grunt work — such as
digging into legacy code and configurations and straightening them
out — was involved.

O(n) with service growth

If the work involved in a
task scales up linearly with service size, traffic volume, or user
count, that task is probably toil. An ideally managed and
designed service can grow by at least one order of magnitude with
zero additional work, other than some one-time efforts to add
resources.

Why Less Toil Is Better

Our SRE organization has an advertised goal of keeping operational
work (i.e., toil) below 50% of each SRE’s time. At least 50% of each
SRE’s time should be spent on engineering project work that will
either reduce future toil or add service features. Feature development
typically focuses on improving reliability, performance, or
utilization, which often reduces toil as a second-order effect.

We share this 50% goal because toil tends to expand if left
unchecked and can quickly fill 100% of everyone’s time. The work of
reducing toil and scaling up services is the “Engineering” in Site
Reliability Engineering. Engineering work is what enables the SRE
organization to scale up sublinearly with service size and to manage
services more efficiently than either a pure Dev team or a pure Ops
team.

Furthermore, when we hire new SREs, we promise them that SRE is not a
typical Ops organization, quoting the 50% rule just mentioned. We need to keep
that promise by not allowing the SRE organization or any subteam
within it to devolve into an Ops team.

Calculating Toil

If we seek to cap the time an SRE spends on toil to 50%, how is that time spent?

There’s a floor on the amount of toil any SRE has to handle if they are on-call. A typical SRE has one week of primary on-call and one week of secondary on-call in each cycle (for discussion of primary versus secondary on-call shifts, see Chapter 11). It follows that in a 6-person rotation, at least 2 of every 6 weeks are dedicated to on-call shifts and interrupt handling, which means the lower bound on potential toil is 2/6 = 33% of an SRE’s time. In an 8-person rotation, the lower bound is 2/8 = 25%.

Consistent with this data, SREs report that their top source of toil is interrupts (that is, non-urgent service-related messages and emails). The next leading source is on-call (urgent) response, followed by releases and pushes. Even though our release and push processes are usually handled with a fair amount of automation, there’s still plenty of room for improvement in this area.

Quarterly surveys of Google’s SREs show that the average time spent toiling is about 33%, so we do much better than our overall target of 50%. However, the average doesn’t capture outliers: some SREs claim 0% toil (pure development projects with no on-call work) and others claim 80% toil. When individual SREs report excessive toil, it often indicates a need for managers to spread the toil load more evenly across the team and to encourage those SREs to find satisfying engineering projects.

What Qualifies as Engineering?

Engineering work is novel and intrinsically requires human judgment.
It produces a permanent improvement in your service, and is guided by
a strategy. It is frequently creative and innovative, taking a
design-driven approach to solving a problem — the more generalized, the
better. Engineering work helps your team or the SRE organization
handle a larger service, or more services, with the same level of
staffing.

Typical SRE activities fall into the following approximate categories:

Software engineering

Involves writing or modifying code, in
addition to any associated design and documentation work.
Examples include writing automation scripts, creating tools or
frameworks, adding service features for scalability and
reliability, or modifying infrastructure code to make it more
robust.

Systems engineering

Involves configuring production systems,
modifying configurations, or documenting systems in a way that
produces lasting improvements from a one-time effort. Examples
include monitoring setup and updates, load balancing
configuration, server configuration, tuning of OS parameters, and
load balancer setup. Systems engineering also includes consulting
on architecture, design, and productionization for developer
teams.

Toil

Work directly tied to running a service
that is repetitive, manual, etc.

Overhead

Administrative work not tied directly to running a
service. Examples include hiring, HR paperwork, team/company
meetings, bug queue hygiene, snippets, peer reviews and
self-assessments, and training courses.

Every SRE needs to spend at least 50% of their time on engineering
work, when averaged over a few quarters or a year. Toil tends to be
spiky, so a steady 50% of time spent on engineering may not be
realistic for some SRE teams, and they may dip below that target in
some quarters. But if the fraction of time spent on projects averages
significantly below 50% over the long haul, the affected team needs to
step back and figure out what’s wrong.

Is Toil Always Bad?

Toil doesn’t make everyone unhappy all the time, especially in small
amounts. Predictable and repetitive tasks can be quite calming. They
produce a sense of accomplishment and quick wins. They can be
low-risk and low-stress activities. Some people gravitate toward
tasks involving toil and may even enjoy that type of work.

Toil isn’t always and invariably bad, and everyone needs to be
absolutely clear that some amount of toil is unavoidable in the SRE
role, and indeed in almost any engineering role. It’s fine in small
doses, and if you’re happy with those small doses, toil is not a
problem. Toil becomes toxic when experienced in large quantities. If you’re
burdened with too much toil, you should be very concerned and
complain loudly. Among the many reasons why too much toil is bad,
consider the following:

Career stagnation

Your career progress will slow down or grind
to a halt if you spend too little time on projects. Google
rewards grungy work when it’s inevitable and has a big positive
impact, but you can’t make a career out of grunge.

Low morale

People have different limits for how much toil
they can tolerate, but everyone has a limit. Too much toil leads to burnout, boredom, and discontent.

Additionally, spending too much time on toil at the expense of time
spent engineering hurts an SRE organization in the following ways:

Creates confusion

We work hard to ensure that everyone who
works in or with the SRE organization understands that we are an
engineering organization. Individuals or teams within SRE that
engage in too much toil undermine the clarity of that
communication and confuse people about our role.

Slows progress

Excessive toil makes a team less productive.
A product’s feature velocity will
slow if the SRE team is too busy with manual work and firefighting
to roll out new features promptly.

Sets precedent

If you’re too willing to take on toil, your Dev
counterparts will have incentives to load you down with even more
toil, sometimes shifting operational tasks that should rightfully
be performed by Devs to SRE. Other teams may also
start expecting SREs to take on such work, which is bad for
obvious reasons.

Promotes attrition

Even if you’re not personally unhappy with
toil, your current or future teammates might like it much less.
If you build too much toil into your team’s procedures, you
motivate the team’s best engineers to start looking elsewhere for
a more rewarding job.

Causes breach of faith

New hires or transfers who joined SRE with the
promise of project work will feel cheated, which is bad for
morale.

Conclusion

If we all commit to eliminate a bit of toil each week
with some good engineering, we’ll steadily clean up our
services, and we can shift our collective efforts to engineering for
scale, architecting the next generation of services, and building
cross-SRE toolchains. Let’s invent more, and toil less.

1 We use the Objectives and Key Results system, pioneered by Andy Grove at Intel; see [Kla12].
2 Googlers record short free-form summaries, or “snippets,” of what we’ve worked on each week.
3 We have to be careful about saying a task is “not toil because it needs human judgment.” We need to think carefully about whether the nature of the task intrinsically requires human judgment and cannot be addressed by better design. For example, one could build (and some have built) a service that alerts its SREs several times a day, where each alert requires a complex response involving plenty of human judgment. Such a service is poorly designed, with unnecessary complexity. The system needs to be simplified and rebuilt to either eliminate the underlying failure conditions or deal with these conditions automatically. Until the redesign and reimplementation are finished, and the improved service is rolled out, the work of applying human judgment to respond to each alert is definitely toil.

Chapter 6. Monitoring Distributed Systems

Written by Rob Ewaschuk

Edited by Betsy Beyer

Google’s SRE teams have some basic principles and best practices for
building successful monitoring and
alerting systems. This chapter offers guidelines
for what issues should interrupt a human via a page, and how to deal
with issues that aren’t serious enough to trigger a page.

Definitions

There’s no uniformly shared vocabulary for discussing all topics related
to monitoring. Even within Google, usage of the following terms
varies, but the most common interpretations are listed here.

Monitoring

Collecting, processing, aggregating,
and displaying real-time quantitative data about a system, such as
query counts and types, error counts and types, processing times,
and server lifetimes.

White-box monitoring

Monitoring based
on metrics exposed by the internals of the system, including logs,
interfaces like the Java Virtual Machine Profiling Interface, or
an HTTP handler that emits internal statistics.

Black-box monitoring

Testing
externally visible behavior as a user would see it.

Dashboard

An application (usually web-based) that provides a
summary view of a service’s core metrics. A
dashboard may have filters, selectors, and so on,
but is prebuilt to expose the metrics most important to its
users. The dashboard might also display team information such as
ticket queue length, a list of high-priority bugs, the current on-call
engineer for a given area of responsibility, or recent pushes.

Alert

A notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an
email alias, or a pager. Respectively, these alerts are classified
as tickets, email alerts,1 and
pages.

Root cause

A defect in a software or human system that, if
repaired, instills confidence that this event won’t happen again
in the same way. A given incident might have multiple root causes:
for example, perhaps it was caused by a combination of
insufficient process automation, software that crashed on bogus
input, and insufficient testing of the script used to generate
the configuration. Each of these factors might stand alone as a
root cause, and each should be repaired.

Node and machine

Used interchangeably to indicate a single
instance of a running kernel in either a physical server, virtual
machine, or container. There might be multiple services worth
monitoring on a single machine. The services may either be:

	Related to each other: for example, a caching server and a
 web server

	Unrelated services sharing hardware: for example, a code
 repository and a master for a configuration system like Puppet or Chef

Push

Any change to a service’s running software or its
configuration.

Why Monitor?

There are many reasons to monitor a system, including:

Analyzing long-term trends

How big is my database and how fast
is it growing? How quickly is my daily-active user count growing?

Comparing over time or experiment groups

Are queries faster with
Acme Bucket of Bytes 2.72 versus Ajax DB 3.14? How much better is my
memcache hit rate with an extra node? Is my site slower than it
was last week?

Alerting

Something is broken, and somebody needs to fix it right
now! Or, something might break soon, so somebody should look soon.

Building dashboards

Dashboards should answer
basic questions about your service, and normally include some form
of the four golden signals (discussed in
“The Four Golden Signals”).

Conducting ad hoc retrospective analysis (i.e., debugging)

Our
latency just shot up; what else happened around the same time?

System monitoring is also helpful in supplying raw input into business analytics and in facilitating analysis of security breaches. Because this book focuses on the engineering domains in which SRE has particular expertise, we won’t discuss these applications of monitoring here.

Monitoring and alerting enables a system to tell us when it’s broken,
or perhaps to tell us what’s about to break. When the system isn’t
able to automatically fix itself, we want a human to investigate the
alert, determine if there’s a real problem at hand, mitigate the
problem, and determine the root cause of the problem. Unless you’re
performing security auditing on very narrowly scoped components of a
system, you should never trigger an alert simply because “something
seems a bit weird.”

Paging a human is a quite expensive use of an employee’s time. If an
employee is at work, a page interrupts their workflow. If the employee
is at home, a page interrupts their personal time, and perhaps even
their sleep. When pages occur too frequently, employees second-guess,
skim, or even ignore incoming alerts, sometimes even ignoring a “real”
page that’s masked by the noise. Outages can be prolonged because
other noise interferes with a rapid diagnosis and fix. Effective
alerting systems have good signal and very low noise.

Setting Reasonable Expectations for Monitoring

Monitoring a complex application is a significant engineering endeavor
in and of itself. Even with substantial existing infrastructure for
instrumentation, collection, display, and alerting in place, a Google
SRE team with 10–12 members typically has one or sometimes two members
whose primary assignment is to build and maintain monitoring systems
for their service. This number has decreased over time as we
generalize and centralize common monitoring infrastructure, but every
SRE team typically has at least one “monitoring person.” (That being
said, while it can be fun to have access to traffic graph dashboards
and the like, SRE teams carefully avoid any situation that requires
someone to “stare at a screen to watch for problems.”)

In general, Google has trended toward simpler and faster monitoring
systems, with better tools for post hoc analysis. We avoid “magic”
systems that try to learn thresholds or automatically detect
causality. Rules that detect unexpected changes in end-user request
rates are one counterexample; while these rules are still kept as
simple as possible, they give a very quick detection of a very simple,
specific, severe anomaly. Other uses of monitoring data such as
capacity planning and traffic prediction can
tolerate more fragility, and thus, more complexity. Observational
experiments conducted over a very long time horizon (months or years)
with a low sampling rate (hours or days) can also often tolerate more
fragility because occasional missed samples won’t hide a long-running
trend.

Google SRE has experienced only limited success with complex
dependency hierarchies. We seldom use rules such as, “If I know the
database is slow, alert for a slow database; otherwise, alert for the
website being generally slow.” Dependency-reliant rules usually
pertain to very stable parts of our system, such as our system for
draining user traffic away from a datacenter. For example, “If a datacenter is drained, then don’t
alert me on its latency” is one common datacenter alerting rule. Few teams at Google maintain complex
dependency hierarchies because our infrastructure has a steady rate of
continuous refactoring.

Some of the ideas described in this chapter are still
aspirational: there is always room to move more rapidly from symptom
to root cause(s), especially in ever-changing systems. So while this
chapter sets out some goals for monitoring systems, and some ways to
achieve these goals, it’s important that monitoring systems — especially the
critical path from the onset of a production problem, through a page
to a human, through basic triage and deep debugging — be kept simple and
comprehensible by everyone on the team.

Similarly, to keep noise low and signal high, the elements of your
monitoring system that direct to a pager need to be very simple and
robust. Rules that generate alerts for humans should be simple to
understand and represent a clear failure.

Symptoms Versus Causes

Your monitoring system should address two questions: what’s broken,
and why?

The “what’s broken” indicates the symptom; the “why” indicates a
(possibly intermediate) cause. Table 6-1 lists
some hypothetical symptoms and corresponding causes.

Table 6-1. Example symptoms and causes

	Symptom
	Cause

	I’m serving HTTP 500s or 404s

	Database servers are refusing connections

	My responses are slow

	CPUs are overloaded by a bogosort, or an Ethernet cable is crimped under a rack, visible as partial packet loss

	Users in Antarctica aren’t receiving animated cat GIFs

	Your Content Distribution Network hates scientists and felines, and thus blacklisted some client IPs

	Private content is world-readable

	A new software push caused ACLs to be forgotten and allowed all requests

“What” versus “why” is one of the most important distinctions in
writing good monitoring with maximum signal and minimum noise.

Black-Box Versus White-Box

We combine heavy use of white-box monitoring
with modest but critical uses of black-box monitoring. The simplest way to think about black-box monitoring
versus white-box monitoring is that black-box monitoring is
symptom-oriented and represents active — not predicted — problems: “The
system isn’t working correctly, right now.” White-box monitoring
depends on the ability to inspect the innards of the system, such as
logs or HTTP endpoints, with instrumentation. White-box monitoring
therefore allows detection of imminent problems, failures masked by
retries, and so forth.

Note that in a multilayered system, one person’s symptom is another
person’s cause. For example, suppose that a database’s performance is
slow. Slow database reads are a symptom for the database SRE who
detects them. However, for the frontend SRE observing a slow
website, the same slow database reads are a cause. Therefore,
white-box monitoring is sometimes symptom-oriented, and sometimes
cause-oriented, depending on just how informative your white-box is.

When collecting telemetry for debugging, white-box monitoring is essential. If web servers seem slow on database-heavy
requests, you need to know both how fast the web server perceives the
database to be, and how fast the database believes itself to
be. Otherwise, you can’t distinguish an actually slow database server
from a network problem between your web server and your database.

For paging, black-box monitoring has the key benefit of forcing
discipline to only nag a human when a problem is both already ongoing
and contributing to real symptoms. On the other hand, for
not-yet-occurring but imminent problems, black-box monitoring is
fairly useless.

The Four Golden Signals

The four golden signals of monitoring are latency,
traffic, errors, and
saturation. If you can only measure four metrics of
your user-facing system, focus on these four.

Latency

The time it takes to service a request. It’s important to
distinguish between the latency of successful requests and the latency
of failed requests. For example, an HTTP 500 error triggered due to
loss of connection to a database or other critical backend might be
served very quickly; however, as an HTTP 500 error indicates a failed
request, factoring 500s into your overall latency might result in
misleading calculations. On the other hand, a slow error is even worse
than a fast error! Therefore, it’s important to track error latency,
as opposed to just filtering out errors.

Traffic

A measure of how much demand is being placed on your
system, measured in a high-level system-specific metric. For a web
service, this measurement is usually HTTP requests per second, perhaps
broken out by the nature of the requests (e.g., static versus dynamic
content). For an audio streaming system, this measurement might focus
on network I/O rate or concurrent sessions. For a key-value storage
system, this measurement might be transactions and retrievals per
second.

Errors

The rate of requests that fail, either explicitly (e.g., HTTP
500s), implicitly (for example, an HTTP 200 success response, but coupled with the
wrong content), or by policy (for example, “If you committed to one-second response times, any request over one second is an
error”). Where protocol response codes are insufficient to express all
failure conditions, secondary (internal) protocols may be necessary to
track partial failure modes. Monitoring these cases can be
drastically different: catching HTTP 500s at your load balancer can do
a decent job of catching all completely failed requests, while only
end-to-end system tests can detect that you’re serving the wrong
content.

Saturation

How “full” your service is. A measure of your system
fraction, emphasizing the resources that are most constrained (e.g., in
a memory-constrained system, show memory; in an I/O-constrained
system, show I/O). Note that many systems degrade in performance
before they achieve 100% utilization, so having a utilization target
is essential.

In complex systems, saturation can be supplemented with higher-level
load measurement: can your service properly handle double the traffic,
handle only 10% more traffic, or handle even less traffic than it
currently receives? For very simple services that have no parameters
that alter the complexity of the request (e.g., “Give me a nonce” or “I
need a globally unique monotonic integer”) that rarely change
configuration, a static value from a load test might be adequate. As
discussed in the previous paragraph, however, most services need to
use indirect signals like CPU utilization or network bandwidth that have a known upper bound. Latency increases are often a leading
indicator of saturation. Measuring your 99th percentile response time
over some small window (e.g., one minute) can give a very early signal
of saturation.

Finally, saturation is also concerned with predictions of impending
saturation, such as “It looks like your database will fill its hard
drive in 4 hours.”

If you measure all four golden signals and page a human when one
signal is problematic (or, in the case of saturation, nearly
problematic), your service will be at least decently covered by
monitoring.

Worrying About Your Tail (or, Instrumentation and Performance)

When building a monitoring system from scratch, it’s tempting
to design a system based upon the mean of some quantity: the mean
latency, the mean CPU usage of your nodes, or the mean fullness of
your databases. The danger presented by the latter two cases is
obvious: CPUs and databases can easily be utilized in a very
imbalanced way. The same holds for latency. If you run a web service
with an average latency of 100 ms at 1,000 requests per second, 1% of
requests might easily take 5 seconds.2 If your users depend on several such
web services to render their page, the 99th percentile of one backend
can easily become the median response of your frontend.

The simplest way to differentiate between a slow average and a very
slow “tail” of requests is to collect request counts bucketed by latencies (suitable for rendering a histogram), rather than actual
latencies: how many requests did I serve that took between 0 ms and 10 ms,
between 10 ms and 30 ms, between 30 ms and 100 ms, between 100 ms and 300 ms, and so
on? Distributing the histogram boundaries approximately exponentially
(in this case by factors of roughly 3) is often an easy way to
visualize the distribution of your requests.

Choosing an Appropriate Resolution for Measurements

Different aspects of a system should be measured with different levels
of granularity. For example:

	
Observing CPU load over the time span of a minute won’t reveal even
quite long-lived spikes that drive high tail latencies.

	
On the other hand, for a web service targeting no more than 9 hours
aggregate downtime per year (99.9% annual uptime), probing for a
200 (success) status more than once or twice a minute is probably
unnecessarily frequent.

	
Similarly, checking hard drive fullness for a service targeting
99.9% availability more than once every 1–2 minutes is probably
unnecessary.

Take care in how you structure the granularity of your measurements.
Collecting per-second measurements of CPU load might yield interesting
data, but such frequent measurements may be very expensive to collect,
store, and analyze. If your monitoring goal calls for high resolution
but doesn’t require extremely low latency, you can reduce these costs
by performing internal sampling on the server, then configuring an
external system to collect and aggregate that distribution over time
or across servers. You might:

	
Record the current CPU utilization each second.

	
Using buckets of 5% granularity, increment the appropriate CPU utilization bucket
each second.

	
Aggregate those values every minute.

This strategy allows you to observe brief CPU hotspots without
incurring very high cost due to collection and retention.

As Simple as Possible, No Simpler

Piling all these requirements on top of each other can add up to a
very complex monitoring system — your system might end up with the
following levels of complexity:

	
Alerts on different latency thresholds, at different percentiles,
on all kinds of different metrics

	
Extra code to detect and expose possible causes

	
Associated dashboards for each of these possible causes

The sources of potential complexity are never-ending. Like all
software systems, monitoring can become so complex that it’s fragile,
complicated to change, and a maintenance burden.

Therefore, design your monitoring system with an eye toward
simplicity. In choosing what to monitor, keep the following guidelines
in mind:

	
The rules that catch real incidents most often should be as
simple, predictable, and reliable as possible.

	
Data collection, aggregation, and alerting configuration that is
rarely exercised (e.g., less than once a quarter for some SRE teams) should be up for removal.

	
Signals that are collected, but not exposed in any prebaked
dashboard nor used by any alert, are candidates for removal.

In Google’s experience, basic collection and aggregation of metrics,
paired with alerting and dashboards, has worked well as a relatively
standalone system. (In fact Google’s monitoring system is broken up
into several binaries, but typically people learn about all aspects of
these binaries.) It can be tempting to combine monitoring with other aspects of
inspecting complex systems, such as detailed system profiling,
single-process debugging, tracking details about exceptions or
crashes, load testing, log collection and analysis, or traffic
inspection. While most of these subjects share commonalities with
basic monitoring, blending together too many results in overly complex
and fragile systems. As in many other aspects of software engineering,
maintaining distinct systems with clear, simple, loosely coupled
points of integration is a better strategy (for example, using web
APIs for pulling summary data in a format that can remain constant
over an extended period of time).

Tying These Principles Together

The principles discussed in this chapter can be tied together into a
philosophy on monitoring and alerting that’s widely endorsed and
followed within Google SRE teams. While this monitoring philosophy is
a bit aspirational, it’s a good starting point for writing or
reviewing a new alert, and it can help your organization ask the right
questions, regardless of the size of your organization or the
complexity of your service or system.

When creating rules for monitoring and alerting, asking the following
questions can help you avoid false positives and pager
burnout:3

	
Does this rule detect an otherwise undetected condition that is
urgent, actionable, and actively or imminently
user-visible?4

	
Will I ever be able to ignore this alert, knowing it’s benign? When
and why will I be able to ignore this alert, and how can I avoid
this scenario?

	
Does this alert definitely indicate that users are being negatively
affected? Are there detectable cases in which users aren’t being
negatively impacted, such as drained traffic or test deployments,
that should be filtered out?

	
Can I take action in response to this alert? Is that action urgent,
or could it wait until morning? Could the action be safely
automated? Will that action be a long-term fix, or just a short-term workaround?

	
Are other people getting paged for this issue, therefore rendering
at least one of the pages unnecessary?

These questions reflect a fundamental philosophy on pages and pagers:

	
Every time the pager goes off, I should be able to react with a
sense of urgency. I can only react with a sense of urgency a few
times a day before I become fatigued.

	
Every page should be actionable.

	
Every page response should require intelligence. If a page merely
merits a robotic response, it shouldn’t be a page.

	
Pages should be about a novel problem or an event that hasn’t been
seen before.

Such a perspective dissipates certain distinctions: if a page
satisfies the preceding four bullets, it’s irrelevant whether the page is
triggered by white-box or black-box monitoring. This perspective also
amplifies certain distinctions: it’s better to spend much more effort
on catching symptoms than causes; when it comes to causes, only worry
about very definite, very imminent causes.

Monitoring for the Long Term

In modern production systems, monitoring systems track an
ever-evolving system with changing software architecture, load
characteristics, and performance targets. An alert that’s currently
exceptionally rare and hard to automate might become frequent, perhaps
even meriting a hacked-together script to resolve it. At this point,
someone should find and eliminate the root causes of the problem; if
such resolution isn’t possible, the alert response deserves to be fully
automated.

It’s important that decisions about monitoring be made with long-term
goals in mind. Every page that happens today distracts a human from
improving the system for tomorrow, so there is often a case for taking
a short-term hit to availability or performance in order to improve
the long-term outlook for the system. Let’s take a look at two case studies that
illustrate this trade-off.

Bigtable SRE: A Tale of Over-Alerting

Google’s internal infrastructure is typically offered and measured
against a service level objective (SLO; see Chapter 4).
Many years ago, the Bigtable service’s SLO was based on a synthetic
well-behaved client’s mean performance. Because of problems in
Bigtable and lower layers of the storage stack, the mean performance
was driven by a “large” tail: the worst 5% of requests were often
significantly slower than the rest.

Email alerts were triggered as the SLO approached, and paging alerts
were triggered when the SLO was exceeded. Both types of alerts were
firing voluminously, consuming unacceptable amounts of engineering
time: the team spent significant amounts of time triaging the alerts
to find the few that were really actionable, and we often missed the
problems that actually affected users, because so few of them
did. Many of the pages were non-urgent, due to well-understood
problems in the infrastructure, and had either rote responses or
received no response.

To remedy the situation, the team used a three-pronged approach: while
making great efforts to improve the performance of Bigtable, we also
temporarily dialed back our SLO target, using the 75th percentile request latency. We
also disabled email alerts, as there were so many that spending time
diagnosing them was infeasible.

This strategy gave us enough breathing room to actually fix the
longer-term problems in Bigtable and the lower layers of the storage
stack, rather than constantly fixing tactical problems. On-call
engineers could actually accomplish work when they weren’t being kept
up by pages at all hours. Ultimately, temporarily backing off on our
alerts allowed us to make faster progress toward a better service.

Gmail: Predictable, Scriptable Responses from Humans

In the very early days of Gmail, the service was built on a
retrofitted distributed process management system called Workqueue,
which was originally created for batch processing of pieces of the search
index. Workqueue was “adapted” to long-lived processes and
subsequently applied to Gmail, but certain bugs in the relatively
opaque codebase in the scheduler proved hard to beat.

At that time, the Gmail monitoring was structured such that alerts
fired when individual tasks were “de-scheduled” by Workqueue. This
setup was less than ideal because even at that time, Gmail had many,
many thousands of tasks, each task representing a fraction of a
percent of our users. We cared deeply about providing a good user
experience for Gmail users, but such an alerting setup was
unmaintainable.

To address this problem, Gmail SRE built a tool that helped “poke” the
scheduler in just the right way to minimize impact to users. The team
had several discussions about whether or not we should simply automate
the entire loop from detecting the problem to nudging the rescheduler,
until a better long-term solution was achieved, but some worried this
kind of workaround would delay a real fix.

This kind of tension is common within a team, and often reflects an underlying mistrust of the team’s self-discipline: while some team members want to implement a “hack” to allow time for a proper fix, others worry that a hack will be forgotten or that the proper fix will be deprioritized indefinitely. This concern is credible, as it’s easy to build layers of unmaintainable technical debt by patching over problems instead of making real fixes. Managers and technical leaders play a key role in implementing true, long-term fixes by supporting and prioritizing potentially time-consuming long-term fixes even when the initial “pain” of paging subsides.

Pages with rote, algorithmic responses should be a red flag.
Unwillingness on the part of your team to automate such pages implies
that the team lacks confidence that they can clean up their technical
debt. This is a major problem worth escalating.

The Long Run

A common theme connects the previous examples of Bigtable and Gmail: a
tension between short-term and long-term availability. Often, sheer
force of effort can help a rickety system achieve high availability,
but this path is usually short-lived and fraught with burnout and
dependence on a small number of heroic team members. Taking a
controlled, short-term decrease in availability is often a painful, but strategic trade for the long-run stability of the
system. It’s important not to think of every page as an event in
isolation, but to consider whether the overall level of paging leads
toward a healthy, appropriately available system with a healthy,
viable team and long-term outlook. We review statistics
about page frequency (usually expressed as incidents per shift, where
an incident might be composed of a few related pages) in quarterly
reports with management, ensuring that decision makers are kept up to
date on the pager load and overall health of their teams.

Conclusion

A healthy monitoring and alerting pipeline is simple and easy to
reason about. It focuses primarily on symptoms for paging, reserving
cause-oriented heuristics to serve as aids to debugging
problems. Monitoring symptoms is easier the further “up” your stack
you monitor, though monitoring saturation and performance of
subsystems such as databases often must be performed directly on the
subsystem itself. Email alerts are of very limited value and tend to
easily become overrun with noise; instead, you should favor a
dashboard that monitors all ongoing subcritical problems for the sort
of information that typically ends up in email alerts. A dashboard
might also be paired with a log, in order to analyze historical
correlations.

Over the long haul, achieving a successful on-call rotation and product includes
choosing to alert on symptoms or imminent real problems, adapting your
targets to goals that are actually achievable, and making sure that
your monitoring supports rapid diagnosis.

1 Sometimes known as “alert spam,” as they are rarely read or acted on.
2 If 1% of your requests are 10x the average, it means that the rest of your requests are about twice as fast as the average. But if you’re not measuring your distribution, the idea that most of your requests are near the mean is just hopeful thinking.
3 See Applying Cardiac Alarm Management Techniques to Your On-Call [Hol14] for an example of alert fatigue in another context.
4 Zero-redundancy (N + 0) situations count as imminent, as do “nearly full” parts of your service! For more details about the concept of redundancy, see https://en.wikipedia.org/wiki/N%2B1_redundancy.

Chapter 7. The Evolution of Automation at Google

Written by Niall Murphy with John Looney and Michael Kacirek

Edited by Betsy Beyer

Besides black art, there is only automation and mechanization.

Federico García Lorca (1898–1936), Spanish poet and playwright

For SRE, automation is a force multiplier, not a panacea. Of course, just multiplying force does not naturally change the accuracy of where that force is applied: doing automation thoughtlessly can create as many problems as it solves. Therefore, while we believe that software-based automation is superior to manual operation in most circumstances, better than either option is a higher-level system design requiring neither of them — an autonomous system. Or to put it another way, the value of automation comes from both what it does and its judicious application. We’ll discuss both the value of automation and how our attitude has evolved over time.

The Value of Automation

What exactly is the value of automation?1

Consistency

Although scale is an obvious motivation for automation, there are many other reasons to use it. Take the example of university computing systems, where many systems engineering folks started their careers. Systems administrators of that background were generally charged with running a collection of machines or some software, and were accustomed to manually performing various actions in the discharge of that duty. One common example is creating user accounts; others include purely operational duties like making sure backups happen, managing server failover, and small data manipulations like changing the upstream DNS servers’ resolv.conf, DNS server zone data, and similar activities. Ultimately, however, this prevalence of manual tasks is unsatisfactory for both the organizations and indeed the people maintaining systems in this way. For a start, any action performed by a human or humans hundreds of times won’t be performed the same way each time: even with the best will in the world, very few of us will ever be as consistent as a machine. This inevitable lack of consistency leads to mistakes, oversights, issues with data quality, and, yes, reliability problems. In this domain — the execution of well-scoped, known procedures — the value of consistency is in many ways the primary value of automation.

A Platform

Automation doesn’t just provide consistency. Designed and done properly, automatic systems also provide a platform that can be extended, applied to more systems, or perhaps even spun out for profit.2 (The alternative, no automation, is neither cost effective nor extensible: it is instead a tax levied on the operation of a system.)

A platform also centralizes mistakes. In other words, a bug fixed in the code will be fixed there once and forever, unlike a sufficiently large set of humans performing the same procedure, as discussed previously. A platform can be extended to perform additional tasks more easily than humans can be instructed to perform them (or sometimes even realize that they have to be done). Depending on the nature of the task, it can run either continuously or much more frequently than humans could appropriately accomplish the task, or at times that are inconvenient for humans. Furthermore, a platform can export metrics about its performance, or otherwise allow you to discover details about your process you didn’t know previously, because these details are more easily measurable within the context of a platform.

Faster Repairs

There’s an additional benefit for systems where automation is used to resolve common faults in a system (a frequent situation for SRE-created automation). If automation runs regularly and successfully enough, the result is a reduced mean time to repair (MTTR) for those common faults. You can then spend your time on other tasks instead, thereby achieving increased developer velocity because you don’t have to spend time either preventing a problem or (more commonly) cleaning up after it. As is well understood in the industry, the later in the product lifecycle a problem is discovered, the more expensive it is to fix; see Chapter 17. Generally, problems that occur in actual production are most expensive to fix, both in terms of time and money, which means that an automated system looking for problems as soon as they arise has a good chance of lowering the total cost of the system, given that the system is sufficiently large.

Faster Action

In the infrastructural situations where SRE automation tends to be deployed, humans don’t usually react as fast as machines. In most common cases, where, for example, failover or traffic switching can be well defined for a particular application, it makes no sense to effectively require a human to intermittently press a button called “Allow system to continue to run.” (Yes, it is true that sometimes automatic procedures can end up making a bad situation worse, but that is why such procedures should be scoped over well-defined domains.) Google has a large amount of automation; in many cases, the services we support could not long survive without this automation because they crossed the threshold of manageable manual operation long ago.

Time Saving

Finally, time saving is an oft-quoted rationale for automation. Although people cite this rationale for automation more than the others, in many ways the benefit is often less immediately calculable. Engineers often waver over whether a particular piece of automation or code is worth writing, in terms of effort saved in not requiring a task to be performed manually versus the effort required to write it.3 It’s easy to overlook the fact that once you have encapsulated some task in automation, anyone can execute the task. Therefore, the time savings apply across anyone who would plausibly use the automation. Decoupling operator from operation is very powerful.

Warning

Joseph Bironas, an SRE who led Google’s datacenter turnup efforts for a time, forcefully argued:

“If we are engineering processes and solutions that are not automatable, we continue having to staff humans to maintain the system. If we have to staff humans to do the work, we are feeding the machines with the blood, sweat, and tears of human beings. Think The Matrix with less special effects and more pissed off System Administrators.”

The Value for Google SRE

All of these benefits and trade-offs apply to us just as much as anyone else, and Google does have a strong bias toward automation. Part of our preference for automation springs from our particular business challenges: the products and services we look after are planet-spanning in scale, and we don’t typically have time to engage in the same kind of machine or service hand-holding common in other organizations.4 For truly large services, the factors of consistency, quickness, and reliability dominate most conversations about the trade-offs of performing automation.

Another argument in favor of automation, particularly in the case of Google, is our complicated yet surprisingly uniform production environment, described in Chapter 2. While other organizations might have an important piece of equipment without a readily accessible API, software for which no source code is available, or another impediment to complete control over production operations, Google generally avoids such scenarios. We have built APIs for systems when no API was available from the vendor. Even though purchasing software for a particular task would have been much cheaper in the short term, we chose to write our own solutions, because doing so produced APIs with the potential for much greater long-term benefits. We spent a lot of time overcoming obstacles to automatic system management, and then resolutely developed that automatic system management itself. Given how Google manages its source code [Pot16], the availability of that code for more or less any system that SRE touches also means that our mission to “own the product in production” is much easier because we control the entirety of the stack.

Of course, although Google is ideologically bent upon using machines to manage machines where possible, reality requires some modification of our approach. It isn’t appropriate to automate every component of every system, and not everyone has the ability or inclination to develop automation at a particular time. Some essential systems started out as quick prototypes, not designed to last or to interface with automation. The previous paragraphs state a maximalist view of our position, but one that we have been broadly successful at putting into action within the Google context. In general, we have chosen to create platforms where we could, or to position ourselves so that we could create platforms over time. We view this platform-based approach as necessary for manageability and scalability.

The Use Cases for Automation

In the industry, automation is the term generally used for writing code to solve a wide variety of problems, although the motivations for writing this code, and the solutions themselves, are often quite different. More broadly, in this view, automation is “meta-software” — software to act on software.

As we implied earlier, there are a number of use cases for automation. Here is a non-exhaustive list of examples:

	
User account creation

	
Cluster turnup and turndown for services

	
Software or hardware installation preparation and decommissioning

	
Rollouts of new software versions

	
Runtime configuration changes

	
A special case of runtime config changes: changes to your dependencies

This list could continue essentially ad infinitum.

Google SRE’s Use Cases for Automation

In Google, we have all of the use cases just listed, and more.

However, within Google SRE, our primary affinity has typically been for running infrastructure, as opposed to managing the quality of the data that passes over that infrastructure. This line isn’t totally clear — for example, we care deeply if half of a dataset vanishes after a push, and therefore we alert on coarse-grain differences like this, but it’s rare for us to write the equivalent of changing the properties of some arbitrary subset of accounts on a system. Therefore, the context for our automation is often automation to manage the lifecycle of systems, not their data: for example, deployments of a service in a new cluster.

To this extent, SRE’s automation efforts are not far off what many other people and organizations do, except that we use different tools to manage it and have a different focus (as we’ll discuss).

Widely available tools like Puppet, Chef, cfengine, and even Perl, which all provide ways to automate particular tasks, differ mostly in terms of the level of abstraction of the components provided to help the act of automating. A full language like Perl provides POSIX-level affordances, which in theory provide an essentially unlimited scope of automation across the APIs accessible to the system,5 whereas Chef and Puppet provide out-of-the-box abstractions with which services or other higher-level entities can be manipulated. The trade-off here is classic: higher-level abstractions are easier to manage and reason about, but when you encounter a “leaky abstraction,” you fail systemically, repeatedly, and potentially inconsistently. For example, we often assume that pushing a new binary to a cluster is atomic; the cluster will either end up with the old version, or the new version. However, real-world behavior is more complicated: that cluster’s network can fail halfway through; machines can fail; communication to the cluster management layer can fail, leaving the system in an inconsistent state; depending on the situation, new binaries could be staged but not pushed, or pushed but not restarted, or restarted but not verifiable. Very few abstractions model these kinds of outcomes successfully, and most generally end up halting themselves and calling for intervention. Truly bad automation systems don’t even do that.

SRE has a number of philosophies and products in the domain of automation, some of which look more like generic rollout tools without particularly detailed modeling of higher-level entities, and some of which look more like languages for describing service deployment (and so on) at a very abstract level. Work done in the latter tends to be more reusable and be more of a common platform than the former, but the complexity of our production environment sometimes means that the former approach is the most immediately tractable option.

A Hierarchy of Automation Classes

Although all of these automation steps are valuable, and indeed an automation platform is valuable in and of itself, in an ideal world, we wouldn’t need externalized automation. In fact, instead of having a system that has to have external glue logic, it would be even better to have a system that needs no glue logic at all, not just because internalization is more efficient (although such efficiency is useful), but because it has been designed to not need glue logic in the first place. Accomplishing that involves taking the use cases for glue logic — generally “first order” manipulations of a system, such as adding accounts or performing system turnup — and finding a way to handle those use cases directly within the application.

As a more detailed example, most turnup automation at Google is problematic because it ends up being maintained separately from the core system and therefore suffers from “bit rot,” i.e., not changing when the underlying systems change. Despite the best of intentions, attempting to more tightly couple the two (turnup automation and the core system) often fails due to unaligned priorities, as product developers will, not unreasonably, resist a test deployment requirement for every change. Secondly, automation that is crucial but only executed at infrequent intervals and therefore difficult to test is often particularly fragile because of the extended feedback cycle. Cluster failover is one classic example of infrequently executed automation: failovers might only occur every few months, or infrequently enough that inconsistencies between instances are introduced. The evolution of automation follows a path:

1) No automation

Database master is failed over manually between locations.

2) Externally maintained system-specific automation

An SRE has a failover script in his or her home directory.

3) Externally maintained generic automation

The SRE adds database support to a “generic failover” script that everyone uses.

4) Internally maintained system-specific automation

The database ships with its own failover script.

5) Systems that don’t need any automation

The database notices problems, and automatically fails over without human intervention.

SRE hates manual operations, so we obviously try to create systems that don’t require them. However, sometimes manual operations are unavoidable.

There is additionally a subvariety of automation that applies changes not across the domain of specific system-related configuration, but across the domain of production as a whole. In a highly centralized proprietary production environment like Google’s, there are a large number of changes that have a non–service-specific scope — e.g., changing upstream Chubby servers, a flag change to the Bigtable client library to make access more reliable, and so on — which nonetheless need to be safely managed and rolled back if necessary. Beyond a certain volume of changes, it is infeasible for production-wide changes to be accomplished manually, and at some time before that point, it’s a waste to have manual oversight for a process where a large proportion of the changes are either trivial or accomplished successfully by basic relaunch-and-check strategies.

Let’s use internal case studies to illustrate some of the preceding points in detail. The first case study is about how, due to some diligent, far-sighted work, we managed to achieve the self-professed nirvana of SRE: to automate ourselves out of a job.

Automate Yourself Out of a Job: Automate ALL the Things!

For a long while, the Ads products at Google stored their data in a MySQL database. Because Ads data obviously has high reliability requirements, an SRE team was charged with looking after that infrastructure. From 2005 to 2008, the Ads Database mostly ran in what we considered to be a mature and managed state. For example, we had automated away the worst, but not all, of the routine work for standard replica replacements. We believed the Ads Database was well managed and that we had harvested most of the low-hanging fruit in terms of optimization and scale. However, as daily operations became comfortable, team members began to look at the next level of system development: migrating MySQL onto Google’s cluster scheduling system, Borg.

We hoped this migration would provide two main benefits:

	
Completely eliminate machine/replica maintenance: Borg would automatically handle the setup/restart of new and broken tasks.

	
Enable bin-packing of multiple MySQL instances on the same physical machine: Borg would enable more efficient use of machine resources via Containers.

In late 2008, we successfully deployed a proof of concept MySQL instance on Borg. Unfortunately, this was accompanied by a significant new difficulty. A core operating characteristic of Borg is that its tasks move around automatically. Tasks commonly move within Borg as frequently as once or twice per week. This frequency was tolerable for our database replicas, but unacceptable for our masters.

At that time, the process for master failover took 30–90 minutes per instance. Simply because we ran on shared machines and were subject to reboots for kernel upgrades, in addition to the normal rate of machine failure, we had to expect a number of otherwise unrelated failovers every week. This factor, in combination with the number of shards on which our system was hosted, meant that:

	
Manual failovers would consume a substantial amount of human hours and would give us best-case availability of 99% uptime, which fell short of the actual business requirements of the product.

	
In order to meet our error budgets, each failover would have to take less than 30 seconds of downtime. There was no way to optimize a human-dependent procedure to make downtime shorter than 30 seconds.

Therefore, our only choice was to automate failover. Actually, we needed to automate more than just failover.

In 2009 Ads SRE completed our automated failover daemon, which we dubbed “Decider.” Decider could complete MySQL failovers for both planned and unplanned failovers in less than 30 seconds 95% of the time. With the creation of Decider, MySQL on Borg (MoB) finally became a reality. We graduated from optimizing our infrastructure for a lack of failover to embracing the idea that failure is inevitable, and therefore optimizing to recover quickly through automation.

While automation let us achieve highly available MySQL in a world that forced up to two restarts per week, it did come with its own set of costs. All of our applications had to be changed to include significantly more failure-handling logic than before. Given that the norm in the MySQL development world is to assume that the MySQL instance will be the most stable component in the stack, this switch meant customizing software like JDBC to be more tolerant of our failure-prone environment. However, the benefits of migrating to MoB with Decider were well worth these costs. Once on MoB, the time our team spent on mundane operational tasks dropped by 95%. Our failovers were automated, so an outage of a single database task no longer paged a human.

The main upshot of this new automation was that we had a lot more free time to spend on improving other parts of the infrastructure. Such improvements had a cascading effect: the more time we saved, the more time we were able to spend on optimizing and automating other tedious work. Eventually, we were able to automate schema changes, causing the cost of total operational maintenance of the Ads Database to drop by nearly 95%. Some might say that we had successfully automated ourselves out of this job. The hardware side of our domain also saw improvement. Migrating to MoB freed up considerable resources because we could schedule multiple MySQL instances on the same machines, which improved utilization of our hardware. In total, we were able to free up about 60% of our hardware. Our team was now flush with hardware and engineering resources.

This example demonstrates the wisdom of going the extra mile to deliver a platform rather than replacing existing manual procedures. The next example comes from the cluster infrastructure group, and illustrates some of the more difficult trade-offs you might encounter on your way to automating all the things.

Soothing the Pain: Applying Automation to Cluster Turnups

Ten years ago, the Cluster Infrastructure SRE team seemed to get a new hire every few months. As it turned out, that was approximately the same frequency at which we turned up a new cluster. Because turning up a service in a new cluster gives new hires exposure to a service’s internals, this task seemed like a natural and useful training tool.

The steps taken to get a cluster ready for use were something like the following:

	
Fit out a datacenter building for power and cooling.

	
Install and configure core switches and connections to the backbone.

	
Install a few initial racks of servers.

	
Configure basic services such as DNS and installers, then configure a lock service, storage, and computing.

	
Deploy the remaining racks of machines.

	
Assign user-facing services resources, so their teams can set up the services.

Steps 4 and 6 were extremely complex. While basic services like DNS are relatively simple, the storage and compute subsystems at that time were still in heavy development, so new flags, components, and optimizations were added weekly.

Some services had more than a hundred different component subsystems, each with a complex web of dependencies. Failing to configure one subsystem, or configuring a system or component differently than other deployments, is a customer-impacting outage waiting to happen.

In one case, a multi-petabyte Bigtable cluster was configured to not use the first (logging) disk on 12-disk systems, for latency reasons. A year later, some automation assumed that if a machine’s first disk wasn’t being used, that machine didn’t have any storage configured; therefore, it was safe to wipe the machine and set it up from scratch. All of the Bigtable data was wiped, instantly. Thankfully we had multiple real-time replicas of the dataset, but such surprises are unwelcome. Automation needs to be careful about relying on implicit “safety” signals.

Early automation focused on accelerating cluster delivery. This approach tended to rely upon creative use of SSH for tedious package distribution and service initialization problems. This strategy was an initial win, but those free-form scripts became a cholesterol of technical debt.

Detecting Inconsistencies with Prodtest

As the numbers of clusters grew, some clusters required hand-tuned flags and settings. As a result, teams wasted more and more time chasing down difficult-to-spot misconfigurations. If a flag that made GFS more responsive to log processing leaked into the default templates, cells with many files could run out of memory under load. Infuriating and time-consuming misconfigurations crept in with nearly every large configuration change.

The creative — though brittle — shell scripts we used to configure clusters were neither scaling to the number of people who wanted to make changes nor to the sheer number of cluster permutations that needed to be built. These shell scripts also failed to resolve more significant concerns before declaring that a service was good to take customer-facing traffic, such as:

	
Were all of the service’s dependencies available and correctly configured?

	
Were all configurations and packages consistent with other deployments?

	
Could the team confirm that every configuration exception was desired?

Prodtest (Production Test) was an ingenious solution to these unwelcome surprises. We extended the Python unit test framework to allow for unit testing of real-world services. These unit tests have dependencies, allowing a chain of tests, and a failure in one test would quickly abort. Take the test shown in Figure 7-1 as an example.

[image: ProdTest for DNS Service, showing how one failed test aborts the subsequent chain of tests.]
Figure 7-1. ProdTest for DNS Service, showing how one failed test aborts the subsequent chain of tests

A given team’s Prodtest was given the cluster name, and it could validate that team’s services in that cluster. Later additions allowed us to generate a graph of the unit tests and their states. This functionality allowed an engineer to see quickly if their service was correctly configured in all clusters, and if not, why. The graph highlighted the failed step, and the failing Python unit test output a more verbose error message.

Any time a team encountered a delay due to another team’s unexpected misconfiguration, a bug could be filed to extend their Prodtest. This ensured that a similar problem would be discovered earlier in the future. SREs were proud to be able to assure their customers that all services — both newly turned up services and existing services with new configuration — would reliably serve production traffic.

For the first time, our project managers could predict when a cluster could “go live,” and had a complete understanding of why each clusters took six or more weeks to go from “network-ready” to “serving live traffic.” Out of the blue, SRE received a mission from senior management: In three months, five new clusters will reach network-ready on the same day. Please turn them up in one week.

Resolving Inconsistencies Idempotently

A “One Week Turnup” was a terrifying mission. We had tens of thousands of lines of shell script owned by dozens of teams. We could quickly tell how unprepared any given cluster was, but fixing it meant that the dozens of teams would have to file hundreds of bugs, and then we had to hope that these bugs would be promptly fixed.

We realized that evolving from “Python unit tests finding misconfigurations” to “Python code fixing misconfigurations” could enable us to fix these issues faster.

The unit test already knew which cluster we were examining and the specific test that was failing, so we paired each test with a fix. If each fix was written to be idempotent, and could assume that all dependencies were met, resolving the problem should have been easy — and safe — to resolve. Requiring idempotent fixes meant teams could run their “fix script” every 15 minutes without fearing damage to the cluster’s configuration. If the DNS team’s test was blocked on the Machine Database team’s configuration of a new cluster, as soon as the cluster appeared in the database, the DNS team’s tests and fixes would start working.

Take the test shown in Figure 7-2 as an example. If TestDnsMonitoringConfigExists fails, as shown, we can call FixDnsMonitoringCreateConfig, which scrapes configuration from a database, then checks a skeleton configuration file into our revision control system. Then TestDnsMonitoringConfigExists passes on retry, and the TestDnsMonitoringConfigPushed test can be attempted. If the test fails, the FixDnsMonitoringPushConfig step runs. If a fix fails multiple times, the automation assumes that the fix failed and stops, notifying the user.

Armed with these scripts, a small group of engineers could ensure that we could go from “The network works, and machines are listed in the database” to “Serving 1% of websearch and ads traffic” in a matter of a week or two. At the time, this seemed to be the apex of automation technology.

Looking back, this approach was deeply flawed; the latency between the test, the fix, and then a second test introduced flaky tests that sometimes worked and sometimes failed. Not all fixes were naturally idempotent, so a flaky test that was followed by a fix might render the system in an inconsistent state.

[image: ProdTest for DNS Service, showing that one failed test resulted in only running one fix.]
Figure 7-2. ProdTest for DNS Service, showing that one failed test resulted in only running one fix

The Inclination to Specialize

Automation processes can vary in three respects:

	
Competence, i.e., their accuracy

	
Latency, how quickly all steps are executed when initiated

	
Relevance, or proportion of real-world process covered by automation

We began with a process that was highly competent (maintained and run by the service owners), high-latency (the service owners performed the process in their spare time or assigned it to new engineers), and very relevant (the service owners knew when the real world changed, and could fix the automation).

To reduce turnup latency, many service owning teams instructed a single “turnup team” what automation to run. The turnup team used tickets to start each stage in the turnup so that we could track the remaining tasks, and who those tasks were assigned to. If the human interactions regarding automation modules occurred between people in the same room, cluster turnups could happen in a much shorter time. Finally, we had our competent, accurate, and timely automation process!

But this state didn’t last long. The real world is chaotic: software, configuration, data, etc. changed, resulting in over a thousand separate changes a day to affected systems. The people most affected by automation bugs were no longer domain experts, so the automation became less relevant (meaning that new steps were missed) and less competent (new flags might have caused automation to fail). However, it took a while for this drop in quality to impact velocity.

Automation code, like unit test code, dies when the maintaining team isn’t obsessive about keeping the code in sync with the codebase it covers. The world changes around the code: the DNS team adds new configuration options, the storage team changes their package names, and the networking team needs to support new devices.

By relieving teams who ran services of the responsibility to maintain and run their automation code, we created ugly organizational incentives:

	
A team whose primary task is to speed up the current turnup has no incentive to reduce the technical debt of the service-owning team running the service in production later.

	
A team not running automation has no incentive to build systems that are easy to automate.

	
A product manager whose schedule is not affected by low-quality automation will always prioritize new features over simplicity and automation.

The most functional tools are usually written by those who use them. A similar argument applies to why product development teams benefit from keeping at least some operational awareness of their systems in production.

Turnups were again high-latency, inaccurate, and incompetent — the worst of all worlds. However, an unrelated security mandate allowed us out of this trap. Much of distributed automation relied at that time on SSH. This is clumsy from a security perspective, because people must have root on many machines to run most commands. A growing awareness of advanced, persistent security threats drove us to reduce the privileges SREs enjoyed to the absolute minimum they needed to do their jobs. We had to replace our use of sshd with an authenticated, ACL-driven, RPC-based Local Admin Daemon, also known as Admin Servers, which had permissions to perform those local changes. As a result, no one could install or modify a server without an audit trail. Changes to the Local Admin Daemon and the Package Repo were gated on code reviews, making it very difficult for someone to exceed their authority; giving someone the access to install packages would not let them view colocated logs. The Admin Server logged the RPC requestor, any parameters, and the results of all RPCs to enhance debugging and security audits.

Service-Oriented Cluster-Turnup

In the next iteration, Admin Servers became part of service teams’ workflows, both as related to the machine-specific Admin Servers (for installing packages and rebooting) and cluster-level Admin Servers (for actions like draining or turning up a service). SREs moved from writing shell scripts in their home directories to building peer-reviewed RPC servers with fine-grained ACLs.

Later on, after the realization that turnup processes had to be owned by the teams that owned the services fully sank in, we saw this as a way to approach cluster turnup as a Service-Oriented Architecture (SOA) problem: service owners would be responsible for creating an Admin Server to handle cluster turnup/turndown RPCs, sent by the system that knew when clusters were ready. In turn, each team would provide the contract (API) that the turnup automation needed, while still being free to change the underlying implementation. As a cluster reached “network-ready,” automation sent an RPC to each Admin Server that played a part in turning up the cluster.

We now have a low-latency, competent, and accurate process; most importantly, this process has stayed strong as the rate of change, the number of teams, and the number of services seem to double each year.

As mentioned earlier, our evolution of turnup automation followed a path:

	
Operator-triggered manual action (no automation)

	
Operator-written, system-specific automation

	
Externally maintained generic automation

	
Internally maintained, system-specific automation

	
Autonomous systems that need no human intervention

While this evolution has, broadly speaking, been a success, the Borg case study illustrates another way we have come to think of the problem of automation.

Borg: Birth of the Warehouse-Scale Computer

Another way to understand the development of our attitude toward automation, and when and where that automation is best deployed, is to consider the history of the development of our cluster management systems.6 Like MySQL on Borg, which demonstrated the success of converting manual operations to automatic ones, and the cluster turnup process, which demonstrated the downside of not thinking carefully enough about where and how automation was implemented, developing cluster management also ended up demonstrating another lesson about how automation should be done. Like our previous two examples, something quite sophisticated was created as the eventual result of continuous evolution from simpler beginnings.

Google’s clusters were initially deployed much like everyone else’s small networks of the time: racks of machines with specific purposes and heterogeneous configurations. Engineers would log in to some well-known “master” machine to perform administrative tasks; “golden” binaries and configuration lived on these masters. As we had only one colo provider, most naming logic implicitly assumed that location. As production grew, and we began to use multiple clusters, different domains (cluster names) entered the picture. It became necessary to have a file describing what each machine did, which grouped machines under some loose naming strategy. This descriptor file, in combination with the equivalent of a parallel SSH, allowed us to reboot (for example) all the search machines in one go. Around this time, it was common to get tickets like “search is done with machine x1, crawl can have the machine now.”

Automation development began. Initially automation consisted of simple Python scripts for operations such as the following:

	
Service management: keeping services running (e.g., restarts after segfaults)

	
Tracking what services were supposed to run on which machines

	
Log message parsing: SSHing into each machine and looking for regexps

Automation eventually mutated into a proper database that tracked machine state, and also incorporated more sophisticated monitoring tools. With the union set of the automation available, we could now automatically manage much of the lifecycle of machines: noticing when machines were broken, removing the services, sending them to repair, and restoring the configuration when they came back from repair.

But to take a step back, this automation was useful yet profoundly limited, due to the fact that abstractions of the system were relentlessly tied to physical machines. We needed a new approach, hence Borg [Ver15] was born: a system that moved away from the relatively static host/port/job assignments of the previous world, toward treating a collection of machines as a managed sea of resources. Central to its success — and its conception — was the notion of turning cluster management into an entity for which API calls could be issued, to some central coordinator. This liberated extra dimensions of efficiency, flexibility, and reliability: unlike the previous model of machine “ownership,” Borg could allow machines to schedule, for example, batch and user-facing tasks on the same machine.

This functionality ultimately resulted in continuous and automatic operating system upgrades with a very small amount of constant7 effort — effort that does not scale with the total size of production deployments. Slight deviations in machine state are now automatically fixed; brokenness and lifecycle management are essentially no-ops for SRE at this point. Thousands of machines are born, die, and go into repairs daily with no SRE effort. To echo the words of Ben Treynor Sloss: by taking the approach that this was a software problem, the initial automation bought us enough time to turn cluster management into something autonomous, as opposed to automated. We achieved this goal by bringing ideas related to data distribution, APIs, hub-and-spoke architectures, and classic distributed system software development to bear upon the domain of infrastructure management.

An interesting analogy is possible here: we can make a direct mapping between the single machine case and the development of cluster management abstractions. In this view, rescheduling on another machine looks a lot like a process moving from one CPU to another: of course, those compute resources happen to be at the other end of a network link, but to what extent does that actually matter? Thinking in these terms, rescheduling looks like an intrinsic feature of the system rather than something one would “automate” — humans couldn’t react fast enough anyway. Similarly in the case of cluster turnup: in this metaphor, cluster turnup is simply additional schedulable capacity, a bit like adding disk or RAM to a single computer. However, a single-node computer is not, in general, expected to continue operating when a large number of components fail. The global computer is — it must be self-repairing to operate once it grows past a certain size, due to the essentially statistically guaranteed large number of failures taking place every second. This implies that as we move systems up the hierarchy from manually triggered, to automatically triggered, to autonomous, some capacity for self-introspection is necessary to survive.

Reliability Is the Fundamental Feature

Of course, for effective troubleshooting, the details of internal operation that
the introspection relies upon should also be exposed to the humans managing the
overall system. Analogous discussions about the impact of automation in the
noncomputer domain — for example, in airplane
flight8
or industrial applications — often point out the downside of highly effective
automation:9
human operators are progressively more relieved of useful direct contact with the
system as the automation covers more and more daily activities over time. Inevitably, then, a situation arises in which the automation fails, and the humans are now unable to successfully operate the system. The fluidity of their reactions has been lost due to lack of practice, and their mental models of what the system should be doing no longer reflect the reality of what it is doing.10 This situation arises more when the system
is nonautonomous — i.e., where automation replaces manual actions, and the
manual actions are presumed to be always performable and available just as they were before. Sadly, over time, this ultimately becomes
false: those manual actions are not always performable because the functionality
to permit them no longer exists.

We, too, have experienced situations where automation has been actively harmful on a number of occasions — see “Automation: Enabling Failure at Scale” — but in Google’s experience, there are more systems for which automation or autonomous behavior are no longer optional extras. As you scale, this is of course the case, but there are still strong arguments for more autonomous behavior of systems irrespective of size. Reliability is the fundamental feature, and autonomous, resilient behavior is one useful way to get that.

Recommendations

You might read the examples in this chapter and decide that you need to be
Google-scale before you have anything to do with automation whatsoever. This is untrue, for two reasons: automation provides more
than just time saving, so
it’s worth implementing in more cases than a simple time-expended versus time-saved
calculation might suggest. But the approach with the highest leverage actually
occurs in the design phase: shipping and iterating rapidly might allow you to implement
functionality faster, yet rarely makes for a resilient system. Autonomous operation
is difficult to convincingly retrofit to sufficiently large systems, but standard
good practices in software engineering will help considerably: having decoupled subsystems,
introducing APIs, minimizing side effects, and so on.

Automation: Enabling Failure at Scale

Google runs over a dozen of its own large datacenters, but we also depend on
machines in many third-party colocation facilities (or “colos”). Our machines in these
colos are used to terminate most incoming connections, or as a cache for our own Content
Delivery Network, in order to lower end-user latency. At any point in time, a number of these racks are being installed or decommissioned; both of these processes are largely automated. One step during decommission involves
overwriting the full content of the disk of all the machines in the rack,
after which point an independent system verifies the successful erase. We
call this process “Diskerase.”

Once upon a time, the automation in charge of decommissioning a particular
rack failed, but only after the Diskerase step had completed successfully.
Later, the decommission process was restarted from the beginning, to debug
the failure. On that iteration, when trying to send the set of machines in
the rack to Diskerase, the automation determined that the set of machines
that still needed to be Diskerased was (correctly) empty. Unfortunately,
the empty set was used as a special value, interpreted to mean “everything.”
This means the automation sent almost all the machines we have in all colos
to Diskerase.

Within minutes, the highly efficient Diskerase wiped the disks on all machines
in our CDN, and the machines were no longer able to terminate connections
from users (or do anything else useful). We were still able to serve all
the users from our own datacenters, and after a few minutes the only effect
visible externally was a slight increase in latency. As far as we could tell,
very few users noticed the problem at all, thanks to good capacity planning
(at least we got that right!). Meanwhile, we spent the better part of two
days reinstalling the machines in the affected colo racks; then we spent the
following weeks auditing and adding more sanity checks — including
rate limiting — into our automation, and making our decommission workflow idempotent.

1 For readers who already feel they precisely understand the value of automation, skip ahead to “The Value for Google SRE”. However, note that our description contains some nuances that might be useful to keep in mind while reading the rest of the chapter.
2 The expertise acquired in building such automation is also valuable in itself; engineers both deeply understand the existing processes they have automated and can later automate novel processes more quickly.
3 See the following XKCD cartoon: http://xkcd.com/1205/.
4 See, for example, http://blog.engineyard.com/2014/pets-vs-cattle.
5 Of course, not every system that needs to be managed actually provides callable APIs for management — forcing some tooling to use, e.g., CLI invocations or automated website clicks.
6 We have compressed and simplified this history to aid understanding.
7 As in a small, unchanging number.
8 See, e.g., https://en.wikipedia.org/wiki/Air_France_Flight_447.
9 See, e.g., [Bai83] and [Sar97].
10 This is yet another good reason for regular practice drills; see “Disaster Role Playing”.

Chapter 8. Release Engineering

Written by Dinah McNutt

Edited by Betsy Beyer and Tim Harvey

Release engineering is a relatively new and fast-growing discipline of
software engineering that can be concisely described as building and
delivering software [McN14a]. Release engineers have a solid (if not
expert) understanding of source code management, compilers, build
configuration languages, automated build tools, package managers, and
installers. Their skill set includes deep knowledge of multiple
domains: development, configuration management, test integration,
system administration, and customer support.

Running reliable services requires reliable release processes. Site
Reliability Engineers (SREs) need to know that the binaries and
configurations they use are built in a reproducible, automated way so
that releases are repeatable and aren’t “unique snowflakes.” Changes
to any aspect of the release process should be intentional, rather
than accidental. SREs care about this process from source code to
deployment.

Release engineering is a specific job function at Google. Release
engineers work with software engineers (SWEs) in product development
and SREs to define all the steps required to release software — from how
the software is stored in the source code repository, to build rules
for compilation, to how testing, packaging, and deployment are
conducted.

The Role of a Release Engineer

Google is a data-driven company and release engineering follows
suit. We have tools that report on a host of metrics, such as how much
time it takes for a code change to be deployed into production (in
other words, release velocity) and statistics on what features are
being used in build configuration files [Ada15]. Most of these tools were
envisioned and developed by release engineers.

Release engineers define best practices for using our tools in order
to make sure projects are released using consistent and repeatable
methodologies. Our best practices cover all elements of the release
process. Examples include compiler flags, formats for build
identification tags, and required steps during a build. Making sure
that our tools behave correctly by default and are adequately
documented makes it easy for teams to stay focused on features and users,
rather than spending time reinventing the wheel (poorly) when it comes
to releasing software.

Google has a large number of SREs who are charged with safely
deploying products and keeping Google services up and running. In
order to make sure our release processes meet business requirements,
release engineers and SREs work together to develop strategies for
canarying changes, pushing out new releases without interrupting
services, and rolling back features that demonstrate problems.

Philosophy

Release engineering is guided by an engineering and service philosophy
that’s expressed through four major principles, detailed in the following sections.

Self-Service Model

In order to work at scale, teams must be self-sufficient. Release
engineering has developed best practices and tools that allow our
product development teams to control and run their own release
processes. Although we have thousands of engineers and products, we
can achieve a high release velocity because individual teams can
decide how often and when to release new versions of their
products. Release processes can be automated to the point that they require
minimal involvement by the engineers, and many projects are
automatically built and released using a combination of our automated
build system and our deployment tools. Releases are truly automatic,
and only require engineer involvement if and when problems arise.

High Velocity

User-facing software (such as many components of Google Search) is
rebuilt frequently, as we aim to roll out customer-facing features as
quickly as possible. We have embraced the philosophy that frequent
releases result in fewer changes between versions. This approach makes
testing and troubleshooting easier. Some teams perform hourly builds
and then select the version to actually deploy to production from the
resulting pool of builds. Selection is based upon the test results and
the features contained in a given build. Other teams have adopted a
“Push on Green” release model and deploy every build that passes all
tests [Kle14].

Hermetic Builds

Build tools must allow us to ensure consistency and repeatability. If
two people attempt to build the same product at the same revision
number in the source code repository on different machines, we expect
identical results.1 Our builds are hermetic, meaning that they are
insensitive to the libraries and other software installed on the build
machine. Instead, builds depend on known versions of build tools, such as
compilers, and dependencies, such as libraries. The build process is
self-contained and must not rely on services that are external to the
build environment.

Rebuilding older releases when we need to fix a bug in software that’s
running in production can be a challenge. We accomplish this task by
rebuilding at the same revision as the original build and including
specific changes that were submitted after that point in time. We call
this tactic cherry picking. Our build tools are themselves versioned
based on the revision in the source code repository for the project
being built. Therefore, a project built last month won’t use this
month’s version of the compiler if a cherry pick is required, because that
version may contain incompatible or undesired features.

Enforcement of Policies and Procedures

Several layers of security and access control determine who can
perform specific operations when releasing a project. Gated operations
include:

	
Approving source code changes — this operation is managed through
configuration files scattered throughout the codebase

	
Specifying the actions to be performed during the release process

	
Creating a new release

	
Approving the initial integration proposal (which is a request to perform a build at a specific
revision number in the source code repository) and subsequent cherry picks

	
Deploying a new release

	
Making changes to a project’s build configuration

Almost all changes to the codebase require a code review, which is a
streamlined action integrated into our normal developer workflow. Our
automated release system produces a report of all changes contained in
a release, which is archived with other build artifacts. By allowing
SREs to understand what changes are included in a new release of a
project, this report can expedite troubleshooting when there are
problems with a release.

Continuous Build and Deployment

Google has developed an automated release system called
Rapid. Rapid is a system that leverages a number of Google
technologies to provide a framework that delivers scalable, hermetic,
and reliable releases. The following sections describe the software lifecycle at Google and how it is managed using Rapid and other associated tools.

Building

Blaze2 is Google’s build tool of
choice. It supports building binaries from a range of languages,
including our standard languages of C++, Java, Python, Go, and
JavaScript. Engineers use Blaze to define build targets (e.g., the
output of a build, such as a JAR file), and to specify the
dependencies for each target. When performing a build, Blaze
automatically builds the dependency targets.

Build targets for binaries and unit tests are defined in Rapid’s
project configuration files. Project-specific flags, such as a unique
build identifier, are passed by Rapid to Blaze. All binaries support a
flag that displays the build date, the revision number, and the build
identifier, which allow us to easily associate a binary to a record of
how it was built.

Branching

All code is checked into the main branch of the source code tree
(mainline). However, most major projects don’t release directly from
the mainline. Instead, we branch from the mainline at a specific
revision and never merge changes from the branch back into the
mainline. Bug fixes are submitted to the mainline and then cherry
picked into the branch for inclusion in the release. This practice
avoids inadvertently picking up unrelated changes submitted to the
mainline since the original build occurred. Using this branch and
cherry pick method, we know the exact contents of each release.

Testing

A continuous test system runs unit tests against the code in the
mainline each time a change is submitted, allowing us to detect build and test failures quickly. Release engineering recommends that the continuous build test targets correspond to the
same test targets that gate the project release. We also recommend
creating releases at the revision number (version) of the last continuous test build
that successfully completed all tests. These measures decrease the chance that subsequent changes made to the mainline will cause failures during the build performed at release time.

During the release process, we re-run the unit tests using the release
branch and create an audit trail showing that all the tests
passed. This step is important because if a release involves cherry
picks, the release branch may contain a version of the code that
doesn’t exist anywhere on the mainline. We want to guarantee that the
tests pass in the context of what’s actually being released.

To complement the continuous test system, we use an independent
testing environment that runs system-level tests on packaged build
artifacts. These tests can be launched manually or from Rapid.

Packaging

Software is distributed to our production machines via the Midas
Package Manager (MPM) [McN14c]. MPM assembles packages based on Blaze
rules that list the build artifacts to include, along with their
owners and permissions. Packages are named
(e.g., search/shakespeare/frontend), versioned with a unique hash,
and signed to ensure authenticity. MPM supports applying labels to a
particular version of a package. Rapid applies a label containing the
build ID, which guarantees that a package can be uniquely referenced
using the name of the package and this label.

Labels can be applied to an MPM package to indicate a package’s
location in the release process (e.g., dev, canary, or
production). If you apply an existing label to a new package, the
label is automatically moved from the old package to the new
package. For example: if a package is labeled as canary, someone
subsequently installing the canary version of that package will
automatically receive the newest version of the package with the label
canary.

Rapid

Figure 8-1 shows the main components of the Rapid system. Rapid is configured with files called blueprints. Blueprints are
written in an internal configuration language and are used to define
build and test targets, rules for deployment, and administrative
information (like project owners). Role-based access control lists
determine who can perform specific actions on a Rapid project.

[image: Simplified view of Rapid architecture showing the main components of the system.]
Figure 8-1. Simplified view of Rapid architecture showing the main components of the system

Each Rapid project has workflows that define the actions to perform
during the release process. Workflow actions can be performed serially
or in parallel, and a workflow can launch other workflows. Rapid
dispatches work requests to tasks running as a Borg job on our
production servers. Because Rapid uses our production infrastructure,
it can handle thousands of release requests simultaneously.

A typical release process proceeds as follows:

	
Rapid uses the requested integration revision number (often
obtained automatically from our continuous test system) to create a
release branch.

	
Rapid uses Blaze to compile all the binaries and execute the unit
tests, often performing these two steps in parallel. Compilation and
testing occur in environments dedicated to those specific tasks, as
opposed to taking place in the Borg job where the Rapid workflow is
executing. This separation allows us to parallelize work easily.

	
Build artifacts are then available for system testing and canary
deployments. A typical canary deployment involves starting a few jobs
in our production environment after the completion of system tests.

	
The results of each step of the process are logged. A report of all
changes since the last release is created.

Rapid allows us to manage our release branches and cherry picks;
individual cherry pick requests can be approved or rejected for
inclusion in a release.

Deployment

Rapid is often used to drive simple deployments directly. It updates
the Borg jobs to use newly built MPM packages based on deployment
definitions in the blueprint files and specialized task executors.

For more complicated deployments, we use Sisyphus, which is a
general-purpose rollout automation framework developed by SRE. A rollout is a logical unit of work that is composed of one or more individual tasks. Sisyphus
provides a set of Python classes that can be extended to support any
deployment process. It has a dashboard that allows for finer
control on how the rollout is performed and provides a way to monitor
the rollout’s progress.

In a typical integration, Rapid creates a rollout in a long-running
Sisyphus job. Rapid knows the build label associated with the MPM package it
created, and can specify that build label when creating the rollout in
Sisyphus. Sisyphus uses the build label to specify which version of
the MPM packages should be deployed.

With Sisyphus, the rollout process can be as simple or complicated as
necessary. For example, it can update all the associated jobs
immediately or it can roll out a new binary to successive clusters
over a period of several hours.

Our goal is to fit the deployment process to the risk profile of a
given service. In development or pre-production environments, we may
build hourly and push releases automatically when all tests pass. For
large user-facing services, we may push by starting in one cluster and
expand exponentially until all clusters are updated. For sensitive
pieces of infrastructure, we may extend the rollout over several days,
interleaving them across instances in different geographic regions.

Configuration Management

Configuration management is one area of particularly close
collaboration between release engineers and SREs. Although
configuration management may initially seem a deceptively simple
problem, configuration changes are a potential source of
instability. As a result, our approach to releasing and managing
system and service configurations has evolved substantially over
time. Today we use several models for distributing configuration
files, as described in the following paragraphs. All schemes involve
storing configuration in our primary source code repository and
enforcing a strict code review requirement.

Use the mainline for configuration. This was the first method used
 to configure services in Borg (and the systems that pre-dated
 Borg). Using this scheme, developers and SREs modify configuration
 files at the head of the main branch. The changes are reviewed and
 then applied to the running system. As a result, binary releases and
 configuration changes are decoupled. While conceptually and
 procedurally simple, this technique often leads to skew between the
 checked-in version of the configuration files and the running version of
 the configuration file because jobs must be updated in order to pick
 up the changes.

Include configuration files and binaries in the same MPM package. For
 projects with few configuration files or projects where the files (or
 a subset of files) change with each release cycle, the configuration
 files can be included in the MPM package with the binaries. While this
 strategy limits flexibility by binding the binary and configuration
 files tightly, it simplifies deployment, because it only requires
 installing one package.

Package configuration files into MPM “configuration packages.” We
 can apply the hermetic principle to configuration management. Binary
 configurations tend to be tightly bound to particular versions of
 binaries, so we leverage the build and packaging systems to snapshot
 and release configuration files alongside their binaries. Similar to
 our treatment of binaries, we can use the build ID to reconstruct the
 configuration at a specific point in time.

For example, a change that implements a new feature can be released
with a flag setting that configures that feature. By generating two
MPM packages, one for the binary and one for the configuration, we
retain the ability to change each package independently. That is, if
the feature was released with a flag setting of first_folio but we
realize it should instead be bad_quarto, we can cherry pick that
change onto the release branch, rebuild the configuration package, and
deploy it. This approach has the advantage of not requiring a new
binary build.

We can leverage MPM’s labeling feature to indicate which versions of
MPM packages should be installed together. A label of much_ado can be
applied to the MPM packages described in the previous paragraph, which allows us to fetch both packages using this label. When a new version of the project is built, the much_ado
label will be applied to the new packages. Because these tags are unique within the namespace for an MPM package, only the latest package with that tag will be used.

Read configuration files from an external store. Some projects have
 configuration files that need to change frequently or dynamically
 (i.e., while the binary is running). These files can be stored in
 Chubby, Bigtable, or our source-based filesystem [Kem11].

In summary, project owners consider the different options for
distributing and managing configuration files and decide which works
best on a case-by-case basis.

Conclusions

While this chapter has specifically discussed Google’s approach to
release engineering and the ways in which release engineers work and
collaborate with SREs, these practices can also be applied more
widely.

It’s Not Just for Googlers

When equipped with the right tools, proper automation, and well-defined policies, developers
and SREs shouldn’t have to worry about releasing software. Releases
can be as painless as simply pressing a button.

Most companies deal with the same set of release engineering problems regardless of their size or the tools they use: How should you handle versioning of
your packages? Should you use a continuous build and deploy model, or
perform periodic builds? How often should you release? What configuration management policies should you use? What release metrics are of interest?

Google Release Engineers have developed our own tools out of necessity because open sourced or vendor-supplied tools don’t work at the scale we require. Custom tools allow us to include functionality to support (and even enforce) release process policies. However, these policies must first be defined in order to add appropriate features to our tools, and all companies should take the effort to define their release processes whether or not the processes can be automated and/or enforced.

Start Release Engineering at the Beginning

Release engineering has often been an afterthought, and this way of
thinking must change as platforms and services continue to grow in
size and complexity.

Teams should budget for release engineering resources at the beginning
of the product development cycle. It’s cheaper to put good practices
and process in place early, rather than have to retrofit your system
later.

It is essential that the developers, SREs, and release engineers work
together. The release engineer needs to understand the intention of
how the code should be built and deployed. The developers shouldn’t
build and “throw the results over the fence” to be handled by the
release engineers.

Individual project teams decide when release engineering
becomes involved in a project. Because release engineering is still a
relatively young discipline, managers don’t always plan and budget for
release engineering in the early stages of a project. Therefore, when
considering how to incorporate release engineering practices, be sure
that you consider its role as applied to the entire lifecycle of your
product or service — particularly the early stages.

More Information

For more information on release engineering, see the following
presentations, each of which has video available online:

	
How Embracing Continuous Release Reduced Change Complexity, USENIX Release Engineering Summit West 2014, [Dic14]

	
Maintaining
Consistency in a Massively Parallel Environment, USENIX
Configuration Management Summit 2013, [McN13]

	
The 10 Commandments of
Release Engineering, 2nd International Workshop on Release
Engineering 2014, [McN14b]

	
Distributing
Software in a Massively Parallel Environment, LISA 2014, [McN14c]

1 Google uses a monolithic unified source code repository; see [Pot16].
2 Blaze has been open sourced as Bazel. See “Bazel FAQ” on the Bazel website, http://bazel.io/faq.html.

Chapter 9. Simplicity

Written by Max Luebbe

Edited by Tim Harvey

The price of reliability is the pursuit of the utmost simplicity.

C.A.R. Hoare, Turing Award lecture

Software systems are inherently dynamic and unstable.1 A software
system can only be perfectly stable if it exists in a vacuum. If we
stop changing the codebase, we stop introducing bugs. If the
underlying hardware or libraries never change, neither of these
components will introduce bugs. If we freeze the current user base,
we’ll never have to scale the system. In fact, a good summary of the
SRE approach to managing systems is: “At the end of the day, our
job is to keep agility and stability in balance in the
system.”2

System Stability Versus Agility

It sometimes makes sense to
sacrifice stability for the sake of agility. I’ve often approached an
unfamiliar problem domain by conducting what I call exploratory
coding — setting an explicit shelf life for whatever code I write with
the understanding that I’ll need to try and fail once in order to
really understand the task I need to accomplish. Code that comes with
an expiration date can be much more liberal with test coverage and
release management because it will never be shipped to production or
be seen by users.

For the majority of production software systems, we want a balanced
mix of stability and agility. SREs work to create procedures,
practices, and tools that render software more reliable. At the same
time, SREs ensure that this work has as little impact on developer
agility as possible. In fact, SRE’s experience has found that reliable
processes tend to actually increase developer agility: rapid, reliable
production rollouts make changes in production easier to see. As a
result, once a bug surfaces, it takes less time to find and fix that
bug. Building reliability into development allows developers to focus
their attention on what we really do care about — the functionality and
performance of their software and systems.

The Virtue of Boring

Unlike just about everything else in life,
“boring” is actually a positive attribute when it comes to
software! We don’t want our programs to be spontaneous and
interesting; we want them to stick to the script and predictably
accomplish their business goals. In the words of Google engineer Robert Muth, “Unlike a detective story, the lack of
excitement, suspense, and puzzles is actually a desirable property of
source code.” Surprises in production are the
nemeses of SRE.

As Fred Brooks suggests in his “No Silver Bullet” essay
[Bro95], it is very important to consider the difference
between essential complexity and accidental complexity. Essential
complexity is the complexity inherent in a given situation that cannot
be removed from a problem definition, whereas accidental complexity is
more fluid and can be resolved with engineering effort. For example,
writing a web server entails dealing with the essential complexity of
serving web pages quickly. However, if we write a web server in Java,
we may introduce accidental complexity when trying to minimize the
performance impact of garbage collection.

With an eye towards minimizing accidental complexity, SRE teams should:

	
Push back when accidental complexity is introduced into the systems
for which they are responsible

	
Constantly strive to eliminate
complexity in systems they onboard and for which they assume
operational responsibility

I Won’t Give Up My Code!

Because engineers are human beings who often
form an emotional attachment to their creations, confrontations over
large-scale purges of the source tree are not uncommon. Some might
protest, “What if we need that code later?” “Why don’t we
just comment the code out so we can easily add it again later?” or
“Why don’t we gate the code with a flag instead of deleting
it?” These are all terrible suggestions. Source control systems
make it easy to reverse changes, whereas hundreds of lines of
commented code create distractions and confusion (especially as the
source files continue to evolve), and code that is never executed,
gated by a flag that is always disabled, is a metaphorical time bomb
waiting to explode, as painfully experienced by Knight Capital, for example (see
“Order In the Matter of Knight Capital Americas LLC” [Sec13]).

At the risk of sounding
extreme, when you consider a web service that’s expected to be
available 24/7, to some extent, every new line of code written is a
liability. SRE promotes practices that make it more likely that all code has an
essential purpose, such as scrutinizing code to make
sure that it actually drives business goals, routinely removing dead
code, and building bloat detection into all levels of testing.

The “Negative Lines of Code” Metric

The term “software bloat” was coined to describe the tendency of
software to become slower and bigger over time as a result of a
constant stream of additional features. While bloated software seems
intuitively undesirable, its negative aspects become even more clear
when considered from the SRE perspective: every line of code changed
or added to a project creates the potential for introducing new
defects and bugs. A smaller project is easier to understand, easier to
test, and frequently has fewer defects. Bearing this perspective in
mind, we should perhaps entertain reservations when we have the urge
to add new features to a project. Some of the most satisfying coding
I’ve ever done was deleting thousands of lines of code at a time
when it was no longer useful.

Minimal APIs

French poet Antoine de Saint
Exupery wrote, “perfection is finally attained not when
there is no longer more to add, but when there is no longer anything
to take away” [Sai39]. This principle is also
applicable to the design and construction of software. APIs are a
particularly clear expression of why this rule should be followed.

Writing clear, minimal APIs is an essential aspect of managing
simplicity in a software system. The fewer methods and arguments we
provide to consumers of the API, the easier that API will be to
understand, and the more effort we can devote to making those methods
as good as they can possibly be. Again, a recurring theme appears: the
conscious decision to not take on certain problems allows us to focus
on our core problem and make the solutions we explicitly set out to
create substantially better. In software, less is more! A small, simple
API is usually also a hallmark of a well-understood problem.

Modularity

Expanding outward from APIs and single binaries, many of the rules of
thumb that apply to object-oriented programming also apply to the
design of distributed systems. The ability to make changes to parts
of the system in isolation is essential to creating a supportable
system. Specifically, loose coupling between binaries, or between
binaries and configuration, is a simplicity pattern that
simultaneously promotes developer agility and system stability. If a
bug is discovered in one program that is a component of a larger
system, that bug can be fixed and pushed to production independent of
the rest of the system.

While the modularity that APIs offer may seem straightforward, it is
not so apparent that the notion of modularity also extends to how
changes to APIs are introduced. Just a single change to an API can
force developers to rebuild their entire system and run the risk of
introducing new bugs. Versioning APIs allows developers to continue
to use the version that their system depends upon while they upgrade to
a newer version in a safe and considered way. The release cadence can
vary throughout a system, instead of requiring a full production push
of the entire system every time a feature is added or improved.

As a system grows more complex, the separation of responsibility
between APIs and between binaries becomes increasingly important. This
is a direct analogy to object-oriented class design: just as it is
understood that it is poor practice to write a “grab bag” class that
contains unrelated functions, it is also poor practice to create and
put into production a “util” or “misc” binary. A well-designed
distributed system consists of collaborators, each of which has a
clear and well-scoped purpose.

The concept of modularity also applies to data formats. One of the
central strengths and design goals of Google’s protocol
buffers3
was to create a wire
format that was backward and forward compatible.

Release Simplicity

Simple releases are generally better than complicated releases. It is
much easier to measure and understand the impact of a single change
rather than a batch of changes released simultaneously. If we release
100 unrelated changes to a system at the same time and performance
gets worse, understanding which changes impacted performance, and how
they did so, will take considerable effort or additional
instrumentation. If the release is performed in smaller batches, we
can move faster with more confidence because each code change can be
understood in isolation in the larger system. This approach to
releases can be compared to gradient descent in machine learning, in
which we find an optimum solution by taking small steps at a time,
and considering if each change results in an improvement or
degradation.

A Simple Conclusion

This chapter has repeated one theme over and
over: software simplicity is a prerequisite to reliability. We are not
being lazy when we consider how we might simplify each step of a given
task. Instead, we are clarifying what it is we actually want to
accomplish and how we might most easily do so. Every time we say
“no” to a feature, we are not restricting
innovation; we are keeping the environment uncluttered of distractions
so that focus remains squarely on innovation, and real engineering can
proceed.

1 This is often true of complex systems in general; see [Per99] and [Coo00].
2 Coined by my former manager, Johan Anderson, around the time I became an SRE.
3 Protocol buffers, also referred to as “protobufs,” are a language-neutral, platform-neutral extensible mechanism for serializing structured data. For more details, see https://developers.google.com/protocol-buffers/docs/overview#a-bit-of-history.

Part III. Practices

Put simply, SREs run services — a set of related systems, operated
for users, who may be internal or external — and are ultimately responsible for
the health of these services. Successfully operating a service entails a wide
range of activities: developing monitoring systems, planning capacity,
responding to incidents, ensuring the root causes of outages are addressed, and
so on. This section addresses the theory and practice of an SRE’s day-to-day
activity: building and operating large distributed computing systems.

We can characterize the health of a service — in much the same way that Abraham
Maslow categorized human needs [Mas43] — from the most basic requirements
needed for a system to function as a service at all to the higher levels of
function — permitting self-actualization and taking active control of the
direction of the service rather than reactively fighting fires. This
understanding is so fundamental to how we evaluate services at Google that it
wasn’t explicitly developed until a number of Google SREs, including our former
colleague Mikey Dickerson,1 temporarily joined the radically different culture of the United
States government to help with the launch of healthcare.gov in late 2013 and
early 2014: they needed a way to explain how to increase systems’ reliability.

We’ll use this hierarchy, illustrated in Figure III-1, to look at the elements that go into making a service
reliable, from most basic to most advanced.

[image: Service Reliability Hierarchy.]
Figure III-1. Service Reliability Hierarchy

Monitoring

Without monitoring, you have no way to tell whether the service is even
working; absent a thoughtfully designed monitoring infrastructure,
you’re flying blind. Maybe everyone who tries to use the website gets an
error, maybe not — but you want to be aware of problems before your users
notice them. We discuss tools and philosophy in Chapter 10, Practical Alerting from Time-Series Data.

Incident Response

SREs don’t go on-call merely for the sake of it: rather, on-call support is a
tool we use to achieve our larger mission and remain in touch with how
distributed computing systems actually work (and fail!). If we could find a way
to relieve ourselves of carrying a pager, we would. In Chapter 11, Being On-Call, we explain how we balance on-call duties with
our other responsibilities.

Once you’re aware that there is a problem, how do you make it go away? That
doesn’t necessarily mean fixing it once and for all — maybe you can stop the
bleeding by reducing the system’s precision or turning off some features
temporarily, allowing it to gracefully degrade, or maybe you can direct traffic
to another instance of the service that’s working properly. The details of the
solution you choose to implement are necessarily specific to your service and
your organization. Responding effectively to incidents, however, is something
applicable to all teams.

Figuring out what’s wrong is the first step; we offer a structured approach in Chapter 12, Effective Troubleshooting.

During an incident, it’s often tempting to give in to adrenalin and start
responding ad hoc. We advise against this temptation in Chapter 13, Emergency Response, and
counsel in Chapter 14, Managing Incidents, that managing incidents effectively should
reduce their impact and limit outage-induced anxiety.

Postmortem and Root-Cause Analysis

We aim to be alerted on and manually solve only new and exciting problems
presented by our service; it’s woefully boring to “fix” the same issue
over and over. In fact, this mindset is one of the key differentiators between
the SRE philosophy and some more traditional operations-focused environments.
This theme is explored in two chapters.

Building a blameless postmortem culture is the
first step in understanding what went wrong (and what went right!), as described in Chapter 15, Postmortem Culture: Learning from Failure.

Related to that discussion, in Chapter 16, Tracking Outages, we briefly describe an internal tool, the
outage tracker, that allows SRE teams to keep track of
recent production incidents, their causes, and actions taken in response to
them.

Testing

Once we understand what tends to go wrong, our next step is attempting to prevent it, because an ounce of prevention is worth a pound of cure. Test suites offer
some assurance that our software isn’t making certain classes of errors before
it’s released to production; we talk about how best to use these in Chapter 17, Testing for Reliability.

Capacity Planning

In Chapter 18, Software Engineering in SRE, we offer a case study of software engineering in SRE with Auxon, a tool for
automating capacity planning.

Naturally following capacity planning, load balancing ensures we’re properly using the capacity we’ve built. We discuss how requests to our
services get sent to datacenters in Chapter 19, Load Balancing at the Frontend. Then we continue the
discussion in Chapter 20, Load Balancing in the Datacenter and Chapter 21, Handling Overload, both of which are essential for ensuring service reliability.

Finally, in Chapter 22, Addressing Cascading Failures, we offer advice for addressing
cascading failures, both in system design and should your
service be caught in a cascading failure.

Development

One of the key aspects of Google’s approach to Site Reliability Engineering is
that we do significant large-scale system design and software engineering work
within the organization.

In Chapter 23, Managing Critical State: Distributed Consensus for Reliability, we explain distributed consensus,
which (in the guise of Paxos) is at the core of many of Google’s distributed
systems, including our globally distributed Cron system. In Chapter 24, Distributed Periodic Scheduling with Cron, we outline a system that scales
to whole datacenters and beyond, which is no easy task.

Chapter 25, Data Processing Pipelines, discusses the
various forms that data processing pipelines can take: from one-shot MapReduce
jobs running periodically to systems that operate in near real-time. Different
architectures can lead to surprising and counterintuitive challenges.

Making sure that the data you stored is still there when you want to read it is
the heart of data integrity; in Chapter 26, Data Integrity: What You Read Is What You Wrote, we
explain how to keep data safe.

Product

Finally, having made our way up the reliability pyramid, we find ourselves at
the point of having a workable product. In Chapter 27, Reliable Product Launches at Scale, we
write about how Google does reliable product launches at
scale to try to give users the best possible experience starting from Day
Zero.

Further Reading from Google SRE

As discussed previously, testing is subtle, and its improper execution can have large effects on overall stability. In an ACM article
[Kri12], we explain how Google performs company-wide resilience testing to
ensure we’re capable of weathering the unexpected should a zombie apocalypse or
other disaster strike.

While it’s often thought of as a dark art, full of mystifying
spreadsheets divining the future, capacity planning is nonetheless
vital, and as [Hix15a] shows, you don’t actually need a crystal
ball to do it right.

Finally, an interesting and new approach to corporate network security
is detailed in [War14], an initiative to replace privileged
intranets with device and user credentials. Driven by SREs at the
infrastructure level, this is definitely an approach to keep in mind
when you’re creating your next network.

1 Mikey left Google in summer 2014 to become the first administrator of the US Digital Service (https://www.whitehouse.gov/digital/united-states-digital-service), an agency intended (in part) to bring SRE principles and practices to the US government’s IT systems.

Chapter 10. Practical Alerting from Time-Series Data

Written by Jamie Wilkinson

Edited by Kavita Guliani

May the queries flow, and the pager stay silent.

Traditional SRE blessing

Monitoring, the
bottom layer of the Hierarchy of Production Needs, is fundamental to
running a stable service. Monitoring enables service owners to make
rational decisions about the impact of changes to the service, apply
the scientific method to incident response, and of course ensure their
reason for existence: to measure the service’s alignment with business
goals (see Chapter 6).

Regardless of whether or not a service enjoys SRE support, it should
be run in a symbiotic relationship with its monitoring. But having
been tasked with ultimate responsibility for Google Production, SREs
develop a particularly intimate knowledge of the monitoring
infrastructure that supports their service.

Monitoring a very large system is challenging for a couple of reasons:

	
The sheer number of components being analyzed

	
The need to maintain a reasonably low maintenance burden on the
engineers responsible for the system

Google’s monitoring systems don’t just measure simple metrics, such as
the average response time of an unladen European web server; we also
need to understand the distribution of those response times across all
web servers in that region. This knowledge enables us to identify the
factors contributing to the latency tail.

At the scale our systems operate, being alerted for single-machine
failures is unacceptable because such data is too noisy to be actionable.
Instead we try to build systems that are robust against failures in
the systems they depend on. Rather than requiring management of many
individual components, a large system should be designed to aggregate
signals and prune outliers. We need monitoring systems that allow us
to alert for high-level service objectives, but retain the granularity
to inspect individual components as needed.

Google’s monitoring systems evolved over the course of 10 years from
the traditional model of custom scripts that check responses and
alert, wholly separated from visual display of trends, to a new
paradigm. This new model made the collection of time-series a first-class role of the monitoring system, and replaced those check scripts
with a rich language for manipulating time-series into charts and
alerts.

The Rise of Borgmon

Shortly after the job scheduling infrastructure Borg [Ver15] was
created in 2003, a new monitoring system — Borgmon — was built to
complement it.

Time-Series Monitoring Outside of Google

This chapter describes the architecture and programming interface of
an internal monitoring tool that was foundational for the growth and
reliability of Google for almost 10 years…but how does that help
you, our dear reader?

In recent years, monitoring has undergone a Cambrian Explosion:
Riemann, Heka, Bosun, and Prometheus have emerged as open source tools
that are very similar to Borgmon’s time-series–based alerting. In
particular, Prometheus1 shares many similarities with Borgmon,
especially when you compare the two rule languages. The principles of
variable collection and rule evaluation remain the same across all
these tools and provide an environment with which you can experiment,
and hopefully launch into production, the ideas inspired by this
chapter.

Instead of executing custom scripts to detect system failures, Borgmon
relies on a common data exposition format; this enables mass data
collection with low overheads and avoids the costs of subprocess
execution and network connection setup. We call this white-box
monitoring (see Chapter 6 for a comparison of white-box
and black-box monitoring).

The data is used both for rendering charts and creating alerts, which
are accomplished using simple arithmetic. Because collection is no longer
in a short-lived process, the history of the collected data can be
used for that alert computation as well.

These features help to meet the goal of simplicity described in
Chapter 6. They allow the system overhead to be kept low
so that the people running the services can remain agile and respond
to continuous change in the system as it grows.

To facilitate mass collection, the metrics format had to be
standardized. An older method of exporting the internal state (known
as varz)2 was formalized to allow the collection of all metrics
from a single target in one HTTP fetch. For example, to view a page
of metrics manually, you could use the following command:

% curl http://webserver:80/varz
http_requests 37
errors_total 12

A Borgmon can collect from other Borgmon,3 so we can build hierarchies
that follow the topology of the service, aggregating and summarizing
information and discarding some strategically at each level.
Typically, a team runs a single Borgmon per cluster, and a pair at the
global level. Some very large services shard below the cluster level
into many scraper Borgmon, which in turn feed to the cluster-level
Borgmon.

Instrumentation of Applications

The /varz HTTP handler simply lists all the exported variables in
plain text, as space-separated keys and values, one per line. A later
extension added a mapped variable, which allows the exporter to define
several labels on a variable name, and then export a table of values
or a histogram. An example map-valued variable looks like the
following, showing 25 HTTP 200 responses and 12 HTTP 500s:

http_responses map:code 200:25 404:0 500:12

Adding a metric to a program only requires a single declaration in the
code where the metric is needed.

In hindsight, it’s apparent that this schemaless textual interface
makes the barrier to adding new instrumentation very low, which is a
positive for both the software engineering and SRE teams. However,
this has a trade-off against ongoing maintenance; the decoupling of the
variable definition from its use in Borgmon rules requires careful
change management. In practice, this trade-off has been satisfactory because
tools to validate and generate rules have been written as
well.4

Exporting Variables

Google’s web roots run deep: each of the major languages used at
Google has an implementation of the exported variable interface that
automagically registers with the HTTP server built into every Google
binary by default.5 The
instances of the variable to be exported allow the server author to
perform obvious operations like adding an amount to the current value,
setting a key to a specific value, and so forth. The Go expvar
library6 and its
JSON output form have a variant of this API.

Collection of Exported Data

To find its targets, a Borgmon instance is configured with a list of
targets using one of many name resolution methods.7 The target list is often dynamic,
so using service discovery reduces the cost of maintaining it and
allows the monitoring to scale.

At predefined intervals, Borgmon fetches the /varz URI on each
target, decodes the results, and stores the values in memory. Borgmon
also spreads the collection from each instance in the target list over
the whole interval, so that collection from each target is not in lockstep with its peers.

Borgmon also records “synthetic” variables for each target in order to
identify:

	
If the name was resolved to a host and port

	
If the target responded to a collection

	
If the target responded to a health check

	
What time the collection finished

These synthetic variables make it easy to write rules to detect if the
monitored tasks are unavailable.

It’s interesting that varz is quite dissimilar to SNMP (Simple Networking Monitoring Protocol), which “is
designed […] to have minimal transport requirements and to continue
working when most other network applications fail” [Mic03].
Scraping targets over HTTP seems to be at odds with this design
principle; however, experience shows that this is rarely an
issue.8 The system itself is
already designed to be robust against network and machine failures,
and Borgmon allows engineers to write smarter alerting rules by using
the collection failure itself as a signal.

Storage in the Time-Series Arena

A service is typically made up of many binaries running as many tasks,
on many machines, in many clusters. Borgmon needs to keep all that
data organized, while allowing flexible querying and slicing of that
data.

Borgmon stores all the data in an in-memory database, regularly
checkpointed to disk. The data points have the form (timestamp,
value), and are stored in chronological lists called time-series,
and each time-series is named by a unique set of labels, of
the form name=value.

As presented in Figure 10-1, a time-series is conceptually a one-dimensional matrix of numbers, progressing through time. As you add permutations of labels to this
time-series, the matrix becomes multidimensional.

[image: .A time-series for errors labeled by the original host each was collected from.]
Figure 10-1. A time-series for errors labeled by the original host each was collected from

In practice, the structure is a fixed-sized block of memory, known as
the time-series arena, with a garbage collector that expires the
oldest entries once the arena is full. The time interval between the
most recent and oldest entries in the arena is the horizon,
which indicates how much queryable data is kept in RAM. Typically,
datacenter and global Borgmon are sized to hold about 12 hours of
data9 for rendering
consoles, and much less time if they are the lowest-level collector
shards. The memory requirement for a single data point is about 24
bytes, so we can fit 1 million unique time-series for 12 hours at 1-minute intervals in under 17 GB of RAM.

Periodically, the in-memory state is archived to an external system
known as the Time-Series Database (TSDB). Borgmon can query TSDB for
older data and, while slower, TSDB is cheaper and larger than a
Borgmon’s RAM.

Labels and Vectors

As shown in the example time-series in Figure 10-2, time-series are stored as sequences of numbers and timestamps, which
are referred to as vectors. Like vectors in linear algebra, these
vectors are slices and cross-sections of the multidimensional matrix
of data points in the arena. Conceptually the timestamps can be
ignored, because the values are inserted in the vector at regular
intervals in time — for example, 1 or 10 seconds or 1 minute apart.

[image: An example time-series.]
Figure 10-2. An example time-series

The name of a time-series is a labelset, because it’s implemented as a set of labels expressed as key=value pairs. One of these labels is the
variable name itself, the key that appears on the varz page.

A few label names are declared as important. For the
time-series in the time-series database to be identifiable, it must at minimum
have the following labels:

var

The name of the variable

job

The name given to the type of server being monitored

service

A loosely defined collection of jobs that provide a
service to users, either internal or external

zone

A Google convention that refers to the location (typically
the datacenter) of the Borgmon that performed the collection of
this variable

Together, these variables appear something like the following, called
the variable expression:

{var=http_requests,job=webserver,instance=host0:80,service=web,zone=us-west}

A query for a time-series does not require specification of all these
labels, and a search for a labelset returns all matching time-series in
a vector. So we could return a vector of results by removing the
instance label in the preceding query, if there were more than one
instance in the cluster. For example:

{var=http_requests,job=webserver,service=web,zone=us-west}

might have a result of five rows in a vector, with the most recent
value in the time-series like so:

{var=http_requests,job=webserver,instance=host0:80,service=web,zone=us-west} 10
{var=http_requests,job=webserver,instance=host1:80,service=web,zone=us-west} 9
{var=http_requests,job=webserver,instance=host2:80,service=web,zone=us-west} 11
{var=http_requests,job=webserver,instance=host3:80,service=web,zone=us-west} 0
{var=http_requests,job=webserver,instance=host4:80,service=web,zone=us-west} 10

Labels can be added to a time-series from:

	
The target’s name, e.g., the job and instance

	
The target itself, e.g., via map-valued variables

	
The Borgmon configuration, e.g., annotations about location or
relabeling

	
The Borgmon rules being evaluated

We can also query time-series in time, by specifying a duration to
the variable expression:

{var=http_requests,job=webserver,service=web,zone=us-west}[10m]

This returns the last 10 minutes of history of the time-series that
matched the expression. If we were collecting data points once per
minute, we would expect to return 10 data points in a 10-minute
window, like so:10

{var=http_requests,job=webserver,instance=host0:80, ...} 0 1 2 3 4 5 6 7 8 9 10
{var=http_requests,job=webserver,instance=host1:80, ...} 0 1 2 3 4 4 5 6 7 8 9
{var=http_requests,job=webserver,instance=host2:80, ...} 0 1 2 3 5 6 7 8 9 9 11
{var=http_requests,job=webserver,instance=host3:80, ...} 0 0 0 0 0 0 0 0 0 0 0
{var=http_requests,job=webserver,instance=host4:80, ...} 0 1 2 3 4 5 6 7 8 9 10

Rule Evaluation

Borgmon is really just a programmable calculator, with some syntactic
sugar that enables it to generate alerts. The data collection and
storage components already described are just necessary evils to make
that programmable calculator ultimately fit for purpose here as a
monitoring system. :)

Note

Centralizing the rule evaluation in a monitoring system, rather than
delegating it to forked subprocesses, means that computations can run
in parallel against many similar targets. This practice keeps the
configuration relatively small in size (for example, by removing
duplication of code) yet more powerful through its expressiveness.

The Borgmon program code, also known as Borgmon rules, consists of simple
algebraic expressions that compute time-series from other time-series. These rules can be quite powerful because they can query
the history of a single time-series (i.e., the time axis), query
different subsets of labels from many time-series at once (i.e., the
space axis), and apply many mathematical operations.

Rules run in a parallel threadpool where possible, but are dependent
on ordering when using previously defined rules as input. The size of
the vectors returned by their query expressions also determines the
overall runtime of a rule. Thus, it is typically the case that one
can add CPU resources to a Borgmon task in response to it running
slow. To assist more detailed analysis, internal metrics on the
runtime of rules are exported for performance debugging and for
monitoring the monitoring.

Aggregation is the cornerstone of rule evaluation in a distributed
environment. Aggregation entails taking the sum of a set of time-series
from the tasks in a job in order to treat the job as a whole. From
those sums, overall rates can be computed. For example, the total
queries-per-second rate of a job in a datacenter is the sum of all the
rates of change11 of all the
query counters.12

Tip

A counter is any nonmonotonically decreasing variable — which is to
say, counters only increase in value. Gauges, on the other hand, may
take any value they like. Counters measure increasing values, such as
the total number of kilometers driven, while gauges show current
state, such as the amount of fuel remaining or current speed. When
collecting Borgmon-style data, it’s better to use counters, because they
don’t lose meaning when events occur between sampling
intervals. Should any activity or changes occur between sampling
intervals, a gauge collection is likely to miss that activity.

For an example web server, we might want to alert when our web server
cluster starts to serve more errors as a percent of requests than we
think is normal — or more technically, when the sum of the rates of
non-HTTP-200 return codes on all tasks in the cluster, divided by the
sum of the rates of requests to all tasks in that cluster, is greater
than some value.

This is accomplished by:

	
Aggregating the rates of response codes across all tasks,
outputting a vector of rates at that point in time, one for each
code.

	
Computing the total error rate as the sum of that vector,
outputting a single value for the cluster at that point in time.
This total error rate excludes the 200 code from the sum, because it
is not an error.

	
Computing the cluster-wide ratio of errors to requests, dividing
the total error rate by the rate of requests that arrived, and
again outputting a single value for the cluster at that point in
time.

Each of these outputs at a point in time gets appended to its named
variable expression, which creates the new time-series. As a result,
we will be able to inspect the history of error rates and error ratios
some other time.

The rate of requests rules would be written in Borgmon’s rule language
as the following:

rules <<<
 # Compute the rate of requests for each task from the count of requests
 {var=task:http_requests:rate10m,job=webserver} =
 rate({var=http_requests,job=webserver}[10m]);

 # Sum the rates to get the aggregate rate of queries for the cluster;
 # ‘without instance’ instructs Borgmon to remove the instance label
 # from the right hand side.
 {var=dc:http_requests:rate10m,job=webserver} =
 sum without instance({var=task:http_requests:rate10m,job=webserver})
>>>

The rate() function takes the enclosed expression and
returns the total delta divided by the total time between the earliest
and latest values.

With the example time-series data from the query before, the results
for the task:http_requests:rate10m rule would look like:13

{var=task:http_requests:rate10m,job=webserver,instance=host0:80, ...} 1
{var=task:http_requests:rate10m,job=webserver,instance=host2:80, ...} 0.9
{var=task:http_requests:rate10m,job=webserver,instance=host3:80, ...} 1.1
{var=task:http_requests:rate10m,job=webserver,instance=host4:80, ...} 0
{var=task:http_requests:rate10m,job=webserver,instance=host5:80, ...} 1

and the results for the dc:http_requests:rate10m rule would be:

{var=dc:http_requests:rate10m,job=webserver,service=web,zone=us-west} 4

because the second rule uses the first one as input.

Note

The instance label is missing in the output now, discarded by the
aggregation rule. If it had remained in the rule, then Borgmon would
not have been able to sum the five rows together.

In these examples, we use a time window because we’re dealing with
discrete points in the time-series, as opposed to continuous functions.
Doing so makes the rate calculation easier than performing calculus,
but means that to compute a rate, we need to select a sufficient
number of data points. We also have to deal with the possibility that
some recent collections have failed. Recall that the historical
variable expression notation uses the range [10m] to avoid
missing data points caused by collection errors.

The example also uses a Google convention that helps readability. Each
computed variable name contains a colon-separated triplet indicating the
aggregation level, the variable name, and the operation that created
that name. In this example, the lefthand variables are “task HTTP requests 10-minute rate” and “datacenter HTTP requests 10-minute rate.”

Now that we know how to create a rate of queries, we can build on that to
also compute a rate of errors, and then we can calculate the ratio of
responses to requests to understand how much useful work the service
is doing. We can compare the ratio rate of errors to our service level
objective (see Chapter 4) and alert if this objective is
missed or in danger of being missed:

rules <<<
 # Compute a rate pertask and per ‘code’ label
 {var=task:http_responses:rate10m,job=webserver} =
 rate by code({var=http_responses,job=webserver}[10m]);

 # Compute a cluster level response rate per ‘code’ label
 {var=dc:http_responses:rate10m,job=webserver} =
 sum without instance({var=task:http_responses:rate10m,job=webserver});

 # Compute a new cluster level rate summing all non 200 codes
 {var=dc:http_errors:rate10m,job=webserver} = sum without code(
 {var=dc:http_responses:rate10m,jobwebserver,code=!/200/};

 # Compute the ratio of the rate of errors to the rate of requests
 {var=dc:http_errors:ratio_rate10m,job=webserver} =
 {var=dc:http_errors:rate10m,job=webserver}
 /
 {var=dc:http_requests:rate10m,job=webserver};
>>>

Again, this calculation demonstrates the convention of suffixing the
new time-series variable name with the operation that created it. This
result is read as “datacenter HTTP errors 10 minute ratio of rates.”

The output of these rules might look like:14

{var=task:http_responses:rate10m,job=webserver}

{var=task:http_responses:rate10m,job=webserver,code=200,instance=host0:80, ...} 1
{var=task:http_responses:rate10m,job=webserver,code=500,instance=host0:80, ...} 0
{var=task:http_responses:rate10m,job=webserver,code=200,instance=host1:80, ...} 0.5
{var=task:http_responses:rate10m,job=webserver,code=500,instance=host1:80, ...} 0.4
{var=task:http_responses:rate10m,job=webserver,code=200,instance=host2:80, ...} 1
{var=task:http_responses:rate10m,job=webserver,code=500,instance=host2:80, ...} 0.1
{var=task:http_responses:rate10m,job=webserver,code=200,instance=host3:80, ...} 0
{var=task:http_responses:rate10m,job=webserver,code=500,instance=host3:80, ...} 0
{var=task:http_responses:rate10m,job=webserver,code=200,instance=host4:80, ...} 0.9
{var=task:http_responses:rate10m,job=webserver,code=500,instance=host4:80, ...} 0.1

{var=dc:http_responses:rate10m,job=webserver}

{var=dc:http_responses:rate10m,job=webserver,code=200, ...} 3.4
{var=dc:http_responses:rate10m,job=webserver,code=500, ...} 0.6

{var=dc:http_responses:rate10m,jobwebserver,code=!/200/}

{var=dc:http_responses:rate10m,job=webserver,code=500, ...} 0.6

{var=dc:http_errors:rate10m,job=webserver}

{var=dc:http_errors:rate10m,job=webserver, ...} 0.6

{var=dc:http_errors:ratio_rate10m,job=webserver}

{var=dc:http_errors:ratio_rate10m,job=webserver} 0.15

Note

The preceding output shows the intermediate query in the
dc:http_errors:rate10m rule that filters the non-200 error codes.
Though the value of the expressions are the same, observe that the
code label is retained in one but removed from the other.

As mentioned previously, Borgmon rules create new time-series, so the
results of the computations are kept in the time-series arena and can
be inspected just as the source time-series are. The ability to do so
allows for ad hoc querying, evaluation, and exploration as tables or
charts. This is a useful feature for debugging while on-call, and if
these ad hoc queries prove useful, they can be made permanent
visualizations on a service console.

Alerting

When an alerting rule is evaluated by a Borgmon, the result is either
true, in which case the alert is triggered, or false. Experience shows
that alerts can “flap” (toggle their state quickly); therefore,
the rules allow a minimum duration for which the alerting rule must be
true before the alert is sent. Typically, this duration is set to at
least two rule evaluation cycles to ensure no missed collections cause
a false alert.

The following example creates an alert when the error ratio over 10 minutes exceeds 1%
and the total number of errors exceeds 1:

rules <<<
 {var=dc:http_errors:ratio_rate10m,job=webserver} > 0.01
 and by job, error
 {var=dc:http_errors:rate10m,job=webserver} > 1
 for 2m
 => ErrorRatioTooHigh
 details "webserver error ratio at [[trigger_value]]"
 labels {severity=page};
>>>

Our example holds the ratio rate at 0.15, which is well over the
threshold of 0.01 in the alerting rule. However, the number of errors
is not greater than 1 at this moment, so the alert won’t be active.
Once the number of errors exceeds 1, the alert will go pending for
two minutes to ensure it isn’t a transient state, and only then
will it fire.

The alert rule contains a small template for filling out a message
containing contextual information: which job the alert is for, the
name of the alert, the numerical value of the triggering rule, and so
on. The contextual information is filled out by Borgmon when the alert
fires and is sent in the Alert RPC.

Borgmon is connected to a centrally run service, known as the
Alertmanager, which receives Alert RPCs when the rule first triggers,
and then again when the alert is considered to be “firing.” The
Alertmanager is responsible for routing the alert notification to the
correct destination. Alertmanager can be configured to do the
following:

	
Inhibit certain alerts when others are active

	
Deduplicate alerts from multiple Borgmon that have the same
labelsets

	
Fan-in or fan-out alerts based on their labelsets when multiple
alerts with similar labelsets fire

As described in Chapter 6, teams send their page-worthy alerts to their on-call rotation
and their important but subcritical alerts to their ticket queues. All
other alerts should be retained as informational data for status
dashboards.

A more comprehensive guide to alert design can be found in
Chapter 4.

Sharding the Monitoring Topology

A Borgmon can import time-series data from other Borgmon, as well.
While one could attempt to collect from all tasks in a service
globally, doing so quickly becomes a scaling bottleneck and introduces
a single point of failure into the design. Instead, a streaming
protocol is used to transmit time-series data between Borgmon, saving
CPU time and network bytes compared to the text-based varz format. A
typical such deployment uses two or more global Borgmon for top-level
aggregation and one Borgmon in each datacenter to monitor all the jobs
running at that location. (Google divides the production network into
zones for production changes, so having two or more global replicas
provides diversity in the face of maintenance and outages for this
otherwise single point of failure.)

As shown in Figure 10-3, more complicated deployments
shard the datacenter Borgmon further into a purely scraping-only layer
(often due to RAM and CPU constraints in a single Borgmon for very
large services) and a DC aggregation layer that performs mostly rule
evaluation for aggregation. Sometimes the global layer is split
between rule evaluation and dashboarding. Upper-tier Borgmon can
filter the data they want to stream from the lower-tier Borgmon, so
that the global Borgmon does not fill its arena with all the per-task
time-series from the lower tiers. Thus, the aggregation hierarchy
builds local caches of relevant time-series that can be drilled down
into when required.

[image: A data flow model of a hierarchy of Borgmon in three clusters.]
Figure 10-3. A data flow model of a hierarchy of Borgmon in three clusters

Black-Box Monitoring

Borgmon is a white-box monitoring system — it inspects the internal
state of the target service, and the rules are written with knowledge
of the internals in mind. The transparent nature of this model
provides great power to identify quickly what components are failing,
which queues are full, and where bottlenecks occur, both when
responding to an incident and when testing a new feature deployment.

However, white-box monitoring does not provide a full picture of the
system being monitored; relying solely upon white-box monitoring means
that you aren’t aware of what the users see. You only see the queries
that arrive at the target; the queries that never make it due to a DNS
error are invisible, while queries lost due to a server crash never
make a sound. You can only alert on the failures that you expected.

Teams at Google solve this coverage issue with Prober, which runs a
protocol check against a target and reports success or failure. The
prober can send alerts directly to Alertmanager, or its own varz can
be collected by a Borgmon. Prober can validate the response payload of
the protocol (e.g., the HTML contents of an HTTP response) and validate
that the contents are expected, and even extract and export values as
time-series. Teams often use Prober to export histograms of response
times by operation type and payload size so that they can slice and
dice the user-visible performance. Prober is a hybrid of the
check-and-test model with some richer variable extraction to create
time-series.

Prober can be pointed at either the frontend domain or behind the
load balancer. By using both targets, we can detect localized failures
and suppress alerts. For example, we might monitor both the
load balanced www.google.com and the web servers in each datacenter
behind the load balancer. This setup allows us to either know that
traffic is still served when a datacenter fails, or to quickly isolate
an edge in the traffic flow graph where a failure has occurred.

Maintaining the Configuration

Borgmon configuration separates the definition of the rules from the
targets being monitored. This means the same sets of rules can be
applied to many targets at once, instead of writing nearly identical
configuration over and over. This separation of concerns might seem
incidental, but it greatly reduces the cost of maintaining the
monitoring by avoiding lots of repetition in describing the target
systems.

Borgmon also supports language templates. This macro-like system
enables engineers to construct libraries of rules that can be
reused. This functionality again reduces repetition, thus reducing the
likelihood of bugs in the configuration.

Of course, any high-level programming environment creates the
opportunity for complexity, so Borgmon provides a way to build
extensive unit and regression tests by synthesizing time-series data,
in order to ensure that the rules behave as the author thinks
they do. The Production Monitoring team runs a continuous integration
service that executes a suite of these tests, packages the
configuration, and ships the configuration to all the Borgmon in
production, which then validate the configuration before accepting it.

In the vast library of common templates that have been created, two
classes of monitoring configuration have emerged. The first class
simply codifies the emergent schema of variables exported from a given
library of code, such that any user of the library can reuse the
template of its varz. Such templates exist for the HTTP server
library, memory allocation, the storage client library, and generic
RPC services, among others. (While the varz interface declares no
schema, the rule library associated with the code library ends up
declaring a schema.)

The second class of library emerged as we built templates to manage
the aggregation of data from a single-server task to the global
service footprint. These libraries contain generic aggregation rules
for exported variables that engineers can use to model the topology of
their service.

For example, a service may provide a single global API, but be homed
in many datacenters. Within each datacenter, the service is composed
of several shards, and each shard is composed of several jobs with
various numbers of tasks. An engineer can model this breakdown
with Borgmon rules so that when debugging, subcomponents can be
isolated from the rest of the system. These groupings typically
follow the shared fate of components; e.g., individual tasks share fate
due to configuration files, jobs in a shard share fate because they’re
homed in the same datacenter, and physical sites share fate due to
networking.

Labeling conventions make such division possible: a Borgmon adds
labels indicating the target’s instance name and the shard and
datacenter it occupies, which can be used to group and aggregate those
time-series together.

Thus, we have multiple uses for labels on a time-series, though all are
interchangeable:

	
Labels that define breakdowns of the data itself (e.g., our HTTP
response code on the http_responses variable)

	
Labels that define the source of the data (e.g., the instance or job
name)

	
Labels that indicate the locality or aggregation of the data within
the service as a whole (e.g., the zone label describing a physical
location, a shard label describing a logical grouping of tasks)

The templated nature of these libraries allows flexibility in their
use. The same template can be used to aggregate from each tier.

Ten Years On…

Borgmon transposed the model of check-and-alert per target into mass
variable collection and a centralized rule evaluation across the
time-series for alerting and diagnostics.

This decoupling allows the size of the system being monitored to scale
independently of the size of alerting rules. These rules cost less to
maintain because they’re abstracted over a common time-series
format. New applications come ready with metric exports in all
components and libraries to which they link, and well-traveled
aggregation and console templates, which further reduces the burden of
implementation.

Ensuring that the cost of maintenance scales sublinearly with the size
of the service is key to making monitoring (and all sustaining
operations work) maintainable. This theme recurs in all SRE work, as
SREs work to scale all aspects of their work to the global scale.

Ten years is a long time, though, and of course today the shape of the
monitoring landscape within Google has evolved with experiments and
changes, striving for continual improvement as the company grows.

Even though Borgmon remains internal to Google, the idea of treating
time-series data as a data source for generating alerts is now
accessible to everyone through those open source tools like
Prometheus, Riemann, Heka, and Bosun, and probably others by the time
you read this.

1 Prometheus is an open source monitoring and time-series database system available at http://prometheus.io.
2 Google was born in the USA, so we pronounce this “var-zee.”
3 The plural of Borgmon is Borgmon, like sheep.
4 Many non-SRE teams use a generator to stamp out the initial boilerplate and ongoing updates, and find the generator much easier to use (though less powerful) than directly editing the rules.
5 Many other applications use their service protocol to export their internal state, as well. OpenLDAP exports it through the cn=Monitor subtree; MySQL can report state with a SHOW VARIABLES query; Apache has its mod_status handler.
6 https://golang.org/pkg/expvar/
7 The Borg Name System (BNS) is described in Chapter 2.
8 Recall in Chapter 6 the distinction between alerting on symptoms and on causes.
9 This 12-hour horizon is a magic number that aims to have enough information for debugging an incident in RAM for fast queries without costing too much RAM.
10 The service and zone labels are elided here for space, but are present in the returned expression.
11 Computing the sum of rates instead of the rate of sums defends the result against counter resets or missing data, perhaps due to a task restart or failed collection of data.
12 Despite being untyped, the majority of varz are simple counters. Borgmon’s rate function handles all the corner cases of counter resets.
13 The service and zone labels are elided for space.
14 The service and zone labels are elided for space.

Chapter 11. Being On-Call

Written by Andrea Spadaccini1

Edited by Kavita Guliani

Being on-call is a critical duty that many operations and
engineering teams must undertake in order to keep their services
reliable and available. However, there are several pitfalls in the
organization of on-call rotations and responsibilities that can lead
to serious consequences for the services and for the teams if not
avoided. This chapter describes the primary tenets of the approach to
on-call that Google’s Site Reliability Engineers (SREs) have
developed over years, and explains how that approach has led to
reliable services and sustainable workload over time.

Introduction

Several professions require employees to perform some
sort of on-call duty, which entails being available for calls during
both working and nonworking hours. In the IT context, on-call
activities have historically been performed by dedicated Ops teams
tasked with the primary responsibility of keeping the service(s) for
which they are responsible in good health.

Many important services in Google,
e.g., Search, Ads, and Gmail, have dedicated teams of SREs responsible for the performance and reliability of
these services. Thus, SREs are on-call for the services they
support. The SRE teams are quite different from purely operational
teams in that they place heavy emphasis on the use of engineering to
approach problems. These problems, which typically fall in the
operational domain, exist at a scale that would be intractable without
software engineering solutions.

To enforce this type of problem solving, Google hires people with a
diverse background in systems and software engineering into SRE teams.
We cap the amount of time SREs spend on purely operational work at
50%; at minimum, 50% of an SRE’s time should be allocated to
engineering projects that further scale the impact of the team through
automation, in addition to improving the service.

Life of an On-Call Engineer

This section describes the typical activities of an on-call engineer
and provides some background for the rest of the chapter.

As the guardians of production systems, on-call engineers take care
of their assigned operations by managing outages that affect the team
and performing and/or vetting production changes.

When on-call, an engineer is available to perform operations on
production systems within minutes, according to the paging response
times agreed to by the team and the business system owners. Typical
values are 5 minutes for user-facing or otherwise highly time-critical
services, and 30 minutes for less time-sensitive systems. The company
provides the page-receiving device, which is typically a phone. Google
has flexible alert delivery systems that can dispatch pages via
multiple mechanisms (email, SMS, robot call, app) across multiple
devices.

Response times are related to desired service availability, as demonstrated by the following simplistic example: if a user-facing system must obtain 4 nines of availability
in a given quarter (99.99%), the allowed quarterly downtime is around
13 minutes (Appendix A). This constraint implies that the reaction time of on-call
engineers has to be in the order of minutes (strictly speaking, 13 minutes). For systems with more
relaxed SLOs, the reaction time can be on the order of tens of
minutes.

As soon as a page is received and acknowledged, the on-call engineer
is expected to triage the problem and work toward its resolution,
possibly involving other team members and escalating as needed.

Nonpaging production events, such as lower priority alerts or
software releases, can also be handled and/or vetted by the on-call
engineer during business hours. These activities are less urgent than
paging events, which take priority over almost every other task,
including project work. For more insight on interrupts and other
non-paging events that contribute to operational load, see Chapter 29.

Many teams have both a primary and a secondary on-call rotation. The distribution of duties between the primary and the secondary varies from team to team. One team might employ the secondary as a fall-through for the pages the primary on-call misses. Another team might specify that the primary on-call handles only pages, while the secondary handles all other non-urgent production activities.

In teams for which a secondary rotation is not strictly required for
duty distribution, it is common for two related teams to serve as
secondary on-call for each other, with fall-through handling duties.
This setup eliminates the need for an exclusive secondary on-call
rotation.

There are many ways to organize on-call rotations; for detailed
analysis, refer to the “Oncall” chapter of [Lim14].

Balanced On-Call

SRE teams have specific constraints on the
quantity and quality of on-call shifts. The quantity of on-call can be
calculated by the percent of time spent by engineers on on-call
duties. The quality of on-call can be calculated by the number of
incidents that occur during an on-call shift.

SRE managers have the responsibility of keeping the on-call workload
balanced and sustainable across these two axes.

Balance in Quantity

We strongly believe that the “E” in “SRE” is a defining characteristic
of our organization, so we strive to invest at least 50% of SRE time
into engineering: of the remainder, no more than 25% can be spent
on-call, leaving up to another 25% on other types of operational,
nonproject work.

Using the 25% on-call rule, we can derive the minimum number of SREs required
to sustain a 24/7 on-call rotation. Assuming that there are always two
people on-call (primary and secondary, with different duties), the
minimum number of engineers needed for on-call duty from a single-site
team is eight: assuming week-long shifts, each engineer is on-call
(primary or secondary) for one week every month. For dual-site teams,
a reasonable minimum size of each team is six, both to honor the 25%
rule and to ensure a substantial and critical mass of engineers for
the team.

If a service entails enough work to justify growing a single-site
team, we prefer to create a multi-site team. A multi-site team is
advantageous for two reasons:

	
Night shifts have detrimental effects on people’s
health [Dur05], and a multi-site “follow the sun” rotation allows teams to
avoid night shifts altogether.

	
Limiting the number of engineers in
the on-call rotation ensures that engineers do not lose touch with the
production systems (see “A Treacherous Enemy: Operational Underload”).

However, multi-site teams incur communication and coordination
overhead. Therefore, the decision to go multi-site or single-site
should be based upon the trade-offs each option entails, the
importance of the system, and the workload each system generates.

Balance in Quality

For each on-call shift, an engineer should have sufficient time to deal
with any incidents and follow-up activities such as writing postmortems
[Loo10]. Let’s define an incident as a sequence of events and alerts
that are related to the same root cause and would be discussed as part
of the same postmortem. We’ve found that on average, dealing with the tasks involved in an on-call incident — root-cause analysis, remediation, and follow-up activities like writing a postmortem and fixing bugs — takes 6 hours. It follows that the
maximum number of incidents per day is 2 per 12-hour on-call shift. In order to stay within this
upper bound, the distribution of paging events should be very flat over
time, with a likely median value of 0: if a given component or issue
causes pages every day (median incidents/day > 1), it is likely that
something else will break at some point, thus causing more incidents
than should be permitted.

If this limit is temporarily exceeded, e.g., for a quarter, corrective
measures should be put in place to make sure that the operational load
returns to a sustainable state (see “Operational Overload” and
Chapter 30).

Compensation

Adequate compensation needs to be considered for out-of-hours
support. Different organizations handle on-call compensation in
different ways; Google offers time-off-in-lieu or straight cash
compensation, capped at some proportion of overall salary. The
compensation cap represents, in practice, a limit on the amount of
on-call work that will be taken on by any individual. This
compensation structure ensures incentivization to be involved in
on-call duties as required by the team, but also promotes a balanced
on-call work distribution and limits potential drawbacks of excessive
on-call work, such as burnout or inadequate time for project work.

Feeling Safe

As mentioned earlier, SRE teams support Google’s
most critical systems. Being an SRE on-call typically means assuming
responsibility for user-facing, revenue-critical systems or for the
infrastructure required to keep these systems up and running. SRE
methodology for thinking about and tackling problems is vital for the
appropriate operation of services.

Modern research identifies two distinct ways of thinking that an
individual may, consciously or subconsciously, choose when faced with
challenges [Kah11]:

	
Intuitive, automatic, and rapid action

	
Rational, focused, and deliberate cognitive functions

When one is dealing with the outages related to complex systems, the second
of these options is more likely to produce better results and lead to
well-planned incident handling.

To make sure that the engineers are in the appropriate frame of mind
to leverage the latter mindset, it’s important to reduce the stress
related to being on-call. The importance and the impact of the
services and the consequences of potential outages can create
significant pressure on the on-call engineers, damaging the well-being
of individual team members and possibly prompting SREs to make
incorrect choices that can endanger the availability of the service.
Stress hormones like cortisol and corticotropin-releasing hormone
(CRH) are known to cause behavioral consequences — including fear — that
can impair cognitive functions and cause suboptimal decision making
[Chr09].

Under the influence of these stress hormones, the more deliberate
cognitive approach is typically subsumed by unreflective and
unconsidered (but immediate) action, leading to potential abuse of
heuristics. Heuristics are very tempting behaviors when one is on-call. For
example, when the same alert pages for the fourth time in the week,
and the previous three pages were initiated by an external
infrastructure system, it is extremely tempting to exercise
confirmation bias by automatically associating this fourth occurrence
of the problem with the previous cause.

While intuition and quick reactions can seem like desirable traits in
the middle of incident management, they have downsides. Intuition can
be wrong and is often less supportable by obvious data. Thus,
following intuition can lead an engineer to waste time pursuing a line
of reasoning that is incorrect from the start. Quick reactions are
deep-rooted in habit, and habitual responses are unconsidered, which
means they can be disastrous. The ideal methodology in incident
management strikes the perfect balance of taking steps at the desired
pace when enough data is available to make a reasonable decision while
simultaneously critically examining your assumptions.

It’s important that on-call SREs
understand that they can rely on several resources that make the
experience of being on-call less daunting than it may seem. The most
important on-call resources are:

	
Clear escalation paths

	
Well-defined incident-management procedures

	
A blameless postmortem culture ([Loo10], [All12])

The developer teams of SRE-supported systems usually participate in a
24/7 on-call rotation, and it is always possible to escalate to these
partner teams when necessary. The appropriate escalation of outages is
generally a principled way to react to serious outages with
significant unknown dimensions.

When one is handling incidents, if the issue is complex enough to involve
multiple teams or if, after some investigation, it is not yet possible
to estimate an upper bound for the incident’s time span, it can be
useful to adopt a formal incident-management protocol. Google SRE uses
the protocol described in Chapter 14, which offers
an easy-to-follow and well-defined set of steps that aid an on-call
engineer to rationally pursue a satisfactory incident resolution with
all the required help. This protocol is internally supported by a
web-based tool that automates most of the incident management actions,
such as handing off roles and recording and communicating status
updates. This tool allows incident managers to focus on dealing with the
incident, rather than spending time and cognitive effort on mundane
actions such as formatting emails or updating several communication
channels at once.

Finally, when an incident occurs, it’s important to evaluate what went
wrong, recognize what went well, and take action to prevent the same
errors from recurring in the future. SRE teams must write postmortems
after significant incidents and detail a full timeline of the events
that occurred. By focusing on events rather than the people, these
postmortems provide significant value. Rather than placing blame on
individuals, they derive value from the systematic analysis of production
incidents. Mistakes happen, and software should make sure that we make
as few mistakes as possible. Recognizing automation opportunities is one
of the best ways to prevent human errors [Loo10].

Avoiding Inappropriate Operational Load

As mentioned in “Balanced On-Call”, SREs spend at most 50% of their time on operational work. What
happens if operational activities exceed this limit?

Operational Overload

The SRE team and
leadership are responsible for including concrete objectives in
quarterly work planning in order to make sure that the workload
returns to sustainable levels. Temporarily loaning an experienced SRE
to an overloaded team, discussed in
Chapter 30, can provide enough breathing
room so that the team can make headway in addressing issues.

Ideally, symptoms of operational overload should be measurable, so
that the goals can be quantified (e.g., number of daily tickets < 5,
paging events per shift < 2).

Misconfigured monitoring is a common cause of operational overload.
Paging alerts should be aligned with the symptoms that threaten a
service’s SLOs. All paging alerts should also be
actionable. Low-priority alerts that bother the on-call engineer every
hour (or more frequently) disrupt productivity, and the fatigue such
alerts induce can also cause serious alerts to be treated with less
attention than necessary. See Chapter 29 for
further discussion.

It is also important to control the number of alerts that the on-call
engineers receive for a single incident. Sometimes a single abnormal
condition can generate several alerts, so it’s important to regulate
the alert fan-out by ensuring that related alerts are grouped together
by the monitoring or alerting system. If, for any reason, duplicate or
uninformative alerts are generated during an incident, silencing those
alerts can provide the necessary quiet for the on-call engineer to
focus on the incident itself. Noisy alerts that systematically
generate more than one alert per incident should be tweaked to
approach a 1:1 alert/incident ratio. Doing so allows the on-call
engineer to focus on the incident instead of triaging duplicate
alerts.

Sometimes the changes that cause operational overload are not under
the control of the SRE teams. For example, the application developers
might introduce changes that cause the system to be more noisy, less
reliable, or both. In this case, it is appropriate to work together
with the application developers to set common goals to improve the
system.

In extreme cases, SRE teams may have the option to “give back the
pager” — SRE can ask the developer team to be exclusively on-call for
the system until it meets the standards of the SRE team in question.
Giving back the pager doesn’t happen very frequently, because it’s almost
always possible to work with the developer team to reduce the
operational load and make a given system more reliable. In some cases,
though, complex or architectural changes spanning multiple quarters
might be required to make a system sustainable from an operational
point of view. In such cases, the SRE team should not be subject to an
excessive operational load. Instead, it is appropriate to negotiate
the reorganization of on-call responsibilities with the development
team, possibly routing some or all paging alerts to the developer
on-call. Such a solution is typically a temporary measure, during
which time the SRE and developer teams work together to get the
service in shape to be on-boarded by the SRE team again.

The possibility of renegotiating on-call responsibilities between SRE
and product development teams attests to the balance of powers between
the teams.2
 This working relationship also exemplifies how the healthy
tension between these two teams and the values that they
represent — reliability versus feature velocity — is typically resolved by
greatly benefiting the service and, by extension, the company as a
whole.

A Treacherous Enemy: Operational Underload

Being on-call for a quiet system is blissful, but what happens if the
system is too quiet or when SREs are not on-call often enough? An
operational underload is undesirable for an SRE team. Being out of touch
with production for long periods of time can lead to confidence
issues, both in terms of overconfidence and underconfidence, while
knowledge gaps are discovered only when an incident occurs.

To counteract this eventuality, SRE teams should be sized to allow
every engineer to be on-call at least once or twice a quarter, thus ensuring that
each team member is sufficiently exposed to production. “Wheel of
Misfortune” exercises (discussed in Chapter 28) are also
useful team activities that can help to hone and improve
troubleshooting skills and knowledge of the service. Google also has a
company-wide annual disaster recovery event called DiRT (Disaster
Recovery Training) that combines theoretical and practical drills to
perform multiday testing of infrastructure systems and individual
services; see [Kri12].

Conclusions

The approach to on-call described in this chapter serves as a
guideline for all SRE teams in Google and is key to fostering a
sustainable and manageable work environment. Google’s approach to
on-call has enabled us to use engineering work as the primary means to
scale production responsibilities and maintain high reliability and
availability despite the increasing complexity and number of systems
and services for which SREs are responsible.

While this approach might not be immediately applicable to all contexts
in which engineers need to be on-call for IT services, we believe it
represents a solid model that organizations can adopt in scaling to meet a growing volume of on-call work.

1 An earlier version of this chapter appeared as an article in ;login: (October 2015, vol. 40, no. 5).
2 For more discussion on the natural tension between SRE and product development teams, see Chapter 1.

Chapter 12. Effective Troubleshooting

Written by Chris Jones

Be warned that being an expert is more than understanding how a system is supposed to work. Expertise is gained by investigating why a
system doesn’t work.

Brian Redman

Ways in which things go right are special cases of the ways in which
things go wrong.

John Allspaw

Troubleshooting is a critical skill for anyone who operates
distributed computing systems — especially SREs — but it’s often viewed as
an innate skill that some people have and others don’t. One reason
for this assumption is that, for those who troubleshoot often, it’s an
ingrained process; explaining how to troubleshoot is difficult, much
like explaining how to ride a bike. However, we believe that
troubleshooting is both learnable and teachable.

Novices are often tripped up when troubleshooting because the exercise
ideally depends upon two factors: an understanding of how to
troubleshoot generically (i.e., without any particular system
knowledge) and a solid knowledge of the system. While you can
investigate a problem using only the generic process and derivation
from first principles,1 we usually find this approach
to be less efficient and less effective than understanding how things
are supposed to work. Knowledge of the system typically limits the
effectiveness of an SRE new to a system; there’s little substitute to
learning how the system is designed and built.

Let’s look at a general model of the troubleshooting process. Readers
with expertise in troubleshooting may quibble with our definitions and
process; if your method is effective for you, there’s no reason not to
stick with it.

Theory

Formally, we can think of the troubleshooting process as an
application of the hypothetico-deductive method:2 given a
set of observations about a system and a theoretical basis for
understanding system behavior, we iteratively hypothesize potential
causes for the failure and try to test those hypotheses.

In an idealized model such as that in Figure 12-1, we’d start with a problem report telling us
that something is wrong with the system. Then we can look at the
system’s telemetry3 and logs to understand its current
state. This information, combined with our knowledge of how the
system is built, how it should operate, and its failure modes, enables
us to identify some possible causes.

[image: A process for troubleshooting.]
Figure 12-1. A process for troubleshooting

We can then test our hypotheses
in one of two ways. We can compare the observed state of the system
against our theories to find confirming or disconfirming evidence. Or,
in some cases, we can actively “treat” the system — that is, change the
system in a controlled way — and observe the results. This second
approach refines our understanding of the system’s state and possible
cause(s) of the reported problems. Using either of these strategies,
we repeatedly test until a root cause is identified, at which point we
can then take corrective action to prevent a recurrence and write a
postmortem. Of course, fixing the proximate cause(s) needn’t always
wait for root-causing or postmortem writing.

Common Pitfalls

Ineffective troubleshooting sessions are plagued by problems at the
Triage, Examine, and Diagnose steps, often because of a lack of deep
system understanding. The following are common pitfalls to avoid:

	
Looking at symptoms that aren’t relevant or misunderstanding the
meaning of system metrics. Wild goose chases often result.

	
Misunderstanding how to change the system, its inputs, or its
environment, so as to safely and effectively test hypotheses.

	
Coming up with wildly improbable theories about what’s wrong, or
latching on to causes of past problems, reasoning that since it
happened once, it must be happening again.

	
Hunting down spurious correlations that are actually coincidences or
are correlated with shared causes.

Fixing the first and second common pitfalls is a matter of learning
the system in question and becoming experienced with the common
patterns used in distributed systems. The third trap is a set of
logical fallacies that can be avoided by remembering that not all
failures are equally probable — as doctors are taught, “when you hear
hoofbeats, think of horses not zebras.”4 Also remember that, all things being equal, we
should prefer simpler explanations.5

Finally, we should remember that correlation is not
causation:6 some
correlated events, say packet loss within a cluster and failed hard
drives in the cluster, share common causes — in this case, a power
outage, though network failure clearly doesn’t cause the hard drive
failures nor vice versa. Even worse, as systems grow in size and
complexity and as more metrics are monitored, it’s inevitable that
there will be events that happen to correlate well with other events,
purely by coincidence.7

Understanding failures in our reasoning process is the first step to
avoiding them and becoming more effective in solving problems. A
methodical approach to knowing what we do know, what we don’t know,
and what we need to know, makes it simpler and more straightforward to
figure out what’s gone wrong and how to fix it.

In Practice

In practice, of course, troubleshooting is never as clean as our
idealized model suggests it should be. There are some steps that can
make the process less painful and more productive for both those
experiencing system problems and those responding to them.

Problem Report

Every problem starts with a problem report, which might be an
automated alert or one of your colleagues saying, “The system is
slow.” An effective report should tell you the expected behavior,
the actual behavior, and, if possible, how to reproduce the
behavior.8
Ideally, the reports should have a consistent form and be stored in a
searchable location, such as a bug tracking system. Here, our teams
often have customized forms or small web apps that ask for information
that’s relevant to diagnosing the particular systems they support,
which then automatically generate and route a bug. This may also be a
good point at which to provide tools for problem reporters to try
self-diagnosing or self-repairing common issues on their own.

It’s common practice at Google to open a bug for every issue, even
those received via email or instant messaging. Doing so creates a log
of investigation and remediation activities that can be referenced in
the future. Many teams discourage reporting problems directly to a
person for several reasons: this practice introduces an additional
step of transcribing the report into a bug, produces lower-quality
reports that aren’t visible to other members of the team, and tends to
concentrate the problem-solving load on a handful of team members that
the reporters happen to know, rather than the person currently on duty
(see also Chapter 29).

Shakespeare Has a Problem

You’re on-call for the Shakespeare search service and receive an alert,
Shakespeare-BlackboxProbe_SearchFailure: your black-box monitoring
hasn’t been able to find search results for “the forms of things
unknown” for the past five minutes. The alerting system has filed a
bug — with links to the black-box prober’s recent results and to the
playbook entry for this alert — and assigned it to you. Time to
spring into action!

Triage

Once you receive a problem report, the next step is to figure out what
to do about it. Problems can vary in severity: an issue might affect
only one user under very specific circumstances (and might have a
workaround), or it might entail a complete global outage for a
service. Your response should be appropriate for the problem’s
impact: it’s appropriate to declare an all-hands-on-deck emergency for
the latter (see Chapter 14), but doing so for the
former is overkill. Assessing an issue’s severity requires an exercise
of good engineering judgment and, often, a degree of calm under
pressure.

Your first response in a major outage may be to start troubleshooting
and try to find a root cause as quickly as possible. Ignore that
instinct!

Instead, your course of action should be to make the system work as
well as it can under the circumstances. This may entail emergency
options, such as diverting traffic from a broken cluster to others
that are still working, dropping traffic wholesale to prevent a
cascading failure, or disabling subsystems to lighten the load.
Stopping the bleeding should be your first priority; you aren’t
helping your users if the system dies while you’re root-causing. Of
course, an emphasis on rapid triage doesn’t preclude taking steps to
preserve evidence of what’s going wrong, such as logs, to help with
subsequent root-cause analysis.

Novice pilots are taught that their first responsibility in an
emergency is to fly the airplane [Gaw09]; troubleshooting is secondary to
getting the plane and everyone on it safely onto the ground. This
approach is also applicable to computer systems: for example, if a bug
is leading to possibly unrecoverable data corruption, freezing the
system to prevent further failure may be better than letting this
behavior continue.

This realization is often quite unsettling and counterintuitive for
new SREs, particularly those whose prior experience was in product
development organizations.

Examine

We need to be able to examine what each component in the system is
doing in order to understand whether or not it’s behaving correctly.

Ideally, a monitoring system is recording metrics for your
system as discussed in Chapter 10. These metrics are a good place to start figuring
out what’s wrong. Graphing time-series and operations on time-series can be an
effective way to understand the behavior of specific pieces of a system and
find correlations that might suggest where problems began.9

Logging is another invaluable tool. Exporting information about each
operation and about system state makes it possible to understand
exactly what a process was doing at a given point in time. You may
need to analyze system logs across one or many processes. Tracing
requests through the whole stack using tools such as Dapper [Sig10]
provides a very powerful way to understand how a distributed system is
working, though varying use cases imply significantly different
tracing designs [Sam14].

Logging

Text logs are very helpful for reactive debugging in real time, while
storing logs in a structured binary format can make it possible to
build tools to conduct retrospective analysis with much more
information.

It’s really useful to have multiple verbosity levels available, along
with a way to increase these levels on the fly. This functionality
enables you to examine any or all operations in incredible detail
without having to restart your process, while still allowing you to
dial back the verbosity levels when your service is operating
normally. Depending of the volume of traffic your service receives,
it might be better to use statistical sampling; for example, you might
show one out of every 1,000 operations.

A next step is to include a selection language so that you can say
“show me operations that match X,” for a wide range of X — e.g., Set
RPCs with a payload size below 1,024 bytes, or operations that took
longer than 10 ms to return, or which called
doSomethingInteresting() in rpc_handler.py. You might even want
to design your logging infrastructure so that you can turn it on as
needed, quickly and selectively.

Exposing current state is the third trick in our toolbox. For example,
Google servers have endpoints that show a sample of RPCs recently
sent or received, so it’s possible to understand how any one server is
communicating with others without referencing an architecture diagram.
These endpoints also show histograms of error rates and latency for
each type of RPC, so that it’s possible to quickly tell what’s
unhealthy. Some systems have endpoints that show their current
configuration or allow examination of their data; for instance,
Google’s Borgmon servers (Chapter 10) can show the monitoring
rules they’re using, and even allow tracing a particular computation
step-by-step to the source metrics from which a value is derived.

Finally, you may even need to instrument a client to experiment with,
in order to discover what a component is returning in response to
requests.

Debugging Shakespeare

Using the link to the black-box monitoring results in the bug, you
discover that the prober sends an HTTP GET request to the
/api/search endpoint:

{
 ‘search_text’: ‘the forms of things unknown’
}

It expects to receive a response with an HTTP 200 response code and a
JSON payload exactly matching:

[{
	"work": "A Midsummer Night's Dream",
	"act": 5,
	"scene": 1,
	"line": 2526,
	"speaker": "Theseus"
}]

The system is set up to send a probe once a minute; over the past 10
minutes, about half the probes have succeeded, though with no
discernible pattern. Unfortunately, the prober doesn’t show you
what was returned when it failed; you make a note to fix that for
the future.

Using curl, you manually send requests to the search endpoint and get
a failed response with HTTP response code 502 (Bad Gateway) and no
payload. It has an HTTP header, X-Request-Trace, which lists the
addresses of the backend servers responsible for responding to that
request. With this information, you can now examine those backends to
test whether they’re responding appropriately.

Diagnose

A thorough understanding of the system’s design is decidedly helpful for
coming up with plausible hypotheses about what’s gone wrong, but there
are also some generic practices that will help even without domain
knowledge.

Simplify and reduce

Ideally, components in a system have well-defined interfaces and
perform known transformations from their input to their output (in our
example, given an input search text, a component might return output
containing possible matches). It’s then possible to look at the
connections between components — or, equivalently, at the data flowing
between them — to determine whether a given component is working
properly. Injecting known test data in order to check that the
resulting output is expected (a form of black-box testing) at each
step can be especially effective, as can injecting data intended to
probe possible causes of errors. Having a solid reproducible test
case makes debugging much faster, and it may be possible to use the
case in a non-production environment where more invasive or riskier
techniques are available than would be possible in production.

Dividing and conquering is a very useful general-purpose solution
technique. In a multilayer system where work happens throughout a
stack of components, it’s often best to start systematically from one
end of the stack and work toward the other end, examining each
component in turn. This strategy is also well-suited for use with data
processing pipelines. In exceptionally large systems, proceeding
linearly may be too slow; an alternative, bisection, splits the
system in half and examines the communication paths between components
on one side and the other. After determining whether one half seems to
be working properly, repeat the process until you’re left with a
possibly faulty component.

Ask “what,” “where,” and “why”

A malfunctioning system is often still trying to do something — just
not the thing you want it to be doing. Finding out what it’s doing,
then asking why it’s doing that and where its resources are being
used or where its output is going can help you understand how things have
gone wrong.10

Unpacking the Causes of a Symptom

Symptom: A Spanner cluster has high latency and RPCs to its servers are
 timing out.

Why? The Spanner server tasks are using all their CPU time and
 can’t make progress on all the requests the clients send.

Where in the server is the CPU time being used? Profiling the
 server shows it’s sorting entries in logs checkpointed to disk.

Where in the log-sorting code is it being used? When evaluating a
 regular expression against paths to log files.

Solutions: Rewrite the regular expression to avoid backtracking.
 Look in the codebase for similar patterns. Consider using RE2, which
 does not backtrack and guarantees linear runtime growth with input
 size.11

What touched it last

Systems have inertia: we’ve found that a working computer system tends
to remain in motion until acted upon by an external force, such as a
configuration change or a shift in the type of load served. Recent
changes to a system can be a productive place to start identifying
what’s going wrong.12

Well-designed systems should have extensive production logging to
track new version deployments and configuration changes at all layers
of the stack, from the server binaries handling user traffic down to
the packages installed on individual nodes in the cluster.
Correlating changes in a system’s performance and behavior with other
events in the system and environment can also be helpful in
constructing monitoring dashboards; for example, you might annotate a
graph showing the system’s error rates with the start and end times of
a deployment of a new version, as seen in
Figure 12-2.

[image: Error rates graphed against deployment start and end times.]
Figure 12-2. Error rates graphed against deployment start and end times

Manually sending a request to the /api/search endpoint (see “Debugging Shakespeare”) and seeing the failure listing backend servers that handled the response
lets you discount the likelihood that the problem is with the API
frontend server and with the load balancers: the response probably
wouldn’t have included that information if the request hadn’t at least
made it to the search backends and failed there. Now you can focus
your efforts on the backends — analyzing their logs, sending test
queries to see what responses they return, and examining their
exported metrics.

Specific diagnoses

While the generic tools described previously are helpful across a broad
range of problem domains, you will likely find it helpful to build
tools and systems to help with diagnosing your particular
services. Google SREs spend much of their time building such tools.
While many of these tools are necessarily specific to a given system,
be sure to look for commonalities between services and teams to avoid
duplicating effort.

Test and Treat

Once you’ve come up with a short list of possible causes, it’s time to
try to find which factor is at the root of the actual problem.
Using the experimental method, we can try to rule in or rule out our
hypotheses. For instance, suppose we think a problem is caused by
either a network failure between an application logic server and a
database server, or by the database refusing connections. Trying to
connect to the database with the same credentials the application
logic server uses can refute the second hypothesis, while pinging the
database server may be able to refute the first, depending on network
topology, firewall rules, and other factors. Following the code and
trying to imitate the code flow, step-by-step, may point to exactly
what’s going wrong.

There are a number of considerations to keep in mind when designing
tests (which may be as simple as sending a ping or as complicated as
removing traffic from a cluster and injecting specially formed
requests to find a race condition):

	
An ideal test should have mutually exclusive alternatives, so that
it can rule one group of hypotheses in and rule another set out.
In practice, this may be difficult to achieve.

	
Consider the obvious first: perform the tests in decreasing order
of likelihood, considering possible risks to the system from the
test. It probably makes more sense to test for network
connectivity problems between two machines before looking into
whether a recent configuration change removed a user’s access to
the second machine.

	
An experiment may provide misleading results due to confounding
factors. For example, a firewall rule might permit access only from
a specific IP address, which might make pinging the database from
your workstation fail, even if pinging from the application logic
server’s machine would have succeeded.

	
Active tests may have side effects that change future test
results. For instance, allowing a process to use more CPUs may make
operations faster, but might increase the likelihood of
encountering data races. Similarly, turning on verbose logging
might make a latency problem even worse and confuse your results:
is the problem getting worse on its own, or because of the logging?

	
Some tests may not be definitive, only suggestive. It can be very
difficult to make race conditions or deadlocks happen in a timely
and reproducible manner, so you may have to settle for less certain
evidence that these are the causes.

Take clear notes of what ideas you had, which tests you ran, and the
results you saw.13 Particularly when you are dealing with more complicated and
drawn-out cases, this documentation may be crucial in helping you
remember exactly what happened and prevent having to repeat these
steps.14 If you performed active testing by changing a system — for
instance by giving more resources to a process — making changes in a
systematic and documented fashion will help you return the system to
its pre-test setup, rather than running in an unknown hodge-podge
configuration.

Negative Results Are Magic

Written by Randall Bosetti

Edited by Joan Wendt

A “negative” result is an experimental outcome in which the expected
effect is absent — that is, any experiment that doesn’t work out as
planned. This includes new designs, heuristics, or human processes
that fail to improve upon the systems they replace.

Negative results should not be ignored or discounted. Realizing
you’re wrong has much value: a clear negative result can resolve some
of the hardest design questions. Often a team has two seemingly
reasonable designs but progress in one direction has to address vague
and speculative questions about whether the other direction might be
better.

Experiments with negative results are conclusive. They tell us
something certain about production, or the design space, or the
performance limits of an existing system. They can help others
determine whether their own experiments or designs are worthwhile. For
example, a given development team might decide against using a
particular web server because it can handle only ~800 connections out
of the needed 8,000 connections before failing due to lock
contention. When a subsequent development team decides to evaluate web
servers, instead of starting from scratch, they can use this already
well-documented negative result as a starting point to decide quickly
whether (a) they need fewer than 800 connections or (b) the lock
contention problems have been resolved.

Even when negative results do not apply directly to someone else’s
experiment, the supplementary data gathered can help others choose new
experiments or avoid pitfalls in previous designs. Microbenchmarks,
documented antipatterns, and project postmortems all fit this
category. You should consider the scope of the negative result when
designing an experiment, because a broad or especially robust negative
result will help your peers even more.

Tools and methods can outlive the experiment and inform future work.
As an example, benchmarking tools and load generators can result just
as easily from a disconfirming experiment as a supporting one. Many
webmasters have benefited from the difficult, detail-oriented work
that produced Apache Bench, a web server loadtest, even though its
first results were likely disappointing.

Building tools for repeatable experiments can have indirect benefits
as well: although one application you build may not benefit from
having its database on SSDs or from creating indices for dense keys, the
next one just might. Writing a script that allows you to easily try
out these configuration changes ensures you don’t forget or miss
optimizations in your next project.

Publishing negative results improves our industry’s data-driven
culture. Accounting for negative results and statistical
insignificance reduces the bias in our metrics and provides an example
to others of how to maturely accept uncertainty. By publishing
everything, you encourage others to do the same, and everyone in the
industry collectively learns much more quickly. SRE has already
learned this lesson with high-quality postmortems, which have had a
large positive effect on production stability.

Publish your results. If you are interested in an experiment’s
results, there’s a good chance that other people are as well. When you
publish the results, those people do not have to design and run a similar experiment
themselves. It’s tempting and common to avoid reporting negative
results because it’s easy to perceive that the experiment “failed.”
Some experiments are doomed, and they tend to be caught by
review. Many more experiments are simply unreported because people
mistakenly believe that negative results are not progress.

Do your part by telling everyone about the designs, algorithms, and
team workflows you’ve ruled out. Encourage your peers by recognizing
that negative results are part of thoughtful risk taking and that
every well-designed experiment has merit. Be skeptical of any design
document, performance review, or essay that doesn’t mention
failure. Such a document is potentially either too heavily filtered,
or the author was not rigorous in his or her methods.

Above all, publish the results you find surprising so that
others — including your future self — aren’t surprised.

Cure

Ideally, you’ve now narrowed the set of possible causes to one. Next,
we’d like to prove that it’s the actual cause. Definitively proving
that a given factor caused a problem — by reproducing it at will — can be difficult to do in production systems; often, we can only find
probable causal factors, for the following reasons:

	
Systems are complex. It’s quite likely that there are multiple
factors, each of which individually is not the cause, but which
taken jointly are causes.15 Real
systems are also often path-dependent, so that they must be in a
specific state before a failure occurs.

	
Reproducing the problem in a live production system may not be an
option, either because of the complexity of getting the system
into a state where the failure can be triggered, or because further
downtime may be unacceptable. Having a nonproduction environment
can mitigate these challenges, though at the cost of having another
copy of the system to run.

Once you’ve found the factors that caused the problem, it’s time to write
up notes on what went wrong with the system, how you tracked down the
problem, how you fixed the problem, and how to prevent it from
happening again. In other words, you need to write a postmortem
(although ideally, the system is alive at this point!).

Case Study

App Engine,16 part of
Google’s Cloud Platform, is a platform-as-a-service product that
allows developers to build services atop Google’s infrastructure. One
of our internal customers filed a problem report indicating that they’d
recently seen a dramatic increase in latency, CPU usage, and number of
running processes needed to serve traffic for their app, a
content-management system used to build documentation for
developers.17 The customer couldn’t find any recent changes
to their code that correlated with the increase in resources, and
there hadn’t been an increase in traffic to their app (see Figure 12-3), so they were
wondering if a change in the App Engine service was responsible.

Our investigation discovered that latency had indeed increased by
nearly an order of magnitude (as shown in Figure 12-4). Simultaneously, the amount of CPU time (Figure 12-5) and number of
serving processes (Figure 12-6) had nearly quadrupled. Clearly
something was wrong. It was time to start troubleshooting.

[image: Application’s requests received per second, showing a brief spike and return to normal.]
Figure 12-3. Application’s requests received per second, showing a brief spike and return to normal

[image: Application’s latency, showing 50th, 95th, and 99th percentiles (lines) with a heatmap showing how many requests fell into a given latency bucket at any point in time (shade).]
Figure 12-4. Application’s latency, showing 50th, 95th, and 99th percentiles (lines) with a heatmap showing how many requests fell into a given latency bucket at any point in time (shade)

[image: Aggregate CPU usage for the application.]
Figure 12-5. Aggregate CPU usage for the application

[image: Number of instances for the application.]
Figure 12-6. Number of instances for the application

Typically a sudden increase in latency and resource usage indicates
either an increase in traffic sent to the system or a change in system
configuration. However, we could easily rule out both of these
possible causes: while a spike in traffic to the app around 20:45
could explain a brief surge in resource usage, we’d expect traffic to
return to baseline fairly soon after request volume normalized. This
spike certainly shouldn’t have continued for multiple days, beginning when the
app’s developers filed the report and we started looking into the
problem. Second, the change in performance happened on Saturday, when
neither changes to the app nor the production environment were in
flight. The service’s most recent code pushes and configuration pushes
had completed days before. Furthermore, if the problem originated with
the service, we’d expect to see similar effects on other apps using
the same infrastructure. However, no other apps were experiencing
similar effects.

We referred the problem report to our counterparts, App Engine’s
developers, to investigate whether the customer was encountering any
idiosyncrasies in the serving infrastructure. The developers weren’t
able to find any oddities, either. However, a developer did notice a
correlation between the latency increase and the increase of a specific data
storage API call, merge_join, which often indicates suboptimal
indexing when reading from the datastore. Adding a composite index on
the properties the app uses to select objects from the datastore would
speed those requests, and in principle, speed the application as a
whole — but we’d need to figure out which properties needed indexing.
A quick look at the application’s code didn’t reveal any obvious
suspects.

It was time to pull out the heavy machinery in our toolkit: using
Dapper [Sig10], we traced the steps individual HTTP requests
took — from their receipt by a frontend reverse proxy through to the
point where the app’s code returned a response — and looked at the RPCs
issued by each server involved in handling that request. Doing so
would allow us to see which properties were included in requests to the
datastore, then create the appropriate indices.

While investigating, we discovered that requests for static content
such as images, which weren’t served from the datastore, were also
much slower than expected. Looking at graphs with file-level
granularity, we saw their responses had been much faster only a few
days before. This implied that the observed correlation between
merge_join and the latency increase was spurious and that our
suboptimal-indexing theory was fatally flawed.

Examining the unexpectedly slow requests for static content, most of the
RPCs sent from the application were to a memcache service, so the
requests should have been very fast — on the order of a few
milliseconds. These requests did turn out to be very fast, so the
problem didn’t seem to originate there. However, between the time the
app started working on a request and when it made the first RPCs,
there was about a 250 ms period where the app was doing…well,
something. Because App Engine runs code provided by users, its SRE
team does not profile or inspect app code, so we couldn’t tell what
the app was doing in that interval; similarly, Dapper couldn’t help
track down what was going on since it can only trace RPC calls, and none were made during that period.

Faced with what was, by this point, quite a mystery, we decided not to
solve it…yet. The customer had a public launch scheduled for the
following week, and we weren’t sure how soon we’d be able to identify
the problem and fix it. Instead, we recommended that the customer
increase the resources allocated to their app to the most CPU-rich
instance type available. Doing so reduced the app’s latency to
acceptable levels, though not as low as we’d prefer. We concluded
that the latency mitigation was good enough that the team could
conduct their launch successfully, then investigate at
leisure.18

At this point, we suspected that the app was a victim of yet another
common cause of sudden increases in latency and resource usage: a
change in the type of work. We’d seen an increase in writes to the
datastore from the app, just before its latency increased, but because
this increase wasn’t very large — nor was it sustained — we’d
written it off as coincidental. However, this behavior did resemble a common pattern: an instance of the app is initialized by reading objects from the datastore, then storing them in the instance’s memory. By doing so, the instance avoids reading rarely changing configuration from the datastore on each request, and instead checks the in-memory objects. Then, the time it
takes to handle requests will often scale with the amount of
configuration data.19 We couldn’t prove that
this behavior was the root of the problem, but it’s a common
antipattern.

The app developers added instrumentation to understand where the app
was spending its time. They identified a method that was called on
every request, that checked whether a user had whitelisted access to a
given path. The method used a caching layer that sought to minimize
accesses to both the datastore and the memcache service, by holding
whitelist objects in instances’ memory. As one of the app’s
developers noted in the investigation, “I don’t know where the fire is
yet, but I’m blinded by smoke coming from this whitelist cache.”

Some time later, the root cause was found: due to a long-standing bug
in the app’s access control system, whenever one specific path was
accessed, a whitelist object would be created and stored in the
datastore. In the run-up to launch, an automated security scanner had
been testing the app for vulnerabilities, and as a side effect, its
scan produced thousands of whitelist objects over the course of half
an hour. These superfluous whitelist objects then had to be checked
on every request to the app, which led to pathologically slow
responses — without causing any RPC calls from the app to other
services. Fixing the bug and removing those objects returned the app’s
performance to expected levels.

Making Troubleshooting Easier

There are many ways to simplify and speed troubleshooting. Perhaps the
most fundamental are:

	
Building observability — with both white-box metrics and structured
logs — into each component from the ground up.

	
Designing systems with well-understood and observable interfaces
between components.

Ensuring that information is available in a consistent way throughout
a system — for instance, using a unique request identifier throughout
the span of RPCs generated by various components — reduces the need to
figure out which log entry on an upstream component matches a log
entry on a downstream component, speeding the time to diagnosis and
recovery.

Problems in correctly representing the state of reality in a code
change or an environment change often lead to a need to troubleshoot.
Simplifying, controlling, and logging such changes can reduce the need
for troubleshooting, and make it easier when it happens.

Conclusion

We’ve looked at some steps you can take to make the troubleshooting
process clear and understandable to novices, so that they, too, can
become effective at solving problems. Adopting a systematic approach
to troubleshooting — as opposed to relying on luck or experience — can
help bound your services’ time to recovery, leading to a better
experience for your users.

1 Indeed, using only first principles and troubleshooting skills is often an effective way to learn how a system works; see Chapter 28.
2 See https://en.wikipedia.org/wiki/Hypothetico-deductive_model.
3 For instance, exported variables as described in Chapter 10.
4 Attributed to Theodore Woodward, of the University of Maryland School of Medicine, in the 1940s. See https://en.wikipedia.org/wiki/Zebra_(medicine). This works in some domains, but in some systems, entire classes of failures may be eliminable: for instance, using a well-designed cluster filesystem means that a latency problem is unlikely to be due to a single dead disk.
5 Occam’s Razor; see https://en.wikipedia.org/wiki/Occam%27s_razor. But remember that it may still be the case that there are multiple problems; in particular, it may be more likely that a system has a number of common low-grade problems that, taken together, explain all the symptoms rather than a single rare problem that causes them all. Cf https://en.wikipedia.org/wiki/Hickam%27s_dictum.
6 Of course, see https://xkcd.com/552.
7 At least, we have no plausible theory to explain why the number of PhDs awarded in Computer Science in the US should be extremely well correlated (r2 = 0.9416) with the per capita consumption of cheese, between 2000 and 2009: http://tylervigen.com/view_correlation?id=1099.
8 It may be useful to refer prospective bug reporters to [Tat99] to help them provide high-quality problem reports.
9 But beware false correlations that can lead you down wrong paths!
10 In many respects, this is similar to the “Five Whys” technique [Ohn88] introduced by Taiichi Ohno to understand the root causes of manufacturing errors.
11 In contrast to RE2, PCRE can require exponential time to evaluate some regular expressions. RE2 is available at https://github.com/google/re2.
12 [All15] observes this is a frequently used heuristic in resolving outages.
13 Using a shared document or real-time chat for notes provides a timestamp of when you did something, which is helpful for postmortems. It also shares that information with others, so they’re up to speed with the current state of the world and don’t need to interrupt your troubleshooting.
14 See also “Negative Results Are Magic” for more on this point.
15 See [Mea08] on how to think about systems, and also [Coo00] and [Dek14] on the limitations of finding a single root cause instead of examining the system and its environment for causative factors.
16 See https://cloud.google.com/appengine.
17 We have compressed and simplified this case study to aid understanding.
18 While launching with an unidentified bug isn’t ideal, it’s often impractical to eliminate all known bugs. Instead, sometimes we have make do with second-best measures and mitigate risk as best we can, using good engineering judgment.
19 The datastore lookup can use an index to speed the comparison, but a frequent in-memory implementation is a simple for loop comparison across all the cached objects. If there are only a few objects, it won’t matter that this takes linear time — but this can cause a significant increase in latency and resource usage as the number of cached objects grows.

Chapter 13. Emergency Response

Written by Corey Adam Baye

Edited by Diane Bates

Things break; that’s life.

Regardless of the stakes involved or the size of an organization, one
trait that’s vital to the long-term health of an organization, and
that consequently sets that organization apart from others, is how the
people involved respond to an emergency. Few of us naturally respond
well during an emergency. A proper response takes preparation and
periodic, pertinent, hands-on training. Establishing and maintaining
thorough training and testing processes requires the support of the
board and management, in addition to the careful attention of
staff. All of these elements are essential in fostering an environment
in which teams can spend money, time, energy, and possibly even uptime
to ensure that systems, processes, and people respond efficiently
during an emergency.

Note that the chapter on postmortem culture discusses the specifics of
how to write postmortems in order to make sure that incidents that
require emergency response also become a learning opportunity (see
Chapter 15). This chapter provides more concrete
examples of such incidents.

What to Do When Systems Break

First of all, don’t panic! You aren’t alone, and the sky isn’t
falling. You’re a professional and trained to handle this sort of
situation. Typically, no one is in physical danger — only those poor
electrons are in peril. At the very worst, half of the Internet is
down. So take a deep breath…and carry on.

If you feel overwhelmed, pull in more people. Sometimes it may even be
necessary to page the entire company. If your company has an incident
response process (see Chapter 14), make sure that
you’re familiar with it and follow that process.

Test-Induced Emergency

Google has adopted a proactive approach to disaster and emergency
testing (see [Kri12]). SREs break our systems, watch how they
fail, and make changes to improve reliability and prevent the failures
from recurring. Most of the time, these controlled failures go as
planned, and the target system and dependent systems behave in roughly
the manner we expect. We identify some weaknesses or hidden
dependencies and document follow-up actions to rectify the flaws we
uncover. However, sometimes our assumptions and the actual results are
worlds apart.

Here’s one example of a test that unearthed a number of unexpected
dependencies.

Details

We wanted to flush out hidden dependencies on a test database within
one of our larger distributed MySQL databases. The plan was to block
all access to just one database out of a hundred. No one foresaw the
results that would unfold.

Response

Within minutes of commencing the test, numerous dependent services
reported that both external and internal users were unable to access
key systems. Some systems were intermittently or only partially
accessible.

Assuming that the test was responsible, SRE immediately aborted the
exercise. We attempted to roll back the permissions change, but were
unsuccessful. Instead of panicking, we immediately brainstormed how to
restore proper access. Using an already tested approach, we restored
permissions to the replicas and failovers. In a parallel effort, we
reached out to key developers to correct the flaw in the database
application layer library.

Within an hour of the original decision, all access was fully
restored, and all services were able to connect once again. The broad
impact of this test motivated a rapid and thorough fix to the
libraries and a plan for periodic retesting to prevent such a major
flaw from recurring.

Findings

What went well

Dependent services that were affected by the incident immediately
escalated the issues within the company. We assumed, correctly, that
our controlled experiment had gotten out of hand and immediately
aborted the test.

We were able to fully restore permissions within an hour of the first
report, at which time systems started behaving properly. Some teams
took a different approach and reconfigured their systems to avoid the
test database. These parallel efforts helped to restore service as
quickly as possible.

Follow-up action items were resolved quickly and thoroughly to avoid a
similar outage, and we instituted periodic testing to ensure that
similar flaws do not recur.

What we learned

Although this test was thoroughly reviewed and thought to be
well scoped, reality revealed we had an insufficient understanding of
this particular interaction among the dependent systems.

We failed to follow the incident response process, which had been put
in place only a few weeks before and hadn’t been thoroughly
disseminated. This process would have ensured that all services and
customers were aware of the outage. To avoid similar scenarios in the
future, SRE continually refines and tests our incident response tools
and processes, in addition to making sure that updates to our incident
management procedures are clearly communicated to all relevant
parties.

Because we hadn’t tested our rollback procedures in a test
environment, these procedures were flawed, which lengthened the
outage. We now require thorough testing of rollback procedures before
such large-scale tests.

Change-Induced Emergency

As you can imagine, Google has a lot of configuration — complex
configuration — and we constantly make changes to that configuration. To
prevent breaking our systems outright, we perform numerous tests on
configuration changes to make sure they don’t result in unexpected and
undesired behavior. However, the scale and complexity of Google’s
infrastructure make it impossible to anticipate every dependency or
interaction; sometimes configuration changes don’t go entirely according to
plan.

The following is one such example.

Details

A configuration change to the infrastructure that helps protect our
services from abuse was pushed globally on a Friday. This
infrastructure interacts with essentially all of our externally facing
systems, and the change triggered a crash-loop bug in those systems,
which caused the entire fleet to begin to crash-loop almost
simultaneously. Because Google’s internal infrastructure also depends
upon our own services, many internal applications suddenly became
unavailable as well.

Response

Within seconds, monitoring alerts started firing, indicating that
certain sites were down. Some on-call engineers simultaneously
experienced what they believed to be a failure of the corporate
network and relocated to dedicated secure rooms (panic rooms) with
backup access to the production environment. They were joined by
additional engineers who were struggling with their corporate access.

Within five minutes of that first configuration push, the engineer
responsible for the push, having become aware of the corporate outage
but still unaware of the broader outage, pushed another configuration
change to roll back the first change. At this point, services began to
recover.

Within 10 minutes of the first push, on-call engineers declared an
incident and proceeded to follow internal procedures for incident
response. They began notifying the rest of the company about the
situation. The push engineer informed the on-call engineers that the
outage was likely due to the change that had been pushed and later
rolled back. Nevertheless, some services experienced unrelated bugs or
misconfigurations triggered by the original event and didn’t fully
recover for up to an hour.

Findings

What went well

There were several factors at play that prevented this incident from
resulting in a longer-term outage of many of Google’s internal
systems.

To begin with, monitoring almost immediately detected and alerted us
to the problem. However, it should be noted that in this case, our
monitoring was less than ideal: alerts fired repeatedly and
constantly, overwhelming the on-calls and spamming regular and
emergency communication channels.

Once the problem was detected, incident management generally went well
and updates were communicated often and clearly. Our out-of-band
communications systems kept everyone connected even while some of the
more complicated software stacks were unusable. This experience
reminded us why SRE retains highly reliable, low overhead backup
systems, which we use regularly.

In addition to these out-of-band communications systems, Google has
command-line tools and alternative access methods that enable us to
perform updates and roll back changes even when other interfaces are
inaccessible. These tools and access methods worked well
during the outage, with the caveat that engineers needed to be more
familiar with the tools and to test them more routinely.

Google’s infrastructure provided yet another layer of protection in
that the affected system rate-limited how quickly it provided full
updates to new clients. This behavior may have throttled the
crash-loop and prevented a complete outage, allowing jobs to remain up
long enough to service a few requests in between crashes.

Finally, we should not overlook the element of luck in the quick
resolution of this incident: the push engineer happened to be
following real-time communication channels — an additional level of
diligence that’s not a normal part of the release process. The push
engineer noticed a large number of complaints about corporate access
directly following the push and rolled back the change almost
immediately. Had this swift rollback not occurred, the outage could
have lasted considerably longer, becoming immensely more difficult to
troubleshoot.

What we learned

An earlier push of the new feature had involved a thorough canary but
didn’t trigger the same bug, as it had not exercised a very rare and
specific configuration keyword in combination with the new
feature. The specific change that triggered this bug wasn’t
considered risky, and therefore followed a less stringent canary
process. When the change was pushed globally, it used the untested
keyword/feature combination that triggered the failure.

Ironically, improvements to canarying and automation were slated to
become higher priority in the following quarter. This incident
immediately raised their priority and reinforced the need for thorough
canarying, regardless of the perceived risk.

As one would expect, alerting was vocal during this incident because
every location was essentially offline for a few minutes. This
disrupted the real work being performed by the on-call engineers and
made communication among those involved in the incident more
difficult.

Google relies upon our own tools. Much of the software stack that we
use for troubleshooting and communicating lies behind jobs that were
crash-looping. Had this outage lasted any longer, debugging would have
been severely hindered.

Process-Induced Emergency

We have poured a considerable amount of time and energy
into the automation that manages our machine fleet. It’s amazing how
many jobs one can start, stop, or retool across the fleet with very
little effort. Sometimes, the efficiency of our automation can be a
bit frightening when things do not go quite according to plan.

This is one example where moving fast was not such a good thing.

Details

As part of routine automation testing, two consecutive turndown
requests for the same soon-to-be-decommissioned server installation
were submitted. In the case of the second turndown request, a subtle
bug in the automation sent all of the machines in all of these
installations globally to the Diskerase queue, where their hard
drives were destined to be wiped; see
“Automation: Enabling Failure at Scale” for more details.

Response

Soon after the second turndown request was issued, the on-call
engineers received a page as the first small server installation was
taken offline to be decommissioned. Their investigation determined
that the machines had been transferred to the Diskerase queue, so
following normal procedure, the on-call engineers drained traffic from
the location. Because the machines in that location had been wiped,
they were unable to respond to requests. To avoid failing those
requests outright, on-call engineers drained traffic away from that
location. Traffic was redirected to locations that could properly
respond to the requests.

Before long, pagers everywhere were firing for all such server
installations around the world. In response, the on-call engineers
disabled all team automation in order to prevent further damage. They
stopped or froze additional automation and production maintenance
shortly thereafter.

Within an hour, all traffic had been diverted to other
locations. Although users may have experienced elevated latencies,
their requests were fulfilled. The outage was officially over.

Now the hard part began: recovery. Some network links were reporting
heavy congestion, so network engineers implemented mitigations as
choke points surfaced. A server installation in one such location was
chosen to be the first of many to rise from the ashes. Within three
hours of the initial outage, and thanks to the tenacity of several
engineers, the installation was rebuilt and brought back online,
happily accepting user requests once again.

US teams handed off to their European counterparts, and SRE hatched
a plan to prioritize reinstallations using a streamlined but manual
process. The team was divided into three parts, with each part
responsible for one step in the manual reinstall process. Within three
days, the vast majority of capacity was back online, while any
stragglers would be recovered over the next month or two.

Findings

What went well

Reverse proxies in large server installations are managed very
differently than reverse proxies in these small installations, so
large installations were not impacted. On-call engineers were able to
quickly move traffic from smaller installations to large
installations. By design, these large installations can handle a full
load without difficulty. However, some network links became congested,
and therefore required network engineers to develop workarounds. In
order to reduce the impact on end users, on-call engineers targeted
congested networks as their highest priority.

The turndown process for the small installations worked efficiently
and well. From start to finish, it took less than an hour to
successfully turn down and securely wipe a large number of these
installations.

Although turndown automation quickly tore down monitoring for the
small installations, on-call engineers were able to promptly revert
those monitoring changes. Doing so helped them to assess the extent of
the damage.

The engineers quickly followed incident response protocols, which had
matured considerably in the year since the first outage described in
this chapter. Communication and collaboration throughout the company
and across teams was superb — a real testament to the incident
management program and training. All hands within the respective teams
chipped in, bringing their vast experience to bear.

What we learned

The root cause was that the turndown automation server lacked the
appropriate sanity checks on the commands it sent. When the server ran
again in response to the initial failed turndown, it received an empty
response for the machine rack. Instead of filtering the response, it
passed the empty filter to the machine database, telling the machine
database to Diskerase all machines involved. Yes, sometimes zero does
mean all. The machine database complied, so the turndown workflow
started churning through the machines as quickly as possible.

Reinstallations of machines were slow and unreliable. This behavior
was due in large part to the use of the Trivial File Transfer Protocol
(TFTP) at the lowest network Quality of Service (QoS) from the distant
locations. The BIOS for each machine in the system dealt poorly with
the failures.1 Depending on the network cards involved, the BIOS either
halted or went into a constant reboot cycle. They were failing to
transfer the boot files on each cycle and were further taxing the
installers. On-call engineers were able to fix these reinstall
problems by reclassifying installation traffic at slightly higher
priority and using automation to restart any machines that were stuck.

The machine reinstallation infrastructure was unable to handle the
simultaneous setup of thousands of machines. This inability was partly
due to a regression that prevented the infrastructure from running
more than two setup tasks per worker machine. The regression also used
improper QoS settings to transfer files and had poorly tuned
timeouts. It forced kernel reinstallation, even on machines that still
had the proper kernel and on which Diskerase had yet to occur. To
remedy this situation, on-call engineers escalated to parties
responsible for this infrastructure who were able to quickly retune it
to support this unusual load.

All Problems Have Solutions

Time and experience have shown that systems will not only break, but
will break in ways that one could never previously imagine. One of the
greatest lessons Google has learned is that a solution exists, even if
it may not be obvious, especially to the person whose pager is
screaming. If you can’t think of a solution, cast your net
farther. Involve more of your teammates, seek help, do whatever you
have to do, but do it quickly. The highest priority is to resolve the
issue at hand quickly. Oftentimes, the person with the most state is
the one whose actions somehow triggered the event. Utilize that
person.

Very importantly, once the emergency has been mitigated, do not forget
to set aside time to clean up, write up the incident, and to…

Learn from the Past. Don’t Repeat It.

Keep a History of Outages

There is no better way to learn than to document what has broken in
the past. History is about learning from everyone’s mistakes. Be
thorough, be honest, but most of all, ask hard questions. Look for
specific actions that might prevent such an outage from recurring, not
just tactically, but also strategically. Ensure that everyone within
the company can learn what you have learned by publishing and
organizing postmortems.

Hold yourself and others accountable to following up on the specific
actions detailed in these postmortems. Doing so will prevent a future
outage that’s nearly identical to, and caused by nearly the same
triggers as, an outage that has already been documented. Once you have
a solid track record for learning from past outages, see what you can
do to prevent future ones.

Ask the Big, Even Improbable, Questions: What If…?

There is no greater test than reality. Ask yourself some big,
open-ended questions. What if the building power fails…? What if the
network equipment racks are standing in two feet of water…? What if
the primary datacenter suddenly goes dark…? What if someone
compromises your web server…? What do you do? Who do you call? Who
will write the check? Do you have a plan? Do you know how to react? Do
you know how your systems will react? Could you minimize the impact if
it were to happen now? Could the person sitting next to you do the
same?

Encourage Proactive Testing

When it comes to failures, theory and reality are two very different
realms. Until your system has actually failed, you don’t truly know
how that system, its dependent systems, or your users will
react. Don’t rely on assumptions or what you can’t or haven’t
tested. Would you prefer that a failure happen at 2 a.m. Saturday
morning when most of the company is still away on a team-building
offsite in the Black Forest — or when you have your best and
brightest close at hand, monitoring the test that they painstakingly
reviewed in the previous weeks?

Conclusion

We’ve reviewed three different cases where parts of our systems
broke. Although all three emergencies were triggered differently — one
by a proactive test, another by a configuration change, and yet
another by turndown automation — the responses shared many
characteristics. The responders didn’t panic. They pulled in others
when they thought it necessary. The responders studied and learned
from earlier outages. Subsequently, they built their systems to better
respond to those types of outages. Each time new failure modes
presented themselves, responders documented those failure modes. This
follow-up helped other teams learn how to better troubleshoot and
fortify their systems against similar outages. Responders proactively
tested their systems. Such testing ensured that the changes fixed the
underlying problems, and identified other weaknesses before they
became outages.

And as our systems evolve the cycle continues, with each outage or
test resulting in incremental improvements to both processes and
systems. While the case studies in this chapter are specific to
Google, this approach to emergency response can be applied over time
to any organization of any size.

1 BIOS: Basic Input/Output System. BIOS is the software built into a computer to send simple instructions to the hardware, allowing input and output before the operating system has been loaded.

Chapter 14. Managing Incidents

Written by Andrew Stribblehill1

Edited by Kavita Guliani

Effective incident management is key to
limiting the disruption caused by an incident and restoring normal
business operations as quickly as possible. If you haven’t gamed out
your response to potential incidents in advance, principled incident
management can go out the window in real-life situations.

This chapter walks through a portrait of an incident that spirals
out of control due to ad hoc incident management practices, outlines
a well-managed approach to the incident, and reviews how the same
incident might have played out if handled with well-functioning
incident management.

Unmanaged Incidents

Put yourself in the shoes of Mary, the on-call engineer for The
Firm. It’s 2 p.m. on a Friday afternoon and your pager has just
exploded. Black-box monitoring tells you
that your service has stopped serving any traffic in an entire datacenter. With a sigh, you put down your coffee and set about the job of
fixing it. A few minutes into the task, another alert tells you that a
second datacenter has stopped serving. Then the third out of your
five datacenters fails. To exacerbate the situation, there is more
traffic than the remaining datacenters can handle, so they
start to overload. Before you know it, the service is
overloaded and unable to serve any requests.

You stare at the logs for what seems like an eternity. Thousands of
lines of logging suggest there’s an error in one of the recently
updated modules, so you decide to revert the servers to the previous
release. When you see that the rollback hasn’t helped, you call
Josephine, who wrote most of the code for the now-hemorrhaging
service. Reminding you that it’s 3:30 a.m. in her time zone, she
blearily agrees to log in and take a look. Your colleagues Sabrina and
Robin start poking around from their own terminals. “Just
looking,” they tell you.

Now one of the suits has phoned your boss and is angrily demanding to
know why he wasn’t informed about the “total meltdown of this
business-critical service.” Independently, the vice presidents are
nagging you for an ETA, repeatedly asking you, “How could this
possibly have happened?” You would sympathize, but doing so would
require cognitive effort that you are holding in reserve for your job.
The VPs call on their prior engineering experience and make irrelevant
but hard-to-refute comments like, “Increase the page size!”

Time passes; the two remaining datacenters fail completely.
Unbeknown to you, sleep-addled Josephine called Malcolm. He had a
brainwave: something about CPU affinity. He felt certain that he could
optimize the remaining server processes if he could just deploy this
one simple change to the production environment, so he did so.
Within seconds, the servers restarted, picking up the change.
And then died.

The Anatomy of an Unmanaged Incident

Note that everybody in the preceding scenario was doing their job, as they
saw it. How could things go so wrong? A few common hazards caused this incident to spiral out of control.

Sharp Focus on the Technical Problem

We tend to hire people like Mary for their technical prowess. So it’s
not surprising that she was busy making operational changes to the
system, trying valiantly to solve the problem. She wasn’t in a
position to think about the bigger picture of how to mitigate the
problem because the technical task at hand was overwhelming.

Poor Communication

For the same reason, Mary was far too busy to communicate clearly.
Nobody knew what actions their coworkers were taking. Business
leaders were angry, customers were frustrated, and other engineers who
could have lent a hand in debugging or fixing the issue weren’t used
effectively.

Freelancing

Malcolm was making changes to the system with the best of intentions.
However, he didn’t coordinate with his coworkers — not
even Mary, who was technically in charge of troubleshooting. His changes made a bad situation far worse.

Elements of Incident Management Process

Incident management skills and practices exist to channel the energies
of enthusiastic individuals. Google’s incident management system is
based on the Incident Command System,2 which is known for its clarity and scalability.

A well-designed incident management process has the following
features.

Recursive Separation of Responsibilities

It’s important to make sure that everybody involved in the incident
knows their role and doesn’t stray onto someone else’s turf. Somewhat
counterintuitively, a clear separation of responsibilities allows
individuals more autonomy than they might otherwise have, since they
need not second-guess their colleagues.

If the load on a given member becomes excessive, that person needs to
ask the planning lead for more staff. They should then delegate work
to others, a task that might entail creating subincidents. Alternatively, a role leader might delegate system components to colleagues, who report high-level information back up to the leaders.

Several distinct roles should be delegated to particular individuals:

Incident Command

The incident commander
holds the high-level state about the incident. They structure the
incident response task force, assigning responsibilities according to
need and priority. De facto, the commander holds all positions that
they have not delegated. If appropriate, they can remove roadblocks
that prevent Ops from working most effectively.

Operational Work

The Ops lead works with the incident commander to
respond to the incident by applying operational tools to the task at
hand. The operations team should be the only group modifying the
system during an incident.

Communication

This person is the public face of the incident
response task force. Their duties most definitely include issuing
periodic updates to the incident response team and stakeholders
(usually via email), and may extend to tasks such as keeping the
incident document accurate and up to date.

Planning

The planning role supports Ops by dealing with longer-term
issues, such as filing bugs, ordering dinner, arranging handoffs, and
tracking how the system has diverged from the norm so it can be
reverted once the incident is resolved.

A Recognized Command Post

Interested parties need to understand where they can interact with the
incident commander. In many situations, locating the incident task
force members into a central designated “War Room” is
appropriate. Others teams may prefer to work at their desks, keeping
alert to incident updates via email and IRC.

Google has found IRC to be a huge boon in incident response. IRC
is very reliable and can be used as a log of communications about this
event, and such a record is invaluable in keeping detailed state changes
in mind. We’ve also written bots that log incident-related traffic
(which is helpful for postmortem analysis), and other bots that log
events such as alerts to the channel. IRC is also a convenient medium
over which geographically distributed teams can coordinate.

Live Incident State Document

The incident commander’s most important responsibility is to keep a
living incident document. This can live in a wiki, but
should ideally be editable by several people concurrently. Most
of our teams use Google Docs,
though Google Docs SRE use Google Sites: after all, depending on the
software you are trying to fix as part of your incident management
system is unlikely to end well.

See Appendix C for a sample incident
document. This living doc can be messy, but must be
functional. Using a template makes generating this documentation easier, and keeping the most important information at the top makes it more usable.Retain this documentation for postmortem analysis and, if necessary, meta analysis.

Clear, Live Handoff

It’s essential that the post of incident commander be clearly handed
off at the end of the working day. If you’re handing off command to
someone at another location, you can simply and safely update the new
incident commander over the phone or a video call. Once the new
incident commander is fully apprised, the outgoing commander should be
explicit in their handoff, specifically stating, “You’re now the
incident commander, okay?”, and should not leave the call until receiving
firm acknowledgment of handoff. The handoff should be communicated to others working on the incident so that it’s clear who is leading the incident management efforts at all times.

A Managed Incident

Now let’s examine how this incident might have played out if it were
handled using principles of incident management.

It’s 2 p.m., and Mary is into her third coffee of the day. The
pager’s harsh tone surprises her, and she gulps the drink
down. Problem: a datacenter has stopped serving traffic. She starts
to investigate. Shortly another alert fires, and the second datacenter out of five is out of order. Because this is a rapidly growing
issue, she knows that she’ll benefit from the structure of her
incident management framework.

Mary snags Sabrina. “Can you take command?” Nodding her agreement,
Sabrina quickly gets a rundown of what’s occurred thus far from
Mary. She captures these details in an email that she sends to a
prearranged mailing list. Sabrina recognizes that she can’t yet
scope the impact of the incident, so she asks for Mary’s assessment. Mary responds,
“Users have yet to be impacted; let’s just hope we don’t lose a
third datacenter.” Sabrina records Mary’s response in a live
incident document.

When the third alert fires, Sabrina sees the alert among the
debugging chatter on IRC and quickly follows up to the email thread
with an update. The thread keeps VPs abreast of the high-level
status without bogging them down in minutiae. Sabrina
asks an external communications representative to start drafting user
messaging. She then follows up with Mary to see if they should contact
the developer on-call (currently Josephine). Receiving
Mary’s approval, Sabrina loops in Josephine.

By the time Josephine logs in, Robin has already volunteered to help
out. Sabrina reminds both Robin and Josephine that they are to
prioritize any tasks delegated to them by Mary, and that they must
keep Mary informed of any additional actions they take. Robin and
Josephine quickly familiarize themselves with the current situation by
reading the incident document.

By now, Mary has tried the old binary release and found it wanting:
she mutters this to Robin, who updates IRC to say that this attempted
fix didn’t work. Sabrina pastes this update into the live incident
management document.

At 5 p.m., Sabrina starts finding replacement staff to take on the
incident, as she and her colleagues are about to go home. She
updates the incident document. A brief phone conference takes place at
5:45 so everyone is aware of the current situation. At
6 p.m., they hand off their responsibilities to
their colleagues in the sister office.

Mary returns to work the following morning to find that her transatlantic colleagues have assumed responsibility for the bug, mitigated the problem, closed the incident, and started work on the postmortem. Problem solved, she brews some fresh coffee and settles down to plan structural improvements so problems of this category don’t afflict the team again.

When to Declare an Incident

It is better to declare an incident early and then find a simple fix
and close out the incident than to have to spin up the incident
management framework hours into a burgeoning problem. Set clear
conditions for declaring an incident. My team follows these broad
guidelines — if any of the following is true, the event is an
incident:

	
Do you need to involve a second team in fixing the problem?

	
Is the outage visible to customers?

	
Is the issue unsolved even after an hour’s concentrated analysis?

Incident management proficiency atrophies quickly when it’s not in
constant use. So how can engineers keep their incident management skills up to date — handle more
incidents? Fortunately, the incident management framework can apply to other operational changes that need to span time zones
and/or teams. If you use the framework frequently as a regular part of
your change management procedures, you can easily follow this framework
when an actual incident occurs. If your organization performs
disaster-recovery testing (you should,
it’s fun: see [Kri12]), incident management should be
part of that testing process. We often role-play the response to an
on-call issue that has already been solved, perhaps by colleagues in
another location, to further familiarize ourselves with incident
management.

In Summary

We’ve found that by formulating an incident management strategy in advance,
structuring this plan to scale smoothly, and regularly putting the plan to use,
we were able to reduce our mean time to recovery and provide staff a less
stressful way to work on emergent problems. Any organization concerned with
reliability would benefit from pursuing a similar strategy.

Best Practices for Incident Management

Prioritize. Stop the bleeding, restore service, and preserve the evidence for root-causing.

Prepare. Develop and document your incident management procedures in advance, in consultation with incident participants.

Trust. Give full autonomy within the assigned role to all incident participants.

Introspect. Pay attention to your emotional state while responding to an incident. If you start to feel panicky or overwhelmed, solicit more support.

Consider alternatives. Periodically consider your options and re-evaluate whether it still makes sense to continue what you’re doing or whether you should be taking another tack in incident response.

Practice. Use the process routinely so it becomes second nature.

Change it around. Were you incident commander last time? Take on a different role this time. Encourage every team member to acquire familiarity with each role.

1 An earlier version of this chapter appeared as an article in ;login: (April 2015, vol. 40, no. 2).
2 See http://www.fema.gov/national-incident-management-system for further details.

Chapter 15. Postmortem Culture: Learning from Failure

Written by John Lunney and Sue Lueder

Edited by Gary O’ Connor

The cost of failure is education.

Devin Carraway

As SREs, we work with large-scale, complex, distributed systems. We
constantly enhance our services with new features and add new
systems. Incidents and outages are inevitable given our scale and
velocity of change. When an incident occurs, we fix the underlying
issue, and services return to their normal operating conditions. Unless we have some formalized process of learning from these
incidents in place, they may recur ad infinitum. Left unchecked,
incidents can multiply in complexity or even cascade, overwhelming a
system and its operators and ultimately impacting our users. Therefore, postmortems are an
essential tool for SRE.

The postmortem concept is well known in the technology industry
[All12]. A postmortem is a written record of an incident, its
impact, the actions taken to mitigate or resolve it, the root
cause(s), and the follow-up actions to prevent the incident from
recurring. This chapter describes criteria for deciding when to
conduct postmortems, some best practices around postmortems, and
advice on how to cultivate a postmortem culture based on the experience
we’ve gained over the years.

Google’s Postmortem Philosophy

The primary goals of writing a postmortem are to ensure that the
incident is documented, that all contributing root cause(s) are well
understood, and, especially, that effective preventive actions are put in place to
reduce the likelihood and/or impact of recurrence. A detailed survey of root-cause
analysis techniques is beyond the scope of this chapter (instead, see
[Roo04]); however, articles, best practices, and tools abound in the
system quality domain. Our teams use a variety of techniques for root-cause analysis and choose the technique best suited to their
services. Postmortems are expected after any significant undesirable
event. Writing a postmortem is not punishment — it is a learning
opportunity for the entire company. The postmortem process does
present an inherent cost in terms of time or effort, so we are
deliberate in choosing when to write one. Teams have some internal
flexibility, but common postmortem triggers include:

	
User-visible downtime or degradation beyond a certain threshold

	
Data loss of any kind

	
On-call engineer intervention (release rollback, rerouting of
traffic, etc.)

	
A resolution time above some threshold

	
A monitoring failure (which usually implies manual incident discovery)

It is important to define postmortem criteria before an incident
occurs so that everyone knows when a postmortem is necessary. In
addition to these objective triggers, any stakeholder may request a
postmortem for an event.

Blameless postmortems are a tenet of SRE culture. For a postmortem to
be truly blameless, it must focus on identifying the contributing
causes of the incident without indicting any individual or team for
bad or inappropriate behavior. A blamelessly written postmortem
assumes that everyone involved in an incident had good intentions and
did the right thing with the information they had. If a culture of
finger pointing and shaming individuals or teams for doing the “wrong”
thing prevails, people will not bring issues to light for fear of
punishment.

Blameless culture originated in the healthcare and avionics industries
where mistakes can be fatal. These industries nurture an environment
where every “mistake” is seen as an opportunity to strengthen the
system. When postmortems shift from allocating blame to investigating
the systematic reasons why an individual or team had incomplete or
incorrect information, effective prevention plans can be put in
place. You can’t “fix” people, but you can fix systems and processes
to better support people making the right choices when designing and
maintaining complex systems.

When an outage does occur, a postmortem is not written as a formality
to be forgotten. Instead the postmortem is seen by engineers as an
opportunity not only to fix a weakness, but to make Google more
resilient as a whole. While a blameless postmortem doesn’t simply
vent frustration by pointing fingers, it should call out where and
how services can be improved. Here are two examples:

Pointing fingers

“We need to rewrite the entire complicated backend system! It’s been breaking weekly for the last three quarters and I’m sure we’re all tired of fixing things onesy-twosy. Seriously, if I get paged one more time I’ll rewrite it myself…”

Blameless

“An action item to rewrite the entire backend system might actually prevent these annoying pages from continuing to happen, and the maintenance manual for this version is quite long and really difficult to be fully trained up on. I’m sure our future on-callers will thank us!”

Best Practice: Avoid Blame and Keep It Constructive

Blameless postmortems can be challenging to write, because the postmortem
format clearly identifies the actions that led to the
incident. Removing blame from a postmortem gives people the confidence
to escalate issues without fear. It is also important not to
stigmatize frequent production of postmortems by a person or team. An
atmosphere of blame risks creating a culture in which incidents and
issues are swept under the rug, leading to greater risk for the
organization [Boy13].

Collaborate and Share Knowledge

We value collaboration, and the postmortem process is no
exception. The postmortem workflow includes collaboration and
knowledge-sharing at every stage.

Our postmortem documents are Google Docs, with an in-house template
(see Appendix D). Regardless of the
specific tool you use, look for the following key features:

Real-time collaboration

Enables the rapid collection of data and
ideas. Essential during the early creation of a postmortem.

An open commenting/annotation system

Makes crowdsourcing solutions
easy and improves coverage.

Email notifications

Can be directed at collaborators within the
document or used to loop in others to provide input.

Writing a postmortem also involves formal review and publication. In
practice, teams share the first postmortem draft internally and
solicit a group of senior engineers to assess the draft for
completeness. Review criteria might include:

	
Was key incident data collected for posterity?

	
Are the impact assessments complete?

	
Was the root cause sufficiently deep?

	
Is the action plan appropriate and are resulting bug fixes
at appropriate priority?

	
Did we share the outcome with relevant stakeholders?

Once the initial review is complete, the postmortem is shared more
broadly, typically with the larger engineering team or on an internal
mailing list. Our goal is to share postmortems to the widest possible
audience that would benefit from the knowledge or lessons
imparted. Google has stringent rules around access to any piece of
information that might identify a user,1 and even internal documents
like postmortems never include such information.

Best Practice: No Postmortem Left Unreviewed

An unreviewed postmortem might as well never have existed. To ensure
that each completed draft is reviewed, we encourage regular review
sessions for postmortems. In these meetings, it is important to close
out any ongoing discussions and comments, to capture ideas, and to
finalize the state.

Once those involved are satisfied with the document and its action
items, the postmortem is added to a team or organization repository of
past incidents.2 Transparent sharing makes it easier for others to find
and learn from the postmortem.

Introducing a Postmortem Culture

Introducing a postmortem culture to your organization is easier said
than done; such an effort requires continuous cultivation and
reinforcement. We reinforce a collaborative postmortem culture
through senior management’s active participation in the
review and collaboration process. Management can encourage this
culture, but blameless postmortems are ideally the product of engineer
self-motivation. In the spirit of nurturing the postmortem culture, SREs proactively create activities that disseminate what we learn
about system infrastructure. Some example activities include:

Postmortem of the month

In a monthly newsletter, an
interesting and well-written postmortem is shared with the entire
organization.

Google+ postmortem group

This group shares
and discusses internal and external postmortems, best practices,
and commentary about postmortems.

Postmortem reading clubs

Teams host regular postmortem reading
clubs, in which an interesting or impactful postmortem is brought
to the table (along with some tasty refreshments) for an open
dialogue with participants, nonparticipants, and new Googlers about
what happened, what lessons the incident imparted, and the
aftermath of the incident. Often, the postmortem being reviewed is
months or years old!

Wheel of Misfortune

New SREs are often treated to the Wheel of
Misfortune exercise (see “Disaster Role Playing”), in which
a previous postmortem is reenacted with a cast of engineers playing
roles as laid out in the postmortem. The original incident
commander attends to help make the experience as “real” as
possible.

One of the biggest challenges of introducing postmortems to an
organization is that some may question their value given the cost of
their preparation. The following strategies can help in facing this
challenge:

	
Ease postmortems into the workflow. A trial period with several
complete and successful postmortems may help prove their value, in
addition to helping to identify what criteria should initiate a
postmortem.

	
Make sure that writing effective postmortems is a rewarded and
celebrated practice, both publicly through the social methods
mentioned earlier, and through individual and team performance
management.

	
Encourage senior leadership’s acknowledgment and
participation. Even Larry Page talks about the high value of
postmortems!

Best Practice: Visibly Reward People for Doing the Right Thing

Google’s founders Larry Page and Sergey Brin host TGIF, a weekly
all-hands held live at our headquarters in Mountain View, California,
and broadcast to Google offices around the world. A 2014 TGIF focused
on “The Art of the Postmortem,” which featured SRE discussion of
high-impact incidents. One SRE discussed a release he had recently
pushed; despite thorough testing, an unexpected interaction
inadvertently took down a critical service for four minutes. The
incident only lasted four minutes because the SRE had the presence of
mind to roll back the change immediately, averting a much longer and
larger-scale outage. Not only did this engineer receive two peer
bonuses3 immediately afterward in recognition of his
quick and level-headed handling of the incident, but he also received
a huge round of applause from the TGIF audience, which included the
company’s founders and an audience of Googlers numbering in the
thousands. In addition to such a visible forum, Google has an array of
internal social networks that drive peer praise toward well-written
postmortems and exceptional incident handling. This is one example of
many where recognition of these contributions comes from peers, CEOs,
and everyone in between.4

Best Practice: Ask for Feedback on Postmortem Effectiveness

At Google, we strive to address problems as they arise and share
innovations internally. We regularly survey our teams on how the
postmortem process is supporting their goals and how the process might
be improved. We ask questions such as: Is the culture supporting your
work? Does writing a postmortem entail too much toil (see
Chapter 5)? What best practices does your team
recommend for other teams? What kinds of tools would you like to see
developed? The survey results give the SREs in the trenches the
opportunity to ask for improvements that will increase the
effectiveness of the postmortem culture.

Beyond the operational aspects of incident management and follow-up,
postmortem practice has been woven into the culture at Google: it’s
now a cultural norm that any significant incident is followed by a
comprehensive postmortem.

Conclusion and Ongoing Improvements

We can say with confidence that thanks to our continuous investment in
cultivating a postmortem culture, Google weathers fewer outages and
fosters a better user experience. Our “Postmortems at Google” working
group is one example of our commitment to the culture of blameless
postmortems. This group coordinates postmortem efforts across the
company: pulling together postmortem templates, automating postmortem
creation with data from tools used during an incident, and helping
automate data extraction from postmortems so we can perform trend
analysis. We’ve been able to collaborate on best practices from
products as disparate as YouTube, Google Fiber, Gmail, Google Cloud,
AdWords, and Google Maps. While these products are quite diverse, they
all conduct postmortems with the universal goal of learning from our
darkest hours.

With a large number of postmortems produced each month across Google,
tools to aggregate postmortems are becoming more and more
useful. These tools help us identify common themes and areas for
improvement across product boundaries. To facilitate comprehension and
automated analysis, we have recently enhanced our postmortem template
(see Appendix D) with additional
metadata fields. Future work in this domain includes machine learning
to help predict our weaknesses, facilitate real-time incident
investigation, and reduce duplicate incidents.

1 See http://www.google.com/policies/privacy/.
2 If you’d like to start your own repository, Etsy has released Morgue, a tool for managing postmortems.
3 Google’s Peer Bonus program is a way for fellow Googlers to recognize colleagues for exceptional efforts and involves a token cash reward.
4 For further discussion of this particular incident, see Chapter 13.

Chapter 16. Tracking Outages

Written by Gabe Krabbe

Edited by Lisa Carey

Improving reliability over time is only possible if you start from a known baseline and can track progress. “Outalator,” our outage tracker,
is one of the tools we use to do just that. Outalator is a system that passively receives all alerts sent by our monitoring systems and allows us to annotate, group, and analyze this data.

Systematically learning from past problems is essential to effective service management.
Postmortems (see Chapter 15) provide detailed information for individual
outages, but they are only part of the answer. They are only written for
incidents with a large impact, so issues that have individually
small impact but are frequent and widespread don’t fall within their scope.
Similarly, postmortems tend to provide useful insights for improving a single service
or set of services, but may miss opportunities that would have a small effect
in individual cases, or opportunities that have a poor cost/benefit ratio, but that would have large
horizontal impact.1

We can also get useful information from questions such as, “How many alerts per on-call shift does this team get?”, “What’s the
ratio of actionable/nonactionable alerts over the last quarter?”, or even simply
“Which of the services this team manages creates the most toil?”

Escalator

At Google, all alert notifications for SRE share a central
replicated system that tracks whether a human has acknowledged
receipt of the notification. If no acknowledgment is received after a
configured interval, the system escalates to the next configured
destination(s) — e.g., from primary on-call to secondary. This system, called “The Escalator,” was initially designed as a largely transparent tool
that received copies of emails sent to on-call aliases. This
functionality allowed Escalator to easily integrate with existing
workflows without requiring any change in user behavior (or, at the
time, monitoring system behavior).

Outalator

Following Escalator’s example, where we added useful features
to existing infrastructure, we created a system that would deal not
just with the individual escalating notifications, but with the next
layer of abstraction: outages.

Outalator
lets users view a time-interleaved list of notifications for multiple
queues at once, instead of requiring a user to switch between queues
manually. Figure 16-1 shows multiple queues as they appear in Outalator’s queue view. This functionality is handy because frequently a single SRE team is the primary point of contact for services with distinct secondary escalation targets, usually the developer teams.

[image: srle 1601]
Figure 16-1. Outalator queue view

Outalator stores a copy of the original notification and
allows annotating incidents. For convenience, it
silently receives and saves a copy of any email replies as
well. Because some follow-ups are less helpful than others
(for example, a reply-all sent with the sole purpose of adding more
recipients to the cc list), annotations can be marked as
“important.” If an annotation is important, other parts of the message
are collapsed into the interface to cut down on clutter. Together,
this provides more context when referring to an incident than a
possibly fragmented email thread.

Multiple escalating notifications (“alerts”) can be combined into
a single entity (“incident”) in the Outalator. These notifications may be related to the same single incident, may be otherwise unrelated and uninteresting auditable events such as privileged database access, or may be spurious monitoring failures. This grouping functionality, shown in Figure 16-2, unclutters
the overview displays and allows for separate analysis of “incidents
per day” versus “alerts per day.”

[image: srle 1602]
Figure 16-2. Outalator view of an incident

Building Your Own Outalator

Many organizations use messaging systems like Slack, Hipchat, or even IRC for internal communication and/or updating status dashboards. These systems are great places to hook into with a system like Outalator.

Aggregation

A single event may, and often will, trigger multiple alerts.
For example, network failures cause timeouts and
unreachable backend services for everyone, so all affected teams
receive their own alerts, including the owners of backend services;
meanwhile, the network operations center will have its own klaxons
ringing. However, even smaller issues affecting a single service may
trigger multiple alerts due to multiple error conditions being
diagnosed. While it is worthwhile to attempt to minimize the number of
alerts triggered by a single event, triggering multiple alerts is
unavoidable in most trade-off calculations between false positives and
false negatives.

The ability to group multiple alerts together into a single
incident is critical in dealing with this
duplication. Sending an email saying “this is the same thing as that other thing; they are symptoms of the same incident” works for a given alert: it can prevent duplication of debugging or panic. But sending an email for each alert is not a practical or scalable solution for handling duplicate alerts within a team, let alone between teams or over longer periods of time.

Tagging

Of course, not every alerting event is an incident. False-positive
alerts occur, as well as test events or mistargeted emails from
humans. The Outalator itself does not distinguish between these
events, but it allows general-purpose tagging to add metadata to
notifications, at any level. Tags are mostly free-form, single
“words.” Colons, however, are interpreted as semantic separators,
which subtly promotes the use of hierarchical namespaces and allows
some automatic treatment. This namespacing is supported by suggested
tag prefixes, primarily “cause” and “action,” but the list is team-specific and generated based on historical usage. For
example, “cause:network” might be sufficient information for some
teams, whereas another team might opt for more specific tags,
such as “cause:network:switch” versus “cause:network:cable.” Some
teams may frequently use “customer:132456”-style tags, so “customer”
would be suggested for those teams, but not for others.

Tags can be parsed and turned into a convenient link
(“bug:76543” links to the bug tracking system). Other tags are just a
single word (“bogus” is widely used for false positives). Of course,
some tags are typos (“cause:netwrok”) and some tags aren’t
particularly helpful (“problem-went-away”), but avoiding a predetermined list and allowing teams to find their own preferences and standards will result in a more useful tool and better data. Overall, tags have
been a remarkably powerful tool for teams to obtain and provide an
overview of a given service’s pain points, even without much, or even
any, formal analysis. As trivial as tagging appears, it is probably one of the Outalator’s most useful unique features.

Analysis

Of course, SRE does much more than just react
to incidents. Historical data is useful when one is responding to
an incident — the question “what did we do last time?” is always a good
starting point. But historical information is far more useful when it
concerns systemic, periodic, or other wider problems that may
exist. Enabling such analysis is one of the most important functions
of an outage tracking tool.

The bottom layer of analysis encompasses counting and basic aggregate
statistics for reporting. The details depend on the team, but include
information such as incidents per week/month/quarter and alerts per
incident. The next layer is more important, and easy to provide:
comparison between teams/services and over time to identify first
patterns and trends. This layer allows teams to determine whether a given alert load is “normal” relative to their own track record and that of other services. “That’s the
third time this week” can be good or bad, but knowing whether “it”
used to happen five times per day or five times per month allows
interpretation.

The next step in data analysis is finding wider issues, which are not
just raw counts but require some semantic analysis. For example,
identifying the infrastructure component causing most incidents, and
therefore the potential benefit from increasing the stability or
performance of this component,2 assumes that there is a straightforward way to
provide this information alongside the incident records. As a simple
example: different teams have service-specific alert conditions such
as “stale data” or “high latency.” Both conditions may be caused by
network congestion leading to database replication delays and need intervention. Or, they could be within the nominal service level objective, but are failing to meet the higher expectations of users. Examining this information across multiple teams allows us to
identify systemic problems and choose the correct solution, especially
if the solution may be the introduction of more artificial failures to
stop over-performing.

Reporting and communication

Of more immediate use to frontline SREs is the ability to
select zero or more outalations and include their subjects, tags, and
“important” annotations in an email to the next on-call engineer (and
an arbitrary cc list) in order to pass on recent state between
shifts. For periodic reviews of the production services (which occur
weekly for most teams), the Outalator also supports a “report mode,”
in which the important annotations are expanded inline with the main
list in order to provide a quick overview of lowlights.

Unexpected Benefits

Being able to identify that an
alert, or a flood of alerts, coincides with a given other outage has obvious
benefits: it increases the speed of diagnosis and reduces load on
other teams by acknowledging that there is indeed an incident. There
are additional nonobvious benefits. To use Bigtable as an example, if
a service has a disruption due to an apparent Bigtable incident, but you can see that
the Bigtable SRE team has not been alerted, manually alerting the team is probably a good idea. Improved cross-team visibility can and
does make a big difference in incident resolution, or at least in
incident mitigation.

Some teams across the company have gone so far as to set up dummy
escalator configurations: no human receives the notifications sent
there, but the notifications appear in the Outalator and can be
tagged, annotated, and reviewed. One example for this “system of
record” use is to log and audit the use of privileged or role accounts
(though it must be noted that this functionality is basic, and used
for technical, rather than legal, audits). Another use is to record
and automatically annotate runs of periodic jobs that may not be
idempotent — for example, automatic application of schema changes from
version control to database systems.

1 For example, it might take significant engineering effort to make a particular change to Bigtable that only has a small mitigating effect for one outage. However, if that same mitigation were available across many events, the engineering effort may well be worthwhile.
2 On the one hand, “most incidents caused” is a good starting point for reducing the number of alerts triggered and improving the overall system. On the other hand, this metric may simply be an artifact of over-sensitive monitoring or a small set of client systems misbehaving or themselves running outside the agreed service level. And on the gripping hand, the number of incidents alone gives no indication as to the difficulty to fix or severity of impact.

Chapter 17. Testing for Reliability

Written by Alex Perry and Max Luebbe

Edited by Diane Bates

If you haven’t tried it, assume it’s broken.

Unknown

One key responsibility of Site Reliability Engineers is to quantify
confidence in the systems they maintain. SREs perform this task by
adapting classical software testing techniques to systems at
scale.1
Confidence can be measured both by past reliability and future
reliability. The former is captured by analyzing data provided by
monitoring historic system behavior, while the latter is quantified by
making predictions from data about past system behavior. In order for
these predictions to be strong enough to be useful, one of the
following conditions must hold:

	
The site remains completely unchanged over time with no software
releases or changes in the server fleet, which means that future
behavior will be similar to past behavior.

	
You can confidently describe all changes to the site, in order for
analysis to allow for the uncertainty incurred by each of these
changes.

Testing is the mechanism you use to demonstrate specific areas of
equivalence when changes occur.2
Each test that passes both before and after a change reduces the
uncertainty for which the analysis needs to allow. Thorough testing
helps us predict the future reliability of a given site with enough
detail to be practically useful.

The amount of testing you need to conduct depends on the reliability
requirements for your system. As the percentage of your codebase
covered by tests increases, you reduce uncertainty and the potential
decrease in reliability from each change. Adequate testing coverage
means that you can make more changes before reliability falls below an
acceptable level. If you make too many changes too quickly, the
predicted reliability approaches the acceptability limit. At this
point, you may want to stop making changes while new monitoring data
accumulates. The accumulating data supplements the tested coverage,
which validates the reliability being asserted for revised execution
paths. Assuming the served clients are randomly distributed
[Woo96], sampling statistics can extrapolate from monitored metrics
whether the aggregate behavior is making use of new paths. These
statistics identify the areas that need better testing or other
retrofitting.

Relationships Between Testing and Mean Time to Repair

Passing a test or a series of tests doesn’t necessarily prove
reliability. However, tests that are failing generally prove the
absence of reliability.

A monitoring system can uncover bugs, but only as quickly as the
reporting pipeline can react. The Mean Time to Repair (MTTR)
measures how long it takes the operations team to fix the bug, either
through a rollback or another action.

It’s possible for a testing system to identify a bug with zero
MTTR. Zero MTTR occurs when a system-level test is applied to a
subsystem, and that test detects the exact same problem that
monitoring would detect. Such a test enables the push to be blocked so
the bug never reaches production (though it still needs to be repaired
in the source code). Repairing zero MTTR bugs by blocking a push is
both quick and convenient. The more bugs you can find with zero MTTR,
the higher the Mean Time Between Failures (MTBF) experienced by your
users.

As MTBF increases in response to better testing, developers are
encouraged to release features faster. Some of these features will, of
course, have bugs. New bugs result in an opposite adjustment to
release velocity as these bugs are found and fixed.

Authors writing about software testing largely agree on what
coverage is needed. Most conflicts of opinion stem from conflicting
terminology, differing emphasis on the impact of testing in each of
the software lifecycle phases, or the particularities of the systems
on which they’ve conducted testing. For a discussion about testing at
Google in general, see [Whi12]. The following sections specify how
software testing–related terminology is used in this chapter.

Types of Software Testing

Software tests broadly fall into two categories: traditional and
production. Traditional tests are more common in software development
to evaluate the correctness of software offline, during
development. Production tests are performed on a live web
service to evaluate whether a deployed software system is working
correctly.

Traditional Tests

As shown in Figure 17-1, traditional software testing begins with unit tests. Testing of more
complex functionality is layered atop unit tests.

[image: The hierarchy of traditional tests.]
Figure 17-1. The hierarchy of traditional tests

Unit tests

A unit test is the smallest and simplest form of software
testing. These tests are employed to assess a separable unit of
software, such as a class or function, for correctness independent of
the larger software system that contains the unit. Unit tests are also
employed as a form of specification to ensure that a function or
module exactly performs the behavior required by the system. Unit
tests are commonly used to introduce test-driven development concepts.

Integration tests

Software components that pass individual unit tests are assembled into
larger components. Engineers then run an integration test on an
assembled component to verify that it functions correctly. Dependency
injection, which is performed with tools such as Dagger,3 is an extremely powerful technique
for creating mocks of complex dependencies so that an engineer can
cleanly test a component. A common example of a dependency injection
is to replace a stateful database with a lightweight mock that has
precisely specified behavior.

System tests

A system test is the largest scale test that engineers run for an
undeployed system. All modules belonging to a specific component, such
as a server that passed integration tests, are assembled into the
system. Then the engineer tests the end-to-end functionality of the
system. System tests come in many different flavors:

Smoke tests

Smoke tests, in which engineers test very simple but critical
behavior, are among the simplest type of system tests. Smoke tests are
also known as sanity testing, and serve to short-circuit additional
and more expensive testing.

Performance tests

Once basic correctness is established via a smoke test, a common next
step is to write another variant of a system test to ensure that the
performance of the system stays acceptable over the duration of its
lifecycle. Because response times for dependencies or resource requirements
may change dramatically during the course of development, a system
needs to be tested to make sure that it doesn’t become incrementally
slower without anyone noticing (before it gets released to users).
For example, a given program may
evolve to need 32 GB of memory when it formerly only needed 8 GB, or a
10 ms response time might turn into 50 ms, and then into 100 ms. A
performance test ensures that over time, a system doesn’t degrade or
become too expensive.

Regression tests

Another type of system test involves preventing bugs from sneaking
back into the codebase. Regression tests can be analogized to a
gallery of rogue bugs that historically caused the system to fail or
produce incorrect results. By documenting these bugs as tests at the
system or integration level, engineers refactoring the codebase can
be sure that they don’t accidentally introduce bugs that they’ve
already invested time and effort to eliminate.

It’s important to note that tests have a cost, both in terms of time
and computational resources. At one extreme, unit tests are very cheap
in both dimensions, as they can usually be completed in milliseconds
on the resources available on a laptop. At the other end of the
spectrum, bringing up a complete server with required dependencies (or
mock equivalents) to run related tests can take significantly more
time — from several minutes to multiple hours — and possibly require
dedicated computing resources. Mindfulness of these costs is essential
to developer productivity, and also encourages more efficient use of
testing resources.

Production Tests

Production tests interact with a live production system, as opposed to
a system in a hermetic testing environment. These tests are in
many ways similar to black-box monitoring (see Chapter 6), and are therefore sometimes
called black-box testing. Production tests are essential to running
a reliable production service.

Rollouts Entangle Tests

It’s often said that testing is (or should be) performed in a hermetic
environment [Nar12]. This statement implies that production is not
hermetic. Of course, production usually isn’t hermetic, because
rollout cadences make live changes to the production environment in
small and well-understood chunks.

To manage uncertainty and hide risk from users, changes might not be
pushed live in the same order that they were added to source
control. Rollouts often happen in stages, using mechanisms that
gradually shuffle users around, in addition to monitoring at each
stage to ensure that the new environment isn’t hitting anticipated yet
unexpected problems. As a result, the entire production environment is
intentionally not representative of any given version of a binary
that’s checked into source control.

It’s possible for source control to have more than one version of a
binary and its associated configuration file waiting to be made
live. This scenario can cause problems when tests are conducted
against the live environment. For example, the test might use the
latest version of a configuration file located in source control along
with an older version of the binary that’s live. Or it might test an
older version of the configuration file and find a bug that’s been
fixed in a newer version of the file.

Similarly, a system test can use the configuration files to assemble
its modules before running the test. If the test passes, but its
version is one in which the configuration test (discussed in the following section) fails, the result of
the test is valid hermetically, but not operationally. Such an outcome
is inconvenient.

Configuration test

At Google, web service configurations are described in files that are
stored in our version control system. For each configuration file, a
separate configuration test examines production to see how a
particular binary is actually configured and reports discrepancies
against that file. Such tests are inherently not hermetic, as they
operate outside the test infrastructure sandbox.

Configuration tests are built and tested for a specific version of the
checked-in configuration file. Comparing which version of the test is
passing in relation to the goal version for automation implicitly
indicates how far actual production currently lags behind ongoing
engineering work.

These nonhermetic configuration tests tend to be especially valuable as part of a distributed monitoring solution since the pattern of passes/fails across production can identify paths through the service stack that don’t have sensible combinations of the local configurations. The monitoring solution’s rules try to match paths of actual user requests (from the trace logs) against that set of undesirable paths. Any matches found by the rules become alerts that ongoing releases and/or pushes are not proceeding safely and remedial action is needed.

Configuration tests can be very simple when the production deployment uses the actual file content and offers a real-time query to retrieve a copy of the content. In this case, the test code simply issues that query and diffs the response against the file. The tests become more complex when the configuration does one of the following:

	
Implicitly incorporates defaults that are built into the binary (meaning that the tests are separately versioned as a result)

	
Passes through a preprocessor such as bash into command-line flags (rendering the tests subject to expansion rules)

	
Specifies behavioral context for a shared runtime (making the tests depend on that runtime’s release schedule)

Stress test

In order to safely operate a system, SREs need
to understand the limits of both the system and its components. In
many cases, individual components don’t gracefully degrade beyond a
certain point — instead, they catastrophically fail. Engineers use
stress tests to find the limits on a web service. Stress tests
answer questions such as:

	
How full can a database get before writes start to fail?

	
How many queries a second can be sent to an application server
before it becomes overloaded, causing requests to fail?

Canary test

The canary test is conspicuously absent from this list of production
tests. The term canary comes from the phrase “canary in a coal mine,”
and refers to the practice of using a live bird to detect toxic gases
before humans were poisoned.

To conduct a canary test, a subset of servers is upgraded to a new
version or configuration and then left in an incubation period. Should
no unexpected variances occur, the release continues and the rest of the
servers are upgraded in a progressive fashion.4 Should anything go awry, the single
modified server can be quickly reverted to a known good state. We
commonly refer to the incubation period for the upgraded server as
“baking the binary.”

A canary test isn’t really a test; rather, it’s structured user
acceptance. Whereas configuration and stress tests confirm the
existence of a specific condition over deterministic software, a
canary test is more ad hoc. It only exposes the code under test to
less predictable live production traffic, and thus, it isn’t perfect
and doesn’t always catch newly introduced faults.

To provide a concrete example of how a canary might proceed: consider
a given underlying fault that relatively rarely impacts user traffic
and is being deployed with an upgrade rollout that is exponential.
We expect a growing cumulative number of reported variances
[image: upper C upper U equals upper R upper K] where [image: upper R] is the rate
of those reports, [image: upper U] is the order of the fault (defined
later), and [image: upper K] is the period over which the traffic grows
by a factor of [image: e], or 172%.5

In order to avoid user impact, a rollout that triggers undesirable
variances needs to be quickly rolled back to the prior
configuration. In the short time it takes automation to observe the
variances and respond, it is likely that several additional reports
will be generated. Once the dust has settled, these reports can
estimate both the cumulative number [image: upper C] and rate
[image: upper R].

Dividing and correcting for [image: upper K] gives an estimate of
[image: upper U], the order of the underlying fault.6 Some examples:

	
U=1: The user’s request encountered code that is simply broken.

	
U=2: This user’s request randomly damages data that a future user’s
request may see.

	
U=3: The randomly damaged data is also a valid identifier to a previous request.

Most bugs are of order one: they scale linearly with the amount of
user traffic [Per07]. You can generally track down these bugs by
converting logs of all requests with unusual responses into new
regression tests. This strategy doesn’t work for higher-order bugs; a
request that repeatedly fails if all the preceding requests are
attempted in order will suddenly pass if some requests are omitted. It
is important to catch these higher-order bugs during release, because
otherwise, operational workload can increase very quickly.

Keeping the dynamics of higher- versus lower-order bugs in mind, when you are using an exponential rollout strategy, it isn’t necessary to attempt
to achieve fairness among fractions of user traffic. As long as each
method for establishing a fraction uses the same [image: upper K]
interval, the estimate of [image: upper U] will be valid even though
you can’t yet determine which method was instrumental in illuminating
the fault. Using many methods sequentially while permitting some
overlap keeps the value of [image: upper K] small. This strategy
minimizes the total number of user-visible variances [image: upper C]
while still allowing an early estimate of [image: upper U] (hoping for
1, of course).

Creating a Test and Build Environment

While it’s wonderful to think about these types of tests and failure
scenarios on day one of a project, frequently SREs join a developer
team when a project is already well underway — once the team’s project
validates its research model, its library proves that the project’s
underlying algorithm is scalable, or perhaps when all of the user
interface mocks are finally acceptable. The team’s codebase is still a
prototype and comprehensive testing hasn’t yet been designed or
deployed. In such situations, where should your testing efforts begin?
Conducting unit tests for every key function and class is a completely
overwhelming prospect if the current test coverage is low or
nonexistent. Instead, start with testing that delivers the most impact
with the least effort.

You can start your approach by asking the following questions:

	
Can you prioritize the codebase in any way? To borrow a technique
from feature development and project management, if every task is
high priority, none of the tasks are high priority. Can you stack-rank the components of the system you’re testing by any measure of
importance?

	
Are there particular functions or classes that are absolutely
mission-critical or business-critical? For example, code that
involves billing is a commonly business-critical. Billing code is
also frequently cleanly separable from other parts of the system.

	
Which APIs are other teams integrating against? Even the kind of
breakage that never makes it past release testing to a user can be
extremely harmful if it confuses another developer team, causing
them to write wrong (or even just suboptimal) clients for your API.

Shipping software that is obviously broken is among the most cardinal
sins of a developer. It takes little effort to create a series of
smoke tests to run for every release. This type of low-effort,
high-impact first step can lead to highly tested, reliable software.

One way to establish a strong testing culture7 is to start
documenting all reported bugs as test cases. If every bug is converted
into a test, each test is supposed to initially fail because the bug
hasn’t yet been fixed. As engineers fix the bugs, the software passes
testing and you’re on the road to developing a comprehensive
regression test suite.

Another key task for creating well-tested software is to set up a
testing infrastructure. The foundation for a strong testing
infrastructure is a versioned source control system that tracks every
change to the codebase.

Once source control is in place, you can add a continuous build system
that builds the software and runs tests every time code is
submitted. We’ve found it optimal if the build system notifies
engineers the moment a change breaks a software project. At the risk
of sounding obvious, it’s essential that the latest version of a
software project in source control is working completely. When the
build system notifies engineers about broken code, they should drop
all of their other tasks and prioritize fixing the problem. It is
appropriate to treat defects this seriously for a few reasons:

	
It’s usually harder to fix what’s broken if there are changes to
the codebase after the defect is introduced.

	
Broken software slows down the team because they must work around
the breakage.

	
Release cadences, such as nightly and weekly builds, lose their
value.

	
The ability of the team to respond to a request for an emergency
release (for example, in response to a security vulnerability
disclosure) becomes much more complex and difficult.

The concepts of stability and agility are traditionally in tension in
the world of SRE. The last bullet point provides an interesting case
where stability actually drives agility. When the build is predictably
solid and reliable, developers can iterate faster!

Some build systems like Bazel8 have valuable features that afford
more precise control over testing. For example, Bazel creates
dependency graphs for software projects. When a change is made to a
file, Bazel only rebuilds the part of the software that depends on
that file. Such systems provide reproducible builds. Instead of
running all tests at every submit, tests only run for changed code. As
a result, tests execute cheaper and faster.

There are a variety of tools to help you quantify and
visualize
the level of test coverage you need [Cra10]. Use these tools to shape the
focus of your testing: approach the prospect of creating highly tested
code as an engineering project rather than a philosophical mental
exercise. Instead of repeating the ambiguous refrain “We need more
tests,” set explicit goals and deadlines.

Remember that not all software is created equal. Life-critical or
revenue-critical systems demand substantially higher levels of test
quality and coverage than a non-production script with a short shelf
life.

Testing at Scale

Now that we’ve covered the fundamentals of testing, let’s examine how
SRE takes a systems perspective to testing in order to drive
reliability at scale.

A small unit test might have a short list of dependencies: one source
file, the testing library, the runtime libraries, the compiler, and
the local hardware running the tests. A robust testing environment
dictates that those dependencies each have their own test coverage,
with tests that specifically address use cases that other parts of the
environment expect. If the implementation of that unit test depends on
a code path inside a runtime library that doesn’t have test coverage,
an unrelated change in the environment9 can lead the unit test to consistently pass
testing, regardless of faults in the code under test.

In contrast, a release test might depend on so many parts that it has
a transitive dependency on every object in the code repository. If the
test depends on a clean copy of the production environment, in
principle, every small patch requires performing a full disaster
recovery iteration. Practical testing environments try to select
branch points among the versions and merges. Doing so resolves the
maximum amount of dependent uncertainty for the minimum number of
iterations. Of course, when an area of uncertainty resolves into a
fault, you need to select additional branch points.

Testing Scalable Tools

As pieces of software, SRE tools also need testing.10 SRE-developed
tools might perform tasks such as the following:

	
Retrieving and propagating database performance metrics

	
Predicting usage metrics to plan for capacity risks

	
Refactoring data within a service replica that isn’t user
accessible

	
Changing files on a server

SRE tools share two characteristics:

	
Their side effects remain within the tested mainstream API

	
They’re isolated from user-facing production by an existing
validation and release barrier

Barrier Defenses Against Risky Software

Software that bypasses the usual heavily tested API (even if it does
so for a good cause) could wreak havoc on a live service. For example, a database engine implementation might allow administrators to temporarily turn off transactions in order to shorten maintenance windows. If the implementation is used by batch update software, user-facing isolation may be lost if that utility is ever accidentally launched against a user-facing replica. Avoid this risk of havoc with design:

	
Use a separate tool to place a barrier in the replication
configuration so that the replica cannot pass its health check. As a
result, the replica isn’t released to users.

	
Configure the risky software to check for the barrier upon
startup. Allow the risky software to only access unhealthy replicas.

	
Use the replica health validating tool you use for black-box
monitoring to remove the barrier.

Automation tools are also software. Because their risk footprint
appears out-of-band for a different layer of the service, their
testing needs are more subtle. Automation tools perform tasks like the
following:

	
Database index selection

	
Load balancing between datacenters

	
Shuffling relay logs for fast remastering

Automation tools share two characteristics:

	
The actual operation performed is against a robust, predictable,
and well-tested API

	
The purpose of the operation is the side effect that is an
invisible discontinuity to another API client

Testing can demonstrate the desired behavior of the other service
layer, both before and after the change. It’s often possible to test
whether internal state, as seen through the API, is constant across
the operation. For example, databases pursue correct answers, even if
a suitable index isn’t available for the query. On the other hand,
some documented API invariants (such as a DNS cache holding until the
TTL) may not hold across the operation. For example, if a runlevel
change replaces a local nameserver with a caching proxy, both choices
can promise to retain completed lookups for many seconds. It’s
unlikely that the cache state is handed over from one to the other.

Given that automation tools imply additional release tests for other
binaries to handle environmental transients, how do you define the
environment in which those automation tools run? After all, the
automation for shuffling containers to improve usage is likely to try
to shuffle itself at some point if it also runs in a container. It
would be embarrassing if a new release of its internal algorithm
yielded dirty memory pages so quickly that the network bandwidth of
the associated mirroring ended up preventing the code from finalizing
the live migration. Even if there’s an integration test for which the
binary intentionally shuffles itself around, the test likely doesn’t
use a production-sized model of the container fleet. It almost
certainly isn’t allowed to use scarce high-latency intercontinental
bandwidth for testing such races.

Even more amusingly, one automation tool might be changing the
environment in which another automation tool runs. Or both tools might
be changing the environment of the other automation tool
simultaneously! For example, a fleet upgrading tool likely consumes
the most resources when it’s pushing upgrades. As a result, the
container rebalancing would be tempted to move the tool. In turn, the
container rebalancing tool occasionally needs upgrading. This circular
dependency is fine if the associated APIs have restart semantics,
someone remembered to implement test coverage for those semantics, and
checkpoint health is assured independently.

Testing Disaster

Many disaster recovery tools can be carefully designed to operate
offline. Such tools do the following:

	
Compute a checkpoint state that is equivalent to cleanly stopping
the service

	
Push the checkpoint state to be loadable by existing nondisaster
validation tools

	
Support the usual release barrier tools, which trigger the clean
start procedure

In many cases, you can implement these phases so that the associated
tests are easy to write and offer excellent coverage. If any of the constraints (offline, checkpoint, loadable, barrier,
or clean start) must be broken, it’s much harder to show confidence
that the associated tool implementation will work at any time on short
notice.

Online repair tools inherently operate outside the mainstream API and
therefore become more interesting to test. One challenge you face in a
distributed system is determining if normal behavior, which may be
eventually consistent by nature, will interact badly with the
repair. For example, consider a race condition that you can attempt to
analyze using the offline tools. An offline tool is generally written
to expect instant consistency, as opposed to eventual consistency,
because instant consistency is less challenging to test. This
situation becomes complicated because the repair binary is generally
built separately from the serving production binary that it’s racing
against. Consequently, you might need to build a unified instrumented
binary to run within these tests so that the tools can observe
transactions.

Using Statistical Tests

Statistical techniques, such as Lemon [Ana07]
for fuzzing, and Chaos Monkey11 and Jepsen12 for
distributed state, aren’t necessarily repeatable tests. Simply rerunning such tests
after a code change doesn’t definitively prove that the observed fault
is fixed.13
 However, these techniques can be useful:

	
They can provide a log of all the randomly selected actions that
are taken in a given run — sometimes simply by logging the random
number generator seed.

	
If this log is immediately refactored as a release test, running it
a few times before starting on the bug report is often helpful. The
rate of nonfailure on replay tells you how hard it will be to
later assert that the fault is fixed.

	
Variations in how the fault is expressed help you pinpoint
suspicious areas in the code.

	
Some of those later runs may demonstrate failure situations that
are more severe than those in the original run. In response, you
may want to escalate the bug’s severity and impact.

The Need for Speed

For every version (patch) in the code repository, every defined test
provides a pass or fail indication. That indication may change for
repeated and seemingly identical runs. You can estimate the actual
likelihood of a test passing or failing by averaging over those many
runs and computing the statistical uncertainty of that
likelihood. However, performing this calculation for every test at
every version point is computationally infeasible.

Instead, you must form hypotheses about the many scenarios of interest
and run the appropriate number of repeats of each test and version to
allow a reasonable inference. Some of these scenarios are benign (in a
code quality sense), while others are actionable. These scenarios
affect all the test attempts to varying extents and, because they are
coupled, reliably and quickly obtaining a list of actionable
hypotheses (i.e., components that are actually broken) means
estimating all scenarios at the same time.

Engineers who use the testing infrastructure want to know if their
code — usually a tiny fraction of all the source behind a given test
run — is broken. Often, not being broken implies that any observed
failures can be blamed on someone else’s code. In other words, the
engineer wants to know if their code has an unanticipated race
condition that makes the test flaky (or more flaky than the test
already was due to other factors).

Testing Deadlines

Most tests are simple, in the sense that they run as a self-contained
hermetic binary that fits in a small compute container for a few
seconds. These tests give engineers interactive feedback about
mistakes before the engineer switches context to the next bug or task.

Tests that require orchestration across many binaries and/or across a
fleet that has many containers tend to have startup times measured in
seconds. Such tests are usually unable to offer interactive feedback,
so they can be classified as batch tests. Instead of saying “don’t
close the editor tab” to the engineer, these test failures are saying
“this code is not ready for review” to the code reviewer.

The informal deadline for the test is the point at which the engineer
makes the next context switch. Test results are best given to the
engineer before he or she switches context, because otherwise the next
context may involve XKCD compiling.14

Suppose an engineer is working on a service with over 21,000 simple
tests and occasionally proposes a patch against the service’s
codebase. To test the patch, you want to compare the vector of
pass/fail results from the codebase before the patch with the vector
of results from the codebase after the patch. A favorable comparison
of those two vectors provisionally qualifies the codebase as
releasable. This qualification creates an incentive to run the many
release and integration tests, as well as other distributed binary
tests that examine scaling of the system (in case the patch uses
significantly more local compute resources) and complexity (in case
the patch creates a superlinear workload elsewhere).

At what rate can you incorrectly flag a user’s patch as damaging by
miscalculating environmental flakiness? It seems likely that users
would vehemently complain if 1 in 10 patches is rejected. But a
rejection of 1 patch among 100 perfect patches might go
without comment.

This means you’re interested in the 42,000th root
(one for each defined test before the patch, and one for each defined
test after the patch) of 0.99 (the fraction of patches
that can be rejected). This calculation:

[image: 0.99 Superscript StartFraction 1 Over 2 times 21000 EndFraction]

suggests that those individual tests must run correctly
over 99.9999% of the time. Hmm.

Pushing to Production

While production configuration management is commonly kept in a source
control repository, configuration is often separate from the developer
source code. Similarly, the software testing infrastructure often
can’t see production configuration. Even if the two are located in the
same repository, changes for configuration management are made in
branches and/or a segregated directory tree that test automation has
historically ignored.

In a legacy corporate environment where software engineers develop
binaries and throw them over the wall to the administrators who update
the servers, segregation of testing infrastructure and production
configuration is at best annoying, and at worst can damage reliability
and agility. Such segregation might also lead to tool duplication. In
a nominally integrated Ops environment, this segregation degrades
resiliency because it creates subtle inconsistencies between the
behavior for the two sets of tools. This segregation also limits
project velocity because of commit races between the versioning
systems.

In the SRE model, the impact of segregating testing infrastructure
from production configuration is appreciably worse, as it prevents
relating the model describing production to the model describing the
application behavior. This discrepancy impacts engineers who want to
find statistical inconsistencies in expectations at development
time. However, this segregation doesn’t slow down development so much
as prevent the system architecture from changing, because there is no
way to eliminate migration risk.

Consider a scenario of unified versioning and unified testing, so that
the SRE methodology is applicable. What impact would the failure of a
distributed architecture migration have? A fair amount of testing will
probably occur. So far, it’s assumed that a software engineer would
likely accept the test system giving the wrong answer 1 time in 10
or so. What risk are you willing to take with the migration if you
know that testing may return a false negative and the situation could
become really exciting, really quickly? Clearly, some areas of test
coverage need a higher level of paranoia than others. This distinction
can be generalized: some test failures are indicative of a larger
impact risk than other test failures.

Expect Testing Fail

Not too long ago, a software product might have released once per
year. Its binaries were generated by a compiler toolchain over many
hours or days, and most of the testing was performed by humans against
manually written instructions. This release process was inefficient,
but there was little need to automate it. The release effort was
dominated by documentation, data migration, user retraining, and other
factors. Mean Time Between Failure (MTBF) for those releases was one
year, no matter how much testing took place. So many changes happened
per release that some user-visible breakage was bound to be hiding in
the software. Effectively, the reliability data from the previous
release was irrelevant for the next release.

Effective API/ABI management tools and interpreted languages that
scale to large amounts of code now support building and executing a
new software version every few minutes. In principle, a sufficiently
large army of humans15 could complete testing on each new version
using the methods described earlier and achieve the same quality bar for
each incremental version. Even though ultimately only the same tests
are applied to the same code, that final software version has higher
quality in the resulting release that ships annually. This is because
in addition to the annual versions, the intermediate versions of the
code are also being tested. Using intermediates, you can unambiguously
map problems found during testing back to their underlying causes and
be confident that the whole issue, and not just the limited symptom
that was exposed, is fixed. This principle of a shorter feedback cycle
is equally effective when applied to automated test coverage.

If you let users try more versions of the software during the year,
the MTBF suffers because there are more opportunities for user-visible
breakage. However, you can also discover areas that would benefit from
additional test coverage. If these tests are implemented, each
improvement protects against some future failure. Careful reliability
management combines the limits on uncertainty due to test coverage
with the limits on user-visible faults in order to adjust the release
cadence. This combination maximizes the knowledge that you gain from
operations and end users. These gains drive test coverage and, in
turn, product release velocity.

If an SRE modifies a configuration file or adjusts an automation
tool’s strategy (as opposed to implementing a user feature), the
engineering work matches the same conceptual model. When you are defining a
release cadence based on reliability, it often makes sense to segment
the reliability budget by functionality, or (more conveniently) by
team. In such a scenario, the feature engineering team aims to achieve
a given uncertainty limit that affects their goal release
cadence. The SRE team has a separate budget with its own associated
uncertainty, and thus an upper limit on their release rate.

In order to remain reliable and to avoid scaling the number of SREs
supporting a service linearly, the production environment has to run
mostly unattended. To remain unattended, the environment must be
resilient against minor faults. When a major event that demands manual
SRE intervention occurs, the tools used by SRE must be suitably
tested. Otherwise, that intervention decreases confidence that
historical data is applicable to the near future. The reduction in
confidence requires waiting for an analysis of monitoring data in
order to eliminate the uncertainty incurred. Whereas the previous
discussion in “Testing Scalable Tools” focused on how to meet the
opportunity of test coverage for an SRE tool, here you see that
testing determines how often it is appropriate to use that tool
against production.

Configuration files generally exist because changing the configuration
is faster than rebuilding a tool. This low latency is often a factor
in keeping MTTR low. However, these same files are also changed
frequently for reasons that don’t need that reduced latency. When
viewed from the point of view of reliability:

	
A configuration file that exists to keep MTTR low, and is only
modified when there’s a failure, has a release cadence slower than
the MTBF. There can be a fair amount of uncertainty as to whether a
given manual edit is actually truly optimal without the edit
impacting the overall site reliability.

	
A configuration file that changes more than once per user-facing
application release (for example, because it holds release state)
can be a major risk if these changes are not treated the same as
application releases. If testing and monitoring coverage of that
configuration file is not considerably better than that of the user
application, that file will dominate site reliability in a negative
way.

One method of handling configuration files is to make sure that every
configuration file is categorized under only one of the options in the
preceding bulleted list, and to somehow enforce that rule. Should you take
the latter strategy, make sure of the following:

	
Each configuration file has enough test coverage to support regular
routine editing.

	
Before releases, file edits are somewhat delayed while waiting for
release testing.

	
Provide a break-glass mechanism to push the file live before
completing the testing. Since breaking the glass impairs
reliability, it’s generally a good idea to make the break noisy by
(for example) filing a bug requesting a more robust resolution for
next time.

Break-Glass and Testing

You can implement a break-glass mechanism to disable release
testing. Doing so means that whoever makes a hurried manual edit isn’t
told about any mistakes until the real user impact is reported by
monitoring. It’s better to leave the tests running, associate the
early push event with the pending testing event, and (as soon as
possible) back-annotate the push with any broken tests. This way, a
flawed manual push can be quickly followed by another (hopefully less
flawed) manual push. Ideally, that break-glass mechanism automatically
boosts the priority of those release tests so that they can preempt
the routine incremental validation and coverage workload that the test
infrastructure is already processing.

Integration

In addition to unit testing a configuration file to mitigate its risk
to reliability, it’s also important to consider integration testing
configuration files. The contents of the configuration file are (for
testing purposes) potentially hostile content to the interpreter
reading the configuration. Interpreted languages such as Python are
commonly used for configuration files because their interpreters can
be embedded, and some simple sandboxing is available to protect
against nonmalicious coding errors.

Writing your configuration files
in an interpreted language is risky, as this approach is fraught with
latent failures that are hard to definitively address. Because loading
content actually consists of executing a program, there’s no inherent
upper limit on how inefficient loading can be. In addition to any
other testing, you should pair this type of integration testing with
careful deadline checking on all integration test methods in order to
label tests that do not run to completion in a reasonable amount of
time as failed.

If the configuration is instead written as text in a custom syntax,
every category of test needs separate coverage from scratch. Using an
existing syntax such as YAML in combination with a heavily tested
parser like Python’s safe_load removes some of the toil incurred by
the configuration file. Careful choice of syntax and parser can ensure
there’s a hard upper limit on how long the loading operation can take.
However, the implementer needs to address schema faults, and most
simple strategies for doing so don’t have an upper bound on
runtime. Even worse, these strategies tend not to be robustly unit
tested.

The benefit of using protocol buffers16 is that the schema is defined in
advance and automatically checked at load time, removing even more of
the toil, yet still offering the bounded runtime.

The role of SRE generally includes writing systems engineering
tools17 (if no
one else is already writing them) and adding robust validation with
test coverage. All tools can behave unexpectedly due to bugs not
caught by testing, so defense in depth is advisable. When one tool
behaves unexpectedly, engineers need to be as confident as possible
that most of their other tools are working correctly and can therefore
mitigate or resolve the side effects of that misbehavior. A key
element of delivering site reliability is finding each anticipated
form of misbehavior and making sure that some test (or another tool’s
tested input validator) reports that misbehavior. The tool that finds
the problem might not be able to fix or even stop it, but should at
least report the problem before a catastrophic outage occurs.

For example, consider the configured list of all users (such as /etc/passwd on a non-networked Unix-style machine) and imagine an edit that unintentionally causes the parser to stop after parsing only half of the file. Because recently created users haven’t loaded, the machine will most likely continue to run without problem, and many users may not notice the fault. The tool that maintains home directories can easily notice the mismatch between the actual directories present and those implied by the (partial) user list and urgently report the discrepancy. This tool’s value lies in reporting the problem, and it should avoid attempting to remediate on its own (by deleting lots of user data).

Production Probes

Given that testing specifies acceptable behavior in the face of known
data, while monitoring confirms acceptable behavior in the face of
unknown user data, it would seem that major sources of risk — both the
known and the unknown — are covered by the combination of testing and
monitoring. Unfortunately, actual risk is more complicated.

Known good requests should work, while known bad requests should
error. Implementing both kinds of coverage as an integration test is
generally a good idea. You can replay the same bank of test requests
as a release test. Splitting the known good requests into those that
can be replayed against production and those that can’t yields three
sets of requests:

	
Known bad requests

	
Known good requests that can be replayed against production

	
Known good requests that can’t be replayed against production

You can use each set as both integration and release tests. Most of
these tests can also be used as monitoring probes.

It would seem to be superfluous and, in principle, pointless to deploy
such monitoring because these exact same requests have already been
tried two other ways. However, those two ways were different for a few
reasons:

	
The release test probably wrapped the integrated server with a
frontend and a fake backend.

	
The probe test probably wrapped the release binary with a load balancing frontend and a separate scalable persistent backend.

	
Frontends and backends probably have independent release
cycles. It’s likely that the schedules for those cycles occur at
different rates (due to their adaptive release cadences).

Therefore, the monitoring probe running in production is a
configuration that wasn’t previously tested.

Those probes should never fail, but what does it mean if they do fail?
Either the frontend API (from the load balancer) or the backend API
(to the persistent store) is not equivalent between the production and
release environments. Unless you already know why the production and
release environments aren’t equivalent, the site is likely broken.

The same production updater that gradually replaces the application also
gradually replaces the probes so that all four combinations of
old-or-new probes sending requests to old-or-new applications are being
continuously generated. That updater can detect when one of the four
combinations is generating errors and roll back to the last known good
state. Usually, the updater expects each newly started application
instance to be unhealthy for a short time as it prepares to start
receiving lots of user traffic. If the probes are already inspected as
part of the readiness check, the update safely fails indefinitely, and
no user traffic is ever routed to the new version. The update remains
paused until engineers have time and inclination to diagnose the fault
condition and then encourage the production updater to cleanly roll
back.

This production test by probe does indeed offer protection to the
site, plus clear feedback to the engineers. The earlier that feedback
is given to engineers, the more useful it is. It’s also preferable
that the test is automated so that the delivery of warnings to
engineers is scalable.

Assume that each component has the older
software version that’s being replaced and the newer version that’s
rolling out (now or very soon). The newer version might be talking to
the old version’s peer, which forces it to use the deprecated API. Or
the older version might be talking to a peer’s newer version, using
the API which (at the time the older version was released) didn’t work
properly yet. But it works now, honest! You’d better hope those tests
for future compatibility (which are running as monitoring probes) had good API coverage.

Fake Backend Versions

When implementing release tests, the fake backend is often maintained
by the peer service’s engineering team and merely referenced as a build
dependency. The hermetic test that is executed by the testing infrastructure always combines the fake backend and the test frontend at the same build point in the revision control history.

That build dependency may be providing a runnable hermetic
binary and, ideally, the engineering team maintaining it cuts a
release of that fake backend binary at the same time they cut their main
backend application and their probes. If that backend release is available, it might
be worthwhile to include hermetic frontend release tests (without the fake backend binary) in the frontend release package.

Your monitoring should be aware of all release versions on both sides of a given
service interface between two peers. This setup ensures that retrieving every combination of the two releases and determining whether the test still passes doesn’t take much extra
configuration. This monitoring doesn’t have to happen continuously — you only
need to run new combinations that are the result of either team
cutting a new release. Such problems don’t have to block that new release itself.

On the other hand, rollout automation should ideally block the associated production rollout until the problematic combinations are no longer possible. Similarly, the peer team’s automation may consider draining (and upgrading) the replicas that haven’t yet moved from a problematic combination.

Conclusion

Testing is one of the most profitable investments engineers can make
to improve the reliability of their product. Testing isn’t an activity
that happens once or twice in the lifecycle of a project; it’s
continuous. The amount of effort required to write good tests is
substantial, as is the effort to build and maintain infrastructure
that promotes a strong testing culture. You can’t fix a problem until
you understand it, and in engineering, you can only understand a
problem by measuring it. The methodologies and techniques in this
chapter provide a solid foundation for measuring faults and
uncertainty in a software system, and help engineers reason about the
reliability of software as it’s written and released to users.

1 This chapter explains how to maximize the value derived from investing engineering effort into testing. Once an engineer defines suitable tests (for a given system) in a generalized way, the remaining work is common across all SRE teams and thus may be considered shared infrastructure. That infrastructure consists of a scheduler (to share budgeted resources across otherwise unrelated projects) and executors (that sandbox test binaries to prevent them from being considered trusted). These two infrastructure components can each be considered an ordinary SRE-supported service (much like cluster scale storage), and therefore won’t be discussed further here.
2 For further reading on equivalence, see http://stackoverflow.com/questions/1909280/equivalence-class-testing-vs-boundary-value-testing.
3 See https://google.github.io/dagger/.
4 A standard rule of thumb is to start by having the release impact 0.1% of user traffic, and then scaling by orders of magnitude every 24 hours while varying the geographic location of servers being upgraded (then on day 2: 1%, day 3: 10%, day 4: 100%).
5 For instance, assuming a 24 hour interval of continuous exponential growth between 1% and 10%, [image: upper K equals StartFraction 86400 Over l n Fraction 0.1 0.01 Fraction EndFraction equals 37523] seconds, or about 10 hours and 25 minutes.
6 We’re using order here in the sense of “big O notation” order of complexity. For more context, see https://en.wikipedia.org/wiki/Big_O_notation.
7 For more on this topic, we highly recommend [Bla14] by our former coworker and ex-Googler, Mike Bland.
8 See https://github.com/google/bazel.
9 For example, code under test that wraps a nontrivial API to provide a simpler and backward-compatible abstraction. The API that used to be synchronous instead returns a future. Calling argument errors still deliver an exception, but not until the future is evaluated. The code under test passes the API result directly back to the caller. Many cases of argument misuse may not be caught.
10 This section talks specifically about tools used by SRE that need to be scalable. However, SRE also develops and uses tools that don’t necessarily need to be scalable. The tools that don’t need to be scalable also need to be tested, but these tools are out of scope for this section, and therefore won’t be discussed here. Because their risk footprint is similar to user-facing applications, similar testing strategies are applicable on such SRE-developed tools.
11 See https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey.
12 See https://github.com/aphyr/jepsen.
13 Even if the test run is repeated with the same random seed so that the task kills are in the same order, there is no serialization between the kills and the fake user traffic. Therefore, there’s no guarantee that the actual previously observed code path will now be exercised again.
14 See http://xkcd.com/303/.
15 Perhaps acquired through Mechanical Turk or similar services.
16 See https://github.com/google/protobuf.
17 Not because software engineers shouldn’t write them. Tools that cross between technology verticals and span abstraction layers tend to have weak associations with many software teams and a slightly stronger association with systems teams.

Chapter 18. Software Engineering in SRE

Written by Dave Helstroom and Trisha Weir with Evan Leonard and Kurt Delimon

Edited by Kavita Guliani

Ask someone to name a Google software engineering effort and
they’ll likely list a consumer-facing product like Gmail or Maps;
some might even mention underlying infrastructure such as Bigtable or
Colossus. But in truth, there is a massive amount of behind-the-scenes
software engineering that consumers never see. A number of those
products are developed within SRE.

Google’s production environment is — by some measures — one of the most complex machines humanity has ever built. SREs have firsthand experience with the intricacies of
production, making them uniquely well suited to develop the
appropriate tools to solve internal problems and use cases
related to keeping production running. The majority of these tools are
related to the overall directive of maintaining uptime and keeping
latency low, but take many forms: examples include binary rollout
mechanisms, monitoring, or a development environment built on dynamic
server composition. Overall, these SRE-developed tools are
full-fledged software engineering projects, distinct from one-off
solutions and quick hacks, and the SREs who develop them have adopted
a product-based mindset that takes both internal customers and a
roadmap for future plans into account.

Why Is Software Engineering Within SRE Important?

In many ways, the vast scale of Google production has necessitated
internal software development, because few third-party tools are designed
at sufficient scale for Google’s needs. The company’s history of
successful software projects has led us to appreciate the benefits of
developing directly within SRE.

SREs are in a unique position to effectively develop internal software
for a number of reasons:

	
The breadth and depth of Google-specific production knowledge
within the SRE organization allows its engineers to design and create
software with the appropriate considerations for dimensions such as
scalability, graceful degradation during failure, and the ability to
easily interface with other infrastructure or tools.

	
Because SREs are embedded in the subject matter, they easily
understand the needs and requirements of the tool being developed.

	
A direct relationship with the intended user — fellow SREs — results
in frank and high-signal user feedback. Releasing a tool to an
internal audience with high familiarity with the problem space means
that a development team can launch and iterate more quickly. Internal
users are typically more understanding when it comes to minimal UI and
other alpha product issues.

From a purely pragmatic standpoint, Google clearly benefits from
having engineers with SRE experience developing software. By
deliberate design, the growth rate of SRE-supported services exceeds
the growth rate of the SRE organization; one of SRE’s guiding
principles is that “team size should not scale directly with service
growth.” Achieving linear team growth in the face of exponential
service growth requires perpetual automation work and efforts to
streamline tools, processes, and other aspects of a service that
introduce inefficiency into the day-to-day operation of production.
Having the people with direct experience running production systems
developing the tools that will ultimately contribute to uptime and
latency goals makes a lot of sense.

On the flip side, individual SREs, as well as the broader SRE
organization, also benefit from SRE-driven software development.

Fully fledged software development projects within SRE provide career
development opportunities for SREs, as well as an outlet for engineers
who don’t want their coding skills to get rusty. Long-term project
work provides much-needed balance to interrupts and on-call work, and
can provide job satisfaction for engineers who want their careers to
maintain a balance between software engineering and systems
engineering.

Beyond the design of automation tools and other efforts to reduce the
workload for engineers in SRE, software development projects can
further benefit the SRE organization by attracting and helping to
retain engineers with a broad variety of skills. The desirability of
team diversity is doubly true for SRE, where a variety of backgrounds
and problem-solving approaches can help prevent blind spots. To this
end, Google always strives to staff its SRE teams with a mix of
engineers with traditional software development experience and
engineers with systems engineering experience.

Auxon Case Study: Project Background and Problem Space

This case study examines Auxon, a powerful tool developed within SRE
to automate capacity planning for services running in Google
production. To best understand how Auxon was conceived and the
problems it addresses, we’ll first examine the problem space
associated with capacity planning, and the difficulties that
traditional approaches to this task present for services at Google and
across the industry as a whole. For more context on how Google uses the terms service and cluster, see Chapter 2.

Traditional Capacity Planning

There are myriad tactics for capacity planning
of compute resources (see [Hix15a]), but the majority of these approaches boil down
to a cycle that can be approximated as follows:

1) Collect demand forecasts.

How many resources are needed? When and
where are these resources needed?

	
Uses the best data we have available today to plan into the future

	
Typically covers anywhere from several quarters to years

2) Devise build and allocation plans.

Given this forecasted outlook,
what’s the best way to meet this demand with additional supply of
resources? How much supply, and in what locations?

3) Review and sign off on plan.

Is the forecast reasonable? Does the
plan line up with budgetary, product-level, and technical
considerations?

4) Deploy and configure resources.

Once resources eventually arrive
(potentially in phases over the course of some defined period of
time), which services get to use the resources? How do I make
typically lower-level resources (CPU, disk, etc.) useful for services?

It bears stressing that capacity planning is a neverending cycle:
assumptions change, deployments slip, and budgets are cut, resulting
in revision upon revision of The Plan. And each revision has
trickle-down effects that must propagate throughout the plans of all
subsequent quarters. For example, a shortfall this quarter must be
made up in future quarters. Traditional capacity planning uses demand
as a key driver, and manually shapes supply to fit demand in response
to each change.

Brittle by nature

Traditional capacity planning produces a resource allocation plan that
can be disrupted by any seemingly minor change. For example:

	
A service undergoes a decrease in efficiency, and needs more
resources than expected to serve the same demand.

	
Customer adoption rates increase, resulting in an increase in
projected demand.

	
The delivery date for a new cluster of compute resources slips.

	
A product decision about a performance goal changes the shape of the
required service deployment (the service’s footprint) and the amount of required resources.

Minor changes require cross-checking the entire allocation plan to make
sure that the plan is still feasible; larger changes (such as delayed
resource delivery or product strategy changes) potentially require
re-creating the plan from scratch. A delivery slippage in a single
cluster might impact the redundancy or latency requirements of
multiple services: resource allocations in other clusters must be
increased to make up for the slippage, and these and any other changes
would have to propagate throughout the plan.

Also, consider that the capacity plan for any given quarter (or other
time frame) is based on the expected outcome of the capacity plans of
previous quarters, meaning that a change in any one quarter results in
work to update subsequent quarters.

Laborious and imprecise

For many teams, the process of collecting the data necessary to
generate demand forecasts is slow and error-prone. And when it is time
to find capacity to meet this future demand, not all resources are
equally suitable. For example, if latency requirements mean that a
service must commit to serve user demand on the same continent as the
user, obtaining additional resources in North America won’t alleviate
a capacity shortfall in Asia. Every forecast has constraints, or
parameters around how it can be fulfilled; constraints are
fundamentally related to intent, which is discussed in the next
section.

Mapping constrained resource requests into allocations of actual
resources from the available capacity is equally slow: it’s both
complex and tedious to bin pack requests into limited space by hand,
or to find solutions that fit a limited budget.

This process may already paint a grim picture, but to make matters
worse, the tools it requires are typically unreliable or cumbersome.
Spreadsheets suffer severely from scalability problems and have
limited error-checking abilities. Data becomes stale, and tracking
changes becomes difficult. Teams often are forced to make simplifying
assumptions and reduce the complexity of their requirements, simply to
render maintaining adequate capacity a tractable problem.

When service owners face the challenges of fitting a series of
requests for capacity from various services into the resources
available to them, in a manner that meets the various constraints a
service may have, additional imprecision ensues. Bin packing is an
NP-hard problem that is difficult for human beings to compute by hand.
Furthermore, the capacity request from a service is generally an
inflexible set of demand requirements: X cores in cluster Y. The
reasons why X cores or Y cluster are needed, and any degrees of
freedom around those parameters, are long lost by the time the request
reaches a human trying to fit a list of demands into available supply.

The net result is a massive expenditure of human effort to come up
with a bin packing that is approximate, at best. The process is
brittle to change, and there are no known bounds on an optimal
solution.

Our Solution: Intent-Based Capacity Planning

Specify the requirements, not the implementation.

At Google, many teams have moved to an approach we call Intent-based
Capacity Planning. The basic premise of this approach is to
programmatically encode the dependencies and parameters (intent) of
a service’s needs, and use that encoding to autogenerate an
allocation plan that details which resources go to which service, in
which cluster. If demand, supply, or service requirements change, we
can simply autogenerate a new plan in response to the changed
parameters, which is now the new best distribution of resources.

With a service’s true requirements and flexibility captured, the
capacity plan is now dramatically more nimble in the face of change,
and we can reach an optimal solution that meets as many parameters as
possible. With bin packing delegated to computers, human toil is
drastically reduced, and service owners can focus on high-order
priorities like SLOs, production dependencies, and service
infrastructure requirements, as opposed to low-level scrounging for
resources.

As an added benefit, using computational optimization to map from
intent to implementation achieves much greater precision, ultimately
resulting in cost savings to the organization. Bin packing is still
far from a solved problem, because certain types are still considered
NP-hard; however, today’s algorithms can solve to a known optimal
solution.

Intent-Based Capacity Planning

Intent is the rationale for how a service owner wants to run their
service. Moving from concrete resource demands to motivating reasons
in order to arrive at the true capacity planning intent often requires
several layers of abstraction. Consider the following chain of
abstraction:

1) “I want 50 cores in clusters X, Y, and Z for service Foo.”

This is an explicit resource request. But…why do we need this many
resources specifically in these particular clusters?

2) “I want a 50-core footprint in any 3 clusters in geographic region YYY for service Foo.”

This request introduces more degrees of freedom and is
potentially easier to fulfill, although it doesn’t explain the
reasoning behind its requirements. But…why do we need this
quantity of resources, and why 3 footprints?

3) “I want to meet service Foo’s demand in each geographic region, and have N + 2 redundancy.”

Suddenly greater flexibility is introduced and we can understand at a
more “human” level what happens if service Foo does not receive these
resources. But…why do we need N + 2 for service Foo?

4) “I want to run service Foo at 5 nines of reliability.”

This is a more abstract
requirement, and the ramification if the requirement isn’t met
becomes clear: reliability will suffer. And we have even greater
flexibility here: perhaps running at N + 2 is not actually sufficient or
optimal for this service, and some other deployment plan would be more
suitable.

So what level of intent should be used by intent-driven capacity
planning? Ideally, all levels of intent should be supported together,
with services benefiting the more they shift to specifying intent
versus implementation. In Google’s experience, services tend to
achieve the best wins as they cross to step 3: good degrees of
flexibility are available, and the ramifications of this request are
in higher-level and understandable terms. Particularly sophisticated
services may aim for step 4.

Precursors to Intent

What information do we need in order to capture a service’s intent?
Enter dependencies, performance metrics, and prioritization.

Dependencies

Services at Google depend on many other
infrastructure and user-facing services, and these dependencies
heavily influence where a service can be placed. For example, imagine
user-facing service Foo, which depends upon Bar, an infrastructure
storage service. Foo expresses a requirement that Bar must be located
within 30 milliseconds of network latency of Foo. This requirement has
important repercussions for where we place both Foo and Bar, and
intent-driven capacity planning must take these constraints into
account.

Furthermore, production dependencies are nested: to build upon the
preceding example, imagine service Bar has its own dependencies on Baz, a
lower-level distributed storage service, and Qux, an application
management service. Therefore, where we can now place Foo depends on
where we can place Bar, Baz, and Qux. A given set of production
dependencies can be shared, possibly with different stipulations
around intent.

Performance metrics

Demand for one service trickles down to
result in demand for one or more other services. Understanding the
chain of dependencies helps formulate the general scope of the bin
packing problem, but we still need more information about expected
resource usage. How many compute resources does service Foo need to
serve N user queries? For every N queries of service Foo, how many
Mbps of data do we expect for service Bar?

Performance metrics are the glue between dependencies. They convert
from one or more higher-level resource type(s) to one or more lower-level resource type(s). Deriving appropriate performance metrics for a
service can involve load testing and resource usage monitoring.

Prioritization

Inevitably, resource constraints result in
trade-offs and hard decisions: of the many requirements that all
services have, which requirements should be sacrificed in the face of
insufficient capacity?

Perhaps N + 2 redundancy for service Foo is more important than N + 1 redundancy for service Bar. Or perhaps the feature launch of X is less
important than N + 0 redundancy for service Baz.

Intent-driven planning forces these decisions to be made
transparently, openly, and consistently. Resource constraints entail
the same trade-offs, but all too often, the prioritization can be ad
hoc and opaque to service owners. Intent-based planning allows
prioritization to be as granular or coarse as needed.

Introduction to Auxon

Auxon is Google’s implementation of an intent-based capacity planning
and resource allocation solution, and a prime example of an
SRE-designed and developed software engineering product: it was built
by a small group of software engineers and a technical program manager
within SRE over the course of two years. Auxon is a perfect case
study to demonstrate how software development can be fostered within
SRE.

Auxon is actively used to plan the use of many millions of dollars of
machine resources at Google. It has become a critical component of
capacity planning for several major divisions within Google.

As a product, Auxon provides the means to collect intent-based
descriptions of a service’s resource requirements and dependencies.
These user intents are expressed as requirements for how the owner
would like the service to be provisioned. Requirements might be
specified as a request like, “My service must be N + 2 per continent” or
“The frontend servers must be no more than 50 ms away from the backend
servers.” Auxon collects this information either via a user
configuration language or via a programmatic API, thus translating
human intent into machine-parseable constraints. Requirements can be
prioritized, a feature that’s useful if resources are insufficient
to meet all requirements, and therefore trade-offs must be made. These
requirements — the intent — are ultimately represented internally as a
giant mixed-integer or linear program. Auxon solves the linear
program, and uses the resultant bin packing solution to formulate an
allocation plan for resources.

Figure 18-1 and the explanations that follow it outline
Auxon’s major components.

[image: The major components of Auxon.]
Figure 18-1. The major components of Auxon

Performance Data describes how a service scales: for every unit of
demand X in cluster Y, how many units of dependency Z are used? This
scaling data may be derived in a number of ways depending on the
maturity of the service in question. Some services are load tested,
while others infer their scaling based upon past performance.

Per-Service Demand Forecast Data describes the usage trend for
forecasted demand signals. Some services derive their future usage
from demand forecasts — a forecast of queries per second broken down
by continent. Not all services have a demand forecast: some services
(e.g., a storage service like Colossus) derive their demand purely
from services that depend upon them.

Resource Supply provides data about the availability of base-level,
fundamental resources: for example, the number of machines expected to
be available for use at a particular point in the future. In linear
program terminology, the resource supply acts as an upper bound that
limits how services can grow and where services can be placed.
Ultimately, we want to make the best use of this resource supply as
the intent-based description of the combined group of services allows.

Resource Pricing provides data about how much base-level,
fundamental resources cost. For instance, the cost of machines may
vary globally based upon the space/power charges of a given facility.
In linear program terminology, the prices inform the overall
calculated costs, which act as the objective that we want to
minimize.

Intent Config is the key to how intent-based information is fed to
Auxon. It defines what constitutes a service, and how services relate
to one another. The config ultimately acts as a configuration layer
that allows all the other components to be wired together. It’s
designed to be human-readable and configurable.

Auxon Configuration Language Engine acts based upon the information
it receives from the Intent Config. This component formulates a
machine-readable request (a protocol buffer that can be
understood by the Auxon Solver. It applies light sanity checking to
the configuration, and is designed to act as the gateway between the
human-configurable intent definition and the machine-parseable
optimization request.

Auxon Solver is the brain of the tool. It formulates the giant
mixed-integer or linear program based upon the optimization request
received from the Configuration Language Engine. It is designed to be
very scalable, which allows the solver to run in parallel upon
hundreds or even thousands of machines running within Google’s
clusters. In addition to mixed-integer linear programming toolkits,
there are also components within the Auxon Solver that handle tasks
such as scheduling, managing a pool of workers, and descending
decision trees.

Allocation Plan is the output of the Auxon Solver. It prescribes
which resources should be allocated to which services in what
locations. It is the computed implementation details of the
intent-based definition of the capacity planning problem’s
requirements. The Allocation Plan also includes information about any
requirements that could not be satisfied — for example, if a requirement
couldn’t be met due to a lack of resources, or competing requirements
that were otherwise too strict.

Requirements and Implementation: Successes and Lessons Learned

Auxon was first imagined by an SRE and a technical program manager who had separately been tasked by their respective teams with
capacity planning large portions of Google’s infrastructure. Having
performed manual capacity planning in spreadsheets, they were well
positioned to understand the inefficiencies and opportunities for
improvement through automation, and the features such a tool might
require.

Throughout Auxon’s development, the SRE team behind the product
continued to be deeply involved in the production world. The
team maintained a role in on-call rotations for several of Google’s
services, and participated in design discussions and technical
leadership of these services. Through these ongoing interactions, the
team was able to stay grounded in the production world: they acted as
both the consumer and developer of their own product. When the product
failed, the team was directly impacted. Feature requests were informed
through the team’s own firsthand experiences. Not only did
firsthand experience of the problem space buy a huge sense of
ownership in the product’s success, but it also helped give the product
credibility and legitimacy within SRE.

Approximation

Don’t focus on perfection and purity of solution, especially if the
bounds of the problem aren’t well known. Launch and iterate.

Any sufficiently complex software engineering effort is bound
to encounter uncertainty as to how a component should be designed or
how a problem should be tackled. Auxon met with such uncertainty early
in its development because the linear programming world was uncharted
territory for the team members. The limitations of linear programming,
which seemed to be a central part of how the product would likely
function, were not well understood. To address the team’s
consternation over this insufficiently understood dependency, we opted
to initially build a simplified solver engine (the so-called “Stupid
Solver”) that applied some simple heuristics as to how services should
be arranged based upon the user’s specified requirements. While the
Stupid Solver would never yield a truly optimal solution, it gave the
team a sense that our vision for Auxon was achievable even if we
didn’t build something perfect from day one.

When deploying approximation to help speed development, it’s important
to undertake the work in a way that allows the team to make future
enhancements and revisit approximation. In the case of the Stupid
Solver, the entire solver interface was abstracted away within Auxon
such that the solver internals could be swapped out at a later date.
Eventually, as we built confidence in a unified linear programming
model, it was a simple operation to switch out the Stupid Solver for
something, well, smarter.

Auxon’s product requirements also had some unknowns. Building
software with fuzzy requirements can be a frustrating challenge, but
some degree of uncertainty need not be a showstopper. Use this
fuzziness as an incentive to ensure that the software is designed to
be both general and modular. For instance, one of the aims of the
Auxon project was to integrate with automation systems within Google
to allow an Allocation Plan to be directly enacted on production
(assigning resources and turning up/turning down/resizing services as
appropriate). However, at the time, the world of automation systems
was in a great deal of flux, as a huge variety of approaches were in use. Rather than try to design unique
solutions to allow Auxon to work with each individual tool, we instead
shaped the Allocation Plan to be universally useful such that these
automation systems could work on their own integration points. This
“agnostic” approach became key to Auxon’s process for onboarding new
customers, because it allowed customers to begin using Auxon without
switching to a particular turnup automation tool, forecasting tool, or
performance data tool.

We also leveraged modular designs to deal with fuzzy requirements when
building a model of machine performance within Auxon. Data on future
machine platform performance (e.g., CPU) was scarce, but our users
wanted a way to model various scenarios of machine power. We
abstracted away the machine data behind a single interface, allowing
the user to swap in different models of future machine performance. We
later extended this modularity further, based on increasingly defined
requirements, to provide a simple machine performance modeling library
that worked within this interface.

If there’s one theme to draw from our Auxon case study, it’s that the
old motto of “launch and iterate” is particularly relevant in SRE
software development projects. Don’t wait for the perfect design;
rather, keep the overall vision in mind while moving ahead with design
and development. When you encounter areas of uncertainty, design the
software to be flexible enough so that if process or strategy changes
at a higher level, you don’t incur a huge rework cost. But at the same
time, stay grounded by making sure that general solutions have a real-world–specific implementation that demonstrates the utility of the
design.

Raising Awareness and Driving Adoption

As with any product, SRE-developed software must be designed with
knowledge of its users and requirements. It needs to drive adoption
through utility, performance, and demonstrated ability to both benefit
Google’s production reliability goals and to better the lives of
SREs. The process of socializing a product and achieving buy-in across
an organization is key to the project’s success.

Don’t underestimate the effort required to raise awareness and
interest in your software product — a single presentation or email
announcement isn’t enough. Socializing internal software tools to a
large audience demands all of the following:

	
A consistent and coherent approach

	
User advocacy

	
The sponsorship of senior engineers and management, to whom you will have
to demonstrate the utility of your product

It’s important to consider the perspective of the customer in making
your product usable. An engineer might not have the time or
the inclination to dig into the source code to figure out how to use a
tool. Although internal customers are generally more tolerant of rough
edges and early alphas than external customers, it’s still necessary
to provide documentation. SREs are busy, and if your solution is too
difficult or confusing, they will write their own solution.

Set expectations

When an engineer with years of familiarity in a
problem space begins designing a product, it’s easy to imagine a
utopian end-state for the work. However, it’s important to
differentiate aspirational goals of the product from minimum success
criteria (or Minimum Viable Product). Projects can lose credibility
and fail by promising too much, too soon; at the same time, if a
product doesn’t promise a sufficiently rewarding outcome, it can be
difficult to overcome the necessary activation energy to convince
internal teams to try something new. Demonstrating steady, incremental
progress via small releases raises user confidence in your team’s
ability to deliver useful software.

In the case of Auxon, we struck a balance by planning a long-term
roadmap alongside short-term fixes. Teams were promised that:

	
Any onboarding and configuration efforts would provide the
immediate benefit of alleviating the pain of manually bin packing
short-term resource requests.

	
As additional features were developed for Auxon, the same
configuration files would carry over and provide new, and much
broader, long-term cost savings and other benefits. The project road
map enabled services to quickly determine if their use cases or
required features weren’t implemented in the early versions.
Meanwhile, Auxon’s iterative development approach fed into development
priorities and new milestones for the road map.

Identify appropriate customers

The team developing Auxon realized that a one-size solution might not
fit all; many larger teams already had home-grown solutions for
capacity planning that worked passably well. While their custom tools
weren’t perfect, these teams didn’t experience sufficient pain in the
capacity planning process to try a new tool, especially an alpha
release with rough edges.

The initial versions of Auxon intentionally targeted teams that had no
existing capacity planning processes in place. Because these teams would
have to invest configuration effort whether they adopted an existing
tool or our new approach, they were interested in adopting the newest
tool. The early successes Auxon achieved with these teams demonstrated
the utility of the project, and turned the customers themselves into
advocates for the tool. Quantifying the usefulness of the product
proved further beneficial; when we onboarded one of Google’s Business
Areas, the team authored a case study detailing the process and
comparing the before and after results. The time savings and reduction
of human toil alone presented a huge incentive for other teams to give
Auxon a try.

Customer service

Even though software developed within SRE targets an audience of TPMs
and engineers with high technical proficiency, any sufficiently
innovative software still presents a learning curve to new
users. Don’t be afraid to provide white glove customer support for
early adopters to help them through the onboarding process. Sometimes
automation also entails a host of emotional concerns, such as fear
that someone’s job will be replaced by a shell script. By working
one-on-one with early users, you can address those fears personally,
and demonstrate that rather than owning the toil of performing a
tedious task manually, the team instead owns the configurations,
processes, and ultimate results of their technical work. Later
adopters are convinced by the happy examples of early adopters.

Furthermore, because Google’s SRE teams are distributed across the
globe, early-adopter advocates for a project are particularly
beneficial, because they can serve as local experts for other teams
interested in trying out the project.

Designing at the right level

An idea that we’ve termed agnosticism — writing the software to be
generalized to allow myriad data sources as input — was a key principle
of Auxon’s design. Agnosticism meant that customers weren’t required
to commit to any one tool in order to use the Auxon framework. This
approach allowed Auxon to remain of sufficient general utility even as
teams with divergent use cases began to use it. We approached
potential users with the message, “come as you are; we’ll work with
what you’ve got.” By avoiding over-customizing for one or two big
users, we achieved broader adoption across the
organization and lowered the barrier to entry for new services.

We’ve also consciously endeavored to avoid the pitfall of defining
success as 100% adoption across the organization. In many cases, there
are diminishing returns on closing the last mile to enable a feature
set that is sufficient for every service in the long tail at Google.

Team Dynamics

In selecting engineers to work on an SRE software development product,
we’ve found great benefit from creating a seed team that combines
generalists who are able to get up to speed quickly on a new topic
with engineers possessing a breadth of knowledge and experience. A
diversity of experiences covers blind spots as well as the pitfalls of
assuming that every team’s use case is the same as yours.

It’s essential for your team to establish a working relationship
with necessary specialists, and for your engineers to be comfortable
working in a new problem space. For SRE teams at most companies,
venturing into this new problem space requires outsourcing tasks or
working with consultants, but SRE teams at larger organizations may be
able to partner with in-house experts. During the initial phases of
conceptualizing and designing Auxon, we presented our design document
to Google’s in-house teams that specialize in Operations Research and
Quantitative Analysis in order to draw upon their expertise in the
field and to bootstrap the Auxon team’s knowledge about capacity
planning.

As project development continued and Auxon’s feature set grew more
broad and complex, the team acquired members with backgrounds in
statistics and mathematical optimization, which at a smaller company
might be akin to bringing an outside consultant in-house. These new
team members were able to identify areas for improvement when the
project’s basic functionality was complete and adding finesse had
become our top priority.

The right time to engage specialists will, of course, vary from
project to project. As a rough guideline, the project should be
successfully off the ground and demonstrably successful, such that the
skills of the current team would be significantly bolstered by the
additional expertise.

Fostering Software Engineering in SRE

What makes a project a good candidate to take the leap from one-off
tool to fully fledged software engineering effort? Strong positive
signals include engineers with firsthand experience in the relative
domain who are interested in working on the project, and a target user
base that is highly technical (and therefore able to provide
high-signal bug reports during the early phases of development). The
project should provide noticeable benefits, such as reducing toil
for SREs, improving an existing piece of infrastructure, or
streamlining a complex process.

It’s important for the project to fit into the overall set of
objectives for the organization, so that engineering leaders can weigh
its potential impact and subsequently advocate for your project, both
with their reporting teams and with other teams that might interface
with their teams. Cross-organizational socialization and review help
prevent disjoint or overlapping efforts, and a product that can easily
be established as furthering a department-wide objective is easier to
staff and support.

What makes a poor candidate project? Many of the same red flags you
might instinctively identify in any software project, such as software
that touches many moving parts at once, or software design that
requires an all-or-nothing approach that prevents iterative
development. Because Google SRE teams are currently organized around
the services they run, SRE-developed projects are particularly at risk
of being overly specific work that only benefits a small percentage of
the organization. Because team incentives are aligned primarily to
provide a great experience for the users of one particular service,
projects often fail to generalize to a broader use case as
standardization across SRE teams comes in second place. At the
opposite end of the spectrum, overly generic frameworks can be equally
problematic; if a tool strives to be too flexible and too universal,
it runs the risk of not quite fitting any use case, and therefore
having insufficient value in and of itself. Projects with grand scope
and abstract goals often require significant development effort, but
lack the concrete use cases required to deliver end-user benefit on a
reasonable time frame.

As an example of a broad use case: a
layer-3 load balancer developed by Google SREs proved so successful over the
years that it was repurposed as a customer-facing product offering
via Google Cloud Load Balancer [Eis16].

Successfully Building a Software Engineering Culture in SRE: Staffing and Development Time

SREs are often generalists, as the
desire to learn breadth-first instead of depth-first lends itself well
to understanding the bigger picture (and there are few pictures bigger
than the intricate inner workings of modern technical infrastructure).
These engineers often have strong coding and software development
skills, but may not have the traditional SWE experience of being part
of a product team or having to think about customer feature requests.
A quote from an engineer on an early SRE software development project
sums up the conventional SRE approach to software: “I have a design
doc; why do we need requirements?” Partnering with engineers, TPMs, or
PMs who are familiar with user-facing software development can help
build a team software development culture that brings together the
best of both software product development and hands-on production
experience.

Dedicated, noninterrupted, project work time is essential to any
software development effort. Dedicated project time is necessary to
enable progress on a project, because it’s nearly impossible to write
code — much less to concentrate on larger, more impactful
projects — when you’re thrashing between several tasks in the course
of an hour. Therefore, the ability to work on a software project
without interrupts is often an attractive reason for engineers to
begin working on a development project. Such time must be aggressively
defended.

The majority of software products developed within SRE begin as side
projects whose utility leads them to grow and become formalized. At
this point, a product may branch off into one of several possible
directions:

	
Remain a grassroots effort developed in engineers’ spare time

	
Become established as a formal project through structured processes
(see “Getting There”)

	
Gain executive sponsorship from within
SRE leadership to expand into a fully staffed software development
effort

However, in any of these scenarios — and this is a point worth
stressing — it’s essential that the SREs involved in any development
effort continue working as SREs instead of becoming full-time
developers embedded in the SRE organization. Immersion in the world of
production gives SREs performing development work an invaluable
perspective, as they are both the creator and the customer for any
product.

Getting There

If you like the idea of organized software development in SRE, you’re
probably wondering how to introduce a software development model to an
SRE organization focused on production support.

First, recognize that this goal is as much an organizational change as
it is a technical challenge. SREs are used to working closely with
their teammates, quickly analyzing and reacting to problems.
Therefore, you’re working against the natural instinct of an SRE to
quickly write some code to meet their immediate needs. If your SRE
team is small, this approach may not be problematic. However, as your
organization grows, this ad hoc approach won’t scale, instead
resulting in largely functional, yet narrow or single-purpose, software
solutions that can’t be shared, which inevitably lead to duplicated
efforts and wasted time.

Next, think about what you want to achieve by developing software in
SRE. Do you just want to foster better software development practices
within your team, or are you interested in software development that
produces results that can be used across teams, possibly as a standard
for the organization? In larger established organizations, the latter
change will take time, possibly spanning multiple years. Such a change
needs to be tackled on multiple fronts, but has a higher payback. The
following are some guidelines from Google’s experience:

Create and communicate a clear message

It’s important to define and communicate your strategy, plans,
and — most importantly — the benefits SRE gains from this effort. SREs
are a skeptical lot (in fact, skepticism is a trait for which we
specifically hire); an SRE’s initial response to such an effort will
likely be, “that sounds like too much overhead” or “it will never
work.” Start by making a compelling case of how this strategy will
help SRE; for example:

	
Consistent and supported software solutions speed ramp-up for new SREs.

	
Reducing the number of ways to perform the same task
allows the entire department to benefit from the skills any single
team has developed, thus making knowledge and effort portable across
teams.

When SREs start to ask questions about how your strategy will work,
rather than if the strategy should be pursued, you know you’ve
passed the first hurdle.

Evaluate your organization’s capabilities

SREs have many skills, but it’s relatively common for an SRE to lack
experience as part of a team that built and shipped a product to a set
of users. In order to develop useful software, you’re effectively
creating a product team. That team includes required roles and skills
that your SRE organization may not have formerly demanded. Will
someone play the role of product manager, acting as the customer
advocate? Does your tech lead or project manager have the skills
and/or experience to run an agile development process?

Begin filling these gaps by taking advantage of the skills already
present in your company. Ask your product development team to help you
establish agile practices via training or coaching. Solicit consulting
time from a product manager to help you define product requirements
and prioritize feature work. Given a large enough software-development
opportunity, there may be a case to hire dedicated people for these
roles. Making the case to hire for these roles is easier once you have
some positive experiment results.

Launch and iterate

As you initiate an SRE software development program, your efforts will
be followed by many watchful eyes. It’s important to establish
credibility by delivering some product of value in a reasonable amount
of time. Your first round of products should aim for relatively
straightforward and achievable targets — ones without controversy or
existing solutions. We also found success in pairing this approach
with a six-month rhythm of product update releases that provided
additional useful features. This release cycle allowed teams to focus
on identifying the right set of features to build, and then building
those features while simultaneously learning how to be a productive
software development team. After the initial launch, some Google teams
moved to a push-on-green model for even faster delivery and feedback.

Don’t lower your standards

As you start to develop software, you may be tempted to cut corners.
Resist this urge by holding yourself to the same standards to which
your product development teams are held. For example:

	
Ask yourself: if this product were created by a separate dev team,
would you onboard the product?

	
If your solution enjoys broad
adoption, it may become critical to SREs in order to successfully
perform their jobs. Therefore, reliability is of utmost importance. Do
you have proper code review practices in place? Do you have end-to-end
or integration testing? Have another SRE team review the product for
production readiness as they would if onboarding any other service.

It takes a long time to build credibility for your software
development efforts, but only a short time to lose credibility due to
a misstep.

Conclusions

Software engineering projects within Google SRE have flourished as the
organization has grown, and in many cases the lessons learned from and
successful execution of earlier software development projects have
paved the way for subsequent endeavors. The unique hands-on production
experience that SREs bring to developing tools can lead to innovative
approaches to age-old problems, as seen with the development of Auxon
to address the complex problem of capacity planning. SRE-driven
software projects are also noticeably beneficial to the company in
developing a sustainable model for supporting services at scale. Because
SREs often develop software to streamline inefficient processes or
automate common tasks, these projects mean that the SRE team doesn’t
have to scale linearly with the size of the services they support.
Ultimately, the benefits of having SREs devoting some of
their time to software development are reaped by the company, the SRE
organization, and the SREs themselves.

Chapter 19. Load Balancing at the Frontend

Written by Piotr Lewandowski

Edited by Sarah Chavis

We serve many millions of requests every second and, as you
may have already guessed, we use more than a single computer to handle
this demand. But even if we did have a supercomputer that was
somehow able to handle all these requests (imagine the network
connectivity such a configuration would require!), we still wouldn’t
employ a strategy that relied upon a single point of failure; when
you’re dealing with large-scale systems, putting all your eggs in one
basket is a recipe for disaster.

This chapter focuses on high-level load balancing — how we balance
user traffic between datacenters. The following chapter zooms in to
explore how we implement load balancing inside a datacenter.

Power Isn’t the Answer

For the sake of argument, let’s assume we have an unbelievably
powerful machine and a network that never fails. Would that
configuration be sufficient to meet Google’s needs? No. Even this
configuration would still be limited by the physical constraints
associated with our networking infrastructure. For example, the speed
of light is a limiting factor on the communication speeds for fiber
optic cable, which creates an upper bound on how quickly we can serve
data based upon the distance it has to travel. Even in an ideal world,
relying on an infrastructure with a single point of failure is a bad
idea.

In reality, Google has thousands of machines and even more users, many
of whom issue multiple requests at a time. Traffic load balancing is
how we decide which of the many, many machines in our datacenters will
serve a particular request. Ideally, traffic is distributed across
multiple network links, datacenters, and machines in an “optimal”
fashion. But what does “optimal” mean in this context? There’s
actually no single answer, because the optimal
solution depends heavily on a variety of factors:

	
The hierarchical level at which we evaluate the problem (global versus local)

	
The technical level at which we evaluate the problem (hardware versus software)

	
The nature of the traffic we’re dealing with

Let’s start by reviewing two common traffic scenarios: a basic search
request and a video upload request. Users want to get their query
results quickly, so the most important variable for the search request
is latency. On the other hand, users expect video uploads to take a
non-negligible amount of time, but also want such requests to succeed
the first time, so the most important variable for the video upload is
throughput. The differing needs of the two requests play a role in how
we determine the optimal distribution for each request at the
global level:

	
The search request is sent to the nearest available datacenter — as
measured in round-trip time (RTT) — because we want to minimize the
latency on the request.

	
The video upload stream is routed via a different path — perhaps to a
link that is currently underutilized — to maximize the throughput at
the expense of latency.

But on the local level, inside a given datacenter, we often assume
that all machines within the building are equally distant to the user
and connected to the same network. Therefore, optimal distribution of
load focuses on optimal resource utilization and protecting a
single server from overloading.

Of course, this example presents a vastly simplified picture. In
reality, many more considerations factor into optimal load
distribution: some requests may be directed to a datacenter that is
slightly farther away in order to keep caches warm, or non-interactive
traffic may be routed to a completely different region to avoid
network congestion. Load balancing, especially for large systems, is
anything but straightforward and static. At Google, we’ve approached
the problem by load balancing at multiple levels, two of
which are described in the following sections. For the sake of
presenting a concrete discussion, we’ll consider HTTP requests
sent over TCP. Load balancing of stateless services (like DNS over
UDP) differs slightly, but most of the mechanisms described here
should be applicable to stateless services as well.

Load Balancing Using DNS

Before a client can even send an HTTP request, it often has to look up an
IP address using DNS. This provides the perfect opportunity to introduce
our first layer of load balancing: DNS load balancing. The simplest
solution is to return multiple A or AAAA records
in the DNS reply and let the client pick an IP address arbitrarily. While
conceptually simple and trivial to implement, this solution poses multiple
challenges.

The first problem is that it provides very little control over the
client behavior: records are selected randomly, and each will attract a
roughly equal amount of traffic. Can we mitigate this problem? In
theory, we could use SRV records to specify record weights and
priorities, but SRV records have not yet been adopted for HTTP.

Another potential problem stems from the fact that usually the client
cannot determine the closest address. We can mitigate this scenario by
using an anycast address for authoritative nameservers and leverage the
fact that DNS queries will flow to the closest address. In its reply,
the server can return addresses routed to the closest datacenter. A
further improvement builds a map of all networks and their approximate
physical locations, and serves DNS replies based on that mapping.
However, this solution comes at the cost of having a much more complex
DNS server implementation and maintaining a pipeline that will keep the
location mapping up to date.

Of course, none of these solutions are trivial, due to a fundamental
characteristic of DNS: end users rarely talk to authoritative
nameservers directly. Instead, a recursive DNS server usually lies
somewhere between end users and nameservers. This server
proxies queries between a user and a server and often provides a
caching layer. The DNS middleman has three very important implications
on traffic management:

	
Recursive resolution of IP addresses

	
Nondeterministic reply paths

	
Additional caching complications

Recursive resolution of IP addresses is problematic, as the IP address
seen by the authoritative nameserver does not belong to a user; instead,
it’s the recursive resolver’s. This is a serious limitation, because it only
allows reply optimization for the shortest distance between resolver and
the nameserver. A possible solution is to use the EDNS0 extension proposed
in [Con15], which includes information about the client’s subnet in
the DNS query sent by a recursive resolver. This way, an authoritative
nameserver returns a response that is optimal from the user’s
perspective, rather than the resolver’s perspective. While this is not
yet the official standard, its obvious advantages have led the biggest
DNS resolvers (such as OpenDNS and Google1)
to support it already.

Not only is it difficult to find the optimal IP address to return to the nameserver for a given user’s request, but that nameserver may be responsible for serving thousands or millions of users, across regions varying from a single office to an entire continent. For instance, a large national ISP might run nameservers for its entire network from one datacenter, yet have network interconnects in each metropolitan area. The ISP’s nameservers would then return a response with the IP address best suited for their datacenter, despite there being better network paths for all users!

Finally, recursive
resolvers typically cache responses and forward those responses within
limits indicated by the time-to-live (TTL) field in the DNS
record. The end result is that estimating the impact of a given reply
is difficult: a single authoritative reply may reach a single user or
multiple thousands of users. We solve this problem in two ways:

	
We analyze traffic changes and continuously update our list of
known DNS resolvers with the approximate size of the user base
behind a given resolver, which allows us to track the potential
impact of any given resolver.

	
We estimate the geographical distribution of the users behind each
tracked resolver to increase the chance that we
direct those users to the best location.

Estimating geographic distribution is particularly tricky if the user
base is distributed across large regions. In such cases, we make
trade-offs to select the best location and optimize the experience for
the majority of users.

But what does “best location” really mean in the context of DNS load
balancing? The most obvious answer is the location closest to the
user. However (as if determining users’ locations isn’t difficult in and
of itself), there are additional criteria. The DNS load balancer needs
to make sure that the datacenter it selects has enough capacity to serve
requests from users that are likely to receive its reply. It also needs
to know that the selected datacenter and its network connectivity are in
good shape, because directing user requests to a datacenter that’s
experiencing power or networking problems isn’t ideal. Fortunately, we
can integrate the authoritative DNS server with our global control
systems that track traffic, capacity, and the state of our
infrastructure.

The third implication of the DNS middleman is related to caching.
Given that authoritative nameservers cannot flush resolvers’ caches, DNS
records need a relatively low TTL. This effectively sets a lower bound
on how quickly DNS changes can be propagated to users.2 Unfortunately, there is little we can do other than to
keep this in mind as we make load balancing decisions.

Despite all of these problems, DNS is still the simplest and most
effective way to balance load before the user’s connection even starts.
On the other hand, it should be clear that load balancing with DNS on
its own is not sufficient. Keep in mind that all DNS replies served
should fit within the 512-byte limit3 set by RFC
1035 [Moc87]. This limit sets an upper bound on the number of
addresses we can squeeze into a single DNS reply, and that number is
almost certainly less than our number of servers.

To really solve the problem of frontend load balancing, this initial
level of DNS load balancing should be followed by a level that
takes advantage of virtual IP addresses.

Load Balancing at the Virtual IP Address

Virtual IP addresses (VIPs) are not assigned to any particular network
interface. Instead, they are usually shared across many
devices. However, from the user’s perspective, the VIP remains a single,
regular IP address. In theory, this practice
allows us to hide implementation details (such as the number of
machines behind a particular VIP) and facilitates maintenance, because we
can schedule upgrades or add more machines to the pool without the
user knowing.

In practice, the most important part of VIP implementation is a device
called the network load balancer. The balancer receives
packets and forwards them to one of the machines behind the VIP. These
backends can then further process the request.

There are several possible approaches the balancer can take in
deciding which backend should receive the request. The first (and
perhaps most intuitive) approach is to always prefer the least loaded
backend. In theory, this approach should result in the best end-user
experience because requests are always routed to the least busy
machine. Unfortunately, this logic breaks down quickly in the case of
stateful protocols, which must use the same backend for the duration
of a request. This requirement means that the balancer must keep track
of all connections sent through it in order to make sure that all
subsequent packets are sent to the correct backend. The alternative is
to use some parts of a packet to create a connection ID (possibly
using a hash function and some information from the packet), and to
use the connection ID to select a backend. For example, the connection
ID could be expressed as:

id(packet) mod N

where id is a function that takes packet as an input and produces
a connection ID, and N is the number of configured backends.

This avoids storing state, and all packets belonging to a single
connection are always forwarded to the same backend. Success? Not quite
yet. What happens if one backend fails and needs to be removed from the
backend list? Suddenly N becomes N-1 and then, id(packet) mod N
becomes id(packet) mod N-1. Almost every packet suddenly maps to a
different backend! If backends don’t share any state between themselves,
this remapping forces a reset of almost all of the existing connections.
This scenario is definitely not the best user experience, even if
such events are infrequent.

Fortunately, there is an alternate solution that doesn’t require
keeping the state of every connection in memory, but won’t force
all connections to reset when a single machine goes down: consistent
hashing. Proposed in 1997, consistent hashing [Kar97] describes a way
to provide a mapping algorithm that remains relatively stable even when
new backends are added to or removed from the list. This approach minimizes
the disruption to existing connections when the pool of backends
changes. As a result, we can usually use simple connection tracking, but
fall back to consistent hashing when the system is under pressure (e.g.,
during an ongoing denial of service attack).

Returning to the larger question: how exactly should a network
load balancer forward packets to a selected VIP backend? One solution
is to perform a Network Address Translation. However, this
requires keeping an entry of every single connection in the tracking
table, which precludes having a completely stateless fallback mechanism.

Another solution is to modify information on the data link layer (layer 2 of the OSI
networking model). By changing the destination MAC address of a forwarded
packet, the balancer can leave all the information in upper layers
intact, so the backend receives the original source and destination IP
addresses. The backend can then send a reply directly to the original
sender — a technique known as Direct Server Response (DSR). If user
requests are small and replies are large (e.g., most HTTP requests), DSR
provides tremendous savings, because only a small fraction of traffic need
traverse the load balancer. Even better, DSR does not require us to keep
state on the load balancer device. Unfortunately, using layer 2 for internal load balancing does incur
serious disadvantages when deployed at scale: all machines (i.e., all
load balancers and all their backends) must be able to reach each other
at the data link layer. This isn’t an issue if this connectivity can be
supported by the network and the number of machines doesn’t grow
excessively, because all the machines need to reside in a single broadcast
domain. As you may imagine, Google outgrew this solution quite some time
ago, and had to find an alternate approach.

Our current VIP load balancing solution [Eis16] uses packet encapsulation. A
network load balancer puts the forwarded packet into another IP packet
with Generic Routing Encapsulation (GRE) [Han94], and uses a
backend’s address as the destination. A backend receiving the packet
strips off the outer IP+GRE layer and processes the inner IP packet as
if it were delivered directly to its network interface. The network load
balancer and the backend no longer need to exist in the same broadcast
domain; they can even be on separate continents as long as a route
between the two exists.

Packet encapsulation is a powerful mechanism that provides great
flexibility in the way our networks are designed and
evolve. Unfortunately, encapsulation also comes with a price: inflated
packet size. Encapsulation introduces overhead (24 bytes in the case
of IPv4+GRE, to be precise), which can cause the packet to exceed the available Maximum Transmission Unit (MTU) size and require
fragmentation.

Once the packet reaches the datacenter, fragmentation can be avoided
by using a larger MTU within the datacenter; however, this approach
requires a network that supports large Protocol Data Units. As with
many things at scale, load balancing sounds simple on the surface — load
balance early and load balance often — but the difficulty is in the
details, both for frontend load balancing and for handling packets
once they reach the datacenter.

1 See https://groups.google.com/forum/#!topic/public-dns-announce/67oxFjSLeUM.
2 Sadly, not all DNS resolvers respect the TTL value set by authoritative nameservers.
3 Otherwise, users must establish a TCP connection just to get a list of IP addresses.

Chapter 20. Load Balancing in the Datacenter

Written by Alejandro Forero Cuervo

Edited by Sarah Chavis

This chapter focuses on load balancing within the
datacenter. Specifically, it discusses algorithms for distributing
work within a given datacenter for a stream of queries. We cover
application-level policies for routing requests to individual servers
that can process them. Lower-level networking principles
(e.g., switches, packet routing) and datacenter selection are outside
of the scope of this chapter.

Assume there is a stream of
queries arriving to the datacenter — these could be coming from the
datacenter itself, remote datacenters, or a mix of both — at a
rate that doesn’t
exceed the resources that the datacenter has to process them (or only
exceeds it for very short amounts of time). Also assume that there are
services within the datacenter, against which these queries
operate. These services are implemented as many homogeneous,
interchangeable server processes mostly running on different
machines. The smallest services typically have at least three such
processes (using fewer processes means losing 50% or
more of your capacity if you lose a single machine) and the largest
may have more than 10,000 processes (depending on datacenter
size). In the typical case, services are composed of between 100 and
1,000 processes. We call these processes backend tasks (or just
backends). Other tasks, known as client tasks, hold
connections to the backend tasks. For each
incoming query, a client task must decide which backend task should
handle the query. Clients communicate with backends using a protocol
implemented on top of a combination of TCP and
UDP.

We should note that Google datacenters house a vastly diverse set of
services that implement different combinations of the policies
discussed in this chapter. Our working example, as just described,
doesn’t fit any one service directly. It’s a generalized scenario that
allows us to discuss the various techniques we’ve found useful for
various services. Some of these techniques may be more (or less)
applicable to specific use cases, but these techniques were
designed and implemented by several Google engineers over a span of many years.

These techniques are applied at many parts of our stack. For example, most external HTTP requests reach the GFE (Google Frontend), our HTTP reverse proxying system. The GFE uses these algorithms, along with the algorithms described in Chapter 19, to route the request payloads and metadata to the individual processes running the applications that can process this information. This is based on a configuration that maps various URL patterns to
individual applications under the control of different teams. In order to
produce the response payloads (which they return to the GFE, to be returned back to browsers), these applications often
use these same algorithms in turn, to communicate with the infrastructure or
complementary services they depend on. Sometimes the stack of dependencies can
get relatively deep, where a single incoming HTTP request can trigger a long
transitive chain of dependent requests to several systems, potentially with high
fan-out at various points.

The Ideal Case

In an ideal case, the load for a given service is spread perfectly
over all its backend tasks and, at any given point in time, the
least and most loaded backend tasks consume exactly the same amount of
CPU.

We can only send traffic to a datacenter until the point at which the
most loaded task reaches its capacity limit; this is depicted in
Figure 20-1 for two
scenarios over the same time interval. During that time, the
cross-datacenter load balancing algorithm must avoid sending any
additional traffic to the datacenter, because doing so risks
overloading some tasks.

[image: Two scenarios of per-task load distribution over time]
Figure 20-1. Two scenarios of per-task load distribution over time

As shown in the lefthand graph in Figure 20-2, a
significant amount of capacity is wasted: the idle capacity of every
task except the most loaded task.

[image: Histogram of CPU used and wasted in two scenarios]
Figure 20-2. Histogram of CPU used and wasted in two scenarios

More formally, let CPU[i] be the CPU rate consumed by task i at
a given point of time, and suppose that task 0 is the most loaded
task. Then, in the case of a large spread, we are wasting the sum of
the differences in the CPU from any task to CPU[0]: that is, the sum
over all tasks i of (CPU[0] – CPU[i]) will be wasted. In this
case “wasted” means reserved, but unused.

This example illustrates how poor in-datacenter load balancing
practices artificially limit resource availability: you may be
reserving 1,000 CPUs for your service in a given datacenter, but be unable
to actually use more than, say, 700 CPUs.

Identifying Bad Tasks: Flow Control and Lame Ducks

Before we can decide which backend task should receive a client
request, we need to identify — and
avoid — unhealthy tasks in our pool of backends.

A Simple Approach to Unhealthy Tasks: Flow Control

Assume our client tasks track the number of active
requests they have sent on each connection to a backend task. When this
active-request count reaches a configured limit, the client treats the
backend as unhealthy and no longer sends it requests. For most backends, 100 is a
reasonable limit; in the average case, requests tend to
finish fast enough that it is very rare for the number of active
requests from a given client to reach this limit under normal operating conditions. This (very
basic!) form of flow control also serves as a simplistic form of load
balancing: if a given backend task becomes overloaded and requests
start piling up, clients will avoid that backend, and the workload
spreads organically among the other backend tasks.

Unfortunately, this very simplistic approach only protects backend
tasks against very extreme forms of overload and it’s very easy for
backends to become overloaded well before this limit is ever
reached. The converse is also true: in some cases, clients may reach
this limit when their backends still have plenty of spare resources.
For example, some backends may have very long-lived requests that
prohibit quick responses. We’ve seen cases in which this
default limit has backfired, causing all backend tasks to become
unreachable, with requests blocked in the clients until they time out
and fail. Raising the active-request limit can avoid this situation,
but doesn’t solve the underlying problem of knowing if a task is truly
unhealthy or simply slow to respond.

A Robust Approach to Unhealthy Tasks: Lame Duck State

From a client perspective, a given backend task can be in any of the
following states:

Healthy

The backend task has initialized correctly and is
processing requests.

Refusing connections

The backend task is unresponsive. This can
happen because the task is starting up or shutting down, or because the backend is in an abnormal state (though it would
be rare for a backend to stop listening on its port if it is not
shutting down).

Lame duck

The backend task is listening on its port and can
serve, but is explicitly asking clients to stop sending requests.

When a task enters lame duck state, it broadcasts that fact to all its
active clients. But what about inactive clients? With Google’s RPC
implementation, inactive clients (i.e., clients with no active TCP
connections) still send periodic UDP health checks. The result is that
lame duck information is propagated quickly to all clients — typically in 1 or 2 RTT — regardless of their current state.

The main advantage of allowing a task to exist in a quasi-operational
lame duck state is that it simplifies clean shutdown, which avoids
serving errors to all the unlucky requests that happened to be active on
backend tasks that are shutting down. Bringing down a backend task
that has active requests without serving any errors facilitates code
pushes, maintenance activities, or machine failures that may require
restarting all related tasks. Such a shutdown would follow these general steps:

	
The job scheduler sends a SIGTERM signal to the backend task.

	
The backend task enters lame duck state and asks its clients to
send new requests to other backend tasks. This is done through an API
call in the RPC implementation that is explicitly called in the
SIGTERM handler.

	
Any ongoing request started before the backend task entered lame duck state (or after it entered lame duck state but before a client detected
it) executes normally.

	
As responses flow back to the clients, the number of active
requests against the backend gradually decreases to zero.

	
After a configured interval, the backend task either exits cleanly
or the job scheduler kills it. The interval should be set to a large
enough value that all typical requests have sufficient time to
finish. This value is service dependent, but a good rule of
thumb is between 10s and 150s depending on client
complexity.

This strategy also allows a client to establish connections to backend
tasks while performing potentially long-lived initialization
procedures (and thus are not yet ready to start serving). The backend
tasks could otherwise start listening for connections only when
they’re ready to serve, but doing so would delay the negotiation of
the connections unnecessarily. As soon as the backend task is ready to
start serving, it signals this explicitly to the clients.

Limiting the Connections Pool with Subsetting

In addition to health management, another consideration for load balancing is subsetting: limiting the pool of potential backend tasks with which
a client task interacts.

Each client in our RPC system maintains a pool of long-lived
connections to its backends that it uses to send new requests.
These connections are typically established early on as the client is
starting and usually remain open, with requests flowing through them,
until the client’s death. An alternative model would be to establish
and tear down a connection for each request, but this model has
significant resource and latency costs. In the corner case of a
connection that remains idle for a long time, our RPC implementation
has an optimization that switches the connection to a cheap “inactive”
mode where, for example, the frequency of health checks is reduced and
the underlying TCP connection is dropped in favor of UDP.

Every connection requires some memory and CPU (due to periodic health
checking) at both ends. While this overhead is small in theory, it can
quickly become significant when it occurs across many
machines. Subsetting avoids the situation in which a single client
connects to a very large number of backend tasks or a single backend
task receives connections from a very large number of client tasks. In both cases,
you potentially waste a very large amount of resources for very little
gain.

Picking the Right Subset

Picking the right subset comes down to choosing how many backend tasks each client connects to — the subset size — and the selection algorithm. We typically use a subset
size of 20 to 100 backend tasks, but the “right” subset size for
a system depends heavily on the typical behavior of your service. For
example, you may want to use a larger subset size if:

	
The number of clients is significantly smaller than the number of
backends. In this case, you want the number of
backends per client to be large enough that you don’t end up with
backend tasks that will never receive any traffic.

	
There are frequent load imbalances within the client jobs (i.e., one client
task sends more requests than others). This scenario is typical in situations where clients occasionally send bursts of
requests. In this case, the clients themselves receive requests from other
clients that occasionally have a large fan-out (e.g., “read all the
information of all the followers of a given user”). Because a burst of requests
will be concentrated in the client’s assigned subset, you need a larger
subset size to ensure the load is spread evenly across the larger set of
available backend tasks.

Once the subset size is determined, we need an algorithm to define the
subset of backend tasks each client task will use. This may seem like a simple task,
but it becomes complex quickly when working with large-scale systems
where efficient provisioning is crucial and system restarts are
guaranteed.

The selection algorithm for clients should assign backends uniformly
to optimize resource provisioning. For example, if subsetting
overloads one backend by 10%, the whole set of backends needs to be
overprovisioned by 10%. The algorithm should also handle
restarts and failures gracefully and robustly by continuing to load
backends as uniformly as possible while minimizing churn. In this
case, “churn” relates to backend replacement selection. For example,
when a backend task becomes unavailable, its clients may need to temporarily
pick a replacement backend. When a replacement backend is selected,
clients must create new TCP connections (and likely perform
application-level negotiation), which creates additional
overhead. Similarly, when a client task restarts, it needs to reopen
the connections to all its backends.

The algorithm should also handle resizes in the number of clients
and/or number of backends, with minimal connection churn and without
knowing these numbers in advance. This functionality is particularly
important (and tricky) when the entire set of client or backend tasks
are restarted one at a time (e.g., to push a new version). As backends
are pushed, we want clients to continue serving, transparently, with
as little connection churn as possible.

A Subset Selection Algorithm: Random Subsetting

A naive implementation of a subset selection algorithm might have each
client randomly shuffle the list of backends once and fill its subset
by selecting resolvable/healthy backends from the list. Shuffling once
and then picking backends from the start of the list handles restarts
and failures robustly (e.g., with relatively little churn) because it
explicitly limits them from consideration. However, we’ve found that this
strategy actually works very poorly in most practical scenarios because it spreads load very unevenly.

During initial work on load balancing, we implemented random
subsetting and calculated the expected load for various cases. As
an example, consider:

	
300 clients

	
300 backends

	
A subset size of 30% (each client connects to 90 backends)

As Figure 20-3 shows, the
least loaded backend has just 63% of the average load (57
connections, where the average is 90 connections) and the most loaded
has 121% (109 connections). In most cases, a subset size of
30% is already larger than we would want to use in
practice. The calculated load distribution changes every time we run the simulation while the general pattern remains.

[image: Connection distribution with 300 clients, 300 backends, and a subset size of 30%.]
Figure 20-3. Connection distribution with 300 clients, 300 backends, and a subset size of 30%

Unfortunately, smaller subset sizes lead to even worse imbalances. For
example, Figure 20-4
depicts the results if the subset size is reduced to 10% (30 backends
per client). In this case, the least loaded backend receives 50% of
the average load (15 connections) and the most loaded receives
150% (45 connections).

[image: Connection distribution with 300 clients, 300 backends, and a subset size of 10%.]
Figure 20-4. Connection distribution with 300 clients, 300 backends, and a subset size of 10%

We concluded that for random subsetting to spread the load relatively
evenly across all available tasks, we would need subset sizes as large
as 75%. A subset that large is simply impractical; the variance in the
number of clients connecting to a task is just too large to
consider random subsetting a good subset selection policy at scale.

A Subset Selection Algorithm: Deterministic Subsetting

Google’s solution to the limitations of random subsetting is
deterministic subsetting. The following code implements this algorithm, described in detail next:

def Subset(backends, client_id, subset_size):
 subset_count = len(backends) / subset_size

 # Group clients into rounds; each round uses the same shuffled list:
 round = client_id / subset_count
 random.seed(round)
 random.shuffle(backends)

 # The subset id corresponding to the current client:
 subset_id = client_id % subset_count

 start = subset_id * subset_size
 return backends[start:start + subset_size]

We divide client tasks into “rounds,” where round i consists of
subset_count consecutive client tasks, starting at task
subset_count × i, and subset_count is the number of subsets
(i.e., the number of backend tasks divided by the desired subset
size). Within each round, each backend is assigned to exactly
one client (except possibly the last round, which may
not contain enough clients, so some backends may not be assigned).

For example, if we have 12 backend tasks [0, 11] and a desired subset size of
3, we will have rounds containing 4 clients each (subset_count =
12/3). If we had 10 clients, the preceding algorithm could yield
the following rounds:

	
Round 0: [0, 6, 3, 5, 1, 7, 11, 9, 2, 4, 8, 10]

	
Round 1: [8, 11, 4, 0, 5, 6, 10, 3, 2, 7, 9, 1]

	
Round 2: [8, 3, 7, 2, 1, 4, 9, 10, 6, 5, 0, 11]

The key point to notice is that each round only assigns each backend
in the entire list to one client (except the last, where we run out of
clients). In this example, every backend gets assigned to exactly two
or three clients.

The list should be shuffled; otherwise, clients are assigned a
group of consecutive backend tasks that may all become temporarily
unavailable (for example, because the backend job is being updated
gradually in order, from the first task to the last). Different
rounds use a different seed for shuffling. If they don’t, when a
backend fails, the load it was receiving is only spread among the
remaining backends in its subset. If additional backends in the
subset fail, the effect compounds and the situation can quickly worsen
significantly: if N backends in a subset are down,
their corresponding load is spread over the remaining (subset_size -
N) backends. A much better approach is to spread this load over all
remaining backends by using a different shuffle for each round.

When we use a different shuffle for each round, clients in the same round
will start with the same shuffled list, but clients across rounds will
have different shuffled lists. From here, the algorithm builds subset
definitions based upon the shuffled list of backends and the
desired subset size. For example:

	
Subset[0] = shuffled_backends[0] through shuffled_backends[2]

	
Subset[1] = shuffled_backends[3] through shuffled_backends[5]

	
Subset[2] = shuffled_backends[6] through shuffled_backends[8]

	
Subset[3] = shuffled_backends[9] through shuffled_backends[11]

where shuffled_backend is the shuffled list created by each client. To
assign a subset to a client task, we just take the subset that
corresponds to its position within its round (e.g., (i % 4) for
client[i] with four subsets):

	
client[0], client[4], client[8] will use subset[0]

	
client[1], client[5], client[9] will use subset[1]

	
client[2], client[6], client[10] will use subset[2]

	
client[3], client[7], client[11] will use subset[3]

Because clients across rounds will use a different value for
shuffled_backends (and thus for subset) and clients within rounds use
different subsets, the connection load is spread uniformly. In cases
where the total number of backends is not divisible by the desired
subset size, we allow a few subsets to be slightly larger than others,
but in most cases the number of clients assigned to a backend will
differ by at most 1.

As Figure 20-5 shows, the
distribution for the former example of 300 clients each connecting to
10 of 300 backends yields very good results: each backend receives
exactly the same number of connections.

[image: Connection distribution with 300 clients and deterministic subsetting to 10 of 300 backends.]
Figure 20-5. Connection distribution with 300 clients and deterministic subsetting to 10 of 300 backends

Load Balancing Policies

Now that we’ve established the groundwork for how a given client task
maintains a set of connections that are known to be healthy, let’s
examine load balancing policies. These are the
mechanisms used by client tasks to select which backend task in its subset receives a client
request. Many of the complexities in load balancing policies stem from
the distributed nature of the decision-making process in which clients
need to decide, in real time (and with only partial and/or stale
backend state information), which backend should be used for each request.

Load balancing policies can be very simple and not take into account
any information about the state of the backends (e.g., Round Robin)
or can act with more information about the backends
(e.g., Least-Loaded Round Robin or Weighted Round Robin).

Simple Round Robin

One very simple approach to load balancing has each client send requests in round-robin fashion to each backend task in its subset to which it can successfully connect and which isn’t in lame duck state. For many years, this was our most common approach, and it’s still used by many services.

Unfortunately, while Round Robin has the advantage of being very
simple and performing significantly better than just selecting backend
tasks randomly, the results of this policy can be very poor. While actual
numbers depend on many factors, such as varying query cost and machine
diversity, we’ve found that Round Robin can result in a spread of up
to [image: 2 x] in CPU consumption from the least to the most
loaded task. Such a spread is extremely wasteful and occurs for a
number of reasons, including:

	
Small subsetting

	
Varying query costs

	
Machine diversity

	
Unpredictable performance factors

Small subsetting

One of the simplest reasons Round Robin distributes load poorly is
that all of its clients may not issue requests at the same
rate. Different rates of requests among clients are especially likely
when vastly different processes share the same backends. In this case,
and especially if you’re using relatively small subset sizes, backends
in the subsets of the clients generating the most traffic will
naturally tend to be more loaded.

Varying query costs

Many services handle requests that require vastly different amounts of
resources for processing. In practice, we’ve found that the semantics
of many services in Google are such that the most expensive requests
consume [image: 1000 x] (or more) CPU than the cheapest
requests. Load balancing using Round Robin is even more difficult when
query cost can’t be predicted in advance. For example, a query such as
“return all emails received by user XYZ in the last day” could be very
cheap (if the user has received little email over the course of the day)
or extremely expensive.

Load balancing in a system with large discrepancies in potential query
cost is very problematic. It can become necessary to adjust the
service interfaces to functionally cap the amount of
work done per request. For example, in the case of the email query
described previously, you could introduce a pagination interface and
change the semantics of the request to “return the most recent 100
emails (or fewer) received by user XYZ in the last day.”
Unfortunately, it’s often difficult to introduce such semantic changes.
Not only does this require changes in all the client
code, but it also entails additional consistency considerations. For
example, the user may be receiving new emails or deleting emails as
the client fetches emails page-by-page. For this use case, a client
that naively iterates through the results and concatenates the
responses (rather than paginating based on a fixed view of the data)
will likely produce an inconsistent view, repeating some messages
and/or skipping others.

To keep interfaces (and their implementations) simple, services are
often defined to allow the most expensive requests to consume 100, 1,000,
or even 10,000 times more resources than the cheapest requests. However,
varying resource requirements per-request naturally mean that some
backend tasks will be unlucky and occasionally receive more expensive
requests than others. The extent to which this situation affects load
balancing depends on how expensive the most expensive requests
are. For example, for one of our Java backends, queries consume around
15 ms of CPU on average but some queries can easily require up to 10
seconds. Each task in this backend reserves multiple CPU cores, which
reduces latency by allowing some of the computations to happen in
parallel. But despite these reserved cores, when a backend receives
one of these large queries, its load increases significantly for a few
seconds. A poorly behaved task may run out of memory or even stop
responding entirely (e.g., due to memory thrashing), but even in the
normal case (i.e., the backend has sufficient resources and its load
normalizes once the large query completes), the latency of other
requests suffers due to resource competition with the expensive
request.

Machine diversity

Another challenge to Simple Round Robin is the fact that not all
machines in the same datacenter are necessarily the same. A given
datacenter may have machines with CPUs of varying performance, and
therefore, the same request may represent a significantly different
amount of work for different machines.

Dealing with machine diversity — without requiring strict
homogeneity — was a challenge for many years at Google. In theory, the
solution to working with heterogeneous resource capacity in a fleet is
simple: scale the CPU reservations depending on the processor/machine
type. However, in practice, rolling out this solution required
significant effort because it required our job scheduler to account
for resource equivalencies based on average machine performance across
a sampling of services. For example, 2 CPU units in machine X (a
“slow” machine) is equivalent to 0.8 CPU units in machine Y (a “fast”
machine). With this information, the job scheduler is then required to
adjust CPU reservations for a process based upon the equivalence
factor and the type of machine on which the process was scheduled. In
an attempt to mitigate this complexity, we created a virtual unit for
CPU rate called “GCU” (Google Compute Units). GCUs became the standard
for modeling CPU rates, and were used to maintain a mapping from each
CPU architecture in our datacenters to its corresponding GCU based
upon its performance.

Unpredictable performance factors

Perhaps the largest complicating factor for Simple Round Robin is that
machines — or, more accurately, the performance of backend tasks — may
differ vastly due to several unpredictable aspects that cannot be
accounted for statically.

Two of the many unpredictable factors that contribute to performance
include:

Antagonistic neighbors

Other processes (often completely
unrelated and run by different teams) can have a significant impact
on the performance of your processes. We’ve seen differences in
performance of this nature of up to 20%. This difference mostly
stems from competition for shared resources, such as space in
memory caches or bandwidth, in ways that may not be directly
obvious. For example, if the latency of outgoing requests from a
backend task grows (because of competition for network resources
with an antagonistic neighbor), the number of active requests will
also grow, which may trigger increased garbage collection.

Task restarts

When a task gets restarted, it often requires
significantly more resources for a few minutes. As just one
example, we’ve seen this condition affect platforms such as Java
that optimize code dynamically more than others. In response,
we’ve actually added to the logic of some server code — we keep servers in lame duck state and prewarm them (triggering these optimizations) for a period of time after they start, until their performance is nominal. The effect of task restarts
can become a sizable problem when you consider we update many
servers (e.g., push new builds, which requires restarting these tasks)
every day.

If your load balancing policy can’t adapt to unforeseen performance
limitations, you will inherently end up with a suboptimal load
distribution when working at scale.

Least-Loaded Round Robin

An alternative approach to Simple Round Robin is to have each client
task keep track of the number of active requests it has to each
backend task in its subset and use Round Robin among the set of
tasks with a minimal number of active requests.

For example, suppose a client uses a subset of backend tasks t0 to
t9, and currently has the following number of active requests
against each backend:

	t0
	t1
	t2
	t3
	t4
	t5
	t6
	t7
	t8
	t9

	2

	1

	0

	0

	1

	0

	2

	0

	0

	1

For a new request, the client would filter the list of potential
backend tasks to just those tasks with the least number of connections
(t2, t3, t5, t7, and t8) and choose a backend from that
list. Let’s assume it picks t2. The client’s connection state table
would now look like the following:

	t0
	t1
	t2
	t3
	t4
	t5
	t6
	t7
	t8
	t9

	2

	1

	1

	0

	1

	0

	2

	0

	0

	1

Assuming none of the current requests have completed, on the next
request, the backend candidate pool becomes t3, t5, t7, and
t8.

Let’s fast-forward until we’ve issued four new requests. Still assuming
that no request finishes in the meantime, the connection state table
would look like the following:

	t0
	t1
	t2
	t3
	t4
	t5
	t6
	t7
	t8
	t9

	2

	1

	1

	1

	1

	1

	2

	1

	1

	1

At this point the set of backend candidates is all tasks except t0
and t6. However, if the request against task t4 finishes, its
current state becomes “0 active requests” and a new request will be
assigned to t4.

This implementation actually uses Round Robin, but it’s applied across
the set of tasks with minimal active requests. Without such filtering,
the policy might not be able to spread the requests well enough to
avoid a situation in which some portion of the available backend tasks
goes unused. The idea behind the least-loaded policy is that loaded
tasks will tend to have higher latency than those with spare capacity,
and this strategy will naturally take load away from these loaded
tasks.

All that said, we’ve learned (the hard way!) about one very dangerous
pitfall of the Least-Loaded Round Robin approach: if a task is
seriously unhealthy, it might start serving 100% errors. Depending on
the nature of those errors, they may have very low latency; it’s
frequently significantly faster to just return an “I’m unhealthy!”
error than to actually process a request. As a result, clients might
start sending a very large amount of traffic to the unhealthy task,
erroneously thinking that the task is available, as opposed to
fast-failing them! We say that the unhealthy task is now sinkholing
traffic. Fortunately, this pitfall can be solved relatively easily by
modifying the policy to count recent errors as if they were active
requests. This way, if a backend task becomes unhealthy, the
load balancing policy begins to divert load from it the same way it
would divert load from an overburdened task.

Least-Loaded Round Robin has two important limitations:

The count of active requests may not be a very good proxy for the capability of a given backend

Many requests spend a significant
portion of their life just waiting for a response from the network
(i.e., waiting for responses to requests they initiate to other
backends) and very little time on actual processing. For example, one
backend task may be able to process twice as many requests as another
(e.g., because it’s running in a machine with a CPU that’s twice as
fast as the rest), but the latency of its requests may still be
roughly the same as the latency of requests in the other task
(because requests spend most of their life just waiting for the
network to respond). In this case, because blocking on I/O often
consumes zero CPU, very little RAM, and no bandwidth, we’d still want
to send twice as many requests to the faster backend. However,
Least-Loaded Round Robin will consider both backend tasks
equally loaded.

The count of active requests in each client doesn’t include requests from other clients to the same backends

That is, each
client task has only a very limited view into the state of its
backend tasks: the view of its own requests.

In practice, we’ve found that large services using Least-Loaded
Round Robin will see their most loaded backend task using twice as
much CPU as the least loaded, performing about as poorly as Round Robin.

Weighted Round Robin

Weighted Round Robin is an important load balancing policy that improves on Simple and Least-Loaded Round Robin by
incorporating backend-provided information into the decision process.

Weighted Round Robin is fairly simple in principle: each client task
keeps a “capability” score for each backend in its subset. Requests
are distributed in Round-Robin fashion, but clients weigh the
distributions of requests to backends proportionally. In each response
(including responses to health checks), backends include the current
observed rates of queries and errors per second, in addition to the utilization (typically,
CPU usage). Clients adjust the
capability scores periodically to pick backend tasks based upon their
current number of successful requests handled and at what utilization
cost; failed requests result in a penalty that affects future
decisions.

In practice, Weighted Round Robin has worked very well and
significantly reduced the difference between the most and the least
utilized tasks. Figure 20-6
shows the CPU rates for a random subset of backend tasks around the time its clients switched from Least-Loaded to
Weighted Round Robin. The spread from the least to the most loaded
tasks decreased drastically.

[image: CPU distribution before and after enabling Weighted Round Robin.]
Figure 20-6. CPU distribution before and after enabling Weighted Round Robin

Chapter 21. Handling Overload

Written by Alejandro Forero Cuervo

Edited by Sarah Chavis

Avoiding overload is a goal of load balancing policies. But no matter
how efficient your load balancing policy, eventually some part of
your system will become overloaded. Gracefully handling overload
conditions is fundamental to running a reliable serving system.

One option for handling overload is to serve degraded responses:
responses that are not as accurate as or that contain less data than
normal responses, but that are easier to compute. For example:

	
Instead of searching an entire corpus to provide the best available
results to a search query, search only a small percentage of the
candidate set.

	
Rely on a local copy of results that may not be fully up to date
but that will be cheaper to use than going against the canonical
storage.

However, under extreme overload, the service might not even be able to
compute and serve degraded responses. At this point it may have no immediate
option but to serve errors. One way to mitigate this scenario is to
balance traffic across datacenters such that no datacenter receives
more traffic than it has the capacity to process. For example, if a
datacenter runs 100 backend tasks and each task can process up to 500
requests per second, the load balancing algorithm will not allow more
than 50,000 queries per second to be sent to that datacenter. However,
even this constraint can prove insufficient to avoid overload when
you’re operating at scale. At the end of the day, it’s best to build
clients and backends to handle resource restrictions gracefully:
redirect when possible, serve degraded results when necessary, and
handle resource errors transparently when all else fails.

The Pitfalls of “Queries per Second”

Different queries can have vastly
different resource requirements. A query’s cost can vary based on
arbitrary factors such as the code in the client that issues them (for
services that have many different clients) or even the time of the
day (e.g., home users versus work users; or interactive end-user traffic
versus batch traffic).

We learned this lesson the hard way: modeling capacity as “queries per second” or using static features of
the requests that are believed to be a proxy for the resources they
consume (e.g., “how many keys are the requests reading”) often makes
for a poor metric. Even if these metrics perform adequately at one
point in time, the ratios can change. Sometimes the change is gradual,
but sometimes the change is drastic (e.g., a new version of the
software suddenly made some features of some requests require
significantly fewer resources). A moving target makes a poor metric for
designing and implementing load balancing.

A better solution is to measure capacity directly in available
resources. For example, you may have a total of 500 CPU cores and 1 TB
of memory reserved for a given service in a given
datacenter. Naturally, it works much better to use those numbers
directly to model a datacenter’s capacity. We often speak about the
cost of a request to refer to a normalized measure of how much CPU
time it has consumed (over different CPU architectures, with consideration of
performance differences).

In a majority of cases (although certainly not in all), we’ve found
that simply using CPU consumption as the signal for provisioning works well, for the following reasons:

	
In platforms with garbage collection, memory pressure naturally
translates into increased CPU consumption.

	
In other platforms, it’s possible to provision the remaining
resources in such a way that they’re very unlikely to run out
before CPU runs out.

In cases where over-provisioning the non-CPU resources is
prohibitively expensive, we take each system resource into account
separately when considering resource consumption.

Per-Customer Limits

One component of dealing with overload is deciding what to do in the
case of global overload. In a perfect world, where teams
coordinate their launches carefully with the owners of their backend
dependencies, global overload never happens and backend services
always have enough capacity to serve their customers. Unfortunately,
we don’t live in a perfect world. Here in reality, global overload
occurs quite frequently (especially for internal services that tend to
have many clients run by many teams).

When global overload does occur, it’s vital that the service only delivers error responses to misbehaving customers, while other customers remain unaffected. To achieve this
outcome, service owners provision their capacity based on the
negotiated usage with their customers and define per-customer quotas
according to these agreements.

For example, if a backend service has 10,000 CPUs allocated worldwide
(over various datacenters), their per-customer limits might look
something like the following:

	
Gmail is allowed to consume up to 4,000 CPU seconds per second.

	
Calendar is allowed to consume up to 4,000 CPU seconds per second.

	
Android is allowed to consume up to 3,000 CPU seconds per second.

	
Google+ is allowed to consume up to 2,000 CPU seconds per second.

	
Every other user is allowed to consume up to 500 CPU seconds per
second.

Note that these numbers may add up to more than the 10,000 CPUs allocated
to the backend service. The service owner is relying on the fact that
it’s unlikely for all of their customers to hit their resource
limits simultaneously.

We aggregate global usage information in real time from all
backend tasks, and use that data to push effective limits to
individual backend tasks. A closer look at the system that implements
this logic is outside of the scope of this discussion, but we’ve
written significant code to implement this in our backend
tasks. An interesting part of the puzzle is computing in real time the
amount of resources — specifically CPU — consumed by each individual
request. This computation is particularly tricky for servers that
don’t implement a thread-per-request model, where a pool of threads
just executes different parts of all requests as they come in, using
nonblocking APIs.

Client-Side Throttling

When a customer is out of quota, a backend task should reject requests
quickly with the expectation that returning a “customer is out of
quota” error consumes significantly fewer resources than actually
processing the request and serving back a correct response. However,
this logic doesn’t hold true for all services. For example, it’s
almost equally expensive to reject a request that requires a simple RAM
lookup (where the overhead of the request/response protocol handling
is significantly larger than the overhead of producing the response)
as it is to accept and run that request. And even in the case where
rejecting requests saves significant resources, those requests still
consume some resources. If the amount of rejected requests is significant, these
numbers add up quickly. In such cases, the backend can become
overloaded even though the vast majority of its CPU is spent just
rejecting requests!

Client-side throttling addresses this problem.1 When a client
detects that a significant portion of its recent requests have been
rejected due to “out of quota” errors, it starts self-regulating and
caps the amount of outgoing traffic it generates. Requests above the
cap fail locally without even reaching the network.

We implemented client-side throttling through a technique we call
adaptive throttling. Specifically, each client task keeps the
following information for the last two minutes of its history:

requests

The number of requests attempted by the application layer
(at the client, on top of the adaptive throttling system)

accepts

The number of requests accepted by the backend

Under normal conditions, the two values are equal. As the backend
starts rejecting traffic, the number of accepts becomes smaller than
the number of requests. Clients can continue to issue requests to the backend until
requests is [image: upper K] times as large as accepts. Once that cutoff is reached,
the client begins to self-regulate and new requests are rejected
locally (i.e., at the client) with the probability calculated in Equation 21-1.

Equation 21-1. Client request rejection probability

[image: dollar-sign max left-parenthesis 0 comma StartFraction requests negative upper K times accepts Over requests plus 1 EndFraction right-parenthesis dollar-sign]

As the client itself starts rejecting requests, requests
will continue to exceed accepts. While it may seem counterintuitive,
given that locally rejected requests aren’t actually propagated to the
backend, this is the preferred behavior. As the rate at which the
application attempts requests to the client grows (relative to the
rate at which the backend accepts them), we want to increase the
probability of dropping new requests.

We’ve found adaptive throttling to work well in practice, leading to
stable rates of requests overall. Even in large overload situations,
backends end up rejecting one request for each request they actually
process. One large advantage of this approach is that the decision is
made by the client task based entirely on local information and using
a relatively simple implementation: there are no additional
dependencies or latency penalties.

For services where the cost of processing a request is very close
to the cost of rejecting that request, allowing roughly half of the
backend resources to be consumed by rejected requests can be
unacceptable. In this case, the solution is simple: modify the accepts multiplier [image: upper K] (e.g., 2) in the client request rejection probability (Equation 21-1). In this way:

	
Reducing the multiplier will make adaptive throttling behave more aggressively

	
Increasing the multiplier will make adaptive throttling behave less aggressively

For example, instead of having the client self-regulate when
requests = 2 * accepts, have it self-regulate when requests = 1.1 * accepts.
Reducing the modifier to 1.1 means only one request
will be rejected by the backend for every 10 requests accepted.

We generally prefer the 2x multiplier. By
allowing more requests to reach the backend than are expected to
actually be allowed, we waste more resources at the backend, but we
also speed up the propagation of state from the backend to the
clients. For example, if the backend decides to stop rejecting traffic
from the client tasks, the delay until all client tasks have detected
this change in state is shorter.

One additional consideration is that client-side throttling may not
work well with clients that only very sporadically send requests to
their backends. In this case, the view that each client has of the
state of the backend is reduced drastically, and approaches to
increment this visibility tend to be expensive.

Criticality

Criticality is another notion that we’ve found very useful in the
context of global quotas and throttling. A request made to a backend
is associated with one of four possible criticality values, depending on
how critical we consider that request:

CRITICAL_PLUS

Reserved for the most critical requests, those
that will result in serious user-visible impact if they fail.

CRITICAL

The default value for requests sent from production
jobs. These requests will result in user-visible impact,
but the impact may be less severe than those of
CRITICAL_PLUS. Services are expected to provision enough capacity
for all expected CRITICAL and CRITICAL_PLUS traffic.

SHEDDABLE_PLUS

Traffic for which partial unavailability is
expected. This is the default for batch jobs, which can retry
requests minutes or even hours later.

SHEDDABLE

Traffic for which frequent partial unavailability and occasional full
unavailability is expected.

We found that four values were sufficiently robust to model almost every
service. We’ve had various discussions on proposals to add more
values, because doing so would allow us to classify requests more
finely. However, defining additional values would require more
resources to operate various criticality-aware systems.

We’ve made criticality a first-class notion of our RPC system and
we’ve worked hard to integrate it into many of our control mechanisms
so it can be taken into account when reacting to overload
situations. For example:

	
When a customer runs out of global quota, a backend task will only reject requests of a given criticality if
it’s already rejecting all requests of all lower criticalities (in
fact, the per-customer limits that our system supports, described
earlier, can be set per criticality).

	
When a task is itself overloaded, it will reject requests of lower
criticalities sooner.

	
The adaptive throttling system also keeps separate stats for each criticality.

The criticality of a request is orthogonal to its latency requirements
and thus to the underlying network quality of service (QoS) used. For
example, when a system displays search results or suggestions while
the user is typing a search query, the underlying requests are highly
sheddable (if the system is overloaded, it’s acceptable to not display
these results), but tend to have stringent latency requirements.

We’ve also significantly extended our RPC system to propagate
criticality automatically. If a backend receives request A and, as
part of executing that request, issues outgoing request B and
request C to other backends, request B and request C will use
the same criticality as request A by default.

In the past, many systems at Google had evolved their own ad hoc
notions of criticality that were often incompatible across
services. By standardizing and propagating criticality as a part of
our RPC system, we are now able to consistently set the criticality at specific
points. This means we can be confident that overloaded dependencies
will abide by the desired high-level criticality as they reject
traffic, regardless of how deep down the RPC stack they are. Our
practice is thus to set the criticality as close as possible to the
browsers or mobile clients — typically in the HTTP frontends that
produce the HTML to be returned — and only override the criticality in
specific cases where it makes sense at specific points in the stack.

Utilization Signals

Our implementation of task-level overload protection is
based on the notion of utilization. In many cases, the utilization
is just a measurement of the CPU rate (i.e., the current CPU rate
divided by the total CPUs reserved for the task), but in some cases we
also factor in measurements such as the portion of the memory
reserved that is currently being used. As utilization approaches
configured thresholds, we start rejecting requests based on their
criticality (higher thresholds for higher criticalities).

The utilization signals we use are based on the state local to the
task (since the goal of the signals is to protect the task) and we
have implementations for various signals. The most generally useful
signal is based on the “load” in the process, which is determined
using a system we call executor load average.

To find the executor load average, we count the number of active
threads in the process. In this case, “active” refers to threads that
are currently running or ready to run and waiting for a free
processor. We smooth this value with exponential decay and begin
rejecting requests as the number of active threads grows beyond the
number of processors available to the task. That means that an
incoming request that has a very large fan-out (i.e., one that
schedules a burst of a very large number of short-lived operations)
will cause the load to spike very briefly, but the smoothing will
mostly swallow that spike. However, if the operations are not
short-lived (i.e., the load increases and remains high for a
significant amount of time), the task will start rejecting requests.

While the executor load average has proven to be a very useful signal, our system can plug in any utilization signal that
a particular backend may need. For example, we might use memory pressure — which indicates whether the memory usage in a backend task has grown
beyond normal operational parameters — as another possible utilization
signal. The system can also be configured to combine multiple signals
and reject requests that would surpass the combined (or individual)
target utilization thresholds.

Handling Overload Errors

In addition to handling load gracefully, we’ve put a significant
amount of thought into how clients should react when they receive a
load-related error response. In the case of overload errors, we
distinguish between two possible situations.

A large subset of backend tasks in the datacenter are overloaded.

If the cross-datacenter load balancing system is
 working perfectly (i.e., it can propagate state and react
 instantaneously to shifts in traffic), this condition will not
 occur.

A small subset of backend tasks in the datacenter are overloaded.

This situation is typically caused by imperfections
 in the load balancing inside the datacenter. For example, a task
 may have very recently received a very expensive request. In this
 case, it is very likely that the datacenter has remaining capacity
 in other tasks to handle the request.

If a large subset of backend tasks in the datacenter are overloaded,
requests should not be retried and errors should bubble up all the way
to the caller (e.g., returning an error to the end user). It’s much
more typical that only a small portion of tasks become overloaded, in
which case the preferred response is to retry the request
immediately. In general, our cross-datacenter load balancing system
tries to direct traffic from clients to their nearest available
backend datacenters. In a few cases, the nearest datacenter is far
away (e.g., a client may have its nearest available backend in a
different continent), but we usually manage to situate clients close to
their backends. That way, the additional latency of retrying a
request — just a few network round trips — tends to be negligible.

From the point of view of our load balancing policies, retries of
requests are indistinguishable from new requests. That is, we don’t
use any explicit logic to ensure that a retry actually goes to a
different backend task; we just rely on the likely probability that
the retry will land on a different backend task simply by virtue of
the number of participating backends in the subset. Ensuring that all
retries actually go to a different task would incur more complexity in
our APIs than is worthwhile.

Even if a backend is only slightly overloaded, a client request is
often better served if the backend rejects retry and new requests
equally and quickly. These requests can then be retried immediately on
a different backend task that may have spare resources. The
consequence of treating retries and new requests identically at the
backend is that retrying requests in different tasks becomes a form of
organic load balancing: it redirects load to tasks that may be better
suited for those requests.

Deciding to Retry

When a client receives a “task overloaded” error response, it needs to
decide whether to retry the request. We have a few mechanisms in place
to avoid retries when a significant portion of the tasks in a cluster
are overloaded.

First, we implement a per-request retry budget of up to three
attempts. If a request has already failed three times, we let the
failure bubble up to the caller. The rationale is that if a request
has already landed on overloaded tasks three times, it’s relatively
unlikely that attempting it again will help because the whole datacenter
is likely overloaded.

Secondly, we implement a per-client retry budget. Each client keeps
track of the ratio of requests that correspond to retries. A request
will only be retried as long as this ratio is below 10%. The rationale
is that if only a small subset of tasks are overloaded, there will be
relatively little need to retry.

As a concrete example (of the worst-case scenario), let’s assume a
datacenter is accepting a small amount of requests and rejecting a
large portion of requests. Let [image: upper X] be the total rate of
requests attempted against the datacenter according to the client-side logic. Due to the number of retries that will occur, the number of
requests will grow significantly, to somewhere just below
[image: 3 upper X]. Although we’ve effectively capped the growth caused
by retries, a threefold increase in requests is significant,
especially if the cost of rejecting versus processing a request is considerable. However, layering on the
per-client retry budget (a 10% retry ratio) reduces the growth to just
1.1x in the general case — a significant improvement.

A third approach has clients include a counter of how many
times the request has already been tried in the request
metadata. For instance, the counter starts at 0 in the first attempt
and is incremented on every retry until it reaches 2, at which point
the per-request budget causes it to stop being retried. Backends keep
histograms of these values in recent history. When a backend needs to
reject a request, it consults these histograms to determine the
likelihood that other backend tasks are also overloaded. If these
histograms reveal a significant amount of retries (indicating that
other backend tasks are likely also overloaded), they return an
“overloaded; don’t retry” error response instead of the standard
“task overloaded” error that triggers retries.

Figure 21-1 shows
the number of attempts in each request received by a
given backend task in various example situations, over a sliding
window (corresponding to 1,000 initial requests, not counting
retries). For simplicity, the per-client retry budget is ignored
(i.e., these numbers assume that the only limit to retries is the retry
budget of three attempts per request), and subsetting could alter these
numbers somewhat.

[image: Histograms of attempts in various conditions]
Figure 21-1. Histograms of attempts in various conditions

Our larger services tend to be deep stacks of systems, which may in turn
have dependencies on each other. In this architecture, requests should only be retried at the layer
immediately above the layer that is rejecting them. When we decide
that a given request can’t be served and shouldn’t be retried, we use
an “overloaded; don’t retry” error and thus avoid a combinatorial
retry explosion.

Consider the example from
Figure 21-2 (in practice, our
stacks are often significantly more complex). Imagine that the DB
Frontend is currently overloaded and rejects a request. In that case:

	
Backend B will then retry the request according to the preceding guidelines.

	
However, once Backend B determines that the request to the DB Frontend
can’t be served (for example, because the request has already been
attempted and rejected three times), Backend B has to return to Backend
A either an “overloaded; don’t retry” error or a degraded response
(assuming that it can produce some moderately useful response even
when its request to the DB Frontend failed).

	
Backend A has exactly the same options for the request it received
from the Frontend, and proceeds accordingly.

[image: A stack of dependencies.]
Figure 21-2. A stack of dependencies

The key point is that a failed request from the DB Frontend should only be retried by Backend B,
the layer immediately above it. If multiple layers retried,
we’d have a combinatorial explosion.

Load from Connections

The load associated with connections is one last factor worth
mentioning. We sometimes only take into account load at the backends
that is caused directly by the requests they receive (which is one of the problems with approaches that model load based upon
queries per second). However, doing so overlooks the CPU and memory
costs of maintaining a large pool of connections or the cost of a fast
rate of churn of connections. Such issues are negligible in small
systems, but quickly become problematic when running very large-scale
RPC systems.

As mentioned previously, our RPC protocol requires inactive clients to
perform periodic health checks. After a connection has been idle for a
configurable amount of time, the client drops its TCP connection and
switches to UDP for health checking. Unfortunately, this behavior is
problematic when you have a very large number of client tasks that
issue a very low rate of requests: health checking on the connections
can require more resources than actually serving the
requests. Approaches such as carefully tuning the connection
parameters (e.g., significantly decreasing the frequency of health
checks) or even creating and destroying the connections dynamically
can significantly improve this situation.

Handling bursts of new connection requests is a second (but related)
problem. We’ve seen bursts of this type happen in the case of very
large batch jobs that create a very large number of worker client
tasks all at once. The need to negotiate and maintain an excessive
number of new connections simultaneously can easily overload a group
of backends. In our experience, there are a couple strategies that can help mitigate this load:

	
Expose the load to the cross-datacenter load balancing algorithm
(e.g., base load balancing on the utilization of the cluster, rather
than just on the number of requests). In this case, load from
requests is effectively rebalanced away to other datacenters that
have spare capacity.

	
Mandate that batch client jobs use a separate set of batch proxy
backend tasks that do nothing but forward requests to the
underlying backends and hand their responses back to the clients in
a controlled way. Therefore, instead of “batch client → backend,”
you have “batch client → batch proxy → backend.” In this case,
when the very large job starts, only the batch proxy job suffers,
shielding the actual backends (and higher-priority
clients). Effectively, the batch proxy acts like a fuse. Another
advantage of using the proxy is that it typically reduces the
number of connections against the backend, which can improve the load
balancing against the backend (e.g., the proxy tasks can use bigger
subsets and probably have a better view of the state of the backend
tasks).

Conclusions

This chapter and Chapter 20 have discussed
how various techniques (deterministic subsetting, Weighted Round
Robin, client-side throttling, customer quotas, etc.) can help to
spread load over tasks in a datacenter relatively evenly. However,
these mechanisms depend on the propagation of state over a distributed
system. While they perform reasonably well in the general case, real-world
application has resulted in a small number of situations where they
work imperfectly.

As a result, we consider it critical to ensure that individual tasks
are protected against overload. To state this simply: a backend task
provisioned to serve a certain traffic rate should continue to serve
traffic at that rate without any significant impact on latency,
regardless of how much excess traffic is thrown at the task. As a
corollary, the backend task should not fall over and crash under the
load. These statements should hold true up to a certain rate of
traffic — somewhere above [image: 2 x] or even [image: 10 x]
what the task is provisioned to process. We accept that there
might be a certain point at which a system begins to break down, and
raising the threshold at which this breakdown occurs becomes
relatively difficult to achieve.

The key is to take these degradation conditions seriously. When these
degradation conditions are ignored, many systems will exhibit terrible
behavior. And as work piles up and tasks eventually run out of memory
and crash (or end up burning almost all their CPU in memory
thrashing), latency suffers as traffic is dropped and tasks compete
for resources. Left unchecked, the failure in a subset of a system
(such as an individual backend task) might trigger the failure of
other system components, potentially causing the entire system (or a
considerable subset) to fail. The impact from this kind of cascading
failure can be so severe that it’s critical for any system operating
at scale to protect against it; see Chapter 22.

It’s a common mistake to assume that an overloaded backend should turn
down and stop accepting all traffic. However, this assumption actually
goes counter to the goal of robust load balancing. We actually want
the backend to continue accepting as much traffic as possible, but to
only accept that load as capacity frees up. A well-behaved backend,
supported by robust load balancing policies, should accept only the
requests that it can process and reject the rest gracefully.

While we have a vast array of tools to implement good load balancing
and overload protections, there is no magic bullet: load balancing
often requires deep understanding of a system and the semantics of its
requests. The techniques described in this chapter have evolved along
with the needs of many systems at Google, and will likely continue to
evolve as the nature of our systems continues to change.

1 For example, see Doorman, which provides a cooperative distributed client-side throttling system.

Chapter 22. Addressing Cascading Failures

Written by Mike Ulrich

If at first you don’t succeed, back off exponentially.

Dan Sandler, Google Software Engineer

Why do people always forget that you need to add a little jitter?

Ade Oshineye, Google Developer Advocate

A cascading failure is a failure that grows over time as a result of
positive feedback.1 It can occur when a
portion of an overall system fails, increasing the probability that
other portions of the system fail. For example, a single replica for
a service can fail due to overload, increasing load on remaining
replicas and increasing their probability of failing, causing
a domino effect that takes down all the replicas for a service.

We’ll use the Shakespeare search service discussed in
“Shakespeare: A Sample Service” as an example throughout
this chapter. Its production configuration might look something like
Figure 22-1.

[image: Example production configuration for the Shakespeare search service.]
Figure 22-1. Example production configuration for the Shakespeare search service

Causes of Cascading Failures and Designing to Avoid Them

Well-thought-out system design should take into account a few typical scenarios that account for the majority of cascading failures.

Server Overload

The most common cause of cascading failures is overload.
Most cascading failures described here are either directly
due to server overload, or due to extensions or variations of this
scenario.

Suppose the frontend in cluster A is handling 1,000 requests per second
(QPS), as in Figure 22-2.

[image: Normal server load distribution between clusters A and B.]
Figure 22-2. Normal server load distribution between clusters A and B

If cluster B fails (Figure 22-3),
requests to cluster A increase to 1,200
QPS. The frontends in A are not able to handle requests at 1,200 QPS,
and therefore start running out of resources, which causes them to
crash, miss deadlines, or otherwise misbehave. As a result, the rate
of successfully handled requests in A dips well below 1,000 QPS.

[image: Cluster B fails, sending all traffic to cluster A.]
Figure 22-3. Cluster B fails, sending all traffic to cluster A

This reduction in the rate of useful work being done can spread into
other failure domains, potentially spreading globally. For example,
local overload in one cluster may lead to its servers crashing; in
response, the load balancing controller sends requests to other
clusters, overloading their servers, leading to a service-wide
overload failure. It may not take long for these events to transpire
(e.g., on the order of a couple minutes), because the load balancer and
task scheduling systems involved may act very quickly.

Resource Exhaustion

Running out of a resource can result in higher latency, elevated error
rates, or the substitution of lower-quality results. These are in
fact desired effects of running out of resources: something eventually
needs to give as the load increases beyond what a server can handle.

Depending on what resource becomes exhausted in a server and how the
server is built, resource
exhaustion can render the server less efficient or cause the server to
crash, prompting the load balancer to distribute the resource problems
to other servers. When this happens, the rate of successfully handled
requests can drop and possibly send the cluster or an entire service
into a cascade failure.

Different types of resources can be exhausted, resulting in varying
effects on servers.

CPU

If there is insufficient CPU to handle the request load, typically all
requests become slower. This scenario can result in various secondary
effects, including the following:

Increased number of in-flight requests

Because requests take
longer to handle, more requests are handled concurrently (up to a
possible maximum capacity at which queuing may occur). This
affects almost all resources, including memory, number of active
threads (in a thread-per-request server model), number of file
descriptors, and backend resources (which in turn can have other
effects).

Excessively long queue lengths

If there is insufficient capacity
to handle all the requests at steady state, the server will
saturate its queues. This means that latency increases (the
requests are queued for longer amounts of time) and the queue uses
more memory. See “Queue Management” for a
discussion of mitigation strategies.

Thread starvation

When a thread can’t make progress because it’s
waiting for a lock, health checks may fail if the health check
endpoint can’t be served in time.

CPU or request starvation

Internal watchdogs2 in the server detect that
the server isn’t making progress, causing the servers to crash due
to CPU starvation, or due to request starvation if watchdog events
are triggered remotely and processed as part of the request queue.

Missed RPC deadlines

As a server becomes overloaded, its responses to RPCs from its clients arrive later, which may exceed any deadlines those clients set. The work the server did to respond is then wasted, and clients may retry the RPCs, leading to even more overload.

Reduced CPU caching benefits

As more CPU is used, the chance of
spilling on to more cores increases, resulting in decreased usage
of local caches and decreased CPU efficiency.

Memory

If nothing else, more in-flight requests consume more RAM from
allocating the request, response, and RPC objects. Memory exhaustion
can cause the following effects:

Dying tasks

For example, a task might be evicted by the
container manager (VM or otherwise) for exceeding available
resource limits, or application-specific crashes may cause tasks
to die.

Increased rate of garbage collection (GC) in Java, resulting in increased CPU usage

A vicious cycle can occur in this scenario:
 less CPU is available, resulting in slower requests, resulting in
 increased RAM usage, resulting in more GC, resulting in even lower
 availability of CPU. This is known colloquially as the “GC death
 spiral.”

Reduction in cache hit rates

Reduction in available RAM can
reduce application-level cache hit rates, resulting in more RPCs
to the backends, which can possibly cause the backends to become
overloaded.

Threads

Thread starvation can directly cause errors or lead to health check
failures. If the server adds threads as needed, thread overhead can
use too much RAM. In extreme cases, thread starvation can also cause
you to run out of process IDs.

File descriptors

Running out of file descriptors can lead to the inability to
initialize network connections, which in turn can cause health checks
to fail.

Dependencies among resources

Note that many of these resource exhaustion scenarios feed from one
another — a service experiencing overload often has a host of secondary
symptoms that can look like the root cause, making debugging
difficult.

For example, imagine the following scenario:

	
A Java frontend has poorly tuned garbage collection (GC)
parameters.

	
Under high (but expected) load, the frontend runs out of CPU due to
GC.

	
CPU exhaustion slows down completion of requests.

	
The increased number of in-progress requests causes more RAM to be
used to process the requests.

	
Memory pressure due to requests, in combination with a fixed memory
allocation for the frontend process as a whole, leaves less RAM
available for caching.

	
The reduced cache size means fewer entries in the cache, in
addition to a lower hit rate.

	
The increase in cache misses means that more requests fall through
to the backend for servicing.

	
The backend, in turn, runs out of CPU or threads.

	
Finally, the lack of CPU causes basic health checks to fail,
starting a cascading failure.

In situations as complex as the preceding scenario, it’s unlikely that the
causal chain will be fully diagnosed during an outage. It might be
very hard to determine that the backend crash was caused by a decrease
in the cache rate in the frontend, particularly if the frontend and
backend components have different owners.

Service Unavailability

Resource exhaustion
can lead to servers crashing; for example, servers might crash when
too much RAM is allocated to a container. Once a couple of servers
crash on overload, the load on the remaining servers can increase,
causing them to crash as well. The problem tends to snowball and soon
all servers begin to crash-loop. It’s often difficult to escape this
scenario because as soon as servers come back online they’re bombarded
with an extremely high rate of requests and fail almost immediately.

For example, if a service was healthy at 10,000 QPS, but started a
cascading failure due to crashes at 11,000 QPS, dropping the load to
9,000 QPS will almost certainly not stop the crashes. This is because
the service will be handling increased demand with reduced capacity;
only a small fraction of servers will usually be healthy
enough to handle requests. The fraction of servers that will be
healthy depends on a few factors: how quickly the system is able to
start the tasks, how quickly the binary can start serving at full
capacity, and how long a freshly started task is able to survive the
load. In this example, if 10% of the servers are healthy enough to
handle requests, the request rate would need to drop to about 1,000
QPS in order for the system to stabilize and recover.

Similarly, servers can appear unhealthy to the load balancing layer,
resulting in reduced load balancing capacity: servers
may go into “lame duck” state (see “A Robust Approach to Unhealthy Tasks: Lame Duck State”) or fail health checks without crashing.
The effect can be very similar to crashing: more servers appear
unhealthy, the healthy servers tend to accept requests for a very
brief period of time before becoming unhealthy, and fewer servers
participate in handling requests.

Load balancing policies that avoid servers that have served errors can
exacerbate problems further — a few backends serve some errors, so they
don’t contribute to the available capacity for the service. This
increases the load on the remaining servers, starting the snowball
effect.

Preventing Server Overload

The following list presents strategies for avoiding server overload in
rough priority order:

Load test the server’s capacity limits, and test the failure mode for overload

This is the most important important exercise you
should conduct in order to prevent server overload. Unless you
test in a realistic environment, it’s very hard to predict exactly
which resource will be exhausted and how that resource exhaustion
will manifest. For details, see
“Testing for Cascading Failures”.

Serve degraded results

Serve lower-quality, cheaper-to-compute
 results to the user. Your strategy here will be service-specific.
 See “Load Shedding and Graceful Degradation”.

Instrument the server to reject requests when overloaded

Servers
 should protect themselves from becoming overloaded and crashing.
 When overloaded at either the frontend or backend layers, fail
 early and cheaply. For details, see
 “Load Shedding and Graceful Degradation”.

Instrument higher-level systems to reject requests, rather than overloading servers

Note that because rate limiting often
 doesn’t take overall service health into account, it may not be
 able to stop a failure that has already begun. Simple
 rate-limiting implementations are also likely to leave capacity
 unused. Rate limiting can be implemented in a number of places:

	
At the reverse proxies, by limiting the volume of requests by
criteria such as IP address to mitigate attempted
denial-of-service attacks and abusive clients.

	
At the load balancers, by dropping requests when the service
enters global overload. Depending on the nature and complexity
of the service, this rate limiting can be indiscriminate (“drop
all traffic above X requests per second”) or more selective
(“drop requests that aren’t from users who have recently
interacted with the service” or “drop requests for low-priority
operations like background synchronization, but keep serving
interactive user sessions”).

	
At individual tasks, to prevent random fluctuations in load
balancing from overwhelming the server.

Perform capacity planning

Good capacity planning can reduce the
 probability that a cascading failure will occur. Capacity
 planning should be coupled with performance testing to determine
 the load at which the service will fail. For instance, if every
 cluster’s breaking point is 5,000 QPS, the load is evenly spread across clusters,3 and the service’s peak load
 is 19,000 QPS, then approximately six clusters are needed to run
 the service at N + 2.

Capacity planning reduces the probability of triggering a cascading
failure, but it is not sufficient to protect the service from
cascading failures. When you lose major parts of your infrastructure
during a planned or unplanned event, no amount of capacity planning
may be sufficient to prevent cascading failures. Load balancing
problems, network partitions, or unexpected traffic increases can
create pockets of high load beyond what was planned. Some systems can
grow the number of tasks for your service on demand, which may prevent
overload; however, proper capacity planning is still needed.

Queue Management

Most thread-per-request servers use a queue in front of a thread pool
to handle requests. Requests come in, they sit on a queue, and then
threads pick requests off the queue and perform the actual work
(whatever actions are required by the server). Usually, if the queue
is full, the server will reject new requests.

If the request rate and latency of a given task is constant, there is
no reason to queue requests: a constant number of threads should be
occupied. Under this idealized scenario, requests will only be queued
if the steady state rate of incoming requests exceeds the rate at
which the server can process requests, which results in saturation of
both the thread pool and the queue.

Queued requests consume memory and increase latency. For example, if
the queue size is 10x the number of threads, the time to handle the
request on a thread is 100 milliseconds. If the queue is full, then a request
will take 1.1 seconds to handle, most of which time is spent on the
queue.

For a system with fairly steady traffic over time, it is usually
better to have small queue lengths relative to the thread pool size
(e.g., 50% or less), which results in the server rejecting requests
early when it can’t sustain the rate of incoming requests. For
example, Gmail often uses queueless servers, relying instead on
failover to other server tasks when the threads are full. On the
other end of the spectrum, systems with “bursty” load for which
traffic patterns fluctuate drastically may do better with a queue size
based on the current number of threads in use, processing time for
each request, and the size and frequency of bursts.

Load Shedding and Graceful Degradation

Load shedding drops some proportion of load by dropping
 traffic as the server approaches overload conditions. The goal is to
 keep the server from running out of RAM, failing health checks,
 serving with extremely high latency, or any of the other symptoms
 associated with overload, while still doing as much useful work
 as it can.

One straightforward way to shed load is to do per-task throttling
based on CPU, memory, or queue length; limiting queue length as
discussed in “Queue Management” is a form of this strategy. For example,
one effective approach is to return an HTTP 503 (service unavailable)
to any incoming request when there are more than a given number of
client requests in flight.

Changing the queuing method from the standard first-in, first-out
(FIFO) to last-in, first-out
(LIFO) or using the controlled
delay (CoDel) algorithm [Nic12] or similar approaches can reduce
load by removing requests that are unlikely to be worth processing
[Mau15]. If a user’s web search is slow because an RPC has been
queued for 10 seconds, there’s a good chance the user has given up and
refreshed their browser, issuing another request: there’s no point in
responding to the first one, since it will be ignored! This strategy
works well when combined with propagating RPC deadlines
 throughout the stack, described in
“Latency and Deadlines”.

More sophisticated approaches include identifying clients to be more
selective about what work is dropped, or picking requests that
are more important and prioritizing. Such
strategies are more likely to be needed for shared services.

Graceful degradation takes the concept of load shedding one step
 further by reducing the amount of work that needs to be performed. In
 some applications, it’s possible to significantly decrease the amount
 of work or time needed by decreasing the quality of responses. For
 instance, a search application might only search a subset of data
 stored in an in-memory cache rather than the full on-disk database or
 use a less-accurate (but faster) ranking algorithm when overloaded.

When evaluating load shedding or graceful degradation options for your
service, consider the following:

	
Which metrics should you use to determine when load shedding or
graceful degradation should kick in (e.g,. CPU usage, latency,
queue length, number of threads used, whether your service enters
degraded mode automatically or if manual intervention is
necessary)?

	
What actions should be taken when the server is in degraded mode?

	
At what layer should load shedding and graceful degradation be
implemented? Does it make sense to implement these strategies at
every layer in the stack, or is it sufficient to have a high-level
choke-point?

As you evaluate options and deploy, keep the following in mind:

	
Graceful degradation shouldn’t trigger very often — usually
in cases of a capacity planning failure or
unexpected load shift. Keep the system simple
and understandable, particularly if it isn’t used often.

	
Remember that the code path you never use is the code path that
(often) doesn’t work. In steady-state operation, graceful
degradation mode won’t be used, implying that you’ll have much less
operational experience with this mode and any of its quirks, which
increases the level of risk. You can make sure that graceful
degradation stays working by regularly running a small subset of
servers near overload in order to exercise this code path.

	
Monitor and alert when too many servers enter these modes.

	
Complex load shedding and graceful degradation can cause
problems themselves — excessive complexity may cause the server to trip into a
degraded mode when it is not desired, or enter feedback cycles at undesired times.
Design a way to quickly turn off complex graceful degradation or
tune parameters if needed. Storing this configuration
in a consistent system that each server can watch for changes, such
as Chubby, can increase deployment speed, but also introduces its
own risks of synchronized failure.

Retries

Suppose the code in the frontend that talks to the backend implements
retries naively. It retries after encountering a failure and caps the
number of backend RPCs per logical request to 10. Consider this code
in the frontend, using gRPC in Go:

func exampleRpcCall(client pb.ExampleClient, request pb.Request) *pb.Response {

 // Set RPC timeout to 5 seconds.
 opts := grpc.WithTimeout(5 * time.Second)

 // Try up to 20 times to make the RPC call.
 attempts := 20
 for attempts > 0 {
 conn, err := grpc.Dial(*serverAddr, opts...)
 if err != nil {
 // Something went wrong in setting up the connection. Try again.
 attempts--
 continue
 }
 defer conn.Close()

 // Create a client stub and make the RPC call.
 client := pb.NewBackendClient(conn)
 response, err := client.MakeRequest(context.Background, request)
 if err != nil {
 // Something went wrong in making the call. Try again.
 attempts--
 continue
 }

 return response
 }

 grpclog.Fatalf("ran out of attempts")
}

This system can cascade in the following way:

	
Assume our backend has a known limit of 10,000 QPS per task, after
which point all further requests are rejected in an attempt at
graceful degradation.

	
The frontend calls MakeRequest at a constant rate of 10,100 QPS
and overloads the backend by 100 QPS, which the backend rejects.

	
Those 100 failed QPS are retried in MakeRequest every 1,000 ms,
and probably succeed. But the retries are themselves adding to the
requests sent to the backend, which now receives 10,200 QPS — 200
QPS of which are failing due to overload.

	
The volume of retries grows: 100 QPS of retries in the first second
leads to 200 QPS, then to 300 QPS, and so on. Fewer and fewer
requests are able to succeed on their first attempt, so less useful
work is being performed as a fraction of requests to the backend.

	
If the backend task is unable to handle the increase in load — which
is consuming file descriptors, memory, and CPU time on the backend — it
can melt down and crash under the sheer load of requests and retries.
This crash then redistributes the requests it was receiving across
the remaining backend tasks, in turn further overloading those tasks.

Some simplifying assumptions were made here to illustrate this
scenario,4 but the point remains that retries can destabilize a
system. Note that both temporary load spikes and slow increases in
usage can cause this effect.

Even if the rate of calls to MakeRequest decreases to pre-meltdown
levels (9,000 QPS, for example), depending on how much returning a
failure costs the backend, the problem might not go away. Two factors
are at play here:

	
If the backend spends a significant amount of resources processing
requests that will ultimately fail due to overload, then the
retries themselves may be keeping the backend in an overloaded
mode.

	
The backend servers themselves may not be stable. Retries can
amplify the effects seen in
“Server Overload”.

If either of these conditions is true, in order to dig out of this
outage, you must dramatically reduce or eliminate the load on the frontends until the retries stop and the backends stabilize.

This pattern has contributed to several cascading failures, whether
the frontends and backends communicate via RPC messages, the
“frontend” is client JavaScript code issuing XmlHttpRequest calls to
an endpoint and retries on failure, or the retries originate from
an offline sync protocol that retries aggressively when it encounters
a failure.

When issuing automatic retries, keep in mind the following considerations:

	
Most of the backend protection strategies described in
“Preventing Server Overload” apply. In
particular, testing the system can highlight problems, and graceful
degradation can reduce the effect of the retries on the backend.

	
Always use randomized exponential backoff when scheduling retries. See also “Exponential Backoff and Jitter” in the AWS Architecture Blog [Bro15]. If retries aren’t randomly distributed over the retry window, a
small perturbation (e.g., a network blip) can cause retry ripples
to schedule at the same time, which can then amplify themselves
[Flo94].

	
Limit retries per request. Don’t retry a given request
indefinitely.

	
Consider having a server-wide retry budget. For example, only
allow 60 retries per minute in a process, and if the retry budget
is exceeded, don’t retry; just fail the request. This strategy can
contain the retry effect and be the difference between a capacity
planning failure that leads to some dropped queries and a global
cascading failure.

	
Think about the service holistically and decide if you really need
to perform retries at a given level. In particular, avoid
amplifying retries by issuing retries at multiple levels: a single
request at the highest layer may produce a number of attempts as
large as the product of the number of attempts at each layer to
the lowest layer. If the database can’t service
requests because it’s overloaded, and the backend, frontend, and
JavaScript layers all issue 3 retries (4 attempts), then a single
user action may create 64 attempts ([image: 4 cubed]) on the database. This
behavior is undesirable when the database is returning those errors
because it’s overloaded.

	
Use clear response codes and consider how different failure modes
should be handled. For example, separate retriable and
nonretriable error conditions. Don’t retry permanent errors or
malformed requests in a client, because neither will ever succeed.
Return a specific status when overloaded so that clients and other
layers back off and do not retry.

In an emergency, it may not be obvious that an outage is due to bad
retry behavior. Graphs of retry rates can be an indication of bad
retry behavior, but may be confused as a symptom instead of a
compounding cause. In terms of mitigation, this is a special case of
the insufficient capacity problem, with the additional caveat that you
must either fix the retry behavior (usually requiring a code push),
reduce load significantly, or cut requests off entirely.

Latency and Deadlines

When a frontend sends an RPC to a backend server, the frontend
consumes resources waiting for a reply. RPC deadlines define how long
a request can wait before the frontend gives up, limiting the
time that the backend may consume the frontend’s resources.

Picking a deadline

It’s usually wise to set a deadline. Setting either no deadline or an
extremely high deadline may cause short-term problems that have long
since passed to continue to consume server resources until the server
restarts.

High deadlines can result in resource consumption in higher levels of
the stack when lower levels of the stack are having problems. Short
deadlines can cause some more expensive requests to fail consistently.
Balancing these constraints to pick a good deadline can be something
of an art.

Missing deadlines

A common theme in many cascading outages is that servers spend
resources handling requests that will exceed their deadlines on the
client. As a result, resources are spent while no progress is made:
you don’t get credit for late assignments with RPCs.

Suppose an RPC has a 10-second deadline, as set by the client. The
server is very overloaded, and as a result, it takes 11 seconds to
move from a queue to a thread pool. At this point, the client has
already given up on the request. Under most circumstances, it would
be unwise for the server to attempt to handle this request, because it
would be doing work for which no credit will be granted — the client
doesn’t care what work the server does after the deadline has passed,
because it’s given up on the request already.

If handling a request is performed over multiple stages (e.g., there
are a few callbacks and RPC calls), the server should check the
deadline left at each stage before attempting to perform any more work
on the request. For example, if a request is split into parsing,
backend request, and processing stages, it may make sense to check
that there is enough time left to handle the request before each
stage.

Deadline propagation

Rather than inventing a deadline when sending RPCs to backends,
servers should employ deadline propagation and cancellation
propagation.

With deadline propagation, a deadline is set high in the stack (e.g.,
in the frontend). The tree of RPCs emanating from an initial request
will all have the same absolute deadline. For example, if server A
selects a 30-second deadline, and processes the request for 7 seconds
before sending an RPC to server B, the RPC from A to B will have a 23-second deadline. If server B takes 4 seconds to handle the request
and sends an RPC to server C, the RPC from B to C will have a 19-second deadline, and so on. Ideally, each server in the request tree
implements deadline propagation.

Without deadline propagation, the following scenario may occur:

	
Server A sends an RPC to server B with a 10-second deadline.

	
Server B takes 8 seconds to start processing the request and then
sends an RPC to server C.

	
If server B uses deadline propagation, it should set a 2-second
deadline, but suppose it instead uses a hardcoded 20-second deadline
for the RPC to server C.

	
Server C pulls the request off its queue after 5 seconds.

Had server B used deadline propagation, server C could immediately
give up on the request because the 2-second deadline was exceeded.
However, in this scenario, server C processes the request thinking it
has 15 seconds to spare, but is not doing useful work, since
the request from server A to server B has already exceeded its
deadline.

You may want to reduce the outgoing deadline a bit (e.g.,
a few hundred milliseconds) to account for network transit times and
post-processing in the client.

Also consider setting an upper bound for outgoing deadlines. You may
want to limit how long the server waits for outgoing RPCs to
noncritical backends, or for RPCs to backends that typically complete
in a short duration. However, be sure to understand your traffic mix,
because you might otherwise inadvertently make particular types of requests
fail all the time (e.g., requests with large payloads, or requests that require responding to a lot of computation).

There are some exceptions for which servers may wish to continue
processing a request after the deadline has elapsed. For example, if a
server receives a request that involves performing some expensive
catchup operation and periodically checkpoints the progress of the
catchup, it would be a good idea to check the deadline only after
writing the checkpoint, instead of after the expensive operation.

Propagating cancellations avoids the potential RPC leakage that occurs
if an initial RPC has a long deadline, but RPCs between deeper layers
of the stack have short deadlines and time out. Using simple deadline
propagation, the initial RPC continues to use server resources until
it eventually times out, despite being unable to make progress.

Bimodal latency

Suppose that the frontend from the preceding example consists of 10
servers, each with 100 worker threads. This means that the frontend
has a total of 1,000 threads of capacity. During usual operation, the
frontends perform 1,000 QPS and requests complete in 100 ms. This
means that the frontends usually have 100 worker threads occupied out
of the 1,000 configured worker threads (1,000 QPS * 0.1 seconds).

Suppose an event causes 5% of the requests to never complete. This
could be the result of the unavailability of some Bigtable row ranges,
which renders the requests corresponding to that Bigtable keyspace
unservable. As a result, 5% of the requests hit the deadline, while
the remaining 95% of the requests take the usual 100 ms.

With a 100-second deadline, 5% of requests would consume 5,000 threads
(50 QPS * 100 seconds), but the frontend doesn’t have that many
threads available. Assuming no other secondary effects, the frontend
will only be able to handle 19.6% of the requests (1,000 threads
available / (5,000 + 95) threads’ worth of work), resulting in an 80.4%
error rate.

Therefore, instead of only 5% of requests receiving an error (those
that didn’t complete due to keyspace unavailability), most requests
receive an error.

The following guidelines can help address this class of problems:

	
Detecting this problem can be very hard. In particular, it may not
be clear that bimodal latency is the cause of an outage when
you are looking at mean latency. When you see a latency increase, try to
look at the distribution of latencies in addition to the
averages.

	
This problem can be avoided if the requests that don’t complete
return with an error early, rather than waiting the full deadline.
For example, if a backend is unavailable, it’s usually best to
immediately return an error for that backend, rather than consuming
resources until it the backend available. If your RPC layer
supports a fail-fast option, use it.

	
Having deadlines several orders of magnitude longer than the mean
request latency is usually bad. In the preceding example, a
small number of requests initially hit the deadline, but the
deadline was three orders of magnitude larger than the normal mean
latency, leading to thread exhaustion.

	
When using shared resources that can be exhausted by some keyspace,
consider either limiting in-flight requests by that keyspace or
using other kinds of abuse tracking. Suppose your backend
processes requests for different clients that have wildly different
performance and request characteristics. You might consider only
allowing 25% of your threads to be occupied by any one client in
order to provide fairness in the face of heavy load by any single
client misbehaving.

Slow Startup and Cold Caching

Processes are often slower at responding to requests immediately after
starting than they will be in steady state. This slowness can be
caused by either or both of the following:

Required initialization

Setting up connections upon receiving the
first request that needs a given backend

Runtime performance improvements in some languages, particularly Java

Just-In-Time compilation, hotspot optimization, and deferred
class loading

Similarly, some binaries are less efficient when caches aren’t filled.
For example, in the case of some of Google’s services, most requests
are served out of caches, so requests that miss the cache are
significantly more expensive. In steady-state operation with a warm
cache, only a few cache misses occur, but when the cache is completely
empty, 100% of requests are costly. Other services might employ
caches to keep a user’s state in RAM. This might be accomplished
through hard or soft stickiness between reverse proxies and service
frontends.

If the service is not provisioned to handle requests under a cold
cache, it’s at greater risk of outages and should take steps to avoid
them.

The following scenarios can lead to a cold cache:

Turning up a new cluster

A recently added cluster will have an
empty cache.

Returning a cluster to service after maintenance

The cache may be
stale.

Restarts

If a task with a cache has recently restarted, filling
its cache will take some time. It may be worthwhile to move
caching from a server to a separate binary like memcache, which
also allows cache sharing between many servers, albeit at the cost
of introducing another RPC and slight additional latency.

If caching has a significant effect on the service,5 you may want to
use one or some of the following strategies:

	
Overprovision the service. It’s important to note the distinction
between a latency cache versus a capacity cache: when a latency
cache is employed, the service can sustain its expected load with
an empty cache, but a service using a capacity cache cannot sustain
its expected load under an empty cache. Service owners should be
vigilant about adding caches to their service, and make sure that
any new caches are either latency caches or are sufficiently well
engineered to safely function as capacity caches. Sometimes caches
are added to a service to improve performance, but actually wind up
being hard dependencies.

	
Employ general cascading failure prevention techniques. In
particular, servers should reject requests when they’re overloaded
or enter degraded modes, and testing should be performed to see how
the service behaves after events such as a large restart.

	
When adding load to a cluster, slowly increase the load. The
initially small request rate warms up the cache; once the cache is
warm, more traffic can be added. It’s a good idea to ensure that
all clusters carry nominal load and that the caches are kept warm.

Always Go Downward in the Stack

In the example Shakespeare service, the frontend talks to a backend,
which in turn talks to the storage layer. A problem that manifests in
the storage layer can cause problems for servers that talk to it, but
fixing the storage layer will usually repair both the backend and
frontend layers.

However, suppose the backends cross-communicate amongst each
other. For example, the backends might proxy requests to one another
to change who owns a user when the storage layer can’t service a
request. This intra-layer communication can be problematic for
several reasons:

	
The communication is susceptible to a distributed deadlock.
Backends may use the same thread pool to wait on RPCs sent to
remote backends that are simultaneously receiving requests from
remote backends. Suppose backend A’s thread pool is full. Backend
B sends a request to backend A and uses a thread in backend B until
backend A’s thread pool clears. This behavior can cause the thread
pool saturation to spread.

	
If intra-layer communication increases in response to some kind of
failure or heavy load condition (e.g., load rebalancing that is
more active under high load), intra-layer communication can quickly
switch from a low to high intra-layer request mode when the
load increases enough.

For example, suppose a user has a primary backend and a predetermined
hot standby secondary backend in a different cluster that can take
over the user. The primary backend proxies requests to the secondary
backend as a result of errors from the lower layer or in response to
heavy load on the master. If the entire system is overloaded, primary
to secondary proxying will likely increase and add even more load to
the system, due to the additional cost of parsing and waiting on the
request to the secondary in the primary.

	
Depending on the criticality of the cross-layer communication,
bootstrapping the system may become more complex.

It’s usually better to avoid intra-layer communication — i.e., possible
cycles in the communication path — in the user request path. Instead,
have the client do the communication. For example, if a frontend
talks to a backend but guesses the wrong backend, the backend should
not proxy to the correct backend. Instead, the backend should tell the
frontend to retry its request on the correct backend.

Triggering Conditions for Cascading Failures

When a service is susceptible to cascading failures, there are several
possible disturbances that can initiate the domino effect. This
section identifies some of the factors that trigger cascading
failures.

Process Death

Some server tasks may die, reducing the amount of available
capacity. Tasks might die because of a Query of Death (an RPC whose
contents trigger a failure in the process), cluster issues, assertion
failures, or a number of other reasons. A very small event (e.g., a
couple of crashes or tasks rescheduled to other machines) may cause a
service on the brink of falling to break.

Process Updates

Pushing a new version of the binary or updating its configuration may
initiate a cascading failure if a large number of tasks are affected
simultaneously. To prevent this scenario, either account for necessary
capacity overhead when setting up the service’s update infrastructure,
or push off-peak. Dynamically adjusting the number of in-flight task
updates based on the volume of requests and available capacity may be
a workable approach.

New Rollouts

A new binary, configuration changes, or a change to the underlying
infrastructure stack can result in changes to request profiles,
resource usage and limits, backends, or a number of other system
components that can trigger a cascading failure.

During a cascading failure, it’s usually wise to check for recent
changes and consider reverting them, particularly if those changes
affected capacity or altered the request profile.

Your service should implement some type of change logging, which can
help quickly identify recent changes.

Organic Growth

In many cases, a cascading failure isn’t triggered by a specific
service change, but because a growth in usage wasn’t accompanied by an
adjustment to capacity.

Planned Changes, Drains, or Turndowns

If your service is multihomed, some of your capacity may be
unavailable because of maintenance or outages in a cluster.
Similarly, one of the service’s critical dependencies may be drained,
resulting in a reduction in capacity for the upstream service due to
drain dependencies, or an increase in latency due to having to send
the requests to a more distant cluster.

Request profile changes

A backend service may receive requests from different clusters because
a frontend service shifted its traffic due to load balancing
configuration changes, changes in the traffic mix, or cluster
fullness. Also, the average cost to handle an individual payload may
have changed due to frontend code or configuration changes.
Similarly, the data handled by the service may have changed
organically due to increased or differing usage by existing users: for
instance, both the number and size of images, per user, for a photo
storage service tend to increase over time.

Resource limits

Some cluster operating systems allow resource overcommitment. CPU is a
fungible resource; often, some machines have some amount of slack CPU
available, which provides a bit of a safety net against CPU spikes.
The availability of this slack CPU differs between cells, and also
between machines within the cell.

Depending upon this slack CPU as your safety net is dangerous. Its
availability is entirely dependent on the behavior of the other jobs
in the cluster, so it might suddenly drop out at any time. For
example, if a team starts a MapReduce that consumes a lot of CPU and
schedules on many machines, the aggregate amount of slack CPU can
suddenly decrease and trigger CPU starvation conditions for unrelated
jobs. When performing load tests, make sure that you remain within
your committed resource limits.

Testing for Cascading Failures

The specific ways in which a service will fail can be very hard to
predict from first principles. This section discusses testing
strategies that can detect if services are susceptible to cascading
failures.

You should test your service to determine how it behaves under heavy
load in order to gain confidence that it won’t enter a cascading
failure under various circumstances.

Test Until Failure and Beyond

Understanding the behavior of the service under heavy load is perhaps
the most important first step in avoiding cascading failures. Knowing
how your system behaves when it is overloaded helps to identify what
engineering tasks are the most important for long-term fixes; at the
very least, this knowledge may help bootstrap the debugging process
for on-call engineers when an emergency arises.

Load test components until they break. As load increases, a component
typically handles requests successfully until it reaches a point at
which it can’t handle more requests. At this point, the component
should ideally start serving errors or degraded results in response to
additional load, but not significantly reduce the rate at which it
successfully handles requests. A component that is highly susceptible
to a cascading failure will start crashing or serving a very high rate
of errors when it becomes overloaded; a better designed component will
instead be able to reject a few requests and survive.

Load testing also reveals where the breaking point is, knowledge
that’s fundamental to the capacity planning process. It enables you
to test for regressions, provision for worst-case thresholds, and to
trade off utilization versus safety margins.

Because of caching effects, gradually ramping up load may yield
different results than immediately increasing to expected load
levels. Therefore, consider testing both gradual and impulse load
patterns.

You should also test and understand how the component behaves as it
returns to nominal load after having been pushed well beyond that
load. Such testing may answer questions such as:

	
If a component enters a degraded mode on heavy load, is it capable
of exiting the degraded mode without human intervention?

	
If a couple of servers crash under heavy load, how much does the
load need to drop in order for the system to stabilize?

If you’re load testing a stateful service or a service that employs
caching, your load test should track state between multiple
interactions and check correctness at high load, which is often where
subtle concurrency bugs hit.

Keep in mind that individual components may have different breaking
points, so load test each component separately. You won’t know in
advance which component may hit the wall first, and you want to know
how your system behaves when it does.

If you believe your system has proper protections against being
overloaded, consider performing failure tests in a small slice of
production to find the point at which the components in your system
fail under real traffic. These limits may not be adequately reflected
by synthetic load test traffic, so real traffic tests may provide more
realistic results than load tests, at the risk of causing user-visible
pain. Be careful when testing on real traffic: make sure that you
have extra capacity available in case your automatic protections don’t
work and you need to manually fail over. You might consider some of
the following production tests:

	
Reducing task counts quickly or slowly over time, beyond expected
traffic patterns

	
Rapidly losing a cluster’s worth of capacity

	
Blackholing various backends

Test Popular Clients

Understand how large clients use your service. For example, you want
to know if clients:

	
Can queue work while the service is down

	
Use randomized exponential backoff on errors

	
Are vulnerable to external triggers that can create large amounts
of load (e.g., an externally triggered software update might
clear an offline client’s cache)

Depending on your service, you may or may not be in control of all the
client code that talks to your service. However, it’s still a good
idea to have an understanding of how large clients that interact with
your service will behave.

The same principles apply to large internal clients. Stage system
failures with the largest clients to see how they react. Ask internal
clients how they access your service and what mechanisms they use to
handle backend failure.

Test Noncritical Backends

Test your noncritical backends, and make sure their unavailability
does not interfere with the critical components of your service.

For example, suppose your frontend has critical and noncritical
backends. Often, a given request includes both critical components
(e.g., query results) and noncritical components (e.g., spelling
suggestions). Your requests may significantly slow down and consume
resources waiting for noncritical backends to finish.

In addition to testing behavior when the noncritical backend is
unavailable, test how the frontend behaves if the noncritical backend
never responds (for example, if it is blackholing requests). Backends
advertised as noncritical can still cause problems on frontends when
requests have long deadlines. The frontend should not start rejecting
lots of requests, running out of resources, or serving with very high
latency when a noncritical backend blackholes.

Immediate Steps to Address Cascading Failures

Once you have identified that your service is experiencing a cascading
failure, you can use a few different strategies to remedy the
situation — and of course, a
cascading failure is a good opportunity to use your incident
management protocol (Chapter 14).

Increase Resources

If your system is running at degraded capacity and you have idle
resources, adding tasks can be the most expedient way to recover from
the outage. However, if the service has entered a death spiral of some
sort, adding more resources may not be sufficient to recover.

Stop Health Check Failures/Deaths

Some cluster scheduling systems, such as Borg, check the health of
tasks in a job and restart tasks that are unhealthy. This practice may
create a failure mode in which health-checking itself makes the
service unhealthy. For example, if half the tasks aren’t able to
accomplish any work because they’re starting up and the other half
will soon be killed because they’re overloaded and failing health
checks, temporarily disabling health checks may permit the system to
stabilize until all the tasks are running.

Process health checking (“is this binary responding at all?”) and
service health checking (“is this binary able to respond to this
class of requests right now?”) are two conceptually distinct
operations. Process health checking is relevant to the cluster scheduler,
whereas service health checking is relevant to the load balancer. Clearly distinguishing between the two types of health
checks can help avoid this scenario.

Restart Servers

If servers are somehow wedged and not making progress, restarting them
may help. Try restarting servers when:

	
Java servers are in a GC death spiral

	
Some in-flight requests have no deadlines but are consuming
resources, leading them to block threads, for example

	
The servers are deadlocked

Make sure that you identify the source of the cascading failure before
you restart your servers. Make sure that taking this action won’t
simply shift around load. Canary this change, and make it slowly.
Your actions may amplify an existing cascading failure if the outage
is actually due to an issue like a cold cache.

Drop Traffic

Dropping load is a big hammer, usually reserved for situations in
which you have a true cascading failure on your hands and you cannot
fix it by other means. For example, if heavy load causes most servers to
crash as soon as they become healthy, you can get the service up and
running again by:

	
Addressing the initial triggering condition (by adding capacity, for
example).

	
Reducing load enough so that the crashing stops. Consider being
aggressive here — if the entire service is crash-looping, only allow,
say, 1% of the traffic through.

	
Allowing the majority of the servers to become healthy.

	
Gradually ramping up the load.

This strategy allows caches to warm up, connections to be established,
etc., before load returns to normal levels.

Obviously, this tactic will cause a lot of user-visible harm. Whether
or not you’re able to (or if you even should) drop traffic
indiscriminately depends on how the service is configured. If you have
some mechanism to drop less important traffic (e.g., prefetching), use
that mechanism first.

It is important to keep in mind that this strategy enables you to
recover from a cascading outage once the underlying problem is fixed.
If the issue that started the cascading failure is not fixed (e.g.,
insufficient global capacity), then the cascading failure may trigger
shortly after all traffic returns. Therefore, before using this
strategy, consider fixing (or at least papering over) the root cause
or triggering condition. For example, if the service ran out of
memory and is now in a death spiral, adding more memory or tasks
should be your first step.

Enter Degraded Modes

Serve degraded results by doing less work or dropping unimportant
traffic. This strategy must be engineered into your service, and can
be implemented only if you know which traffic can be degraded and you
have the ability to differentiate between the various payloads.

Eliminate Batch Load

Some services have load that is important, but not critical.
Consider turning off those sources of load. For example, if index
updates, data copies, or statistics gathering consume resources of the
serving path, consider turning off those sources of load during an
outage.

Eliminate Bad Traffic

If some queries are creating heavy load or crashes (e.g., queries of
death), consider blocking them or eliminating them via other means.

Cascading Failure and Shakespeare

A documentary about Shakespeare’s works airs in Japan, and explicitly
points to our Shakespeare service as an excellent place to conduct
further research. Following the broadcast, traffic to our Asian
datacenter surges beyond the service’s capacity. This capacity problem
is further compounded by a major update to the Shakespeare service
that simultaneously occurs in that datacenter.

Fortunately, a number of safeguards are in place that help mitigate
the potential for failure. The Production Readiness Review process
identified some issues that the team already addressed. For example,
the developers built graceful degradation into the service. As
capacity becomes scarce, the service no longer returns pictures
alongside text or small maps illustrating where a story takes
place. And depending on its purpose, an RPC that times out is either
not retried (for example, in the case of the aforementioned pictures),
or is retried with a randomized exponential backoff. Despite these
safeguards, the tasks fail one by one and are then restarted by Borg,
which drives the number of working tasks down even more.

As a result, some graphs on the service dashboard turn an alarming
shade of red and SRE is paged. In response, SREs temporarily add
capacity to the Asian datacenter by increasing the number of tasks
available for the Shakespeare job. By doing so, they’re able to
restore the Shakespeare service in the Asian cluster.

Afterward, the SRE team writes a postmortem detailing the chain of
events, what went well, what could have gone better, and a number of
action items to prevent this scenario from occurring again. For
example, in the case of a service overload, the GSLB load balancer
will redirect some traffic to neighboring datacenters. Also, the SRE
team turns on autoscaling, so that the number of tasks automatically
increases with traffic, so they don’t have to worry about this type of
issue again.

Closing Remarks

When systems are overloaded, something needs to give in order to
remedy the situation. Once a service passes its breaking point, it is
better to allow some user-visible errors or lower-quality results to slip
through than try to fully serve every request. Understanding where
those breaking points are and how the system behaves beyond them is
critical for service owners who want to avoid cascading failures.

Without proper care, some system changes meant to reduce background
errors or otherwise improve the steady state can expose the service to
greater risk of a full outage. Retrying on failures, shifting load
around from unhealthy servers, killing unhealthy servers, adding
caches to improve performance or reduce latency: all of these might be
implemented to improve the normal case, but can improve the chance of
causing a large-scale failure. Be careful when evaluating changes to
ensure that one outage is not being traded for another.

1 See Wikipedia, “Positive feedback,” https://en.wikipedia.org/wiki/Positive_feedback.
2 A watchdog is often implemented as a thread that wakes up periodically to see whether work has been done since the last time it checked. If not, it assumes that the server is stuck and kills it. For instance, requests of a known type can be sent to the server at regular intervals; if one hasn’t been received or processed when expected, this may indicate failure — of the server, the system sending requests, or the intermediate network.
3 This is often not a good assumption due to geography; see also “Job and Data Organization”.
4 An instructive exercise, left for the reader: write a simple simulator and see how the amount of useful work the backend can do varies with how much it’s overloaded and how many retries are permitted.
5 Sometimes you find that a meaningful proportion of your actual serving capacity is as a function of serving from a cache, and if you lost access to that cache, you wouldn’t actually be able to serve that many queries. A similar observation holds for latency: a cache can help you achieve latency goals (by lowering the average response time when the query is servable from cache) that you possibly couldn’t meet without that cache.

Chapter 23. Managing Critical State: Distributed Consensus for Reliability

Written by Laura Nolan

Edited by Tim Harvey

Processes crash or may need to be restarted. Hard drives fail. Natural
disasters can take out several datacenters in a region. Site
Reliability Engineers need to anticipate these sorts of failures and
develop strategies to keep systems running in spite of them. These
strategies usually entail running such systems across multiple
sites. Geographically distributing a system is relatively
straightforward, but also introduces the need to maintain a consistent
view of system state, which is a more nuanced and difficult
undertaking.

Groups of processes may want to reliably agree on questions such as:

	
Which process is the leader of a group of processes?

	
What is the set of processes in a group?

	
Has a message been successfully committed to a distributed queue?

	
Does a process hold a lease or not?

	
What is a value in a datastore for a given key?

We’ve found distributed consensus to be effective in building reliable and
highly available systems that require a consistent view of some system state.
The distributed consensus problem deals with reaching agreement among a group
of processes connected by an unreliable communications network. For instance,
several processes in a distributed system may need to be able to form a
consistent view of a critical piece of configuration, whether or not a
distributed lock is held, or if a message on a queue has been processed. It is
one of the most fundamental concepts in distributed computing and one we rely
on for virtually every service we offer. Figure 23-1 illustrates a simple model of how a group of processes can achieve a consistent view of system state through distributed consensus.

[image: Distributed consensus: agreement among a group of processes.]
Figure 23-1. Distributed consensus: agreement among a group of processes

Whenever you see leader election, critical shared state, or
distributed locking, we recommend using distributed consensus systems
that have been formally proven and tested thoroughly. Informal
approaches to solving this problem can lead to outages, and more
insidiously, to subtle and hard-to-fix data consistency problems that
may prolong outages in your system unnecessarily.

CAP Theorem

The CAP theorem ([Fox99], [Bre12]) holds that a distributed system
cannot simultaneously have all three of the following properties:

	
Consistent views of the data at each node

	
Availability of the data at each node

	
Tolerance to network partitions [Gil02]

The logic is intuitive: if two nodes can’t communicate
(because the network is partitioned), then the system as a whole can
either stop serving some or all requests at some or all nodes (thus
reducing availability), or it can serve requests as usual, which
results in inconsistent views of the data at each node.

Because network partitions are inevitable (cables get cut, packets get lost or
delayed due to congestion, hardware breaks, networking components become
misconfigured, etc.), understanding distributed consensus really amounts to
understanding how consistency and availability work for your particular
application. Commercial pressures often demand high levels of availability, and
many applications require consistent views on their data.

Systems and software engineers are usually familiar with the traditional ACID
datastore semantics (Atomicity, Consistency, Isolation, and Durability), but a
growing number of distributed datastore technologies provide a different set of
semantics known as BASE (Basically Available, Soft state, and Eventual
consistency). Datastores that support BASE semantics have useful applications
for certain kinds of data and can handle large volumes of data and transactions
that would be much more costly, and perhaps altogether infeasible, with
datastores that support ACID semantics.

Most of these systems that support BASE semantics rely on multimaster
replication, where writes can be committed to different processes concurrently,
and there is some mechanism to resolve conflicts (often as simple as
“latest timestamp wins”). This approach is usually known as eventual consistency.
However, eventual consistency can lead to surprising results [Lu15], particularly in the event of
clock drift (which is inevitable in distributed systems) or network
partitioning [Kin15].1

It is also difficult for developers to design systems that work well
with datastores that support only BASE semantics. Jeff Shute [Shu13], for
example, has stated, “we find developers spend a significant
fraction of their time building extremely complex and error-prone
mechanisms to cope with eventual consistency and handle data that may
be out of date. We think this is an unacceptable burden to place on
developers and that consistency problems should be solved at the
database level.”

System designers cannot sacrifice correctness in order to achieve
reliability or performance, particularly around critical state. For
example, consider a system that handles financial transactions:
reliability or performance requirements don’t provide much value if
the financial data is not correct. Systems need to be able to reliably
synchronize critical state across multiple processes. Distributed
consensus algorithms provide this functionality.

Motivating the Use of Consensus: Distributed Systems Coordination Failure

Distributed systems are complex and subtle to understand, monitor, and
troubleshoot. Engineers running such systems are often surprised by
behavior in the presence of failures. Failures are relatively rare
events, and it is not a usual practice to test systems under these
conditions. It is very difficult to reason about system behavior
during failures. Network partitions are particularly challenging — a
problem that appears to be caused by a full partition may instead be
the result of:

	
A very slow network

	
Some, but not all, messages being dropped

	
Throttle occurring in one direction, but not the other direction

The following sections provide examples of problems that occurred in
real-world distributed systems and discuss how leader election and
distributed consensus algorithms could be used to prevent such issues.

Case Study 1: The Split-Brain Problem

A service is a content repository that allows collaboration between
multiple users. It uses sets of two replicated file servers in
different racks for reliability. The service needs to avoid writing
data simultaneously to both file servers in a set, because doing so could
result in data corruption (and possibly unrecoverable data).

Each pair of file servers has one leader and one follower. The servers monitor each
other via heartbeats. If one file server cannot contact its partner, it issues a
STONITH (Shoot The Other Node in the Head) command to its partner node to shut
the node down, and then takes mastership of its files. This practice is an
industry standard method of reducing split-brain instances, although as we
shall see, it is conceptually unsound.

What happens if the network becomes slow, or starts dropping packets?
In this scenario, file servers exceed their heartbeat timeouts and, as
designed, send STONITH commands to their partner nodes and take
mastership. However, some commands may not be delivered due to the
compromised network. File server pairs may now be in a state in which
both nodes are expected to be active for the same resource, or where
both are down because both issued and received STONITH commands. This
results in either corruption or unavailability of data.

The problem here is that the system is trying to solve a leader
election problem using simple timeouts. Leader election is a
reformulation of the distributed asynchronous consensus problem, which
cannot be solved correctly by using heartbeats.

Case Study 2: Failover Requires Human Intervention

A highly sharded database system has a primary for each shard, which
replicates synchronously to a secondary in another datacenter. An
external system checks the health of the primaries, and, if they are
no longer healthy, promotes the secondary to primary. If the primary
can’t determine the health of its secondary, it makes itself
unavailable and escalates to a human in order to avoid the split-brain
scenario seen in Case Study 1.

This solution doesn’t risk data loss, but it does negatively impact
availability of data. It also unnecessarily increases operational load
on the engineers who run the system, and human intervention scales
poorly. This sort of event, where a primary and secondary have
problems communicating, is highly likely to occur in the case of a
larger infrastructure problem, when the responding engineers may
already be overloaded with other tasks. If the network is so badly
affected that a distributed consensus system cannot elect a master, a human is likely not better positioned to do so.

Case Study 3: Faulty Group-Membership Algorithms

A system has a component that performs indexing and searching
services. When starting, nodes use a gossip protocol to discover each
other and join the cluster. The cluster elects a leader, which
performs coordination. In the case of a network partition that splits
the cluster, each side (incorrectly) elects a master and accepts
writes and deletions, leading to a split-brain scenario and data
corruption.

The problem of determining a consistent view of group membership
across a group of processes is another instance of the distributed
consensus problem.

In fact, many distributed systems problems turn out to be different versions of
distributed consensus, including master election, group membership, all kinds
of distributed locking and leasing, reliable distributed queuing and messaging,
and maintenance of any kind of critical shared state that must be viewed
consistently across a group of processes. All of these problems should be
solved only using distributed consensus algorithms that have been proven
formally correct, and whose implementations have been tested extensively.
Ad hoc means of solving these sorts of problems (such as heartbeats and gossip
protocols) will always have reliability problems in practice.

How Distributed Consensus Works

The consensus problem has multiple variants. When dealing with
distributed software systems, we are interested in asynchronous
distributed consensus, which applies to environments with potentially
unbounded delays in message passing. (Synchronous consensus applies
to real-time systems, in which dedicated hardware means that messages
will always be passed with specific timing guarantees.)

Distributed consensus algorithms may be crash-fail (which assumes that
crashed nodes never return to the system) or crash-recover. Crash-recover
algorithms are much more useful, because most problems in real systems are
transient in nature due to a slow network, restarts, and so on.

Algorithms may deal with Byzantine or non-Byzantine failures. Byzantine
failure occurs when a process passes incorrect messages due to a bug or
malicious activity, and are comparatively costly to handle, and less often
encountered.

Technically, solving the asynchronous distributed consensus problem in
bounded time is impossible. As proven by the Dijkstra Prize–winning
FLP impossibility result [Fis85], no asynchronous distributed consensus
algorithm can guarantee progress in the presence of an unreliable
network.

In practice, we approach the distributed consensus problem in bounded
time by ensuring that the system will have sufficient healthy replicas
and network connectivity to make progress reliably most of the
time. In addition, the system should have backoffs with randomized
delays. This setup both prevents retries from causing cascade effects
and avoids the dueling proposers problem described later in this
chapter. The protocols guarantee safety, and adequate redundancy in
the system encourages liveness.

The original solution to the distributed consensus problem was Lamport’s Paxos
protocol [Lam98], but other protocols exist that solve the problem,
including Raft [Ong14], Zab [Jun11], and Mencius [Mao08]. Paxos itself
has many variations intended to increase performance [Zoo14]. These usually
vary only in a single detail, such as giving a special leader role to one
process to streamline the protocol.

Paxos Overview: An Example Protocol

Paxos operates as a sequence of proposals, which may or may not be
accepted by a majority of the processes in the system. If a proposal
isn’t accepted, it fails. Each proposal has a sequence number, which
imposes a strict ordering on all of the operations in the system.

In the first phase of the protocol, the proposer sends a sequence
number to the acceptors. Each acceptor will agree to accept the
proposal only if it has not yet seen a proposal with a higher
sequence number. Proposers can try again with a higher sequence number
if necessary. Proposers must use unique sequence numbers (drawing from
disjoint sets, or incorporating their hostname into the sequence
number, for instance).

If a proposer receives agreement from a majority of the acceptors, it
can commit the proposal by sending a commit message with a value.

The strict sequencing of proposals solves any problems relating to
ordering of messages in the system. The requirement for a majority to
commit means that two different values cannot be committed for the
same proposal, because any two majorities will overlap in at least one
node. Acceptors must write a journal on persistent storage whenever
they agree to accept a proposal, because the acceptors need to honor
these guarantees after restarting.

Paxos on its own isn’t that useful: all it lets you do is to agree on
a value and proposal number once. Because only a quorum of nodes need
to agree on a value, any given node may not have a complete view of
the set of values that have been agreed to. This limitation is true
for most distributed consensus algorithms.

System Architecture Patterns for Distributed Consensus

Distributed consensus algorithms are low-level and primitive: they
simply allow a set of nodes to agree on a value, once. They don’t map
well to real design tasks. What makes distributed consensus useful is
the addition of higher-level system components such as datastores,
configuration stores, queues, locking, and leader election services to
provide the practical system functionality that distributed consensus
algorithms don’t address. Using higher-level components reduces
complexity for system designers. It also allows underlying distributed
consensus algorithms to be changed if necessary in response to changes
in the environment in which the system runs or changes in
nonfunctional requirements.

Many systems that successfully use consensus algorithms actually do so as
clients of some service that implements those algorithms, such as Zookeeper,
Consul, and etcd. Zookeeper [Hun10] was the first open source consensus
system to gain traction in the industry because it was easy to use, even with
applications that weren’t designed to use distributed consensus. The Chubby
service fills a similar niche at Google. Its authors point out [Bur06] that
providing consensus primitives as a service rather than as libraries that
engineers build into their applications frees application maintainers of having
to deploy their systems in a way compatible with a highly available
consensus service (running the right number of replicas, dealing with group
membership, dealing with performance, etc.).

Reliable Replicated State Machines

A replicated state machine (RSM) is a system that executes the same set of
operations, in the same order, on several processes. RSMs are the fundamental
building block of useful distributed systems components and services such as
data or configuration storage, locking, and leader election (described in more
detail later).

The operations on an RSM are ordered globally through a consensus algorithm. This is a
powerful concept: several papers ([Agu10], [Kir08], [Sch90])
show that any deterministic program can be implemented as a
highly available replicated service by being implemented as an RSM.

As shown in Figure 23-2,
replicated state machines are a system implemented at a logical layer
above the consensus algorithm. The consensus algorithm deals with
agreement on the sequence of operations, and the RSM executes the
operations in that order. Because not every member of the consensus
group is necessarily a member of each consensus quorum, RSMs may need
to synchronize state from peers. As described by Kirsch and Amir
[Kir08], you can use a sliding-window protocol to reconcile state
between peer processes in an RSM.

[image: The relationship between consensus algorithms and replicated state machines.]
Figure 23-2. The relationship between consensus algorithms and replicated state machines

Reliable Replicated Datastores and Configuration Stores

Reliable replicated datastores are an application of replicated state machines.
Replicated datastores use consensus algorithms in the critical path of their
work. Thus, performance, throughput, and the ability to scale are very
important in this type of design. As with datastores built with other
underlying technologies, consensus-based datastores can provide a variety of
consistency semantics for read operations, which make a huge difference to how
the datastore scales. These trade-offs are discussed in “Distributed Consensus Performance”.

Other (nondistributed-consensus–based) systems often simply rely on timestamps
to provide bounds on the age of data being returned. Timestamps are highly
problematic in distributed systems because it’s impossible to guarantee that
clocks are synchronized across multiple machines. Spanner [Cor12] addresses
this problem by modeling the worst-case uncertainty involved and slowing
down processing where necessary to resolve that uncertainty.

Highly Available Processing Using Leader Election

Leader election in distributed systems is an equivalent problem to
distributed consensus. Replicated services that use a single leader to
perform some specific type of work in the system are very common; the
single leader mechanism is a way of ensuring mutual exclusion at a
coarse level.

This type of design is appropriate where the work of the service
leader can be performed by one process or is sharded. System designers can construct a highly available
service by writing it as though it was a simple
program, replicating that process and using leader election to ensure
that only one leader is working at any point in time (as shown in
Figure 23-3). Often the work of the
leader is that of coordinating some pool of workers in the
system. This pattern was used in GFS [Ghe03] (which has been replaced by
Colossus) and the Bigtable key-value store [Cha06].

[image: Highly available system using a replicated service for master election.]
Figure 23-3. Highly available system using a replicated service for master election

In this type of component, unlike the replicated datastore, the
consensus algorithm is not in the critical path of the main work the
system is doing, so throughput is usually not a major concern.

Distributed Coordination and Locking Services

A barrier in a distributed computation is a primitive that blocks a
group of processes from proceeding until some condition is met (for
example, until all parts of one phase of a computation are
completed). Use of a barrier effectively splits a distributed
computation into logical phases. For instance, as shown in
Figure 23-4, a barrier could be
used in implementing the MapReduce [Dea04] model to ensure that the
entire Map phase is completed before the Reduce part of the
computation proceeds.

[image: Barriers for process coordination in the MapReduce computation.]
Figure 23-4. Barriers for process coordination in the MapReduce computation

The barrier could be implemented by a single coordinator process, but this
implementation adds a single point of failure that is usually unacceptable. The
barrier can also be implemented as an RSM. The Zookeeper consensus service can implement the barrier pattern: see [Hun10] and [Zoo14].

Locks are another useful coordination primitive that can be
 implemented as an RSM. Consider a distributed system in which worker
 processes atomically consume some input files and write
 results. Distributed locks can be used to prevent multiple workers
 from processing the same input file. In practice, it is essential to
 use renewable leases with timeouts instead of indefinite locks,
 because doing so prevents locks from being held indefinitely by
 processes that crash. Distributed locking is beyond the scope of this
 chapter, but bear in mind that distributed locks are a low-level
 systems primitive that should be used with care. Most applications
 should use a higher-level system that provides distributed
 transactions.

Reliable Distributed Queuing and Messaging

Queues are a common data structure, often used as a way to distribute
tasks between a number of worker processes.

Queuing-based systems can tolerate failure and loss of worker nodes
relatively easily. However, the system must ensure that claimed tasks
are successfully processed. For that purpose, a lease system
(discussed earlier in regard to locks) is recommended instead of an
outright removal from the queue. The downside of queuing-based
systems is that loss of the queue prevents the entire system from
operating. Implementing the queue as an RSM can minimize the risk, and
make the entire system far more robust.

Atomic broadcast is a distributed systems primitive in which
 messages are received reliably and in the same order by all
 participants. This is an incredibly powerful distributed systems
 concept and very useful in designing practical systems. A huge number
 of publish-subscribe messaging infrastructures exist for the use of
 system designers, although not all of them provide atomic
 guarantees. Chandra and Toueg [Cha96] demonstrate the equivalence of
 atomic broadcast and consensus.

The queuing-as-work-distribution pattern, which uses the queue as a
load balancing device, as shown in
Figure 23-5, can be considered to be
point-to-point messaging. Messaging systems usually also implement a
publish-subscribe queue, where messages may be consumed by many
clients that subscribe to a channel or topic. In this one-to-many
case, the messages on the queue are stored as a persistent ordered
list. Publish-subscribe systems can be used for many types of
applications that require clients to subscribe to receive notifications
of some type of event. Publish-subscribe systems can also be used to
implement coherent distributed caches.

[image: A queue-oriented work distribution system using a reliable consensus-based queuing component.]
Figure 23-5. A queue-oriented work distribution system using a reliable consensus-based queuing component

Queuing and messaging systems often need excellent throughput, but don’t need
extremely low latency (due to seldom being directly user-facing). However, very
high latencies in a system like the one just described, which has multiple
workers claiming tasks from a queue, could become a problem if the percentage
of processing time for each task grew significantly.

Distributed Consensus Performance

Conventional wisdom has generally held that consensus algorithms are too slow
and costly to use for many systems that require high throughput and low latency
[Bol11]. This conception is simply not true — while implementations can be
slow, there are a number of tricks that can improve performance. Distributed
consensus algorithms are at the core of many of Google’s critical systems, described in [Ana13], [Bur06], [Cor12], and [Shu13], and they have proven
extremely effective in practice. Google’s scale is not an advantage here: in
fact, our scale is more of a disadvantage because it introduces two main
challenges: our datasets tend to be large and our systems run over a wide
geographical distance. Larger datasets multiplied by several replicas represent
significant computing costs, and larger geographical distances increase latency
between replicas, which in turn reduces performance.

There is no one “best” distributed consensus and state machine replication
algorithm for performance, because performance is dependent on a number of factors
relating to workload, the system’s performance objectives, and how the system
is to be deployed.2
While some of the following sections present research, with the aim of
increasing understanding of what is possible to achieve with distributed
consensus, many of the systems described are available and are in use now.

Workloads can vary in many ways and understanding how they can vary is
critical to discussing performance. In the case of a consensus system, workload
may vary in terms of:

	
Throughput: the number of proposals being made per unit of time at
peak load

	
The type of requests: proportion of operations that change state

	
The consistency semantics required for read operations

	
Request sizes, if size of data payload can vary

Deployment strategies vary, too. For example:

	
Is the deployment local area or wide area?

	
What kinds of quorum are used, and where are the majority of
processes?

	
Does the system use sharding, pipelining, and batching?

Many consensus systems use a distinguished leader process and require
all requests to go to this special node. As shown in
Figure 23-6, as a result, the
performance of the system as perceived by clients in different
geographic locations may vary considerably, simply because more
distant nodes have longer round-trip times to the leader process.

[image: The effect of distance from a server process on perceived latency at the client.]
Figure 23-6. The effect of distance from a server process on perceived latency at the client

Multi-Paxos: Detailed Message Flow

The Multi-Paxos protocol uses a strong leader process: unless a
leader has not yet been elected or some failure occurs, it requires
only one round trip from the proposer to a quorum of acceptors to
reach consensus. Using a strong leader process is optimal in terms of
the number of messages to be passed, and is typical of many consensus
protocols.

Figure 23-7 shows an initial state
with a new proposer executing the first Prepare/Promise phase of the
protocol. Executing this phase establishes a new numbered view, or
leader term. On subsequent executions of the protocol, while the view
remains the same, the first phase is unnecessary because the proposer
that established the view can simply send Accept messages, and
consensus is reached once a quorum of responses is received (including
the proposer itself).

[image: Basic Multi-Paxos message flow.]
Figure 23-7. Basic Multi-Paxos message flow

Another process in the group can assume the proposer role to propose
messages at any time, but changing the proposer has a performance
cost. It necessitates the extra round trip to execute Phase 1 of the
protocol, but more importantly, it may cause a dueling proposers
situation in which proposals repeatedly interrupt each other and no
proposals can be accepted, as shown in
Figure 23-8. Because this scenario is
a form of a livelock, it can continue indefinitely.

[image: Dueling proposers in Multi-Paxos.]
Figure 23-8. Dueling proposers in Multi-Paxos

All practical consensus systems address this issue of collisions,
usually either by electing a proposer process, which makes all
proposals in the system, or by using a rotating proposer that
allocates each process particular slots for their proposals.

For systems that use a leader process, the leader election process
must be tuned carefully to balance the system unavailability that
occurs when no leader is present with the risk of dueling
proposers. It’s important to implement the right timeouts and backoff
strategies. If multiple processes detect that there is no leader and
all attempt to become leader at the same time, then none of the
processes is likely to succeed (again, dueling proposers). Introducing
randomness is the best approach. Raft [Ong14], for example,
has a well-thought-out method of approaching the leader election
process.

Scaling Read-Heavy Workloads

Scaling read workload is often critical because many workloads are read-heavy.
Replicated datastores have the advantage that the data is available in multiple
places, meaning that if strong consistency is not required for all reads, data
could be read from any replica. This technique of reading from replicas works
well for certain applications, such as Google’s Photon system [Ana13], which
uses distributed consensus to coordinate the work of multiple pipelines. Photon
uses an atomic compare-and-set operation for state modification (inspired by
atomic registers), which must be absolutely consistent; but read operations may
be served from any replica, because stale data results in extra work being performed
but not incorrect results [Gup15]. The trade-off is worthwhile.

In order to guarantee that data being read is up-to-date and
consistent with any changes made before the read is performed,
it is necessary to do one of the following:

	
Perform a read-only consensus operation.

	
Read the data from a replica that is guaranteed to be the most up-to-date. In a system that uses a stable leader process (as many
distributed consensus implementations do), the leader can provide
this guarantee.

	
Use quorum leases, in which some replicas are granted a lease on
all or part of the data in the system, allowing strongly consistent
local reads at the cost of some write performance. This technique
is discussed in detail in the following section.

Quorum Leases

Quorum leases [Mor14] are a recently developed distributed consensus
performance optimization aimed at reducing latency and increasing
throughput for read operations. As previously mentioned, in the case
of classic Paxos and most other distributed consensus protocols,
performing a strongly consistent read (i.e., one that is guaranteed to
have the most up-to-date view of state) requires either a distributed
consensus operation that reads from a quorum of replicas, or a stable
leader replica that is guaranteed to have seen all recent state
changing operations. In many systems, read operations vastly outnumber
writes, so this reliance on either a distributed operation or a single
replica harms latency and system throughput.

The quorum leasing technique simply grants a read lease on some subset
of the replicated datastore’s state to a quorum of replicas. The lease
is for a specific (usually brief) period of time. Any operation that
changes the state of that data must be acknowledged by all replicas in
the read quorum. If any of these replicas becomes unavailable, the
data cannot be modified until the lease expires.

Quorum leases are particularly useful for read-heavy workloads in
which reads for particular subsets of the data are concentrated in a
single geographic region.

Distributed Consensus Performance and Network Latency

Consensus systems face two major physical constraints on performance when
committing state changes. One is network round-trip time and the other is time
it takes to write data to persistent storage, which will be examined later.

Network round-trip times vary enormously depending on source and
destination location, which are impacted both by the physical distance
between the source and the destination, and by the amount of
congestion on the network. Within a single datacenter, round-trip
times between machines should be on the order of a millisecond. A
typical round-trip-time (RTT) within the United States is 45
milliseconds, and from New York to London is 70 milliseconds.

Consensus system performance over a local area network can be comparable to
that of an asynchronous leader-follower replication system [Bol11], such as many
traditional databases use for replication. However, much of the availability
benefits of distributed consensus systems require replicas to be “distant” from
each other, in order to be in different failure domains.

Many consensus systems use TCP/IP as their communication protocol. TCP/IP is
connection-oriented and provides some strong reliability guarantees regarding
FIFO sequencing of messages. However, setting up a new TCP/IP connection
requires a network round trip to perform the three-way handshake that sets up a
connection before any data can be sent or received. TCP/IP slow start initially
limits the bandwidth of the connection until its limits have been established.
Initial TCP/IP window sizes range from 4 to 15 KB.

TCP/IP slow start is probably not an issue for the processes that form a
consensus group: they will establish connections to each other and keep these
connections open for reuse because they’ll be in frequent communication.
However, for systems with a very high number of clients, it may not be
practical for all clients to keep a persistent connection to the consensus
clusters open, because open TCP/IP connections do consume some resources, e.g.,
file descriptors, in addition to generating keepalive traffic. This overhead
may be an important issue for applications that use very highly sharded
consensus-based datastores containing thousands of replicas and an even larger
numbers of clients. A solution is to use a pool of regional proxies, as shown in Figure 23-9, which hold
persistent TCP/IP connections to the consensus group in order to avoid the
setup overhead over long distances. Proxies may also be a good way to
encapsulate sharding and load balancing strategies, as well as discovery of
cluster members and leaders.

[image: Using proxies to reduce the need for clients to open TCP/IP connections across regions.]
Figure 23-9. Using proxies to reduce the need for clients to open TCP/IP connections across regions

Reasoning About Performance: Fast Paxos

Fast Paxos [Lam06] is a version of the Paxos algorithm designed to
improve its performance over wide area networks. Using Fast Paxos, each client
can send Propose messages directly to each member of a group of acceptors,
instead of through a leader, as in Classic Paxos or Multi-Paxos. The idea is to
substitute one parallel message send from the client to all acceptors in Fast
Paxos for two message send operations in Classic Paxos:

	
One message from the client to a single proposer

	
A parallel message send operation from the proposer to the other
replicas

Intuitively, it seems as though Fast Paxos should always be faster than Classic
Paxos. However, that’s not true: if the client in the Fast Paxos system has a
high RTT (round-trip time) to the acceptors, and the acceptors have fast
connections to each other, we have substituted N parallel messages across the
slower network links (in Fast Paxos) for one message across the slower link
plus N parallel messages across the faster links (Classic Paxos). Due to the
latency tail effect, the majority of the time, a single round trip across a
slow link with a distribution of latencies is faster than a quorum (as shown in
[Jun07]), and therefore, Fast Paxos is slower than Classic Paxos in this case.

Many systems batch multiple operations into a single transaction at the
acceptor to increase throughput. Having clients act as proposers also makes it
much more difficult to batch proposals. The reason for this is that proposals
arrive independently at acceptors so you can’t then batch them in a consistent
way.

Stable Leaders

We have seen how Multi-Paxos elects a stable leader to improve performance. Zab
[Jun11] and Raft [Ong14] are also examples of protocols that elect a stable
leader for performance reasons. This approach can allow read optimizations, as
the leader has the most up-to-date state, but also has several problems:

	
All operations that change state must be sent via the leader, a
requirement that adds network latency for clients that are not
located near the leader.

	
The leader process’s outgoing network bandwidth is a system
bottleneck [Mao08], because the leader’s Accept message contains all
of the data related to any proposal, whereas other messages contain
only acknowledgments of a numbered transaction with no data
payload.

	
If the leader happens to be on a machine with performance problems,
then the throughput of the entire system will be reduced.

Almost all distributed consensus systems that have been designed with
performance in mind use either the single stable leader pattern or a
system of rotating leadership in which each numbered distributed
consensus algorithm is preassigned to a replica (usually by a simple
modulus of the transaction ID). Algorithms that use this approach
include Mencius [Mao08] and Egalitarian Paxos [Mor12a].

Over a wide area network with clients spread out geographically and
replicas from the consensus group located reasonably near to the
clients, such leader election leads to lower perceived latency for
clients because their network RTT to the nearest replica will, on
average, be smaller than that to an arbitrary leader.

Batching

Batching, as described in “Reasoning About Performance: Fast Paxos”,
increases system throughput, but it still leaves replicas idle while
they await replies to messages they have sent. The inefficiencies
presented by idle replicas can be solved by pipelining, which
allows multiple proposals to be in-flight at once. This optimization
is very similar to the TCP/IP case, in which the protocol attempts to
“keep the pipe full” using a sliding-window approach. Pipelining is
normally used in combination with batching.

The batches of requests in the pipeline are still globally ordered
with a view number and a transaction number, so this method does not
violate the global ordering properties required to run a replicated
state machine. This optimization method is discussed in [Bol11] and [San11].

Disk Access

Logging to persistent storage is required so that a node, having crashed and
returned to the cluster, honors whatever previous commitments it made regarding
ongoing consensus transactions. In the Paxos protocol, for instance, acceptors
cannot agree to a proposal when they have already agreed to a proposal with a
higher sequence number. If details of agreed and committed proposals are not
logged to persistent storage, then an acceptor might violate the protocol if it
crashes and is restarted, leading to inconsistent state.

The time required to write an entry to a log on disk varies greatly
depending on what hardware or virtualized environment is used, but is
likely to take between one and several milliseconds.

The message flow for Multi-Paxos was discussed in
“Multi-Paxos: Detailed Message Flow”, but this section did not
show where the protocol must log state changes to disk. A disk write
must happen whenever a process makes a commitment that it must
honor. In the performance-critical second phase of Multi-Paxos, these
points occur before an acceptor sends an Accepted message in response
to a proposal, and before the proposer sends the Accept message,
because this Accept message is also an implicit Accepted message [Lam98].

This means that the latency for a single consensus operation involves
the following:

	
One disk write on the proposer

	
Parallel messages to the acceptors

	
Parallel disk writes at the acceptors

	
The return messages

There is a version of the Multi-Paxos protocol that’s useful for cases
in which disk write time dominates: this variant doesn’t consider the
proposer’s Accept message to be an implicit Accepted message. Instead,
the proposer writes to disk in parallel with the other processes and
sends an explicit Accept message. Latency then becomes proportional to
the time taken to send two messages and for a quorum of processes to
execute a synchronous write to disk in parallel.

If latency for performing a small random write to disk is on the order
of 10 milliseconds, the rate of consensus operations will be limited
to approximately 100 per minute. These times assume that network round-trip times are negligible and the proposer performs its logging in
parallel with the acceptors.

As we have seen already, distributed consensus algorithms are often
used as the basis for building a replicated state machine. RSMs also
need to keep transaction logs for recovery purposes (for the same
reasons as any datastore). The consensus algorithm’s log and the RSM’s
transaction log can be combined into a single log. Combining these
logs avoids the need to constantly alternate between writing to two
different physical locations on disk [Bol11], reducing the time spent on
seek operations. The disks can sustain more operations per second and
therefore, the system as a whole can perform more transactions.

In a datastore, disks have purposes other than maintaining logs:
system state is generally maintained on disk. Log writes must be
flushed directly to disk, but writes for state changes can be written
to a memory cache and flushed to disk later, reordered to use the most
efficient schedule [Bol11].

Another possible optimization is batching multiple client operations
together into one operation at the proposer ([Ana13], [Bol11],
[Cha07], [Jun11], [Mao08],
[Mor12a]). This amortizes the fixed costs of the disk
logging and network latency over the larger number of operations,
increasing throughput.

Deploying Distributed Consensus-Based Systems

The most critical decisions system designers must make when deploying
a consensus-based system concern the number of replicas to be deployed
and the location of those replicas.

Number of Replicas

In general, consensus-based systems operate using majority quorums,
i.e., a group of [image: 2 f plus 1] replicas may tolerate [image: f] failures (if
Byzantine fault tolerance, in which the system is resistant to
replicas returning incorrect results, is required, then [image: 3 f plus 1]
replicas may tolerate [image: f] failures [Cas99]). For non-Byzantine
failures, the minimum number of replicas that can be deployed is three — if two are deployed, then there is no tolerance for failure of any
process. Three replicas may tolerate one failure. Most system
downtime is a result of planned maintenance [Ken12]: three replicas allow
a system to operate normally when one replica is down for maintenance
(assuming that the remaining two replicas can handle system load at an
acceptable performance).

If an unplanned failure occurs during a maintenance window, then the
consensus system becomes unavailable. Unavailability of the
consensus system is usually unacceptable, and so five replicas
should be run, allowing the system to operate with up to two
failures. No intervention is necessarily required if four out of five
replicas in a consensus system remain, but if three are left, an additional
replica or two should be added.

If a consensus system loses so many of its replicas that it cannot form a
quorum, then that system is, in theory, in an unrecoverable state because the
durable logs of at least one of the missing replicas cannot be accessed. If no
quorum remains, it’s possible that a decision that was seen only by the missing
replicas was made. Administrators may be able to force a change in the group
membership and add new replicas that catch up from the existing one in order to
proceed, but the possibility of data loss always remains — a situation that
should be avoided if at all possible.

In a disaster, administrators have to decide whether to perform such a forceful
reconfiguration or to wait for some period of time for machines with system
state to become available. When such decisions are being made, treatment of the
system’s log (in addition to monitoring) becomes critical. Theoretical papers
often point out that consensus can be used to construct a replicated log, but
fail to discuss how to deal with replicas that may fail and recover (and thus
miss some sequence of consensus decisions) or lag due to slowness. In order to
maintain robustness of the system, it is important that these replicas do catch
up.

The replicated log is not always a first-class citizen in
distributed consensus theory, but it is a very important aspect of
production systems. Raft describes a method for managing the
consistency of replicated logs [Ong14] explicitly defining how any gaps in
a replica’s log are filled. If a five-instance Raft system loses all of
its members except for its leader, the leader is still guaranteed to
have full knowledge of all committed decisions. On the other hand, if
the missing majority of members included the leader, no strong
guarantees can be made regarding how up-to-date the remaining replicas
are.

There is a relationship between performance and the number of replicas in a
system that do not need to form part of a quorum: a minority of slower replicas
may lag behind, allowing the quorum of better-performing replicas to run faster
(as long as the leader performs well). If replica performance varies
significantly, then every failure may reduce the performance of the system
overall because slow outliers will be required to form a quorum. The more failures
or lagging replicas a system can tolerate, the better the system’s performance
overall is likely to be.

The issue of cost should also be considered in managing replicas: each
replica uses costly computing resources. If the system in question is
a single cluster of processes, the cost of running replicas is
probably not a large consideration. However, the cost of replicas
can be a serious consideration for systems such as Photon [Ana13], which
uses a sharded configuration in which each shard is a full group of
processes running a consensus algorithm. As the number of shards
grows, so does the cost of each additional replica, because a number
of processes equal to the number of shards must be added to the
system.

The decision about the number of replicas for any system is thus a
trade-off between the following factors:

	
The need for reliability

	
Frequency of planned maintenance affecting the system

	
Risk

	
Performance

	
Cost

This calculation will be different for each system: systems have
different service level objectives for availability; some
organizations perform maintenance more regularly than others; and
organizations use hardware of varying cost, quality, and reliability.

Location of Replicas

Decisions about where to deploy the processes that comprise a
consensus cluster are made based upon two factors: a trade-off between
the failure domains that the system should handle, and the latency
requirements for the system. Multiple complex issues are at play
in deciding where to locate replicas.

A failure domain is the set of components of a system that can
become unavailable as a result of a single failure. Example failure
domains include the following:

	
A physical machine

	
A rack in a datacenter served by a single power supply

	
Several racks in a datacenter that are served by one piece of
networking equipment

	
A datacenter that could be rendered unavailable by a fiber optic
cable cut

	
A set of datacenters in a single geographic area that could all be
affected by a single natural disaster such as a hurricane

In general, as the distance between replicas increases, so does the
round-trip time between replicas, as well as the size of the failure
the system will be able to tolerate. For most consensus systems,
increasing the round-trip time between replicas will also increase the
latency of operations.

The extent to which latency matters, as well as the ability to survive
a failure in a particular domain, is very system-dependent. Some
consensus system architectures don’t require particularly high
throughput or low latency: for example, a consensus system that exists
in order to provide group membership and leader election services for
a highly available service probably isn’t heavily loaded, and if the
consensus transaction time is only a fraction of the leader lease
time, then its performance isn’t critical. Batch-oriented systems are
also less affected by latency: operation batch sizes can be increased
to increase throughput.

It doesn’t always make sense to continually increase the size of the
failure domain whose loss the system can withstand. For instance, if
all of the clients using a consensus system are running within a
particular failure domain (say, the New York area) and deploying a
distributed consensus–based system across a wider geographical area
would allow it to remain serving during outages in that failure domain
(say, Hurricane Sandy), is it worth it? Probably not, because the
system’s clients will be down as well so the system will see no
traffic. The extra cost in terms of latency, throughput, and computing
resources would give no benefit.

You should take disaster recovery into account when deciding where to locate
your replicas: in a system that stores critical data, the consensus replicas
are also essentially online copies of the system data. However, when critical
data is at stake, it’s important to back up regular snapshots elsewhere, even
in the case of solid consensus–based systems that are deployed in several
diverse failure domains. There are two failure domains that you can never
escape: the software itself, and human error on the part of the system’s
administrators. Bugs in software can emerge under unusual circumstances and
cause data loss, while system misconfiguration can have similar effects. Human
operators can also err, or perform sabotage causing data loss.

When making decisions about location of replicas, remember that the
most important measure of performance is client perception: ideally,
the network round-trip time from the clients to the consensus system’s
replicas should be minimized. Over a wide area network, leaderless
protocols like Mencius or Egalitarian Paxos may have a performance
edge, particularly if the consistency constraints of the application
mean that it is possible to execute read-only operations on any system
replica without performing a consensus operation.

Capacity and Load Balancing

When designing a deployment, you must make sure there is sufficient
capacity to deal with load. In the case of sharded deployments, you
can adjust capacity by adjusting the number of shards. However, for
systems that can read from consensus group members that are not the
leader, you can increase read capacity by adding more replicas. Adding
more replicas has a cost: in an algorithm that uses a strong leader,
adding replicas imposes more load on the leader process, while in a
peer-to-peer protocol, adding replicas imposes more load on all
processes. However, if there is ample capacity for write operations,
but a read-heavy workload is stressing the system, adding replicas may
be the best approach.

It should be noted that adding a replica in a majority quorum system
can potentially decrease system availability somewhat (as shown in
Figure 23-10). A typical deployment
for Zookeeper or Chubby uses five replicas, so a majority quorum
requires three replicas. The system will still make progress if two
replicas, or 40%, are unavailable. With six replicas, a quorum
requires four replicas: only 33% of the replicas can be unavailable if
the system is to remain live.

Considerations regarding failure domains therefore apply even more
strongly when a sixth replica is added: if an organization has five
datacenters, and generally runs consensus groups with five processes,
one in each datacenter, then loss of one datacenter still leaves one
spare replica in each group. If a sixth replica is deployed in one of
the five datacenters, then an outage in that datacenter removes both
of the spare replicas in the group, thereby reducing capacity by 33%.

[image: Adding an extra replica in one region may reduce system availability. Colocating multiple replicas in a single datacenter may reduce system availability: here there is a quorum without any redundancy remaining.]
Figure 23-10. Adding an extra replica in one region may reduce system availability. Colocating multiple replicas in a single datacenter may reduce system availability: here, there is a quorum without any redundancy remaining.

If clients are dense in a particular geographic region, it is best to locate
replicas close to clients. However, deciding where exactly to locate replicas
may require some careful thought around load balancing and how a system deals
with overload. As shown in Figure 23-11, if a
system simply routes client read requests to the nearest replica, then a large
spike in load concentrated in one region may overwhelm the nearest replica, and
then the next-closest replica, and so on — this is cascading failure (see
Chapter 22). This type of overload can often happen as a
result of batch jobs beginning, especially if several begin at the same time.

We’ve already seen the reason that many distributed consensus systems
use a leader process to improve performance. However, it’s important
to understand that the leader replicas will use more computational
resources, particularly outgoing network capacity. This is because the
leader sends proposal messages that include the proposed data, but
replicas send smaller messages, usually just containing agreement with
a particular consensus transaction ID. Organizations that run
highly sharded consensus systems with a very large number of processes
may find it necessary to ensure that leader processes for the
different shards are balanced relatively evenly across different
datacenters. Doing so prevents the system as a whole from being
bottlenecked on outgoing network capacity for just one datacenter, and
makes for much greater overall system capacity.

[image: Colocating leader processes leads to uneven bandwidth utilization.]
Figure 23-11. Colocating leader processes leads to uneven bandwidth utilization

Another downside of deploying consensus groups in multiple datacenters
(shown by Figure 23-11) is the very
extreme change in the system that can occur if the datacenter hosting
the leaders suffers a widespread failure (power, networking equipment
failure, or fiber cut, for instance). As shown in
Figure 23-12, in this failure
scenario, all of the leaders should fail over to another datacenter,
either split evenly or en masse into one datacenter. In either case,
the link between the other two datacenters will suddenly receive a lot
more network traffic from this system. This would be an inopportune
moment to discover that the capacity on that link is insufficient.

[image: When colocated leaders fail over en masse patterns of network utilization change dramatically.]
Figure 23-12. When colocated leaders fail over en masse, patterns of network utilization change dramatically

However, this type of deployment could easily be an unintended result
of automatic processes in the system that have bearing on how leaders
are chosen. For instance:

	
Clients will experience better latency for any operations
handled via the leader if the leader is located closest to them. An
algorithm that attempts to site leaders near the bulk
of clients could take advantage of this insight.

	
An algorithm might try to locate leaders on machines with the best
performance. A pitfall of this approach is that if one of the three
datacenters houses faster machines, then a
disproportionate amount of traffic will be sent to that datacenter,
resulting in extreme traffic changes should that datacenter go
offline. To avoid this problem, the algorithm must also take into
account distribution balance against machine capabilities when
selecting machines.

	
A leader election algorithm might favor processes that have been
running longer. Longer-running processes are quite likely to be
correlated with location if software releases are performed on a
per-datacenter basis.

Quorum composition

When determining where to locate replicas in a consensus group, it is
important to consider the effect of the geographical distribution
(or, more precisely, the network latencies between replicas) on the performance of the group.

One approach is to spread the replicas as evenly as possible, with
similar RTTs between all replicas. All other factors being equal (such
as workload, hardware, and network performance), this arrangement
should lead to fairly consistent performance across all regions,
regardless of where the group leader is located (or for each member of
the consensus group, if a leaderless protocol is in use).

Geography can greatly complicate this approach. This is particularly
true for intra-continental versus transpacific and transatlantic
traffic. Consider a system that spans North America and Europe: it
is impossible to locate replicas equidistant from each other because
there will always be a longer lag for transatlantic traffic than for
intracontinental traffic. No matter what, transactions from one
region will need to make a transatlantic round trip in order to reach
consensus.

However, as shown in
Figure 23-13, in order to try to
distribute traffic as evenly as possible, systems designers might
choose to site five replicas, with two replicas roughly centrally in
the US, one on the east coast, and two in Europe. Such a distribution
would mean that in the average case, consensus could be achieved in
North America without waiting for replies from Europe, or that from Europe,
consensus can be achieved by exchanging messages only with the east
coast replica. The east coast replica acts as a linchpin of sorts,
where two possible quorums overlap.

[image: Overlapping quorums with one replica acting as a link.]
Figure 23-13. Overlapping quorums with one replica acting as a link

As shown in Figure 23-14,
loss of this replica means that system latency is likely to change
drastically: instead of being largely influenced by either central US
to east coast RTT or EU to east coast RTT, latency will be based on
EU to central RTT, which is around 50% higher than EU to east
coast RTT. The geographic distance and network RTT between the nearest
possible quorum increases enormously.

[image: Loss of the link replica immediately leads to a longer RTT for any quorum.]
Figure 23-14. Loss of the link replica immediately leads to a longer RTT for any quorum

This scenario is a key weakness of the simple majority quorum when
applied to groups composed of replicas with very different RTTs
between members. In such cases, a hierarchical quorum approach may be
useful. As diagrammed in
Figure 23-15, nine replicas may
be deployed in three groups of three. A quorum may be formed by a
majority of groups, and a group may be included in the quorum if a
majority of the group’s members are available. This means that a
replica may be lost in the central group without incurring a large
impact on overall system performance because the central group may
still vote on transactions with two of its three replicas.

There is, however, a resource cost associated with running a higher
number of replicas. In a highly sharded system with a read-heavy workload that is largely fulfillable by replicas, we might mitigate this cost by using fewer consensus groups. Such a strategy
means that the overall number of processes in the system may not
change.

[image: Hierarchical quorums can be used to reduce reliance on the central replica.]
Figure 23-15. Hierarchical quorums can be used to reduce reliance on the central replica

Monitoring Distributed Consensus Systems

As we’ve already seen, distributed consensus algorithms are at the
core of many of Google’s critical systems ([Ana13], [Bur06], [Cor12], [Shu13]). All important production systems need monitoring,
in order to detect outages or problems and for troubleshooting.
Experience has shown us that there are certain specific aspects of
distributed consensus systems that warrant special attention. These
are:

The number of members running in each consensus group, and the status of each process (healthy or not healthy)

A process may be
running but unable to make progress for some (e.g., hardware-related) reason.

Persistently lagging replicas

Healthy members of a consensus
group can still potentially be in multiple different states. A group
member may be recovering state from peers after startup, or lagging
behind the quorum in the group, or it may be up-to-date and
participating fully, and it may be the leader.

Whether or not a leader exists

A system based on an algorithm
such as Multi-Paxos that uses a leader role must be monitored to
ensure that a leader exists, because if the system has no leader, it is
totally unavailable.

Number of leader changes

Rapid changes of leadership impair
performance of consensus systems that use a stable leader, so the
number of leader changes should be monitored. Consensus algorithms
usually mark a leadership change with a new term or view number, so
this number provides a useful metric to monitor. Too rapid of an
increase in leader changes signals that the leader is flapping,
perhaps due to network connectivity issues. A decrease in the view
number could signal a serious bug.

Consensus transaction number

Operators need to know whether or
not the consensus system is making progress. Most consensus
algorithms use an increasing consensus transaction number to indicate
progress. This number should be seen to be increasing over time if a
system is healthy.

Number of proposals seen; number of proposals agreed upon

These
numbers indicate whether or not the system is operating correctly.

Throughput and latency

Although not specific to distributed
consensus systems, these characteristics of their consensus system
should be monitored and understood by administrators.

In order to understand system performance and to help troubleshoot
performance issues, you might also monitor the following:

	
Latency distributions for proposal acceptance

	
Distributions of network latencies observed between parts of the
system in different locations

	
The amount of time acceptors spend on durable logging

	
Overall bytes accepted per second in the system

Conclusion

We explored the definition of the distributed consensus
problem, and presented some system architecture patterns for
distributed-consensus based systems, as well as examining the
performance characteristics and some of the operational concerns
around distributed consensus–based systems.

We deliberately avoided an in-depth discussion about specific
algorithms, protocols, or implementations in this chapter. Distributed
coordination systems and the technologies underlying them are evolving
quickly, and this information would rapidly become out of date, unlike
the fundamentals that are discussed here. However, these fundamentals,
along with the articles referenced throughout this chapter, will enable you to use the
distributed coordination tools available today, as well as future
software.

If you remember nothing else from this chapter, keep in mind the sorts
of problems that distributed consensus can be used to solve, and the
types of problems that can arise when ad hoc methods such as
heartbeats are used instead of distributed consensus. Whenever you see
leader election, critical shared state, or distributed locking, think
about distributed consensus: any lesser approach is a ticking bomb
waiting to explode in your systems.

1 Kyle Kingsbury has written an extensive series of articles on distributed systems correctness, which contain many examples of unexpected and incorrect behavior in these kinds of datastores. See https://aphyr.com/tags/jepsen.
2 In particular, the performance of the original Paxos algorithm is not ideal, but has been greatly improved over the years.

Chapter 24. Distributed Periodic Scheduling with Cron

Written by Štěpán Davidovič1

Edited by Kavita Guliani

This chapter describes Google’s implementation of a distributed
cron service that serves the vast majority of internal teams that
need periodic scheduling of compute jobs. Throughout cron’s
existence, we have learned many lessons about how to design and
implement what might seem like a basic service. Here, we discuss the
problems that distributed crons face and outline some potential
solutions.

Cron is a common Unix utility designed to periodically launch
arbitrary jobs at user-defined times or intervals. We first analyze
the base principles of cron and its most common implementations, and
then review how an application such as cron can work in a large,
distributed environment in order to increase the reliability of the
system against single-machine failures. We describe a distributed cron
system that is deployed on a small number of machines, but can
launch cron jobs across an entire datacenter in
conjunction with a datacenter scheduling system like Borg [Ver15].

Cron

Let’s discuss how cron is typically used, in the single machine case,
before diving into running it as a cross-datacenter service.

Introduction

Cron is designed so that the system administrators and common users of
the system can specify commands to run, and when these commands run.
Cron executes various types of jobs, including garbage collection and
periodic data analysis. The most common time specification format is
called “crontab.” This format supports simple intervals (e.g.,
“once a day at noon” or “every hour on the hour”). Complex
intervals, such as “every Saturday, which is also the 30th day of
the month,” can also be configured.

Cron is usually implemented using a single component, which is
commonly referred to as crond. crond is a daemon that loads the
list of scheduled cron jobs. Jobs are launched according to their
specified execution times.

Reliability Perspective

Several aspects of the cron service are notable from a reliability
perspective:

	
Cron’s failure domain is essentially just one machine. If the
machine is not running, neither the cron scheduler nor the jobs it
launches can run.2 Consider a very simple distributed case with
two machines, in which your cron scheduler launches jobs on a
different worker machine (for example, using SSH). This scenario
presents two distinct failure domains that could impact our ability to
launch jobs: either the scheduler machine or the destination machine
could fail.

	
The only state that needs to persist across crond restarts
(including machine reboots) is the crontab configuration itself. The
cron launches are fire-and-forget, and crond makes no attempt to track
these launches.

	
anacron is a notable exception to this. anacron attempts to launch
jobs that would have been launched when the system was down. Relaunch
attempts are limited to jobs that run daily or less frequently. This
functionality is very useful for running maintenance jobs on
workstations and notebooks, and is facilitated by a file that retains
the timestamp of the last launch for all registered cron jobs.

Cron Jobs and Idempotency

Cron jobs are designed to perform periodic work, but beyond that, it
is hard to know in advance what function they have. The variety of
requirements that the diverse set of cron jobs entails obviously
impacts reliability requirements.

Some cron jobs, such as garbage collection processes, are idempotent.
In case of system malfunction, it is safe to launch such jobs multiple
times. Other cron jobs, such as a process that sends out an email
newsletter to a wide distribution, should not be launched more than
once.

To make matters more complicated, failure to launch is acceptable for
some cron jobs but not for others. For example, a garbage collection
cron job scheduled to run every five minutes may be able to skip one
launch, but a payroll cron job scheduled to run once a month should
not be be skipped.

This large variety of cron jobs makes reasoning about failure modes
difficult: in a system like the cron service, there is no single answer
that fits every situation. In general, we favor skipping
launches rather than risking double launches, as much as the
infrastructure allows. This is because recovering from a skipped
launch is more tenable than recovering from a double launch. Cron job
owners can (and should!) monitor their cron jobs; for example, an
owner might have the cron service expose state for its managed cron
jobs, or set up independent monitoring of the effect of cron jobs. In
case of a skipped launch, cron job owners can take action that
appropriately matches the nature of the cron job. However, undoing a
double launch, such as the previously mentioned newsletter example,
may be difficult or even entirely impossible. Therefore, we prefer to
“fail closed” to avoid systemically creating bad state.

Cron at Large Scale

Moving away from single machines toward large-scale deployments
requires some fundamental rethinking of how to make cron work well in
such an environment. Before presenting the details of the Google cron
solution, we’ll discuss those differences between small-scale and
large-scale deployment, and describe what design changes large-scale
deployments necessitated.

Extended Infrastructure

In its “regular” implementations, cron is limited to a single
machine. Large-scale system deployments extend our cron solution to
multiple machines.

Hosting your cron service on a single machine could be catastrophic in
terms of reliability. Say this machine is located in a datacenter
with exactly 1,000 machines. A failure of just 1/1000th of your
available machines could knock out the entire cron service. For
obvious reasons, this implementation is not acceptable.

To increase cron’s reliability, we decouple processes from machines.
If you want to run a service, simply specify the service requirements
and which datacenter it should run in. The datacenter scheduling
system (which itself should be reliable) determines the machine or
machines on which to deploy your service, in addition to handling
machine deaths. Launching a job in a datacenter then effectively
turns into sending one or more RPCs to the datacenter scheduler.

This process is, however, not instantaneous. Discovering a dead
machine entails health check timeouts, while rescheduling your service
onto a different machine requires time to install software and start
up the new process.

Because moving a process to a different machine can mean loss of any
local state stored on the old machine (unless live migration is
employed), and the rescheduling time may exceed the smallest
scheduling interval of one minute, we need procedures in place to
mitigate both data loss and excessive time requirements. To retain
local state of the old machine, you might simply persist the state on
a distributed filesystem such as GFS, and use this filesystem during
startup to identify jobs that failed to launch due to rescheduling.
However, this solution falls short in terms of timeliness
expectations: if you run a cron job every five minutes, a one- to two-minute
delay caused by the total overhead of cron system rescheduling is
potentially unacceptably substantial. In this case, hot spares, which
would be able to quickly jump in and resume operation, can
significantly shorten this time window.

Extended Requirements

Single-machine systems typically just colocate all running processes
with limited isolation. While containers are now commonplace,
it’s not necessary or common to use containers to isolate every
single component of a service that’s deployed on a single machine.
Therefore, if cron were deployed on a single machine, crond and all
the cron jobs it runs would likely not be isolated.

Deployment at datacenter scale commonly means deployment into
containers that enforce isolation. Isolation is necessary because the
base expectation is that independent processes running in the same
datacenter should not negatively impact each other. In order to
enforce that expectation, you should know the quantity of resources
you need to acquire up front for any given process you want to
run — both for the cron system and the jobs it launches. A cron job
may be delayed if the datacenter does not have resources available to
match the demands of the cron job. Resource requirements, in addition
to user demand for monitoring of cron job launches, means that we need
to track the full state of our cron job launches, from the scheduled
launch to termination.

Decoupling process launches from specific machines exposes the cron
system to partial launch failure. The versatility of cron job
configurations also means that launching a new cron job in a datacenter may need multiple RPCs, such
that sometimes we encounter a scenario in which some RPCs
succeeded but others did not (for example, because the process sending
the RPCs died in the middle of executing these tasks). The cron
recovery procedure must also account for this scenario.

In terms of the failure mode, a datacenter is a substantially more
complex ecosystem than a single machine. The cron service that began
as a relatively simple binary on a single machine now has many obvious
and nonobvious dependencies when deployed at a larger scale. For a
service as basic as cron, we want to ensure that even if the datacenter suffers a partial failure (for example, partial power outage or
problems with storage services), the service is still able to
function. By requiring that the datacenter scheduler locates replicas
of cron in diverse locations within the datacenter, we avoid the
scenario in which failure of a single power distribution unit takes
out all the processes of the cron service.

It may be possible to deploy a single cron service across the globe,
but deploying cron within a single datacenter has benefits:
the service enjoys low latency and shares fate
with the datacenter scheduler, cron’s core dependency.

Building Cron at Google

This section address the problems that must be resolved in order to
provide a large-scale distributed deployment of cron reliably. It also
highlights some important decisions made in regards to distributed
cron at Google.

Tracking the State of Cron Jobs

As discussed in previous sections, we need to hold some amount of
state about cron jobs, and be able to restore that information quickly
in case of failure. Moreover, the consistency of that state is
paramount. Recall that many cron jobs, like a payroll run or sending an
email newsletter, are not idempotent.

We have two options to track the state of cron jobs:

	
Store data
externally in generally available distributed storage

	
Use a system
that stores a small volume of state as part of the cron service itself

When designing the distributed cron, we chose the second option. We
made this choice for several reasons:

	
Distributed filesystems such as GFS or HDFS often cater to the
use case of very large files (for example, the output of web crawling
programs), whereas the information we need to store about cron jobs is
very small. Small writes on a distributed filesystem are very
expensive and come with high latency, because the filesystem is not
optimized for these types of writes.

	
Base services for which outages have wide impact (such as cron)
should have very few dependencies. Even if parts of the datacenter go
away, the cron service should be able to function for at least some
amount of time. But this requirement does not mean that the
storage has to be part of the cron process directly (how storage is
handled is essentially an implementation detail). However, cron should
be able to operate independently of downstream systems that cater to a
large number of internal users.

The Use of Paxos

We deploy multiple replicas of the cron service and use the Paxos
distributed consensus algorithm (see Chapter 23) to ensure
they have consistent state. As long as the majority of group members
are available, the distributed system as a whole can successfully
process new state changes despite the failure of bounded subsets of
the infrastructure.

As shown in Figure 24-1, the distributed cron uses a single leader job, which is the only
replica that can modify the shared state, as well as the only replica
that can launch cron jobs. We take advantage of the fact that the
variant of Paxos we use, Fast Paxos [Lam06], uses a
leader replica internally as an optimization — the Fast Paxos leader
replica also acts as the cron service leader.

[image: The interactions between distributed cron replicas.]
Figure 24-1. The interactions between distributed cron replicas

If the leader replica dies, the health-checking mechanism of the Paxos
group discovers this event quickly (within seconds). As another cron
process is already started up and available, we can elect a new
leader. As soon as the new leader is elected, we follow a leader
election protocol specific to the cron service, which is responsible
for taking over all the work left unfinished by the previous leader.
The leader specific to the cron service is the same as the Paxos leader,
but the cron service needs to take additional action upon promotion.
The fast reaction time for the leader re-election allows us to stay
well within a generally tolerable one-minute failover time.

The most important state we keep in Paxos is information
regarding which cron jobs are launched. We synchronously inform a
quorum of replicas of the beginning and end of each scheduled launch
for each cron job.

The Roles of the Leader and the Follower

As just described, our use of Paxos and its deployment in the cron
service has two assigned roles: the leader and the follower. The
following sections describe each role.

The leader

The leader replica is the only replica that actively launches cron
jobs. The leader has an internal scheduler that, much like the simple
crond described at the beginning of this chapter, maintains the list
of cron jobs ordered by their scheduled launch time. The leader
replica waits until the scheduled launch time of the first job.

Upon reaching the scheduled launch time, the leader replica announces
that it is about to start this particular cron job’s launch, and
calculates the new scheduled launch time, just like a regular crond
implementation would. Of course, as with regular crond, a cron job
launch specification may have changed since the last execution, and
this launch specification must be kept in sync with the followers as
well. Simply identifying the cron job is not enough: we should also
uniquely identify the particular launch using the start time;
otherwise, ambiguity in cron job launch tracking may occur. (Such
ambiguity is especially likely in the case of high-frequency cron
jobs, such as those running every minute.) As seen in Figure 24-2, this communication is
performed over Paxos.

It is important that Paxos communication remain synchronous, and that
the actual cron job launch does not proceed until it receives
confirmation that the Paxos quorum has received the launch
notification. The cron service needs to understand whether each cron
job has launched in order to decide the next course of action in case
of leader failover. Not performing this task synchronously could mean
that the entire cron job launch happens on the leader without
informing the follower replicas. In case of failover, the follower replicas
might attempt to perform the very same launch again because they
aren’t aware that the launch already occurred.

[image: Illustration of progress of a cron job launch, from the leader’s perspective.]
Figure 24-2. Illustration of progress of a cron job launch, from the leader’s perspective

The completion of the cron job launch is announced via Paxos to the
other replicas synchronously. Note that it does not matter whether the
launch succeeded or failed for external reasons (for example, if the
datacenter scheduler was unavailable). Here, we are simply keeping
track of the fact that the cron service attempted the launch at the
given scheduled time. We also need to be able to resolve failures of
the cron system in the middle of this operation, as discussed in the following section.

Another extremely important feature of the leader is that as soon as
it loses its leadership for any reason, it must immediately stop
interacting with the datacenter scheduler. Holding the leadership
should guarantee mutual exclusion of access to the datacenter
scheduler. In the absence of this condition of mutual exclusion, the
old and new leaders might perform conflicting actions on the datacenter scheduler.

The follower

The follower replicas keep track of the state of the world, as provided
by the leader, in order to take over at a moment’s notice if needed.
All the state changes tracked by follower replicas are communicated via
Paxos, from the leader replica. Much like the leader, followers also
maintain a list of all cron jobs in the system, and this list must be
kept consistent among the replicas (through the use of Paxos).

Upon receiving notification about a commenced launch, the follower
replica updates its local next scheduled launch time for the given
cron job. This very important state change (which is performed
synchronously) ensures that all cron job schedules within the system
are consistent. We keep track of all open launches (launches that
have begun but not completed).

If a leader replica dies or otherwise malfunctions (e.g., is
partitioned away from the other replicas on the network), a follower
should be elected as a new leader. The election must converge
faster than one minute, in order to avoid the risk of missing or
unreasonably delaying a cron job launch. Once a leader is elected,
all open launches (i.e., partial failures) must be concluded. This
process can be quite complicated, imposing additional requirements on
both the cron system and the datacenter infrastructure. The following
section discusses how to resolve partial failures of this type.

Resolving partial failures

As mentioned, the interaction between the leader replica and the
datacenter scheduler can fail in between sending multiple RPCs that
describe a single logical cron job launch. Our systems should be able
to handle this condition.

Recall that every cron job launch has two synchronization points:

	
When we are about to perform the launch

	
When we have finished the launch

These two points allow us to delimit the launch. Even if the
launch consists of a single RPC, how do we know if the RPC was
actually sent? Consider the case in which we know that the scheduled
launch started, but we were not notified of its completion before the
leader replica died.

In order to determine if the RPC was actually sent, one of the
following conditions must be met:

	
All operations on external
systems, which we may need to continue upon re-election, must be
idempotent (i.e., we can safely perform the operations again)

	
We
must be able to look up the state of all operations on external
systems in order to unambiguously determine whether they completed or
not

Each of these conditions imposes significant constraints, and may be
difficult to implement, but being able to meet at least one of these
conditions is fundamental to the accurate operation of a cron service
in a distributed environment that could suffer a single or several
partial failures. Not handling this appropriately can lead to missed
launches or double launch of the same cron job.

Most infrastructure that launches logical jobs in datacenters (Mesos,
for example) provides naming for those datacenter jobs, making it
possible to look up the state of jobs, stop the jobs, or perform other
maintenance. A reasonable solution to the idempotency problem is to
construct job names ahead of time (thereby avoiding causing any
mutating operations on the datacenter scheduler), and then distribute
the names to all replicas of your cron service. If the cron service
leader dies during launch, the new leader simply looks up the state of
all the precomputed names and launches the missing names.

Note that, similar to our method of identifying individual cron job
launches by their name and launch time, it is important that the
constructed job names on the datacenter scheduler include the
particular scheduled launch time (or have this information otherwise
retrievable). In regular operation, the cron service should fail over
quickly in case of leader failure, but a quick failover doesn’t
always happen.

Recall that we track the scheduled launch time when keeping the
internal state between the replicas. Similarly, we need to
disambiguate our interaction with the datacenter scheduler, also by
using the scheduled launch time. For example, consider a short-lived
but frequently run cron job. The cron job launches, but before the
launch is communicated to all replicas, the leader crashes and an
unusually long failover — long enough that the cron job finishes
successfully — takes place. The new leader looks up the state of the
cron job, observes its completion, and attempts to launch the job
again. Had the launch time been included, the new leader would know
that the job on the datacenter scheduler is the result of this particular
cron job launch, and this double launch would not have happened.

The actual implementation has a more complicated system for state
lookup, driven by the implementation details of the underlying
infrastructure. However, the preceding description covers the
implementation-independent requirements of any such system. Depending
on the available infrastructure, you may also need to consider the
trade-off between risking a double launch and risking skipping a
launch.

Storing the State

Using Paxos to achieve consensus is only one part of the problem of
how to handle the state. Paxos is essentially a continuous log of
state changes, appended to synchronously as state changes occur. This
characteristic of Paxos has two implications:

	
The log needs to be
compacted, to prevent it from growing infinitely

	
The log itself must be stored somewhere

In order to prevent the infinite growth of the Paxos log, we can
simply take a snapshot of the current state, which means that we can
reconstruct the state without needing to replay all state change log
entries leading to the current state. To provide an example: if our
state changes stored in logs are “Increment a counter by 1,” then
after a thousand iterations, we have a thousand log entries that can
be easily changed to a snapshot of “Set counter to 1,000.”

In case of lost logs, we only lose the state since the last snapshot.
Snapshots are in fact our most critical state — if we lose our
snapshots, we essentially have to start from zero again because
we’ve lost our internal state. Losing logs, on the other hand, just
causes a bounded loss of state and sends the cron system back in time
to the point when the latest snapshot was taken.

We have two main options for storing our data:

	
Externally in a generally available distributed storage

	
In a system that stores the
small volume of state as part of the cron service itself

When designing the system, we combined elements of both options.

We store Paxos logs on local disk of the machine where cron service
replicas are scheduled. Having three replicas in default operation
implies that we have three copies of the logs. We store the snapshots
on local disk as well. However, because they are critical, we also back
them up onto a distributed filesystem, thus protecting against
failures affecting all three machines.

We do not store logs on our distributed filesystem. We consciously
decided that losing logs, which represent a small amount of the most
recent state changes, is an acceptable risk. Storing logs on a
distributed filesystem can entail a substantial performance penalty
caused by frequent small writes. The simultaneous loss of all three
machines is unlikely, and if simultaneous loss does occur, we
automatically restore from the snapshot. We thereby lose only a small
amount of logs: those taken since the last snapshot, which we perform
on configurable intervals. Of course, these trade-offs may be different
depending on the details of the infrastructure, as well as the
requirements placed on the cron system.

In addition to the logs and snapshots stored on the local disk and
snapshot backups on the distributed filesystem, a freshly started
replica can fetch the state snapshot and all logs from an already
running replica over the network. This ability makes replica startup
independent of any state on the local machine. Therefore, rescheduling
a replica to a different machine upon restart (or machine death)
is essentially a nonissue for the reliability of the service.

Running Large Cron

There are other smaller but equally interesting implications of
running a large cron deployment. A traditional cron is small: at most,
it probably contains on the order of tens of cron jobs.
However, if you run a cron service for thousands of machines in a datacenter, your usage will grow, and you may run into problems.

Beware the large and well-known problem of distributed systems: the
thundering herd. Based on user configuration, the cron service can
cause substantial spikes in datacenter usage. When people think of a
“daily cron job,” they commonly configure this job to run at
midnight. This setup works just fine if the cron job launches on the
same machine, but what if your cron job can spawn a MapReduce with
thousands of workers? And what if 30 different teams decide to run
a daily cron job like this, in the same datacenter? To solve this
problem, we introduced an extension to the crontab format.

In the ordinary crontab, users specify the minute, hour, day of the
month (or week), and month when the cron job should launch, or
asterisk to specify any value. Running at midnight, daily, would then
have crontab specification of "0 0 * * *" (i.e., zero-th minute,
zero-th hour, every day of the week, every month, and every day of the
week). We also introduced the use of the question mark, which means that
any value is acceptable, and the cron system is given the freedom to
choose the value. Users choose this value by hashing the cron job
configuration over the given time range (e.g., 0..23 for hour),
therefore distributing those launches more evenly.

Despite this change, the load caused by the cron jobs is still very
spiky. The graph in Figure 24-3 illustrates
the aggregate global number of launches of cron jobs at Google. This
graph highlights the frequent spikes in cron job launches, which is
often caused by cron jobs that need to be launched at a specific
time — for example, due to temporal dependency on external events.

[image: The number of cron jobs launched globally.]
Figure 24-3. The number of cron jobs launched globally

Summary

A cron service has been a fundamental feature in UNIX systems for many
decades. The industry move toward large distributed systems, in which
a datacenter may be the smallest effective unit of hardware, requires changes
in large portions of the stack. Cron is no exception to this trend. A
careful look at the required properties of a cron service and the
requirements of cron jobs drives Google’s new design.

We have discussed the new constraints demanded by a distributed-system
environment, and a possible design of the cron service based on Google’s
solution. This solution requires strong consistency guarantees in the
distributed environment. The core of the distributed cron
implementation is therefore Paxos, a commonplace algorithm to reach
consensus in an unreliable environment. The use of Paxos and correct
analysis of new failure modes of cron jobs in a large-scale,
distributed environment allowed us to build a robust cron service that
is heavily used in Google.

1 This chapter was previously published in part in ACM Queue (March 2015, vol. 13, issue 3).
2 Failure of individual jobs is beyond the scope of this analysis.

Chapter 25. Data Processing Pipelines

Written by Dan Dennison

Edited by Tim Harvey

This chapter focuses on the real-life challenges of managing data
processing pipelines of depth and
complexity. It considers the frequency continuum between periodic
pipelines that run very infrequently through to continuous pipelines that never stop
running, and discusses the discontinuities that can produce
significant operational problems. A fresh take on the leader-follower
model is presented as a more reliable and better-scaling alternative
to the periodic pipeline for processing Big Data.

Origin of the Pipeline Design Pattern

The classic approach to data processing is to write a program that
reads in data, transforms it in some desired way, and outputs new
data. Typically, the program is scheduled to run under the control of
a periodic scheduling program such as cron. This design
pattern is called a data pipeline. Data
pipelines go as far back as co-routines [Con63], the DTSS
communication files [Bul80], the UNIX pipe [McI86], and later, ETL
pipelines,1 but such
pipelines have gained increased attention with the rise of “Big Data,”
or “datasets that are so large and so complex that traditional data
processing applications are inadequate.”2

Initial Effect of Big Data on the Simple Pipeline Pattern

Programs that perform periodic or continuous transformations on Big Data are
usually referred to as “simple, one-phase pipelines.”

Given the scale and processing complexity inherent to Big Data,
programs are typically organized into a chained series, with the
output of one program becoming the input to the next. There may be
varied rationales for this arrangement, but it is typically designed
for ease of reasoning about the system and not usually geared toward
operational efficiency. Programs organized this way are called
multiphase pipelines, because each program in the chain acts as a
discrete data processing phase.

The number of programs chained together in series is a measurement
known as the depth of a pipeline. Thus, a shallow pipeline may
only have one program with a corresponding pipeline depth measurement
of one, whereas a deep pipeline may have a pipeline depth in the tens
or hundreds of programs.

Challenges with the Periodic Pipeline Pattern

Periodic pipelines are generally stable when there are sufficient
workers for the volume of data and execution demand is within
computational capacity. In addition, instabilities such as processing
bottlenecks are avoided when the number of chained jobs and the
relative throughput between jobs remain uniform.

Periodic pipelines are useful and practical, and we run them on a
regular basis at Google. They are written with frameworks like
MapReduce [Dea04] and Flume [Cha10], among others.

However, the collective SRE experience has been that the periodic
pipeline model is fragile. We discovered that when a periodic pipeline
is first installed with worker sizing, periodicity, chunking
technique, and other parameters carefully tuned, performance is
initially reliable. However, organic growth and change inevitably
begin to stress the system, and problems arise. Examples of such
problems include jobs that exceed their run deadline, resource
exhaustion, and hanging processing chunks that entail corresponding
operational load.

Trouble Caused By Uneven Work Distribution

The key breakthrough of Big Data is the widespread application of
“embarrassingly parallel” [Mol86] algorithms to cut a large workload
into chunks small enough to fit onto individual machines. Sometimes
chunks require an uneven amount of resources relative to one another,
and it is seldom initially obvious why particular chunks require
different amounts of resources. For example, in a workload that is
partitioned by customer, data chunks for some customers may be much larger than
others. Because the customer is the point of indivisibility, end-to-end
runtime is thus capped to the runtime of the largest customer.

The “hanging chunk” problem can result when resources are assigned
due to differences between machines in a cluster or overallocation
to a job. This problem arises due to the difficulty of some real-time
operations on streams such as sorting “steaming” data. The pattern of
typical user code is to wait for the total computation to complete
before progressing to the next pipeline stage, commonly because
sorting may be involved, which requires all data to proceed. That can
significantly delay pipeline completion time, because completion is
blocked on the worst-case performance as dictated by the chunking
methodology in use.

If this problem is detected by engineers or cluster monitoring
infrastructure, the response can make matters worse. For example, the
“sensible” or “default” response to a hanging chunk is to
immediately kill the job and then allow the job to restart, because the
blockage may well be the result of nondeterministic factors. However,
because pipeline implementations by design usually don’t include
checkpointing, work on all chunks is restarted from the beginning, thereby
wasting the time, CPU cycles, and human effort invested in the
previous cycle.

Drawbacks of Periodic Pipelines in Distributed Environments

Big Data periodic pipelines are widely used at Google, and so Google’s
cluster management solution includes an alternative scheduling
mechanism for such pipelines. This mechanism is necessary because,
unlike continuously running pipelines, periodic pipelines typically
run as lower-priority batch jobs. A lower-priority designation works
well in this case because batch work is not sensitive to latency in the
same way that Internet-facing web services are. In addition, in order
to control cost by maximizing machine workload, Borg (Google’s cluster
management system, [Ver15]) assigns batch work to available
machines. This priority can result in degraded startup latency, so
pipeline jobs can potentially experience open-ended startup delays.

Jobs invoked through this mechanism have a number of natural
limitations, resulting in various distinct behaviors. For example,
jobs scheduled in the gaps left by user-facing web service jobs might
be impacted in terms of availability of low-latency resources,
pricing, and stability of access to resources. Execution cost is
inversely proportional to requested startup delay, and directly
proportional to resources consumed. Although batch scheduling may work
smoothly in practice, excessive use of the batch scheduler
(Chapter 24) places jobs at risk of preemptions (see section 2.5 of [Ver15]) when cluster load is high because other users are
starved of batch resources. In light of the risk trade-offs, running a
well-tuned periodic pipeline successfully is a delicate balance
between high resource cost and risk of preemptions.

Delays of up to a few hours might well be acceptable for pipelines
that run daily. However, as the scheduled execution frequency
increases, the minimum time between executions can quickly reach the
minimum average delay point, placing a lower bound on the latency that
a periodic pipeline can expect to attain. Reducing the job execution
interval below this effective lower bound simply results in
undesirable behavior rather than increased progress. The specific
failure mode depends on the batch scheduling policy in use. For
example, each new run might stack up on the cluster scheduler because
the previous run is not complete. Even worse, the currently executing
and nearly finished run could be killed when the next execution is
scheduled to begin, completely halting all progress in the name of
increasing executions.

Note where the downward-sloping idle interval line intersects the scheduling delay in
Figure 25-1. In this
scenario, lowering the execution interval much below 40 minutes for
this ~20-minute job results in potentially overlapping executions with
undesired consequences.

[image: Periodic pipeline execution interval versus idle time (log scale)]
Figure 25-1. Periodic pipeline execution interval versus idle time (log scale)

The solution to this problem is to secure sufficient server capacity
for proper operation. However, resource acquisition in a shared,
distributed environment is subject to supply and demand. As expected,
development teams tend to be reluctant to go through the processes of
acquiring resources when the resources must be contributed to a common
pool and shared. To resolve this, a distinction between batch scheduling
resources versus production priority resources has to be made to
rationalize resource acquisition costs.

Monitoring Problems in Periodic Pipelines

For pipelines of sufficient execution duration, having real-time
information on runtime performance metrics can be as important, if not
even more important, than knowing overall metrics. This is because
real-time data is important to providing operational support,
including emergency response. In practice, the standard monitoring
model involves collecting metrics during job execution, and reporting
metrics only upon completion. If the job fails during execution, no
statistics are provided.

Continuous pipelines do not share these problems because their tasks are
constantly running and their telemetry is routinely designed so that
real-time metrics are available. Periodic pipelines shouldn’t have
inherent monitoring problems, but we have observed a strong
association.

“Thundering Herd” Problems

Adding to execution and monitoring
challenges is the “thundering herd” problem endemic to distributed systems, also discussed in Chapter 24. Given a large enough periodic pipeline, for each cycle,
potentially thousands of workers immediately start work. If there are
too many workers or if the workers are misconfigured or invoked by faulty retry logic, the servers on
which they run will be overwhelmed, as will the underlying shared
cluster services, and any networking infrastructure that was being used
will also be overwhelmed.

Further worsening this situation, if retry logic is not implemented,
correctness problems can result when work is dropped upon failure, and
the job won’t be retried. If retry logic is present but it
is naive or poorly implemented, retry upon failure can compound the
problem.

Human intervention can also contribute to this scenario. Engineers
with limited experience managing pipelines tend to amplify this
problem by adding more workers to their pipeline when the job fails
to complete within a desired period of time.

Regardless of the source of the “thundering herd” problem, nothing
is harder on cluster infrastructure and the SREs responsible for
a cluster’s various services than a buggy 10,000 worker pipeline job.

Moiré Load Pattern

Sometimes the thundering herd problem may not be obvious to spot in
isolation. A related problem we call “Moiré load pattern” occurs
when two or more pipelines run simultaneously and their execution
sequences occasionally overlap, causing them to simultaneously consume
a common shared resource. This problem can occur even in continuous
pipelines, although it is less common when load arrives more evenly.

Moiré load patterns are most apparent in plots of pipeline usage of
shared resources. For example, Figure 25-2 identifies the resource usage of
three periodic pipelines. In Figure 25-3,
which is a stacked version of the data of the previous graph, the peak
impact causing on-call pain occurs when the aggregate load nears 1.2M.

[image: Moiré load pattern in separate infrastructure]
Figure 25-2. Moiré load pattern in separate infrastructure

[image: Moiré load pattern in shared infrastructure]
Figure 25-3. Moiré load pattern in shared infrastructure

Introduction to Google Workflow

When an inherently one-shot batch pipeline is overwhelmed by business
demands for continuously updated results, the pipeline development
team usually considers either refactoring the original design to
satisfy current demands, or moving to a continuous pipeline
model. Unfortunately, business demands usually occur at the least
convenient time to refactor the pipeline system into an online
continuous processing system. Newer and larger customers who are faced
with forcing scaling issues typically also want to include new
features, and expect that these requirements adhere to immovable
deadlines. In anticipating this challenge, it’s important to ascertain
several details at the outset of designing a system involving a
proposed data pipeline. Be sure to scope expected growth
trajectory,3 demand for design modifications, expected
additional resources, and expected latency requirements from the
business.

Faced with these needs, Google developed a system in 2003 called
“Workflow” that makes continuous processing available at scale.
Workflow uses the leader-follower (workers) distributed systems design
pattern [Sha00] and the system prevalence design
pattern.4 This combination enables very large-scale transactional data
pipelines, ensuring correctness with exactly-once semantics.

Workflow as Model-View-Controller Pattern

Because of how system prevalence works, it can be useful to think of Workflow as
the distributed systems equivalent of the model-view-controller
pattern known from user interface development.5 As shown in Figure 25-4, this design pattern divides a given software application
into three interconnected parts to separate internal representations
of information from the ways that information is presented to or
accepted from the user.6

[image: The model-view-controller pattern used in user interface design.]
Figure 25-4. The model-view-controller pattern used in user interface design

Adapting this pattern for Workflow, the model is held in a server
called “Task Master.” The Task Master uses the system prevalence
pattern to hold all job states in memory for fast
availability while synchronously journaling mutations to persistent
disk. The view is the workers that continually update the system
state transactionally with the master according to their perspective
as a subcomponent of the pipeline. Although all pipeline data may be
stored in the Task Master, the best performance is usually achieved
when only pointers to work are stored in the Task Master, and the
actual input and output data is stored in a common filesystem or other
storage. Supporting this analogy, the workers are
completely stateless and can be discarded at any time. A controller
can optionally be added as a third system component to efficiently
support a number of auxiliary system activities that affect the
pipeline, such as runtime scaling of the pipeline, snapshotting,
workcycle state control, rolling back pipeline state, or even
performing global interdiction for business continuity. Figure 25-5
illustrates the design pattern.

[image: The Model-View-Controller design pattern as adapted for Google Workflow.]
Figure 25-5. The model-view-controller design pattern as adapted for Google Workflow

Stages of Execution in Workflow

We can increase pipeline depth to any level inside Workflow by
subdividing processing into task groups held in the Task Master. Each
task group holds the work corresponding to a pipeline stage that can
perform arbitrary operations on some piece of data. It’s relatively
straightforward to perform mapping, shuffling, sorting, splitting,
merging, or any other operation in any stage.

A stage usually has some worker type associated with it. There
can be multiple concurrent instances of a given worker type, and
workers can be self-scheduled in the sense that they can look for
different types of work and choose which type to perform.

The worker consumes work units from a previous stage and produces
output units. The output can be an end point or input for some other
processing stage. Within the system, it’s easy to guarantee that all
work is executed, or at least reflected in permanent state, exactly
once.

Workflow Correctness Guarantees

It’s not practical to store every detail of the pipeline’s state
inside the Task Master, because the Task Master is limited by RAM
size. However, a double correctness guarantee persists because the
master holds a collection of pointers to uniquely named data, and each
work unit has a uniquely held lease. Workers acquire work with a lease
and may only commit work from tasks for which
they currently possess a valid lease.

To avoid the situation in which an orphaned worker may continue
working on a work unit, thus destroying the work of the current
worker, each output file opened by a worker has a unique name. In this
way, even orphaned workers can continue writing independently of the
master until they attempt to commit. Upon attempting a commit, they
will be unable to do so because another worker holds the lease for
that work unit. Furthermore, orphaned workers cannot destroy the work
produced by a valid worker, because the unique filename scheme ensures
that every worker is writing to a distinct file. In this way, the
double correctness guarantee holds: the output files are always
unique, and the pipeline state is always correct by virtue of tasks
with leases.

As if a double correctness guarantee isn’t enough, Workflow also
versions all tasks. If the task updates or the task
lease changes, each operation yields a new unique task replacing the
previous one, with a new ID assigned to the task. Because all
pipeline configuration in Workflow is stored inside the Task Master in
the same form as the work units themselves, in order to commit work,
a worker must own an active lease and reference the task
ID number of the configuration it used to produce its result. If the
configuration changed while the work unit was in flight,
all workers of that type will be unable to commit despite owning
current leases. Thus, all work performed after a configuration change
is consistent with the new configuration, at the cost of work being
thrown away by workers unfortunate enough to hold the old leases.

These measures provide a triple correctness guarantee: configuration,
lease ownership, and filename uniqueness. However, even this
isn’t sufficient for all cases.

For example, what if the Task Master’s network address changed, and
a different Task Master replaced it at the same address? What if a
memory corruption altered the IP address or port number, resulting in
another Task Master on the other end? Even more commonly, what if
someone (mis)configured their Task Master setup by inserting a load
balancer in front of a set of independent Task Masters?

Workflow embeds a server token, a unique identifier for this
particular Task Master, in each task’s metadata to prevent a rogue or
incorrectly configured Task Master from corrupting the pipeline. Both
client and server check the token on each operation, avoiding a very
subtle misconfiguration in which all operations run smoothly until a
task identifier collision occurs.

To summarize, the four Workflow correctness guarantees are:

	
Worker output through configuration tasks creates barriers on which to predicate work.

	
All work committed requires a currently valid lease held by the worker.

	
Output files are uniquely named by the workers.

	
The client and server validate the Task Master itself by checking a server token on every operation.

At this point, it may occur to you that it would be simpler to forgo
the specialized Task Master and use Spanner [Cor12] or another
database. However, Workflow is special because each task is unique
and immutable. These twin properties prevent many potentially subtle
issues with wide-scale work distribution from occurring.

For example, the lease obtained by the worker is part of the task
itself, requiring a brand new task even for lease changes. If a
database is used directly and its transaction logs act like a
“journal,” each and every read must be part of a long-running
transaction. This configuration is most certainly possible, but
terribly inefficient.

Ensuring Business Continuity

Big Data pipelines need to continue processing despite failures of all
types, including fiber cuts, weather events, and cascading power grid
failures. These types of failures can disable entire datacenters. In
addition, pipelines that do not employ system prevalence to obtain
strong guarantees about job completion are often disabled and enter an
undefined state. This architecture gap makes for a brittle business
continuity strategy, and entails costly mass duplication of effort to
restore pipelines and data.

Workflow resolves this problem conclusively for continuous processing
pipelines. To obtain global consistency, the Task Master stores
journals on Spanner, using it as a globally available, globally
consistent, but low-throughput filesystem. To determine which Task
Master can write, each Task Master uses the distributed lock service
called Chubby [Bur06] to elect the writer, and the result
is persisted in Spanner. Finally, clients look up the current Task
Master using internal naming services.

Because Spanner does not make for a high-throughput filesystem, globally
distributed Workflows employ two or more local Workflows running in
distinct clusters, in addition to a notion of reference tasks stored
in the global Workflow. As units of work (tasks) are consumed through
a pipeline, equivalent reference tasks are inserted into the global
Workflow by the binary labeled “stage 1” in
Figure 25-6. As tasks finish,
the reference tasks are transactionally removed from the global
Workflow as depicted in “stage n” of
Figure 25-6. If the tasks
cannot be removed from the global Workflow, the local Workflow will
block until the global Workflow becomes available again, ensuring
transactional correctness.

To automate failover, a helper binary labeled “stage 1” in
Figure 25-6 runs inside each
local Workflow. The local Workflow is otherwise unaltered, as
described by the “do work” box in the diagram. This helper binary
acts as a “controller” in the MVC sense, and is responsible for
creating reference tasks, as well as updating a special heartbeat task
inside of the global Workflow. If the heartbeat task is not updated
within the timeout period, the remote Workflow’s helper binary
seizes the work in progress as documented by the reference tasks and
the pipeline continues, unhindered by whatever the environment may do
to the work.

[image: An example of distributed data and process flow using Workflow pipelines.]
Figure 25-6. An example of distributed data and process flow using Workflow pipelines

Summary and Concluding Remarks

Periodic pipelines are valuable. However, if a data processing problem
is continuous or will organically grow to become continuous, don’t use a
periodic pipeline. Instead, use a technology with characteristics
similar to Workflow.

We have found that continuous data processing with strong guarantees,
as provided by Workflow, performs and scales well on distributed
cluster infrastructure, routinely produces results that users can rely
upon, and is a stable and reliable system for the Site Reliability
Engineering team to manage and maintain.

1 Wikipedia: Extract, transform, load, http://en.wikipedia.org/wiki/Extract,_transform,_load
2 Wikipedia: Big data, http://en.wikipedia.org/wiki/Big_data
3 Jeff Dean’s lecture on “Software Engineering Advice from Building Large-Scale Distributed Systems” is an excellent resource: [Dea07].
4 Wikipedia: System Prevalence, http://en.wikipedia.org/wiki/System_Prevalence
5 The “model-view-controller” pattern is an analogy for distributed systems that was very loosely borrowed from Smalltalk, which was originally used to describe the design structure of graphical user interfaces [Fow08].
6 Wikipedia: Model-view-controller, http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Chapter 26. Data Integrity: What You Read Is What You Wrote

Written by Raymond Blum and Rhandeev Singh

Edited by Betsy Beyer

What is “data integrity”? When users come first, data integrity is whatever users think it is.

We might say data integrity is a measure of the accessibility and
accuracy of the datastores needed to provide users with an adequate
level of service. But this definition is insufficient.

For instance, if a user interface bug in Gmail displays an empty
mailbox for too long, users might believe data has been lost. Thus,
even if no data was actually lost, the world would question
Google’s ability to act as a responsible steward of data, and the
viability of cloud computing would be threatened. Were Gmail to
display an error or maintenance message for too long while “only a
bit of metadata” is repaired, the trust of Google’s users would
similarly erode.

How long is “too long” for data to be unavailable? As demonstrated by an
actual Gmail incident in 2011 [Hic11], four days is a long
time — perhaps “too long.” Subsequently, we believe 24 hours is a good
starting point for establishing the threshold of “too long” for Google
Apps.

Similar reasoning applies to applications like Google Photos, Drive,
Cloud Storage, and Cloud Datastore, because users don’t necessarily draw a
distinction between these discrete products (reasoning, “this
product is still Google” or “Google, Amazon, whatever; this
product is still part of the cloud”). Data loss, data corruption,
and extended unavailability are typically indistinguishable to users.
Therefore, data integrity applies to all types of data across all
services. When considering data integrity, what matters is that
services in the cloud remain accessible to users. User access to data
is especially important.

Data Integrity’s Strict Requirements

When considering the reliability needs of a given
system, it may seem that uptime (service availability) needs are
stricter than those of data integrity. For example, users may find an
hour of email downtime unacceptable, whereas they may live grumpily
with a four-day time window to recover a mailbox. However, there’s a
more appropriate way to consider the demands of uptime versus data
integrity.

An SLO of 99.99% uptime leaves room for only an hour of downtime in a
whole year. This SLO sets a rather high bar, which likely exceeds the
expectations of most Internet and Enterprise users.

In contrast, an SLO of 99.99% good bytes in a 2 GB artifact would
render documents, executables, and databases corrupt (up to 200 KB
garbled). This amount of corruption is catastrophic in the majority
of cases — resulting in executables with random opcodes and completely
unloadable databases.

From the user perspective, then, every service has independent uptime
and data integrity requirements, even if these requirements are
implicit. The worst time to disagree with users about these
requirements is after the demise of their data!

[image: srle 26in01]

To revise our earlier definition of data integrity, we might say that
data integrity means that services in the cloud remain accessible to
users. User access to data is especially important, so this access
should remain in perfect shape.

Now, suppose an artifact were corrupted or lost exactly once a year.
If the loss were unrecoverable, uptime of the affected artifact is
lost for that year. The most likely means to avoid any such loss is
through proactive detection, coupled with rapid repair.

In an alternate universe, suppose the corruption were immediately
detected before users were affected and that the artifact was removed,
fixed, and returned to service within half an hour. Ignoring any other
downtime during that 30 minutes, such an object would be 99.99%
available that year.

Astonishingly, at least from the user perspective, in this scenario,
data integrity is still 100% (or close to 100%) during the accessible
lifetime of the object. As demonstrated by this example, the secret
to superior data integrity is proactive detection and rapid repair and
recovery.

Choosing a Strategy for Superior Data Integrity

There are many possible strategies for rapid detection, repair, and
recovery of lost data. All of these strategies trade uptime against
data integrity with respect to affected users. Some strategies work
better than others, and some strategies require more complex
engineering investment than others. With so many options available,
which strategies should you utilize? The answer depends on your
computing paradigm.

Most cloud computing applications seek to optimize for some
combination of uptime, latency, scale, velocity, and privacy. To
provide a working definition for each of these terms:

Uptime

Also referred to as availability, the proportion of
time a service is usable by its users.

Latency

How responsive a service appears to its users.

Scale

A service’s volume of users and the mixture of workloads
the service can handle before latency suffers or the service falls
apart.

Velocity

How fast a service can innovate to provide users with
superior value at reasonable cost.

Privacy

This concept imposes complex requirements. As a
simplification, this chapter limits its scope in discussing privacy to
data deletion: data must be destroyed within a reasonable time after
users delete it.

Many cloud applications continually evolve atop a mixture of
ACID1 and BASE2 APIs to meet the
demands of these five components.3 BASE allows for
higher availability than ACID, in exchange for a softer
distributed consistency guarantee. Specifically, BASE only guarantees
that once a piece of data is no longer updated, its value will
eventually become consistent across (potentially distributed)
storage locations.

The following scenario provides an example of how trade-offs between
uptime, latency, scale, velocity, and privacy might play out.

When velocity trumps other requirements, the resulting applications
rely on an arbitrary collection of APIs that are most familiar to the
particular developers working on the application.

For example, an application may take advantage of an efficient
BLOB4 storage API, such as Blobstore, that neglects
distributed consistency in favor of scaling to heavy workloads with
high uptime, low latency, and at low cost. To compensate:

	
The same application may entrust small amounts of authoritative
metadata pertaining to its blobs to a higher latency, less
available, more costly Paxos-based service such as
Megastore [Bak11], [Lam98].

	
Certain clients of the application may cache some of that metadata
locally and access blobs directly, shaving latency still further
from the vantage point of users.

	
Another application may keep metadata in Bigtable, sacrificing
strong distributed consistency because its developers happened to
be familiar with Bigtable.

Such cloud applications face a variety of data integrity challenges at
runtime, such as referential integrity between datastores (in the preceding
example, Blobstore, Megastore, and client-side caches). The
vagaries of high velocity dictate that schema changes, data
migrations, the piling of new features atop old features, rewrites,
and evolving integration points with other applications collude to
produce an environment riddled with complex relationships between
various pieces of data that no single engineer fully groks.

To prevent such an application’s data from degrading before its users’
eyes, a system of out-of-band checks and balances is needed within and
between its datastores. “Third Layer: Early Detection” discusses such a system.

In addition, if such an application relies on independent,
uncoordinated backups of several datastores (in the preceding example,
Blobstore and Megastore), then its ability to make effective use of
restored data during a data recovery effort is complicated by the
variety of relationships between restored and live data. Our example
application would have to sort through and distinguish between
restored blobs versus live Megastore, restored Megastore versus live blobs,
restored blobs versus restored Megastore, and interactions with
client-side caches.

In consideration of these dependencies and complications, how many
resources should be invested in data integrity efforts, and where?

Backups Versus Archives

Traditionally, companies “protect” data against loss by investing in
backup strategies. However, the real focus of such backup efforts
should be data recovery, which distinguishes real
backups from archives. As is sometimes observed: No one really
wants to make backups; what people really want are
restores.

Is your “backup” really an archive, rather than appropriate for use in disaster recovery?

[image: srle 26in02]

The most important difference between backups and archives is that
backups can be loaded back into an application, while archives
cannot. Therefore, backups and archives have quite differing use
cases.

Archives safekeep data for long periods of time to meet auditing,
discovery, and compliance needs. Data recovery for such purposes
generally doesn’t need to complete within uptime requirements of a
service. For example, you might need to retain financial transaction
data for seven years. To achieve this goal, you could move accumulated
audit logs to long-term archival storage at an offsite location once a
month. Retrieving and recovering the logs during a month-long
financial audit may take a week, and this weeklong time window for
recovery may be acceptable for an archive.

On the other hand, when disaster strikes, data must be recovered from
real backups quickly, preferably well within the uptime needs of a
service. Otherwise, affected users are left without useful access to
the application from the onset of the data integrity issue until the
completion of the recovery effort.

It’s also important to consider that because the most recent data is
at risk until safely backed up, it may be optimal to schedule real
backups (as opposed to archives) to occur daily, hourly, or more
frequently, using full and incremental or continuous (streaming)
approaches.

Therefore, when formulating a backup strategy, consider how quickly
you need to be able to recover from a problem, and how much recent
data you can afford to lose.

Requirements of the Cloud Environment in Perspective

Cloud environments introduce a unique combination of technical challenges:

	
If the environment uses a mixture of transactional and nontransactional backup and restore solutions, recovered data won’t necessarily be correct.

	
If services must evolve without going down for maintenance, different versions of business logic may act on data in parallel.

	
If interacting services are versioned independently, incompatible versions of different services may interact momentarily, further increasing the chance of accidental data corruption or data loss.

In addition, in order to maintain economy of scale, service providers must provide only a limited number of APIs. These APIs must be simple and easy to use for the vast majority of applications, or few customers will use them. At the same time, the APIs must be robust enough to understand the following:

	
Data locality and caching

	
Local and global data distribution

	
Strong and/or eventual consistency

	
Data durability, backup, and recovery

Otherwise, sophisticated customers can’t migrate applications to the cloud, and simple applications that grow complex and large will need complete rewrites in order to use different, more complex APIs.

Problems arise when the preceding API features are used in certain combinations. If the service provider doesn’t solve these problems, then the applications that run into these challenges must identify and solve them independently.

Google SRE Objectives in Maintaining Data Integrity and Availability

While SRE’s goal of “maintaining integrity of persistent data” is a good vision, we thrive on concrete objectives with measurable indicators. SRE defines key metrics that we use to set expectations for the capabilities of our systems and processes through tests and to track their performance during an actual event.

Data Integrity Is the Means; Data Availability Is the Goal

Data integrity refers to the accuracy and consistency of
data throughout its lifetime. Users need to know that information will
be correct and won’t change in some unexpected way from the time
it’s first recorded to the last time it’s observed. But is such
assurance enough?

Consider the case of an email provider who suffered a weeklong data
outage [Kinc09]. Over the space of 10 days, users had to find other,
temporary methods of conducting their business with the expectation
that they’d soon return to their established email accounts,
identities, and accumulated histories.

Then, the worst possible news arrived: the provider announced that
despite earlier expectations, the trove of past email and contacts was
in fact gone — evaporated and never to be seen again. It seemed that a
series of mishaps in managing data integrity had conspired to leave
the service provider with no usable backups. Furious users either
stuck with their interim identities or established new identities,
abandoning their troubled former email provider.

But wait! Several days after the declaration of absolute loss, the
provider announced that the users’ personal information could be
recovered. There was no data loss; this was only an outage. All was
well!

Except, all was not well. User data had been preserved, but the data
was not accessible by the people who needed it for too long.

The moral of this example: From the user’s point of view, data
integrity without expected and regular data availability is
effectively the same as having no data at all.

Delivering a Recovery System, Rather Than a Backup System

Making backups is a classically neglected, delegated, and deferred
task of system administration. Backups aren’t a high priority for
anyone — they’re an ongoing drain on time and resources, and yield no
immediate visible benefit. For this reason, a lack of diligence in
implementing a backup strategy is typically met with a sympathetic eye
roll. One might argue that, like most measures of protection against
low-risk dangers, such an attitude is pragmatic. The fundamental
problem with this lackadaisical strategy is that the dangers it
entails may be low risk, but they are also high impact. When your
service’s data is unavailable, your response can make or break your
service, product, and even your company.

Instead of focusing on the thankless job of taking a backup, it’s much
more useful, not to mention easier, to motivate participation in
taking backups by concentrating on a task with a visible payoff: the
restore! Backups are a tax, one paid on an ongoing basis for the
municipal service of guaranteed data availability. Instead of
emphasizing the tax, draw attention to the service the tax funds: data
availability. We don’t make teams “practice” their backups, instead:

	
Teams define service level objectives (SLOs) for data availability
in a variety of failure modes.

	
A team practices and demonstrates their ability to meet those SLOs.

Types of Failures That Lead to Data Loss

As illustrated by Figure 26-1, at a very high
level, there are 24 distinct types of failures when the 3 factors can occur
in any combination. You should consider each of these potential failures when designing a data integrity program. The factors of
data integrity failure modes are as follows:

Root cause

An unrecoverable loss of data may be caused by a
number of factors: user action, operator error, application bugs,
defects in infrastructure, faulty hardware, or site catastrophes.

Scope

Some losses are widespread, affecting many entities. Some
losses are narrow and directed, deleting or corrupting data specific
to a small subset of users.

Rate

Some data losses are a big bang event (for example, 1
million rows are replaced by only 10 rows in a single minute), whereas some data losses are creeping (for example, 10 rows of data are
deleted every minute over the course of weeks).

[image: The factors of data integrity failure modes.]
Figure 26-1. The factors of data integrity failure modes

An effective restore plan must account for any of these failure modes
occurring in any conceivable combination. What may be a perfectly
effective strategy for guarding against a data loss caused by a
creeping application bug may be of no help whatsoever when your
colocation datacenter catches fire.

A study of 19 data recovery efforts at Google found that the most
common user-visible data loss scenarios involved data deletion or loss
of referential integrity caused by software bugs. The most challenging
variants involved low-grade corruption or deletion that was discovered
weeks to months after the bugs were first released into the production
environment. Therefore, the safeguards Google employs should be well
suited to prevent or recover from these types of loss.

To recover from such scenarios, a large and successful application
needs to retrieve data for perhaps millions of users spread across
days, weeks, or months. The application may also need to recover each
affected artifact to a unique point in time. This data recovery
scenario is called “point-in-time recovery” outside Google, and “time-travel” inside
Google.

A backup and recovery solution that provides point-in-time recovery
for an application across its ACID and BASE datastores while meeting
strict uptime, latency, scalability, velocity, and cost goals is a
chimera today!

Solving this problem with your own engineers entails sacrificing
velocity. Many projects compromise by adopting a tiered backup
strategy without point-in-time recovery. For instance, the APIs
beneath your application may support a variety of data recovery
mechanisms. Expensive local “snapshots” may provide limited protection
from application bugs and offer quick restoration functionality, so
you might retain a few days of such local “snapshots,” taken several
hours apart. Cost-effective full and incremental copies every two days
may be retained longer. Point-in-time recovery is a very nice feature
to have if one or more of these strategies support it.

Consider the data recovery options provided by the cloud APIs you are
about to use. Trade point-in-time recovery against a tiered strategy
if necessary, but don’t resort to not using either! If you can have
both features, use both features. Each of these features (or both)
will be valuable at some point.

Challenges of Maintaining Data Integrity Deep and Wide

In designing a data integrity program, it’s
important to recognize that replication and
redundancy are not
recoverability.

Scaling issues: Fulls, incrementals, and the competing forces of backups and restores

A classic but flawed response to the question “Do you have a backup?”
is “We have something even better than a backup — replication!”
Replication provides many benefits, including locality of data and
protection from a site-specific disaster, but it can’t protect you
from many sources of data loss. Datastores that automatically sync
multiple replicas guarantee that a corrupt database row or errant
delete are pushed to all of your copies, likely before you can isolate
the problem.

To address this concern, you might make nonserving copies of your
data in some other format, such as frequent database exports to a
native file. This additional measure adds protection from the types of
errors replication doesn’t protect against — user errors and
application-layer bugs — but does nothing to guard against losses
introduced at a lower layer. This measure also introduces a risk of
bugs during data conversion (in both directions) and during storage of
the native file, in addition to possible mismatches in semantics
between the two formats. Imagine a zero-day attack5 at some low level
of your stack, such as the filesystem or device driver. Any copies
that rely on the compromised software component, including the
database exports that were written to the same filesystem that backs
your database, are vulnerable.

Thus, we see that diversity is key: protecting against a failure at
layer X requires storing data on diverse components at that layer.
Media isolation protects against media flaws: a bug or attack in a
disk device driver is unlikely to affect tape drives. If we could,
we’d make backup copies of our valuable data on clay
tablets.6

The forces of data freshness and restore completion compete against
comprehensive protection. The further down the stack you push a
snapshot of your data, the longer it takes to make a copy, which means
that the frequency of copies decreases. At the database level, a
transaction may take on the order of seconds to replicate. Exporting a
database snapshot to the filesystem underneath may take 40 minutes. A
full backup of the underlying filesystem may take hours.

In this scenario, you may lose up to 40 minutes of the most recent
data when you restore the latest snapshot. A restore from the
filesystem backup might incur hours of missing transactions.
Additionally, restoring probably takes as long as backing up, so
actually loading the data might take hours. You’d obviously like to
have the freshest data back as quickly as possible, but depending on
the type of failure, that freshest and most immediately available copy
might not be an option.

Retention

Retention — how long you keep copies of your data around — is yet another
factor to consider in your data recovery plans.

While it’s likely that you or your customers will quickly notice the
sudden emptying of an entire database, it might take days for a more
gradual loss of data to attract the right person’s attention.
Restoring the lost data in the latter scenario requires snapshots
taken further back in time. When reaching back this far, you’ll
likely want to merge the restored data with the current state. Doing
so significantly complicates the restore process.

How Google SRE Faces the Challenges of Data Integrity

Similar to our assumption that Google’s underlying systems are prone to failure, we assume that any of our protection mechanisms are also subject to the same forces and can fail in the same ways and at the most inconvenient of times. Maintaining a guarantee of data integrity at large scale, a challenge that is further complicated by the high rate of change of the involved software systems, requires a number of complementary but uncoupled practices, each chosen to offer a high degree of protection on its own.

The 24 Combinations of Data Integrity Failure Modes

Given the many ways data can be lost (as described previously), there is no
silver bullet that guards against the many combinations of failure
modes. Instead, you need defense in depth. Defense in depth comprises
multiple layers, with each successive layer of defense conferring
protection from progressively less common data loss scenarios. Figure 26-2 illustrates an object’s journey from soft deletion to destruction, and the data recovery strategies that should be employed along this journey to ensure defense in depth.

The first layer is soft deletion (or “lazy deletion” in the case of
developer API offerings), which has proven to be an effective defense
against inadvertent data deletion scenarios. The second line of
defense is backups and their related recovery methods. The third and
final layer is regular data validation, covered in
“Third Layer: Early Detection”. Across all these layers, the
presence of replication is occasionally useful for data
recovery in specific scenarios (although data recovery plans should not rely upon replication).

[image: An object’s journey from soft deletion to destruction.]
Figure 26-2. An object’s journey from soft deletion to destruction

First Layer: Soft Deletion

When velocity is high and privacy matters, bugs in applications
account for the vast majority of data loss and corruption events. In
fact, data deletion bugs may become so common that the ability to
undelete data for a limited time becomes the primary line of defense
against the majority of otherwise permanent, inadvertent data loss.

Any product that upholds the privacy of its users must allow the users
to delete selected subsets and/or all of their data. Such products
incur a support burden due to accidental deletion. Giving users the
ability to undelete their data (for example, via a trash folder)
reduces but cannot completely eliminate this support burden,
particularly if your service also supports third-party add-ons that
can also delete data.

Soft deletion can dramatically reduce or even completely eliminate
this support burden. Soft deletion means that deleted data is
immediately marked as such, rendering it unusable by all but the
application’s administrative code paths. Administrative code paths
may include legal discovery, hijacked account recovery, enterprise
administration, user support, and problem troubleshooting and its
related features. Conduct soft deletion when a user empties his or her
trash, and provide a user support tool that enables authorized
administrators to undelete any items accidentally deleted by users.
Google implements this strategy for our most popular productivity
applications; otherwise, the user support engineering burden would be
untenable.

You can extend the soft deletion strategy even further by offering
users the option to recover deleted data. For example, the Gmail trash
bin allows users to access messages that were deleted fewer than 30
days ago.

Another common source of unwanted data deletion occurs as a result of
account hijacking. In account hijacking scenarios, a hijacker commonly
deletes the original user’s data before using the account for
spamming and other unlawful purposes. When you combine the commonality
of accidental user deletion with the risk of data deletion by
hijackers, the case for a programmatic soft deletion and undeletion
interface within and/or beneath your application becomes clear.

Soft deletion implies that once data is marked as such, it is
destroyed after a reasonable delay. The length of the delay depends
upon an organization’s policies and applicable laws, available
storage resources and cost, and product pricing and market
positioning, especially in cases involving much short-lived data.
Common choices of soft deletion delays are 15, 30, 45, or 60 days. In
Google’s experience, the majority of account hijacking and data
integrity issues are reported or detected within 60 days. Therefore,
the case for soft deleting data for longer than 60 days may not be
strong.

Google has also found that the most devastating acute data deletion
cases are caused by application developers unfamiliar with existing
code but working on deletion-related code, especially batch processing
pipelines (e.g., an offline MapReduce or Hadoop pipeline). It’s
advantageous to design your interfaces to hinder developers unfamiliar
with your code from circumventing soft deletion features with new
code. One effective way of achieving this is to implement cloud
computing offerings that include built-in soft deletion and undeletion
APIs, making sure to enable said feature.7 Even the best armor is useless if you don’t put it on.

Soft deletion strategies cover data deletion features in consumer
products like Gmail or Google Drive, but what if you support a cloud
computing offering instead? Assuming your cloud computing offering
already supports a programmatic soft deletion and undeletion feature
with reasonable defaults, the remaining accidental data deletion
scenarios will originate in mistakes made by your own internal
developers or your developer customers.

In such cases, it can be useful to introduce an additional layer of
soft deletion, which we will refer to as “lazy deletion.” You can
think of lazy deletion as behind the scenes purging, controlled by the
storage system (whereas soft deletion is controlled by and expressed
to the client application or service). In a lazy deletion scenario,
data that is deleted by a cloud application becomes immediately
inaccessible to the application, but is preserved by the cloud
service provider for up to a few weeks before destruction. Lazy
deletion isn’t advisable in all defense in depth strategies: a long
lazy deletion period is costly in systems with much short-lived data,
and impractical in systems that must guarantee destruction of deleted
data within a reasonable time frame (i.e., those that offer privacy
guarantees).

To sum up the first layer of defense in depth:

	
A trash folder that allows users to undelete data is the primary
defense against user error.

	
Soft deletion is the primary defense
against developer error and the secondary defense against user error.

	
In developer offerings, lazy deletion is the primary defense against
internal developer error and the secondary defense against external
developer error.

What about revision history? Some products provide the ability to
revert items to previous states. When such a feature is available to
users, it is a form of trash. When available to developers, it may or
may not substitute for soft deletion, depending on its implementation.

At Google, revision history has proven useful in recovering from
certain data corruption scenarios, but not in recovering from most
data loss scenarios involving accidental deletion, programmatic or
otherwise. This is because some revision history implementations treat
deletion as a special case in which previous states must be removed,
as opposed to mutating an item whose history may be retained for a
certain time period. To provide adequate protection against unwanted
deletion, apply the lazy and/or soft deletion principles to revision history also.

Second Layer: Backups and Their Related Recovery Methods

Backups
and data recovery are the second line of defense after soft deletion.
The most important principle in this layer is that backups don’t
matter; what matters is recovery. The factors supporting successful
recovery should drive your backup decisions, not the other way around.

In other words, the scenarios in which you want your backups to help
you recover should dictate the following:

	
Which backup and recovery methods to use

	
How frequently you
establish restore points by taking full or incremental backups of your
data

	
Where you store backups

	
How long you retain backups

How much recent data can you afford to lose during a recovery effort?
The less data you can afford to lose, the more serious you should be
about an incremental backup strategy. In one of Google’s most
extreme cases, we used a near-real-time streaming backup strategy for
an older version of Gmail.

Even if money isn’t a limitation, frequent full backups are
expensive in other ways. Most notably, they impose a compute burden on
the live datastores of your service while it’s serving users,
driving your service closer to its scalability and performance limits.
To ease this burden, you can take full backups during off-peak hours,
and then a series of incremental backups when your service is busier.

How quickly do you need to recover? The faster your users need to be
rescued, the more local your backups should be. Often Google retains
costly but quick-to-restore snapshots8 for very short periods of
time within the storage instance, and stores less recent backups on
random access distributed storage within the same (or nearby)
datacenter for a slightly longer time. Such a strategy alone would not
protect from site-level failures, so those backups are often
transferred to nearline or offline locations for a longer time period
before they’re expired in favor of newer backups.

How far back should your backups reach? Your backup strategy becomes
more costly the further back you reach, while the scenarios from which
you can hope to recover increase (although this increase is subject to
diminishing returns).

In Google’s experience, low-grade data mutation or deletion bugs
within application code demand the furthest reaches back in time, as
some of those bugs were noticed months after the first data loss
began. Such cases suggest that you’d like the ability to reach back
in time as far as possible.

On the flip side, in a high-velocity development environment, changes
to code and schema may render older backups expensive or impossible to
use. Furthermore, it is challenging to recover different subsets of
data to different restore points, because doing so would involve
multiple backups. Yet, that is exactly the sort of recovery effort
demanded by low-grade data corruption or deletion scenarios.

The
strategies described in “Third Layer: Early Detection” are meant to
speed detection of low-grade data mutation or deletion bugs within
application code, at least partly warding off the need for this type
of complex recovery effort. Still, how do you confer reasonable
protection before you know what kinds of issues to detect? Google
chose to draw the line between 30 and 90 days of backups for many
services. Where a service falls within this window depends on its
tolerance for data loss and its relative investments in early
detection.

To sum up our advice for guarding against the 24 combinations of data
integrity failure modes: addressing a broad range of scenarios at
reasonable cost demands a tiered backup strategy. The first tier
comprises many frequent and quickly restored backups stored closest to
the live datastores, perhaps using the same or similar storage
technologies as the data sources. Doing so confers protection from the
majority of scenarios involving software bugs and developer error. Due
to relative expense, backups are retained in this tier for anywhere
from hours to single-digit days, and may take minutes to restore.

The second tier comprises fewer backups retained for single-digit or
low double-digit days on random access distributed filesystems local
to the site. These backups may take hours to restore and confer
additional protection from mishaps affecting particular storage
technologies in your serving stack, but not the technologies used to
contain the backups. This tier also protects
against bugs in your application that are detected too late to rely
upon the first tier of your backup strategy. If you are introducing
new versions of your code to production twice a week, it may make
sense to retain these backups for at least a week or two before
deleting them.

Subsequent tiers take advantage of nearline storage such as dedicated
tape libraries and offsite storage of the backup media (e.g., tapes or
disk drives). Backups in these tiers confer protection against
site-level issues, such as a datacenter power outage or distributed
filesystem corruption due to a bug.

It is expensive to move large amounts of data to and from tiers. On
the other hand, storage capacity at the later tiers does not contend
with growth of the live production storage instances of your service.
As a result, backups in these tiers tend to be taken less frequently
but retained longer.

Overarching Layer: Replication

In an ideal world, every storage
instance, including the instances containing your backups, would be
replicated. During a data recovery effort, the last thing you want is
to discover is that your backups themselves lost the needed data or
that the datacenter containing the most useful backup is under
maintenance.

As the volume of data increases, replication of every storage instance
isn’t always feasible. In such cases, it makes sense to stagger
successive backups across different sites, each of which may fail
independently, and to write your backups using a redundancy method
such as RAID, Reed-Solomon erasure codes, or GFS-style
replication.9

When choosing a system of redundancy, don’t rely upon an
infrequently used scheme whose only “tests” of efficacy are your
own infrequent data recovery attempts. Instead, choose a popular
scheme that’s in common and continual use by many of its users.

1T Versus 1E: Not “Just” a Bigger Backup

Processes and practices applied to volumes of data measured in T (terabytes) don’t scale well to data measured in E (exabytes). Validating, copying,
and performing round-trip tests on a few gigabytes of structured data
is an interesting problem. However, assuming that you have sufficient
knowledge of your schema and transaction model, this exercise
doesn’t present any special challenges. You typically just need to
procure the machine resources to iterate over your data, perform some
validation logic, and delegate enough storage to hold a few copies of
your data.

Now let’s up the ante: instead of a few gigabytes, let’s try
securing and validating 700 petabytes of structured data. Assuming
ideal SATA 2.0 performance of 300 MB/s, a
single task that iterates over all of your data and performs even the
most basic of validation checks will take 8 decades. Making a few full
backups, assuming you have the media, is going to take at least as
long. Restore time, with some post-processing, will take even longer.
We’re now looking at almost a full century to restore a backup that
was up to 80 years old when you started the restore. Obviously, such a
strategy needs to be rethought.

The most common and largely effective technique used to back up
massive amounts of data is to establish “trust points” in your
data — portions of your stored data that are verified after being
rendered immutable, usually by the passage of time. Once we know that
a given user profile or transaction is fixed and won’t be subject to
further change, we can verify its internal state and make suitable
copies for recovery purposes. You can then make incremental backups
that only include data that has been modified or added since your last
backup. This technique brings your backup time in line with your
“mainline” processing time, meaning that frequent incremental
backups can save you from the 80-year monolithic verify and copy job.

However, remember that we care about restores, not backups. Let’s
say that we took a full backup three years ago and have been making
daily incremental backups since. A full restore of our data will
serially process a chain of over 1,000 highly interdependent
backups. Each independent backup incurs additional risk of failure,
not to mention the logistical burden of scheduling and the runtime
cost of those jobs.

Another way we can reduce the wall time of our copying and
verification jobs is to distribute the load. If we shard our data
well, it’s possible to run N tasks in parallel, with each task
responsible for copying and verifying 1/Nth of our data. Doing so
requires some forethought and planning in the schema design and the
physical deployment of our data in order to:

	
Balance the data correctly

	
Ensure the independence of each shard

	
Avoid contention among the concurrent sibling tasks

Between distributing the load horizontally and restricting the work to
vertical slices of the data demarcated by time, we can reduce those
eight decades of wall time by several orders of magnitude, rendering
our restores relevant.

Third Layer: Early Detection

“Bad” data doesn’t sit idly by, it propagates. References to missing or corrupt data are copied, links fan out, and with every update the overall quality of your datastore goes down. Subsequent dependent transactions and potential data format changes make restoring from a given backup more difficult as the clock ticks. The sooner you know about a data loss, the easier and more complete your recovery can be.

Challenges faced by cloud developers

In high-velocity environments, cloud application and
infrastructure services face many data integrity challenges at runtime, such as:

	
Referential integrity between datastores

	
Schema changes

	
Aging code

	
Zero-downtime data migrations

	
Evolving integration
points with other services

Without conscious engineering effort to track emerging relationships
in its data, the data quality of a successful and growing service
degrades over time.

Often, the novice
cloud developer who chooses a distributed consistent storage API (such
as Megastore) delegates the integrity of the application’s data to
the distributed consistent algorithm implemented beneath the API (such
as Paxos; see Chapter 23). The developer reasons that the selected API alone will keep
the application’s data in good shape. As a result, they unify all
application data into a single storage solution that guarantees
distributed consistency, avoiding referential integrity problems in
exchange for reduced performance and/or scale.

While such algorithms are infallible in theory, their implementations
are often riddled with hacks, optimizations, bugs, and educated
guesses. For example: in theory, Paxos ignores failed compute nodes
and can make progress as long as a quorum of functioning nodes is
maintained. In practice, however, ignoring a failed node may
correspond to timeouts, retries, and other failure-handling approaches
beneath the particular Paxos implementation [Cha07]. How
long should Paxos try to contact an unresponsive node before timing it
out? When a particular machine fails (perhaps intermittently) in a
certain way, with a certain timing, and at a particular datacenter,
unpredictable behavior results. The larger the scale of an
application, the more frequently the application is affected,
unbeknownst, by such inconsistencies. If this logic holds true even
when applied to Paxos implementations (as has been true for Google),
then it must be more true for eventually consistent implementations
such as Bigtable (which has also shown to be true). Affected
applications have no way to know that 100% of their data is good until
they check: trust storage systems, but verify!

To complicate this problem, in order to recover from low-grade
data corruption or deletion scenarios, we must recover different subsets of data to different restore points using different backups,
while changes to code and schema may render older backups ineffective
in high-velocity environments.

Out-of-band data validation

To prevent data quality from degrading before users’ eyes, and to
detect low-grade data corruption or data loss scenarios before they
become unrecoverable, a system of out-of-band checks and balances is
needed both within and between an application’s datastores.

Most often, these data validation pipelines are implemented as
collections of map-reductions or Hadoop jobs. Frequently, such
pipelines are added as an afterthought to services that are already
popular and successful. Sometimes, such pipelines are first attempted
when services reach scalability limits and are rebuilt from the ground
up. Google has built validators in response to each of these
situations.

Shunting some developers to work on a data validation pipeline can
slow engineering velocity in the short term. However, devoting
engineering resources to data validation endows other developers with
the courage to move faster in the long run, because the engineers know that
data corruption bugs are less likely to sneak into production
unnoticed. Similar to the effects enjoyed when units test are
introduced early in the project lifecycle, a data validation pipeline
results in an overall acceleration of software development projects.

To cite a specific example: Gmail sports a number of data validators,
each of which has detected actual data integrity problems in
production. Gmail developers derive comfort from the knowledge that
bugs introducing inconsistencies in production data are detected
within 24 hours, and shudder at the thought of running their data
validators less often than daily. These validators, along with a
culture of unit and regression testing and other best practices, have
given Gmail developers the courage to introduce code changes to
Gmail’s production storage implementation more frequently than once
a week.

Out-of-band data validation is tricky to implement correctly. When too
strict, even simple, appropriate changes cause validation to fail. As
a result, engineers abandon data validation altogether. If the data
validation isn’t strict enough, user experience–affecting data
corruption can slip through undetected. To find the right balance,
only validate invariants that cause devastation to users.

For example, Google Drive periodically validates that file contents
align with listings in Drive folders. If these two elements don’t
align, some files would be missing data — a disastrous outcome. Drive
infrastructure developers were so invested in data integrity that they
also enhanced their validators to automatically fix such
inconsistencies. This safeguard turned a potential emergency
“all-hands-on-deck-omigosh-files-are-disappearing!” data loss
situation in 2013 into a business as usual, “let’s go home and fix the
root cause on Monday,” situation. By transforming emergencies into
business as usual, validators improve engineering morale, quality of
life, and predictability.

Out-of-band validators can be expensive at scale. A significant
portion of Gmail’s compute resource footprint supports a collection
of daily validators. To compound this expense, these validators also
lower server-side cache hit rates, reducing server-side responsiveness
experienced by users. To mitigate this hit to responsiveness, Gmail
provides a variety of knobs for rate-limiting its validators and
periodically refactors the validators to reduce disk contention. In
one such refactoring effort, we cut the contention for disk spindles
by 60% without significantly reducing the scope of the invariants they
covered. While the majority of Gmail’s validators run daily, the
workload of the largest validator is divided into 10–14 shards, with
one shard validated per day for reasons of scale.

Google Compute Storage is another example of the challenges scale
entails to data validation. When its out-of-band validators could no
longer finish within a day, Compute Storage engineers had to devise a
more efficient way to verify its metadata than use of brute force
alone. Similar to its application in data recovery, a tiered strategy
can also be useful in out-of-band data validation. As a service
scales, sacrifice rigor in daily validators. Make sure that daily
validators continue to catch the most disastrous scenarios within 24
hours, but continue with more rigorous validation at reduced frequency
to contain costs and latency.

Troubleshooting failed validations can take significant effort. Causes
of an intermittent failed validation could vanish within minutes,
hours, or days. Therefore, the ability to rapidly drill down into
validation audit logs is essential. Mature Google services provide
on-call engineers with comprehensive documentation and tools to
troubleshoot. For example, on-call engineers for Gmail are provided
with:

	
A suite of playbook entries describing how to respond to a
validation failure alert

	
A BigQuery-like investigation tool

	
A data validation dashboard

Effective out-of-band data validation demands all of the following:

	
Validation job management

	
Monitoring, alerts, and dashboards

	
Rate-limiting features

	
Troubleshooting tools

	
Production playbooks

	
Data validation APIs that make validators easy to
add and refactor

The majority of small engineering teams operating at high velocity
can’t afford to design, build, and maintain all of these systems. If
they are pressured to do so, the result is often fragile, limited, and wasteful
one-offs that fall quickly into disrepair. Therefore, structure your
engineering teams such that a central infrastructure team provides a
data validation framework for multiple product engineering teams. The
central infrastructure team maintains the out-of-band data
validation framework, while the product engineering teams maintain the
custom business logic at the heart of the validator to keep pace with
their evolving products.

Knowing That Data Recovery Will Work

When does a light bulb break? When flicking the switch fails to turn
on the light? Not always — often the bulb had already failed, and you simply notice
the failure at the unresponsive flick of the switch. By then, the room is
dark and you’ve stubbed your toe.

Likewise, your recovery dependencies (meaning mostly, but not only,
your backup), may be in a latent broken state, which you aren’t
aware of until you attempt to recover data.

If you discover that your restore process is broken before you need to
rely upon it, you can address the vulnerability before you fall victim
to it: you can take another backup, provision additional resources,
and change your SLO. But to take these actions proactively, you
first have to know they’re needed. To detect these vulnerabilities:

	
Continuously test the recovery process as part of your
normal operations

	
Set up alerts that fire when a recovery process
fails to provide a heartbeat indication of its success

What can go wrong with your recovery process? Anything and
everything — which is why the only test that should let you sleep at
night is a full end-to-end test. Let the proof be in the pudding. Even
if you recently ran a successful recovery, parts of your recovery
process can still break. If you take away just one lesson from this
chapter, remember that you only know that you can recover your recent
state if you actually do so.

If recovery tests are a manual, staged event, testing becomes an
unwelcome bit of drudgery that isn’t performed either deeply or
frequently enough to deserve your confidence. Therefore, automate
these tests whenever possible and then run them continuously.

The aspects of your recovery plan you should confirm are myriad:

	
Are your backups valid and complete, or are they empty?

	
Do you have sufficient machine resources to run all of the setup,
restore, and post-processing tasks that comprise your recovery?

	
Does the recovery process complete in reasonable wall time?

	
Are you able to monitor the state of your recovery process as it
progresses?

	
Are you free of critical dependencies on resources outside of your
control, such as access to an offsite media storage vault that isn’t
available 24/7?

Our testing has discovered the aforementioned failures, as well as
failures of many other components of a successful data recovery. If we
hadn’t discovered these failures in regular tests — that is, if we
came across the failures only when we needed to recover user data in
real emergencies — it’s quite possible that some of Google’s most
successful products today may not have stood the test of time.

Failures are inevitable. If you wait to discover them when you’re
under the gun, facing a real data loss, you’re playing with fire. If
testing forces the failures to happen before actual catastrophe strikes,
you can fix problems before any harm comes to fruition.

Case Studies

Life imitates art (or in this case, science), and as we predicted, real life has given us unfortunate and inevitable opportunities to put our data recovery systems and processes to the test, under real-world pressure. Two of the more notable and interesting of these opportunities are discussed here.

Gmail — February, 2011: Restore from GTape

The first recovery case study we’ll examine was unique in a couple of ways: the number of failures that coincided to bring about the data loss, and the fact that it was the largest use of our last line of defense, the GTape offline backup system.

Sunday, February 27, 2011, late in the evening

The Gmail backup
system pager is triggered, displaying a phone number to join a
conference call. The event we had long feared — indeed, the reason for
the backup system’s existence — has come to pass: Gmail lost a
significant amount of user data. Despite the system’s many
safeguards and internal checks and redundancies, the data disappeared
from Gmail.

This was the first large-scale use of GTape, a global
backup system for Gmail, to restore live customer data. Fortunately,
it was not the first such restore, as similar situations had been
previously simulated many times. Therefore, we were able to:

	
Deliver an estimate of how long it would take to restore the
majority of the affected user accounts

	
Restore all of the accounts within several hours of our initial
estimate

	
Recover 99%+ of the data before the estimated completion time

Was the ability to formulate such an estimate luck? No — our success
was the fruit of planning, adherence to best practices, hard work, and
cooperation, and we were glad to see our investment in each of these
elements pay off as well as it did. Google was able to restore the
lost data in a timely manner by executing a plan designed according to
the best practices of Defense in Depth and Emergency Preparedness.

When Google publicly revealed that we recovered this data from our
previously undisclosed tape backup system [Slo11], public reaction was a mix
of surprise and amusement.
Tape? Doesn’t Google have lots of disks and a fast network to
replicate data this important? Of course Google has such resources,
but the principle of Defense in Depth dictates providing multiple
layers of protection to guard against the breakdown or compromise of
any single protection mechanism. Backing up online systems such as
Gmail provides defense in depth at two layers:

	
A failure of the internal Gmail redundancy and backup subsystems

	
A wide failure or zero-day vulnerability in a device driver or filesystem affecting the underlying storage medium (disk)

This particular failure resulted from the first scenario — while Gmail
had internal means of recovering lost data, this loss went beyond what
internal means could recover.

One of the most internally celebrated aspects of the Gmail data
recovery was the degree of cooperation and smooth coordination that
comprised the recovery. Many teams, some completely unrelated to Gmail
or data recovery, pitched in to help. The recovery couldn’t have
succeeded so smoothly without a central plan to choreograph such a
widely distributed Herculean effort; this plan was the product of
regular dress rehearsals and dry runs. Google’s devotion to
emergency preparedness leads us to view such failures as inevitable.
Accepting this inevitability, we don’t hope or bet to avoid such
disasters, but anticipate that they will occur. Thus, we need a plan
for dealing not only with the foreseeable failures, but for some
amount of random undifferentiated breakage, as well.

In short, we always knew that adherence to best practices is
important, and it was good to see that maxim proven true.

Google Music — March 2012: Runaway Deletion Detection

The second failure we’ll examine entails challenges in logistics that are unique to the scale of the datastore being recovered: where do you store over 5,000 tapes, and how do you efficiently (or even feasibly) read that much data from offline media in a reasonable amount of time?

Tuesday, March 6th, 2012, mid-afternoon

Discovering the problem

A Google Music user reports that previously unproblematic
tracks are being skipped. The team responsible for interfacing with
Google Music’s users notifies Google Music engineers. The problem is
investigated as a possible media streaming issue.

On March 7th, the investigating engineer discovers that the unplayable
track’s metadata is missing a reference that should point to the
actual audio data. He is surprised. The obvious fix is to locate the
audio data and reinstate the reference to the data. However, Google
engineering prides itself for a culture of fixing issues at the root,
so the engineer digs deeper.

When he finds the cause of the data integrity lapse, he almost has a
heart attack: the audio reference was removed by a privacy-protecting
data deletion pipeline. This part of Google Music was designed to
delete very large numbers of audio tracks in record time.

Assessing the damage

Google’s privacy policy protects a user’s personal data. As applied to
Google Music specifically, our privacy policy means that music files
and relevant metadata are removed within reasonable time after users
delete them. As the popularity of Google Music soared, the amount of
data grew rapidly, so the original deletion implementation needed to
be redesigned in 2012 to be more efficient. On February 6th, the
updated data deletion pipeline enjoyed its maiden run, to remove
relevant metadata. Nothing seemed amiss at the time, so a second stage
of the pipeline was allowed to remove the associated audio data too.

Could the engineer’s worst nightmare be true? He immediately sounded
the alarm, raising the priority of the support case to Google’s most
urgent classification and reporting the issue to engineering
management and Site Reliability Engineering. A small team of Google
Music developers and SREs assembled to tackle the issue, and the
offending pipeline was temporarily disabled to stem the tide of
external user casualties.

Next, manually checking the metadata for millions to billions of files
organized across multiple datacenters would be unthinkable. So the
team whipped up a hasty MapReduce job to assess the damage and waited
desperately for the job to complete. They froze as its results came in
on March 8th: the refactored data deletion pipeline had removed
approximately 600,000 audio references that shouldn’t have been
removed, affecting audio files for 21,000 users. Since the hasty
diagnosis pipeline made a few simplifications, the true extent of the
damage could be worse.

It had been over a month since the buggy data deletion pipeline first
ran, and that maiden run itself removed hundreds of thousands of audio
tracks that should not have been removed. Was there any hope of
getting the data back? If the tracks weren’t recovered, or weren’t
recovered fast enough, Google would have to face the music from its
users. How could we not have noticed this glitch?

Resolving the issue

Parallel bug identification and recovery efforts

The first step in resolving the issue was to identify the actual bug,
and determine how and why the bug happened. As long as the root cause
wasn’t identified and fixed, any recovery efforts would be in vain.
We would be under pressure to re-enable the pipeline to respect the
requests of users who deleted audio tracks, but doing so would hurt
innocent users who would continue to lose store-bought music, or
worse, their own painstakingly recorded audio files. The only way to
escape the Catch-2210 was to fix the issue
at its root, and fix it quickly.

Yet there was no time to waste before mounting the recovery effort.
The audio tracks themselves were backed up to tape, but unlike our
Gmail case study, the encrypted backup tapes for Google Music were
trucked to offsite storage locations, because that option offered more
space for voluminous backups of users’ audio data. To restore the
experience of affected users quickly, the team decided to troubleshoot
the root cause while retrieving the offsite backup tapes (a rather
time-intensive restore option) in parallel.

The engineers split into two groups. The most experienced SREs worked
on the recovery effort, while the developers analyzed the data
deletion code and attempted to fix the data loss bug at its root. Due
to incomplete knowledge of the root problem, the recovery would have
to be staged in multiple passes. The first batch of nearly half a
million audio tracks was identified, and the team that maintained the
tape backup system was notified of the emergency recovery effort at
4:34 p.m. Pacific Time on March 8th.

The recovery team had one factor working in their favor: this recovery
effort occurred just weeks after the company’s annual disaster
recovery testing exercise (see [Kri12]). The tape backup team
already knew the capabilities and limitations of their subsystems that had
been the subjects of DiRT tests and began dusting off a new tool they’d tested
during a DiRT exercise. Using the new tool, the combined recovery team began the
painstaking effort of mapping hundreds of thousands of audio files to
backups registered in the tape backup system, and then mapping the
files from backups to actual tapes.

In this way, the team determined that the initial recovery effort
would involve the recall of over 5,000 backup tapes by truck.
Afterwards, datacenter technicians would have to clear out space for
the tapes at tape libraries. A long, complex process of registering
the tapes and extracting the data from the tapes would follow,
involving workarounds and mitigations in the event of bad tapes, bad
drives, and unexpected system interactions.

Unfortunately, only 436,223 of the approximately 600,000 lost audio
tracks were found on tape backups, which meant that about 161,000
other audio tracks were eaten before they could be backed up. The
recovery team decided to figure out how to recover the 161,000 missing
tracks after they initiated the recovery process for the tracks with
tape backups.

Meanwhile, the root cause team had pursued and abandoned a red
herring: they initially thought that a storage service on which Google
Music depended had provided buggy data that misled the data deletion
pipelines to remove the wrong audio data. Upon closer investigation,
that theory was proven false. The root cause team scratched their
heads and continued their search for the elusive bug.

First wave of recovery

Once the
recovery team had identified the backup tapes, the first recovery wave
kicked off on March 8th. Requesting 1.5 petabytes of data distributed
among thousands of tapes from offsite storage was one matter, but
extracting the data from the tapes was quite another. The custom-built
tape backup software stack wasn’t designed to handle a single
restore operation of such a large size, so the initial recovery was
split into 5,475 restore jobs. It would take a human operator typing
in one restore command a minute more than three days to request that
many restores, and any human operator would no doubt make many
mistakes. Just requesting the restore from the tape backup system
needed SRE to develop a programmatic solution.11

By midnight on March 9th, Music SRE finished requesting all 5,475
restores. The tape backup system began working its magic. Four hours
later, it spat out a list of 5,337 backup tapes to be recalled from
offsite locations. In another eight hours, the tapes arrived at a
datacenter in a series of truck deliveries.

While the trucks were en route, datacenter technicians took several
tape libraries down for maintenance and removed thousands of tapes to
make way for the massive data recovery operation. Then the technicians
began painstakingly loading the tapes by hand as thousands of tapes
arrived in the wee hours of the morning. In past DiRT exercises, this
manual process proved hundreds of times faster for massive restores
than the robot-based methods provided by the tape library vendors.
Within three hours, the libraries were back up scanning the tapes and
performing thousands of restore jobs onto distributed compute storage.

Despite the team’s DiRT experience, the massive 1.5 petabyte
recovery took longer than the two days estimated. By the morning of
March 10th, only 74% of the 436,223 audio files had been successfully
transferred from 3,475 recalled backup tapes to distributed filesystem
storage at a nearby compute cluster. The other 1,862 backup tapes had
been omitted from the tape recall process by a vendor. In addition,
the recovery process had been held up by 17 bad tapes. In anticipation
of a failure due to bad tapes, a redundant encoding had been used to
write the backup files. Additional truck deliveries were set off to
recall the redundancy tapes, along with the other 1,862 tapes that had
been omitted by the first offsite recall.

By the morning of March 11th, over 99.95% of the restore operation had
completed, and the recall of additional redundancy tapes for the
remaining files was in progress. Although the data was safely on
distributed filesystems, additional data recovery steps were necessary
in order to make them accessible to users. The Google Music Team began
exercising these final steps of the data recovery process in parallel
on a small sample of recovered audio files to make sure the process
still worked as expected.

At that moment, Google Music production pagers sounded due to an
unrelated but critical user-affecting production failure — a failure
that fully engaged the Google Music team for two days. The data
recovery effort resumed on March 13th, when all 436,223 audio tracks
were once again made accessible to their users. In just short of 7
days, 1.5 petabytes of audio data had been reinstated to users with
the help of offsite tape backups; 5 of the 7 days comprised the actual
data recovery effort.

Second wave of recovery

With the first wave of the recovery process
behind them, the team shifted its focus to the other 161,000 missing
audio files that had been deleted by the bug before they were backed
up. The majority of these files were store-bought and promotional
tracks, and the original store copies were unaffected by the bug. Such
tracks were quickly reinstated so that the affected users could enjoy
their music again.

However, a small portion of the 161,000 audio files had been uploaded
by the users themselves. The Google Music Team prompted their servers
to request that the Google Music clients of affected users re-upload
files dating from March 14th onward. This process lasted more than a
week. Thus concluded the complete recovery effort for the incident.

Addressing the root cause

Eventually, the Google Music Team
identified the flaw in their refactored data deletion pipeline. To
understand this flaw, you first need context about how offline data
processing systems evolve on a large scale.

For a large and complex service comprising several subsystems and
storage services, even a task as simple as removing deleted data needs
to be performed in stages, each involving different datastores.

For data processing to finish quickly, the processing is parallelized
to run across tens of thousands of machines that exert a large load on
various subsystems. This distribution can slow the service for users,
or cause the service to crash under the heavy load.

To avoid these undesirable scenarios, cloud computing engineers often
make a short-lived copy of data on secondary storage, where the data
processing is then performed. Unless the relative age of the secondary
copies of data is carefully coordinated, this practice introduces race
conditions.

For instance, two stages of a pipeline may be designed to run in
strict succession, three hours apart, so that the second stage can
make a simplifying assumption about the correctness of its inputs.
Without this simplifying assumption, the logic of the second stage may
be hard to parallelize. But the stages may take longer to complete as
the volume of data grows. Eventually, the original design assumptions
may no longer hold for certain pieces of data needed by the second
stage.

At first, this race condition may occur for a tiny fraction of data.
But as the volume of data increases, a larger
and larger fraction of the data is at risk for triggering a race
condition. Such a scenario is probabilistic — the pipeline works
correctly for the vast majority of data and for most of the time. When
such race conditions occur in a data deletion pipeline, the wrong data
can be deleted nondeterministically.

Google Music’s data deletion pipeline was designed with coordination
and large margins for error in place. But when upstream stages of the
pipeline began to require increased time as the service grew,
performance optimizations were put in place so Google Music could
continue to meet privacy requirements. As a result, the probability of
an inadvertent data-deleting race condition in this pipeline began to
increase. When the pipeline was refactored, this probability again
significantly increased, up to a point at which the race conditions
occurred more regularly.

In the wake of the recovery effort, Google Music redesigned its data
deletion pipeline to eliminate this type of race condition. In
addition, we enhanced production monitoring and alerting systems to
detect similar large-scale runaway deletion bugs with the aim of
detecting and fixing such issues before users notice any
problems.12

General Principles of SRE as Applied to Data Integrity

General principles of SRE can be applied to the specifics of
data integrity and cloud computing as described in this section.

Beginner’s Mind

Large-scale, complex services have inherent
bugs that can’t be fully grokked. Never think you understand enough
of a complex system to say it won’t fail in a certain way. Trust but
verify, and apply defense in depth. (Note:
“Beginner’s mind” does not suggest putting a new hire in
charge of that data deletion pipeline!)

Trust but Verify

Any API upon which you depend won’t work
perfectly all of the time. It’s a given that regardless of your
engineering quality or rigor of testing, the API will have defects.
Check the correctness of the most critical elements of your data using
out-of-band data validators, even if API semantics suggest that you
need not do so. Perfect algorithms may not have perfect
implementations.

Hope Is Not a Strategy

System components that aren’t
continually exercised fail when you need them most. Prove that data
recovery works with regular exercise, or data recovery won’t work.
Humans lack discipline to continually exercise system components, so
automation is your friend. However, when you staff such automation
efforts with engineers who have competing priorities, you may end up
with temporary stopgaps.

Defense in Depth

Even the most bulletproof system is susceptible
to bugs and operator error. In order for data integrity issues to be
fixable, services must detect such issues quickly. Every strategy
eventually fails in changing environments. The best data integrity
strategies are multitiered — multiple strategies that fall back to
one another and address a broad swath of scenarios together at
reasonable cost.

Revisit and Reexamine

The fact that your data “was safe yesterday” isn’t going to help you tomorrow, or even today. Systems and infrastructure change, and you’ve got to prove that your assumptions and processes remain relevant in the face of progress. Consider the following.

The Shakespeare service has received quite a bit of positive press,
and its user base is steadily increasing. No real attention was paid
to data integrity as the service was being built. Of course, we don’t
want to serve bad bits, but if the index Bigtable is lost, we can
easily re-create it from the original Shakespeare texts and a
MapReduce. Doing so would take very little time, so we never
made backups of the index.

Now a new feature allows users to make text annotations. Suddenly, our
dataset can no longer be easily re-created, while the user data is
increasingly valuable to our users. Therefore, we need to revisit our
replication options — we’re not just replicating for latency and
bandwidth, but for data integrity, as well. Therefore, we need to
create and test a backup and restore procedure. This procedure is also
periodically tested by a DiRT exercise to ensure that we can restore
users’ annotations from backups within the time set by the SLO.

Conclusion

Data availability must be a foremost concern of any
data-centric system. Rather than focusing on the means to the end,
Google SRE finds it useful to borrow a page from test-driven
development by proving that our systems can maintain data availability
with a predicted maximum down time. The means and mechanisms that we
use to achieve this end goal are necessary evils. By keeping our eyes
on the goal, we avoid falling into the trap in which “The operation
was a success, but the system died.”

Recognizing that not just anything can go wrong, but that
everything will go wrong is a significant step toward preparation
for any real emergency. A matrix of all possible combinations of
disasters with plans to address each of these disasters permits you to
sleep soundly for at least one night; keeping your recovery plans
current and exercised permits you to sleep the other 364 nights of the
year.

As you get better at recovering from any breakage in reasonable time
N, find ways to whittle down that time through more rapid and
finer-grained loss detection, with the goal of approaching [image: upper N equals 0]. You can then switch from planning recovery to planning
prevention, with the aim of achieving the holy grail of all
the data, all the time. Achieve this goal, and you can sleep on
the beach on that well-deserved vacation.

1 Atomicity, Consistency, Isolation, Durability; see https://en.wikipedia.org/wiki/ACID. SQL databases such as MySQL and PostgreSQL strive to achieve these properties.
2 Basically Available, Soft state, Eventual consistency; see https://en.wikipedia.org/wiki/Eventual_consistency. BASE systems, like Bigtable and Megastore, are often also described as “NoSQL.”
3 For further reading on ACID and BASE APIs, see [Gol14] and [Bai13].
4 Binary Large Object; see https://en.wikipedia.org/wiki/Binary_large_object.
5 See https://en.wikipedia.org/wiki/Zero-day_(computing).
6 Clay tablets are the oldest known examples of writing. For a broader discussion of preserving data for the long haul, see [Con96].
7 Upon reading this advice, one might ask: since you have to offer an API on top of the datastore to implement soft deletion, why stop at soft deletion, when you could offer many other features that protect against accidental data deletion by users? To take a specific example from Google’s experience, consider Blobstore: rather than allow customers to delete Blob data and metadata directly, the Blob APIs implement many safety features, including default backup policies (offline replicas), end-to-end checksums, and default tombstone lifetimes (soft deletion). It turns out that on multiple occasions, soft deletion saved Blobstore’s clients from data loss that could have been much, much worse. There are certainly many deletion protection features worth calling out, but for companies with required data deletion deadlines, soft deletion was the most pertinent protection against bugs and accidental deletion in the case of Blobstore’s clients.
8 “Snapshot” here refers to a read-only, static view of a storage instance, such as snapshots of SQL databases. Snapshots are often implemented using copy-on-write semantics for storage efficiency. They can be expensive for two reasons: first, they contend for the same storage capacity as the live datastores, and second, the faster your data mutates, the less efficiency is gained from copying-on-write.
9 For more information on GFS-style replication, see [Ghe03]. For more information on Reed-Solomon erasure codes, see https://en.wikipedia.org/wiki/Reed–Solomon_error_correction.
10 See http://en.wikipedia.org/wiki/Catch-22_(logic).
11 In practice, coming up with a programmatic solution was not a hurdle because the majority of SREs are experienced software engineers, as was the case here. The expectation of such experience makes SREs notoriously hard to find and hire, and from this case study and other data points, you can begin to appreciate why SRE hires practicing software engineers; see [Jon15].
12 In our experience, cloud computing engineers are often reluctant to set up production alerts on data deletion rates due to natural variation of per-user data deletion rates with time. However, since the intent of such an alert is to detect global rather than local deletion rate anomalies, it would be more useful to alert when the global data deletion rate, aggregated across all users, crosses an extreme threshold (such as 10x the observed 95th percentile), as opposed to less useful per-user deletion rate alerts.

Chapter 27. Reliable Product Launches at Scale

Written by Rhandeev Singh and Sebastian Kirsch with Vivek Rau

Edited by Betsy Beyer

Internet companies like Google are able to launch new products and features in
far more rapid iterations than traditional companies. Site Reliability’s role
in this process is to enable a rapid pace of change without compromising
stability of the site. We created a dedicated team of “Launch Coordination
Engineers” to consult with engineering teams on the technical
aspects of a successful launch.

The team also curated a “launch checklist” of common questions to ask
about a launch, and recipes to solve common issues. The checklist proved
to be a useful tool for ensuring reproducibly reliable launches.

Consider an ordinary Google service — for example, Keyhole, which
serves satellite imagery for Google Maps and Google Earth. On a normal
day, Keyhole serves up to several thousand satellite images per
second. But on Christmas Eve in 2011, it received 25 times its normal
peak traffic — upward of one million requests per second. What caused
this massive surge in traffic?

Santa was coming.

A few years ago, Google collaborated with NORAD (the North American
Aerospace Defense Command) to host a Christmas-themed website that
tracked Santa’s progress around the world, allowing users to watch him
deliver presents in real time. Part of the experience was a “virtual
fly-over,” which used satellite imagery to track Santa’s progress over
a simulated world.

While a project like NORAD Tracks Santa may seem whimsical, it had all
the characteristics that define a difficult and risky launch: a hard
deadline (Google couldn’t ask Santa to come a week later if the site
wasn’t ready), a lot of publicity, an audience of millions, and a very
steep traffic ramp-up (everybody was going to be watching the site on
Christmas Eve). Never underestimate the power of millions of kids
anxious for presents — this project had a very real possibility of
bringing Google’s servers to their knees.

Google’s Site Reliability Engineering team worked hard to prepare our
infrastructure for this launch, making sure that Santa could deliver
all his presents on time under the watchful eyes of an expectant
audience. The last thing we wanted was to make children cry because
they couldn’t watch Santa deliver presents. In fact, we dubbed the
various kill switches built into the experience to protect our
services “Make-children-cry switches.” Anticipating the many different
ways this launch could go wrong and coordinating between the different
engineering groups involved in the launch fell to a special team
within Site Reliability Engineering: the Launch Coordination Engineers
(LCE).

Launching a new product or feature is the moment of truth for every company — the
point at which months or years of effort are presented to the world.
Traditional companies launch new products at a fairly low rate. The launch
cycle at Internet companies is markedly different. Launches and rapid
iterations are far easier because new features can be rolled out on the server
side, rather than requiring software rollout on individual customer
workstations.

Google defines a launch as any new code that introduces an externally
visible change to an application. Depending on a launch’s
characteristics — the combination of attributes, the timing, the number
of steps involved, and the complexity — the launch process can vary
greatly. According to this definition, Google sometimes performs up to
70 launches per week.

This rapid rate of change provides both the rationale and the opportunity for
creating a streamlined launch process. A company that only launches a product
every three years doesn’t need a detailed launch process. By the time a new
launch occurs, most components of the previously developed launch process will
be outdated. Nor do traditional companies have the opportunity to design a
detailed launch process, because they don’t accumulate enough experience performing
launches to generate a robust and mature process.

Launch Coordination Engineering

Good software engineers have a great deal of expertise in coding and
design, and understand the technology of their own products very well.
However, the same engineers may be unfamiliar with the challenges and
pitfalls of launching a product to millions of users while
simultaneously minimizing outages and maximizing performance.

Google approached the challenges inherent to launches by creating a
dedicated consulting team within SRE tasked with the technical side of
launching a new product or feature. Staffed by software engineers and
systems engineers — some with experience in other SRE teams — this team
specializes in guiding developers toward building reliable and fast
products that meet Google’s standards for robustness, scalability, and
reliability. This consulting team, Launch Coordination Engineering
(LCE), facilitates a smooth launch process in a few ways:

	
Auditing products and services for compliance with Google’s
reliability standards and best practices, and providing specific
actions to improve reliability

	
Acting as a liaison between the multiple teams involved in a launch

	
Driving the technical aspects of a launch by making sure that tasks
maintain momentum

	
Acting as gatekeepers and signing off on launches determined to be
“safe”

	
Educating developers on best practices and on how to integrate with
Google’s services, equipping them with internal documentation and
training resources to speed up their learning

Members of the LCE team audit services at various times during the
service lifecycle. Most audits are conducted before a new product or
service launches. If a product development team performs a launch
without SRE support, LCE provides the appropriate domain knowledge to
ensure a smooth launch. But even products that already have strong SRE
support often engage with the LCE team during critical launches. The
challenges teams face when launching a new product are substantially
different from the day-to-day operation of a reliable service (a task
at which SRE teams already excel), and the LCE team can draw on the
experience from hundreds of launches. The LCE team also facilitates
service audits when new services first engage with SRE.

The Role of the Launch Coordination Engineer

Our Launch Coordination Engineering team is composed of
Launch Coordination Engineers (LCEs), who are either hired directly
into this role, or are SREs with hands-on experience running Google
services. LCEs are held to the same technical requirements as any
other SRE, and are also expected to have strong communication and
leadership skills — an LCE brings disparate parties together to work
toward a common goal, mediates occasional conflicts, and guides,
coaches, and educates fellow engineers.

A team dedicated to coordinating launches offers the following
advantages:

Breadth of experience

As a true cross-product team, the members
are active across almost all of Google’s product areas. Extensive
cross-product knowledge and relationships with many teams across
the company make LCEs excellent vehicles for knowledge transfer.

Cross-functional perspective

LCEs have a holistic view of the
launch, which enables them to coordinate among disparate teams in
SRE, development, and product management. This holistic approach is
particularly important for complicated launches that can span more than
half a dozen teams in multiple time zones.

Objectivity

As a nonpartisan advisor, an LCE plays a balancing
and mediating role between stakeholders including SRE, product
developers, product managers, and marketing.

Because Launch Coordination Engineer is an SRE role, LCEs are incentivized
to prioritize reliability over other concerns. A company that does not
share Google’s reliability goals, but shares its rapid rate of change,
may choose a different incentive structure.

Setting Up a Launch Process

Google has honed its launch process over a period of more than 10
years. Over time we have identified a number of criteria that
characterize a good launch process:

Lightweight

Easy on developers

Robust

Catches obvious errors

Thorough

Addresses important details consistently and
reproducibly

Scalable

Accommodates both a large number of simple launches
and fewer complex launches

Adaptable

Works well for common types of launches (for example,
adding a new UI language to a product) and new types of launches
(for example, the initial launch of the Chrome browser or Google
Fiber)

As you can see, some of these requirements are in obvious conflict.
For example, it’s hard to design a process that is simultaneously
lightweight and thorough. Balancing these criteria against each other
requires continuous work. Google has successfully employed a few
tactics to help us achieve these criteria:

Simplicity

Get the basics right. Don’t plan for every
eventuality.

A high touch approach

Experienced engineers customize the process
to suit each launch.

Fast common paths

Identify classes of launches that always follow a common pattern (such as launching a product in a new country), and provide a simplified launch process for this class.

Experience has demonstrated that engineers are likely to sidestep
processes that they consider too burdensome or as adding insufficient
value — especially when a team is already in crunch mode, and the launch
process is seen as just another item blocking their launch. For this
reason, LCE must optimize the launch experience continuously to strike
the right balance between cost and benefit.

The Launch Checklist

Checklists are used to reduce failure and ensure consistency and
completeness across a variety of disciplines. Common examples include
aviation preflight checklists and surgical checklists [Gaw09].
Similarly, LCE employs a launch checklist for launch
qualification. The checklist (Appendix E) helps an LCE assess the launch and
provides the launching team with action items and pointers to more
information. Here are some examples of items a checklist might
include:

	
Question: Do you need a new domain name?

	
Action item: Coordinate with marketing on your desired domain
name, and request registration of the domain. Here is a link to
the marketing form.

	
Question: Are you storing persistent data?

	
Action item: Make sure you implement backups. Here are
instructions for implementing backups.

	
Question: Could a user potentially abuse your service?

	
Action item: Implement rate limiting and quotas. Use the
following shared service.

In practice, there is a near-infinite number of questions to ask about
any system, and it is easy for the checklist to grow to an
unmanageable size. Maintaining a manageable burden on developers
requires careful curation of the checklist. In an effort to curb its
growth, at one point, adding new questions to Google’s launch
checklist required approval from a vice president. LCE now uses the
following guidelines:

	
Every question’s importance must be substantiated, ideally by a
previous launch disaster.

	
Every instruction must be concrete, practical, and reasonable for
developers to accomplish.

The checklist needs continuous attention in order to remain relevant
and up-to-date: recommendations change over time, internal systems are
replaced by different systems, and areas of concern from previous
launches become obsolete due to new policies and processes. LCEs
curate the checklist continuously and make small updates when team
members notice items that need to be modified. Once or twice a year a
team member reviews the entire checklist to identify obsolete items,
and then works with service owners and subject matter experts to
modernize sections of the checklist.

Driving Convergence and Simplification

In a large organization, engineers may not be aware of available
infrastructure for common tasks (such as rate limiting). Lacking
proper guidance, they’re likely to re-implement existing
solutions. Converging on a set of common infrastructure libraries
avoids this scenario, and provides obvious benefits to the company: it
cuts down on duplicate effort, makes knowledge more easily
transferable between services, and results in a higher level of
engineering and service quality due to the concentrated attention
given to infrastructure.

Almost all groups at Google participate in a common launch process,
which makes the launch checklist a vehicle for driving convergence on
common infrastructure. Rather than implementing a custom solution,
LCE can recommend existing infrastructure as building
blocks — infrastructure that is already hardened through years of
experience and that can help mitigate capacity, performance, or
scalability risks. Examples include common infrastructure for rate
limiting or user quotas, pushing new data to servers, or releasing new
versions of a binary. This type of standardization helped to radically
simplify the launch checklist: for example, long sections of the
checklist dealing with requirements for rate limiting could be
replaced with a single line that stated, “Implement rate limiting
using system X.”

Due to their breadth of experience across all of Google’s products,
LCEs are also in a unique position to identify opportunities for
simplification. While working on a launch, they witness the stumbling
blocks firsthand: which parts of a launch are causing the most
struggle, which steps take a disproportionate amount of time, which
problems get solved independently over and over again in similar ways,
where common infrastructure is lacking, or where duplication exists in
common infrastructure. LCEs have various ways to streamline the launch
experience and act as advocates for the launching teams. For example,
LCEs might work with the owners of a particularly arduous approval
process to simplify their criteria and implement automatic approvals
for common cases. LCEs can also escalate pain points to the owners of
common infrastructure and create a dialogue with the customers. By
leveraging experience gained over the course of multiple previous
launches, LCEs can devote more attention to individual concerns and
suggestions.

Launching the Unexpected

When a project enters into a new product space or vertical, an LCE may
need to create an appropriate checklist from scratch. Doing so often
involves synthesizing experience from relevant domain experts. When
drafting a new checklist, it can be helpful to structure the checklist
around broad themes such as reliability, failure modes, and processes.

For example, before launching Android, Google had rarely dealt with
mass consumer devices with client-side logic that we didn’t directly
control. While we can more or less easily fix a bug in Gmail within
hours or days by pushing new versions of JavaScript to browsers, such
fixes aren’t an option with mobile devices. Therefore, LCEs working
on mobile launches engaged mobile domain experts to determine
which sections of existing checklists did or did not apply, and where
new checklist questions were needed. In such conversations, it’s
important to keep the intent of each question in mind in order to
avoid mindlessly applying a concrete question or action item that’s
not relevant to the design of the unique product being launched. An
LCE facing an unusual launch must return to abstract first principles
of how to execute a safe launch, then respecialize to make the
checklist concrete and useful to developers.

Developing a Launch Checklist

A checklist is instrumental to launching new services and products
with reproducible reliability. Our launch checklist grew over
time and was periodically curated by members of the Launch
Coordination Engineering team. The details of a launch checklist will
be different for every company, because the specifics must be tailored to a
company’s internal services and infrastructure. In the following sections, we extract a number of themes from Google’s LCE checklists and provide examples
of how such themes might be fleshed out.

Architecture and Dependencies

An architecture review allows you to determine if the service is using
shared infrastructure correctly and identifies the owners of shared
infrastructure as additional stakeholders in the launch. Google has a
large number of internal services that are used as building blocks for
new products. During later stages of capacity planning (see
[Hix15a]), the list of dependencies identified in this section of
the checklist can be used to make sure that every dependency is
correctly provisioned.

Example checklist questions

	
What is your request flow from user to frontend to backend?

	
Are there different types of requests with different latency
requirements?

Example action items

	
Isolate user-facing requests from non user–facing requests.

	
Validate request volume assumptions. One page view can turn into
many requests.

Integration

Many companies’ services run in an internal ecosystem that entails
guidelines on how to set up machines, configure new services, set up
monitoring, integrate with load balancing, set up DNS addresses, and
so forth. These internal ecosystems usually grow over time, and often
have their own idiosyncrasies and pitfalls to navigate. Thus, this
section of the checklist will vary widely from company to company.

Example action items

	
Set up a new DNS name for your service.

	
Set up load balancers to talk to your service.

	
Set up monitoring for your new service.

Capacity Planning

New features may exhibit a temporary increase in usage at launch that
subsides within days. The type of workload or traffic mix from a
launch spike could be substantially different from steady state,
throwing off load test results. Public interest is notoriously hard to
predict, and some Google products had to accommodate launch spikes up
to 15 times higher than initially estimated. Launching initially
in one region or country at a time helps develop the confidence to
handle larger launches.

Capacity interacts with redundancy and availability. For instance, if
you need three replicated deployments to serve 100% of your traffic at
peak, you need to maintain four or five deployments, one or two of
which are redundant, in order to shield users from maintenance and
unexpected malfunctions. Datacenter and network resources often have
a long lead time and need to be requested far enough in advance for
your company to obtain them.

Example checklist questions

	
Is this launch tied to a press release, advertisement, blog post, or
other form of promotion?

	
How much traffic and rate of growth do you expect during and after
the launch?

	
Have you obtained all the compute resources needed to support your
traffic?

Failure Modes

A systematic look at the possible failure modes of a new service
ensures high reliability from the start. In this portion of the
checklist, examine each component and dependency and identify the
impact of its failure. Can the service deal with individual machine
failures? Datacenter outages? Network failures? How do we deal with
bad input data? Are we prepared for the possibility of a denial-of-service (DoS) attack? Can the service continue serving in degraded mode if
one of its dependencies fails? How do we deal with unavailability of a
dependency upon startup of the service? During runtime?

Example checklist questions

	
Do you have any single points of failure in your design?

	
How do you mitigate unavailability of your dependencies?

Example action items

	
Implement request deadlines to avoid running out of resources for
long-running requests.

	
Implement load shedding to reject new requests early in overload
situations.

Client Behavior

On a traditional website, there is rarely a need to take abusive
behavior from legitimate users into account. When every request is
triggered by a user action such as a click on a link, the request
rates are limited by how quickly users can click. To double the load,
the number of users would have to double.

This axiom no longer holds when we consider clients that initiate
actions without user input — for example, a cell phone app that
periodically syncs its data into the cloud, or a website that
periodically refreshes. In either of these scenarios, abusive client
behavior can very easily threaten the stability of a service. (There
is also the topic of protecting a service from abusive traffic such as
scrapers and denial-of-service attacks — which is different from
designing safe behavior for first-party clients.)

Example checklist question

	
Do you have auto-save/auto-complete/heartbeat functionality?

Example action items

	
Make sure that your client backs off exponentially on failure.

	
Make sure that you jitter automatic requests.

Processes and Automation

Google encourages engineers to use standard tools to automate common
processes. However, automation is never perfect, and every service has
processes that need to be executed by a human: creating a new release,
moving the service to a different data center, restoring data from
backups, and so on. For reliability reasons, we strive to minimize
single points of failure, which include humans.

These remaining processes should be documented before launch to ensure
that the information is translated from an engineer’s mind onto paper
while it is still fresh, and that it is available in an
emergency. Processes should be documented in such a way that any team
member can execute a given process in an emergency.

Example checklist question

	
Are there any manual processes required to keep the service running?

Example action items

	
Document all manual processes.

	
Document the process for moving your service to a new datacenter.

	
Automate the process for building and releasing a new version.

Development Process

Google is an extensive user of version control, and almost all
development processes are deeply integrated with the version control
system. Many of our best practices revolve around how to use the
version control system effectively. For example, we perform most
development on the mainline branch, but releases are built on separate
branches per release. This setup makes it easy to fix bugs in a
release without pulling in unrelated changes from the mainline.

Google also uses version control for other purposes, such as storing
configuration files. Many of the advantages of version control — history
tracking, attributing changes to individuals, and code reviews — apply
to configuration files as well. In some cases, we also propagate
changes from the version control system to the live servers
automatically, so that an engineer only needs to submit a change to
make it go live.

Example action items

	
Check all code and configuration files into the version control
system.

	
Cut each release on a new release branch.

External Dependencies

Sometimes a launch depends on factors beyond company control. Identifying these
factors allows you to mitigate the unpredictability they entail. For instance,
the dependency may be a code library maintained by third parties, or a service
or data provided by another company. When a vendor outage, bug, systematic
error, security issue, or unexpected scalability limit actually occurs, prior
planning will enable you to avert or mitigate damage to your users. In Google’s
history of launches, we’ve used filtering and/or rewriting proxies, data
transcoding pipelines, and caches to mitigate some of these risks.

Example checklist questions

	
What third-party code, data, services, or events does the service or
the launch depend upon?

	
Do any partners depend on your service? If so, do they need to be
notified of your launch?

	
What happens if you or the vendor can’t meet a hard launch deadline?

Rollout Planning

In large distributed systems, few events happen instantaneously. For
reasons of reliability, such immediacy isn’t usually ideal anyway. A
complicated launch might require enabling individual features on a
number of different subsystems, and each of those configuration
changes might take hours to complete. Having a working configuration
in a test instance doesn’t guarantee that the same configuration can
be rolled out to the live instance. Sometimes a complicated dance or
special functionality is required to make all components launch
cleanly and in the correct order.

External requirements from teams like marketing and PR might add
further complications. For example, a team might need a feature to
be available in time for the keynote at a conference, but need to keep
the feature invisible before the keynote.

Contingency measures are another part of rollout planning. What if you
don’t manage to enable the feature in time for the keynote? Sometimes
these contingency measures are as simple as preparing a backup slide
deck that says, “We will be launching this feature over the next days”
rather than “We have launched this feature.”

Example action items

	
Set up a launch plan that identifies actions to take to launch the
service. Identify who is responsible for each item.

	
Identify risk in the individual launch steps and implement
contingency measures.

Selected Techniques for Reliable Launches

As described in other parts of this book, Google has developed a
number of techniques for running reliable systems over the years. Some
of these techniques are particularly well suited to launching products
safely. They also provide advantages during regular operation of the
service, but it’s particularly important to get them right during the
launch phase.

Gradual and Staged Rollouts

One adage of system administration is “never change a running system.”
Any change represents risk, and risk should be minimized in order to
assure reliability of a system. What’s true for any small system is
doubly true for highly replicated, globally distributed systems like
those run by Google.

Very few launches at Google are of the “push-button” variety, in
which we launch a new product at a specific time for the entire world
to use. Over time, Google has developed a number of patterns that
allow us to launch products and features gradually and thereby
minimize risk; see Appendix B.

Almost all updates to Google’s services proceed gradually, according
to a defined process, with appropriate verification steps
interspersed. A new server might be installed on a few machines in one
datacenter and observed for a defined period of time. If all looks
well, the server is installed on all machines in one datacenter,
observed again, and then installed on all machines globally. The first
stages of a rollout are usually called “canaries” — an allusion to
canaries carried by miners into a coal mine to detect dangerous
gases. Our canary servers detect dangerous effects from the behavior
of the new software under real user traffic.

Canary testing is a concept embedded into many of Google’s internal
tools used to make automated changes, as well as for systems that
change configuration files. Tools that manage the installation of new
software typically observe the newly started server for a while,
making sure that the server doesn’t crash or otherwise misbehave. If
the change doesn’t pass the validation period, it’s automatically
rolled back.

The concept of gradual rollouts even applies to software that does not
run on Google’s servers. New versions of an Android app can be rolled
out in a gradual manner, in which the updated version is offered to a
subset of the installs for upgrade. The percentage of upgraded
instances gradually increases over time until it reaches 100%. This
type of rollout is particularly helpful if the new version results in
additional traffic to the backend servers in Google’s datacenters. This way, we can observe the effect on our servers as we
gradually roll out the new version and detect problems early.

The invite system is another type of gradual rollout. Frequently,
rather than allowing free signups to a new service, only a limited
number of users are allowed to sign up per day. Rate-limited signups
are often coupled with an invite system, in which a user can send a
limited number of invites to friends.

Feature Flag Frameworks

Google often augments prelaunch testing with strategies that mitigate
the risk of an outage. A mechanism to roll out changes slowly,
allowing for observation of total system behavior under real
workloads, can pay for its engineering investment in reliability,
engineering velocity, and time to market. These mechanisms have proven
particularly useful in cases where realistic test environments are
impractical, or for particularly complex launches for which the
effects can be hard to predict.

Furthermore, not all changes are equal. Sometimes you simply want to
check whether a small tweak to the user interface improves the
experience of your users. Such small changes shouldn’t involve
thousands of lines of code or a heavyweight launch process. You may
want to test hundreds of such changes in parallel.

Finally, sometimes you want to find out whether a small sample of
users like using an early prototype of a new, hard-to-implement
feature. You don’t want to spend months of engineering effort to
harden a new feature to serve millions of users, only to find that the feature is a flop.

To accommodate the preceding scenarios, several Google products devised
feature flag frameworks. Some of those frameworks were designed to
roll out new features gradually from 0% to 100% of users. Whenever a product introduced any such framework, the framework itself was
hardened as much as possible so that most of its applications would
not need any LCE involvement. Such frameworks usually meet the
following requirements:

	
Roll out many changes in parallel, each to a few servers, users,
entities, or datacenters

	
Gradually increase to a larger but limited group of users, usually
between 1 and 10 percent

	
Direct traffic through different servers depending on users,
sessions, objects, and/or locations

	
Automatically handle failure of the new code paths by design,
without affecting users

	
Independently revert each such change immediately in the event of
serious bugs or side effects

	
Measure the extent to which each change improves the user experience

Google’s feature flag frameworks fall into two general classes:

	
Those that primarily facilitate user interface improvements

	
Those that support arbitrary server-side and business logic changes

The simplest feature flag framework for user interface changes in
a stateless service is an HTTP payload rewriter at frontend
application servers, limited to a subset of cookies or another similar
HTTP request/response attribute. A configuration mechanism may specify
an identifier associated with the new code paths and the scope of the
change (e.g., cookie hash mod range), whitelists, and blacklists.

Stateful services tend to limit feature flags to a subset of unique
logged-in user identifiers or to the actual product entities accessed,
such as the ID of documents, spreadsheets, or storage objects. Rather
than rewrite HTTP payloads, stateful services are more likely to proxy
or reroute requests to different servers depending on the change,
conferring the ability to test improved business logic and more
complex new features.

Dealing with Abusive Client Behavior

The simplest example of abusive client behavior is a misjudgment of
update rates. A new client that syncs every 60 seconds, as opposed to
every 600 seconds, causes 10 times the load on the service. Retry
behavior has a number of pitfalls that affect user-initiated requests,
as well as client-initiated requests. Take the example of a service
that is overloaded and is therefore failing some requests: if the
clients retry the failed requests, they add load to an already
overloaded service, resulting in more retries and even more
requests. Instead, clients need to reduce the frequency of retries,
usually by adding exponentially increasing delay between retries, in
addition to carefully considering the types of errors that warrant a
retry. For example, a network error usually warrants a retry, but a
4xx HTTP error (which indicates an error on the client’s side) usually
does not.

Intentional or inadvertent synchronization of automated requests in a thundering herd (much like those described in Chapters 24 and 25) is
another common example of abusive client behavior. A phone app
developer might decide that 2 a.m. is a good time to download updates,
because the user is most likely asleep and won’t be inconvenienced by
the download. However, such a design results in a barrage of requests
to the download server at 2 a.m. every night, and almost no requests at
any other time. Instead, every client should choose the time for this
type of request randomly.

Randomness also needs to be injected into other periodic processes. To
return to the previously mentioned retries: let’s take the example of
a client that sends a request, and when it encounters a failure,
retries after 1 second, then 2 seconds, then 4 seconds, and so on.
Without randomness, a brief request spike that leads to an increased
error rate could repeat itself due to retries after 1 second, then 2
seconds, then 4 seconds. In order to even out these synchronized
events, each delay needs to be jittered (that is, adjusted by a random amount).

The ability to control the behavior of a client from the server side
has proven an important tool in the past. For an app on a device, such
control might mean instructing the client to check in periodically
with the server and download a configuration file. The file might
enable or disable certain features or set parameters, such as how
often the client syncs or how often it retries.

The client configuration might even enable completely new user-facing
functionality. By hosting the code that supports new functionality in
the client application before we activate that feature, we greatly
reduce the risk associated with a launch. Releasing a new version
becomes much easier if we don’t need to maintain parallel release
tracks for a version with the new functionality versus without the
functionality. This holds particularly true if we’re not dealing with
a single piece of new functionality, but a set of independent features
that might be released on different schedules, which would necessitate
maintaining a combinatorial explosion of different versions.

Having this sort of dormant functionality also makes aborting launches
easier when adverse effects are discovered during a rollout. In such
cases, we can simply switch the feature off, iterate, and release an
updated version of the app. Without this type of client configuration,
we would have to provide a new version of the app without the feature,
and update the app on all users’ phones.

Overload Behavior and Load Tests

Overload situations are a particularly complex failure mode, and
therefore deserve additional attention. Runaway success is usually the
most welcome cause of overload when a new service launches, but there
are myriad other causes, including load balancing failures, machine
outages, synchronized client behavior, and external attacks.

A naive model assumes that CPU usage on a machine providing a
particular service scales linearly with the load (for example, number
of requests or amount of data processed), and once available CPU is
exhausted, processing simply becomes slower. Unfortunately, services
rarely behave in this ideal fashion in the real world. Many services
are much slower when they are not loaded, usually due to the effect of
various kinds of caches such as CPU caches, JIT caches, and
service-specific data caches. As load increases, there is usually a
window in which CPU usage and load on the service correspond linearly,
and response times stay mostly constant.

At some point, many services reach a point of nonlinearity as they
approach overload. In the most benign cases, response times simply
begin to increase, resulting in a degraded user experience but not
necessarily causing an outage (although a slow dependency might cause
user-visible errors up the stack, due to exceeded RPC deadlines). In
the most drastic cases, a service locks up completely in response to
overload.

To cite a specific example of overload behavior: a service
logged debugging information in response to backend errors. It turned
out that logging debugging information was more expensive than
handling the backend response in a normal case. Therefore, as the
service became overloaded and timed out backend responses inside its
own RPC stack, the service spent even more CPU time logging these
responses, timing out more requests in the meantime until the service
ground to a complete halt. In services running on the Java Virtual Machine (JVM), a similar effect of grinding to a halt is sometimes
called “GC (garbage collection) thrashing.” In this scenario, the
virtual machine’s internal memory management runs in increasingly
closer cycles, trying to free up memory until most of the CPU time is
consumed by memory management.

Unfortunately, it is very hard to predict from first principles how a
service will react to overload. Therefore, load tests are an
invaluable tool, both for reliability reasons and capacity planning,
and load testing is required for most launches.

Development of LCE

In Google’s formative years, the size of the engineering team doubled
every year for several years in a row, fragmenting the engineering
department into many small teams working on many experimental new
products and features. In such a climate, novice engineers run the
risk of repeating the mistakes of their predecessors, especially when
it comes to launching new features and products successfully.

To mitigate the repetition of such mistakes by capturing the lessons
learned from past launches, a small band of experienced engineers,
called the “Launch Engineers,” volunteered to act as a consulting
team. The Launch Engineers developed checklists for new product
launches, covering topics such as:

	
When to consult with the legal department

	
How to select domain names

	
How to register new domains without misconfiguring DNS

	
Common engineering design and production deployment pitfalls

“Launch Reviews,” as the Launch Engineers’ consulting sessions
came to be called, became a common practice days to weeks before the
launch of many new products.

Within two years, the product deployment requirements in the launch
checklist grew long and complex. Combined with the increasing
complexity of Google’s deployment environment, it became more and
more challenging for product engineers to stay up-to-date on how to
make changes safely. At the same time, the SRE organization was
growing quickly, and inexperienced SREs were sometimes overly cautious
and averse to change. Google ran a risk that the resulting
negotiations between these two parties would reduce the velocity of
product/feature launches.

To mitigate this scenario from the engineering perspective, SRE staffed a small, full-time team of LCEs in 2004. They were responsible for accelerating the
launches of new products and features, while at the same time applying
SRE expertise to ensure that Google shipped reliable products with
high availability and low latency.

LCEs were responsible for making sure launches were executing quickly without
the services falling over, and that if a launch did fail, it didn’t take down
other products. LCEs were also responsible for keeping stakeholders informed of
the nature and likelihood of such failures whenever corners were cut in order to accelerate time to market. Their consulting sessions were formalized
as Production Reviews.

Evolution of the LCE Checklist

As Google’s environment grew more complex, so did both the Launch
Coordination Engineering checklist (see Appendix E)
and the volume of launches. In 3.5 years, one LCE ran 350 launches
through the LCE Checklist. As the team averaged five engineers during
this time period, this translates into a Google launch throughput of
over 1,500 launches in 3.5 years!

While each question on the LCE Checklist is simple, much complexity is
built in to what prompted the question and the implications of its
answer. In order to fully understand this degree of complexity, a new
LCE hire requires about six months of training.

As the volume of launches grew, keeping pace with the annual doubling
of Google’s engineering team, LCEs sought ways to streamline their
reviews. LCEs identified categories of low-risk launches that were
highly unlikely to face or cause mishaps. For example, a feature
launch involving no new server executables and a traffic increase
under 10% would be deemed low risk. Such launches were faced with an
almost trivial checklist, while higher-risk launches underwent the
full gamut of checks and balances. By 2008, 30% of reviews were considered low-risk.

Simultaneously, Google’s environment was scaling up, removing
constraints on many launches. For instance, the acquisition of YouTube
forced Google to build out its network and utilize bandwidth more
efficiently. This meant that many smaller products would “fit within
the cracks,” avoiding complex network capacity planning and
provisioning processes, thus accelerating their launches. Google also
began building very large datacenters capable of hosting several
dependent services under one roof. This development simplified the
launch of new products that needed large amounts of capacity at
multiple preexisting services upon which they depended.

Problems LCE Didn’t Solve

Although LCEs tried to keep the bureaucracy of reviews to a minimum, such
efforts were insufficient. By 2009, the difficulties of launching a small new
service at Google had become a legend. Services that grew to a larger scale
faced their own set of problems that Launch Coordination could not solve.

Scalability changes

When products are successful far beyond any
early estimates, and their usage increases by more than two orders of
magnitude, keeping pace with their load necessitates many design
changes. Such scalability changes, combined with ongoing feature
additions, often make the product more complex, fragile, and difficult
to operate. At some point, the original product architecture becomes
unmanageable and the product needs to be completely rearchitected.
Rearchitecting the product and then migrating all users from the old
to the new architecture requires a large investment of time and
resources from developers and SREs alike, slowing down the rate of new
feature development during that period.

Growing operational load

When running a service after it launches,
operational load, the amount of manual and repetitive engineering
needed to keep a system functioning, tends to grow over time unless
efforts are made to control such load. Noisiness of automated
notifications, complexity of deployment procedures, and the overhead
of manual maintenance work tend to increase over time and consume
increasing amounts of the service owner’s bandwidth, leaving the
team less time for feature development. SRE has an internally
advertised goal of keeping operational work below a maximum of 50%; see Chapter 5.
Staying below this maximum requires constant tracking of sources of
operational work, as well as directed effort to remove these sources.

Infrastructure churn

If the underlying infrastructure (such as
systems for cluster management, storage, monitoring, load balancing,
and data transfer) is changing due to active development by
infrastructure teams, the owners of services running on the
infrastructure must invest large amounts of work to simply keep up
with the infrastructure changes. As infrastructure features upon which
services rely are deprecated and replaced by new features, service
owners must continually modify their configurations and rebuild their
executables, consequently “running fast just to stay in the same
place.” The solution to this scenario is to enact some type of churn
reduction policy that prohibits infrastructure engineers from
releasing backward-incompatible features until they also automate the
migration of their clients to the new feature. Creating automated
migration tools to accompany new features minimizes the work imposed
on service owners to keep up with infrastructure churn.

Solving these problems requires company-wide efforts that are far beyond the
scope of LCE: a combination of better platform APIs and frameworks (see
Chapter 32), continuous build and test automation, and better
standardization and automation across Google’s production services.

Conclusion

Companies undergoing rapid growth with a high rate of change to
products and services may benefit from the equivalent of a Launch
Coordination Engineering role. Such a team is especially
valuable if a company plans to double its product developers every
one or two years, if it must scale its services to hundreds of
millions of users, and if reliability despite a high rate of change is
important to its users.

The LCE team was Google’s solution to the problem of achieving safety
without impeding change. This chapter introduced some of the
experiences accumulated by our unique LCE role over a 10-year period under exactly such circumstances. We hope that our
approach will help inspire others facing similar challenges in their
respective organizations.

Part IV. Management

Our final selection of topics covers working together in a team,
and working as teams. No SRE is an island, and there are some distinctive
ways in which we work.

Any organization that aspires to be serious about running an effective
SRE arm needs to consider training. Teaching SREs how to think in a
complicated and fast-changing environment with a well-thought-out and
well-executed training program has the promise of instilling best
practices within a new hire’s first few weeks or months that otherwise
would take months or years to accumulate. We discuss strategies for
doing just that in Chapter 28, Accelerating SREs to On-Call and Beyond.

As anyone in the operations world knows, responsibility for any
significant service comes with a lot of interruptions: production
getting in a bad state, people requesting updates to their favorite
binary, a long queue of consultation
requests…managing interrupts under
turbulent conditions is a necessary skill, as we’ll discuss in Chapter 29, Dealing with Interrupts.

If the turbulent conditions have persisted for long enough, an SRE
team needs to start recovering
from operational overload. We have just the flight plan for you in Chapter 30, Embedding an SRE to Recover from Operational Overload.

We write in Chapter 31, Communication and Collaboration in SRE, about the different roles within SRE; cross-team,
cross-site, and cross-continent communication; running production meetings; and case studies of how
SRE has collaborated well.

Finally, Chapter 32, The Evolving SRE Engagement Model, examines a
cornerstone of the operation of SRE: the production readiness review (PRR), a
crucial step in onboarding a new service. We
discuss how to conduct PRRs, and how to move beyond this successful, but also
limited, model.

Further Reading from Google SRE

Building reliable systems requires a carefully calibrated mix of skills,
ranging from software development to the arguably less-well-known systems
analysis and engineering disciplines. We write about the latter
disciplines in “The Systems Engineering Side of Site Reliability Engineering” [Hix15b].

Hiring SREs well is critical to having a high-functioning reliability
organization, as explored in “Hiring Site Reliability Engineers” [Jon15]. Google’s hiring practices have
been detailed in texts like Work Rules! [Boc15],1 but hiring
SREs has its own set of particularities. Even by Google’s overall
standards, SRE candidates are difficult to find and even harder to
interview effectively.

1 Written by Laszlo Bock, Google’s Senior VP of People Operations.

Chapter 28. Accelerating SREs to On-Call and Beyond

How Can I Strap a Jetpack to My Newbies While Keeping Senior SREs Up to Speed?

Written by Andrew Widdowson

Edited by Shylaja Nukala

You’ve Hired Your Next SRE(s), Now What?

You’ve hired new employees into your organization, and they’re starting
as Site Reliability Engineers. Now you have to train them on the job.
Investing up front in the education and technical orientation of new
SREs will shape them into better engineers. Such training will
accelerate them to a state of proficiency faster, while making their
skill set more robust and balanced.

Successful SRE teams are built on trust — in order to maintain a service
consistently and globally, you need to trust that your fellow on-callers
know how your system works,1 can diagnose
atypical system behaviors, are comfortable with reaching out for help,
and can react under pressure to save the day. It is essential, then, but
not sufficient, to think of SRE education through the lens of, “What
does a newbie need to learn to go on-call?” Given the requirements
regarding trust, you also need to ask questions like:

	
How can my existing on-callers assess the readiness of the newbie for on-call?

	
How can we harness the enthusiasm and curiosity in our new hires to
make sure that existing SREs benefit from it?

	
What activities can I commit our team to that benefit everyone’s
education, but that everyone will like?

Students have a wide range of learning preferences. Recognizing that you
will hire people who have a mix of these preferences, it would be
shortsighted to only cater to one style at the expense of the others.
Thus, there is no style of education that works best to train new SREs,
and there is certainly no one magic formula that will work for all SRE
teams. Table 28-1 lists recommended training practices (and their corresponding anti-patterns) that are well known to SRE at Google. These practices represent a wide range of options available for making your team
well educated in SRE concepts, both now and on an ongoing basis.

Table 28-1. SRE education practices

	Recommended patterns
	Anti-patterns

	Designing concrete, sequential learning experiences for students to follow

	Deluging students with menial work (e.g., alert/ticket triage) to train them; “trial by fire”

	Encouraging reverse engineering, statistical thinking, and working from fundamental principles

	Training strictly through operator procedures, checklists, and playbooks

	Celebrating the analysis of failure by suggesting postmortems for students to read

	Treating outages as secrets to be buried in order to avoid blame

	Creating contained but realistic breakages for students to fix using real monitoring and tooling

	Having the first chance to fix something only occur after a student is already on-call

	Role-playing theoretical disasters as a group, to intermingle a team’s problem-solving approaches

	Creating experts on the team whose techniques and knowledge are compartmentalized

	Enabling students to shadow their on-call rotation early, comparing notes with the on-caller

	Pushing students into being primary on-call before they achieve a holistic understanding of their service

	Pairing students with expert SREs to revise targeted sections of the on-call training plan

	Treating on-call training plans as static and untouchable except by subject matter experts

	Carving out nontrivial project work for students to undertake, allowing them to gain partial ownership in the stack

	Awarding all new project work to the most senior SREs, leaving junior SREs to pick up the scraps

The rest of this chapter presents major themes that we have found to be
effective in accelerating SREs to on-call and beyond. These concepts can
be visualized in a blueprint for bootstrapping SREs
(Figure 28-1).

[image: A blueprint for bootstrapping an SRE to on-call and beyond]
Figure 28-1. A blueprint for bootstrapping an SRE to on-call and beyond

This illustration captures best practices that SRE teams can pick from to help bootstrap new members, while keeping senior talent fresh. From the many tools here, you can pick and choose the activities that best suit your team.

The illustration has two axes:

	
The x-axis represents the spectrum between different types of work, ranging from abstract to applied activities.

	
The y-axis represents time. Read from the top down, new SREs have very little knowledge about the systems and services they’ll be responsible for, so postmortems detailing how these systems have failed in the past are a good starting point. New SREs can also try to reverse engineer systems from fundamentals, since they’re starting from zero. Once they understand more about their systems and have done some hands-on work, SREs are ready to shadow on-call and to start mending incomplete or out-of-date documentation.

Tips for interpreting this illustration:

	
Going on-call is a milestone in a new SRE’s career, after which point learning becomes a lot more nebulous, undefined, and self-directed — hence the dashed lines around activities that happen at or after the SRE goes on-call.

	
The triangular shape of project work & ownership indicates that project work starts out small and builds over time, becoming more complex and likely continuing well after going on-call.

	
Some of these activities and practices are very abstract/passive, and some are very applied/active. A few activities are mixes of both. It’s good to have a variety of learning modalities to suit different learning styles.

	
For maximum effect, training activities and practices should be appropriately paced: some are appropriate to undertake straightaway, some should happen right before an SRE officially goes on-call, and some should be continual and ongoing even by seasoned SREs. Concrete learning experiences should happen for the entire time leading up to the SRE going on-call.

Initial Learning Experiences: The Case for Structure Over Chaos

As discussed elsewhere in this book, SRE teams undertake a natural mix
of proactive2 and
reactive3 work. It should be a
strong goal of every SRE team to contain and reduce reactive work
through ample proactivity, and the approach you take to onboarding your
newbie(s) should be no exception. Consider the following all-too-common,
but sadly suboptimal, onboarding process:

John is the newest member of the FooServer SRE team. Senior SREs on this team are tasked with a lot of grunt work, such as responding to tickets, dealing with alerts, and performing tedious binary rollouts. On John’s first day on the job, he is assigned all new incoming tickets. He is told that he can ask any member of the SRE team to help him obtain the background necessary to decipher a ticket. “Sure, there will be a lot of upfront learning that you’ll have to do,” says John’s manager, “but eventually you’ll get much faster at these tickets. One day, it will just click and you’ll know a lot about all of the tools we use, the procedures we follow, and the systems we maintain.” A senior team member comments, “We’re throwing you in the deep end of the pool here.”

This “trial by fire” method of orienting one’s newbies is often born out of a team’s current environment; ops-driven, reactive SRE teams “train”
their newest members by making them…well, react! Over and over again.
If you’re lucky, the engineers who are already good at navigating
ambiguity will crawl out of the hole you’ve put them in. But chances
are, this strategy has alienated several capable engineers. While such
an approach may eventually produce great operations employees, its
results will fall short of the mark. The trial-by-fire approach also
presumes that many or most aspects of a team can be taught strictly by
doing, rather than by reasoning. If the set of work one encounters in a
tickets queue will adequately provide training for said job, then this
is not an SRE position.

SRE students will have questions like the following:

	
What am I working on?

	
How much progress have I made?

	
When will these activities accumulate enough experience for me to
go on-call?

Making the jump from a previous company or university, while changing
job roles (from traditional software engineer or traditional systems
administrator) to this nebulous Site Reliability Engineer role
is often enough to knock students’ confidence down several
times. For more introspective personalities (especially regarding
questions #2 and #3), the uncertainties incurred by nebulous or
less-than-clear answers can lead to slower development or retention
problems. Instead, consider the approaches outlined in the following sections. These
suggestions are as concrete as any ticket or alert, but they are also
sequential, and thus far more rewarding.

Learning Paths That Are Cumulative and Orderly

Put some amount of learning order into your system(s) so that your new
SREs see a path before them. Any type of training is better than random
tickets and interrupts, but do make a conscious effort to combine the
right mix of theory and application: abstract concepts that will recur
multiple times in a newbie’s journey should be frontloaded in their
education, while the student should also receive hands-on experience as
soon as practically possible.

Learning about your stack(s) and subsystem(s) requires a starting point.
Consider whether it makes more sense to group trainings together by
similarity of purpose, or by normal-case order of execution. For
example, if your team is responsible for a real-time, user-facing
serving stack, consider a curriculum order like the following:

1) How a query enters the system

Networking and datacenter
fundamentals, frontend load balancing, proxies, etc.

2) Frontend serving

Application frontend(s), query logging, user
experience SLO(s), etc.

3) Mid-tier services

Caches, backend load balancing

4) Infrastructure

Backends, infrastructure, and compute resources

5) Tying it all together

Debugging techniques, escalation procedures,
and emergency scenarios

How you choose to present the learning opportunities (informal
whiteboard chats, formal lectures, or hands-on discovery exercises) is
up to you and the SREs helping you structure, design, and deliver
training. The Google Search SRE team structures this learning through a
document called the “on-call learning checklist.” A simplified section of
an on-call learning checklist might look like the following:

	The Results Mixing Server (“Mixer”)
	

	Frontended by: Frontend server

Backends called: Results Retrieval Server,
Geolocation Server, Personalization Database

SRE experts: Sally W, Dave K, Jen P

Developer contacts: Jim T, results-team@

	Know before moving on:

 	Which clusters have Mixer deployed

 	How to roll back a Mixer release

 	Which backends of Mixer are considered “critical path” and why

	Read and understand the following docs:

 	Results Mixing Overview: “Query execution” section

 	Results Mixing Overview: “Production” section

 	Playbook: How to Roll Out a New Results Mixing Server

 	A Performance Analysis of Mixer

 	Comprehension questions:

 	Q: How does the release schedule change if a company holiday occurs on the normal release build day?

	Q: How can you fix a bad push of the geolocation dataset?

Note that the preceding section does not directly encode procedures,
diagnostic steps, or playbooks; instead, it’s a relatively future-proof
write-up focusing strictly on enumerating expert contacts, highlighting
the most useful documentation resources, establishing basic knowledge
you must gather and internalize, and asking probing questions that can
only be answered once that basic knowledge has been absorbed. It also
provides concrete outcomes, so that the student knows what kinds of
knowledge and skills they will have gained from completing this section
of the learning checklist.

It’s a good idea for all interested parties to get a sense of how much
information the trainee is retaining. While this feedback mechanism
perhaps doesn’t need to be as formal as a quiz, it is a good
practice to have complete bits of homework that pose questions about how
your service(s) work. Satisfactory answers, checked by a student’s
mentor, are a sign that learning should continue to the next phase.
Questions about the inner workings of your service might look similar to
the following:

	
Which backends of this server are considered “in the critical path,”
and why?

	
What aspects of this server could be simplified or automated?

	
Where do you think the first bottleneck is in this architecture? If
that bottleneck were to be saturated, what steps could you take to
alleviate it?

Depending on how the access permissions are configured for your service,
you can also consider implementing a tiered access model. The first tier
of access would allow your student read-only access to the inner
workings of the components, and a later tier would permit them to mutate
the production state. Completing sections of the on-call learning
checklist satisfactorily would earn the student progressively deeper
access to the system. The Search SRE team calls these attained levels
“powerups”4 on the route to
on-call, as trainees are eventually added into the highest level of
systems access.

Targeted Project Work, Not Menial Work

SREs are problem solvers, so give them a hearty problem to solve! When
starting out, having even a minor sense of ownership in the team’s
service can do wonders for learning. In the reverse, such ownership can
also make great inroads for trust building among senior colleagues, because they will approach their junior colleague to learn about the new
component(s) or processes. Early opportunities for ownership are
standard across Google in general: all engineers are given a starter
project that’s meant to provide a tour through the infrastructure
sufficient to enable them to make a small but useful contribution early.
Having the new SRE split time between learning and project work will
also give them a sense of purpose and productivity, which would not
happen if they spent time only on learning or project work. Several starter
project patterns that seem to work well include:

	
Making a trivial user-visible feature change in a serving stack, and
subsequently shepherding the feature release all the way through to production.
Understanding both the development toolchain and the binary release process
encourages empathy for the developers.

	
Adding monitoring to your service where there are currently blind spots. The
newbie will have to reason with the monitoring logic, while reconciling their
understanding of a system with how it actually (mis)behaves.

	
Automating a pain point that isn’t quite painful enough to have been
automated already, providing the new SRE with an appreciation for the value
SREs place on removing toil from our day-to-day operations.

Creating Stellar Reverse Engineers and Improvisational Thinkers

We can propose a set of guidelines for how to train new SREs, but
what should we train them on? Training material will depend on the
technologies being used on the job, but the more important question is:
what kind of engineers are we trying to create? At the scale and
complexity at which SREs operate, they cannot afford to merely be
operations-focused, traditional system administrators. In addition to having a
large-scale engineering mindset, SREs should exhibit the following
characteristics:

	
In the course of their jobs, they will come across systems they’ve
never seen before, so they need to have strong reverse engineering
skills.

	
At scale, there will be anomalies that are hard to detect, so they’ll
need the ability to think statistically, rather than procedurally, to
uncloak problems.

	
When standard operating procedures break down, they’ll need to be
able to improvise fully.

Let’s examine these attributes further, so that we can understand how to
equip our SREs for these skills and behaviors.

Reverse Engineers: Figuring Out How Things Work

Engineers are curious about how systems they’ve never seen before work — or, more likely, how the current versions of systems they used to know quite well work. By having a baseline understanding
of how systems work at your company, along with a willingness to dig
deep into the debugging tools, RPC boundaries, and logs of your binaries
to unearth their flows, SREs will become more efficient at homing in on
unexpected problems in unexpected system architectures. Teach your SREs
about the diagnostic and debugging surfaces of your applications and
have them practice drawing inferences from the information these
surfaces reveal, so that such behavior becomes reflexive when dealing
with future outages.

Statistical and Comparative Thinkers: Stewards of the Scientific Method Under Pressure

You can think of an SRE’s approach to incident response for large-scale
systems as navigating through a massive decision tree unfolding in front
of them. In the limited time window afforded by the demands of incident
response, the SRE can take a few actions out of hundreds with the goal
of mitigating the outage, either in the short term or the long term.
Because time is often of the utmost importance, the SRE has to
effectively and efficiently prune this decision tree. The ability to do
so is partially gained through experience, which only comes with time
and exposure to a breadth of production systems. This experience must be
paired with careful construction of hypotheses that, when proven or
disproven, even further narrow down that decision space. Put another
way, tracking down system breakages is often akin to playing a game of
“which of these things is not like the other?” where “things” might
entail kernel version, CPU architecture, binary version(s) in your
stack, regional traffic mix, or a hundred other factors.
Architecturally, it’s the team’s responsibility to ensure all of these
factors can be controlled for and individually analyzed and compared.
However, we should also train our newest SREs to become good analysts
and comparators from their earliest moments on the job.

Improv Artists: When the Unexpected Happens

You try out a fix for the breakage, but it doesn’t work. The
developer(s) behind the failing system are nowhere to be found. What do
you do now? You improvise! Learning multiple tools that can solve parts
of your problem allows you to practice defense in depth in your own
problem-solving behaviors. Being too procedural in the face of an
outage, thus forgetting your analytical skills, can be the difference
between getting stuck and finding the root cause. A case of bogged-down
troubleshooting can be further compounded when an SRE brings too many
untested assumptions about the cause of an outage into their decision
making. Demonstrating that there are many analytical traps that SREs can
fall into, which require “zooming out” and taking a different approach
to resolution, is a valuable lesson for SREs to learn early on.

Given these three aspirational attributes of high-performing SREs, what
courses and experiences can we provide new SREs in order to send them
along a path in the right direction? You need to come up with your own
course content that embodies these attributes, in addition to the other
attributes specific to your SRE culture. Let’s consider one class that
we believe hits all of the aforementioned points.

Tying This Together: Reverse Engineering a Production Service

“When it came time to learn [part of the Google Maps stack], [a new
SRE] asked if, rather than passively having someone explain the service,
she could do this herself — learning everything via Reverse
Engineering class techniques, and having the rest of us correct her/fill
in the blanks for whatever she missed or got wrong. The result? Well, it
was probably more correct and useful than it would have been if I’d
given the talk, and I’ve been on-call for this for over 5 years!”
Paul Cowan, Google Site Reliability Engineer

One popular class we offer at Google is called “Reverse
Engineering a Production Service (without help from its owners).” The
problem scenario presented appears simple at first. The entire
Google News Team — SRE, Software Engineers, Product Management, and so
forth — has gone on a company trip: a cruise of the Bermuda Triangle. We
haven’t heard from the team for 30 days, so our students are the
newly appointed Google News SRE Team. They need to figure out how the
serving stack works from end-to-end in order to commandeer it and keep
it running.

After being given this scenario, the students are led through
interactive, purpose-driven exercises in which they trace the
inbound path of their web browser’s query through Google’s
infrastructure. At each stage in the process, we emphasize that it is
important to learn multiple ways to discover the connectivity between
production servers, so that connections are not missed. In the middle of
the class, we challenge the students to find another endpoint for the
incoming traffic, demonstrating that our initial assumption was too
narrowly scoped. We then challenge our students to find other ways into
the stack. We exploit the highly instrumented nature of our production
binaries, which self-report their RPC connectivity, as well as our
available white-box and black-box monitoring, to determine
which path(s) users’ queries take.5 Along the way, we build a
system diagram and also discuss components that are shared
infrastructure that our students are likely to see again in the future.

At the end of the class, the students are charged with a task. Each
student returns to their home team and asks a senior SRE to help them
select a stack or slice of a stack for which they’ll be on-call. Using
the skills learned in classes, the student then diagrams that stack on
their own and presents their findings to the senior SRE. Undoubtedly
the student will miss a few subtle details, which will make for a good
discussion. It’s also likely that the senior SRE will learn something
from the exercise as well, exposing drifts in their prior understanding
of the ever-changing system. Because of the rapid change of production
systems, it is important that your team welcome any chance to
refamiliarize themselves with a system, including by learning from the
newest, rather than oldest, members of the team.

Five Practices for Aspiring On-Callers

Being on-call is not the single most important purpose of any SRE, but
production engineering responsibilities usually do involve some kind of
urgent notification coverage. Someone who is capable of
responsibly taking on-call is someone who understands the system that they
work on to a reasonable depth and breadth. So we’ll use “able to take
on-call” as a useful proxy for “knows enough and can figure out the
rest.”

A Hunger for Failure: Reading and Sharing Postmortems

“Those who cannot remember the past are condemned to repeat it.”
George Santayana, philosopher and essayist

Postmortems (see Chapter 15) are an important part
of continuous improvement. They are a blame-free way of getting at the
many root causes of a significant or visible outage. When
writing a postmortem, keep in mind that its most appreciative audience
might be an engineer who hasn’t yet been hired. Without radical
editing, subtle changes can be made to our best
postmortems to make them “teachable” postmortems.

Even the best postmortems aren’t helpful if they languish in the bottom
of a virtual filing cabinet. It then follows that your team should
collect and curate valuable postmortems to serve as educational
resources for future newbies. Some postmortems are rote, but “teachable
postmortems” that provide insights into structural or novel failures of
large-scale systems are as good as gold for new students.

Ownership of postmortems isn’t limited just to authorship. It’s a point
of pride for many teams to have survived and documented their largest
outages. Collect your best postmortems and make them
prominently available for your newbies — in addition to interested parties
from related and/or integrating teams — to read. Ask
related teams to publish their best postmortems where you can access
them.

Some SRE teams at Google run “postmortem reading clubs” where
fascinating and insightful postmortems are circulated, pre-read, and
then discussed. The original author(s) of the postmortem can be the
guest(s) of honor at the meeting. Other teams organize “tales of fail”
gatherings where the postmortem author(s) semiformally present,
recounting the outage and effectively driving the discussion themselves.

Regular readings or presentations on outages, including trigger
conditions and mitigation steps, do wonders for building a new SRE’s
mental map and understanding of production and on-call response.
Postmortems are also excellent fuel for future abstract disaster
scenarios.

Disaster Role Playing

 “Once a week we have a meeting where a victim is chosen to be on the spot in front of the group, and a scenario — often a real one taken from the annals of Google history — is thrown at him or her. The victim, whom I think of as a game show contestant, tells the game show host what s/he would do or query to understand or solve the problem, and the host tells the victim what happens with each action or observation. It’s like SRE Zork. You are in a maze of twisty monitoring consoles, all alike. You must save innocent users from slipping into the Chasm of Excessive Query Latency, save datacenters from Near-Certain Meltdown, and spare us all the embarrassment of Erroneous Google Doodle Display.”

 Robert Kennedy, former Site Reliability Engineer for Google Search and healthcare.gov6

When you have a group of SREs of wildly different experience levels,
what can you do to bring them all together, and enable them to learn from
each other? How do you impress the SRE culture and problem-solving
nature of your team upon a newbie, while also keeping grizzled veterans
apprised of new changes and features in your stack? Google SRE teams
address these challenges through a time-honored tradition of regular
disaster role playing. Among other names, this
exercise is commonly referred to as “Wheel of Misfortune” or “Walk the
Plank.” The sense of humorous danger such titles lend the exercise makes
it less intimidating to freshly hired SREs.

At its best, these exercises become a weekly ritual in which every
member of the group learns something. The formula is straightforward
and bears some resemblance to a tabletop RPG (Role Playing Game): the
“game master” (GM) picks two team members to be primary and secondary
on-call; these two SREs join the GM at the front of the room. An
incoming page is announced, and the on-call team responds with what
they would do to mitigate and investigate the outage.

The GM has carefully prepared a scenario that is about to unfold. This
scenario might be based upon a previous outage for which the newer team
members weren’t around or that older team members have forgotten. Or
perhaps the scenario is a foray into a hypothetical breakage of a new or
soon-to-be-launched feature in the stack, rendering all members of the
room equally unprepared to grapple with the situation. Better still, a
coworker might find a new and novel breakage in production, and today’s
scenario expands on this new threat.

Over the next 30–60 minutes, the primary and secondary on-callers attempt
to root-cause the issue. The GM happily provides additional context as
the problem unfolds, perhaps informing the on-callers (and their
audience) of what the graphs on their monitoring dashboard might look
like during the outage. If the incident requires escalation outside of
the home team, the GM pretends to be a member of that other team for the
purposes of the scenario. No virtual scenario will be perfect, so at
times the GM may have to steer participants back on track by redirecting
the on-callers away from red herrings, introducing urgency and clarity by
adding other stimuli,7 or asking urgent and pointed questions.8

When your disaster RPG is successful, everyone will have learned
something: perhaps a new tool or trick, a different perspective on how
to solve a problem, or (especially gratifying to new team members) a
validation that you could have solved this week’s problem if you had
been picked. With some luck, this exercise will inspire teammates to
eagerly look forward to next week’s adventure or to ask to become the
game master for an upcoming week.

Break Real Things, Fix Real Things

A newbie can learn much about SRE by reading documentation, postmortems, and
taking trainings. Disaster role playing can help get a newbie’s mind into
the game. However, the experience derived from hands-on experience
breaking and/or fixing real production systems is even better. There
will be plenty of time for hands-on experience once a newbie has gone
on-call, but such learning should happen before a new SRE reaches that
point. Therefore, provide for such hands-on experiences much earlier in
order to develop the student’s reflexive responses for using your
company’s tooling and monitoring to approach a developing outage.

Realism is paramount in these interactions. Ideally, your team has a
stack that is multihomed and provisioned in such a way that you have at
least one instance you can divert from live traffic and temporarily loan
to a learning exercise. Alternatively, you might have a smaller, but
still fully featured, staging or QA instance of your stack that can be
borrowed for a short time. If possible, subject the stack to synthetic
load that approximates real user/client traffic, in addition to resource
consumption, if possible.

The opportunities for learning from a real production system under
synthetic load are abundant. Senior SREs will have experienced all sorts
of troubles: misconfigurations, memory leaks, performance regressions,
crashing queries, storage bottlenecks, and so forth. In this realistic
but relatively risk-free environment, proctors can manipulate the job
set in ways that alter the behavior of the stack, forcing new SREs to
find differences, determine contributing factors, and ultimately repair
systems to restore appropriate behavior.

As an alternative to the overhead of asking a senior SRE to carefully
plan a specific type of breakage that the new SRE(s) must repair, you
can also work in the opposite direction with an exercise that may also
increase participation from the entire team: work from a known good
configuration and slowly impair the stack at selected bottlenecks,
observing upstream and downstream efforts through your monitoring. This
exercise is valued by the Google Search SRE team, whose
version of this exercise is called “Let’s burn a search cluster to the
ground!” The exercise proceeds as follows:

	
As a group, we discuss what observable performance characteristics
might change as we cripple the stack.

	
Before inflicting the planned damage, we poll the participants for
their guesses and reasoning about their predictions about how the system
will react.

	
We validate assumptions and justify the reasoning behind the
behaviors we see.

This exercise, which we perform on a quarterly basis, shakes out new
bugs that we eagerly fix, because our systems do not always degrade as
gracefully as we would expect.

Documentation as Apprenticeship

Many SRE teams maintain an “on-call learning checklist,” which is an
organized reading and comprehension list of the technologies and
concepts relevant to the system(s) they maintain. This list must be
internalized by a student before they’re eligible to serve as a shadow
on-caller. Take a moment to revisit the example on-call learning checklist in Table 28-1. The learning checklist
serves different purposes for different people:

	
To the student:

	
This doc helps establish the boundaries of the system their team
supports.

	
By studying this list, the student gains a sense of what systems are
most important and why. When they understand the information therein,
they can move on to other topics they need to learn, rather than
dwelling on learning esoteric details that can be learned over time.

	
To mentors and managers: Student progress through the learning
checklist can be observed. The checklist answers questions such as:

	
What sections are you working on today?

	
What sections are the most confusing?

	
To all team members: The doc becomes a social contract by which
(upon mastery) the student joins the ranks of on-call. The learning
checklist sets the standard that all team members should aspire to and
uphold.

In a rapidly changing environment, documentation can fall out of date
quickly. Outdated documentation is less of a problem for senior SREs who
are already up to speed, because they keep state on the world and
its changes in their own heads. Newbie SREs are much more in need of
up-to-date documentation, but may not feel empowered or knowledgeable
enough to make changes. When designed with just the right amount of
structure, on-call documentation can become an adaptable body of work
that harnesses newbie enthusiasm and senior knowledge to keep everyone
fresh.

In Search SRE, we anticipate the arrival of new team member(s) by
reviewing our on-call learning checklist, and sorting its sections by how
up-to-date they are. As the new team member arrives, we point them to
the overall learning checklist, but also task them with overhauling one
or two of the most outdated sections. As you can see in
Table 28-1, we label the senior SRE
and developer contacts for each technology. We encourage the student to
make an early connection with those subject matter experts, so that they
might learn the inner workings of the selected technology directly.
Later, as they become more familiar with the scope and tone of the
learning checklist, they are expected to contribute a revised learning
checklist section, which must be peer-reviewed by one or more senior
SREs that are listed as experts.

Shadow On-Call Early and Often

Ultimately, no amount of hypothetical disaster exercises or other
training mechanisms will fully prepare an SRE for going on-call. At the
end of the day, tackling real outages will always be more beneficial
from a learning standpoint than engaging with hypotheticals. Yet it’s
unfair to make newbies wait until their first real page to have a chance to
learn and retain knowledge.

After the student has made their way through all system fundamentals (by
completing, for example, an on-call learning checklist), consider
configuring your alerting system to copy incoming pages to your newbie,
at first only during business hours. Rely on their curiosity to lead the
way. These “shadow” on-call shifts are a great way for a mentor to gain
visibility into a student’s progress, and for a student to gain
visibility into the responsibilities of being on-call. By arranging for
the newbie to shadow multiple members of their team, the team will
become increasingly comfortable with the thought of this person entering
the on-call rotation. Instilling confidence in this manner is an
effective method of building trust, allowing more senior members to
detach when they aren’t on-call, thus helping to avoid team burnout.

When a page comes in, the new SRE is not the appointed on-caller, a
condition which removes any time pressure for the student. They now have
a front-row seat to the outage while it unfolds, rather than after the
issue is resolved. It may be that the student and the primary on-caller
share a terminal session, or sit near each other to readily
compare notes. At a time of mutual convenience after the outage is
complete, the on-caller can review the reasoning and processes followed
for the student’s benefit. This exercise will increase the
shadow on-caller’s retention of what actually occurred.

Tip

Should an outage occur for which writing a postmortem is beneficial, the on-caller should include the newbie as a coauthor. Do not dump the writeup solely on the student, because it could be mislearned that postmortems are somehow grunt work to be passed off on those most junior. It would be a mistake to create such an impression.

Some teams will also include a final step: having the experienced
on-caller “reverse shadow” the student. The newbie will become primary
on-call and own all incoming escalations, but the experienced on-caller
will lurk in the shadows, independently diagnosing the situation without
modifying any state. The experienced SRE will be available to provide
active support, help, validation, and hints as necessary.

On-Call and Beyond: Rites of Passage, and Practicing Continuing Education

As comprehension increases, the student will reach a point in their
career at which they are capable of reasoning through most of the stack
comfortably, and can improvise their way through the rest. At this
point, they should go on-call for their service. Some teams create a
final exam of sorts that tests their students one last time before
bestowing them with on-call powers and responsibilities. Other new SREs
will submit their completion of the on-call learning checklist as
evidence that they are ready. Regardless of how you gate this milestone,
going on-call is a rite of passage and it should be celebrated as a team.

Does learning stop when a student joins the ranks of on-call? Of course
not! To remain vigilant as SREs, your team will always need to be active
and aware of changes to come. While your attention is elsewhere,
portions of your stack may be rearchitected and extended, leaving your
team’s operational knowledge as historic at best.

Set up a regular learning series for your whole team, where overviews of
new and upcoming changes to your stack are given as presentations by the
SREs who are shepherding the changes, who can co-present with developers
as needed. If you can, record the presentations so that you can build a
training library for future students.

With some practice, you’ll gain much timely involvement from both SREs
within your team and developers who work closely with your team, all
while keeping everyone’s minds fresh about the future. There are other
venues for educational engagement, too: consider having SREs give talks
to your developer counterparts. The better your development peers
understand your work and the challenges your team faces, the easier it
will be to reach fully informed decisions on later projects.

Closing Thoughts

An upfront investment in SRE training is absolutely worthwhile, both for
the students eager to grasp their production environment and for the
teams grateful to welcome students into the ranks of on-call. Through the
use of applicable practices outlined in this chapter, you will create well-rounded SREs faster, while sharpening team skills in
perpetuity. How you apply these practices is up to you, but the charge
is clear: as SRE, you have to scale your humans faster than you scale
your machines. Good luck to you and your teams in creating a culture of
learning and teaching!

1 And doesn’t work!
2 Examples of proactive SRE work include software automation, design consulting, and launch coordination.
3 Examples of reactive SRE work include debugging, troubleshooting, and handling on-call escalations.
4 A nod to video games of yesteryear.
5 This “follow the RPC” approach also works well for batch/pipeline systems; start with the operation that kicks off the system. For batch systems, this operation could be data arriving that needs to be processed, a transaction that needs to be validated, or many other events.
6 See “Life in the Trenches of healthcare.gov”.
7 For example: “You’re getting paged by another team that brings you more information. Here’s what they say…”
8 For example: “We’re losing money quickly! How could you stop the bleeding in the short term?”

Chapter 29. Dealing with Interrupts

Written by Dave O’Connor

Edited by Diane Bates

“Operational load,” when applied to complex systems, is the work that must be done to maintain the system in a functional state. For example, if you own a car, you (or someone you pay) always end up servicing it, putting gas in it, or doing other regular maintenance to keep it performing its function.

Any complex system is as imperfect as its creators. In managing the
operational load created by these systems, remember that its creators
are also imperfect machines.

Operational load, when applied to managing complex systems, takes
many forms, some more obvious than others. The terminology may change,
but operational load falls into three general categories: pages, tickets, and ongoing operational activities.

Pages concern production alerts and their fallout, and are triggered in response to
production emergencies. They can sometimes be monotonous and recurring, requiring little thought. They can also be engaging and involve tactical in-depth thought. Pages always have an expected response time (SLO), which is sometimes measured in minutes.

Tickets concern customer requests that require you to take an action. Like pages, tickets can be either simple and boring, or require real thought. A simple ticket might request a code review for a config the team owns. A more complex ticket might entail a special or unusual request for help with a design or capacity plan. Tickets may also have an SLO, but response time is more likely measured in hours, days, or weeks.

Ongoing operational responsibilities (also known as “Kicking the can down
the road” and “toil”; see Chapter 5) include activities like team-owned code or flag rollouts, or responses to ad hoc, time-sensitive questions from customers. While they may not have a defined SLO, these tasks can interrupt you.

Some types of operational load are easily anticipated or planned for, but much of the load is unplanned, or can interrupt someone at a nonspecific time, requiring that person to determine if the issue can wait.

Managing Operational Load

Google has several methods of managing each type of operational load at the team level.

Pages are most commonly managed by a dedicated primary on-call engineer. This is a single person who responds to pages and manages the resulting incidents or outages. The primary on-call engineer might also manage user support communications, escalation to product developers, and so on. In order to both minimize the interruption a page causes to a team and avoid the bystander effect, Google on-call shifts are manned by a single engineer. The on-call engineer might escalate pages to another team member if a problem isn’t well understood.

Typically, a secondary on-call engineer acts as a backup for the primary. The secondary engineer’s duties vary. In some rotations, the secondary’s only duty is to contact the
primary if pages fall through. In this case, the secondary might be on another team. The secondary engineer may or may not consider themselves on interrupts, depending on duties.

Tickets are managed in a few different ways, depending on the SRE team: a primary on-call engineer might work on tickets while on-call, a secondary engineer might work on tickets while on-call, or a team can have a dedicated ticket person who is not on-call. Tickets might be randomly autodistributed among team members, or team members might be expected to service tickets ad hoc.

Ongoing operational responsibilities are also managed in varying ways. Sometimes, the on-call engineer does the work (pushes, flag flips, etc.). Alternately, each responsibility can be assigned to team members ad hoc, or an on-call engineer might pick up a lasting
responsibility (i.e., a multiweek rollout or ticket) that lasts beyond their shift week.

Factors in Determining How Interrupts Are Handled

To take a step back from the mechanics of how operational load is
managed, there are a number of metrics that factor into how each of
these interrupts are handled. Some SRE teams at Google have found the following metrics to be useful in deciding how to manage interrupts:

	
Interrupt SLO or expected response time

	
The number of interrupts
that are usually backlogged

	
The severity of the interrupts

	
The frequency of the interrupts

	
The number of people available to
handle a certain kind of interrupt (e.g., some teams require a certain
amount of ticket work before going on-call)

You might notice that all of
these metrics are suited to meeting the lowest possible response time,
without factoring in more human costs. Trying to take stock of the
human and productivity cost is difficult.

Imperfect Machines

Humans are imperfect machines. They get bored, they have processors
(and sometimes UIs) that aren’t very well understood, and they
aren’t very efficient. Recognizing the human element as “Working
as Intended” and trying to work around or ameliorate how humans work
could fill a much larger space than provided here; for the moment,
some basic ideas might be useful in determining how interrupts should
work.

Cognitive Flow State

The concept of flow state1 is widely accepted
and can be empirically acknowledged by pretty much everyone who works
in Software Engineering, Sysadmin, SRE, or most other disciplines that require focused periods of concentration.
Being in “the zone” can increase productivity, but can also
increase artistic and scientific creativity. Achieving this state
encourages people to actually master and improve the task or project
they’re working on. Being interrupted can kick you right out of this
state, if the interrupt is disruptive enough. You want to maximize the
amount of time spent in this state.

Cognitive flow can also apply to less creative pursuits where the
skill level required is lower, and the essential elements of flow are
still fulfilled (clear goals, immediate feedback, a sense of control,
and the associated time distortion); examples include housework or driving.

You can get in the zone by working on low-skill, low-difficulty
problems, such as playing a repetitive video game. You can just as
easily get there by doing high-skill, high-difficulty problems, such
as those an engineer might face. The methods of arriving at a cognitive
flow state differ, but the outcome is essentially the same.

Cognitive flow state: Creative and engaged

This is the zone:
someone works on a problem for a while, is aware of and comfortable
with the parameters of the problem, and feels like they can fix it or
solve it. The person works intently on the problem, losing track of
time and ignoring interrupts as much as possible. Maximizing the
amount of time a person can spend in this state is very
desirable — they’re going to produce creative results and do good
work by volume. They’ll be happier at the job they’re doing.

Unfortunately, many people in SRE-type roles spend much of their time
either trying and failing to get into this mode and getting frustrated
when they cannot, or never even attempting to reach this mode, instead
languishing in the interrupted state.

Cognitive flow state: Angry Birds

People enjoy performing tasks they know how to do. In fact, executing
such tasks is one of the clearest paths to cognitive flow. Some SREs
are on-call when they reach a state of cognitive flow. It can be very
fulfilling to chase down the causes of problems, work with others, and
improve the overall health of the system in such a tangible
way. Conversely, for most stressed-out on-call engineers, stress is
caused either by pager volume, or because they’re treating on-call as
an interrupt. They’re trying to code or work on projects while
simultaneously being on-call or on full-time interrupts. These
engineers exist in a state of constant interruption, or
interruptability. This working environment is extremely stressful.

On the other hand, when a person is concentrating full-time on
interrupts, interrupts stop being interrupts. At a very visceral
level, making incremental improvements to the system, whacking
tickets, and fixing problems and outages becomes a clear set of goals,
boundaries, and clear feedback: you close X bugs, or you stop getting
paged. All that’s left is distractions. When you’re doing
interrupts, your projects are a distraction. Even though interrupts may be a satisfying use of time in the short term, in a mixed project/on-call environment, people are ultimately happier with a balance between these two types of work. The ideal balance varies from engineer to engineer. It’s important to be aware that some engineers may not actually know what balance best motivates them (or might think they know, but you may disagree).

Do One Thing Well

You might be
wondering about the practical implications of what you’ve read thus
far.

The following suggestions, based on what’s worked for various SRE
teams that I’ve managed at Google, are mainly for the benefit of team
managers or influencers. This document is agnostic to personal
habits — people are free to manage their own time as they see fit. The
concentration here is on directing the structure of how the team
itself manages interrupts, so that people aren’t set up for failure
because of team function or structure.

Distractibility

The ways in which an engineer may be distracted
and therefore prevented from achieving a state of cognitive flow are
numerous. For example: consider a random SRE named Fred. Fred comes
into work on Monday morning. Fred isn’t on-call or on interrupts
today, so Fred would clearly like to work on his projects. He grabs a
coffee, sticks on his “do not disturb” headphones, and sits at his
desk. Zone time, right?

Except, at any time, any of the following things might happen:

	
Fred’s team uses an automated ticket system to randomly assign
tickets to the team. A ticket gets assigned to him, due today.

	
Fred’s colleague is on-call and receives a page about a component that Fred is expert in, and interrupts him to ask about it.

	
A user of Fred’s service raises the priority
of a ticket that’s been assigned to him since last week, when he was
on-call.

	
A flag rollout that’s rolling out over 3–4 weeks and is
assigned to Fred goes wrong, forcing Fred to drop everything to
examine the rollout, roll back the change, and so forth.

	
A user of
Fred’s service contacts Fred to ask a question, because Fred is such a
helpful chap.

	
And so on.

The end result is that even though Fred has the entire calendar day
free to work on projects, he remains extremely distractible. Some of
these distractions he can manage himself by closing email, turning
off IM, or taking other similar measures. Some distractions are caused
by policy, or by assumptions around interrupts and ongoing
responsibilities.

You can claim that some level of distraction is inevitable and by
design. This assumption is correct: people do hang onto bugs for which
they’re the primary contact, and people also build up other
responsibilities and obligations. However, there are ways that a team
can manage interrupt response so that more people (on average) can
come into work in the morning and feel undistractible.

Polarizing time

In order to limit your distractibility, you should try to minimize
context switches. Some interrupts are inevitable. However, viewing an
engineer as an interruptible unit of work, whose context switches are
free, is suboptimal if you want people to be happy and
productive. Assign a cost to context switches. A 20-minute
interruption while working on a project entails two context switches;
realistically, this interruption results in a loss of a couple hours
of truly productive work. To avoid constant occurrences of
productivity loss, aim for polarized time between work styles, with
each work period lasting as long as possible. Ideally, this time
period is a week, but a day or even a half-day may be more
practical. This strategy also fits in with the complementary concept
of make time [Gra09].

Polarizing time means that when a person comes into work each day,
they should know if they’re doing just project work or just
interrupts. Polarizing their time in this way means they get to
concentrate for longer periods of time on the task at hand. They
don’t get stressed out because they’re being roped into tasks that
drag them away from the work they’re supposed to be doing.

Seriously, Tell Me What to Do

If the general model presented in this chapter doesn’t work for you,
here are some specific suggestions of components you can implement
piecemeal.

General suggestions

For any given class of interrupt, if the volume of interrupts is too
high for one person, add another person. This concept most
obviously applies to tickets, but can potentially apply to pages,
too — the on-call can start bumping things to their secondary, or
downgrading pages to tickets.

On-call

The primary on-call engineer should focus solely on on-call work. If
the pager is quiet for your service, tickets or other interrupt-based
work that can be abandoned fairly quickly should be part of on-call
duties. When an engineer is on-call for a week, that week should be
written off as far as project work is concerned. If a project is too
important to let slip by a week, that person shouldn’t be on-call. Escalate in order to assign someone else to the on-call
shift. A person should never be expected to be on-call and also make
progress on projects (or anything else with a high context switching
cost).

Secondary duties depend on how onerous those duties are. If the
function of the secondary is to back up the primary in the case of a
fallthrough, then maybe you can safely assume that the secondary can
also accomplish project work. If someone other than the secondary is
assigned to handling tickets, consider merging the roles. If the
secondary is expected to actually help the primary in the case of high
pager volume, they should do interrupt work, too.

(Aside: You never run out of cleanup work. Your ticket count might
be at zero, but there is always documentation that needs updating, configs
that need cleanup, etc. Your future on-call engineers will thank you,
and it means they’re less likely to interrupt you during your precious
make time).

Tickets

If you currently assign tickets randomly to victims on your team,
stop. Doing so is extremely disrespectful of your team’s time, and
works completely counter to the principle of not being interruptible
as much as possible.

Tickets should be a full-time role, for an amount of time that’s
manageable for a person. If you happen to be in the unenviable
position of having more tickets than can be closed by the primary and
secondary on-call engineers combined, then structure your ticket rotation to have two people handling tickets at any given time. Don’t spread the load across the entire team. People
are not machines, and you’re just causing context switches that impact
valuable flow time.

Ongoing responsibilities

As much as possible, define roles that let anyone on the team take up
the mantle. If there’s a well-defined procedure for performing and
verifying pushes or flag flips, then there’s no reason a person has to
shepherd that change for its entire lifetime, even after they stop
being on-call or on interrupts. Define a push manager role who can
juggle pushes for the duration of their time on-call or on
interrupts. Formalize the handover process — it’s a small price to pay
for uninterrupted make time for the people not on-call.

Be on interrupts, or don’t be

Sometimes when a person isn’t on interrupts, the team receives an
interrupt that the person is uniquely qualified to handle. While
ideally this scenario should never happen, it sometimes does. You
should work to make such occurrences rare.

Sometimes people work on tickets when they’re not assigned to handle
tickets because it’s an easy way to look busy. Such behavior isn’t
helpful. It means the person is less effective than they should be.
They skew the numbers in terms of how manageable the ticket load is.
If one person is assigned to tickets, but two or three other people
also take a stab at the ticket queue, you might still have an
unmanageable ticket queue even though you don’t realize it.

Reducing Interrupts

Your team’s interrupt load may be unmanageable if it requires too many
team members to simultaneously staff interrupts at any given
time. There are a number of techniques you can use to reduce your
ticket load overall.

Actually analyze tickets

Lots of ticket rotations or on-call rotations function like a
gauntlet. This is especially true of rotations on larger teams. If
you’re only on interrupts every couple of months, it’s easy to run the
gauntlet,2 heave a sigh of
relief, and then return to your regular duties. Your successor then
does the same, and the root causes of tickets are never investigated.
Rather than achieving forward movement, your team is bogged down by a
succession of people getting annoyed by the same issues.

There should be a handoff for tickets, as well as for on-call work. A
handoff process maintains shared state between ticket handlers as
responsibility switches over. Even some basic introspection into the
root causes of interrupts can provide good solutions for reducing the
overall rate. Lots of teams conduct on-call handoffs and page
reviews. Very few teams do the same for tickets.

Your team should conduct a regular scrub for tickets and pages, in
which you examine classes of interrupts to see if you can identify a
root cause. If you think the root cause is fixable in a reasonable
amount of time, then silence the interrupts until the root cause is
expected to be fixed. Doing so provides relief for the person
handling interrupts and creates a handy deadline enforcement for the
person fixing the root cause.

Respect yourself, as well as your customers

This maxim applies more to user interrupts than automated interrupts,
although the principles stand for both scenarios. If tickets are
particularly annoying or onerous to resolve, you can effectively use
policy to mitigate the burden.

Remember:

	
Your team sets the level of service provided by your service.

	
It’s OK to push back some of the effort onto your customers.

If your team is responsible for handling tickets or interrupts for
customers, you can often use policy to make your work load more
manageable. A policy fix can be temporary or permanent, depending on
what makes sense. Such a fix should strike a good balance between
respect for the customer and respect for yourself. Policy can be as
powerful a tool as code.

For example, if you support a particularly flaky tool that doesn’t
have many developer resources, and a small number of needy customers
use it, consider other options. Think about the value of the time you
spend doing interrupts for this system, and if you’re spending this
time wisely. At some point, if you can’t get the attention you need
to fix the root cause of the problems causing interrupts, perhaps the
component you’re supporting isn’t that important. You should
consider giving the pager back, deprecating it, replacing it, or
another strategy in this vein that might make sense.

If there are particular steps for an interrupt that are time-consuming
or tricky, but don’t require your privileges to accomplish, consider
using policy to push the request back to the requestor. For example,
if people need to donate compute resources, prepare a code or config
change or some similar step, and then instruct the customer to execute
that step and send it for your review. Remember that if the customer
wants a certain task to be accomplished, they should be prepared to
spend some effort getting what they want.

A caveat to the preceding solutions is that you need to find a balance
between respect for the customer and for yourself. Your guiding
principle in constructing a strategy for dealing with customer
requests is that the request should be meaningful, be rational, and
provide all the information and legwork you need in order to fulfill
the request. In return, your response should be helpful and timely.

1 See Wikipedia: Flow (psychology), http://en.wikipedia.org/wiki/Flow_(psychology).
2 See http://en.wikipedia.org/wiki/Running_the_gauntlet.

Chapter 30. Embedding an SRE to Recover from Operational Overload

Written by Randall Bosetti

Edited by Diane Bates

It’s standard policy for Google’s SRE teams to evenly split their
time between projects and reactive ops work. In practice, this balance
can be upset for months at a time by an increase in the daily ticket
volume. A burdensome amount of ops work is especially dangerous
because the SRE team might burn out or be unable to make progress on
project work. When a team must allocate a disproportionate amount of
time to resolving tickets at the cost of spending time improving the
service, scalability and reliability suffer.

One way to relieve this burden is to temporarily transfer an
SRE into the overloaded team. Once embedded in a team, the SRE focuses
on improving the team’s practices instead of simply helping the team
empty the ticket queue. The SRE observes the team’s daily routine and
makes recommendations to improve their practices. This consultation
gives the team a fresh perspective on its routines that team members
can’t provide for themselves.

When you are using this approach, it isn’t necessary to transfer more than one
engineer. Two SREs don’t necessarily produce better results and may
actually cause problems if the team reacts defensively.

If you are starting your first SRE team, the approach outlined in this
chapter will help you to avoid turning into an operation team solely
focused on a ticket rotation. If you decide to embed yourself or one
of your reports in a team, take time to review SRE practices and
philosophy in Ben Treynor Sloss’s introduction
and the material on monitoring in Chapter 6.

The following sections provide guidance to the SRE who will be
embedded on a team.

Phase 1: Learn the Service and Get Context

Your job while embedded with the team is to articulate why processes
and habits contribute to, or detract from, the service’s
scalability. Remind the team that more tickets
should not require more SREs: the goal of the SRE model is to only
introduce more humans as more complexity is added to the
system. Instead, try to draw attention to how healthy work habits
reduce the time spent on tickets. Doing so is as important as pointing
out missed opportunities for automation or simplification of the
service.

Ops Mode Versus Nonlinear Scaling

The term ops mode refers to a certain method of
keeping a service running. Various work items increase with the size
of the service. For example, a service needs a way to increase the
number of configured virtual machines (VMs) as it grows. A team in ops
mode responds by having a greater number of administrators managing
those VMs. SRE instead focuses on writing software or eliminating
scalability concerns so that the number of people required to run a
service doesn’t increase as a function of load on the service.

Teams sliding into ops mode might be convinced that scale doesn’t
matter for them (“my service is tiny”). Shadow an on-call session to
determine whether the assessment is true, because the element of scale
affects your strategy.

If the primary service is important to the business but actually is
tiny (entailing few resources or low complexity), put more focus on
ways in which the team’s current approach prevents them from improving
the service’s reliability. Remember that your job is to make the
service work, not to shield the development team from alerts.

On the other hand, if the service is just getting started, focus on
ways to prepare the team for explosive growth. A 100 request/second
service can turn into a 10k request/second service in a year.

Identify the Largest Sources of Stress

SRE teams sometimes fall into ops mode because they focus on how to
quickly address emergencies instead of how to reduce the number of
emergencies. A default to ops mode usually happens in response to an
overwhelming pressure, real or imagined. After you’ve learned enough
about the service to ask hard questions about its design and
deployment, spend some time prioritizing various service outages
according to their impact on the team’s stress levels. Keep in mind
that, due to the team’s perspective and history, some very small
problems or outages may produce an inordinate amount of stress.

Identify Kindling

Once you identify a team’s largest existing problems, move on to
emergencies waiting to happen. Sometimes impending emergencies come in
the form of a new subsystem that isn’t designed to be
self-managing. Other sources include:

Knowledge gaps

In large teams, people can overspecialize without
immediate consequence. When a person specializes, they run the
risk of either not having the broad knowledge they need to perform
on-call support or allowing team members to ignore the critical
pieces of the system that they own.

Services developed by SRE that are quietly increasing in importance

These services often don’t get the same careful
attention as new feature launches because they’re smaller in scale
and implicitly endorsed by at least one SRE.

Strong dependence on “the next big thing”

People might ignore
problems for months at a time because they believe the new
solution that’s on the horizon obviates temporary fixes.

Common alerts that aren’t diagnosed by either the dev team or SREs

Such alerts are frequently triaged as transient, but
still distract your teammates from fixing real problems. Either
investigate such alerts fully, or fix the alerting rules.

Any service that is both the subject of complaints from your clients and lacks a formal SLI/SLO/SLA

See Chapter 4 for a discussion of SLIs, SLOs, and SLAs.

Any service with a capacity plan that is effectively “Add more servers: our servers were running out of memory last night”

Capacity plans should be sufficiently forward-looking. If your system model predicts that servers need 2 GB, a loadtest that passes in the short term (revealing 1.99 GB in its last run) doesn’t necessarily mean that your system capacity is in adequate shape.

Postmortems that only have action items for rolling back the specific changes that caused an outage

For
example, “Change the streaming timeout back to 60 seconds,”
instead of “Figure out why it sometimes takes 60 seconds to fetch
the first megabyte of our promo videos.”

Any serving-critical component for which the existing SREs respond to questions by saying, “We don’t know anything about that; the devs own it”

To give acceptable on-call support for a component,
you should at least know the consequences when it breaks and the
urgency needed to fix problems.

Phase 2: Sharing Context

After scoping the dynamics and pain points of the team, lay the groundwork for improvement through best practices like postmortems and by identifying sources of toil and how to best address them.

Write a Good Postmortem for the Team

Postmortems offer much insight into a team’s
collective reasoning. Postmortems conducted by unhealthy teams are
often ineffectual. Some team members might consider postmortems
punitive, or even useless. While you might be tempted to review the
postmortem archives and leave comments for improvement, doing so
doesn’t help the team. Instead, the exercise might put the team on the
defensive.

Instead of trying to correct previous mistakes, take ownership of the
next postmortem. There will be an outage while you’re
embedded. If you aren’t the person on-call, team up with the on-call SRE
to write a great, blameless postmortem. This document is an
opportunity to demonstrate how a shift toward the SRE model benefits
the team by making bug fixes more permanent. More permanent bug fixes
reduce the impact of outages on team members’ time.

As mentioned, you might encounter responses such as “Why me?”
This response is especially likely when a team believes that the
postmortem process is retaliatory. This attitude comes from
subscribing to the Bad Apple Theory: the system is working fine, and
if we get rid of all the bad apples and their mistakes, the system
will continue to be fine. The Bad Apple Theory is demonstrably false,
as shown by evidence [Dek14] from several disciplines, including
airline safety. You should point out this falsity. The most effective
phrasing for a postmortem is to say, “Mistakes are inevitable in any
system with multiple subtle interactions. You were on-call, and I
trust you to make the right decisions with the right information. I’d
like you to write down what you were thinking at each point in time,
so that we can find out where the system misled you, and where the
cognitive demands were too high.”

Sort Fires According to Type

There are two types of fires in this simplified-for-convenience model:

	
Some fires shouldn’t exist. They cause what is commonly called ops
work or toil (see Chapter 5).

	
Other fires that cause stress and/or furious typing are actually
part of the job. In either case, the team needs to build tools to
control the burn.

Sort the team fires into toil and not-toil. When you’re finished,
present the list to the team and clearly explain why each fire is
either work that should be automated or acceptable overhead for
running the service.

Phase 3: Driving Change

Team health is a process. As such, it’s not something that you can
solve with heroic effort. To ensure that the team can self-regulate,
you can help them build a good mental model for an ideal SRE
engagement.

Note

Humans are pretty good at homeostasis, so focus on
creating (or restoring) the right initial conditions and teaching the
small set of principles needed to make healthy choices.

Start with the Basics

Teams struggling with the distinction between the SRE and traditional
ops model are generally unable to articulate why certain aspects of
the team’s code, processes, or culture bother them. Rather than trying
to address each of these issues point-by-point, work forward from the
principles outlined in Chapters 1 and 6.

Your first goal for the team should be writing a service level
objective (SLO), if one doesn’t already
exist. The SLO is important because it provides a quantitative measure
of the impact of outages, in addition to how important a process
change could be. An SLO is probably the single most important lever for
moving a team from reactive ops work to a healthy, long-term SRE
focus. If this agreement is missing, no other advice in this chapter
will be helpful. If you find yourself on a team without SLOs, first
read Chapter 4, then get the tech leads and management
in a room and start arbitrating.

Get Help Clearing Kindling

You may have a strong urge to simply fix the issues you
identify. Please resist the urge to fix these issues yourself, because
doing so bolsters the idea that “making changes is for other people.”
Instead, take the following steps:

	
Find useful work that can be accomplished by one team member.

	
Clearly explain how this work addresses an issue from the postmortem
in a permanent way. Even otherwise healthy teams can produce
shortsighted action items.

	
Serve as the reviewer for the code changes and document revisions.

	
Repeat for two or three issues.

When you identify an additional issue, put it in a bug report or a doc for
the team to consult. Doing so serves the dual purposes of distributing
information and encouraging team members to write docs (which are
often the first victim of deadline pressure). Always explain your
reasoning, and emphasize that good documentation ensures that the team
doesn’t repeat old mistakes in a slightly new context.

Explain Your Reasoning

As the team recovers its momentum and grasps the basics of your
suggested changes, move on to tackle the quotidian decisions that
originally led to ops overload. Prepare for this undertaking to be
challenged. If you’re lucky, the challenge will be along the lines of,
“Explain why. Right now. In the middle of the weekly production
meeting.”

If you’re unlucky, no one demands an explanation. Sidestep this
problem entirely by simply explaining all of your decisions, whether
or not someone requests an explanation. Refer to the basics that
underscore your suggestions. Doing so helps build the team’s mental
model. After you leave, the team should be able to predict what your
comment on a design or changelist would be. If you don’t explain your
reasoning, or do so poorly, there is a risk that the team will simply
emulate that lackadaisical behavior, so be explicit.

Examples of a thorough explanation of your decision:

	
“I’m not pushing back on the latest release because the tests are
bad. I’m pushing back because the error budget we
set for releases is exhausted.”

	
“Releases need to be rollback-safe because our SLO is
tight. Meeting that SLO requires that the mean time to recovery is
small, so in-depth diagnosis before a rollback is not realistic.”

Examples of an insufficient explanation of your decision:

	
“I don’t think having every server generate its routing config is
safe, because we can’t see it.”

This decision is probably correct, but the reasoning is poor (or
poorly explained). The team can’t read your mind, so they very likely
might emulate the observed poor reasoning. Instead, try “[…] isn’t
safe because a bug in that code can cause a correlated failure across
the service and the additional code is a source of bugs that might
slow down a rollback.”

	
“The automation should give up if it encounters a conflicting
deployment.”

Like the previous example, this explanation is probably correct,
but insufficient. Instead, try “[…] because we’re making the
simplifying assumption that all changes pass through the automation,
and something has clearly violated that rule. If this happens often,
we should identify and remove sources of unorganized change.”

Ask Leading Questions

Leading questions are not loaded questions. When talking with the SRE
team, try to ask questions in a way that encourages people to think
about the basic principles. It’s particularly valuable for you to
model this behavior because, by definition, a team in ops mode rejects
this sort of reasoning from its own constituents. Once you’ve spent
some time explaining your reasoning for various policy questions, this
practice reinforces the team’s understanding of SRE philosophy.

Examples of leading questions:

	
“I see that the TaskFailures alert fires frequently, but the
on-call engineers usually don’t do anything to respond to the
alert. How does this impact the SLO?”

	
“This turnup procedure looks pretty complicated. Do you know why
there are so many config files to update when creating a new
instance of the service?”

Counterexamples of leading questions:

	
“What’s up with all of these old, stalled releases?”

	
“Why does the Frobnitzer do so many things?”

Conclusion

Following the tenets outlined in this chapter provides an SRE team
with the following:

	
A technical, possibly quantitative, perspective on why they should
change.

	
A strong example of what change looks like.

	
A logical explanation for much of the “folk wisdom” used by SRE.

	
The core principles needed to address novel situations in a
scalable manner.

Your final task is to write an after-action report. This report should
reiterate your perspective, examples, and explanation. It should also
provide some action items for the team to ensure they exercise what
you’ve taught them. You can organize the report as a
postvitam,1 explaining the
critical decisions at each step that led to success.

The bulk of the engagement is now complete. Once your embedded
assignment concludes, you should remain available for design and code
reviews. Keep an eye on the team for the next few months to confirm
that they’re slowly improving their capacity planning, emergency
response, and rollout processes.

1 In contrast to a postmortem.

Chapter 31. Communication and Collaboration in SRE

Written by Niall Murphy with Alex Rodriguez, Carl Crous, Dario Freni, Dylan Curley, Lorenzo Blanco, and Todd Underwood

Edited by Betsy Beyer

The organizational position of SRE in Google is interesting, and has
effects on how we communicate and collaborate.

To begin with, there is a tremendous diversity in what SRE does, and
how we do it. We have infrastructural teams, service teams, and
horizontal product teams. We have relationships with product
development teams ranging from teams that are many times our size, to
teams roughly the same size as their counterparts, and situations in
which we are the product development team. SRE teams are made up of
people with systems engineering or architectural skills (see
[Hix15b]), software engineering skills, project management skills,
leadership instincts, backgrounds in all kinds of industries (see
Chapter 33), and so on. We don’t have just
one model, and we have found a variety of configurations that work;
this flexibility suits our ultimately pragmatic nature.

It’s also true that SRE is not a command-and-control
organization. Generally, we owe allegiance to at least two masters:
for service or infrastructure SRE teams, we work closely with the
corresponding product development teams that work on those services or that
infrastructure; we also obviously work in the context of SRE
generally. The service relationship is very strong, since we are held
accountable for the performance of those systems, but despite that
relationship, our actual reporting lines are through SRE as a
whole. Today, we spend more time supporting our individual services
than on cross-production work, but our culture and our shared values
produce strongly homogeneous approaches to problems. This is by
design.1

The two preceding facts have steered the SRE organization in certain
directions when it comes to two crucial dimensions of how our teams
operate — communications and collaboration. Data flow would be an apt
computing metaphor for our communications: just like data must flow
around production, data also has to flow around an SRE team — data
about projects, the state of the services, production, and the state
of the individuals. For maximum effectiveness of a team, the data has
to flow in reliable ways from one interested party to another. One way
to think of this flow is to think of the interface that an SRE team
must present to other teams, such as an API. Just like an API, a good
design is crucial for effective operation, and if the API is
wrong, it can be painful to correct later on.

The API-as-contract metaphor is also relevant for collaboration, both among SRE teams, and between SRE and product development teams — all have to make progress in an environment of unrelenting change. To that extent, our
collaboration looks quite like collaboration in any other fast-moving
company. The difference is the mix of software engineering skills,
systems engineering expertise, and the wisdom of production experience that SRE
brings to bear on that collaboration. The best designs and the best
implementations result from the joint concerns of production and the
product being met in an atmosphere of mutual respect. This is the
promise of SRE: an organization charged with reliability, with the
same skills as the product development teams, will improve things
measurably. Our experience suggests that simply having someone in
charge of reliability, without also having the complete skill set, is
not enough.

Communications: Production Meetings

Although literature about running effective meetings abounds
[Kra08], it’s difficult to find someone who’s lucky enough to only
have useful, effective meetings. This is equally true for SRE.

However, there’s one kind of meeting that we have that is more useful
than the average, called a production meeting. Production meetings
are a special kind of meeting where an SRE team carefully articulates
to itself — and to its invitees — the state of the service(s) in
their charge, so as to increase general awareness among everyone who
cares, and to improve the operation of the service(s). In
general, these meetings are service-oriented; they are not directly
about the status updates of individuals. The goal is for everyone to
leave the meeting with an idea of what’s going on — the same
idea. The other major goal of production meetings is to improve our
services by bringing the wisdom of production to bear on our
services. That means we talk in detail about the operational
performance of the service, and relate that operational performance to
design, configuration, or implementation, and make recommendations for
how to fix the problems. Connecting the performance of the service
with design decisions in a regular meeting is an immensely powerful
feedback loop.

Our production meetings usually happen weekly; given SRE’s antipathy
to pointless meetings, this
frequency seems to be just about right: time to allow enough relevant
material to accumulate to make the meeting worthwhile, while not so
frequent that people find excuses to not attend. They usually last
somewhere between 30 and 60 minutes. Any less and you’re probably
cutting something unnecessarily short, or you should probably be
growing your service portfolio. Any more and you’re probably getting
mired in the detail, or you’ve got too much to talk about and you
should shard the team or service set.

Just like any other meeting, the production meeting should have a
chair. Many SRE teams rotate the chair through various team members,
which has the advantage of making everyone feel they have a stake in
the service and some notional ownership of the issues. It’s true that
not everyone has equal levels of chairing skill, but the value of
group ownership is so large that the trade-off of temporary
suboptimality is worthwhile. Furthermore, this is a chance to instill
chairing skills, which are very useful in the kind of incident
coordination situations commonly faced by SRE.

In cases where two SRE teams are meeting by video, and one of the teams
is much larger than the other, we have noticed an interesting dynamic
at play. We recommend placing your chair on the smaller side of the
call by default. The larger side naturally tends to quiet down and
some of the bad effects of imbalanced team sizes (made worse by the
delays inherent in video conferencing) will improve.2 We have no idea if this technique has any
scientific basis, but it does tend to work.

Agenda

There are many ways to run a production meeting, attesting to the
diversity of what SRE looks after and how we do it. To that
extent, it’s not appropriate to be prescriptive on how to run one of
these meetings. However, a default agenda (see
Appendix F for an example) might look something like
the following:

Upcoming production changes

Change-tracking meetings are well known throughout the industry, and
indeed whole meetings have often been devoted to stopping
change. However, in our production environment, we usually default to
enabling change, which requires tracking the useful set of
properties of that change: start time, duration, expected effect, and
so on. This is near-term horizon visibility.

Metrics

One of the major ways we conduct a service-oriented discussion is by
talking about the core metrics of the systems in question; see
Chapter 4. Even if the systems didn’t dramatically fail
that week, it’s very common to be in a position where you’re looking
at gradually (or sharply!) increasing load throughout the
year. Keeping track of how your latency figures, CPU utilization
figures, etc., change over time is incredibly valuable for developing a
feeling for the performance envelope of a system.

Some teams track resource usage and efficiency, which is also a useful
indicator of slower, perhaps more insidious system changes.

Outages

This item addresses problems of approximately postmortem size, and is
an indispensable opportunity for learning. A good postmortem analysis,
as discussed in Chapter 15, should always set the
juices flowing.

Paging events

These are pages from your monitoring system, relating to problems
that can be postmortem worthy, but often aren’t. In any event,
while the Outages portion looks at the larger picture of an outage,
this section looks at the tactical view: the list of pages, who was
paged, what happened then, and so on. There are two implicit
questions for this section: should that alert have paged in the way it
did, and should it have paged at all? If the answer to the last
question is no, remove those unactionable pages.

Nonpaging events

This bucket contains three items:

	
An issue that probably should have paged, but didn’t. In these
cases, you should probably fix the monitoring so that such events do
trigger a page. Often you encounter the issue while you’re trying to
fix something else, or it’s related to a metric you’re tracking but
for which you haven’t got an alert.

	
An issue that is not pageable but requires attention, such as
low-impact data corruption or slowness in some non-user-facing
dimension of the system. Tracking reactive operational work is also
appropriate here.

	
An issue that is not pageable and does not require attention. These
alerts should be removed, because they create extra noise that distracts
engineers from issues that do merit attention.

Prior action items

The preceding detailed discussions often lead to actions that SRE needs to
take — fix this, monitor that, develop a subsystem to do the
other. Track these improvements just as they would be tracked in any
other meeting: assign action items to people and track their
progress. It’s a good idea to have an explicit agenda item that acts as
a catchall, if nothing else. Consistent delivery is also a wonderful
credibility and trust builder. It doesn’t matter how such delivery
is done, just that it is done.

Attendance

Attendance is compulsory for all the members of the SRE team in
question. This is particularly true if your team is spread across
multiple countries and/or time zones, because this is your major
opportunity to interact as a group.

The major stakeholders should also attend this meeting. Any partner
product development teams you may have should also attend. Some SRE
teams shard their meeting so SRE-only matters are kept to the first
half; that practice is fine, as long as everyone, as stated previously,
leaves with the same idea of what’s going on. From time to time
representatives from other SRE teams might turn up, particularly if
there’s some larger cross-team issue to discuss, but in general, the
SRE team in question plus major other teams should attend. If your
relationship is such that you cannot invite your product development
partners, you need to fix that relationship: perhaps the first step is
to invite a representative from that team, or to find a trusted
intermediary to proxy communication or model healthy
interactions. There are many reasons why teams don’t get along, and a
wealth of writing on how to solve that problem: this information is
also applicable to SRE teams, but it is important that the end goal of
having a feedback loop from operations is fulfilled, or a large part
of the value of having an SRE team is lost.

Occasionally you’ll have too many teams or busy-yet-crucial attendees
to invite. There are a number of techniques you can use to handle those
situations:

	
Less active services might be attended by a single representative
from the product development team, or only have commitment from the
product development team to read and comment on the agenda minutes.

	
If the production development team is quite large, nominate a
subset of representatives.

	
Busy-yet-crucial attendees can provide feedback and/or steering in
advance to individuals, or using the prefilled agenda technique
(described next).

Most of the meeting strategies we’ve discussed are common sense, with a service-oriented twist. One
unique spin on making meetings more efficient and more inclusive is
to use the real-time collaborative features of Google Docs. Many SRE
teams have such a doc, with a well-known address that anyone in
engineering can access. Having such a doc enables two great practices:

	
Pre-populating the agenda with “bottom up” ideas, comments, and
information.

	
Preparing the agenda in parallel and in advance is really
efficient.

Fully use the multiple-person collaboration features enabled by the
 product. There’s nothing quite like seeing a meeting chair type in
 a sentence, then seeing someone else supply a link to the source
 material in brackets after they have finished typing, and then
 seeing yet another person tidy up the spelling and grammar in the
 original sentence. Such collaboration gets stuff done faster, and
 makes more people feel like they own a slice of what the team does.

Collaboration within SRE

Obviously, Google is a multinational organization. Because of the emergency
response and pager rotation component of our role, we have very good business
reasons to be a distributed organization, separated by at least a few
time zones. The practical impact of this distribution is that we have very fluid
definitions for “team” compared to, for example, the average product
development team. We have local teams, the team on the site, the
cross-continental team, virtual teams of various sizes and coherence, and everything
in between. This creates a cheerfully chaotic mix of responsibilities, skills,
and opportunities. Much of the same dynamics could be expected to pertain to
any sufficiently large company (although they might be particularly intense for
tech companies). Given that most local collaboration faces no particular
obstacle, the interesting case collaboration-wise is cross-team, cross-site,
across a virtual team, and similar.

This pattern of distribution also informs how SRE teams tend to be
organized. Because our raison d’être is bringing value through
technical mastery, and technical mastery tends to be hard, we
therefore try to find a way to have mastery over some related subset
of systems or infrastructures, in order to decrease cognitive
load. Specialization is one way of accomplishing this objective;
i.e., team X works only on product Y. Specialization is good, because
it leads to higher chances of improved technical mastery, but it’s
also bad, because it leads to siloization and ignorance of the broader
picture. We try to have a crisp team charter to define what a team
will — and more importantly, won’t — support, but we don’t always succeed.

Team Composition

We have a wide array of skill sets in SRE, ranging from systems
engineering through software engineering, and into organization and
management. The one thing we can say about collaboration is that your
chances of successful collaboration — and indeed just about anything
else — are improved by having more diversity in your team. There’s a lot
of evidence suggesting that diverse teams are simply better teams [Nel14].
Running a diverse team implies particular attention to
communication, cognitive biases, and so on, which we can’t cover in
detail here.

Formally, SRE teams have the roles of “tech lead” (TL), “manager”
(SRM), and “project manager” (also known as PM, TPM, PgM). Some people
operate best when those roles have well-defined responsibilities: the
major benefit of this being they can make in-scope decisions
quickly and safely. Others operate best in a more fluid environment,
with shifting responsibilities depending on dynamic negotiation. In
general, the more fluid the team is, the more developed it is in terms
of the capabilities of the individuals, and the more able the team is
to adapt to new situations — but at the cost of having to communicate
more and more often, because less background can be assumed.

Regardless of how well these roles are defined, at a base level the
tech lead is responsible for technical direction in the team, and can
lead in a variety of ways — everything from carefully commenting on
everyone’s code, to holding quarterly direction presentations, to building
consensus in the team. In Google, TLs can do almost all of a manager’s
job, because our managers are highly technical, but the manager has
two special responsibilities that a TL doesn’t have: the performance
management function, and being a general catchall for everything
that isn’t handled by someone else. Great TLs, SRMs, and TPMs have a
complete set of skills and can cheerfully turn their hand to
organizing a project, commenting on a design doc, or writing code as
necessary.

Techniques for Working Effectively

There are a number of ways to engineer effectively in SRE.

In general, singleton projects fail unless the person is particularly
gifted or the problem is straightforward. To accomplish anything
significant, you pretty much need multiple people. Therefore, you also
need good collaboration skills. Again, lots of material has been
written on this topic, and much of this literature is applicable to
SRE.

In general, good SRE work calls for excellent communication skills
when you’re working outside the boundary of your purely local
team. For collaborations outside the building, effectively working
across time zones implies either great written communication, or lots
of travel to supply the in-person experience that is deferrable but
ultimately necessary for a high-quality relationship. Even if you’re
a great writer, over time you decay into just being an email address
until you turn up in the flesh again.

Case Study of Collaboration in SRE: Viceroy

One example of a successful cross-SRE collaboration is a project called
Viceroy, which is a monitoring dashboard framework and service. The current
organizational architecture of SRE can end up with teams producing multiple,
slightly different copies of the same piece of work; for various reasons,
monitoring dashboard frameworks were a particularly fertile ground for
duplication of work.3

The incentives that led to the serious litter problem of many smoldering, abandoned hulks
of monitoring frameworks lying around were pretty simple: each
team was rewarded for developing its own solution, working outside of
the team boundary was hard, and the infrastructure that tended to be
provided SRE-wide was typically closer to a toolkit than a
product. This environment encouraged individual engineers to use the
toolkit to make another burning wreck rather than fix the problem for
the largest number of people possible (an effort that would therefore
take much longer).

The Coming of the Viceroy

Viceroy was different. It began in 2012 when a number of teams were
considering how to move to Monarch, the new monitoring system at
Google. SRE is deeply conservative with respect to monitoring systems,
so Monarch somewhat ironically took a longer while to get traction
within SRE than within non-SRE teams. But no one could argue that our
legacy monitoring system, Borgmon (see Chapter 10), had no
room for improvement. For example, our consoles were cumbersome
because they used a custom HTML templating system that was
special-cased, full of funky edge cases, and difficult to test. At
that time, Monarch had matured enough to be accepted in principle as
the replacement for the legacy system and was therefore being adopted
by more and more teams across Google, but it turned out we still had a
problem with consoles.

Those of us who tried using Monarch for our services soon found that
it fell short in its console support for two main reasons:

	
Consoles were easy to set up for a small service, but didn’t scale
well to services with complex consoles.

	
They also didn’t support the legacy monitoring system, making the
transition to Monarch very difficult.

Because no viable alternative to deploying Monarch in this way existed at the time, a
number of team-specific projects launched. Since there was little
enough in the way of coordinated development solutions or even
cross-group tracking at the time (a problem that has since been
fixed), we ended up duplicating efforts yet again. Multiple teams
from Spanner, Ads Frontend, and a variety of other services spun up
their own efforts (one notable example was called
Consoles++) over the course of 12–18 months, and eventually
sanity prevailed when engineers from all those teams woke up and
discovered each other’s respective efforts. They decided to do the
sensible thing and join forces in order to create a general solution
for all of SRE. Thus, the Viceroy project was born in mid
2012.

By the beginning of 2013, Viceroy had started to gather interest from
teams who had yet to move off the legacy system, but who were looking
to put a toe in the water. Obviously, teams with larger existing
monitoring projects had fewer incentives to move to the new system: it
was hard for these teams to rationalize jettisoning the low
maintenance cost for their existing solution that basically worked
fine, for something relatively new and unproven that would require
lots of effort to make work. The sheer diversity of requirements added
to the reluctance of these teams, even though all monitoring console
projects shared two main requirements, notably:

	
Support complex curated dashboards

	
Support both Monarch and the legacy monitoring system

Each project also had its own set of technical requirements, which
depended on the author’s preference or experience. For example:

	
Multiple data sources outside the core monitoring systems

	
Definition of consoles using configuration versus explicit HTML layout

	
No JavaScript versus full embrace of JavaScript with AJAX

	
Sole use of static content, so the consoles can be cached in the
browser

Although some of these requirements were stickier than others, overall
they made merging efforts difficult. Indeed, although the
Consoles++ team was interested in seeing how their project
compared to Viceroy, their initial examination in the first half of
2013 determined that the fundamental differences between the two
projects were significant enough to prevent integration. The largest
difficulty was that Viceroy by design did not use much JavaScript,
while Consoles++ was mostly written in JavaScript. There was a
glimmer of hope, however, in that the two systems did have a number of
underlying similarities:

	
They used similar syntaxes for HTML template rendering.

	
They shared a number of long-term goals, which neither team had
yet begun to address. For example, both systems wanted to cache
monitoring data and support an offline pipeline to periodically
produce data that the console can use, but was too computationally
expensive to produce on demand.

We ended up parking the unified console discussion for a
while. However, by the end of 2013, both Consoles++ and Viceroy
had developed significantly. Their technical differences had narrowed,
because Viceroy had started using JavaScript to render its monitoring
graphs. The two teams met and figured out that integration was a lot
easier, now that integration boiled down to serving the
Consoles++ data out of the Viceroy server. The first integrated
prototypes were completed in early 2014, and proved that the systems
could work well together. Both teams felt comfortable committing to a
joint effort at that point, and because Viceroy had already established
its brand as a common monitoring solution, the combined project
retained the Viceroy name. Developing full functionality took a few
quarters, but by the end of 2014, the combined system was complete.

Joining forces reaped huge benefits:

	
Viceroy received a host of data sources and the JavaScript clients
to access them.

	
JavaScript compilation was rewritten to support separate modules
that can be selectively included. This is essential to scale the
system to any number of teams with their own JavaScript code.

	
Consoles++ benefited from the many improvements actively
being made to Viceroy, such as the addition of its cache and
background data pipeline.

	
Overall, the development velocity on one solution was much larger
than the sum of all the development velocity of the duplicative
projects.

Ultimately, the common future vision was the key factor in combining
the projects. Both teams found value in expanding their development
team and benefited from each other’s contributions. The momentum was
such that, by the end of 2014, Viceroy was officially declared the
general monitoring solution for all of SRE. Perhaps characteristically
for Google, this declaration didn’t require that teams adopt Viceroy:
rather, it recommended that teams should use Viceroy instead of
writing another monitoring console.

Challenges

While ultimately a success, Viceroy was not without difficulties, and
many of those arose due to the cross-site nature of the project.

Once the extended Viceroy team was established, initial coordination
among remote team members proved difficult. When meeting people for
the first time, subtle cues in writing and speaking can be
misinterpreted, because communication styles vary substantially from person
to person. At the start of the project, team members who weren’t
located in Mountain View also missed out on the impromptu water cooler
discussions that often happened shortly before and after meetings
(although communication has since improved considerably).

While the core Viceroy team remained fairly consistent, the extended
team of contributors was fairly dynamic. Contributors had other
responsibilities that changed over time, and therefore many were able
to dedicate between one and three months to the project. Thus, the
developer contributor pool, which was inherently larger than the core
Viceroy team, was characterized by a significant amount of churn.

Adding new people to the project required training each contributor on
the overall design and structure of the system, which took some
time. On the other hand, when an SRE contributed to the core
functionality of Viceroy and later returned to their own team, they
were a local expert on the system. That unanticipated dissemination of
local Viceroy experts drove more usage and adoption.

As people joined and left the team, we found that casual contributions
were both useful and costly. The primary cost was the dilution of
ownership: once features were delivered and the person left, the
features became unsupported over time, and were generally dropped.

Furthermore, the scope of the Viceroy project grew over time. It had
ambitious goals at launch but the initial scope was limited. As the
scope grew, however, we struggled to deliver core features on time,
and had to improve project management and set clearer direction to
ensure the project stayed on track.

Finally, the Viceroy team found it difficult to completely own a
component that had significant (determining) contributions from
distributed sites. Even with the best will in the world, people
generally default to the path of least resistance and discuss issues
or make decisions locally without involving the remote owners, which
can lead to conflict.

Recommendations

You should only develop projects cross-site when you have to, but often there are
good reasons to have to. The cost of working across sites is higher
latency for actions and more communication being required; the benefit
is — if you get the mechanics right — much higher throughput. The
single site project can also fall foul of no one outside of that site
knowing what you’re doing, so there are costs to both
approaches.

Motivated contributors are valuable, but not all contributions are
equally valuable. Make sure project contributors are actually
committed, and aren’t just joining with some nebulous
self-actualization goal (wanting to earn a notch on their belt
attaching their name to a shiny project; wanting to code on a new
exciting project without committing to maintaining that project).
Contributors with a specific goal to achieve
will generally be better motivated and will better maintain their
contributions.

As projects develop, they usually grow, and you’re not always in the
lucky position of having people in your local team to contribute to
the project. Therefore, think carefully about the project
structure. The project leaders are important: they provide long-term
vision for the project and make sure all work aligns with that vision
and is prioritized correctly. You also need to have an agreed way of
making decisions, and should specifically optimize for making more
decisions locally if there is a high level of agreement and trust.

The standard “divide and conquer” strategy applies to cross-site
projects; you reduce communication costs primarily by splitting the
project into as many reasonably sized components as possible, and
trying to make sure that each component can be assigned to a small
group, preferably within one site. Divide these components among the
project subteams, and establish clear deliverables and deadlines. (Try
not to let Conway’s law distort the natural shape of the software too
deeply.)4

A goal for a project team works best when it’s oriented toward
providing some functionality or solving some problem. This approach
ensures that the individuals working on a component know what is
expected of them, and that their work is only complete once that
component is fully integrated and used within the main project.

Obviously, the usual engineering best practices apply to collaborative
projects: each component should have design documents and reviews with
the team. In this way, everyone in the team is given the opportunity
to stay abreast of changes, in addition to the chance to influence and
improve designs. Writing things down is one of the major techniques
you have to offset physical and/or logical distance — use it.

Standards are important. Coding style guidelines are a good start, but
they’re usually quite tactical and therefore only a starting point for
establishing team norms. Every time there is a debate around which
choice to make on an issue, argue it out fully with the team but with
a strict time limit. Then pick a solution, document it, and move
on. If you can’t agree, you need to pick some arbitrator that everyone
respects, and again just move forward. Over time you’ll build up a
collection of these best practices, which will help new people come up
to speed.

Ultimately, there’s no substitute for in-person interaction, although
some portion of face-to-face interaction can be deferred by good use
of VC and good written communication. If you can, have the leaders of
the project meet the rest of the team in person. If time and budget
allows, organize a team summit so that all members of the team can
interact in person. A summit also provides a great opportunity to hash
out designs and goals. For situations where neutrality is important,
it’s advantageous to hold team summits at a neutral location so that no individual site
has the “home advantage.”

Finally, use the project management style that suits the project in
its current state. Even projects with ambitious goals will start out
small, so the overhead should be correspondingly low. As the project
grows, it’s appropriate to adapt and change how the project is
managed. Given sufficient growth, full project management will be
necessary.

Collaboration Outside SRE

As we suggested, and Chapter 32 discusses,
collaboration between the product development organization and SRE is
really at its best when it occurs early on in the design phase,
ideally before any line of code has been committed. SREs are best
placed to make recommendations about architecture and software
behavior that can be quite difficult (if not impossible) to
retrofit. Having that voice present in the room when a new system is
being designed goes better for everyone. Broadly speaking, we use the Objectives & Key Results (OKR) process [Kla12] to track such work. For some service teams, such
collaboration is the mainstay of what they do — tracking new designs,
making recommendations, helping to implement them, and seeing those
through to production.

Case Study: Migrating DFP to F1

Large migration projects of existing services are quite common at
Google. Typical examples include porting service components to a new
technology or updating components to support a new data format. With
the recent introduction of database technologies that can scale to a
global level such as Spanner [Cor12] and F1 [Shu13], Google has
undertaken a number of large-scale migration projects involving
databases. One such project was the migration of the main database of
DoubleClick for Publishers (DFP)5 from MySQL to F1. In particular, some of this chapter’s
authors were in charge of a portion of the serving system
(shown in Figure 31-1) that continually extracts
and processes data from the database, in order to generate a set of
indexed files that are then loaded and served around the world. This
system was distributed over several datacenters and
used about 1,000 CPUs and 8 TB of RAM to index 100 TB of data every day.

[image: A generic ads serving system.]
Figure 31-1. A generic ads serving system

The migration was nontrivial: in addition to migrating to a new
technology, the database schema was significantly refactored and
simplified thanks to the ability of F1 to store and index protocol
buffer data in table columns. The goal was to migrate the processing
system so that it could produce an output perfectly identical to the
existing system. This allowed us to leave the serving system untouched
and to perform, from the user’s perspective, a seamless migration. As
an added restriction, the product required that we complete a live
migration without any disruption of the service to our users at any
time. In order to achieve this, the product
development team and the SRE team started working closely, from the
very beginning, to develop the new indexing service.

As its main developers, product development teams are typically more
familiar with the Business Logic (BL) of the software, and are also in
closer contact with the Product Managers and the actual “business
need” component of products. On the other hand, SRE teams usually have
more expertise pertaining to the infrastructure components of the
software (e.g., libraries to talk to distributed storage systems or
databases), because SREs often reuse the same building blocks across
different services, learning the many caveats and nuances that allow
the software to run scalably and reliably over time.

From the start of the migration project, product development and SRE
knew they would have to collaborate even more closely, conducting
weekly meetings to sync on the project’s progress. In this particular
case the BL changes were partially dependent upon infrastructure
changes. For this reason the project started with the design of the
new infrastructure; the SREs, who had extensive knowledge about the
domain of extracting and processing data at scale, drove the design of
the infrastructure changes. This involved designing how to extract the
various tables from F1, how to filter and join the data, how to
extract only the data that changed (as opposed to the entire
database), how to sustain the loss of some of the machines without
impacting the service, how to ensure that the resource usage grows
linearly with the amount of extracted data, the capacity planning, and
many other similar aspects. The new proposed infrastructure was
similar to other services that were already extracting and processing
data from F1. Therefore, we could be sure of the soundness of the
solution and reuse parts of the monitoring and tooling.

Before proceeding with the development of this new infrastructure, two
SREs produced a detailed design document. Then, both the product
development and SRE teams thoroughly reviewed the document, tweaking
the solution to handle some edge cases, and eventually agreed on a
design plan. Such a plan clearly identified what kind of changes the new
infrastructure would bring to the BL. For example, we designed the new
infrastructure to extract only changed data, instead of
repeatedly extracting the entire database; the BL had to take into
account this new approach. Early on, we
defined the new interfaces between infrastructure and BL, and
doing so allowed the product development team
to work independently on the BL changes. Similarly, the product
development team kept SRE informed of BL changes. Where they
interacted (e.g., BL changes dependent on infrastructure), this
coordination structure allowed us to know changes were happening,
and to handle them quickly and correctly.

In later phases of the project, SREs began deploying the new service
in a testing environment that resembled the project’s eventual
finished production environment. This step was essential to measure
the expected behavior of the service — in particular, performance and
resource utilization — while the development of BL was still
underway. The product development team used this testing environment
to perform validation of the new service: the index of the ads
produced by the old service (running in production) had to match
perfectly the index produced by the new service (running in the
testing environment). As suspected, the validation process highlighted
discrepancies between the old and new services (due to some edge
cases in the new data format), which the product development team was
able to resolve iteratively: for each ad they debugged the
cause of the difference and fixed the BL that produced the bad output.
In the meantime, the SRE team began preparing the production
environment: allocating the necessary resources in a different
datacenter, setting up processes and monitoring rules, and training
the engineers designated to be on-call for the service. The SRE
team also set up a basic release process that included validation, a
task usually completed by the product development
team or by Release Engineers but in this specific case was completed
by SREs to speed up the migration.

When the service was ready the SREs prepared a rollout plan in
collaboration with the product development team and launched the new
service. The launch was very successful and proceeded smoothly,
without any visible user impact.

Conclusion

Given the globally distributed nature of SRE teams, effective communication
has always been a high priority in SRE. This chapter has discussed the tools
and techniques that SRE teams use to maintain effective relationships among
their team and with their various partner teams.

Collaboration between SRE teams has its challenges, but potentially great
rewards, including common approaches to platforms for solving problems,
letting us focus on solving more difficult problems.

1 And, as we all know, culture beats strategy every time: [Mer11].
2 The larger team generally tends to unintentionally talk over the smaller team, it’s more difficult to control distracting side conversations, etc.
3 In this particular case, the road to hell was indeed paved with JavaScript.
4 That is, software has the same structure as the communications structure of the organization that produces the software — see https://en.wikipedia.org/wiki/Conway%27s_law.
5 DoubleClick for Publishers is a tool for publishers to manage ads served on their websites and in their apps.

Chapter 32. The Evolving SRE Engagement Model

Written by Acacio Cruz and Ashish Bhambhani

Edited by Betsy Beyer and Tim Harvey

SRE Engagement: What, How, and Why

We’ve discussed in most of the rest of this book what happens when SRE is
already in charge of a service. Few services begin their lifecycle enjoying SRE support, so there needs to be a process for evaluating a service, making sure that it merits SRE support, negotiating how to improve any deficits that bar SRE support, and actually instituting SRE support. We call this
process onboarding. If you are in an environment
where you are surrounded by a lot of existing services in varying
states of perfection, your SRE team will probably be running through a
prioritized queue of onboardings for quite a while until the team has
finished taking on the highest-value targets.

Although this is very common, and a completely reasonable way of dealing with a
fait accompli environment, there are actually at least two better ways of
bringing the wisdom of production, and SRE support, to services old and new
alike.

In the first case, just as in software engineering — where the earlier
the bug is found, the cheaper it is to fix — the earlier an SRE team consultation
happens, the better the service will be and the quicker it will feel the
benefit. When SRE is engaged during the earliest stages of design, the time to onboard is lowered and the service is more reliable “out of
the gate,” usually because we don’t have to spend the time unwinding suboptimal
design or implementation.

Another way, perhaps the best, is to short-circuit
the process by which specially created systems with lots of individual variations
end up “arriving” at SRE’s door. Provide product development with a platform of SRE-validated infrastructure, upon which they can build their systems. This platform will have the double benefit of being both reliable and scalable. This avoids certain classes of cognitive load problems
entirely, and by addressing common infrastructure practices, allows product development teams to focus on innovation at the application layer, where it mostly belongs.

In the following sections, we’ll spend some time looking at each of these models in turn, beginning
with the “classic” one, the PRR-driven model.

The PRR Model

The most typical
initial step of SRE engagement is the Production Readiness Review (PRR), a process that identifies
the reliability needs of a service based on its specific
details. Through a PRR, SREs seek to apply what
they’ve learned and experienced to ensure the reliability of a service
operating in production. A PRR is considered a prerequisite for an SRE
team to accept responsibility for managing the production aspects of a
service.

Figure 32-1 illustrates the lifecycle of a typical service. The Production Readiness Review can be started at any point of the
service lifecycle, but the stages at which SRE engagement is applied
have expanded over time. This chapter describes the Simple PRR Model,
then discusses how its modification into the Extended Engagement Model
and the Frameworks and SRE Platform structure allowed SRE to scale their engagement
process and impact.

[image: A typical service lifecycle.]
Figure 32-1. A typical service lifecycle

The SRE Engagement Model

SRE seeks production responsibility for important services for which
it can make concrete contributions to reliability. SRE is concerned
with several aspects of a service, which are collectively referred to
as production. These aspects include the following:

	
System architecture and interservice dependencies

	
Instrumentation, metrics, and monitoring

	
Emergency response

	
Capacity planning

	
Change management

	
Performance: availability, latency, and efficiency

When SREs engage with a service, we aim to improve it along all of
these axes, which makes managing production for the service easier.

Alternative Support

Not all Google services receive close SRE engagement. A couple of
factors are at play here:

	
Many services don’t need high reliability and availability, so
support can be provided by other means.

	
By design, the number of development teams that request SRE support exceeds the available bandwidth of SRE teams (see Chapter 1).

When SRE can’t provide full-fledged support, it provides other options
for making improvements to production, such as documentation and
consultation.

Documentation

Development guides are available for internal technologies and clients
of widely used systems. Google’s Production Guide documents production
best practices for services, as determined by the experiences of SRE
and development teams alike. Developers can implement the solutions
and recommendations in such documentation to improve their services.

Consultation

Developers may also seek SRE consulting to discuss specific services
or problem areas. The Launch Coordination Engineering (LCE) team (see
Chapter 27) spends a majority of its time consulting with
development teams. SRE teams that aren’t specifically dedicated to
launch consultations also engage in consultation with development
teams.

When a new service or a new feature has been implemented, developers
usually consult with SRE for advice about preparing for the Launch
phase. Launch consultation usually involves one or two SREs spending
a few hours studying the design and implementation at a high
level. The SRE consultants then meet with the development team to
provide advice on risky areas that need attention and to discuss
well-known patterns or solutions that can be incorporated to improve
the service in production. Some of this advice may come from the
Production Guide mentioned earlier.

Consultation sessions are necessarily broad in scope because it’s not
possible to gain a deep understanding of a given system in the limited
time available. For some development teams, consultation is not
sufficient:

	
Services that have grown by orders of magnitude since they
launched, which now require more time to understand than is
feasible through documentation and consultation.

	
Services upon which many other services have subsequently come to
rely upon, which now host significantly more traffic from many
different clients.

These types of services may have grown to the point at which they
begin to encounter significant difficulties in production while
simultaneously becoming important to users. In such cases, long-term
SRE engagement becomes necessary to ensure that they are properly
maintained in production as they grow.

Production Readiness Reviews: Simple PRR Model

When a development team requests that SRE take over production
management of a service, SRE gauges both the importance of the service
and the availability of SRE teams. If the service merits SRE support,
and the SRE team and development organization agree on staffing levels
to facilitate this support, SRE initiates a Production Readiness
Review with the development team.

The objectives of the Production Readiness Review are as follows:

	
Verify that a service meets accepted standards of production setup
and operational readiness, and that service owners are prepared to
work with SRE and take advantage of SRE expertise.

	
Improve the reliability of the service in production, and minimize
the number and severity of incidents that might be expected. A PRR
targets all aspects of production that SRE cares about.

After sufficient improvements are made and the service is deemed ready
for SRE support, an SRE team assumes its production responsibilities.

This brings us to the Production Readiness Review process
itself. There are three different but related engagement models
(Simple PRR Model, Early Engagement Model, and Frameworks and SRE
Platform), which will be discussed in turn.

We will first describe the Simple PRR Model, which is usually targeted
at a service that is already launched and will be taken over by an SRE
team. A PRR follows several phases, much like a development lifecycle, although it may proceed independently in parallel with the
development lifecycle.

Engagement

SRE leadership first decides which SRE team is a good fit for taking
over the service. Usually one to three SREs are selected or self-nominated to
conduct the PRR process. This small group then initiates discussion
with the development team. The discussion covers matters such as:

	
Establishing an SLO/SLA for the service

	
Planning for potentially disruptive design changes required to
improve reliability

	
Planning and training schedules

The goal is to arrive at a common agreement about the process, end
goals, and outcomes that are necessary for the SRE team to engage with
the development team and their service.

Analysis

Analysis is the first large segment of work. During this phase, the
SRE reviewers learn about the service and begin analyzing it for
production shortcomings. They aim to gauge the maturity of the service
along the various axes of concern to SRE. They also examine the
service’s design and implementation to check if it follows production
best practices. Usually, the SRE team establishes and maintains a PRR
checklist explicitly for the Analysis phase. The checklist is specific
to the service and is generally based on domain expertise, experience
with related or similar systems, and best practices from the
Production Guide. The SRE team may also consult other teams that have
more experience with certain components or dependencies of the
service.

A few examples of checklist items include:

	
Do updates to the service impact an unreasonably large percentage
of the system at once?

	
Does the service connect to the appropriate serving instance of its
dependencies? For example, end-user requests to a service should
not depend on a system that is designed for a batch-processing use
case.

	
Does the service request a sufficiently high network
quality-of-service when talking to a critical remote service?

	
Does the service report errors to central logging systems for
analysis? Does it report all exceptional conditions that result in
degraded responses or failures to the end users?

	
Are all user-visible request failures well instrumented and
monitored, with suitable alerting configured?

The checklist may also include operational standards and best
practices followed by a specific SRE team. For example, a perfectly
functional service configuration that doesn’t follow an SRE team’s
“gold standard” might be refactored to work better with SRE tools for
scalably managing configurations. SREs also look at recent incidents
and postmortems for the service, as well as follow-up tasks for the
incidents. This evaluation gauges the demands of emergency response
for the service and the availability of well-established operational
controls.

Improvements and Refactoring

The Analysis phase leads to the identification of recommended
improvements for the service. This next phase proceeds as follows:

	
Improvements are prioritized based upon importance for service
reliability.

	
The priorities are discussed and negotiated with the development
team, and a plan of execution is agreed upon.

	
Both SRE and product development teams participate and assist each
other in refactoring parts of the service or implementing additional
features.

This phase typically varies the most in duration and amount of
effort. How much time and effort this phase will involve depends upon
the availability of engineering time for refactoring, the maturity and
complexity of the service at the start of the review, and myriad other
factors.

Training

Responsibility for managing a service in production is generally
assumed by an entire SRE team. To ensure that the team is prepared,
the SRE reviewers who led the PRR take ownership of training the team,
which includes the documentation necessary to support the
service. Typically with the help and participation of the development
team, these engineers organize a series of training sessions and
exercises. Instruction can include:

	
Design overviews

	
Deep dives on various request flows in the system

	
A description of the production setup

	
Hands-on exercises for various aspects of system operations

When the training is concluded, the SRE team should be prepared to
manage the service.

Onboarding

The Training phase unblocks onboarding of the service by the SRE
team. It involves a progressive transfer of
responsibilities and ownership of various production aspects of the
service, including parts of operations, the change management process,
access rights, and so forth. The SRE team continues to focus on the
various areas of production mentioned earlier. To complete the
transition, the development team must be available to back up and
advise the SRE team for a period of time as it settles in managing
production for the service. This relationship becomes the basis for
the ongoing work between the teams.

Continuous Improvement

Active services continuously change in response to new demands and
conditions, including user requests for new features, evolving system
dependencies, and technology upgrades, in addition to other factors. The
SRE team must maintain service reliability standards in the face of
these changes by driving continuous improvement. The responsible SRE
team naturally learns more about the service in the course of
operating the service, reviewing new changes, responding to incidents,
and especially when conducting postmortems/root cause analyses. This
expertise is shared with the development team as suggestions and
proposals for changes to the service whenever new features,
components, and dependencies may be added to the service. Lessons from
managing the service are also contributed to best practices, which are
documented in the Production Guide and elsewhere.

Engaging with Shakespeare

Initially, the developers of the Shakespeare service were responsible
for the product, including carrying the pager for emergency response.
However, with growing use of the service and the growth of the revenue
coming from the service, SRE support became desirable. The product
has already been launched, so SRE conducted a Production Readiness
Review. One of the things they found was that the dashboards were not
completely covering some of the metrics defined in the SLO, so that
needed to be fixed. After all the issues that had been filed had been
fixed, SRE took over the pager for the service, though two developers
were in the on-call rotation as well. The developers are participating
in the weekly on-call meeting discussing last week’s problems and how
to handle upcoming large-scale maintenance or cluster turndowns. Also
future plans for the service are now discussed with the SREs to make sure
that new launches will go flawlessly (though Murphy’s law is always
looking for opportunities to spoil that).

Evolving the Simple PRR Model: Early Engagement

Thus far, we’ve discussed the Production Readiness Review as it’s used
in the Simple PRR Model, which is limited to services that have
already entered the Launch phase. There are several limitations and
costs associated with this model. For example:

	
Additional communication between teams can increase some process overhead for the development team, and cognitive burden for the SRE reviewers.

	
The right SRE reviewers must be available, and capable of managing their time and priorities with regards to their existing engagements.

	
Work done by SREs must be highly visible and sufficiently reviewed by the development team to ensure effective knowledge sharing. SREs should essentially work as a part of the development team, rather than an external unit.

However, the main limitations of the PRR Model stem from the
fact that the service is launched and serving at scale, and the SRE
engagement starts very late in the development lifecycle. If the PRR
occurred earlier in the service lifecycle, SRE’s opportunity to remedy
potential issues in the service would be markedly increased. As a
result, the success of the SRE engagement and the future success of
the service itself would likely improve. The resulting drawbacks can
pose a significant challenge to the success of the SRE engagement and
the future success of the service itself.

Candidates for Early Engagement

The Early Engagement Model introduces SRE earlier in the development
lifecycle in order to achieve significant additional
advantages. Applying the Early Engagement Model requires identifying
the importance and/or business value of a service early in the
development lifecycle, and determining if the service will have
sufficient scale or complexity to benefit from SRE
expertise. Applicable services often have the following
characteristics:

	
The service implements significant new functionality and will be
part of an existing system already managed by SRE.

	
The service is a significant rewrite or alternative to an existing
system, targeting the same use cases.

	
The development team sought SRE advice or approached SRE for
takeover upon launch.

The Early Engagement Model essentially immerses SREs in the
development process. SRE’s focus remains the same, though the means to
achieve a better production service are different. SRE participates in
Design and later phases, eventually taking over the service any time
during or after the Build phase. This model is based on active
collaboration between the development and SRE teams.

Benefits of the Early Engagement Model

While the Early Engagement Model does entail certain risks and challenges discussed previously, additional SRE
expertise and collaboration during the entire lifecycle of the
product creates significant benefits compared to an engagement
initiated later in the service lifecycle.

Design phase

SRE collaboration during the Design phase can prevent a variety of
problems or incidents from occurring later in production. While design
decisions can be reversed or rectified later in the development lifecycle, such changes come at a high cost in terms of effort and
complexity. The best production incidents are those that never happen!

Occasionally, difficult trade-offs lead to the selection of a
less-than-ideal design. Participation in the Design phase means that
SREs are aware up front of the trade-offs and are part of the decision
to pick a less-than-ideal option. Early SRE involvement aims to minimize
future disputes over design choices once the service is in production.

Build and implementation

The Build phase addresses production aspects such as instrumentation
and metrics, operational and emergency controls, resource usage, and
efficiency. During this phase, SRE can influence and improve the
implementation by recommending specific existing libraries and
components, or helping build certain controls into the system. SRE
participation at this stage helps enable ease of operations in the
future and allows SRE to gain operational experience in advance of the
launch.

Launch

SRE can also help implement widely used launch patterns and
controls. For example, SRE might help implement a “dark launch” setup,
in which part of the traffic from existing users is sent to the new
service in addition to being sent to the live production service. The responses from the new service are “dark” since they are
thrown away and not actually shown to users. Practices such as dark
launches allow the team to gain operational insight, resolve issues
without impacting existing users, and reduce the risk of encountering
issues after launch. A smooth launch is immensely helpful in keeping
the operational burden low and maintaining the development momentum
after the launch. Disruptions around launch can easily result in
emergency changes to source code and production, and disrupt the
development team’s work on future features.

Post-launch

Having a stable system at launch time generally leads to fewer
conflicting priorities for the development team in terms of choosing
between improving service reliability versus adding new features. In
later phases of the service, the lessons from earlier phases can
better inform refactoring or redesign.

With extended involvement, the SRE team can be ready to take over the
new service much sooner than is possible with the Simple PRR
Model. The longer and closer engagement between the SRE and
development teams also creates a collaborative relationship that can
be sustained long term. A positive cross-team relationship fosters a
mutual feeling of solidarity, and helps SRE establish ownership of the
production responsibility.

Disengaging from a service

Sometimes a service doesn’t warrant full-fledged SRE team
management — this determination might be made post-launch, or SRE might
engage with a service but never officially take it over. This is a
positive outcome, because the service has been engineered to be reliable
and low maintenance, and can therefore remain with the development
team.

It is also possible that SRE engages early with a service that fails
to meet the levels of usage projected. In such cases, the SRE effort
spent is simply part of the overall business risk that comes with new
projects, and a small cost relative to the success of projects that
meet expected scale. The SRE team can be reassigned, and lessons
learned can be incorporated into the engagement process.

Evolving Services Development: Frameworks and SRE Platform

The Early Engagement Model made strides in evolving SRE engagement
beyond the Simple PRR Model, which applied only to services that had
already launched. However, there was still progress to be made in
scaling SRE engagement to the next level by designing for reliability.

Lessons Learned

Over time, the SRE engagement model described thus far produced
several distinct patterns:

	
Onboarding each service required two or three SREs and typically lasted two or three
quarters. The lead times for a PRR were relatively high (quarters
away). The effort level required was proportional to the number of
services under review, and was constrained by the insufficient
number of SREs available to conduct PRRs. These conditions led to
serialization of service takeovers and strict service
prioritization.

	
Due to differing software practices across services, each
production feature was implemented differently. To meet PRR-driven
standards, features usually had to be reimplemented specifically
for each service or, at best, once for each small subset of
services sharing code. These reimplementations were a waste of
engineering effort. One canonical example is the implementation of
functionally similar logging frameworks repeatedly in the same
language because different services didn’t implement the same
coding structure.

	
A review of common service issues and outages revealed certain
patterns, but there was no way to easily replicate
fixes and improvements across services. Typical examples included
service overload situations and data hot-spotting.

	
SRE software engineering contributions were often local to the
service. Thus, building generic solutions to be reused was
difficult. As a consequence, there was no easy way to implement new
lessons individual SRE teams learned and best practices across
services that had already been onboarded.

External Factors Affecting SRE

External factors have traditionally pressured the SRE organization and
its resources in several ways.

Google is increasingly following the industry trend of moving toward microservices.1 As a result, both the number of requests for SRE support and the cardinality of services to support have increased. Because each service has a base fixed operational cost, even
simple services demand more staffing. Microservices also imply an expectation
of lower lead time for deployment, which was not possible with the
previous PRR model (which had a lead time of months).

Hiring experienced, qualified SREs is difficult and costly. Despite
enormous effort from the recruiting organization, there are never
enough SREs to support all the services that need their
expertise. Once SREs are hired, their training is also a lengthier
process than is typical for development engineers.

Finally, the SRE organization is responsible for serving the needs of
the large and growing number of development teams that do not already
enjoy direct SRE support. This mandate calls for extending the SRE
support model far beyond the original concept and engagement
model.

Toward a Structural Solution: Frameworks

To effectively respond to these conditions, it became necessary to
develop a model that allowed for the following principles:

Codified best practices

The ability to commit what works well in
production to code, so services can simply use this code and
become “production ready” by design.

Reusable solutions

Common and easily shareable implementations
of techniques used to mitigate scalability and reliability issues.

A common production platform with a common control surface

Uniform sets of interfaces to production facilities, uniform sets
of operational controls, and uniform monitoring, logging, and
configuration for all services.

Easier automation and smarter systems

A common control surface
 that enables automation and smart systems at a level not possible
before. For example, SREs can readily receive a single view of
 relevant information for an outage, rather than hand collecting
and analyzing mostly raw data from disparate sources (logs,
monitoring data, and so on).

Based upon these principles, a set of SRE-supported platform and
service frameworks were created, one for each environment we support
(Java, C++, Go). Services built using these frameworks share
implementations that are designed to work with the SRE-supported
platform, and are maintained by both SRE and development teams. The
main shift brought about by frameworks was to enable product
development teams to design applications using the framework solution
that was built and blessed by SRE, as opposed to either retrofitting
the application to SRE specifications after the fact, or retrofitting
more SREs to support a service that was markedly different than other
Google services.

An application typically comprises some business logic, which in
turn depends on various infrastructure components. SRE production
concerns are largely focused on the infrastructure-related parts of a
service. The service frameworks implement infrastructure code in a
standardized fashion and address various production concerns. Each concern is encapsulated in one or more framework modules, each
of which provides a cohesive solution for a problem domain or
infrastructure dependency. Framework modules address the various SRE
concerns enumerated earlier, such as:

	
Instrumentation and metrics

	
Request logging

	
Control systems involving traffic and load management

SRE builds framework modules to implement canonical solutions for the
concerned production area. As a result, development teams can focus on
the business logic, because the framework already takes care of correct
infrastructure use.

A framework essentially is a prescriptive implementation for using a
set of software components and a canonical way of combining these
components. The framework can also expose features that control
various components in a cohesive manner. For example, a framework
might provide the following:

	
Business logic organized as well-defined semantic components that
can be referenced using standard terms

	
Standard dimensions for monitoring instrumentation

	
A standard format for request debugging logs

	
A standard configuration format for managing load shedding

	
Capacity of a single server and determination of “overload” that
can both use a semantically consistent measure for feedback to
various control systems

Frameworks provide multiple upfront gains in consistency and
efficiency. They free developers from having to glue together and
configure individual components in an ad hoc service-specific manner,
in ever-so-slightly incompatible ways, that then have to be manually
reviewed by SREs. They drive a single reusable solution for production
concerns across services, which means that framework users end up
with the same common implementation and minimal configuration
differences.

Google supports several major languages for application development,
and frameworks are implemented across all of these languages. While
different implementations of the framework (say in C++ versus Java)
can’t share code, the goal is to expose the same API, behavior,
configuration, and controls for identical functionality. Therefore,
development teams can choose the language platform that fits their
needs and experience, while SREs can still expect the same familiar
behavior in production and standard tools to manage the service.

New Service and Management Benefits

The structural approach, founded on service frameworks and a common
production platform and control surface, provided a host of new
benefits.

Significantly lower operational overhead

A production platform built on top of frameworks with stronger
conventions significantly reduced operational overhead, for the
following reasons:

	
It supports strong conformance tests for coding structure,
dependencies, tests, coding style guides, and so on. This
functionality also improves user data privacy, testing, and
security conformance.

	
It features built-in service deployment, monitoring, and automation
for all services.

	
It facilitates easier management of large numbers of services,
especially micro-services, which are growing in number.

	
It enables much faster deployment: an idea can graduate to
fully deployed SRE-level production quality in a matter of days!

Universal support by design

The constant growth in the number of services at Google means that
most of these services can neither warrant SRE engagement nor be
maintained by SREs. Regardless, services that don’t receive full SRE
support can be built to use production features that are developed and
maintained by SREs. This practice effectively breaks the SRE staffing
barrier. Enabling SRE-supported production standards and tools for all
teams improves the overall service quality across Google. Furthermore,
all services that are implemented with frameworks automatically
benefit from improvements made over time to frameworks modules.

Faster, lower overhead engagements

The frameworks approach results in faster PRR execution because we can rely upon:

	
Built-in service features as part of the framework implementation

	
Faster service onboarding (usually accomplished by a single SRE
during one quarter)

	
Less cognitive burden for the SRE teams managing services built
using frameworks

These properties allow SRE teams to lower the assessment and
qualification effort for service onboarding, while maintaining a high
bar on service production quality.

A new engagement model based on shared responsibility

The original SRE engagement model presented only two options: either
full SRE support, or approximately no SRE
engagement.2

A production platform with a common service structure, conventions,
and software infrastructure made it possible for an SRE team to
provide support for the “platform” infrastructure, while the
development teams provide on-call support for functional issues with
the service — that is, for bugs in the application code. Under this
model, SREs assume responsibility for the development and maintenance
of large parts of service software infrastructure, particularly
control systems such as load shedding, overload, automation, traffic
management, logging, and monitoring.

This model represents a significant departure from the way service
management was originally conceived in two major ways: it entails a
new relationship model for the interaction between SRE and development
teams, and a new staffing model for SRE-supported service management.3

Conclusion

Service reliability can be improved through SRE engagement, in a
process that includes systematic review and improvement of its
production aspects. Google SRE’s initial such systematic approach, the
Simple Production Readiness Review, made strides in standardizing the
SRE engagement model, but was only applicable to services that had
already entered the Launch phase.

Over time, SRE extended and improved this model. The Early Engagement
Model involved SRE earlier in the development lifecycle in order to
“design for reliability.” As demand for SRE expertise continued to
grow, the need for a more scalable engagement model became
increasingly apparent. Frameworks for production services were
developed to meet this demand: code patterns based on production best
practices were standardized and encapsulated in frameworks, so that
use of frameworks became a recommended, consistent, and relatively
simple way of building production-ready services.

All three of the engagement models described are still practiced
within Google. However, the adoption of frameworks is becoming a
prominent influence on building production-ready services at Google as
well as profoundly expanding the SRE contribution, lowering service
management overhead, and improving baseline service quality across the
organization.

1 See the Wikipedia page on microservices at http://en.wikipedia.org/wiki/Microservices.
2 Occasionally, there were consulting engagements by SRE teams with some non-onboarded services, but consultations were a best-effort approach and limited in number and scope.
3 The new model of service management changes the SRE staffing model in two ways: (1) because a lot of service technology is common, it reduces the number of required SREs per service; (2) it enables the creation of production platforms with separation of concerns between production platform support (done by SREs) and service-specific business-logic support, which remains with the development team. These platforms teams are staffed based upon the need to maintain the platform rather than upon service count, and can be shared across products.

Part V. Conclusions

Having covered much ground in terms of how SRE works at Google, and
how the principles and practices we’ve developed might be applied to
other organizations in our field, it now seems appropriate to turn our
view to Chapter 33, Lessons Learned from Other Industries, to examine how SRE’s practices compare to other
industries where reliability is critically important.

Finally, Google’s VP for Site Reliability Engineering, Benjamin Lutch,
writes about SRE’s evolution over the course of his career in
his conclusion, examining SRE through the lens of some observations
on the aviation industry.

Chapter 33. Lessons Learned from Other Industries

Written by Jennifer Petoff

Edited by Betsy Beyer

A deep dive into SRE culture and practices at Google naturally leads
to the question of how other industries manage their businesses for
reliability. Compiling this book on Google SRE created an opportunity
to speak to a number of Google’s engineers about their previous work
experiences in a variety of other high-reliability fields in order to
address the following comparative questions:

	
Are the principles used in Site Reliability Engineering also
important outside of Google, or do other industries tackle the
requirements of high reliability in markedly different ways?

	
If other industries also adhere to SRE principles, how are the
principles manifested?

	
What are the similarities and differences in the implementation of
these principles across industries?

	
What factors drive similarities and differences in implementation?

	
What can Google and the tech industry learn from these comparisons?

A number of principles fundamental to Site Reliability Engineering at
Google are discussed throughout this text. To simplify our comparison
of best practices in other industries, we distilled these concepts
into four key themes:

	
Preparedness and Disaster Testing

	
Postmortem Culture

	
Automation and Reduced Operational Overhead

	
Structured and Rational Decision Making

This chapter introduces the industries that we profiled and the
industry veterans we interviewed. We define key SRE themes, discuss
how these themes are implemented at Google, and give examples of how
these principles reveal themselves in other industries for comparative
purposes. We conclude with some insights and discussion on the
patterns and anti-patterns we discovered.

Meet Our Industry Veterans

Peter Dahl is a Principal Engineer at Google. Previously, he worked
 as a defense contractor on several high-reliability systems including
 many airborne and wheeled vehicle GPS and inertial guidance
 systems. Consequences of a lapse in reliability in such systems
 include vehicle malfunction or loss, and the financial consequences
 associated with that failure.

Mike Doherty is a Site Reliability Engineer at Google. He worked as
 a lifeguard and lifeguard trainer for a decade in Canada. Reliability
 is absolutely essential by nature in this field, because lives are on the
 line every day.

Erik Gross is currently a software engineer at Google. Before
 joining the company, he spent seven years designing algorithms and
 code for the lasers and systems used to perform refractive eye surgery
 (e.g., LASIK). This is a high-stakes, high-reliability field, in
 which many lessons relevant to reliability in the face of government
 regulations and human risk were learned as the technology received
 FDA approval, gradually improved, and finally became ubiquitous.

Gus Hartmann and Kevin Greer have experience in the
 telecommunications industry, including maintaining the E911 emergency
 response system.1 Kevin is currently a
 software engineer on the Google Chrome team and Gus is a systems
 engineer for Google’s Corporate Engineering team. User expectations
 of the telecom industry demand high reliability. Implications of a
 lapse of service range from user inconvenience due to a system
 outage to fatalities if E911 goes down.

Ron Heiby is a Technical Program Manager for Site Reliability
 Engineering at Google. Ron has experience in development for cell
 phones, medical devices, and the automotive industry. In some cases
 he worked on interface components of these industries (for example,
 on a device to allow EKG readings2 in
 ambulances to be transmitted over the digital wireless phone
 network). In these industries, the impact of a reliability issue can
 range from harm to the business incurred by equipment recalls to
 indirectly impacting life and health (e.g., people not getting the
 medical attention they need if the EKG cannot communicate with the
 hospital).

Adrian Hilton is a Launch Coordination Engineer at Google.
 Previously, he worked on UK and USA military aircraft, naval avionics
 and aircraft stores management systems, and UK railway signaling
 systems. Reliability is critical in this space because impact of incidents
 ranges from multimillion-dollar loss of equipment to injuries and
 fatalities.

Eddie Kennedy is a project manager for the Global Customer
 Experience team at Google and a mechanical engineer by
 training. Eddie spent six years working as a Six Sigma Black Belt
 process engineer in a manufacturing facility that makes synthetic
 diamonds. This industry is characterized by a relentless focus on
 safety, because the extremes of temperature and pressure demands of the
 process pose a high level of danger to workers on a daily basis.

John Li is currently a Site Reliability Engineer at Google. John
 previously worked as a systems administrator and software developer
 at a proprietary trading company in the finance industry. Reliability
 issues in the financial sector are taken quite seriously because they can
 lead to serious fiscal consequences.

Dan Sheridan is a Site Reliability Engineer at Google. Before
 joining the company, he worked as a safety consultant in the civil
 nuclear industry in the UK. Reliability is important in the nuclear
 industry because an incident can have serious repercussions: outages
 can incur millions a day in lost revenue, while risks to
 workers and those in the community are even more dire, dictating
 zero tolerance for failure. Nuclear infrastructure is designed with a
 series of failsafes that halt operations before an incident of any
 such magnitude is reached.

Jeff Stevenson is currently a hardware operations manager at
 Google. He has past experience as a nuclear engineer in the US Navy
 on a submarine. Reliability stakes in the nuclear Navy are high — problems that arise in the case of incidents range from damaged
 equipment, to long-standing environmental impact, to potential loss
 of life.

Matthew Toia is a Site Reliability Manager focused on storage
 systems. Prior to Google, he worked on software development and
 deployment of air traffic control software systems. Effects from
 incidents in this industry range from inconveniences to passengers
 and airlines (e.g., delayed flights, diverted planes) to potential
 loss of life in the event of a crash. Defense in depth is a key
 strategy to avoiding catastrophic failures.

Now that you’ve met our experts and gained a high-level understanding
of why reliability is important in their respective former fields, we’ll
delve into the four key themes of reliability.

Preparedness and Disaster Testing

“Hope is not a strategy.” This rallying cry of the SRE team at Google
sums up what we mean by preparedness and disaster testing. The SRE
culture is forever vigilant and constantly questioning: What could go
wrong? What action can we take to address those issues before they
lead to an outage or data loss? Our annual Disaster and Recovery
Testing (DiRT) drills seek to address these questions head-on [Kri12]. In DiRT
exercises, SREs push production systems to the limit and inflict
actual outages in order to:

	
Ensure that systems react the way we think they will

	
Determine unexpected weaknesses

	
Figure out ways to make the systems more robust in order to prevent
uncontrolled outages

Several strategies for testing disaster readiness and ensuring
preparedness in other industries emerged from our
conversations. Strategies included the following:

	
Relentless organizational focus on safety

	
Attention to detail

	
Swing capacity

	
Simulations and live drills

	
Training and certification

	
Obsessive focus on detailed requirements gathering and design

	
Defense in depth

Relentless Organizational Focus on Safety

This principle is
 particularly important in an industrial engineering context. According
 to Eddie Kennedy, who worked on a manufacturing floor where workers faced
 safety hazards, “every management meeting started with a discussion
 of safety.” The manufacturing industry prepares itself for the
 unexpected by establishing highly defined processes that are strictly
 followed at every level of the organization. It is critical that all
 employees take safety seriously, and that workers feel empowered to
 speak up if and when anything seems amiss. In the case of nuclear
 power, military aircraft, and railway signaling industries, safety
 standards for software are well detailed (e.g., UK Defence Standard
 00-56, IEC 61508, IEC513, US DO-178B/C, and DO-254) and levels of
 reliability for such systems are clearly identified (e.g., Safety
 Integrity Level (SIL) 1–4),3
 with the aim of specifying acceptable approaches to delivering a
 product.

Attention to Detail

From his time spent in the US Navy, Jeff
 Stevenson recalls an acute awareness of how a lack of diligence in
 executing small tasks (for example, lube oil maintenance) could lead
 to major submarine failure. A very small oversight or mistake can
 have big effects. Systems are highly interconnected, so an accident
 in one area can impact multiple related components. The nuclear Navy
 focuses on routine maintenance to ensure that small issues don’t
 snowball.

Swing Capacity

System utilization in the telecom industry can
 be highly unpredictable. Absolute capacity can be strained by
 unforeseeable events such as natural disasters, as well as large,
 predictable events like the Olympics. According to Gus Hartmann, the
 industry deals with these incidents by deploying swing capacity in
 the form of a SOW (switch on wheels), a mobile telco office. This
 excess capacity can be rolled out in an emergency or in anticipation
 of a known event that is likely to overload the system. Capacity
 issues veer into the unexpected in matters unrelated to absolute
 capacity, as well. For example, when a celebrity’s private phone
 number was leaked in 2005 and thousands of fans simultaneously
 attempted to call her, the telecom system exhibited symptoms similar
 to a DDoS or massive routing error.

Simulations and Live Drills

Google’s Disaster Recovery tests
 have a lot in common with the simulations and live
 drills that are a key focus of many of the established industries we
 researched. The potential consequences of a system outage determine
 whether using a simulation or a live drill is appropriate. For
 example, Matthew Toia points out that the aviation industry can’t
 perform a live test “in production” without putting equipment and
 passengers at risk. Instead, they employ extremely realistic simulators with live data feeds, in which the control rooms and equipment are
 modeled down to the tiniest details to ensure a realistic experience
 without putting real people at risk. Gus Hartmann reports that the
 telecom industry typically focuses on live drills centered on
 surviving hurricanes and other weather emergencies. Such modeling led
 to the creation of weatherproof facilities with generators inside the
 building capable of outlasting a storm.

The US nuclear Navy uses a mixture of “what if” thought exercises and
live drills. According to Jeff Stevenson, the live drills involve
“actually breaking real stuff but with control parameters. Live drills
are carried out religiously, every week, two to three days per week.”
For the nuclear Navy, thought exercises are useful, but not sufficient
to prepare for actual incidents. Responses must be practiced so they
are not forgotten.

According to Mike Doherty, lifeguards face disaster testing exercises
more akin to a “mystery shopper” experience. Typically, a facility
manager works with a child or an incognito lifeguard in training to
stage a mock drowning. These scenarios are conducted to be as
realistic as possible so that lifeguards aren’t able to differentiate
between real and staged emergencies.

Training and Certification

Our interviews suggest that training
 and certification are particularly important when lives are at
 stake. For example, Mike Doherty described how lifeguards complete a
 rigorous training certification, in addition to a periodic
 recertification process. Courses include fitness components (e.g., a
 lifeguard must be able to hold someone heavier than themselves with
 shoulders out of the water), technical components like first aid and
 CPR, and operational elements (e.g., if a lifeguard enters the water,
 how do other team members respond?). Every facility also has
 site-specific training, because lifeguarding in a pool is markedly
 different from lifeguarding on a lakeside beach or on the ocean.

Focus on Detailed Requirements Gathering and Design

Some of the
 engineers we interviewed discussed the importance of detailed
 requirements gathering and design docs. This practice was
 particularly important when working with medical devices. In many of
 these cases, actual use or maintenance of the equipment doesn’t fall
 within the purview of product designers. Thus, usage and maintenance
 requirements must be gathered from other sources.

For example, according to Erik Gross, laser eye surgery machines are
designed to be as foolproof as possible. Thus, soliciting requirements
from the surgeons who actually use these machines and the technicians
responsible for maintaining them is particularly important. In another
example, former defense contractor Peter Dahl described a very
detailed design culture in which creating a new defense system
commonly entailed an entire year of design, followed by just three
weeks of writing the code to actualize the design. Both of these
examples are markedly different from Google’s launch and iterate
culture, which promotes a much faster rate of change at a calculated
risk. Other industries (e.g., the medical industry and the military, as
previously discussed) have very different pressures, risk appetites, and
requirements, and their processes are very much informed by these
circumstances.

Defense in Depth and Breadth

In the nuclear power industry,
 defense in depth is a key element to preparedness [IAEA12].
 Nuclear reactors feature redundancy on all systems and implement a
 design methodology that mandates fallback systems behind primary
 systems in case of failure. The system is designed with multiple
 layers of protection, including a final physical barrier to
 radioactive release around the plant itself. Defense in depth is
 particularly important in the nuclear industry due to the zero
 tolerance for failures and incidents.

Postmortem Culture

Corrective and preventative action (CAPA)4 is a
well-known concept for improving reliability that focuses on the
systematic investigation of root causes of identified issues or risks
in order to prevent recurrence. This principle is embodied by SRE’s strong culture of blameless
postmortems. When something goes wrong (and given the scale,
complexity, and rapid rate of change at Google, something inevitably
will go wrong), it’s important to evaluate all of the following:

	
What happened

	
The effectiveness of the response

	
What we would do differently next time

	
What actions will be taken to make sure a particular incident
doesn’t happen again

This exercise is undertaken without pointing fingers at any
individual. Instead of assigning blame, it is far more important to
figure out what went wrong, and how, as an organization, we will
rally to ensure it doesn’t happen again. Dwelling on who might have
caused the outage is counterproductive. Postmortems are conducted
after incidents and published across SRE teams so that all can benefit
from the lessons learned.

Our interviews uncovered that many industries perform a version of the
postmortem (although many do not use this specific moniker, for
obvious reasons). The motivation behind these exercises appears to
be the main differentiator among industry practices.

Many industries are heavily regulated and are held accountable by
specific government authorities when something goes wrong. Such
regulation is especially ingrained when the stakes of failure are high
(e.g., lives are at stake). Relevant government agencies include the
FCC (telecommunications), FAA (aviation), OSHA (the manufacturing and
chemical industries), FDA (medical devices), and the various National
Competent Authorities in the EU.5 The nuclear power
and transportation industries are also heavily regulated.

Safety considerations are another motivating factor behind
postmortems. In the manufacturing and chemical industries, the risk of
injury or death is ever-present due to the nature of the conditions
required to produce the final product (high temperature, pressure,
toxicity, and corrosivity, to name a few). For example, Alcoa features
a noteworthy safety culture. Former CEO Paul O’Neill required staff to
notify him within 24 hours of any injury that lost a worker day. He
even distributed his home phone number to workers on the factory floor
so that they could personally alert him to safety
concerns.6

The stakes are so high in the manufacturing and chemical industries
that even “near misses” — when a given event could have caused serious
harm, but did not — are carefully scrutinized. These scenarios function
as a type of preemptive postmortem. According to VM Brasseur in a
talk given at YAPC NA 2015, “There are multiple near misses in just
about every disaster and business crisis, and typically they’re
ignored at the time they occur. Latent error, plus an enabling
condition, equals things not working quite the way you
planned” [Bra15]. Near misses are effectively disasters waiting to happen. For example,
scenarios in which a worker doesn’t follow the standard operating
procedure, an employee jumps out of the way at the last second to
avoid a splash, or a spill on the staircase isn’t cleaned up, all
represent near misses and opportunities to learn and improve. Next
time, the employee and the company might not be so lucky. The United
Kingdom’s CHIRP (Confidential Reporting Programme for Aviation and
Maritime) seeks to raise awareness about such incidents across the
industry by providing a central reporting point where aviation and
maritime personnel can report near misses confidentially. Reports and
analyses of these near misses are then published in periodic
newsletters.

Lifeguarding has a deeply embedded culture of post-incident analysis
and action planning. Mike Doherty quips, “If a lifeguard’s feet go in
the water, there will be paperwork!” A detailed write-up is required
after any incident at the pool or on the beach. In the case of serious
incidents, the team collectively examines the incident end to end,
discussing what went right and what went wrong. Operational changes
are then made based on these findings, and training is often scheduled
to help people build confidence around their ability to handle a
similar incident in the future. In cases of particularly shocking or
traumatic incidents, a counselor is brought on site to help staff
cope with the psychological aftermath. The lifeguards may have been
well prepared for what happened in practice, but might feel like
they haven’t done an adequate job. Similar to Google, lifeguarding
embraces a culture of blameless incident analysis. Incidents are
chaotic, and many factors contribute to any given incident. In this
field, it’s not helpful to place blame on a single individual.

Automating Away Repetitive Work and Operational Overhead

At their core, Google’s Site Reliability Engineers are software
engineers with a low tolerance for repetitive reactive work. It is
strongly ingrained in our culture to avoid repeating an operation that
doesn’t add value to a service. If a task can be automated away, why
would you run a system on repetitive work that is of low value?
Automation lowers operational overhead and frees up time for our
engineers to proactively assess and improve the services they support.

The industries that we surveyed were mixed in terms of if, how, and
why they embraced automation. Certain industries trusted humans more
than machines. During the tenure of our industry veteran, the US nuclear Navy eschewed automation in favor of a
series of interlocks and administrative procedures. For example,
according to Jeff Stevenson, operating a valve required an operator, a
supervisor, and a crew member on the phone with the engineering watch
officer tasked with monitoring the response to the action taken. These
operations were very manual due to concern that an automated system
might not spot a problem that a human would definitely
notice. Operations on a submarine are ruled by a trusted human
decision chain — a series of people, rather than one individual. The
nuclear Navy was also concerned that automation and computers move so
rapidly that they are all too capable of committing a large,
irreparable mistake. When you are dealing with nuclear reactors, a slow and
steady methodical approach is more important than accomplishing a task
quickly.

According to John Li, the proprietary trading industry has become increasingly cautious in its application of automation in recent years. Experience has shown that incorrectly configured automation can inflict significant damage and incur a great deal of financial loss in a very short period of time. For example, in 2012 Knight Capital Group encountered a
“software glitch” that led to a loss of $440M in just a few
hours.7 Similarly, in 2010 the US
stock market experienced a Flash Crash that was ultimately blamed on a
rogue trader attempting to manipulate the market with automated
means. While the market was quick to recover, the Flash Crash resulted
in a loss on the magnitude of trillions of dollars in just 30
minutes.8
Computers can execute tasks very quickly, and speed can be a negative
if these tasks are configured incorrectly.

In contrast, some companies embrace automation precisely because
computers act more quickly than people. According to Eddie Kennedy,
efficiency and monetary savings are key in the manufacturing industry,
and automation provides a means to accomplish tasks more efficiently
and cost-effectively. Furthermore, automation is generally more
reliable and repeatable than work conducted manually by humans, which
means that it produces higher-quality standards and tighter
tolerances. Dan Sheridan discussed automation as deployed in the UK
nuclear industry. Here, a rule of thumb dictates that if a plant is
required to respond to a given situation in less than 30 minutes, that
response must be automated.

In Matt Toia’s experience, the aviation industry applies automation
selectively. For example, operational failover is performed
automatically, but when it comes to certain other tasks, the industry
trusts automation only when it’s verified by a human. While the
industry employs a good deal of automatic monitoring, actual air-traffic–control-system implementations must be manually inspected by
humans.

According to Erik Gross, automation has been quite effective in reducing user error in laser eye surgery. Before LASIK surgery is performed, the doctor measures the patient using a refractive eye test. Originally, the doctor would type in the numbers and press a button, and the laser would go to work correcting the patient’s vision. However, data entry errors could be a big issue. This process also entailed the possibility of mixing up patient data or jumbling numbers for the left and right eye.

Automation now greatly lessens the chance that humans make a mistake that impacts someone’s vision. A computerized sanity check of manually entered data was the first major automated improvement: if a human operator inputs measurements outside an expected range, automation promptly and prominently flags this case as unusual. Other automated improvements followed this development: now the iris is photographed during the preliminary refractive eye test. When it’s time to perform the surgery, the iris of the patient is automatically matched to the iris in the photo, thus eliminating the possibility of mixing up patient data. When this automated solution was implemented, an entire class of medical errors disappeared.

Structured and Rational Decision Making

At Google in general, and in Site Reliability Engineering in
particular, data is critical. The team aspires to make decisions in a
structured and rational way by ensuring that:

	
The basis for the decision is agreed upon advance, rather than
justified ex post facto

	
The inputs to the decision are clear

	
Any assumptions are explicitly stated

	
Data-driven decisions win over decisions based on feelings,
hunches, or the opinion of the most senior employee in the room

Google SRE operates under the baseline assumption that everyone on the
team:

	
Has the best interests of a service’s users at heart

	
Can figure out how to proceed based on the data available

Decisions should be informed rather than prescriptive, and are made
without deference to personal opinions — even that of the most-senior
person in the room, who Eric Schmidt and Jonathan Rosenberg dub the
“HiPPO,” for “Highest-Paid Person’s Opinion” [Sch14].

Decision making in different industries varies widely. We learned
that some industries use an approach of if it ain’t broke, don’t
fix it…ever. Industries featuring systems whose design
entailed much thought and effort are often characterized by a
reluctance to change the underlying technology. For example, the
telecom industry still uses long-distance switches that were
implemented in the 1980s. Why do they rely on technology developed a
few decades ago? These switches “are pretty much bulletproof and
massively redundant,” according to Gus Hartmann. As reported by Dan
Sheridan, the nuclear industry is similarly slow to change. All
decisions are underpinned by the thought: if it works now, don’t
change it.

Many industries heavily focus on playbooks and procedures rather than
open-ended problem solving. Every humanly conceivable scenario is
captured in a checklist or in “the binder.” When something goes wrong,
this resource is the authoritative source for how to react. This
prescriptive approach works for industries that evolve and develop
relatively slowly, because the scenarios of what could go wrong are
not constantly evolving due to system updates or changes. This
approach is also common in industries in which the skill level of the
workers may be limited, and the best way to make sure that people will respond
appropriately in an emergency is to provide a simple, clear set of
instructions.

Other industries also take a clear, data-driven approach to
decision making. In Eddie Kennedy’s experience, research and
manufacturing environments are characterized by a rigorous
experimentation culture that relies heavily on formulating and testing
hypotheses. These industries regularly conduct controlled experiments
to make sure that a given change yields the expected result at a
statistically significant level and that nothing unexpected
occurs. Changes are only implemented when data yielded by the
experiment supports the decision.

Finally, some industries, like proprietary trading, divide
decision making to better manage risk. According to John Li, this
industry features an enforcement team separate from the traders to
ensure that undue risks aren’t taken in pursuit of achieving a
profit. The enforcement team is responsible for monitoring events on
the floor and halting trading if events spin out of hand. If a system
abnormality occurs, the enforcement team’s first response is to shut
down the system. As put by John Li, “If we aren’t trading, we aren’t
losing money. We aren’t making money either, but at least we aren’t
losing money.” Only the enforcement team can bring the system back
up, despite how excruciating a delay might seem to traders who are
missing a potentially profitable opportunity.

Conclusions

Many of the principles that are core to Site Reliability Engineering
at Google are evident across a wide range of industries. The lessons
already learned by well-established industries likely inspired some of
the practices in use at Google today.

A main takeaway of our cross-industry survey was that in many parts of
its software business, Google has a higher appetite for velocity than
players in most other industries. The ability to move or change
quickly must be weighed against the differing implications of a
failure. In the nuclear, aviation, or medical industries, for example,
people could be injured or even die in the event of an outage or
failure. When the stakes are high, a conservative approach to
achieving high reliability is warranted.

At Google, we constantly walk a tightrope between user expectations
for high reliability versus a laser-sharp focus on rapid change and
innovation. While Google is incredibly serious about reliability, we
must adapt our approaches to our high rate of change. As discussed in
earlier chapters, many of our software businesses such as Search make
conscious decisions as to how reliable “reliable enough” really
is.

Google has that flexibility in most of our software products and
services, which operate in an environment in which lives are not
directly at risk if something goes wrong. Therefore, we’re able to use
tools such as error budgets (“Motivation for Error Budgets”) as
a means to “fund” a culture of innovation and calculated risk
taking. In essence, Google has adapted known reliability principles
that were in many cases developed and honed in other industries to
create its own unique reliability culture, one that addresses a
complicated equation that balances scale, complexity, and velocity
with high reliability.

1 E911 (Enhanced 911): Emergency response line in the US that leverages location data.
2 Electrocardiogram readings: https://en.wikipedia.org/wiki/Electrocardiography.
3 https://en.wikipedia.org/wiki/Safety_integrity_level
4 https://en.wikipedia.org/wiki/Corrective_and_preventive_action
5 https://en.wikipedia.org/wiki/Competent_authority
6 http://ehstoday.com/safety/nsc-2013-oneill-exemplifies-safety-leadership.
7 See “FACTS, Section B” for the discussion of Knight and Power Peg software in [Sec13].
8 “Regulators blame computer algorithm for stock market ‘flash crash’,” Computerworld, http://www.computerworld.com/article/2516076/financial-it/regulators-blame-computer-algorithm-for-stock-market — flash-crash-.html.

Chapter 34. Conclusion

Written by Benjamin Lutch1

Edited by Betsy Beyer

I read through this book with enormous pride. From the time I began
working at Excite in the early ’90s, where my group was a sort of
neanderthal SRE group dubbed “Software Operations,” I’ve spent my
career fumbling through the process of building systems. In light of
my experiences over the years in the tech industry, it’s amazing to
see how the idea of SRE took root at Google and evolved so
quickly. SRE has grown from a few hundred engineers when I joined
Google in 2006 to over 1,000 people today, spread over a dozen sites
and running what I think is the most interesting computing
infrastructure on the planet.

So what has enabled the SRE organization at Google to evolve over the
past decade to maintain this massive infrastructure in an intelligent,
efficient, and scalable way? I think that the key to the overwhelming
success of SRE is the nature of the principles by which it operates.

SRE teams are constructed so that our engineers divide their time
between two equally important types of work. SREs staff on-call shifts,
which entail putting our hands around the systems, observing where and
how these systems break, and understanding challenges such as how to
best scale them. But we also have time to then reflect and decide what
to build in order to make those systems easier to manage. In essence,
we have the pleasure of playing both the roles of the pilot and the
engineer/designer. Our experiences running massive computing
infrastructure are codified in actual code and then packaged as a
discrete product.

These solutions are then easily usable by other SRE
teams and ultimately by anyone at Google (or even outside of Google…think Google
Cloud!) who wants to use or improve upon the experience we’ve
accumulated and the systems we’ve built.

When you approach building a team or a system, ideally its
foundation should be a set of rules or axioms that are general enough
to be immediately useful, but that will remain relevant in the
future. Much of what Ben Treynor Sloss outlined in this book’s introduction
represents just that: a flexible, mostly future-proof set of
responsibilities that remain spot-on 10 years after they were
conceived, despite the changes and growth Google’s infrastructure and
the SRE team have undergone.

As SRE has grown, we’ve noticed a couple different dynamics at
play. The first is the consistent nature of SRE’s primary
responsibilities and concerns over time: our systems might be 1,000
times larger or faster, but ultimately, they still need to remain
reliable, flexible, easy to manage in an emergency, well monitored,
and capacity planned. At the same time, the typical activities
undertaken by SRE evolve by necessity as Google’s services and SRE’s
competencies mature. For example, what was once a goal to “build a
dashboard for 20 machines” might now instead be “automate discovery,
dashboard building, and alerting over a fleet of tens of thousands of
machines.”

For those who haven’t been in the trenches of SRE for the past decade,
an analogy between how SRE thinks about complex systems and how the
aircraft industry has approached plane flight is useful in
conceptualizing how SRE has evolved and matured over time. While the
stakes of failure between the two industries are very different,
certain core similarities hold true.

Imagine that you wanted to fly between two cities a hundred years
ago. Your airplane probably had a single engine (two, if you were
lucky), a few bags of cargo, and a pilot. The pilot also filled the
role of mechanic, and possibly additionally acted as cargo loader and
unloader. The cockpit had room for the pilot, and if you were lucky, a
co-pilot/navigator. Your little plane would bounce off a runway in
good weather, and if everything went well, you’d slowly climb your way
through the skies and eventually touch down in another city, maybe a
few hundred miles away. Failure of any of the plane’s systems was
catastrophic, and it wasn’t unheard of for a pilot to have to climb
out of the cockpit to perform repairs in-flight! The systems that fed
into the cockpit were essential, simple, and fragile, and most likely
were not redundant.

Fast-forward a hundred years to a huge 747 sitting on the
tarmac. Hundreds of passengers are loading up on both floors, while
tons of cargo are simultaneously being loaded into the hold below. The
plane is chock-full of reliable, redundant systems. It’s a model of
safety and reliability; in fact, you’re actually safer in the air than
on the ground in a car. Your plane will take off from a dotted line on
a runway on one continent, and land easily on a dotted line on another
runway 6,000 miles away, right on schedule — within minutes of its
forecasted landing time. But take a look into the cockpit and what do
you find? Just two pilots again!

How has every other element of the flight experience — safety, capacity,
speed, and reliability — scaled up so beautifully, while there are still
only two pilots? The answer to this question is a great parallel to
how Google approaches the enormous, fantastically complex systems that
SRE runs. The interfaces to the plane’s operating systems are well
thought out and approachable enough that learning how to pilot them in
normal conditions is not an insurmountable task. Yet these interfaces
also provide enough flexibility, and the people operating them are sufficiently trained, that responses to emergencies are robust
and quick. The cockpit was designed by people who understand complex
systems and how to present them to humans in a way that’s both consumable
and scalable. The systems underlying the cockpit have all the same
properties discussed in this book: availability, performance optimization,
change management, monitoring and alerting, capacity planning, and
emergency response.

Ultimately, SRE’s goal is to follow a similar course. An SRE team should
be as compact as possible and operate at a high level of abstraction,
relying upon lots of backup systems as failsafes and thoughtful APIs to
communicate with the systems. At the same time, the SRE team should also
have comprehensive knowledge of the systems — how they operate, how they
fail, and how to respond to failures — that comes from operating them
day-to-day.

1 Vice President, Site Reliability Engineering, for Google, Inc.

Appendix A. Availability Table

Availability is generally calculated based on how long a service was
unavailable over some period. Assuming no planned downtime, Table A-1 indicates how much downtime is permitted to reach a given
availability level.

Table A-1. Availability table

	Availability level
	Allowed unavailability window

	

	per year

	per quarter

	per month

	per week

	per day

	per hour

	90%

	36.5 days

	9 days

	3 days

	16.8 hours

	2.4 hours

	6 minutes

	95%

	18.25 days

	4.5 days

	1.5 days

	8.4 hours

	1.2 hours

	3 minutes

	99%

	3.65 days

	21.6 hours

	7.2 hours

	1.68 hours

	14.4 minutes

	36 seconds

	99.5%

	1.83 days

	10.8 hours

	3.6 hours

	50.4 minutes

	7.20 minutes

	18 seconds

	99.9%

	8.76 hours

	2.16 hours

	43.2 minutes

	10.1 minutes

	1.44 minutes

	3.6 seconds

	99.95%

	4.38 hours

	1.08 hours

	21.6 minutes

	5.04 minutes

	43.2 seconds

	1.8 seconds

	99.99%

	52.6 minutes

	12.96 minutes

	4.32 minutes

	60.5 seconds

	8.64 seconds

	0.36 seconds

	99.999%

	5.26 minutes

	1.30 minutes

	25.9 seconds

	6.05 seconds

	0.87 seconds

	0.04 seconds

Using an aggregate unavailability metric (i.e., "X% of all operations
failed”) is more useful than focusing on outage lengths for services
that may be partially available — for instance, due to having multiple
replicas, only some of which are unavailable — and for services whose load
varies over the course of a day or week rather than remaining constant.

See Equations 3-1 and 3-2 in Chapter 3 for calculations.

Appendix B. A Collection of Best Practices for Production Services

Written by Ben Treynor Sloss

Edited by Betsy Beyer

Fail Sanely

Sanitize and validate configuration inputs, and respond to implausible
inputs by both continuing to operate in the previous state and
alerting to the receipt of bad input. Bad input often falls into one
of these categories:

Incorrect data

Validate both syntax and, if possible, semantics.
Watch for empty data and partial or truncated data (e.g., alert if
the configuration is N% smaller than the previous version).

Delayed data

This may invalidate current data due to timeouts.
Alert well before the data is expected to expire.

Fail in a way that preserves function, possibly at the expense of
being overly permissive or overly simplistic. We’ve found that it’s
generally safer for systems to continue functioning with their
previous configuration and await a human’s approval before using the
new, perhaps invalid, data.

Examples

In 2005, Google’s global DNS load- and latency-balancing system
received an empty DNS entry file as a result of file permissions. It
accepted this empty file and served NXDOMAIN for six minutes for all
Google properties. In response, the system now performs a number of sanity checks
on new configurations, including confirming the presence of virtual
IPs for google.com, and will continue serving the previous DNS
entries until it receives a new file that passes its input checks.

In 2009, incorrect (but valid) data led to Google marking the entire
Web as containing malware [May09]. A configuration file containing
the list of suspect URLs was replaced by a single forward slash character (/), which matched all URLs. Checks for dramatic changes in file size and
checks to see whether the configuration is matching sites that are
believed unlikely to contain malware would have prevented this
from reaching production.

Progressive Rollouts

Nonemergency rollouts must proceed in stages. Both configuration
and binary changes introduce risk, and you mitigate this risk by
applying the change to small fractions of traffic and capacity at one
time. The size of your service or rollout, as well as your risk
profile, will inform the percentages of production capacity to which
the rollout is pushed, and the appropriate time frame between
stages. It’s also a good idea to perform different stages in different
geographies, in order to detect problems related to diurnal traffic
cycles and geographical traffic mix differences.

Rollouts should be supervised. To ensure that nothing unexpected is
occurring during the rollout, it must be monitored either by the
engineer performing the rollout stage or — preferably — a
demonstrably reliable monitoring system. If unexpected behavior is
detected, roll back first and diagnose afterward in order to minimize
Mean Time to Recovery.

Define SLOs Like a User

Measure availability and performance in terms that matter to an end
user. See Chapter 4 for more discussion.

Example

Measuring error rates and latency at the Gmail client, rather than at
the server, resulted in a substantial reduction in our assessment of
Gmail availability, and prompted changes to both Gmail client and
server code. The result was that Gmail went from about 99.0% available
to over 99.9% available in a few years.

Error Budgets

Balance reliability and the pace of innovation with error budgets (see
“Motivation for Error Budgets”), which define the
acceptable level of failure for a service, over some period; we often
use a month. A budget is simply 1 minus a service’s SLO; for
instance, a service with a 99.99% availability target has a 0.01%
“budget” for unavailability. As long as the service hasn’t spent its
error budget for the month through the background rate of errors plus
any downtime, the development team is free (within reason) to launch
new features, updates, and so on.

If the error budget is spent, the service freezes changes (except
urgent security and bug fixes addressing any cause of the increased
errors) until either the service has earned back room in the budget, or the
month resets. For mature services with an SLO greater than 99.99%, a
quarterly rather than monthly budget reset is appropriate, because the
amount of allowable downtime is small.

Error budgets eliminate the structural tension that might otherwise
develop between SRE and product development teams by giving them a
common, data-driven mechanism for assessing launch risk. They also
give both SRE and product development teams a common goal of
developing practices and technology that allow faster innovation and
more launches without “blowing the budget.”

Monitoring

Monitoring may have only three output types:

Pages

A human must do something now

Tickets

A human must do something within a few days

Logging

No one need look at this output immediately, but it’s
available for later analysis if needed

If it’s important enough to bother a human, it should either require
immediate action (i.e., page) or be treated as a bug and entered into
your bug-tracking system. Putting alerts into email and hoping that
someone will read all of them and notice the important ones is the
moral equivalent of piping them to /dev/null: they will eventually
be ignored. History demonstrates this strategy is an attractive
nuisance because it can work for a while, but it relies on eternal
human vigilance, and the inevitable outage is thus more severe when it
happens.

Postmortems

Postmortems (see Chapter 15) should be blameless and focus on process and technology,
not people. Assume the people involved in an incident are
intelligent, are well intentioned, and were making the best choices they could
given the information they had available at the time. It follows that
we can’t “fix” the people, but must instead fix their environment:
e.g., improving system design to avoid entire classes of problems,
making the appropriate information easily available, and automatically
validating operational decisions to make it difficult to put systems
in dangerous states.

Capacity Planning

Provision to handle a simultaneous planned and unplanned outage,
without making the user experience unacceptable; this results in an "N + 2” configuration, where peak traffic can be handled by N instances
(possibly in degraded mode) while the largest 2 instances are
unavailable:

	
Validate prior demand forecasts against reality until they
consistently match. Divergence implies unstable forecasting,
inefficient provisioning, and risk of a capacity shortfall.

	
Use load testing rather than tradition to establish the
resource-to-capacity ratio: a cluster of X machines could handle Y
queries per second three months ago, but can it still do so given
changes to the system?

	
Don’t mistake day-one load for steady-state load. Launches often
attract more traffic, while they’re also the time you especially
want to put the product’s best foot forward. See
Chapter 27 and Appendix E.

Overloads and Failure

Services should produce reasonable but suboptimal results if
overloaded. For example, Google Search will search a smaller
fraction of the index, and stop serving features like Instant to
continue to provide good quality web search results when
overloaded. Search SRE tests web search clusters beyond their rated
capacity to ensure they perform acceptably when overloaded with
traffic.

For times when load is high enough that even degraded responses are
too expensive for all queries, practice graceful load shedding, using
well-behaved queuing and dynamic timeouts; see
Chapter 21. Other techniques include answering
requests after a significant delay (“tarpitting”) and choosing a
consistent subset of clients to receive errors, preserving a good user
experience for the remainder.

Retries can amplify low error rates into higher levels of traffic,
leading to cascading failures (see Chapter 22).
Respond to cascading failures by dropping a fraction of traffic
(including retries!) upstream of the system once total load exceeds
total capacity.

Every client that makes an RPC must implement exponential backoff
(with jitter) for retries, to dampen error amplification. Mobile
clients are especially troublesome because there may be millions of
them and updating their code to fix behavior takes a significant
amount of time — possibly weeks — and requires that users install
updates.

SRE Teams

SRE teams should spend no more than 50% of their time on operational
work (see Chapter 5); operational overflow should be directed
to the product development team. Many services also include the
product developers in the on-call rotation and ticket handling, even if
there is currently no overflow. This provides incentives to design
systems that minimize or eliminate operational toil, along with
ensuring that the product developers are in touch with the operational
side of the service. A regular production meeting between SREs and
the development team (see Chapter 31) is also helpful.

We’ve found that at least eight people need to be part of the on-call
team, in order to avoid fatigue and allow sustainable staffing and low
turnover. Preferably, those on-call should be in two well-separated
geographic locations (e.g., California and Ireland) to provide a better
quality of life by avoiding nighttime pages; in this case, six people
at each site is the minimum team size.

Expect to handle no more than two events per on-call shift (e.g., per 12
hours): it takes time to respond to and fix outages, start the
postmortem, and file the resulting bugs. More frequent events may
degrade the quality of response, and suggest that something is wrong
with (at least one of) the system’s design, monitoring sensitivity,
and response to postmortem bugs.

Ironically, if you implement these best practices, the SRE team may
eventually end up out of practice in responding to incidents due to
their infrequency, making a long outage out of a short one. Practice
handling hypothetical outages (see “Disaster Role Playing”)
routinely and improve your incident-handling documentation in the
process.

Appendix C. Example Incident State Document

Shakespeare Sonnet++ Overload: 2015-10-21

Incident management info: http://incident-management-cheat-sheet

(Communications lead to keep summary updated.)

Summary: Shakespeare search service in cascading failure due to newly discovered sonnet not in search index.

Status: active, incident #465

Command Post(s): #shakespeare on IRC

Command Hierarchy (all responders)

	
Current Incident Commander: jennifer

	
Operations lead: docbrown

	
Planning lead: jennifer

	
Communications lead: jennifer

	
Next Incident Commander: to be determined

(Update at least every four hours and at handoff of Comms Lead role.)

Detailed Status (last updated at 2015-10-21 15:28 UTC by jennifer)

Exit Criteria:

	
New sonnet added to Shakespeare search corpus TODO

	
Within availability (99.99%) and latency (99%ile < 100 ms) SLOs for 30+ minutes TODO

TODO list and bugs filed:

	
Run MapReduce job to reindex Shakespeare corpus DONE

	
Borrow emergency resources to bring up extra capacity DONE

	
Enable flux capacitor to balance load between clusters (Bug 5554823) TODO

Incident timeline (most recent first: times are in UTC)

	
2015-10-21 15:28 UTC jennifer

	
Increasing serving capacity globally by 2x

	
2015-10-21 15:21 UTC jennifer

	
Directing all traffic to USA-2 sacrificial cluster and draining traffic from other clusters so they can recover from cascading failure while spinning up more tasks

	
MapReduce index job complete, awaiting Bigtable replication to all clusters

	
2015-10-21 15:10 UTC martym

	
Adding new sonnet to Shakespeare corpus and starting index MapReduce

	
2015-10-21 15:04 UTC martym

	
Obtains text of newly discovered sonnet from shakespeare-discuss@ mailing list

	
2015-10-21 15:01 UTC docbrown

	
Incident declared due to cascading failure

	
2015-10-21 14:55 UTC docbrown

	
Pager storm, ManyHttp500s in all clusters

Appendix D. Example Postmortem

Shakespeare Sonnet++ Postmortem (incident #465)

Date: 2015-10-21

Authors: jennifer, martym, agoogler

Status: Complete, action items in progress

Summary: Shakespeare Search down for 66 minutes during period of very high interest in Shakespeare due to discovery of a new sonnet.

Impact:1 Estimated 1.21B queries lost, no revenue impact.

Root Causes:2 Cascading failure due to combination of exceptionally high load and a resource leak when searches failed due to terms not being in the Shakespeare corpus. The newly discovered sonnet used a word that had never before appeared in one of Shakespeare’s works, which happened to be the term users searched for. Under normal circumstances, the rate of task failures due to resource leaks is low enough to be unnoticed.

Trigger: Latent bug triggered by sudden increase in traffic.

Resolution: Directed traffic to sacrificial cluster and added 10x capacity to mitigate cascading failure. Updated index deployed, resolving interaction with latent bug. Maintaining extra capacity until surge in public interest in new sonnet passes. Resource leak identified and fix deployed.

Detection: Borgmon detected high level of HTTP 500s and paged on-call.

Action Items:3

	Action Item
	Type
	Owner
	Bug

	Update playbook with instructions for responding to cascading failure

	mitigate

	jennifer

	n/a DONE

	Use flux capacitor to balance load between clusters

	prevent

	martym

	Bug 5554823 TODO

	Schedule cascading failure test during next DiRT

	process

	docbrown

	n/a TODO

	Investigate running index MR/fusion continuously

	prevent

	jennifer

	Bug 5554824 TODO

	Plug file descriptor leak in search ranking subsystem

	prevent

	agoogler

	Bug 5554825 DONE

	Add load shedding capabilities to Shakespeare search

	prevent

	agoogler

	Bug 5554826 TODO

	Build regression tests to ensure servers respond sanely to queries of death

	prevent

	clarac

	Bug 5554827 TODO

	Deploy updated search ranking subsystem to prod

	prevent

	jennifer

	n/a DONE

	Freeze production until 2015-11-20 due to error budget exhaustion, or seek exception due to grotesque, unbelievable, bizarre, and unprecedented circumstances

	other

	docbrown

	n/a TODO

Lessons Learned

What went well

	
Monitoring quickly alerted us to high rate (reaching ~100%) of HTTP 500s

	
Rapidly distributed updated Shakespeare corpus to all clusters

What went wrong

	
We’re out of practice in responding to cascading failure

	
We exceeded our availability error budget (by several orders of magnitude) due to the exceptional surge of traffic that essentially all resulted in failures

Where we got lucky4

	
Mailing list of Shakespeare aficionados had a copy of new sonnet available

	
Server logs had stack traces pointing to file descriptor exhaustion as cause for crash

	
Query-of-death was resolved by pushing new index containing popular search term

Timeline5

2015-10-21 (all times UTC)

	
14:51 News reports that a new Shakespearean sonnet has been discovered in a Delorean’s glove compartment

	
14:53 Traffic to Shakespeare search increases by 88x after post to /r/shakespeare points to Shakespeare search engine as place to find new sonnet (except we don’t have the sonnet yet)

	
14:54 OUTAGE BEGINS — Search backends start melting down under load

	
14:55 docbrown receives pager storm, ManyHttp500s from all clusters

	
14:57 All traffic to Shakespeare search is failing: see http://monitor/shakespeare?end_time=20151021T145700

	
14:58 docbrown starts investigating, finds backend crash rate very high

	
15:01 INCIDENT BEGINS docbrown declares incident #465 due to cascading failure, coordination on #shakespeare, names jennifer incident commander

	
15:02 someone coincidentally sends email to shakespeare-discuss@ re sonnet discovery, which happens to be at top of martym’s inbox

	
15:03 jennifer notifies shakespeare-incidents@ list of the incident

	
15:04 martym tracks down text of new sonnet and looks for documentation on corpus update

	
15:06 docbrown finds that crash symptoms identical across all tasks in all clusters, investigating cause based on application logs

	
15:07 martym finds documentation, starts prep work for corpus update

	
15:10 martym adds sonnet to Shakespeare’s known works, starts indexing job

	
15:12 docbrown contacts clarac & agoogler (from Shakespeare dev team) to help with examining codebase for possible causes

	
15:18 clarac finds smoking gun in logs pointing to file descriptor exhaustion, confirms against code that leak exists if term not in corpus is searched for

	
15:20 martym’s index MapReduce job completes

	
15:21 jennifer and docbrown decide to increase instance count enough to drop load on instances that they’re able to do appreciable work before dying and being restarted

	
15:23 docbrown load balances all traffic to USA-2 cluster, permitting instance count increase in other clusters without servers failing immediately

	
15:25 martym starts replicating new index to all clusters

	
15:28 docbrown starts 2x instance count increase

	
15:32 jennifer changes load balancing to increase traffic to nonsacrificial clusters

	
15:33 tasks in nonsacrificial clusters start failing, same symptoms as before

	
15:34 found order-of-magnitude error in whiteboard calculations for instance count increase

	
15:36 jennifer reverts load balancing to resacrifice USA-2 cluster in preparation for additional global 5x instance count increase (to a total of 10x initial capacity)

	
15:36 OUTAGE MITIGATED, updated index replicated to all clusters

	
15:39 docbrown starts second wave of instance count increase to 10x initial capacity

	
15:41 jennifer reinstates load balancing across all clusters for 1% of traffic

	
15:43 nonsacrificial clusters’ HTTP 500 rates at nominal rates, task failures intermittent at low levels

	
15:45 jennifer balances 10% of traffic across nonsacrificial clusters

	
15:47 nonsacrificial clusters’ HTTP 500 rates remain within SLO, no task failures observed

	
15:50 30% of traffic balanced across nonsacrificial clusters

	
15:55 50% of traffic balanced across nonsacrificial clusters

	
16:00 OUTAGE ENDS, all traffic balanced across all clusters

	
16:30 INCIDENT ENDS, reached exit criterion of 30 minutes’ nominal performance

Supporting information:6

	
Monitoring dashboard,
 http://monitor/shakespeare?end_time=20151021T160000&duration=7200

1 Impact is the effect on users, revenue, etc.
2 An explanation of the circumstances in which this incident happened. It’s often helpful to use a technique such as the 5 Whys [Ohn88] to understand the contributing factors.
3 “Knee-jerk” AIs often turn out to be too extreme or costly to implement, and judgment may be needed to re-scope them in a larger context. There’s a risk of over-optimizing for a particular issue, adding specific monitoring/alerting when reliable mechanisms like unit tests can catch problems much earlier in the development process.
4 This section is really for near misses, e.g., “The goat teleporter was available for emergency use with other animals despite lack of certification.”
5 A “screenplay” of the incident; use the incident timeline from the Incident Management document to start filling in the postmortem’s timeline, then supplement with other relevant entries.
6 Useful information, links, logs, screenshots, graphs, IRC logs, IM logs, etc.

Appendix E. Launch Coordination Checklist

This is Google’s original Launch Coordination Checklist, circa 2005, slightly
abridged for brevity:

Architecture

	
Architecture sketch, types of servers, types of requests from
clients

	
Programmatic client requests

Machines and datacenters

	
Machines and bandwidth, datacenters, N+2 redundancy, network QoS

	
New domain names, DNS load balancing

Volume estimates, capacity, and performance

	
HTTP traffic and bandwidth estimates, launch “spike,” traffic mix, 6
months out

	
Load test, end-to-end test, capacity per datacenter at max latency

	
Impact on other services we care most about

	
Storage capacity

System reliability and failover

	
What happens when:

	
Machine dies, rack fails, or cluster goes offline

	
Network fails between two datacenters

	
For each type of server that talks to other servers (its backends):

	
How to detect when backends die, and what to do when they die

	
How to terminate or restart without affecting clients or users

	
Load balancing, rate-limiting, timeout, retry and error handling
behavior

	
Data backup/restore, disaster recovery

Monitoring and server management

	
Monitoring internal state, monitoring end-to-end behavior, managing
alerts

	
Monitoring the monitoring

	
Financially important alerts and logs

	
Tips for running servers within cluster environment

	
Don’t crash mail servers by sending yourself email alerts in your
own server code

Security

	
Security design review, security code audit, spam risk,
authentication, SSL

	
Prelaunch visibility/access control, various types of blacklists

Automation and manual tasks

	
Methods and change control to update servers, data, and configs

	
Release process, repeatable builds, canaries under live traffic,
staged rollouts

Growth issues

	
Spare capacity, 10x growth, growth alerts

	
Scalability bottlenecks, linear scaling, scaling with hardware,
changes needed

	
Caching, data sharding/resharding

External dependencies

	
Third-party systems, monitoring, networking, traffic volume,
launch spikes

	
Graceful degradation, how to avoid accidentally overrunning
third-party services

	
Playing nice with syndicated partners, mail systems, services
within Google

Schedule and rollout planning

	
Hard deadlines, external events, Mondays or Fridays

	
Standard operating procedures for this service, for other services

Appendix F. Example Production Meeting Minutes

Date: 2015-10-23

Attendees: agoogler, clarac, docbrown, jennifer, martym

Announcements:

	
Major outage (#465), blew through error budget

Previous Action Item Review

	
Certify Goat Teleporter for use with cattle (bug 1011101)

	
Nonlinearities in mass acceleration now predictable, should be able to target accurately in a few days.

Outage Review

	
New Sonnet (outage 465)

	
1.21B queries lost due to cascading failure after interaction between latent bug (leaked file descriptor on searches with no results) + not having new sonnet in corpus + unprecedented & unexpected traffic volume

	
File descriptor leak bug fixed (bug 5554825) and deployed to prod

	
Looking into using flux capacitor for load balancing (bug 5554823) and using load shedding (bug 5554826) to prevent recurrence

	
Annihilated availability error budget; pushes to prod frozen for 1 month unless docbrown can obtain exception on grounds that event was bizarre & unforeseeable (but consensus is that exception is unlikely)

Paging Events

	
AnnotationConsistencyTooEventual: paged 5 times this week, likely due to cross-regional replication delay between Bigtables.

	
Investigation still ongoing, see bug 4821600

	
No fix expected soon, will raise acceptable consistency threshold to reduce unactionable alerts

Nonpaging Events

	
None

Monitoring Changes and/or Silences

	
AnnotationConsistencyTooEventual, acceptable delay threshold raised from 60s to 180s, see bug 4821600; TODO(martym).

Planned Production Changes

	
USA-1 cluster going offline for maintenance between 2015-10-29 and 2015-11-02.

	
No response required, traffic will automatically route to other clusters in region.

Resources

	
Borrowed resources to respond to sonnet++ incident, will spin down additional server instances and return resources next week

	
Utilization at 60% of CPU, 75% RAM, 44% disk (up from 40%, 70%, 40% last week)

Key Service Metrics

	
OK 99ile latency: 88 ms < 100 ms SLO target [trailing 30 days]

	
BAD availability: 86.95% < 99.99% SLO target [trailing 30 days]

Discussion / Project Updates

	
Project Molière launching in two weeks.

New Action Items

	
TODO(martym): Raise AnnotationConsistencyTooEventual threshold.

	
TODO(docbrown): Return instance count to normal and return resources.

Bibliography

	
[Ada15] Bram Adams, Stephany Bellomo, Christian Bird, Tamara Marshall-Keim, Foutse Khomh, and Kim Moir, “The Practice and Future of Release Engineering: A Roundtable with Three Release Engineers”, IEEE Software, vol. 32, no. 2 (March/April 2015), pp. 42–49.

	
[Agu10] M. K. Aguilera, “Stumbling over Consensus Research: Misunderstandings and Issues”, in Replication, Lecture Notes in Computer Science 5959, 2010.

	
[All10] J. Allspaw and J. Robbins, Web Operations: Keeping the Data on Time: O’Reilly, 2010.

	
[All12] J. Allspaw, “Blameless PostMortems and a Just Culture”, blog post, 2012.

	
[All15] J. Allspaw, “Trade-Offs Under Pressure: Heuristics and Observations of Teams Resolving Internet Service Outages”, MSc thesis, Lund University, 2015.

	
[Ana07] S. Anantharaju, “Automating web application security testing”, blog post, July 2007.

	
[Ana13] R. Ananatharayan et al., “Photon: Fault-tolerant and Scalable Joining of Continuous Data Streams”, in SIGMOD ’13, 2013.

	
[And05] A. Andrieux, K. Czajkowski, A. Dan, et al., “Web Services Agreement Specification (WS-Agreement)”, September 2005.

	
[Bai13] P. Bailis and A. Ghodsi, “Eventual Consistency Today: Limitations, Extensions, and Beyond”, in ACM Queue, vol. 11, no. 3, 2013.

	
[Bai83] L. Bainbridge, “Ironies of Automation”, in Automatica, vol. 19, no. 6, November 1983.

	
[Bak11] J. Baker et al., “Megastore: Providing Scalable, Highly Available Storage for Interactive Services”, in Proceedings of the Conference on Innovative Data System Research, 2011.

	
[Bar11] L. A. Barroso, “Warehouse-Scale Computing: Entering the Teenage Decade”, talk at 38th Annual Symposium on Computer Architecture, video available online, 2011.

	
[Bar13] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second Edition, Morgan & Claypool, 2013.

	
[Ben12] C. Bennett and A. Tseitlin, “Chaos Monkey Released Into The Wild”, blog post, July 2012.

	
[Bla14] M. Bland, “Goto Fail, Heartbleed, and Unit Testing Culture”, blog post, June 2014.

	
[Boc15] L. Bock, Work Rules!, Twelve Books, 2015.

	
[Bol11] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li, “Paxos Replicated State Machines as the Basis of a High-Performance Data Store”, in Proc. NSDI 2011, 2011.

	
[Boy13] P. G. Boysen, “Just Culture: A Foundation for Balanced Accountability and Patient Safety”, in The Ochsner Journal, Fall 2013.

	
[Bra15] VM Brasseur, “Failure: Why it happens & How to benefit from it”, YAPC 2015.

	
[Bre01] E. Brewer, “Lessons From Giant-Scale Services”, in IEEE Internet Computing, vol. 5, no. 4, July / August 2001.

	
[Bre12] E. Brewer, “CAP Twelve Years Later: How the “Rules” Have Changed”, in Computer, vol. 45, no. 2, February 2012.

	
[Bro15] M. Brooker, “Exponential Backoff and Jitter”, on AWS Architecture Blog, March 2015.

	
[Bro95] F. P. Brooks Jr., “No Silver Bullet — Essence and Accidents of Software Engineering”, in The Mythical Man-Month, Boston: Addison-Wesley, 1995, pp. 180–186.

	
[Bru09] J. Brutlag, “Speed Matters”, on Google Research Blog, June 2009.

	
[Bul80] G. M. Bull, The Dartmouth Time-sharing System: Ellis Horwood, 1980.

	
[Bur99] M. Burgess, Principles of Network and System Administration: Wiley, 1999.

	
[Bur06] M. Burrows, “The Chubby Lock Service for Loosely-Coupled Distributed Systems”, in OSDI ’06: Seventh Symposium on Operating System Design and Implementation, November 2006.

	
[Bur16] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, Omega, and Kubernetes” in ACM Queue, vol. 14, no. 1, 2016.

	
[Cas99] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance”, in Proc. OSDI 1999, 1999.

	
[Cha10] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. Henry, R. Bradshaw, and N. Weizenbaum, “FlumeJava: Easy, Efficient Data-Parallel Pipelines”, in ACM SIGPLAN Conference on Programming Language Design and Implementation, 2010.

	
[Cha96] T. D. Chandra and S. Toueg, “Unreliable Failure Detectors for Reliable Distributed Systems”, in J. ACM, 1996.

	
[Cha07] T. Chandra, R. Griesemer, and J. Redstone, “Paxos Made Live — An Engineering Perspective”, in PODC ’07: 26th ACM Symposium on Principles of Distributed Computing, 2007.

	
[Cha06] F. Chang et al., “Bigtable: A Distributed Storage System for Structured Data”, in OSDI ’06: Seventh Symposium on Operating System Design and Implementation, November 2006.

	
[Chr09] G. P. Chrousous, “Stress and Disorders of the Stress System”, in Nature Reviews Endocrinology, vol 5., no. 7, 2009.

	
[Clos53] C. Clos, “A Study of Non-Blocking Switching Networks”, in Bell System Technical Journal, vol. 32, no. 2, 1953.

	
[Con15] C. Contavalli, W. van der Gaast, D. Lawrence, and W. Kumari, “Client Subnet in DNS Queries”, IETF Internet-Draft, 2015.

	
[Con63] M. E. Conway, “Design of a Separable Transition-Diagram Compiler”, in Commun. ACM 6, 7 (July 1963), 396–408.

	
[Con96] P. Conway, “Preservation in the Digital World”, report published by the Council on Library and Information Resources, 1996.

	
[Coo00] R. I. Cook, “How Complex Systems Fail”, in Web Operations: O’Reilly, 2010.

	
[Cor12] J. C. Corbett et al., “Spanner: Google’s Globally-Distributed Database”, in OSDI ’12: Tenth Symposium on Operating System Design and Implementation, October 2012.

	
[Cra10] J. Cranmer, “Visualizing code coverage”, blog post, March 2010.

	
[Dea13] J. Dean and L. A. Barroso, “The Tail at Scale”, in Communications of the ACM, vol. 56, 2013.

	
[Dea04] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”, in OSDI’04: Sixth Symposium on Operating System Design and Implementation, December 2004.

	
[Dea07] J. Dean, “Software Engineering Advice from Building Large-Scale Distributed Systems”, Stanford CS297 class lecture, Spring 2007.

	
[Dek02] S. Dekker, “Reconstructing human contributions to accidents: the new view on error and performance”, in Journal of Safety Research, vol. 33, no. 3, 2002.

	
[Dek14] S. Dekker, The Field Guide to Understanding “Human Error”, 3rd edition: Ashgate, 2014.

	
[Dic14] C. Dickson, “How Embracing Continuous Release Reduced Change Complexity”, presentation at USENIX Release Engineering Summit West 2014, video available online.

	
[Dur05] J. Durmer and D. Dinges, “Neurocognitive
Consequences of Sleep Deprivation”, in Seminars in Neurology,
vol. 25, no. 1, 2005.

	
[Eis16] D. E. Eisenbud et al., “Maglev: A Fast and Reliable Software Network Load Balancer”, in NSDI ’16: 13th USENIX Symposium on Networked Systems Design and Implementation, March 2016.

	
[Ere03] J. R. Erenkrantz, “Release Management Within Open Source Projects”, in Proceedings of the 3rd Workshop on Open Source Software Engineering, Portland, Oregon, May 2003.

	
[Fis85] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of Distributed Consensus with One Faulty Process”, J. ACM, 1985.

	
[Fit12] B. W. Fitzpatrick and B. Collins-Sussman, Team Geek: A Software Developer’s Guide to Working Well with Others: O’Reilly, 2012.

	
[Flo94] S. Floyd and V. Jacobson, “The Synchronization of Periodic Routing Messages”, in IEEE/ACM Transactions on Networking, vol. 2, issue 2, April 1994, pp. 122–136.

	
[For10] D. Ford et al, “Availability in Globally Distributed Storage Systems”, in Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation, 2010.

	
[Fox99] A. Fox and E. A. Brewer, “Harvest, Yield, and Scalable Tolerant Systems”, in Proceedings of the 7th Workshop on Hot Topics in Operating Systems, Rio Rico, Arizona, March 1999.

	
[Fow08] M. Fowler, “GUI Architectures”, blog post, 2006.

	
[Gal78] J. Gall, SYSTEMANTICS: How Systems Really Work and How They Fail, 1st ed., Pocket, 1977.

	
[Gal03] J. Gall, The Systems Bible: The Beginner’s Guide to Systems Large and Small, 3rd ed., General Systemantics Press/Liberty, 2003.

	
[Gaw09] A. Gawande, The Checklist Manifesto: How to Get Things Right: Henry Holt and Company, 2009.

	
[Ghe03] S. Ghemawat, H. Gobioff, and S-T. Leung, “The Google File System”, in 19th ACM Symposium on Operating Systems Principles, October 2003.

	
[Gil02] S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Services”, in ACM SIGACT News, vol. 33, no. 2, 2002.

	
[Gla02] R. Glass, Facts and Fallacies of Software Engineering, Addison-Wesley Professional, 2002.

	
[Gol14] W. Golab et al., “Eventually Consistent: Not What You Were Expecting?”, in ACM Queue, vol. 12, no. 1, 2014.

	
[Gra09] P. Graham, “Maker’s Schedule, Manager’s Schedule”, blog post, July 2009.

	
[Gup15] A. Gupta and J. Shute, “High-Availability at Massive Scale: Building Google’s Data Infrastructure for Ads”, in Workshop on Business Intelligence for the Real Time Enterprise, 2015.

	
[Ham07] J. Hamilton, “On Designing and Deploying Internet-Scale Services”, in Proceedings of the 21st Large Installation System Administration Conference, November 2007.

	
[Han94] S. Hanks, T. Li, D. Farinacci, and P. Traina, “Generic Routing Encapsulation over IPv4 networks”, IETF Informational RFC, 1994.

	
[Hic11] M. Hickins, “Tape Rescues Google in Lost Email Scare”, in Digits, Wall Street Journal, 1 March 2011.

	
[Hix15a] D. Hixson, “Capacity Planning”, in ;login:, vol. 40, no. 1, February 2015.

	
[Hix15b] D. Hixson, “The Systems Engineering Side of Site Reliability Engineering”, in ;login: vol. 40, no. 3, June 2015.

	
[Hod13] J. Hodges, “Notes on Distributed Systems for Young Bloods”, blog post, 14 January 2013.

	
[Hol14] L. Holmwood, “Applying Cardiac Alarm Management Techniques to Your On-Call”, blog post, 26 August 2014.

	
[Hum06] J. Humble, C. Read, D. North, “The Deployment Production Line”, in Proceedings of the IEEE Agile Conference, July 2006.

	
[Hum10] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation: Addison-Wesley, 2010.

	
[Hun10] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free coordination for Internet-scale systems”, in USENIX ATC, 2010.

	
[IAEA12] International Atomic Energy Agency, “Safety of Nuclear Power Plants: Design, SSR-2/1”, 2012.

	
[Jai13] S. Jain et al., “B4: Experience with a Globally-Deployed Software Defined WAN”, in SIGCOMM ’13.

	
[Jon15] C. Jones, T. Underwood, and S. Nukala, “Hiring Site Reliability Engineers”, in ;login:, vol. 40, no. 3, June 2015.

	
[Jun07] F. Junqueira, Y. Mao, and K. Marzullo, “Classic Paxos vs. Fast Paxos: Caveat Emptor”, in Proc. HotDep ’07, 2007.

	
[Jun11] F. P. Junqueira, B. C. Reid, and M. Serafini, “Zab: High-performance broadcast for primary-backup systems.”, in Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st International Conference on 27 Jun 2011: 245–256.

	
[Kah11] D. Kahneman, Thinking, Fast and Slow: Farrar, Straus and Giroux, 2011.

	
[Kar97] D. Karger et al., “Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the World Wide Web”, in Proc. STOC ’97, 29th annual ACM symposium on theory of computing, 1997.

	
[Kem11] C. Kemper, “Build in the Cloud: How the Build System Works”, Google Engineering Tools blog post, August 2011.

	
[Ken12] S. Kendrick, “What Takes Us Down?”, in ;login:, vol. 37, no. 5, October 2012.

	
[Kinc09] Kincaid, Jason. “T-Mobile Sidekick Disaster: Danger’s Servers Crashed, And They Don’t Have A Backup.” Techcrunch. n.p., 10 Oct. 2009. Web. 20 Jan. 2015, http://techcrunch.com/2009/10/10/t-mobile-sidekick-disaster-microsofts-servers-crashed-and-they-dont-have-a-backup.

	
[Kin15] K. Kingsbury, “The trouble with timestamps”, blog post, 2013.

	
[Kir08] J. Kirsch and Y. Amir, “Paxos for System Builders: An Overview”, in Proc. LADIS ’08, 2008.

	
[Kla12] R. Klau, “How Google Sets Goals: OKRs”, blog post, October 2012.

	
[Kle06] D. V. Klein, “A Forensic Analysis of a Distributed Two-Stage Web-Based Spam Attack”, in Proceedings of the 20th Large Installation System Administration Conference, December 2006.

	
[Kle14] D. V. Klein, D. M. Betser, and M. G. Monroe, “Making Push On Green a Reality”, in ;login:, vol. 39, no. 5, October 2014.

	
[Kra08] T. Krattenmaker, “Make Every Meeting Matter”, in Harvard Business Review, February 27, 2008.

	
[Kre12] J. Kreps, “Getting Real About Distributed System Reliability”, blog post, 19 March 2012.

	
[Kri12] K. Krishan, “Weathering The Unexpected”, in Communications of the ACM, vol. 55, no. 11, November 2012.

	
[Kum15] A. Kumar et al., “BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed Computing”, in SIGCOMM ’15.

	
[Lam98] L. Lamport, “The Part-Time Parliament”, in ACM Transactions on Computer Systems 16, 2, May 1998.

	
[Lam01] L. Lamport, “Paxos Made Simple”, in ACM SIGACT News 121, December 2001.

	
[Lam06] L. Lamport, “Fast Paxos”, in Distributed Computing 19.2, October 2006.

	
[Lim14] T. A. Limoncelli, S. R. Chalup, and C. J. Hogan, The Practice of Cloud System Administration: Designing and Operating Large Distributed Systems, Volume 2: Addison-Wesley, 2014.

	
[Loo10] J. Loomis, “How to Make Failure Beautiful: The Art and Science of Postmortems”, in Web Operations: O’Reilly, 2010.

	
[Lu15] H. Lu et al, “Existential Consistency: Measuring and Understanding Consistency at Facebook”, in SOSP ’15, 2015.

	
[Mao08] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building Efficient Replicated State Machines for WANs”, in OSDI ’08, 2008.

	
[Mas43] A. H. Maslow, “A Theory of Human Motivation”, in Psychological Review 50(4), 1943.

	
[Mau15] B. Maurer, “Fail at Scale”, in ACM Queue, vol. 13, no. 12, 2015.

	
[May09] M. Mayer, "This site may harm your computer on every search result?!?!”, blog post, January 2009.

	
[McI86] M. D. McIlroy, “A Research Unix Reader: Annotated Excerpts from the Programmer’s Manual, 1971–1986”.

	
[McN13] D. McNutt, “Maintaining Consistency in a Massively Parallel Environment”, presentation at USENIX Configuration Management Summit 2013, video available online.

	
[McN14a] D. McNutt, “Accelerating the Path from Dev to DevOps”, in ;login:, vol. 39, no. 2, April 2014.

	
[McN14b] D. McNutt, “The 10 Commandments of Release Engineering”, presentation at 2nd International Workshop on Release Engineering 2014, April 2014.

	
[McN14c] D. McNutt, “Distributing Software in a Massively Parallel Environment”, presentation at USENIX LISA 2014, video available online.

	
[Mic03] Microsoft TechNet, “What is SNMP?”, last modified March 28, 2003, https://technet.microsoft.com/en-us/library/cc776379%28v=ws.10%29.aspx.

	
[Mea08] D. Meadows, Thinking in Systems: Chelsea Green, 2008.

	
[Men07] P. Menage, “Adding Generic Process Containers to the Linux Kernel”, in Proc. of Ottawa Linux Symposium, 2007.

	
[Mer11] N. Merchant, “Culture Trumps Strategy, Every Time”, in Harvard Business Review, March 22, 2011.

	
[Moc87] P. Mockapetris, “Domain Names - Implementation and Specification”, IETF Internet Standard, 1987.

	
[Mol86] C. Moler, “Matrix Computation on Distributed Memory Multiprocessors”, in Hypercube Multiprocessors 1986, 1987.

	
[Mor12a] I. Moraru, D. G. Andersen, and M. Kaminsky, “Egalitarian Paxos”, Carnegie Mellon University Parallel Data Lab Technical Report CMU-PDL-12-108, 2012.

	
[Mor14] I. Moraru, D. G. Andersen, and M. Kaminsky, “Paxos Quorum Leases: Fast Reads Without Sacrificing Writes”, in Proc. SOCC ’14, 2014.

	
[Mor12b] J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. Bhansali, “Searching for Build Debt: Experiences Managing Technical Debt at Google”, in Proceedings of the 3rd Int’l Workshop on Managing Technical Debt, 2012.

	
[Nar12] C. Narla and D. Salas, “Hermetic Servers”, blog post, 2012.

	
[Nel14] B. Nelson, “The Data on Diversity”, in Communications of the ACM, vol. 57, 2014.

	
[Nic12] K. Nichols and V. Jacobson, “Controlling Queue Delay”, in ACM Queue, vol. 10, no. 5, 2012.

	
[Oco12] P. O’Connor and A. Kleyner, Practical Reliability Engineering, 5th edition: Wiley, 2012.

	
[Ohn88] T. Ohno, Toyota Production System: Beyond Large-Scale Production: Productivity Press, 1988.

	
[Ong14] D. Ongaro and J. Ousterhout, “In Search of an Understandable Consensus Algorithm (Extended Version)”.

	
[Pen10] D. Peng and F. Dabek, “Large-scale Incremental Processing Using Distributed Transactions and Notifications”, in Proc. of the 9th USENIX Symposium on Operating System Design and Implementation, November 2010.

	
[Per99] C. Perrow, Normal Accidents: Living with High-Risk Technologies, Princeton University Press, 1999.

	
[Per07] A. R. Perry, “Engineering Reliability into Web Sites: Google SRE”, in Proc. of LinuxWorld 2007, 2007.

	
[Pik05] R. Pike, S. Dorward, R. Griesemer, S. Quinlan, “Interpreting the Data: Parallel Analysis with Sawzall”, in Scientific Programming Journal vol. 13, no. 4, 2005.

	
[Pot16] R. Potvin and J. Levenberg, “The Motivation for a Monolithic Codebase: Why Google stores billions of lines of code in a single repository”, in Communications of the ACM, forthcoming July 2016. Video available on YouTube.

	
[Roo04] J. J. Rooney and L. N. Vanden Heuvel, “Root Cause Analysis for Beginners”, in Quality Progress, July 2004.

	
[Sai39] A. de Saint Exupéry, Terre des Hommes (Paris: Le Livre de Poche, 1939, in translation by Lewis Galantière as Wind, Sand and Stars.

	
[Sam14] R. R. Sambasivan, R. Fonseca, I. Shafer, and G. R. Ganger, “So, You Want To Trace Your Distributed System? Key Design Insights from Years of Practical Experience”, Carnegie Mellon University Parallel Data Lab Technical Report CMU-PDL-14-102, 2014.

	
[San11] N. Santos and A. Schiper, “Tuning Paxos for High-Throughput with Batching and Pipelining”, in 13th Int’l Conf. on Distributed Computing and Networking, 2012.

	
[Sar97] N. B. Sarter, D. D. Woods, and C. E. Billings, “Automation Surprises”, in Handbook of Human Factors & Ergonomics, 2nd edition, G. Salvendy (ed.), Wiley, 1997.

	
[Sch14] E. Schmidt, J. Rosenberg, and A. Eagle, How Google Works: Grand Central Publishing, 2014.

	
[Sch15] B. Schwartz, “The Factors That Impact Availability, Visualized”, blog post, 21 December 2015.

	
[Sch90] F. B. Schneider, “Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial”, in ACM Computing Surveys, vol. 22, no. 4, 1990.

	
[Sec13] Securities and Exchange Commission, “Order In the Matter of Knight Capital Americas LLC”, file 3-15570, 2013.

	
[Sha00] G. Shao, F. Berman, and R. Wolski, “Master/Slave Computing on the Grid”, in Heterogeneous Computing Workshop, 2000.

	
[Shu13] J. Shute et al., “F1: A Distributed SQL Database That Scales”, in Proc. VLDB 2013, 2013.

	
[Sig10] B. H. Sigelman et al., “Dapper, a Large-Scale Distributed Systems Tracing Infrastructure”, Google Technical Report, 2010.

	
[Sin15] A. Singh et al., “Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s Datacenter Network”, in SIGCOMM ’15.

	
[Skel13] M. Skelton, “Operability can Improve if Developers Write a Draft Run Book”, blog post, 16 October 2013.

	
[Slo11] B. Treynor Sloss, “Gmail back soon for everyone”, blog post, 28 February 2011.

	
[Tat99] S. Tatham, “How to Report Bugs Effectively”, 1999.

	
[Ver15] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-scale cluster management at Google with Borg”, in Proceedings of the European Conference on Computer Systems, 2015.

	
[Wal89] D. R. Wallace and R. U. Fujii, “Software Verification and Validation: An Overview”, IEEE Software, vol. 6, no. 3 (May 1989), pp. 10, 17.

	
[War14] R. Ward and B. Beyer, “BeyondCorp: A New Approach to Enterprise Security”, in ;login:, vol. 39, no. 6, December 2014.

	
[Whi12] J. A. Whittaker, J. Arbon, and J. Carollo, How Google Tests Software: Addison-Wesley, 2012.

	
[Woo96] A. Wood, “Predicting Software Reliability”, in Computer, vol. 29, no. 11, 1996.

	
[Wri12a] H. K. Wright, “Release Engineering Processes, Their Faults and Failures”, (section 7.2.2.2) PhD Thesis, University of Texas at Austin, 2012.

	
[Wri12b] H. K. Wright and D. E. Perry, “Release Engineering Practices and Pitfalls”, in Proceedings of the 34th International Conference on Software Engineering (ICSE ’12). (IEEE, 2012), pp. 1281–1284.

	
[Wri13] H. K. Wright, D. Jasper, M. Klimek, C. Carruth, Z. Wan, “Large-Scale Automated Refactoring Using ClangMR”, in Proceedings of the 29th International Conference on Software Maintenance (ICSM ’13), (IEEE, 2013), pp. 548–551.

	
[Zoo14] ZooKeeper Project (Apache Foundation), “ZooKeeper Recipes and Solutions”, in ZooKeeper 3.4 documentation, 2014.

Index
Symbols
	/varz HTTP handler, Instrumentation of Applications

A
	abusive client behavior, Dealing with Abusive Client Behavior
	access control, Enforcement of Policies and Procedures
	ACID datastore semantics, Managing Critical State: Distributed Consensus for Reliability, Choosing a Strategy for Superior Data Integrity
	acknowledgments, Acknowledgments-Acknowledgments
	adaptive throttling, Client-Side Throttling
	Ads Database, Automate Yourself Out of a Job: Automate ALL the Things!-Automate Yourself Out of a Job: Automate ALL the Things!
	AdSense, Other service metrics
	aggregate availability equation, Measuring Service Risk, Availability Table
	aggregation, Rule Evaluation, Aggregation
	agility vs. stability, System Stability Versus Agility	(see also software simplicity)

	Alertmanager service, Alerting
	alerts	defined, Definitions
	false-positive, Tagging
	software for, Monitoring and Alerting	(see also Borgmon; time-series monitoring)

	anacron, Reliability Perspective
	Apache Mesos, Managing Machines
	App Engine, Case Study
	archives vs. backups, Backups Versus Archives
	asynchronous distributed consensus, How Distributed Consensus Works
	atomic broadcast systems, Reliable Distributed Queuing and Messaging
	attribution policy, Using Code Examples
	automation	applying to cluster turnups, Soothing the Pain: Applying Automation to Cluster Turnups-Service-Oriented Cluster-Turnup
	vs. autonomous systems, The Evolution of Automation at Google
	benefits of, The Value of Automation-The Value for Google SRE
	best practices for change management, Change Management
	Borg example, Borg: Birth of the Warehouse-Scale Computer
	cross-industry lessons, Automating Away Repetitive Work and Operational Overhead
	database example, Automate Yourself Out of a Job: Automate ALL the Things!-Automate Yourself Out of a Job: Automate ALL the Things!
	Diskerase example, Recommendations
	focus on reliability, Reliability Is the Fundamental Feature
	Google's approach to, The Value for Google SRE
	hierarchy of automation classes, A Hierarchy of Automation Classes
	recommendations for enacting, Recommendations
	specialized application of, The Inclination to Specialize
	use cases for, The Use Cases for Automation-A Hierarchy of Automation Classes

	automation tools, Testing Scalable Tools
	autonomous systems, The Evolution of Automation at Google
	Auxon case study, Auxon Case Study: Project Background and Problem Space-Our Solution: Intent-Based Capacity Planning, Introduction to Auxon-Introduction to Auxon
	availability, Indicators, Choosing a Strategy for Superior Data Integrity	(see also service availability)

	availability table, Availability Table

B
	B4 network, Hardware
	backend servers, Our Software Infrastructure, Load Balancing in the Datacenter
	backends, fake, Production Probes
	backups (see data integrity)
	Bandwidth Enforcer (BwE), Networking
	barrier tools, Testing Scalable Tools, Testing Disaster, Distributed Coordination and Locking Services
	batch processing pipelines, First Layer: Soft Deletion
	batching, Eliminate Batch Load, Batching, Drawbacks of Periodic Pipelines in Distributed Environments
	Bazel, Building
	best practices	capacity planning, Capacity Planning
	for change management, Change Management
	error budgets, Error Budgets
	failures, Fail Sanely
	feedback, Introducing a Postmortem Culture
	for incident management, In Summary
	monitoring, Monitoring
	overloads and failure, Overloads and Failure
	postmortems, Google’s Postmortem Philosophy-Collaborate and Share Knowledge, Postmortems
	reward systems, Introducing a Postmortem Culture
	role of release engineers in, The Role of a Release Engineer
	rollouts, Progressive Rollouts
	service level objectives, Define SLOs Like a User
	team building, SRE Teams

	bibliography, Bibliography
	Big Data, Origin of the Pipeline Design Pattern
	Bigtable, Storage, Target level of availability, Bigtable SRE: A Tale of Over-Alerting
	bimodal latency, Bimodal latency
	black-box monitoring, Definitions, Black-Box Versus White-Box, Black-Box Monitoring
	blameless cultures, Google’s Postmortem Philosophy
	Blaze build tool, Building
	Blobstore, Storage, Choosing a Strategy for Superior Data Integrity
	Borg, Hardware-Managing Machines, Borg: Birth of the Warehouse-Scale Computer-Borg: Birth of the Warehouse-Scale Computer, Drawbacks of Periodic Pipelines in Distributed Environments
	Borg Naming Service (BNS), Managing Machines
	Borgmon, The Rise of Borgmon-Ten Years On…	(see also time-series monitoring)
	alerting, Monitoring and Alerting, Alerting
	configuration, Maintaining the Configuration
	rate() function, Rule Evaluation
	rules, Rule Evaluation-Rule Evaluation
	sharding, Sharding the Monitoring Topology
	timeseries arena, Storage in the Time-Series Arena
	vectors, Labels and Vectors-Labels and Vectors

	break-glass mechanisms, Expect Testing Fail
	build environments, Creating a Test and Build Environment
	business continuity, Ensuring Business Continuity
	Byzantine failures, How Distributed Consensus Works, Number of Replicas

C
	campuses, Hardware
	canarying, Motivation for Error Budgets, What we learned, Canary test, Gradual and Staged Rollouts
	CAP theorem, Managing Critical State: Distributed Consensus for Reliability
	CAPA (corrective and preventative action), Postmortem Culture
	capacity planning	approaches to, Practices
	best practices for, Capacity Planning
	Diskerase example, Recommendations
	distributed consensus systems and, Capacity and Load Balancing
	drawbacks of "queries per second", The Pitfalls of “Queries per Second”
	drawbacks of traditional plans, Brittle by nature
	further reading on, Practices
	intent-based (see intent-based capacity planning)
	mandatory steps for, Demand Forecasting and Capacity Planning
	preventing server overload with, Preventing Server Overload
	product launches and, Capacity Planning
	traditional approach to, Traditional Capacity Planning

	cascading failures	addressing, Immediate Steps to Address Cascading Failures-Eliminate Bad Traffic
	causes of, Causes of Cascading Failures and Designing to Avoid Them-Service Unavailability
	defined, Addressing Cascading Failures, Capacity and Load Balancing
	factors triggering, Triggering Conditions for Cascading Failures
	overview of, Closing Remarks
	preventing server overload, Preventing Server Overload-Always Go Downward in the Stack
	testing for, Testing for Cascading Failures-Test Noncritical Backends	(see also overload handling)

	change management, Change Management	(see also automation)

	change-induced emergencies, Change-Induced Emergency-What we learned
	changelists (CLs), Our Development Environment
	Chaos Monkey, Testing Disaster
	checkpoint state, Testing Disaster
	cherry picking tactic, Hermetic Builds
	Chubby lock service, Lock Service, System Architecture Patterns for Distributed Consensus	planned outage, Objectives, SLOs Set Expectations

	client tasks, Load Balancing in the Datacenter
	client-side throttling, Client-Side Throttling
	clients, Our Software Infrastructure
	clock drift, Managing Critical State: Distributed Consensus for Reliability
	Clos network fabric, Hardware
	cloud environment	data integrity strategies, Choosing a Strategy for Superior Data Integrity, Challenges faced by cloud developers
	definition of data integrity in, Data Integrity’s Strict Requirements
	evolution of applications in, Choosing a Strategy for Superior Data Integrity
	technical challenges of, Requirements of the Cloud Environment in Perspective

	clusters	applying automation to turnups, Soothing the Pain: Applying Automation to Cluster Turnups-Service-Oriented Cluster-Turnup
	cluster management solution, Drawbacks of Periodic Pipelines in Distributed Environments
	defined, Hardware

	code samples, Using Code Examples
	cognitive flow state, Cognitive Flow State
	cold caching, Slow Startup and Cold Caching
	colocation facilities (colos), Recommendations
	Colossus, Storage
	command posts, A Recognized Command Post
	communication and collaboration	blameless postmortems, Collaborate and Share Knowledge
	case studies, Case Study of Collaboration in SRE: Viceroy-Case Study: Migrating DFP to F1
	importance of, Conclusion
	with Outalator, Reporting and communication
	outside SRE team, Collaboration Outside SRE
	position of SRE in Google, Communication and Collaboration in SRE
	production meetings (see production meetings)
	within SRE team, Collaboration within SRE

	company-wide resilience testing, Practices
	compensation structure, Compensation
	computational optimization, Our Solution: Intent-Based Capacity Planning
	configuration management, Configuration Management, Change-Induced Emergency, Integration, Process Updates
	configuration tests, Configuration test
	consensus algorithms	Egalitarian Paxos, Stable Leaders
	Fast Paxos, Reasoning About Performance: Fast Paxos, The Use of Paxos
	improving performance of, Distributed Consensus Performance
	Multi-Paxos, Disk Access
	Paxos, How Distributed Consensus Works, Disk Access
	Raft, Multi-Paxos: Detailed Message Flow, Stable Leaders
	Zab, Stable Leaders	(see also distributed consensus systems)

	consistency	eventual, Managing Critical State: Distributed Consensus for Reliability
	through automation, Consistency

	consistent hashing, Load Balancing at the Virtual IP Address
	constraints, Laborious and imprecise
	Consul, System Architecture Patterns for Distributed Consensus
	consumer services, identifying risk tolerance of, Identifying the Risk Tolerance of Consumer Services-Other service metrics
	continuous build and deployment	Blaze build tool, Building
	branching, Branching
	build targets, Building
	configuration management, Configuration Management
	deployment, Deployment
	packaging, Packaging
	Rapid release system, Continuous Build and Deployment, Rapid
	testing, Testing
	typical release process, Rapid

	contributors, Acknowledgments-Acknowledgments
	coroutines, Origin of the Pipeline Design Pattern
	corporate network security, Practices
	correctness guarantees, Workflow Correctness Guarantees
	correlation vs. causation, Theory
	costs	availability targets and, Cost, Cost
	direct, The Sysadmin Approach to Service Management
	of failing to embrace risk, Managing Risk
	indirect, The Sysadmin Approach to Service Management
	of sysadmin management approach, The Sysadmin Approach to Service Management

	CPU consumption, The Pitfalls of “Queries per Second”, CPU, Overload Behavior and Load Tests
	crash-fail vs. crash-recover algorithms, How Distributed Consensus Works
	cron	at large scale, Running Large Cron
	building at Google, Building Cron at Google-Running Large Cron
	idempotency, Cron Jobs and Idempotency
	large-scale deployment of, Cron at Large Scale
	leader and followers, The leader
	overview of, Summary
	Paxos algorithm and, The Use of Paxos-Storing the State
	purpose of, Distributed Periodic Scheduling with Cron
	reliability applications of, Reliability Perspective
	resolving partial failures, Resolving partial failures
	storing state, Storing the State
	tracking cron job state, Tracking the State of Cron Jobs
	uses for, Cron

	cross-industry lessons	Apollo 8, Preface
	comparative questions presented, Lessons Learned from Other Industries
	decision-making skills, Structured and Rational Decision Making-Structured and Rational Decision Making
	Google's application of, Conclusions
	industry leaders contributing, Meet Our Industry Veterans
	key themes addressed, Lessons Learned from Other Industries
	postmortem culture, Postmortem Culture-Postmortem Culture
	preparedness and disaster testing, Preparedness and Disaster Testing-Defense in Depth and Breadth
	repetitive work/operational overhead, Automating Away Repetitive Work and Operational Overhead

	current state, exposing, Examine

D
	D storage layer, Storage
	dashboards	benefits of, Why Monitor?
	defined, Definitions

	data analysis, with Outalator, Analysis
	data integrity	backups vs. archives, Backups Versus Archives
	case studies in, Case Studies-Addressing the root cause
	conditions leading to failure, Types of Failures That Lead to Data Loss
	defined, Data Integrity: What You Read Is What You Wrote
	expanded definition of, Data Integrity’s Strict Requirements
	failure modes, The 24 Combinations of Data Integrity Failure Modes
	from users’ perspective, Data Integrity Is the Means; Data Availability Is the Goal
	overview of, Conclusion
	selecting strategy for, Choosing a Strategy for Superior Data Integrity-Choosing a Strategy for Superior Data Integrity, Challenges faced by cloud developers
	SRE approach to, How Google SRE Faces the Challenges of Data Integrity-Knowing That Data Recovery Will Work
	SRE objectives for, Google SRE Objectives in Maintaining Data Integrity and Availability-Retention
	SRE principles applied to, General Principles of SRE as Applied to Data Integrity-Defense in Depth
	strict requirements, Data Integrity’s Strict Requirements
	technical challenges of, Requirements of the Cloud Environment in Perspective

	data processing pipelines	business continuity and, Ensuring Business Continuity
	challenges of uneven work distribution, Trouble Caused By Uneven Work Distribution
	challenges to periodic pattern, Challenges with the Periodic Pipeline Pattern
	drawbacks of periodic, Drawbacks of Periodic Pipelines in Distributed Environments-Moiré Load Pattern
	effect of big data on, Initial Effect of Big Data on the Simple Pipeline Pattern
	monitoring problems, Monitoring Problems in Periodic Pipelines-Moiré Load Pattern
	origin of, Origin of the Pipeline Design Pattern
	overview of, Summary and Concluding Remarks
	pipeline depth, Initial Effect of Big Data on the Simple Pipeline Pattern
	simple vs. multiphase pipelines, Initial Effect of Big Data on the Simple Pipeline Pattern
	Workflow system, Introduction to Google Workflow, Workflow Correctness Guarantees

	data recovery, Knowing That Data Recovery Will Work
	datacenters	backbone network for, Hardware
	data validation, Out-of-band data validation
	load balancing, Load Balancing in the Datacenter-Weighted Round Robin
	topology of, Hardware

	datastores	ACID and BASE, Managing Critical State: Distributed Consensus for Reliability, Choosing a Strategy for Superior Data Integrity, Types of Failures That Lead to Data Loss
	reliable replicated, Reliable Replicated Datastores and Configuration Stores

	Decider, Automate Yourself Out of a Job: Automate ALL the Things!
	decision-making skills, Structured and Rational Decision Making
	defense in depth, for data integrity, The 24 Combinations of Data Integrity Failure Modes, Sunday, February 27, 2011, late in the evening, Defense in Depth
	demand forecasting, Demand Forecasting and Capacity Planning
	dependency hierarchies, Setting Reasonable Expectations for Monitoring, Dependencies among resources
	deployment, Deployment	(see also continuous build and deployment)

	development environment, Our Development Environment
	development/ops split, The Sysadmin Approach to Service Management
	DevOps, Google’s Approach to Service Management: Site Reliability Engineering
	Direct Server Response (DSR), Load Balancing at the Virtual IP Address
	disaster recovery tools, Testing Disaster
	disaster role playing, Disaster Role Playing
	disaster testing, Preparedness and Disaster Testing-Defense in Depth and Breadth	Disaster and Recovery Testing (DiRT), Preparedness and Disaster Testing

	disk access, Disk Access
	Diskerase process, Recommendations
	distractibility, Distractibility
	distributed consensus systems	benefits of, Managing Critical State: Distributed Consensus for Reliability
	coordination, use in, Distributed Coordination and Locking Services
	deploying, Deploying Distributed Consensus-Based Systems-Quorum composition
	locking, use in, Managing Critical State: Distributed Consensus for Reliability
	monitoring, Monitoring Distributed Consensus Systems
	need for, Managing Critical State: Distributed Consensus for Reliability
	overview of, Conclusion
	patterns for, System Architecture Patterns for Distributed Consensus-Reliable Distributed Queuing and Messaging
	performance of, Distributed Consensus Performance-Disk Access
	principles, How Distributed Consensus Works
	quorum composition, Quorum composition
	quorum leasing technique, Quorum Leases	(see also consensus algorithms)

	distributed periodic scheduling (see cron)
	DNS (Domain Name System)	EDNS0 extension, Load Balancing Using DNS
	load balancing using, Load Balancing Using DNS-Load Balancing Using DNS

	DoubleClick for Publishers (DFP), Case Study: Migrating DFP to F1-Case Study: Migrating DFP to F1
	drains, Planned Changes, Drains, or Turndowns
	DTSS communication files, Origin of the Pipeline Design Pattern
	dueling proposers situation, Multi-Paxos: Detailed Message Flow
	durability, Indicators

E
	early detection for data integrity, Third Layer: Early Detection	(see also data integrity)

	Early Engagement Model, Evolving the Simple PRR Model: Early Engagement-Disengaging from a service
	“embarrassingly parallel” algorithms, Trouble Caused By Uneven Work Distribution
	embedded engineers, Embedding an SRE to Recover from Operational Overload-Conclusion
	emergency preparedness, Sunday, February 27, 2011, late in the evening	cross-industry lessons, Preparedness and Disaster Testing

	emergency response	change-induced emergencies, Change-Induced Emergency-What we learned
	essential elements of, Emergency Response
	Five Whys, Ask “what,” “where,” and “why”, Example Postmortem
	guidelines for, Emergency Response
	initial response, What to Do When Systems Break
	lessons learned, Keep a History of Outages
	overview of, Conclusion
	process-induced emergencies, Process-Induced Emergency
	solution availability, All Problems Have Solutions
	test-induced emergencies, Test-Induced Emergency

	encapsulation, Load Balancing at the Virtual IP Address
	endpoints, in debugging, Examine
	engagements (see SRE engagement model)
	error budgets	benefits of, Benefits
	best practices for, Error Budgets
	forming, Forming Your Error Budget
	guidelines for, Pursuing Maximum Change Velocity Without Violating a Service’s SLO
	motivation for, Motivation for Error Budgets

	error rates, Indicators, The Four Golden Signals
	Escalator, Escalator
	ETL pipelines, Origin of the Pipeline Design Pattern
	eventual consistency, Managing Critical State: Distributed Consensus for Reliability
	executor load average, Utilization Signals

F
	failures, best practices for, Fail Sanely	(see also cascading failures)

	fake backends, Production Probes
	false-positive alerts, Tagging
	feature flag frameworks, Feature Flag Frameworks
	file descriptors, File descriptors
	Five Whys, Ask “what,” “where,” and “why”, Example Postmortem
	flow control, A Simple Approach to Unhealthy Tasks: Flow Control
	FLP impossibility result, How Distributed Consensus Works
	Flume, Challenges with the Periodic Pipeline Pattern
	fragmentation, Load Balancing at the Virtual IP Address

G
	gated operations, Enforcement of Policies and Procedures
	Generic Routing Encapsulation (GRE), Load Balancing at the Virtual IP Address
	GFE (Google Frontend), Life of a Request, Load Balancing in the Datacenter
	GFS (Google File System), Detecting Inconsistencies with Prodtest, Highly Available Processing Using Leader Election, Extended Infrastructure-Tracking the State of Cron Jobs, Overarching Layer: Replication
	global overload, Per-Customer Limits
	Global Software Load Balancer (GSLB), Networking
	Gmail, Gmail: Predictable, Scriptable Responses from Humans, Gmail — February, 2011: Restore from GTape
	Google Apps for Work, Target level of availability
	Google Compute Engine, Indicators
	Google production environment	best practices for, Fail Sanely-SRE Teams
	complexity of, Software Engineering in SRE
	datacenter topology, Hardware
	development environment, Our Development Environment
	hardware, Hardware
	Shakespeare search service, Shakespeare: A Sample Service-Job and Data Organization
	software infrastructure, Our Software Infrastructure
	system software, System Software That “Organizes” the Hardware-Monitoring and Alerting

	Google Workflow system	as model-view-controller pattern, Workflow as Model-View-Controller Pattern
	business continuity and, Ensuring Business Continuity
	correctness guarantees, Workflow Correctness Guarantees
	development of, Introduction to Google Workflow
	stages of execution in, Stages of Execution in Workflow

	graceful degradation, Load Shedding and Graceful Degradation
	GTape, Gmail — February, 2011: Restore from GTape

H
	Hadoop Distributed File System (HDFS), Storage
	handoffs, Clear, Live Handoff
	“hanging chunk” problem, Trouble Caused By Uneven Work Distribution
	hardware	managing failures, System Software That “Organizes” the Hardware
	software that “organizes”, System Software That “Organizes” the Hardware-Monitoring and Alerting
	terminology used for, Hardware

	health checks, Stop Health Check Failures/Deaths
	healthcare.gov, Practices
	hermetic builds, Hermetic Builds
	hierarchical quorums, Quorum composition
	high-velocity approach, Principles, High Velocity
	hotspotting, Picking the Right Subset

I
	idempotent operations, Resolving Inconsistencies Idempotently, Cron Jobs and Idempotency
	incident management	best practices for, In Summary
	effective, Managing Incidents
	formal protocols for, Feeling Safe
	incident management process, What we learned, Elements of Incident Management Process
	incident response, Practices
	managed incident example, A Managed Incident
	roles, Recursive Separation of Responsibilities
	template for, Example Incident State Document
	unmanaged incident example, Unmanaged Incidents
	when to declare an incident, When to Declare an Incident

	infrastructure services	identifying risk tolerance of, Identifying the Risk Tolerance of Infrastructure Services
	improved SRE through automation, Faster Action

	integration proposals, Enforcement of Policies and Procedures
	integration tests, Integration tests, Integration
	intent-based capacity planning	Auxon implementation, Introduction to Auxon-Introduction to Auxon
	basic premise of, Our Solution: Intent-Based Capacity Planning
	benefits of, Our Solution: Intent-Based Capacity Planning
	defined, Intent-Based Capacity Planning
	deploying approximation, Approximation
	driving adoption of, Raising Awareness and Driving Adoption-Designing at the right level
	precursors to intent, Precursors to Intent
	requirements and implementation, Requirements and Implementation: Successes and Lessons Learned
	selecting intent level, Intent-Based Capacity Planning
	team dynamics, Team Dynamics

	interrupts	cognitive flow state and, Cognitive Flow State
	dealing with, Dealing with Interrupts
	dealing with high volumes, General suggestions
	determining approach to handling, Factors in Determining How Interrupts Are Handled
	distractibility and, Distractibility
	managing operational load, Managing Operational Load
	on-call engineers and, On-call
	ongoing responsibilities, Ongoing responsibilities
	polarizing time, Polarizing time
	reducing, Reducing Interrupts
	ticket assignments, Tickets

	IRC (Internet Relay Chat), A Recognized Command Post

J
	jobs, Managing Machines
	Jupiter network fabric, Hardware

L
	labelsets, Labels and Vectors
	lame duck state, A Robust Approach to Unhealthy Tasks: Lame Duck State
	latency	defined, Choosing a Strategy for Superior Data Integrity
	measuring, Indicators
	monitoring for, The Four Golden Signals

	launch coordination	checklist, The Launch Checklist-Example action items, Launch Coordination Checklist
	engineering (LCE), Launch Coordination Engineering, Development of LCE-Infrastructure churn	(see also product launches)

	lazy deletion, The 24 Combinations of Data Integrity Failure Modes
	leader election, Managing Critical State: Distributed Consensus for Reliability, Highly Available Processing Using Leader Election
	lease systems, Reliable Distributed Queuing and Messaging
	Least-Loaded Round Robin policy, Least-Loaded Round Robin
	level of service, Service Level Objectives	(see also service level objectives (SLOs))

	living incident documents, Live Incident State Document
	load balancing	datacenter	datacenter services and tasks, Load Balancing in the Datacenter
	flow control, A Simple Approach to Unhealthy Tasks: Flow Control
	Google's application of, Load Balancing in the Datacenter
	handling overload, Handling Overload
	ideal CPU usage, The Ideal Case, The Pitfalls of “Queries per Second”
	lame duck state, A Robust Approach to Unhealthy Tasks: Lame Duck State
	limiting connections pools, Limiting the Connections Pool with Subsetting-A Subset Selection Algorithm: Deterministic Subsetting
	packet encapsulation, Load Balancing at the Virtual IP Address
	policies for, Load Balancing Policies-Weighted Round Robin
	SRE software engineering dynamics, Team Dynamics

	distributed consensus systems and, Capacity and Load Balancing
	frontend	optimal solutions for, Power Isn’t the Answer
	using DNS, Load Balancing Using DNS-Load Balancing Using DNS
	virtual IP addresses (VIPs), Load Balancing at the Virtual IP Address

	policy	Least-Loaded Round Robin, Least-Loaded Round Robin
	Round Robin, Simple Round Robin
	Weighted Round Robin, Weighted Round Robin

	load shedding, Load Shedding and Graceful Degradation
	load tests, Overload Behavior and Load Tests
	lock services, Lock Service, Distributed Coordination and Locking Services
	logging, Examine
	Lustre, Storage

M
	machines	defined, Hardware, Definitions
	managing with software, Managing Machines

	majority quorums, Number of Replicas
	MapReduce, Challenges with the Periodic Pipeline Pattern
	mean time	between failures (MTBF), Testing for Reliability, Expect Testing Fail
	to failure (MTTF), Emergency Response
	to repair (MTTR), Emergency Response, Faster Repairs, Testing for Reliability

	memory exhaustion, Memory
	Mencius algorithm, Stable Leaders
	meta-software, The Use Cases for Automation
	Midas Package Manager (MPM), Packaging
	model-view-controller pattern, Workflow as Model-View-Controller Pattern
	modularity, Modularity
	Moiré load pattern in pipelines, Moiré Load Pattern
	monitoring distributed systems	avoiding complexity in, As Simple as Possible, No Simpler
	benefits of monitoring, Why Monitor?, Practical Alerting from Time-Series Data
	best practices for, Monitoring
	blackbox vs. whitebox, Black-Box Versus White-Box, Black-Box Monitoring
	case studies, Bigtable SRE: A Tale of Over-Alerting-Gmail: Predictable, Scriptable Responses from Humans
	challenges of, Monitoring for the Long Term, Practical Alerting from Time-Series Data
	change-induced emergencies, Response
	creating rules for, Tying These Principles Together
	four golden signals of, The Four Golden Signals
	guidelines for, Monitoring
	instrumentation and performance, Worrying About Your Tail (or, Instrumentation and Performance)
	monitoring philosophy, Tying These Principles Together
	resolution, Choosing an Appropriate Resolution for Measurements
	setting expectations for, Setting Reasonable Expectations for Monitoring
	short- vs. long-term availability, The Long Run
	software for, Monitoring and Alerting
	symptoms vs. causes, Symptoms Versus Causes
	terminology, Definitions
	valid monitoring outputs, Monitoring	(see also Borgmon; time-series monitoring)

	Multi-Paxos protocol, Multi-Paxos: Detailed Message Flow, Disk Access	(see also consensus algorithms)

	multi-site teams, Balance in Quantity
	multidimensional matrices, Labels and Vectors
	multiphase pipelines, Initial Effect of Big Data on the Simple Pipeline Pattern
	MySQL	migrating, Automate Yourself Out of a Job: Automate ALL the Things!-Automate Yourself Out of a Job: Automate ALL the Things!, Case Study: Migrating DFP to F1
	test-induced emergencies and, Details

N
	N + 2 configuration, Job and Data Organization, Intent-Based Capacity Planning-Introduction to Auxon, Preventing Server Overload, Capacity Planning
	negative results, Negative Results Are Magic
	Network Address Translation, Load Balancing at the Virtual IP Address
	network latency, Distributed Consensus Performance and Network Latency
	network load balancer, Load Balancing at the Virtual IP Address
	network partitions, Managing Critical State: Distributed Consensus for Reliability
	Network Quality of Service (QoS), What we learned, Criticality
	network security, Practices
	networking, Networking
	NORAD Tracks Santa website, Reliable Product Launches at Scale
	number of “nines”, Indicators, Availability Table

O
	older releases, rebuilding, Hermetic Builds
	on-call	balanced on-call, Balanced On-Call
	benefits of, Conclusions
	best practices for, You’ve Hired Your Next SRE(s), Now What?, Five Practices for Aspiring On-Callers-Shadow On-Call Early and Often
	compensation structure, Compensation
	continuing education, On-Call and Beyond: Rites of Passage, and Practicing Continuing Education
	education practices, You’ve Hired Your Next SRE(s), Now What?, Learning Paths That Are Cumulative and Orderly
	formal incident-management protocols, Feeling Safe
	inappropriate operational loads, Avoiding Inappropriate Operational Load
	initial learning experiences, Initial Learning Experiences: The Case for Structure Over Chaos
	learning checklists, Documentation as Apprenticeship
	overview of, Being On-Call, Closing Thoughts
	resources for, Feeling Safe
	rotation schedules, Life of an On-Call Engineer
	shadow on-call, Shadow On-Call Early and Often
	stress-reduction techniques, Feeling Safe
	target event volume, Ensuring a Durable Focus on Engineering
	targeted project work, Targeted Project Work, Not Menial Work
	team building, You’ve Hired Your Next SRE(s), Now What?
	time requirements, Balance in Quality
	training for, Learning Paths That Are Cumulative and Orderly-A Hunger for Failure: Reading and Sharing Postmortems
	training materials, Creating Stellar Reverse Engineers and Improvisational Thinkers
	typical activities, Life of an On-Call Engineer

	one-phase pipelines, Initial Effect of Big Data on the Simple Pipeline Pattern
	open commenting/annotation system, Collaborate and Share Knowledge
	operational load	cross-industry lessons, Automating Away Repetitive Work and Operational Overhead
	managing, Managing Operational Load
	ongoing responsibilities, Managing Operational Load
	types of, Dealing with Interrupts

	operational overload, Operational Overload
	operational underload, A Treacherous Enemy: Operational Underload
	operational work (see toil)
	out-of-band checks and balances, Choosing a Strategy for Superior Data Integrity, Out-of-band data validation
	out-of-band communications systems, What went well
	outage tracking	baselines and progress tracking, Tracking Outages
	benefits of, Unexpected Benefits
	Escalator, Escalator
	Outalator, Outalator-Reporting and communication

	Outalator	aggregation in, Aggregation
	benefits of, Outalator
	building your own, Outalator
	incident analysis, Analysis
	notification process, Outalator
	reporting and communication, Reporting and communication
	tagging in, Tagging

	overhead, Toil Defined
	overload handling	approaches to, Handling Overload
	best practices for, Overloads and Failure
	client-side throttling, Client-Side Throttling
	load from connections, Load from Connections
	overload errors, Handling Overload Errors
	overview of, Conclusions
	per-client retry budget, Deciding to Retry
	per-customer limits, Per-Customer Limits
	per-request retry budget, Deciding to Retry
	product launches and, Overload Behavior and Load Tests
	request criticality, Criticality
	retrying requests, Deciding to Retry	(see also retries, RPC)

	utilization signals, Utilization Signals	(see also cascading failures)

P
	package managers, Packaging
	packet encapsulation, Load Balancing at the Virtual IP Address
	Paxos consensus algorithm	Classic Paxos algorithm, Reasoning About Performance: Fast Paxos
	disk access and, Disk Access
	Egalitarian Paxos consensus algorithm, Stable Leaders
	Fast Paxos consensus algorithm, Reasoning About Performance: Fast Paxos, The Use of Paxos
	Lamport’s Paxos protocol, How Distributed Consensus Works	(see also consensus algorithms)

	performance	efficiency and, Efficiency and Performance
	monitoring, Worrying About Your Tail (or, Instrumentation and Performance)

	performance tests, System tests
	periodic pipelines, Challenges with the Periodic Pipeline Pattern
	periodic scheduling (see cron)
	persistent storage, Disk Access
	Photon, Number of Replicas
	pipelining, Batching
	planned changes, Planned Changes, Drains, or Turndowns
	policies and procedures, enforcing, Enforcement of Policies and Procedures
	post hoc analysis, Setting Reasonable Expectations for Monitoring
	postmortems	benefits of, Postmortem Culture: Learning from Failure
	best practices for, Google’s Postmortem Philosophy-Introducing a Postmortem Culture, Postmortems
	collaboration and sharing in, Collaborate and Share Knowledge
	concept of, Postmortem Culture: Learning from Failure
	cross-industry lessons, Postmortem Culture-Postmortem Culture
	example postmortem, Example Postmortem-Timeline
	formal review and publication of, Collaborate and Share Knowledge
	Google's philosophy for, Google’s Postmortem Philosophy
	guidelines for, Ensuring a Durable Focus on Engineering
	introducing postmortem cultures, Introducing a Postmortem Culture
	on-call engineering and, A Hunger for Failure: Reading and Sharing Postmortems
	ongoing improvements to, Conclusion and Ongoing Improvements
	rewarding participation in, Introducing a Postmortem Culture
	triggers for, Google’s Postmortem Philosophy

	privacy, Choosing a Strategy for Superior Data Integrity
	proactive testing, Encourage Proactive Testing
	problem reports, Problem Report
	process death, Process Death
	process health checks, Stop Health Check Failures/Deaths
	process updates, Process Updates
	process-induced emergencies, Process-Induced Emergency
	Prodtest (Production Test), Detecting Inconsistencies with Prodtest
	product launches	best practices for, Progressive Rollouts
	defined, Reliable Product Launches at Scale
	development of Launch Coordination Engineering (LCE), Development of LCE-Infrastructure churn
	driving convergence and simplification, Driving Convergence and Simplification
	launch coordination checklists, The Launch Checklist-Example action items, Launch Coordination Checklist
	launch coordination engineering, Launch Coordination Engineering
	NORAD Tracks Santa example, Reliable Product Launches at Scale
	overview of, Conclusion
	processes for, Setting Up a Launch Process
	rate of, Reliable Product Launches at Scale
	techniques for reliable, Selected Techniques for Reliable Launches-Overload Behavior and Load Tests

	production environment (see Google production environment)
	production inconsistencies	detecting with Prodtest, Detecting Inconsistencies with Prodtest
	resolving idempotently, Resolving Inconsistencies Idempotently

	production meetings, Communications: Production Meetings-Attendance	agenda example, Example Production Meeting Minutes

	production probes, Production Probes
	Production Readiness Review process (see SRE engagement model)
	production tests, Production Tests
	protocol buffers (protobufs), Our Software Infrastructure, Integration
	Protocol Data Units, Load Balancing at the Virtual IP Address
	provisioning, guidelines for, Provisioning
	PRR (Production Readiness Review) model, The PRR Model, Production Readiness Reviews: Simple PRR Model-Continuous Improvement
	push frequency, Motivation for Error Budgets
	push managers, Ongoing responsibilities
	Python’s safe_load, Integration

Q
	“queries per second” model, The Pitfalls of “Queries per Second”
	Query of Death, Process Death
	queuing	controlled delay, Load Shedding and Graceful Degradation
	first-in, first-out, Load Shedding and Graceful Degradation
	last-in, first-out, Load Shedding and Graceful Degradation
	management of, Queue Management, Reliable Distributed Queuing and Messaging

	queuing-as-work-distribution pattern, Reliable Distributed Queuing and Messaging
	quorum (see distributed consensus systems)

R
	Raft consensus protocol, Multi-Paxos: Detailed Message Flow, Stable Leaders	(see also consensus algorithms)

	RAID, Overarching Layer: Replication
	Rapid automated release system, Continuous Build and Deployment, Rapid
	read workload, scaling, Scaling Read-Heavy Workloads
	real backups, Backups Versus Archives
	real-time collaboration, Collaborate and Share Knowledge
	recoverability, Challenges of Maintaining Data Integrity Deep and Wide
	recovery, Knowing That Data Recovery Will Work
	recovery systems, Delivering a Recovery System, Rather Than a Backup System
	recursion (see recursion)
	recursive DNS servers, Load Balancing Using DNS
	recursive separation of responsibilities, Recursive Separation of Responsibilities
	redundancy, Challenges of Maintaining Data Integrity Deep and Wide, Overarching Layer: Replication
	Reed-Solomon erasure codes, Overarching Layer: Replication
	regression tests, System tests
	release engineering	challenges of, Release Engineering
	continuous build and deployment, Continuous Build and Deployment-Configuration Management
	defined, Release Engineering
	instituting, Start Release Engineering at the Beginning
	philosophy of, Philosophy-Enforcement of Policies and Procedures
	the role of release engineers, The Role of a Release Engineer
	wider application of, Conclusions

	reliability testing	amount required, Testing for Reliability
	benefits of, Conclusion
	break-glass mechanisms, Expect Testing Fail
	canary tests, Canary test
	configuration tests, Configuration test
	coordination of, The Need for Speed
	creating test and build environments, Creating a Test and Build Environment
	error budgets, Pursuing Maximum Change Velocity Without Violating a Service’s SLO, Motivation for Error Budgets-Forming Your Error Budget, Error Budgets
	expecting test failure, Expect Testing Fail-Expect Testing Fail
	fake backend versions, Production Probes
	goals of, Testing for Reliability
	importance of, Preface
	integration tests, Integration tests, Integration
	MTTR and, Testing for Reliability
	performance tests, System tests
	proactive, Encourage Proactive Testing
	production probes, Production Probes
	production tests, Production Tests
	regression tests, System tests
	reliability goals, Embracing Risk
	sanity testing, System tests
	segregated environments and, Pushing to Production
	smoke tests, System tests
	speed of, The Need for Speed
	statistical tests, Testing Disaster
	stress tests, Stress test
	system tests, System tests
	testing at scale, Testing at Scale-Production Probes
	timing of, Production Tests
	unit tests, Unit tests

	reliable replicated datastores, Reliable Replicated Datastores and Configuration Stores
	Remote Procedure Call (RPC), Our Software Infrastructure, Examine, Criticality	bimodal, Bimodal latency
	deadlines	missing, Missing deadlines
	propagating, Load Shedding and Graceful Degradation, Deadline propagation
	queue management, Queue Management, Reliable Distributed Queuing and Messaging
	selecting, Latency and Deadlines

	retries, Retries-Retries
	RPC criticality, Criticality	(see also overload handling)

	replicas	adding, Capacity and Load Balancing
	drawbacks of leader replicas, Capacity and Load Balancing
	location of, Location of Replicas, Quorum composition
	number deployed, Number of Replicas

	replicated logs, Number of Replicas
	replicated state machine (RSM), Reliable Replicated State Machines
	replication, Challenges of Maintaining Data Integrity Deep and Wide, Overarching Layer: Replication
	request latency, Indicators, The Four Golden Signals
	request profile changes, Request profile changes
	request success rate, Measuring Service Risk
	resilience testing, Practices
	resources	allocation of, Hardware, Managing Machines
	exhaustion, Resource Exhaustion
	limits, Resource limits	(see also capacity planning)

	restores, 1T Versus 1E: Not “Just” a Bigger Backup
	retention, Retention
	retries, RPC	avoiding, Deciding to Retry
	cascading failures due to, Retries
	considerations for automatic, Retries
	diagnosing outages due to, Retries
	handling overload errors and, Handling Overload Errors
	per-client retry budgets, Deciding to Retry
	per-request retry budgets, Deciding to Retry

	reverse engineering, Reverse Engineers: Figuring Out How Things Work
	reverse proxies, What went well
	revision history, First Layer: Soft Deletion
	risk management	balancing risk and innovation, Embracing Risk
	costs of, Managing Risk
	error budgets, Motivation for Error Budgets-Benefits, Error Budgets
	key insights, Benefits
	measuring service risk, Measuring Service Risk
	risk tolerance of services, Risk Tolerance of Services-Example: Frontend infrastructure

	rollback procedures, What we learned
	rollouts, New Rollouts, Rollout Planning, Progressive Rollouts
	root cause	analysis of, Practices, Google’s Postmortem Philosophy	(see also postmortems)

	defined, Definitions

	Round Robin policy, Simple Round Robin
	round-trip-time (RTT), Distributed Consensus Performance and Network Latency
	rows, Hardware
	rule evaluation, in monitoring systems, Rule Evaluation-Rule Evaluation

S
	Safari® Books Online, Safari® Books Online
	sanity testing, System tests
	saturation, The Four Golden Signals
	scale	defined, Choosing a Strategy for Superior Data Integrity
	issues in, Scaling issues: Fulls, incrementals, and the competing forces of backups and restores

	security	in release engineering, Enforcement of Policies and Procedures
	new approach to, Practices

	self-service model, Self-Service Model
	separation of responsibilities, Recursive Separation of Responsibilities
	servers	vs. clients, Our Software Infrastructure
	defined, Hardware
	overload scenario, Server Overload
	preventing overload, Preventing Server Overload-Always Go Downward in the Stack

	service availability	availability table, Availability Table
	cost factors, Cost, Cost
	defined, Indicators
	target for consumer services, Target level of availability
	target for infrastructure service, Target level of availability
	time-based equation, Measuring Service Risk
	types of consumer service failures, Types of failures
	types of infrastructure services failures, Types of failures

	service health checks, Stop Health Check Failures/Deaths
	service latency	looser approach to, Other service metrics
	monitoring for, The Four Golden Signals

	service level agreements (SLAs), Agreements
	service level indicators (SLIs)	aggregating raw measurements, Aggregation
	collecting indicators, Collecting Indicators
	defined, Indicators
	standardizing indicators, Standardize Indicators

	service level objectives (SLOs)	agreements in practice, Agreements in Practice
	best practices for, Define SLOs Like a User
	choosing, Service Level Objectives-Objectives
	control measures, Control Measures
	defined, Objectives
	defining objectives, Objectives in Practice
	selecting relevant indicators, What Do You and Your Users Care About?
	statistical fallacies and, Aggregation
	target selection, Choosing Targets
	user expectations and, Objectives, SLOs Set Expectations

	service management	comprehensive approach to, Preface
	Google’s approach to, Google’s Approach to Service Management: Site Reliability Engineering-Google’s Approach to Service Management: Site Reliability Engineering
	sysadmin approach to, The Sysadmin Approach to Service Management, Consistency

	service reliability hierarchy	additional resources, Practices
	capacity planning, Practices
	development, Practices
	diagram of, Practices
	incident response, Practices
	monitoring, Practices
	product launch, Practices
	root cause analysis, Practices
	testing, Practices

	service unavailability, Service Unavailability
	Service-Oriented Architecture (SOA), Service-Oriented Cluster-Turnup
	Shakespeare search service, example	alert, Problem Report
	applying SRE to, Shakespeare: A Sample Service-Job and Data Organization
	cascading failure example, Addressing Cascading Failures-Eliminate Bad Traffic
	debugging, Examine
	engagement, Eliminate Bad Traffic, Engagement
	incident management, Example Incident State Document
	postmortem, Example Postmortem-Timeline
	production meeting, Example Production Meeting Minutes-Example Production Meeting Minutes

	sharded deployments, Capacity and Load Balancing
	SHEDDABLE_PLUS criticality value, Criticality
	simplicity, Simplicity-A Simple Conclusion
	Sisyphus automation framework, Deployment
	Site Reliability Engineering (SRE)	activities included in, Practices
	approach to learning, Preface
	basic components of, Preface
	benefits of, Google’s Approach to Service Management: Site Reliability Engineering
	challenges of, Google’s Approach to Service Management: Site Reliability Engineering
	defined, Foreword-Foreword, Google’s Approach to Service Management: Site Reliability Engineering
	early engineers, Preface
	Google’s approach to management, Google’s Approach to Service Management: Site Reliability Engineering-Google’s Approach to Service Management: Site Reliability Engineering, Communication and Collaboration in SRE
	growth of at Google, Conclusion, Conclusion
	hiring, Google’s Approach to Service Management: Site Reliability Engineering, You’ve Hired Your Next SRE(s), Now What?
	origins of, Preface
	sysadmin approach to management, The Sysadmin Approach to Service Management, Consistency
	team composition and skills, Google’s Approach to Service Management: Site Reliability Engineering, Introduction, Conclusion
	tenets of, Tenets of SRE-Efficiency and Performance
	typical activities of, What Qualifies as Engineering?
	widespread applications of, Preface

	slow startup, Slow Startup and Cold Caching
	smoke tests, System tests
	SNMP (Simple Networking Monitoring Protocol), Collection of Exported Data
	soft deletion, First Layer: Soft Deletion
	software bloat, The “Negative Lines of Code” Metric
	software engineering in SRE	activities included in, Practices
	Auxon case study, Auxon Case Study: Project Background and Problem Space-Our Solution: Intent-Based Capacity Planning
	benefits of, Conclusions
	encouraging, Raising Awareness and Driving Adoption
	fostering, Fostering Software Engineering in SRE
	Google's focus on, Software Engineering in SRE
	importance of, Why Is Software Engineering Within SRE Important?
	intent-based capacity planning, Our Solution: Intent-Based Capacity Planning-Team Dynamics
	staffing and development time, Successfully Building a Software Engineering Culture in SRE: Staffing and Development Time
	team dynamics, Team Dynamics

	software fault tolerance, Motivation for Error Budgets
	software simplicity	avoiding bloat, The “Negative Lines of Code” Metric
	modularity, Modularity
	predictability and, The Virtue of Boring
	release simplicity, Release Simplicity
	reliability and, A Simple Conclusion
	source code purges, I Won’t Give Up My Code!
	system stability versus agility, Simplicity
	writing minimal APIs, Minimal APIs

	Spanner, Storage, Cost, Ensuring Business Continuity
	SRE engagement model	aspects addressed by, The SRE Engagement Model
	Early Engagement Model, Evolving the Simple PRR Model: Early Engagement-Disengaging from a service
	frameworks and platforms in, Evolving Services Development: Frameworks and SRE Platform-A new engagement model based on shared responsibility
	importance of, SRE Engagement: What, How, and Why
	Production Readiness Review, The PRR Model, Production Readiness Reviews: Simple PRR Model-Continuous Improvement

	SRE tools	automation tools, Testing Scalable Tools
	barrier tools, Testing Scalable Tools, Testing Disaster
	disaster recovery tools, Testing Disaster
	testing, Testing Scalable Tools
	writing, Integration

	SRE Way, The End of the Beginning
	stability vs. agility, System Stability Versus Agility	(see also software simplicity)

	stable leaders, Stable Leaders
	statistical tests, Testing Disaster
	storage stack, Storage
	stress tests, Stress test
	strong leader process, Multi-Paxos: Detailed Message Flow
	Stubby, Our Software Infrastructure
	subsetting	defined, Limiting the Connections Pool with Subsetting
	deterministic, A Subset Selection Algorithm: Deterministic Subsetting
	process of, Limiting the Connections Pool with Subsetting
	random, A Subset Selection Algorithm: Random Subsetting
	selecting subsets, Picking the Right Subset

	synchronous consensus, How Distributed Consensus Works
	sysadmins (systems administrators), The Sysadmin Approach to Service Management, Consistency
	system software	managing failures with, System Software That “Organizes” the Hardware
	managing machines, Managing Machines
	storage, Storage

	system tests, System tests
	system throughput, Indicators
	systems administrators (sysadmins), The Sysadmin Approach to Service Management, Consistency
	systems engineering, Management

T
	tagging, Tagging
	“task overloaded” errors, Handling Overload Errors
	tasks	backend, Load Balancing in the Datacenter
	client, Load Balancing in the Datacenter
	defined, Managing Machines

	TCP/IP communication protocol, Distributed Consensus Performance and Network Latency
	team building	benefits of Google's approach to, Google’s Approach to Service Management: Site Reliability Engineering, Conclusion
	best practices for, SRE Teams
	development focus, Google’s Approach to Service Management: Site Reliability Engineering
	dynamics of SRE software engineering, Team Dynamics
	eliminating complexity, The Virtue of Boring
	engineering focus, Google’s Approach to Service Management: Site Reliability Engineering, Ensuring a Durable Focus on Engineering, What Qualifies as Engineering?, Introduction-Balance in Quantity, Conclusion
	multi-site teams, Balance in Quantity
	self-sufficiency, Self-Service Model
	skills needed, Google’s Approach to Service Management: Site Reliability Engineering
	staffing and development time, Successfully Building a Software Engineering Culture in SRE: Staffing and Development Time
	team composition, Google’s Approach to Service Management: Site Reliability Engineering

	terminology (Google-specific)	campuses, Hardware
	clients, Our Software Infrastructure
	clusters, Hardware
	datacenters, Hardware
	frontend/backend, Our Software Infrastructure
	jobs, Managing Machines
	machines, Hardware
	protocol buffers (protobufs), Our Software Infrastructure
	racks, Hardware
	rows, Hardware
	servers, Hardware, Our Software Infrastructure
	tasks, Managing Machines

	test environments, Creating a Test and Build Environment	(see also reliability testing)

	test-induced emergencies, Test-Induced Emergency
	testing (see reliability testing)
	text logs, Examine
	thread starvation, Threads
	throttling	adaptive, Client-Side Throttling
	client-side, Client-Side Throttling

	“thundering herd” problems, “Thundering Herd” Problems, Dealing with Abusive Client Behavior
	time-based availability equation, Measuring Service Risk, Availability Table
	Time-Series Database (TSDB), Storage in the Time-Series Arena
	time-series monitoring	alerting, Alerting
	black-box monitoring, Black-Box Monitoring
	Borgmon monitoring system, The Rise of Borgmon
	collection of exported data, Collection of Exported Data
	instrumentation of applications, Instrumentation of Applications
	maintaining Borgmon configuration, Maintaining the Configuration
	monitoring topology, Sharding the Monitoring Topology
	practical approach to, Practical Alerting from Time-Series Data
	rule evaluation, Rule Evaluation-Rule Evaluation
	scaling, Ten Years On…
	time-series data storage, Storage in the Time-Series Arena-Labels and Vectors
	tools for, The Rise of Borgmon

	time-to-live (TTL), Load Balancing Using DNS
	timestamps, Reliable Replicated Datastores and Configuration Stores
	toil	benefits of limiting, Principles, Why Less Toil Is Better
	calculating, Why Less Toil Is Better
	characteristics of, Toil Defined
	cross-industry lessons, Automating Away Repetitive Work and Operational Overhead
	defined, Toil Defined
	drawbacks of, Is Toil Always Bad?
	vs. engineering work, What Qualifies as Engineering?

	traffic analysis, Life of a Request-Job and Data Organization, The Four Golden Signals
	training practices, You’ve Hired Your Next SRE(s), Now What?, Learning Paths That Are Cumulative and Orderly-Learning Paths That Are Cumulative and Orderly
	triage process, Triage
	Trivial File Transfer Protocol (TFTP), What we learned
	troubleshooting	App Engine case study, Case Study-Case Study
	approaches to, Effective Troubleshooting
	common pitfalls, Theory
	curing issues, Cure
	diagnosing issues, Diagnose-Specific diagnoses
	examining system components, Examine
	logging, Examine
	model of, Theory
	pitfalls, Theory-Theory
	problem reports, Problem Report
	process diagram, Theory
	simplifying, Making Troubleshooting Easier
	systematic approach to, Conclusion
	testing and treating issues, Test and Treat-Negative Results Are Magic
	triage, Triage

	turndown automation, What went well, Planned Changes, Drains, or Turndowns
	typographical conventions, Conventions Used in This Book

U
	unit tests, Unit tests
	UNIX pipe, Origin of the Pipeline Design Pattern
	unplanned downtime, Measuring Service Risk
	uptime, Choosing a Strategy for Superior Data Integrity
	user requests	criticality values assigned to, Criticality
	job and data organization, Job and Data Organization
	monitoring failures, The Four Golden Signals
	request latency, Indicators
	request latency monitoring, The Four Golden Signals
	retrying, Deciding to Retry
	servicing of, Life of a Request
	success rate metrics, Measuring Service Risk
	traffic analysis, Job and Data Organization, The Four Golden Signals

	utilization signals, Utilization Signals

V
	variable expressions, Labels and Vectors
	vectors, Labels and Vectors
	velocity, Choosing a Strategy for Superior Data Integrity
	Viceroy project, Case Study of Collaboration in SRE: Viceroy-Recommendations
	virtual IP addresses (VIPs), Load Balancing at the Virtual IP Address

W
	“War Rooms”, A Recognized Command Post
	Weighted Round Robin policy, Weighted Round Robin
	Wheel of Misfortune exercise, Introducing a Postmortem Culture
	white-box monitoring, Definitions, Black-Box Versus White-Box, The Rise of Borgmon
	workloads, Distributed Consensus Performance

Y
	yield, Indicators
	YouTube, Target level of availability

Z
	Zab consensus, Stable Leaders
	Zookeeper, System Architecture Patterns for Distributed Consensus

 About the Authors

 Betsy Beyer is a Technical Writer for Google in New York City specializing in Site Reliability Engineering. She has previously written documentation for Google’s Data Center and Hardware Operations Teams in Mountain View and across its globally distributed datacenters. Before moving to New York, Betsy was a lecturer on technical writing at Stanford University. En route to her current career, Betsy studied International Relations and English Literature, and holds degrees from Stanford and Tulane.

 Chris Jones is a Site Reliability Engineer for Google App Engine, a cloud platform-as-a-service product serving over 28 billion requests per day. Based in San Francisco, he has previously been responsible for the care and feeding of Google’s advertising statistics, data warehousing, and customer support systems. In other lives, Chris has worked in academic IT, analyzed data for political campaigns, and engaged in some light BSD kernel hacking, picking up degrees in Computer Engineering, Economics, and Technology Policy along the way. He’s also a licensed professional engineer.

 Jennifer Petoff is a Program Manager for Google’s Site Reliability Engineering team and based in Dublin, Ireland. She has managed large global projects across wide-ranging domains including scientific research, engineering, human resources, and advertising operations. Jennifer joined Google after spending eight years in the chemical industry. She holds a PhD in Chemistry from Stanford University and a BS in Chemistry and a BA in Psychology from the University of Rochester.

Niall Murphy leads the Ads Site Reliability Engineering team at Google Ireland. He has been involved in the Internet industry for about 20 years, and is currently chairperson of INEX, Ireland’s peering hub. He is the author or coauthor of a number of technical papers and/or books, including IPv6 Network Administration for O’Reilly, and a number of RFCs. He is currently cowriting a history of the Internet in Ireland, and is the holder of degrees in Computer Science, Mathematics, and Poetry Studies, which is surely some kind of mistake. He lives in Dublin with his wife and two sons.

 Colophon

 The animal on the cover of Site Reliability Engineering is the ornate monitor lizard, a reptile native to West and Middle Africa. Until 1997, it was considered a subspecies of the Nile monitor lizard (Varanus niloticus), but is now classified as a polymorph of both Varanus stellatus and Varanus niloticus due to its different skin patterns. It also has a smaller range than the Nile monitor, preferring a habitat of lowland rainforest.

 Ornate monitors are large lizards, able to grow up to 6–7 feet long. They are more brightly colored than Nile monitors, with darker olive skin and fewer bands of bright yellow spots running from the shoulder to the tail. Like all monitor lizards, this animal has a muscular stout body, sharp claws, and an elongated head. Their nostrils are placed high on their snout, permitting them to spend time in the water. They are excellent swimmers and climbers, which allows them to sustain a diet of fish, frogs, eggs, insects, and small mammals.

 Monitor lizards are often kept as pets, though they require a lot of care and are not suitable for beginners. They can be dangerous when they feel threatened (lashing their powerful tails, scratching, or biting), but it is possible to tame them somewhat with regular handling and teaching them to associate their keeper’s presence with the delivery of food.

 Many of the animals on O’Reilly covers are endangered; all of them are important to the world. To learn more about how you can help, go to animals.oreilly.com.

 The cover image is from Brockhaus Lexicon. The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Foreword
	Preface

	Conventions Used in This Book

	Using Code Examples

	Safari® Books Online

	How to Contact Us

	Acknowledgments

	I. Introduction
	1. Introduction

	The Sysadmin Approach to Service Management

	Google’s Approach to Service Management: Site Reliability Engineering

	Tenets of SRE

	Ensuring a Durable Focus on Engineering

	Pursuing Maximum Change Velocity Without Violating a Service’s SLO

	Monitoring

	Emergency Response

	Change Management

	Demand Forecasting and Capacity Planning

	Provisioning

	Efficiency and Performance

	The End of the Beginning

	2. The Production Environment at Google, from the Viewpoint of an SRE

	Hardware

	System Software That “Organizes” the Hardware

	Managing Machines

	Storage

	Networking

	Other System Software

	Lock Service

	Monitoring and Alerting

	Our Software Infrastructure

	Our Development Environment

	Shakespeare: A Sample Service

	Life of a Request

	Job and Data Organization

	II. Principles
	3. Embracing Risk

	Managing Risk

	Measuring Service Risk

	Risk Tolerance of Services

	Identifying the Risk Tolerance of Consumer Services

	Identifying the Risk Tolerance of Infrastructure Services

	Motivation for Error Budgets

	Forming Your Error Budget

	Benefits

	4. Service Level Objectives

	Service Level Terminology

	Indicators

	Objectives

	Agreements

	Indicators in Practice

	What Do You and Your Users Care About?

	Collecting Indicators

	Aggregation

	Standardize Indicators

	Objectives in Practice

	Defining Objectives

	Choosing Targets

	Control Measures

	SLOs Set Expectations

	Agreements in Practice

	5. Eliminating Toil

	Toil Defined

	Why Less Toil Is Better

	What Qualifies as Engineering?

	Is Toil Always Bad?

	Conclusion

	6. Monitoring Distributed Systems

	Definitions

	Why Monitor?

	Setting Reasonable Expectations for Monitoring

	Symptoms Versus Causes

	Black-Box Versus White-Box

	The Four Golden Signals

	Worrying About Your Tail (or, Instrumentation and Performance)

	Choosing an Appropriate Resolution for Measurements

	As Simple as Possible, No Simpler

	Tying These Principles Together

	Monitoring for the Long Term

	Bigtable SRE: A Tale of Over-Alerting

	Gmail: Predictable, Scriptable Responses from Humans

	The Long Run

	Conclusion

	7. The Evolution of Automation at Google

	The Value of Automation

	Consistency

	A Platform

	Faster Repairs

	Faster Action

	Time Saving

	The Value for Google SRE

	The Use Cases for Automation

	Google SRE’s Use Cases for Automation

	A Hierarchy of Automation Classes

	Automate Yourself Out of a Job: Automate ALL the Things!

	Soothing the Pain: Applying Automation to Cluster Turnups

	Detecting Inconsistencies with Prodtest

	Resolving Inconsistencies Idempotently

	The Inclination to Specialize

	Service-Oriented Cluster-Turnup

	Borg: Birth of the Warehouse-Scale Computer

	Reliability Is the Fundamental Feature

	Recommendations

	8. Release Engineering

	The Role of a Release Engineer

	Philosophy

	Self-Service Model

	High Velocity

	Hermetic Builds

	Enforcement of Policies and Procedures

	Continuous Build and Deployment

	Building

	Branching

	Testing

	Packaging

	Rapid

	Deployment

	Configuration Management

	Conclusions

	It’s Not Just for Googlers

	Start Release Engineering at the Beginning

	9. Simplicity

	System Stability Versus Agility

	The Virtue of Boring

	I Won’t Give Up My Code!

	The “Negative Lines of Code” Metric

	Minimal APIs

	Modularity

	Release Simplicity

	A Simple Conclusion

	III. Practices
	10. Practical Alerting from Time-Series Data

	The Rise of Borgmon

	Instrumentation of Applications

	Collection of Exported Data

	Storage in the Time-Series Arena

	Labels and Vectors

	Rule Evaluation

	Alerting

	Sharding the Monitoring Topology

	Black-Box Monitoring

	Maintaining the Configuration

	Ten Years On…

	11. Being On-Call

	Introduction

	Life of an On-Call Engineer

	Balanced On-Call

	Balance in Quantity

	Balance in Quality

	Compensation

	Feeling Safe

	Avoiding Inappropriate Operational Load

	Operational Overload

	A Treacherous Enemy: Operational Underload

	Conclusions

	12. Effective Troubleshooting

	Theory

	In Practice

	Problem Report

	Triage

	Examine

	Diagnose

	Test and Treat

	Negative Results Are Magic

	Cure

	Case Study

	Making Troubleshooting Easier

	Conclusion

	13. Emergency Response

	What to Do When Systems Break

	Test-Induced Emergency

	Details

	Response

	Findings

	Change-Induced Emergency

	Details

	Response

	Findings

	Process-Induced Emergency

	Details

	Response

	Findings

	All Problems Have Solutions

	Learn from the Past. Don’t Repeat It.

	Keep a History of Outages

	Ask the Big, Even Improbable, Questions: What If…?

	Encourage Proactive Testing

	Conclusion

	14. Managing Incidents

	Unmanaged Incidents

	The Anatomy of an Unmanaged Incident

	Sharp Focus on the Technical Problem

	Poor Communication

	Freelancing

	Elements of Incident Management Process

	Recursive Separation of Responsibilities

	A Recognized Command Post

	Live Incident State Document

	Clear, Live Handoff

	A Managed Incident

	When to Declare an Incident

	In Summary

	15. Postmortem Culture: Learning from Failure

	Google’s Postmortem Philosophy

	Collaborate and Share Knowledge

	Introducing a Postmortem Culture

	Conclusion and Ongoing Improvements

	16. Tracking Outages

	Escalator

	Outalator

	Aggregation

	Tagging

	Analysis

	Unexpected Benefits

	17. Testing for Reliability

	Types of Software Testing

	Traditional Tests

	Production Tests

	Creating a Test and Build Environment

	Testing at Scale

	Testing Scalable Tools

	Testing Disaster

	The Need for Speed

	Pushing to Production

	Expect Testing Fail

	Integration

	Production Probes

	Conclusion

	18. Software Engineering in SRE

	Why Is Software Engineering Within SRE Important?

	Auxon Case Study: Project Background and Problem Space

	Traditional Capacity Planning

	Our Solution: Intent-Based Capacity Planning

	Intent-Based Capacity Planning

	Precursors to Intent

	Introduction to Auxon

	Requirements and Implementation: Successes and Lessons Learned

	Raising Awareness and Driving Adoption

	Team Dynamics

	Fostering Software Engineering in SRE

	Successfully Building a Software Engineering Culture in SRE: Staffing and Development Time

	Getting There

	Conclusions

	19. Load Balancing at the Frontend

	Power Isn’t the Answer

	Load Balancing Using DNS

	Load Balancing at the Virtual IP Address

	20. Load Balancing in the Datacenter

	The Ideal Case

	Identifying Bad Tasks: Flow Control and Lame Ducks

	A Simple Approach to Unhealthy Tasks: Flow Control

	A Robust Approach to Unhealthy Tasks: Lame Duck State

	Limiting the Connections Pool with Subsetting

	Picking the Right Subset

	A Subset Selection Algorithm: Random Subsetting

	A Subset Selection Algorithm: Deterministic Subsetting

	Load Balancing Policies

	Simple Round Robin

	Least-Loaded Round Robin

	Weighted Round Robin

	21. Handling Overload

	The Pitfalls of “Queries per Second”

	Per-Customer Limits

	Client-Side Throttling

	Criticality

	Utilization Signals

	Handling Overload Errors

	Deciding to Retry

	Load from Connections

	Conclusions

	22. Addressing Cascading Failures

	Causes of Cascading Failures and Designing to Avoid Them

	Server Overload

	Resource Exhaustion

	Service Unavailability

	Preventing Server Overload

	Queue Management

	Load Shedding and Graceful Degradation

	Retries

	Latency and Deadlines

	Slow Startup and Cold Caching

	Always Go Downward in the Stack

	Triggering Conditions for Cascading Failures

	Process Death

	Process Updates

	New Rollouts

	Organic Growth

	Planned Changes, Drains, or Turndowns

	Testing for Cascading Failures

	Test Until Failure and Beyond

	Test Popular Clients

	Test Noncritical Backends

	Immediate Steps to Address Cascading Failures

	Increase Resources

	Stop Health Check Failures/Deaths

	Restart Servers

	Drop Traffic

	Enter Degraded Modes

	Eliminate Batch Load

	Eliminate Bad Traffic

	Closing Remarks

	23. Managing Critical State: Distributed Consensus for Reliability

	Motivating the Use of Consensus: Distributed Systems Coordination Failure

	Case Study 1: The Split-Brain Problem

	Case Study 2: Failover Requires Human Intervention

	Case Study 3: Faulty Group-Membership Algorithms

	How Distributed Consensus Works

	Paxos Overview: An Example Protocol

	System Architecture Patterns for Distributed Consensus

	Reliable Replicated State Machines

	Reliable Replicated Datastores and Configuration Stores

	Highly Available Processing Using Leader Election

	Distributed Coordination and Locking Services

	Reliable Distributed Queuing and Messaging

	Distributed Consensus Performance

	Multi-Paxos: Detailed Message Flow

	Scaling Read-Heavy Workloads

	Quorum Leases

	Distributed Consensus Performance and Network Latency

	Reasoning About Performance: Fast Paxos

	Stable Leaders

	Batching

	Disk Access

	Deploying Distributed Consensus-Based Systems

	Number of Replicas

	Location of Replicas

	Capacity and Load Balancing

	Monitoring Distributed Consensus Systems

	Conclusion

	24. Distributed Periodic Scheduling with Cron

	Cron

	Introduction

	Reliability Perspective

	Cron Jobs and Idempotency

	Cron at Large Scale

	Extended Infrastructure

	Extended Requirements

	Building Cron at Google

	Tracking the State of Cron Jobs

	The Use of Paxos

	The Roles of the Leader and the Follower

	Storing the State

	Running Large Cron

	Summary

	25. Data Processing Pipelines

	Origin of the Pipeline Design Pattern

	Initial Effect of Big Data on the Simple Pipeline Pattern

	Challenges with the Periodic Pipeline Pattern

	Trouble Caused By Uneven Work Distribution

	Drawbacks of Periodic Pipelines in Distributed Environments

	Monitoring Problems in Periodic Pipelines

	“Thundering Herd” Problems

	Moiré Load Pattern

	Introduction to Google Workflow

	Workflow as Model-View-Controller Pattern

	Stages of Execution in Workflow

	Workflow Correctness Guarantees

	Ensuring Business Continuity

	Summary and Concluding Remarks

	26. Data Integrity: What You Read Is What You Wrote

	Data Integrity’s Strict Requirements

	Choosing a Strategy for Superior Data Integrity

	Backups Versus Archives

	Requirements of the Cloud Environment in Perspective

	Google SRE Objectives in Maintaining Data Integrity and Availability

	Data Integrity Is the Means; Data Availability Is the Goal

	Delivering a Recovery System, Rather Than a Backup System

	Types of Failures That Lead to Data Loss

	Challenges of Maintaining Data Integrity Deep and Wide

	How Google SRE Faces the Challenges of Data Integrity

	The 24 Combinations of Data Integrity Failure Modes

	First Layer: Soft Deletion

	Second Layer: Backups and Their Related Recovery Methods

	Overarching Layer: Replication

	1T Versus 1E: Not “Just” a Bigger Backup

	Third Layer: Early Detection

	Knowing That Data Recovery Will Work

	Case Studies

	Gmail — February, 2011: Restore from GTape

	Google Music — March 2012: Runaway Deletion Detection

	General Principles of SRE as Applied to Data Integrity

	Beginner’s Mind

	Trust but Verify

	Hope Is Not a Strategy

	Defense in Depth

	Conclusion

	27. Reliable Product Launches at Scale

	Launch Coordination Engineering

	The Role of the Launch Coordination Engineer

	Setting Up a Launch Process

	The Launch Checklist

	Driving Convergence and Simplification

	Launching the Unexpected

	Developing a Launch Checklist

	Architecture and Dependencies

	Integration

	Capacity Planning

	Failure Modes

	Client Behavior

	Processes and Automation

	Development Process

	External Dependencies

	Rollout Planning

	Selected Techniques for Reliable Launches

	Gradual and Staged Rollouts

	Feature Flag Frameworks

	Dealing with Abusive Client Behavior

	Overload Behavior and Load Tests

	Development of LCE

	Evolution of the LCE Checklist

	Problems LCE Didn’t Solve

	Conclusion

	IV. Management
	28. Accelerating SREs to On-Call and Beyond

	You’ve Hired Your Next SRE(s), Now What?

	Initial Learning Experiences: The Case for Structure Over Chaos

	Learning Paths That Are Cumulative and Orderly

	Targeted Project Work, Not Menial Work

	Creating Stellar Reverse Engineers and Improvisational Thinkers

	Reverse Engineers: Figuring Out How Things Work

	Statistical and Comparative Thinkers: Stewards of the Scientific Method Under Pressure

	Improv Artists: When the Unexpected Happens

	Tying This Together: Reverse Engineering a Production Service

	Five Practices for Aspiring On-Callers

	A Hunger for Failure: Reading and Sharing Postmortems

	Disaster Role Playing

	Break Real Things, Fix Real Things

	Documentation as Apprenticeship

	Shadow On-Call Early and Often

	On-Call and Beyond: Rites of Passage, and Practicing Continuing Education

	Closing Thoughts

	29. Dealing with Interrupts

	Managing Operational Load

	Factors in Determining How Interrupts Are Handled

	Imperfect Machines

	Cognitive Flow State

	Do One Thing Well

	Seriously, Tell Me What to Do

	Reducing Interrupts

	30. Embedding an SRE to Recover from Operational Overload

	Phase 1: Learn the Service and Get Context

	Identify the Largest Sources of Stress

	Identify Kindling

	Phase 2: Sharing Context

	Write a Good Postmortem for the Team

	Sort Fires According to Type

	Phase 3: Driving Change

	Start with the Basics

	Get Help Clearing Kindling

	Explain Your Reasoning

	Ask Leading Questions

	Conclusion

	31. Communication and Collaboration in SRE

	Communications: Production Meetings

	Agenda

	Attendance

	Collaboration within SRE

	Team Composition

	Techniques for Working Effectively

	Case Study of Collaboration in SRE: Viceroy

	The Coming of the Viceroy

	Challenges

	Recommendations

	Collaboration Outside SRE

	Case Study: Migrating DFP to F1

	Conclusion

	32. The Evolving SRE Engagement Model

	SRE Engagement: What, How, and Why

	The PRR Model

	The SRE Engagement Model

	Alternative Support

	Production Readiness Reviews: Simple PRR Model

	Engagement

	Analysis

	Improvements and Refactoring

	Training

	Onboarding

	Continuous Improvement

	Evolving the Simple PRR Model: Early Engagement

	Candidates for Early Engagement

	Benefits of the Early Engagement Model

	Evolving Services Development: Frameworks and SRE Platform

	Lessons Learned

	External Factors Affecting SRE

	Toward a Structural Solution: Frameworks

	New Service and Management Benefits

	Conclusion

	V. Conclusions
	33. Lessons Learned from Other Industries

	Meet Our Industry Veterans

	Preparedness and Disaster Testing

	Relentless Organizational Focus on Safety

	Attention to Detail

	Swing Capacity

	Simulations and Live Drills

	Training and Certification

	Focus on Detailed Requirements Gathering and Design

	Defense in Depth and Breadth

	Postmortem Culture

	Automating Away Repetitive Work and Operational Overhead

	Structured and Rational Decision Making

	Conclusions

	34. Conclusion
	A. Availability Table
	B. A Collection of Best Practices for Production Services

	Fail Sanely

	Progressive Rollouts

	Define SLOs Like a User

	Error Budgets

	Monitoring

	Postmortems

	Capacity Planning

	Overloads and Failure

	SRE Teams

	C. Example Incident State Document
	D. Example Postmortem

	Lessons Learned

	Timeline

	Supporting information:

	E. Launch Coordination Checklist
	F. Example Production Meeting Minutes
	Bibliography
	Index

OEBPS/Images/image00480.gif

OEBPS/Images/image00481.gif
requests — K X acceptS)

max (O’ requests + 1

OEBPS/Images/image00478.gif

OEBPS/Images/image00479.jpeg
Core"sec/s

RS

Mar 22

Mar 23

Mar 24

Mar 25

Mar 26

Mar 27

Mar 28

OEBPS/Images/image00484.gif

OEBPS/Images/image00482.gif

OEBPS/Images/image00483.gif

OEBPS/Images/image00487.gif
)x

OEBPS/Images/image00488.gif
10y

OEBPS/Images/image00485.gif
No Overload

1000

20
012

All trafficis
accepted

Light Overload

1000

1% of tasks are
rejecting 10%
of their traffic

Medium Overload

1000

25
~1
G
012
5% of tasks are
rejecting 50%
of their traffic

Heavy Overload

1000

180
3
[
012

20% of tasks are
rejecting 90%
of their traffic

OEBPS/Images/image00486.gif

OEBPS/Images/image00469.gif
1

0.992><21000

OEBPS/Images/image00470.gif
= 37523

OEBPS/Images/image00467.gif

OEBPS/Text/nav.xhtml

 Guide

 		Table of Contents

 		Cover

 Table of contents

 		Foreword

 		Preface

 		Conventions Used in This Book

 		Using Code Examples

 		Safari® Books Online

 		How to Contact Us

 		Acknowledgments

 		I. Introduction

 		1. Introduction

 		The Sysadmin Approach to Service Management

 		Google’s Approach to Service Management: Site Reliability Engineering

 		Tenets of SRE

 		Ensuring a Durable Focus on Engineering

 		Pursuing Maximum Change Velocity Without Violating a Service’s SLO

 		Monitoring

 		Emergency Response

 		Change Management

 		Demand Forecasting and Capacity Planning

 		Provisioning

 		Efficiency and Performance

 		The End of the Beginning

 		2. The Production Environment at Google, from the Viewpoint of an SRE

 		Hardware

 		System Software That “Organizes” the Hardware

 		Managing Machines

 		Storage

 		Networking

 		Other System Software

 		Lock Service

 		Monitoring and Alerting

 		Our Software Infrastructure

 		Our Development Environment

 		Shakespeare: A Sample Service

 		Life of a Request

 		Job and Data Organization

 		II. Principles

 		3. Embracing Risk

 		Managing Risk

 		Measuring Service Risk

 		Risk Tolerance of Services

 		Identifying the Risk Tolerance of Consumer Services

 		Target level of availability

 		Types of failures

 		Cost

 		Other service metrics

 		Identifying the Risk Tolerance of Infrastructure Services

 		Target level of availability

 		Types of failures

 		Cost

 		Example: Frontend infrastructure

 		Motivation for Error Budgets

 		Forming Your Error Budget

 		Benefits

 		4. Service Level Objectives

 		Service Level Terminology

 		Indicators

 		Objectives

 		Agreements

 		Indicators in Practice

 		What Do You and Your Users Care About?

 		Collecting Indicators

 		Aggregation

 		Standardize Indicators

 		Objectives in Practice

 		Defining Objectives

 		Choosing Targets

 		Control Measures

 		SLOs Set Expectations

 		Agreements in Practice

 		5. Eliminating Toil

 		Toil Defined

 		Why Less Toil Is Better

 		What Qualifies as Engineering?

 		Is Toil Always Bad?

 		Conclusion

 		6. Monitoring Distributed Systems

 		Definitions

 		Why Monitor?

 		Setting Reasonable Expectations for Monitoring

 		Symptoms Versus Causes

 		Black-Box Versus White-Box

 		The Four Golden Signals

 		Worrying About Your Tail (or, Instrumentation and Performance)

 		Choosing an Appropriate Resolution for Measurements

 		As Simple as Possible, No Simpler

 		Tying These Principles Together

 		Monitoring for the Long Term

 		Bigtable SRE: A Tale of Over-Alerting

 		Gmail: Predictable, Scriptable Responses from Humans

 		The Long Run

 		Conclusion

 		7. The Evolution of Automation at Google

 		The Value of Automation

 		Consistency

 		A Platform

 		Faster Repairs

 		Faster Action

 		Time Saving

 		The Value for Google SRE

 		The Use Cases for Automation

 		Google SRE’s Use Cases for Automation

 		A Hierarchy of Automation Classes

 		Automate Yourself Out of a Job: Automate ALL the Things!

 		Soothing the Pain: Applying Automation to Cluster Turnups

 		Detecting Inconsistencies with Prodtest

 		Resolving Inconsistencies Idempotently

 		The Inclination to Specialize

 		Service-Oriented Cluster-Turnup

 		Borg: Birth of the Warehouse-Scale Computer

 		Reliability Is the Fundamental Feature

 		Recommendations

 		8. Release Engineering

 		The Role of a Release Engineer

 		Philosophy

 		Self-Service Model

 		High Velocity

 		Hermetic Builds

 		Enforcement of Policies and Procedures

 		Continuous Build and Deployment

 		Building

 		Branching

 		Testing

 		Packaging

 		Rapid

 		Deployment

 		Configuration Management

 		Conclusions

 		It’s Not Just for Googlers

 		Start Release Engineering at the Beginning

 		9. Simplicity

 		System Stability Versus Agility

 		The Virtue of Boring

 		I Won’t Give Up My Code!

 		The “Negative Lines of Code” Metric

 		Minimal APIs

 		Modularity

 		Release Simplicity

 		A Simple Conclusion

 		III. Practices

 		10. Practical Alerting from Time-Series Data

 		The Rise of Borgmon

 		Instrumentation of Applications

 		Collection of Exported Data

 		Storage in the Time-Series Arena

 		Labels and Vectors

 		Rule Evaluation

 		Alerting

 		Sharding the Monitoring Topology

 		Black-Box Monitoring

 		Maintaining the Configuration

 		Ten Years On…

 		11. Being On-Call

 		Introduction

 		Life of an On-Call Engineer

 		Balanced On-Call

 		Balance in Quantity

 		Balance in Quality

 		Compensation

 		Feeling Safe

 		Avoiding Inappropriate Operational Load

 		Operational Overload

 		A Treacherous Enemy: Operational Underload

 		Conclusions

 		12. Effective Troubleshooting

 		Theory

 		In Practice

 		Problem Report

 		Triage

 		Examine

 		Diagnose

 		Simplify and reduce

 		Ask “what,” “where,” and “why”

 		What touched it last

 		Specific diagnoses

 		Test and Treat

 		Negative Results Are Magic

 		Cure

 		Case Study

 		Making Troubleshooting Easier

 		Conclusion

 		13. Emergency Response

 		What to Do When Systems Break

 		Test-Induced Emergency

 		Details

 		Response

 		Findings

 		What went well

 		What we learned

 		Change-Induced Emergency

 		Details

 		Response

 		Findings

 		What went well

 		What we learned

 		Process-Induced Emergency

 		Details

 		Response

 		Findings

 		What went well

 		What we learned

 		All Problems Have Solutions

 		Learn from the Past. Don’t Repeat It.

 		Keep a History of Outages

 		Ask the Big, Even Improbable, Questions: What If…?

 		Encourage Proactive Testing

 		Conclusion

 		14. Managing Incidents

 		Unmanaged Incidents

 		The Anatomy of an Unmanaged Incident

 		Sharp Focus on the Technical Problem

 		Poor Communication

 		Freelancing

 		Elements of Incident Management Process

 		Recursive Separation of Responsibilities

 		A Recognized Command Post

 		Live Incident State Document

 		Clear, Live Handoff

 		A Managed Incident

 		When to Declare an Incident

 		In Summary

 		15. Postmortem Culture: Learning from Failure

 		Google’s Postmortem Philosophy

 		Collaborate and Share Knowledge

 		Introducing a Postmortem Culture

 		Conclusion and Ongoing Improvements

 		16. Tracking Outages

 		Escalator

 		Outalator

 		Aggregation

 		Tagging

 		Analysis

 		Reporting and communication

 		Unexpected Benefits

 		17. Testing for Reliability

 		Types of Software Testing

 		Traditional Tests

 		Unit tests

 		Integration tests

 		System tests

 		Production Tests

 		Configuration test

 		Stress test

 		Canary test

 		Creating a Test and Build Environment

 		Testing at Scale

 		Testing Scalable Tools

 		Testing Disaster

 		The Need for Speed

 		Pushing to Production

 		Expect Testing Fail

 		Integration

 		Production Probes

 		Conclusion

 		18. Software Engineering in SRE

 		Why Is Software Engineering Within SRE Important?

 		Auxon Case Study: Project Background and Problem Space

 		Traditional Capacity Planning

 		Brittle by nature

 		Laborious and imprecise

 		Our Solution: Intent-Based Capacity Planning

 		Intent-Based Capacity Planning

 		Precursors to Intent

 		Dependencies

 		Performance metrics

 		Prioritization

 		Introduction to Auxon

 		Requirements and Implementation: Successes and Lessons Learned

 		Approximation

 		Raising Awareness and Driving Adoption

 		Set expectations

 		Identify appropriate customers

 		Customer service

 		Designing at the right level

 		Team Dynamics

 		Fostering Software Engineering in SRE

 		Successfully Building a Software Engineering Culture in SRE: Staffing and Development Time

 		Getting There

 		Conclusions

 		19. Load Balancing at the Frontend

 		Power Isn’t the Answer

 		Load Balancing Using DNS

 		Load Balancing at the Virtual IP Address

 		20. Load Balancing in the Datacenter

 		The Ideal Case

 		Identifying Bad Tasks: Flow Control and Lame Ducks

 		A Simple Approach to Unhealthy Tasks: Flow Control

 		A Robust Approach to Unhealthy Tasks: Lame Duck State

 		Limiting the Connections Pool with Subsetting

 		Picking the Right Subset

 		A Subset Selection Algorithm: Random Subsetting

 		A Subset Selection Algorithm: Deterministic Subsetting

 		Load Balancing Policies

 		Simple Round Robin

 		Small subsetting

 		Varying query costs

 		Machine diversity

 		Unpredictable performance factors

 		Least-Loaded Round Robin

 		Weighted Round Robin

 		21. Handling Overload

 		The Pitfalls of “Queries per Second”

 		Per-Customer Limits

 		Client-Side Throttling

 		Criticality

 		Utilization Signals

 		Handling Overload Errors

 		Deciding to Retry

 		Load from Connections

 		Conclusions

 		22. Addressing Cascading Failures

 		Causes of Cascading Failures and Designing to Avoid Them

 		Server Overload

 		Resource Exhaustion

 		CPU

 		Memory

 		Threads

 		File descriptors

 		Dependencies among resources

 		Service Unavailability

 		Preventing Server Overload

 		Queue Management

 		Load Shedding and Graceful Degradation

 		Retries

 		Latency and Deadlines

 		Picking a deadline

 		Missing deadlines

 		Deadline propagation

 		Bimodal latency

 		Slow Startup and Cold Caching

 		Always Go Downward in the Stack

 		Triggering Conditions for Cascading Failures

 		Process Death

 		Process Updates

 		New Rollouts

 		Organic Growth

 		Planned Changes, Drains, or Turndowns

 		Request profile changes

 		Resource limits

 		Testing for Cascading Failures

 		Test Until Failure and Beyond

 		Test Popular Clients

 		Test Noncritical Backends

 		Immediate Steps to Address Cascading Failures

 		Increase Resources

 		Stop Health Check Failures/Deaths

 		Restart Servers

 		Drop Traffic

 		Enter Degraded Modes

 		Eliminate Batch Load

 		Eliminate Bad Traffic

 		Closing Remarks

 		23. Managing Critical State: Distributed Consensus for Reliability

 		Motivating the Use of Consensus: Distributed Systems Coordination Failure

 		Case Study 1: The Split-Brain Problem

 		Case Study 2: Failover Requires Human Intervention

 		Case Study 3: Faulty Group-Membership Algorithms

 		How Distributed Consensus Works

 		Paxos Overview: An Example Protocol

 		System Architecture Patterns for Distributed Consensus

 		Reliable Replicated State Machines

 		Reliable Replicated Datastores and Configuration Stores

 		Highly Available Processing Using Leader Election

 		Distributed Coordination and Locking Services

 		Reliable Distributed Queuing and Messaging

 		Distributed Consensus Performance

 		Multi-Paxos: Detailed Message Flow

 		Scaling Read-Heavy Workloads

 		Quorum Leases

 		Distributed Consensus Performance and Network Latency

 		Reasoning About Performance: Fast Paxos

 		Stable Leaders

 		Batching

 		Disk Access

 		Deploying Distributed Consensus-Based Systems

 		Number of Replicas

 		Location of Replicas

 		Capacity and Load Balancing

 		Quorum composition

 		Monitoring Distributed Consensus Systems

 		Conclusion

 		24. Distributed Periodic Scheduling with Cron

 		Cron

 		Introduction

 		Reliability Perspective

 		Cron Jobs and Idempotency

 		Cron at Large Scale

 		Extended Infrastructure

 		Extended Requirements

 		Building Cron at Google

 		Tracking the State of Cron Jobs

 		The Use of Paxos

 		The Roles of the Leader and the Follower

 		The leader

 		The follower

 		Resolving partial failures

 		Storing the State

 		Running Large Cron

 		Summary

 		25. Data Processing Pipelines

 		Origin of the Pipeline Design Pattern

 		Initial Effect of Big Data on the Simple Pipeline Pattern

 		Challenges with the Periodic Pipeline Pattern

 		Trouble Caused By Uneven Work Distribution

 		Drawbacks of Periodic Pipelines in Distributed Environments

 		Monitoring Problems in Periodic Pipelines

 		“Thundering Herd” Problems

 		Moiré Load Pattern

 		Introduction to Google Workflow

 		Workflow as Model-View-Controller Pattern

 		Stages of Execution in Workflow

 		Workflow Correctness Guarantees

 		Ensuring Business Continuity

 		Summary and Concluding Remarks

 		26. Data Integrity: What You Read Is What You Wrote

 		Data Integrity’s Strict Requirements

 		Choosing a Strategy for Superior Data Integrity

 		Backups Versus Archives

 		Requirements of the Cloud Environment in Perspective

 		Google SRE Objectives in Maintaining Data Integrity and Availability

 		Data Integrity Is the Means; Data Availability Is the Goal

 		Delivering a Recovery System, Rather Than a Backup System

 		Types of Failures That Lead to Data Loss

 		Challenges of Maintaining Data Integrity Deep and Wide

 		Scaling issues: Fulls, incrementals, and the competing forces of backups and restores

 		Retention

 		How Google SRE Faces the Challenges of Data Integrity

 		The 24 Combinations of Data Integrity Failure Modes

 		First Layer: Soft Deletion

 		Second Layer: Backups and Their Related Recovery Methods

 		Overarching Layer: Replication

 		1T Versus 1E: Not “Just” a Bigger Backup

 		Third Layer: Early Detection

 		Challenges faced by cloud developers

 		Out-of-band data validation

 		Knowing That Data Recovery Will Work

 		Case Studies

 		Gmail—February, 2011: Restore from GTape

 		Sunday, February 27, 2011, late in the evening

 		Google Music—March 2012: Runaway Deletion Detection

 		Tuesday, March 6th, 2012, mid-afternoon

 		Discovering the problem

 		Assessing the damage

 		Resolving the issue

 		Parallel bug identification and recovery efforts

 		First wave of recovery

 		Second wave of recovery

 		Addressing the root cause

 		General Principles of SRE as Applied to Data Integrity

 		Beginner’s Mind

 		Trust but Verify

 		Hope Is Not a Strategy

 		Defense in Depth

 		Conclusion

 		27. Reliable Product Launches at Scale

 		Launch Coordination Engineering

 		The Role of the Launch Coordination Engineer

 		Setting Up a Launch Process

 		The Launch Checklist

 		Driving Convergence and Simplification

 		Launching the Unexpected

 		Developing a Launch Checklist

 		Architecture and Dependencies

 		Example checklist questions

 		Example action items

 		Integration

 		Example action items

 		Capacity Planning

 		Example checklist questions

 		Failure Modes

 		Example checklist questions

 		Example action items

 		Client Behavior

 		Example checklist question

 		Example action items

 		Processes and Automation

 		Example checklist question

 		Example action items

 		Development Process

 		Example action items

 		External Dependencies

 		Example checklist questions

 		Rollout Planning

 		Example action items

 		Selected Techniques for Reliable Launches

 		Gradual and Staged Rollouts

 		Feature Flag Frameworks

 		Dealing with Abusive Client Behavior

 		Overload Behavior and Load Tests

 		Development of LCE

 		Evolution of the LCE Checklist

 		Problems LCE Didn’t Solve

 		Scalability changes

 		Growing operational load

 		Infrastructure churn

 		Conclusion

 		IV. Management

 		28. Accelerating SREs to On-Call and Beyond

 		You’ve Hired Your Next SRE(s), Now What?

 		Initial Learning Experiences: The Case for Structure Over Chaos

 		Learning Paths That Are Cumulative and Orderly

 		Targeted Project Work, Not Menial Work

 		Creating Stellar Reverse Engineers and Improvisational Thinkers

 		Reverse Engineers: Figuring Out How Things Work

 		Statistical and Comparative Thinkers: Stewards of the Scientific Method Under Pressure

 		Improv Artists: When the Unexpected Happens

 		Tying This Together: Reverse Engineering a Production Service

 		Five Practices for Aspiring On-Callers

 		A Hunger for Failure: Reading and Sharing Postmortems

 		Disaster Role Playing

 		Break Real Things, Fix Real Things

 		Documentation as Apprenticeship

 		Shadow On-Call Early and Often

 		On-Call and Beyond: Rites of Passage, and Practicing Continuing Education

 		Closing Thoughts

 		29. Dealing with Interrupts

 		Managing Operational Load

 		Factors in Determining How Interrupts Are Handled

 		Imperfect Machines

 		Cognitive Flow State

 		Cognitive flow state: Creative and engaged

 		Cognitive flow state: Angry Birds

 		Do One Thing Well

 		Distractibility

 		Polarizing time

 		Seriously, Tell Me What to Do

 		General suggestions

 		On-call

 		Tickets

 		Ongoing responsibilities

 		Be on interrupts, or don’t be

 		Reducing Interrupts

 		Actually analyze tickets

 		Respect yourself, as well as your customers

 		30. Embedding an SRE to Recover from Operational Overload

 		Phase 1: Learn the Service and Get Context

 		Identify the Largest Sources of Stress

 		Identify Kindling

 		Phase 2: Sharing Context

 		Write a Good Postmortem for the Team

 		Sort Fires According to Type

 		Phase 3: Driving Change

 		Start with the Basics

 		Get Help Clearing Kindling

 		Explain Your Reasoning

 		Ask Leading Questions

 		Conclusion

 		31. Communication and Collaboration in SRE

 		Communications: Production Meetings

 		Agenda

 		Attendance

 		Collaboration within SRE

 		Team Composition

 		Techniques for Working Effectively

 		Case Study of Collaboration in SRE: Viceroy

 		The Coming of the Viceroy

 		Challenges

 		Recommendations

 		Collaboration Outside SRE

 		Case Study: Migrating DFP to F1

 		Conclusion

 		32. The Evolving SRE Engagement Model

 		SRE Engagement: What, How, and Why

 		The PRR Model

 		The SRE Engagement Model

 		Alternative Support

 		Documentation

 		Consultation

 		Production Readiness Reviews: Simple PRR Model

 		Engagement

 		Analysis

 		Improvements and Refactoring

 		Training

 		Onboarding

 		Continuous Improvement

 		Evolving the Simple PRR Model: Early Engagement

 		Candidates for Early Engagement

 		Benefits of the Early Engagement Model

 		Design phase

 		Build and implementation

 		Launch

 		Post-launch

 		Disengaging from a service

 		Evolving Services Development: Frameworks and SRE Platform

 		Lessons Learned

 		External Factors Affecting SRE

 		Toward a Structural Solution: Frameworks

 		New Service and Management Benefits

 		Significantly lower operational overhead

 		Universal support by design

 		Faster, lower overhead engagements

 		A new engagement model based on shared responsibility

 		Conclusion

 		V. Conclusions

 		33. Lessons Learned from Other Industries

 		Meet Our Industry Veterans

 		Preparedness and Disaster Testing

 		Relentless Organizational Focus on Safety

 		Attention to Detail

 		Swing Capacity

 		Simulations and Live Drills

 		Training and Certification

 		Focus on Detailed Requirements Gathering and Design

 		Defense in Depth and Breadth

 		Postmortem Culture

 		Automating Away Repetitive Work and Operational Overhead

 		Structured and Rational Decision Making

 		Conclusions

 		34. Conclusion

 		A. Availability Table

 		B. A Collection of Best Practices for Production Services

 		Fail Sanely

 		Progressive Rollouts

 		Define SLOs Like a User

 		Error Budgets

 		Monitoring

 		Postmortems

 		Capacity Planning

 		Overloads and Failure

 		SRE Teams

 		C. Example Incident State Document

 		D. Example Postmortem

 		Lessons Learned

 		What went well

 		What went wrong

 		Where we got lucky

 		Timeline

 		Supporting information:

 		E. Launch Coordination Checklist

 		F. Example Production Meeting Minutes

 		Bibliography

 		Index

OEBPS/Images/image00468.gif

OEBPS/Images/image00473.gif
CPU Usage by Task at a Given Time

BAD GOOD
Q N w Q N ™
& &
Time Time
(PU used . CPU wasted

OEBPS/Images/image00474.jpeg
110

100

90
80
70—
60 |
50
40
30
20

10

OEBPS/Images/image00471.jpeg
Per-Service Demand
[Forecast Data] [S]

Intent Config
- Service dependencies
- Service constraints Allocation
- Budget priorities Plan

[Performance Data] [Resource Pricing]

OEBPS/Images/image00472.gif
Per-task Load Distribution

Capacity Limit
(per task)

Py

Time Time

OEBPS/Images/cover00529.jpeg
Reliability
Engineering

HOW GOOGLE RUNS PRODUCTION SYSTEMS

Edited by Betsy Beyer, Chris Jones,
Jennifer Petoff & Niall Richard Murphy

OEBPS/Images/image00476.jpeg
00000000000

OEBPS/Images/image00477.gif
)x

OEBPS/Images/image00475.jpeg
0
2 e & 2 & 8 2 2 2 °

OEBPS/Images/image00502.gif

OEBPS/Images/image00503.gif

OEBPS/Images/image00500.gif
_____________ bt 4

Process 1 sends Prepare Process 1 sends Accept Process 1 makes another
message with a new View for its proposal but Process attempt, with a higher
number and a transaction 2and 3 cannot acceptits transaction number. Process 2

number. Process 2 responds ~ proposal because Process3 promises, which means that
with a Promise message. has Proposed in the interim Process 3's proposal cannot
and Process 2 has promised. be accepted. The cycle

can repeat indefinitely.

Processes in the
consensus group

Process 3 sends a conflicting Prepare messge,
to which Process 2 responds with a Promise
message. Process 1 does not receive the
message (or it is delayed).

OEBPS/Images/image00501.jpeg
Consensus Cluster

Regional Proxies

Region

Region

— — — - Persistent TCP/IP connections

-- Ephemeral TCP/IP connections

OEBPS/Images/image00504.gif

OEBPS/Images/image00505.gif

OEBPS/Images/image00506.jpeg

OEBPS/Images/image00509.jpeg

OEBPS/Images/image00510.jpeg

OEBPS/Images/image00507.jpeg
A highly sharded consensus system
running with replicas for each
consensus group in three datacenters.

E=)

d
[— |

Shared consensus clusters

Outgoing data from the datacenter
with the leader processes
is much greater.

)

Shared consensus clusters

)

J|
Shared consensus clusters

OEBPS/Images/image00508.jpeg
A highly sharded consensus system
running with replicas for each
consensus group in three datacenters:
one fails.

Leader |

— |

Shared consensus clusters

A

P E——

Leader |
=1

Shared consensus clusters

Leaders fail over en-masse to
another, untried datacenter:
insufficient bandwidth is available
there for their outgoing traffic.

OEBPS/Images/image00491.jpeg

OEBPS/Images/image00492.gif

OEBPS/Images/image00489.jpeg
l

GFE

N

FE

GFE

Cluster A

Cluster B

Cluster C

OEBPS/Images/image00490.jpeg
GFE GFE
100 500,
500 100
v A
A B

OEBPS/Images/image00493.gif

OEBPS/Images/image00494.jpeg
Executes RSM
protocol to maintain

RSM executes state modifying operations
according to the global ordering

a consistent view
RSM of state
Distributed
Consensus Executes
consensus

protocol

Distributed consensus: determines
global sequencing of RSM operations

> RSM
o| Distributed
"| Consensus

OEBPS/Images/image00495.jpeg
An RSM with several replicas provides
a leader-election and leasing service

RenewMasterLease FindLeader
Server Process A Clients of
(master) Service requests Service
Heartbeat
messages
A 4

Server Proce

ss B

OEBPS/Images/image00498.gif
Distinguished
leader process

Nearby
processes

Distant
processes

Shorter perceived

latencies

Larger perceived latencies

OEBPS/Images/image00499.gif
Proposer

Acceptors

Phase 1: Proposer sends Prepare
message: with a new View number
and a transaction number.

W/

Acceptors respond with a Promise
message: this means that the new
view is accepted and proposals will
not be accepted with a lower view
number or transaction number.

Phase 2: Proposer sends Accept
message with view and transaction
numbers as well as the value proposed.

N\

/A"

Acceptors respond by sending Accepted
messages to all other members of the
group (unless they have Promised a
higher transaction number in the interim).

OEBPS/Images/image00496.gif
Barrier: processes wait
until all processes have
entered the barrier

Worker processes

End of Map phase End of Reduce phase

OEBPS/Images/image00497.jpeg
Tasks are added to the queue
(by one or more processes)

areliable distributed queue

An RSM with several replicas implementing

Worker processes: lease Worker processes: lease
and remove tasks from and remove tasks from
the queue the queue

Worker processes: lease
and remove tasks from
the queue

OEBPS/Images/image00524.jpeg
User deletes Application
d'ata deletels data

Application Data
purges data gone

User-visible trash

Not user-visible. Soft-deleted by application
and/or within storage service.

Data being destroyed by
application and storage service.

Eligible for undeletion
by users

Protects against mistakes

by users

Eligible for undeletion by user support
and/or application administrators

Protects against bugs in applications

and mistakes by application service providers

(an't be undeleted. Restoration
requires backups

Backups protect against this
and all other scenarios

OEBPS/Images/image00522.jpeg
fAre our backups Yes, they’re Are they empty? | don’t think so. Do restores work? Noidea, nobody

working? running. Never checked. ever asked.

OEBPS/Images/image00523.jpeg
Root Cause (6)

User action

Operator error

Application bug

Scope (2)

Infrastructure defect

Wide

Rate (2)

Narrow, directed

Big bang

Hardware fault

Site disaster

Slow and steady

OEBPS/Images/image00444.gif
oJofofofnr]rfafafola]sfsfsfefefefs]s]s]

oldest most recent

OEBPS/Images/image00443.gif
host1 host2 host3 host4 host5

OEBPS/Images/image00442.gif

OEBPS/Images/image00441.jpeg
| Workflows
L}
Blueprint : @
v External Services
Rapid Client Rapid Service Rapid Build Job Source Repository
»{ Rapid Worker
__ _l_ __ «—> Build & Package
[i Services
Legend E Tasks i e
[Rapid Components : 4 & rifacts
[User Artifacts : | Deployment
[External Services ! Services

OEBPS/Images/image00440.jpeg
TestClusterExistsinMachineDatabase

FixAddClusterToMachineDatabase

TestDNSTeamHasBeenAssignedMachines

FixDNSTeamRequestMachines

TestDNSMachinesAre0fSameSpec

FISDNSMachinesHomogenize

TestDNSMachinesHaveDNSPackages

FixDNSMachineslnstallDNSPackages

AL L L

TestDNSMonitoringConfigExists

\ 4

FixDNSMonitoringCreateConfig

TestDNSMonitoringConfigPushed

FixDNSMonitoringPushConfig

TestDNSMonitoringServiceStarted

FixDNSMonitoringStartService

TestDNSMonitoringNoAlertsFiring

UU%

FixFail

A

TestDNSServiceReady

OEBPS/Images/image00439.jpeg
ClusterExistsinMachineDatabase

DNSTeamHasBeenAssignedMachines

DNSmachinesAre0fSameSpec

DNSMachinesHaveDNSPackages

(_

LTS L YL,

v 1v v v)

DNSServiceConfigExists DNSMonitoringConfigExists
DNSServiceConfigisSane DNSMonitoringConfigPushed
DNSServiceConfigPushed DNSMonitoringServiceStarted
DNSServiceStarted DNSMonitoringNoAlertsFiring
DNSResolvesSuccessfully

Lb DNSServiceReady

OEBPS/Images/image00438.jpeg
milliseconds

10k

5k

2k

200

100

08:00 08:30 09:00

09:30

10:00

10:30 11:00 11:30

OEBPS/Images/image00437.gif
. “1: __ successtul requests
avaﬂablhty ~ total requests

OEBPS/Images/image00436.gif
ilability = ——pume_____
availability = (uptime + downtme)

OEBPS/Images/image00435.gif
—

OEBPS/Images/image00527.jpeg
Advertiser

Advertiser
Frontend

-

- Indexing System

:

Ads

Ads

Ads

User

User

User

OEBPS/Images/image00528.gif
Design

Build &
Implement

Operate

Decommission

OEBPS/Images/image00525.gif

OEBPS/Images/image00526.jpeg
time

buiddensyooq

bulobuo

“thinking about” (most abstract)
4—

“doing” (most applied)
—_—

Postmortem reading

Reverse engineering /
improvisational thinking

Disaster role play

Breaking real things,
fixing real things

Documentation as
apprenticeship

$9)U3LIaAX3 buluea| 233.10U0)

Shadowing on-call

Going on-call project

work &

Continuous learning

/ ownership

———

Continuous teaching

OEBPS/Images/image00513.jpeg
time

v

| Sleep until launch |

| BeginLaunch {cronjob="foo, time=1.1.1970 12:34, ...} |—> Paxos

Cluster
scheduler

| EndLaunch {cronjob="foo time=1.1.1970 12:34, ...} I—P Paxos

OEBPS/Images/image00514.jpeg
poyoune| sqof uoiy

Time

OEBPS/Images/image00511.jpeg

OEBPS/Images/image00512.jpeg
Distributed Cron Distributed Cron

OEBPS/Images/image00434.gif

OEBPS/Images/image00433.gif

OEBPS/Images/image00432.gif

OEBPS/Images/image00431.jpeg
GFE

(Reverse Proxy)

Application

Users » Frontend

Google Load
DNS Balancer

Server GSLB

Application
Backend

A 4

OEBPS/Images/image00430.jpeg
Blobstore
(small) J

Spanner (big) Bigtable

N e D,
Colossus

v

D

Local HDD
or Flash

OEBPS/Images/image00429.jpeg
Cluster -
BorgMaster
Scheduler Persistent
Store (Paxos)
_—
Z : Z]
Borglet Borglet
— —
— —
— —

Tools

Config
files

OEBPS/Images/image00428.jpeg
Mount Hood

=
8
s
@
o
]
8
©
o

Datacenter

Datacenter Campus

OEBPS/Images/image00516.jpeg

OEBPS/Images/image00517.jpeg
apply count

1.2M

1.0M

800.0k

600.0k

400.0k

200.0k

&

0.0

OEBPS/Images/image00515.jpeg
~ M Scheduling Delay
M die Interval
I Total Execution Time

1000

100

1440 720 360 300 240 180 120 90 60 50 40 30 20 10 0

Execution Interval

OEBPS/Images/image00520.jpeg
Global workflow

Task Master

Local workflow

stage 1
(heartbeat)

(Task Master H do work /

Local workflow

stage 1
(heartbeat)

\ do work \—P(Task Master)

stagen

stagen

OEBPS/Images/image00521.jpeg
\| . " \
5 P - . No it’s not, Ifitisn’t up, then
. ’ 1 s
The service is up Noit’s not. Yesitis! my data’s gu’ne! how do you know?

OEBPS/Images/image00518.gif
View is an observer
of the model

Most variations of this design
pattern make no distinction
between a view and a controller

Controller

OEBPS/Images/image00519.jpeg
Work Units o

Task Master Completed

(model)

Workers
(view)

Work Units

(

Workcycle, Scaling,

Controller

or Snapshotting

OEBPS/Images/image00464.gif

OEBPS/Images/image00463.gif

OEBPS/Images/image00462.gif

OEBPS/Images/image00461.gif

OEBPS/Images/image00460.gif

OEBPS/Images/image00459.gif

OEBPS/Images/image00458.gif

OEBPS/Images/image00457.gif

OEBPS/Images/image00456.gif

OEBPS/Images/image00455.gif

OEBPS/Images/image00465.gif

OEBPS/Images/image00466.gif

OEBPS/Images/image00454.gif
Integration Tests

OEBPS/Images/image00453.jpeg
OUTALATOR! B

Teams/Alert queues:

Hit ? to see keyboard shortcuts. See help, and what could be better.

agoogler | Settings | About | Feedback | Sign out

Declare Incident

(cawse?| (impact?) | action/) [service /) | effects?)

frontend

Add Suggestions:
Content:
Condition 'Manyhttp500s' was triggered.
Job: shakespeare. frontend
Zone: europe
Dashboard: http: //console/shakespeare/frontend
Playbook: http:
[click to show the rest of the message |

frontend ManyHttp500s
mobile_frontend ManyHttpS00s

20150810 22:56:56 PDT

OEBPS/Images/image00452.jpeg
OUTA.LA T 0&‘ % Hit ? to see keyboard shortcuts. See help, and what could be better. agoogler | Settings | About | Feedback | Sign out
Ui €ould be Deter. signout

by

1

Search | e.g. has:bug tag:cause:human-error -summary:"global”
Tej&f,ﬁ:.':;‘w‘i‘,',‘; et Tickets / Outages Refresh ~ Combine/Create Outage | Report Mode || Statistics || Create Handoff Email <Newer Older >
shakespeare Team, From Summary Date
» shakespeare (3), agoogler (7) prober ShakespeareBlackboxProbe_SearchFailure bug:94(2015-07-24 11:32:59 PDT
shakespeare, agoogler frontend TaskFlapping bug:90210 Close 2015-07-22 13:15:09 PDT
shakespeare, jrandom frontend ManyHttp500s cl:8675309 bug:89191 2015-07-22 04:19:44 PDT
shakespeare, agoogler (2) storage AnnotationConsistencyTooEventual 2015-07-21 19:31:12 PDT
shakespeare, jrandom frontend Hi atency tuning bug:89109 action:silence 2015-07-20 03:35:43 PDT
5 Outalations

‘e

OEBPS/Images/image00451.jpeg
instances —active —idle —loading

\
W&MMWWM‘\M\I :) ‘]
o e Rt S A Y D i ik

18:00 18:30 19:00 1930 20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30

OEBPS/Images/image00450.jpeg
CPU Usage

MCycle /s

\ J wummﬂ\ﬂhwﬂtﬂubj ALY,

ek

18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30

OEBPS/Images/image00449.jpeg
Latency (Logarithmic heatmap)

—pS0_—pos ~peo
100 e
10

| |
e ——
e Sy e

18:00 18:30 19:00 1930 20:00 20:30

21:30 22:00 22:30 2300 2330

OEBPS/Images/image00448.jpeg
QPS

Queries / s

e e

18:00 18:30 19:00 1930 20:00 20:30 21:00 2130 22:00 22:30 23:00 23:30

0

OEBPS/Images/image00447.gif
Error Rate %

6:00

12:00

Accepted SLO

18:00

OEBPS/Images/image00446.jpeg
Problem
Report

Triage

v

| Consider re-triaging
1 if situation changes

Examine

ﬁl

v

Diagnose

v

>

Test / Treat

OEBPS/Images/image00445.jpeg
Inter-Borgmon

\
| |
I I
| [elobal . Valuestream | _ _ SR
Borgmon ! A — T Borgmon
| |
v ' ,] e
4 - -1 -1 Datacenter — *~ <~ Datacenter ‘< _ 1P| Datacenter
—+ - Borgmon 1 Borgmon ~ T - Borgmon
v | v | v
DC Scraping [h I DC Scraping [} ' DC Scraping [h
Borgmon | Borgmon | Borgmon
| '1? | ‘#
el | = ——h | Sl
Application [} Application [Application [}
Tasks I Tasks | Tasks
| [] I p———
Cluster A I Cluster B : Cluster C
I

