

CoreOS Essentials

 Table of Contents

 CoreOS Essentials

 Credits

 About the Author

 About the Reviewers

 www.PacktPub.com

 Support files, eBooks, discount offers, and more

 Why subscribe?

 Free access for Packt account holders

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Downloading the example code

 Errata

 Piracy

 Questions

 1. CoreOS – Overview and Installation

 An overview of CoreOS

 How CoreOS works

 Installing the CoreOS virtual machine

 Cloning the coreos-vagrant GitHub project

 Working with cloud-config

 Startup and SSH

 Summary

 2. Getting Started with etcd

 Introducing etcd

 Reading and writing to etcd from the host machine

 Logging in to the host

 Reading and writing to ectd

 Reading and writing from the application container

 Watching changes in etcd

 TTL (time to live) examples

 Use cases of etcd

 Summary

 3. Getting Started with systemd and fleet

 Getting started with systemd

 An overview of systemd

 The systemd unit files

 An overview of systemctl

 Getting started with fleet

 The fleet unit files

 An overview of fleetctl

 References

 Summary

 4. Managing Clusters

 Determining the optimal etcd cluster size

 Bootstrapping a local cluster

 Cloning the coreos-vagrant project

 Customizing a cluster via the cloud-config file

 Scheduling a fleet unit in the cluster

 References

 Summary

 5. Building a Development Environment

 Setting up the local development environment

 Setting up the development VM

 What happened during the VM installation?

 Deploying the fleet units

 Bootstrapping a remote test/staging cluster on GCE

 Test/staging cluster setup

 Creating our cluster workers

 Running fleetctl commands on the remote cluster

 References

 Summary

 6. Building a Deployment Setup

 Code deployment on Test and Staging servers

 Deploying code on servers

 Setting up the Docker builder and private Docker registry worker

 Server setup

 Summary

 7. Building a Production Cluster

 Bootstrapping a remote production cluster on GCE

 Setting up the production cluster

 Deploying code on production cluster servers

 Setting up the Docker builder server

 Deploying code on production servers

 An overview of the Dev/Test/Staging/Production setup

 PaaS based on fleet

 Deploying services using PAZ

 Another cloud alternative for running CoreOS clusters

 Summary

 8. Introducing CoreUpdate and Container/Enterprise Registry

 Update strategies

 Automatic updates

 Uses of update strategies

 CoreUpdate

 Container Registry

 Quay.io overview

 Enterprise Registry

 Summary

 9. Introduction to CoreOS rkt

 An introduction to rkt

 Features of rkt

 The basics of App container

 Using rkt

 rkt networking

 rkt environment variables

 rkt volumes

 Running streamlined Docker images with rkt

 Converting Docker images into ACI

 Summary

 10. Introduction to Kubernetes

 What is Kubernetes?

 Primary components of Kubernetes

 Kubernetes cluster setup

 Tectonic – CoreOS and Kubernetes combined for a commercial implementation

 Summary

 Index

CoreOS Essentials

CoreOS Essentials

Copyright 2015 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: June 2015
Production reference: 1240615
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78528-394-9

www.packtpub.com

Credits

Author

Rimantas Mocevicius

Reviewers

Brian Harrington
Paul Kirby
Patrick Murray
Melissa Smolensky

Commissioning Editor

Julian Ursell

Acquisition Editor

Usha Iyer

Content Development Editor

Amey Varangaonkar

Technical Editor

Utkarsha S. Kadam

Copy Editor

Vikrant Phadke

Project Coordinator

Bijal Patel

Proofreader

Safis Editing

Indexer

Rekha Nair

Graphics

Abhinash Sahu

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

About the Author

Rimantas Mocevicius is an IT professional with over 20 years of experience in Linux. He is a supporter and fan of open source software. His passion for new technologies drives him forward, and he never wants to stop learning about them.

I would like to thank my wife and son for encouraging me to write this book and supporting me all throughout the way until its end.
I also want to say a big thank you to my technical reviewers, Paul Kirby, Brian Harrington, and Patrick Murray, for their invaluable recommendations.
Lots of thanks to the staff at Packt Publishing for guiding me through all of the book writing process and helping make it a nice book.
And of course, a big thank you goes to the CoreOS team for releasing such an amazing Linux-based operating system.

About the Reviewers

Brian 'Redbeard' Harrington is a developer, hacker, and technical writer in the areas of open source development and system administration. He has spent time in both defensive and offensive computing, combined with his readings of classical anarchism, to present new ideas in organizational hierarchies for software development. He has been featured on Al Jazeera as an expert in the field of computer security, and has been seen and heard on Bloomberg Television and National Public Radio. Brian currently resides in Oakland, California, USA. He was formerly the elected president of the HacDC hackerspace.
He is one of the early employees of CoreOS. In true start-up terms, this means that he has done everything from taking out the trash to racking servers and stepping on site with customers. He has previously worked with Red Hat, the US Census Bureau, and other organizations, chopping wood and carrying water to keep the Internet running.

Thank you to Holly. I'll always strive to make you proud.

Patrick Murray is a senior software engineer at Cisco Systems. He has been working in the Silicon Valley since 2008. He completed his education in computer engineering from Michigan Technological University in Houghton, Michigan, USA. His primary technology interests are cloud deployment and orchestration, distributed systems, NoSQL, and big data.

I would like to thank my beautiful newborn daughter, Amelia, and my wife, Xian, for their support and for letting me find the time to work as a reviewer.

Melissa Smolensky is the director of marketing at CoreOS and oversees all the marketing activities there. She is passionate about start-ups, the future of technology, and how technology is changing the way we consume and interact with media.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers, and more]

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.
Why subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print, and bookmark content
	On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate access.

Preface

CoreOS is a new breed of the Linux operating system and is optimized to run Linux containers, such as Docker and rkt. It has a fully automated update system, no package manager, and a fully clustered architecture.
Whether you are a Linux expert or just a beginner with some knowledge of Linux, this book will provide you with step-by-step instructions on installing and configuring CoreOS servers as well as building development and production environments. You will be introduced to the new CoreOS rkt Application Containers runtime engine and Google's Kubernetes system, which allows you to manage a cluster of Linux containers as a single system.
What this book covers

Chapter 1, CoreOS Overview and Installation, contains a brief CoreOS overview what CoreOS is about.

Chapter 2, Getting Started with etcd, explains what etcd is and what it can be used for.

Chapter 3, Getting Started with systemd and fleet, covers an overview of systemd. This chapter tells you what fleet is and how to use it to deploy Docker containers.

Chapter 4, Managing Clusters, is a guide to setting up and managing a cluster.

Chapter 5, Building a Development Environment, shows you how to set up the CoreOS development environment to test your Application Containers.

Chapter 6, Building a Deployment Setup, helps you set up code deployment, the Docker image builder, and the private Docker registry.

Chapter 7, Building a Production Cluster, explains the setup of the CoreOS production cluster on the cloud.

Chapter 8, Introducing CoreUpdate and Container/Enterprise Registry, has an overview of free and paid CoreOS services.

Chapter 9, Introduction to CoreOS rkt, tells you what rkt is and how to use it.

Chapter 10, Introduction to Kubernetes, teaches you how to set up and use Kubernetes.

What you need for this book

For this book, you will need a Linux-powered system or an Apple Mac, and a Google Cloud account to run the examples covered. You will also require the latest versions of VirtualBox and Vagrant to run the scripts.

Who this book is for

This book will benefit any Linux/Unix system administrator. Any person with even a basic knowledge of Linux/Unix will have an advantage when using this book.
This book is also for system engineers and system administrators who are already experienced with network virtualization and want to understand how CoreOS can be used to develop computing networks for the deployment of applications and servers. They must have a proper knowledge of the Linux operating system and Application Containers, and it is better if they have used a Linux distribution for the purpose of development or administration before.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text are shown as follows: "We can include other contexts through the use of the include directive."
A block of code is set as follows:
 etcd2:
 name: core-01
 initial-advertise-peer-urls: http://$private_ipv4:2380
 listen-peer-urls: http://$private_ipv4:2380,http://$private_ipv4:7001
 initial-cluster-token: core-01_etcd
 initial-cluster: core-01=http://$private_ipv4:2380
 initial-cluster-state: new
 advertise-client-urls: http://$public_ipv4:2379,http://$public_ipv4:4001
 listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
 fleet:

Any command-line input or output is written as follows:

$ git clone https://github.com/coreos/coreos-vagrant/

New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "We should see this output in the Terminal window."
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this bookwhat you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com> and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code

You can download the example code files from your account at http://www.packtpub.com for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our booksmaybe a mistake in the text or the codewe would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.

Chapter1.CoreOS Overview and Installation

CoreOS is often described as Linux for massive server deployments, but it can also run easily as a single host on bare-metal, cloud servers, and as a virtual machine on your computer as well. It is designed to run application containers as docker and rkt, and you will learn about its main features later in this book.
This book is a practical, example-driven guide to help you learn about the essentials of the CoreOS Linux operating system. We assume that you have experience with VirtualBox, Vagrant, Git, Bash shell scripting and the command line (terminal on UNIX-like computers), and you have already installed VirtualBox, Vagrant, and git on your Mac OS X or Linux computer, which will be needed for the first chapters. As for a cloud installation, we will use Google Cloud's Compute Engine instances.
By the end of this book, you will hopefully be familiar with setting up CoreOS on your laptop or desktop, and on the cloud. You will learn how to set up a local computer development machine and a cluster on a local computer and in the cloud. Also, we will cover etcd, systemd, fleet, cluster management, deployment setup, and production clusters.
Also, the last chapter will introduce Google Kubernetes. This is an open source orchestration system for docker and rkt containers and allows to manage them as a single system on on compute clusters.
In this chapter, you will learn how CoreOS works and how to carry out a basic CoreOS installation on your laptop or desktop with the help of VirtualBox and Vagrant.
We will basically cover two topics in this chapter:
	An overview of CoreOS
	Installing the CoreOS virtual machine

An overview of CoreOS

CoreOS is a minimal Linux operation system built to run docker and rkt containers (application containers). By default, it is designed to build powerful and easily manageable server clusters. It provides automatic, very reliable, and stable updates to all machines, which takes away a big maintenance headache from sysadmins. And, by running everything in application containers, such setup allows you to very easily scale servers and applications, replace faulty servers in a fraction of a second, and so on.

How CoreOS works

CoreOS has no package manager, so everything needs to be installed and used via docker containers. Moreover, it is 40 percent more efficient in RAM usage than an average Linux installation, as shown in this diagram:
[image: How CoreOS works]

CoreOS utilizes an active/passive dual-partition scheme to update itself as a single unit, instead of using a package-by-package method. Its root partition is read-only and changes only when an update is applied. If the update is unsuccessful during reboot time, then it rolls back to the previous boot partition. The following image shows OS updated gets applied to partition B (passive) and after reboot it becomes the active to boot from.
[image: How CoreOS works]

The docker and rkt containers run as applications on CoreOS. Containers can provide very good flexibility for application packaging and can start very quicklyin a matter of milliseconds. The following image shows the simplicity of CoreOS. Bottom part is Linux OS, the second level is etcd/fleet with docker daemon and the top level are running containers on the server.
[image: How CoreOS works]

By default, CoreOS is designed to work in a clustered form, but it also works very well as a single host. It is very easy to control and run application containers across cluster machines with fleet and use the etcd service discovery to connect them as it shown in the following image.
[image: How CoreOS works]

CoreOS can be deployed easily on all major cloud providers, for example, Google Cloud, Amazon Web Services, Digital Ocean, and so on. It runs very well on bare-metal servers as well. Moreover, it can be easily installed on a laptop or desktop with Linux, Mac OS X, or Windows via Vagrant, with VirtualBox or VMware virtual machine support.
This short overview should throw some light on what CoreOS is about and what it can do. Let's now move on to the real stuff and install CoreOS on to our laptop or desktop machine.

Installing the CoreOS virtual machine

To use the CoreOS virtual machine, you need to have VirtualBox, Vagrant, and git installed on your computer.
In the following examples, we will install CoreOS on our local computer, which will serve as a virtual machine on VirtualBox.
Okay, let's get started!
Cloning the coreos-vagrant GitHub project

Let's clone this project and get it running.
In your terminal (from now on, we will use just the terminal phrase and use $ to label the terminal prompt), type the following command:

$ git clone https://github.com/coreos/coreos-vagrant/

This will clone from the GitHub repository to the coreos-vagrant folder on your computer.

Working with cloud-config

To start even a single host, we need to provide some config parameters in the cloud-config format via the user data file.
In your terminal, type this:

$ cd coreos-vagrant
$ mv user-data.sample user-data

The user data should have content like this (the coreos-vagrant Github repository is constantly changing, so you might see a bit of different content when you clone the repository):
#cloud-config
coreos:
 etcd2:
 #generate a new token for each unique cluster from https://discovery.etcd.io/new
 #discovery: https://discovery.etcd.io/<token>
 # multi-region and multi-cloud deployments need to use $public_ipv4
 advertise-client-urls: http://$public_ipv4:2379
 initial-advertise-peer-urls: http://$private_ipv4:2380
 # listen on both the official ports and the legacy ports
 # legacy ports can be omitted if your application doesn't depend on them
 listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
 listen-peer-urls: http://$private_ipv4:2380,http://$private_ipv4:7001
 fleet:
 public-ip: $public_ipv4
 flannel:
 interface: $public_ipv4
 units:
 - name: etcd2.service
 command: start
 - name: fleet.service
 command: start
 - name: docker-tcp.socket
 command: start
 enable: true
 content: |
 [Unit]
 Description=Docker Socket for the API

 [Socket]
 ListenStream=2375
 Service=docker.service
 BindIPv6Only=both
 [Install]
 WantedBy=sockets.target

Replace the text between the etcd2: and fleet: lines to look this:
 etcd2:
 name: core-01
 initial-advertise-peer-urls: http://$private_ipv4:2380
 listen-peer-urls: http://$private_ipv4:2380,http://$private_ipv4:7001
 initial-cluster-token: core-01_etcd
 initial-cluster: core-01=http://$private_ipv4:2380
 initial-cluster-state: new
 advertise-client-urls: http://$public_ipv4:2379,http://$public_ipv4:4001
 listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
 fleet:

Note
You can also download the latest user-data file from https://github.com/rimusz/coreos-essentials-book/blob/master/Chapter1/user-data.

This should be enough to bootstrap a single-host CoreOS VM with etcd, fleet, and docker running there.
We will cover cloud-config, etcd and fleet in more detail in later chapters.

Startup and SSH

It's now time to boot our CoreOS VM and log in to its console using ssh.
Let's boot our first CoreOS VM host. To do so, using the terminal, type the following command:

$ vagrant up

This will trigger vagrant to download the latest CoreOS alpha (this is the default channel set in the config.rb file, and it can easily be changed to beta, or stable) channel image and the lunch VM instance.
You should see something like this as the output in your terminal:
[image: Startup and SSH]

CoreOS VM has booted up, so let's open the ssh connection to our new VM using the following command:

$ vagrant ssh

It should show something like this:

CoreOS alpha (some version)
core@core-01 ~ $

Tip

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Perfect! Let's verify that etcd, fleet, and docker are running there. Here are the commands required and the corresponding screenshots of the output:

$ systemctl status etcd2

[image: Startup and SSH]

To check the status of fleet, type this:

$ systemctl status fleet

[image: Startup and SSH]

To check the status of docker, type the following command:

$ docker version

[image: Startup and SSH]

Lovely! Everything looks fine. Thus, we've got our first CoreOS VM up and running in VirtualBox.

Summary

In this chapter, we saw what CoreOS is and how it is installed. We covered a simple CoreOS installation on a local computer with the help of Vagrant and VirtualBox, and checked whether etcd, fleet, and docker are running there.
You will continue to explore and learn about all CoreOS services in more detail in the upcoming chapters.

Chapter2.Getting Started with etcd

In this chapter, we will cover etcd, CoreOS's central hub of services, which provides a reliable way of storing shared data across cluster machines and monitoring it.
For testing, we will use our already installed CoreOS VM from the previous chapter. In this chapter, we will cover the following topics:
	Introducing etcd
	Reading and writing to etcd from the host machine
	Reading and writing from an application container
	Watching changes in etcd
	TTL (Time to Live) examples
	Use cases of etcd

Introducing etcd

The etcd function is an open source distributed key value store on a computer network where information is stored on more than one node and data is replicated using the Raft consensus algorithm. The etcd function is used to store the CoreOS cluster service discovery and the shared configuration.
The configuration is stored in the write-ahead log and includes the cluster member ID, cluster ID and cluster configuration, and is accessible by all cluster members.
The etcd function runs on each cluster's central services role machine, and gracefully handles master election during network partitions and in the event of a loss of the current master.

Reading and writing to etcd from the host machine

You are going to learn how read and write to ectd from the host machine. We will use both the etcdctl and curl examples here.
Logging in to the host

To log in to CoreOS VM, follow these steps:
	Boot the CoreOS VM installed in the first chapter. In your terminal, type this:
$ cdcoreos-vagrant
$ vagrant up

	We need to log in to the host via ssh:
$ vagrant ssh

Reading and writing to ectd

Let's read and write to etcd using etcdctl. So, perform these steps:
	Set a message1 key with etcdctl with Book1 as the value:
$ etcdctl set /message1 Book1
Book1 (we got respond for our successful write to etcd)

	Now, let's read the key value to double-check whether everything is fine there:
$ etcdctl get /message1
Book1
Perfect!

	Next, let's try to do the same using curl via an HTTP-based API. The curl function is handy for accessing etcd from any place from where you have access to an etcd cluster but don't want/need to use the etcdctl client:
$ curl -L -X PUT http://127.0.0.1:2379/v2/keys/message2 -d value="Book2"
{"action":"set","key":"/message2","prevValue":"Book1","value":"Book2","index":13371}

Let's read it:

$ curl -L http://127.0.0.1:2379/v2/keys/message2
{"action":"get","node":{"key":"/message2","value":"Book2","modifiedIndex":13371,"createdIndex":13371}}

Using the HTTP-based etcd API means that etcd can be read from and written to by client applications without the need to interact with the command line.

	Now, if we want to delete the key-value pair, we type the following command:
$ etcdctl rm /message1
$ curl -L -X DELETE http://127.0.0.1:2379/v2/keys/message2

	Also, we can add a key value pair to a directory, as directories are created automatically when a key is placed inside. We only need one command to put a key inside a directory:
$ etcdctl set /foo-directory/foo-key somekey

	Let's now check the directory's content:
$ etcdctl ls /foo-directory recursive
/foo-directory/foo-key

	Finally, we get the key value from the directory by typing:
$ etcdctl get /foo-directory/foo-key
somekey

Reading and writing from the application container

Usually, application containers (this is a general term for docker, rkt, and other types of containers) do not have etcdctl or even curl installed by default. Installing curl is much easier than installing etcdctl.
For our example, we will use the Alpine Linux docker image, which is very small in size and will not take much time to pull from the docker registry:
	Firstly, we need to check the docker0 interface IP, which we will use with curl:
$ echo"$(ifconfig docker0 | awk'/\<inet\>/ { print $2}'):2379"
10.1.42.1:2379

	Let's run the docker container with a bash shell:
$ docker run -it alpine ash

We should see something like this in Command Prompt:/ #.

	As curl is not installed by default on Alpine Linux, we need to install it:
$ apk update&&apk add curl
$ curl -L http://10.1.42.1:2379/v2/keys/
{"action":"get","node":{"key":"/","dir":true,"nodes":[{"key":"/coreos.com","dir":true,"modifiedIndex":3,"createdIndex":3}]}}

	Repeat steps 3 and 4 from the previous subtopic so that you understand that no matter where you are connecting to etcd from, curl still works in the same way.
	Press Ctrl +D to exit from the docker container.

Watching changes in etcd

This time, let's watch the key changes in etcd. Watching key changes is useful when we have, for example, one fleet unit with nginx writing its port to etcd, and another reverse proxy application watching for changes and updating its configuration:
	We need to create a directory in etcd first:
$ etcdctlmkdir /foo-data

	Next, we watch for changes in this directory:
$ etcdctl watch /foo-data--recursive

	Now open another CoreOS shell in a new terminal window:
$ cdcoreos-vagrant
$ vagrantssh

	We add a new key to the /foo-data directory:
$ etcdctl set /foo-data/Book is_cool

	In the first terminal, we should see a notification saying that the key was changed:
is_cool

TTL (time to live) examples

Sometimes, it is handy to put a time to live (TTL) for a key to expire in a certain amount of time. This is useful, for example, in the case of watching a key with a 60 second TTL, from a reverse proxy. So, if the nginx fleet service has not updated the key, it will expire in 60 seconds and will be removed from etcd. Then the reverse proxy checks for it and does not find it. Hence, it will remove the nginx service from config.
Let's set a TTL of 30 seconds in this example:
	Type this in a terminal:
$ etcdctl set /foo "I'm Expiring in 30 sec" --ttl 30
I'm Expiring in 30 sec

	Verify that the key is still there:
$ etcdctl get /foo
I'm Expiring in 30 sec

	Check again after 30 seconds :
$ etcdctl get /foo

	If your requested key has already expired, you will be returned Error: 100:
Error: 100: Key not found (/foo) [17053]

This time the key got deleted by etcd because we put a TTL of 30 seconds for it.
Note
TTL is very handy to use to communicate between the different services using etcd as the checking point.

Use cases of etcd

Application containers running on worker nodes with etcd in proxy mode can read and write to an etcd cluster.
Very common etcd use cases are as follows: storing database connection settings, cache settings, and shared settings. For example, the Vulcand proxy server (http://vulcanproxy.com/) uses etcd to store web host connection details, and it becomes available for all cluster-connected worker machines. Another example could be to store a database password for MySQL and retrieve it when running an application container.
We will cover more details about cluster setup, central services, and worker role machines in the upcoming chapters.

Summary

In this short chapter, we covered the basics of etcd and how to read and write to etcd, watch for changes in etcd, and use TTL for etcd keys.
In the next chapter, you will learn how to use the systemd and fleet units.

Chapter3.Getting Started with systemd and fleet

In this chapter, we will cover the basics of systemd and fleet, which includes system unit files. We will demonstrate how to use a fleet to launch Docker containers.
We will cover the following topics in this chapter:
	Getting started with systemd
	Getting started with fleet

Getting started with systemd

You are going to learn what systemd is about and how to use systemctl to control systemd units.
An overview of systemd

The systemd is an init system used by CoreOS for starting, stopping, and managing processes.
Basically, it is a system and service manager for CoreOS. On CoreOS, systemd will be used almost exclusively to manage the life cycle of Docker containers. The systemd records initialization instructions for each process in the unit file, which has many types, but we will mainly be covering the "service" unit file, as covering all of them is beyond the scope for this book.

The systemd unit files

The systemd records initialization instructions/properties for each process in the "service" unit file we want to run. On CoreOS, unit files installed by the user manually or via cloud-init are placed at /etc/systemd/system, which is a read-write filesystem, as a large part of CoreOS has only read-only access. Units curated by the CoreOS team are placed in /usr/lib64/system/system, and ephemeral units, which exist for the runtime of a single boot, are located at /run/system/system. This is really good to know for debugging fleet services.
Okay, let's create a unit file to test systemd:
	Boot your CoreOS VM installed in the first chapter and log in to the host via ssh.
	Let's create a simple unit file, hello.service:
$ sudo vi /etc/systemd/system/hello.service

Press I and copy and paste the following text (or use the provided example file, hello.service):
[Unit]
Description=HelloWorld
this unit will only start after docker.service
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
busybox image will be pulled from docker public registry
ExecStartPre=/usr/bin/docker pull busybox
we use rm just in case the container with the name "busybox1" is left
ExecStartPre=-/usr/bin/docker rm busybox1
we start docker container
ExecStart=/usr/bin/docker run --rm --name busybox1 busybox /bin/sh -c "while true; do echo Hello World; sleep 1; done"
we stop docker container when systemctl stop is used
ExecStop=/usr/bin/docker stop busybox1

[Install]
WantedBy=multi-user.target

	Press Esc and then type :wq to save the file.
	To start the new unit, run this command:
$ sudo systemctl enable /etc/systemd/system/hello.service

Created a symlink from /etc/systemd/system/multi-user.target.wants/hello.service to /etc/systemd/system/hello.service.

$ sudo systemctl start hello.service

	Let's verify that the hello.service unit got started:
$ journalctl -f -u hello.service

You should see the unit's output similar to this:
[image: The systemd unit files]

Also, you can check out the list of containers running with docker ps.
In the previous steps, we created the hello.service system unit, enabled and started it, and checked that unit's log file with journalctl.
Note
To read about more advanced use of the systemd unit files, go to https://coreos.com/docs/launching-containers/launching/getting-started-with-systemd.

An overview of systemctl

The systemctl is used to control and provide an introspection of the state of the systemd system and its units.
It is like your interface to a system (similar to supervisord/supervisordctl from other Linux distribution), as all processes on a single machine are started and managed by systemd, which includes docker containers too.
We have already used it in the preceding example to enable and start the hello.service unit.
The following are some useful systemctl commands, with their purposes:
	Checking the status of the unit:
$ sudo systemctl status hello.service

You should see a similar output as follows:
[image: An overview of systemctl]

	Stopping the service:
$ sudo systemctl stop hello.service

	You might need to kill the service, but that will not stop the docker container:
$ sudo systemctl kill hello.service
$ docker ps

You should see a similar output as follows:
[image: An overview of systemctl]

	As you can see, the docker container is still running. Hence, we need to stop it with the following command:
$ docker stop busybox1

	Restarting the service:
$ sudo systemctl restart hello.service

	If you have changed hello.service, then before restarting, you need to reload all the service files:
$ sudo systemctl daemon-reload

	Disabling the service:
$ sudo systemctl disable hello.service

The systemd service units can only run and be controlled on a single machine, and they should better be used for simpler tasks, for example, to download some files on reboot and so on.
You will continue learning about systemd in the next topic and in later chapters.

Getting started with fleet

We use fleet to take advantage of systemd at the higher level. The fleet is a cluster manager that controls systemd at the cluster level. You can even use it on a single machine and get all the advantages of fleet there too.
It encourages users to write applications as small, ephemeral units that can be easily migrated around a cluster of self-updating CoreOS machines.
The fleet unit files

The fleet unit files are regular systemd units combined with specific fleet properties.
[image: The fleet unit files]

They are the primary interaction with fleet. As in the systemd units, the fleet units define what you want to do and how fleet should do it. The fleet will schedule a valid unit file to the single machine or a machine in a cluster, taking in mind the fleet special properties from the [X-Fleet] section, which replaces the systemd unit's [Install] section. The rest of systemd sections are same in fleet units.
Let's overview the specific options of fleet for the [X-Fleet] section:
	MachineID: This unit will be scheduled on the machine identified by a given string.
	MachineOf: This limits eligible machines to the one that hosts a specific unit.
	MachineMetadata: This limits eligible machines to those hosts with this specific metadata.
	Conflicts: This prevents a unit from being collocated with other units using glob-matching on other unit names.
	Global: Schedule this unit on all machines in the cluster. A unit is considered invalid if options other than MachineMetadata are provided alongside Global=true.

An example of how a fleet unit file can be written with the [X-Fleet] section is as follows:
[Unit]
Description=Ping google

[Service]
ExecStart=/usr/bin/ping google.com

[X-Fleet]
MachineMetadata=role=check
Conflicts=ping.*

So, let's see how Conflicts=ping* works. For instance, we have two identical ping.1.service and ping.2.service files, and we run on our cluster using the following code:
fleetctl start ping.*

This will schedule two fleet units on two separate cluster machines. So, let's convert the systemd unit called hello.service that we previously used to fleet unit.
	As usual, you need to log in to the host via ssh with vagrant ssh.
	Now let's create a simple unit file with the new name hello1.service:
$ sudo vi hello1.service

Press I and copy and paste the text as follows:
[Unit]
Description=HelloWorld
this unit will only start after docker.service
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
busybox image will be pulled from docker public registry
ExecStartPre=/usr/bin/docker pull busybox
we use rm just in case the container with the name "busybox2" is left
ExecStartPre=-/usr/bin/docker rm busybox2
we start docker container
ExecStart=/usr/bin/docker run --rm --name busybox2 busybox /bin/sh -c "while true; do echo Hello World; sleep 1; done"
we stop docker container when systemctl stop is used
ExecStop=/usr/bin/docker stop busybox1

[X-Fleet]

	Press Esc and then type :wq to save the file.As you can see, we have the [X-Fleet] section empty for now because we have nothing to use there yet. We will cover that part in more detail in the upcoming chapters.

	First, we need to submit our fleet unit :
$ fleetctl submit hello1.service

	Let's verify that our fleet unit files:
$ fleetctl list-unit-files

[image: The fleet unit files]

	To start the new unit, run this command:
$ fleetctl start hello1.service

[image: The fleet unit files]

The preceding commands have submitted and started hello1.service.
Let's verify that our new fleet unit is running:

$ fleetctl list-units

[image: The fleet unit files]

Okay, it's now time to overview the fleetctl commands.

An overview of fleetctl

The fleetctl commands are very similar to systemctl commands you can see this as followsand we do not have to use sudo with fleetctl. Here are some tasks you can perform, listed with the required commands:
	Checking the status of the unit:
$ fleetctl status hello1.service

	Stopping the service:
$ fleetctl stop hello1.service

	Viewing the service file:
$ fleetctl cat hello1.service

	If you want to just upload the unit file:
$ fleetctl submit hello1.service

	Listing all running fleet units:
$ fleetctl list-units

	Listing fleet cluster machines:
$ fleetctl list-machines

[image: An overview of fleetctl]

We see just one machine, as in our case, as we have only one machine running there.
Of course, if we want to see the hello1.service log output, we still use the same systemd journalctl command, as follows:

$ journalctl -f -u hello1.service

You should see the unit's output similar to this:
[image: An overview of fleetctl]

References

You can read more about these topics at the given URLs:
	systemd unit files: https://coreos.com/docs/launching-containers/launching/getting-started-with-systemd/
	fleet unit files: https://coreos.com/docs/launching-containers/launching/fleet-unit-files/

Summary

In this chapter, you learned about CoreOS's systemd init system. You also learned how to create and control system and fleet service units with systemctl and fleetctl.
In the next chapter, you will learn how to set up and manage CoreOS clusters.

Chapter4.Managing Clusters

In this chapter, we will cover how to setup and manage a local CoreOS cluster on a personal computer. You will learn how to bootstrap a three-peer cluster, customize it via the cloud-config file, and schedule a fleet unit in the cluster.
In this chapter, we will cover the following topics:
	Bootstrapping a local cluster
	Customizing a cluster via thecloud-config file
	Scheduling a fleet unit in the cluster

You are going to learn how to setup a simple three-node cluster on your personal computer.
Determining the optimal etcd cluster size

The most efficient cluster size is between three and nine peers. For larger clusters, etcd will select a subset of instances to participate in order to keep it efficient.
The bigger the cluster, the slower the writing to the cluster becomes, as all of the data needs to be replicated around the cluster peers. To have a cluster well-optimized, it needs to be based on an odd number of peers. It must have a quorum of at least of three peers and prevent a split-brain in the event of network partition.
In our case, we are going to set up a three-peer etcd cluster. To build a highly available cluster on the cloud (GCE, AWS, Azure, and so on), you should use multiple availability zones in order to decrease the effect of failure in a single domain.
In a general cluster, peers are not recommended to be used for anything except for running an etcd cluster. But for testing our cluster setup, it will be fine to deploy some fleet units there.
In later chapters, you will learn how to properly set up clusters to be used for production.

Bootstrapping a local cluster

As discussed earlier, we will be installing a three-peer etcd cluster on our computer.
Cloning the coreos-vagrant project

Let's clone the project and get it running. Follow these steps:
	In your terminal or command prompt, type this:
$ mkdir cluster
$ cd cluster
$ git clone https://github.com/coreos/coreos-vagrant.git
$ cd coreos-vagrant
$ cpconfig.rb.sampleconfig.rb
$ cp user-data.sample user-data

	Now we need to adjust some settings. Edit config.rb and change the file's top part to this example:# Size of the CoreOS cluster created by Vagrant
$num_instances=3

Used to fetch a new discovery token for a cluster of size $num_instances
$new_discovery_url="https://discovery.etcd.io/new?size=#{$num_instances}"

To automatically replace the discovery token on 'vagrant up', uncomment
the lines below:
#
if File.exists?('user-data') &&ARGV[0].eql?('up')
 require 'open-uri'
 require 'yaml'

 token = open($new_discovery_url).read

 data = YAML.load(IO.readlines('user-data')[1..-1].join)
 if data['coreos'].key? 'etcd'
 data['coreos']['etcd']['discovery'] = token
 end
 if data['coreos'].key? 'etcd2'
 data['coreos']['etcd2']['discovery'] = token
 end

yaml = YAML.dump(data)
File.open('user-data', 'w') { |file| file.write("#cloud-config\n\n#{yaml}") }
end
#

Note
Alternatively, you can use the example code of this chapter, which will be kept up to date with changes in the coreos-vagrant GitHub repository.

What we did here is as follows:
	We set the cluster to three instances
	Discovery token is automatically replaced on each vagrant up command

	Next, we need to edit the user data file:Change the "#discovery: https://discovery.etcd.io/<token>" line to this:
"discovery: https://discovery.etcd.io/<token>"

So, when we boot our vagrant-based cluster the next time, we will have three CoreOS etcd peers running and connected to the same cluster via the discovery token provided through "https://discovery.etcd.io/<token>".

	Let's now fire up our new cluster using the following command:
$ vagrant up

We should see something like this in our terminal:
[image: Cloning the coreos-vagrant project]

Hold on! There's more output!
[image: Cloning the coreos-vagrant project]

The cluster should be up and running now.

	To check the status of the cluster, type the following command:
$ vagrant status

You should see something like what is shown in the following screenshot:
[image: Cloning the coreos-vagrant project]

Now it's time to test our new CoreOS cluster. We need to run ssh for one of our peers and check the fleet machines. This can be done by the following command:

$ vagrant ssh core-01 -- -A
$ fleetctl list-machines

We should see something like what is shown in the following screenshot:
[image: Cloning the coreos-vagrant project]

Excellent! We have got our first CoreOS cluster set, as we see all the three machines up and running. Now, let's try to set a key in etcd with which we can check on another machine later on. Type in the following command:

$ etcdctl set etcd-cluster-key "Hello CoreOS"

You will see the following output:

Hello CoreOS

Press Ctrl+D to exit and type the following command to get to VM host's console:

$ vagrant ssh core-02 -- -A

Let's verify that we can see our new etcd key there too:

$ etcdctl get etcd-cluster-key
Hello CoreOS

Brilliant! Our etcd cluster is working just fine.
Exit from the core-02 machine by pressing Ctrl+D.

Customizing a cluster via the cloud-config file

Let's make some changes to the cloud-config file and push it into the cluster machines:
	In the user data file (cloud-config file for Vagrant-based CoreOS), below the text block fleet make changes:public-ip: $public_ipv4

Add a new line:
metadata: cluster=vagrant

So, it will look like this:
fleet:
 public-ip: $public_ipv4
 metadata: cluster=vagrant

	Let's add a test.txt file to the /home/core folder via cloud-config too. At the end of the user data file, add this code:write_files:
 - path: /home/core/test.txt
 permissions: 0644
 owner: core
 content: |
Hello Cluster

This will add a new file in the/home/core folder on each cluster machine.

	To get our changes implemented which we did previously, run the following commands:
$ vagrant provision

You will see the following result:
[image: Customizing a cluster via the cloud-config file]

Then, run this command:

$ vagrant reload

The first command provisionally updated user data file on all three VMs, and the second reloaded them.

	To ssh to one of the VMs, enter this code:
$ vagrant ssh core-03 -- -A
$ ls
test.txt

	To check the content of the test.txt file, use this line:
$ cat test.txt

You should see output as follows:

Hello Cluster

As you can see, we have added some files to all cluster machines via the cloud-config file.
Let's check one more change that we have done in that file using the following command:

$ fleetctl list-machines

You will see something like this:
[image: Customizing a cluster via the cloud-config file]

Thus, you can see that we have some metadata assigned to cluster machines via the cloud-init file.

Scheduling a fleet unit in the cluster

Now, for the fun part, we will schedule a fleet unit in the cluster.
	Let's log in to the core-03 machine:
$ vagrant ssh core-03 -- -A

	Create a new fleet unit called hello-cluster.service by copying and pasting this line:
$ vi hello-cluster.service
[Unit]
[Service]
ExecStart=/usr/bin/bash -c "while true; do echo 'Hello Cluster'; sleep 1; done"

	Let's schedule the hello-cluster.service job for the cluster:
$ fleetctl start hello-cluster.service

You should see output as follows:

Unit hello-cluster.service launched on bb53c039.../172.17.8.103

We can see that hello-cluster.service was scheduled to be run on the 172.17.8.103 machine because that machine first responded to the fleetctl command.
In later chapters, you will learn how to specifically schedule jobs to a particular machine. Now let's check out the real-time hello-cluster.service log:

$ journalctl -u hello-cluster.servicef

You will see something like this:
[image: Scheduling a fleet unit in the cluster]

	To exit from the VM and reload the cluster, type the following command:
$ vagrant reload

	Now, ssh again back to any machine:
$ vagrant ssh core-02 -- -A

	Then run this command:
$ fleetctl list-units

The following output will be seen:
[image: Scheduling a fleet unit in the cluster]

	As you can see, hello-cluster.service got scheduled on another machine; in our case, it is core-01. Suppose we ssh to it:
$ vagrant ssh core-01 -- -A

	Then, we run the following command there. As a result, we will see the real-time log again:
$ journalctl -u hello-cluster.servicef

[image: Scheduling a fleet unit in the cluster]

References

You can read more about how to use cloud-config at https://coreos.com/docs/cluster-management/setup/cloudinit-cloud-config/.You can find out more about Vagrant at https://docs.vagrantup.com.If you have any issues or questions about Vagrant, you can subscribe to the Vagrant Google group at https://groups.google.com/forum/#!forum/vagrant-up.

Summary

In this chapter,you learned how to set up aCoreOS cluster, customize it via cloud-config, schedule fleet service units to the cluster, and check the fleet unit in the cluster status and log.In the next chapter,you will learn how to perform local and cloud development setups.

Chapter5.Building a Development Environment

In this chapter, we will cover how to set up a local CoreOS environment for development on a personal computer, and a test and staging environment cluster on the VM instances of Google Cloud's Compute Engine. These are the topics we will cover:
	Setting up a local development environment
	Bootstrapping a remote test/staging cluster on GCE

Setting up the local development environment

We are going to learn how to set up a development environment on our personal computer with the help of VirtualBox and Vagrant, as we did in an earlier chapter. Building and testing docker images and coding locally makes you more productive, it saves time, and Docker repository can be pushed to the docker registry (private or not) when your docker images are ready. The same goes for the code; you just work on it and test it locally. When it is ready, you can merge it with the git test branch where your team/client can test it further.
Setting up the development VM

In the previous chapters, you learned how to install CoreOS via Vagrant on your PC. Here, we have prepared installation scripts for Linux and OS X to go straight to the point. You can download the latest CoreOS Essentials book example files from GitHub repository:

$ git clone https://github.com/rimusz/coreos-essentials-book/

To install a local Vagrant-based development VM, type this:

$ cd coreos-essentials-book/chapter5/Local_Development_VM
$./install_local_dev.sh

You should see an output similar to this:
[image: Setting up the development VM]

Hang on! There's more!
[image: Setting up the development VM]

This will perform a VM installation similar to the installation that we did in Chapter 1, CoreOS Overview and Installation, but in a more automated way this time.

What happened during the VM installation?

Let's check out what happened during the VM installation. To sum up:
	A new CoreOS VM (VirtualBox/Vagrant-based) was installed
	A new folder called coreos-dev-env was created in your Home folder

Run the following commands:

$ cd ~/coreos-dev-env
$ ls
bin
fleet
share
vm
vm_halt.sh
vm_ssh.sh
vm_up.sh

As a result, this is what we see:
	Four folders, which consist of the following list:	bin: docker, etcdctl and fleetctl files
	fleet: The nginx.service fleet unit is stored here
	share: This is shared folder between the host and VM
	vm: Vagrantfile, config.rb and user-data files

	We also have three files:	vm_halt.sh: This is used to shut down the CoreOS VM
	vm_ssh.sh: This is used to ssh to the CoreOS VM
	vm_up.sh: This is used to start the CoreOS VM, with the OS shell preset to the following:# Set the environment variable for the docker daemon
export DOCKER_HOST=tcp://127.0.0.1:2375
path to the bin folder where we store our binary files
export PATH=${HOME}/coreos-dev-env/bin:$PATH
set etcd endpoint
export ETCDCTL_PEERS=http://172.19.20.99:2379
set fleetctl endpoint
export FLEETCTL_ENDPOINT=http://172.19.20.99:2379
export FLEETCTL_DRIVER=etcd
export FLEETCTL_STRICT_HOST_KEY_CHECKING=false

Now that we have installed our CoreOS VM, let's run vm_up.sh. We should see this output in the Terminal window:

$ cd ~/coreos-dev-env
$./vm_up.sh

You should see output similar to this:
[image: What happened during the VM installation?]

As we can see in the preceding screenshot, we do not have any errors. Only fleetctl list-machines shows our CoreOS VM machine, and we have no docker containers and fleet units running there yet.

Deploying the fleet units

Let's deploy some fleet units to verify that our development environment works fine. Run the following commands:

$ cd fleet
$ fleetctl start nginx.service

Note
It can take a bit of time for docker to download the nginx image.

You can check out the nginx.service unit's status:

$ fleetctl status nginx.service

You should see output similar to this:
[image: Deploying the fleet units]

Once the nginx fleet unit is deployed, open in your browser http://172.19.20.99. You should see the following message:
[image: Deploying the fleet units]

Let's check out what happened there. We scheduled this nginx.service unit with fleetctl:

$ cat ~/coreos-dev-env/fleet/nginx.service

[Unit]
Description=nginx

[Service]
User=core
TimeoutStartSec=0
EnvironmentFile=/etc/environment
ExecStartPre=-/usr/bin/docker rm nginx
ExecStart=/usr/bin/docker run --rm --name nginx -p 80:80 \
 -v /home/core/share/nginx/html:/usr/share/nginx/html \
 nginx:latest
#
ExecStop=/usr/bin/docker stop nginx
ExecStopPost=-/usr/bin/docker rm nginx

Restart=always
RestartSec=10s

[X-Fleet]

Then, we used the official nginx image from the docker registry, and shared our local ~/coreos-dev-env/share folder with /home/core/share, which was mounted afterwards as a docker volume /home/core/share/nginx/html:/usr/share/nginx/html.
So, whatever html files we put into our local ~/coreos-dev-env/share/nginx/html folder will be picked up automatically by nginx.
Let's overview what advantages such a setup gives us:
	We can build and test docker containers locally, and then push them to the docker registry (private or public).
	Test our code locally and push it to the git repository when we are done with it.
	By having a local development setup, productivity really increases, as everything is done much faster. We do not have build new docker containers upon every code change, push them to the remote docker registry, pull them at some remote test servers, and so on.
	It is very easy to clean up the setup and get it working from a clean start again, reusing the configured fleet units to start the all required docker containers.

Very good! So, now, we have a fully operational local development setup!
Note
This setup is as per the CoreOS documentation at https://coreos.com/docs/cluster-management/setup/cluster-architectures/, in the Docker Dev Environment on Laptop section.
Go through the coreos-dev-install.sh bash script, which sets up your local development VM. It is a simple script and is well commented, so it should not be too hard to understand its logic.

If you are a Mac user, you can download from https://github.com/rimusz/coreos-osx-gui and use my Mac App CoreOS-Vagrant GUI for Mac OS X, which has a nice UI to manage CoreOS VM. It will automatically set up the CoreOS VM environment.
[image: Deploying the fleet units]

Bootstrapping a remote test/staging cluster on GCE

So, we have successfully built our local development setup. Let's get to the next level, that is, building our test/staging environment on the cloud.
We are going to use Google Cloud's Compute Engine, so you need a Google Cloud account for this. If you do not have it, for the purpose of running the examples in the book, you can open a trial account at https://cloud.google.com/compute/. A trial account lasts for 60 days and has $300 as credits, enough to run all of this book's examples. When you are done with opening the account, Google Cloud SDK needs to be installed from https://cloud.google.com/sdk/.
In this topic, we will follow the recommendations on how to set up CoreOS cluster by referring to Easy Development/Testing Cluster from https://coreos.com/docs/cluster-management/setup/cluster-architectures/.
Test/staging cluster setup

Okay, let's get our cloud cluster installed, as you have already downloaded this book's code examples. Carry out these steps in the shown order:
	Run the following commands:$ cd coreos-essentials-book/chapter5/Test_Staging_Cluster
$ ls
cloud-config
create_cluster_control.sh
create_cluster_workers.sh
files
fleet
install_fleetctl_and_scripts.sh
settings

Let's check "settings" file first:
$ cat settings
CoreOS Test/Staging Cluster on GCE settings

change Google Cloud settings as per your requirements
GC settings

CoreOS RELEASE CHANNEL
channel=beta

SET YOUR PROJECT AND ZONE !!!
project=my-cloud-project
zone=europe-west1-d

ETCD CONTROL AND NODES MACHINES TYPE
#
control_machine_type=g1-small
#
worker_machine_type=n1-standard-1
##

###

	Update the settings with your Google Cloud project ID and zone where you want the CoreOS instances to be deployed:# SET YOUR PROJECT AND ZONE !!!
project=my-cloud-project
zone=europe-west1-d

	Next, let's install our control server, which is our etcd cluster node:
$./create_cluster_control.sh

[image: Test/staging cluster setup]

We just created our new cluster etcd control node.
	Let's check out what we have in this script:
#!/bin/bash
Create TS cluster control

Update required settings in "settings" file before running this script

function pause(){
read -p "$*"
}

Fetch GC settings
project and zone
project=$(cat settings | grep project= | head -1 | cut -f2 -d"=")
zone=$(cat settings | grep zone= | head -1 | cut -f2 -d"=")
CoreOS release channel
channel=$(cat settings | grep channel= | head -1 | cut -f2 -d"=")
control instance type
control_machine_type=$(cat settings | grep control_machine_type= | head -1 | cut -f2 -d"=")
get the latest full image name
image=$(gcloud compute images list --project=$project | grep -v grep | grep coreos-$channel | awk {'print $1'})
##

create an instance
gcloud compute instances create tsc-control1 --project=$project --image=$image --image-project=coreos-cloud \
 --boot-disk-size=10 --zone=$zone --machine-type=$control_machine_type \
 --metadata-from-file user-data=cloud-config/control1.yaml --can-ip-forward --tags tsc-control1 tsc

create a static IP for the new instance
gcloud compute routes create ip-10-200-1-1-tsc-control1 --project=$project \
 --next-hop-instance tsc-control1 \
 --next-hop-instance-zone $zone \
 --destination-range 10.200.1.1/32

echo " "
echo "Setup has finished !!!"
pause 'Press [Enter] key to continue...'
end of bash script

It fetches the settings needed for Google Cloud from the settings file. With the help of gcloud utility from the Google Cloud SDK, it sets up the tsld-control1 instance and assigns to it a static internal IP 10.200.1.1. This IP will be used by workers to connect the etcd cluster, which will run on tsc-control1.
In the cloud-config folder, we have the cloud-config files needed to create CoreOS instances on GCE.
Open control1.yaml and check out what is there in it:

$ cat control1.yaml
#cloud-config

coreos:

etcd2:
 name: control1
 initial-advertise-peer-urls: http://10.200.1.1:2380
 initial-cluster-token: control_etcd
 initial-cluster: control1=http://10.200.1.1:2380
 initial-cluster-state: new
 listen-peer-urls: http://10.200.1.1:2380,http://10.200.1.1:7001
 listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
 advertise-client-urls: http://10.200.1.1:2379,http://10.200.1.1:4001
 fleet:
 metadata: "role=services,cpeer=tsc-control1"
 units:
 - name: 00-ens4v1.network
 runtime: true
 content: |
 [Match]
 Name=ens4v1

 [Network]
 Address=10.200.1.1/24
 - name: etcd2.service
 command: start
 - name: fleet.service
 command: start
 - name: docker.service
 command: start
 drop-ins:
 - name: 50-insecure-registry.conf
 content: |
 [Unit]
 [Service]
 Environment=DOCKER_OPTS='--insecure-registry="0.0.0.0/0"'
write_files:
 - path: /etc/resolv.conf
 permissions: 0644
 owner: root
 content: |
 nameserver 169.254.169.254
 nameserver 10.240.0.1
#end of cloud-config

As you see, we have cloud-config file for the control machine, which does the following:
	It creates a node etcd cluster with a static IP of 10.200.1.1, which will be used to connect to etcd cluster.
	It sets the fleet metadata to role=services,cpeer=tsc-control1.
	Unit 00-ens4v1.network assigns a static IP of 10.200.1.1.
	The docker.service drop-in 50-insecure-registry.conf sets --insecure-registry="0.0.0.0/0", which allows you to connect to any privately hosted docker registry.
	In the write_files part, we update /etc/resolv.conf with Google Cloud DNS servers, which sometimes do not get automatically put there if the static IP is assigned to the instance.

Creating our cluster workers

In order to create the cluster workers, the command to be used is as follows:

$./create_cluster_workers.sh

[image: Creating our cluster workers]

Make a note of the workers' external IPs, as shown in the previous screenshot; we will need them later.
Of course, you can always check them at the Google Developers Console too.
[image: Creating our cluster workers]

Let's check out what we have inside the test1.yaml and staging1.yaml files in the cloud-config folder. Run the following command:

$ cat test1.yaml
#cloud-config

coreos:
 etcd2:
 listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
 initial-cluster: control1=http://10.200.1.1:2380
 proxy: on
 fleet:
 public-ip: $public_ipv4
 metadata: "role=worker,cpeer=tsc-test1"
 units:
 - name: etcd2.service
 command: start
 - name: fleet.service
 command: start
 - name: docker.service
 command: start
 drop-ins:
 - name: 50-insecure-registry.conf
 content: |
 [Unit]
 [Service]
 Environment=DOCKER_OPTS='--insecure-registry="0.0.0.0/0"'
end of cloud-config

As we can see, we have cloud-config file for the test1 machine:
	It connects to the etcd cluster machine control1 and enables etcd2 in proxy mode, which allows anything running on the host to access the etcd cluster via the 127.0.0.1 address
	It sets the fleet metadata role=services,cpeer=tsc-test1
	The docker.service drop-in 50-insecure-registry.conf sets --insecure-registry="0.0.0.0/0", which will allow you to connect to any privately hosted docker registry

That's it!
If you check out the tsc-staging1.yaml cloud-config file, you will see that it is almost identical to test1.yaml, except that the fleet metadata has cpeer=tsc-staging1 in it. But we are not done yet!
Let's now install the OS X/Linux clients, which will allow us to manage the cloud development cluster from our local computer.
Let's run this installation script:

$./install_fleetctl_and_scripts.sh

You should see the following output:
[image: Creating our cluster workers]

So, what has the last script done?
In your home folder, it created a new folder called ~/coreos-tsc-gce, which has two folders:
	bin	etcdctl: This is the shell script used to access the etcdctl client on a remote cluster control1 node
	fleetctl: The local fleetctl client is used to control the remote cluster
	staging1.sh: Make ssh connection to remote staging1 worker
	test1.sh: Make ssh connection to remote test1 worker
	set_cluster_access.sh: This sets up shell access to the remote cluster

	fleet	test1_webserver.service: Our test1 server's fleet unit
	staging1_webserver.service: Our staging1 server's fleet unit

Now, let's take a look at set_cluster_access.sh:

$ cd ~/coreos-tsc-gce/bin
$ cat set_cluster_access.sh
#!/bin/bash

Setup Client SSH Tunnels
ssh-add ~/.ssh/google_compute_engine &>/dev/null

SET
path to the cluster folder where we store our binary files
export PATH=${HOME}/coreos-tsc-gce/bin:$PATH
fleet tunnel
export FLEETCTL_TUNNEL=104.155.61.42 # our control1 external IP
export FLEETCTL_STRICT_HOST_KEY_CHECKING=false

echo "etcd cluster:"
etcdctl --no-sync ls /

echo "list fleet units:"
fleetctl list-units

/bin/bash

This script is preset by ./install_fleetctl_and_scripts.sh with the remote control1 external IP, and allows us to issue remote fleet control commands:

$./set_cluster_access.sh

[image: Creating our cluster workers]

Very good! Our cluster is up and running, and the workers are connected to the etcd cluster.
Now we can run fleetctl commands on the remote cluster from our local computer.

Running fleetctl commands on the remote cluster

Let's now install the nginx fleet units we have in the ~/coreos-tsc-gce/fleet folder. Run the following command:

$ cd ~/coreos-tsc-gce/fleet

Let's first submit the fleet units to the cluster:

$ fleetctl submit *.service

Now, let's start them:

$ fleetctl start *.service

You should see something like what is shown in the following screenshot:
[image: Running fleetctl commands on the remote cluster]

Give some time to docker to download the nginx image from the docker registry. We can then check the status of our newly deployed fleet units using the following command:

$ fleetctl status *.service

[image: Running fleetctl commands on the remote cluster]

Then, run this command:

$ fleetctl list-units

[image: Running fleetctl commands on the remote cluster]

Perfect!
Now, in your web browser, open the workers' external IPs, and you should see this:
[image: Running fleetctl commands on the remote cluster]

The nginx servers are now working. The reason they are showing this error message is that we have not provided any index.html file yet. We will do that in the next chapter.
But, before we finish this chapter, let's check out our test/staging nginx fleet units:

$ cd ~/coreos-tsc-gce/fleet
$ cat test1_webserver.service

You should see something like the following code:

[Unit]
Description=nginx

[Service]
User=core
TimeoutStartSec=0 
EnvironmentFile=/etc/environment
ExecStartPre=-/usr/bin/docker rm nginx
ExecStart=/usr/bin/docker run --rm --name test1-webserver -p 80:80 \
-v /home/core/share/nginx/html:/usr/share/nginx/html \
nginx:latest
#
ExecStop=/usr/bin/docker stop nginx
ExecStopPost=-/usr/bin/docker rm nginx

Restart=always
RestartSec=10s
[X-Fleet]
MachineMetadata=cpeer=tsc-test1 # this where our fleet unit gets scheduled

There are a few things to note here:
	Staging1 has an almost identical unit; instead of test1, it has staging1 there. So, we reused the same fleet unit as we used for our local development machine, with a few changes.
	At ExecStart, we used test1-webserver and staging1-webserver, so by using fleetctl list-units, we can see which one is which.We added this bit:

[X-Fleet]
MachineMetadata=cpeer=tsc-test1

This will schedule the unit to the particular cluster worker.
If you are a Mac user, you can download from https://github.com/rimusz/coreos-osx-gui-cluster and use my Mac App CoreOS-Vagrant Cluster GUI for Mac OS X, which has a nice UI for managing CoreOS VMs on your computer.
[image: Running fleetctl commands on the remote cluster]

This app will set up a small control+ two-node local cluster, which makes easier to test cluster things on local computer before pushing them to the cloud.

References

You can read more about the CoreOS cluster architectures that we used for the local and cloud test/staging setup at https://coreos.com/docs/cluster-management/setup/cluster-architectures/.

Summary

In this chapter, you learned how to set up a CoreOS local development environment and a remote test/staging cluster on GCE. We scheduled fleet units based on different metadata tags.
In the next chapter, we will see how to deploy code to our cloud servers.

Chapter6.Building a Deployment Setup

In the previous chapter, you learned how to set up a local CoreOS environment for development on a personal computer and a Test and Staging environment cluster on Google Cloud's Compute Engine VM instances.
In this chapter, we will cover how to deploy code from the GitHub repository to our Test and Staging servers, and how to set up the Docker builder and Docker private registry worker for Docker image building and distribution.
In this chapter, we will cover the following topics:
	Code deployment on Test and Staging servers
	Setting up the Docker builder and private Docker registry machine

Code deployment on Test and Staging servers

In the previous chapter, you learned how to set up your Test and Staging environment on Google Cloud and deploy your web servers there. In this section, we will see how to deploy code to our web servers on Test and Staging environments.
Deploying code on servers

To deploy code on our Test1 and Staging1 servers, we run the following commands:

$ cd coreos-essentials-book/chapter6/Test_Staging_Cluster/webserver
$./deploy_2_test1.sh

You will get this output:
[image: Deploying code on servers]

Then, run this command:

$./deploy_2_staging1.sh

You should see the following result:
[image: Deploying code on servers]

Now open the tsc-test1 and tsc-staging1 VM instance external IPs, copying them to your browser (you can check out the IPs at GC Console, Compute Engine, VM Instance).
The output you see depends on the server.
For the Test server, you should see something like this:
[image: Deploying code on servers]

This is what you will see for the Staging server:
[image: Deploying code on servers]

Let's see what has happened here:
$ cat deploy_2_test1.sh
#!/bin/bash

function pause(){
read -p "$*"
}

Fetch GC settings
project and zone
project=$(cat ~/coreos-tsc-gce/settings | grep project= | head -1 | cut -f2 -d"=")
zone=$(cat ~/coreos-tsc-gce/settings | grep zone= | head -1 | cut -f2 -d"=")

change folder permissions
gcloud compute --project=$project ssh --zone=$zone "core@tsc-test1" --command "sudo chmod -R 755 /home/core/share/"

echo "Deploying code to tsc-test1 server !!!"
gcloud compute copy-files test1/index.html tsc-test1:/home/core/share/nginx/html --zone $zone --project $project

echo " "
echo "Finished !!!"
pause 'Press [Enter] key to continue...'

As you can see, we used gcloud compute to change the permissions for our home/core/share/nginx/html folder, as we need to be able to copy files there. We copied a single index.html file there.
In real-life scenarios, git pull should be used there to pull from the Test and Staging branches.
To automate releases to the Test1/Staging1 servers, for example, Strider-CD can be used, but this is beyond the scope of this book. You can read about Strider-CD at https://github.com/Strider-CD/strider and practice implementing it.

Setting up the Docker builder and private Docker registry worker

We have successfully deployed code (index.html in our case) in our Test/Staging environment on the cloud with the help of gcloud compute, by running it in a simple shell script.
Let's set up a new server in our Test/Staging environment on the cloud. It will build Docker images for us and store them in our private Docker Registry so that they can be used on our production cluster (you will learn how to set this up in the next chapter).
Server setup

As both Docker builder and Private Docker Registry fleet units will run on the same server, we are going to deploy one more server on the Test/Staging environment.
To install a new server, run the following commands:

$ cd coreos-essentials-book/chapter6/Test_Staging_Cluster
$ ls
cloud-config
create_registry-cbuilder1.sh
dockerfiles
files
fleet
webserver

Next, let's install our new server:

$./create_ registry-cbuilder1.sh

You should see output similar to this:
[image: Server setup]

Let's see what happened during the process of script installation:
	A new server tsc-registry-cbuilder1 was created
	The static IP's 10.200.4.1 forward route for the tsc-registry-cbuilder1 instance was created
	The external port 5000 was opened for the new server
	File reg-dbuilder1.sh from the files folder got copied to ~/coreos-tsc-gce/bin
	The dbuilder.service and registry.service fleet units from the fleet folder got copied to ~/coreos-tsc-gce/fleet

If we check out the GCE VM Instances at the GC console, we should see our new instance there:
[image: Server setup]

We now need to verify that our new server is working fine, so we perform ssh on it:

$ cd ~/coreos-tsc-gce/bin
$./reg-dbuider1.sh

[image: Server setup]

Very good! Our new server is up-and-running. Press Ctrl + D to exit.
Now we need to verify that our server is connected to our cluster. So, run the following command:

$./set_cluster_access.sh

The script's output should look like this:
[image: Server setup]

Perfect! We can see that our new server has successfully connected to our cluster:
[image: Server setup]

Okay, now let's install those two new fleet units:

$ cd ~/coreos-tsc-gce/fleet
$ fleetctl start dbuilder.service registry.service

[image: Server setup]

Next, let's list the fleet units:

$ fleetctl list-units

[image: Server setup]

If you see activating start-pre, give the fleet units a few minutes to pull the remote Docker images.
You can check the status of the fleet units using the following command:

$ fleetctl status dbuilder.service

[image: Server setup]

Suppose we try again in a couple of minutes:

$ fleetctl list-units

[image: Server setup]

Then we can see that we've successfully got two new fleet units on our new tsc-registry-cbuilder1 server.
You might remember from the previous chapter that the set_cluster_access.sh script does the following:
	It sets PATH to the ~/coreos-tsc-gce/bin folder so that we can access executable files and scripts stored there from any folder
	It sets FLEETCTL_TUNNEL to our control/etcd machine's external IP
	It prints machines at the cluster with fleetctl list-machines
	It prints units at the cluster with fleetctl list-units
	It allows us to work with a remote etcd cluster via a local fleetctl client

Summary

In this chapter, you learned how to deploy code on a remote Test/Staging cluster on GCE, and set up the Docker builder and private Docker registry machine.
In the following chapter, we will cover these topics: using our Staging and Docker builder and private registry servers to deploy code from Staging to production, building Docker images, and deploying them on production servers.

Chapter7.Building a Production Cluster

In the previous chapter, we saw how to deploy code on a remote test/staging cluster, and set up the Docker builder and Private Docker Registry server. In this chapter, we will cover how to set up a production cluster on Google Cloud Compute Engine and how to deploy code from the Staging server using the Docker builder and Docker private registry.
We will cover the following topics in this chapter:
	Bootstrapping a remote Production cluster to GCE
	Deploying code on the Production cluster servers
	An overview of the setup of Dev/Test/Staging/Production
	PaaS based on fleet
	Another cloud alternative to run CoreOS clusters

Bootstrapping a remote production cluster on GCE

We have already seen how to set up our test/staging environment on Google Cloud. Here, we will use a very similar approach to set up our Production cluster, where the usually tested code is run in a stable environment with more powerful and high-availability servers.
Setting up the production cluster

Before we install the cluster, let's see what folders/files we have there; type the following commands in your terminal:

$ cd coreos-essentials-book/chapter7/Production_Cluster
$ ls
cloud-config
create_cluster_workers.sh
fleet
files
create_cluster_control.sh
install_fleetctl_and_scripts.sh
settings

As you can see, we have folders/files that are very similar to what we used to set up the Test/Staging Cluster.
Note
We are not going to print all the scripts and files that we are going to use, as it will take up half the chapter just for that. Take a look at the scripts and other files. They are very well-commented, and it should not be too difficult to understand them.

When you are done with this chapter, you can adopt the provided scripts to bootstrap your clusters. As before, update the settings file with your Google Cloud project ID and the zone where you want CoreOS instances to be deployed:
	Next let's install our control server, which is our Production cluster's etcd node:
$./create_cluster_control.sh

[image: Setting up the production cluster]

We've just created our new Production cluster's control node.
For learning purposes, we used only one etcd server. For a real Production Cluster, a minimum of three etcd servers is recommended, and each server should be located in a different cloud availability zone.
As the Production cluster setup scripts are very similar to the Test/Staging cluster scripts, we are not going to analyze them here.

	The next step is to create our Production cluster workers:
$./create_cluster_workers.sh

You should see the following output:
[image: Setting up the production cluster]

For the other cluster workers, you should see something like this:
[image: Setting up the production cluster]

Note
Make a note of the workers' external IPs; we will need them later. Of course, you can always check them out at the Google Cloud Developers Console.

So, we've got our production servers set up on GCE. If you check out the Google Cloud Developers Console for Compute Engine Instances, you should see a list of servers, like this:
[image: Setting up the production cluster]

	Now let's install all the necessary scripts to access our cluster:
$./install_fleetctl_and_scripts.sh

This script will create a new folder called ~/coreos-prod-gce, which will have the same folders as our Test/Staging cluster:
	The bin folder will have scripts for accessing cluster machines and the set_cluster_access.sh script
	The fleet - website1.service fleet unit file

	Let's run set_cluster_access.sh:
$ cd ~/coreos-prod-gce/bin
$./set_cluster_access.sh

[image: Setting up the production cluster]

Perfect! Our production cluster is up-and-running!
As you can see, we have three servers there, one for the etcd services and two workers to run our website.
We already have the website1 fleet unit prepared. Let's install it:

$ cd ~/coreos-prod-gce/fleet
$ fleetctl start website1.service

The following screenshot demonstrates the output:
[image: Setting up the production cluster]

Now we are ready to deploy code on our Production servers.

Deploying code on production cluster servers

In the previous chapters, we saw how to set up our Test/Staging environment on Google Cloud and deploy our code there, and we did set up our Docker builder and Docker Private Registry server.
In the next section, we will learn how to deploy code on our Web servers in Production cluster using Docker builder and Docker Private Registry.
Setting up the Docker builder server

Before we deploy our code from staging to production, we need to copy the Dockerfile and the build.sh and push.sh files to our Docker builder.
To do this, run the following commands:

$ cd coreos-essentials-book/chapter7/Test_Staging_Cluster/
$./install_website1_2_dbuilder.sh

You should see something like what is shown in the following screenshot:
[image: Setting up the Docker builder server]

So let's check out what happenedthat is, what that script has done. It has copied three files to Docker builder server:
	This will be used to build our production Docker image:
$ cat Dockerfile:
FROM nginx:latest
add website code
ADD website1 /usr/share/nginx/html
EXPOSE 80

	The following is the Docker image building script:
$ cat build.sh
docker build --rm -t 10.200.4.1:5000/website1 .

	Here is the Docker image push script to our Private Docker Registry:
$ cat push.sh
docker push 10.200.4.1:5000/website1

Okay, we have prepared our Docker builder server. Let's start cracking the code deployment on the production servers.

Deploying code on production servers

To deploy code on our production web servers, run the following command:

$ cd ~/coreos-prod-gce

When we built the production cluster, the install script installed the deploy_2_production_website1.sh script. Let's run it, and you should see an output similar to the next two screenshots:

$./deploy_2_production_website1.sh

[image: Deploying code on production servers]

You should also see something like this:
[image: Deploying code on production servers]

Now open prod-web1 and prod-web2 in your browser using their external IPs, and you should see something like what is shown in the following screenshot:
[image: Deploying code on production servers]

We see exactly the same web page as on our staging server.
Awesome! Our deployment to production servers is working fine!
Let's see what happened there.
Run the following command:

$ cat deploy_2_production_website1.sh
#!/bin/bash
Build docker container for website1
and release it

function pause(){
read -p "$*"
}

Test/Staging cluster
Fetch GC settings
project and zone
project=$(cat ~/coreos-tsc-gce/settings | grep project= | head -1 | cut -f2 -d"=")
zone=$(cat ~/coreos-tsc-gce/settings | grep zone= | head -1 | cut -f2 -d"=")
cbuilder1=$(gcloud compute instances list --project=$project | grep -v grep | grep tsc-registry-cbuilder1 | awk {'print $5'})

create a folder on docker builder
echo "Entering dbuilder docker container"
ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no core@$cbuilder1 "/usr/bin/docker exec docker-builder /bin/bash -c 'sudo mkdir -p /data/website1 && sudo chmod -R 777 /data/website1'"

sync files from staging to docker builder
echo "Deploying code to docker builder server !!!"
ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no core@$cbuilder1 '/usr/bin/docker exec docker-builder rsync -e "ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no" -avzW --delete core@10.200.3.1:/home/core/share/nginx/html/ /data/website1'
change folder permisions to 755
ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no core@$cbuilder1 "/usr/bin/docker exec docker-builder /bin/bash -c 'sudo chmod -R 755 /data/website1'"

echo "Build new docker image and push to registry!!!"
ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no core@$cbuilder1 "/usr/bin/docker exec docker-builder /bin/bash -c 'cd /data && ./build.sh && ./push.sh'"
##

Production cluster
Fetch GC settings
project and zone
project2=$(cat ~/coreos-prod-gce/settings | grep project= | head -1 | cut -f2 -d"=")

Get servers IPs
control1=$(gcloud compute instances list --project=$project2 | grep -v grep | grep prod-control1 | awk {'print $5'})
web1=$(gcloud compute instances list --project=$project2 | grep -v grep | grep prod-web1 | awk {'print $5'})
web2=$(gcloud compute instances list --project=$project2 | grep -v grep | grep prod-web2 | awk {'print $5'})

echo "Pull new docker image on web1"
ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no core@$web1 docker pull 10.200.4.1:5000/website1
echo "Pull new docker image on web2"
ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no core@$web2 docker pull 10.200.4.1:5000/website1

echo "Restart fleet unit"
restart fleet unit
ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no core@$control1 fleetctl stop website1.service
ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no core@$control1 fleetctl start website1.service
#
sleep 5
echo " "
echo "List Production cluster fleet units"
ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no core@$control1 fleetctl list-units

echo " "
echo "Finished !!!"
pause 'Press [Enter] key to continue...'

The steps for deployment to production are as follows:
	Creates a folder called /data/website1 on the Docker builder server.
	Use rsync via the docker-builder container to sync files from Staging1 to the Docker builder server.
	Run the build.sh script via the docker-builder container.
	Push a new Docker image to the Private Docker Registry.
	Pull a new Docker image onto the Prod-web1 and prod-web2 servers.
	Restart the website1.service fleet unit via the Production cluster's etcd server.
	And voil! We have completed the release of a new website to our production cluster.

Note

One thing to note

We are using the docker-builder container to sync and build our Docker container.
This can be done directly on the Docker builder server, but using the container allows us to add any tools required to the container, which gives an advantage. If we need to replicate the Docker Builder server or replace it with a new one, we just have to install our docker-builder container to get things working again.

An overview of the Dev/Test/Staging/Production setup

Let's overview the advantages of performing the setup of the Dev/Test/Staging/Production environment in the way we did it:
	Local code development via the CoreOS VM decreases your testing time, as all changes get pushed to a local server on your VirtualBox VM.
	Cloud-based Test/Staging is good to use for team-shared projects using GitHub or Bitbucket. It also has, in our case, nginx containers running as our web servers, and the code is used via the attached host folder. This significantly speeds up code deployment from the test and staging git branches, as the Docker container does not need to be rebuilt each time we pull code from the git repository.
	For production, a separate cluster is used. It is good practice to separate development and production clusters.
	For production, we use the same Docker base image as that on the test/staging servers, but we build a new Docker image, with the code baked inside. So, we can, for example, auto-scale our website to as many servers as we want by reusing the same Docker image on all the servers, and all the servers will be running exactly the same code.
	For Docker image building and our Private Docker Registry, we use the same server, which is accessible only via the internal GCE IP. If you want to expose the Docker Registry to external access, for example, the nginx container with authentication should be put in front of the Docker registry to make it secure.
	This is only one way of setting up the Dev/Test/Staging/Production environment. Each setup scenario is different, but such setup should put you on the right path.

PaaS based on fleet

In this chapter and in previous chapters, we explained how to use fleet to deploy our different services on our clusters. Fleet is a powerful and easy-to-use low-level cluster manager that controls systemd at the cluster level. However, it lacks a web UI, easy orchestration tools, and so on, so this is where PAZ, the nice PaaS, steps in to help us out.
Deploying services using PAZ

The website at http://www.paz.sh has a very nice and user-friendly web UI, which makes it much easier to set up a CoreOS cluster. PAZ also has an API that you can use if you want to automate things via scripts.
Through its dashboard, you can add and edit your services, check the status of the cluster (viewed by host or by unit), and view monitoring information and logs for the cluster.
[image: Deploying services using PAZ]

It fully leverages fleet to orchestrate services across the machines in a cluster. It is built in Node.js and all its services run as Docker containers.
The following pointers explain how PAZ works:
	Users can declare services in the UI
	Services get stored in the service directory
	The scheduler is the service that deploys things
	You can manually tell the scheduler to deploy, or have it triggered at the end of your CI process
	Paz supports the post-push Docker Hub web hooks
	By using etcd and service discovery, your containers are linked together

Of course, it will keep evolving and getting new features but, at the time of writing this book, only the services in the preceding list were available.
Giving a complete overview of PAZ is beyond the scope of this book, but you can read more about the Paz architecture at http://paz.readme.io/v1.0/docs/paz-architecture.

Another cloud alternative for running CoreOS clusters

To bootstrap our Test/Staging and Production clusters, we used the Google Cloud Compute Engine's virtual instances, but sometimes you might want to run your servers on real servers (bare-metal servers) that are not stored at your premises.
There are a number of different bare-metal server providers out there, but one that caught my eye was https://www.packet.net.
I recently came across these while I was investigating hosting solutions for CoreOS and containers. They're interesting in the sense that, instead of going the typical cloud/hypervisor route, they've created a true, on-demand, and bare-metal cloud solution. I'm able to spin up a CoreOS server from scratch in less than 5 minutes, and they have a pretty comprehensive API and accompanying documentation.
Here's an example of a packet project dashboard:
[image: Another cloud alternative for running CoreOS clusters]

Summary

In this chapter, we saw how to set up a Production cluster and deploy our code staging using the Docker builder and private Docker registry machines. Finally, we overviewed a PaaS based on fleetPaz.sh.
In the next chapter, we will overview the CoreOS update strategies and CoreUpdate for our servers. We will also make use of hosted public/private Docker repositories at https://quay.io and the self-hosted CoreOS Enterprise Registry.

Chapter8.Introducing CoreUpdate and Container/Enterprise Registry

In the previous chapter, we saw how to set up a production cluster and deploy our code, how to set up staging using Docker builder, and private Docker registry machines to production servers.
In this chapter, we will overview the CoreOS update strategies, paid CoreUpdate services, and Docker image hosting at the Container Registry and the Enterprise Registry.
In this chapter we will cover the following topics:
	Update strategies
	CoreUpdate
	Container Registry
	Enterprise Registry

Update strategies

Before we look at the paid CoreUpdate services from CoreOS, let's overview automatic update strategies that come out-of-the-box.
Automatic updates

CoreOS comes with automatic updates enabled by default.
As we have mentioned earlier, as updates are released by the CoreOS team, the host will stage them down to a temporary location and install to the passive usr partition. After rebooting, active and passive partitions get swapped.
At the time of writing this book, there are four update strategies, as follows:
[image: Automatic updates]

Which update strategy should be used is defined in the update part of cloud-config:
 #cloud-config
 coreos:
 update:
 group: stable
 reboot-strategy: best-effort

Let's take a look at what these update strategies are:
	best-effort: This is the default one and works in such a way that it checks whether the machine is part of the cluster. Then it uses etcd-lock; otherwise it uses the reboot strategy.
	etcd-lock: This allows us to boot only one machine at a time by putting a reboot lock on each machine and rebooting them one by one.
	reboot: This reboots the machine as soon as the update gets installed on the passive partition.
	off: The machine will not be rebooted after a successful update install onto the passive partition.

Uses of update strategies

Here are some examples of what update strategies can be used for:
	best-effort: This is recommended to be used in production clusters
	reboot: This can be used for machines that can only be rebooted at a certain time of the dayfor example, for automatic updates in a maintenance window
	off: This can be used for a local development environment where the control of reboots is in the user's hands

If you want to learn more about update strategies, take a look at the CoreOS website at https://coreos.com/docs/cluster-management/setup/update-strategies/.

CoreUpdate

CoreUpdate is a part of the managed Linux plans (https://coreos.com/products/).
It is a tool in the commercial offerings of CoreOS. It provides users with their own supported Omaha server and is analogous to tools such as Red Hat Satellite Server and Canonical Landscape:
	The standard plan is managed and hosted by CoreOS
	The premium plan can be run behind the firewall, which can be on-premise or on the cloud

CoreUpdate uses exactly the same strategies as the aforementioned update strategies, except for a few differences in the update portion of the cloud-config file:
#cloud-config
 coreos:
 update:
 group: production
 server: https://customer.update.core-os.net/v1/update

Here:
	group is what you have set at your CoreUpdate dashboard
	server is the link generated for you after signing in for the managed Linux plan

In our current example, as per cloud-config, the servers belong to https://customer.update.core-os.net/v1/update and group is production.
We change via the CoreUpdate UI, as shown in the following screenshot:
[image: CoreUpdate]

The following features are present:
	Release channel; in our case, it is the stable one
	Enable/disable automatic updates
	Time window between machines updates; in our case, it is 90 minutes

The CoreUpdate UI allows you to very easily control your cluster update groups, without any need to perform ssh via the terminal to your servers and change there on each server individually update settings.
Note
You can read more about CoreUpdate at the following pages:

https://coreos.com/docs/coreupdate/coreos/coreupdate-configure-machines

https://coreos.com/docs/coreupdate/coreos/coreupdate-getting-started

Container Registry

The Container Registry is a hosted CoreOS service for application containers at https://quay.io. There, you can host your Docker images if you don't want to run Private Docker Registry yourself:
	It offers free, unlimited storage and repositories for public container repositories
	If you want private repositories, it offers a plenty of plans to choose from

Quay.io overview

Let's go through an overview of what they have there: a nice and easy-to-use UI.
[image: Quay.io overview]

In the following screenshot we see postgres containers image in more details:
[image: Quay.io overview]

As you see from the preceding screenshot, the UI is very easy to use and it's easy to understand the features.
Let's see how the Create Repository feature looks:
[image: Quay.io overview]

When you create a new repository, you can do the following:
	Make the repository public or private.
	Empty it if you want to build containers yourself and push them to the Registry.
	Provide (upload) a Docker file.
	Link to the GitHub repository. This is the preferred choice as it allows you to automate container building when you push changes to your GitHub Repository.

Enterprise Registry

Enterprise Registry is basically the same as Container Registry, but is hosted on your premises or cloud servers behind your firewall.
It has different plan options and can be found at https://coreos.com/products/enterprise-registry/.
It allows you to manage container builds, permissions of your teams and users, and so on.
If your company's requirement is a setup that is very secured and fully controlled by you, then using the Container Registry and Enterprise Registry is the way to go.

Summary

In this chapter, we overviewed the CoreOS update strategies, CoreUpdate services, the hosted free/paid Container Registry at https://quay.io, and the self-hosted Enterprise Registry services.
In the next chapter, you will be introduced to the CoreOS rktApp Container runtime that can be used instead of Docker containers.

Chapter9.Introduction to CoreOS rkt

In the previous chapter, we overviewed CoreUpdate, free and paid container repositories, and the hosting and enterprise registry provided by CoreOS.
In this chapter, you will learn about CoreOS's rkt, a container runtime for applications. We will cover the following topics in this chapter:
	Introduction to rkt
	Running streamlined Docker images with rkt
	Converting Docker images to ACI

An introduction to rkt

rkt (pronounced "rock it") is a container runtime for applications made by CoreOS and is designed for composability, speed, and security. It is an alternative to Docker and is designed to be run on servers with the most rigorous security and production environments.
rkt is a standalone tool, compared to Docker's client and central daemon version, which makes it a better alternative to Docker, as it has fewer constraints and dependencies. For example, if the docker central daemon crashes, all running docker containers will be stopped; in the case of rkt, however, this can affect only the particular rkt process responsible for running rkt containers in its pod. As each rkt process gets its process identification number (PID), if one rkt process dies, it will not affect any other rkt process.
Features of rkt

We will overview the main rkt features, as follows:
	It can be integrated with init systems, as systemd and upstart
	It can be integrated with cluster orchestration tools, such as fleet and Kubernetes (which we will cover in the next chapter)
	It is compatible with other container solutions as Docker
	It has an extensible and modular architecture

The basics of App container

rkt is an implementation of App Container (appc: https://github.com/appc/spec/), which is open source and defines an image format, the runtime environment, and the discovery mechanism of application containers:
	rkt uses images of the Application Container Image (ACI) format as defined by the App Container (appc) specifications (https://github.com/appc/spec). An ACI is just a simple tarball bundle of different rootfs files and an image manifest.
	A pod (the basic unit of execution in rkt) is a grouping of one or more app images (ACIs), with some optionally applied additional metadata on the pod levelfor example, applying some resource constraints, such as CPU usage.

Using rkt

As rkt comes preinstalled with CoreOS, running ACI images with rkt is easy and it is very similar to docker commands. (I would love to write more on this, but rkt does not provide many options yet, as it is constantly changing and innovating, which was also the case at the time of writing this book).
As rkt has no running OS X client, you need to log in to your CoreOS VM host directly to run the following example commands:
	First, we need to trust the remote site before we download any ACI file from there, as rkt verifies signatures by default:
$ sudo rkt trust prefix example.com/nginx

	Then we can fetch (download) an image from there:
$ sudo rkt fetch example.com/nginx:latest

	Then running the container with rkt is simple:
$ sudo rkt run example.com/nginx:v1.8.0

As you see, rkt appropriates ETagsas in our case v1.8.0 will be run.

rkt networking

By default rkt run uses the host mode for port assignments. For example, if you have EXPOSE 80 in your Dockerfile, run this command:

$ sudo rkt run example.com/nginx:v1.8.0

The rkt pod will share the network stack and interfaces with the host machine.
If you want to assign a different port/private IP address, then use run with these parameters:

sudo rkt run --private-net --port=http:8000 example.com/nginx:v1.8.0

rkt environment variables

Environment variables can be inherited from the host using the --inherit-env flag. Using flag --set-env, we can set individual environment variables.
Okay, let's prepare a few environment variables to be inherited using these two commands:

$ export ENV_ONE=hi_from_host
$ export ENV_TWO=CoreOS

Now let's use them together with --set-env in the command, as follows:

$ sudo rkt run --inherit-env --set-env ENV_THREE=hi_nginx example.com/nginx:v1.8.0

rkt volumes

For host volumes, the -volume flag needs to be used. Volumes need to be defined in the ACI manifest when creating the new ACI image and converting Docker images. You will get an output like this:
[image: rkt volumes]

The following command will mount the host directory on the rkt Pod:

$ sudo rkt run volume volume-/var/cache/nginx,kind=host,source=/some_folder/nginx_cache example.com/nginx:v1.8.0

Note that the rkt volume standard was not completed at the time of writing this book, so the previous example might not work when rkt reaches its final version.
Next let's see how rkt plays nicely with docker images.

Running streamlined Docker images with rkt

As there are thousands of docker images on the public Docker hub, rkt allows you to use them very easily. Alternatively, you might have some docker images and would like to run them with rkt too, without building new rkt ACI images, to see how they work with rkt.
Running Docker images is very much the same as it was in previous examples:
	As Docker images do not support signature verification yet, we just skip the verification step and fetch one with the --insecure-skip-verify flag:
$ sudo rkt --insecure-skip-verify fetch docker://nginx

[image: Running streamlined Docker images with rkt]

	The last line shown in the preceding screenshot represents the rkt image ID of the converted ACI, and this can be used to run with rkt :
$ sudo rkt --insecure-skip-verify run sha512-13a9c5295d8c13b9ad94e37b25b2feb2

	Also we can run in this way, where the image will be downloaded and then run:
$ sudo rkt --insecure-skip-verify run docker://nginx

	If we want to use volumes with Docker images, we run this line:
$ sudo rkt --insecure-skip-verify run \
--volume /home/core/share/nginx/html:/usr/share/nginx/html \
docker://nginx

This is very similar to the docker command, isn't it?

	Okay, let's update our local development nginx.service to use rkt:
[Unit]
Description=nginx
[Service]
User=root
TimeoutStartSec=0
EnvironmentFile=/etc/environment
ExecStart=/usr/bin/ rkt --insecure-skip-verify run \
 -volume /home/core/share/nginx/html:/usr/share/nginx/html \
docker://nginx
#
Restart=always
RestartSec=10s
[X-Fleet]

As you see, there is no ExecStop=/usr/bin/docker stop nginx. It is not needed because systemd takes care of stopping the rkt instance when the systemctl/fleetctl stop is used by sending the running nginx process a SIGTERM.
Much simpler than docker, right?
In the next section, we will see how to convert a docker image into an ACI image.

Converting Docker images into ACI

With CoreOS comes another file related to rktdocker2aci. It converts a docker image to an ACI image (an application container image used by rkt).
Let's convert our nginx image. Run the following command:

$ docker2aci docker://nginx

[image: Converting Docker images into ACI]

We can also save a docker image in a file and the convert it. Run the following command:

$ docker save -o nginx.docker nginx
$ docker2aci nginx.docker

[image: Converting Docker images into ACI]

Finally, you can try to use the generated ACI files by updating the preceding nginx.service fleet unit:

[Unit]
Description=nginx
[Service]
User=root
TimeoutStartSec=0
EnvironmentFile=/etc/environment
ExecStart=/usr/bin/ rkt --insecure-skip-verify run \
 --volume volume-/usr/share/nginx/html,kind=host,source=/usr/share/nginx/html \
 full_path_to/nginx-latest.aci
#
Restart=always
RestartSec=10s

[X-Fleet]

Summary

In this chapter, we overviewed the main features of CoreOS rkt, the rkt application container, and the image format. You also learned how to run images based on aci and docker as containers with rkt.
In the next chapter, you will get an introduction to Google Kubernetes, an open source orchestration system for application containers.

Chapter10.Introduction to Kubernetes

In this chapter, we will cover a short overview of Google Kubernetes, which manages containerized applications across multiple hosts in a cluster. As Kubernetes is a very large project, in this chapter, we will only overview its main concepts and some use cases, including these:
	What is Kubernetes?
	Primary components of Kubernetes
	Kubernetes cluster setup
	TectonicCoreOS and Kubernetes combined for a commercial implementation

What is Kubernetes?

Google has been running everything in containers for more than decade. Internally, they use a system called Borg (http://research.google.com/pubs/pub43438.html), the predecessor of Kubernetes, to scale and orchestrate containers across servers.
Lessons learned from Borg were used to build Kubernetes, an open source container orchestration system. It became popular very quickly when it was released in June 2014.
All of the best ideas from Borg were incorporated into Kubernetes. Many of Borg's developers now work on Kubernetes.
Kubernetes received thousands of stars at it's GitHub project (https://github.com/GoogleCloudPlatform/kubernetes), and hundreds of supporters from the open source community and companies such as CoreOS, Red Hat, Microsoft, VMware, and so on.
Primary components of Kubernetes

Kubernetes can be run on any modern Linux operating system.
Here are the main components of Kubernetes:
	Master: This is the set of main Kubernetes control services, usually running on one server except the etcd cluster. However it can be spread around a few servers. The services of Kubernetes are as follows:	etcd cluster
	API server
	Controller manager
	Scheduler

	Node: This is a cluster worker. It can be a VM and/or bare-metal server. Nodes are managed from the master services and are dedicated to run pods. These two Kubernetes services must run on each node:	Kubelet
	Network proxy

Docker and rkt are used to run application containers. In future, we will see more support for application container systems there.

	Pod: This is a group of application containers running with the shared context. Even a single application container must run in a Pod.
	Replication controllers: These ensure that the specified numbers of pods are running. If there are too many pods, will be killed. If they are too less, then the required number of pods will be started. It is not recommended to run pods without replication controllers even if there is a single Pod.
	Services: The same pod can be run only once. If it dies, the replication controller replaces it with a new pod. Every pod gets its own dedicated IP, which allows on the same node to run many containers on the port. But every time a pod is started from the template by replication controller gets a different IP, and this is where services come to help. Each service gets assigned a virtual IP, which stays with it until it dies.
	Labels: These are the arbitrary key-value pairs that are used by every Kubernetes component; for example, the replication controller uses them for service discovery.
	Volumes: A volume is a directory that is accessible from a container, and is used to store the container's stateful data.
	Kubectl: This controls the Kubernetes cluster manager. For example, you can add/delete nodes, pods, or replication controllers; check their status; and so on. Kubernetes uses manifest files to set up pods, replication controllers, services, labels, and so on.

Kubernetes has a nice UI, which was built and contributed to by http://kismatic.io/. It runs on an API server:
[image: Primary components of Kubernetes]

This allows us to check the Kubernetes cluster's status and add/delete pods, replication controllers, and so on. It also allows us to manage a Kubernetes cluster from the UI in the same way as from kubectl.

http://kismatic.io/ is also going to offer an enterprise/commercial version of Kubernetes in the near future.

Kubernetes cluster setup

In the previous topic, we overviewed the main features of Kubernetes, so let's do some interesting stuffinstalling small Kubernetes on Google Cloud.
Note, that if you are using a free/trial Google Cloud account, which has a limit of eight CPUs (eight VMs are allowed), you need to delete some of them. Let's replace our production cluster with a Kubernetes cluster. Select the VMs as per what is shown in the following screenshot. Then click on the Delete button in the top-right corner.
[image: Kubernetes cluster setup]

Now we are ready to install a Kubernetes cluster:
	Type this in your terminal:
$ cd coreos-essentials-book/Chapter10/Kubernetes_Cluster

Note that as we have folders/files that are very similar to what we used to set up the Test/Staging/Production clusters, we are not going to review the scripts this time. You can always check out the setup files yourself and learn the differences there:

	Update the settings file there with your GC project ID and zone.
	Let's now run the first script, named 1-bootstrap_cluster.sh:
$./ 1-bootstrap_cluster.sh

You should see an output similar to this:
[image: Kubernetes cluster setup]

If you check out the Google Cloud console, you should see three new VMs there, namely k8s-master, k8s-node1, and k8s-node2:
[image: Kubernetes cluster setup]

The 1-bootstrap_cluster.sh script has installed a small CoreOS cluster, which is set up in the same way as our previous Test/Staging/Production clusterone etcd server and two workers connected to it. And also create a new folder, k8s-cluster, in the user home folder where the settings file got copied and other binary files will be copied later on.
	Next, we need to install the fleetctl, etcdctl, and kubectl local clients on our computer to be able to communicate with the CoreOS cluster etcd and fleet services, and with the Kubernetes master service.Type the following line in your terminal:

$./2-get_k8s_fleet_etcd.sh

You should see an output similar to this:
[image: Kubernetes cluster setup]

	Now let's install the Kubernetes cluster on top our new CoreOS cluster.Type this command in your terminal:

$./3-install_k8s_fleet_units.sh

You should see an output similar to what is shown here:
[image: Kubernetes cluster setup]

	Let's try access our Kubernetes cluster via "", which was copied to ~/k8s-cluster/bin by the 1-bootstrap_cluster.sh script.Type this in your terminal:

$ cd ~/k8s-cluster/bin
$./set_k8s_access.sh

You should get an output similar to the following:
[image: Kubernetes cluster setup]

As you can see, our Kubernetes cluster is up and running.
What set_k8s_access.sh does is that it provides fleetctl and kubectl with access to the remote k8s-master server by forwarding the localhost ports 2379 (fleet) and 8080 (Kubernetes master) to it.
	Let's check out the Kubernetes cluster by typing this into the terminal:
$ kubectl cluster-info

You should see an output similar to this:
[image: Kubernetes cluster setup]

Perfect! Now we can access the remote Kubernetes cluster from our local computer.

	As we've got our Kubernetes cluster up and running, let's deploy the same website1 Docker image that we used for our production cluster deployment.Type this into your terminal:

$ kubectl run website1 --image=10.200.4.1:5000/website1 --replicas=2 --port=80

You should see the following output:
[image: Kubernetes cluster setup]

The previous command has created two website1 pods listening on port 80. It has also created a replication controller named website1, and this replication controller ensures that there are always two pods running.
We can list created pods by typing the following into your terminal:

$ kubectl get pods

You should see an output like this:
[image: Kubernetes cluster setup]

To list the created replication controller, type this into your terminal:

$ kubectl get rc

You should see the following output:
[image: Kubernetes cluster setup]

	Now, let's expose our pods to the Internet. The Kubectl command can integrate with the Google Compute Engine to add a public IP address for the pods. To do this, type the following line into your terminal:
$ kubectl expose rc website1 --port=80 --type=LoadBalancer

You should see an output like this:
[image: Kubernetes cluster setup]

The previous command created a service named website1 and mapped an external IP address to the service. To find that IP address, type this into your terminal:

$ kubectl get services

You should see an output similar to the following:
[image: Kubernetes cluster setup]

The IP in the bottom line is our IP, and it is of the load balancer. It is assigned to the k8s-node-1 and k8snode-2 servers and used by website1 service.
Let's type this IP into our web browser. We should get an output similar to this:
[image: Kubernetes cluster setup]

As you have seen previously, it shows exactly the same web page as we got on our production web servers. Also, it is exactly the same code as we had in the staging environment. We built the Docker image from it and used that Docker image for deployment on our production cluster and the Kubernetes cluster.
If you want, you can easily run more replicas of pods by using this simple command:

$ kubectl scale --replicas=4 rc website1

Let's check our replication controller by typing the following into our terminal:

$ kubectl get rc

You should see an output similar to this:
[image: Kubernetes cluster setup]

The previous command scales the pods, and replication controller ensures that we always have four of them running.
Note
You can find plenty of usage examples to play with at https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples.

This book is too short to cover all the good things you can do with Kubernetes, but we should be seeing more Kubernetes books pop up soon.
Note
Some other URLs to look at are given here:
If you are a Mac user, you can install one of the apps that will set your Kubernetes cluster on your Mac: 1 master x 2 nodes on https://github.com/rimusz/coreos-osx-gui-kubernetes-cluster, and standalone master/node on https://github.com/rimusz/coreos-osx-gui-kubernetes-solo.
Other guides to Kubernetes on CoreOS are available at https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/coreos.md.

Tectonic CoreOS and Kubernetes combined for a commercial implementation

Tectonic (http://tectonic.com) is a commercial CoreOS distribution with a combined CoreOS and Kubernetes stack. It can be used by businesses of any size.
Tectonic is prepackaged with all the open source components of CoreOS and Kubernetes, and adds some more commercial features:
	Management console/UI for workflows and dashboards
	Corporate SSO integration
	Quay-integrated container registry for building and sharing Linux containers
	Tools for automation of container deployments
	Customized rolling updates

It can run in public clouds or on-premise.
Its management console is simple and easy to use:
[image: Tectonic CoreOS and Kubernetes combined for a commercial implementation]

In the preceding screenshot, we have a visualization of our Replication controllers (RC). On the left-hand side, you can' see each RC with the labels will assign to pods as they're instantiated. Below the name of the RC, you'll see a list of all running pods that match the same label queries.
[image: Tectonic CoreOS and Kubernetes combined for a commercial implementation]

The preceding screenshot shows us the elasticsearch replication controller state, which labels are used there, and pod volumes.
Tectonic aims to provide an easily container deployment solution, and companies can begin seeing its benefits very quickly of using containers in enterprise.

Summary

In this chapter, we overviewed Google Kubernetes and covered what is about, its main components, and its CoreOS commercial implementation.
We hope that this book will equip you with all the information you need to leverage the power of CoreOS and the related containers, and help you develop effective computing networks. Thank you for reading it!

 Index

 A

 	ACI	Docker images, converting to / Converting Docker images into ACI

 	App Container	URL / The basics of App container
	specifications, URL / The basics of App container

 	application container	reading / Reading and writing from the application container
	writing from / Reading and writing from the application container

B

 	Borg	URL / What is Kubernetes?

C

 	cloud-config file	cluster, customizing via / Customizing a cluster via the cloud-config file
	URL / References

 	cluster	workers, creating / Creating our cluster workers

 	cluster setup	test/staging / Test/staging cluster setup

 	cluster setup, Kubernetes	about / Kubernetes cluster setup
	installing / Kubernetes cluster setup
	URLs / Kubernetes cluster setup

 	components, Kubernetes	master / Primary components of Kubernetes
	node / Primary components of Kubernetes
	pod / Primary components of Kubernetes
	replication controllers / Primary components of Kubernetes
	services / Primary components of Kubernetes
	labels / Primary components of Kubernetes
	volumes / Primary components of Kubernetes
	Kubectl / Primary components of Kubernetes

 	Compute Engine, Google Cloud	URL / Bootstrapping a remote test/staging cluster on GCE

 	Container Registry	about / Container Registry
	Quay.io overview / Quay.io overview

 	CoreOS	overview / An overview of CoreOS
	working / How CoreOS works
	virtual machine, installing / Installing the CoreOS virtual machine
	URL / Kubernetes cluster setup

 	coreos-osx-gui-cluster	URL / Running fleetctl commands on the remote cluster

 	coreos-vagrant project	cloning / Cloning the coreos-vagrant project

 	CoreOS cluster architectures	URL / References

 	CoreOS clusters	running, alternative / Another cloud alternative for running CoreOS clusters

 	CoreOS documentation	URL / Deploying the fleet units

 	CoreOS virtual machine	installing / Installing the CoreOS virtual machine
	coreos-vagrant GitHub project, cloning / Cloning the coreos-vagrant GitHub project
	cloud-config, working with / Working with cloud-config
	startup / Startup and SSH
	SSH / Startup and SSH

 	CoreOS VM	logging to / Logging in to the host

 	CoreUpdate	URL / CoreUpdate
	about / CoreUpdate
	features / CoreUpdate
	references / CoreUpdate

D

 	Dev/Test/Staging/Production setup	advantages / An overview of the Dev/Test/Staging/Production setup
	overview / An overview of the Dev/Test/Staging/Production setup

 	Docker builder server	setting up / Setting up the Docker builder server

 	Docker images	converting, to ACI / Converting Docker images into ACI

E

 	Enterprise Registry	about / Enterprise Registry
	URL / Enterprise Registry

 	etcd	about / Introducing etcd
	from host machine, reading to / Reading and writing to etcd from the host machine
	from host machine, writing to / Reading and writing to etcd from the host machine
	reading / Reading and writing to ectd
	writing to / Reading and writing to ectd
	changes, tracking / Watching changes in etcd
	use cases / Use cases of etcd

F

 	fleet	about / Getting started with fleet, PaaS based on fleet
	unit files / The fleet unit files
	MachineID option / The fleet unit files
	MachineOf option / The fleet unit files
	MachineMetadata option / The fleet unit files
	Conflicts option / The fleet unit files
	Global option / The fleet unit files
	ctl / An overview of fleetctl
	PaaS / PaaS based on fleet

 	fleetctl	overview / An overview of fleetctl

 	fleetctl commands	running, on remote cluster / Running fleetctl commands on the remote cluster

 	fleet unit	scheduling, in cluster / Scheduling a fleet unit in the cluster

 	fleet unit files	about / The fleet unit files
	references / References

G

 	GCE	remote test/staging cluster, bootstrapping / Bootstrapping a remote test/staging cluster on GCE
	remote production cluster, bootstrapping / Bootstrapping a remote production cluster on GCE

 	Google Cloud SDK	URL / Bootstrapping a remote test/staging cluster on GCE

K

 	kismatic	URL / Primary components of Kubernetes

 	Kubectl command / Kubernetes cluster setup

 	Kubernetes	about / What is Kubernetes?
	URL / What is Kubernetes?, Primary components of Kubernetes, Kubernetes cluster setup
	components / Primary components of Kubernetes
	cluster setup / Kubernetes cluster setup
	combining, with Tectonic / Tectonic CoreOS and Kubernetes combined for a commercial implementation

L

 	local cluster	bootstrapping / Bootstrapping a local cluster
	coreos-vagrant project, cloning / Cloning the coreos-vagrant project
	customizing, via cloud-config file / Customizing a cluster via the cloud-config file
	fleet unit, scheduling / Scheduling a fleet unit in the cluster

 	local development environment	setting up / Setting up the local development environment
	development VM, setting up / Setting up the development VM
	VM installation, process / What happened during the VM installation?
	fleet units, deploying / Deploying the fleet units
	fleet units, advantages / Deploying the fleet units

O

 	optimal etcdcluster size	determining / Determining the optimal etcd cluster size

P

 	PaaS	URL / Deploying services using PAZ

 	PAZ	used, for deploying services / Deploying services using PAZ
	working / Deploying services using PAZ
	URL / Deploying services using PAZ

 	production cluster servers	code, deploying / Deploying code on production cluster servers, Deploying code on production servers
	Docker builder server, setting up / Setting up the Docker builder server

Q

 	Quay.io	URL / Container Registry
	overview / Quay.io overview

R

 	remote cluster	fleetctl commands, running / Running fleetctl commands on the remote cluster

 	remote production cluster	bootstrapping, on GCE / Bootstrapping a remote production cluster on GCE
	Production cluster, setting up / Setting up the production cluster

 	remote test/staging cluster	bootstrapping, on GCE / Bootstrapping a remote test/staging cluster on GCE

 	Replication controllers (RC) / Tectonic CoreOS and Kubernetes combined for a commercial implementation

 	rkt	about / An introduction to rkt
	features / Features of rkt
	App container, basics / The basics of App container
	using / Using rkt
	networking / rkt networking
	environment variables / rkt environment variables
	volumes / rkt volumes
	used, for running streamlined Docker images / Running streamlined Docker images with rkt

S

 	streamlined Docker images	running, with rkt / Running streamlined Docker images with rkt

 	systemctl	overview / An overview of systemctl

 	systemd	using / Getting started with systemd
	overview / An overview of systemd
	unit files / The systemd unit files
	unit files, URL / The systemd unit files
	systemctl / An overview of systemctl
	unit files, references / References

T

 	Tectonic	URL / Tectonic CoreOS and Kubernetes combined for a commercial implementation
	about / Tectonic CoreOS and Kubernetes combined for a commercial implementation
	components / Tectonic CoreOS and Kubernetes combined for a commercial implementation

 	time to live (TTL)	examples / TTL (time to live) examples

U

 	unit file	creating, for systemd / The systemd unit files

 	update strategies	about / Update strategies
	automatic updates / Automatic updates
	best-effort / Automatic updates
	etcd-lock / Automatic updates
	reboot / Automatic updates
	off / Automatic updates
	uses / Uses of update strategies
	URL / Uses of update strategies

 	user-data file	URL, for download / Working with cloud-config

V

 	Vagrant	URL / References

 	Vagrant Google group	URL / References

 	Vulcand proxy server	URL / Use cases of etcd

 OEBPS/Images/image00156.jpeg
./108.155.47.244
./108.155.47.244
./104.155.23.81
./23.251.143.5

test1_webserver. service

OEBPS/Images/image00157.jpeg
» douilder.service - docker-builder
Loaded: Loaded (; i

; vendor preset: disabled)

ilder.service;

Active: active (running) since Mon 2015-06-08 21:56:34 ; 3min
Process: 1479 ExecStartPre=/bin/sh ~c /usr/bin/docker m dﬂ:ker-bu\lder Ccode-exited, status=L/FAILURE)
Process: 1122 ExecStartPre=/bin/sh ~c docker pull [< ESS)
Main PID: 1485 (docker)
ry: 4.5M
CGroup: /system. slice/douilder.service
1485 /usr/bin/docker run —-rm --nane docker-bulder i1der -p 2222:22 - /home/core/ .
keys:/tmp keys ~v v 7 . sock -v
ocker v .50.1.02: .m.;.az quay. io/ri ilder:
egistry-chuilderl .internal sh[1485]: *** Running /etc/my_init.d/00_regen_ssh_host_keys.sh...
egistry-chuilderl.c. : No SSH host key available. Generating one...
egistry-chuilderl Creating SSH2 RSA key; this may take some time ...
egistry-chuilder.c. Creating SSH2 DSA key; this may take some time ...
egistry-chuilderl.c. : Creating SSH2 ECDSA key; this may take some time
egistry-chuilderl Creating SSH2 ED25519 key; this may take some time ...
egi 1der1 invoke-rc.d: policy-rc.d denied execution of restart.
egistry-cbuilderl.c. *++ Running /etc/rc.local
egistry-chuilderl *++ Booting runit daemon.
egi der1. c. . internal sh[uaﬂ *++ Runit started as PID 98

OEBPS/Images/image00154.jpeg
. 104.155.47.244 cpeer=tsc-reg-cbuilderl,role=worker

OEBPS/Images/image00155.jpeg
./104.155.47.244.
./104.155.47.244

Unit dbuilder.service launched on f974dage.
Unit registry.service launched on f974dage.

OEBPS/Images/image00160.jpeg
Created [https:. jleapi mput e i

NAvE 20N (INE_TYPE PREEMPTIBLE INTERNAL_IP EXTERNAL_IP STATUS

prod el europe-sest1¢ nl-standard-1 10.240.210.239 23.251.140.55 RUNNING
NEXT_HOP PRIORITY

Creﬂted
nzmx DEST_RANGE
m-la .220-2-1-prod-webl default 10.220.2.1/32 europe-westl-c/instances/prod-webl 1000

OEBPS/Images/image00158.jpeg
T It e
testl_webserver. service

MACHINE

f974dage. ../104.155.47.244.
./108.155.47.244
./104.155.23.81
./23.251.143.5

OEBPS/Images/image00159.jpeg
Created [https:.

NAvE Z0NE MACHINE_TYPE PREEMPTIBLE INTERNAL_IP EXTERNAL_IP STATUS

prod-control1 europe-westl-c gl-small 10.240.22.131 130.211.87.34 RUNNING

Created [https:, jleapi nput i i ip- 1.
NavE NETHORK DEST_RANGE NEXT_HOP PRIORITY

1p-10-220-1-1-prod-control1 default 10.220.1.1/32 europe-westl-c/instances/prod-controll 1000

Setup has finished 111
Press [Enter] key to continue...]

OEBPS/Images/image00163.jpeg
.28 ./set_cluster_access. sh
list fleet machines:

™ METADATA
10.240.174.222

10.240.144.189

10.240.148.108 cpeer=prod-controll, role=services
list ﬂeet units:

UNIT MACHINE ACTIVE SUB
bash-3.2$ |

OEBPS/Images/image00164.jpeg
UNIT MACHINE ACTIVE
websitel.service 32547cSc. . ./23.251.140.55 activating
websitel.service 5764519€. ../130.211.53.11 activating

OEBPS/Images/image00161.jpeg
Created [https:. jL

NAME ZONE MACHINE_TYPE PREEMIBLE INTERNAL_IP EXTERNAL_IP STATUS
prod-web2 europe-westl-c nl-smndard 0 240.. 189 53 130.211.53.11 RUNNING
Created rttps:

NE“‘RK DEST_RANGE NEXT_HOP PRIORITY

m-m 220-3-1-prod-web2 default 10.220.3.1/32 europe-westl-c/instances/prod-web2 1000

OEBPS/Images/image00162.jpeg
VM instances

CPU utilzation ~

Jun 10,5:00 PM

®Wcpu: 2169

H

Zone Disk Network Inuseby Extemal IP

2

prod-controlt curopewestic prod-controlt default 130211.87.34
prod-web1 curopewestic prod-webl default 2325114055
prod-web2 curopevestic prod-web2 default 1302115811
tsc-control curopewestid tse-controll default 104155.25.71

tscregistry-chuilder] europewestid tscregistry-chullder1 default 104.155.47.244

tsc-staging! curopewestid tscstagingl default 104.155.23.81

tsc-test] europewestid tsctest! default 232511435

OEBPS/Images/image00145.jpeg
Suspend
Halt
Reload

0S Shell

SSH to control-01
SSH to node-01
SSH to node-02
Fleet-Ul

Updates >

Setup >

About CoreOS Cluster GUI for 0S X

Quit

OEBPS/Images/image00146.jpeg
Deploying code to tsc-testl server 111
index.html 100% 351 0.3B/s 00:00

Finished 111
Press [Enter] key to continue...

OEBPS/Images/image00143.jpeg
uNIT MACHINE ACTIVE SUB
stagingl_webserver.service b39dd6ds. ../104.155.23.81 active running
testl_webserver. service e06c9F74. ../23.251.143.5 active running

OEBPS/Images/image00144.jpeg
© 0 ® [0 roniscen | +

€« c

= | © 104.155.23.81 "‘ B

403 Forbidden

nginx/19.1

OEBPS/Images/image00149.jpeg
« c 104.155.23.81

"Hello, CoreOS" from Staging1

Development Environment

| This is an example page for CoreOS Essentials Book Chapter 6.

OEBPS/Images/image00150.jpeg
der1] .

Created [https:. jleapi mpu j i egistry
NME Z0NE MACHINE_TYPE PREEMPTIBLE INTERNAL_IP EXTERNAL_IP STATUS
egistry-chuilderl europe 10.240.220.147 104.155.47.244 RUNNING
Created [https: jleap mpu i i ip. istry
NETWORK DEST_RANGE NEXT_HOP PRIORTTY

NAvE
1p-10-200-4-1-tsc-registry-chuilderl default 10.200.4.1/32 europe-westl-d/instances/tsc-registry-chuilderl 1000

Setup has finished 111
Press [Enter] key to continue...[]

ilder1].

OEBPS/Images/image00147.jpeg
Dq:laying code to tsc-stagingl server 111
index.html 1008 354 0.4K8/s 00:00

| Fintshed 1
 Press [Enber] key to continue...]|

OEBPS/Images/image00148.jpeg
« Cl=: 23.251.143.5

"Hello, CoreOS" from Testl

Development Environment

‘This is an example page for CoreOS Essentials Book Chapter 6.

OEBPS/Images/cover00197.jpeg
CoreOS Essentials

Develop effective computing networks to deploy your applications
and servers using CoreOS

PACKT

OEBPS/Images/image00152.jpeg
Core0S beta (681.0.0)
core@tsc-registry-cbuilder1 ~ $ |

OEBPS/Images/image00153.jpeg
™ METADATA

10.240.222.1 cpeer=tsc-controll, rolesservices
. 104.155.23.81 cpeer=tsc-stagingl,roleworker

" 3,251,143,

. 108.155.47.244
list fleet units:

peer=tsc-reg-chuilderl, role=worker
NIt MACHINE ACTIVE SUB
stagingl_webserver.service b39dd6ds. ../104.155.23.81 active
test1_webserver. service 0609774 ../23.251.143.5 active

running
running

OEBPS/Images/image00151.jpeg
New instance group

VM instances

CPU utilzation ~

®cPu:9.932

Name ~

@ tsc-controt
@ tscregisty-cbuider
@ tsc-stagingt

@ tsctesn

Jun, 8:30 PM

Zone
curopewest1-d
curopewesti-d
curopewesti-d

europe-west1-d

Disk
tse-controlt
tsc-registry-chuilder!
tsc-staging!
tsctestt

Network
default
default
default
default

Inuse by

External 1P
104155.25.71
104.155.47.248
104155.23.81
232511435

1016 PM

Connect

OEBPS/Images/image00178.jpeg
Converted volumes:
name:

", path: * inx", readonly: false

Generated ACI(s):
nginx-latest.aci

OEBPS/Images/image00179.jpeg
Extracting layer:

Extracting layer:

Extracting layer:

Converted volumes:
name: "

Generated ACI(s):
nginx-latest.aci

", path: ®

", readonly: false

OEBPS/Images/image00176.jpeg
Converted volumes:
name: " inx", path: * inx", readonly: false

Generated ACI(s):
nginx-latest.aci

OEBPS/Images/image00177.jpeg
EES febiing L ioge fiTm dot e Mt

sha512-13a9¢5295d8c13b9ad4e37b25b2feb2

OEBPS/Images/image00180.jpeg
Kubernetes

DASHBOARD

Status

172.47.15.102

172.17.15.103

Rows count per page : 1, 10, 25, 50, 100 (current s 10)

OEBPS/Images/image00181.jpeg
nsta

New instance group | | Reset

VM instances

CPU utilzation ~

Jun 14, 2:00 PM

® cPu: 9.255

Nam

v e
v o

~

<

<
<
<

prod-controlt
prod-web1
prod-web2
tsc-control
tsc-registry-chuildert
tsc-staging1
tsc-testt

Stop | | Delete

1 hour

Jun14,2:15 PM

Zone
curopewest!
curopewest!
curopewest!
curopewest!
curopewest!
curopewest!

europe-west

Disk
prod-controlt
prod-web1
prod-web2
tsc-control
tsc-registry-chuidert
tsc-staging1

tsc-testl

OEBPS/Images/image00182.jpeg
Created [https:.

NAvE 20N MACHINE_TYPE PREEMPTIBLE INTERNAL_IP EXTERNAL_IP STATUS
Kis-master eirope-nesti-c g1-smill 10.240.48.137 23.251.140.55 RUNNING
Created [t

NavE nmmx DEST_RANGE _ NEXT_HOP PRIORITY
fei6222 1 kon montac oefalll 16 22t /5 alkvpe wesce/ micncs/dx aeian 1000
Created [hﬁvs'

NAVE MNO’I]‘NE TYPE PREGWPTIBLE INTERNALIP EXTERNALIP STATUS
k8s-node-1 eumpe sttt stoemiend 1 10.240.235.6 130.211.53.11 RUNNING
Created [t

NAME Z0NE mmmz TYPE PREGWPTIBLE INTERVALIP EXTERMALIP STATUS
kBs-node-2 europe-westl-c nl-standard-1 10.240.32.39 23.251.136.164 RUNNING

Cluster machines setup has finished 111

OEBPS/Images/image00185.jpeg
Kubernetes v0.19.0 will be installed ...

Unit kube-apiserver.service launched on 33a92468. . ./10.240.48.137

Unit kube-controller-manager. service launched on 33a92d68. ../10.240.48.137
Unit kube-scheduler. service launched on 33a92d68. . ./10.240.48.137

Unit kube-register.service launched on 33a92d68. ../10.240.48.137
Triggered global unit kube-kubelet.service start

Triggered global unit kube-proxy.service start

[The MACHINE ACTIVE
kube-apiserver. service 33092d68. . ./10.240.48.137 active
kube-controller-nanager. service 33a92d68 active
kube-register. service activating
kube-scheduler. service 33092d68. . ./10.240.48.137 active

Kubernetes Cluster setup has finished 111

OEBPS/Images/image00186.jpeg
/coreos. com

/registry

NIT MACHINE

kube-apiserver. service 33092d68. . ./10.240.48.137
kube-controller-manager. service 33a92d68. ../10.249.48.137
kube-kubelet..service bf5d3a70. ../10.240.235.6
kube-kubelet.service fb67esec. ../10.240.32.39
kube-proxy. service bf5d3a79. ../10.240.235.6
kube-proxy. service fb67eSec. ../10.240.32.39
kube-register. service 33092d68. . ./10.240.48.137
kube-scheduler. service 33092d68. . ./10.240.48.137

LABELS

NAME STATUS.
10.240.235.6 kubernetes.io/hostname=10.240.235.6 Ready

10.240.32.39 kubernetes.io/hostname=10.240.32.39 Ready

Type exit when you are finished .

OEBPS/Images/image00183.jpeg
<
<
<
<
<
<
<

Kes-master
K8s-node-1
K8s-node-2
tsc-control
tsc-registry-cbuildert
tsc-staging1
tsc-testt

Zone
europe-
europe-
europe-
europe-
europe-
europe-

westl-c
westi-c
westl-c

west1-d

west1

west1-d

west1

Disk
Kgs-master
K8s-node-1
K8s-node-2
tsc-control
tsc-registry-chuildert
tsc-staging1

tsc-testt

Network
default
default
default
default
default
default

default

Inuse by

External 1P
23.251.140.55
1302115811
23251136164
104155.25.71
104.155.47.248
104.155.23.81
282511435

Connect

SsH

OEBPS/Images/image00184.jpeg
Downloading and instaling fleetctl, etcdctl and kubectl ...
Downloading etcdctl v2.0.11 for 05 X
% Total % Received ¥ Xferd Average Speed Time Time Time Current
Upload Total Spent Left Speed
© 49 0 0 361 0
00 5042k 100504k O 0 1618 O

etcdctl was mpled m ~/k8s-cluster/bin

Downloading fleetctl v0.10.1 for 0S X
%Total % Received % Xferd Average Speed Time Time Time Current

m 2483!(100 2483k © 0 1110k
Archive: ﬂeet.xlp

fleetctl
leetctl was copied m ~/k8s-cluster/bin

Downloading kubernetes v0.19.0 kubectl for 0S X

% Total % Received ¥ Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left

100 18.M 10018.94 0 0 6509k 0 0:00:02 0:00:02 --:--:

kubectl was copied to ~/k8s-cluster/bin

Instaling of fleetctl, etcdctl and kubectl has finished 111

OEBPS/Images/image00167.jpeg
Status: Image is up to am for 10.200.4.1:5000/websitel:latest
Pull new docker image o

Pulling repository 10. 200.4.1:5000 webst

cbB20095568: Pulling image (latest) e m 200.4.1:5000/websi
Pulling image Clatest) from 10.200.4.1: Sm/ndzsltel endpoint: http://10.200.4.1:5000/V1,
Pulling dependent layers

Download complete

Download complete

Download complete

Download complete

Download complete

72d73c46937a:
a785ba7493fd: Download complete
bES8f83182e7: Download

Download

Download complete
Status: Inage is up to date for 10.200.4.1:5000/ebsite:
Restart fleet unit
Triggered global unit websitel.service stop
Triggered global unit websitel.service start

atest

List Production cluster fleet units
MACH

uNIT (INE ACTIVE SUB
websitel.service 32547c5c. . ./23.251.140.55 active running
websitel.service 5764519€. ../130.211.53.11 active running

Finished 111
Press [Enter] key to continue...[]

OEBPS/Images/image00168.jpeg
© 0 @ [Helo, cor0s +

« c 146.148.123.231

"Hello, CoreOS" from Stagingl Development Environment

‘This is an example page for CoreOS Essentials Book Chapter 6.

OEBPS/Images/image00165.jpeg
Deploy docker image building script to tsc-registry-cbuilderl server 111
Dockerfile 8

build.sh 1008 48
push.sh 1008 37
Finished 111

Press [Enter] key to continue...]|

OEBPS/Images/image00166.jpeg
receiving incremental file list

index. html

sent 46 bytes received 330 bytes 752.00 bytes/sec
total size is 354 speedup is 0.94
Build new docker image and push to registry!l!
Sending build context to Docker daemon 5.632 kB
Sending build context to Docker daemon
Step 0 : FROM nginx:latest

---> a785ba7493fd
Step 1 : ADD websitel /usr/share/nginx/html
---> 174b9848dad1
Removing intermediate container a0b983d11f16
Step 2 : EXPOSE 80

> Running in 0613deellb3a
> 8ff16cldac76

ing i container 0613deel1b3a
Sucnessfu\\y e amecmcvs
The push refers to a repository [10.200.
Sending image list
Pushing repository 10.200.4.1:5000/websitel (1 tags)
Inage dc2e1697e33e already pushed, skipping
Tnage df2a0347c9d0 already pushed, skipping
Inage 39bb8048%af7 already pushed, skipping
Image e21d523a1481 already pushed, skipping
Inage 1f1cfc8b4072 already pushed, skipping
Tnage 8cacdc007422 already pushed, skipping
Inage 3ecsf57e729c already pushed, skipping
| Inage Seco36b59c11 already pushed, skipping
Tnage 72d73c46937a already pushed, skipping
 Image a785ba7493fd already pushed, skipping
Inage 514f4db63es3 already pushed, skipping
| inage e2fdeSe7e71f already pushed, skipping
shing
Buffering to disk
Tnage successfully pushed
Pushing
Buffering to disk
| 8ff16c1dac?6: Image successfully pus
| Pushing tag for rev Tortibetdaces) on {nm //10.200.

5000/website1] (len: 1)

OEBPS/Images/image00169.jpeg
ARZ

© Dashboard

api-1.0.1-1 api-10.1-2 api-1.0.1-3

< o < ¢ < ']

web-1.1.0-2

web-1.1.0-1 b-13.0-1

@ Monitoring © Monitoring @ Monitoring

Paz Dashboard

OEBPS/Images/image00170.jpeg
{packet

e

Projects / Testing /

HOSTNAME

k8s-node3

K8s-node2

k8s-nodet

conis

Type

Type

Type

Devices

Collaborators

1 ADDRESS

147.75.192.187

147.75.192185

147.75.102155

2

Timeline Settings

LocaTion
Parsippany, NJ
Parsippany, NJ

Parsippany, NJ

OEBPS/Images/image00171.jpeg
STRATEGY
best-effort
etcd-lock
reboot.

off

DESCRIPTION

Default. If etcd is running, etcd-lock , otherwise simply reboot .

Reboot after irst taking a distributed lock in etcd.
Reboot immediately after an update is applied.

Do not reboot after updates are applied.

OEBPS/Images/image00174.jpeg
& rimusz/ postgres =. =&

Postgres 9.4 based on Alpine Linux

d090dd0a7e0c

oo

59a6cfda02c3

db74a9c9eff7

7a058e6b228f

@ PullTag ~

docker pull quay.iofrimusz/postgres latest

® latest ~
Last Modified
20days ago

Total Compressed Size
1L1MB

Scebecs097co
a5b60fe0Tdas

anadsesicis
cOabTberTIC

11502032006t
Tan58e6b2281

asscerdiee
ssatcidazcy
fo1302d12500
saat2a27067c

Delete Tag

OEBPS/Images/image00175.jpeg
3 rimusz+ |/ Repository Name

Repository Description

Click to set repository description

Repository Visibility
© o Public

pull from

& Private

nitialize repository
B (Empty repository)

Initialize from a Dockerfile
B Initialize from a Dockerfile nside a .zip or .tar.gz archive

©) Linktoa GitHub Repository

OEBPS/Images/image00172.jpeg
Production

production

CHANNEL Version Breakdown
D stable>

Jinstances

Enabled >

1 updates allowed per 90 minutes >

CoreOS

&

View All Graphs

OEBPS/Images/image00173.jpeg
d database upgrade

& Create Repository

Your Repositories

8 rimusz/postgres
Postgres 9.4 based on Alpine Linux

rimusz/nodejs

T Latest Nodels

rimusz/dbuilder

Docker builder

8 rimusz/alpine-base

(EEEDEIETTT Alpine Linux base image

OEBPS/Images/image00120.jpeg
- Logs begin at Thu 2015-05-14

Mﬂy 23:26:51 core-01 docker[65361:
May 26 23: 52 core-@1 docker[6536]:
May 26 23: 53 core-@1 docker[6536]:
May 26 23:26:54 core-01 docker[6536]:
May 26 23: 55 core-@1 docker[6536]:
May 26 23:26:56 core-01 docker[6536]:
\May 26 23:26:57 core-81 docker[65361:

14 21:52:42 . --

Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World

OEBPS/Images/image00119.jpeg
MACHINE
4f17419c.

J METADATA
172.17.8.101 -

OEBPS/Images/image00118.jpeg
N MACHIN ACTIVE SUB
hellol.service mmsc. /172.17.8.101 active running

OEBPS/Images/image00117.jpeg
Unit hellol.service launched on 4f17419c.../172.17.8.101

OEBPS/Images/image00116.jpeg
UNIT HASH DSTATE
hellol.service b5ef016 inactive

OEBPS/Images/image00115.jpeg

OEBPS/Images/image00114.jpeg
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
1f696eb50 busybox:latest “/bin/sh -c 'while t 13 seconds ago
Up 13 seconds busyboxl

OEBPS/Images/image00113.jpeg
hel‘lﬂ.servine - HelloWorld

Loaded: loaded (/etc/systend/system/hello. service; enabled; vendor preset: disabled)

Active: active (running) since Tue 2015-05-26 22:03: az 3min 3s ago

Process: 824 m busybox1)
Process: 737 i pull busyhm(« i ESS
Main PID: 830 (docker)

Menory

11.oM
CGroup: /system.slice/hello.service
830 /usr/bin/docker run --rm -name busybox busybox /bin/sh ~c while true
do echo Hello World; sleep 1; done

May 26 22:05:55 core-01 docker[830]: Hello World
May 26 22:05:56 core-01 docker[830]: Hello World

May 26 22:05:57 core-01 docker[830]: Hello World
May 26 22:05:58 core-01 docker[830]: Hello World
May 26 22:05:59 core-01 docker[830]: Hello World
May 26 22:06:00 core-01 docker[830]: Hello World

OEBPS/Images/image00112.jpeg
Logs begm at Thu 2015-05-14 21:52:42 .
core-01 docker[830]: Hello World
ae core-01 docker[830]: Hello World
core-01 docker[830]: Hello World
core-01 docker[830]: Hello World
core-01 docker[830]: Hello World
core-01 docker[830]: Hello World
core-01 docker[830]: Hello World
core-01 docker[830]: Hello World
core-01 docker[830]: Hello World
core-01 docker[830]: Hello World
core-01 docker[830]: Hello World
core-01 docker[830]: Hello World
core-01 docker[830]: Hello World

5555555558858
BEREERRRERRRE

OEBPS/Images/image00111.jpeg
it Cser
0S/Arch (server): Y imovandes

OEBPS/Images/image00189.jpeg
NAME READY ~ REASON RESTARTS AGE
websitel-82yqs 1/1 Running @ sn
websitel-fatp 1/1 Running @ sm

OEBPS/Images/image00190.jpeg
CONTROLLER ~ CONTAINERCS) IMAGE(S) SELECTOR REPLICAS
websitel websitel 10.200.4.1:5000/websitel run=websitel 2

OEBPS/Images/image00187.jpeg
Kubernetes master is running at http://localhost:8080

OEBPS/Images/image00188.jpeg
CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS
websitel _ websitel 10.200.4.1:5000/websitel run—websitel 2

OEBPS/Images/image00110.jpeg
* fleet.service - fleet daemon
Loaded: loaded (/usr/1ib64/systend/systenfleet. servi
| Drop-In: /Nn/systam/systan/ﬂ.eet service.d

; static; vendor preset: disabled)

/systen.slice/fleet.service
560 /usr/bin/fleetd

core-01 fleetd[560]: INFO manager.go:246: Writing systend unit fleet-ui.service (5486)

core-01 fleetd[560]: INFO reconcile.go:330: iler completed task: aded"
core-01 fleetd[560]: INFO reconcile.. completed task: iles"
core-01 fleetd[560]: INFO reconcile.go:330: AgentReconciler completed task: type=Starty...ched"

re-01 fleetd[560]: INFO reconcile.go:330: AgentReconciler completed task: type=Starty...ched"
Some lines were ellipsized, use -1 to show in full.

E4

OEBPS/Images/image00109.jpeg
Core0S alpha (681.0.0)
Update Strategy: | oo
core@core-01 ~ § sysbsm':t\ status etcd2
o etcd2.service -
1oaded (/usr/l\bﬂ/systsnd/systsn/etndz.servine; static; vendor preset: disabled)
/run/systend/systen/etcd2. service.d
-20-cloudinit.conf

:55 ; 4min @s ago

: 2.5M
/system. slice/etcd2. service
557 Jusr/bin/etcd2

May 14 21:34:55 core-01 etcd2[557]: 2015/05/14 21:34:55 etcdserver: restart member 1a71e80225449068 in cluster
10c80627 at comnit index 1

’uay 14 21:34:55 core-01 etcd2[557]: 2015/05/14 5 raft: 1a71e80225449068 became follower at term 2

May 14 21:34:55 core-01 etndZ[SSU ZB]S/BS/H 21:34:55 raft: newRaft 1a71e80225449068 [peers: [], term: 2, com

mit: me, applied: 0, lastindex:

May 14 21:34:55 core-01 etﬂdZ[SS'V] zals/es/u

Tras s 2380] to cluster d88996810c8a627a

5y 14 21:34:30/core B o (3 o/ 21

m2

55 etcdserver: added local member 1a71e80225449068 [http:/

156 raft: 1071e80225449068 is starting a new election at te

May 14 21:34:56 core-1 etcd2[557]: 2015/@5/14 21
May 14 21:34:56 core-01 etcd2[S57]: 2015/05/14 21:34
068 at tem 3

May 14 21:34:56 core-01 etcd2[557]: 2015/05/14 21 raft: 1a71e80225449068 became leader at term 3

May 14 21:34:56 core-01 etcd2[557]: 2015/05/14 21:34:56 raft.node: 1a71e80225449068 elected leader 107168022544
9068 at term 3

May 14 21:34:56 core-01 etcd2[S57]: 2015/05/14 21:
172.19.8.99:2379 http://172.19.8.99: ...81

Hint: Some lines were ellipsized, use -1 to show in full.

mft 1071€80225449068 became candidate at term 3
256 ra received vote from

56 etcdserver: published {Name:core-01 ClientURLs:[http://

OEBPS/Images/image00108.jpeg
Bringing machine 'core-01' up with 'virtualbox' provider...

: Box 'coreos: found. Attenpting to find and install...
Box Provider: virtualbox
Box Version: >= 308.0.1
Loading metadata for box 'http://alpha.release. core-0s.net/andé4-usr/current/coreos_production_vagrant. json'
URL: http://alpha. release. core-0s..net/and64-usr/current/coreos_production_vagrant. json
Adding box 'coreos-alpha’ (v681.0.0) for provider: virtualbox
Downloading: http://alpha. release. core-0s. net/amd64-usr/681.9.0/coreos_production_vagrant. box
Calculating and comparing box checksun.
S«:nessfully added box "coreos-alpha’ (vG81.0.9) for "virtualbox'!

ng base box 'coreos-alpha'.
: n-mm‘ MAC address for NAT networking.
Checking if box ‘coreos-alpha' is up to date...
: Setting the name of the WM: coreos-vagrant_core-01 1431638846664_65246
: Clearing any previously set network interfaces..
: Preparing network interfaces based on configuration. .
nat

!

BLeLiLe

Adapter 2: hostonly
: Forwarding ports. .
22 => 2222 (adapter 1)
Running ‘pre-boot' WM customizations. ..
Booting WM...
Waiting for machine to boot. This may take a few minutes...
SSH address: 127.9.0.1:2222
SSH username:
SSH auth method: private key
Warning: Connection timeout. Retrying...
Machine booted and readyl
Setting hostname. .
: Configuring and enabling network interfaces. .

Wt

(RRRN

OEBPS/Images/image00107.jpeg

OEBPS/Images/image00106.jpeg
CoreOS Host

OEBPS/Images/image00105.jpeg
Data

Data

OEBPS/Images/image00104.jpeg
Average Linux Server RAM Usage

OEBPS/Images/image00103.jpeg

OEBPS/Images/image00192.jpeg
NAME LABELS SELECTOR IP(S) PORT(S)

kubernetes component=apiserver, provider=kubernetes <none> 10.100.0.1 443/1CP

websitel run-websitel runwebsitel 10.100.156.59 80/TCP
104.155.12.159

OEBPS/Images/image00193.jpeg
eoe Hello, CoreOS. +

= ¢ ® 104.156.12.169 L2 *|

"Hello, CoreOS" from Stagingl Development

Environment

‘This is an example page for CoreOS Essentials Book Chapter 6.

OEBPS/Images/image00191.jpeg
NAME LABELS SELECTOR IP(S) PORT(S)
websitel _run-websitel run-ebsitel 80/TCP

OEBPS/Images/image00196.jpeg
QTECTONIC services Replication Controllers Pods ~ Machines More ~

& BocktoReplction Controlers

Desired State

Replicas: e s

Controlar Labelk: appesearch X typesstorage X version=150 X

Labels or this controller
tabet quen: app=search x _ type=storage X

Writealabel query that will match labels on new or existing pods.

Desired Pod State

apod. Allof together onto machines in the cluster.

Pod LG app=search x type=storage X verson=150 x

Each pod Services

Pod Volumes: 0Volumes
Named volumes that may be accessed by any containers in the pod.

OEBPS/Images/image00194.jpeg
CONTROLLER ~ CONTAINER(S) IMAGE(CS) SELECTOR REPLICAS
websitel websitel 10.200.4.1:5000/websitel run=websitel 4

OEBPS/Images/image00195.jpeg
O TECTONIC

Replication Controllers

appsesrch tpesstosge version= 15

appsearch tpe=ul vamion=402

—

o

-

app=search type=collector version=142

1ot 1p0ds

Tof1pods

Runing

Runing

Roing

Ronving

Q spp=search

Q sppesearc

Q sop=somge

Q type=stonsge

Q tpe = colecor

OEBPS/Images/image00140.jpeg
™ METADATA

10.240.222.1 cpeer=tsc-controll, rolesservices

104.155.23.81 cpeer=tsc-stagingl, role=worker
143

OEBPS/Images/image00139.jpeg
| Fetching Google Cloud settings ...
Creating *coreos-tsc-gce’ folder and its subfolders ...
Installing Development cluster local files ...

Downloading and instaling fleetctl ...
Dormloadlng ﬂeetr:t\ v0.10.1 for 05 X
% T Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
00 408 0 408 0 60
100 2483k 100 2483k © 0 1099k
Archive: fleet.zip
inflating: fleetctl

Installation has finished 111
Press [Enter] key to continue.

OEBPS/Images/image00138.jpeg
[EPEEEE | New instance group

VM instances

CPU utilzation ~

May 31,415 PM
WPy 1292

Name ~ Zone

@ tsc-controll europe-west1-d

@ tsc-staging?
@ tscrtest1

europe-west1-d

europe-west1-d

430 PM

Disk
tsc-controll
tsc-staging1

tsc-testl

May 31, 4:45 PM

Network
default
default
default

Inuse by

May 31,5:10 PM

External 1P
104155.25.71
104155.23.81
282511435

Connect
SsH
SsH

SsH

OEBPS/Images/image00137.jpeg
Created [https:. L

ances/tsc-test1].
NAVE Z0NE MACHINE_TYPE PREEMPTIBLE INTERMAL_IP EXTERMAL_IP STATUS
e ent1 eiope meatl 1 pizrard L 10.240.129.115 23.251.143.5 RUNNING

Created [https:,
ances/tsc-stagingl].
NAvE Z0NE

MACHINE_TYPE PREEMPTIBLE INTERNAL_IP EXTERNAL_IP STATUS
tsc-stagingl europe-westl-d ni-standard-1 10.240.22.204 104.155.23.51 RUNNING
Created [https:, jleapi nput i Firewalls/http-80]

NAME NETHORK SRC_RANGES RULES SRC_TAGS TARGET_TAGS
http-80 default 0.0.0.0/0 tcp:80 tsc-testl, tsc-stagingl

Setup has finished 111
Press [Enter] key to continue...]|

OEBPS/Images/image00136.jpeg
 Created [https:. jl
1.

20N MACHINE_TYPE PREEMPTIBLE INTERNAL_IP EXTERNAL_IP STATUS
tac-control1 eurcpe.sestid gl.saal 10.240.126.117 23.251.143.5 RUNN
cmma [https:, i i 1.
NETWORK DEST_RANGE NEXT_HOP. PRIORITY
m-m -200-1-1-tsc-controll default 10.200.1.1/32 europe-westl-d/instances/tsc-controll 1000
has finished 111

Press [Enter] key to continue...]

OEBPS/Images/image00135.jpeg
Suspend
Halt

Reload

SSH to core-01

0S Shell
Fleet-Ul
DockerUl

Upload docker images
Updates

Setup

About Core0S GUI for OS X

OEBPS/Images/image00134.jpeg
LICH] Hello, Core0S.

« e | ® 172.19.20.99

"Hello, CoreOS" Development Environment

‘This is an example page for CoreOS Essentials Book Chapter 5.

OEBPS/Images/image00133.jpeg
nginx.service - nginx
Loaded: Loaded (; _service; 1i ; vendor preset: disabled)

; m:t\ve Crunning) since Sun 2015-05-31 13:38:16 UTC; s4s ago

Process: m nginx (¢)

Main PID: 1225 (docker)

Merory: 08

CGroup: /system.slice/ngink.service

5 /usr/bin/docker run --rm ~-name nginx -p 80:89 -v /home/core/share/nginx/html
inx:latest

Active:
G

\

\

\

vay 31 13:38:40 core-dev-01 docker[1225]: Digest:
36797b3653c644943e90b3acdf
May 31 13:38:40 core-dev-@1 docker[1225]: Status:

OEBPS/Images/image00132.jpeg
Bringing machine 'core-dev-01' up with 'virtualbox' provider
==> core-dev-01: Checking if box coreos-alpha' is up to date...
==> core-dev-01: VirtualBox WM is already running.

etcdctl 1s /:
fleetctl list-machines:

MACHINE

™ METADATA
2doGoacS... 172.19.20.99

fleetctl list-units:
UNIT MACHINE ACTIVE SUB

docker containers:
CONTAINER 1D MAGE comanD CREATED

bash-3.2$ I

OEBPS/Images/image00131.jpeg
Connection to 127.0.0.1 closed.
Downloading etcdctl 2.0.11 for 05 X
% Total % Received ¥ Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
00 47 © 47 0 0 19 0
100 5042k 1005042k O O 908 0 0:00:05
Archive: etcd.zip
inflating: etcdctl
Connection to 127.0.0.1 closed.
Downloading fleetctl v0.10.1 for 0S X
%Total % Received % Xferd Average Speed Time Time Time Current
ft

o:
o

00 410 0 40 0 0
100 2483k 1002483k © O
Archive: fleet.zip
inflating: fleetctl
Connection to 127.0.0.1 closed.
Downloading docker v1.6.2 client for 05 X
%Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total
100 7299k 100 7299k @ 0 1262k O 0:00:05 ©;
Installation has finished 111

638
1540k

Speed
1716k

Press [Enter] key to continue...]

OEBPS/Images/image00141.jpeg
Unit staginglwebserver.service launched on b39dd6d6. - ./104.155.23.81
Unit testl_webserver.service launched on ed6cdf74.../23.251.143.5

OEBPS/Images/image00142.jpeg
* stagingl_webserver.service - nginx
‘oaded (/run/fleet/units/stagingl webserver.service; linked-runtime; vendor preset: disabled)
active (running) since Sun 2015-05-31 18:20:17 ; Imin 265 ago

3276 i m i)

3286 (docker)

2.
/systen. slice/stagingl_webserver. service
3286 i run --rm --nane stagi -p 80:80 -v i 3

18:20:31 tsc-stagingl.c. radiant-works-93210. internal docker[3286]: 1f1cfc8b4072: Pull complete
18:20:31 tsc-stagingl.c.radiant-works-93210. internal docker[3286]: 514f4db63eS:
18:20:32 tsc-stagingl.c.radiant-works-93210. internal docker[3286]: e2fdeSe7e7if: Pul
18:20:32 tsc-stagingl.c. radiant-works-93210. internal docker[3286]: 8cacdc0e7422: Pull complete
18:20:32 tsc-smgmgl . radiant-works-93210. internal. docker[3286]: 7247346937
18:20:33 tsc-stagi . interna [3286]:

18:20:33 tsc-swg\ngl cl mdmnt-mrks 93210. internal docker[3286]: a78Sba7493fd: A‘\ready exists

18:20:33 tsc- c. . internal [3286]: ngi The inage you are pulling has been

puewewew

18:20:33 tsc-stagingl.c.radiant-works-93210. internal docker[3286]: Digest: sha256:88f8d820cObc20f f80992cdeeeeldd6ds
1 18:20:33 tsc-stagingl.c.radiant-works-93210. internal docker[3286]: Status: Downloaded newer image for nginx:latest

LEEERERE R

@ w

o testl_webserver.service - nginx
oaded: loaded (/run/fleet/units/testl_webserver.service; linked-runtime; vendor preset: disabled)
al:t\ve (running) since Sun 2015-05-31 18:20:17 ; Inin 27 ago_
m G D)

2577 (docker)

Memory: 2.
CGroup: /sysl:an slice/testl webserver. service
run --rm ~-nane -p 80:80 -v i y

e2fdeSe7e71f:

): 72d73c46937a: Pull complete
nternal [2577): Pull complete
nternal Already exists
m:erm\ ducker[zm] nglnx latest: The inage you are pulling has been ve

t1
t1
t1
18:20:33 tsc-testl.c.radiant-works-93210.
1 18:20:33 tsc-testl Digest:
1 18:20:33 tsc-testl. c.radiant-works-93210. \mrm\ e arr]. it Inioel e inas toc roto Titect

OEBPS/Images/image00130.jpeg
Setting up Core0S WM
-dev-01: Checking for updates to 'coreos-alpha'
Latest installed version: 695.0.0
Version constraints: >= 308.0.1
Provider: virtualbox
Box "coreos-alpha’ (v695.0.0) is running the latest version.
*core~dev-01' up with 'virtualbox' provider..
: Inporting base box *coreos-af
: Matching MAC address for NAT networking. .
: Checking 1 box *coreos-alpha’ s up to date...
: Setting the name of the WM: vm_core-dev-01_1433075600788.15889
: Clearing any previously set network interfaces...
~dev-01: Preparing un-i interfaces based on configuration. ..
: Adapter 1:
Adapter 2: msmnly

Forwarding
2375 = 7375 (adwber il
2 - 222

= (adapter 1)
: Running ‘pre-boot' W st zatons,
: Booting WM.

-dev-01. Mh'f-r-ﬂvh-ﬁ“ This may take a few minutes..
SSH address: 127.0.0.1:2222

SSH username: core

SSH auth method: private key

MWarning: Connection t\memat Retrying. .

: Configuring and endbling network interfaces. .
: Exporting NFS shared folders. ..
: Preparing to edit /ct:/-w-n Administrator privileges will be required...

OEBPS/Images/image00129.jpeg
- Logs begin at Wed 2015-05-27
May 27 21:36:40 core-01 bash[708]
May 27 21:36:41 core-01 bash[708]
May 27 21:36:42 core-01 bash[708]
May 27 Zl 36:43 mre-al bash[708]:
re-01 bash[708]
5 mre-al bash[708]:

core-@1 bash[708]

102 .
Hello Cluster

Hello Cluster

OEBPS/Images/image00128.jpeg
UNIT MACHINE ACTIVE SUB
hello-cluster.service 44c3Se7b. ../172.17.8.101 active running

OEBPS/Images/image00127.jpeg
= Logsbegmatmzmsasnzanu o=
Hello Cluster

May 27 21:27:24 core-03 bash[790]: Hello Cluster

OEBPS/Images/image00126.jpeg
»

172.17.8.103 cluster=vagrant
172.17.8.101 cluster=vagrant
172.17.8.102 cluster=vagrant

OEBPS/Images/image00125.jpeg
RIS

: Running provisioner: file...
: Running provisioner: shell...

Running: inline script
Running provisi file...
Running provisioner:

Running provisioner: f
Running provisioner:
Running: inline script

OEBPS/Images/image00124.jpeg
» METADATA
172.17.8.103 -
172.17.8.101 -
172.17.8.102 -

OEBPS/Images/image00123.jpeg
Current machine states:

running (virtualbox)
running (virtualbox)
running (virtualbox)

core-01
core-02
core-03

OEBPS/Images/image00122.jpeg
L b LELiLeg

RARN

: coreos-vagrant_
: Fixed port collision for 22 => 2222, Now on port 2201.
: Clearing any previously set network interfaces...

: Preparing network interfaces based on configuration...
: Adapter 1: nat

: Adapter 2: k’nshﬂnly

: Forwarding
: 22 = 2201 (adwter k5
-03: Running 'pre-boot' WM customizations...

Waiting for machine to boot, This may take a few minutes...
SSH address: 127.0.0.1:2201

: SSH username: core

SSH auth method: private key

: Warning: Connection timeout. Retrying...
: Machine booted and ready!

: Setting hostname. ..

: Configuring and enabling network interfaces. ..
: Running provisioner: file...

: Runniing provisioner: shell...

inline script

OEBPS/Images/image00121.jpeg
Bringing machine *core-01' up with 'virtualbox'

Bringing machine *core-02' up with 'virtualbox'

Bringing nachine 'core-03' up with 'virtualbox'
: Inporting base box 'coreos-alpha'.

Matching MAC address for NAT networking

Checking 1f box 'coreos-alpha’ i up to date.

Setting the name of the VM: coreos-vagrant_core-01_1432759615645_90617

Clearing any previously set network interfaces. .

Preparing e interfaces based on configuration. .

Adapter 1:

Adapter 2: hnsbunly

Forwarding ports. ..

22 => 2222 (adapter 1)

Running 'pre-boot' WM customizations. ..

Booting WM. ..

Waiting for machine to boot. This may take a few minutes...
SSH address: 127.0.0.1:2222

: Configuring and enabling network interfaces.

