

Android Application
Programming with OpenCV

Build Android apps to capture, manipulate,
and track objects in 2D and 3D

Joseph Howse

 BIRMINGHAM - MUMBAI

Android Application Programming with OpenCV

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1180913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-520-6

www.packtpub.com

Cover Image by Ankita Jha (ankitajha17@gmail.com)

Credits

Author
Joseph Howse

Reviewers
Karan Kedar Balkar

Rohit Bhat

Viral Parekh

Acquisition Editors
Nikhil Karkal

Kartikey Pandey

Commissioning Editor
Harsha Bharwani

Technical Editors
Jinesh Kampani

Manal Pednekar

Project Coordinator
Amigya Khurana

Proofreader
Amy Guest

Indexer
Rekha Nair

Graphics
Ronak Dhruv

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Joseph Howse might be at home right now, sitting on a sofa and writing a book,
or he might have dashed away with a suitcase full of books, cameras, and computers.
He is equipped to "see the world" or at least to do his work in computer vision.

He is a software developer at Ad-Dispatch (Canada), where he makes augmented
reality games for iOS and Android. Thanks to computer vision, the games can make
use of real-world props such as a child's drawings, toys, or blanket-forts.

He also provides training and consulting services. He is currently consulting at
Market Beat (El Salvador) on an embedded systems project that uses OpenCV
for face recognition.

He holds three masters degrees in Computer Science, International Development
Studies, and Business Administration (Dalhousie University, Canada). His
research has been published by ISMAR (International Symposium on Mixed and
Augmented Realities), and he would love to meet you there if you go.

Android Application Programming with OpenCV is Joe's second book with Packt. His
first book, OpenCV Computer Vision with Python, includes an introduction to face
tracking and depth cameras (for example, Kinect) on Windows, Mac, and Linux.

Joe likes cats, kittens, oceans, and seas. Felines and saline water sustain him.
He lives with his multi-species family in Halifax, on Canada's Atlantic coast.

I am able to write—and to enjoy writing—because I am constantly
encouraged by the memory of Sam and by the companionship of
Mom, Dad, and the cats. They are my fundamentals.

I am indebted to my editors and reviewers for guiding this book to
completion. Their professionalism, courtesy, good judgment, and
passion for books are much appreciated.

About the Reviewers

Karan Kedar Balkar has been working as an independent Android application
developer since the past four years. Born and brought up in Mumbai, he holds a
bachelor degree in Computer Engineering. He has written over 50 programming
tutorials on his personal blog (http://karanbalkar.com), covering popular
technologies and frameworks.

At present, he is working as a software engineer. He has been trained on various
technologies including Java, Oracle, and .NET. Apart from being passionate about
technology, he loves to write poems and travel to different places. He likes listening
to music and enjoys playing the guitar.

Firstly, I would like to thank my parents for their constant support
and encouragement. I would also like to thank my friends Srivatsan
Iyer, Ajit Pillai, and Prasaanth Neelakandan for always inspiring and
motivating me.

I would like to express my deepest gratitude to Packt Publishing for
giving me a chance to be a part of the reviewing process.

Rohit Bhat is a Computer Science graduate from BITS Pilani, India, currently
working as a Software Specialist in a leading Big Data Analytics firm. He has done
projects in a variety of fields of technology encompassing Data Mining, Android
Development, Open CV, Swarm Intelligence, Workflow Automation, and Video
Conferencing platform. He loves to keep himself abreast of the latest technology and
can always be found ready for a discussion on any topic under the sun. He is also
interested in reading, startup, economics, and current affairs. He likes to write and
is a freelance blogger in his spare time.

He is currently writing a book for Packt on Bonita Open Solution, a technology which
he has used extensively for Workflow Automation and Business Process Modeling.

Viral Parekh is a young graduate of Computer Science. He is a skilled mobile
application developer. He has a grip on the various open source libraries such as
OpenCV, OpenNI (Open Natural Interaction), FFmpeg, and video4linux. He is
keen to work in the field of Human computer Interaction and Augmented reality.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Setting Up OpenCV	 7

System requirements	 8
Setting up a development environment	 8

Getting a ready-made development environment – Tegra Android
Development Pack (TAPD)	 9
Assembling a development environment piece-by-piece	 11

Getting the prebuilt OpenCV4Android	 14
Building OpenCV4Android from source	 14

Building the OpenCV samples with Eclipse	 16
Finding documentation and help	 30
Summary	 30

Chapter 2: Working with Camera Frames	 31
Designing our app – Second Sight	 31
Creating the Eclipse project	 34
Enabling camera and disk access in the manifest	 38
Creating menu and string resources	 40
Previewing and saving photos in CameraActivity	 42
Deleting, editing, and sharing photos in LabActivity	 52
Summary	 55

Chapter 3: Applying Image Effects	 57
Adding files to the project	 57

Defining the Filter interface	 59
Mixing color channels	 60
Making subtle color shifts with curves	 64
Processing a neighborhood of pixels with convolution filters	 69
Adding the filters to CameraActivity	 71
Summary	 76

Table of Contents

[ii]

Chapter 4: Recognizing and Tracking Images	 77
Adding files to the project	 77
Understanding image tracking	 79
Writing an image tracking filter	 81
Adding the tracker filters to CameraActivity	 87
Summary	 92

Chapter 5: Combining Image Tracking with 3D Rendering	 93
Adding files to the project	 93
Defining the ARFilter interface	 94
Building projection matrices in CameraProjectionAdapter	 95
Modifying ImageDetectionFilter for 3D tracking	 99
Rendering the cube in ARCubeRenderer	 104
Adding 3D tracking and rendering to CameraActivity	 108
Learning more about 3D graphics on Android	 112
Summary	 112

Index	 113

Preface
This book will show you how to use OpenCV's Java bindings in an Android app that
displays a camera feed, saves and shares photos, manipulates colors and edges, and
tracks real-world objects in 2D or 3D. Integration with OpenGL is also introduced so
that you can start building augmented reality (AR) apps that superimpose virtual 3D
scenes on tracked objects in the camera feed.

OpenCV is an open-source, cross-platform library that provides building blocks
for computer vision experiments and applications. It offers high-level interfaces for
capturing, processing, and presenting image data. For example, it abstracts away
details about camera hardware and array allocation. OpenCV is widely used in
both academia and industry.

Android is a mobile operating system that is mostly open source. For Java developers,
it offers a high-level application framework called Android SDK. Android apps are
modular insofar as they have standard, high-level interfaces for launching each other
and sharing data. Mobility, a high level of abstraction, and data sharing are great
starting points for a photo sharing app, similar to the one we will build.

Although OpenCV and Android provide a lot of high-level abstractions (and a lot
of open source code for curious users to browse), they are not necessarily easy for
newcomers. Setting up an appropriate development environment and translating the
libraries' broad functionality into app features are both daunting tasks. This concise
book helps by placing an emphasis on clean setup, clean application design, and a
simple understanding of each function's purpose.

The need for a book on this subject is particularly great because the OpenCV's Java
and Android bindings are quite new and their documentation is not yet mature.
Little has been written about the steps for integrating OpenCV with an Android's
standard camera, media, and graphics APIs. Surely integration is a major part of
an app developer's work, so it is a major focus of this book.

Preface

[2]

By the end of our journey together, you will have a taste of the breadth of application
features that are made possible by integrating OpenCV with other Android libraries.
You will have your own small library of reusable classes that you can extend or
modify for your future computer vision projects. You will have a development
environment and the knowledge to use it, and you will be able to make more apps!

What this book covers
Chapter 1, Setting Up OpenCV, covers the steps to setting up OpenCV and an
Android development environment, including Eclipse and Android SDK.

Chapter 2, Working with Camera Frames, shows how to integrate OpenCV into
an Android app that can preview, capture, save, and share photos.

Chapter 3, Applying Image Effects, explores the OpenCV's functionality for
manipulating color channels and neighborhoods of pixels. We expand our app
to include channel-mixing filters, "curve" filters, and a filter that darkens edges.

Chapter 4, Recognizing and Tracking Images, demonstrates the steps to recognizing
and tracking a known target (such as a painting) when it appears in a video feed.
We expand our app so that it draws an outline around any tracked target.

Chapter 5, Combining Image Tracking with 3D Rendering, improves upon our previous
tracking technique by determining the target's position and rotation in real 3D space.
We expand our app so that it sets up an OpenGL 3D scene with the same perspective
as the Android device's real camera. Then, we draw a 3D cube atop any tracked target.

What you need for this book
This book provides setup instructions for OpenCV and an Android development
environment, including Eclipse and Android SDK. The software is cross platform
and the instructions cover Windows, Mac, and Linux. Other Unix-like environments
may work, too, if you are willing to do your own tailoring of the setup steps.

You need a mobile device running Android 2.2 (Froyo) or greater and it must have
a camera. Preferably, it should have two cameras, front and rear. Also, it should
preferably come with the Google Play Store app because OpenCV uses Google
Play Store to manage installation and upgrades of shared libraries.

Preface

[3]

Who this book is for
This book is great for Java developers who are new to computer vision and who
like to learn through application development. It is assumed that you have previous
experience in Java but not necessarily Android. A basic understanding of image
data (for example, pixels, color channels) would be helpful, too.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Edit your system's PATH to include
<android_sdk>/platform-tools and <android_sdk>/tools."

A block of code is set as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
 "http://schemas.android.com/apk/res/android"
 package="com.nummist.secondsight"
 android:versionCode="1"
 android:versionName="1.0">

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

mCameraView.enableView();
 mBgr = new Mat();
 mCurveFilters = new Filter[] {
 new NoneFilter(),
 new PortraCurveFilter(),
 new ProviaCurveFilter(),

Any command-line input or output is written as follows:

$ cd /etc/udev/rules.d/

$ sudo touch 51-android.rules

$ sudo chmod a+r 51-android-rules

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
on the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. The example code for this book is also available
from the author's website at http://nummist.com/opencv/.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it. You can also contact
the author directly at josephhowse@nummist.com or you can check his website,
http://nummist.com/opencv/, for answers to common questions about this book.

Setting Up OpenCV
This chapter is a quick guide for setting up a development environment for Android
and OpenCV. We will also look at the OpenCV sample applications, documentation,
and community.

By the end of this chapter, our development environment will include the
following components:

•	 Java Development Kit (JDK) 6: It includes tools for Java programming.
•	 Cygwin 1.7 or greater (Windows only): It is a compatibility layer that

provides Unix-like programming tools on Windows.
•	 Android Software Development Kit (Android SDK) r21.0.1 or greater:

It includes tools for programming Android apps in Java.
•	 Android Native Development Kit (Android NDK) r8d or greater: It

includes tools for programming Android apps in C++. Although this book
deals with Java programming, OpenCV also includes Android-compatible
C++ samples that you may want to compile and run.

•	 Eclipse 4.2.1 (Juno) or greater: It is an integrated development environment
(IDE).

•	 Java Development Tools (JDT): It is an Eclipse plugin for Java programming
(already included in most Eclipse distributions).

•	 C/C++ Development Tooling (CDT) 8.1.1 or greater: It is an Eclipse plugin
for C/C++ programming.

•	 Android Development Tools (ADT) 21.0.1 or greater: It is an Eclipse plugin
for Android programming.

•	 OpenCV4Android 2.4.3.2 or greater: It includes OpenCV's Android version,
including Java and C++ libraries.

Setting Up OpenCV

[8]

There are many possible ways to install and configure these components. We will
cover several common setup scenarios, but if you are interested in even more
options, see OpenCV's official documentation at http://docs.opencv.org/doc/
tutorials/introduction/android_binary_package/O4A_SDK.html.

System requirements
All of the development tools for Android and OpenCV are cross platform. The
following operating systems are supported with almost identical setup procedures:

•	 Windows XP, Windows Vista, Windows 7, or Windows 8
•	 Mac OS 10.6 (Snow Leopard) or greater
•	 Ubuntu 10.10 (Maverick) or greater
•	 Many other Unix-like systems (though not specifically covered in this book)

To run the OpenCV samples and, later, our own application, we should have an
Android device with the following specifications:

•	 Android 2.2 (Froyo) or greater (required)
•	 Camera (required); front and rear cameras (recommended)
•	 Autofocus (recommended)
•	 Google Play Store (recommended)

Android Virtual Devices (AVDs) are not recommended. Some parts of OpenCV
rely on low-level camera access and may fail with virtualized cameras.

Setting up a development environment
Basically, we have a choice among the following approaches:

1.	 Install a prepackaged, preconfigured development environment that contains
all the components we need.

2.	 Install various components separately and configure them to work together.
Within this approach, we may do either of the following:

°° Use a prepackaged, preconfigured version of OpenCV
°° Configure and build OpenCV from source

Let's look at each of these alternatives in detail.

Chapter 1

[9]

Getting a ready-made development
environment – Tegra Android Development
Pack (TAPD)
Tegra Android Development Pack (TADP) contains a complete, preconfigured
development environment for Android, OpenCV, and some other libraries. TADP
builds apps that are optimized for NVIDIA's Tegra processors. Despite being
optimized for Tegra, the apps are compatible with other hardware too.

If you are setting up an Android development environment from
scratch, I recommend TADP. It contains recent versions of all our
required software and its setup process is simple.
TADP also contains some extras that we do not require for this book.
For a complete list of TADP's contents, see the official description
at https://developer.nvidia.com/tegra-android-
development-pack.

To set up TADP, we just need to download and install it from a secure section of
NVIDIA's website. Here are the required steps:

1.	 Join the NVIDIA Registered Developer Program at https://developer.
nvidia.com/user/register. (It is free.)

2.	 Log in at https://developer.nvidia.com/user/login.
3.	 Complete your user profile at https://developer.nvidia.com/user/me/

profile/rdp_profile.
4.	 Apply to join the Tegra Registered Developer Program at https://

developer.nvidia.com/rdp/applications/tegra-registered-
developer-program. (It is free, too!) Wait for NVIDIA to send you an
acceptance email. Normally, you might receive it a few minutes after
applying.

5.	 Go to https://developer.nvidia.com/tegra-resources and find the
download link for TADP's latest version. At the time of writing, the latest
version is 2.0r2. There are installers for Windows (32-bit or 64-bit), Mac,
and Ubuntu (32-bit or 64-bit). Download and run the appropriate installer.

6.	 When the installer presents the Installation Directory step, we can enter
any destination, which we will refer to as <tadp>. By default, <tadp> is
C:\NVPACK (Windows) or ~/NVPACK (Mac and Ubuntu).

Setting Up OpenCV

[10]

7.	 When the installer presents the Installation Options step, we may select any
option: Complete, Express, or Custom. Compared to an Express installation,
a Complete or Custom installation may include additional versions of
Android SDK and binary images of Tegra Android OS, which is NVIDIA's
customization of Android. If in doubt, choose Express.

8.	 When the installer presents the Proxy Configuration step, we may leave all
fields blank unless we are using a proxy server.

9.	 After finishing all of the installer's configuration steps, wait for TADP's
content to be downloaded and installed.

That's all! Before proceeding, let's just take a note of the locations where TADP has
installed certain components. For TADP 2.0r2 (the latest version at the time
of writing), the locations are as follows:

•	 Android SDK is located at <tadp>/android-sdk-macosx. We will refer to
this location as <android_sdk>.

•	 Android NDK is located at <tadp>/android-ndk-r8d. We will refer to this
location as <android_ndk>.

•	 OpenCV4Android is located at <tadp>/OpenCV-2.4.3.2-android-sdk-
tadp. We will refer to this location as <opencv>.

•	 Eclipse is located at <tadp>/eclipse. We will refer to this location as
<eclipse>.

The TADP installer automatically edits the system's PATH to include
<android_sdk>/platform-tools and <android_sdk>/
tools. Also, it creates an environment variable called NDKROOT,
whose value is <android_ndk>.

Now, we can proceed to Building the OpenCV Samples with Eclipse, later in this chapter.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you. The example code for this book is also available from
the author's website at http://nummist.com/opencv/.

Chapter 1

[11]

Assembling a development environment
piece-by-piece
Instead of using TADP as a ready-made solution, we may assemble our own
development environment. Broadly, this task has two stages:

•	 Set up a general-purpose Android development environment
•	 Set up OpenCV for use in this environment

Let's start by looking at the setup steps for a general-purpose Android development
environment. We will not delve into very much detail here, because good
instructions are available at the given links and, because you, as an Android
developer, have probably been through similar steps before.

If you already have an Android development environment and you
just want to add components to it, some of the following steps will
not apply to you.

Here are the steps:

1.	 If we are using Windows or Linux, we may need to obtain JDK 6 manually.
(On Mac, if JDK 6 is not present, the operating system will automatically
offer to install it when needed.) The JDK 6 installers or packages are available
for Windows and many Linux distributions at http://www.oracle.com/
technetwork/java/javase/downloads/jdk6downloads-1902814.html.
Alternatively, on Linux, check your repository for the JDK packages.
Install JDK 6.

2.	 Download Eclipse and unzip it to any destination, which we will refer to as
<eclipse>. There are many versions from which we may choose. Google
provides an Eclipse distribution called Android Developer Tools (ADT)
Bundle, which comes with Android SDK and the ADT plugin prepackaged
and preconfigured. ADT Bundle is available at http://developer.
android.com/sdk/index.html. Many other up-to-date Eclipse distributions
are available at http://www.eclipse.org/downloads/. Of these, Eclipse
for Mobile Developers is a good and minimalist choice as a foundation for an
Android development environment.

Setting Up OpenCV

[12]

3.	 If we did not get the ADT Bundle, we now need to set up Android SDK and
the ADT plugin for Eclipse. Go to http://developer.android.com/sdk/
index.html and get the download named Android SDK Tools. Install or
unzip it to any destination, which we will refer to as <android_sdk>. Open
Eclipse and install the ADT plugin according to the official instructions at
http://developer.android.com/sdk/installing/installing-adt.
html. Restart Eclipse. A window, Welcome to Android Development,
should appear. Click on Use Existing SDKs, browse to <android_sdk>,
and click on Next. Close Eclipse.

4.	 If we are using Windows, download and install Cygwin from http://
cygwin.com/install.html.

5.	 Download Android NDK from http://developer.android.com/tools/
sdk/ndk/index.html. Unzip it to any destination, which we will refer to
as <android_ndk>.

6.	 Edit your system's PATH to include <android_sdk>/platform-tools
and <android_sdk>/tools. Also, create an environment variable named
NDKROOT with the value as <android_ndk>. (If you are unsure how to edit
PATH and other environment variables, see Appendix A: Editing environment
variables.)

Chapter 1

[13]

Editing environment variables on Windows
The system's Path variable and other environment variables can be
edited in the Environment Variables window of Control Panel.
On Windows Vista/7/8, open the Start menu and launch Control Panel.
Now, go to System and Security | System | Advanced system settings.
Click on the Environment Variables button.
On Windows XP, open the Start menu and go to Control Panel | System.
Click on the Advanced tab. Click on the Environment Variables button.
Now, under System variables, select an existing environment variable,
such as Path, and click on the Edit button. Alternatively, make a new
environment variable by clicking on the New button. Edit the variable's
name and value as needed. For example, if we want to add C:\android-
sdk\platform-tools and C:\android-sdk\tools to Path, we
should append ;C:\android-sdk\platform-tools;C:\android-
sdk\tools to the existing value of Path. Note the use of semicolons as
separators.
To apply the changes, click on all the OK buttons until we are back in the
main window of Control Panel. Now, log out and again log in.
Editing environment variables on Mac
Edit ~/.profile.
To append to an existing environment variable, add a line such as
export PATH=$PATH:~/android-sdk/platform-tools:~/
android-sdk/tools. This example appends ~/android-sdk/
platform-tools and ~/android-sdk/tools to PATH. Note the use
of colons as separators.
To create a new environment variable, add a line such as export
NDKROOT=~/android-ndk.
Save your changes, log out, and again log in.
Editing environment variables on Ubuntu
Edit ~/.pam_environment.
To append to an existing environment variable, add a line such as
PATH DEFAULT=${PATH}:~/android-sdk/platform-tools:~/
android-sdk/tools. This example appends ~/android-sdk/
platform-tools and ~/android-sdk/tools to PATH. Note the
use of colons as separators.
To create a new environment variable, add a line such as NDKROOT
DEFAULT=~/android-ndk.
Save your changes, log out, and again log in.

Setting Up OpenCV

[14]

Now, we have an Android development environment but we still need OpenCV.
We may choose to download a prebuilt version of OpenCV or we may build it from
source. These options are discussed in the following two subsections.

Generally, Android applications should use a prebuilt version of
OpenCV. One important reason is that the prebuilt versions are
available for Android users as shared libraries, which save disk space
and simplify updates.
For the purpose of this book's project, there is no need to build
OpenCV from source. We just mention this option for completeness,
since it may be of interest to advanced users who want to modify
OpenCV.

Getting the prebuilt OpenCV4Android
The prebuilt versions of OpenCV4Android can be downloaded from http://
sourceforge.net/projects/opencvlibrary/files/opencv-android/. Look for
files that have opencv-android in the name, such as OpenCV-2.4.5-android-sdk.
zip (the latest version at the time of writing). Download the latest version and unzip
it to any destination, which we will refer to as <opencv>.

Building OpenCV4Android from source
Alternatively, the process for building OpenCV4Android from trunk (the latest,
unstable source code) is documented at http://code.opencv.org/projects/
opencv/wiki/Building_OpenCV4Android_from_trunk. For a summary of the
process for building from trunk, continue reading this section. Otherwise, skip
ahead to Building the OpenCV samples with Eclipse, later in this chapter.

Since trunk contains the latest and unstable source code, there is
no guarantee that the build process will succeed. You may need to
do your own troubleshooting if you want to build from trunk.

To build OpenCV from source, we need the following additional software:

•	 Git: It is a Source Control Management (SCM) tool, which we will use to
obtain OpenCV's source code. On Windows or Mac, download and install
Git from http://git-scm.com/. On Linux, install it using your package
manager. For example, on Ubuntu, open Terminal and run $ sudo apt-get
install git-core.

Chapter 1

[15]

•	 CMake: It is a set of build tools. On Windows or Mac, download and install
CMake from http://www.cmake.org/cmake/resources/software.html.
On Linux, install it using your package manager. For example, on Ubuntu,
open Terminal and run $ sudo apt-get install cmake.

•	 Apache Ant 1.8.0 or greater: It is a set of build tools for Java. On Linux, just
install Ant using your package manager. For example, on Ubuntu, open
Terminal and run $ sudo apt-get install ant. On Windows or Mac,
download Ant from http://ant.apache.org/bindownload.cgi and unzip
it to any destination, which we will refer to as <ant>. Make the following
changes to your environment variables:

°° Add <ant>/bin to PATH.
°° Create a variable, ANT_HOME, with the value <ant>.

•	 Python 2.6 or greater (but not 3.0 or greater): It is a scripting language that is
used by some of the OpenCV build scripts. An appropriate version of Python
comes preinstalled on Mac and most Linux systems, including Ubuntu. On
Windows, download and install Python from http://www.python.org/
getit/. If you have installed multiple versions of Python on your system,
ensure that an installation of Python 2.6 or greater (but not 3.0 or greater)
is the only one in Path (Windows) or PATH (Mac, Linux, or other Unix-like
systems). The OpenCV build scripts do not run properly with Python 3.0
or greater.

Once we have these prerequisites, we may download the OpenCV source code
to any location, which we will refer to as <opencv_source>. Then, we may build
it using an included script. The steps are platform-specific, and are described as
follows:

On Windows, copy <opencv>\android\scripts\wincfg.cmd.tmpl to <opencv>\
android\scripts\wincfg.cmd. Edit <opencv>\android\scripts\wincfg.cmd.
The locations of several of the prerequisites are declared in this file. Modify them so
that they are correct for your system. Save your changes. Then, open Git Bash (Git's
command prompt) and run the following commands:

$ git clone git://code.opencv.org/opencv.git <opencv_source>

$ cd <opencv_source>/android

$ scripts/cmake_android.cmd

$ cd build

$ make -j8

Setting Up OpenCV

[16]

On Mac, Ubuntu, or other Unix-like systems, open Terminal (or another command
line shell) and run the following commands:

$ git clone git://code.opencv.org/opencv.git <opencv_source>

$ cd <opencv_source>/android

$ sh ./scripts/cmake_android.sh

$ cd build

$ make -j8

If all goes well, we should get a build of OpenCV4Android in <opencv_source>/
android/build. We may move it elsewhere if we wish. We will refer to its final
location as <opencv>.

Building the OpenCV samples with
Eclipse
Building and running a few sample applications is a good way to test that OpenCV
is correctly set up. At the same time, we can practice using Eclipse.

Let's start by launching Eclipse. The Eclipse launcher should be located at
<eclipse>/eclipse.exe (Windows), <eclipse>/Eclipse.app (Mac), or
<eclipse>/eclipse (Linux). Run it.

Chapter 1

[17]

We should see a window called Workspace Launcher, which asks us to select a
workspace. A workspace is the root directory for a set of related Eclipse projects.
If we are using TADP, enter <tadp>/nvsample_workspace, which is a workspace
where the OpenCV4Android library, samples, and tutorials are already set up
as projects. Otherwise, enter any location you choose.

We can return to Workspace Launcher anytime via the menu: File
| Switch Workspace | Other….

If the Welcome to Eclipse screen appears, click on the Workbench button.

Setting Up OpenCV

[18]

Now, we should see a window with several panels, including Package Explorer.
If we are not using TAPD, we need to import the OpenCV sample projects into
our new workspace. Right-click on Package Explorer and select Import… from
the context menu.

Chapter 1

[19]

The Import window should appear. Select General | Existing Projects into
Workspace, and then click on Next>.

Setting Up OpenCV

[20]

On the second page of the Import window, enter <opencv> in the Select root
directory: field. Under the Projects: label, a list of detected projects should appear
(If not, click on Refresh). The list should include OpenCV library, samples, and
tutorials. Ensure that all projects are selected and click on Finish to import them.

Chapter 1

[21]

Once the projects are imported, we may need to fix some configuration issues. Our
development environment may have different paths, and different versions of the
Android SDK, than the ones in the samples' default configuration.

Any resulting errors will be reported in the Problems tab.

We should start by resolving any errors in the OpenCV Library
project, as the samples and tutorials depend on the library.

Setting Up OpenCV

[22]

The following are some of the common configuration problems, and their symptoms
and solutions:

•	 The target Android version might not be properly specified. The symptoms
are that imports from the java and android packages fail, and there are error
messages such as The project was not built since its build path
is incomplete. The solution is to right-click on the project in Package
Explorer, select Properties from the context menu, select the Android
section, and checkmark one of the available Android versions. These steps
should be repeated for all projects. At compile time, OpenCV and its samples
must target Android 3.0 (API level 11) or greater, though at runtime they also
support Android 2.2 (API level 8) or greater.

Chapter 1

[23]

•	 If we are working on Mac or Linux, the C++ samples might be misconfigured
to use the Windows build executable. The symptom is an error message such
as Program "{ndk}/ndk-build.cmd" not found in PATH. The solution is
to right-click on the project in Package Explorer, select Properties from the
context menu, select the C/C++ Build section, and edit the Build command:
field to remove the .cmd extension. These steps should be repeated for all the
native (C++) projects, which include OpenCV Sample - face-detection and
OpenCV Tutorial 2 - Mixed Processing.

If we are using the projects in TADP's <tadp>/nvsample_
workspace, we only need to troubleshoot the projects that have
names starting with OpenCV. For this book's purposes, the other TADP
samples are not relevant.

Once the OpenCV projects no longer show any errors, we can prepare to test them
on an Android device. Recall that the device must have Android 2.2 (Froyo) or a
greater version, and a camera. To enable Eclipse to communicate with the device, we
must enable the device's USB debugging option with the help of the following steps:

1.	 Open the Settings app.
2.	 On Android 4.2 or greater, go to the About phone or About tablet

section and tap Build number seven times. This step enables the
Developer options section.

Setting Up OpenCV

[24]

3.	 Go to the Developer options section (on Android 4.0 or greater) or the
Applications | Development section (on Android 3.2 or less). Enable
the USB debugging option.

Now, open the Play Store app, and find and install the OpenCV Manager app.
(The app's page in the Play Store should look similar to the previous screenshot.)
OpenCV Manager takes care of checking for any OpenCV library updates when
we run any OpenCV applications.

Chapter 1

[25]

If you do not have the Play Store app on your device, then you need to
install OpenCV Manager and certain OpenCV libraries via USB as per
the instructions at http://docs.opencv.org/android/service/
doc/UseCases.html.

Now, we must prepare our main computer for communication with the Android
device. The required steps vary, depending on our operating system.

On Windows, we need to install the proper USB drivers for the Android device.
Different vendors and devices have different drivers. The official Android
documentation provides links to the various vendors' driver download sites at
http://developer.android.com/tools/extras/oem-usb.html#Drivers.

On Linux, before connecting an Android device via USB, we must specify the
device's vendor in a permissions file. Each vendor has a unique ID number, as listed
in the official Android documentation at http://developer.android.com/tools/
device.html#VendorIds. We will refer to this ID number as <vendor_id>. To create
the permissions file, open a command prompt application (such as Terminal) and
run the following commands:

$ cd /etc/udev/rules.d/

$ sudo touch 51-android.rules

$ sudo chmod a+r 51-android-rules

Note that the permissions file needs to have root ownership, so we use sudo
when creating or modifying it. Now, open the file in an editor such as gedit:

$ sudo gedit 51-android-rules

For each vendor, append a new line to the file. Each of these lines should have
the following format:

SUBSYSTEM=="usb", ATTR{idVendor}=="<vendor_id>", MODE="0666",
GROUP="plugdev"

Save the permissions file and quit the editor.

On Mac, no special drivers or permissions are required.

Setting Up OpenCV

[26]

Plug the Android device into your computer's USB port. In Eclipse, select one of the
OpenCV sample projects in Package Explorer. Then, from the menu system, select
Run | Run as… | Android Application.

An Android Device Chooser window should appear. Your Android device should
be listed under Choose a running Android device. (If the device is not listed, try
unplugging it and plugging it back in. If that does not work, also try disabling and
re-enabling the device's USB debugging option, as described earlier.)

 Select the device and click on OK.

Chapter 1

[27]

If the Auto Monitor Logcat window appears, select the Yes radio button and the
verbose drop-down option, and click on OK. This option ensures that all the log
output from the application will be visible in Eclipse.

Setting Up OpenCV

[28]

On the Android device you might get a message: OpenCV library package was not
found! Try to install it? Make sure the device is connected to the Internet and then
touch the Yes button on your device. The Play Store will open to show an OpenCV
package. Install the package and then press the hardware back button to return to
the sample application, which should be ready for use.

For OpenCV 2.4.3.2, the samples and tutorials have the following functionality:

•	 Sample – 15 puzzle: It splits up a camera feed to make a sliding-block
puzzle. The user may swipe blocks to move them.

•	 Sample – color-blob-detection: It detects color regions in a camera feed. The
user may touch anywhere to see the outline of a color region.

•	 Sample – face-detection: It draws green rectangles around faces in a camera
feed.

•	 Sample – image-manipulations: It applies filters to a camera feed. The user
may press the Android menu button to select from a list of filters.

•	 Tutorial 1 – Add OpenCV: It displays a camera feed. The user may press
the … menu to select a different camera feed implementation (Java or native
C++).

•	 Tutorial 2 – Use OpenCV Camera: It applies filters to a camera feed. The
user may press the … menu to select from a list of filters.

•	 Tutorial 3 – Add Native OpenCV: It draws red circles around interest points
or features in a camera feed. Generally speaking, interest points or features
lie along the high-contrast edges in an image. They are potentially useful in
image recognition and tracking applications.

•	 Tutorial 4 – Mix Java+Native OpenCV: It combines the functionality of
Tutorial 2 and Tutorial 3. The user may press the … menu to select from a list
of filters and a preview of interest points.

•	 Tutorial 5 – Camera Control: It applies filters to a camera feed, which has a
customizable resolution. The user may press the … menu to select from a list
of filters and a list of resolutions.

Chapter 1

[29]

Try these applications on your Android device! While an application is running, its
log output should appear in the LogCat tab in Eclipse.

Feel free to browse the projects' source code via Package Explorer, to see how they
were made. Alternatively, you might want to return to the official samples and
tutorials later, after we have built our own project over the course of this book.

Setting Up OpenCV

[30]

Finding documentation and help
The OpenCV Java API and C++ API are both relevant to Android. The Java API
documentation is online at http://docs.opencv.org/java/. The C++ API
documentation is online at http://docs.opencv.org/. The following documents,
which mostly use C++ code, are also available as downloadable PDF files:

•	 API reference: http://docs.opencv.org/opencv2refman.pdf
•	 Tutorials: http://docs.opencv.org/opencv_tutorials.pdf
•	 User guide (incomplete): http://docs.opencv.org/opencv_user.pdf

If the documentation does not seem to answer your question, try talking to the
OpenCV community. Here are some sites where you will find helpful people:

•	 Official OpenCV forum: http://www.answers.opencv.org/questions/
•	 Jay Rambhia's blog: http://jayrambhia.wordpress.com/
•	 The support site for my OpenCV books: http://nummist.com/opencv/

Also, you can read or submit bug reports at http://code.opencv.org/projects/
opencv/issues?query_id=4. Finally, if you need to take your issue to the highest
authority, you can email the OpenCV4Android developers at android@opencv.org.

Summary
By now, we should have an Android and OpenCV development environment
that can do everything we need for the project described in this book. Depending
on which approach we took, we might also have a set of tools that we can use to
reconfigure and rebuild OpenCV for our future needs.

We know how to build the OpenCV Android samples in Eclipse. These samples
cover a different range of functionality than this book's project, but they are useful
as additional learning aids. We also know where to find documentation and help.

Working with Camera Frames
In this chapter, we focus on building a basic photo capture app, which uses OpenCV
to capture frames of camera input. Our app will enable the user to preview, save,
edit, and share photos. It will interface with other apps on the device, via Android's
MediaStore and Intent classes. Thus, we will learn how to build bridges between
OpenCV and standard Android. Subsequent chapters will expand our app, using
more functionality from OpenCV.

The complete Eclipse project for this chapter can be downloaded from
my website, http://nummist.com/opencv/5206_02.zip.

Designing our app – Second Sight
Let's make an app that enables people to see new visual patterns, to animate and
interact with these patterns, and to share them as pictures. The idea is simple and
versatile. Anyone, from a child to a computer vision expert, can appreciate the
patterns. Through the magic of computer vision on a mobile device, any user
can more readily see, change, and share hidden patterns in any scene.

For this app, I chose the name Second Sight, a phrase that is sometimes used
in mythology to refer to supernatural and symbolic visions.

At its core, Second Sight is a camera app. It will enable the user to preview, save,
and share photos. Like many other camera apps, it will also let the user to apply
filters to the preview and the saved photos. However, many of the filters will not be
traditional photographic effects. For example, the more complex filters will enable
the user to see stylized edges or even rendered objects that blend with the real scene
(augmented reality).

Working with Camera Frames

[32]

For this chapter, we will just build the basic camera and sharing functions of Second
Sight, without any filters. Our first version of the app will contain two activity
classes named CameraActivity and LabActivity. The CameraActivity class will
show the preview and provide menu actions so that the user may select a camera (if
the device has multiple cameras) and take a photo. Then, the LabActivity class will
open to show the saved photo and will provide menu actions so that the user may
delete the photo, or send it to another app for editing or sharing.

To get a better sense of our goal, let's look at some screenshots. Our first version of
CameraActivity will look as follows:

When the user presses the Take Photo menu item, the LabActivity class will open.
It will look like the following screenshot:

Chapter 2

[33]

When the user presses the Share menu item, an intent chooser (a dialog for choosing
a destination app) will appear overtop the photo, as in the following screenshot:

For example, by pressing the Google+ tile, the user could open the photo in the
Google+ app, in order to share it over the social network. Thus, we have a complete
usage example, where the user can snap a photo and share it, using just a few
touch interactions.

Working with Camera Frames

[34]

Creating the Eclipse project
We need to create a new Eclipse project for our app. We may do this in the same
workspace that we already used for the OpenCV library project and samples.
Alternatively, if we use another workspace, we must import the OpenCV library
project into this workspace too. (For instructions on setting the workspace and
importing the library project, see the Building the OpenCV samples with Eclipse section
of Chapter 1, Setting Up OpenCV.)

Open Eclipse to a workspace that contains the library project. Then, from the menu
system, navigate to File | New | Android Application Project. The New Android
Application window should appear. Enter the options that are shown in the
following screenshot:

Chapter 2

[35]

The Target SDK and Compile With fields should be set to API 11 (Android 3.0) or
higher. It is safe to choose the most recent API version, which, at the time of writing,
is API 17: Android 4.2 (Jelly Bean). The Minimum Required SDK field should be
left at the default, API 8: Android 2.2 (Froyo), because we will write fallbacks to
enable our code to run on that version.

Click on the Next button. A checklist should appear. Ensure that the only
checked options are Create activity and Create Project in Workspace, as in
the following screenshot:

Working with Camera Frames

[36]

Click on the Next button. A list of activity templates should appear. Select
BlankActivity, as in the following screenshot:

Click on the Next button. More options about the activity should appear. Enter
CameraActivity in the Activity Name field, as in the following screenshot:

Chapter 2

[37]

Click on the Finish button. Our project is created. We should be able to browse its
contents in the Package Explorer pane. Let's remove and add some files, according to
the following steps:

1.	 Delete res/layout/activity_camera.xml. (Right-click on it, select Delete
from the context menu and click on OK.) The layout of our interface will be
very simple, so it will be more convenient to create it in Java code instead
of this separate XML file. However, if you do want an example of using
OpenCV with an XML layout, you may refer to the sample apps that come
with the library. See the Building the OpenCV samples with Eclipse section in
Chapter 1, Setting Up OpenCV.

2.	 Create src/com/nummist/secondsight/LabActivity.java. (Right-click on
com.nummist.secondsight, navigate to New | Class from the context menu,
enter LabActivity in the Name field, and click on Finish.)

3.	 Create res/menu/activity_lab.xml. (Right-click on the parent folder,
navigate to New | Android XML File from the context menu, enter
activity_lab in the File field, and click on Finish.)

Now, we have the skeleton of our project. Throughout the rest of this chapter,
we will edit several files to provide appropriate functionality and content.

Working with Camera Frames

[38]

Enabling camera and disk access in the
manifest
The AndroidManifest.xml (the manifest) file specifies an Android app's
requirements and components. Compared to the default manifest, the manifest
in Second Sight needs to do the following additional work:

•	 Ensure that the device has at least one camera.
•	 Get permission to use the camera.
•	 Get permission to write the files to the permanent storage.
•	 Restrict the screen orientation to landscape mode because OpenCV's

camera preview does not handle portrait mode well. For more description
over the issue and some attempted workarounds, see the StackOverflow
thread at http://answers.opencv.org/question/7143/mirror-image-
on-android-front-camera/. Also see the blog post by Yu Lu and the
comments posted by her readers at http://littlecheesecake.wordpress.
com/2012/03/12/display-orientation-issue-when-working-with-
opencv-on-android/.

•	 Register the second activity.

We can accomplish these tasks by editing the uses-permission, uses-feature,
and activity tags in the manifest.

For details about the Android manifest, see the official
documentation at http://developer.android.com/guide/
topics/manifest/manifest-intro.html.

Open AndroidManifest.xml, which is under the project's root directory. View it in
the source code mode by clicking on the tab labeled AndroidManifest.xml. Edit the
file by adding the highlighted code in the following snippet:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
 "http://schemas.android.com/apk/res/android"
 package="com.nummist.secondsight"
 android:versionCode="1"
 android:versionName="1.0">

Chapter 2

[39]

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.CAMERA" />
 <uses-permission android:name=
 "android.permission.WRITE_EXTERNAL_STORAGE" />

 <uses-feature android:name="android.hardware.camera" />
 <uses-feature android:name="android.hardware.camera.autofocus"
 android:required="false" />
 <uses-feature android:name="android.hardware.camera.flash"
 android:required="false" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme">
 <activity
 android:name="com.nummist.secondsight.CameraActivity"
 android:label="@string/app_name"
 android:screenOrientation="landscape">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name="com.nummist.secondsight.LabActivity"
 android:label="@string/app_name"
 android:screenOrientation="landscape">
 </activity>
 </application>
</manifest>

Working with Camera Frames

[40]

Creating menu and string resources
Our app's menus and localizable text are described in XML files. Identifiers in
these resource files are referenced by Java code, as we will see later.

For details about Android app resources, see the official documentation
at http://developer.android.com/guide/topics/
resources/index.html.

First, let's edit res/menu/activity_camera.xml so that it has the following
implementation, describing the menu items for CameraActivity:

<menu xmlns:android="http://schemas.android.com/apk/res/android" >
 <item
 android:id="@+id/menu_next_camera"
 android:orderInCategory="100"
 android:showAsAction="ifRoom|withText"
 android:title="@string/menu_next_camera"/>
 <item
 android:id="@+id/menu_take_photo"
 android:orderInCategory="100"
 android:showAsAction="always|withText"
 android:title="@string/menu_take_photo"/>
</menu>

Note that we use the android:showAsAction attribute to make menu items appear
in the app's top bar, as seen in the earlier screenshots.

Similarly, the menu items for LabActivity are described in res/menu/activity_
lab.xml, as follows:

<menu xmlns:android="http://schemas.android.com/apk/res/android" >
 <item
 android:id="@+id/menu_delete"
 android:orderInCategory="100"
 android:showAsAction="ifRoom|withText"
 android:title="@string/delete" />
 <item

Chapter 2

[41]

 android:id="@+id/menu_edit"
 android:orderInCategory="100"
 android:showAsAction="ifRoom|withText"
 android:title="@string/edit" />
 <item
 android:id="@+id/menu_share"
 android:orderInCategory="100"
 android:showAsAction="ifRoom|withText"
 android:title="@string/share" />
</menu>

Strings of user-readable text, used in various places in the app, are described in res/
values/strings.xml as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Second Sight</string>
 <string name="delete">Delete</string>
 <string name="edit">Edit</string>
 <string name="menu_next_camera">Next Cam</string>
 <string name="menu_take_photo">Take Photo</string>
 <string name="photo_delete_prompt_message">This photo is saved
 in your Gallery. Do you want to delete it?</string>
 <string name="photo_delete_prompt_title">Delete photo?</string>
 <string name="photo_error_message">Failed to save photo</string>
 <string name="photo_edit_chooser_title">Edit photo
 with…</string>
 <string name="photo_send_chooser_title">Share photo
 with…</string>
 <string name="photo_send_extra_subject">My photo from Second
 Sight</string>
 <string name="photo_send_extra_text">Check out my photo from the
 Second Sight app! http://nummist.com/opencv/</string>
 <string name="share">Share</string>
</resources>

Having defined these boilerplate resources, we can proceed to implementing our
app's functionality in Java.

Working with Camera Frames

[42]

Previewing and saving photos in
CameraActivity
Our main activity, CameraActivity, needs to do the following:

•	 On startup, use OpenCV Manager to ensure that the appropriate OpenCV
shared libraries are available. (For more information about OpenCV
Manager, refer back to the Building the OpenCV samples with Eclipse section
in Chapter 1, Setting Up OpenCV.)

•	 Display a live camera feed.
•	 Provide the following menu actions:

°° Switch the active camera (for a device that has multiple cameras).
°° Save a photo and insert it into MediaStore so that it is accessible to

apps such as Gallery. Immediately open the photo in LabActivity.

We will use OpenCV functionality wherever feasible, even though we could just use
the standard Android libraries to display a live camera feed, save a photo, and so on.

OpenCV provides an abstract class called CameraBridgeViewBase, which represents
a live camera feed. This class extends Android's SurfaceView class, so that its
instances can be part of the view hierarchy. Moreover, a CameraBridgeViewBase
instance can dispatch events to any listener that implements one of two interfaces,
either CvCameraViewListener or CvCameraViewListener2. Often, the listener will
be an activity, as is the case with CameraActivity.

The CvCameraViewListener and CvCameraViewListener2 interfaces provide
callbacks for handling the start and stop of a stream of camera input, and for
handling the capture of each frame. The two interfaces differ in terms of the image
format. CvCameraViewListener always receives an RGBA color frame, which is
passed as an instance of OpenCV's Mat class, a multidimensional array that may
store pixel data. CvCameraViewListener2 receives each frame as an instance
of OpenCV's CvCameraViewFrame class. From the passed CvCameraViewFrame,
we may get a Mat image in either RGBA color or grayscale format. Thus,
CvCameraViewListener2 is the more flexible interface and it is the one we
implement in CameraActivity.

Since CameraBridgeViewBase is an abstract class, we need an implementation.
OpenCV provides two implementations, JavaCameraView and NativeCameraView.
They are both Java classes but NativeCameraView is a Java wrapper around a
native C++ class. NativeCameraView tends to yield a higher frame rate, so it is
the implementation that we use in CameraActivity.

Chapter 2

[43]

To support interaction between OpenCV Manager and client apps, OpenCV
provides an abstract class called BaseLoaderCallback. This class declares a callback
method that is executed after OpenCV Manager ensures that the library is available.
Typically, this callback is the appropriate place to enable any other OpenCV objects
such as the camera view.

Now that we know something about the relevant OpenCV types, let's open
CameraActivity.java, and add the following declarations of our activity class
and its member variables:

For brevity, the code listings in this book omit package and import
statements. Eclipse should auto-generate package statements when
you create files and import statements when you declare variables.

public class CameraActivity extends FragmentActivity
 implements CvCameraViewListener2 {

 // A tag for log output.
 private static final String TAG = "MainActivity";

 // A key for storing the index of the active camera.
 private static final String STATE_CAMERA_INDEX = "cameraIndex";

 // The index of the active camera.
 private int mCameraIndex;

 // Whether the active camera is front-facing.
 // If so, the camera view should be mirrored.
 private boolean mIsCameraFrontFacing;

 // The number of cameras on the device.
 private int mNumCameras;

 // The camera view.
 private CameraBridgeViewBase mCameraView;

 // Whether the next camera frame should be saved as a photo.
 private boolean mIsPhotoPending;

 // A matrix that is used when saving photos.
 private Mat mBgr;

Working with Camera Frames

[44]

 // Whether an asynchronous menu action is in progress.
 // If so, menu interaction should be disabled.
 private boolean mIsMenuLocked;

 // The OpenCV loader callback.
 private BaseLoaderCallback mLoaderCallback =
 new BaseLoaderCallback(this) {
 @Override
 public void onManagerConnected(final int status) {
 switch (status) {
 case LoaderCallbackInterface.SUCCESS:
 Log.d(TAG, "OpenCV loaded successfully");
 mCameraView.enableView();
 mBgr = new Mat();
 break;
 default:
 super.onManagerConnected(status);
 break;
 }
 }
 };

The concept of states (varying modes of operation) is central to Android activities
and CameraActivity is no exception. When the user selects a menu action to switch
the camera or take a photo, the effects are not just instantaneous. Actions affect
the work that must be done in subsequent frames. Some of this work is even done
asynchronously. Thus, many member variables of CameraActivity are dedicated
to tracking the logical state of the activity.

Understanding asynchronous event collisions in Android
Many Android library methods such as startActivity() do their
work asynchronously. While the work is being carried out, the user
may continue to use the interface, potentially initiating other work
that is logically inconsistent with the first work.
For example, suppose that startActivity() is called when a
certain button is clicked. If the user presses the button multiple times,
quickly, then more than one new activity may be pushed onto the
activity stack. This behavior is probably not what the developer or
user intended. A solution would be to disable the clicked button until
its activity resumes. Similar considerations affect our menu system in
CameraActivity.

Chapter 2

[45]

Like any Android activity, CameraActivity also implements several callbacks that
are executed in response to standard state changes, namely, changes in the activity
lifecycle. Let's start by looking at the onCreate() and onSaveInstanceState()
callbacks. These methods, respectively, are called at the beginning and end of the
activity lifecycle. The onCreate() callback typically sets up the activity's view
hierarchy, initializes data, and reads any saved data that may have been written
last time onSaveInstanceState() was called.

For details about the Android activity lifecycle, see
the official documentation at http://developer.
android.com/reference/android/app/Activity.
html#ActivityLifecycle.

In CameraActivity, the onCreate() callback sets up the camera view and initializes
data about the cameras. It also reads any previous data about the active camera that
has been written by onSaveInstanceState(). Here are the implementations of the
two methods:

 @SuppressLint("NewApi")
 @Override
 protected void onCreate(final Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 final Window window = getWindow();
 window.addFlags(
 WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

 if (savedInstanceState != null) {
 mCameraIndex = savedInstanceState.getInt(
 STATE_CAMERA_INDEX, 0);
 } else {
 mCameraIndex = 0;
 }

 if (Build.VERSION.SDK_INT >=
 Build.VERSION_CODES.GINGERBREAD) {
 CameraInfo cameraInfo = new CameraInfo();
 Camera.getCameraInfo(mCameraIndex, cameraInfo);
 mIsCameraFrontFacing =
 (cameraInfo.facing ==
 CameraInfo.CAMERA_FACING_FRONT);

Working with Camera Frames

[46]

 mNumCameras = Camera.getNumberOfCameras();
 } else { // pre-Gingerbread
 // Assume there is only 1 camera and it is rear-facing.
 mIsCameraFrontFacing = false;
 mNumCameras = 1;
 }

 mCameraView = new NativeCameraView(this, mCameraIndex);
 mCameraView.setCvCameraViewListener(this);
 setContentView(mCameraView);
 }

 public void onSaveInstanceState(Bundle savedInstanceState) {
 // Save the current camera index.
 savedInstanceState.putInt(STATE_CAMERA_INDEX, mCameraIndex);

 super.onSaveInstanceState(savedInstanceState);
 }

Note that certain data about the device's cameras are unavailable on Froyo (the
oldest Android version that we support). To avoid runtime errors, we check Build.
VERSION.SDK_INT before using the new APIs. Also, to avoid seeing unnecessary
warnings in Eclipse, we add the @SuppressLint("NewApi") annotation to the
declaration of onCreate().

Several other activity lifecycle callbacks are also relevant to OpenCV. When
the activity goes into the background (the onPause() callback) or finishes (the
onDestroy() callback), the camera view should be disabled. When the activity
comes into the foreground (the onResume() callback), the OpenCVLoader should
attempt to initialize the library. (Remember that the camera view is enabled once
the library is successfully initialized.) Here are the implementations of the
relevant callbacks:

 @Override
 public void onPause() {
 if (mCameraView != null) {
 mCameraView.disableView();
 }
 super.onPause();
 }

Chapter 2

[47]

 @Override
 public void onResume() {
 super.onResume();
 OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_3,
 this, mLoaderCallback);
 mIsMenuLocked = false;
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 if (mCameraView != null) {
 mCameraView.disableView();
 }
 }

Note that, in onResume(), we re-enable menu interaction. We do this in case it was
previously disabled while pushing a child activity onto the stack.

At this point, our activity has the necessary code to set up a camera view and get
data about the device's cameras. Next, we should implement the menu actions that
enable the user to switch the camera and request that a photo be taken. Again,
there are relevant activity lifecycle callbacks such as onCreateOptionsMenu() and
onOptionsItemSelected(). In onCreateOptionsMenu(), we load our menu from
its resource file. Then, if the device has only one camera, we remove the Next Cam
menu item. In onOptionsItemSelected(), we handle the Next Cam menu item by
cycling to the next camera index and then recreating the activity. (Remember that
the camera index is saved in onSaveInstanceState() and restored in onCreate(),
where it is used to construct the camera view.) We handle the Take Photo menu item
by setting a Boolean value, which we check in an OpenCV callback later. In either
case, we block any further handling of menu options until the current handling is
complete (for example, until onResume()). Here is the implementation of the two
menu-related callbacks:

@Override
 public boolean onCreateOptionsMenu(final Menu menu) {
 getMenuInflater().inflate(R.menu.activity_camera, menu);
 if (mNumCameras < 2) {
 // Remove the option to switch cameras, since there is
 // only 1.
 menu.removeItem(R.id.menu_next_camera);
 }

Working with Camera Frames

[48]

 return true;
 }

 @Override
 public boolean onOptionsItemSelected(final MenuItem item) {
 if (mIsMenuLocked) {
 return true;
 }
 switch (item.getItemId()) {
 case R.id.menu_next_camera:
 mIsMenuLocked = true;

 // With another camera index, recreate the activity.
 mCameraIndex++;
 if (mCameraIndex == mNumCameras) {
 mCameraIndex = 0;
 }
 recreate();

 return true;
 case R.id.menu_take_photo:
 mIsMenuLocked = true;

 // Next frame, take the photo.
 mIsPhotoPending = true;

 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
 }

Next, let's look at the callbacks that are required by the CvCameraViewListener2
interface. CameraActivity does not need to do anything when the camera feed
starts (the onCameraViewStarted() callback) or stops (the onCameraViewStopped()
callback), but it may need to perform some operations whenever a new frame arrives
(the onCameraFrame() callback). First, if the user has requested a photo, one should
be taken. (The photo capture functionality is actually quite complex, so we put it in
a helper method, takePhoto(), which we will examine later in this section.)

Chapter 2

[49]

Second, if the active camera is front-facing (that is, user-facing), the camera view
should be mirrored (horizontally flipped), since people are accustomed to looking
at themselves in a mirror, rather than from a camera's true perspective. OpenCV's
Core.flip() method can be used to mirror the image. The arguments to, Core.
flip() are a source Mat, a destination Mat (which may be the same as the source),
and an integer indicating whether the flip should be vertical (0), horizontal (1), or
both (-1). Here is the implementation of the CvCameraViewListener2 callbacks:

 @Override
 public void onCameraViewStarted(final int width,
 final int height) {
 }

 @Override
 public void onCameraViewStopped() {
 }

 @Override
 public Mat onCameraFrame(final CvCameraViewFrame inputFrame) {
 final Mat rgba = inputFrame.rgba();

 if (mIsPhotoPending) {
 mIsPhotoPending = false;
 takePhoto(rgba);
 }

 if (mIsCameraFrontFacing) {
 // Mirror (horizontally flip) the preview.
 Core.flip(rgba, rgba, 1);
 }

 return rgba;
 }

Now, finally, we are arriving at the function that will capture users' hearts and
minds, or at least, their photos. As an argument, takePhoto() receives an RGBA
color Mat that was read from the camera. We want to write this image to a disk,
using an OpenCV method called Highgui.imwrite(). This method requires an
image in BGR or BGRA color format, so first we must convert the RGBA image,
using the Improc.cvtColor() method. Besides saving the image to a disk, we also
want to enable other apps to find it via Android's MediaStore. To do so, we generate
some metadata about the photo and then, using a ContentResolver object, we insert
this metadata into MediaStore and get back a URI.

Working with Camera Frames

[50]

If we encounter a failure to save or insert the photo or insert it, we give up and call
a helper method, onTakePhotoFailed(), which unlocks menu interaction and
shows an error message to the user. On the other hand, if everything succeeds, we
start LabActivity and pass it the data it needs to locate the saved photo. Here is the
implementation of takePhoto() and onTakePhotoFailed():

 private void takePhoto(final Mat rgba) {

 // Determine the path and metadata for the photo.
 final long currentTimeMillis = System.currentTimeMillis();
 final String appName = getString(R.string.app_name);
 final String galleryPath =
 Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_PICTURES).toString();
 final String albumPath = galleryPath + "/" + appName;
 final String photoPath = albumPath + "/" +
 currentTimeMillis + ".png";
 final ContentValues values = new ContentValues();
 values.put(MediaStore.MediaColumns.DATA, photoPath);
 values.put(Images.Media.MIME_TYPE,
 LabActivity.PHOTO_MIME_TYPE);
 values.put(Images.Media.TITLE, appName);
 values.put(Images.Media.DESCRIPTION, appName);
 values.put(Images.Media.DATE_TAKEN, currentTimeMillis);

 // Ensure that the album directory exists.
 File album = new File(albumPath);
 if (!album.isDirectory() && !album.mkdirs()) {
 Log.e(TAG, "Failed to create album directory at " +
 albumPath);
 onTakePhotoFailed();
 return;
 }

 // Try to create the photo.
 Imgproc.cvtColor(rgba, mBgr, Imgproc.COLOR_RGBA2BGR, 3);
 if (!Highgui.imwrite(photoPath, mBgr)) {
 Log.e(TAG, "Failed to save photo to " + photoPath);
 onTakePhotoFailed();
 }
 Log.d(TAG, "Photo saved successfully to " + photoPath);

 // Try to insert the photo into the MediaStore.
 Uri uri;

Chapter 2

[51]

 try {
 uri = getContentResolver().insert(
 Images.Media.EXTERNAL_CONTENT_URI, values);
 } catch (final Exception e) {
 Log.e(TAG, "Failed to insert photo into MediaStore");
 e.printStackTrace();

 // Since the insertion failed, delete the photo.
 File photo = new File(photoPath);
 if (!photo.delete()) {
 Log.e(TAG, "Failed to delete non-inserted photo");
 }

 onTakePhotoFailed();
 return;
 }

 // Open the photo in LabActivity.
 final Intent intent = new Intent(this, LabActivity.class);
 intent.putExtra(LabActivity.EXTRA_PHOTO_URI, uri);
 intent.putExtra(LabActivity.EXTRA_PHOTO_DATA_PATH,
 photoPath);
 startActivity(intent);
 }

 private void onTakePhotoFailed() {
 mIsMenuLocked = false;

 // Show an error message.
 final String errorMessage =
 getString(R.string.photo_error_message);
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Toast.makeText(CameraActivity.this, errorMessage,
 Toast.LENGTH_SHORT).show();
 }
 });
 }
}

For now, that's everything we want CameraActivity to do. We will expand this
class in the following chapters, by adding more menu actions and handling them
in the onCameraFrame() callback.

Working with Camera Frames

[52]

Deleting, editing, and sharing photos in
LabActivity
Our second activity, LabActivity, needs to do the following:

•	 From the previous activity, receive a URI and file path for a PNG file
•	 Display the image that is contained in the PNG file
•	 Provide the following menu actions:

°° Show a confirmation dialog. On confirmation, delete the PNG file
and finish the activity.

°° Show an intent chooser so that the user may select an app to edit
the PNG file. (The URI is passed with the EDIT intent.)

°° Show a chooser so that the user may select an app to share or send
the PNG file. (The URI is passed with the SEND intent.)

All of this functionality relies on standard Android library classes, notably the
Intent class. Intents are the means by which activities communicate with each
other. An activity receives an intent from its parent (the activity that created it)
and may receive intents from its children (activities it created) as they finish. The
communicating activities may be in different applications. An intent may contain
key-value pairs called extras.

For details about intents, see the official documentation at http://
developer.android.com/guide/components/intents-
filters.html.

LabActivity declares several public constants that are used by it and
CameraActivity. These constants relate to images' metadata and to the extra keys
that are used when CameraActivity and LabActivity communicate via intents.
LabActivity also has member variables that are used to store the URI and path
values, extracted from the extras. The onCreate() method does the work
of extracting these values and setting up an image view that shows the PNG file.
The implementation is as follows:

public class LabActivity extends Activity {

 public static final String PHOTO_MIME_TYPE = "image/png";

 public static final String EXTRA_PHOTO_URI =
 "com.nummist.secondsight.LabActivity.extra.PHOTO_URI";
 public static final String EXTRA_PHOTO_DATA_PATH =
 "com.nummist.secondsight.LabActivity.extra.PHOTO_DATA_PATH";

Chapter 2

[53]

 private Uri mUri;
 private String mDataPath;

 @Override
 protected void onCreate(final Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 final Intent intent = getIntent();
 mUri = intent.getParcelableExtra(EXTRA_PHOTO_URI);
 mDataPath = intent.getStringExtra(EXTRA_PHOTO_DATA_PATH);

 final ImageView imageView = new ImageView(this);
 imageView.setImageURI(mUri);

 setContentView(imageView);
 }

The menu logic is simpler in LabActivity than in CameraActivity. All the menu
actions of LabActivity result in a dialog or chooser being shown, and since a
dialog or chooser blocks the rest of the user interface, we do not have to worry
about blocking conflicting input ourselves. We just load the menu's resource file
in onCreateOptionsMenu() and call a helper method for each possible action in
onOptionsItemSelected(). The implementation is as follows:

 @Override
 public boolean onCreateOptionsMenu(final Menu menu) {
 getMenuInflater().inflate(R.menu.activity_lab, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(final MenuItem item) {
 switch (item.getItemId()) {
 case R.id.menu_delete:
 deletePhoto();
 return true;
 case R.id.menu_edit:
 editPhoto();
 return true;
 case R.id.menu_share:
 sharePhoto();
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
 }
}

Working with Camera Frames

[54]

Let's examine the menu actions' helper methods one-by-one, starting with
deletePhoto(). Most of this method's implementation is the boilerplate code to
set up a confirmation dialog. The dialog's confirmation button has an onClick()
callback that deletes the image from the MediaStore and finishes the activity.
The implementation of deletePhoto() is as follows:

 /*
 * Show a confirmation dialog. On confirmation, the photo is
 * deleted and the activity finishes.
 */
 private void deletePhoto() {
 final AlertDialog.Builder alert = new AlertDialog.Builder(
 LabActivity.this);
 alert.setTitle(R.string.photo_delete_prompt_title);
 alert.setMessage(R.string.photo_delete_prompt_message);
 alert.setCancelable(false);
 alert.setPositiveButton(R.string.delete,
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(final DialogInterface dialog,
 final int which) {
 getContentResolver().delete(
 Images.Media.EXTERNAL_CONTENT_URI,
 MediaStore.MediaColumns.DATA + "=?",
 new String[] { mDataPath });
 finish();
 }
 });
 alert.setNegativeButton(android.R.string.cancel, null);
 alert.show();
 }

The next helper method, editPhoto(), sets up an intent and starts a chooser for
that intent, using the Intent.createChooser() method. The user may cancel this
chooser or use it to select an activity. If an activity is selected, editPhoto() starts it.
The implementation is as follows:

 /*
 * Show a chooser so that the user may pick an app for editing
 * the photo.
 */

Chapter 2

[55]

 private void editPhoto() {
 final Intent intent = new Intent(Intent.ACTION_EDIT);
 intent.setDataAndType(mUri, PHOTO_MIME_TYPE);
 startActivity(Intent.createChooser(intent,
 getString(R.string.photo_edit_chooser_title)));
 }

The last helper method, sharePhoto(), is similar to editPhoto(), though the intent
is configured differently. The implementation is as follows:

 /*
 * Show a chooser so that the user may pick an app for sending
 * the photo.
 */
 private void sharePhoto() {
 final Intent intent = new Intent(Intent.ACTION_SEND);
 intent.setType(PHOTO_MIME_TYPE);
 intent.putExtra(Intent.EXTRA_STREAM, mUri);
 intent.putExtra(Intent.EXTRA_SUBJECT,
 getString(R.string.photo_send_extra_subject));
 intent.putExtra(Intent.EXTRA_TEXT,
 getString(R.string.photo_send_extra_text));
 startActivity(Intent.createChooser(intent,
 getString(R.string.photo_send_chooser_title)));
 }
}

That's the last functionality we need for a basic photo capture and sharing
application. Now, we should be able to build and run Second Sight.

Summary
We have used OpenCV to create and show a live camera feed, and to save still
images from this feed. We have also seen how to integrate the camera feed's
lifecycle into the Android activity lifecycle, and how to share saved images
across the boundaries of activities and applications.

The next chapter will expand our Second Sight app by adding various
image filtering options to the menus of CameraActivity and LabActivity.

Applying Image Effects
For this chapter, our goal is to add several image filters to Second Sight. These
filters rely on various OpenCV functions for manipulating matrices through splitting,
merging, arithmetic operations, or applying lookup tables for complex functions.
Certain filters also rely on a mathematics library called Apache Commons Math.

The completed Eclipse project for this chapter can be downloaded
from my website at http://nummist.com/opencv/5206_03.zip.

Adding files to the project
We need to add several files to our Eclipse project in order to create new types (that
is, interfaces and classes) and to link to a new library, Apache Commons Math. The
following are the new types that we want to create:

•	 com.nummist.secondsight.filters.Filter: It is an interface representing
a filter that can be applied to an image.

•	 com.nummist.secondsight.filters.NoneFilter: It is a class representing
a filter that does nothing. It implements the Filter interface.

•	 com.nummist.secondsight.filters.convolution.StrokeEdgesFilter:
It is a class representing a filter that draws heavy-black lines atop edge
regions. It implements the Filter interface.

•	 com.nummist.secondsight.filters.curve.CurveFilter: It is a class
representing a filter that may apply a separate curvilinear transformation
to each color channel in an image. (It is like Curves in Photoshop or Gimp.)
It implements the Filter interface.

Applying Image Effects

[58]

•	 com.nummist.secondsight.filters.curve.CrossProcessCurveFilter:
It is a subclass of CurveFilter. It emulates a photo film processing technique
called cross-processing.

•	 com.nummist.secondsight.filters.curve.PortraCurveFilter: It is
a subclass of CurveFilter. It emulates a brand of photo film called Kodak
Portra.

•	 com.nummist.secondsight.filters.curve.ProviaCurveFilter: It is a
subclass of CurveFilter. It emulates a brand of photo film called Fuji Provia.

•	 com.nummist.secondsight.filters.curve.VelviaCurveFilter: It is a
subclass of CurveFilter. It emulates a brand of photo film called Fuji Velvia.

•	 com.nummist.secondsight.filters.curve.RecolorCMVFilter: It is a
class representing a filter that linearly combines color channels, such that
the image appears to be mixed from a limited palette of cyan, magenta, and
white. (It is like a specialization of Channel Mixer in Photoshop or Gimp.) It
implements the Filter interface.

•	 com.nummist.secondsight.filters.curve.RecolorRCFilter: It is a
class representing a filter that linearly combines color channels, such that the
image appears to be mixed from a limited palette of red and cyan. (It is like
a specialization of Channel Mixer in Photoshop or Gimp.) It implements the
Filter interface.

•	 com.nummist.secondsight.filters.curve.RecolorRGVFilter: It is a
class representing a filter that linearly combines color channels, such that
the image appears to be mixed from a limited palette of red, green, and
white. (It is like a specialization of Channel Mixer in Photoshop or Gimp.)
It implements the Filter interface.

Create the appropriate packages and Java files under the src directory in the
Package Explorer pane. (Right-click on the src directory and then choose New |
Package, New | Interface, or New | Class from the context menu.)

Now, let's get the Apache Commons Math library. Download the latest version from
http://commons.apache.org/proper/commons-math/download_math.cgi.
Unzip the download file. Inside the unzipped folder, find a file with a name such as
commons-math3-3.2.jar. (The version numbers may differ.) Copy this file into the
libs folder of the Eclipse project.

Chapter 3

[59]

After all the necessary files are added, your Package Explorer pane should look
similar to the one in the following screenshot:

Defining the Filter interface
For our purposes, a filter is any transformation that can be applied to a source image
and destination image. (The source and destination may be the same image or
different images.) Our application needs to treat the filters interchangeably, so it is a
good idea to formalize this definition of a filter's interface. Let's edit Filter.java so
that the Filter interface is defined as follows:

public interface Filter {
 public abstract void apply(final Mat src, final Mat dst);
}

Applying Image Effects

[60]

As far as our app is concerned, the apply method is the only thing that our filters
must have in common. Everything else is the implementation details.

The most basic implementation of the Filter interface is the NoneFilter class. As
the name suggests, NoneFilter does no filtering at all. Let's implement it as follows:

public class NoneFilter implements Filter {
 @Override
 public void apply(final Mat src, final Mat dst) {
 // Do nothing.
 }
}

NoneFilter is just a convenient stand-in for other filters. We use it when we want to
turn off filtering but still have an object that conforms to the Filter interface.

Mixing color channels
As we saw in Chapter 2, Working with Camera Frames, OpenCV stores image data in
a matrix of type Mat, which is like a two-dimensional array. The columns and rows
(specified by the first and second indices, respectively) correspond to the y and x
pixel coordinates in the image. The elements are the pixel values. A pixel value may
be represented by one number (in the case of a grayscale image) or multiple numbers
(in the case of a color image). Each of these numbers is said to belong to a channel. A
grayscale image may have just one channel, value (brightness), which is abbreviated
as V. A color image may have as many as four channels—for example, red, green,
blue, and alpha (transparency), which constitute the RGBA format. Other useful
formats for color images include RGB (red, green, blue), HSV (hue, saturation,
value), and L*a*b (luminosity, green-versus-magenta, yellow-versus-blue). In this
book, we focus on RGB and RGBA images, but OpenCV supports other formats too.
As we saw in the previous chapter, we can convert between color formats with the
Imgproc.cvtColor static method.

Chapter 3

[61]

If we separated the channels of an RGB image matrix, we could make three different
grayscale image matrices, each having one channel. We could then apply some
matrix arithmetic to these single-channel matrices, and merge the results to get
another RGB image matrix. The resulting RGB image would look as if it were mixed
from a different color palette than the original image was. This technique is called
channel mixing. For an RGB image, we may define channel mixing in pseudocode
as follows:

dst.b = funcB(src.b, src.g, src.r)
dst.g = funcG(src.b, src.g, src.r)
dst.r = funcR(src.b, src.g, src.r)

That is to say, each channel in the destination image is mapped from a function of
any or all channels in the source image. We will not restrict our definition to any
particular kind of function. However, let's note the visual effects of the following
operations, which I find useful when working with RGB images:

•	 An average or weighted average appears to tint the output channel.
For example, in pseudocode, if dst.b = 0.5 * src.r + 0.5 * src.b,
image regions that were originally bluish become reddish or purplish.

•	 A min operation appears to desaturate the output channel. For example, in
pseudocode, if dst.b = min(src.r, src.g, src.b), blues become gray.

•	 A max operation appears to desaturate the output channel's complementary
color. For example, in pseudocode, if dst.b = max(src.r, src.g, src.b),
yellows become gray. (Yellow is blue's complement, that is white minus blue
is yellow, when we are dealing with the RGB color.)

With these effects in mind, let's look at the OpenCV functionality that we would
use to produce them. OpenCV's Core class provides all the relevant functionality
as static methods. The Core.split(Mat m, List<Mat> mv) method is responsible
for channel splitting. As arguments, it takes a source matrix and a list of destination
matrices. Each channel from the source is copied into a single-channel matrix in the
destination list. If necessary, the destination list is populated with new matrices.

Applying Image Effects

[62]

After using the Core.split method, we can apply matrix operations to the
individual channels. The Core.addWeighted(Mat src1, double alpha, Mat
src2, double beta, double gamma, Mat dst) method can be used to take
a weighted average of two channels. The first four arguments are weights and
source matrices. The fifth argument is a constant that is added to the result. The last
argument is the destination matrix. In pseudocode, dst = alpha * src1 + beta *
src2 + gamma.

Generally, with methods in OpenCV, it is safe to pass a destination
matrix that is also a source matrix. Of course, in this case, the values in
the source matrix are overwritten. This is called an in-place operation.

The Core.min(Mat src1, Mat src2, Mat dst) and Core.max(Mat src1, Mat
src2, Mat dst) methods each take a pair of source matrices and a destination
matrix. These methods perform a per-element min or max.

Finally, the converse of Core.split is Core.merge(List<Mat> mv, Mat m).
We can use it to recreate a multichannel image from the split channels.

To do a practical example of channel mixing, let's open RecolorRCFilter.java and
write the following implementation of the class:

public class RecolorRCFilter implements Filter {
 private final ArrayList<Mat> mChannels = new ArrayList<Mat>(4);
 @Override
 public void apply(final Mat src, final Mat dst) {
 Core.split(src, mChannels);
 final Mat g = mChannels.get(1);
 final Mat b = mChannels.get(2);
 // dst.g = 0.5 * src.g + 0.5 * src.b
 Core.addWeighted(g, 0.5, b, 0.5, 0.0, g);
 // dst.b = dst.g
 mChannels.set(2, g);
 Core.merge(mChannels, dst);
 }
}

Chapter 3

[63]

The effect of this filter is to turn greens and blues to cyan, leaving a limited color
palette of red and cyan. It resembles the color palette of certain old movies and old
computer games.

As a member variable, RecolorRCFilter has a list of four matrices. Whenever
the apply() method is called, this list is populated with the four channels of the
source matrix. (We assume that the source and destination matrices each have four
channels, in RGBA order.) We get the green and blue channels (at indices 1 and 2 in
the list), take their average, and assign the result back to the same channels. Last, we
merge the four channels into the destination matrix, which may be the same as the
source matrix.

The code for our other two channel mixing filters is similar, so, for brevity, we will
omit most of it. Just note that RecolorRGVFilter relies on the following operations:

// dst.b = min(dst.r, dst.g, dst.b)
Core.min(b, r, b);
Core.min(b, g, b);

The effect of this filter is to desaturate blues, leaving a limited color palette of red,
green, and white. It, too, resembles the color palette of certain old movies and old
computer games.

Similarly, RecolorCMVFilter relies on the following operations:

// dst.b = max(dst.r, dst.g, dst.b)
Core.max(b, r, b);
Core.max(b, g, b);

The effect of this filter is to desaturate yellows, leaving a limited color palette of cyan,
magenta, and white. Nobody ever made a movie in this color palette (yet!), but it will
be a familiar sight to gamers of the 1980s.

Arbitrary channel mixing functions, in RGB, tend to produce effects that are bold
and stylized, not subtle. This is true of our examples here. Next, let's look at a family
of filters that are easier to parameterize for subtle, natural-looking results.

Applying Image Effects

[64]

Making subtle color shifts with curves
When looking at a scene, we may pick up subtle cues from the way colors shift
between different image regions. For example, outdoors on a clear day, shadows
have a slightly blue tint due to the ambient light reflected from the blue sky, while
highlights have a slightly yellow tint because they are in direct sunlight. When we
see bluish shadows and yellowish highlights in a photograph, we may get a "warm
and sunny" feeling. This effect may be natural, or it may be exaggerated by a filter.

Curve filters are useful for this type of manipulation. A curve filter is parameterized
by sets of control points. For example, there might be one set of control points for
each color channel. Each control point is a pair of numbers representing the input
and output values for the given channel. For example, the pair (128, 180) means
that a value of 128 in the given color channel is brightened to become a value of 180.
Values between the control points are interpolated along a curve (hence the name,
curve filter). In Gimp, a curve with the control points (0, 0), (128, 180), and
(255, 255) is visualized as shown in the following screenshot:

The x axis shows the input values ranging from 0 to 255, while the y axis shows the
output values over the same range. Besides showing the curve, the graph shows the
line y = x (no change) for comparison.

Chapter 3

[65]

Curvilinear interpolation helps to ensure that color transitions are smooth, not
abrupt. Thus, a curve filter makes it relatively easy to create subtle, natural-looking
effects. We may define an RGB curve filter in pseudocode as follows:

dst.b = funcB(src.b) where funcB interpolates pointsB
dst.g = funcG(src.g) where funcG interpolates pointsG
dst.r = funcR(src.r) where funcR interpolates pointsR

For now, we will work with RGB and RGBA curve filters, and with channel values
that range from 0 to 255. If we want such a curve filter to produce natural-looking
results, we should use the following rules of thumb:

•	 Every set of control points should include (0, 0) and (255, 255). This
way, black remains black, white remains white, and the image does not
appear to have an overall tint.

•	 As the input value increases, the output value should always increase too.
(Their relationship should be monotonically increasing.) This way, shadows
remain shadows, highlights remain highlights, and the image does not
appear to have inconsistent lighting or contrast.

OpenCV does not provide curvilinear interpolation functions but the Apache
Commons Math library does. (See Adding files to the project, earlier in this chapter,
for instructions on setting up Apache Commons Math.) This library provides
interfaces called UnivariateInterpolator and UnivariateFunction, which
have implementations including LinearInterpolator, SplineInterpolator,
LinearFunction, and PolynomialSplineFunction. (Splines are a type of curve.)
UnivariateInterpolator has an instance method, interpolate(double[] xval,
double[] yval), which takes arrays of input and output values for the control
points and returns a UnivariateFunction object. The UnivariateFunction object
can provide interpolated values via the method value(double x).

API documentation for Apache Commons Math is available at
http://commons.apache.org/proper/commons-math/apidocs/.

These interpolation functions are computationally expensive. We do not want to run
them again and again for every channel of every pixel and every frame. Fortunately,
we do not have to. There are only 256 possible input values per channel, so it is
practical to precompute all possible output values and store them in a lookup table.
For OpenCV's purposes, a lookup table is a Mat object whose indices represent input
values and whose elements represent output values. The lookup can be performed
using the static method Core.LUT(Mat src, Mat lut, Mat dst). In pseudocode,
dst = lut[src]. The number of elements in lut should match the range of values in
src, and the number of channels in lut should match the number of channels in src.

Applying Image Effects

[66]

Now, using Apache Commons Math and OpenCV, let's implement a curve filter for
RGBA images with channel values ranging from 0 to 255. Open CurveFilter.java
and write the following code:

public class CurveFilter implements Filter {
 // The lookup table.
 private final Mat mLUT = new MatOfInt();
 public CurveFilter(
 final double[] vValIn, final double[] vValOut,
 final double[] rValIn, final double[] rValOut,
 final double[] gValIn, final double[] gValOut,
 final double[] bValIn, final double[] bValOut) {
 // Create the interpolation functions.
 UnivariateFunction vFunc = newFunc(vValIn, vValOut);
 UnivariateFunction rFunc = newFunc(rValIn, rValOut);
 UnivariateFunction gFunc = newFunc(gValIn, gValOut);
 UnivariateFunction bFunc = newFunc(bValIn, bValOut);
 // Create and populate the lookup table.
 mLUT.create(256, 1, CvType.CV_8UC4);
 for (int i = 0; i < 256; i++) {
 final double v = vFunc.value(i);
 final double r = rFunc.value(v);
 final double g = gFunc.value(v);
 final double b = bFunc.value(v);
 mLUT.put(i, 0, r, g, b, i); // alpha is unchanged
 }
 }
 @Override
 public void apply(final Mat src, final Mat dst) {
 // Apply the lookup table.
 Core.LUT(src, mLUT, dst);
 }
 private UnivariateFunction newFunc(final double[] valIn,
 final double[] valOut) {
 UnivariateInterpolator interpolator;
 if (valIn.length > 2) {
 interpolator = new SplineInterpolator();
 } else {
 interpolator = new LinearInterpolator();
 }
 return interpolator.interpolate(valIn, valOut);
 }
}

Chapter 3

[67]

CurveFilter stores the lookup table in a member variable. The constructor method
populates the lookup table based on the four sets of control points that are taken
as arguments. As well as a set of control points for each of the RGB channels, the
constructor also takes a set of control points for the image's overall brightness, just
for convenience. A helper method, newFunc, creates an appropriate interpolation
function (linear or spline) for each set of control points. Then, we iterate over the
possible input values and populate the lookup table.

The apply method is a one-liner. It simply uses the precomputed lookup table
with the given source and destination matrices.

CurveFilter can be subclassed to define a filter with a specific set of control points.
For example, let's open PortraCurveFilter.java and write the following code:

public class PortraCurveFilter extends CurveFilter {
 public PortraCurveFilter() {
 super(
 new double[] { 0, 23, 157, 255 }, // vValIn
 new double[] { 0, 20, 173, 255 }, // vValOut
 new double[] { 0, 69, 213, 255 }, // rValIn
 new double[] { 0, 69, 218, 255 }, // rValOut
 new double[] { 0, 52, 189, 255 }, // gValIn
 new double[] { 0, 47, 196, 255 }, // gValOut
 new double[] { 0, 41, 231, 255 }, // bValIn
 new double[] { 0, 46, 228, 255 }); // bValOut
 }
}

This filter brightens the image, makes shadows cooler (more blue), and makes
highlights warmer (more yellow). It produces flattering skin tones and tends to
make things look sunnier and cleaner. It resembles the color characteristics of a
brand of photo film called Kodak Portra, which was often used for portraits.

The code for our other three channel mixing filters is similar. The
ProviaCurveFilter class uses the following arguments for its control points:

 new double[] { 0, 255 }, // vValIn
 new double[] { 0, 255 }, // vValOut
 new double[] { 0, 59, 202, 255 }, // rValIn
 new double[] { 0, 54, 210, 255 }, // rValOut
 new double[] { 0, 27, 196, 255 }, // gValIn
 new double[] { 0, 21, 207, 255 }, // gValOut
 new double[] { 0, 35, 205, 255 }, // bValIn
 new double[] { 0, 25, 227, 255 }); // bValOut

Applying Image Effects

[68]

The effect of this filter is to increase the contrast between shadows and highlights,
and make the image slightly cool (bluish) throughout most tones. Sky, water, and
shade are accentuated more than sun. It resembles a brand of photo film called Fuji
Provia, which was often used for landscapes.

The VelviaCurveFilter class uses the following arguments for its control points:

 new double[] { 0, 128, 221, 255 }, // vValIn
 new double[] { 0, 118, 215, 255 }, // vValOut
 new double[] { 0, 25, 122, 165, 255 }, // rValIn
 new double[] { 0, 21, 153, 206, 255 }, // rValOut
 new double[] { 0, 25, 95, 181, 255 }, // gValIn
 new double[] { 0, 21, 102, 208, 255 }, // gValOut
 new double[] { 0, 35, 205, 255 }, // bValIn
 new double[] { 0, 25, 227, 255 }); // bValOut

The effect of this filter is to produce deep shadows and vivid colors. It resembles a
brand of photo film called Fuji Velvia, which was often used to produce landscapes,
with azure skies in daytime or crimson clouds at sunset.

Finally, the CrossProcessCurveFilter class uses the following arguments for its
control points:

 new double[] { 0, 255 }, // vValIn
 new double[] { 0, 255 }, // vValOut
 new double[] { 0, 56, 211, 255 }, // rValIn
 new double[] { 0, 22, 255, 255 }, // rValOut
 new double[] { 0, 56, 208, 255 }, // gValIn
 new double[] { 0, 39, 226, 255 }, // gValOut
 new double[] { 0, 255 }, // bValIn
 new double[] { 20, 235 }); // bValOut

The effect is a strong, blue or greenish-blue tint in shadows and a strong, yellow or
greenish-yellow tint in highlights. It resembles a film processing technique called
cross-processing, which was sometimes used to produce grungy-looking photos of
fashion models, pop stars, and so on.

For a good discussion of how to emulate various brands of photo
film, see Petteri Sulonen's blog at http://www.prime-junta.
net/pont/How_to/100_Curves_and_Films/_Curves_and_
films.html. The control points that we use are based on examples
given in this article.

Chapter 3

[69]

Curve filters are a convenient tool for manipulating color and contrast, but they are
limited insofar as each destination pixel is affected by only a single input pixel. Next,
we will examine a more flexible family of filters, which enable each destination pixel
to be affected by a neighborhood of input pixels.

Processing a neighborhood of pixels
with convolution filters
For a convolution filter, the channel values at each output pixel are a weighted
average of the corresponding channel values in a neighborhood of input pixels.
We can put the weights in a matrix, called a convolution matrix or kernel.
For example, consider the following kernel:

{{ 0, -1, 0},
 {-1, 4, -1},
 { 0, -1, 0}}

The central element is the weight for the source pixel that has the same indices
as of the destination pixel. Other elements represent weights for the rest of the
neighborhood of input pixels. Here, we are considering a 3 x 3 neighborhood.
However, OpenCV supports kernels with any square and odd-numbered
dimensions. This particular kernel is a type of edge-finding filter called a Laplacian
filter. For a neighborhood of flat (same) color, it yields a black output pixel. For a
neighborhood of high contrast, it yields a bright output pixel.

Let's consider another kernel where the central element is greater by 1:

{{ 0, -1, 0},
 {-1, 5, -1},
 { 0, -1, 0}}

This is equivalent to taking the result of a Laplacian filter and then adding it to
the original image. Instead of edge-finding, we get edge-sharpening. That is, edge
regions get brighter while the rest of the image remains unchanged.

Beware big kernels
The bigger the kernel, the more expensive the computation. Kernels
larger than 5 x 5 (that is, 25 input pixels per output pixel) are probably
not practical for live video processing on typical Android devices
today.

Applying Image Effects

[70]

OpenCV provides many static methods for convolution filters that use certain
popular kernels. The following are some examples:

•	 Imgproc.blur(Mat src, Mat dst, Size ksize): It blurs the image
by taking a simple average of a neighborhood of size ksize. For example,
if ksize is new Size(5, 5), then the kernel is the following:
{{0.04, 0.04, 0.04, 0.04, 0.04},
 {0.04, 0.04, 0.04, 0.04, 0.04},
 {0.04, 0.04, 0.04, 0.04, 0.04},
 {0.04, 0.04, 0.04, 0.04, 0.04},
 {0.04, 0.04, 0.04, 0.04, 0.04}}

•	 Laplacian(Mat src, Mat dst, int ddepth, int ksize, double
scale, double delta): It is a Laplacian edge-finding filter, as described
previously. Results are multiplied by a constant (the scale argument) and
added to another constant (the delta argument).

Moreover, OpenCV provides a static method, Imgproc.filter2D(Mat src, Mat
dst, int ddepth, Mat kernel), which enables us to specify our own kernels. For
learning purposes, we will take this approach. The ddepth argument determines the
numeric type of the destination's data. This argument may be any of the following:

•	 -1: It means the same numeric type as in the source.
•	 CvType.CV_16S: It means 16-bit signed integers.
•	 CvType.CV_32F: It means 32-bit floats.
•	 CvType.CV_64F: It means 64-bit floats.

Let's use a convolution filter as part of a more complex filter that draws heavy, black
lines atop edge regions in the image. To achieve this effect, we also rely on two more
static methods from OpenCV:

•	 Core.bitwise_not(Mat src, Mat dst): This method inverts the image's
brightness and colors, such that white becomes black, red becomes cyan,
and so on. It is useful to us because our convolution filter will produce white
edges on a black field, whereas we want the opposite: black edges on a white
field.

•	 Core.multiply(Mat src1, Mat src2, Mat dst, double scale): This
method blends a pair of images by multiplying their values together. The
resulting values are scaled by a constant (the scale argument). For example,
scale can be used to normalize the product to the [0, 255] range. For our
purposes, Core.multiply can serve to superimpose the black edges on the
original image.

Chapter 3

[71]

The following is the implementation of the blackened edge effect in
StrokeEdgesFilter:

public class StrokeEdgesFilter implements Filter {
 private final Mat mKernel = new MatOfInt(
 0, 0, 1, 0, 0,
 0, 1, 2, 1, 0,
 1, 2, -16, 2, 1,
 0, 1, 2, 1, 0,
 0, 0, 1, 0, 0
);
 private final Mat mEdges = new Mat();
 @Override
 public void apply(final Mat src, final Mat dst) {
 Imgproc.filter2D(src, mEdges, -1, mKernel);
 Core.bitwise_not(mEdges, mEdges);
 Core.multiply(src, mEdges, dst, 1.0/255.0);
 }
}

We will look at some other complex uses of convolution filters in subsequent
chapters.

Next, let's add a user interface for enabling and disabling all our filters.

Adding the filters to CameraActivity
We will let the user have up to one channel mixing filter, one curve filter, and one
convolution filter active at any time. For each filter category, we will provide a menu
button that lets the user cycle through the available filters, or no filter.

Let's start by editing the relevant resource files to define the menu buttons and their
text. We should add the following strings in res/values/strings.xml:

<string name="menu_next_curve_filter">Next Curve</string>
<string name="menu_next_mixer_filter">Next Mixer</string>
<string name="menu_next_convolution_filter">Next Kernel</string>

Then, we should edit res/menu/activity_camera.xml as follows:

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/menu_next_curve_filter"
 android:orderInCategory="100"
 android:showAsAction="ifRoom|withText"
 android:title="@string/menu_next_curve_filter" />

Applying Image Effects

[72]

 <item
 android:id="@+id/menu_next_mixer_filter"
 android:orderInCategory="100"
 android:showAsAction="ifRoom|withText"
 android:title="@string/menu_next_mixer_filter" />
 <item
 android:id="@+id/menu_next_convolution_filter"
 android:orderInCategory="100"
 android:showAsAction="ifRoom|withText"
 android:title="@string/menu_next_convolution_filter" />
 <item
 android:id="@+id/menu_next_camera"
 android:orderInCategory="100"
 android:showAsAction="ifRoom|withText"
 android:title="@string/menu_next_camera" />
 <item
 android:id="@+id/menu_take_photo"
 android:orderInCategory="100"
 android:showAsAction="always|withText"
 android:title="@string/menu_take_photo" />
</menu>

To store the information about the available and selected filters, we need several
new variables in CameraActivity. The available filters are just Filter[] arrays.
The indices of the selected filters are stored in the same way as the index of the
selected camera device, that is, by serializing and deserializing (saving and restoring)
an integer to/from an Android Bundle object. The following are the variable
declarations that we must add to CameraActivity:

// Keys for storing the indices of the active filters.
private static final String STATE_CURVE_FILTER_INDEX =
 "curveFilterIndex";
private static final String STATE_MIXER_FILTER_INDEX =
 "mixerFilterIndex";
private static final String STATE_CONVOLUTION_FILTER_INDEX =
 "convolutionFilterIndex";
// The filters.
private Filter[] mCurveFilters;
private Filter[] mMixerFilters;
private Filter[] mConvolutionFilters;
// The indices of the active filters.
private int mCurveFilterIndex;
private int mMixerFilterIndex;
private int mConvolutionFilterIndex;

Chapter 3

[73]

Since our Filter implementations rely on classes in OpenCV they cannot be
instantiated until the OpenCV library is loaded. Thus, our BaseLoaderCallback
object is responsible for initializing the Filter[] arrays. We should edit it as follows:

private BaseLoaderCallback mLoaderCallback =
 new BaseLoaderCallback(this) {
 @Override
 public void onManagerConnected(final int status) {
 switch (status) {
 case LoaderCallbackInterface.SUCCESS:
 Log.d(TAG, "OpenCV loaded successfully");
 mCameraView.enableView();
 mBgr = new Mat();
 mCurveFilters = new Filter[] {
 new NoneFilter(),
 new PortraCurveFilter(),
 new ProviaCurveFilter(),
 new VelviaCurveFilter(),
 new CrossProcessCurveFilter()
 };
 mMixerFilters = new Filter[] {
 new NoneFilter(),
 new RecolorRCFilter(),
 new RecolorRGVFilter(),
 new RecolorCMVFilter()
 };
 mConvolutionFilters = new Filter[] {
 new NoneFilter(),
 new StrokeEdgesFilter()
 };
 break;
 default:
 super.onManagerConnected(status);
 break;
 }
 }
};

The onCreate method can initialize the selected filter indices or load them from the
savedInstanceState argument. Let's edit the method as follows:

protected void onCreate(final Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 final Window window = getWindow();
 window.addFlags(

Applying Image Effects

[74]

 WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
 if (savedInstanceState != null) {
 mCameraIndex = savedInstanceState.getInt(
 STATE_CAMERA_INDEX, 0);
 mCurveFilterIndex = savedInstanceState.getInt(
 STATE_CURVE_FILTER_INDEX, 0);
 mMixerFilterIndex = savedInstanceState.getInt(
 STATE_MIXER_FILTER_INDEX, 0);
 mConvolutionFilterIndex = savedInstanceState.getInt(
 STATE_CONVOLUTION_FILTER_INDEX, 0);
 } else {
 mCameraIndex = 0;
 mCurveFilterIndex = 0;
 mMixerFilterIndex = 0;
 mConvolutionFilterIndex = 0;
 }
// ...
}

Similarly, the onSaveInstanceState method should save the selected filter
indices to the savedInstanceState argument. Let's edit the method as follows:

public void onSaveInstanceState(Bundle savedInstanceState) {
 // Save the current camera index.
 savedInstanceState.putInt(STATE_CAMERA_INDEX, mCameraIndex);
 // Save the current filter indices.
 savedInstanceState.putInt(STATE_CURVE_FILTER_INDEX,
 mCurveFilterIndex);
 savedInstanceState.putInt(STATE_MIXER_FILTER_INDEX,
 mMixerFilterIndex);
 savedInstanceState.putInt(STATE_CONVOLUTION_FILTER_INDEX,
 mConvolutionFilterIndex);
 super.onSaveInstanceState(savedInstanceState);
}

To make each of the new menu items functional, we just need to add
some boilerplate code that updates the relevant filter index. Let's edit the
onOptionsItemSelected method as follows:

public boolean onOptionsItemSelected(final MenuItem item) {
 if (mIsMenuLocked) {
 return true;
 }
 switch (item.getItemId()) {
 case R.id.menu_next_curve_filter:

Chapter 3

[75]

 mCurveFilterIndex++;
 if (mCurveFilterIndex == mCurveFilters.length) {
 mCurveFilterIndex = 0;
 }
 return true;
 case R.id.menu_next_mixer_filter:
 mMixerFilterIndex++;
 if (mMixerFilterIndex == mMixerFilters.length) {
 mMixerFilterIndex = 0;
 }
 return true;
 case R.id.menu_next_convolution_filter:
 mConvolutionFilterIndex++;
 if (mConvolutionFilterIndex ==
 mConvolutionFilters.length) {
 mConvolutionFilterIndex = 0;
 }
 return true;
 // ...
 default:
 return super.onOptionsItemSelected(item);
 }
}

Now, in the onCameraFrame callback method, we should apply each selected filter to
the image. The following is the new implementation:

public Mat onCameraFrame(final CvCameraViewFrame inputFrame) {
 final Mat rgba = inputFrame.rgba();
 // Apply the active filters.
 mCurveFilters[mCurveFilterIndex].apply(rgba, rgba);
 mMixerFilters[mMixerFilterIndex].apply(rgba, rgba);
 mConvolutionFilters[mConvolutionFilterIndex].apply(
 rgba, rgba);
 if (mIsPhotoPending) {
 mIsPhotoPending = false;
 takePhoto(rgba);
 }
 if (mIsCameraFrontFacing) {
 // Mirror (horizontally flip) the preview.
 Core.flip(rgba, rgba, 1);
 }
 return rgba;
}

Applying Image Effects

[76]

That's all! Run the app, select filters, take some photos, and share them. As an
example of how the app should look, here is a screenshot with RecolorRCFilter
and StrokeEdgesFilter enabled:

Summary
Second Sight now has some functionality that is more interesting than just reading
and sharing camera data. Several filters can be selected and combined to give a
stylized or vintage look to our photos. These filters are efficient enough to apply to
live video too, so we use them in the preview mode as well as the saved photos.

Although photo filters are fun, they are only the most basic use of OpenCV. Before
we can truly say we have made a computer vision application, we need to make the
app respond differently depending on what it is seeing. This goal will be the focus of
the next chapter.

Recognizing and
Tracking Images

Our goal in this chapter is to add image tracking to Second Sight. We will train the
app to recognize certain arbitrary, rectangular images—for example, paintings—and
to determine their pose in a 2D projection. The app will draw an outline around a
tracked image when it appears in the camera feed. All of the tracking and drawing
is done using OpenCV rather than other Android libraries.

The complete Eclipse project for this chapter can be downloaded from
my website at http://nummist.com/opencv/5206_04.zip.

Adding files to the project
For this chapter, we need to add just one new class, com.nummist.secondsight.
filters.ar.ImageDetectionFilter. We also need to add some resource files, that
is, the images that we want to track. Download the images from http://nummist.
com/opencv/5206_04_images.zip, unzip them, and put them in the project's res/
drawable-nodpi folder.

Recognizing and Tracking Images

[78]

These images are famous paintings by a Dutch artist named Vincent van Gogh and
an Indian artist named Basawan. Our tracker will work well with these images
because they contain many high-contrast details, without much repetition of
patterns. Thus, there is something distinctive to track in most of the parts of each
image. For example, here is one of Basawan's paintings, Akbar Hunting with Cheetahs:

Chapter 4

[79]

And here is one of Van Gogh's paintings, The Starry Night:

Understanding image tracking
Imagine the following conversation:

Person A: I can't find my print of The Starry Night. Do you know where it is?

Person B: What does it look like?

For a computer, or for someone who is naive about Western art, Person B's question
is quite reasonable. Before we can use our sense of sight (or other senses) to track
something, we need to have sensed that thing before. (Failing that, we at least need
a good description of what we will sense.) For computer vision, we must provide
a reference image that will be compared with the live camera image or scene. If
the target has complex geometry or moving parts, we might need to provide many
reference images to account for different perspectives and poses. However, for our
examples using famous paintings, we will assume that the target is rectangular
and rigid.

Recognizing and Tracking Images

[80]

For this chapter's purposes, let's say that the goal of tracking is to determine how
our rectangular target is posed in 3D. With this information, we can draw an outline
around our target. In the final 2D image, the outline will be a quadrilateral (not
necessarily a rectangle), since the target could be skewed away from the camera.

There are four major steps in this type of tracking:

1.	 Find features in the reference image and scene. A feature is a point that is
likely to maintain a similar appearance when viewed from different distances
or angles. For example, corners often have this characteristic.

2.	 Find descriptors for each set of features. A descriptor is a vector of data
about a feature. Some features are not suitable for generating a descriptor,
so an image has fewer descriptors than features.

3.	 Find matches between the two sets of descriptors. If we imagine the
descriptors as points in a multidimensional space, a match is defined in
terms of some measure of distance between points. Descriptors that are
close enough to each other are considered a match.

4.	 Find the homography between a reference image and a matching image in
the scene. A homography is a 3D transformation that would be necessary to
line up the two projected 2D images (or come as close as possible to lining
them up). It is calculated based on the two images' matching feature points.
By applying the homography to a rectangle, we can get an outline of the
tracked object.

There are many different techniques for performing each of the first three steps.
OpenCV provides relevant classes called FeatureDetector, DescriptorExtractor,
and DescriptorMatcher, each supporting several techniques. We will use
a combination of techniques that OpenCV calls FeatureDetector.STAR,
DescriptorExtractor.FREAK, and DescriptorMatcher.BRUTEFORCE_HAMMING.
This combination is relatively fast and robust. Unlike some alternatives, it is scale-
invariant and rotation-invariant, meaning that the target can be tracked from
various distances and perspectives. Also, unlike some other alternatives, it is not
patented so it is free for use even in commercial applications.

For a mathematical description of FREAK and its merits relative
to other descriptor extractors, see the paper FREAK: Fast Retina
Keypoint by Alahi, Ortiz, and Vandergheynst. An electronic version
of the paper is available at http://infoscience.epfl.ch/
record/175537/files/2069.pdf.

Chapter 4

[81]

Writing an image tracking filter
We will write our tracker as an implementation of the Filter interface,
which we created in the previous chapter. The tracker's class name will be
ImageDetectionFilter. As member variables, this class has instances of
FeatureDetector, DescriptorExtractor, and DescriptorMatcher, as well as
several Mat instances that store image data and intermediate or final results of tracking
calculations. Some of these results are stored because they do not change from frame
to frame. Others are stored simply because it is more efficient than recreating the Mat
instance for each frame. The declarations of the class and member variables are
as follows:

public class ImageDetectionFilter implements Filter {

 private final Mat mReferenceImage;
 private final MatOfKeyPoint mReferenceKeypoints =
 new MatOfKeyPoint();
 private final Mat mReferenceDescriptors = new Mat();
 // CVType defines the color depth, number of channels, and
 // channel layout in the image.
 private final Mat mReferenceCorners =
 new Mat(4, 1, CvType.CV_32FC2);

 private final MatOfKeyPoint mSceneKeypoints =
 new MatOfKeyPoint();
 private final Mat mSceneDescriptors = new Mat();
 private final Mat mCandidateSceneCorners =
 new Mat(4, 1, CvType.CV_32FC2);
 private final Mat mSceneCorners = new Mat(4, 1,
 CvType.CV_32FC2);
 private final MatOfPoint mIntSceneCorners = new MatOfPoint();

 private final Mat mGraySrc = new Mat();
 private final MatOfDMatch mMatches = new MatOfDMatch();

 private final FeatureDetector mFeatureDetector =
 FeatureDetector.create(FeatureDetector.STAR);
 private final DescriptorExtractor mDescriptorExtractor =
 DescriptorExtractor.create(DescriptorExtractor.FREAK);
 private final DescriptorMatcher mDescriptorMatcher =
 DescriptorMatcher.create(
 DescriptorMatcher.BRUTEFORCE_HAMMING);

 private final Scalar mLineColor = new Scalar(0, 255, 0);

Recognizing and Tracking Images

[82]

We want a convenient way to make an image tracker for any arbitrary image. We
can package images with our app as so-called drawable resources, which can be
loaded by any Android Context subclass such as Activity. Thus, we provide
a constructor, ImageDetectionFilter(final Context context, final int
referenceImageResourceID), which loads the reference image with the given
Context and resource identifier. RGBA and grayscale versions of the image are
stored in the member variables. The image's corner points are also stored, and so
are its features and descriptors. Its code is as follows:

 public ImageDetectionFilter(final Context context,
 final int referenceImageResourceID) throws IOException {

 mReferenceImage = Utils.loadResource(context,
 referenceImageResourceID,
 Highgui.CV_LOAD_IMAGE_COLOR);

 final Mat referenceImageGray = new Mat();
 Imgproc.cvtColor(mReferenceImage, referenceImageGray,
 Imgproc.COLOR_BGR2GRAY);
 Imgproc.cvtColor(mReferenceImage, mReferenceImage,
 Imgproc.COLOR_BGR2RGBA);

 mReferenceCorners.put(0, 0,
 new double[] {0.0, 0.0});
 mReferenceCorners.put(1, 0,
 new double[] {referenceImageGray.cols(), 0.0});
 mReferenceCorners.put(2, 0,
 new double[] {referenceImageGray.cols(),
 referenceImageGray.rows()});
 mReferenceCorners.put(3, 0,
 new double[] {0.0, referenceImageGray.rows()});

 mFeatureDetector.detect(referenceImageGray,
 mReferenceKeypoints);
 mDescriptorExtractor.compute(referenceImageGray,
 mReferenceKeypoints, mReferenceDescriptors);
 }

Chapter 4

[83]

Recall that the Filter interface declares a method, apply(final Mat src,
final Mat dst). Our implementation of this method applies the feature detector,
descriptor extractor, and descriptor matcher to a grayscale version of the source
image. Then, we call helper functions that find the four corners of the tracked target
(if any), and draw the quadrilateral outline. The code is as follows:

 @Override
 public void apply(final Mat src, final Mat dst) {
 Imgproc.cvtColor(src, mGraySrc, Imgproc.COLOR_RGBA2GRAY);

 mFeatureDetector.detect(mGraySrc, mSceneKeypoints);
 mDescriptorExtractor.compute(mGraySrc, mSceneKeypoints,
 mSceneDescriptors);
 mDescriptorMatcher.match(mSceneDescriptors,
 mReferenceDescriptors, mMatches);

 findSceneCorners();
 draw(src, dst);
 }

The findSceneCorners() helper method is a bigger block of code, but a lot of it
simply iterates through the matches to assemble a list of the best ones. If all the
matches are really bad (as indicated by a large distance value), we assume that the
target is not in the scene and we clear any previous estimate of its corner locations.
If the matches are not really bad, but are not really good either, we assume that the
target is somewhere in the scene but we keep our previous estimate of its corner
locations. This policy helps to stabilize the estimate of the corner locations. Finally,
if the matches are good and there are at least four of them, we find the homography
and use it to update the estimated corner locations.

For a mathematical description of finding the homography, see the
official OpenCV documentation at http://docs.opencv.org/
modules/calib3d/doc/camera_calibration_and_3d_
reconstruction.html?highlight=findhomography#findho
mography.

Recognizing and Tracking Images

[84]

The implementation of findSceneCorners() is as follows:

 private void findSceneCorners() {

 List<DMatch> matchesList = mMatches.toList();
 if (matchesList.size() < 4) {
 // There are too few matches to find the homography.
 return;
 }

 List<KeyPoint> referenceKeypointsList =
 mReferenceKeypoints.toList();
 List<KeyPoint> sceneKeypointsList =
 mSceneKeypoints.toList();

 // Calculate the max and min distances between keypoints.
 double maxDist = 0.0;
 double minDist = Double.MAX_VALUE;
 for(DMatch match : matchesList) {
 double dist = match.distance;
 if (dist < minDist) {
 minDist = dist;
 }
 if (dist > maxDist) {
 maxDist = dist;
 }
 }

 // The thresholds for minDist are chosen subjectively
 // based on testing. The unit is not related to pixel
 // distances; it is related to the number of failed tests
 // for similarity between the matched descriptors.
 if (minDist > 50.0) {
 // The target is completely lost.
 // Discard any previously found corners.
 mSceneCorners.create(0, 0, mSceneCorners.type());
 return;
 } else if (minDist > 25.0) {
 // The target is lost but maybe it is still close.
 // Keep any previously found corners.
 return;
 }

Chapter 4

[85]

 // Identify "good" keypoints based on match distance.
 ArrayList<Point> goodReferencePointsList =
 new ArrayList<Point>();
 ArrayList<Point> goodScenePointsList =
 new ArrayList<Point>();
 double maxGoodMatchDist = 1.75 * minDist;
 for(DMatch match : matchesList) {
 if (match.distance < maxGoodMatchDist) {
 goodReferencePointsList.add(
 referenceKeypointsList.get(match.trainIdx).pt);
 goodScenePointsList.add(
 sceneKeypointsList.get(match.queryIdx).pt);
 }
 }

 if (goodReferencePointsList.size() < 4 ||
 goodScenePointsList.size() < 4) {
 // There are too few good points to find the homography.
 return;
 }

 MatOfPoint2f goodReferencePoints = new MatOfPoint2f();
 goodReferencePoints.fromList(goodReferencePointsList);

 MatOfPoint2f goodScenePoints = new MatOfPoint2f();
 goodScenePoints.fromList(goodScenePointsList);

 Mat homography = Calib3d.findHomography(
 goodReferencePoints, goodScenePoints);
 Core.perspectiveTransform(mReferenceCorners,
 mCandidateSceneCorners, homography);

 mCandidateSceneCorners.convertTo(mIntSceneCorners,
 CvType.CV_32S);
 if (Imgproc.isContourConvex(mIntSceneCorners)) {
 mCandidateSceneCorners.copyTo(mSceneCorners);
 }
 }

Recognizing and Tracking Images

[86]

Our other helper method, draw(Mat src, Mat dst), starts by copying the
source image to the destination. Then, if the target is not being tracked, we draw a
thumbnail of it in a corner of the image, so that the user knows what to seek. If the
target is being tracked, we draw an outline around it. The code is as follows:

 protected void draw(Mat src, Mat dst) {

 if (dst != src) {
 src.copyTo(dst);
 }

 if (mSceneCorners.height() < 4) {
 // The target has not been found.

 // Draw a thumbnail of the target in the upper-left
 // corner so that the user knows what it is.

 int height = mReferenceImage.height();
 int width = mReferenceImage.width();
 int maxDimension = Math.min(dst.width(),
 dst.height()) / 2;
 double aspectRatio = width / (double)height;
 if (height > width) {
 height = maxDimension;
 width = (int)(height * aspectRatio);
 } else {
 width = maxDimension;
 height = (int)(width / aspectRatio);
 }
 Mat dstROI = dst.submat(0, height, 0, width);
 Imgproc.resize(mReferenceImage, dstROI, dstROI.size(),
 0.0, 0.0, Imgproc.INTER_AREA);

 return;
 }

 // Outline the found target in green.
 Core.line(dst, new Point(mSceneCorners.get(0, 0)),
 new Point(mSceneCorners.get(1, 0)), mLineColor, 4);
 Core.line(dst, new Point(mSceneCorners.get(1, 0)),
 new Point(mSceneCorners.get(2, 0)), mLineColor, 4);

Chapter 4

[87]

 Core.line(dst, new Point(mSceneCorners.get(2, 0)),
 new Point(mSceneCorners.get(3, 0)), mLineColor, 4);
 Core.line(dst, new Point(mSceneCorners.get(3,0)),
 new Point(mSceneCorners.get(0, 0)), mLineColor, 4);
 }
}

Although ImageDetectionFilter has a more complicated implementation than
our previous filters, it still has a simple interface. Just instantiate it with a drawable
resource, and then apply the filter to source and destination images as needed.

Adding the tracker filters to
CameraActivity
To use instances of ImageDetectionFilter, we make the same kind of
modifications to CameraActivity as we did for other filters in the previous
chapter. Recall that all our filter classes implement the Filter interface so that
CameraActivity can use them all in similar ways.

First, we need to define some text (for the menu button) in res/values/strings.
xml:

 <string name="menu_next_image_detection_filter">Next
 Tracker</string>

Next, we need to define the menu button itself in res/menu/activity_camera.xml:

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/menu_next_image_detection_filter"
 android:orderInCategory="100"
 android:showAsAction="ifRoom|withText"
 android:title="@string/menu_next_image_detection_filter" />
 <!-- ... -->
</menu>

The rest of our modifications pertain to CameraActivity.java. We need to add new
member variables to keep track of the selected image detection filter:

 // Keys for storing the indices of the active filters.
 private static final String STATE_IMAGE_DETECTION_FILTER_INDEX =
 "imageDetectionFilterIndex";
 private static final String STATE_CURVE_FILTER_INDEX =

Recognizing and Tracking Images

[88]

 "curveFilterIndex";
 private static final String STATE_MIXER_FILTER_INDEX =
 "mixerFilterIndex";
 private static final String STATE_CONVOLUTION_FILTER_INDEX =
 "convolutionFilterIndex";

 // The filters.
 private Filter[] mImageDetectionFilters;
 private Filter[] mCurveFilters;
 private Filter[] mMixerFilters;
 private Filter[] mConvolutionFilters;

 // The indices of the active filters.
 private int mImageDetectionFilterIndex;
 private int mCurveFilterIndex;
 private int mMixerFilterIndex;
 private int mConvolutionFilterIndex;

Once OpenCV is initialized, we need to instantiate all of the image detection filters
and put them in an array. For brevity, I have added just two image detection filters
as examples but you can easily modify the following code to support tracking of
more images, or different images:

 public void onManagerConnected(final int status) {
 switch (status) {
 case LoaderCallbackInterface.SUCCESS:
 Log.d(TAG, "OpenCV loaded successfully");
 mCameraView.enableView();
 mBgr = new Mat();

 final Filter starryNight;
 try {
 starryNight = new ImageDetectionFilter(
 CameraActivity.this,
 R.drawable.starry_night);
 } catch (IOException e) {
 Log.e(TAG, "Failed to load drawable: " +
 "starry_night");
 e.printStackTrace();
 break;
 }

Chapter 4

[89]

 mImageDetectionFilters = new Filter[] {
 new NoneFilter(),
 starryNight,
 akbarHunting
 };

 // ...
 }
 }
 };

When the activity is created, we need to load any saved data about the selected
image detection filter:

 protected void onCreate(final Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 final Window window = getWindow();
 window.addFlags(
 WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

 if (savedInstanceState != null) {
 mCameraIndex = savedInstanceState.getInt(
 STATE_CAMERA_INDEX, 0);
 mImageDetectionFilterIndex = savedInstanceState.getInt(
 STATE_IMAGE_DETECTION_FILTER_INDEX, 0);
 mCurveFilterIndex = savedInstanceState.getInt(
 STATE_CURVE_FILTER_INDEX, 0);
 mMixerFilterIndex = savedInstanceState.getInt(
 STATE_MIXER_FILTER_INDEX, 0);
 mConvolutionFilterIndex = savedInstanceState.getInt(
 STATE_CONVOLUTION_FILTER_INDEX, 0);
 } else {
 mCameraIndex = 0;
 mImageDetectionFilterIndex = 0;
 mCurveFilterIndex = 0;
 mMixerFilterIndex = 0;
 mConvolutionFilterIndex = 0;
 }

 // ...
 }

Recognizing and Tracking Images

[90]

Conversely, before the activity is destroyed, we need to save data about the selected
image detection filter:

 public void onSaveInstanceState(Bundle savedInstanceState) {
 // Save the current camera index.
 savedInstanceState.putInt(STATE_CAMERA_INDEX, mCameraIndex);

 // Save the current filter indices.
 savedInstanceState.putInt(STATE_IMAGE_DETECTION_FILTER_INDEX,
 mImageDetectionFilterIndex);
 savedInstanceState.putInt(STATE_CURVE_FILTER_INDEX,
 mCurveFilterIndex);
 savedInstanceState.putInt(STATE_MIXER_FILTER_INDEX,
 mMixerFilterIndex);
 savedInstanceState.putInt(STATE_CONVOLUTION_FILTER_INDEX,
 mConvolutionFilterIndex);

 super.onSaveInstanceState(savedInstanceState);
 }

When the Next Tracker menu button is pressed, the selected image detection filter
needs to be updated:

 public boolean onOptionsItemSelected(final MenuItem item) {
 if (mIsMenuLocked) {
 return true;
 }
 switch (item.getItemId()) {
 case R.id.menu_next_image_detection_filter:
 mImageDetectionFilterIndex++;
 if (mImageDetectionFilterIndex ==
 mImageDetectionFilters.length) {
 mImageDetectionFilterIndex = 0;
 }
 return true;
 // ...
 default:
 return super.onOptionsItemSelected(item);
 }
 }

Chapter 4

[91]

Finally, when the camera captures a frame, the selected image detection filter needs
to be applied to the frame. To ensure that other filters do not interfere with the image
detection, it is important to apply the image detection filter first:

 public Mat onCameraFrame(final CvCameraViewFrame inputFrame) {
 final Mat rgba = inputFrame.rgba();

 // Apply the active filters.
 if (mImageDetectionFilters != null) {
 mImageDetectionFilters[mImageDetectionFilterIndex].apply(
 rgba, rgba);
 }
 if (mCurveFilters != null) {
 mCurveFilters[mCurveFilterIndex].apply(rgba, rgba);
 }
 if (mMixerFilters != null) {
 mMixerFilters[mMixerFilterIndex].apply(rgba, rgba);
 }
 if (mConvolutionFilters != null) {
 mConvolutionFilters[mConvolutionFilterIndex].apply(
 rgba, rgba);
 }

 if (mIsPhotoPending) {
 mIsPhotoPending = false;
 takePhoto(rgba);
 }

 if (mIsCameraFrontFacing) {
 // Mirror (horizontally flip) the preview.
 Core.flip(rgba, rgba, 1);
 }

 return rgba;
 }

Recognizing and Tracking Images

[92]

That's all! Print the target images or display them on-screen. Then, run the app, select
an appropriate image detection filter, and point the camera at the target. Depending
on your Android device, you might need to hold it still for a second or two in
order for the camera to focus on the target. Then, you should see the target
outlined in green. For example, see the outline around The Starry Night in the
following screenshot:

Summary
The Second Sight app can see now! At least, it can recognize any image from a
predefined set and can draw a quadrilateral around that image. To a certain extent,
this feature is robust with respect to scale, rotation, and skew. For example, the
image can be tracked from various distances and angles of view.

Although we only added a single class in this chapter, we covered a lot of OpenCV
functionality. Next, we will step back and consider how to integrate this OpenCV
functionality with other types of interactive graphics. We will build a small game
atop image recognition filters of Second Sight.

Combining Image Tracking
with 3D Rendering

Our goal in this chapter is to combine image tracking with 3D rendering. We will
modify our existing image tracker so that it fully determines the target's position and
rotation in 3D. Then, using Android SDK's implementation of OpenGL ES, we will
draw a 3D cube sitting atop the tracked image. This is a case of augmented reality
(AR), meaning that we are superimposing a virtual object (the cube) on a specific
part of a real scene.

The complete Eclipse project for this chapter can be downloaded from
my website at http://nummist.com/opencv/5206_05.zip.

Adding files to the project
For this chapter, we will modify our existing ImageDetectionFilter class.
We will also add files for the following new classes and interfaces:

•	 com.nummist.secondsight.ARCubeRenderer: A class representing
the rendering logic for a cube that sits atop a tracked, real-world object.
The class implements the GLSurfaceView.Renderer interface from
the Android standard library. The projection matrix is determined by
a CameraProjectionAdapter instance, and the cube's pose matrix is
determined by an ARFilter instance, as described later.

•	 com.nummist.secondsight.adapters.CameraProjectionAdapter:
A class representing the relationship between a physical camera and
a projection matrix. The projection matrix may be fetched in either
OpenCV or OpenGL format.

Combining Image Tracking with 3D Rendering

[94]

•	 com.nummist.secondsight.filters.ar.ARFilter: An interface
representing a filter that captures the position and rotation of a real-world
object as an OpenGL matrix. We will modify ImageDetectionFilter to
implement this interface.

•	 com.nummist.secondsight.filters.ar.NoneARFilter: A class
representing a filter that does nothing. It extends the NoneFilter class and
implements the ARFilter interface. We use NoneARFilter when we want
to turn off filtering but still have an object that conforms to the ARFilter
interface.

Together, these types support the rendering of a virtual 3D environment that
is consistent with certain properties of the real video camera and scene.

Defining the ARFilter interface
Given a source image, our previous filters just produced a destination image. Now,
we also want to produce data about the pose (position and rotation) of something
that may be visible in the source image. For OpenGL's purposes, a pose is expressed
as an array of 16 floating point numbers, representing a 4 x 4 transformation matrix.
Thus, we may define the ARFilter interface as follows:

If you are unfamiliar with vector algebra and matrix algebra, as they
apply to 3D geometry, you might find parts of this chapter hard to
follow. Roughly speaking, you can imagine a transformation matrix as
a table containing values that are based on the three coordinates of a
3D position and on trigonometric functions of the three angles of a 3D
rotation. Two transformations can be applied consecutively by matrix
multiplication. For a primer on these topics, see the online tutorial
Vector Math for 3D Computer Graphics at http://chortle.ccsu.
edu/vectorlessons/vectorindex.html.

public interface ARFilter extends Filter {
 public float[] getGLPose();
}

When the pose matrix is unknown, getGLPose() should return null.

Chapter 5

[95]

The most basic implementation of the ARFilter interface is the NoneARFilter class.
NoneARFilter does not actually find the pose matrix. Instead, the getGLPose()
method always returns null, as we can see in the following code:

public class NoneARFilter extends NoneFilter implements ARFilter {
 @Override
 public float[] getGLPose() {
 return null;
 }
}

The NoneARFilter class, similar to its parent class NoneFilter, is just a convenient
stand-in for other filters. We use NoneARFilter when we want to turn off filtering
but still have an object that conforms to the ARFilter interface.

Building projection matrices in
CameraProjectionAdapter
Here is an exercise for sightseers. Choose a famous photo that was taken at a
recognizable location, somewhere that should still look similar today. Travel to that
site and explore it until you know how the photographer set up the shot. Where was
the camera positioned and how was it rotated?

If you found an answer, and if you are sure of it, you must have already known
which lens or zoom setting the photographer used. Without that information, you
could not have narrowed down the feasible camera poses to the one, true pose.

We face a similar problem when trying to determine the pose of a photographed
object relative to a monocular (single-lens) camera. To find a unique solution, we
first need to know the camera's horizontal and vertical field of view, and horizontal
and vertical resolution in pixels.

Fortunately, we can get these data via the android.hardware.Camera.Parameters
class. Our CameraProjectionAdapter class will allow client code to provide a
Camera.Parameters object and then get a projection matrix in either OpenCV
or OpenGL format.

Combining Image Tracking with 3D Rendering

[96]

Unfortunately, on some devices, the data provided by Camera.
Parameters are misleading or just plain wrong.
On a device with a zoom lens, the horizontal and vertical fields of
view may be based on the lens's widest (1x) zoom setting. For advice
on finding fields of view based on the current zoom setting, see the
following StackOverflow thread at http://stackoverflow.
com/questions/3261776/determine-angle-of-view-of-
smartphone-camera.
On some devices, the fields of view are reported as 360 degrees or
other invalid/incorrect values. For example, the Sony Xperia Arc
may report 360 degree fields of view.
As an alternative to relying on Camera.Parameters, we could
require the user to calibrate the camera at runtime. OpenCV
provides calibration functions that require the user to take a picture
of a chessboard. We do not cover these functions in this book but
you can read about them in the official documentation at http://
docs.opencv.org/doc/tutorials/calib3d/camera_
calibration/camera_calibration.html or in other OpenCV
books such as OpenCV 2 Computer Vision Application Programming
Cookbook (Packt Publishing), by Robert Laganière.

As member variables, CameraProjection stores all the data that it needs to construct
the projection matrices. It also stores the matrices themselves, and Boolean flags to
indicate whether the matrices are dirty (whether they need to be reconstructed the
next time that client code fetches them). Let's write the following declaration of the
class and member variables:

public class CameraProjectionAdapter {

 float mFOVY = 43.6f; // 30mm equivalent
 float mFOVX = 65.4f; // 30mm equivalent
 int mHeightPx = 640;
 int mWidthPx = 480;
 float mNear = 1f;
 float mFar = 10000f;

 final float[] mProjectionGL = new float[16];
 boolean mProjectionDirtyGL = true;

 MatOfDouble mProjectionCV;
 boolean mProjectionDirtyCV = true;

Note that we assume some default values, just in case the client code fails to provide
a Camera.Parameters instance. Also note that the mNear and mFar variables store
the near and far clipping distances, meaning that the OpenGL camera will not
render anything nearer or farther than these respective distances. We can declare
the class and member variables as follows:

Chapter 5

[97]

 public void setCameraParameters(Parameters parameters) {
 mFOVY = parameters.getVerticalViewAngle();
 mFOVX = parameters.getHorizontalViewAngle();

 Size pictureSize = parameters.getPictureSize();
 mHeightPx = pictureSize.height;
 mWidthPx = pictureSize.width;

 mProjectionDirtyGL = true;
 mProjectionDirtyCV = true;
 }

For the near and far clipping distances, we just need a simple setter, which we can
implement as follows:

 public void setClipDistances(float near, float far) {
 mNear = near;
 mFar = far;
 mProjectionDirtyGL = true;
 }

Since the clipping distances are only relevant to OpenGL, we set the dirty flag for
only the OpenGL matrix.

Next, let's consider the getter for the OpenGL projection matrix. If the matrix is dirty,
we reconstruct it. For constructing a projection matrix, OpenGL provides a function
called frustumM(float[] m, int offset, float left, float right, float
bottom, float top, float near, float far). The first two arguments are an
array and offset where the matrix data should be stored. The rest of the arguments
describe the edges of the view frustum, which is the region of space that the camera
can see. Although you might be tempted to think that this region is conical, it is
actually a truncated pyramid, due to near and far clipping, and the rectangular
shape of the user's screen. Here is a visualization of the view frustum:

Near
Right

Top

Combining Image Tracking with 3D Rendering

[98]

Based on the clipping distances and the fields of view, we can find the view frustum's
other measurements by simple trigonometry, as seen in the following implementation:

 public float[] getProjectionGL() {
 if (mProjectionDirtyGL) {
 final float top =
 (float)Math.tan(mFOVY * Math.PI / 360f) * mNear;
 final float right =
 (float)Math.tan(mFOVX * Math.PI / 360f) * mNear;
 Matrix.frustumM(mProjectionGL, 0,
 -right, right, -top, top, mNear, mFar);
 mProjectionDirtyGL = false;
 }
 return mProjectionGL;
 }

The getter for the OpenCV projection matrix is slightly more complicated because
the library does not offer a similar helper function for constructing the matrix. Thus,
we must understand the contents of the OpenCV projection matrix and construct it
ourselves. It has the following 3 x 3 format:

focalLengthXInPixels 0 centerXInPixels
0 focalLengthYInPixels centerYInPixels
0 0 1

For a symmetrical lens system (which ought to be the norm), the matrix format
simplifies to the following:

focalLengthInPixels 0 (0.5 * widthInPixels)
0 focalLengthInPixels (0.5 * heightInPixels)
0 0 1

Focal length is the distance between the camera's sensor and the rear lens element.
For OpenCV's purposes, the focal length is expressed in pixel-related units.
Notionally, we could attribute a physical size to a pixel, by dividing the camera
sensor's width or height by its horizontal or vertical resolution. However, since we
do not know any physical measurements of the sensor or lens system, we instead use
trigonometry to determine the pixel-related focal length. The implementation is as
follows:

 public MatOfDouble getProjectionCV() {
 if (mProjectionDirtyCV) {
 if (mProjectionCV == null) {
 mProjectionCV = new MatOfDouble();
 mProjectionCV.create(3, 3, CvType.CV_64FC1);
 }

Chapter 5

[99]

 double diagonalPx = Math.sqrt(
 (Math.pow(mWidthPx, 2.0) +
 Math.pow(mHeightPx, 2.0)));
 double diagonalFOV = Math.sqrt(
 (Math.pow(mFOVX, 2.0) +
 Math.pow(mFOVY, 2.0)));
 double focalLengthPx = diagonalPx /
 (2.0 * Math.tan(0.5 * diagonalFOV));

 mProjectionCV.put(0, 0, focalLengthPx);
 mProjectionCV.put(0, 1, 0.0);
 mProjectionCV.put(0, 2, 0.5 * mWidthPx);
 mProjectionCV.put(1, 0, 0.0);
 mProjectionCV.put(1, 1, focalLengthPx);
 mProjectionCV.put(1, 2, 0.5 * mHeightPx);
 mProjectionCV.put(2, 0, 0.0);
 mProjectionCV.put(2, 1, 0.0);
 mProjectionCV.put(2, 2, 0.0);
 }
 return mProjectionCV;
 }
}

Client code can use CameraProjectionAdapter by instantiating it, calling
setCameraParameters whenever the active camera changes, and calling
getProjectionGL and getProjectionCV whenever a projection matrix is needed for
OpenGL or OpenCV computations.

Modifying ImageDetectionFilter for 3D
tracking
For 3D tracking, ImageDetectionFilter needs all the same member variables
as before, plus several more to store computations about the target's pose.
Moreover, the class needs to implement the ARFilter interface. Let's modify
ImageDetectionFilter as follows:

public class ImageDetectionFilter implements ARFilter {

 // ...

 private final MatOfDouble mDistCoeffs = new MatOfDouble(
 0.0, 0.0, 0.0, 0.0);

Combining Image Tracking with 3D Rendering

[100]

 private final CameraProjectionAdapter mCameraProjectionAdapter;
 private final MatOfDouble mRVec = new MatOfDouble();
 private final MatOfDouble mTVec = new MatOfDouble();
 private final MatOfDouble mRotation = new MatOfDouble();
 private final float[] mGLPose = new float[16];

 private boolean mTargetFound = false;

The constructor should require an instance of CameraProjectionAdapter as an
additional argument. We store it in a member variable, as seen in the following code:

 public ImageDetectionFilter(final Context context,
 final int referenceImageResourceID,
 final CameraProjectionAdapter cameraProjectionAdapter)
 throws IOException {

 // ...

 mCameraProjectionAdapter = cameraProjectionAdapter;
 }

To satisfy the ARFilter interface, we need to implement a getter for the OpenGL
pose matrix. When the target is lost, this getter should return null because we have
no valid data about the pose. We can implement the getter as follows:

 @Override
 public float[] getGLPose() {
 return (mTargetFound ? mGLPose : null);
 }

Let's rename our findHomography method to findPose. To reflect this name change,
the implementation of the apply method changes as follows:

 @Override
 public void apply(final Mat src, final Mat dst) {
 Imgproc.cvtColor(src, mGraySrc, Imgproc.COLOR_RGBA2GRAY);

 mFeatureDetector.detect(mGraySrc, mSceneKeypoints);
 mDescriptorExtractor.compute(mGraySrc, mSceneKeypoints,
 mSceneDescriptors);
 mDescriptorMatcher.match(mSceneDescriptors,
 mReferenceDescriptors, mMatches);

 findPose();
 draw(src, dst);
 }

Chapter 5

[101]

After finding keypoints, the implementation of findPose starts to differ from the
old findHomography method. We convert the reference keypoints to 3D (with a
z value of 0), for using in 3D computations. Then, we get an OpenCV projection
matrix from our instance of CameraProjectionAdapter. Next, we solve for the
target's position and rotation, based on the matching keypoints and the projection.
Most of the calculations are done by an OpenCV function called Calib3d.
solvePnP(MatOfPoint3f objectPoints, MatOfPoint2f imagePoints, Mat
cameraMatrix, MatOfDouble distCoeffs, Mat rvec, Mat tvec). This
function puts the position and rotation results in two separate vectors. The y and z
directions in OpenCV are inverted compared to OpenGL, so we need to multiply
these components of the vectors by -1. We convert the rotation vector into a matrix
using another OpenCV function called Calib3d.Rodrigues(Mat src, Mat dst).
Last, we manually convert the resulting rotation matrix and position vector into a
float[16] array that is appropriate for OpenGL. The code is as follows:

 private void findPose() {

 // ...

 // Identify "good" keypoints based on match distance.
 List<Point3> goodReferencePointsList =
 new ArrayList<Point3>();
 ArrayList<Point> goodScenePointsList =
 new ArrayList<Point>();
 double maxGoodMatchDist = 1.75 * minDist;
 for(DMatch match : matchesList) {
 if (match.distance < maxGoodMatchDist) {
 Point point =
 referenceKeypointsList.get(match.trainIdx).pt;
 Point3 point3 = new Point3(point.x, point.y, 0.0);
 goodReferencePointsList.add(point3);
 goodScenePointsList.add(
 sceneKeypointsList.get(match.queryIdx).pt);
 }
 }

 if (goodReferencePointsList.size() < 4 ||
 goodScenePointsList.size() < 4) {
 // There are too few good points to find the pose.
 return;
 }

Combining Image Tracking with 3D Rendering

[102]

 MatOfPoint3f goodReferencePoints = new MatOfPoint3f();
 goodReferencePoints.fromList(goodReferencePointsList);

 MatOfPoint2f goodScenePoints = new MatOfPoint2f();
 goodScenePoints.fromList(goodScenePointsList);

 MatOfDouble projection =
 mCameraProjectionAdapter.getProjectionCV();
 Calib3d.solvePnP(goodReferencePoints, goodScenePoints,
 projection, mDistCoeffs, mRVec, mTVec);

 double[] rVecArray = mRVec.toArray();
 rVecArray[1] *= -1.0;
 rVecArray[2] *= -1.0;
 mRVec.fromArray(rVecArray);

 Calib3d.Rodrigues(mRVec, mRotation);

 double[] tVecArray = mTVec.toArray();

 mGLPose[0] = (float)mRotation.get(0, 0)[0];
 mGLPose[1] = (float)mRotation.get(1, 0)[0];
 mGLPose[2] = (float)mRotation.get(2, 0)[0];
 mGLPose[3] = 0f;
 mGLPose[4] = (float)mRotation.get(0, 1)[0];
 mGLPose[5] = (float)mRotation.get(1, 1)[0];
 mGLPose[6] = (float)mRotation.get(2, 1)[0];
 mGLPose[7] = 0f;
 mGLPose[8] = (float)mRotation.get(0, 2)[0];
 mGLPose[9] = (float)mRotation.get(1, 2)[0];
 mGLPose[10] = (float)mRotation.get(2, 2)[0];
 mGLPose[11] = 0f;
 mGLPose[12] = (float)tVecArray[0];
 mGLPose[13] = -(float)tVecArray[1];
 mGLPose[14] = -(float)tVecArray[2];
 mGLPose[15] = 1f;

 mTargetFound = true;
 }

Chapter 5

[103]

Last, let's modify our draw method by removing the code that draws a green border
around the tracked image. (Instead, the ARCubeRenderer class will be responsible for
drawing a cube atop the tracked image.) After removing the unwanted code, we are
left with the following implementation of the draw method:

 protected void draw(Mat src, Mat dst) {

 if (dst != src) {
 src.copyTo(dst);
 }

 if (!mTargetFound) {
 // The target has not been found.

 // Draw a thumbnail of the target in the upper-left
 // corner so that the user knows what it is.

 int height = mReferenceImage.height();
 int width = mReferenceImage.width();
 int maxDimension = Math.min(dst.width(),
 dst.height()) / 2;
 double aspectRatio = width / (double)height;
 if (height > width) {
 height = maxDimension;
 width = (int)(height * aspectRatio);
 } else {
 width = maxDimension;
 height = (int)(width / aspectRatio);
 }
 Mat dstROI = dst.submat(0, height, 0, width);
 Imgproc.resize(mReferenceImage, dstROI, dstROI.size(),
 0.0, 0.0, Imgproc.INTER_AREA);
 }
 }
}

Next, we look at how to render the cube with OpenGL.

Combining Image Tracking with 3D Rendering

[104]

Rendering the cube in ARCubeRenderer
Android provides a class called GLSurfaceView, which is a widget that is drawn by
OpenGL. The drawing logic is encapsulated via an interface called GLSurfaceView.
Renderer, which we will implement in ARCubeRenderer. The interface requires the
following methods:

•	 onDrawFrame(GL10 gl): It is called to draw the current frame.
•	 onSurfaceChanged(GL10 gl, int width, int height): It is called when

the surface size changes. For our purposes, this method does not need to do
anything.

•	 onSurfaceCreated(GL10 gl, EGLConfig config): It is called when the
surface is created or recreated. For our purposes, this method does not need
to do anything.

The GL10 instance, which is passed as an argument, provides access to the standard
OpenGL ES 1.0 functionality. Basically, we are interested in two kinds of OpenGL
functionality; applying matrix transformations to 3D vertices and then drawing
triangles based on the transformed vertices. Our cube will have eight vertices and
12 triangles (six square faces * two triangles per square face). We will specify a color
for each vertex and we will describe the triangles in a format called a triangle fan. A
triangle fan is an array of 3 or more vertices. For each vertex v[i] in the fan, where i
>= 2, a triangle is formed by v[0], v[i-1], and v[i].

Taking any vertex in the cube, we may imagine six triangles (three square faces)
fanning out from that vertex. Thus, two triangle fans are enough to specify the 12
triangles, provided that we start the fans from opposite corners of the cube.

Vertices, vertex colors, and triangle fans are all stored in ByteBuffer instances. Since
we only support one style of cube, we will use static instances of ByteBuffer so that
multiple ARCubeRenderer instances may share them. As member variables, we also
want ARFilter to provide the cube's pose matrix, a CameraProjectionAdapter to
provide the projection matrix, and a scale to allow client code to resize the cube.
The declarations of ARCubeRenderer and its variables are as follows:

public class ARCubeRenderer implements GLSurfaceView.Renderer {

 public ARFilter filter;
 public CameraProjectionAdapter cameraProjectionAdapter;
 public float scale = 100f;

 private static final ByteBuffer VERTICES;
 private static final ByteBuffer COLORS;
 private static final ByteBuffer TRIANGLE_FAN_0;
 private static final ByteBuffer TRIANGLE_FAN_1;

Chapter 5

[105]

Since the vertices, colors, and triangle fans are static variables, we initialize them
in a static block. For each buffer, we must specify the required number of bytes.
The vertices take up 96 bytes (8 vertices * 3 floats per vertex * 4 bytes per float).
We specify vertices for a cube that is 2 units wide. After populating the buffer,
we rewind its pointer to the first index. The code is as follows:

 static {
 VERTICES = ByteBuffer.allocateDirect(96);
 VERTICES.order(ByteOrder.nativeOrder());
 VERTICES.asFloatBuffer().put(new float[] {
 -1f, 1f, 1f,
 1f, 1f, 1f,
 1f, -1f, 1f,
 -1f, -1f, 1f,

 -1f, 1f, -1f,
 1f, 1f, -1f,
 1f, -1f, -1f,
 -1f, -1f, -1f
 });
 VERTICES.position(0);

The vertex colors take up 32 bytes (8 vertices * 4 bytes of RGBA color per vertex).
We specify a different color for each vertex, as seen in the following code:

 COLORS = ByteBuffer.allocateDirect(32);
 COLORS.put(new byte[] {
 // yellow
 Byte.MAX_VALUE, Byte.MAX_VALUE, 0, Byte.MAX_VALUE,
 // cyan
 0, Byte.MAX_VALUE, Byte.MAX_VALUE, Byte.MAX_VALUE,
 // black
 0, 0, 0, Byte.MAX_VALUE,
 // magenta
 Byte.MAX_VALUE, 0, Byte.MAX_VALUE, Byte.MAX_VALUE,

 Byte.MAX_VALUE, 0, 0, Byte.MAX_VALUE, // red
 0, Byte.MAX_VALUE, 0, Byte.MAX_VALUE, // green
 0, 0, Byte.MAX_VALUE, Byte.MAX_VALUE, // blue
 0, 0, 0, Byte.MAX_VALUE // black
 });
 COLORS.position(0);

Combining Image Tracking with 3D Rendering

[106]

The two triangle fans take up 18 bytes each (6 triangles * 3 vertex indices per
triangle). We specify fans that are based at the cube's far upper-right and near
lower-left corners, as seen in the following code:

 TRIANGLE_FAN_0 = ByteBuffer.allocate(18);
 TRIANGLE_FAN_0.put(new byte[] {
 1, 0, 3,
 1, 3, 2,
 1, 2, 6,
 1, 6, 5,
 1, 5, 4,
 1, 4, 0
 });
 TRIANGLE_FAN_0.position(0);

 TRIANGLE_FAN_1 = ByteBuffer.allocate(18);
 TRIANGLE_FAN_1.put(new byte[] {
 7, 4, 5,
 7, 5, 6,
 7, 6, 2,
 7, 2, 3,
 7, 3, 0,
 7, 0, 4
 });
 TRIANGLE_FAN_1.position(0);
 }

When drawing to an instance of GLSurfaceView, we first clear any previous content
by replacing it with a fully transparent color. Then, we check whether a projection
matrix and pose matrix are available. If they are, we tell OpenGL to use these
matrices and to also move and scale the cube so that we have an appropriately
sized cube sitting atop the target. Then, we supply the vertices and vertex colors
to OpenGL and tell it to draw the triangle fans. The implementation is as follows:

 @Override
 public void onDrawFrame(final GL10 gl) {

 gl.glClear(GL10.GL_COLOR_BUFFER_BIT |
 GL10.GL_DEPTH_BUFFER_BIT);
 gl.glClearColor(0f, 0f, 0f, 0f); // transparent

 if (filter == null) {
 return;
 }

Chapter 5

[107]

 if (cameraProjectionAdapter == null) {
 return;
 }

 float[] pose = filter.getGLPose();
 if (pose == null) {
 return;
 }

 gl.glMatrixMode(GL10.GL_PROJECTION);
 float[] projection =
 cameraProjectionAdapter.getProjectionGL();
 gl.glLoadMatrixf(projection, 0);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadMatrixf(pose, 0);
 gl.glTranslatef(0f, 0f, 1f);
 gl.glScalef(scale, scale, scale);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 gl.glVertexPointer(3, GL11.GL_FLOAT, 0, VERTICES);
 gl.glColorPointer(4, GL11.GL_UNSIGNED_BYTE, 0, COLORS);

 gl.glDrawElements(GL10.GL_TRIANGLE_FAN, 18,
 GL10.GL_UNSIGNED_BYTE, TRIANGLE_FAN_0);
 gl.glDrawElements(GL10.GL_TRIANGLE_FAN, 18,
 GL10.GL_UNSIGNED_BYTE, TRIANGLE_FAN_1);
 }

Finally, to satisfy the rest of the GLSurfaceView.Renderer interface, we provide
empty implementations of onSurfaceChanged and onSurfaceCreated, as seen in
the following code:

 @Override
 public void onSurfaceChanged(final GL10 gl, final int width,
 final int height) {
 }

 @Override
 public void onSurfaceCreated(final GL10 arg0,
 final EGLConfig config) {

}

Now, we are ready to integrate 3D tracking and rendering into our application.

Combining Image Tracking with 3D Rendering

[108]

Adding 3D tracking and rendering to
CameraActivity
We need to make a few changes to CameraActivity to conform with our changes to
ImageDetectionFilter and with the new interface provided by ARFilter. We also
need to modify the activity's layout so that it includes a GLSurfaceView. The adapter
for this GLSurfaceView will be ARCubeRenderer. The ImageDetectionFilter and
the ARCubeRenderer methods will use CameraProjectionAdapter to coordinate
their projection matrices.

First, let's make the following changes to the member variables of CameraActivity:

 // The filters.
 private ARFilter[] mImageDetectionFilters;
 private Filter[] mCurveFilters;
 private Filter[] mMixerFilters;
 private Filter[] mConvolutionFilters;

 // ...

 // The camera view.
 private CameraBridgeViewBase mCameraView;

 // An adapter between the video camera and projection matrix.
 private CameraProjectionAdapter mCameraProjectionAdapter;

 // The renderer for 3D augmentations.
 private ARCubeRenderer mARRenderer;

As usual, once the OpenCV library is loaded, we need to create the filters. The only
changes are that we need to pass an instance of CameraProjectionAdapter to each
constructor of ImageDetectionFilter, and we need to use a NoneARFilter in place
of a NoneFilter. The code is as follows:

 public void onManagerConnected(final int status) {
 switch (status) {
 case LoaderCallbackInterface.SUCCESS:
 Log.d(TAG, "OpenCV loaded successfully");
 mCameraView.enableView();
 mBgr = new Mat();

 final ARFilter starryNight;
 try {
 starryNight = new ImageDetectionFilter(

Chapter 5

[109]

 CameraActivity.this,
 R.drawable.starry_night,
 mCameraProjectionAdapter);
 } catch (IOException e) {
 Log.e(TAG, "Failed to load drawable: " +
 "starry_night");
 e.printStackTrace();
 break;
 }

 final ARFilter akbarHunting;
 try {
 akbarHunting = new ImageDetectionFilter(
 CameraActivity.this,
 R.drawable.akbar_hunting_with_cheetahs,
 mCameraProjectionAdapter);
 } catch (IOException e) {
 Log.e(TAG, "Failed to load drawable: " +
 "akbar_hunting_with_cheetahs");
 e.printStackTrace();
 break;
 }

 mImageDetectionFilters = new ARFilter[] {
 new NoneARFilter(),
 starryNight,
 akbarHunting
 };

 // ...
 }
 }

The remaining changes belong in the onCreate method, where we should
create and configure the instances of GLSurfaceView, ARCubeRenderer, and
CameraProjectionAdapter. The implementation includes some boilerplate code
to overlay an instance of GLSurfaceView atop an instance of NativeCameraView.
These two views are contained inside a standard Android layout widget called a
FrameLayout. After setting up the layout, we need a Camera instance and a Camera.
Parameters instance in order to do our remaining configuration. The Camera
instance is obtained via a static method, Camera.open(), which may take a camera
index as an optional argument on Android 2.3 and later. (By default, the first
rear-facing camera is used.) When we are done with the Camera, we must call its
release() method in order to make it available later. The code is as follows:

Combining Image Tracking with 3D Rendering

[110]

Every call to Camera.open must be paired with a call to the
Camera instance's release method. Otherwise, our app and
other apps may subsequently encounter a RuntimeException
while calling Camera.open. For more details about the Camera
class, see the official documentation at http://developer.
android.com/reference/android/hardware/Camera.
html.

 protected void onCreate(final Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // ...

 FrameLayout layout = new FrameLayout(this);
 layout.setLayoutParams(new FrameLayout.LayoutParams(
 FrameLayout.LayoutParams.MATCH_PARENT,
 FrameLayout.LayoutParams.MATCH_PARENT));
 setContentView(layout);

 mCameraView = new NativeCameraView(this, mCameraIndex);
 mCameraView.setCvCameraViewListener(this);
 mCameraView.setLayoutParams(new FrameLayout.LayoutParams(
 FrameLayout.LayoutParams.MATCH_PARENT,
 FrameLayout.LayoutParams.MATCH_PARENT));
 layout.addView(mCameraView);

 GLSurfaceView glSurfaceView = new GLSurfaceView(this);
 glSurfaceView.getHolder().setFormat(
 PixelFormat.TRANSPARENT);
 glSurfaceView.setEGLConfigChooser(8, 8, 8, 8, 0, 0);
 glSurfaceView.setZOrderOnTop(true);
 glSurfaceView.setLayoutParams(new FrameLayout.LayoutParams(
 FrameLayout.LayoutParams.MATCH_PARENT,
 FrameLayout.LayoutParams.MATCH_PARENT));
 layout.addView(glSurfaceView);

 mCameraProjectionAdapter = new CameraProjectionAdapter();

 mARRenderer = new ARCubeRenderer();
 mARRenderer.cameraProjectionAdapter =
 mCameraProjectionAdapter;
 glSurfaceView.setRenderer(mARRenderer);

Chapter 5

[111]

 final Camera camera;
 if (Build.VERSION.SDK_INT >=
 Build.VERSION_CODES.GINGERBREAD) {
 CameraInfo cameraInfo = new CameraInfo();
 Camera.getCameraInfo(mCameraIndex, cameraInfo);
 mIsCameraFrontFacing =
 (cameraInfo.facing ==
 CameraInfo.CAMERA_FACING_FRONT);
 mNumCameras = Camera.getNumberOfCameras();
 camera = Camera.open(mCameraIndex);
 } else { // pre-Gingerbread
 // Assume there is only 1 camera and it is rear-facing.
 mIsCameraFrontFacing = false;
 mNumCameras = 1;
 camera = Camera.open();
 }
 final Parameters parameters = camera.getParameters();
 mCameraProjectionAdapter.setCameraParameters(
 parameters);
 camera.release();
 }

That's all! Run and test Second Sight. When you activate on of the instance of
ImageDetectionFilter and hold the appropriate printed image in front of the
camera, you should see a colorful cube rendered on top of the image. For example, see
the following screenshot:

Combining Image Tracking with 3D Rendering

[112]

Learning more about 3D graphics on
Android
Of course, in the world of 3D graphics, drawing a cube is similar to printing
"Hello World"; it is just a basic demo. Although we have introduced meshes,
transformations, and perspective, there are many other topics that we have not
touched at all, such as lighting, materials (realistic-looking surfaces), and importing
an artist's work from 3D art packages. For a deeper understanding of 3D graphics
on Android, have a look at these books:

•	 Pro OpenGL ES for Android (Apress), by Mike Smithwick and Mayank Verma.
This book covers Android's Java API for OpenGL ES.

•	 OpenGL ES 2.0 Programming Guide (Addison-Wesley), by Aaftab Munshi, Dan
Ginsburg, and Dave Shreiner. This book covers the cross-platform C++ API
for OpenGL ES.

•	 Augmented Reality for Android Application Development (Packt Publishing),
by Jens Grubert and Dr. Raphael Grasset. This book shows how to use
JmonkeyEngine, a cross-platform Java game engine, to render 3D graphics
atop real-world images.

There are also many books on Android game development that may include a good
introduction to 3D graphics.

Summary
We are now at the end of our introduction to OpenCV on Android. We have covered
several major uses of OpenCV, including capturing camera input, applying effects to
images, tracking images in 2D and 3D, and integrating with OpenGL for augmented
reality rendering.

Taking the knowledge you have gained so far, you can go on to develop other
OpenCV applications in Java, whether targeted at Android or other platforms. You
might also wish to explore OpenCV's C++ version, which is likewise cross-platform
and can interface with Android NDK.

Index
Symbols
3D graphics

on Android 112
3D tracking

adding, to CameraActivity 108-111
ImageDetectionFilter, modifying for 99,

101, 103
rendering, to CameraActivity 108-111

A
Android

3D graphics 112
asynchronous event collisions 44

Android Developer Tools (ADT) Bundle 11
Android Development Tools (ADT) 21.0. 7
AndroidManifest.xml(manifest)

camera, enabling 38, 39
disk access , enabling 38, 39

Android Software Development Kit
(Android SDK) r21.0. 7

Android Virtual Devices (AVDs) 8
apply() method 63
ARCubeRenderer method

about 108
cube, rendering 104-107

ARFilter interface
defining 94, 95

Augmented reality (AR) 93

C
CameraActivity

3D tracking, adding to 108-111
3D tracking, rendering to 108-111
filters, adding to 71-75

photos, previewing 42-51
photos, saving 42-51
tracker filters, adding to 87-92

CameraProjectionAdapter
projection matrices, building 95-98

C++ API documentation 30
channel mixing

L*a*b 61
clipping distances 96
color channels

HSV 60
L*a*b 60
mixing 60-63
RGB 60

color shifts
creating, with curves 64-69

com.nummist .secondsight.adapters.
CameraProjectionAdapterclass 93

com.nummist.secondsight.ARCube
Renderer class 93

com.nummist.secondsight.filters.
ar.NoneARFilter class 94

com.nummist.secondsight.filters.
ar.NoneARFilterclass 94

com.nummist.secondsight.filters.convolu-
tion. StrokeEdgesFilter class 57

com.nummist.secondsight.filters.curve.
CurveFilter 57

com.nummist.secondsight.filters.Filter 57
com.nummist.secondsight.filters.NoneFilter

class 57
convolution filters

pixels, processing 69, 70
convolution matrix 69
Core.split(Mat m, List<Mat> mv)

method 61

[114]

Core.split method 62
CrossProcessCurveFilter class 68
curves

used, for subtle color shifts 64-67

D
desaturate blues 63
development environment

assembling 11-14
OpenCV4Android, building from

source 14, 15
prebuilt OpenCV4Android, getting 14
setting up 8
TADP 9

drawable resources 82
draw method 103

E
Eclipse project

creating 34-37
files, adding to 57, 58

F
files

adding, to Eclipse project 57, 58
adding, to project 77

files, adding to Eclipse project
Filter interface, defining 59, 60
new types, adding to 57, 58

filters
adding, to CameraActivity 71-76

findHomography method 100
findSceneCorners() helper method 83

G
getGLPose() method 95

I
ImageDetectionFilter

modifying, for 3D tracking 99-103
ImageDetectionFilter class 93
image tracking

about 79

descriptors 80
features 80
homography 80
matches 80
steps 80

image tracking filter
writing 81-87

Imgproc.cvtColor static method 60
Improc.cvtColor() method 49
Intent.createChooser() method 54
Intents 52

J
Java Development Kit (JDK) 6 7
Java Development Tools (JDT) 7
JmonkeyEngine 112

K
kernel 69

L
L*a*b 60
LabActivity

photos, deleting 52-55
photos, editing 52-55
photos, sharing 52-55

Laplacian filter 69
LogCat tab 29

M
menu

creating 40, 41
min operation 61

O
onCreate() method 52
onDrawFrame(GL10 gl) methods 104
onOptionsItemSelected method 74
onSaveInstanceState method 74
onSurfaceChanged(GL10 gl, int width,

int height) method 104
onSurfaceCreated(GL10 gl, EGLConfig

config) method 104

[115]

OpenCV
building, from Eclipse 16-29
help documentation 30
system requirements 8

OpenCV 2.4.3.2
samples functionality 28

OpenCV4Android, building from source
software requirements 14, 15
software requirements ,Apache

Ant 1.8.0 15
software requirements, Apache

Ant 1.8.0 15
software requirements, CMake 15
software requirements, Git 14
software requirements, Python 2.6 15

OpenCV Manager app 24

P
photo capture app

building 31
photos

deleting, in LabActivity 52-55
editing, in LabActivity 52-55
previewing, in CameraActivity 42-51
saving, in CameraActivity 42-51
sharing, in LabActivity 52-55

pixel-related units 98
projection matrices

building, in CameraProjection
Adapter 95-98

R
release() method 109
RGB 60
rotation-invariant 80

S
scale-invariant 80
Second Sight

image tracking 77
Second Sight app

CameraActivity 32
designing 31-33
LabActivity 32, 33

static methods, OpenCV
Core.bitwise_not(Mat src, Mat dst) 70
Core.multiply(Mat src1, Mat src2, Mat dst,

double scale 70
string resources

creating 40, 41
system requirements, OpenCV

about 8
Android 8

T
TADP

about 9
setting up 9, 10

Tegra Android Development Pack. See
TADP

tracker filters
adding, to CameraActivity 87-92

triangle fan 104

U
Ubuntu

environment variables, editing 13

V
VelviaCurveFilter class 68
view frustum 97

W
Welcome to Eclipse screen 17
Windows

environment variables, editing 13
workspace 17

Thank you for buying
Android Application
Programming with OpenCV

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

OpenCV Computer Vision with
Python
ISBN: 978-1-782163-92-3 Paperback: 122 pages

Learn to capture videos, manipulate images, and
track objects with Python using the OpenCV Library

1.	 Set up OpenCV, its Python bindings, and
optional Kinect drivers on Windows,
Mac or Ubuntu

2.	 Create an application that tracks and
manipulates faces

3.	 Identify face regions using normal color images
and depth images

Instant OpenCV Starter
ISBN: 978-1-782168-81-2 Paperback: 56 pages

Get started with OpenCV using practical, hands-on
projects

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 Step by step installation of OpenCV in
Windows and Linux

3.	 Examples and code based on real-life
implementation of OpenCV to help the reader
understand the importance of this technology

4.	 Codes and algorithms with detailed
explanations

Please check www.PacktPub.com for information on our titles

Mastering OpenCV with Practical
Computer Vision Projects
ISBN: 978-1-849517-82-9 Paperback: 340 pages

Step-by-step tutorials to solve common real-world
computer vision problems for desktop or mobile,
from augmented reality and number plate recognition
to face recognition and 3D head tracking

1.	 Allows anyone with basic OpenCV experience
to rapidly obtain skills in many computer
vision topics, for research or commercial use

2.	 Each chapter is a separate project covering
a computer vision problem, written by a
professional with proven experience on
that topic

Android 4: New Features for
Application Development
ISBN: 978-1-849519-52-6 Paperback: 166 pages

Develop Android applications using the new features
of Android Ice Cream Sandwich

1.	 Learn new APIs in Android 4

2.	 Get familiar with the best practices in
developing Android applications

3.	 Step-by-step approach with clearly explained
sample codes

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up OpenCV
	System requirements
	Setting up a development environment
	Getting a ready-made development environment: Tegra Android Development Pack (TAPD)
	Assembling a development environment piece-by-piece
	Getting the prebuilt OpenCV4Android
	Building OpenCV4Android from source

	Building the OpenCV samples with Eclipse
	Finding documentation and help
	Summary

	Chapter 2: Working with Camera Frames
	Designing our app, Second Sight
	Creating the Eclipse project
	Enabling camera and disk access in the manifest
	Creating menu and string resources
	Previewing and saving photos in CameraActivity
	Deleting, editing, and sharing photos in LabActivity
	Summary

	Chapter 3: Applying Image Effects
	Adding files to the project
	Defining the Filter interface

	Mixing color channels
	Making subtle color shifts with curves
	Processing a neighborhood of pixels with convolution filters
	Adding the filters to CameraActivity
	Summary

	Chapter 4: Recognizing and
Tracking Images
	Adding files to the project
	Understanding image tracking
	Writing an image tracking filter
	Adding the tracker filters to CameraActivity
	Summary

	Chapter 5: Combining Image Tracking with 3D Rendering
	Adding files to the project
	Defining the ARFilter interface
	Building projection matrices in CameraProjectionAdapter
	Modifying ImageDetectionFilter for 3D tracking
	Rendering the cube in ARCubeRenderer
	Adding 3D tracking and rendering to CameraActivity
	Learning more about 3D graphics on Android
	Summary

	Index

