
www.it-ebooks.info

http://www.it-ebooks.info/

Mastering OpenStack

Design, deploy, and manage a scalable OpenStack
infrastructure

Omar Khedher

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering OpenStack

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1270715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-564-3

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Omar Khedher

Reviewers
Derek Chamorro

Ryan Hallisey

Dr. Benoit Hudzia

Bhargesh Patel

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Usha Iyer

Content Development Editor
Merwyn D'souza

Technical Editors
Mrunal M. Chavan

Gaurav Suri

Copy Editors
Vedangi Narvekar

Vikrant Phadke

Stuti Srivastava

Project Coordinator
Neha Bhatnagar

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Omar Khedher is a network engineer and cloud computing researcher.
Based in the Netherlands, he has worked in a cloud computing solution project
that turned into an OpenStack deployment and became integrated with it.
Leveraging his skills as a system administrator in virtualization, storage, and
networking, he is currently pursuing a PhD on performance research preparation
in the cloud computing paradigm and architecture patterns in which OpenStack is
taking an active part. He has recently authored a few academic publications based
on new researches for the cloud performance improvement.

A big thanks goes out to my PhD supervisor, Dr. Mohamed, in
KSA, my professional friend Belgacem in Tunisia for his guidance,
critics, and my special colleagues at the company for sharing their
knowledge at HiQInvest. I appreciate the encouragement provided
by my new family in the Netherlands and the warmth they provided
to make me feel at home. I would like to thank all the reviewers of
this book for their accurate notes and precious remarks. I extend a
special thank to Merwyn D'souza for his continued and great work
on this book, which has been a big piece of work. I am grateful to
William Sprakel, who has helped me dive into the cloud computing
world and also Michiel Karnebeek and Rick Stokkingreef for sharing
their knowledge. Of course, a big thank you to the OpenStack
community for the wonderful work in making the cloud computing
solution such a unique and wonderful experience.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Derek Chamorro is a network security engineer/architect with 15 years of
experience in information technology. He first started his career with cable MSOs,
working in a variety of roles ranging from technical support to network architecture.
He has spent the last 3 years focused on abstracted computing and software-defined
networking using a variety of new technologies to enhance security and automation
within next-generation networks. Derek currently works at Cisco Systems as a
technical engineering lead for Cisco Cloud services. He specializes in network
virtualization and enjoys working with Open vSwitch development.

In his spare time, Derek enjoys distance running, Asian cooking, and
microbrewing beer.

Ryan Hallisey is a software engineer at Red Hat. He has worked on OpenStack
for 2 years. Primarily, his focus is on developing SELinux to function for enterprise
OpenStack solutions as well as developing the Tripleo installer and containerizing
OpenStack using Docker.

www.it-ebooks.info

http://www.it-ebooks.info/

Dr. Benoit Hudzia is a cloud/system architect working on designing the next
generation cloud technology as well as running the Irish operations for Stratoscale.

He previously worked as a senior researcher-architect for SAP on HANA
Enterprise Cloud.

Benoit has authored more than 20 academic publications and is also the holder of
numerous patents in the domains of virtualization, OS, cloud, distributed system,
and so on. His code and ideas are included in various SAP commercial solutions
as well as open source solutions such as the QEMU/KVM hypervisor, the Linux
kernel, and OpenStack.

His research currently focuses on bringing together the flexibility of virtualization,
cloud, and high-performance computing (also known as the "Lego cloud"). This
framework aims to provide the memory, I/O, and CPU resource disaggregation
of physical servers while enabling dynamic management and aggregation
capabilities on Linux native applications as well as Linux/KVM VMs using
commodity hardware.

Bhargesh Patel completed his MTech in computer engineering from Dharmsinh
Desai University, Nadiad. He has more than 3 years of teaching experience in cloud
computing security, big data mining, and networking. Currently, he is working with
G H Patel College of Engineering and Technology, Vallabh Vidyanagar. His areas
of interest are cloud computing, grid computing, data mining, operating systems,
computer networks, and cyber security. Currently, he is working on cloud security
and big data mining projects.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

I would like to dedicate this book to my family, who supported me immensely
throughout the writing of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 vii
Chapter 1: Designing OpenStack Cloud Architecture	 1

OpenStack – think again	 2
Introducing the OpenStack logical architecture	 3

Keystone	 4
Swift	 4
Glance	 5
Cinder	 6
Nova	 7

nova-api	 7
nova-compute	 8
nova-volume	 8
nova-network	 8
nova-scheduler	 9

Queue	 9
Database	 9
Neutron	 10

The Neutron architecture	 11
Horizon	 12

Gathering the pieces and building a picture	 13
Provisioning a flow under the hood	 16
Expanding the picture	 19

A sample architecture setup	 21
Deployment	 21

The conceptual model design	 22
The logical model design	 23
The physical model design	 31

Summary	 37

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 2: Deploying OpenStack – DevOps and OpenStack
Dual Deal	 39

DevOps in a nutshell	 40
DevOps and cloud – everyone is coding	 41
DevOpsing OpenStack	 43

Breaking down the OpenStack pieces	 44
Making the infrastructure deployment professional	 45
Bringing OpenStack to the chain	 47

Continuous integration and delivery	 47
Eat the elephant	 49

Preparing the infrastructure code environment	 49
The Chef environment	 52

Prerequisites for settings	 53
Time to cook OpenStack	 58

Summary	 72
Chapter 3: Learning OpenStack Clustering – Cloud Controllers
and Compute Nodes	 73

Understanding the art of clustering	 74
Asymmetric clustering	 75
Symmetric clustering	 75

Divide and conquer	 75
The cloud controller	 75

nova-conductor	 76
nova-scheduler	 77
X-api	 78
Image management	 79
Network outfit	 79
The Horizon decision	 80
Planning for the message queue	 80
Consolidating the database	 80

Cloud controller clustering	 81
Cooking the cloud controller	 83

The compute node	 86
Overcommitment considerations	 87
Deciding on the hypervisor	 89
Storing instances' alternatives	 96
Cooking the compute node	 97

Preparing for plan B	 99
Back up with backup-manager	 100
Simple recovery steps	 101

Summary	 102

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 4: Learning OpenStack Storage – Deploying the
Hybrid Storage Model	 103

Understanding the storage types	 104
Ephemeral storage	 104
Persistent storage	 104

Object storage is not NAS/SAN	 104
A spotlight on Swift	 105

The Swift architecture	 105
Physical design considerations	 108
Swift hardware	 112
The Swift network	 114

Cooking Swift	 115
Joining Cinder	 118

Choosing the storage	 120
CAP under scope	 121
Stirring up the storage	 122

Cinder can do more	 122
Beyond Cinder – Ceph	 127

Summary	 140
Chapter 5: Implementing OpenStack Networking and Security	 141

The story of an API	 142
Security groups	 143

Managing the security groups using Horizon	 145
Managing the security groups using the Neutron CLI	 146
Managing the security groups using the Nova CLI	 147
An example of a web server DMZ	 150

Firewall as a Service	 152
Coupling a firewall with Neutron	 154
The Neutron plugin	 157

There can be more than one plugin	 158
Empowering the traffic isolation	 158

VPN as a Service – a case study	 160
General settings	 160
VPNaaS configuration	 164

Summary	 170
Chapter 6: OpenStack HA and Failover	 171

HA under the scope	 172
Do not mix them	 173
HA levels in OpenStack	 173
A strict service-level agreement	 174

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Measuring HA	 175
The HA dictionary	 177
Hands on HA	 178

Understanding HAProxy	 178
OpenStack HA under the hood	 181

Summary	 205
Chapter 7: OpenStack Multinode Deployment – Bringing
in Production	 207

Confirming the multinode setup	 208
Assigning physical nodes	 208
Preparing the OpenStack Initiator	 210

The network topology	 211
The OpenStack network mode	 212
The physical network topology	 212

The OpenStack deployment	 216
The MIN installation	 216
Chef server preinstallation	 226
Discover and cook	 227

Cooking time	 228
Testing the cloud	 231
Arming the deployment	 232

Summary	 244
Chapter 8: Extending OpenStack – Advanced Networking
Features and Deploying Multi-tier Applications	 245

Navigating through Neutron	 246
Neutron plugins	 247

Virtual switching infrastructure	 247
Load Balancer as a Service	 261

Work around LBaaS	 262
Integrate LBaaS in the cloud	 263
Stack in OpenStack	 265

Summary	 274
Chapter 9: Monitoring OpenStack – Ceilometer and Zabbix	 275

Telemetry in OpenStack – Ceilometer	 276
Ceilometer definition	 276
Ceilometer glossary	 277
The Ceilometer architecture	 278
The Ceilometer installation	 281

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Ceilometer and heat	 287
Autoscaling	 288

Extending HOT for alarming	 288
Arming OpenStack monitoring	 297

Zabbix in action	 297
Placing Zabbix	 298
Installing the Zabbix server	 298
Configuring the Zabbix agent on OpenStack nodes	 300

Summary	 303
Chapter 10: Keeping Track for Logs – Centralizing Logs
with Logstash	 305

Tackling logging	 306
Demystifying logs in OpenStack	 306

The log's location	 307
Adjusting logs in OpenStack	 308

Two eyes are better than one	 308
Logstash under the hood	 309

The Logstash workflow	 310
Placing the Logstash server	 311

Installing the Logstash server	 312
Configuring Logstash	 316

Summary	 329
Chapter 11: Tuning OpenStack Performance – Advanced
Configuration	 331

Pushing the limits of the database	 332
Deciding the resources outfit	 334
Caching for OpenStack	 334

Memcached in OpenStack	 336
Stressing RabbitMQ	 341
Benchmarking OpenStack at scale	 344

Rally in a nutshell	 344
Meeting OpenStack SLA	 345
Installing Rally	 346
Rally in action	 348

Scenario example 1	 350
Scenario example 2	 355

Summary	 362
Index	 363

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[vii]

Preface
Since its first official release in 2010, OpenStack has distinguished itself as the
ultimate open source cloud operating system. Today, more than 200 companies
worldwide have joined the development of the OpenStack project, which makes
it an attractive cloud computing solution for thousands of organizations. The
main reason behind the success of OpenStack is not the overwhelming number
of features that it has implemented, but rather its good modularity. Thanks to its
vast community around the world, OpenStack is growing very fast. Each release
exposes new modules and administrative facilities that offer on-demand computing
resources by provisioning a large set of networks of virtual machines. If you are
looking for a cloud computing solution that scales out well, OpenStack is an ideal
option. Nowadays, it is considered to be a mature cloud computing operating
system. Several big, medium, and small enterprises have adopted it as a solution in
their infrastructure. The nirvana of OpenStack comes from its architecture. Designing
your cloud becomes much easier with more flexibility. It is an ideal solution if you
intend either to design a start up cloud environment or to integrate it into your
existing infrastructure. As you build your cloud using OpenStack, you will be able
to integrate with legacy systems and third-party technologies by eliminating vendor
lock-in as much as possible.

This book is designed to discuss what is new in OpenStack with regards to the new
features and incubated projects. You will be guided through this book from design
to deployment and implementation with the help of a set of best practices in every
phase. Each topic is elaborated so that you can see the big and complete picture of
a true production environment that runs OpenStack at scale. It will help you decide
upon the ways of deploying OpenStack by determining the best outfit for your
private cloud, such as the computer, storage, and network components.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

If you are ready to start a real private cloud running OpenStack, master the
OpenStack design, and deploy and manage a scalable OpenStack infrastructure, this
book will prove to be a clear guide that exposes the latest features of the OpenStack
technology and helps you leverage its power to design and manage any medium or
large OpenStack infrastructure.

What this book covers
Chapter 1, Designing OpenStack Cloud Architecture, will focus on discussing the
several components of the architecture of OpenStack. It will provide the basis that is
needed to start with the first design of your OpenStack private cloud environment.
The chapter will discuss the different models' designs, which will help you begin
your first deployment of OpenStack from scratch. The chapter will contain practical
examples and calculations that are framed in a theoretical approach to give you an
idea about how you can choose the right hardware capacity for your first OpenStack
environment and adapt such information to real-world deployments.

Chapter 2, Deploying OpenStack – DevOps and OpenStack Dual Deal, will introduce you
to the first installation of the OpenStack environment using automation tools. You
will learn how to get the entire infrastructure installed and customized using Chef.
The chapter will highlight the adoption of the DevOps approach and cover several
advantages of how you can conduct your first OpenStack deployment from a test to
production environment with more flexibility. It will provide instructions on how to
install and use the Chef cookbooks to install the first test environment and get ready
for the production stage.

Chapter 3, Learning OpenStack Clustering – Cloud Controllers and Compute Nodes, will
decompose the big parts of your deployment by further refining your design, which
was elaborated on in the previous chapter. It will cover some best practices regarding
the art of clustering. Next, you will learn how to distribute the main OpenStack
services between the cloud controllers and the compute nodes and construct an
efficient OpenStack cluster. It will put under the microscope the choice of the
hypervisor and hardware specifications. A sample design of the Chef cookbooks will
be implemented to help you learn how to automate a cloud controller and install
the compute nodes. The chapter will also explore how to plan the backup of an
OpenStack cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

Chapter 4, Learning OpenStack Storage – Deploying the Hybrid Storage Model, will
cover the subject of storage in OpenStack. The chapter will start by focusing on the
storage types and their use cases. You will learn about an object storage code named
Swift and how it works in OpenStack. A real Swift deployment will be shown to
help you calculate the hardware requirements. The chapter will also talk about
the block storage code named Cinder in OpenStack. You will learn how to decide
which storage type will fulfill your needs. It will also explore Ceph and its main
architectural design. It will help you integrate it and install in your test OpenStack
environment using Vagrant and Chef.

Chapter 5, Implementing OpenStack Networking and Security, will focus mainly on the
networking security features in OpenStack. It will cover the concept of namespaces
and security groups in OpenStack and how you can manage them using the Neutron
and Nova APIs. In addition, it will explore the new networking security feature,
Firewall as a Service. A case study will help you understand another networking
feature in Neutron called VPN as a Service.

Chapter 6, OpenStack HA and Failover, will cover the topics of high availability and
failover. For each component of the OpenStack infrastructure, this chapter will
expose several HA options. The chapter will be replete with HA concepts and best
practices, which will help you define the best HA OpenStack environment. It serves
as a good complementary chapter for the previous chapters by bringing a geared,
distributed, and fault-tolerant OpenStack architecture design. Numerous open
source solutions, such as HAProxy, Keepalived, Pacemaker, and Corosync, will be
discussed through a step-by-step instruction guide.

Chapter 7, OpenStack Multinode Deployment – Bringing in Production, will be your
"first production day" guide. It will focus on how you can deploy a complete
multinode OpenStack setup. A sample setup will be explained and described in
detail by exposing the different nodes and their roles, the network topology, and
the deployment approach. The chapter will contain a practical guide to OpenStack
deployment using bare metal provision tools xCAT together with the Chef server. It
will demonstrate the first run of a new OpenStack tenant.

Chapter 8, Extending OpenStack – Advanced Networking Features and Deploying Multi-
tier Applications, will delve into the advanced OpenStack networking features. It will
explain in depth the Neutron plugins such as Linux Bridge and Open vSwitch, how
they differ from the architectural perspective, and how instances can be connected to
networks with the Neutron plugins. The chapter will also cover Load Balancing as a
Service, which is used to load balance the traffic between instances by exploring their
fundamental components. In addition, an orchestration module named Heat will be
introduced in this chapter and will be used to build a complete stack to show how a
real load balancer is deployed in OpenStack.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[x]

Chapter 9, Monitoring OpenStack – Ceilometer and Zabbix, will explore another new
incubated project called Ceilometer as a new telemetry module for OpenStack.
The chapter will discuss briefly the architecture of Ceilometer and how you can
install and integrate it into the existing OpenStack environment. The discussion on
Heat will be resumed, and it will be used to expand a stack installation including
Ceilometer. The purpose of this is to discover the capabilities of heat with regard to
supporting the Ceilometer functions, such as alarms and notifications. This section
will also make sure that the OpenStack environment is well-monitored using some
external monitoring tools such as Zabbix for advanced triggering capabilities.

Chapter 10, Keeping Track for Logs – Centralizing Logs with Logstash, will talk about
the problem of logging in OpenStack. The chapter will present a very sophisticated
logging solution called Logstash. It will go beyond the tailing and grepping of
single log lines to tackle complex log filtering. The chapter will provide instructions
on how to install Logstash and forward the OpenStack log files to a central
logging server. Furthermore, a few snippets will be be provided to demonstrate
the transformation of the OpenStack data logs and events into elegant graphs
that are easy to understand.

Chapter 11, Tuning OpenStack Performance – Advanced Configuration, will wrap things
up by talking about how you can make the OpenStack infrastructure run better with
respect to its performance. Different topics, such as the advanced configuration in the
exiting OpenStack environment, will be discussed. The chapter will put under the
microscope the performance enhancement of MySQL by means of hardware upgrade
and software layering such as memcached. You will learn how to tune the OpenStack
infrastructure component-by-component using a new incubated OpenStack project
called Rally.

What you need for this book
This book assumes a moderate level of Linux system administration and cloud
computing concepts' experience. Though this book will walk you through some
snippets of real-life production environment running OpenStack, some rudimentary
knowledge of the OpenStack components may be required. In addition to this, a
basic knowledge and understanding of networking jargon and connectional design
is required. If you possess some Ruby programming skills, this is a plus. The book
does not specify any specific test environment. Feel free to use any lab environment
that you feel more comfortable with, such as Oracle's VirtualBox, Vagrant, or the
VMware workstation.

This book requires you to install and run OpenStack on physical hardware to
support bare metal provisioning and, for this, a physical network infrastructure
should be in place.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[xi]

In this book, the following essential software is required:

•	 Operating System: CentOS 6.5
•	 The following software is required:

°° OpenStack—Havana or a later version
°° The Chef server
°° Vagrant
°° VirtualBox

Internet connectivity will be required to install the OpenStack packages and several
other packages. Make sure that you use the most convenient hardware to perform
tests of the snippets described in each chapter of this book.

Who this book is for
To speed up with the content of this book, prior knowledge of OpenStack is
required. If you don't have experience in OpenStack, reading small snippets from
the OpenStack community, http://docs.openstack.org/admin-guide-cloud/
content/ch_getting-started-with-openstack.html, will bring you onto the
same wavelength of this book. As the title of the book promises, you should not
expect a long and detailed tutorial on the installation of OpenStack. Although some
chapters provide specific details concerning the installation of the new components,
you are expected to have some basic knowledge on how it works in general so that
you can turn your focus to the advanced methods and tricks that treat the topic
at hand. This book is essentially for the novice cloud and technical architects and
the system administrators who are willing to deploy a cloud based on OpenStack
in a medium to large IT infrastructure. The book is also meant for those who have
already deployed an OpenStack environment and who are willing to discover new
features and expand their knowledge of how this technology works and how you
can integrate new incubated projects during the operational phase.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Create a new role named packtpub-os-compute-worker.json."

www.it-ebooks.info

http://docs.openstack.org/admin-guide-cloud/content/ch_getting-started-with-openstack.html
http://docs.openstack.org/admin-guide-cloud/content/ch_getting-started-with-openstack.html
http://www.it-ebooks.info/

Preface

[xii]

A block of code is set as follows:

heat_template_version:
description:
parameters:
 param1
 type:
 label:
 description:
 default:
 param2:

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

input {
. . .
 }
filter{
 if [type] == "openstack" {
 grok {
 patterns_dir => "/opt/logstash/patterns/"
 match=>["message","%{TIMESTAMP_ISO8601:timestamp}
 %{NUMBER:response} %{AUDITLOGLEVEL:level} %{NOTSPACE:module}
 \[%{GREEDYDATA:program}\] %{GREEDYDATA:content}"]
 }

Any command-line input or output is written as follows:

yum clean all
yum update –y
yum install nginx redis –y

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "To install
Ruby, you need to go from the Eclipse menu bar and navigate to Help | Install New
Software."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[xiii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/5643OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/5643OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/5643OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.it-ebooks.info/

Preface

[xiv]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

[1]

Designing OpenStack Cloud
Architecture

Owing to the widespread use of OpenStack development around the globe, several
enterprises have already started switching to a new and amazing way to gain
infrastructural resources and reduce the investment costs of their respective IT
environments. What makes this opportunity great is the open source experience that
it offers. Well, you may claim that there are several other cloud solutions that are
open source as well. What makes OpenStack unique is its exposure; it is widely open
to other open source solutions along with being a shining example of a multiport-
integrated solution with great flexibility. All that you really need is a good design to
fulfill most of your requirements and the right decisions on how and what to deploy.

If you browse the pages of this book, you might wonder what makes a laminated
cover entitled Mastering, such a great deal to you as a system administrator, cloud
architect, DevOps engineer, or any technical personnel operating on the Linux
platform. Basically, you may be working on a project, going on a vacation, building
a house, or redesigning your fancy apartment. In each of these cases, you will
always need a strategy. A Japanese military leader, Miyamoto Musashi, wrote the
following—a very impressive thought on perception and sight—in The Book of Five
Rings, Start Publishing LLC:

"In strategy, it is important to see distant things as if they were close and to take a
distanced view of close things."

Ultimately, based on what you learned from the OpenStack literature, and what
you have deployed, or practiced, you will probably ask the famous key question:
How does OpenStack work? Well, the OpenStack community is very rich in terms of
topics and tutorials—some of which you may have already tried out. It is time to go
ahead and raise the curtain on the OpenStack design and architecture.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[2]

Basically, the goal of this chapter is to get you from where you are today to the point
where you can confidently build a private cloud based on OpenStack with your own
design choice.

At the end of this chapter, you will have a good perspective on ways to design your
project by putting the details under the microscope. You will also learn about how
OpenStack services work together and be ready for the next stage of our adventure
by starting the deployment of an OpenStack environment with best practices.

This chapter will cover the following points:

•	 Getting acquainted with the logical architecture of the OpenStack ecosystem
and the way its different core components interact with each other

•	 Learning how to design an OpenStack environment by choosing the right
core services for the right environment

•	 Designing the first OpenStack architecture for a large-scale environment
while bearing in mind that OpenStack can be designed in numerous ways

•	 Learning some best practices and the process of capacity planning for a
robust OpenStack environment

Let's start the mission by putting the spot light on the place where the core
OpenStack components come in the first place.

OpenStack – think again
Today, cloud computing is about Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS). The challenge that has been set by
the public cloud is about agility, speed, and service efficiency. Most companies
have expensive IT systems they have developed and deployed over the years,
but they are siloed. In many cases, the IT systems are struggling to respond to the
agility and speed of the public cloud services that are offered within their own
private silos in their own private data center. The traditional data center model
and siloed infrastructure might lead to unsustainability. In fact, today's enterprise
data center focuses on what it takes to become a next-generation data center. The
shift to the new data center generation has evolved the adoption of a model for the
management and provision of software. This has been accompanied by a shift from
workload isolation in the traditional model to a mixed model. With an increasing
number of users utilizing cloud services, the next-generation data centers are able to
handle multitenancy. The traditional one was limited to a single tenancy. Moreover,
enterprises today look for scaling down next to scaling up. It is a huge step in the
data center technology to shift the way of handling an entire infrastructure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

The big move to a software infrastructure has allowed administrators and operators
to deliver a fully automated infrastructure within a minute. The next-generation data
center reduces the infrastructure to a single, big, agile, scalable, and automated unit.
The end result is that the administrators will have to program the infrastructure.
This is where OpenStack comes into the picture—the next-generation data center
operating system. The ubiquitous influence of OpenStack was felt by many big
global cloud enterprises such as VMware, Cisco, Juniper, IBM, Red Hat, Rackspace,
PayPal, and EBay, to name but a few. Today, many of them are running a very large
scalable private cloud based on OpenStack in their production environment. If you
intend to be a part of a winning, innovative cloud enterprise, you should jump to the
next-generation data center and gain a valuable experience by adopting OpenStack
in your IT infrastructure.

To read more about the success stories of many companies,
visit https://www.openstack.org/user-stories.

Introducing the OpenStack logical
architecture
Before delving into the architecture of OpenStack, we need to refresh or fill
gaps, if they do exist, to learn more about the basic concepts and usage of each
core component.

In order to get a better understanding on how it works, it will be beneficial to first
briefly parse the things that make it work. Assuming that you have already installed
OpenStack or even deployed it in a small or medium-sized environment, let's put the
essential core components under the microscope and go a bit further by taking the
use cases and asking the question: What is the purpose of such a component?

www.it-ebooks.info

https://www.openstack.org/user-stories
http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[4]

Keystone
From an architectural perspective, Keystone presents the simplest service in the
OpenStack composition. It is the core component that provides identity service and
it integrates functions for authentication, catalog services, and policies to register
and manage different tenants and users in the OpenStack projects. The API requests
between OpenStack services are being processed by Keystone to ensure that the right
user or service is able to utilize the requested OpenStack service. Keystone performs
numerous authentication mechanisms such as username/password as well as a
token-authentication-based system. Additionally, it is possible to integrate it with an
existing backend directory such as Lightweight Directory Access Protocol (LDAP)
and the Pluggable Authentication Module (PAM).

A similar real-life example is a city game. You can purchase a gaming day card and
profit by playing a certain number of games during a certain period of time. Before
you start gaming, you have to ask for the card to get an access to the city at the main
entrance of the city game. Every time you would like to try a new game, you must
check in at the game stage machine. This will generate a request, which is mapped to
a central authentication system to check the validity of the card and its warranty, to
profit the requested game. By analogy, the token in Keystone can be compared to the
gaming day card except that it does not diminish anything from your request. The
identity service is being considered as a central and common authentication system
that provides access to the users.

Swift
Although it was briefly claimed that Swift would be made available to the users
along with the OpenStack components, it is interesting to see how Swift has
empowered what is referred to as cloud storage. Most of the enterprises in the last
decade did not hide their fears about a critical part of the IT infrastructure—the
storage where the data is held. Thus, the purchasing of expensive hardware to be
in the safe zone had become a habit. There are always certain challenges that are
faced by storage engineers and no doubt, one of these challenges include the task
of minimizing downtime while increasing the data availability. Despite the rise of
many smart solutions for storage systems during the last few years, we still need to
make changes to the traditional way. Make it cloudy! Swift was introduced to fulfill
this mission.

We will leave the details pertaining to the Swift architecture for later, but you should
keep in mind that Swift is an object storage software, which has a number of benefits:

•	 No central brain indicates no Single Point Of Failure (SPOF)
•	 Curative indicates autorecovery in case of failure

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

•	 Highly scalable for large petabytes store access by scaling horizontally
•	 Better performance, which is achieved by spreading the load over the

storage nodes
•	 Inexpensive hardware can be used for redundant storage clusters

Glance
When I had my first presentation on the core components and architecture of
OpenStack with my first cloud software company, I was surprised by a question
raised by the CTO: What is the difference between Glance and Swift? Both handle
storage. Well, despite my deployment of OpenStack (Cacti and Diablo were released
at the time) and familiarity with the majority of the component's services, I found the
question quite tough to answer! As a system architect or technical designer, you may
come across the following questions: What is the difference between them? Why do
I need to integrate such a solution? On one hand, it is important to distinguish the
system interaction components so that it will be easier to troubleshoot and operate
within the production environments. On the other hand, it is important to satisfy the
needs and conditions that go beyond your IT infrastructure limits.

To alleviate any confusion, we keep it simple. Swift and Glance are storage systems.
However, the difference between the two is in what they store. Swift is designed to
be an object storage where you can keep data such as virtual disks, images, backup
archiving, and so forth, while Glance stores metadata of images. Metadata can
be information such as kernel, disk images, disk format, and so forth. Do not be
surprised that Glance was originally designed to store images. Since the first release
of OpenStack included only Nova and Swift (Austin code name October 21, 2010),
Glance was integrated with the second release (Bexar code name February 23, 2011).

The mission of Glance is to be an image registry. From this point, we can conclude
how OpenStack has paved the way to being more modular and loosely coupled core
component model. Using Glance to store virtual disk images is a possibility. From an
architectural level, including more advanced ways to query image information via
the Image Service API provided by Glance through an independent image storage
backend such as Swift brings more valuable performance and well-organized system
core services. In this way, a client (can be a user or an external service) will be able
to register a new virtual disk image, for example, to stream it from a highly scalable
and redundant store. At this level, as a technical operator, you may face another
challenge—performance. This will be discussed at the end of the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[6]

Cinder
You may wonder whether there is another way to have storage in OpenStack.
Indeed, the management of the persistent block storage is being integrated into
OpenStack by using Cinder. Its main capability to present block-level storage
provides raw volumes that can be built into logical volumes in the filesystem
and mounted in the virtual machine.

Some of the features that Cinder offers are as follows:

•	 Volume management: This allows the creation or deletion of a volume
•	 Snapshot management: This allows the creation or deletion of a snapshot

of volumes
•	 You can attach or detach volumes from instances
•	 You can clone volumes
•	 Volume creation from snapshots is possible via Cinder
•	 You can copy images to volumes and vice versa

Several storage options have been proposed in the OpenStack core. Without a doubt,
you may be asked this question: What kind of storage will be the best for you? With
a decision-making process, a list of pros and cons should be made. The following
is a very simplistic table that describes the difference between the storage types in
OpenStack to avoid any confusion when choosing the storage management option
for your future architecture design:

Specification Storage Type
Object storage Block storage

Performance - OK
Database storage - OK
Restoring backup data OK OK
Setup for volume providers - OK
Persistence OK OK
Access Anywhere Within VM
Image storage OK -

It is very important to keep in mind that unlike Glance and Keystone services, Cinder
features are delivered by orchestrating volume providers through the configurable
setup driver's architectures such as IBM, NetApp, Nexenta, and VMware.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

Whatever choice you have made, it is always considered good advice since nothing
is perfect. If Cinder is proven as an ideal solution or a replacement of the old nova-
volume service that existed before the Folsom release on an architectural level,
it is important to know that Cinder has organized and created a catalog of block-
based storage devices with several differing characteristics. However, it is obvious
if we consider the limitation of commodity storage redundancy and autoscaling.
Eventually, the block storage service as the main core of OpenStack can be improved
if a few gaps are filled, such as the addition of values:

•	 Quality of service
•	 Replication
•	 Tiering

The aforementioned Cinder specification reveals its Non-vendor-lock-in characteristic,
where it is possible to change the backend easily or perform data migration between
two different storage backends. Therefore, a better storage design architecture in a
Cinder use case will bring a third party into the scalability game. More details will be
covered in Chapter 4, Learning OpenStack Storage – Deploying the Hybrid Storage Model.
For instance, you can keep in mind that Cinder is essential for our private cloud
design, but it misses some capacity scaling features.

Nova
As you may already know, Nova is the most original core component of OpenStack.
From an architectural level, it is considered one of the most complicated components
of OpenStack.

In a nutshell, Nova runs a large number of requests, which are collaborated to
respond to a user request into running VM. Let's break down the blob image of nova
by assuming that its architecture as a distributed application needs orchestration to
carry out tasks between different components.

nova-api
The nova-api component accepts and responds to the end user and computes the
API calls. The end users or other components communicate with the OpenStack
Nova API interface to create instances via OpenStack API or EC2 API.

Nova-api initiates most of the orchestrating activities such as the running
of an instance or the enforcement of some particular policies.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[8]

nova-compute
The nova-compute component is primarily a worker daemon that creates and
terminates VM instances via the hypervisor's APIs (XenAPI for XenServer, Libvirt
KVM, and the VMware API for VMware).

It is important to depict how such a process works. The following steps delineate
this process:

1.	 Accept actions from the queue and perform system commands such as the
launching of the KVM instances to take them out when updating the state in
the database.

2.	 Working closely with nova-volume to override and provide iSCSI or Rados
block devices in Ceph.

Ceph is an open source storage software platform for object, block, and
file storage in a highly available storage environment. This will be further
discussed in Chapter 4, Learning OpenStack Storage – Deploying the Hybrid
Storage Model.

nova-volume
The nova-volume component manages the creation, attaching, and detaching of N
volumes to compute instances (similar to Amazon's EBS).

Cinder is a replacement of the nova-volume service.

nova-network
The nova-network component accepts networking tasks from the queue and
then performs these tasks to manipulate the network (such as setting up bridging
interfaces or changing the IP table rules).

Neutron is a replacement of the nova-network service.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

nova-scheduler
The nova-scheduler component takes a VM instance's request from the queue
and determines where it should run (specifically which compute server host it
should run on). At an application architecture level, the term scheduling or scheduler
invokes a systematic search for the best outfit for a given infrastructure to improve
its performance.

Nova also provides console services that allow end users to access the console of
the virtual instance through a proxy such as nova-console, nova-novncproxy,
and nova-consoleauth.

By zooming out the general components of OpenStack, we find that Nova interacts
with several services such as Keystone for authentication, Glance for images, and
Horizon for the web interface. For example, the Glance interaction is central; the API
process can upload any query to Glance, while nova-compute will download images
to launch instances.

Queue
Queue provides a central hub to pass messages between daemons. This is
where information is shared between different Nova daemons by facilitating
the communication between discrete processes in an asynchronous way.

Any service can easily communicate with any other service via the APIs and queue
a service. One major advantage of the queuing system is that it can buffer a large
buffer workload. Rather than using an RPC service, a queue system can queue a
large workload and give an eventual consistency.

Database
A database stores most of the build-time and runtime state for the cloud
infrastructure, including instance types that are available for use, instances in
use, available networks, and projects. It is the second essential piece of sharing
information in all OpenStack components.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[10]

Neutron
Neutron provides a real Network as a Service (NaaS) between interface devices that
are managed by OpenStack services such as Nova. There are various characteristics
that should be considered for Neutron:

•	 It allows users to create their own networks and then attach server interfaces
to them

•	 Its pluggable backend architecture lets users take advantage of the
commodity gear or vendor-supported equipment

•	 Extensions allow additional network services, software, or hardware to be
integrated

Neutron has many core network features that are constantly growing and maturing.
Some of these features are useful for routers, virtual switches, and the SDN
networking controllers.

Starting from the Folsom release, the Quantum network service has been
replaced by a project named Neutron, which was incorporated into the
mainline project in the subsequent releases. The examples elaborated in
this book are based on the Havana release and later.

Neutron introduces new concepts, which includes the following:

•	 Port: Ports in Neutron refer to the virtual switch connections. These
connections are where instances and network services attached to networks.
When attached to the subnets, the defined MAC and IP addresses of the
interfaces are plugged into them.

•	 Networks: Neutron defines networks as isolated Layer 2 network segments.
Operators will see networks as logical switches that are implemented by the
Linux bridging tools, Open vSwitch, or some other software. Unlike physical
networks, this can be defined by either the operators or users in OpenStack.

Subnets in Neutron represent a block of IP addresses associated with a
network. They will be assigned to instances in an associated network.

•	 Routers: Routers provide gateways between various networks.
•	 Private and floating IPs: Private and floating IP addresses refer to the IP

addresses that are assigned to instances. Private IP addresses are visible
within the instance and are usually a part of a private network dedicated to
a tenant. This network allows the tenant's instances to communicate when
isolated from the other tenants.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

°° Private IP addresses are not visible to the Internet.
°° Floating IPs are virtual IPs that Neutron maps instance to private IPs

via Network Access Translation (NAT). Floating IP addresses are
assigned to an instance so that they can connect to external networks
and access the Internet. They are exposed as public IPs, but the
guest's operating system has completely no idea that it was assigned
an IP address.

In Neutron's low-level orchestration of Layer 1 through Layer 3, components such
as IP addressing, subnetting, and routing can also manage high-level services. For
example, Neutron provides Load Balancing as a Service (LBaaS) utilizing HAProxy
to distribute the traffic among multiple compute node instances.

You can refer to the last updated documentation for more information
on networking in OpenStack at http://docs.openstack.org/
networking-guide/intro_networking.html.

The Neutron architecture
There are three main components of Neutron architecture that you ought to know
in order to validate your decision later with regard to the use case for a component
within the new releases of OpenStack:

•	 Neutron-server: It accepts the API requests and routes them to the
appropriate neutron-plugin for its action

•	 Neutron plugins and agents: They perform the actual work such as the
plugging in or unplugging of ports, creating networks and subnets, or IP
addressing.

Agents and plugins differ depending on the vendor technology of
a particular cloud for the virtual and physical Cisco switches, NEC,
OpenFlow, OpenSwitch, Linux bridging, and so on.

•	 Queue: This routes messages between the neutron-server and various agents
as well as the database to store the plugin state for a particular queue

Neutron is a system that manages networks and IP addresses. OpenStack
networking ensures that the network will not be turned into a bottleneck or limiting
factor in a cloud deployment and gives users real self-service, even over their
network configurations.

www.it-ebooks.info

http://docs.openstack.org/networking-guide/intro_networking.html
http://docs.openstack.org/networking-guide/intro_networking.html
http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[12]

Another advantage of Neutron is its capability to provide a way for organizations
to relieve stress within the network of cloud environments and to make it easier to
deliver NaaS in the cloud. It is designed to provide a plugin mechanism that will
provide an option for the network operators to enable different technologies via the
Neutron API.

It also lets its tenants create multiple private networks and control the IP addressing
on them.

As a result of the API extensions, organizations have additional control over security
and compliance policies, quality of service, monitoring, and troubleshooting,
in addition to paving the way to deploying advanced network services such as
firewalls, intrusion detection systems, or VPNs. More details about this will be
covered in Chapter 5, Implementing OpenStack Networking and Security, and
Chapter 8, Extending OpenStack – Advanced Networking Features and Deploying
Multi-tier Applications.

Keep in mind that Neutron allows users to manage and create networks
or connect servers and nodes to various networks.

The scalability advantage will be discussed in a later topic in the context of the
Software Defined Network (SDN) technology, which is an attraction to many
networks and administrators who seek a high-level network multitenancy.

Horizon
Horizon is the web dashboard that pools all the different pieces together from your
OpenStack ecosystem.

Horizon provides a web frontend for OpenStack services. Currently, it includes
all the OpenStack services as well as some incubated projects. It was designed as a
stateless and data-less web application—it does nothing more than initiating actions
in the OpenStack services via API calls and displaying information that OpenStack
returns to the Horizon. It does not keep any data except the session information
in its own data store. It is designed to be a reference implementation that can be
customized and extended by operators for a particular cloud. It forms the basis
for several public clouds—most notably the HP Public Cloud and at its heart, is its
extensible modular approach to construction.

Horizon is based on a series of modules called panels that define the interaction
of each service. Its modules can be enabled or disabled, depending on the service
availability of the particular cloud. In addition to this functional flexibility, Horizon
is easy to style with Cascading Style Sheets (CSS).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Most cloud provider distributions provide a company's specific theme for their
dashboard implementation.

Gathering the pieces and building a
picture
Let's try to see how OpenStack works by chaining all the service cores covered in the
previous sections in a series of steps:

1.	 A user accesses the OpenStack environment via a web interface
(HTTP/REST).

2.	 Authentication is the first action performed. This is where Keystone comes
into the picture.

3.	 A conversation is started with Keystone—"Hey, I would like to authenticate
and here are my credentials".

4.	 Keystone responds "OK, then you may authenticate and give the token" once
the credentials have been accepted

5.	 You may remember that the service catalog comes with the token as a piece
of code, which will allow you to access resources. Now you have it!

6.	 The service catalog, during its turn, will incorporate the code by responding
"Here are the resources available, so you can go through and get what you
need from your accessible list".

The service catalog is a JSON structure that exposes the resources
available upon a token request.

You can use the following example on querying by tenant to get a list of
servers:
$ curl -v -H "X-Auth-Token:token" http://192.168.27.47:8774/v2/
tenant_id/servers

A list of server details is returned on how to gain access to the servers:

{
 "server": {
 "adminPass": "verysecuredpassword",
 "id": "5aaee3c3-12ee-7633-b32b-635489236232fbfbf",
 "links": [
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[14]

 "href": "http://myopenstack.com/v2/openstack/
servers/5aaee3c3-12ee-7633-b32b-635489236232fbfbf",
 "rel": "self"
 },
 {
 "href": "http://myopenstack.com/v2/openstack/
servers/5aaee3c3-12ee-7633-b32b-635489236232fbfbf",
 "rel": "bookmark"
 }
]
 }
}

7.	 Typically, once authenticated, you can talk to an API node. There are
different APIs in the OpenStack ecosystem (OpenStack API and EC2 API).

8.	 Once we authenticate and request access, we have the following services that
will do the homework under the hood:

°° Compute nodes that deal with hypervisor
°° Volume services that deal with storage
°° Network services that make all the connections between VLANs and

virtual network interfaces that work and talk to each other

The next figure resumes the first blob pieces on how OpenStack works:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

9.	 However, how do we get these services to talk? In such cases, you should
think about the wondrous connector, the RabbitMQ queuing system.
For anyone who is non-familiar with the queuing system, we can consider an
example of a central airport:
You have booked a flight and have been assigned a specific gateway that
only you are interested in. This gateway gets you directly to your seat on the
plane. A queuing system allows you to tune in to the server or service that
you are interested in.
A queuing system takes care of issues such as; who wants to do the work?
By analogy, since everybody listens to the airport assistance speaker channel,
only one person (same passenger's destination) listens to that information
and makes it work by joining the gateway.
Now, we have this information in the queue.

If you have a look at the Python source tree, for any service, you
will see a network directory for the network code, and there will be
an api.py file for every one of these services.

Let's take an example. If you want to create an instance and implement it
in the compute node, it might say "import the nova-compute node API and
there is method/function there to create the instance". So, it will do all the
jobs of getting over the wire and spinning up the server instances and doing
the same for the appropriate node.

10.	 Another element of the picture is the schedule, which looks at the services
and claims "this is what you have as memory, CPU, disk, network, and
so on".

When a new request comes in, the scheduler might notify "you will get from
these available resources available."

The scheduling process in OpenStack can perform different
algorithms such as simple, chance, and zone. An advanced way to
do this is by deploying weight filtering by ranking the servers as
its available resources.

Using this option, the node will spin up the server while you create your own
rules. Here, you distribute your servers based on the number of processors
and how much memory you may want in your spinning servers.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[16]

The last piece of this picture is that we need to get the information back. So,
we have all these services that are doing something. Remember that they
have a special airport gateway. Again, our queue performs some actions, and
it sends notifications as these actions occur. They might be subscribed to find
out certain things such as whether the network is up, the server is ready, or
the server has crashed.

Provisioning a flow under the hood
It is important to understand how different services in OpenStack work together,
leading to a running virtual machine. We have already seen how a request is
processed in OpenStack via APIs. Now, we can go further and closely check
how such services and subsystems, which includes authentication, computing,
images, networks, queuing, and databases, work in tandem with performing a
complete workflow to provide an instance in OpenStack. The next series of steps
describes how service components work together once a submission of an instance
provisioning request has been done:

1.	 A client enters the user credentials via Horizon, which makes the REST call
to Keystone for authentication.

2.	 The authentication request will be handled by Keystone, which generates
and sends back an authentication token. The token will be stored by
Keystone, which will be used to authenticate against the rest of the
OpenStack components by using APIs.

3.	 The action of Launch Instance in the dashboard will convert the creation of
a new instance request into an API request, which will be sent to the nova-
api service.

4.	 The nova-api service receives the authentication request and sends it for
validation and access permission to Keystone.

5.	 Keystone checks the token and sends an authentication validation, which
includes roles and permissions.

6.	 The nova-api service later creates an initial entry for an instance in the
database and contacts the queuing system via an RPC call (rpc.cast). The
call request will be sent to nova-scheduler to specify which host ID will run
the instance.

7.	 The nova-scheduler contacts the queue and subscribes the new instance
request.

8.	 The nova-scheduler performs the information gathering process from
the database to find out the appropriate host based on its weighting and
filtering algorithms.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

9.	 Once a host has been chosen, the nova-scheduler sends back an RPC call
(rpc.cast) to start launching an instance that remains in the queue.

10.	 The nova-compute contacts the queue and picks up the call issued
by the nova-scheduler. Therefore, nova-compute proceeds with the
subscription on the instance and sends an RPC call (rpc.call) in order
to get instance-related information such as the instance characteristics
(CPU, RAM, and disk) and the host ID. The RPC call remains in the queue.

11.	 The nova-conductor contacts the queue and picks up the call.
12.	 The nova-conductor contacts the queue and subscribes the new instance

request. It interrogates the database to get instance information and publish
its state in the queue.

13.	 The nova-compute picks the instance information from the queue and sends
an authentication token in a REST call to the glance-api to get a specific
image URI from a glance.
The image URI will be obtained by the Image ID to find the requested one
from the image repository.

14.	 The glance-api will verify the authentication token with Keystone.
15.	 Once validated, glance-api returns the image URI, including its metadata,

which specifies the location details of the image that is being scrutinized.

If the images are stored in a Swift cluster, the images will be
requested as Swift objects via the REST calls. Keep in mind
that it is not the job of nova-compute to fetch from the swift
storage. Swift will interface via APIs to perform object requests.
More details about this will be covered in Chapter 4, Learning
OpenStack Storage – Deploying the Hybrid Storage Model.

16.	 The nova-compute sends the authentication token to a neutron-server via a
REST call to configure the network for the instance.

17.	 The neutron-server checks the token with Keystone.
18.	 Once validated, the neutron-server contacts its agents, such as the neutron-l2-

agent and neutron-dhcp-agent, by submitting the request in the queue.
19.	 Neutron agents pick the calls from the queue and reply by sending network

information pertaining to the instance. For example, neutron-l2-agent gets
the L2 configuration from Libvirt and publishes it in the queue. On the
contrary, neutron-dhcp-agent contacts dnsmasq for the IP allocation and
returns an IP reply in the queue.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[18]

Dnsmasq is a software that provides a network infrastructure such as the
DNS forwarder and the DHCP server.

20.	 The neutron-server collects all the network settings from the queue and
records it in the database. Therefore, it sends back an RPC call to the queue
along with all the network details.

21.	 Nova-compute contacts the queue and grabs the instance network
configuration.

22.	 Nova-compute sends the authentication token to cinder-api via a REST call to
get the volume, which will be attached to the instance.

23.	 The cinder-api checks the token with Keystone.
24.	 Once validated, the cinder-api returns the volume information to the queue.
25.	 Nova-compute contacts the queue and grabs the block storage information.
26.	 At this stage, the nova-compute executes a request to the specified

hypervisor via Libvirt to start the virtual machine.
27.	 In order to get the instance state, nova-compute sends an RPC call (rpc.

call) to nova-conductor.
28.	 The nova-conductor picks the call from the queue and replies to the queue by

mentioning the new instance state.
29.	 The polling instance state is always performed via nova-api, which consults

the database to get the state information and sends it back to the client.

Let's figure out how things can be seen by referring to the following simple
architecture diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Expanding the picture
You may have certain limitations that are typically associated with network switches.
Network switches create a lot of virtual LANs and virtual networks that specify
whether there is a lot of input to data centers.

Let's imagine that we have 250 compute hosts scenario. You can conclude that a
mesh of rack servers will be placed in the data center.

Now, you take the step to grow our data center, and to be geographically data-
redundant in Europe and Africa: a data center in London, Amsterdam and Tunis.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[20]

We have a data center on each of these new locations and each of these locations
are able to communicate with each other. At this point, a new terminology is
introduced—cell concept.

To scale this out even further, we will take into consideration the entire system. We
will take just the worker nodes and put them in other cells.

Another special scheduler works as a top-level cell and enforces the request into the
child cell. Now, the child cells can do the work, and they can worry about VLAN and
network issues.

The cells can share certain pieces of infrastructure, such as the database,
authentication service Keystone, and some of the Glance image services. This is
depicted in the following diagram:

More information about the concept of cells and configuration setup in
OpenStack can be found for Havana release at the following reference:
http://docs.openstack.org/havana/config-reference/
content/section_compute-cells.html.

www.it-ebooks.info

http://docs.openstack.org/havana/config-reference/content/section_compute-cells.html
http://docs.openstack.org/havana/config-reference/content/section_compute-cells.html
http://www.it-ebooks.info/

Chapter 1

[21]

A sample architecture setup
Let us first go through the deployment process, which is explained in the following
sections. Bear in mind that this is not a unique architecture that can be deployed.

Deployment
Deployment is a huge step in distinguishing all the OpenStack components that
were covered previously. It confirms your understanding of how to start designing a
complete OpenStack environment. Of course, assuming the versatility and flexibility
of such a cloud management platform, OpenStack offers several possibilities that
might be considered an advantage. However, on the other hand, you may face a
challenge of taking the right design decision that suits your needs.

Basically, what you should consider in the first place is the responsibility in the
Cloud. Depending on your cloud computing mission, it is essential to know what a
coordinating IaaS is. The following are the use cases:

•	 Cloud service brokerage: This is a facilitating intermediary role of Cloud
service consumptions for several providers, including maintenance

•	 Cloud service provider: This provides XaaS to private instances
•	 Self cloud service: This provides XaaS with its own IT for private usage

Apart from the knowledge of the aforementioned cloud service model providers,
there are a few master keys that you should take into account in order to bring a
well-defined architecture to a good basis that is ready to be deployed.

Though the system architecture design has evolved and is accompanied by the
adoption of several methodology frameworks, many enterprises have successfully
deployed OpenStack environments by going through a 3D process—a conceptual
model design, logical model design, and physical model design.

It might be obvious that complexity increases from the conceptual to the logical
design and from the logical to the physical design.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[22]

The conceptual model design
As the first conceptual phase, we will have a high-level reflection on what we will
need from certain generic classes from the OpenStack architecture:

Class Role
Compute Stores virtual machine images

Provides a user interface
Image Stores disk files

Provides a user interface
Object storage Provides a user interface
Block storage Provides volumes

Provides a user interface
Network Provides network connectivity

Provides a user interface
Identity Provides authentication
Dashboard Graphical user interface

Let's map the generic basic classes in the following simplified diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

Keep in mind that the illustrated diagram will be refined over and over again since
we will aim to integrate more services within our first basic design. In other words,
we are following an incremental design approach within which we should exploit the
flexibility of the OpenStack architecture.

At this level, we can have a vision and direction of the main goal without worrying
about the details.

The logical model design
Based on the conceptual reflection phase, we are ready to construct the logical
design. Most probably, you have a good idea about different OpenStack core
components, which will be the basis of the formulation of the logical design that is
done by laying down their logical representations.

Even though we have already taken the core of the OpenStack services component
by component, you may need to map each of them to a logical solution within the
complete design.

To do so, we will start by outlining the relations and dependencies between the
services core of OpenStack. Most importantly, we aim to delve into the architectural
level by keeping the details for the end. Thus, we will take into account the
repartition of the OpenStack services between the new package services—the cloud
controller and the compute node. You may wonder why such a consideration goes
through a physical design classification. However, seeing the cloud controller and
compute nodes as simple packages that encapsulate a bunch of OpenStack services,
will help you refine your design at an early stage. Furthermore, this approach will
plan in advance further high availability and scalability features, which allow you to
introduce them later in more detail.

Chapter 3, Learning OpenStack Clustering – Cloud Controllers and
Compute Nodes, describes in depth how to distribute the OpenStack
services between cloud controllers and compute nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[24]

Thus, the physical model design will be elaborated based on the previous theoretical
phases by assigning parameters and values to our design. Let's start with our first
logical iteration:

Obviously, in a highly available setup, we should achieve a degree of redundancy
in each service within OpenStack. You may wonder about the critical OpenStack
services claimed in the first part of this chapter—the database and message queue.
Why can't they be separately clustered or packaged on their own? This is a pertinent
question. Remember that we are still in the second logical phase where we try to dive
slowly and softly into the infrastructure without getting into the details. Besides, we
keep on going from general to specific models, where we focus more on the generic
details. Decoupling RabbitMQ or MySQL from now on may lead to your design
being overlooked. Alternatively, you may risk skipping other generic design topics.
On the other hand, preparing a generic logical design will help you to not stick to
just one possible combination, since the future physical designs will rely on it.

What about storage
The previous logical figure includes several essentials solutions for a
high-scalable and redundant OpenStack environment such as virtual IP
(VIP), HAProxy, and Pacemaker. The aforementioned technologies will
be discussed in more detail in Chapter 6, Openstack HA and Failover.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

Compute nodes are relatively simple as they are intended just to run the virtual
machine's workload. In order to manage the VMs, the nova-compute service can be
assigned for each compute node. Besides, we should not forget that the compute
nodes will not be isolated; a Neutron agent and an optional Ceilometer compute
agent may run this node.

What about storage?
You should now have a deeper understanding of the storage types within
OpenStack—Swift and Cinder.

However, we did not cover a third-party software-defined storage called Ceph,
which may combine or replace either or both of Swift and Cinder.

More details will be covered in Chapter 4, Learning OpenStack Storage – Deploying the
Hybrid Storage Model. For now, we will design from a basic point where we have to
decide how Cinder and/or Swift will be a part of our logical design.

Ultimately, a storage system becomes more complicated when it faces an exponential
growth in the amount of data. Thus, the designing of your storage system is one of
the critical steps that is required for a robust architecture.

Depending on your OpenStack business size environment, how much data do you
need to store? Will your future PaaS construct a wide range of applications that run
heavy-analysis data? What about the planned Environment as a Service (EaaS)
model? Developers will need to incrementally back up their virtual machine's
snapshots. We need persistent storage.

Don't put all your eggs in one basket. This is why we will include Cinder and Swift in
the mission. Many thinkers will ask the following question: If one can be satisfied by
ephemeral storage, why offer block storage? To answer this question, you may think
about ephemeral storage as the place where the end user will not be able to access
the virtual disk associated with its VM when it is terminated. Ephemeral storage
should mainly be used in production that takes place in a high-scale environment,
where users are actively concerned about their data, VM, or application. If you plan
that your storage design should be 100 percent persistent, backing up everything
wisely will make you feel better. This helps you figure out the best way to store data
that grows exponentially by using specific techniques that allow them to be made
available at any time. Remember that the current design applies for medium to
large infrastructures. Ephemeral storage can also be a choice for certain users, for
example, when they consider building a test environment. Considering the same case
for Swift, we have claimed previously that the object storage might be used to store
machine images, but when is this the case?

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[26]

Simply, when you provide the extra hardware that fulfils certain Swift requirements:
replication and redundancy.

Running a wide production environment while storing machine images on the local
file system is not really good practice. First, the image can be accessed by different
services and requested by thousands of users at a time. No wonder the controller
is already exhausted by the forwarding and routing of the requests between the
different APIs in addition to the computation of each resources through disk I/O,
memory, and CPU. Each request will cause performance degradation, but it will not
fail! Keeping an image in a filesystem under a heavy load will certainly bring the
controller to a high latency and it may fail.

Henceforth, we might consider loosely coupled models, where the storage with a
specific performance is considered a best fit for the production environment.

Thus, Swift will be used to store images, while Cinder will be used for persistent
volumes for virtual machines (check the Swift controller node):

Obviously, Cinder LVM does not provide any redundancy capability between the
Cinder LVM nodes. Losing the data in a Cinder LVM node is a disaster. You may
want to perform a backup for each node. This can be helpful, but it will be a very
tedious task! Let's design for resiliency. We have put what's necessary on the table.
Now, what we need is a glue!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

Networking
One of the most complicated system designing steps is the part concerning the
network! Now, let's look under the hood to see how all the different services that
were defined previously should be connected.

The logical networking design
OpenStack shows a wide range of networking configurations that vary between
the basic and complicated. Terms such as Open vSwitch, Neutron coupled with the
VLAN segmentation, and VMware NSX with Neutron are not intuitively obvious
from their appearance to be able to be implemented without fetching their use case in
our design. Thus, this important step implies that you may differ between different
network topologies because of the reasons behind why every choice was made and
why it may work for a given use case.

OpenStack has moved from simplistic network features to complicated features, but
of course there is a reason—more flexibility! This is why OpenStack is here. It brings
as much flexibility as it can! Without taking any random network-related decisions,
let's see which network modes are available. We will keep on filtering until we hit
the first correct target topology:

Network mode Network specification Implementation
Nova-network Flat network design without

VMs grouping or isolation
Nova-network FlatDHCP

Multiple tenants and VMs
Predefined fixed private IP
space size

Nova-network
VLANManager

Neutron Multiple tenants and VMs
Predefined switches and
routers configuration

Neutron VLAN

Increased tenants and VM
groups
Lower performance

Neutron GRE

The preceding table shows a simple differentiation between two different logical
network designs for OpenStack. Every mode shows its own requirements, which is
very important and should be taken into consideration before the deployment.

Arguing about our example choice, since we aim to deploy a very flexible large-scale
environment, we will toggle the Neutron choice for networking management instead
of the nova-network.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[28]

Note that it is also possible to keep on going with nova-network, but you have to
worry about SPOF. Since the nova-network service can run on a single node (cloud
controller) next to other network services such as DHCP and DNS, it is required in
this case to implement your nova-network service in a multihost networking model,
where cloning such a service in every compute node will save you from a bottleneck
scenario. In addition, the choice was made for Neutron, since we started from a
basic network deployment. We will cover more advanced features in the subsequent
chapters of this book.

We would like to exploit a major advantage of Neutron compared to the nova-
network, which is the virtualization of layers 2 and 3 of the OSI network model.

Remember that Neutron will enable us to support more subnets per private network
segment. Based on Open vSwitch, you will discover that Neutron is becoming a vast
network technology.

Let's see how we can expose our logical network design. For performance reasons, it
is highly recommended to implement a topology that can handle different types of
traffic by using separated logical networks.

In this way, as your network grows, it will still be manageable in case a sudden
bottleneck or an unexpected failure affects a segment.

Network layout
Let us look at the different networks that are needed to operate the OpenStack
environment.

The external network
The features of an external or a public network are as follows:

•	 Global connectivity
•	 It performs SNAT from the VM instances that run on the compute node to

the Internet for floating IPs

SNAT refers to Source Network Address Translation. It allows traffic
from a private network to go out to the Internet. OpenStack supports
SNAT through its Neutron APIs for routers. More information can be
found at http://en.wikipedia.org/wiki/Network_address_
translation.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Network_address_translation
http://en.wikipedia.org/wiki/Network_address_translation
http://www.it-ebooks.info/

Chapter 1

[29]

•	 It provides connection to the controller nodes in order to access the
OpenStack interfaces

•	 It provides virtual IPs (VIPs) for public endpoints that are used to connect
the OpenStack services APIs

A VIP is an IP address that is shared among several servers. It involves a
one-to-many mapping of the IP addresses. Its main purpose is to provide
a redundancy for the attached servers and VIPs.

•	 It provides a connection to the external services that need to be public, such
as an access to the Zabbix monitoring system

While using VLANs, by tagging networks and combining multiple
networks into one Network Interface Card (NIC), you can optionally
leave the public network untagged for that NIC to make the access to the
OpenStack dashboard and the public OpenStack API endpoints simple.

The storage network
The main feature of a storage network is that it separates the storage traffic by means
of a VLAN isolation.

The management network
An orchestrator node was not described previously since it is not a native OpenStack
service. Different nodes need to get IP addresses, the DNS, and the DHCP service
where the Orchestrator node comes into play. You should also keep in mind that in
a large environment, you will need a node provisioning technique which your nodes
will be configured to boot, by using PXE and TFTP.

Thus, the management network will act as an Orchestrator data network that
provides the following:

•	 Administrative networking tasks
•	 OpenStack services communication
•	 Separate HA traffic

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[30]

For a large-scale OpenStack environment, you can use a dedicated
network for most of the critical internal OpenStack communication,
such as the RabbitMQ messaging and the DB queries, by separating the
messaging and database into separate cluster nodes.

The internal VM traffic
The features of the internal virtual machine network are as follows:

•	 Private network between virtual machines
•	 Nonroutable IPs
•	 Closed network between the virtual machines and the network L3 nodes,

routing to the Internet, and the floating IPs backwards to the VMs

For the sake of simplicity, we will not go into the details of, for instance, the Neutron
VLAN segmentation.

The next step is to validate our network design in a simple diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[31]

The physical model design
Finally, we will bring our logical design to life in the form of a physical design.
At this stage, we need to assign parameters. The physical design encloses all the
components that we dealt with previously in the logical design. Of course, you will
appreciate how such an escalation in the design breaks down the complexity of the
OpenStack environment and helps us distinguish between the types of hardware
specifications that you will need.

We can start with a limited number of servers just to set the first deployment of our
environment effectively. First, we will consider a small production environment
that is highly scalable and extensible. This is what we have covered previously—
expecting a sudden growth and being ready for an exponentially increasing number
of requests to service instances.

You have to consider the fact that the hardware commodity selection will accomplish
the mission of our massive scalable architecture.

Estimating your hardware capabilities
Since the architecture is being designed to scale horizontally, a commodity cost-
effective hardware can be used.

In order to expect our infrastructure economy, it would be great to make some basic
hardware calculations for the first estimation of our exact requirements.

Considering the possibility of experiencing contentions for resources such as CPU,
RAM, network, and disk, you cannot wait for a particular physical component to fail
before you take corrective action, which might be more complicated.

Let's inspect a real-life example of the impact of underestimating capacity planning.
A Cloud-hosting company set up two medium servers, one for an e-mail server,
and the other to host the official website. The company, which is one of our several
clients, grew in a few months and eventually, we ran out of disk space. We expected
such an issue to get resolved in a few hours, but it took days. The problem was
that all the parties did not make proper use of the "cloud", which points to the "on
demand" way. The issue had been serious for both the parties. The e-mail server,
which is one of the most critical aspects of a company, had been overloaded and the
Mean Time To Repair (MTTR) was increasing exponentially. The Cloud provider
did not expect this!

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[32]

Well, it might be ridiculous to write down your SLA report and describe in your
incident management section the reason—we did not expect such growth! Later,
after redeploying the virtual machine with more disk space, the e-mail server would
irritate everyone in the company with a message saying, "We can authenticate
but our e-mails are not being sent! They are queued!" The other guy claimed,
"Finally, I have sent an e-mail 2 hours ago and I got a phone call that is received."
Unfortunately, the cloud paradigm was designed to avoid such scenarios and
bring more success factors that can be achieved by hosting providers. Capacity
management is considered a day-to-day responsibility where you have to stay
updated with regard to software or hardware upgrades.

Through a continuous monitoring process of service consumption, you will be able
to reduce the IT risk and provide a quick response to the customer's needs.

From your first hardware deployment, keep running your capacity management
processes by looping through tuning, monitoring, and analysis.

The next stop will take into account your tuned parameters and introduce within
your hardware/software the right change, which involves a synergy of the change
management process.

Let's make our first calculation based on certain requirements. We aim to run 200
VMs in our OpenStack environment.

CPU calculations
The following are the calculation-related assumptions:

•	 200 virtual machines
•	 No CPU oversubscribing

Processor oversubscription is defined as the total number of CPUs that
are assigned to all the powered-on virtual machines multiplied by the
hardware CPU core. If this number is greater than the GHz purchased,
the environment is said to be oversubscribed.

•	 Number of GHz per core: 2.6 GHz
•	 Hyper-threading supported: use factor 2
•	 Number of GHz per VM (AVG compute units) = 2 GHz
•	 Number of GHz per VM (MAX compute units) = 16 GHz
•	 Intel Xeon E5-2648L v2 core CPU = 10
•	 CPU sockets per server = 2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[33]

•	 Number of CPU cores per virtual machine:
16 / (2.6 * 2) = 3.076

We need to assign at least 3 CPU cores per VM.
The formula for its calculation will be as follows: max GHz /(number of GHz
per core x 1.3 for hyper-threading)

If your CPU does not support hyper-threading, you should multiply the
number of GHz per core by 1.3 factors instead of 2.

•	 Total number of CPU cores:
(200 * 2) / 2.6 = 153.846

We have 153 CPU cores for 200 VMs.
The formula for calculation will be as follows:

(number of VMs x number of GHz per VM) / number of GHz per core

•	 Number of core CPU sockets:
153 / 10 = 15.3

We will need 15 sockets.
The formula for calculation will be as follows:

Total number of sockets / number of sockets per server

•	 Number of socket servers:
15 / 2 = 7.5

You will need around 7 to 8 dual socket servers.
The formula for calculation will be as follows:

Total number of sockets / Number of sockets per server

•	 The number of virtual machines per server with 8 dual socket servers will be
calculated as follows:

200 / 8 = 25

The formula for calculation will be as follows:

Number of virtual machines / number of servers

We can deploy 25 virtual machines per server.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[34]

Memory calculations
Based on the previous example, 25 VMs can be deployed per compute node. Memory
sizing is also important to avoid making unreasonable resource allocations.

Let's make an assumption list:

•	 2 GB RAM per VM
•	 8 GB RAM maximum dynamic allocation per VM
•	 Compute nodes supporting slots of: 2, 4, 8, and 16 GB sticks

Keep in mind that it always depends on your budget and needs

•	 RAM available per compute node:

8 * 25 = 200 GB

Considering the number of sticks supported by your server, you will need
around 256 GB installed. Therefore, the total number of RAM sticks installed
can be calculated in the following way:

256 / 16 = 16

The formula for calculation is as follows:

Total available RAM / MAX Available RAM-Stick size

The network calculations
To fulfill the plans that were drawn for the network previously, we need to
achieve the best performance and networking experience. Let's have a look at our
assumptions:

•	 200 Mbits/second is needed per VM
•	 Minimum network latency

To do this, it might be possible to serve our VMs by using a 10 GB link for each
server, which will give:

10000 Mbits/second / 25VMs = 400 Mbits/second

This is a very satisfying value. We need to consider another factor—highly available
network architecture. Thus, an alternative is using two data switches with a
minimum of 24 ports for data.

Thinking about growth from now, two 48-port switches will be in place.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[35]

What about the growth of the rack size? In this case, you should think about
the example of switch aggregation that uses the Virtual Link Trunking (VLT)
technology between the switches in the aggregation. This feature allows each server
rack to divide their links between the pair of switches to achieve a powerful active-
active forwarding while using the full bandwidth capability with no requirement for
a spanning tree.

VLT is a layer 2 link aggregation protocol between the servers that
are connected to the switches, offering a redundant, load-balancing
connection to the core network and replacing the spanning-tree protocol.

Storage calculations
Considering the previous example, you need to plan for an initial storage capacity
per server that will serve 25 VMs each.

Let's make the following assumptions:

•	 The usage of ephemeral storage for a local drive for the VM
•	 100 GB for storage for each VM's drive
•	 The usage of persistent storage for remote attaching volumes to VMs

A simple calculation we provide for 200 VMs a space of 200*100 = 20 TB of
local storage.

You can assign 250 GB of persistent storage per VM to have 200*200 = 40 TB of
persistent storage.

Therefore, we can conclude how much storage should be installed by the server
serving 20 VMs 150*25 = 3.5 TB of storage on the server.

If you plan to include object storage as we mentioned earlier, we can assume that we
will need 25 TB of object storage.

Most probably, you have an idea about the replication of object storage in
OpenStack, which implies the usage of three times the required space for replication.

In other words, you should consider that the planning of X TB for object storage will
be multiplied by three automatically based on our assumption; 25*3 = 75 TB.

Also, if you consider an object storage based on zoning, you will have to
accommodate at least five times the needed space. This means; 25 * 5 = 125 TB.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

[36]

Other considerations, such as the best storage performance using SSD, can be useful
for a better throughput where you can invest more boxes to get an increased IOPS.

For example, working with SSD with 20K IOPS installed in a server with eight slot
drives will bring you:

(20K * 8) / 25 = 6.4 K Read IOPS and 3.2K Write IOPS

That is not bad for a production starter!

Best practices
What about best practices? Is it just a theory? Does anyone adhere to such formulas?
Well, let's bring some best practices under the microscope by exposing the
OpenStack design flavor.

In a typical OpenStack production environment, the minimum requirement for
disk space per compute node is 300 GB with a minimum RAM of 128 GB and a
dual 8-core CPUs.

Let's imagine a scenario where, due to budget limitations, you start your first
compute node with costly hardware that has a 600 GB disk space, 16-core CPUs,
and 256 GB of RAM.

Assuming that your OpenStack environment continues to grow, you may decide
to purchase more hardware—a big one at an incredible price! A second compute
instance is placed to scale up.

Shortly after this, you may find out that the demand is increasing. You may start
splitting requests into different compute nodes but keep on continuing scaling up
with the hardware. At some point, you will be alerted to reaching your budget limit!

There are certainly times when the best practices aren't in fact the best for your
design. The previous example illustrated a commonly overlooked requirement
for the OpenStack deployment.

If the minimal hardware requirement is strictly followed, it may result in an
exponential cost with regard to the hardware expenses, especially for new
project starters.

Thus, you may choose what exactly works for you and consider the constraints that
exist in your environment.

Keep in mind that the best practices are a user manual or a guideline; apply them
when you find what you need to be deployed and how it should be set up.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[37]

On the other hand, do not stick to values, but stick to rules. Let's bring the previous
example under the microscope again—scaling up shows more risk that may lead to
failure than scaling out or horizontally. The reason behind such a design is to allow
for a fast scale of transactions at the cost of a duplicated compute functionality and
smaller systems at a lower cost.

Transactions and requests in the compute node may grow tremendously in a
short time to a point that a single big compute node with 16 core CPUs starts
failing performance wise, while a few small compute nodes with 4 core CPUs
can proceed to complete the job successfully.

Summary
In this chapter, we learned about the design characteristics of OpenStack and
the core components of such an ecosystem. We have also highlighted the design
considerations around OpenStack and discussed the different possibilities of
extending its functionalities. Now, we have a good starting point for the purpose
of bringing the other incubated projects into production. You may notice that
our first basic design covers most of the critical issues that one can face during
the production. In addition, it is important to note that this first chapter might be
considered as a main guideline for the next parts of this book. The next chapters
will treat each concept and technology solution cited in this chapter in more detail
by expanding the first basic design. Thus, the next chapter will take you from
this generic architecture overview theory to a practical stage. Basically, you will
learn how to deploy and expand what was designed by adopting an efficient
infrastructure deployment approach—the DevOps style.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[39]

Deploying OpenStack –
DevOps and OpenStack

Dual Deal
"Besides black art, there is only automation and mechanization."

– Federico Garcia Lorca

Deploying an OpenStack environment based on the profiled design, as shown in
the previous chapter, is not simple. Although we created our design by taking care
of several aspects related to scalability and performance, we still have to make it
real. If you are still looking at OpenStack as a single block system, you should take
a step back and recheck what was explained in Chapter 1, Designing OpenStack Cloud
Architecture.

Furthermore, in the introductory section of this book, we covered the role of
OpenStack in the next generation of datacenters. The infrastructure has now
become programmable through APIs. However, a large-scale infrastructure used
by cloud providers needs a very different approach in order to set it up with a few
thousand servers.

In our case, deploying and operating the OpenStack Cloud is not as simple as you
might think. Thus, you need some fun. You need to make any operational task easier
or, in other words, automated.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[40]

In this chapter, we will cover new topics about the ways to deploy OpenStack
and start an excursion of the production day from which you will gain new best
practices. The next part will cover the following points:

•	 Learning what the DevOps movement is and how it can be adopted in
the cloud

•	 Knowing how to see your infrastructure as code and how to maintain it
•	 Getting closer to the DevOps way by including configuration management

aspects in your cloud
•	 Making your OpenStack environment design deployable via automation
•	 Discovering and starting your first test deployment using Chef

DevOps in a nutshell
The term DevOps is a conjunction of development (software developers) and
operations (manage and put software into production). Many IT organizations have
started to adopt such a concept, but the question is how and what? Is it a job? Is it a
process or a part of ITIL best practices?

DevOps is a development and operations compound, which basically defines a
methodology of software development. It describes practices that streamline
the software delivery process. This is not all. In fact, it is more about raising
communication and integration between developments, operators (including
administrators), and quality assurance. The essence of the DevOps movement is in
the benefits of collaboration. Different disciplines can relate to DevOps and bring
their experiences and skills together under the DevOps label to build a cover of
shared values.

So, we agree that this is a methodology that puts several disciplines on the same
wave length as shown in the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

This new movement is intended to resolve the conflict between developers and
operators. Delivering a new release affects the production systems that put different
teams in a change conflict. DevOps fills the gap and optimizes each side focus.

DevOps is neither a toolkit nor a job; it is the role of synergy.

Let's see how DevOps can incubate a cloud project.

DevOps and cloud – everyone is coding
Let's bring down the cloud architecture's layers under the scope and see what we
have. Basically, we have Software as a Service (SaaS), which operates at all layers
of the IT stack. Then comes Platform as a Service (PaaS), where databases and
application containers are delivered on demand to reach the bottom, where we find
Infrastructure as a Service (IaaS) delivering on-demand resources, such as virtual
machines, networks, and storage. All these layers form complete, basic stacks of the
cloud. You should think about how each layer of the cloud should be developed and
implemented.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[42]

Obviously, layered dependency relies on the ability to create full stacks and deliver
them under a request of simple steps. Remember that we are talking about a large
scalable environment! The amazing switch to bigger environments nowadays is to
simplify everything as much as possible. System architecture and software design
are becoming more and more complicated. Every new release of software affords
new functions and new configurations. Then, you are asked to integrate the new
software in a particular platform where somehow, sufficient documentation about
requirements or troubleshooting is missing! You may ask yourself questions such as:
Did something change? What kind of change? To which person should we assign a
ticket to fix it? What if it just does not work? According to your operational team, the
software needs to be updated often in order to apply the new functions. The update
might happen every time you get that e-mail asking you to update the software.
You may start to wonder whether your operational team will be happy about this
announcement, contrary to the software provider who sent the e-mail with the
header; "we are happy to announce the release of the new version of our software;
please push the button."

Let's take a serious example that crystallizes this situation. A company's operational
team was extremely happy about purchasing a new storage appliance that worked
well on redundancy. During the first few months, everyone was happy; nothing was
broken! It worked like a charm!

When the day came to change the charm to a true headache, the storage system
failed to fail over. Both nodes stopped working. No one could access any data! In
spite of the existence of a backup somewhere else, the operational team did not like
the "was that highly available?" part. After a long night of investigation, the error
of causing the HA to fail was concluded from the log files: there was an appliance
system update! The previous version was somehow automatically updated and
broke the HA function in the active node. The update was propagated to the passive
one. Unfortunately, the active version decided to fail over and tackle the cluster that
was passive. However, that did not work. It was as if there was a bug somewhere in
the code of the previous release!

What about if you are running similar solutions for other systems? Everything is
running software to keep it running! In this case, it is wise to stop for a while and ask
yourself questions such as this: What is missing? Shall I hire more people for system
maintenance and troubleshooting? Obviously, if you take a look at the previous
example, you will probably notice that the owner of the hardware does not really
own it!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

The simple reason is that being dependent on external parties will affect your
infrastructure efficiency. Well, you may ask a pertinent question: Shall I rewrite
the software appliance by myself? Let's reformulate the question: Shall I write the
code? The answer, almost always, is yes! It is an ambiguous answer, right? Let's
keep using examples in order to clear out this fogginess. We talked about DevOps,
the synergetic point between developers and operational guys. Everything is
communicated between them thanks to the magic of DevOps. Remember that it
is our goal to simplify things as much as possible! Administrating and deploying
a large infrastructure would not be possible without adopting a new philosophy:
Infrastructure as code. At this point, we bring in another aspect of the DevOps style:
we see our machines as pieces of code! In fact, we have now assigned the main tasks
of DevOps.

Where everything will be seen as code, it might be possible to model a given
infrastructure as modules of code. What you need to do is just abstract, design,
implement, and deploy the infrastructure.

Furthermore, in such a paradigm, it will be essential to adhere to the same discipline
as an infrastructure developer as compared to a software developer.

Without doubt, these terms are quite misty at the first glance. For this reason, you
should ask this question related to our main topic about OpenStack: if infrastructure
as code is so important for a well-organized infrastructure deployment, what is the
case with OpenStack? The answer to this question is relatively simple: developers,
network, and compute engineers and operators are working alongside each other to
develop OpenStack Cloud that will run our next generation data center. This is the
DevOps spirit.

DevOpsing OpenStack
OpenStack is an open source project, and its code is extended, modified, and fixed
in every release. Of course, it is not your primary mission to check the code and
dive into its different modules and functions. This is not our goal! What can we do
with DevOps, then? Eventually, we will "DevOps" the code that makes the code
run! As you might have noticed, a key measure of the success of a DevOps story is
automation. Everything in a given infrastructure must be automated!

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[44]

Breaking down the OpenStack pieces
Let's gather what we covered previously and signal a few steps towards our first
OpenStack deployment:

•	 Break down the OpenStack infrastructure into independent and
reusable services

•	 Integrate the services in such a way that you can provide the expected
functionalities in the OpenStack environment.

It is obvious that OpenStack includes many services, as discussed in Chapter 1,
Designing OpenStack Cloud Architecture. What we need to do is see these services
as packages of code in our "infrastructure as code" experience. The next step will
investigate how to integrate the services and deploy them via automation.

Starting to deploy the services that are seen as code is similar to writing a web
application or some software. Here are important points you should not ignore
during the entire deployment process:

•	 Simplify and modularize the OpenStack services
•	 Integrate OpenStack services to use other services
•	 Compose OpenStack services as building blocks by accomplishing a

complete integration between systems
•	 Facilitate the modification and improvement of services when demanded
•	 Use the right tool to build the services
•	 Be sure that the services provide the same results with the same inputs
•	 Switch your service vision from how to do it to what we want to do
•	 Details comes later; focus on the function of the service first

As an infrastructure developer, you will start building and running the entire
infrastructure on which all systems, either being tested or in production in a system
management platform, are operating.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

In fact, many system-management tools are intensely used nowadays due to their
efficiency of deployment. In other words, there is need for automation!

You have probably used some of the automation tools, such as Chef, Puppet, Salt,
Ansible, and many more. Before we go through them, we need to create a succinct,
professional code-management step.

Making the infrastructure deployment
professional
Ultimately, the code that abstracts, models, and builds the OpenStack infrastructure
is committed to source code management. Most likely, we reach a point where
we shift our OpenStack infrastructure from a code base to a redeployable one by
following the latest software development best practices.

At this stage, you should be aware of the quality of your OpenStack infrastructure
deployment, which roughly depends on the quality of the code that describes it.

Maintaining the code needs more attention in order to have a bug-free environment
when it is delivered as a final release. We will consider the "bug" term in an
infrastructure development context as harmful and functional to the system.

It is important to highlight a critical point that you should keep in mind during all
deployment stages: automated systems are not able to understand human error
when it is propagated to all pieces of your infrastructure. This is essential, and
there is no way to ignore it. The same way is applicable to traditional software
development discipline. You'll have to go through an ensemble of phases and cycles
using agile methodologies to end up with a final release that is a normally bug-free
software version in production.

Remember the example given previously? Surprises do happen! However, if an
error occurs in a small corner of a specific system and needs to be fixed in that
specific independent system, it might not be the same when considering the
automation of a large infrastructure.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[46]

On the other hand, if mistakes cannot be totally eradicated at the first stage, you
should think about introducing more flexibility into your systems by allowing
wise changes without exaggeration. The code's life management is shown in the
following figure:

Changes can be scary—very scary indeed! To handle changes, it is recommended
that you:

•	 Keep track and monitor the changes at every stage
•	 Flex the code and make it easy to change
•	 Refactor when it becomes difficult to change
•	 Test, test, and test

Keep checking every point that has been described previously till you start to get
more confident that your OpenStack infrastructure is being conducted by code that
won't break.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

Bringing OpenStack to the chain
To keep the OpenStack environment working with a minimum rate of surprises,
ensure that its infrastructure code delivers the functionalities that are required.

Beyond these considerations, we will put the OpenStack deployment in a toolchain,
where it will inform you about how we will conduct the infrastructure development
from the test stage to the production stage. Underpinning every tool selection must
be the purpose of your testing endeavors, and it will also help you ensure that you
build the right thing.

Continuous integration and delivery
Let's see how continuous integration can be applied to OpenStack. Whatever we
use for system management tools or automation code will be kept as a standard
and basic topology, as shown in the next model, where the following requirements
are met:

•	 SMTA can be any System Management Tool Artifact, such as Chef
cookbook, Puppet manifest, Ansible playbook, or juju charms.

•	 VCS or Version Control System stores the previous artifacts that are
built continuously with a continuous integration server. Git can be a good
outfit for our VCS. Alternatively, you can use other systems, such as CVS,
Subversion, Bazaar, or any other system that you are most familiar with.

•	 Jenkins is a perfect tool that listens to changes in version control and
makes the continuous integration testing automated in production
clones for test purposes.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[48]

Take a look at the model:

The proposed topology for infrastructure as code consists of infrastructure
configuration files (Chef cookbooks, Puppet artifacts, and Vagrant files) that are
recorded in a version control system and are built continuously by the means of a
continuous integration (CI) server (Jenkins, in our case). Infrastructure configuration
files can be used to set up a unit test environment (a virtual environment using
Vagrant, for example) and makes use of any system-management tool to provision
the infrastructure (Chef, Puppet, and so on). The CI server keeps listening to changes
in version control and automatically propagates any new versions to be tested, and
then it listens to target environments in production.

Vagrant allows you to build a virtual environment very easily; it is based
on Oracle VirtualBox (https://www.virtualbox.org/) to run virtual
machines, so you will need these before moving on with the installation
in your test environment.

www.it-ebooks.info

https://www.virtualbox.org/
http://www.it-ebooks.info/

Chapter 2

[49]

Using such model designs could make our development and integration code
infrastructure more valuable. Obviously, the previous OpenStack toolchain
highlights the test environment before moving on to production, which is normal!
However, you should give a lot of importance to, and care a good deal about, the
testing stage, although this might be a very time-consuming task.

Especially in our case, with infrastructure code within OpenStack, things can be
difficult for complicated and dependent systems. This makes it imperative to ensure
an automated and consistent testing of the infrastructure code.

The best way to do this is to keep testing thoroughly in a repeated way till you gain
confidence about your code. When you do, introducing changes to your code when
it's needed shouldn't be an issue.

Let's keep on going, get the perfect tool running, and push the button.

Eat the elephant
At first sight, you may wonder what is the best automation tool that will be useful
for our OpenStack "production day". We have already chosen Git and Jenkins to
handle our continuous and delivery code infrastructure. It is time to choose the right
tool for automation.

Eventually, it might be difficult to select the right tool. Most likely, you'll have
to choose between several of them. Covering all the existing IT automation tools
could fill an entire book or even books. Therefore, giving succinct hints on different
tools might be helpful in order to distinguish the best outfit for certain particular
setups. Of course, we are still talking about large infrastructures with heterogeneous
systems, a lot of networking, and distributed services.

Giving the chance for one or more tools to be selected as system management
parties can be effective and fast for our deployment. We will use Chef for the next
deployment phase.

Preparing the infrastructure code
environment
If you are not familiar with the Git command line, do not worry, because we will use
an integrated development environment (such as Eclipse), which provides a great
Git plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[50]

Later, we will need to write and maintain code written in the Ruby
programming language. Chef cookbooks are written in Ruby. Feel
free to use your best development environment that supports and
simplifies code branching and maintenance within your VCS. There
are plenty of preferences for development environments and Ruby
code editors, such as RubyMine (https://www.jetbrains.com/
ruby/) and Komodo (http://komodoide.com/). The Netbeans
IDE also comes up with a Ruby plugin (http://plugins.
netbeans.org/plugin/38549/ruby-and-rails) and the
Sublime text editor (http://www.sublimetext.com/) can be a
good candidate for a lightweight text editor for code.

Feel free to use any Linux distribution. The next setup will use CentOS 6.5 64 bit as
the standard operating system.

Ensure that Java and its dependencies are installed:

packtpub@dev$ sudo yum install java

packtpub@dev$ sudo yum install gcc-c++

You can download Eclipse for CentOS from here:

packtpub@dev$ wget http://mirror.netcologne.de/eclipse/technology/
epp/downloads/ release/juno/SR2/eclipse-automotive-juno-SR2-
incubation-linux-gtk-x86_64.tar.gz

Extract the Eclipse to the /opt directory:

packtpub@dev$ sudo tar -xvzf eclipse-automotive-juno-SR2-incubation-
linux-gtk-x86_64.tar.gz -C /opt/

Create a symlink:

packtpub@dev$ sudo ln -s /opt/eclipse/eclipse /usr/bin/eclipse

To install Ruby, you need to go from the Eclipse menu bar and navigate to Help
| Install New Software. From the pending list, navigate to Program Languages |
Dynamic Languages Toolkit - Ruby Development Tools:

www.it-ebooks.info

https://www.jetbrains.com/ruby/
https://www.jetbrains.com/ruby/
http://komodoide.com/
http://plugins.netbeans.org/plugin/38549/ruby-and-rails
http://plugins.netbeans.org/plugin/38549/ruby-and-rails
http://www.sublimetext.com/
http://www.it-ebooks.info/

Chapter 2

[51]

Install Git:

packtpub@dev$ sudo yum install git

Check the correctness of the Git installation:

packtpub@chef$ git --version

Bring the magic EGit plugin into the action link in order to develop with Git in
Eclipse. We do this in the same way from the Eclipse update manager by navigating
to the Help | Install new Software menu entry. You will need to add the following
URL installation to EGit:

http://download.eclipse.org/egit/updates

www.it-ebooks.info

http://download.eclipse.org/egit/updates
http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[52]

You will then see the following screen:

If you are not familiar with Chef, the following section will cover the basic setup and
the most important parts of a Chef server, and you can see how it looks.

If you do not have the Ruby plugin installed in your Eclipse environment
by default, you can download and install it from SourceForge at
http://sourceforge.net/projects/rubyeclipse/files/
rdt/0.8.0/org.rubypeople.rdt-0.8.0.604272100PRD.zip/
download?use_mirror=freefr&download=.

The Chef environment
When you think about a typical chef, you may think of cookbooks, recipes, and
knives! These are what a chef needs in order to make awesome dishes. The taste of
the food on a plate depends on the creativity of the chef. We do the same thing in
terms of cooking: we use a basic cookbook, from which we derive the right recipes.
We refine the recipes till we get what fulfills our needs.

Let's see how Chef defines its awesomeness:

•	 Cookbook: The grained unit of the configuration in Chef describes the kind
of scenario that is there, and how it should be defined in order to deploy an
application in a node.

•	 Recipe: This is the part of a cookbook that is authored in Ruby and defines
the configuration of the nodes. Note that a recipe can use or be used by
another recipe.

www.it-ebooks.info

http://sourceforge.net/projects/rubyeclipse/files/rdt/0.8.0/org.rubypeople.rdt-0.8.0.604272100PRD.zip/download?use_mirror=freefr&download=
http://sourceforge.net/projects/rubyeclipse/files/rdt/0.8.0/org.rubypeople.rdt-0.8.0.604272100PRD.zip/download?use_mirror=freefr&download=
http://sourceforge.net/projects/rubyeclipse/files/rdt/0.8.0/org.rubypeople.rdt-0.8.0.604272100PRD.zip/download?use_mirror=freefr&download=
http://www.it-ebooks.info/

Chapter 2

[53]

•	 Node: This is where we can apply the cookbook configurations.
•	 Role: This can be considered as a logical function for a node. It can

be customized within a collection of recipes and cookbooks, in a
particular order.

•	 Attribute files: The attributes are very important in order to change the
settings of the nodes.

You should take into consideration the precedence level of the attributes
that define what should be applied. Basically, the evaluation of such
attributes against the node object will be done during each Chef run.

Keep the previous terms in your mind, but do not be surprised when you start to
find much more than these terms during our deployment. We will cover them in
a nutshell.

To read more about Chef, you can refer to the official Opscode website:
https://docs.chef.io/.

Prerequisites for settings
Before installing the server, we need to set up the right hostname of our CentOS box,
where we can define it as an FQDN with a domain suffix:

1.	 Open the /etc/sysconfig/network file and modify the HOSTNAME value to
match your FQDN hostname:
packtpub@chef$ sudo nano /etc/sysconfig/network

HOSTNAME=chef.packtpub.com

2.	 Change the host that is associated to your IP address for your server found in
the /etc/hosts file, as follows:
packtpub@chef$ sudo nano /etc/hosts

192.168.47.10 chef.packtpub.com chef

3.	 Check your hostname via the following command:
packtpub@chef$ hostname -f

chef.packtpub.com

4.	 Make sure that your changes are persistent on reboot:
packtpub@chef$ sudo /etc/init.d/network restart

www.it-ebooks.info

https://docs.chef.io/
http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[54]

You will need to adjust the settings, such as the hostname,
FQDN, and IP address, to suit your needs.

5.	 As we are using CentOS, it will be much easier for a smooth installation
process in order to modify iptables and SELinux. Note that it is not
recommended that you entirely disable the iptables service in a production
environment where you will have to create extra iptables rules and update
your SELinux as well. We will need to allow access to the following ports:

°° TCP ports: 80, 443 for the Chef server web user interface
°° TCP port: 4000 for the Chef server Knife access

The following commands will update the running iptables rules in your
CentOS box:

packtpub@chef$ sudo iptables -A INPUT -p tcp --dport 80 -m state
--state NEW,ESTABLISHED -j ACCEPT
packtpub@chef$ sudo iptables -A INPUT -p tcp --dport 443 -m state
--state NEW,ESTABLISHED -j ACCEPT
packtpub@chef$ sudo iptables -A INPUT -p tcp --dport 4000 -m state
--state NEW,ESTABLISHED -j ACCEPT

6.	 Save the new policy update and restart the iptables service:
packtpub@chef$ sudo service iptables save
packtpub@chef$ sudo service iptables restart

7.	 Set SELinux to the permissive mode:

packtpub@chef$ sudo setenforce 0

The Chef server installation
The next setup describes some simple steps to install the Chef server:

1.	 In your local shell, run the following command to download the Chef server:
packtpub@chef$ sudo rpm -ivh https://opscode-omnibus
packages.s3.amazonaws.com/el/6/x86_64/chef-server-11.0.8-
1.el6.x86_64.rpm

2.	 Configure the Chef server:
packtpub@chef$ sudo chef-server-ctl reconfigure

3.	 Check whether the installation was successful or not:
packtpub@chef$ sudo chef-server-ctl test
Finished in 0.11742 seconds
0 examples, 0 failures

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

4.	 The server should be up and running. You can access the web interface via
https://chef.packtpub.com:443:

The Chef server user interface can be accessed using the
FQDN edited previously: https://FQDN:443. You can use
https://CHEF_IP_ADDR:443, where CHEF_IP_ADDR is
the local IP address of your Chef server.

Enter admin as the username and p@ssw0d1 as the default password.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[56]

Workstation installation
We will need additionally one or more Chef workstation(s) as a development toolkit.
This node's role is as follows:

•	 The Chef client is installed and Knife is configured
•	 It holds the local repository for the Chef server
•	 It installs Chef on the nodes via the knife bootstrap operation
•	 It dictates nodes, roles, and infrastructure environments to be uploaded to

the Chef server

Our Chef workstation will hold the local repo, and then we can install it on our
VCS node, where all the development will be performed and then uploaded to the
Chef server.

Knife in Chef refers to a tool which provides a Command-Line Interface
(CLI) between a Chef server and the Chef repository. It can be installed
in a Chef workstation and used to manage nodes, roles, cookbooks, and
environments with the Chef server. To read more about Knife in Chef,
refer to this link https://docs.chef.io/knife.html.

Let's install our Chef workstation:

1.	 Get the Chef client installed:
packtpub@workstation$ curl -L https://www.opscode.com/chef/
install.sh | bash

2.	 Verify the installation:
packtpub@workstation$ chef-client -v

3.	 Create your chef-repos for a proper format of the Chef repository from
GitHub by cloning the structure in /home/packtpub/:
packtpub@workstation$ git clone https://github.com/ opscode/chef-
repo.git

packtpub@workstation$ cd /home/packtpub

packtpub@workstation$ mkdir -p /chef-repo/.chef

In order to authenticate against the Chef server, we will need to add some
inputs for the key files from the Chef server web interface. Go to the Clients
tab and click on Edit with the chef-validator client.

www.it-ebooks.info

https://docs.chef.io/knife.html
http://www.it-ebooks.info/

Chapter 2

[57]

4.	 Copy the value of the Private key field. In your workstation, create a new file
for the validator key:
packtpub@workstation$ vi /home/packtpub/chef-repo/.chef/chef-
validator.pem

5.	 Paste the content of the copied key and save and close the file.

We perform the same procedure to generate the admin user's key file. In the Users
tab, click on Edit, which is associated with the admin user, and check Regenerate
Private Key followed by Save User.

After copying the private key, create a new file admin.pem in /home/packtpub/
chef-repo/.chef/ again and paste the content of the admin's private key:

1.	 Create the Knife configuration file:
packtpub@workstation$ knife configure -i

Overwrite /root/.chef/knife.rb? (Y/N) y

Please enter the chef server URL: [https://test.example.com:443]

https://chef-server.packtpub.com:443/

Please enter a name for the new user: [root] packtpub

Please enter the existing admin name: [admin] Enter

Please enter the location of the existing admin's private key: [/
etc/chefserver/admin.pem] /home/packtpub/chef-repo/.chef/admin.pem

Please enter the validation clientname: [chef-validator]

Please enter the location of the validation key: [/etc/chef-
server/chef-validator.pem] /home/packtpub/chef-repo/.chef/chef-
validator.pem

Please enter the path to a chef repository (or leave blank):

Creating initial API user...

Please enter a password for the new user

Created user[pack-knife]

Configuration file written to /home/packtpub/chef-repo/.chef/
knife.rb

At the end, you should have the following list of files:

packtpub@workstation$ ls /home/packtpub/chef-repo/.chef/

admin.pem chef-validator.pem knife.rb pack-knife.pem

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[58]

2.	 Initialize our Git name and e-mail:
 packtpub@workstation$ git config --global user.email
"masteropenstack@packtpub.com"

 packtpub@workstation$ git config --global user.name
"masteropenstack"

3.	 Clean up the repository by adding the .chef line to .gitignore:
packtpub@workstation$ nano /home/packtpub/chef repo/.chef/.
gitignore

.rake_test_cache

.chef/*.pem

.chef/encrypted_data_bag_secret

.chef

4.	 Add and commit the current repository:
packtpub@workstation$ git add .

packtpub@workstation$ git commit -m 'Finish setting up'

5.	 Make sure that you are using the right Ruby version:
packtpub@workstation$ vi .bash_profile

packtpub@workstation$ echo 'export
PATH="/opt/chef/embedded/bin:$PATH"' >> ~/.bash_profile

6.	 Populate the bash profile settings:
packtpub@workstation$ source ~/.bash_profile

7.	 Test our workstation's Chef server connection:

packtpub@workstation$ knife user list

admin

packt-knife

Time to cook OpenStack
At this stage, we have a complete Chef environment where the OpenStack code
infrastructure will be developed, refined, and released to production.

Let's take a look at the environment topology again. We need nodes and instances to
test how our cookbooks will be applied and tested.

For this purpose, we will use a great tool for testing purposes: Vagrant.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

Vagrant is open source software used to build virtualized development
environments. Vagrant requires virtual machines to test Chef Cookbooks
before going to production. VirtualBox is a good candidate which works
together with Vagrant to provide a complete test environment. For more
information on Vagrant, refer to the following link https://docs.
vagrantup.com/v2/getting-started/.

Vagrant can be integrated with Chef. Then, from a Vagrant file, we push the button
to make Chef run and get instances up, which makes it the cat's meow.

Where is my kitchen?
Be aware that Vagrant will be used for test purposes. This amazing tool will help you
make sure you know how your OpenStack Chef cookbooks work.

This is a suitable test for the virtual machine manager candidate to achieve a clean
state from your nodes. Furthermore, it might be possible to reproduce a whole test
environment in each Chef run, which creates an initial state that mimics a production
environment.

You can manage VMs by means of Vagrant using VirtualBox while using a Chef
client as a provisioner. Then, we have our test development environment: the
OpenStack kitchen. We will describe the use case of Vagrant later in this chapter.

OpenStack cookbooks
There are always challenges facing DevOps, and no doubt, they will occur after you
have conducted your design to be deployed in a real environment. Meeting these
challenges will drive you to acquire new skills related to creating a large complicated
OpenStack infrastructure with simple code that you never thought you could master.

Several organizations and big companies have been involved in writing cookbooks
for OpenStack in different ways. You might be tempted to think how you can use the
existing cookbooks in the cookbook market as well as which ones to choose and how
to develop them for your own needs.

Let's discuss what we need with the help of a simple, generic overview:

•	 Controller nodes
•	 Compute nodes
•	 Neutron nodes
•	 Swift as a single cluster

www.it-ebooks.info

https://docs.vagrantup.com/v2/getting-started/
https://docs.vagrantup.com/v2/getting-started/
http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[60]

You may note that the controller node, as described in our first design, handles and
runs the majority of native OpenStack services. You can derive many recipes from
OpenStack cookbooks in GitHub. The Opscode community is also an option. We will
base our first cookbooks on StackForge cookbooks. However, before that, we should
take care of the cookbook dependencies for a clean setup.

StackForge aims to facilitate the usage of the OpenStack infrastructure by
other projects, including continuous integration (Jenkins) and repository
mirroring (GitHub). More information on the StackForge project can be
found at http://ci.openstack.org/stackforge.html.
Individual cookbooks for each OpenStack service have been created in
the StackForge GitHub repository, which can be found at https://
github.com/stackforge. The cookbooks used by Chef from the
StackForge repository are listed and described at https://docs.chef.
io/openstack_cookbooks.html.

Resolving OpenStack cookbook dependencies
Without any doubt, the world of dependency is a world of pain! This is when you
plan to install a cookbook that another one depends on it. Manual downloading for
each one might depend on other cookbooks.

A trick for manual downloading can be to use the knife cookbook site install
command, which is somehow great as it installs all the dependencies. However, the
dependencies will be installed in your local repository, and you might not like to see
them flapping in your directory. You will be delighted when you find out that there
is a tool that can do this for you: Berkshelf.

This amazing cookbook manager downloads all dependencies recursively while
keeping your local repository clean. Dependencies will be stored in a different
location.

Berkshelf uses Berksfile, in which we commit our dependencies to our repository.

The first successful step to make this tool do the magic, is to ensure a proper
installation. Somehow, Ruby versioning can be confusing if you have already
installed Chef server or Chef workstation within Ruby version 1.8.7. It is
recommended that you upgrade or switch to 1.9.1 or higher. Note that Berkshelf
requires Ruby version 1.9.1 or higher.

If you already have 1.8.7, no worries; we will perform a trick without diving into
Ruby setup errors.

www.it-ebooks.info

http://ci.openstack.org/stackforge.html
https://github.com/stackforge
https://github.com/stackforge
https://docs.chef.io/openstack_cookbooks.html
https://docs.chef.io/openstack_cookbooks.html
http://www.it-ebooks.info/

Chapter 2

[61]

We can use Ruby Version Manager (rvm) to switch between Ruby versions.

Ruby is a very popular programming language that is used by Chef
to write cookbooks. Different versions of Ruby may be necessary for
different projects. Installing and running other Ruby gems (RubyGems)
might require different Ruby versions. Using the rvm will allow you to
easily install multiple, contained versions of Ruby and switch between
them. For more information on rvm, refer to this link: https://rvm.
io/rvm/basics.

1.	 Install rvm:
packtpub@workstation$ curl -L get.rvm.io | bash -s stable fails

If you get an error issued you will need to specify the gpg2 key. You will
need to run a similar command line from the output shown in the curl
command as follows: gpg2 --keyserver hkp://keys.gnupg.net
--recv-keys D39DC0E3.

2.	 Source the rvm variables:
packtpub@workstation$ source /etc/profile.d/rvm.sh

3.	 Install Ruby 1.9.2:
packtpub@workstation$ rvm install 1.9.2

4.	 Set it as the default Ruby interpreter:
packtpub@workstation$ rvm --default use 1.9.2

5.	 Install gem dependencies:
packtpub@workstation$ sudo yum install rubygems

6.	 Install Berkshelf dependencies:
packtpub@workstation$ sudo yum install gecode-devel gcc-c++ -y

7.	 Install Berkshelf :

packtpub@workstation$ gem install berkshelf

Fetching: nio4r-1.0.1.gem (100%)

Building native extensions. This could take a while...

Knife's command line will start to complain about the Ruby version when you fire it
in your shell. Thus, you can always reset your default Ruby version 1.8.7 using this:

packtpub@workstation$ rvm system

www.it-ebooks.info

https://rvm.io/rvm/basics
https://rvm.io/rvm/basics
http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[62]

Uploading cookbooks using Berkshelf
Let's create our main Berkshelf file, which will define all the cookbooks needed
for our first deployment. We will tell Berkshelf to clone the cookbooks and their
dependencies mainly from supermarket.getchef.com:

packtpub@workstation$ nano /home/packtpub/chef-repo/Berksfile

source "https://supermarket.getchef.com"

cookbook 'apache2', '1.9.6'

cookbook 'apt', '2.3.8'

cookbook 'aws', '2.1.1'

cookbook 'build-essential', '1.4.2'

cookbook 'database', '2.2.0'

cookbook 'erlang', '1.4.2'

cookbook 'memcached', '1.7.2'

cookbook 'mysql', '5.4.4'

cookbook 'mysql-chef_gem', '0.0.4'

cookbook 'openssl', '1.1.0'

cookbook 'postgresql', '3.3.4'

cookbook 'python', '1.4.6'

cookbook 'rabbitmq', '3.0.4'

cookbook 'xfs', '1.1.0'

cookbook 'yum', '3.1.4'

cookbook 'selinux', '0.7.2'

cookbook 'yum-epel', '0.3.4'

cookbook 'galera', '0.4.1'

cookbook 'haproxy', '1.6.6'

cookbook 'keepalived', '1.2.0'

cookbook 'statsd', github: 'att-cloud/cookbook-statsd'

cookbook 'openstack-block-storage', github: 'stackforge/cookbook-
openstack-block-storage'

cookbook 'openstack-common', github: 'stackforge/cookbook-openstack-
common'

cookbook 'openstack-compute', github: 'stackforge/cookbook-openstack-
compute'

cookbook 'openstack-dashboard', github: 'stackforge/cookbook-openstack-
dashboard'

www.it-ebooks.info

supermarket.getchef.com
http://www.it-ebooks.info/

Chapter 2

[63]

cookbook 'openstack-identity', github: 'stackforge/cookbook-openstack-
identity'

cookbook 'openstack-image', github: 'stackforge/cookbook-openstack-image'

cookbook 'openstack-network', github: 'stackforge/cookbook-openstack-
network'

cookbook 'openstack-object-storage', github: 'stackforge/cookbook-
openstack-object-storage'

cookbook 'openstack-ops-database', github: 'stackforge/cookbook-
openstack-ops-database'

cookbook 'openstack-ops-messaging', github: 'stackforge/cookbook-
openstack-ops-messaging'

Then, you need to just upload cookbooks as the following:

packtpub@workstation/home/packtpub/chef-repo $ berks install

Resolving cookbook dependencies...

packtpub@workstation/home/packtpub/chef-repo $ berks upload --no-ssl-
verify

Defining roles
Chef defines roles as a manner to group nodes, seeking simplicity deployment.
From run lists in all nodes, you will just need to assign the node that should be run.
Optionally, you will be able to customize them by overriding attribute values within
your roles. On the other hand, recipes define roles. Thus, you may notice the running
of a list of a bunch of recipes within a role. Besides, it can also include roles from
other run lists.

Let's cover a basic example using only recipes in the role run list within OpenStack.
In your chef-repo directory, create a new directory named roles.

Create the role:

$ nano roles/packtpub-os-base.json

Eventually, the packtpub-os-base role defines the base role of OpenStack nodes
that will be assigned to the majority of servers in our deployment. It provides
common attributes and recipes that define the OpenStack deployment, such as
setting network interfaces of hosts within the existing endpoints:

{
 "name": "packtpub-os-base.json",
 "description": "PacktPub OpenStack Base Role",
 "json_class": "Chef::Role",
 "default_attributes": {
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[64]

 "override_attributes": {
 },
 "chef_type": "role",
 "run_list": [
 "recipe[openstack-common]",
 "recipe[openstack-common::logging]",
 "recipe[openstack-common::set_endpoints_by_interface]",
 "recipe[openstack-common::sysctl]"
],
 "env_run_lists": {
 }
}

Let's carry on with the second role using the previous one.

Create a new role named packtpub-os-compute-worker.json. This role will define
our OpenStack compute node:

{
 "name": "packtpub-os-compute-worker",
 "description": "PacktPub OpenStack Compute Role",
 "json_class": "Chef::Role",
 "default_attributes": {
 },
 "override_attributes": {
 },
 "chef_type": "role",
 "run_list": [
 "role[packtpub-os-base]",
 "recipe[openstack-compute::compute]"
],
 "env_run_lists": {
 }
}

You might notice that we have used the base role, packtpub-os-base, within the
compute recipe that we have uploaded in our Chef.

At this point, feel free to add any role that will fit your design from our basic
cookbooks added from supermarket.getchef.com. Distributing roles will depend
on your choice and the number of nodes you plan to deploy for a certain service.
We can assume that any change to a certain node deployment will be made from the
Chef code.

www.it-ebooks.info

supermarket.getchef.com
http://www.it-ebooks.info/

Chapter 2

[65]

In our custom design, we will need a controller node, which will run a bunch
of services. A good practical design of cookbooks is to wisely break down your
infrastructure into reusable roles and recipes. For example, our controller node will
include networking, imaging, messaging, identity, and database services; going on
making a one blob role which includes all the associated recipes might limit your
attention and make you think about scaling out the nodes later. Remember that we
are expanding and not rolling up the infrastructure.

Before creating our custom controller role, we will proceed by creating a basic one:

packtpub-os-base-controller

{
 "name": "packtpub-os-base-controller",
 "description": "PacktPub OpenStack Controller Role",
 "json_class": "Chef::Role",
 "default_attributes": {
 },
 "override_attributes": {
 },
 "chef_type": "role",
 "run_list": [
 "role[packtpub-os-base]",
 "role[packtpub-os-ops-database]",
 "recipe[openstack-ops-database::openstack-db]",
 "role[packtpub-os-ops-messaging]",
 "role[packtpub-os-identity]",
 "role[packtpub-os-image]",
 "role[packtpub-os-compute-setup]",
 "role[packtpub-os-compute-conductor]",
 "role[packtpub-os-compute-scheduler]",
 "role[packtpub-os-compute-api]",
 "role[packtpub-os-block-storage]",
 "role[packtpub-os-compute-cert]",
 "role[packtpub-os-compute-vncproxy]",
 "role[packtpub-os-dashboard]"
],
 "env_run_lists": {
 }
}

To upload all your created roles, you can use the following command:

packtpub@workstation$ knife role from file /home/packtpub/chef-
cookbooks/roles/*.rb

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[66]

The basic cookbooks for OpenStack have been downloaded from
https://github.com/stackforge. It is recommended that
before starting your Chef deployment, you have to verify the roles
and their names, the number of environments and their names.
A good practice while customizing a cookbook or defining an
OpenStack environment in Chef is to add as many thin roles as
possible. If you face any error-naming convention while running
Chef, try to adjust the role names in attribute files to reflect the
same names within the defined roles.

Configuring the environment
Now we have a set of cookbooks uploaded to the Chef server and ready to be
deployed. An extra step is needed to make them useful: Defining your environments.
Note that we define the playground environment using Vagrant, where we will
provision our test infrastructure, and the cooking environment, where we define our
infrastructure details from one file and let Chef do the rest:

•	 Playground environment: Until now, we have our basic cookbooks ready
to be uploaded within defined roles. They need customization and more
development to adjust our infrastructure needs.
Vagrant might be a very cost-effective and the simplest solution to make a
full test environment work together with Chef.
We can use a provider for Vagrant as a VirtualBox, where it can be installed
as a virtual machine while our provisioner will be Chef.

Provisioning with Vagrant can also be performed using Puppet,
and the providers can be VMware and Amazon AWS.

You can download and install Vagrant from http://downloads.
vagrantup.com:

packtpub@workstation$ wget https://dl.bintray.com/mitchellh/
vagrant/vagrant_1.7.2_x86_64.rpm

packtpub@workstation$ rpm –ivh vagrant_1.7.2_x86_64.rpm

packtpub@workstation$ vagrant --version

Vagrant version 1.7.2

www.it-ebooks.info

https://github.com/stackforge
http://downloads.vagrantup.com
http://downloads.vagrantup.com
http://www.it-ebooks.info/

Chapter 2

[67]

VirtualBox needs to be installed as a Vagrant provider. VMware is
also a second alternative to run Vagrant boxes.

•	 Vagrantfile: The vagrant file will define all our OpenStack nodes and the
general configuration, such as networking:
packtpub@workstation$ nano /home/packtpub/chef-repo/Vagrantfile

The contents of the Vagrant file are:

Vagrant.require_version ">= 1.1"

Vagrant.configure("2") do |config|
 # Omnibus plugin configuration
 config.omnibus.chef_version = :latest

 # OpenStack settings
 chef_environment = "vagrant-packtpub"

 controller_run_list = [
 "role[packtpub-os-base-controller]",
 "recipe[openstack-network::identity_registration]",
 "role[packtpub-os-network-openvswitch]",
 "role[packtpub-os-network-dhcp-agent]",
 "role[packtpub-os-network-metadata-agent]",
 "role[packtpub-os-network-server]"
]

 # virtualbox provider settings
 config.vm.provider "virtualbox" do |vb|
 vb.customize ["modifyvm", :id, "--cpus", 2]
 vb.customize ["modifyvm", :id, "--memory", 2048]
 vb.customize ["modifyvm", :id, "--nicpromisc2", "allow-all"]
 vb.customize ["modifyvm", :id, "--nicpromisc3", "allow-all"]
 end

 # OpenStack Controller

 config.vm.define :controller1 do |controller1|
 controller1.vm.hostname = "controller1"
 controller1.vm.box = "opscode-centos-6.5"

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[68]

 controller1.vm.box_url = "http://opscode-vm-bento.
s3.amazonaws.com/vagrant/virtualbox/opscode_centos-6.5_chef-
provisionerless.box"

 controller1.vm.network "forwarded_port", guest: 443, host:
9443 # forward to dashboard using ssl : dashboard-ssl
 controller1.vm.network "forwarded_port", guest: 8773, host:
9773 # forward to EC2 api : compute-ec2-api
 controller1.vm.network "forwarded_port", guest: 8774, host:
9774 # forward to Compute API : compute-api
 controller1.vm.network "private_network", ip: "192.168.47.10"
 controller1.vm.network "private_network", ip: "172.16.11.10"

 controller1.vm.provision :chef_client do |chef|
 chef.run_list = controller_run_list
 chef.environment = chef_environment
 # Where to find our Chef Server by providing the
authorization key
 chef.chef_server_url = "https://chef.packtpub.com:443"
 chef.validation_key_path = "/home/packtpub/chef repo/.chef/
chef-validator.pem"
 end
 end

 # OpenStack Compute

 config.vm.define :compute1 do |compute1|
 compute1.vm.hostname = "compute1"
 compute1.vm.box = "opscode-centos-6.5"
 compute1.vm.box_url = "http://opscode-vm-bento.s3.amazonaws.
com/vagrant/virtualbox/opscode_centos-6.5_chef-provisionerless.
box"
 compute1.vm.network "private_network", ip: "192.168.47.11"
 compute1.vm.network "private_network", ip: "172.16.11.11"

 compute1.vm.provision :chef_client do |chef|
 chef.run_list = ["role[packtpub-os-compute-worker]"]
 chef.environment = chef_environment
 # Where to find our Chef Server by providing the
authorization key
 chef.chef_server_url = "https://chef.packtpub.com:443"
 chef.validation_key_path = "/home/packtpub/chef-repo/.chef/
chef-validator.pem"
 end
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[69]

•	 Cooking environment: We need to define our Chef environment to
accomplish the environment setup within Vagrant.

Use different environments for development and production to
maintain cookbook changes in isolation.

You can create a development environment in many ways; from the Chef
server GUI or via the Knife command line, as follows:
knife environment create vagrant-packtpub -d "PacktPub Testing
Environment"

Our Chef environment file looks like the following:
{
 "name": "vagrant-packtpub",
 "description": "PacktPub Testing Environment",

 "cookbook_versions": {
 },
 "json_class": "Chef::Environment",
 "chef_type": "environment",
 "default_attributes": {
 },
 "override_attributes": {
 "mysql": {
 "allow_remote_root": true,
 "root_network_acl": "%"
 },
 "openstack": {
 "identity": {
 "bind_interface": "eth1"
 },
 "endpoints": {
 "host": "192.168.47.10",
 "mq": {
 "host": "192.168.47.10"
 },
 "db": {
 "host": "192.168.47.10"
 },
 "developer_mode": true,
 "network": {
 "debug": "True",

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[70]

 "dhcp": {
 "enable_isolated_metadata": "True"
 },
 "metadata": {
 "nova_metadata_ip": "192.168.47.10"
 },
 "openvswitch": {
 "network_vlan_ranges": "physnet1:1000:2999",
 "tenant_network_type": "vlan",
 "external_network_bridge_interface": "eth2"
 },
 "api": {
 "bind_interface": "eth1"
 }
 },
 "image": {
 "api": {
 "bind_interface": "eth1"
 },
 "registry": {
 "bind_interface": "eth1"
 },
 "image_upload": true,
 "upload_images": [
 "centos",
 "cirros"
],
 "upload_image": {
 "centos": "http://cloud.centos.org/centos/7/devel/
CentOS-7-Atomic-CloudDockerHost-20140820_05.qcow2",
 "cirros": "https://launchpad.net/cirros/trunk/0.3.0/
+download/cirros-0.3.0-x86_64-disk.img"
 }
 },
 "compute": {
 "xvpvnc_proxy": {
 "bind_interface": "eth1"
 },
 "novnc_proxy": {
 "bind_interface": "eth1"
 },
 "libvirt": {
 "virt_type": "qemu"
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[71]

 "network": {
 "public_interface": "eth1",
 "service_type": "neutron"
 },
 "config": {
 "ram_allocation_ratio": 5.0
 }
 }
 }
 }
 }
}

As we are using version control, it might be more convenient to create a
new directory under chef-repo named; environments, which will hold our
environments.
Additionally, this will help us test cookbooks in different versions with
several specific attributes and bring them from development to staging,
finishing with promoting them into production. Under chef-repo, create
an environments directory, where the vagrant-packtpub.rb file will be
placed:
packtpub@workstation:/chef repo$ git add environments/vagrant-
packtpub.rb

packtpub@workstation:/chef repo$ git commit -a -m "First OpenStack
Environment"

packtpub@workstation:/chef repo$ git push

Now, you can create the environment on the Chef server from our vagrant-
packtpub.rb file by the means of the Knife command line:

packtpub@workstation:/chef repo$ knife environment from file
vagrant-packtpub.rb

•	 Push the button: At this point, we've done a lot of preparation and
configuration to test and deploy OpenStack. Vagrant and Chef work in
tandem with each other to bring a test environment with less pain and more
simplicity. Everything is in place; what we need to do is to just push
the button.

Set an environment file to specify which Vagrantfile to use:
packtpub@workstation $ export VAGRANT_VAGRANTFILE=vagrant-packtpub

Start the nodes:

packtpub@workstation $ vagrant up controller1
packtpub@workstation $ vagrant up compute1

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack – DevOps and OpenStack Dual Deal

[72]

Summary
In this chapter, we covered several topics and terminologies on how to develop and
maintain a code infrastructure using the DevOps style.

Bringing your OpenStack infrastructure deployment to code will not only simplify
node configuration, but also improve the automation process.

You should keep in mind that DevOps is neither a project nor a goal to attend to, but
it is a methodology that will make your deployment successfully empowered by the
team synergy with different departments.

Despite the existence of numerous system-management tools to bring our OpenStack
up and running in an automated way, we have chosen the Chef server.

Puppet, Ansible, Salt, and others can do the job but in different ways. You should
know that there is no one way to perform automation.

Chef is highly flexible and rich with tools that make life easier. In a similar
manner, with Vagrant and Chef plugins, we were able to bring in a test
environment in a wink.

Although we deployed a basic multinode setup of OpenStack in this chapter, the
next chapter will take you to a third stage, where you can use strong approaches on
towards extending our previous design by clustering, defining the cloud controller,
and compute node distributions.

We will keep on going with what we learned from deployment automation using
Chef under the umbrella of the DevOps style.

www.it-ebooks.info

http://www.it-ebooks.info/

[73]

Learning OpenStack
Clustering – Cloud Controllers

and Compute Nodes
"If you want to go quickly, go alone. If you want to go far, go together."

–African proverb

Now that you have good knowledge of the approaches taken to deploy a large
OpenStack infrastructure in an automated way, it is time to dive deeper and cover
more specific conceptual designs within OpenStack.

In a large infrastructure, especially if you are looking to keep all your services up
and running, it is essential that you ensure the OpenStack infrastructure is reliable
and guarantees business continuity.

We already discussed several design aspects and highlighted some best practices
of scalable architecture models within OpenStack in Chapter 1, Designing OpenStack
Cloud Architecture.

We adopted a sample architecture based on the cloud controller and compute nodes,
and on each of these, we divided and set up OpenStack services. This is a simplified
way to design a scalable OpenStack environment.

Soon after, we discovered the magic of automation, where we resumed a basic setup
of one cloud controller together with one compute node using the Chef server.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[74]

This chapter begins by covering some clustering aspects. It soon guides you
to discover more OpenStack design patterns based on cloud controllers' and
compute nodes' clustering. Bear in mind that this chapter will not treat high
availability in detail and will not touch all OpenStack services layers. Instead, it
will target covering a generic overview of several possibilities of the OpenStack
clustering design. The art of clustering is the key to providing a solution that
fits into a methodology that stresses standardized, consistent IT build-out
OpenStack operations.

In this chapter, we will cover the following topics:

•	 Understanding the art of clustering
•	 Defining the use case of cloud controllers and compute nodes in an

OpenStack environment
•	 Covering other OpenStack clustering models based on cloud controller and

compute node distribution
•	 Understanding backup techniques of cloud controller and compute nodes for

disaster recovery best practices
•	 Learning how to refine your infrastructure code based on the Chef server for

a fast and automatic deployment

Understanding the art of clustering
Do not be afraid to claim that clustering actually provides high availability in a given
infrastructure. The aggregation of the capacity of two or more servers is meant to be
a server cluster. This aggregation will be performed by means of the accumulation of
several machines.

Do not get confused between scaling up, which is also called vertical
scaling, and scaling down, which is also known as horizontal scaling.
The horizontal scaling option refers to adding more commodity servers,
unlike the vertical scaling option, which refers to adding more expensive
and robust servers with more CPU and RAM.

This makes it imperative to differ between the terminologies of high availability, load
balancing, and failing over, which will be detailed in depth in Chapter 6, OpenStack
HA and Failover.

Keep this in mind for any of the previously mentioned terms: their configuration
results always start from the clustering concept. You will discover how to
differentiate between them in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

Asymmetric clustering
Asymmetric clustering is mostly used for high availability purposes as well as for the
scalability of read/write operations in databases, messaging systems, or files.

In such cases, a standby server is involved to take over only if the other server is
facing an event of failure. We may call the passive server the sleepy watcher, where
it can include the configuration of a failover.

Symmetric clustering
This is where all nodes are active and a participator handles the process of requests.
This setup might be cost-effective by serving active applications and users.

A failed node can be discarded from the cluster, while others take over its workload
and continue to handle transactions.

Symmetric clustering can be thought to be similar to a load-balancing cluster
situation where all nodes share the workload by increasing the performance
and scalability of services running in the cloud infrastructure.

Divide and conquer
OpenStack was designed to be horizontally scalable; we have already seen how
its services have been widely distributed in two concepts: cloud controllers and
compute nodes.

The cloud controller
The concept of cloud controllers aims to provide one or many kinds of central
management and control over your OpenStack deployments. We can, for example,
assume that all authentication and messaging transactions are being managed by the
cloud controller by means of our magic hub: the message queue.

Considering a medium- or large-scale infrastructure, we will need, with no doubt,
more than a single node. For an OpenStack cloud operator, controllers can be
thought of as a service aggregator where the majority of running management
services are needed for OpenStack to operate.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[76]

Let's see what a cloud controller cloud mainly handles:

•	 It presents a main gateway for access to cloud management and
services consumption

•	 It provides the API services in order to bring different OpenStack
components to talk to each other

•	 It concentrates on a set of highly available mechanisms for integrated services
by the means of Pacemaker, Corosync, or HAProxy to expose a VIP for load-
balancing utilities

•	 It provides critical infrastructure services, such as database and
queue messaging

•	 It exposes the persistent storage, which might be backed onto separate
storage nodes

Most probably, you have already noticed the main services of the cloud controller in
Chapter 1, Designing OpenStack Cloud Architecture, but we did not take a deep look at
why such services should run in the controller node in the first place. We will now
suggest a second alternative.

We bring, for instance, the cloud controller as a node under the scope.
This aggregates the most critical services for OpenStack. Thus, we can
start by covering them in a nutshell.

nova-conductor
If you have tried to install OpenStack starting from the Grizzly release, while
checking Nova services running in your OpenStack node, you may have noticed
a new service called nova-conductor. Do not panic! This amazing new service has
changed the way the nova-compute service accesses the database. Eventually, it was
added for security reasons as compute nodes running the nova-compute service
may conduct some vulnerability issues. You can imagine how attacking a virtual
machine can bring the compute node under the control of the attacker. Even worse,
it can compromise the database. Then, you can guess the rest: your entire OpenStack
cluster is under attack! Keep in mind that nova-scheduler is intended to carry out
database operations on behalf of compute nodes.

So, you can assume that nova-conductor compiles a new layer on top of
nova-compute. Furthermore, instead of resolving the complexity of the
database requests bottleneck, nova-conductor parallelizes the requests
from compute nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

If you are using nova-network and multihost networking in your
OpenStack environment, nova-compute will still require direct
access to the database.

nova-scheduler
Several workflow scheduling studies and implementations have been recently
conducted in cloud computing, generally in order to define the best placement of a
resource provisioning.

In our case, we will decide which compute node will host the virtual machine. It's
important to note that there are bunches of scheduling algorithms in OpenStack.

Such internal request information is received from the magic radio station in the
OpenStack core: the message queue.

Nova-scheduler may also influence the performance of the hosts running virtual
machines. Therefore, OpenStack supports a set of filters that implement the available
nodes and give you the choice to configure its options based on a certain number of
metrics and policy considerations. Additionally, nova-scheduler can be thought of
as the decision-maker box in a cloud controller node by applying a few complicated
algorithms for the efficient usage and placement of virtual machines.

On the other hand, you should understand that nova-scheduler assumes a given
OpenStack cluster as a single host within aggregated resources of all hosts present in
the cluster. This happens when you deal with different hypervisors running each of
them and their specific scheduling resource's management, such as vCenter within
Distributed Resource Scheduler (DRS).

DRS is a VMware load-balancing utility, which assigns computing
workloads to available hardware resources.

Eventually, the scheduler in OpenStack, as you may understand at this stage,
will be running in the cloud controller node. A very good point here needs to be
investigated: what about different schedulers in a high availability environment? In
this case, we exploit the openness of the OpenStack architecture by running multiple
instances of each scheduler, as all of them are listening to the same queue.

It is important to know that cinder-scheduler is considered a scheduling service
in OpenStack, which might be running in the cloud controller node for block
storage management.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[78]

The scheduler can be configured in a variety of options. Different
scheduler settings can be found in /etc/nova/nova.conf. To read
more about scheduling in OpenStack, refer to the following link:
http://docs.openstack.org/icehouse/config-reference/
content/section_compute-scheduler.html.

X-api
In a nutshell, we have already covered the nova-api service in Chapter 1, Designing
OpenStack Cloud Architecture. It might be important to step forward and learn
that nova-api is considered the orchestrator engine component in cloud controller
specifications. Without any doubt, nova-api is assembled in the controller node
after considering its main role by accepting all the incoming API requests from
all components.

The nova-api service may also fulfill more complicated requests by passing messages
within other daemons by means of writing to the databases and queuing messages.
As this service is based on the endpoint concept where all API queries are initiated,
nova-api provides two different APIs using either the OpenStack API or EC2 API.
This makes it imperative to decide which API will be used before deploying a cloud
controller node that may conduct to a real issue as you may decide to take over both
APIs. The reason behind this is the heterogeneity of the information presentation used
by each API; for example, OpenStack uses names and numbers to refer to instance,
whereas the EC2 API uses identifiers based on hexadecimal values.

Additionally, we have brought compute, identity, image, network, and storage
APIs to be placed in the controller node, which can also be chosen to run other
API services.

For instance, we satisfy our deployment by gathering the majority of X-api services
to run in the cloud controller node.

An Application Programming Interface (API) enables public access to
the OpenStack services and offers a way to interact with them. The API
access can be performed either through a command line or through the
Web. To read more about APIs in OpenStack, refer to the following link:
http://developer.openstack.org/#api.

www.it-ebooks.info

http://docs.openstack.org/icehouse/config-reference/content/section_compute-scheduler.html
http://docs.openstack.org/icehouse/config-reference/content/section_compute-scheduler.html
http://developer.openstack.org/#api
http://www.it-ebooks.info/

Chapter 3

[79]

Image management
The cloud controller will also be responsible for the delivery and serving of images
using glance-api and glance-registry, where a decision can be made about which
backend will be used to launch the controller in the cloud.

The glance-api supports several backend options to store images. Swift
is a good alternative that allows storing images as objects and provides a
scalable placement for image storage. Other alternatives are also possible
such as filesystem backend, Amazon S3, and HTTP. Chapter 4, Learning
OpenStack Storage – Deploying the Hybrid Storage Model, covers different
storage models in OpenStack in more detail.

Network outfit
Just like OpenStack's Nova service provides an API for dynamic requests to compute
resources, we adopt the same concept for the network by allowing its API to reside
in the cloud controller, which supports extensions to provide advanced network
capabilities, such as access lists and network monitoring using Neutron. As was
assumed in our first model, separating most of the network workers is highly
recommended. Therefore, the cloud controller will include only the Neutron server
in the second iteration. On the other hand, you are tempted to think about the huge
amount of traffic that hits a cloud controller with regard to its multirunning services;
therefore, you should bear in mind the performance challenges that you may face. In
this case, clustering best practices come in to help your deployment be more scalable
and increase its performance. The previously mentioned techniques are essential
but not sufficient. They need basic hardware support with at least 10 GB of bonded
NICs, for example.

The NIC bonding technique is used to increase the available bandwidth.
Two or more bonded NICs appear to be the same physical device.

You can always refer to Chapter 1, Designing OpenStack Cloud Architecture, to use
some calculation in order to make your cloud controller capable of responding to all
requests smoothly without a bottleneck.

Complicating your performance metrics at such an early stage will not help to satisfy
your topology resiliency. To do so, scalability features are always there to refine your
deployment. Remember that we tend to scale horizontally when required.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[80]

The Horizon decision
As the OpenStack dashboard runs in the Apache web server based on the Python
web application, providing a separate node that is able to reach the API servers
in the second step might be an option if you later decide to decrease the load on
your cloud controller node. Several OpenStack deployments in production run
Horizon in the controller node but still leave it up to you to monitor it and take
separate decisions.

Planning for the message queue
Definitely, your queuing message system should be clustered. This is another critical
subsystem where your node may be in a halt status when the message queue fails.

We have chosen RabbitMQ to handle our queuing system as it has its native
clustering support. However, it might be painful in a large-scale OpenStack
environment.

A good practice is to keep in mind such complexity challenges that have to be
undertaken when we start a simple cloud controller holding a RabbitMQ service.

It is a good thing that our design is very elastic and we can cluster by controller
nodes; therefore, we bring in RabbitMQ clustered. With fewer controller nodes,
which need more hardware specs, separating the RabbitMQ node cluster will
be relatively easy.

Consolidating the database
The majority of disasters that could happen in any IT infrastructure indicate loss
not only of data in production, but also historical data. Such critical points may
lead to nonoperational and even nonrecoverable OpenStack environments. Thus,
we have started working with MySQL clustering and high availability solutions
at an early stage.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

Physically, we started adopting MySQL using Galera running in the cloud controller.
This held true until we got a basic environment running, for which you only need
to provide a new node for the MySQL cluster pointing at the right controller. More
details will be covered in Chapter 6, OpenStack HA and Failover. For the moment, we
need a running setup that is easy to deploy and redeploy using Chef.

Cloud controller clustering
Being a proponent of the physical cloud controller, a machine's clustering effort is
considered a step in the right direction: high availability. Several HA topologies will
be discussed in Chapter 6, OpenStack HA and Failover.

As we have seen the use cases of several services at this point, which can be
separated and clustered, we will extend our logical design of the cloud controller
described in Chapter 1, Designing OpenStack Cloud Architecture. Keep in mind that
OpenStack is a highly configurable platform and the rest of the description is an
example that suits a certain requirement and specific conditions.

The next step is to confirm the first logical design. Questions such as this come up:
does it satisfy certain requirements? Are all services in the safe HA zone?

Well, note that we include the MySQL Galera cluster to ensure HA for the
database. Eventually, this means we are missing something! Depending
on the quorum-based system of Galera, at least a third cloud controller has
to join the cloud controller team.

Immediately, you may raise a question: should I add an extra cloud controller
to make the replication and database HA achieved? What about a fourth or
fifth controller?

Great! Keep this mindset for later. At this level, you assume that logically, your
design is on the right path and you already know that some changes have to be
made to fulfill some physical constraints.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[82]

Then, we extend our cluster setup with a third cloud controller:

At this point, we ensure that our design is deployed in HA at an early stage.
Remember, there should be no Single Point Of Failure in any layer!

Redundancy is implemented by means of virtual IP and Pacemaker. Then,
HAProxy will ensure load balancing. Databases and messaging queue
servers have been implemented in active/active HA mode when MySQL
uses Galera for replication, while RabbitMQ is built in a cluster capable
mode. Other choices can be made for our current design by integrating,
for example, with Corosync, Heartbeat, or Keepalived instead. Aspects of
load balancing, high availability, and failover with relative solutions will
be explained in detail in Chapter 6, OpenStack HA and Failover.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

It is important to prepare how the cloud controllers should be clustered in advance.
The previous diagram is an example design that scales as well and takes into
account more advanced aspects, such as HA failover and load balancing. You
can refer to Chapter 6, OpenStack HA and Failover, to check out more details and
practical examples. For instance, the overall OpenStack cloud should expand easily
by joining new nodes running several services that require more care. We continue
later by adumbrating an automated approach to facilitating the horizontal expansion
of the cloud.

Cooking the cloud controller
Once we have identified which service will be deployed in the cloud controller, we
jump to the next step by bringing our Chef into action. We have already covered a
general overview of the OpenStack cookbooks, which we have based on the Chef
community website.

As we are aiming for a large-scale infrastructure, we would rather prepare the roles
and recipes and make them more decoupled for service nodes to reach a level of high
availability in the second stage. The cookbook design of the cloud controller seems
quite complicated, which implies that its implementation might not be intuitively
obvious at first glance, but a brief overview of the cookbooks' relationships will make
it easier for you to highlight the flexibility of this model. Thus, you may intend to
choose on your own how to distribute roles and recipes by maintaining the logic
of dependency.

As you may notice in the next figure, we have gathered the majority of services
in the cloud controller, except object storage and compute workers. On the other
hand, assigned roles and recipes can be detached and reassigned to other nodes.
We bring in the cloud controller for it to be deployed first in order to check our
cookbooks' consistency.

Keeping in our mindset and whatever system management tools we might choose,
underpinning every service component on our OpenStack cloud platform must be
a flexible mantra, as much as possible, for the purpose of our first cloud controller
deployment. Based on Chapter 2, Deploying OpenStack – DevOps and OpenStack Dual
Deal, we have covered how to turn the code of our infrastructure into pieces by
means of recipes, while gathering the pieces for a more customized design will
form the roles.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[84]

This is described in the following cookbook diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[85]

You may notice that roles can include not only recipes, but also other roles.

We can go through each role and describe how it is composed in a nutshell by taking
a look at the following table:

Role name Default recipe Description

packtpub-os-
base

•	 openstack-common
•	 openstack-common::logging
•	 openstack-common::set_endpoints_by_

interface
•	 openstack-common::sysctl

•	 openstack-common is a set of
recipes and attributes describing
general OpenStack deployment

•	 openstack-common::logging
installs and configures common
logging attributes

•	 openstack-common::set_
endpoints_by_interface iterates
over the endpoints per node hash
and finds any occurrence of bind_
interface to set the IP address

•	 openstack-common::sysctl
iterates over a node hash and updates
its entries to /etc/sysctl.d/60-
openstack.conf

packtpub-os-
ops-database

•	 openstack-ops-database::server
•	 openstack-ops-database::openstack-db

•	 openstack-ops-
database::server selects the
database server configuration using
attributes

•	 openstack-ops-
database::openstack-db defines
the required tables and users for
OpenStack

packtpub-os-
identity

•	 openstack-identity::server
•	 openstack-identity::registration

•	 openstack-identity::server
installs and configures Keystone
services

•	 openstack-
identity::registration registers
identity endpoint and service

packtpub-
os-ops-
messaging

openstack-ops-messaging::server This installs a single RabbitMQ server
instance

packtpub-
os-compute-
scheduler

openstack-compute::scheduler This installs and configures a single
instance of nova-scheduler

packtpub-
os-compute-
conductor

openstack-compute::conductor This installs and configures a single
instance of nova-conductor

packtpub-os-
compute-cert

openstack-compute::nova-cert This installs and configures a single
instance of nova-cert

packtpub-os-
compute-api

openstack-compute::identity-registration This registers the identity endpoint for the
Nova service

packtpub-
os-compute-
vncproxy

openstack-compute::vncproxy This installs and configures a single
instance of the Nova VNC service

packtpub-os-
image

openstack-image::identity_registration This registers the identity endpoint for the
Glance service

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[86]

Role name Default recipe Description

packtpub-
os-compute-
dashboard

openstack-dashboard::server This installs and configures a single
instance of Horizon

packtpub-
os-block-
storage

openstack-block-storage::identity_
registration

This registers the identity endpoint for the
Swift service

packtpub-os-
network

openstack-network::identity_registration This registers the identity endpoint for the
Neutron service

It is possible to customize the automation of the cloud controller based
on roles and recipes defined in the default cookbooks provided by
StackForge, covered in Chapter 2, Deploying OpenStack – DevOps and
OpenStack Dual Deal. The main StackForge Chef repository can be found
on GitHub at https://github.com/stackforge/openstack-
chef-repo.

The compute node
Once the orchestrator has evaluated the instruments that should be integrated on the
stage, we still need the players to accomplish the song. All we need are worker horses
where our virtual machines' brains will live. Notice that the brain of this instance
refers to where all the thinking processes are done.

The compute node should be separately deployed in the cluster mode as it forms the
resources part of the OpenStack infrastructure. Even in another cloud deployment
architecture, you may find that the computing part is mostly built in separate farms.
It is imperative to give attention to the fact that compute node resources should not
be overlooked in processing, memory, network, and storage resources.

From a deployment perspective, an OpenStack compute node might not be
complicated to install as it will basically run nova-compute and the network agent
for Neutron. However, its hardware and specification choice might not be obvious.
The cloud controller presents a wide range of services, but we have agreed that using
HA and a separate deployment will crystallize the cloud controller deployment.
This way, we suffer less from the issue of service downtime. On the other hand, a
compute node will be the space where the virtual machine will run, in other words,
the space on which the end user will focus on. They only want to push the button
and get the application running on the top of your IaaS layer. It is your mission to
guarantee a satisfactory amount of resources.

A good design of cloud controller is needed but is not enough; we need to take care
over compute nodes as well: compute resources.

www.it-ebooks.info

https://github.com/stackforge/openstack-chef-repo
https://github.com/stackforge/openstack-chef-repo
http://www.it-ebooks.info/

Chapter 3

[87]

Overcommitment considerations
We have already taken into consideration the need for CPU-supporting
virtualization in Chapter 1, Designing OpenStack Cloud Architecture. What we need to
understand now is the number of cores needed, which might affect the CPU power.
Remember, for example, that hyper-threading is a highly recommended option for
your CPU per compute node in order to double the number of existing cores.

It will be great if you could afford such powerful technology, which is common
nowadays. On the other hand, in many cases, the physical compute nodes you
purchase might be more powerful than are needed. To avoid such loss, you should
keep in mind that sizing your compute nodes is important.

However, this magical catch-all formula that is applicable in all cases won't be easy
to find. You will need to work through three main steps:

1.	 Estimate a sample calculation for the CPU and RAM size.
2.	 Use OpenStack resources' overcommitment without overlooking.
3.	 As much as possible, gather resources' usage statistics periodically.

In Chapter 1, Designing OpenStack Cloud Architecture, we covered how to estimate
such resources. The next step is to extend your assumption by introducing the power
of overcommitment in OpenStack.

The art of memory or CPU overcommitment is an enabled hypervisor feature,
allowing the usage of more resource power by the virtual machine than the compute
host has.

For example, it allows a host server with 4 GB of physical memory to run eight
virtual machines, each with 1 GB of memory space allocated.

Well, there is no secrecy in this case! You should think about the hypervisor; just
calculate the portion of physical memory not used per virtual machine and assign it
to one that may need more RAM at certain moments. This is a technique based on
the dynamic relocation of unused resources that are being held in an idle status. On
the other hand, it might be a nice feature but without exaggeration!

It might be dangerous if resources are exhausted and lead to a server crash.
Therefore, we need to dive into overcommitment use cases.

In OpenStack, you will be able to overcommit CPU and RAM resources by changing
the default limit by their local configuration. Compute nodes use the ratio to
determine how many VMs you can run per hardware thread or core and how much
memory can be associated with the instance. By default, OpenStack uses 16:1 for
CPU allocation and 1.5:1 for RAM allocation ratios.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[88]

The CPU allocation ratio
The default 16:1 CPU allocation ratio means that you can run a maximum of 16
virtual CPU cores for every physical CPU core within all running virtual machines. If
you choose a physical node that has 24 cores, scheduling CPU resources will consider
24*16 available virtual cores. Thus, defining 4 virtual cores per instance, for example,
will provide 96 instances on each compute node. Ensure that overcommitting the
CPU only makes sense when running workloads are not extremely CPU-intensive. In
the other case, you should limit its ratio value.

Some values of the CPU ratio commitment can be misused by changing it to 1:1,
and then you will not be able to overcommit CPU anymore. Therefore, you will
be limited to running no more vCPUs than there are physical CPU cores in your
hardware. On the other hand, one virtual machine cannot have more virtual CPUs
than the existing physical CPUs, whereas it is still possible to run more virtual
machines than the number of existing physical CPU cores in the compute node.

Additionally, the new ratio value exposes a new way to refine resources' estimation.
Let's add a new formula that might accomplish the resources cited in Chapter 1,
Designing OpenStack Cloud Architecture.

The calculation formula to determine how many virtual instances can run on a
compute node is as follows:

(CPU overcommitment ratio * Number of physical cores)/Number of virtual cores per
instance)

The RAM allocation ratio
The default 1.5:1 memory allocation ratio means that allocating instances to compute
nodes is still possible if the total instance memory usage is less than 1.5 times the
amount of physical memory available. For example, a compute node with 96 GB
of memory can run a number of instances that reach the value of the sum of RAM
associated with 144 GB. In this case, this refers to a total of 36 virtual machines with 4
GB of RAM each.

Use the cpu_allocation_ratio and ram_allocation_ratio directives in /etc/
nova/nova.conf to change the default settings.

What about surprises? You have done the required resource computation for your
compute nodes and already estimated how many virtual machines within specific
flavors can run for each.

Flavors in OpenStack are a set of hardware templates that define the amount of
RAM, disk space, and the number of cores per CPU.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[89]

Remember that we only use overcommitment when it is needed. To make it more
valuable, you should keep an eye on your servers. Bear in mind that collecting
resource utilization statistics is essential and will eventually conduct a better
ratio update when needed. Overcommitting is the starting point for performance
improvement of your compute nodes; when you think about adjusting such a value,
you will need to know exactly what you need! To answer this question, you will
need active monitoring of the hardware usage at certain periods. For example, you
might miss a sudden huge increase in resources' utilization requirements during
the first or the last days of the month for certain user machines, whereas you were
satisfied by their performance in the middle part of the month.

We are talking about peak times, which can differ from one physical machine to
another. Users who use virtual instances cannot hold the same requirements all
the time, for example, accounting systems. You may face a trade-off between big
resource assignments to fulfill peak times and performance issues when committing
resources. Remember that it is important to have a strong understanding of what
your system is virtualizing. Furthermore, the more information you gather, the better
prepared and the more ready you will be to face surprises. Besides, it becomes your
mission to find the best optimized way of handling those requirements dynamically.
Then, you will need to pick the right hypervisor(s).

Deciding on the hypervisor
The hypervisor is the heart engine of your OpenStack compute node. This is called the
virtual machine monitor (VMM), which provides a set of manageability functions for
virtual machines to access the hardware layer. The amazing part about hypervisors in
OpenStack is the wide range of VMMs that it can offer, including KVM, VMware ESXi,
QEMU, UML, Xen, Hyper-V, LXC, bare metal, and lately, Docker.

If you already have some experience with one or more of these, it will be better to
take a look at how they differ at an architectural level. Currently, the last OpenStack
release at the time of writing this book was Juno, which has many hypervisor
features added or extended. Keep in mind that not all of these support the same
features. The Hypervisor Support Matrix (https://wiki.openstack.org/wiki/
HypervisorSupportMatrix) is a good reference that can help you to choose what
fits your needs.

Obviously, the former hypervisors are not the same, based on their nature and use
cases. For example, Quick EMUlator (QEMU) and User Mode Linux (UML) might
be used for general development purposes, while Xen requires a nova-compute
installation on a paravirtualized platform.

www.it-ebooks.info

https://wiki.openstack.org/wiki/HypervisorSupportMatrix
https://wiki.openstack.org/wiki/HypervisorSupportMatrix
http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[90]

Paravirtualization is an improvement of virtualization technology in
which the guest operating system is compiled prior to installation in a
virtual machine. Xen and IBM have adopted this technology keeping in
mind the high-performance deliverance that it can provide. The operating
system and the hypervisor work efficiently in tandem, which helps avoid
the overheads imposed by the native system resource emulation.

Most probably, you have heard about most of these previously mentioned
hypervisors, but what do you think Docker could be?

It is interesting to discover another attractive point about OpenStack, which has
steadily grown and can include any virtual technology in its ecosystem, such as the
Docker driver for OpenStack nova-compute.

Out of the box, Docker helps enterprises deploy their applications in highly portable
and self-sufficient containers, independent of the hardware and hosting provider.
It brings the software deployment in to a secure, automated, and repeatable
environment. What makes Docker special is its usage of the terms of several
containers, which can be managed on a single machine. Additionally, it becomes
more powerful when it is used alongside Nova. Therefore, it would be possible
to manage hundreds and even thousands of containers, which makes it the cat's
meow. You may wonder about the use cases of Docker, especially in an OpenStack
environment. Well, as mentioned previously, Docker is based on containers that
are not a replacement for virtual machines, but which are very specific to certain
deployments. Containers are very lightweight and fast, which may be a good option
for the development of new applications and even to port older application faster.
Imagine a virtual machine abstraction that can be shared with any application along
with its own specific configuration requirements without them interfering with
each other. Docker can do this, but in terms of containers where applications run
natively on the Linux kernel and each kernel is segmented from one another to form
the operating system. Uniquely, it might be possible to save the state of a container
as an image that can be shared though a central image registry. This makes Docker
awesome as it creates a portable image across infrastructures and reveals the barrier
of building bridges between different clouds, in other words, hybrid clouds.

As this is an introduction to the Havana release, Docker is going to be an
important tool for OpenStack, which might stand beside virtual machines
in an OpenStack environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[91]

To read more about Docker, check the following reference:
https://www.docker.com/whatisdocker/. The
Docker driver documentation for OpenStack can be found
here: http://docs.openstack.org/havana/config-
reference/content/docker.html.

On the other hand, most OpenStack nova-compute deployments run KVM as the
main hypervisor. The fact is that KVM is best suited for workloads that are natively
stateless using libvirt.

KVM is the default hypervisor for OpenStack Compute. You can check out your
compute node from /etc/nova/nova.conf in the following lines:

compute_driver=libvirt.LibvirtDriver
libvirt_type=kvm

For proper, error-free hypervisor usage, it might be required to first check whether
KVM modules are loaded from your compute node:

lsmod | grep kvm

 kvm_intel or kvm_amd

Otherwise, you may load the required modules via:

modprobe -a kvm

To make your modules persistent at reboot, which is obviously needed, you can
add the following lines to the /etc/modules file when your compute node is an
Intel-based processor:

kvm
kvm-intel

Note that kvm-intel can be replaced by kvm-amd in the case of an
AMD-based processor.

Our further compute deployments will be based on KVM.

www.it-ebooks.info

https://www.docker.com/whatisdocker/
http://docs.openstack.org/havana/config-reference/content/docker.html
http://docs.openstack.org/havana/config-reference/content/docker.html
http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[92]

Changing the color of the hypervisor
While we have decided to use KVM for nova-compute, it would be great to
check how OpenStack could support this wide range of hypervisors by means of
nova-compute drivers. You might be suggested to run your OpenStack environment
with two or more hypervisors. It can be a user requirement to choose a typical
hypervisor in order to use its native one. This will help the end user resolve the
challenge of native platform compatibility, and then we can calibrate the usage
of the virtual machine between environments. This would be a great topic in hybrid
cloud environment.

The next figure depicts the integration between nova-compute and KVM, QEMU,
and LXC by means of libvirt tools and XCP through APIs. On the other hand,
vSphere, Xen, or Hyper-V can be managed directly via nova-compute.

Let s take an example and see how such wonderful multihypervisor capability
can be factored in to your OpenStack environment. If you already have a VMware
vSphere running in your infrastructure, this example will be suitable for you if you
plan to integrate vSphere with OpenStack. Practically, the term integration on the
hypervisor level refers to the OpenStack driver that will be provided to manage
vSphere by nova-compute. Eventually, OpenStack exposes two compute drivers that
have been coded:

•	 vmwareapi.VMwareESXDriver: This allows nova-compute to reach the ESXi
host by means of the vSphere SDK

•	 vmwareapi.VMwareVCDriver: This allows nova-compute to manage multiple
clusters by means of a single VMware vCenter server

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[93]

Imagine the several functions we will gain from such an integration using the
OpenStack driver with which we attempt to harness advanced capabilities, such as
vMotion, high availability, and Dynamic Resource Scheduler (DRS). It is important
to understand how such an integration can do the magic.

vMotion is a component of VMware vSphere that allows the live
migration of a running virtual machine from one host to another with
no downtime. VMware's vSphere virtualization suite also provides a
load-balancing utility called DRS, which moves computing workloads to
available hardware resources.

In a vSphere implementation coupled with OpenStack, nova-scheduler will assume
each cluster as a single compute node that has the aggregate of resources of all ESXi
hosts managed by that cluster, as shown in the previous figure.

A good practice retrieved from this layout implementation is to place the compute
node in a separate management vSphere cluster so that nodes that run nova-compute
can take advantage of vSphere HA and DRS. vCenter can be managed by the
OpenStack compute nodes only if a management vSphere cluster is created outside
the OpenStack cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[94]

One common use case for host aggregates is when you want to support
scheduling instances to a subset of compute hosts because they have a
specific capability.

Our previous example can be thought of as the following if we seek a heterogeneous
hypervisor deployment in an OpenStack installation using KVM and vSphere ESXi.

It is important to guarantee that particular VMs are spun up on their specific
vSphere cluster, which exposes more hardware requirements. To do this, OpenStack
facilitates such requirements by means of host aggregates. They are used with nova-
scheduler in order to place VMs on a subset of compute nodes based on their rank
capabilities in an automated fashion.

A brief example can be conducted with the following steps:

1.	 Create a new host aggregate; this can be done through Horizon. Then, select
Admin project. Point to the Admin tab and open System Panel. Click on the
Host Aggregates category and create new host named vSphere-Cluster_01.

2.	 Assign the compute nodes managing the vSphere clusters within the newly
created host aggregate.

3.	 Create a new instance flavor and name it vSphere.extra with particular VM
resource specifications.

4.	 Map the new flavor to the vSphere host aggregate.

This is amazing because any user requesting an instance with the vSphere.extra
flavor will be forwarded only to the compute nodes in the vSphere-Cluster_01
host aggregate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[95]

Therefore, it will be up to vCenter to decide which ESXi server should host the
virtual machine.

At this point, we consider that running multiple hypervisors in a single OpenStack
installation is possible using host aggregates or the terminology of cells. Then, if
you factor in hypervisors' varieties, do not get confused by the fact that a single
hypervisor is running with an individual compute node.

Eventually, the previous figure might consider that the VM instances running on
KVM can be hosted directly on a nova-compute node, whereas the vSphere with
vCenter on OpenStack requires a separate vCenter server host where the VM
instances will be hosted on ESXi.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[96]

Storing instances' alternatives
Compute nodes have been sized with the total CPU and RAM capacity, but we did
not cover the disk space capacity. Basically, there are many approaches to doing this
but it might expose other trade-offs: capacity and performance.

External shared file storage
The disks of running instances are hosted externally and do not reside in compute
nodes. This will have many advantages, such as the following:

•	 Ease of instance recovery in the case of compute node failure
•	 Shared external storage for other installation purposes

On the other hand, it might present few drawbacks, such as the following:

•	 Heavy I/O disk usage affecting the neighboring VM
•	 Performance degradation due to network latency

Internal nonshared file storage
In this case, compute nodes can satisfy each instance with enough disk space. This
has two main advantages:

•	 Unlike the first approach, heavy I/O won't affect other instances running in
different compute nodes

•	 Performance increase due to direct access to the disk I/O

However, some further disadvantages can be seen, such as the following:

•	 Inability to scale when additional storage is needed
•	 Difficulties in migrating instances from one compute node to another
•	 Failure of compute nodes automatically leading to instance loss

In all cases, we might have more concerns for reliability and scalability. Thus,
adopting the external shared file storage would be more convenient for our
OpenStack deployment. Although there are some caveats to the external instances'
disk storage that must be considered, performance can be improved by reducing
network latency.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[97]

Cooking the compute node
Deploying the compute node via Chef is much simpler than understanding the
resource requirements needed for a node. Basically, the compute node will run
nova-compute together with the networking plugin agent. What you should
understand at this stage of automated deployment is how to conduct your
controller to communicate with the compute node when you run Chef.
You got it: create a correct network mapping in your environment file.
Let's refresh our memory about the compute spot against the controller:

We have already defined a role in the cookbook that automates the installation of
the cloud controller instances in The cloud controller section. We will do this for the
compute node as well by defining a new role named packtpub-os-compute.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[98]

The next cookbook design will highlight a complete independent compute node
setup regardless of the presence of the cloud controller in the environment. Thus,
the design might be tempted to show all dependencies as the compute node will be
deployed out of the box. As was claimed in our Chef cloud controller installation,
many roles can use other recipes within a given role. The same aspect applies to our
compute node. Basically, a compute node that runs nova-compute will depend on
the image, identity, and network services besides the common services and attributes
that describe the OpenStack environment, such as endpoint mapping. If you intend,
for example, to start the deployment of the compute node for the first time, its
cookbooks must be uploaded. On the other hand, you can create a berks file that
defines the list of required cookbook dependencies in your compute node cookbook.
Do not be surprised if you find some cookbooks from the Chef community, which
may include the same dependencies. This indicates good design as it is considered
as a nonmonolithic block with which you can deploy services independently but by
sharing the same dependencies. We have our primary cookbooks already uploaded.
Adding new ones will depend on the existing ones if you would like to customize
your OpenStack deployment. In addition, any updates to recipes will be taken into
consideration by Chef. Chef is smart enough to claim that it is already added and
there is no need to upload it again, but just to use it. This is another reusability aspect
of Chef deployments. You may feel the difference between the first deployment in
Chef and the subsequent ones from the perspectives of speed and fewer errors. The
Chef compute node cookbook design may look like the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[99]

The open vSwitch agent service can also run optionally on compute
nodes. In this way, scalability of open vSwitch is achieved in case of
compute node failure.

The new packtpub-os-compute Chef role can be defined as the following:

name "packtpub-os-compute"
description "PacktPub scalable compute node role"
run_list(
 "role[packtpub-os-compute-worker]",
 "role[packtpub-os-network-openvswitch]"
)

To upload the new role to your Chef environment, run the following command from
the Chef workstation using the Knife command line:

packtpub@workstation$ knife role from file /home/packtpub/chef-
cookbooks/roles/packtpub-os-compute.json

Preparing for plan B
One of the most critical tasks for a system administrator or cloud operator is
to plan a backup. Building infrastructure and starting in production without a
disaster recovery background is considered highly risky and you will need to start
taking immediate actions. We may find a bunch of property software in the cloud
computing area that does the job, such as the VMware backup solution.

However, backing up open source clouds will not be that easy. OpenStack does
not, for instance, support any special tool for backup. As it is merely a collection of
components combined to deliver services, an OpenStack operator should think how
to map the components used in its infrastructure and prepare a backup strategy for
each; the strategy should be easy, efficient, and autorecovery-enabled.

Thus, you should not miss the first question: what do we need to back up and how
do we perform such a mission?

At first glance, you might be tempted to think that backing up the cloud controller
will be centered on configuration files and databases.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[100]

Back up with backup-manager
Considering that there are many backup methods, you may wonder how to choose
the right tool for your system.

One of these methods involves using the backup-manager tool: a simple command-
line backup that is available for most Linux distributions. You can install it on your
nodes and configure it easily from one central file. If you are using CentOS 6 or
earlier, you will need to enable your EPEL repository:

packtpub@cc01$ sudo rpm -Uvh http://mirrors.kernel.org/fedora-epel/6/
i386/epel-release-6-8.noarch.rpm.

Import the GPG key, as follows:

packtpub@cc01$ sudo rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-6

Install the backup-manager package:

packtpub@cc01$ sudo yum install backup-manager

The main configuration file for backup-manager is /etc/backup-manager.conf.
You can edit the file by defining each section by the backup methods and their
associated variables. We can start by listing the directories and files that we
want to back up:

export BM_TARBALL_DIRECTORIES="/var/lib/nova /etc/keystone
 /etc/cinder /etc/glance /var/lib/glance /var/lib/glance/images
 /etc/mysql"

Note that we have excluded the /var/lib/nova/instances file
from the backup folder list, as it contains running KVM instances. It
might result in nonproper bootable images once you have restored
them from the backup. For safety reasons, it might be possible to
save the image states first by means of snapshots and backing up the
generated image files in the next step.

Then, we specify the backup methods, such as mysql using mysqldump and tarball
to define the list of directories of corresponding tarballs:

export BM_ARCHIVE_METHOD="tarball mysql"

The next line will point to where you can store the backups:

export BM_REPOSITORY_ROOT="/var/backups/"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[101]

You may plan for a redundancy plan by uploading the archived backup to a
secondary server using rsync. You can use your Swift cluster to provide more data
redundancy across the SWIFT rings.

Backing up your nodes' configuration files locally needs continuous
monitoring, especially for disk space consumption. Try to keep an eye on
your monitoring system to prevent a full disk space state in your nodes.

Next, we will explain how files will be compressed using gzip, for example:

export BM_MYSQL_FILETYPE="gzip"

Optionally, you can define the SSH account to upload your archives remotely:

export BM_UPLOAD_SSH_USER="root"

Next, we move to backing up our SQL databases. You can use the traditional method
using mysqldump. We can continue with backup-manager and add the following
sections to /etc/backup-manager.conf:

export BM_MYSQL_DATABASES="nova glance keystone dash mysql cinder"
export BM_MYSQL_ADMINPASS="Define the root password in /root/.my.cnf"

The downside of this approach is the plaintext presentation of the password of
databases. Thus, if you intend to secure the database, ensure that the permissions are
restricted for /etc/backup-manager.conf, including the root user.

What about compute nodes? In fact, it implies the same folder, /var/lib/nova/,
and excludes the subdirectory instances where the live KVM resides. Backing up the
instances themselves is also possible by either creating a snapshot from Horizon or
by installing a backup tool in the instance itself.

Simple recovery steps
For a safe and successful recovery process, you can follow the next set of
simple steps:

1.	 Stop all the services that you intend to recover. For example, for a full Glance
recovery in your cloud controller, run these commands:
packtpub@cc01$ stop glance-api

packtpub@cc01$ stop glance-registry

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering – Cloud Controllers and Compute Nodes

[102]

2.	 Import the glance backed-up database:
packtpub@cc01$ mysql glance < glance.sql

3.	 Restore the glance directories:
packtpub@cc01$ cp -a/var/backups/glance /glance/

4.	 Start all glance services:

packtpub@cc01$ service start mysql

packtpub@cc01$ glance-api start

packtpub@cc01$ glance-registry start

Summary
In this chapter, you learned how to distribute services among cloud controllers by
taking future deployment based on fundamental concepts about high availability
and service clustering into consideration. You also learned how a cloud controller
is composed and how it functions in an OpenStack environment. By breaking
down the cookbooks we uploaded on our Chef server, you covered an example
that showed how you could play with roles to define your own services for them
to be reusable with other recipes. You should also have learned the importance of
compute node requirement from a hardware perspective by refining the decision
related to hypervisor selection and how to conduct the best storage outfit for your
compute nodes.

Another important topic was highlighted, which investigates how to back up
your OpenStack environment. This is not something to ignore; as your OpenStack
installation grows, the size of disk usage per node may increase dramatically and
can bring it down quite easily. In this case, we have to look at the storage approaches
existing in OpenStack and how to harness them to be useful for different purposes,
which will be covered in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

[103]

Learning OpenStack Storage
– Deploying the Hybrid

Storage Model
"As is our confidence, so is our capacity."

–William Hazlitt

Competing as a large cloud enterprise requires a reliable, scalable, and robust storage
solution. The next generation of data centers aims to leverage the power of cloud
storage. The storage infrastructure in the data center has been simplified by the
means of software-defined storage. With OpenStack, managing storage through the
software stack in the data center becomes easier. Additionally, OpenStack provides
several storage types that need more understanding in order to make the right choice
with regard to which storage solution will suffice for all the workload requirements.

The mission of this chapter is to make the readers self-confident about the design of
their storage in the OpenStack environment. In this chapter, we will learn how to
use Swift and Cinder. Additionally, we will introduce Ceph, a new cloud storage
solution that is seamlessly integrated with OpenStack.

In this chapter, we will go through the following topics:

•	 Understanding the different storage types in OpenStack
•	 A few best practices under the umbrella of storage systems
•	 Simplifying the Swift architecture and explaining how to do it
•	 Bringing Cinder under the microscope and demonstrating its use case
•	 Getting to know Ceph and ways to integrate it within OpenStack

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[104]

Understanding the storage types
Which storage technology will fit into your OpenStack cloud implementation?
To answer this question, it is necessary to differentiate between different storage
types, which will make sense of each use case of your further decision. The fact
that OpenStack clouds can work in tandem with many other open source storage
solutions might be an advantage, but on the other hand, it can be overwhelming.

Thus, you are tasked in the beginning as you have to decide what you
need—persistent or ephemeral storage?

Ephemeral storage
For the sake of simplicity, we will start with the nonpersistent storage, which is
called ephemeral storage. As its name suggests, a user who actively uses a virtual
machine in the OpenStack environment will lose the associated disks once the
VM is terminated.

Persistent storage
Persistent storage means that the storage resource is always available. Powering off
the virtual machine does not affect the data. We can divide it into two persistent
storage options in OpenStack—object and block storage with the code names Swift
and Cinder, respectively. We did talk about Swift and Cinder in Chapter 1, Designing
OpenStack Cloud Architecture, in a nutshell. Let's dive into each storage OpenStack-
aware and see how the two different concepts are used to dump
different purposes.

Object storage is not NAS/SAN
Object storage allows a user to store data in the form of objects by using the RESTful
HTTP APIs. If you compare an object storage system to traditional NAS or SAN
storage, it might be claimed that object storage is much better than the latter. You can
refer to an object as a file representation in a traditional way. Let's take a closer look
at how they differ:

•	 Objects are stored in a flat and vast namespace. Unlike a traditional storage
system, they do not preserve any specific structure or a particular hierarchy.

•	 The stored objects are not user friendly.
•	 Accessing the Object Storage Devices (OSDs) by using an API such as REST

or SOAP cannot be done via any file protocol such as BFS, SMB, or CIFS.
•	 Object storages are not suitable for high-performance requirements or

structured data that is frequently changed, such as databases.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

A spotlight on Swift
Swift was one of the first OpenStack projects. It was developed by NASA and
Rackspace, and the former contributed towards the project by developing the code
of the block storage of the OpenStack ecosystem. A few major changes to the storage
came about in a very short span of time.

Firstly, the emergence of web and mobile applications fundamentally changed data
consumption. The second major change was introduced in the Software Defined
Storage (SDS), which enables a large distributed storage system to be built by a basic
commodity storage. This dramatically reduces the cost of deploying data into an
application as the individual component is not reliable.

Swift is an object storage system. This means that it treats immediate consistency
before eventual consistency. This allowed Swift to gain HA, redundancy,
throughput, and capacity.

By adopting Swift as a cloud storage solution, you can enjoy several benefits, some of
which are as follows:

•	 Scalability: Swift is designed as a distributed architecture that allows the
performance to scale

•	 On-demand: Swift offers an on-demand storage with a centralized
management way

•	 Elasticity: The dynamic ways to use data allow you to increase and decrease
its available resources as needed

The Swift architecture
By relying on Swift for the logical software management of data instead of some
specialized vendor hardware, you gain incredible flexibility and features related to
deployment scaling that are unique to a storage system.

This is the essence of what an SDS is all about. However, what happens under the
hood is really interesting. Swift is fundamentally a new type of storage system. It is a
monotonic system rather than a distributed system, which means that it scales out and
tolerates failures without compromising the data availability. Swift does not attempt
to be like other storage systems; it doesn't mimic their interfaces. Instead, it changes
how the storage works.

The Swift architecture is very distributed, which prevents any Single Point Of
Failure (SPOF). It is also designed to scale horizontally.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[106]

The components of Swift consist of the following:

•	 The Swift proxy server: This accepts the incoming requests via either
the OpenStack Object API, or just the raw HTTP. It accepts file uploads,
modifications to metadata, or container creation. In addition, it also serves
files or container listings to the web browser. The proxy server may also rely
optionally on the cache, which is usually deployed with memcached which
improves performance.

•	 The account server: This manages the account that is defined with the object
storage service. It describes the storage area that defines its own descriptive
information (metadata) and the list of containers in the account.

•	 The container server: This manages a mapping of containers in the account
server. A container refers to the user-defined storage area in an account
server. It defines a list of stored objects in the container. A container can be
conceptually similar to a sample folder in a traditional filesystem.

•	 The object server: This manages an actual object within a container. The
object storage defines where the actual data and its metadata is stored. Note
that every object must belong to a container.

Metadata provides descriptive information about the object. It is
stored as key-value pairs. For example, a database backup can
contain information about the backup time and backup tool.

Also, there are a number of processes that perform the housekeeping task on the
large data stores. The most important of these are the replication services, which
ensure consistency and availability through the cluster. Other post-processing
processes include auditors, updaters, and other reapers.

Auditors, updaters, replicators, and reapers are background
daemons that are run by Swift. Note that these processes can be
high resource consumers, which can be noticed by the increase
in the disk I/O traffic metric. It is recommended to adjust a few
settings in every object and container configuration file. For
example, it is possible to limit the number of background processes
running simultaneously on each node by adding a concurrency
value in each replicator, reaper, updater, or section. To see more
about the Swift object, container, and server configurations, check
the following link: http://docs.openstack.org/havana/
config-reference/content/object-server-conf.html.

www.it-ebooks.info

http://docs.openstack.org/havana/config-reference/content/object-server-conf.html
http://docs.openstack.org/havana/config-reference/content/object-server-conf.html
http://www.it-ebooks.info/

Chapter 4

[107]

Fire and forget
What makes Swift an amazing handler of objects in a storage system is the way it
treats the blob data and gives access via the OpenStack API.

It just clears the question: Where is my file and how can I access it? You would instead
change the question to: Do I have the unique object ID of the corresponding file?

If the answer is yes, then you should really not care about the location of the file.
Make it simple. Exchanging OID with your OSD is enough!

Indexing the data
Searching, retrieving, and indexing the data in an OSD is done via the extensive
usage of metadata. Although a typical NAS storage uses the metadata, you should
consider the fact that the metadata in OSD is stored with the object itself in key-value
pairs. What makes it pretty wonderful is that the OSD keeps tagging the object even
if it is sliced or chunked with its metadata for storage efficiency reasons.

A rich API access
The proxy Swift process is the only process that can communicate outside a storage
cluster, and what it does is listen and speak to a specific HTTP.

Thanks to the RESTful HTTP API, we will be able to access the OSDs. On the other hand,
Swift provides language-specific libraries and APIs in PHP, Java, Python, and so on.

Let's see what the HTTP request looks like within the Swift API:

•	 GET: This downloads objects with metadata and lists the contents of the
containers or accounts

•	 PUT: This uploads objects, creates containers, and overwrites the metadata
headers

•	 POST: This updates the metadata (accounts or containers), overwrites the
metadata (objects), and creates containers if they do not exist

•	 DELETE: This deletes objects or empty containers
•	 HEAD: This retrieves header information, which includes the metadata for

the account, container, or object

An object request always requires an authentication token. Therefore, authentication
can be configured through the WSGI middleware, which is typically Keystone.

Objects stores can be mounted and accessed via NFS, SMB, or CIFS if their
corresponding stores provide a NAS interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[108]

Physical design considerations
The hallmark of Swift usage is that it requires you to look after your data durability
and availability. By default, a Swift cluster storage design considers a replica of three.

Therefore, once the data is written on a replica, it is spread across two other replicas,
which increases the availability of your data on one hand. On the other hand, you
will need more storage capacity. In addition, referring to the first logical design in
Chapter 1, Designing OpenStack Cloud Architecture, we have dedicated a network
for storage.

That was by purpose firstly for logical network design organization and secondly
to mitigate the load on the network by dedicating a separate storage handler.
Imagine a situation where one of the storage nodes with 50 TB fails when you need
to transfer this huge blob of data remotely to accomplish the required three-replica
design. It can take a few hours, but we need it immediately! Thus, take into account
the bandwidth precisely between your storage servers and proxies. This is a good
reason to put the spotlight on the physical design and the way the data is organized
in Swift.

In the first stage, we saw that the accounts, containers, and objects form the term
data in Swift, which will need physical storage. In this stage, the storage node will
be constructed first. Remember that Swift aims to isolate failures, which makes the
cluster wider in terms of grouping according to the nodes. Thus, Swift defines a new
hierarchy that helps you abstract the logical organization of data from the physical one:

•	 Region: Being in a geographically distributed environment, data can be
held in multiple nodes that are placed in different regions. This is the case
with a multi-region cluster (MRC). A user can suffer due to higher latency
that comes with the different servers being placed away from each other in
each region. To do so, Swift supports a performance read/write function
called read/write affinity. Based on the latency measurements between the
connections, Swift will favor the data that is closer to read. On the other
hand, it will try to write data locally to transfer the data to the rest of the
regions asynchronously.

•	 Zone: Regions encapsulate zones, which define the availability level that
Swift aims to provide. A grouping or a set of hardware items, such as a rack
or storage node, can refer to a zone. You can guess the rest—zoning to isolate
hardware failure from the other neighbors.

It is recommended to use five zones and start with at least
one zone in a given cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[109]

•	 Storage nodes: The logical organization continues the storage abstraction
from the region which is the highest level, zones within region until we
find the storage servers which define the zone. A set of storage nodes forms
a cluster that runs the Swift processes and stores an account, a container,
the object data, and its associated metadata. What makes Swift unique is a
special storage organizer aware is possibly used to define how your set of
nodes would be grouped by criteria.

•	 Storage criteria: Depending on how the zones are set within the available
regions, Swift allows us to customize the way you wish to distribute data
across a single region or multiple regions on specific storage hardware or a
defined replica cluster.

•	 Storage device: This is the smallest grain of the Swift abstraction data
classification. The storage device can be the internal storage node's device or
connected via an external stack of a collection of disks in a drive enclosure.

The drives that are used in Swift can be set in a Just a Bunch of
Disks (JBOD) regardless of the configuration and can be accessed
from the host computer as a separate drive unlike RAID, which
treats a collection of drives as a single storage unit.

The following figure shows the hierarchy in Swift:

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[110]

Where is my data?
Ultimately, considering an MRC and looking for some sample data across a bunch of
storage servers fires up a pertinent question: how could Swift do that?

Whether the request was to read or write, the Swift servers need to map the data
names to physical locations, which are called rings. We can summarize the concept of
the rings as follows:

•	 Assign accounts, containers, and objects in separate rings
•	 Logical partition of the storage device in the ring
•	 Update the ring by redistributing the partitions in case or add/remove a

device to/from the cluster respectively

It is recommended to use 100 partitions for each device
per zone.

Practically, a ring is a bunch of tables that are distributed to every node in the cluster.
So, why do these tables exist everywhere? The answer is simple. This is because
Swift replicates data everywhere!

There are various rings present in a cluster. When a process
needs to find an account, a container, or an object, it first looks
for the data in all the locations on every separate ring.

Does this not make sense? When a process needs to find some account-related data,
it first starts looking in a local copy of the rings, which points to all the locations on
the account ring for the data. For example, the rings in Swift use the hash functions
to determine how to retrieve or store an object. When using several drives in a
multiregion Swift environment, complicated hashing functions can be used to
accomplish such data location.

For example, a simple method to determine where to store an object can use an MD5
algorithm by getting the hash of the object storage location in an account server,
as follows:

md5 ("/account_server01/container01/objectID") =
 f46aaa8067cbeb944b547a0fbc3012a2

The ring will define the MD5 hash to a hexadecimal representation, which will give a
value of 654853167495245315274945238545002450045.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[111]

Next, we'll proceed with a modulo operation by dividing its value by the
available number of drives. Assuming that we have three drives, it might
give the following result:

332115198597019796159838990710599741918 % 3 = 2

The remainder of the former division will map the drive ID, which is 2.

Swift uses the ring-builder tool to create builder files by account/container/object
storage that contains information such as the replica count, partition power, and the
location of the storage drives within the cluster.

The total number of partitions that exist in your cluster can be obtained by
using the following partition power formula:
Total_partitons_per_cluster = 2 [partition power]
Here, the partition power is a random integer.

The following figure shows the ring mechanism:

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[112]

Let's sum up our understanding of Swift in a real write-show example, as illustrated
in the previous figure:

1.	 Get the list of drives by the proxy servers from the ring.
2.	 Associate the objects to write the data.
3.	 Devices acknowledge for the ability to perform write operations.

Swift hardware
Basically, we want to know how many proxy and storage nodes (containers,
accounts, and objects) we will need. Note that we can logically group containers,
accounts and/or objects in a node to form a storage tier. Note that the racks formed
by a set of storage tiers that are logically sharing a physical point of failure, such as
a connection to a standalone switch, will be grouped into the same zone. Let's take a
look at an example of the deployment that we intend to have:

•	 50 TB of object storage
•	 Cluster replica of 5
•	 The Swift filesystem is XFS
•	 A hard drive of 2.5 TB
•	 30 hard drive slots per chassis

With a few basic calculations, we can conclude how many storage nodes we
will need.

Starting with an important point concerning the factor or the XFS overhead gives a
value of 0.5 percent, which gives a factor of 1.0526.

A nice post can be found at http://rwmj.wordpress.
com/2009/11/08/filesystem-metadata-overhead/.
In this, several filesystem metadata overheads are compared.

On the other hand, by assuming a cluster of five replicas, the total storage capacity
can be calculated in the following way:

50 * 5 replicas = 250 TB

Next, we will get the total raw storage that is needed to calculate the size of the
drive, as follows:

250 TB * 1.0526 = 263 TB

www.it-ebooks.info

http://rwmj.wordpress.com/2009/11/08/filesystem-metadata-overhead/
http://rwmj.wordpress.com/2009/11/08/filesystem-metadata-overhead/
http://www.it-ebooks.info/

Chapter 4

[113]

Now, we need to determine the number of hard drives that are required, as follows:

[263 / 2.5] = 105.2 => 106 drives

Finally, the total number of storage nodes will be calculated in the following way:

106/30 = 3.533333 => 4 nodes

We can use one proxy node per four tier nodes.

If the number of storage nodes increases and has a value of more than six
in high workload traffic, you ought to add more proxy server processes.

Where to place what
Most probably, you will feel more comfortable when it comes to choosing the CPU or
RAM capacity based on our previous calculations in Chapter 1, Designing OpenStack
Cloud Architecture. What will be the case in large distributed storage systems?

We can go for the advanced CPU calculations as we have to make our proxy servers
and storage nodes a good outfit for the commodity hardware that we plan to
deploy in the OpenStack storage system. We will not spend a lot of money while
maintaining the minimum capacity requirements. Let's just make it run.

The proxy server in the Swift cluster will forward the client's request and send back
the responses across the storage nodes, which might increase the CPU utilization.

Storage nodes will perform intensive disk I/O operations, while affording more
CPUs is highly recommended with regards to the Swift process handler for the
replication and auditing of data.

Thus, with more drives per node, more CPUs are needed. Let's optimize the
approach based on the CPU calculation in Chapter 1, Designing OpenStack Cloud
Architecture. So, we already have 106 drives that are distributed in 4 nodes.

Assuming that we intend to use a CPU of 2 GHz processors with a ratio of cores to
drives of 3:4, we can calculate the number of cores that we will need, as follows:

(27 drives * 3/4 (core.GHz/drive))/2 GHz = 10.125 cores

The CPU cores can be obtained by using the following formula:
(Total_Number_Drives * (core:drive ration)) / GHz_Cores

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[114]

As was claimed previously, Swift recommends the use of the XFS filesystem, where
it caches its nodes in the RAM. More RAM implies more caching, and therefore,
a faster object access. On the other hand, you might need to cache all nodes in the
RAM because you have to take care that your network limitation does not lead to a
bottleneck. We will start with 2 GB RAM per server.

Finally, the most particular spec that comes now is the disks. Basically, the proxy
nodes will not require any additional drive, but we need to find a cost/performance
fit for the storage nodes.

Eventually, the account and container servers can be deployed with the use of SSDs,
which will boost the speed during the localization of the data.

On the other hand, the object storage servers can be satisfied by utilizing the
SATA/ATA disks with 6 TB disks, for example. Note that the object storage server
is complaining of a low IOPS. Thus, you should add more disks till you get an
acceptable value of IOPS.

The Swift network
Our first network design assumes that an additional network is dedicated for the
storage system. In fact, we should remind ourselves that we are talking about a large
infrastructure. More precisely, Swift is becoming a big house with small rooms in
our OpenStack deployment. However, Cinder can still provide a big room in a fairly
small house.

For this reason, we will extend the Swift network by deriving more subnets,
as follows:

•	 The front-cluster network: Proxy servers handle communication with the
external clients over this network. Besides, it forwards the traffic for the
external API access of the cluster.

•	 The storage cluster network: It allows communication between the storage
nodes and proxies as well as inter-node communication across several racks
in the same region.

•	 The replication network: We do care about the development of our
infrastructure size, right? Therefore, we will plan for the same for the
multiregion clusters, where we dedicate a network segment for
replication-related communication between the storage nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[115]

The Swift network is shown in the following figure:

Cooking Swift
The cookbooks uploaded to the Chef server in Chapter 2, Deploying OpenStack
– DevOps and OpenStack Dual Deal, include as well the Swift cookbook named
cookbook-openstack-object-storage.

If you did not upload the Swift cookbook, you can download it and
add to your Chef cookbook repository from GitHub: https://
github.com/openstack/cookbook-openstack-object-
storage/tree/stable/havana.

www.it-ebooks.info

https://github.com/openstack/cookbook-openstack-object-storage/tree/stable/havana
https://github.com/openstack/cookbook-openstack-object-storage/tree/stable/havana
https://github.com/openstack/cookbook-openstack-object-storage/tree/stable/havana
http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[116]

For a large environment, it is recommended to split the proxy and storage layers,
as shown in the previous figure. Optionally, we can assign, for each storage node, a
triple Swift server: account, container and object role while keeping dedicated nodes
for the Swift proxy server. From our Chef server, we can assign the following roles.

A Swift storage node role, add this code:

name "packtpub-os-object-storage"
description "Swift Triple Servers Roles"
run_list(
 "role[packtpub-os-base]",
 "role[packtpub-os-object-storage-account]",
 "role[packtpub-os-object-storage-container]",
 "role[packtpub-os-object-storage-management]",
 "role[packtpub-os-object-storage-object]"
)

A Swift proxy node role can be as follows:

name "packtpub-os-object-storage-proxy"
description "Swift Proxy Server Role"
run_list(
 "role[packtpub-os-base]",
 "recipe[openstack-object-storage::proxy-server]"
)

Upload both roles to Chef server via knife command line:

$ knife role from file roles/packtpub-os-object-storage.rb

$ knife role from file roles/packtpub-os-object-storage-proxy.rb

For the sake of simplicity, we can run the Swift proxy server on the cloud controller.
Most importantly, the Swift proxy server should have access to the storage network.
The next code shows an update of our Chef environment file to support Swift in our
first test environment:

…
"override_attributes": {
 …………
 "object-storage": {
 "zone": "1",
 "swift_hash": "877c0688aa47",
 "authmode": "keystone",
 "authkey": "swauthkey",
 "auto_rebuild_rings": false,
 "git_builder_ip": "127.0.0.1",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[117]

 "network": {
 "proxy-cidr": "192.168.47.0/24",
 "object-cidr": "192.168.47.0/24"
 }
 },
…..
 }
}

We modify next our Vagrant file which will include a new packtpub-os-object-
storage-proxy role on the cloud controller node. We will add five Swift storage
nodes. The Vagrant file will be updated as the following:

...
chef_environment = "vagrant-packtpub"

 controller_run_list = [
 "role[packtpub-os-base-controller]",
 ...
 "role[packtpub-os-object-storage-proxy]"
]
...
 swift_run_list = [
 "role[packtpub-os-object-storage]"
]
...
Swift 5 Storage Nodes

(1..5).each do |j|
 config.vm.define "storage_node#{j}" do |node|
 config.vm.provider "virtualbox" do |node|
 node.name = "storage_node#{j}"
 node.vm.box = "opscode-centos-6.5"
 node.vm.network "private_network", ip: "192.168.47.11#{j}"
 end
 end
 node.vm.provision :chef_client do |chef|
 chef.run_list = swift_run_list
 chef.environment = chef_environment
 chef.chef_server_url = "https://chef.packtpub.com:443"
 chef.validation_key_path = "/home/packtpub/chefrepo/.chef/chef-
validator.pem"
 end
end
…

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[118]

After saving the Vagrantfile, update the controller node role and bring the new Swift
nodes up by running the following commands:

export VAGRANT_VAGRANTFILE=vagrant-packtpub

vagrant reload --no-provision controller1

vagrant up

This commands give the following output:

Next, run the following command:

vagrant provision

Running the preceding command gives the following result:

Joining Cinder
Now, we will talk about block storage. We made a small comparison between
Swift and Cinder in Chapter 1, Designing OpenStack Cloud Architecture. Since we are
building the infrastructure, we need to decide on the best outfit storage. Without
doubt, we have seen that Cinder is fully integrated into OpenStack Compute, where
users are able to manage their own storage needs by managing the volumes and the
associated snapshots of these volumes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[119]

It is imperative to check the use case of Cinder in our storage design. Like object
storage, block storage is mainly a tool for persistent storage. Under the hood,
volumes expose a raw block of storage that can be attached to instances and which
can store data permanently. On the other hand, Cinder manages snapshots. Keep
in mind that the former is a point-in-time copy of a volume, whereas you might
be able to make fast and temporary backups by fully copying a volume's data and
storing the same in the backup system. However, the concept of the snapshot can be
misunderstood when you rely on it purely for long-term backup purposes.

Fundamentally, block storage becomes an essential requirement for virtual
infrastructure within OpenStack that is in favor of ephemeral storage. We should be
glad that Cinder provides a block device that uses iSCSI, NFS, and Fiber Channel.
Alternatively, we can even make it compatible with some other vendor backend
storage connectivity. Moreover, Cinder helps you manage the quotas by limiting
the tenant's usage. You can limit the quota usage by total storage utilized including
snapshots, total of volumes available, or total number of snapshots taken. The
following example shows the current default quota for the packtpub_tenant tenant
by using the following command line:

cinder quota-defaults packtpub_tenant

+-----------+-------+

| Property | Value |

+-----------+-------+

| gigabytes | 1000 |

| snapshots | 50 |

| volumes | 50 |

+-----------+-------+

The limiting of the quotas for the packtpub tenant can be done in the following way:

cinder quota-update --volumes 20 packtpub_tenant

cinder quota-update --gigabytes 500 packtpub_tenant

cinder quota-update --snapshots 20 packtpub_tenant

cinder quota-show packtpub_tenant

+-----------+-------+

| Property | Value |

+-----------+-------+

| gigabytes | 500 |

| snapshots | 20 |

| volumes | 20 |

+-----------+-------+

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[120]

Choosing the storage
While dealing with the different storage systems within OpenStack, you may wonder
which outfit would be the best for your storage solution. Based on our previous
discussions, you should proceed into the next stage and discard a few questions and
scenarios to validate your choice.

Why should your environment support block storage and why not object storage?
Should you rely on the compute nodes to store your persistent storage drives?
Alternatively, will the external nodes be more convenient, taking your budget into
consideration? What about performance? Do the internal users need only reliable
storage? Should they turn a blind eye to its performance capabilities? Do you need
real redundant storage to meet the requirements of data-loss scenarios?

As you can see, we throttled a lot of questions. This can be done to a great extent.
Does it sound like an investigation series? Let's keep it simple and bring our case
under the microscope. Keep in mind that it will be one of many possibilities. If you
intend to over engineer your profiled storage design, you may expect complexity,
which may lead to an unknown state. To avoid such confusion, we can make a choice
based on the strategy of using simplicity.

We will assume that block storage is recommended for our OpenStack environment
for the following reasons:

•	 It provides persistent storage for virtual machines, which guarantees more
consistency than Swift

•	 It offers a better read/write and input/output storage performance for the
virtual machine volumes

•	 It resolves the trade-off between performance and availability through the
use of external storage when a storage backend is supported by Cinder

•	 It has the snapshot facility to create new volumes for read/write usage

Suddenly, you might be tempted to think that we should not use Swift; the answer
to this will be no! There are several reasons behind arguing in favor of Swift, some of
which are as follows:

•	 Swift is a good fit if you wish to store large blobs of data, which includes a
large number of images

•	 It is suitable for the backing up of archive storage, which brings the
infrastructure-related data in a safe zone

•	 It is a very cost-effective storage solution that prevents the need to use an
external RAID-specific controller

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[121]

•	 With Swift, we can access specific user data from anywhere; it can serve as a
Google data search engine

CAP under scope
OpenStack is designed to facilitate the integration of several existing storage
architectures in the enterprise. In fact, you may have noticed that we escalated such
choices to resolve the CAP theorem.

Eric Brewer of UC Berkeley proposed a theory in 2000, which states the impossibility
of a distributed system to guarantee that the following three important points will
be implemented:

•	 Consistency: Return the same data once a request has been launched, which
presumes that the clients will see the operations occurring in the same order

•	 Availability: Return an acknowledgement once a request has been launched
within a response

•	 Partition tolerance: This is the ability to resist total or partial connectivity
network failures of the system

Read more about the CAP theorem at
http://en.wikipedia.org/wiki/CAP_theorem.

Therefore, such a choice aspires to bring the challenge that a storage system might
face to a great CAP's narrowed implication opportunity.

Swift belongs to the AP class. We have seen how it was architecturally designed to
provide HA and be a good option for partition tolerance by cluster zoning.

On the other hand, although Swift and Cinder store slightly different OpenStack
data, the volumes of the virtual machines are very critical in the first place.
They need a very high performance bias along with a consistency level, which
is something that Cinder is good at. Thus, we will not take the risk and wait for
a scenario where a write operation to all the nodes in your cloud storage are not
reflected simultaneously.

www.it-ebooks.info

http://en.wikipedia.org/wiki/CAP_theorem
http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[122]

Stirring up the storage
Once validated, the topology for any system design will go through a hardware
planning phase. For Swift, we will talk about object storage. We are highly
redundant to respect the native requirements of its architecture. Let's examine an
example of hardware selection.

Cinder can do more
By relying on Swift to manage object storage on commodity servers instead of
specialized vendor hardware, we gain a lot of flexibility at a low cost. However,
when we arrive to spend some time on our block storage, we face a few
other options.

Block storage differs from object storage with regard to the consistency. In a cloud
environment, where machines depend on their volumes to run, it might be obvious
to treat this case in a different way. If you already have a special vendor storage
solution deployed in your infrastructure, you can change the way of starting from
scratch, which might not only be time consuming, but also expensive. The awesome
thing about Cinder in OpenStack is that it supports many storage array suppliers.
The former exposes block storage by means of Cinder drivers, such as Dell, Hitachi,
IBM, VMware, HP, NetApp, and so on.

You can check the Cinder support matrix at
https://wiki.openstack.org/wiki/CinderSupportMatrix.

Cinder provides the available block storage driver support by the vendor product.
The functions that are enabled by OpenStack release code names. Note that most of
the suppliers provide support for protocols such as iSCSI in the first place then Fiber
Channel and NFS. In our case, we will deploy block storage with the EMC plugin.
As shown in the next figure, you will need an EMC Storage Management Initiative
Specification (SMI-S) server to initiate the (CMI) clients operation over HTTP in
the backend.

In our case, the integration of an SMI-S server is very useful if we wish to provide
a common point to manage the heterogeneous storage devices in our OpenStack
environment. Starting with the EMC storage, for example, you will be able to
manage the additional SMI-S-enabled storage property from a unique web-based
console instead of rushing between each vendor-native management interface.

www.it-ebooks.info

https://wiki.openstack.org/wiki/CinderSupportMatrix
http://www.it-ebooks.info/

Chapter 4

[123]

CMI stands for Clariion Message Interface and is used for
communication between the storage processors.

You will need to create a thin PacktPub OpenStack storage pool.

On your SMI-S server, you will need to install some Python dependency packets,
which can be done in the following way:

yum install -y libgcc_s.so.1 glibc.i686 *pywbem*
compat-libstdc++-33.x86_64 libstdc++-devel-*

From the EMC website, get the SMI-S install package and install it as follows:

 # tar -xvf se7628-Linux-i386-SMI.tar

 # ./ se7628_install.sh -install -host

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[124]

Deploy the SMI-S server and configure the storage array in the following way:

 # cd /opt/emc/ECIM/ECOM/bin/

 # ./TestSmiProvider

 (localhost:5988) ? addsys

 Add System {y|n} [n]: y

 ArrayType (1=Clar, 2=Symm) [1]:

 One or more IP address or Hostname or Array ID

 Elements for Addresses

 IP address or hostname or array id 0 (blank to quit): 192.168.1.102

 IP address or hostname or array id 1 (blank to quit): 192.168.1.103

 IP address or hostname or array id 2 (blank to quit):

 Address types corresponding to addresses specified above.

 (1=URL, 2=IP/Nodename, 3=Array ID)

 Address Type (0) [default=2]:

 Address Type (1) [default=2]:

 User [null]: adminpack

 Password [null]: adminpack

 ++++ EMCAddSystem ++++

On the Cinder node, check whether you have the following package installed:

yum install -y libgcc_s.so.1 glibc.i686 *pywbem*
compat-libstdc++-33.x86_64 libstdc++-devel-*

Do not forget to tell Cinder about its backend by editing the /etc/cinder/cinder.
conf file:

 iscsi_target_prefix = iqn.1992-04.com.emc
 iscsi_ip_address = 192.168.1.104
 volume_driver =
 cinder.volume.drivers.emc.emc_smis_iscsi.EMCSMISISCSIDriver
 cinder_emc_config_file = /etc/cinder/cinder_emc_config.xml

Also, we need to tell it which storage pool and which array to use with the
following commands:

touch /etc/cinder/cinder_emc_config.xml

Edit /etc/cinder/cinder_emc_config.xml

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[125]

Append the following configuration to the XML file:

 <?xml version='1.0' encoding='UTF-8'?>
 <EMC>
 <StorageType>OpenStack</StorageType>
 <EcomServerIp>192.168.1.110</EcomServerIp>
 <EcomServerPort>5985</EcomServerPort>
 <EcomUserName>admin</EcomUserName>
 <EcomPassword>adminpass</EcomPassword>
 </EMC>

After restarting the Cinder service, try to test it as follows:

cinder create --display-name packtpub01 5

cinder list

For the preceding code, we will get the following output:

The Cinder use case
Managing the different storage pools from one centralized management interface
makes Cinder send only the volume management requests to your existing storage
system. At this point, you should realize how OpenStack is open to seamlessly
integrating the existing pieces in your infrastructure without you having to go
through a nightmare when you wish to deploy what you exactly need.

Obviously, you may have a running OpenStack storage with one or multiple
backends where Cinder stands happily. However, there are some limitations that
you must take into consideration. As a system designer, you may come across
different knobs that you might have to twiddle around with in a distributed storage
environment. It starts when you move to the production. A database administrator
may suddenly discover that its Red Hat box has almost reached 95 percent at home
partition. You don't have the time to book a flight and go to Singapore to add a
new storage array to the ESX server in the data center, create a new virtual disk,
and attach it through the vSphere client. Even worse, it is Christmas! The trading
server will expect a peak load the day after, where the database size will increase by
gigabytes and you can't go offline. You have an evening to handle the situation and
then join the Christmas dinner!

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[126]

This kind of situation puts a system administrator under tons of pressure, where
everybody expects to hear things such as: it will work! Between the words, a
lot of words! Stop blaming your monitoring system, which does not send such
notifications on time, and look at the situation from a different perspective. Realize
that virtualization can remove the limits of hardware access for the endpoint
machines, where the cloud computing paradigm just uses it to give a hand and
give exactly what you need without wasting resources. You will need to add a
new disk and your current case to extend an existing home partition. For example,
traditionally creating a new /dev/sda5 primary partition and assigning it to
your home partition via LVM will resolve the issue in a few minutes. In a virtual
environment, a precondition needs to be satisfied first, which is the price that
you have to pay to derive benefits from the cloud technology. For example, if you
intend to extend the virtual disk size from your vSphere client while the machine
is running, you will need to check whether it is thin provisioned. In case it is thick
provisioned, you will need to reboot the machine after resizing the disk in the right
partition. For this reason, storage in production should be carefully handled and
managed by keeping a margin of surprises that might happen.

In our deployment scenario, it is worth differentiating the types of volume that are
provisioned in OpenStack by using Cinder and VNX as a backend, as follows:

•	 Thin provisioning: In this, the volume is virtually provisioned and can be
allocated as needed.

•	 Thick provisioning: Here, the volume is allocated during the volume
creation and is fully provisioned.

•	 Deduplicated provisioning: Here, the volumes are virtually provisioned and
made deduplication-aware. In this case, the storing of volumes in the VNX
devices will be done in a more efficient way by eliminating the duplicated
segments in the incoming data and storing only the unique one.

•	 Compressed provisioning: In this, the volumes are virtually compressed
and made compression-aware. In this case, the block storage devices may
gain more capacity with better, efficient usage by freeing up a greater
amount of valuable storage space with lower performance overheads.
The compressed provisioning applies to all the volumes, unlike the
deduplication provisioning.

The next example depicts how to create a thin volume named ThinVol01 with
the storagetype: provisioning=thin spec value. Keep in mind that without
specifying the volume type, the driver will create a thick one by default.

$ cinder type-create "ThinVolume"

$ cinder type-key "ThinVolume" set storagetype:provisioning=thin

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[127]

The preceding command will produce the following output:

Depending on the driver configured against OpenStack, you will be requested to
check each approach for what sort of limitations you will face during the production
phase. For example, you will not be able to extend a thick volume, which is
associated with a snapshot. It is very important to know in advance what kind of
volume you are using in order to avoid an error state. On the other hand, the matrix
that was cited earlier is very useful to bear in mind all the storage management
functionalities. Some of them are not supported directly by Cinder, but you can
use them from the native backend resource storage management.

Beyond Cinder – Ceph
Look carefully at the matrix mentioned previously, and you will find Ceph! It is
not just a driver that has to be installed and configured as a backend for Cinder. It
is more of a standard open source distributed storage. Ceph can be used for object
storage through its S3 API as well as the Swift API. If you intend to gather all the
pieces from the object and network block devices, you should consider Ceph.
Moreover, it is being developed to expose the filesystem interface, which is on the
way towards receiving support from the production. The concept of Ceph as a
scalable storage solution is almost the same as Swift that replicates data across the
commodity storage nodes. Do you think that is all? Of course not. Ceph is a good
data consolidator that enables you to grab both the object and block storages in a
single system. You can even use it as a backend to glance at images. If it is agreed
that Cinder is still recommended in our block storage solution as we need its API,
will you go for Ceph rather than Swift for the object storage backend? Well, this will
be a difficult question to answer if you do not verify how Ceph is being architected
in a nutshell.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[128]

Here's the architecture of Ceph:

The main core of Ceph is the Reliable Autonomic Distributed Object Store
(RADOS), which is responsible for the distribution and replication of objects across
the storage cluster. As illustrated in the previous figure, a block storage layer
provides a RADOS Block Device (RBD) for the object's backend. The amazing part
in this architecture is that the RBD devices are thinly provisioned within the RADOS
objects and thanks to the librbd library, objects can be accessed by means of QEMU
drivers, which make the magical link between Ceph and OpenStack. Unlike Swift,
Ceph defines other basic components as follows:

•	 Object Storage Devices (OSDs): This corresponds to the physical disks,
which can be a directory residing on a regular filesystem, such as XFS or
Btrfs. OSDs run the OSD daemon for the RADOS service, which will take
care of the replication, coherency, and recovery of objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[129]

A Linux filesystem such as XFS or ext4 is required for the Ceph
production environment, but Btrfs hasn't been proven to be a
stable filesystem that is suitable for a production environment.
Refer to the official Ceph website, http://ceph.com/
docs/master/rados/configuration/filesystem-
recommendations/, for recommendation-related updates.

•	 Placement groups (PGs): A PG helps you map OSDs for performance and
scalability reasons. It performs object replication by the pool as well. Every
PG that is assigned in a pool will replicate the object into multiple OSDs
within the same pool.

•	 Pool: You can compare a pool in Ceph to the concept of rings in Swift. It
defines the number of PGs that are not shared. Furthermore, it provides hash
maps for objects in OSDs.

•	 The CRUSH maps: Based on the defined criteria, a CRUSH algorithm
defines how objects in OSDs will be distributed. Its main purpose is to
ensure that the replicated objects will not end up on the same disks, hosts, or
shelves. Besides OSD, Ceph introduces the following servers:

°° The monitor daemon server (MON) mainly focuses on checking the
state of consistency of the data in each node that runs an OSD

°° The metadata server (MDS) is required for the Ceph filesystem
to store their metadata if you intend to build a POSIX file on top
of objects

Ceph can be integrated seamlessly with OpenStack. It has emerged as a reliable
and robust storage backend for OpenStack that defines a new way of provisioning
the boot-from-volume instances. This new method of provisioning is named thin
provisioning. Eventually, Ceph compromises on a nice concept, the copy-on-write
cloning feature, allowing many VMs to start instantly from the templates. This
shows a great improvement at the threading level along with an amazing I/O
performance boost.

www.it-ebooks.info

http://ceph.com/docs/master/rados/configuration/filesystem-recommendations/
http://ceph.com/docs/master/rados/configuration/filesystem-recommendations/
http://ceph.com/docs/master/rados/configuration/filesystem-recommendations/
http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[130]

Thousands of VMs can be created from a single master image derived from a Glance
image stored in a Ceph block device and booted by using Cinder, which requires
only the space needed for their subsequent changes:

To boot the virtual machines in Ceph either from an ephemeral backend
or from a volume, you must use a RAW image for Glance, which is the
supported format in Ceph.

The creation of the standard Cinder volume and fast copy-on-write clone volume
require you to use the Cinder API to forward a create image request from a defined
image at the Glance storage (1). The Cinder volume service tries to locate the image
under question in the Glance image store (2) and forwards its volume reference
back to the API (4). Using the standard way to boot an instance, as shown in the
Standard Cinder Volume Creation section in the previous figure, an image has to
be pulled from Glance and streamed to the compute node, which is extremely slow
(3). The new approach in the Fast Copy on Write Clone Volume section (3) gives
the functionality to make snapshot of images while they are being imported. Thus,
it might be easier and a more sophisticated to create clones from them as well as for
volume from an image.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[131]

Ceph in OpenStack
We have been using Cinder and its driver-enabled support for Ceph. We already
have an overview of OSDs, which are the workhorses for object and block storage.
Moreover, partitions can be created for the OSD nodes and assigned different
storage pools. Keep in mind that this setup can be an example from many others.
The common point that you should stick to is the way you distribute the Ceph
components across the OpenStack infrastructure. In this example, we made the
ceph-mon daemon run in the controller node, which makes sense if you intend to
centralize all the management services from a logical perspective. The ceph-osd
nodes should run in the replica in separate storage nodes. The compute nodes need
to know which Ceph node will clone the images or store the volumes that require a
Ceph client to run on them.

From the network perspective, the ceph-osd nodes will join the private storage
subnetwork while keeping the nodes that are running the Ceph daemons in the
management network.

A simple integration model with OpenStack can be depicted in the following way:

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[132]

Cooking Ceph
Let's go back to our kitchen and check out the recipes that we have to prepare at
this stage. As we have many options to handle either the object or block storage, we
will try to sum both of them as a storage backend for OpenStack. Cooking time! We
will point to the basic Ceph cookbooks from the main repository of the Opscode
cookbook market. You can add the Ceph cookbook to your Chef workstation,
as follows:

packtpub@workstation$ cd /home/packtpub/chef-repo

packtpub@workstation /home/packtpub/chef-repo $ git clone
https://github.com/ceph/ceph-cookbooks.git ceph

The Apache cookbook is required as a cookbook dependency for Ceph.
It might not have to be uploaded again because it already exists since the
first install of the Berks cookbook dependency.

Upload the Ceph cookbooks again. The Chef server will then take care of it:

packtpub@workstation/home/packtpub/chef-repo$ knife cookbook upload ceph

Let's exploit another flexible feature in Chef—the multienvironment support. We
created a basic environment that defines the distribution of the basic components
and services of OpenStack in Chapter 2, Deploying OpenStack – DevOps and OpenStack
Dual Deal. At this point, you will have two options. You can define a separate
environment that was purely written for Ceph, and then proceed by modifying the
current OpenStack configuration setup. Alternatively, you can use an environment
file, to which you can add a Ceph subenvironment section and make some other
changes to this file. Since Chef won't be bothered to rerun as many times as we want
for the same environment, we will go for the second option. We would like to make
more sense for the automation part. Moreover, when your infrastructure exposes
dozens of nodes, you should avoid the nano way. Trusting your environment file
will give you an easy life. On the other hand, it might not be wise to adopt such an
approach when you only need to modify a few settings or integrate a small plugin
that needs only a little modification within a limited number of attributes in your
existing environment. Depending on your needs, automation always helps but
without a blind eye. Let's bring our new environment file into action and highlight the
spot of Ceph that is shown in bold, as follows:

{
 "name": "vagrant-packtpub",
 "description": "PacktPub Testing Environment for Ceph Integration
in OpenStack."

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[133]

 "cookbook_versions": {
 },
 "json_class": "Chef::Environment",
 "chef_type": "environment",
 "default_attributes": {
 "ceph": {
 "config": {
 "mon_initial_members": [
 "controller1"
],
 "fsid": " 9ee348be-ef99-ea3e-7a7a-bb133abcef48",

 "osd": {
 "osd journal size": "1000"
 },
 "global": {
 "public network": "172.16.24.0/8",
 "storage network": "192.168.47.0/24"
 }
 },
 "openstack": true,
 "monitor-secret": "BASkSuJPonHgFHaaZixurLvTvAz4PRo5IKYGts=="
 }
 },
 "override_attributes": {
 …………
 "image": {
 "api": {
 "bind_interface": "eth1",
 "default_store": "rbd",
 "store_pool": "images"
 },
 …………..
 "block-storage": {
 "volume": {
 "provider": "ceph",
 "rbd_pool": "volumes"
 }
 }
…..
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[134]

We added three Ceph nodes, which have to be deployed within the two interfaces
for each node. In the next execution of the Chef client, Cinder and Glance will be
aware that we will use Ceph as the backend storage.

To get the filesystem ID (fsid) and the monitor secret key,
you will need to run the following commands from the ceph-
common package:
uuidgen -r

ceph-authtool --name=monitor-secret --gen-key

As we covered in the previous chapter along with Chef deployment, we again intend
to create a different set of roles for Ceph.

Basically, we need OSD and MON in the first place, which can be performed from
the Chef web interface or via Knife in the following way:

$ nano roles/ceph-osd.json

{

 "name": "ceph-osd",

 "description": "Ceph Object Storage Device",

 "run_list": [

 "recipe[ceph::repo]",

 "recipe[ceph::osd]"

]

}

$ nano roles/ceph-mon.json

{

 "name": "ceph-mon",

 "description": "Ceph Monitor",

 "run_list": [

 "recipe[ceph::repo]",

 "recipe[ceph::mon]"

]

}

You will need to upload the following roles to the Chef server via the knife
command line:

$ knife role from file roles/ceph-osd.rb

$ knife role from file roles/ceph-mon.rb

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[135]

Do not forget to upload any newly created or
updated environment to the Chef server using the
Knife command line:
knife environment from file <path>

For each OSD host, you can assign ceph-osd as well as ceph-mon if you intend
to run it in the same or a separate node. In our example, we can fire the ceph-
mon daemon to run on the cloud controller by just adding the ceph-mon role to its
Chef run-list. On the other hand, it can be useful to run multiple OSDs in the same
node by running a ceph-osd daemon for each disk in your box from the global file
environment, as follows:

.......
 "ceph": {
 "config": {

 }
 "osd_devices": {
 "0": {
 "device": "/dev/sdb",
 "zap": true
 },
 "1": {
 "device": "/dev/sdc",
 "journal": "/dev/sdc"
 }
 }
.......

You can run OSDs with the Ceph node by editing the node settings of each Ceph
node, as follows:

{
 "chef_environment": " vagrant-packtpub ",
 "run_list": [
 "recipe[ceph::repo]",
 "role[ceph-osd]"
],
 "normal": {
 "ceph": {
 "osd_devices": [
 {
 "device": "/dev/sdb",
 "journal": "/dev/sdb"
 }
]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[136]

 },
 "name": "ceph01"
}

Let's update the Vagrant file, which will include a new ceph-mon role on the cloud
controller node. For the sake of simplicity, we will include an additional node that
runs three OSDs. The Vagrant file will be updated in the following way:

...
chef_environment = "vagrant-packtpub"

 controller_run_list = [
 "role[packtpub-os-base-controller]",
 ...
 "role[ceph-mon]"
]
...
 Ceph_run_list = [
 "role[ceph-osd]"
]
Ceph 3 OSDs Node

 config.vm.define :ceph1 do |cephpp|
 cephpp.vm.hostname = "ceph1"
 cephpp.vm.box = "opscode-centos-6.5"
 cephpp.vm.box_url =
 "http://opscode-vm-bento.s3.amazonaws.com/vagrant/virtualbox/
opscode_centos-6.5_chef-provisionerless.box"
 cephpp.vm.network "private_network", ip: "192.168.47.100"
 file_to_disk = "./tmp/cephpp.osd_data.vdi"
 (0..2).each do |osd|
 config.vm.provider :virtualbox do |vb|
 vb.customize ['modifyvm', :id, '--memory', '2048',
'--cpus', '2']
 vb.customize ['createhd', '--filename', disk_file,
'--size', 4048]
 vb.customize ['storageattach', :id, '--storagectl',
'SATA Controller', '--port', 3+d, '--device', 0, '--type',
'hdd', '--medium', disk_file]
 end
 end
 cephpp.vm.provision :chef_client do |chef|
 chef.run_list = Ceph_run_list
 chef.environment = chef_environment
 # Where to find our Chef Server by providing the
 authorization key
 chef.chef_server_url = "https://chefserver.packtpub.com:443"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[137]

 chef.validation_key_path = "/home/packtpub/chef
 repo/.chef/chef-validator.pem"
 end
 end

The last thing that you have to do is just push the button. Chef will update the new
role for the cloud controller in your Vagrant box, as follows:

export VAGRANT_VAGRANTFILE=vagrant-packtpub

vagrant reload --no-provision controller1

vagrant up ceph

The following is the output for the preceding commands:

A new Ceph node with an address of 192.168.47.100 will be created. This node
resides in the same private VB network. This will mimic the storage network in real
production. Thus, you will have to change it to fit your network IP address.

You can check out the newly created Ceph node by issuing the following command:

vagrant ssh ceph01

You can check whether the Ceph service is running in ceph01, as follows:

ceph –s

For the preceding code, you will get the following result:

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[138]

Storing images in Ceph
It is possible to use Ceph as a storage backend to store an operating system image
for instances.

The following steps show how one can configure Glance to use Ceph as an
alternative for the storage of images:

1.	 On the new Ceph instance, create a new Ceph pool for OpenStack Glance,
as follows:
ceph osd pool create images 128

2.	 On the cloud controller node, configure OpenStack Glance to use the RBD
store in /etc/glance/glance-api.conf, as follows:
nano /etc/glance/glance-api.conf

rbd_store_user=glance

rbd_store_pool=images

To enable the copy-on-write cloning feature, set the direct_url
= True directive in /etc/glance/glance-api.conf.

3.	 Save the configuration file and restart the glance-api service, as follows:
#/etc/init.d/glance-api restart

It is possible to reload the cloud controller configuration by
commenting out the rbd_store_user and rbd_store_pool
lines in the OpenStack image cookbook's attributes file.

4.	 On the cloud controller node, download a new image for Glance testing,
as follows:
wget http://cloud.centos.org/centos/7/images/CentOS-7-
x86_64-GenericCloud.qcow2.xz

5.	 Create a new Glance image from the downloaded image in the
following way:
glance image-create --name="CentOS-7-image" --is-public=True
--disk-format-qcow2 --container-format=ovf < CentOS-7-x86_64-
GenericCloud.qcow2.xz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[139]

The preceding command yields the following output:

6.	 You can check out the image ID in the images Ceph pool by issuing the
following query:

rados –p images ls

For the preceding code, we will get the following output:

The CentOS image is stored in Ceph, which refers to the CentOS image ID that is
shown in the Glance image output. The object that the Glance image recently stored and
imported from Ceph is identified with the help of the rbd_id.Image_Glance_ID format.

Note that it is possible to configure Cinder and Nova to use
Ceph as well. You will need to create a new Ceph pool and
edit the /etc/cinder/cinder.conf file to specify the RBD
driver for Cinder. Instances in OpenStack can be booted directly
into Ceph which requires defining optionally in the /etc/
nova/nova.conf file the ephemeral backend for Nova. To read
more about this specific setup, you may follow this useful link
http://ceph.com/docs/master/rbd/rbd-openstack/.

www.it-ebooks.info

http://ceph.com/docs/master/rbd/rbd-openstack/
http://www.it-ebooks.info/

Learning OpenStack Storage – Deploying the Hybrid Storage Model

[140]

Summary
In this chapter, we covered a vast topic pertaining to storage in OpenStack. By now,
you should be more familiar with the different storage types. We delved into a
variety of aspects of Swift as a former object storage solution for OpenStack.

Moreover, you should now be comfortable moving beyond the block storage
component for OpenStack. You will be able to understand what fits better in
your storage design against Cinder. We discussed the different use cases for the
OpenStack storage solutions and picked up an example from the many possibilities.
You should now be able to take into consideration several factors such as filesystem,
storage protocol, storage design, and performance.

Finally, the last section of this chapter talked about how one can mix and deploy
a block, object, and filesystem storage in a system called Ceph. Thus, thanks to its
APIs, you can seize the wide range of opportunities that are provided by OpenStack.
On the other hand, making the right decision for your own storage solution is on
you. Remember that any storage use case will depend on your needs or, in other
words, the needs of your end users.

However, do you think that only a good storage design will be enough to make
your OpenStack cloud perfect? The answer to this might be yes if you noticed that it
depends on your network design and security considerations, which will be the topic
of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

[141]

Implementing OpenStack
Networking and Security

"To have security, plan ahead."

–A Sicilian Proverb

The first networking concepts in OpenStack introduced you to some easy ways to
manage networking by the means of the nova-network daemon. Different network
providers such as FlatManager, FlatDHCPManager, and VlanManager are used
to construct the network configurations for the internal and external OpenStack
networks. These network managers eventually included a bridging tool as a default
gateway for instances in a compute node.

On the other hand, for management and security reasons, it might be considered
limited for the following reasons:

•	 Flat network: This is a single IP pool and layer 2 domain without
tenant isolation

•	 VLAN network: This requires manual VLAN configuration on the layer 2
device (switch) for port tagging and trunking

You might have noticed the different existing networks that were deployed in a
large OpenStack infrastructure and the need to isolate traffic for better performance.
Moreover, securing the OpenStack engine nodes—the user's instances—is without
doubt a must. Many use cases have demonstrated that ignoring such a topic might
expose your environment to serious vulnerabilities. Keep in mind that a user who
has access to an instance in a compute node may take control of other instances and
could even gain access to the other nodes in production if you haven't implemented
a network security plan.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[142]

In this scenario, you may wonder about the drawbacks of mono-tenancy in a flat
network setup. You may be tempted to think that VLANs can resolve the issue since
they are the only way to provide multitenancy, which is great. However, what about
ACLs? Are you ready to manage a very complex VLANed network manually?

In this chapter, we will discuss the following topics:

•	 Understanding how Neutron facilitates the network management in
OpenStack

•	 Using security groups to enforce a security layer for instances
•	 Discovering the majesty of the Neutron plugins and using Open vSwitch
•	 Enabling and using Firewall as a Service in an OpenStack environment
•	 Enabling and using VPN as a Service in an OpenStack environment

We compared the native Nova network manager and Neutron in a nutshell in
Chapter 1, Designing OpenStack Cloud Architecture. It is obvious that Neutron is much
more powerful for management, especially for the security background. Some of the
advantages of Neutron are as follows:

•	 More controlled IP addressing and multi-tier networks
•	 The management of multiple private networks
•	 Great network topology customization, which is achieved by supporting

virtual, hardware, or mixed networks
•	 The introduction of new capabilities such as security groups and namespace

to separate domains

The story of an API
By analogy, the OpenStack compute service provides an API that provides a virtual
server abstraction to imitate the compute resources. The network service and
compute service perform in the same way, where we come to a new generation of
virtualization in network resources such as network, subnet, and ports, and can be
continued in the following schema:

•	 Network: As an abstraction for the layer 2 network segmentation that is
similar to the VLANs

•	 Subnet: This is the associated abstraction layer for a block of IPv4/IPv6
addressing per network

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[143]

•	 Port: This is the associated abstraction layer that is used to attach a virtual
NIC of an instance to a network

•	 Router: This is an abstraction for layer 3 that is used to perform routing
between the networks

•	 Floating IP: This is used to perform static public IP mapping from external to
internal networks

Security groups
Imagine a scenario where you have to apply certain traffic management rules for
a dozen compute node instances. Therefore, assigning a certain set of rules for a
specific group of nodes will be much easier instead of going through each node at
a time. Security groups enclose all the aspects of the rules that are applied to the
ingoing and outgoing traffic to instances, which includes the following:

•	 The source and receiver, which will allow or deny traffic to instances from
either the internal OpenStack IP addresses or from the rest of the world

•	 Protocols to which the rule will apply, such as TCP, UDP, and ICMP
•	 Egress/ingress traffic management to a Neutron port

In this way, OpenStack offers an additional security layer to the firewall rules
that are available on the compute instance. The purpose is to manage traffic to
several compute instances from one security group. You should bear in mind that
the networking security groups are more granular-traffic-filtering-aware than the
compute firewall rules since they are applied on the basis of the port instead of
the instance. Eventually, the creation of the network security rules can be done in
different ways.

For more information on how iptables works on
Linux, https://www.centos.org/docs/5/html/
Deployment_Guide-en-US/ch-iptables.html is
a very useful reference.

www.it-ebooks.info

https://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-iptables.html
https://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-iptables.html
http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[144]

Iptables are empowered by means of security groups to perform traffic filtering.
Iptables define a certain number of tables containing chains of rules that determine
how packets will be manipulated: packet filtering, mangling, and NAT ruling.
Basically, packets traverse rules sequentially within four tables:

•	 A filter table used to filter packets
•	 A NAT table used for Network Address Translation
•	 A mangle table used for an intentional alteration of the data in

packet headers
•	 Raw tables are used to configure packets to be exempted from

connection tracking

Tables consist of chains. Every network packet received on any interface of
a computer must at least traverse one chain. Chains can be listed briefly as
the following:

•	 The INPUT chain is used by filter and mangle tables for packets coming to the
local host.

•	 The OUTPUT chain is used by all the tables and defines the outgoing traffic
leaving the host.

•	 The FORWARD chain is used by the filter and mangle tables for packets routed
through the local host.

•	 The PREROUTING chain is used by NAT, mangle, and raw tables. The network
packet is altered before routing. It defines how the destination IP address
of the packet will be translated to match the routing on the localhost called
Destination NAT (DNAT). It is useful for floating IP functionality.

•	 The POSTROUTING chain is used by NAT and mangle tables. The network
packet is altered after routing. It defines how the source IP address of the
packet will be translated to match the routing on the destination server called
Source NAT (SNAT).

The last piece of the picture is the rule in the chain which determines the packet-
filtering process. A rule is specified by multiple conditions (matches) that the packet
must satisfy so that the rule can be applied; and a target that defines which action
should be taken (in case the match conditions are met). If the condition is not met, it
moves to the next rule.

The following are the possible values of a target:

•	 ACCEPT: This denotes that the packet is accepted
•	 DROP: This denotes that the packet is dropped

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[145]

•	 RETURN: This denotes that the control will be returned to the calling chain
•	 SNAT: This denotes that the target rewrites the source IP address
•	 DNAT: This denotes that the target rewrites the destination IP address

A complete list of possible target values in iptables can be
found here:
http://www.iptables.info/en/iptables-
targets-and-jumps.html

Managing the security groups using Horizon
From Horizon, in the Access and Security section, you can add a security group and
name it, for example, as PacktPub_SG. Then, a simple click on Edit Rules will do the
trick. The following example illustrates how this network security function can help
you understand how traffic—both in ingress/egress—can be controlled:

The previous security group contains four rules. The first and the second lines are
rules to open all the outgoing traffic for IPv4 and IPv6 respectively. The third line
allows the inbound traffic by opening the ICMP port, while the last one opens port
22 for SSH for the inbound interface. You might notice the presence of the CIDR
fields, which is essential to know. Based on CIDR, you allow or restrict traffic over
the specified port. For example, using CIDR of 0.0.0.0/0 will allow traffic for all the IP
addresses over the port that was mentioned in your rule. For example, a CIDR with
32.32.15.5/32 will restrict traffic only to a single host with an IP of 32.32.15.5. If
you would like to specify a range of IP addresses in the same subnet, you can use the
CIDR notation, 32.32.15.1/24, which will restrict traffic to the IP addresses starting
from 32.32.15.*; the other IP addresses will not stick to the latter rule.

www.it-ebooks.info

http://www.iptables.info/en/iptables-targets-and-jumps.html
http://www.iptables.info/en/iptables-targets-and-jumps.html
http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[146]

The naming of the security group must be done with a
unique name per project.

Managing the security groups using the
Neutron CLI
The security groups also can be managed by using the Python Neutron
command-line interface. Wherever you run the Neutron daemon, you can
list, for example, all the present security groups from the command line in
the following way:

neutron security-group-list

The preceding command yields the following output:

To demonstrate how the PacktPub_SG security group rules that were illustrated
previously are implemented on the host, we can add a new rule that allows the
ingress connections to ping (ICMP) in the following way:

neutron security-group-rule-create --protocol icmp –-direction
ingress PacktPub-SG

The preceding command produces the following result:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[147]

The following command line will add a new rule that allows ingress connections to
establish a secure shell connection (SSH):

neutron security-group-rule-create --protocol tcp –-port-range-max
22 –-direction ingress PacktPub-SG

The preceding command gives the following output:

By default, if none of the security groups have been created, the
port of instances will be associated within the default security
group for any project where all the outbound traffic will be
allowed and blocked in the inbound side.

You may conclude from the output of the previous command line that it lists the
rules that are associated with the current project ID and not by the security groups.

Managing the security groups using the
Nova CLI
The Nova command line also does the same trick if you intend to perform the basic
security group's control, as follows:

$ nova secgroup-list-rules default

Since we are setting Neutron as our network service controller, we will proceed by
using the networking security groups, which will reveal additional traffic control
features. If you are still using the compute API to manage the security groups,
you can always refer to the nova.conf file for each compute node to set
security_group_api = neutron.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[148]

To associate the security groups to certain running instances, it might be possible to
use the Nova client in the following way:

nova add-secgroup test-vm1 PacktPub_SG

The following command line illustrates the new association of the PacktPub_SG
security group with the test-vm1 instance:

nova show test-vm1

The following is the result of the preceding command:

One of the best practices to troubleshoot connection issues for the running instances
is to start checking the iptables running in the compute node. Eventually, any rule
that was added to a security group will be applied to the iptables chains in the
compute node. We can check the updated iptables chains in the compute host after
applying the security group rules by using the following command:

iptables-save

The preceding command yields the following output:

The highlighted rules describe the direction of the packet and the rule that is
matched. For example, the inbound traffic to the f7fabcce-f interface will be
processed by the neutron-openvswi-if7fabcce-f chain.

It is important to know how iptables rules work in Linux.
Updating the security groups will also perform changes in
the iptable chains. Remember that chains are a set of rules
that determine how packets should be filtered. Network
packets traverse rules in chains, and it is possible to jump
to another chain. You can find different chains per compute
host, depending on the network filter setup.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[149]

If you have already created your own security groups, a series of iptables and
chains are implemented on every compute node that hosts the instance that is
associated within the applied corresponding security group. The following example
demonstrates a sample update in the current iptables of a compute node that runs
instances within the 10.10.10.0/24 subnet and assigns 10.10.10.2 as a default
gateway for the former instances IP ranges:

The last rule that was shown in the preceding screenshot dictates how the flow of the
traffic leaving the f7fabcce-f interface must be sourced from 10.10.10.2/32 and
the FA:16:3E:7E:79:64 MAC address. The former rule is useful when you wish to
prevent an instance from issuing a MAC/IP address spoofing. It is possible to test
ping and SSH to the instance via the router namespace in the following way:

ip netns exec router qrouter-5abdeaf9-fbb6-4a3f-bed2-7f93e91bb904
ping 10.10.10.2

The preceding command provides the following output:

The testing of an SSH to the instance can be done by using the same router
namespace, as follows:

ip netns exec router qrouter-5abdeaf9-fbb6-4a3f-bed2-7f93e91bb904
ssh cirros@10.10.10.2

The preceding command produces the following output:

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[150]

An example of a web server DMZ
In the current example, we will show a simple setup of a security group that might
be applied to a pool of web servers that are running in the Compute01, Compute02
and Compute03 nodes. We will allow inbound traffic from the Internet to access
WebServer01, AppServer01, and DBServer01 over HTTP, HTTPS, and MySQL.
This is depicted in the following diagram:

Let's see how we can restrict the traffic ingress/egress via the Neutron API:

$ neutron security-group-create DMZ_Zone --description "allow web traffic
from the Internet"

$neutron security-group-rule-create --direction ingress --protocol tcp
--port_range_min 80 --port_range_max 80 DMZ_Zone --remote-ip-prefix
0.0.0.0/0

$neutron security-group-rule-create --direction ingress --protocol tcp
--port_range_min 443 --port_range_max 443 DMZ_Zone --remote-ip-prefix
0.0.0.0/0

$neutron security-group-rule-create --direction ingress --protocol tcp
--port_range_min 3306 --port_range_max 3306 DMZ_Zone --remote-ip-prefix
0.0.0.0/0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[151]

From Horizon, we can see the following security rules group have been added:

Creating a new security group, DMZ_Zone, will actually update the iptables rules
running on the compute node that hosts the instance. For example, we can see on
the compute node the new iptables rules by running the following command line:

iptables-save

The output of the iptables list is quite long; for the sake of simplicity, we will go only
through the fitter chain list.

Eventually the ingress/egress network will traverse first the FORWARD chain as
the following:

The rules defined in both chains neutron-filter-top and neutron-openvswi-
FORWARD will be processed. Then, iptables return to the calling FORWARD
chain, which defines the following chain:

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[152]

The previous rule will cause to jump to the neutron-openvswi-FORWARD chain.
Therefore, it will jump to the neutron-openvswi-sg-chain chain, as the following:

The first rule denotes the direction of the traffic entering the tap6919f23b-34 interface.

The external traffic entering the tap6919f23b-34 interface will be processed and
treated by the neurotn-openvsw-i6919f23b-3 chain, as the following:

The previous rules reflect the creation of the DMZ_Zone security group, which was
configured previously in the Horizon dashboard.

When the Open vSwitch or the Linux Bridge plugins are used,
tap devices are created to connect the guest instance on the host
as virtual network interface cards. More details will be covered in
Chapter 8, Extending OpenStack – Advanced Networking Features and
Deploying Multi-tier Applications.

Firewall as a Service
One of the most important reasons behind keeping Neutron in the scope of network
management is that several extensions are offered by this component. These
extensions are not available in the native Nova networking service. Firewall as a
Service (FWaaS) is one such extension. It can be deployed in your network map.
Thus, it can provide advanced management control over your virtual infrastructure.
Can a firewall be abstracted in the software layer? Indeed, the awesomeness of
the virtualization technology is not only limited to the computing part but also
to network virtualization. This is the style of OpenStack! You can see that such a
Cloud solution is not a typical hypervisor, but it encloses all aspects of infrastructure
management, including network services. FWaaS is definitely an extension for
Neutron. As an administrator, you will be able to define your security perimeter
from a logical layer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[153]

This includes the following options:

•	 Applying the rules to the ingress and egress network of tenants that are
within their associated routers

•	 Managing the firewall policies based on a set of proper rules

You may be tempted to think that this is exactly the same as a standard firewall
appliance. It's even more! Neutron in OpenStack provides a firewall that is defined
for each tenant. Tenants can share the firewall policies between them. Thus, the
common firewall rules are still applicable to several OpenStack tenants. But how
does it work? Nothing is kept secret; firewalls in Neutron keep the same firewalling
aspect by filtering the traffic using iptables. Eventually, we will see how the
security groups in a network make life easier by applying a collection of rules to
a certain number of compute nodes. Similarly, the rules regarding the firewall are
implemented by using the Neutron namespace.

Each tenant has its own private networks, routers, firewalls,
and load balancers that are isolated by Neutron. It uses a set
of logical containers, which are called network namespaces,
that identify any network object by its tenant.

You might ask the following question: Do I need to enable such a firewall service?
Well, it depends on the way you see your security policy. If you intend to operate on
a router level and define a traffic-filtered perimeter, you should think about FWaaS.
Moreover, it is tough for a multi-tier architecture to manage the filtering of traffic,
especially when it is fronted by a load-balancing capability.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[154]

In addition to this, the application of security groups might not be enough to have
the global filtering of traffic enabled across the Neutron router since they operate at
the instance/port level. The following figure illustrates a simple FWaaS setup in the
OpenStack environment:

Coupling a firewall with Neutron
Like Cinder, several plugins are exposed to relate some other backend
implementation of the OpenStack block storage API requests. Similarly, the Neutron
API supports a variety of plugins by using the Linux VLANs and firewalls. Initially,
FWaaS in Neutron is available, but it needs to be activated. Let's do this.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[155]

In the Neutron node conf file named neutron.conf, insert the following lines:

service_plugins = firewall
[service_providers]
service_provider =
 FIREWALL:Iptables:neutron.agent.linux.iptables_firewall.OVSHybridIpt
ablesFirewallDriver:default
[fwaas]
driver =
 neutron.services.firewall.drivers.linux.iptables_fwaas.
IptablesFwaasDriver
enabled = True

To enable firewall management from the dashboard, change the controller node
in /usr/share/openstack-dashboard/openstack_dashboard/local/local_
settings.py by using the following setting:

'enable_firewall' = True

Then, you need to restart neutron-server and the web server that runs Horizon in
the following way:

root@packtpub# /etc/init.d/neutron-server restart
root@packtpub# service httpd restart

From Horizon, we can see that the new FWaaS section joined the OpenStack
management interface, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[156]

Basically, if you intend to create a firewall, you will need to create a router in the
first place, which will apply the firewall setup. Note that FWaaS is a distributed
implementation of a firewall per tenant. The firewall will be applied to a router that
was created in the same project. You will be able to manage your firewall rules and
policies from Horizon or via the Neutron's command line.

The FWaaS feature was introduced in the Havana release.

Starting the configuration of a firewall in OpenStack is very straightforward. For
example, we can apply the rules to allow the ICMP and SSH traffic to go back and
forth. You can do the same on security groups level both the ingress/egress directions
but will be only in the instance- or port-filtering level. For example, in the VPN site-to-
site setup, you will need to allow certain ports in both the L3 devices. We can prepare
our rules for the instance and apply them to our first firewall in data center 01.

Let's create the firewall rule, as follows:

$neutron firewall-rule-create --protocol icmp --action allow --name FW01

Next, we will need to specify a firewall policy in the following way:

$neutron firewall-policy-create –-firewall-rules FW01 FWpolicy01

The last step will require the creation of a firewall named FWaaS, as follows:

$neutron firewall-create FWpolicy01 --name FWaaS

The creation of the firewall will remain in a pending state
until a router is created and interfaced to it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[157]

The Neutron plugin
Ultimately, the goal of implementing networking plugins in OpenStack is to use the
advanced functionalities that the native OpenStack network is not able to perform.
You may remember that the basic network model is able to isolate different networks
by using VLANs, which is great! But what about exploiting some other features
that are present in both layer 2 and 3 by performing the operation of tunneling?
One of the supported plugins in OpenStack is Open vSwitch. If anything, it is
crucial to understand how to use and configure it in order to validate its use case.
Software Defined Network (SDN) is the most recent network paradigm technology
that has proven its amazing ease with regard to the network configuration and
management. In a nutshell, the SDN concept is based on the separation of the
hardware levels, which can be the device that is meant to forward the packets and
the network intelligence layer or the decision maker layer that abstracts the network
infrastructure to a software controller.

In SDN, the packet forwarding device can be an Ethernet
switch while its control logic is decoupled. The device can be
programmed by using an open interface such as OpenFlow.

Keep in mind that Open vSwitch is an SDN-aware technology. It is a new,
revolutionary way to write a program that can be used to customize and manage
your network. Since we are moving in to the new era of network virtualization, it
essentially provides switching services to virtual networks within the OpenStack
environment.

We have already seen at the start of this chapter the extensions that were brought
by the Neutron API. Basically, Open vSwitch is one of the most well-supported and
stable plugins together with the Linux Bridge plugin. Both of these plugins provide
a layer 2 switching. There is more! If you are wondering how one can make a virtual
switch population talk to another physical one, Open vSwitch will support this mix.
Open vSwitch officially supports the following:

•	 802.1Q VLANs and trunking
•	 Port aggregation
•	 Tunneling: VXLAN and GRE
•	 NetFlow
•	 sFLOW
•	 OpenFlow
•	 STP and LCAP
•	 KVM, Xen, XenServer, and VirtualBox

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[158]

There can be more than one plugin
Many third-party vendors such as VMware, Juniper, IBM, Cisco, Nicira, and many
others have developed and integrated their vendor plugins in order to allow a
Neutron interface with their network resources.

You are lucky if you already have some vendor switches in your current
infrastructure. Thus, it is beneficial to integrate it into Neutron and extend the
network functionality. However, how about using the multiplugins simultaneously?
This is a tricky question! Using Open vSwitch with the Linux Bridge plugins
at the same time can be very fruitful if you wish to exploit a majority of the
advanced networking features that are supported by both. The recent OpenStack
releases support simultaneous Neutron plugins, which alleviate such problems by
introducing the Modular Layer 2 plugin.

Thankfully, there is no more vendor lock-in. You can mix and bring hardware
from different supported Neutron vendors in the same OpenStack infrastructure.
Therefore, any plugin that is being created and integrated can be accessed via any
existing L2 agent.

Since it was not possible to use both the Linux Bridge and Open
vSwitch plugins simultaneously, they have been deprecated in the
IceHouse release. The Modular Layer 2 plugin is currently a new
replacement, allowing the utilization of several plugins at the same
time. To read more about ML2, refer to the following link http://
docs.openstack.org/juno/config-reference/content/
networking-options-plugins-ml2.html.

Empowering the traffic isolation
Now that we measured the network security requirement by using Neutron, we can
move ahead and extend the first network design in Chapter 1, Designing OpenStack
Cloud Architecture.

Due to the pluggable architecture of the OpenStack networking, we will integrate
Open vSwitch and test the network isolation on an instance level. Before we delve
into the details, let's refresh our knowledge of the overall network topology by
introducing two different logical networks:

•	 Tenant networks: By default, they are created in isolation and not shared
with any other network that is associated within a user project in OpenStack

•	 Provider networks: In order to connect to the non-OpenStack resources,
provider networks can be served by the administrator to map to a specific
physical device in the data center

www.it-ebooks.info

http://docs.openstack.org/juno/config-reference/content/networking-options-plugins-ml2.html
http://docs.openstack.org/juno/config-reference/content/networking-options-plugins-ml2.html
http://docs.openstack.org/juno/config-reference/content/networking-options-plugins-ml2.html
http://www.it-ebooks.info/

Chapter 5

[159]

Let's assume that we would like to bring our network design into an existing
physical setup. In other words, we want to create provider and tenant networks
using the VLAN IDs that correspond to the real VLANs in the data center. We only
need one OVS bridge to customize the connection between the following:

•	 Instances in an OpenStack environment
•	 Load balancers and firewalls
•	 A network device residing on the same VLAN layer 2

The next illustration depicts the existence of two tenants, A and B, each has a
network with one router and one subnet. The Neutron router connects the tenants to
the physical switch to interface the public Internet. Under the hood, it is possible to
route securely between tenant networks using VLAN (802.1q tagged) and GRE-based
networks. Without the Neutron router, both tenant networks are effectively isolated
from each other.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[160]

VPN as a Service – a case study
As business grows, it might be needed to expand to the multisite endpoints. In
OpenStack, it can be referred to as a multicell endpoint that can provide access to the
different regions of the same OpenStack infrastructure. Of course, the implementation
of a VPN setup—whether it is a simple SSL one or an IPSEC solution—will empower
the security of traffic across the Internet. We have worked around the host security
level and brought different isolated networks in order to avoid traffic congestion
and improve the security of the internal network of the OpenStack environment.
The following case study will sum up the different aspects that were covered
previously and take things a step further by protecting the integrity of data by using
the tunneling and encryption basis. A fruitful Neutron extension provides VPN
as a Service (VPNaaS) again, thanks to virtualization! Now, if you plan to connect
two machines in different tenants that are geographically located in different data
centers, then you should consider OpenStack, which makes life easier and offers a
simple step-by-step configuration. VPNaaS is proven to be extension capable not
only to build a site-to-site VPN connection between two private networks, but also to
implement several VPN connections per tenant. Thus, you can create as many VPNs
as you want, which brings to you a real, extensible network. Let's go to Horizon and
study an example that helps you run a hybrid application.

General settings
The next figure depicts two different OpenStack sites, and we intend to link their
associated tenants. You may remember that a project in Horizon presents a tenant
description that includes its private networks, routers, and subnets.

Add an admin user to each project in the Admin role. This will
allow you to fully perform administrative tasks in Horizon.
Additionally, you can create different users per project and assign
a service type to it using an admin account.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[161]

Let's create our first project named PackPub01 in DC01 and a second project called
PacktPub02 in DC02.

Based on the previous illustration, we intend to let the machines in both the
OpenStack subnets talk to each other. Note that each subnet is frontended by a
gateway router. Each project's network has a defined subnet that serves local IP
addresses, whereas a router connects to the external public interface of each network.
The connection between both the public IP addresses will be encrypted by the means
of VPNaaS. In other words, the traffic between the networks will be tunneled.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[162]

The following screenshot shows a basic network topology for DC01:

DC02 will have the same network topology by bridging the 192.168.48.0/24 local
subnet to the Internet via an external router interface, which is depicted in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[163]

Subnets in different tenant projects must have nonoverlapping
IP address ranges.

We have configured the setup from Horizon. Let's bring VPNaaS shining in our
interface by using the following three steps:

1.	 In order to create a full site-to-site IPsec VPN, we will use Openswan IPsec
implementation for Linux. Neutron supports Openswan by providing
a driver, which needs to be configured. Additionally, we will need the
neutron-plugin-vpn-agent package to be installed on both network nodes
in each site as follows:
yum install openswan openstack-neutron-vpn-agent

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[164]

2.	 Start the ipsec service:
/etc/init.d/ipsec start

3.	 Configure the Neutron agent file to use the openswan driver as follows:
nano /etc/neutron/vpn_agent.ini

[vpnagent]

…

vpn_device_driver=neutron.services.vpn.device_drivers.ipsec.
OpenSwanDriver

…

4.	 Enable VPNaaS in Neutron by activating its plugin in /etc/neutron/
neutron.conf, as follows:
service_plugins =……….. ,vpnaas

5.	 In the same file, enable the VPN service provider to use the Openswan driver
in the service_providers section as the following:
#service_provider=VPN:openswan:neutron.services.vpn.service_
drivers.ipsec.IPsecVPNDriver:default

6.	 Next, we will add a VPNaaS module interface in /usr/share/openstack-
dashboard/openstack_dashboard/local/local_settings.py in the
following way:
 'enable_VPNaaS': True,

7.	 Finally, restart neutron-server and neutron-vpn-agent services, and the
web server, as follows:

/etc/init.d/httpd restart

/etc/init.d/neutron-server restart

/etc/init.d/neutron-vpn-agent restart

To read more about Openswan, check the official website:
https://www.openswan.org/

VPNaaS configuration
We will start by configuring VPN on DC01.

www.it-ebooks.info

https://www.openswan.org/
http://www.it-ebooks.info/

Chapter 5

[165]

Creating the Internet Key Exchange policy
In Horizon, we can create the Internet Key Exchange (IKE) policy in the first
VPN phase. The following screenshot shows a simple IKE setup of an OpenStack
environment that is located in the DC01 site:

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[166]

An IKE policy can also be created by using the Neutron command line,
as follows:
neutron vpn-ikepolicy-create --auth-algorithm
sha1 --encryption-algorithm aes-256 --ike-version v2
--lifetime units=seconds,value=3600 --pfs group5
--phase1-negotiation-mode main --name PP-IKE-Policy

Creating an IPSec policy
The creation of an IPSec policy in the OpenStack environment that is located in the
DC01 site in Horizon can be done in the following way:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[167]

An IPSec policy can also be created by using the Neutron command line,
as follows:
neutron vpn-ipsecpolicy-create --auth-algorithm sha1
--encapsulation-mode tunnel --encryption-algorithm
aes-256 --lifetime units=seconds,value=36000 --pfs group5
 --transform-protocol esp –name PP_IPSEC_Policy

Standard VPN settings such as Encapsulation mode, Encryption algorithm, Perfect
Forward Secrecy, and Transform Protocol should remain the same in both the sites
for phase 1.

If you face a VPN connectivity problem, a best practice of troubleshooting
before filtering or debugging the traffic is to begin checking the existence
of any mismatch of the phase 1 and phase 2 settings in both sites.

Creating a VPN service
To create a VPN service, you will need to specify the router facing the external
interface and attach the web server instance to the private network in the DC01 site.
The router will act as a VPN gateway. We can add a new VPN service from Horizon
in the following way:

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[168]

A VPN service can also be created by using the Neutron command line,
as follows:
neutron vpn-service-create --tenant-id
c4ea3292ca234ddea5d50260e7e58193 --name PP_VPN_Service
Router-VPN public_subnet

Keep in mind that a VPN service is needed to select the router that will perform your
VPN gateway. Note that here, we have exposed our local subnet, 192.168.47.0/24.

Creating an IPSec site connection
The last step needs some information. Usually, we need to set up an external IP address
of the other peer for a VPN site. In OpenStack, you can check it by logging on as an
admin and from the PacktPub02 tenant, clicking on the Router section. Here, you
will get all of its details, which includes information regarding the external gateway
interface, 172.24.4.227. The Remote peer subnet(s) value is the CIDR notation
192.168.48.0/24. We will finish our first project, the DC01 VPNaaS connection, by
setting the secret preshared key to AwEsOmEVPn. The key will be the same for both the
sides. The process of setting the key is depicted in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[169]

A VPN service can also be created by using the Neutron command line,
as follows:
neutron ipsec-site-connection-create --name PP_IPSEC
---vpnservice-id PP_VPN_Service --ikepolicy-id
PP-IKE-Policy --ipsecpolicy-id PP_IPSEC_Policy
--peer-address 192.168.48.0/24 --peer-id 172.24.4.232
 --psk AwEsOmEvPn

The peer gateway public IPv4 address can be obtained from the router details of
DC02. We will need to hit the external interface, as shown in the following screenshot:

To finish the VPN setup, you will need to follow the latter steps, but changing the IP
gateway addresses of DC01 and the remote subnet to 192.168.47.0/24. Note that
the VPN settings, encryption algorithms and protocols, and the shared password
must be the same on both the sides.

A small smoke test can evaluate our setup.

From an instance in DC01, we can ping the DC02 site via 192.168.48.12, as follows:

From an instance in DC02, we can ping the DC01 site via 192.168.47.13, as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

[170]

Be sure that you have enabled ICMP on the DC02 router
to allow pings.

Summary
In this chapter, we delved into the various aspects of networking and security in
OpenStack. A major part of the chapter focused on presenting the different security
layouts by using Neutron. At this point, you should be comfortable with security
groups and their use cases. You should also be aware of the benefits of the Neutron
API and the support of several plugins that allow you to diversify the networking
hardware setup within OpenStack.

Although we have left the detailed networking implementation for the next few
chapters, we went through other network and security functions such as FWaaS.
At this stage, you should be able to understand the difference between FWaaS and
the security groups and configure both of them at the network and instance level.
Finally, a straightforward step-by-step guide showed another awesome point of
Neutron by leveraging the networking security using VPNaaS—Neutron is very
extensible and powerful. As it is a critical aspect of your OpenStack infrastructure
that is responsible for network management, you should consider that Neutron
can be a single of failure as well as any other OpenStack engine node in your
environment. Thus, you should be sure that everything works like a charm—not
only in an event of failure, but also when it's time for surprises.

This will be our next topic—investigating how the OpenStack environment has to be
highly available across all layers and services. Also, it should be able to fail over at
any sudden issue.

www.it-ebooks.info

http://www.it-ebooks.info/

[171]

OpenStack HA and Failover
''Once we accept our limits, we go beyond them.''

–Albert Einstein

So far, you have gained a good knowledge of all the components needed to
provide a functional OpenStack infrastructure. In Chapter 1, Designing OpenStack
Cloud Architecture, we saw one of the many ways to design a complete OpenStack
environment. Chapter 3, Learning OpenStack Clustering – Cloud Controllers and Compute
Nodes, looked at one of the most important logical and physical designs of OpenStack
clustering in depth by iterating through cloud controller and compute nodes.
Distributing services through the mentioned nodes after considering the standalone
storage cluster, as seen in Chapter 4, Learning OpenStack Storage – Deploying the
Hybrid Storage Model, aims to reduce the downtime for a given service. Many design
approaches can fulfill such high-availability goals in OpenStack. On the other hand,
HA may not be as simple as the name suggests: it's the effort to eliminate any Single
Point Of Failure (SPOF) on every layer in your architecture. OpenStack components
can be brought and distributed in different nodes while maintaining a sense of team
work, which OpenStack is good at—again, thanks to our messaging service. In this
chapter, we will:

•	 Understand how HA and failover mechanisms can guarantee OpenStack
business continuity

•	 Look for a workaround on how to make different OpenStack components
configured in HA

•	 Check out different ways to validate a complete HA setup

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

[172]

HA under the scope
On a daily basis, system and network administrators are faced with a new challenge
by hitting the same point: we are aiming to make our infrastructure highly available!

Meanwhile, the IT manager sticks to his chair, drinking his tea and claims: our
IT system works just fine and our customers are satisfied. Surprisingly, you get that
phone call from the help desk with a struggling voice: well, the browser said "page
not found". Is the application server down? Obviously, the infrastructure was not as
highly available as it should have been. Despite your extra time spent configuring
clusters to be in uptime, more often than not, servers might not be reachable and
you then face a few special events, and you raise this question: why does it not fail
over? To make sense of an HA infrastructure, on one hand, you should know what
HA offers to your environment and how. On the other hand, you should stay close
to test scenarios of failing over as exemplified in the following real-life show. Many
system administrators feel lucky when they have bought a storage box that is not
supposed to fail, and even has this written: the solution that never shouts I am offline.
They claim that the new NAS box is highly available. Sadly, this is never realized. A
power outage takes place and it takes the fancy cluster out of service for a few hours
so that it can be restarted. If you realized that you need an extra battery, then you can
prevent this physical event failure. Later, you update its software package by clicking
on Update the NAS. Unfortunately, the developers of the NAS appliance have
included a new feature in its HA package that makes the software unstable, but you
are not able to not figure that out, as it is a new release and nobody had complained
about it previously. After a while, a failover happens but the server is unreachable. It
should have worked as intended. But in vain, by checking in the racks, you figured
out that eventually, the slave node is becoming the master according to the shining
LED light, which gets stuck while blinking! The failover is on its way, but the system
is not responsive. There was a software bug in the last release. At this point, the
downtime increases again while the bug waits to be fixed. Unluckily, you were the
first NAS box client to complain about the new features, which you might have to
wait to fix. This might take some time. A real-long unplanned failure could lead to a
bigger problem!

The storage system is not highly available anymore. Downtime is the exact enemy
of HA. Friendly downtime can be planned as you will only need to replace some
pieces of hardware. On the other hand, there are many reasons for unexpected
downtime, such as problems with hardware and software, or any external condition
that leads to the failure of the system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[173]

Do not mix them
We still remember that one of the several purposes of OpenStack clustering is
to make sure that services remain running in the case of a node failure. The HA
functionality aims to make sure that the different nodes participating in a given
cluster work in tandem to satisfy certain downtime. HA, in fact, is a golden goal for
any organization where some useful concepts can be used to reach it with minimum
downtime, such as the following:

•	 Failover: Migrate a service running on the failed node to a working one
(switch between primary and secondary)

•	 Fallback: Once a primary is back after a failed event, the service can be
migrated back from the secondary

•	 Switchover: Manually switch between nodes to run the required service

On the other side, we may find a different terminology, which you may have most
likely already experienced, that is, load balancing. In a heavily loaded environment,
load balancers are introduced to redistribute a bunch of requests to less loaded
servers. This can be similar to the high performance clustering concept, but you
should note that this cluster logic takes care of working on the same request, whereas
a load balancer aims to relatively distribute the load based on its task handler in an
optimal way.

HA levels in OpenStack
It might be important to understand the context of HA deployments in OpenStack.
This makes it imperative to distinguish the different levels of HA in order to consider
the following in the cloud environment:

•	 L1: This includes physical hosts, network and storage devices, and
hypervisors

•	 L2: This includes OpenStack services, including compute, network, and
storage controllers, as well as databases and message queuing systems

•	 L3: This includes the virtual machines running on hosts that are managed by
OpenStack services

•	 L4: This includes applications running in the virtual machines themselves

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

[174]

The main focus of the supporting HA in OpenStack has been on L1 and L2, which
are covered in this chapter. On the other hand, L3 HA has limited support in the
OpenStack community. By virtue of its multistorage backend support, OpenStack is
able to bring instances online in the case of host failure by means of live migration.
Nova also supports the Nova evacuate implementation, which fires up API calls for
VM evacuation to a different host due to a compute node failure. The Nova evacuate
command is still limited as it does not provide an automatic way of instance failover.
L2 and L3 HA are considered beyond the scope of this book. L4 HA is touched on,
and enhanced by, the community in the Havana release. Basically, a few incubated
projects in OpenStack, such as Heat, Savana, and Trove, have begun to cover
HA and monitoring gaps in the application level. Heat will be introduced in
Chapter 8, Extending OpenStack – Advanced Networking Features and Deploying
Multi-tier Applications, while Savana and Trove are beyond the scope of this book.

Live migration is the ability to move running instances from one
host to another with, ideally, no service downtime. By default, live
migration in OpenStack requires a shared filesystem, such as a
Network File System (NFS). It also supports block live migration
when virtual disks can be copied over TCP without the need for a
shared filesystem. Read more on VM migration support within the
last OpenStack release at http://docs.openstack.org/admin-
guide-cloud/content/section_configuring-compute-
migrations.html.

A strict service-level agreement
Normally, if you plan to invest time and money in OpenStack clustering, you should
refer to the HA architectural approaches in the first place. They guarantee business
continuity and service reliability.

At this point, meeting these challenges will drive you to acquire skills you never
thought you could master. Moreover, exposing an infrastructure that accepts failures
might distinguish your environment as a blockbuster private cloud. Remember that
this topic is very important in that all you have built within OpenStack components
must be available to your end user.

www.it-ebooks.info

http://docs.openstack.org/admin-guide-cloud/content/section_configuring-compute-migrations.html
http://docs.openstack.org/admin-guide-cloud/content/section_configuring-compute-migrations.html
http://docs.openstack.org/admin-guide-cloud/content/section_configuring-compute-migrations.html
http://www.it-ebooks.info/

Chapter 6

[175]

Availability means that not only is a service running, but it is also exposed and able to be
consumed. Let's see a small overview regarding the maximum downtime by looking
at the availability percentage or HA as X-nines:

Availability level Availability
percentage

Downtime/year Downtime/day

1 Nine 90 ~ 36.5 days ~ 2.4 hours
2 Nines 99 ~ 3.65 days ~ 14 minutes
3 Nines 99.9 ~ 8.76 hours ~ 86 seconds
4 Nines 99.99 ~ 52.6 minutes ~ 8.6 seconds
5 Nines 99.999 ~ 5.25 minutes ~ 0.86 seconds
6 Nines 99.9999 ~ 31.5 seconds ~ 0.0086 seconds

Basically, availability management is a part of IT best practices when it comes
to making sure that IT services are running when needed, which reflects your
service-level agreement (SLA):

•	 Minimized downtime and data loss
•	 User satisfaction
•	 No repeat incidents
•	 Services must be consistently accessible

A paradox may appear between the lines when we consider that eliminating the
SPOF in a given OpenStack environment will include the addition of more hardware
to join the cluster. At this point, you might be exposed to creating more SPOF and,
even worse, complicated infrastructure where maintenance turns into a difficult task.

Measuring HA
The following is a simple tip:

If you do not measure something, you cannot manage it. But what kind of metrics
can be measured in a highly available OpenStack infrastructure?

Agreed, HA techniques come across as increasing the availability of resources, but
still, there are always reasons you may face an interruption at some point! You may
notice that the previous table did not mention any value equal to 100 percent uptime.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

[176]

First, you may appreciate the nonvendor lock-in hallmark that OpenStack offers on
this topic. Basically, you should mark the differences between HA functionalities that
exist in a virtual infrastructure. Several HA solutions provide protection to virtual
machines when there is a sudden failure in the host machine. Then, it will perform a
restore situation for the instance on a different host. What about the virtual machine
itself? Does it hang? So far, we have seen different levels of HA. In OpenStack, we
have already seen cloud controllers run manageable services and compute hosts,
which can be any hypervisor engine and third-rank the instance itself!

The last level might not be a cloud administrator task that maximizes its internal
services' availability as it belongs to the end user. However, what should be taken
into consideration, is what really affects the instance externally, such as:

•	 Storage attachment
•	 Bonded network devices

A good practice is to design the architecture with an approach that is as simple as
possible by keeping efficient track of every HA level in our OpenStack cluster.

Eliminating any SPOF while designing the OpenStack
infrastructure would help in reaching a scalable environment.

A good strategy to follow is to design an untrustworthy SPOF principle by ruling.
This keyword can be found anywhere in any system. In Chapter 1, Designing
OpenStack Cloud Architecture, within our first design, we highlighted a simple
architecture that brings in many instances in order to maximize availability.
Nowadays, large IT infrastructures are likely to suffer from database scalability
across multiple nodes. Without exception, the database in the OpenStack
environment will need to scale as well. We will cover how to implement a
database HA solution in more detail later in this chapter.

High availability in OpenStack does not necessarily mean that it
is designed to achieve maximum performance. On the other hand,
you should consider the limitations of the overhead result on
updating different nodes running the same service.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[177]

The HA dictionary
To ease the following sections of this chapter, it might be necessary to remember few
terminologies to justify high availability and failover decisions later:

•	 Stateless service: This is the service that does not require any record of the
previous request. Basically, each interaction request will be handled based on
the information that comes with it. In other words, there is no dependency
between requests where data, for example, does not need any replication.
If a request fails, it can be performed on a different server.

•	 Stateful service: This is the service where request dependencies come
into play. Any request will depend on the results of the previous and the
subsequent ones. Stateful services are difficult to manage, and they need to
be synchronized in order to preserve consistency.

Let's apply our former definition to our OpenStack services:

Stateful services Stateless services
MySQL, RabbitMQ nova-api, nova-conductor, glance-api, keystone-

api, neutron-api, nova-scheduler, and web server
(Apache/nginx)

Any HA architecture introduces an "active/active" or "active/passive" deployment,
as covered in Chapter 1, Designing OpenStack Cloud Architecture. This is where your
OpenStack environment will highlight its scalability level.

First, let's see the difference between both concepts in a nutshell in order to justify
your decision:

•	 Active/active: Basically, all OpenStack nodes running the same stateful
service will have an identical state. For example, deploying a MySQL
cluster in the active/active mode will bring in a multimaster MySQL node
design, which involves any update to one instance that may be propagated
to all other nodes. Regarding the stateless services, redundancy will invoke
instances to be load-balanced.

•	 Active/passive: In the case of stateful services, a failure event in one node
will bring its associated redundant instance online. For example, within
database clustering, only one master node comes into play, where the
secondary node will act as a listener when failover occurs. It keeps load
balancing handling requests within stateless services.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

[178]

Hands on HA
Chapter 1, Designing OpenStack Cloud Architecture, provided a few hints on how to
prepare for the first design steps: do not lock keys inside your car. At this point, we can
go further due to the emerging different topologies, and it is up to you to decide
what will fit best. The first question that may come into your mind: OpenStack
does not include native HA components; how you can include them? There are
widely used solutions for each component that we cited in the previous chapter
in a nutshell.

Understanding HAProxy
HAProxy stands for High Availability Proxy. It is a free load balancing software tool
that aims to proxy and direct requests to the most available nodes based on TCP/
HTTP traffic. This includes a load balancer feature that can be a frontend server. At
this point, we find two different servers within an HAProxy setup:

•	 A frontend server listens for requests coming on a specific IP and port,
and determines where the connection or request should be forwarded

•	 A backend server defines a different set of servers in the cluster receiving the
forwarded requests

Basically, HAProxy defines two different load balancing modes:

•	 Load balancing layer 4: Load balancing is performed in the transport layer
in the OSI model. All the user traffic will be forwarded based on a specific IP
address and port to the backend servers.
For example, a load balancer might forward the internal OpenStack system's
request to the Horizon web backend group of backend servers. To do this,
whichever backend Horizon is selected should respond to the request under
scope. This is true in the case of all the servers in the web backend serving
identical content. The previous example illustrates the connection of the
set servers to a single database. In our case, all services will reach the same
database cluster.

•	 Load balancing layer 7: The application layer will be used for load balancing.
This is a good way to load balance network traffic. Simply put, this mode
allows you to forward requests to different backend servers based on the
content of the request itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[179]

Many load balancing algorithms are introduced within the HAProxy setup. This is
the job of the algorithm, which determines the server in the backend that should be
selected to acquire the load. Some of them are as follows:

•	 Round robin: Here, each server is exploited in turn. As a simple HAProxy
setup, round robin is a dynamic algorithm that defines the server's weight
and adjusts it on the fly when the called instance hangs or starts slowly.

•	 Leastconn: The selection of the server is based on the lucky node that has the
lowest number of connections.

It is highly recommended that you use the leastconn algorithm in
the case of long HTTP sessions.

•	 Source: This algorithm ensures that the request will be forwarded to the
same server based on a hash of the source IP as long as the server is still up.

Contrary to RR and leastconn, the source algorithm is considered
a static algorithm, which presumes that any change to the server's
weight on the fly does not have any effect on processing the load.

•	 URI: This ensures that the request will be forwarded to the same server
based on its URI. It is ideal to increase the cache-hit rate in the case of proxy
caches' implementations.

Like the source, the URI algorithm is static in that updating the
server's weight on the fly will not have any effect on processing
the load.

You may wonder how the previous algorithms determine which servers in
OpenStack should be selected. Eventually, the hallmark of HAProxy is a healthy
check of the server's availability. HAProxy uses health check by automatically
disabling any backend server that is not listening on a particular IP address and port.

But how does HAProxy handle connections? To answer this question, you should
refer to the first logical design in Chapter 1, Designing OpenStack Cloud Architecture,
which is created with virtual IP (VIP). Let's refresh our memory about the things
that we can see there by treating a few use cases within a VIP.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

[180]

Services should not fail
A VIP can be assigned to the active servers running all the OpenStack services that
need to be configured to use the address of the server. For example, in the case of a
failover of the nova-api service in controller node 1, the IP address will follow the
nova-api in controller node 2, and all clients' requests, which are the internal system
requests in our case, will continue to work:

The load balancer should not fail
The previous use case assumes that the load balancer never fails! But in reality,
this is an SPOF that we have to arm by adding a VIP on top of the load balancer's
set. Usually, we need a stateless load balancer in OpenStack services. Thus, we can
undertake such challenges using software similar to Keepalived:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[181]

Keepalived is a free software tool that provides high availability and load
balancing facilities based on its framework in order to check a Linux Virtual
Server (LVS) pool state.

LVS is a highly available server built on a cluster of real servers by
running a load balancer on the Linux operating system. It is mostly
used to build scalable web, mail, and FTP services.

As shown in the previous illustration, nothing is magic! Keepalived uses the Virtual
Router Redundancy Protocol (VRRP) protocol to eliminate SPOF by making IPs
highly available. VRRP implements virtual routing between two or more servers in
a static, default routed environment. Considering a master router failure event, the
backup node takes the master state after a period of time.

In a standard VRRP setup, the backup node keeps listening for
multicast packets from the master node with a given priority. If the
backup node fails to receive any VRRP advertisement packets for a
certain period, it will take over the master state by assigning the routed
IP to itself. In a multibackup setup, the backup node with the same
priority will be selected within its highest IP value to be the master one.

OpenStack HA under the hood
Deep down in the murky depths of HA, the setup of our magnificent OpenStack
environment is much diversified! It may come across as a bit biased to favor a given
HA setup, but remember that depending on which software clustering solution you
feel more comfortable with, you can implement your HA OpenStack setup.

Let's shine the spotlight brightly on our first OpenStack design in Chapter 1,
Designing OpenStack Cloud Architecture, and take a closer look at the pieces in
the HA mode.

Next, we will move on to specific OpenStack core components and end up with
exposing different possible topologies.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

[182]

HA the database
There's no doubt that behind any cluster, lies a story! Creating your database in the
HA mode in an OpenStack environment is not negotiable. We have set up MySQL in
cloud controller nodes that can also be installed on separate ones. Most importantly,
keep it safe not only from water, but also from fire. Many clustering techniques have
been proposed to make MySQL highly available. Some of the MySQL architectures
can be listed as follows:

•	 Master/slave replication: As exemplified in the following figure, a VIP
that can be optionally moved has been used. A drawback of such a setup
is the probability of data inconsistency due to delay in the VIP failing over
(data loss).

•	 MMM replication: By setting two servers, both of them become masters by
keeping only one acceptable write query at a given time. This is still not a
very reliable solution for OpenStack database HA as in the event of failure of
the master, it might lose a certain number of transactions:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[183]

•	 MySQL shared storage: Both servers will depend on a redundant shared
storage. As shown in the following figure, a separation between servers
processing the data and the storage devices is required. Note that an active
node may exist at any point in time. If it fails, the other node will take over
the VIP after checking the inactivity of the failed node and turn it off. The
service will be resumed in a different node by mounting the shared storage
within the taken VIP.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

[184]

Such a solution is excellent in terms of the uptime, but it may require a
powerful storage/hardware system which could be extremely expensive.

•	 Block-level replication: One of the most adopted HA implementations is the
DRBD replication, which stands for Distributed Replicated Block Device.
Simply put, it replicates data in the block device, which is the physical hard
drive between OpenStack MySQL nodes.

What you need are just Linux boxes. The DRBD works on their kernel layer
exactly at the bottom of the system I/O stack.

With shared storage devices, writing to multiple nodes
simultaneously requires a cluster-aware filesystem, such as
the Linux Global File System (GFS).

DRBD can be a costless solution, but performance-wise, it cannot be a deal
when you rely on hundreds of nodes. This can also affect the scalability of
the replicated cluster.

•	 MySQL Galera multimaster replication: Based on multimaster replication,
the Galera solution has a few performance challenges within an MMM
architecture for the MySQL/innoDB database cluster. Essentially, it uses
synchronous replication where data is replicated across the whole cluster.
As was stated in our first logical design in Chapter 1, Designing OpenStack
Cloud Architecture, a requirement of the Galera setup is the need for at least
three nodes to run it properly. Let's dive into the Galera setup within our
OpenStack environment and see what happens under the hood. In general,
any MySQL replication setup can be simple to set up and make HA-capable,
but data can be lost during the failing over. Galera is tightly designed to
resolve such a conflict in the multimaster database environment. An issue
you may face in a typical multimaster setup is that all the nodes try to update
the same database with different data, especially when a synchronization
problem occurs during the master failure. This is why Galera uses
Certification Based Replication (CBR).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[185]

Keep things simple; the main idea of CBR is to assume that the database can
roll back uncommitted changes, and it is called transactional in addition
to applying replicated events in the same order across all the instances.
Replication is truly parallel; each one has an ID check. What Galera can bring
as an added value to our OpenStack MySQL HA is the ease of scalability;
there are a few more things to it, such as joining a node to Galera while it is
automated in production. The end design brings an active-active
multimaster topology with less latency and transaction loss.

A very interesting point in the last illustration is that every MySQL node
in the OpenStack cluster should be patched within a Write-Set Replication
(wsrep) API. If you already have a MySQL master-master actively working,
you will need to install wsrep and configure your cluster.

Wsrep is a project that aims to develop a generic replication plugin
interface for databases. Galera is one of the projects that use wsrep
APIs by working on its wsrep replication library calls.

You can download and install Galera from https://launchpad.net/
galera/. Every node will need a certain number of steps to configure a
complete MySQL cluster setup.

www.it-ebooks.info

https://launchpad.net/galera/
https://launchpad.net/galera/
http://www.it-ebooks.info/

OpenStack HA and Failover

[186]

HA in the queue
RabbitMQ is mainly responsible for communication between different
OpenStack services. The question is fairly simple: no queue, no OpenStack service
intercommunication. Now that you get the point, another critical service needs to
be available and survive the failures. RabbitMQ is mature enough to support its
own cluster setup without the need to go for Pacemaker or another clustering
software solution.

The amazing part about using RabbitMQ is the different ways by which such a
messaging system can reach scalability using an active/active design with:

•	 RabbitMQ clustering: Any data or state needed for the RabbitMQ broker to
be operational is replicated across all nodes.

•	 RabbitMQ mirrored queues: As the message queue cannot survive in
nodes in which it resides, RabbitMQ can act in active/active HA message
queues. Simply put, queues will be mirrored on other nodes within the same
RabbitMQ cluster. Thus, any node failure will automatically switch to using
one of the queue mirrors.

Setting up queue mirroring does not enhance any load
distribution across the cluster and only guarantees availability.
A good reference on the HA of queues within RabbitMQ can be
found here: https://www.rabbitmq.com/ha.html.

Like any standard cluster setup, the original node handling the queue can be
thought of as a master, while the mirrored queues in different nodes are purely
slave copies. The failure of the master will result in the selection of the oldest
slave to be the new master.

Keep calm and use HA
So far, we have introduced most of the possibilities that can make our OpenStack
environment highly available. OpenStack cloud controller nodes, database clusters,
and network nodes can be deployed in redundancy in the following ways:

•	 MySQL high availability through Galera active/active multimaster
deployment and Keepalived

•	 RabbitMQ active-active high availability using mirrored queues and
HAProxy for load balancing

www.it-ebooks.info

https://www.rabbitmq.com/ha.html
http://www.it-ebooks.info/

Chapter 6

[187]

•	 The OpenStack API services' inclusion of nova-scheduler and glance-registry
in cloud controllers nodes in the active-passive model using Pacemaker and
Corosync

•	 Neutrons agents using Pacemaker

Implementing HA on MySQL
In this implementation, we will need three separate MySQL nodes and two HAProxy
servers, so we can guarantee that our load balancer will fail over if one of them fails.
Keepalived will be installed in each HAProxy to control VIP. Different nodes in this
setup will be assigned as the following:

•	 VIP: 192.168.47.47
•	 HAProxy01: 192.168.47.120
•	 HAProxy02: 192.168.47.121
•	 MySQL01: 192.168.47.125
•	 MySQL02: 192.168.47.126
•	 MySQL03: 192.168.47.127

In order to implement HA on MySQL, perform the following steps:

1.	 First, let's start by installing and configuring our HAProxy servers:
packtpub@haproxy1$ sudo yum update

packtpub@haproxy1$ sudo yum install haproxy keepalived

2.	 Check whether the HAProxy is properly installed:
packtpub@haproxy1$ haproxy –v

HA-Proxy version 1.5.2 2014/07/12

3.	 Let's configure our first HAProxy node. We start by backing up the default
configuration file:
packtpub@haproxy1$ sudo cp /etc/haproxy/haproxy.cfg \ /etc/
haproxy/haproxy.cfg.bak

packtpub@haproxy1$ sudo nano /etc/haproxy/haproxy.cfg

global

 log 127.0.0.1 local2

 chroot /var/lib/haproxy

 pidfile /var/run/haproxy.pid

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

[188]

 maxconn 1020 # See also: ulimit -n

 user haproxy

 group haproxy

 daemon

 stats socket /var/lib/haproxy/stats.sock mode 600 level admin

 stats timeout 2m

defaults

 mode tcp

 log global

 option dontlognull

 option redispatch

 retries 3

 timeout queue 45s

 timeout connect 5s

 timeout client 1m

 timeout server 1m

 timeout check 10s

 maxconn 1020

listen haproxy-monitoring *:80

 mode tcp

 stats enable

 stats show-legends

 stats refresh 5s

 stats uri /

 stats realm Haproxy\ Statistics

 stats auth monitor:packadmin

 stats admin if TRUE

frontend haproxy1 # change on 2nd HAProxy

 bind *:3306

 default_backend mysql-os-cluster

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[189]

backend mysql-os-cluster

 balance roundrobin

 server mysql01 192.168.47.125:3306 maxconn 151 check

 server mysql02 192.168.47.126:3306 maxconn 151 check

 server mysql03 192.168.47.127:3306 maxconn 151 check

4.	 Start the haproxy service:
packtpub@haproxy1$ sudo service haproxy start

5.	 Repeat steps 1 to 4, replacing haproxy1 with haproxy2 in the frontend
section.

6.	 Now, we arm our HAProxy servers by adding the VRRP /etc/keepalived/
keepalived.conf file. But first, we back up the original configuration file:
packtpub@haproxy1$ sudo cp /etc/keepalived/keepalived.conf \ /etc/
keepalived/keepalived.conf.bak

packtpub@haproxy1$ sudo nano /etc/keepalived/keepalived.conf

To bind a virtual address that does not exist physically on the server, you can
add the following option to sysctl.conf in your CentOS box:
net.ipv4.ip_nonlocal_bind=1

Do not forget to activate the change using the following:

packtpub@haproxy1$ sudo sysctl –p

packtpub@haproxy1$ sudo nano /etc/keepalived/keepalived.conf

vrrp_script chk_haproxy {

 script "killall -0 haproxy"

 interval 2

 weight 2

}

vrrp_instance MYSQL_VIP {

 interface eth0

 virtual_router_id 120

 priority 111 # Second HAProxy is 110

 advert_int 1

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

[190]

 virtual_ipaddress {

 192.168.47.47/32 dev eth0

 }

 track_script {

 chk_haproxy

 }

}

7.	 Repeat step 6 by replacing the priority to 110, for example, in the HAProxy2
node.

8.	 Check whether the VIP was assigned to eth0 in both the nodes:
packtpub@haproxy1$ ip addr show eth0

packtpub@haproxy2$ ip addr show eth0

9.	 Now you have HAProxy and Keepalived ready and configured; all we need
to do is set up the Galera plugin through all the MySQL nodes in the cluster:
packtpub@db01$ wget https://launchpad.net/codership-
mysql/5.6/5.6.16-25.5/+download/MySQL-server-5.6.16_wsrep_25.5-1.
rhel6.x86_64.rpm

packtpub@db01$ wget https://launchpad.net/galera/0.8/0.8.0/ \
+download/galera-0.8.0-x86_64.rpm

10.	 We need to install the previously downloaded rpm files using:
packtpub@db01$ sudo rpm -Uhv galera-0.8.0-x86_64.rpm

packtpub@db01$ sudo rpm -Uhv MySQL-server-5.6.16_wsrep_25.5 \
1.rhel6.x86_64.rpm

If you did not install MySQL within Galera from scratch, you
should stop the mysql service first before proceeding with the
Galera plugin installation. The example assumes that MySQL
is installed and stopped. More information about the usage
of Galera in OpenStack can be found here: http://docs.
openstack.org/high-availability-guide/content/
ha-aa-db-mysql-galera.html.

www.it-ebooks.info

http://docs.openstack.org/high-availability-guide/content/ha-aa-db-mysql-galera.html
http://docs.openstack.org/high-availability-guide/content/ha-aa-db-mysql-galera.html
http://docs.openstack.org/high-availability-guide/content/ha-aa-db-mysql-galera.html
http://www.it-ebooks.info/

Chapter 6

[191]

11.	 Once the Galera plugin is installed, log in to your MySQL nodes and create
a new galera user with the galerapass password and, optionally, the
haproxy username for HAProxy monitoring without a password for the sake
of simplicity. Note that for MySQL clustering, a new sst user must exist. We
will set up a new sstpassword password for node authentication:
mysql> GRANT USAGE ON *.* to sst@'%' IDENTIFIED BY 'sstpassword';

mysql> GRANT ALL PRIVILEGES on *.* to sst@'%';

mysql> GRANT USAGE on *.* to galera@'%' IDENTIFIED BY
'galerapass';

mysql> INSERT INTO mysql.user (host,user) values ('%','haproxy');

mysql> FLUSH PRIVILEGES;

mysql> quit

12.	 Configure the MySQL wresp Galera library in each MySQL node in /etc/
mysql/conf.d/wsrep.cnf.
For db01.packtpub.com, add this code:
wsrep_provider=/usr/lib64/galera/libgalera_smm.so
wsrep_cluster_address="gcomm://"
wsrep_sst_method=rsync
wsrep_sst_auth=sst:sstpass

Restart the MySQL server:
packtpub@db01$ sudo /etc/init.d/mysql restart

For db02.packtpub.com, add this code:
wsrep_provider=/usr/lib64/galera/libgalera_smm.so
wsrep_cluster_address="gcomm://192.168.47.125"
wsrep_sst_method=rsync
wsrep_sst_auth=sst:sstpass

Restart the MySQL server:
packtpub@db01$ sudo /etc/init.d/mysql restart

For db03.packtpub.com, add this code:
wsrep_provider=/usr/lib64/galera/libgalera_smm.so
wsrep_cluster_address="gcomm://192.168.47.126"
wsrep_sst_method=rsync
wsrep_sst_auth=sst:sstpass

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

[192]

Restart the MySQL server:
packtpub@db01$ sudo /etc/init.d/mysql restart

Note that the db01.packtpub.com gcomm:// address is left empty to create
the new cluster. The last step will connect to the db03.packtpub.com node.
To reconfigure it, we will need to modify our /etc/mysql/conf.d/wsrep.
cnf file and point to 192.168.47.127:
wresp_cluster_address ="gcomm://192.168.47.127"

From the MySQL command line, set your global MySQL settings as follows:

mysql> set global wsrep_cluster_address='gcomm://192.168.1.140:4567';

13.	 Check whether the Galera replication is running the way it should be
running:

packtpub@db01$ mysql –e "show status like 'wsrep%' "

If your cluster is fine, you should see something like:
wsrep_ready = ON

Additional checks can be verified from the MySQL command line. In db01.
packtpub.com, you can run:
Mysql> show status like 'wsrep%';

|wsrep_cluster_size | 3 |

|wsrep_cluster_status | Primary |

|wsrep_connected | ON |

The wsrep_cluster_size node that shows value 3 means that our cluster
is aware of three connected nodes while the current node is designated as a
wsrep_cluster_status primary node.
Starting from step 9, you can add a new MySQL node and join the cluster.
Note that we have separated our MySQL cluster from the cloud controller,
which means that OpenStack services running in the former node, including
Keystone, Glance, Nova, and Cinder as well as Neutron nodes, need to point
to the right MySQL server. Remember that we are using HAProxy while VIP
is managed by Keepalived for MySQL high availability. Thus, you will need
to reconfigure the Virtual IP in each service, as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[193]

°° Nova: /etc/nova/nova.conf

sql_connection=mysql://nova:openstack@192.168.47.47/nova

°° Keystone: /etc/keystone/keystone.conf
sql_connection=mysql://keystone:openstack@192.168.47.47/
keystone

°° Glance: /etc/glance/glance-registry.conf
sql_connection=mysql://glance:openstack@192.168.47.47/glance

°° Neutron: /etc/neutron/plugins/openvswitch/ovs_neutron_
plugin.ini

sql_connection=mysql://neutron:openstack@192.168.47.47/
neutron

°° Cinder: /etc/cinder/cinder.conf

sql_connection=mysql://cinder:openstack@192.168.47.47/cinder

Remember that in order to edit your OpenStack configuration files,
you will need to restart the corresponding services. Ensure that after
each restart, the service is up and running and does not show any
error in the log files.
If you are familiar with sed and awk command lines, it might be
easier to reconfigure files using them. You can take a look at another
useful shell tool to manipulate ini and conf files; crudini can be
found at http://www.pixelbeat.org/programs/crudini/.
To update an existing configuration file, the command line is fairly
simple:
crudini --set <Config_File_Path> <Section_Name>
<Parameter> <Value>

To update, for example, the /etc/nova/nova.conf file showed
previously, you can enter the following command line:
crudini --set /etc/nova/nova.conf database
connection mysql://nova:openstack@192.168.47.47/nova

www.it-ebooks.info

http://www.pixelbeat.org/programs/crudini/
http://www.it-ebooks.info/

OpenStack HA and Failover

[194]

Implementing HA on RabbitMQ
In this setup, we will use a node to introduce minor changes to our RabbitMQ
instances running in cloud controller nodes. We will enable the mirrored option in
our RabbitMQ brokers. In this example, we assume that the RabbitMQ service is
running on three OpenStack cloud controller nodes, as follows:

•	 VIP: 192.168.47.47
•	 HAProxy01: 192.168.47.120
•	 HAProxy02: 192.168.47.121
•	 Cloud controller 01: 192.168.47.100
•	 Cloud controller 02: 192.168.47.101
•	 Cloud controller 03: 192.168.47.102

In order to implement HA on RabbitMQ, perform the following steps:

1.	 Stop RabbitMQ services on the second and third cloud controller. Copy the
erlang cookie from the first cloud controller and add the additional nodes:
packtpub@cc01$ scp /var/lib/rabbitmq/.erlang.cookie\ root @cc02:/
var/lib/rabbitmq/.erlang.cookie

packtpub@cc01$ scp /var/lib/rabbitmq/.erlang.cookie\ root @cc03:/
var/lib/rabbitmq/.erlang.cookie

2.	 Set the rabbitmq group and user with 400 file permissions in both the
additional nodes:
packtpub@cc02$ sudo chown rabbitmq:rabbitmq\ /var/lib/rabbitmq/.
erlang.cookie

packtpub@cc02$ sudo chmod 400 /var/lib/rabbitmq/.erlang.cookie

packtpub@cc03$ sudo chown rabbitmq:rabbitmq\ /var/lib/rabbitmq/.
erlang.cookie

packtpub@cc03$ sudo chmod 400 /var/lib/rabbitmq/.erlang.cookie

3.	 Start the RabbitMQ service in cc02 and cc03:
packtpub@cc02$ service rabbitmq-server start

packtpub@cc02$chkconfig rabbitmq-server on

packtpub@cc03$ service rabbitmq-server start

packtpub@cc03$chkconfig rabbitmq-server on

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[195]

4.	 Now, it's time to form the cluster and enable the mirrored queue option.
Currently, all the three RabbitMQ brokers are independent and they are not
aware of each other. Let's instruct them to join one cluster unit. First, stop the
rabbimqctl daemon.
On the cc02 node, run these commands:
rabbitmqctl stop_app

Stopping node 'rabbit@cc02' ...

...done.

rabbitmqctl join-cluster rabbit@cc01

Clustering node 'rabbit@cc02' with 'rabbit@cc01' ...

...done.

rabbitmqctl start_app

Starting node 'rabbit@cc02' ...

... done

On the cc03 node, run the following commands:

rabbitmqctl stop_app

Stopping node 'rabbit@cc03' ...

...done.

rabbitmqctl join-cluster rabbit@cc01

Clustering node 'rabbit@cc03' with 'rabbit@cc01' ...

...done.

rabbitmqctl start_app

Starting node 'rabbit@cc03' ...

... done

5.	 Check the nodes in the cluster by running them from any RabbitMQ node:
rabbitmqctl cluster_status

Cluster status of node 'rabbit@cc03' ...

[{nodes,[{disc,['rabbit@cc01','rabbit@cc02',

 'rabbit@cc03']}]},

 {running_nodes,['rabbit@cc01','rabbit@cc02',

 'rabbit@cc03']},

 {partitions,[]}]

...done.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

[196]

6.	 The last step will instruct RabbitMQ to use mirrored queues. By doing this,
mirrored queues will enable both producers and consumers in each queue
to connect to any RabbitMQ broker so that they can access the same message
queues. The following command will sync all the queues across all cloud
controller nodes by setting an HA policy:
rabbitmqctl set_policy HA '^(?!amq\.).*' '{"ha-mode":"all", "ha-
sync-mode":"automatic" }'

Note that the previous command line settles a policy where all
queues are mirrored to all nodes in the cluster.

7.	 Edit its configuration file in each RabbitMQ cluster node to join the cluster on
restarting /etc/rabbitmq/rabbitmq.config:
[{rabbit,
 [{cluster_nodes, {['rabbit@cc01', 'rabbit@cc02', 'rabbit@cc03'],
ram}}]}].

8.	 We can proceed to set up a load balancer for RabbitMQ. We need to only
add a new section in both the haproxy1 and haproxy2 nodes and reload
the configurations:
listen rabbitmqcluster 192.168.47.47:5670
 mode tcp
 balance roundrobin
 server cc01 192.168.47.100:5672 check inter 5s rise 2 fall 3
 server cc02 192.168.47.101:5672 check inter 5s rise 2 fall 3
 server cc03 192.168.47.102:5672 check inter 5s rise 2 fall 3

Note that we are listening on the VIP 192.168.47.47. Reload the
configuration on both HAProxy nodes:
service haproxy reload

Using VIP to manage both HAProxy nodes as a proxy for RabbitMQ might
require you to configure each OpenStack service to use the 192.168.47.47
address and the 5670 port. Thus, you will need to reconfigure the RabbitMQ
settings in each service in the VIP, as the following:

°° Nova: /etc/nova/nova.conf:
crudini --set /etc/nova/nova.conf DEFAULT rabbit_host
192.168.47.47

crudini --set /etc/nova/nova.conf DEFAULT rabbit_port
5470

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[197]

°° Glance: /etc/glance/glance-api.conf:
crudini --set /etc/glance/glance-api.conf DEFAULT
rabbit_host 192.168.47.47

crudini --set /etc/glance/glance-api.conf DEFAULT
rabbit_port 5470

°° Neutron: /etc/neutron/neutron.conf:
crudini --set /etc/neutron/neutron.conf DEFAULT rabbit_
host 192.168.47.47

crudini --set /etc/neutron/neutron.conf DEFAULT rabbit_
port 5470

°° Cinder: /etc/cinder/cinder.conf:

crudini --set /etc/cinder/cinder.conf DEFAULT rabbit_
host 192.168.47.47

crudini --set /etc/cinder/cinder.conf DEFAULT rabbit_
port 5470

Implementing HA on OpenStack cloud controllers
Moving on to the setting up of highly available OpenStack cloud controllers
requires a way of managing the services running in the former nodes. Another
alternative for the high-availability game is using Pacemaker and Corosync. As a
native high-availability and load-balancing stack solution for the Linux platform,
Pacemaker depends on Corosync to maintain cluster communication based on the
messaging layer. Corosync supports multicast as the default network configuration
communication method. For some environments that do not support multicast,
Corosync can be configured for unicast. In multicast networks, all the cluster nodes
are connected to the same physical network device, it will be necessary to make sure
that at least one multicast address is configured in the configuration file. Corosync
can be considered as a message bus system that allows OpenStack services running
across different cloud controller nodes to manage quorum and cluster membership
to Pacemaker. But how does Pacemaker interact with these services? Simply
put, Pacemaker uses Resource Agents (RAs) to expose the interface for resource
clustering. Natively, Pacemaker supports over 70 RAs found in http://www.linux-
ha.org/wiki/Resource_Agents.

www.it-ebooks.info

http://www.linux-ha.org/wiki/Resource_Agents
http://www.linux-ha.org/wiki/Resource_Agents
http://www.it-ebooks.info/

OpenStack HA and Failover

[198]

In our case, we will use native OpenStack RAs, including:

•	 The OpenStack compute service
•	 The OpenStack identity service
•	 The OpenStack image service

There is a native Pacemaker RA to manage MySQL databases
and VIP, which you can use as an alternative for the MySQL
Galera replication solution.

In order to implement HA on OpenStack cloud controllers, perform the
following steps:

1.	 Install and configure Pacemaker and Corosync on cloud controller nodes:
yum update

yum install pacemaker corosync

Corosync allows any server to join a cluster using active-active or active-
passive fault-tolerant configurations. You will need to choose an unused
multicast address and a port. Create a backup for the original Corosync
configuration file and edit /etc/corosync/ corosync.conf as follows:
cp /etc/corosync/corosync.conf /etc/corosync/corosync.conf.bak

nano /etc/corosync/corosync.conf

Interface {

 ringnumber: 0

bindnetaddr: 192.168.47.0

mcastaddr: 239.225.47.10

mcastport: 4000

....}

In the case of a unicast network, you might be needed to specify the
addresses of all nodes that are allowed as members of the OpenStack
cluster, in the Corosync configuration file. There is no need for
a multicast cluster. A sample example template can be found at
http://docs.openstack.org/high-availability-guide/
content/_set_up_corosync_unicast.html.

www.it-ebooks.info

http://docs.openstack.org/high-availability-guide/content/_set_up_corosync_unicast.html
http://docs.openstack.org/high-availability-guide/content/_set_up_corosync_unicast.html
http://www.it-ebooks.info/

Chapter 6

[199]

Generate an authorization key on the cc01 node to enable communication
between cloud controller nodes:
sudo corosync-keygen

Copy the generated /etc/corosync/authkey and /etc/corosync/
corosync.conf files to other nodes in the cluster:
scp /etc/corosync/authkey /etc/corosync/corosync.conf\
packpub@192.168.47.101:/etc/corosync/

scp /etc/corosync/authkey /etc/corosync/corosync.conf\
packpub@192.168.47.102:.etc/corosync/

Start the Pacemaker and Corosync services:
service pacemaker start

service corosync start

A good way to check the setup is to run the following command:
crm_mon -1

Online: [cc01 cc02 cc03]

First node (cc01)

By default, Corosync uses Shoot The Other Node In The Head
(STONITH) option. It is used to avoid a split-brain situation where each
service node believes that the other(s) is (are) broken and it is the elected
one. Thus, in the case of a STONITH death match, the second node, for
example, shoots the first one to ensure that there is only one primary
node running. In a simple two nodes Corosynced environment, it might
be convenient to disable it by running:
crm configure property stonith-enabled= "false"

On cc01, we can set up a VIP that will be shared between the three servers.
We can use 192.168.47.48 as the VIP with a 3-second monitoring interval:
crm configure primitive VIP ocf:heartbeat:IPaddr2 params \
ip=192.168.47.48 cidr_netmask=32 op monitor interval=3s

We can see that the VIP has been assigned to the cc01 node. Note that the
use of the VIP will be assigned to the next cloud controller if cc01 does not
show any response during 3 seconds:
crm_mon -1

Online: [cc01 cc02]

VIP (ocf::heartbeat:IPaddr2): Started cc01

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

[200]

Optionally, you can create a new directory to save all downloaded resource
agent scripts under /usr/lib/ocf/resource.d/openstack.

Creating a new VIP will require you to point OpenStack services
to the new virtual address. You can overcome such repetitive
reconfiguration by keeping both IP addresses of the cloud controller
and the VIP. In each cloud controller, ensure that you have
exported the needed environment variables as follows:

export OS_AUTH_URL=http://192.168.47.48:5000/v2.0/

2.	 Set up RAs and configure Pacemaker for Nova.
First, download the resource agent in all the three cloud controller nodes:
cd /usr/lib/ocf/resource.d/openstack

wget https://raw.github.com/leseb/OpenStack-ra/master/nova-api

wget https://raw.github.com/leseb/OpenStack-ra/master/nova-cert

wget https://raw.github.com/leseb/OpenStack-ra/ \

master/nova-consoleauth

wget https://raw.github.com/leseb/OpenStack-ra/ \

master/nova-scheduler

wget https://raw.github.com/leseb/OpenStack-ra/master/nova-vnc

chmod a+rx *

You can check whether the Pacemaker is aware of new RAs or not
by running this:

crm ra info ocf:openstack:nova-api

Now, we can proceed to configure Pacemaker to use these agents to control
our Nova service. The next configuration creates p_nova_api, a resource to
manage the OpenStack nova-api:
crm configure primitive p_nova-api ocf:openstack:nova-api \

 params config="/etc/nova/nova.conf" op monitor interval="5s"\
timeout="5s"

Create p_cert, a resource to manage the OpenStack nova-cert:
crm configure primitive p_cert ocf:openstack:nova-cert \

 params config="/etc/nova/nova.conf" op monitor interval="5s"\
timeout="5s"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[201]

Create p_consoleauth, a resource to manage the OpenStack nova-
consoleauth:
crm configure primitive p_consoleauth ocf:openstack: \

nova-consoleauth params config="/etc/nova/nova.conf" \

 op monitor interval="5s" timeout="5s"

Create p_scheduler, a resource to manage the OpenStack nova-scheduler:
crm configure primitive p_scheduler ocf:openstack:nova-scheduler
\

 params config="/etc/nova/nova.conf" op monitor interval="5s" \
timeout="5s"

Create p_novnc, a resource to manage the OpenStack nova-vnc:

crm configure primitive p_ novnc ocf:openstack:nova-vnc \

 params config="/etc/nova/nova.conf" op monitor interval="5s" \
timeout="5s"

3.	 Set up RA and configure Pacemaker for Keystone:
Download the resource agent in all three cloud controller nodes:
cd /usr/lib/ocf/resource.d/openstack

wget https://raw.github.com/madkiss/ \

openstack-resource-agents/master/ocf/keystone

Proceed to configure Pacemaker to use the downloaded resource agent to
control the Keystone service. The next configuration creates p_keysone, a
resource to manage the OpenStack identity service:

crm configure primitive p_keystone ocf:openstack:keystone \

params config="/etc/keystone/keystone.conf" op monitor
interval="5s"\ timeout="5s"

4.	 Set up RA and configure Pacemaker for Glance.
Download the resource agent in all three cloud controller nodes:
cd /usr/lib/ocf/resource.d/openstack

wget https://raw.github.com/madkiss/ \

openstack-resource-agents/master/ocf/glance-api

wget https://raw.github.com/madkiss/ \

openstack-resource-agents/master/ocf/glance-registry

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

[202]

Proceed to configure Pacemaker to use the downloaded resource agent to
control the Glance API service. The next configuration creates p_glance-api,
a resource to manage the OpenStack Image API service:
crm configure primitive p_glance-api ocf:openstack:glance-api \

params config="/etc/glance/glance-api.conf" op monitor
interval="5s"\ timeout="5s"

Create p_glance-registry, a resource to manage the OpenStack glance-
registry:

crm configure primitive p_glance-registry \

ocf:openstack:glance-registry params config="/etc/glance/ \

glance-registry.conf " op monitor interval="5s" timeout="5s"

5.	 Set up RA and configure Pacemaker for the Neutron server:

Download the resource agent in all three cloud controller nodes:
cd /usr/lib/ocf/resource.d/openstack

wget https://raw.github.com/madkiss/ \

openstack-resource-agents/master/ocf/neutron-server

Now, we can proceed to configure Pacemaker to use these agents to control
our Neutron server service. The next configuration creates p_neutron-
server, a resource to manage the OpenStack networking server:
crm configure primitive p_neutron-server ocf:openstack: \

neutron-server params config="/etc/neutron/neutron.conf" \

op monitor interval="5s" timeout="5s"

Check whether our Pacemaker is handling our OpenStack services correctly:

crm_mon -1

Online: [cc01 cc02 cc03]

VIP (ocf::heartbeat:IPaddr2): Started cc01

p_nova-api (ocf::openstack:nova-api):

Started cc01

p_cert (ocf::openstack:nova-cert):

Started cc01

p_consoleauth (ocf::openstack:nova-consoleauth):

Started cc01

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[203]

p_scheduler (ocf::openstack:nova-scheduler):

Started cc01

p_nova-novnc (ocf::openstack:nova-vnc):

Started cc01

p_keystone (ocf::openstack:keystone):

Started cc01

p_glance-api (ocf::openstack:glance-api):

Started cc01

p_glance-registry (ocf::openstack:glance-registry):

Started cc01

p_neutron-server (ocf::openstack:neutron-server):

Started cc01

To use private and public IP addresses, you might need to create two
different VIPs. For example, you will have to define your endpoint as
follows:
keystone endpoint-create --region $KEYSTONE_REGION \

--service-id $service-id –-publicurl \ 'http://PUBLIC_
VIP:9292' \

--adminurl 'http://192.168.47.48:9292' \

--internalurl 'http://192.168.47.48:9292'

Implementing HA on network nodes
Extending our OpenStack deployment will necessitate the network controller be
brought to its own cluster stack. As we have concluded previously, Neutron is very
extensible in terms of the plugin and network configuration. Whichever network
setup you imply, a network controller will have to sit on three different networks:

•	 Management network
•	 Data network
•	 External network or Internet (Internet access for instances)

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

[204]

To ensure a fault-tolerant network controller cluster, we will use Pacemaker to avoid
any SPOF in the overall OpenStack environment:

1.	 Set up RA and configure Pacemaker for the Neutron L3 agent.
Download the resource agent in all three cloud controller nodes:
cd /usr/lib/ocf/resource.d/openstack

wget https://raw.github.com/madkiss/ \

openstack-resource-agents/master/ocf/neutron-agent-l3

The Neutron L3 agent provides layer 3 and Network Address
Translation (NAT) forwarding to allow instances, access to the
tenant networks.

Proceed to configure Pacemaker to use the downloaded resource agent to
control Neutron agent L3. The next configuration creates p_neutron-l3-
agent, a resource to manage the OpenStack Image API service:

crm configure primitive p_neutron-l3-agent ocf:openstack: \

neutron-l3-agent params config="/etc/neutron/neutron.conf"\
plugin_config= "/etc/neutron/l3_agent.ini" \

op monitor interval="5s" timeout="5s"

2.	 Set up RA and configure Pacemaker for the Neutron DHCP agent.
Download the resource agent in all three cloud controller nodes:
cd /usr/lib/ocf/resource.d/openstack

wget https://raw.github.com/madkiss/ \

openstack-resource-agents/master/ocf/neutron-agent-dhcp

By default, the Neutron DHCP agent uses dnsmasq to assign IP
addresses to instances.

Proceed to configure Pacemaker to use the downloaded resource agent to
control the Neutron DHCP agent. The next configuration creates p_neutron-
dhcp-agent, a resource to manage the OpenStack DHCP agent:

crm configure primitive p_neutron-dhcp-agent ocf:openstack: \

neutron-dhcp-agent params config="/etc/neutron/neutron.conf"\
plugin_config= "/etc/neutron/dhcp_agent.ini" \

op monitor interval="5s" timeout="5s"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[205]

3.	 Set up RA and configure Pacemaker for the Neutron metadata agent.

Download the resource agent in all three cloud controller nodes:
cd /usr/lib/ocf/resource.d/openstack

wget https://raw.github.com/madkiss/ \

openstack-resource-agents/master/ocf/neutron-metadata-agent

The Neutron metadata agent enables instances on tenant
networks to reach the Compute API metadata.

Proceed to configure Pacemaker to use the downloaded resource agent
to control the Neutron metadata agent. The next configuration creates
p_neutron-metadata-agent, a resource to manage the OpenStack
metadata agent:

crm configure primitive p_neutron-metadata-agent ocf:openstack:\

neutron-metadata agent params config="/etc/neutron/neutron.conf"
\

plugin_config= "/etc/neutron/metadata_agent.ini" \

op monitor interval="5s" timeout="5s

Summary
In this chapter, you learned some of the most important concepts about high
availability and failover. You also learned the different options available to build a
redundant OpenStack architecture with a robust resiliency. You will know how to
diagnose your OpenStack design by eliminating any SPOF across all services. We
highlighted different open source solutions out of the box to arm our OpenStack
infrastructure and make it as fault-tolerant as possible. Different technologies were
introduced, such as HAProxy, database replication such as Galera, Keepalived,
Pacemaker, and Corosync. This completes the first part of the book that aimed to
cover different architecture levels and several solutions to end up with an optimal
OpenStack solution for a medium and large infrastructure deployment.

Now that we have crystallized the high availability aspect in our private cloud, we
will focus on building a multinode OpenStack environment in the next chapter and
dive deeper into orchestrating it. You can call it my first production day.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[207]

OpenStack Multinode
Deployment – Bringing

in Production
"The value of an idea lies in the using of it."

–Thomas A. Edison

The ultimate goal of this book is to get you from where you are today to the point
where you can confidently build an operational OpenStack environment in a
production environment. While going through the previous chapters, you may
notice the diversity of services and components that exist in OpenStack that are
still under intensive development and which are constantly extending their
respective features. Of course, most readers will appreciate that moving OpenStack
from a small test environment to a production setup is not an easy task.

Generally, a complete production setup can be pretty tough to create. It is time
to collect the pieces to form our first big picture. You will realize that different
implementations of OpenStack are suited for the wallets of different organizations.
Chapter 1, Designing OpenStack Cloud Architecture, introduced sample resources and
the hardware computation that is related to the OpenStack nodes to get ready for a
"production day". On the other hand, a major challenge might appear at this stage
that was not detailed in previous chapters: How do we connect the pieces? As you
may have noted, going through a networking setup needs a lot of preparation and
detailed planning.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[208]

In this chapter, you will learn how to perform the following operations:

•	 Proceed gradually and decide a first physical layout of your first
production day

•	 Define the OpenStack production network topology
•	 Set up your first production environment by using bare metal

provisioning tools
•	 Automate the OpenStack setup by using Chef in production
•	 Integrate a failover mechanism into the production setup

The next section will deal with an example of a sample setup derived from a
specific design layout. Thus, it is fundamental to bear in mind that you should
select the solution that will fit your needs, the hardware that you will be able to
offer, and the size of your infrastructure for your first private cloud deployment.
You can always go through the previous chapters to review the component that
can be chosen or replaced by another. Also, do not forget to follow the happenings
in the OpenStack community. Let's start our first production day, which needs
some preparation and a lot of enthusiasm.

Confirming the multinode setup
We can divide our physical setup into the following two categories:

•	 OpenStack node role assignment: The number of nodes as well as the
services that will be running into each one

•	 OpenStack node provisioning: The way we will conduct the installation
of each one from the bare metal level

By combining our multinode setup with a bare metal provisioning that configures
the physical servers on a hardware level and a services categorization by using a
group of nodes, we have an end-to-end approach that can quickly install a primary
OpenStack private cloud in a wide range of hardware.

Assigning physical nodes
Depending on the number of physical machines that you would like to deploy, take
into consideration the best practices and recommendations that were discussed in
the previous chapters while building your first OpenStack production environment.
In the current example, the following nodes need to be installed:

•	 Three controller nodes
•	 Three compute nodes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[209]

•	 Three Ceph OSD nodes
•	 Two network nodes (Is the health of the L3 agent stable in the Juno release?

This will be covered in the next chapter.)

Node type Services Network interfaces
Cloud controller 1 MySQL Active wsrep_1

RabbitMQ Active Mirror_1
Horzion
nova-*
cinder-*
keystone-*
glance-*
neutron-server

2 x 10G network ports
1 x 40G network port

Cloud controller 2 MySQL Active wsrep_2
RabbitMQ Active Mirror_2
Horzion
nova-*
cinder-api
keystone-*
glance-*
neutron-server

2 x 10G network ports
1 x 40G network port

Cloud controller 3 MySQL Active wsrep_3
RabbitMQ Active Mirror_3
Horzion
nova-*
cinder-api
keystone-*
glance-*
neutron-server standby

2 x 10G network ports
1 x 40G network port

Compute 1 nova-compute
neutron-openvswitch-agent
Ceph client

2 x 10G network ports
1 x 40G network port

Compute 2 nova-compute
neutron-openvswitch-agent
Ceph client

2 x 10G network ports
1 x 40G network port

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[210]

Node type Services Network interfaces
Compute 3 nova-compute

neutron-openvswitch-agent
Ceph client

2 x 10G network ports
1 x 40G network port

Storage 1 ceph-osd
ceph-mon

2 x 10G network ports
1 x 40G network port

Storage 2 ceph-osd
ceph-mon

2 x 10G network ports
1 x 40G network port

Storage 3 ceph-osd
ceph-mon

2 x 10G network ports
1 x 40G network port

Network 1 L2 Agent Active
L3 Agent Active
DHCP Agent Active

2 x 10G network ports
1 x 40G network port

Network 2 L2 Agent Standby
L3 Agent Standby
DHCP Agent Standby

2 x 10G network ports
1 x 40G network port

Preparing the OpenStack Initiator
Chapter 2, Deploying OpenStack – DevOps and OpenStack Dual Deal, cited a few ways that
can be used to deploy the OpenStack software by the means of system management
tools such as Chef, Puppet, and many others. We have seen in-depth
how to use Chef to install the OpenStack software across different nodes. Moving to
a larger environment, you will need a second level of automation to provision your
operation system software across all the nodes. Basically, you will need a tool or a
system that makes it quick and easy to set up physical hardware, on which you can
deploy your OpenStack private cloud infrastructure. Several solutions such as Cobbler,
Kickstart, Razor, and Extreme Cluster/Cloud Administration (xCAT) are able to do
the job. In the sample setup, we will use xCAT as a Master Initiator Node (MIN) for
the OpenStack environment. Again, feel free to use any other tool instead of xCAT.

In our setup, xCAT can perform the following tasks:

•	 Provision operating systems such as CentOS
•	 Manage the remote system and power
•	 Run and serve network services such as DNS, DHCP, and TFTP

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[211]

Furthermore, xCAT is capable of identifying the nodes by the means of network
autodiscovery, which will be covered later during the installation process. It will
be amazing to bring the Chef server into action, but this time, this process will be
performed in the second stage. Once the operating system for each node in our
network is installed, xCAT triggers some post-install scripts to bootstrap the Chef
environment. The Chef server will take over and bring each OpenStack server to its
final configuration state, as described in the Chef role list.

The xCAT supports Preboot Execution Environment (PXE) as a network boot method. It is
necessary that all the nodes supporting PXE boot the network before the local drive during
the first operating system setup. Be sure that all the NICs for your nodes support PXE.

We have chosen the MIN and Chef server to run the following services with an
appropriate number of network interfaces. For the sake of simplicity, we will run
the Chef workstation in the same node as that of the Chef server. It is recommended
to separate your workstation in a different node. This is more convenient for a better
cookbook's development environment, as was discussed in Chapter 2, Deploying
OpenStack – DevOps and OpenStack Dual Deal.

Node type Services Network interfaces
Master initiator xcatd

TFTP
DHCP
DNS
Conserver
Kickstart
Post-provision

2 x 10G network ports

Chef server Chef server
Knife

2 x 10G network ports

The network topology
At first, choosing the right network setup can be challenging, especially in a large
environment, when you consider different networks and node clusters. Generally,
a good practice for a first successful step is to make it as simple as possible.
Overengineering a network setup might bring more troubleshooting tasks while
running in production rather than extending it. Thus, we will go for a simpler setup
in two phases—the OpenStack network mode and the physical network topology.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[212]

The OpenStack network mode
We will proceed with our setup by using Neutron as the OpenStack network manager.
We intend to take advantage of the several technologies that are offered by Neutron,
which includes switching and routing first and load balancing the features later on.
Basically, we aim to separate traffic for each tenant in a private network and enable
the VM for each tenant to reach the default gateway of the router device that faces
the public network. The former "per tenant routers with private networks" setup
might be suitable for the following two main reasons:

•	 Configuration enables deployment of multi-tier applications per tenant by
keeping each tier on a separate network

•	 Providing a network-level separation leverages the degree of security

The physical network topology
Even though we decided on how we will conduct the OpenStack network
management, picking up the right network devices to connect the "pieces" is
very essential for the formation of the "puzzle".

Firstly, how many networks do we need in the overall setup? Let's refresh our memory
by going to Chapter 1, Designing OpenStack Cloud Architecture, where we had a look at
an example within at least four networks—the external, management, VM internal,
and storage network. Remember that combining or adding more networks in your
infrastructure depends on your choice and the hardware limits and may affect your
network performance output. Since we introduced the MIN bare metal provisioning
node, which needs connectivity to all the nodes along with the Chef server, a fifth
network named Administration will be added to our overall setup. The following
list summarizes our OpenStack networks:

•	 The administration network
•	 The management OpenStack network
•	 The storage network
•	 The external network
•	 The VM internal/private network

We can map multiple logical networks to a single physical NIC when we start
setting up the hardware connectivity devices, such as switches and routers. At
this point, you should think in terms of higher requirements in order to avoid a
slowdown of the network. This makes it imperative to install enough network
hardware to satisfy the different former networks as well as the multiple tenant
networks that are involved in the OpenStack environment, in which, considered

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[213]

as VLANs. In addition, you should think about the capability of the HA network
devices by using double links.

Switching the redundancy setup is highly recommended, but it is
beyond the scope of the book. Refer to vendor configuration cookbook
to set up the L2 and L3 network redundancy functionality for
switches and routers devices.

The following switches are required for the current setup:

•	 1 x 40 GbE for internal VM/private, storage, and management networks
•	 1 x 1 GbE switch for the external network
•	 1 x 1 GbE switch for the administrative network

As your network grows, it is recommended to choose switches of the
48 ports and consider uplinks and aggregation switches.

The next step is to identify the different VLANs across our network layout. In other
words, each network card that is connected to a specific port in a given switch must
be properly configured to the VLAN that it belongs to. The VLAN configuration
differs from one vendor device to another. It is highly recommended to understand
the basics of tagged and untagged concepts. Let's see how it works in a nutshell
before delving deeper into the deployment. As you may have noted, we have five
different types of network traffic across more than one network device. However,
we need a way to separate the packet's traffic since they pass through the same port.
In other words, we need to tell which packet belongs to which VLAN through the
different switches. Therefore, we marked a port as tagged if it is aware about VLAN
information or ID. On the other hand, the untagged ports perform a normal Ethernet
packet without any VLAN identification.

Applying the previous concept to our use case will require the following settings:

•	 The administration network ports should be marked as untagged since we
provide a dedicated switch to connect the nodes for PXE within VLAN ID 3.

•	 The external network ports should be marked as untagged since we provide
a dedicated switch to access the Internet within VLAN ID 4.

•	 The management network ports will be marked as tagged with VLAN ID 5.
•	 The storage network ports will be marked as tagged within VLAN ID 6.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[214]

•	 The VM internal network ports will be marked as tagged. The VLAN ID will
be assigned for each tenant. To do so, a VLAN range should be planned in
advance. We will consider 10 VLANs within a range ID 7-16.

Considering the server-side interface, the ports will be assigned, tagged, and
untagged, as follows:

Node name Network name Network interface VLAN
tagging

VLAN
ID

MIN (xCAT) Admin (PXE) eth0 untagged 3
External (Internet) eth1 untagged 4

Chef server Admin (PXE) eth0 untagged 3
External (Internet) eth1 untagged 4

Controller Admin (PXE) eth0 untagged 3
External (Internet) eth1 untagged 4
Management eth2 tagged 5
Storage eth2 tagged 6
Internal VM eth2 tagged 7-16

Compute Admin (PXE) eth0 untagged 3
External (Internet) eth1 untagged 4
Management eth2 tagged 5
Storage eth2 tagged 6
Internal VM eth2 tagged 7-16

Storage Admin (PXE) eth0 untagged 3
Management eth1 tagged 5
Storage eth1 tagged 6
Internal VM eth1 tagged 7-16

Network Admin (PXE) eth0 untagged 3
External (Internet) eth1 untagged 4
Management eth2 tagged 5
Internal VM eth2 tagged 7-16

Ensure that each node that is connected to the 40 GbE switch via
eth2 is equipped with a 40 GbE adapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[215]

The general layout of our minimal physical setup can be illustrated in the
following way:

Each cloud network will use a different IP range. Let's see an example to get an idea
of our setup:

Network name Subnet /IP range
Administrative network 47.147.0.0/16

External network 94.49.0.0/16

Management network 172.16.0.0/16

Storage network 172.17.0.0/16

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[216]

The VM internal network can be defined after completing the OpenStack setup and
moving on to define the tenant networks. Bear in mind that the network and compute
node will communicate physically through eth2 in our example, where each tenant
will have a separate private network per VLAN. For example, we can define for
tenant 1 a VLAN 8 within a private range, 192.168.47.0/24, tenant 2 will be
defined in VLAN 9 within a private range, 192.168.48.0/24, and so on.

The OpenStack deployment
Now, it is time to cook. We will start by first preparing the MIN to automate the
base operating system installation across all nodes.

The MIN installation
The MIN installation is straightforward. First, we should be sure that we fulfill the
minimum requirements for our physical machine. Depending on the size of your
cluster, we can go for the following hardware specifications:

•	 4 CPUs
•	 8 GB of memory
•	 100 GB free disk space with a RAID setup

Make sure that you provide redundant power supply for each device
or node in your physical infrastructure.

CentOS 6.6 is the chosen Linux distribution for the MIN. We will go through the
following steps to bring the MIN up and running:

1.	 Once the operating system is installed, we will proceed by disabling, for
instance, SELinux and iptables. Keep in mind that if you expose the CentOS
box to the Internet, disabling the former security tools is not a good idea! In
this setup, we will assume that we are running behind a firewall:
[packtpub@min ~]$ sudo echo "SELINUX=disabled" > /etc/sysconfig /
selinux

[packtpub@min ~]$ sudo iptables stop

[packtpub@min ~]$ chkconfig iptables off

If you intend to rely on iptables for MIN security, you should allow the ports
needed for xCAT. You can find them in http://sourceforge.net/p/xcat/
wiki/XCAT_Port_Usage/.

www.it-ebooks.info

http://sourceforge.net/p/xcat/wiki/XCAT_Port_Usage/
http://sourceforge.net/p/xcat/wiki/XCAT_Port_Usage/
http://www.it-ebooks.info/

Chapter 7

[217]

2.	 We will need to configure the two NICs for MIN. Let's edit our first network
card configuration in /etc/sysconfig/network-scripts/ifcfg-eth0,
as follows:
 DEVICE=eth0
 ONBOOT=yes
 BOOTPROTO=static
 IPADDR=47.147.1.10
 NETMASK=255.255.0.0

The second interface will be connected to the external network by editing /
etc/sysconfig/network-scripts/ifcfg-eth1, as follows:
 DEVICE=eth1
 ONBOOT=yes
 BOOTPROTO=static
 IPADDR=94.49.1.10
 NETMASK=255.255.0.0

Restart the network service, as follows:

[packtpub@min ~]$ sudo service network restart

3.	 Set the hostname by editing /etc/sysconfig/network, as follows:
HOSTNAME=min

4.	 Finish the minimal configuration by restarting the machine by using the
following command:
[packtpub@min ~]$ sudo reboot

5.	 Now, we will proceed by installing xCAT. By referring to the official xCAT
download page, http://sourceforge.net/p/xcat/wiki/Download_xCAT/,
we will grab a stable distribution, regardless of the xCAT version. You will
need xcat-core-*tar.bz2 and xcat-dep*tar.bz2.
Once the distribution is downloaded, extract the bundles in the
following way:
[packtpub@min install]$ tar jxf xcat-core*tar.bz2

[packtpub@min install]$ tar jxf xcat-dep*tar.bz2

The xCAT packages include scripts to resolve package dependencies and
help you create the yum repositories, which are included in the bundle, by
running the following commands, as follows:
[packtpub@min install]$ cd xcat-core

[packtpub@min core]$./mklocalrepo.sh

[packtpub@min core]$./mklocalrepo.sh

www.it-ebooks.info

http://sourceforge.net/p/xcat/wiki/Download_xCAT/
http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[218]

Now, let's do the magic in one command, as follows:
[packtpub@min install]$ yum install xCAT xCAT-server xCAT-client
perl-xCAT

The xCAT server is already running. You need to update the next xCAT
commands in your path, as follows:
[packtpub@min ~]$. /etc/profile.d/xcat.sh

A final test can be performed in the following way:
[packtpub@min ~]$ tabdump site

#key,value,comments,disable

"blademaxp","64",,

"fsptimeout","0",,

"installdir","/install",,

.....

Congratulations! The xCAT server is running and ready to go. Note that the
previous command enquires the site table, which defines the global settings
for the entire cluster.

xCAT uses a database to store the node-related information and
details regarding the network's attributes. By default, sqlite3 is used.
To update the xCAT tables and attributes, you can use simple xCAT
commands such as tabdump, tabedit, nodech, and so on. By
default, the database files are stored in /etc/xcat.

Besides the installation of the native xCAT packages, we will need to install
an extra rpm in MIN for the OpenStack and Chef environment installation, as
shown in the following code. You can find the latest rpm version at http://
rpmfind.net/linux/rpm2html/search.php?query=xCAT-OpenStack:

wget ftp://ftp.pbone.net/mirror/ftp.sourceforge.net/pub/
sourceforge/x/xc/xcat/yum/2.8/core-snap/xCAT-OpenStack-2.8.6-
snap201409160710.x86_64.rpm

mv xCAT-OpenStack-2.8.6-snap201409160710.x86_64.rpm xCAT-
OpenStack.rpm

rpm –ivh xCAT-OpenStack.rpm

xCAT-OpenStack is a meta-meta package that is used to manage the
xCAT node setup in an OpenStack environment. The xCAT-OpenStack
package was developed and maintained by IBM to manage both
hardware and software within an OpenStack deployment.

www.it-ebooks.info

http://rpmfind.net/linux/rpm2html/search.php?query=xCAT-OpenStack
http://rpmfind.net/linux/rpm2html/search.php?query=xCAT-OpenStack
http://www.it-ebooks.info/

Chapter 7

[219]

6.	 We intend to include a DNS server in our MIN.
Let's define the packtpub domain in /etc/resolv.conf, as follows:
domain packtpub
nameserver 47.147.1.10

Add it to your /etc/hosts file, as follows:
47.147.1.10 min min.packtpub

Alternatively, you can set a list of public DNS as site forwarders in the
following way:
chdef –t site forwarders=8.8.8.8,8.8.4.4

Now, you only need to run the DNS and test it in the following way:

makedns -n

Handling localhost in /etc/hosts.

Handling min in /etc/hosts.

Getting reverse zones, this may take several minutes for a large
cluster. Completed getting reverse zones.

Updating zones.

Completed updating zones.

Restarting named

Restarting named complete

Updating DNS records, this may take several minutes for a large
cluster.

Completed updating DNS records.

7.	 We also need to set up our DHCP server, which can be done in the
following way:
chdef –t site dhcpinterfaces=eth0

Note that we have enforced the DHCP service to run over the eth0 network
interface, which is connected directly to the administrator network.

xCAT uses rcons to enable the multiple read-only consoles on a
cluster server by using the conserver package. Optionally, running
conserver will allow a collaborative way to troubleshoot the server
by sharing the console server session between the administrators.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[220]

8.	 The most important stage in the xCAT installation is the process of
ensuring the nodes are seen by the MIN when they boot up. This is called
autodiscovery. Eventually, when a node boots up, it gets an IP address before
the xCAT server knows and populates its MAC address table, then proceeds
by updating the DHCP and finishes by provisioning the desired operating
system. Autodiscovery won't work without defining a dynamic IP range in
advance. This is required since we are not planning to assign a static IP for
each node on the eth0 interface. Let's define a dynamic discovery range on
the 47.147.50.1-47.147.50.254 administrative network, as follows:
chdef –t network 47_147_0_0-255_255_0_0
dynamicrange=47.147.50.1-47.147.50.254

9.	 Before provisioning our nodes, we should inform MIN about how we
organize them. This is fairly simple and can be accomplished by associating
each node to a certain naming group. Automating the provisioning of the
nodes within the same role, such as the controller cluster nodes or compute
cluster nodes, has proven to be very helpful. To define a chefserver node
in xCAT, you can use the following code:
mkdef chefserver groups=chefserver,management,all

The previous command line defines a node within the chefserver hostname,
which belongs to the chefserver, management, and all groups.
You can extend a group node definition by using the xCAT regular expression.
For example, instead of manually defining 10 compute nodes that are named
computeXX (assuming that XX is an integer varying in the range 1 to 10), you
can simply type the following command line:
mkdef compute[01-10] groups=compute,all

We will do the same for the cloud controller nodes, storage nodes,
and network nodes, as demonstrated in the following code:
mkdef controller[01-03] groups=controller ,all

mkdef storage[01-05] groups=storage,all

mkdef network[01-02] groups=network,all

You can check whether your nodes were defined by running the nodels
command line. You will see the following output:
nodels

chefserver

compute01

compute02

compute03

controller01

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[221]

controller02

controller03

network01

network02

storage01

storage02

storage03

storage04

storage05

An additional substep requires a DNS setup for our MIN, which can be
done by adding your nodes to /etc/hosts. However, do you have to type
them manually? What about the scenario where you have hundreds of
nodes? In this case, a simple trick can optimize the configuration time with
zero mistakes. As you may have noted, we have followed a sequential host
numbering naming (node_name + ID_suffix) as well as IP addressing.
This approach can be the simplest and most organized way that can be used
to avoid any host naming complication. You will realize the nirvana of the
xCAT node management if you check the hosts table, as follows:
tabedit hosts

#node,ip,hostnames,otherinterfaces,comments,disable

"min","47.147.1.10",,,,

There is only one stored host, the MIN. Adding more lines to the hosts table
can help us populate /etc/hosts/ and the DNS information later on. Using
regular expressions can get the job done in one command line. It can be
tricky! Let's have a look at a simple input in the hosts table:
"controller","|controller(\d+)|47.147.50.($1+0)|","|(.*)|($1).
packtpub|",,,

Each line in the hosts table is separated by a comma (,). The first column,
controller, defines the node's group name. The second column is a regular
expression, where we take the digit portion (\d+) and create an IP address
from the hostname by using the same suffix that was already captured in
the matching (\d+) part. For example, controller01 would have captured
01 as the digit portion. The IP address creation would take 01 and append
47.147.50.1 by getting rid of the 0 header. The third column, hostnames
'(.*)|($1).packtpub, will simply grab the first part of the row regular
expression, controller(\d+), and add to the packtpub prefix. Once you
populate the hosts table, you can add nodes to the /etc/hosts file by
running the following command:
makehosts

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[222]

Now, you will see the new hosts added in the /etc/hosts file, as follows:
47.147.50.1 controller01 controller01.packtpub
47.147.50.2 controller02 controller02.packtpub
47.147.50.3 controller03 controller03.packtpub

Great! We can do the same for the compute, storage, and network nodes
in the following way:
tabedit hosts

Add the following lines:
"compute","|compute(\d+)|47.147.50.($1+3)|","|(.*)|($1).
packtpub|",,,
"storage","|storage (\d+)|47.147.50.($1+6)|","|(.*)|($1).
packtpub|",,,
"network","|network (\d+)|47.147.50.($1+11)|","|(.*)|($1).
packtpub|",,,
"chefserver","|chefserver (\d+)|47.147.50.($1+13)|","|(.*)|($1).
packtpub|",,,

You can pinpoint a certain group of nodes that you wish to add
to /etc/hosts by running makehosts <group_name>. For
example, the #makehosts controller will add only the cloud
controllers' nodes to /etc/hosts.

Let's check out the newly generated /etc/hosts file, as follows:
47.147.50.1 controller01 controller01.packtpub
47.147.50.2 controller02 controller02.packtpub
47.147.50.3 controller03 controller03.packtpub
47.147.50.4 compute01 compute01.packtpub
47.147.50.5 compute02 compute02.packtpub
47.147.50.6 compute03 compute03.packtpub
47.147.50.7 storage01 storage01.packtpub
47.147.50.8 storage02 storage02.packtpub
47.147.50.9 storage03 storage03.packtpub
47.147.50.10 storage04 storage04.packtpub
47.147.50.11 storage05 storage05.packtpub
47.147.50.12 network01 network01.packtpub
47.147.50.13 network02 network02.packtpub
47.147.50.14 chefserver chefserver.packtpub

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[223]

Amazing! Now we can map all the IPs that were generated to the DNS
that was running in the MIN, as follows:
makedns

Check whether your DNS settings are running for example:

host chefserver
chefserver.packtpub has address 47.147.50.14

10.	 The last OpenStack network topology illustrates the three different networks
that are connected to each node, Chef server, and the MIN. Basically, each
node of the OpenStack cloud environment requires three NICS. Thus, we
have to tell the xCAT server about the different network interfaces for each
node. We can do this either by using command line or via the nics table
of xCAT.
For example, considering the two NICs for the Chef server, we can specify
via chdef which IP address will be assigned to which NIC, as follows:
chdef chefserver nicips.eth0=47.147.50.14
nicips.eth1=94.49.50.14
lsdef chefserver
Object name: chefserver

 groups=chefserver,management,all

 hostnames=chefserver.packtpub

 ip=47.147.50.14

 nicips.eth1=94.49.50.14

 nicips.eth0=47.147.50.14

 postbootscripts=otherpkgs

 postscripts=syslog,remoteshell,syncfiles

Let's populate the nics table for all the nodes by using the same regular
expression trick of going through each node group and assigning the
associated IP range per network interface, as follows:
chdef controller nicips.eth0='|controller(\d+)|47.147.50.
($1+0)|'\ nicips.eth1='|controller(\d+)|94.49.50.($1+0)|'\
nicips.eth2='|controller(\d+)|172.16.50.($1+0)|'
chdef compute nicips.eth0='|compute(\d+)|47.147.50.($1+3)|'\
nicips.eth1='|compute(\d+)|94.49.50.($1+3)|'\ nicips.
eth2='|compute(\d+)|172.16.50.($1+3)|'
chdef storage nicips.eth0='|storage(\d+)|47.147.50.($1+6)|'\
nicips.eth1='|storage(\d+)|94.49.50.($1+6)|'\ nicips.
eth2='|storage(\d+)|172.16.50.($1+6)|'
chdef network nicips.eth0='|network(\d+)|47.147.50.($1+11)|'\
nicips.eth1='|network(\d+)|94.49.50.($1+11)|' nicips.
eth2='|network(\d+)|172.16.50.($1+11)|'

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[224]

11.	 We will also need to set a few postscripts for each node that is defined
by xCAT, to set up the network configuration and general setup for each
OpenStack cluster node. We will set to all group as follows, and eth1 as
the default external interface:
chdef all –p postscripts="confignics -s"
1 object definitions have been created or modified.
chdef all –p postscripts="configgw eth1"
1 object definitions have been created or modified.

12.	 The next step is to define the cookbook repository. If you check under /
install/chef-cookbooks/ in your MIN, you will find that the xCAT-
OpenStack package installation placed a bunch of cookbooks within
version-xcat, where version is an OpenStack release. At the time of
writing this book, the cookbooks within xCAT have been designed for
OpenStack Grizzly release. Eventually, you will not stick to the default
ones. Feel free to create or update cookbooks, roles, and environment
files that reside under /install/chef-cookbooks/.
For our example, we intend to deploy the Havana release. By default, the
cookbooks will be cloned from the StackForge repository in GitHub: https://
github.com/stackforge/openstack-chef-repo. First, we will create an
xcat-havana directory under /install/chef-cookbooks/, as follows:
mkdir /install/chef-cookbooks/xcat-havana

Under /install/chef-cookbooks/xcat-havana, clone the former
openstack-chef-repo repository and proceed to resolve all the cookbooks
dependencies, as cited in Chapter 2, Deploying OpenStack – DevOps and
OpenStack Dual Deal, using Berksfile. We will need cookbooks for Ceph.
We will use the official ones, which can be found at https://github.com/
ceph/ceph-cookbook.
Now that the Chef repository is ready, we should tell the Chef server how
our environment would be like. Create a new directory called cloud_
environment. The cloud environment template will be placed under /opt/
xcat/share/xcat/templates/cloud_environment/.

By default, the xCAT-OpenStack package places by default
few templates for grizzly release under /root/rpmbuild/
SOURCES/xCAT-OpenStack/share/xcat/templates/
cloud_environment/. It is possible to create a new one named
Havana.rb.tmpl for example after adjusting few required
settings. For the sake of simplicity, you can refer to the code
source of this chapter and place the Havana.rb.tmpl under the
cloud environment directory as demonstrated previously.

www.it-ebooks.info

https://github.com/stackforge/openstack-chef-repo
https://github.com/stackforge/openstack-chef-repo
https://github.com/ceph/ceph-cookbook
https://github.com/ceph/ceph-cookbook
http://www.it-ebooks.info/

Chapter 7

[225]

13.	 Now, you can assign roles for each node, as follows:
chdef controller01-controller03 cfgmgr=chef
cfgserver=chefserver\ cfgmgtroles=packtpub-os-base-controller
chdef compute01-compute03 cfgmgr=chef cfgserver=chefserver\
cfgmgtroles= packtpub-os-compute-worker
chdef network01-network02 cfgmgr=chef cfgserver=chefserver\
cfgmgtroles=packtpub-os-network
chdef storage01-storage05 cfgmgr=chef cfgserver=chefserver\
cfgmgtroles=ceph-osd,ceph-mon

Every argument in the previous command set is essential. Let's see what
we have:

°° cfgmgr: This defines which host profile or group in MIN will
manage the node's post-script installation

°° cfgserver: This defines the name of the configuration host,
chefserver

°° cfgmgtroles: This defines a list of roles per node/groups from /
install/chef-cookbooks/xcat-havana/roles

14.	 We should tell the Chef server how to load cookbooks and which
environment to choose from our MIN. A very simple way is to use a
cloud file, which includes all the information and details regarding
the setup for the OpenStack environment, as follows:
mkdef all cloud=packtpub all extinterface=eth0
admininterface=eth1\ intinterface=eth2 template="/opt/xcat/share/
xcat//templates/cloud_environment/havana.rb.tmpl" repository="/
install/chef-cookbooks/xcat-havana/" virttype=kvm

Now, we will generate the cloud data file by using the following code:
makeclouddata packtpub

We have generated a global description of the cloud named packtpub
including all as a group of nodes that were defined previously, named
network per interface, template environment, repository path, and the
hypervisor type.

15.	 The final step for the preparation phase involves pinpointing how
chefserver will behave once booted. This has something to do with
postbootscripts, which was defined in xCAT. We will need the
following two scripts:

°° The mountinstall postboot script, which is used to mount the
OpenStack Chef cookbooks repository in the /install directory

°° The loadclouddata script, which is used to load the generated
cloud details previously to the Chef server

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[226]

This can be done in the following way:

chdef chefserver -p postbootscripts=mountinstall,loadclouddata

Chef server preinstallation
The nodes that were defined in the MIN can be provisioned and installed by just
booting each one in a certain order. Note that the MIN and Chef server will work in
tandem. Thus, we should install the second hand of the automated installer process
for the packtpub cloud deployment. Basically, we will install it using the awesome
bare metal tool, xCAT. This will be our first bare metal installation. For a successful
installation for any bare metal node, you should verify the following:

•	 Every node is being defined in the MIN
•	 Every node has the PXE boot capability
•	 MIN contains the OS images

CentOS will be our operating system base that is used to run the Chef server node.
Furthermore, we will add and use a set of kits that are appropriate for the Chef
installer to the CentOS image:

1.	 On the MIN, download the latest kit for Chef, as follows:
wget http://sourceforge.net/projects/xcat/files/kits/\ chef/
x86_64/chef-11.4.0-1-rhels-6-x86_64.tar.bz2/download

addkit chef-11.4.0-1-rhels-6-x86_64.tar.bz2

A software kit is a software bundler for xCAT that combines any
specific configuration setup or scripts for an xCAT operating
system image or to update a running xCAT node.

2.	 Check the kit components that were added to your MIN, as follows:
#lsdef -t kitcomponent | grep chef

chef_client_kit-11.4.0-1-rhels-6-x86_64 (kitcomponent)

chef_server_kit-11.0.6-1-rhels-6-x86_64 (kitcomponent)

chef_workstation_kit-11.4.0-1-rhels-6-x86_64 (kitcomponent)

3.	 Add the previous kit to the OS image for Chef server in the following way:

addkitcomp -i centos-6.5 chef_server_kit,chef_workstation_kit

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[227]

To verify which OS image was assigned to which node in the MIN, type the
following:
lsdef chefserver –i provmedthod

If no images have been assigned, you can create a proper one by
visiting http://www-01.ibm.com/support/knowledgecenter/
SSDV85_4.1.0/Admin/tasks/createxcatosimages_rhel.dita.

Discover and cook
Any node in the OpenStack environment is defined in the MIN. The Chef server is
not installed yet, but it needs only one click, push the button. Before going through
the deployment process, you should understand how the MIN works or, in other
terms, how it discovers the nodes, which includes the Chef server in the first place.
Eventually, this is fairly simple. Remember that we have defined an IP range for
the PXE boot, where every node is attached to it via eth0. Of course, we should tell
xcat-server which one is doing what.

To do so, we will point the MIN to start the process of node discovery one by one.
We will power on our servers sequentially and let MIN do the rest. We will use a
node discovery process based on a node range naming criteria in the following way:

nodediscoverstart noderange=chefserver
nodediscoverstart noderange=controller[01-03]
nodediscoverstart noderange=compute[01-03]
nodediscoverstart noderange=network[01-02]
nodediscoverstart noderange=storage[01-05]

Now, time for the Chef server node! First, power on the Chef server node and check
from the MIN what is happening, as follows:

tail /var/log/messages
Feb 25 01:48:40 min dhcpd: DHCPDISCOVER from 00:0c:29:98:86:93 via eth0
Feb 25 01:48:41 min dhcpd: DHCPOFFER on 47.147.50.14 to 00:0c:29:98:86:93
via eth0
Feb 25 01:48:41 min dhcpd: DHCPREQUEST for 47.147.50.14 (47.147.1.10)
from 00:0c:29:98:86:93 via eth0
Feb 25 01:48:41 min dhcpd: DHCPACK on 47.147.50.14 to 00:0c:29:98:86:93
via eth0
Feb 25 01:49:04 min xCAT[3309]: xCAT: Allowing nodediscoverls -t seq -l
for root from localhost
Feb 25 01:50:00 min dhcpd: DHCPDISCOVER from 00:0c:29:98:86:93 via eth0
Feb 25 01:50:01 min dhcpd: DHCPOFFER on 47.147.50.15 to 00:0c:29:98:86:93
via eth0
Feb 25 01:50:01 min dhcpd: Wrote 0 class decls to leases file.
Feb 25 01:50:01 min dhcpd: Wrote 0 deleted host decls to leases file.

www.it-ebooks.info

http://www-01.ibm.com/support/knowledgecenter/SSDV85_4.1.0/Admin/tasks/createxcatosimages_rhel.dita
http://www-01.ibm.com/support/knowledgecenter/SSDV85_4.1.0/Admin/tasks/createxcatosimages_rhel.dita
http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[228]

Feb 25 01:50:01 min dhcpd: Wrote 0 new dynamic host decls to leases file.
Feb 25 01:50:01 min dhcpd: Wrote 6 leases to leases file.
Feb 25 01:50:01 min dhcpd: DHCPREQUEST for 47.147.50.15 (47.147.1.10)
from 00:0c:29:98:86:93 via eth0
Feb 25 01:50:01 min dhcpd: DHCPACK on 47.147.50.15 to 00:0c:29:98:86:93
via eth0
Feb 25 01:50:01 min CROND[3315]: (root) CMD (/usr/lib64/sa/sa1 1 1)
Feb 25 01:50:09 min xCAT[3316]: xCAT: Allowing getcredentials x509cert

Great! The PXE is working. After finishing the image provisioning process with
the Chef kit we have added running, we should be able to see the Chef server node
running, as follows:

....
chefserver: Reading package lists...
chefserver: Building dependency tree...
chefserver: Reading state information...
chefserver: git is already the newest version.
chefserver: rake in already the newest version.
chefserver: 0 upgraded, 0 newly installed, 0 to remove and 119 not
 upgraded.
chefserver: chef-validator
chefserver: chef-webui
chefserver: Postscript: install_chef_workstation existed with code 0
chefserver: Running of postscripts has completed.

The cookbook and all the roles should also be uploaded to the Chef server. To check
whether your assumption is correct or not, you can use the Knife command line to
list the Chef clients in the new Chef server from the MIN, in the following way:

xdsh chefserver 'knife client list'

chef-validator

chef-webui

Cooking time
All we need now is the push button. All the pieces that were required for automation
have been prepared. Now, the Chef is waiting for the signal that initiates the process
of cooking. We will provide nodes to the Chef one by one. Before starting off with
bare metal provisioning, it is a good practice to go through the following checklist in
order to avoid any surprises during the installation process:

•	 MIN has connectivity to all the nodes through the layer 2, which is also
known as the administrative network

•	 MIN acts as a DHCP server for the OpenStack nodes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[229]

•	 The OS images exist in the MIN
•	 No VLAN tagging is performed on a switch for the administrative network
•	 Set the OpenStack nodes to boot using PXE
•	 The OpenStack compute nodes have hardware virtualization enabled in

the BIOS

Next, we will need to prepare the repository on each OpenStack node to be deployed
later. To do so, we will need to install additional packages using package list defined
in xCAT. Basically, we intend to create an additional OpenStack repository which
will be added to the operating system image. Once deployed, post scripts will
update the package list of the new node based on the additional rpm list. For
example, we can create a new directory to hold an additional Havana OpenStack
RPM as the following:

mkdir –p /install/post/otherpkgs/centos/x86_64

cd / install/post/otherpkgs/centos/x86_64

wget https://repos.fedorapeople.org/repos/openstack/EOL/openstack-
havana/rdo-release-havana-9.noarch.rpm

By default, xCAT defines several netboot package list under /opt/xcat/share/xcat/
netboot/ for different operating system. We will tell xCAT to take into account of our
new OpenStack repository within the CentOS image as the following:

chdef -t osimage centos imagetype=linux otherpkgdir=/install/post/
otherpkgs/centos/x86_64 otherpkglist=/opt/xcat/share/xcat/netboot/centos/
compute.centos6.pkglist

 In order to setup the new repository in all xCAT nodes for OpenStack, the otherpkgs
postbootscripts should be associated within the 'all' group nodes as the following:

chdef -p -t group all postbootscripts=otherpkgs

We can check for example the association of the otherpkgs postbootscripts with the
controller01 node:

lsdef controller01 -i postbootscripts

Object name: controller01

 postbootscripts=otherpkgs

Each OpenStack node will be provisioned first within the operating system that
is defined by the MIN. Therefore, the Chef server will take over the automation
installation process by installing the right cookbooks, as described by the node role
assignment. However, how will the Chef server be aware of the OpenStack nodes?
We missed a link that connects the chain!

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[230]

Ideally, the node that is aware of the Chef server should have a Chef client running
on it. This means that any node from the OpenStack environment should be
authenticated from the Chef server's perspective. We will not do the authentication
manually. We will just tell the MIN to install the Chef client on the OpenStack nodes
using postboot scripts, as follows:

chdef controller –p postbootscripts=install_chef_client

chdef compute –p postbootscripts=install_chef_client

chdef storage –p postbootscripts=install_chef_client

chdef network –p postbootscripts=install_chef_client

At this stage, we have the following two main concerns that should be taken
into account:

•	 We will need an external network bridge to make Open vSwitch work
properly in the network node. We can use the configbr-ex script, which is
placed in the MIN, to run on boot time in the following way:
chdef network –p postbootscripts="confignics –script config-ex"

•	 For every storage node, we will provision each one by using an Ubuntu
image. The reason behind such a choice is the support of the official
cookbook, which is stable and works fine for the Ubuntu operating system
as well as for Debian. The storage nodes that run ceph-osd and ceph-mon
will be provisioned using an Ubuntu OS image. You may associate it in
the storage group node and check it using the following command:

lsdef –i storage –i promethod

Now, let MIN and the Chef server do the rest. Boot the rest of the nodes by
starting first with the controller nodes, network nodes, and the compute nodes
and then ending by the storage nodes. The provision process ended by the Chef
client installation should be accomplished without errors. For example, the
provisioning of the controller01 node should give the following output:

...

controller01: Postscript: install_chef_client exited with code 0

controller01: Running of postscripts has completed.

To validate the correctness of your network node's provisioning, you should be
able to see the following output for the verbose console:

...

network01: Postscript: confignics --script configbr-ex exited with code 0

network01: Running of postscripts has completed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[231]

Testing the cloud
Let's test our first production deployment. From the controller01.packtpub node,
follow these steps:

1.	 Populate the keystone admin keys, as follows:
. /root/keystone

2.	 Create a new image in the following way:
glance image-create --copy-from http://download.cirros-
cloud.net/0.3.1/cirros-0.3.1-x86_64-disk.img --is-public true
--container-format bare --disk-format qcow2 --name packtpub_cirros

3.	 Create an external network, as follows:
neutron net-create external01 --router:external=True

4.	 Configure the IP for the external network that was created, as follows:
neutron subnet-create --name external01-subnet01 --disable-dhcp
--allocation-pool start=94.49.50.250,end=94.49.50.250 external01
94.49.0.0/16

5.	 Create a packtpub_tenant tenant, as follows:
keystone tenant-create --name packtpub_tenant

keystone user-create --name packtpub --tenant packtpub_tenant
--pass secrete

6.	 Create a private network in the following way:
neutron net-create pack_private

7.	 Configure the IP for the tenant network created, as follows:
neutron subnet-create --name private01-subnet01 --dns-nameserver
8.8.8.8 --gateway 94.49.50.1 pack_private 172.16.17.0/24

8.	 Create a router in the following way:
neutron router-create external-router

9.	 We need to set the external network to the external router. We will
accomplish this by using the following code:
neutron router-gateway-set external-router external01

10.	 Add the interface to the router for the internal tenant subnet in the
following way:
neutron router-interface-add external-router private01-subnet01

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[232]

11.	 Let's create a virtual machine and assign it to a private network for the
packtpub_tenant tenant, as follows:
nova boot --poll --flavor m1.small --image packtpub_cirros --nic
net-id=7789a969-4327-4287-a422-bbeff3215472 --key-name packtpub_
key packtpub_vm

12.	 Once the VM is built, we need to test whether the virtual machine for
packtpub_tenant is able to connect to the Internet. If it is unable to do
so, you should check the following file in the network host:
cat /etc/sysconfig/network-scripts/ifcfg-br-ex

DEVICE=br-ex

DEVICETYPE=ovs

TYPE=OVSBridge

ONBOOT=yes

13.	 Restart the network service to take into account the new changes, as follows:

service network restart

service neutron-openvswitch-agent restart

service neutron-l3-agent restart

Arming the deployment
By now, we have collected almost all the pieces, and we have a running OpenStack
environment within a tenant in production. However, the big picture is not complete
yet. Note that the first stage of deployment assumes that only one cloud controller
works actively to handle the OpenStack API's services, queuing, and database. The
current implementation is being conducted to deploy the complete production
environment gradually. This means that the remaining manual configuration has
to be done to satisfy our requirements. The first setup does not take into account
any node clustering or the redundancy of services. This is what we told Chef when
we started deploying the entire environment. We should add the last piece which
is a highly available cluster environment. Although Chapter 3, Learning OpenStack
Clustering – Cloud Controllers and Computer Nodes, outlined a simple trick to automate
high availability within the cloud controller nodes using cookbooks, it might be more
complicated to adjust all the attributes and recipes that were defined in some of them
to provide a complete highly available cluster from the beginning of the deployment.
Nonetheless, you can always develop and extend the cookbooks that suit your needs,
as cited in Chapter 2, Deploying OpenStack – DevOps and OpenStack Dual Deal.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[233]

For the sake of simplicity, we will follow a gradual procedure by configuring our
current setup to provide a highly available OpenStack environment with a load
balancing feature. Based on Chapter 6, OpenStack HA and Failover, we will perform the
following tasks:

•	 Installing two HAProxy nodes using MIN
•	 Configuring HAProxy within Keepalived for stateless OpenStack services
•	 Reconfiguring the cloud controllers to point to the new Virtual IP
•	 Reconfiguring the stateful services in the cloud controllers for:

°° The MySQL database, by using the Galera-WRESP solution
°° RabbitMQ, by using the queue mirroring technique

•	 Installing Pacemaker and Corosync to handle the network nodes' resiliency

Bringing HA into action
In Chapter 6, OpenStack HA and Failover, we have given details regarding how
one can configure a highly available MySQL database and a RabbitMQ cluster.
A complete network controller cluster stack has been configured by using
Pacemaker and Corosync for L3, DHCP, and the Neutron metadata.

For instance, we will need to spawn both the HAProxy nodes. From the MIN,
we can define a new node HAProxy set, as follows:

mkdef haproxy[01-02] groups=ha,all

Add them to /etc/hosts and run makedns, as follows:

47.147.50.45 haproxy01 haproxy01.packtpub

47.147.50.46 haproxy02 haproxy02.packtpub

makedns

Both the HAProxy nodes will use the following three interfaces:

•	 eth0 for the administration network
•	 eth1 for the external network
•	 eth2 for the management network

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[234]

We will tell the MIN about the existing NICs, as follows:

chdef haproxy01 nicips.eth0=47.147.50.45 nicips.eth1=94.49.50.45
nicips.eth2=172.16.50.45

chdef haproxy02 nicips.eth0=47.147.50.46 nicips.eth1=94.49.50.46
nicips.eth2=172.16.50.46

We will finish creating the HAProxy nodes by setting up postscripts, which will
run after the provisioning of the nodes:

chdef haproxy –p postscripts="confignics -s"

1 object definitions have been created or modified.

chdef haproxy –p postscripts="configgw eth1"

1 object definitions have been created or modified.

Check whether both the nodes are configured to boot by using PXE from the BIOS
interface. Power on haproxy01 and then, do the same for haproxy02.

Adapting the deployment
You can refer to Chapter 6, OpenStack HA and Failover, to install HAProxy and
Keepalived in our new machines. Next, the OpenStack API services, queuing
systems, and databases nodes have to be routed to the new virtual IP. First, we
need to create a virtual IP on the management interface. We choose 172.16.50.47.
In HAProxy01, point to /etc/keepalived/keepalived.conf and check the vrrp_
instance and virtual_ipaddress sections, as follows:

..............
vrrp_instance packtpub-os-vip {
 state MASTER
 priority 100
 interface eth2
 virtual_router_id 47
 advert_int 3

 virtual_ipaddress {
 172.16.50.47
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[235]

For the second HAProxy node, the content of the /etc/keepalived/keepalived.
conf file will look similar to the following code:

.................
vrrp_instance packtpub-os-vip {
 state Master
 priority 99
 interface eth2
 virtual_router_id 47
 advert_int 3

 virtual_ipaddress {
 172.16.50.47
 }

The next step is to extend the HAProxy configuration files. For each service
that requires a redundant load-balancing feature, we add a new stanza to /etc/
haproxy/haproxy.cfg.

For each service, we will need to specify the virtual IP within the corresponding
port of the running service.

The next snippet shows an example of stanzas that were added to the haproxy.cfg
files on both the HAProxy nodes for the cinder-api service and horizon:

defaults
......
listen cinder_api
bind 172.16.50.47:8776
.....
server controller01 172.16.50.1:8776 check inter 2000 rise 2 fall 5
server controller02 172.16.50.2:8776 check inter 2000 rise 2 fall 5
server controller03 172.16.50.3:8776 check inter 2000 rise 2 fall 5

listen horizon
bind 172.16.50.47:80

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[236]

balance source
....
mode http
server controller01 172.16.50.1:80 cookie control01 check inter 2000
rise 2 fall 5
server controller02 172.16.50.2:80 cookie control02 check inter 2000
rise 2 fall 5
server controller03 172.16.50.3:80 cookie control03 check inter 2000
rise 2 fall 5

It is possible to add other services to the load balancer configuration file by
specifying the right port for each one, as follows:

•	 The binding port for mysql_wsrep: 3360
•	 The binding port for glance-api: 9292
•	 The binding port for glance-registry: 9191
•	 The binding port for keystone_admin: 35357
•	 The binding port for keystone_public: 5000
•	 The binding port for nova_metadata_api: 8775
•	 The binding port for nova_osapi: 8774
•	 The binding port for novnc: 6080
•	 The binding port for neutron_api: 9696
•	 The binding port for rabbit_cluster: 5672

You can find a very useful table describing the defaults ports that OpenStack services use
by visiting http://docs.openstack.org/kilo/config-reference/content/
firewalls-default-ports.html.

Make sure that haproxy is enabled by default in both the load balancers, as follows:

vim /etc/default/haproxy

ENABLED=1

Before starting the haproxy and Keepalived services, you can refer to Chapter 6,
OpenStack HA and Failover, to reconfigure the following files in each cloud
controller node:

•	 /etc/keystone/keystone.conf

•	 /etc/glance/glance-api.conf

www.it-ebooks.info

http://docs.openstack.org/kilo/config-reference/content/firewalls-default-ports.html
http://docs.openstack.org/kilo/config-reference/content/firewalls-default-ports.html
http://www.it-ebooks.info/

Chapter 7

[237]

•	 /etc/glance/glance-registry.conf

•	 /etc/cinder/cinder.conf

•	 /etc/cinder/api-paste.ini

•	 /etc/nova/api-paste.ini

In the network nodes, the /etc/neutron/neutron.conf file should be reconfigured
to point to the virtual IP.

The same should be done for the compute nodes, which require the /etc/nova/
nova.conf file to be reconfigured.

After adjusting the virtual IP in the required section of each node configuration
file service, you will need to restart the OpenStack services in each cloud controller,
compute node, and network node respectively, as follows:

service mysql restart

service rabbitmq

service keystone restart

service glance restart

service httpd restart

cd /etc/init.d/; for i in $(ls nova-*); do sudo service $i restart;
done

service nova-compute restart

service neutron-server restart

service neutron-dhcp-agent restart; service neutron-plugin-openvswitch-
agent restart

For each OpenStack service configuration file, it is easier to refer
to the official OpenStack documentation to perform a proper
setup within the right directives and sections. For example, you
can find a complete list of the available options of nova.conf at
http://docs.openstack.org/havana/config-reference/
content/list-of-compute-config-options.html.

You will later need to reload the new configuration in each load balancer node using
the following command line:

service haproxy reload

www.it-ebooks.info

http://docs.openstack.org/havana/config-reference/content/list-of-compute-config-options.html
http://docs.openstack.org/havana/config-reference/content/list-of-compute-config-options.html
http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[238]

Running first tenant
Let's test our setup by creating our first tenant, which is called tenantA, and start
our first virtual machine in production. The former instance should be accessible
from the compute node as well as should be able to reach the Internet.

1.	 Access the cloud controller and populate the necessary environment
variables from the openrc file that resides under root, as follows:
. /root/openrc

2.	 We will need to provision a test image that can be used to create the virtual
machine by using Glance. This can be achieved in the following way:
glance image-create --copy-from http://download.cirros-
cloud.net/0.3.1/cirros-0.3.1-x86_64-disk.img --is-public true
--container-format bare --disk-format qcow2 --name pack_cirros_img

The preceding command yields the following result:

3.	 Add the minimum necessary security group rules, as follows:
nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

nova secgroup-add-rule default tcp 1 65535 0.0.0.0/0

nova secgroup-add-rule default udp 1 65535 0.0.0.0/0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[239]

4.	 Create an external network from your network node by using the
following command:
neutron net-create external01 --router:external=True

The preceding command yields the following result:

The following command creates a subnetwork from the external01
external network:
#neutron subnet-create --name external01-subnet01 --disable-dhcp
--allocation-pool start= 94.49.0.99,end=94.49.0.200 external01
94.49.0.0/24

The following result is obtained on executing the preceding command:

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[240]

5.	 From the controller01 node, create a tenant named tenantA and a user
account, packt_user, as follows:
keystone tenant-create --name tenantA

keystone user-create --name packt_user --tenant tenantA --pass
Pa55W0rd

You will need to create and populate its credentials' new file, openrc_packt,
as follows:
export OS_USERNAME= packt_user
export OS_TENANT_NAME= tenantA
export OS_PASSWORD= Pa55W0rd
export OS_AUTH_URL=http:// 172.16.50.47:35357/v2.0/
export PS1='[\u@\h \W(keystone_ packt)]\$ '

Now, run the following command:

./root/openrc_packt

6.	 From the network node, create a private network for the packt_user
instance user and assign a private IP range for the 192.168.47.0/24
subnet to it in the following way:
neutron net-create private01

neutron subnet-create --name private01-subnet01 --dns-nameserver
8.8.8.8 --gateway 192.168.47.1 private01 192.168.47.0/24

For the preceding command, we will get the following output:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[241]

7.	 Next, we will need to create a router to be able to access other networks.
You should set its corresponding gateway, as follows:
neutron router-gateway-set external-router external01

Set the gateway for the external-router router. Then, add a router interface
to the created subnet, as follows:

neutron router-interface-add external-router private01-subnet01

Added interface 79c0958d-6092-4b0c-aecf-3dcca67274dc to router
external-router.

8.	 You can check the networks that were created previously in the router,
as follows:
neutron net-list

The preceding command gives the following result:

9.	 Now, we can create the first virtual machine by designating the image,
flavor, network interface, and name. Remember that we will need to create
an authentication key pair first. This can be achieved in the following way:
ssh-keygen -t rsa -b 2048 -N '' -f pack_key

nova keypair-add --pub-key pack_key.pub tenantA

Let's boot the virtual machine, as follows:

nova boot --poll --flavor m1.tiny --image pack_cirros_img --nic
net-id=99255c3d-b48b-4ad9-a057-8511bded8af4 --key-name tenantA
Prod01

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[242]

The preceding command gives the following result:

10.	 In order to allow the former instance to connect to the external network, we
will create a floating IP from the network node, as follows:
neutron floatingip-create external01
neutron floatingip-list

On executing the preceding code, we will get the following result:

11.	 A last step that is required is the assigning of the floating IP, that was created,
to one of the router ports, which can be accomplished in the following way:
neutron port-list

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[243]

From the previous output list, assign an available floating ip to the router
port ID as the following:
neutron floatingip-associate 76384bbf-f58c-42a8-9d96-
8cd6a72ff256 9bbe9442-1864-4b97-a31b-aade48936ffd
Associated floatingip 76384bbf-f58c-42a8-9d96-8cd6a72ff256

For the preceding command, we will get the following result:

12.	 Now, check the new instance details, as follows:

nova list

For the preceding command, we will get the following result:

You can check out from Horizon the private and public network topology of
tenantA, which looks as shown in following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment – Bringing in Production

[244]

Summary
In this chapter, we delved into our first production day by deploying a complete
OpenStack environment, based on the specifications and custom needs that were
tailored according to the budget of an organization. This is a sample deployment
in which many other layouts can be discussed and implemented as well.

The deployment methodology was adopted to compartmentalize the setup of the
overall environment in such a way that the complexity of the production OpenStack
cloud installation process was simplified and avoided. At this point, you should know
how to smoothly move to production by taking into consideration the various aspects
of an organized deployment. Furthermore, you learned how to provide the OpenStack
environment from the bare metal level by using tools such as the xCAT tool. This is
optional if you started with a medium-sized environment. However, when growing
the environment, you should keep in mind that controlling, troubleshooting, and
joining new nodes to the cluster might be more rushing task.

Note the complexity of the networking feature that was recently integrated within
OpenStack – specifically the Neutron project. You may face more challenges when
users start creating projects and deploy a virtual environment and multi-tier
applications by using the OpenStack private cloud. At this point, you should be
able to take care of their application connectivity as if they are running in a real
environment, and release the enigma of virtual networking in OpenStack private
cloud, which will be the focus of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

[245]

Extending
OpenStack – Advanced

Networking Features
and Deploying Multi-tier

Applications
"Man is essentially ignorant, and becomes learned through acquiring knowledge."

–Ibn Khaldun

The previous chapter was a great opportunity to launch a primary OpenStack
private cloud in a production environment. Depending on your budget and the
hardware solutions available that might better fit your infrastructure, you still have
several ways as well as more than one possibility to bring in a fully implemented
first draft design in a real production environment. What can be challenging at
this stage? Without any doubt, managing networks in OpenStack is still a concern
that we cannot ignore. Chapter 1, Designing OpenStack Cloud Architecture, detailed a
few introductory networking concepts in OpenStack, whereas Chapter 7, OpenStack
Multinode Deployment – Bringing in Production, exemplified a network implementation
using Neutron by extending a previous design in the latter one.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[246]

When it comes to actually providing more controlling and administrating networks,
you should be aware that understanding the general functionalities in the network
software core within Neutron is a must in order to "sail" smoothly in production. On
the other hand, it comes to light that not all users will need to build their own virtual
environment in your cloud in the same way. In the previous chapter, we saw an
example of the Neutron implementation by separating networks by tenants per tenant
routers with private networks.

In this chapter, we will dive deeper into OpenStack networking in Neutron and
discover the following topics:

•	 Learn Neutron plugins: Linux Bridge and Open vSwitch
•	 Validate the use case of each plugin

In addition, we will cover more advanced features offered by Neutron. As seen in
Chapter 5, Implementing OpenStack Networking and Security, with FWaaS and VPNaaS,
we will highlight another networking service:

•	 Learn how to integrate Load Balancer as a Service (LBaaS) in OpenStack
•	 Use LBaaS in a multitier application

The last part of the chapter will explain an amazing orchestrating tool recently added
to OpenStack in a nutshell and use it to deploy a multitier application in the load
balancing mode using Neutron plugins.

Navigating through Neutron
Prior to Neutron, setting up a network for virtual machines in OpenStack was quite
seamless. As was described in Chapter 1, Designing OpenStack Cloud Architecture,
nova-compute uses the nova-network service to connect instances to an existing
network defined by the cloud administrator, where users do not have to bother with
the network setup. Also, there was no possibility to do more. With Neutron, new
horizons are explored to provide more topologies and advanced network setups
that might enrich the user experience and provide more freedom. But first, a slight
learning curve might be needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[247]

Neutron plugins
By virtue of the plugins concept in Neutron, more additional networking features
have been introduced in OpenStack, which differ depending on hardware
requirements, vendor specs lock-in, scale, or performance. Some of the plugins
might use the Linux IP tables and VLANs. Many other plugins are created by
third-party vendors that interact with their network devices within Neutron.
A variety of neutron plugins can be listed as the following:

•	 Open vSwitch
•	 Linux Bridge
•	 OpenContrail
•	 IBM SDN VE
•	 Big Switch Controller
•	 Nicira Network Virtualization Platform
•	 Cisco Nexus 1000v

Among the mentioned plugins for Neutron, in this section, we will look at the Linux
Bridge and Open vSwitch for OpenStack Neutron. Both plugins are well supported
since Havana release and provide a layer two switching infrastructure. You are
probably anxious to see how they work separately, so let's dive into them.

Learn more about the available plugins in Neutron at
http://docs.openstack.org/admin-guide-
cloud/content/section_plugin-arch.html.

Virtual switching infrastructure
Providing layer two connectivity to running instances in your private OpenStack
cloud infrastructure requires more advanced virtual/physical switching
configuration. You may raise this question: how could an instance in a private
tenant "virtual" network connect outside and "ping the world"? Or, is there a way
that allows a virtual machine running within tenant B to establish a connection
with another one running in a different network within a different tenant C? As
you can see, designing complex structures to answer the previous questions is
not a simple matter.

www.it-ebooks.info

http://docs.openstack.org/admin-guide-cloud/content/section_plugin-arch.html
http://docs.openstack.org/admin-guide-cloud/content/section_plugin-arch.html
http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[248]

Thus, you should understand the two main concepts:

•	 Virtual network interfacing: At instance boot time, a new virtual
network interface is created on the compute node (running the hypervisor
KVM by default), which is referred as a tap interface. The former interface
is actually the responsible portal that exposes the virtual instance to the
physical network.

The tap interface should persist after the reboot of the
compute node.

•	 Virtual network bridging: Let's tackle this concept as simple thought.
A bridge allows two or more layer two networks to create a single network
called aggregate. Let's virtualize it: a Linux Bridge is a virtual bridge
connecting multiple virtual or physical networks' interfaces.

To connect a physical interface ethX to a bridge, you will
need to change its mode to promiscuous; this means that
the interface should allow all frames to be processed.

The Linux Bridge plugin
In order to forward traffic between instances and to the virtual switch infrastructure,
there is always a necessity to create a bridge, discussed previously, as well as Linux
802.1q kernel modules to ensure connection with the other networks. Eventually, the
Linux Bridge plugin implementation will involve the usage of at least three virtual
and physical devices, as depicted in the next figure:

•	 Tap interface: TapXX
•	 Linux bridge: Br
•	 Physical interface(compute node interface): ethX

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[249]

Note that the next network setup illustrates the usage of only
one NIC. It is recommended, if possible, that you use two fast
NICs per OpenStack server in the production environment and
bond them together for high-availability and best performance
concerns. By default, Linux offers a bonding module to enable
NIC teaming. For each VLAN, a bonded virtual interface should
be created. The bonded interface will distribute traffic across the
connected NICs using load balancing and failover techniques.
NIC bonding is beyond the scope of this book. You can see a
detailed NIC bonding setup at http://docs.oracle.com/cd/
E37670_01/E41138/html/ch11s05.html.

www.it-ebooks.info

http://docs.oracle.com/cd/E37670_01/E41138/html/ch11s05.html
http://docs.oracle.com/cd/E37670_01/E41138/html/ch11s05.html
http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[250]

The previous figure shows a Linux Bridge Br-eth0 that contains a single physical
eth0 interface and three virtual interfaces: Tap01, Tap02, and Tap03 corresponding
to a network interface within its respective guest instance. Traffic from eth0 on an
instance can be observed on the respective tap interfaces as well as the bridge and
the physical interface.

Actually, the previous illustration assumes a simple flat network in which no
VLAN tagging may exist. The Ethernet frame trip where all tap interfaces lie in the
same layer 2 broadcast domains is quite simple. On the compute node running the
network agent, we can check how the bridge looks.

In the case of a more complicated network setup where VLANs exist, the Ethernet
frame trip becomes longer with one additional hop. Thus, before reaching the
physical interface of the hypervisor host passing through a virtual VLAN interface
ethX.ZZ to tag and untag traffic, it will require the following schema:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[251]

Both eth0.VLAN1 and eth0.VLAN2 are bound to the same physical interface, which
is eth0. Keep in mind that each eth0.VLAN1 and eth0.VLAN2 interface tags traffic as
VLAN1 and VLAN2, respectively, before dropping it on the eth0 physical interface.
In the other hand, traffic moving toward virtual machines is untagged by each eth0.
VLANX interface and is forwarded through its respective bridge.

The Open vSwitch plugin
Typically, Open vSwitch is a virtual switch that embodies the emerging concept of
Software Defined Networking (SDN). Overall, the former concept aims to treat
networks as programs that can be easily deployed and provisioned.

Moreover, what makes it the cat's meow is the ability to integrate a virtual switching
environment within a physical one due to many supported features, including:

•	 802.1q VLAN tagging
•	 STP
•	 OpenFlow and sFlow protocols support
•	 Tunneling protocol support, including VxLAN, GRE, IPsec, GRE over IPSec,

and VXLAN over IPsec
•	 NIC bonding support LACP

Let's see how Open vSwitch is architected in a simplistic figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[252]

The overall architecture should be straightforward to understand:

•	 Open vSwitch daemon (ovs-vswitchd): This is essentially a program
running within the Linux kernel model in each host, which imposes how
the flow would be switched or forwarded

•	 Open vSwitch database (ovsdb-server): An Open vSwitch database is
created in each host running ovs daemon to maintain the virtual switch
configuration

•	 OVS Kernel module: This is a data path where all packets are forwarded
and tunneled or encapsulated and decapsulated

Similar to the Linux Bridge plugin, Open vSwitch relies on the bridge and its kernel
modules. What makes the difference are the unique virtual devices that are created
in the compute host once you start using the OVS plugin. OVS uses more than one
bridge; each one will have a port with the same name as the bridge itself by default.
On first glance, we can enumerate bridges used by OVS compared to the Linux
Bridge plugin:

•	 br-int: This is the integration bridge with the port called br-int by default.
Basically, instances, DHCP servers, routers, and switches will be connected
to br-int. It is imperative to notice that it is not possible to connect the tap
devices (the virtual machine network interface) directly to the integration
bridge; the reason behind this is the use of iptables rules on tap interfaces
whereas Open vSwitch does not support security groups by matter of design.
IP tables are applied directly on tap devices. So, what will be the magic link?
The solution promotes the usage of simple Linux bridges that connect to the
integration bridges in turn. Eventually, tap interfaces will offer a route for
filtering to the kernel.

•	 br-ex: This is the physical bridge (the provider bridge another naming
fashion) that enables instances to communicate with the physical network
on a given interface ethX (X is the numbered physical NIC of the host). The
br-ex bridge can be created and associated within an ethX host physical
interface, which allows both ingress and egress traffic to the physical
network environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[253]

•	 br-tun: This is a bit confusing if you start forming a picture of how many
bridges an Ethernet frame will need to travel from the external network to
the virtual machine network interface. To make it simple, we will consider
br-tun as a form of a physical bridge but for a different purpose. If you use
Neutron to create tunnels, a tunnel bridge named br-tun will be created
to handle and translate VLAN-tagged traffic coming from the integration
bridge into GRE or VXLAN tunnels. Flow rules will be installed and applied
at this stage.

However, how should br-int and br-tun, for example, connect? Eventually,
integration bridges will connect to either tunnels or physical bridges by means
of virtual patch ports. For example, a patch-tun patch tunnel port connects an
integration bridge to the tunnel one. What about the connection between the
integration bridge and the Linux Bridge carrying the tap interface? To answer this
question, you can imagine two interconnected switches via trunk; physically, they
are connected by means of patch cables. Open vSwitch does the same; each Linux
bridge in the virtual environment acquires a virtual interface veth.

It is imperative that you remember once you implement OVS,
every host in your OpenStack environment, including cloud
controllers, compute nodes, and network nodes, must have its
own integration bridge as well as a physical/tunnel bridge.

Let's resume with the number of virtual type networking devices that are involved
when we implement OVS:

•	 Tap devices
•	 Linux bridges
•	 Virtual Ethernet cable (veth)
•	 OVS bridges: br-int, br-ex/br-tun
•	 OVS patch ports

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[254]

Now, let's follow the Ethernet frame traveling from the physical network to a
virtual machine interface. We will use a more sophisticated example by showing
an implementation involving a GRE network setup in an OpenStack network
environment. The next visual representation shows a compute01.packtpub compute
node connected to a network01.packtpub network node. Both nodes are connected
by means of the br-tun tunnel bridge, as shown in the following figure:

Let's start with the compute node, and check its virtual switch configuration using
the next command line:

ovs-vsctl show

Bridge br-int

 Port "qvo6d6ee47e-04"

 tag: 1

 Interface "qvo6d6ee47e-04"

 Port patch-tun

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[255]

 Interface patch-tun

 type: patch

 options: {peer=patch-int}

 Port br-int

 Interface br-int

 type: internal

Starting from the virtual machine network interface, the Ethernet packet starts its
trip from the instance connected to the tap interface device on the compute node
tap6d6ee47e-04. Then, it drops by the Linux Bridge device attached to it via the
qbr6d6ee47e-04 virtual Ethernet cable. Let's take a closer look and see how packets
are processed. Remember that attaching the tap interface to the Linux Bridge instead
of the integration bridge is necessary because of the support of firewall rules'
compatibility. We should then expect the implication of certain iptables rules at
this stage:

iptables -S | grep tap6d6ee47e-04

-A neutron-openvswi-FORWARD -m physdev --physdev-out tap6d6ee47e-04
--physdev-is-bridged -j neutron-openvswi-sg-chain

-A neutron-openvswi-FORWARD -m physdev --physdev-in tap6d6ee47e-04
--physdev-is-bridged -j neutron-openvswi-sg-chain

-A neutron-openvswi-INPUT -m physdev --physdev-in tap6d6ee47e-04
--physdev-is-bridged -j neutron-openvswi-o7c7ae61e-0

We can check where our security rules are realized. We see clearly that the neutron-
openvswi-sg-chain is the security set that controls egress traffic from the virtual
machine, which can be seen as the following:

-A neutron-openvswi-cc7474ee6-0-m mac ! --mac-source
BA:64:EE:04:50:74 -j DROP

-A neutron-openvswi-cc7474ee6-0-p udp -m udp --sport 68
--dport 67 -j RETURN

-A neutron-openvswi-cc7474ee6-0! -s 172.16.0.5/32 -j DROP

-A neutron-openvswi-cc7474ee6-0-p udp -m udp --sport 67
--dport 68 -j DROP

-A neutron-openvswi-cc7474ee6-0-m state --state INVALID -j DROP

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[256]

On the other hand, ingress traffic toward the instance is controlled by the neutron-
openvswi-icc7474ee6-0 chain, which appears as the following:

-A neutron-openvswi-icc7474ee6-0 -m state --state INVALID -j DROP

-A neutron-openvswi-icc7474ee6-0 -m state --state
RELATED,ESTABLISHED -j RETURN

-A neutron-openvswi-icc7474ee6-0 -p icmp -j RETURN

-A neutron-openvswi-icc7474ee6-0 -p tcp -m tcp --dport 22 -j RETURN

-A neutron-openvswi-icc7474ee6-0 -p tcp -m tcp --dport 80 -j RETURN

The next transit point of our frame Ethernet is the second interface of the patch cable
connected to the Linux Bridge, qvb6d6ee47e-04. It next hits the qvbc7474ee6-05
interface attached to the br-int integration bridge, where it performs VLAN
tagging/untagging for traffic in both ways. In the next output, you can clearly see
that the br-int bridge carries VLAN tagged with the 1 ID, whereas its port interface
is the patch-tun patch port, which connects to the tunnel interface:

ovs-vsctl show

Bridge br-int

 Port "qvo6d6ee47e-04"

 tag: 1

 Interface "qvo6d6ee47e-04"

 Port patch-tun

 Interface patch-tun

 type: patch

 options: {peer=patch-int}

Before leaving the compute node, the tunnel bridge implies the tagging of the VLAN
traffic and encapsulates it into GRE tunnels. Remember that at the br-tun level,
flow rules are applied. Basically, flow rules translate VLAN IDs to tunnel IDs. Our
second checkpoint will focus on realizing how the flow is applied. The next output
command line shows the default flow rules that exist before any instance creation:

ovs-ofctl dump-flows br-tun

NXST_FLOW reply (xid=0x4):

 cookie=0x0, duration=665.284s, table=0, n_packets=4, n_bytes=300,
idle_age=865, priority=1 actions=drop

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[257]

Similar to firewall rules, the default set rules of the tunnel bridge imply the dropping
of any traffic.

Let's boot an instance and see what is changed:

ovs-ofctl dump-flows br-tun

NXST_FLOW reply (xid=0x4):

 cookie=0x0, duration=555.543s, table=0, n_packets=2, n_bytes=134,
idle_age=45, priority=3,tun_id=0x2,dl_dst=01:00:00:00:00:00/01:00:00:00:0
0:00
actions=mod_vlan_vid:1,output:1

 cookie=0x0, duration=541.443s, table=0, n_packets=74, n_bytes=8235,
idle_age=13, priority=3,tun_id=0x2,dl_dst=bb:33:e4:ee:b1:12
actions=mod_vlan_vid:1,NORMAL

 cookie=0x0, duration=533.543s, table=0, n_packets=44, n_bytes=12455,
idle_age=44, priority=4,in_port=1,dl_vlan=1
actions=set_tunnel:0x2,NORMAL

 cookie=0x0, duration=987.123s, table=0, n_packets=3, n_bytes=156,
idle_age=431, priority=1 actions=drop

What is interesting at this point is the first rule: any traffic on tunnel ID 2 tags our
frame Ethernet with VLAN ID 1 and sends out port 1. It is important to know that
the VLAN ID 1 is a local VLAN with tag 1 of the integration bridge br-tun. The
original VLAN ID—for example, the traffic tagged as VLAN 3—is replaced by local
VLAN 1 when the traffic reaches the integration bridge. The rule eventually maps
the traffic between VLAN ID 1 used by the integration bridge and the tunnel with
ID 2 used by the GRE tunnel. However, how does our Ethernet frame move to the
integration bridge while the rule has sent it out to port 1? This might be confusing.
Do not despair; it should exist in a way that unveils such ambiguity. To do this, we
need to investigate the existence of port 1. Let's see what our ovs command line
shows in detail:

ovs-ofctl show br-tun

OFPT_FEATURES_REPLY (xid=0x2): dpid:0000068df4e44a49

n_tables:254, n_buffers:256

capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP

actions: OUTPUT SET_VLAN_VID SET_VLAN_PCP STRIP_VLAN SET_DL_SRC SET_DL_
DST SET_NW_SRC SET_NW_DST SET_NW_TOS SET_TP_SRC SET_TP_DST ENQUEUE

 1(patch-int): addr:34:e3:44:32:ee:f2

 config: 0

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[258]

 state: 0

 speed: 0 Mbps now, 0 Mbps max

 2(gre-2): addr:ee:3e:aa:23:92:10

 config: 0

 state: 0

 speed: 0 Mbps now, 0 Mbps max

 LOCAL(br-tun): addr:07:de:ff:44:ba:33

 config: 0

 state: 0

 speed: 0 Mbps now, 0 Mbps max

OFPT_GET_CONFIG_REPLY (xid=0x4): frags=normal miss_send_len=0

We can clearly see that the port is designated as a patch interface. Therefore, it will
be the next transit point for the Ethernet frame toward the integration bridge. The
next rule implies any traffic coming on tunnel 2 within the Ethernet destination
34:e3:44:32:ee:f2 and tags our Ethernet frame with VLAN ID 1 before sending it
out to patch-int

The next rule implies traffic coming in on port 1 in_port=1 with VLAN ID 1 dl_
vlan=1 and sets the tunnel ID to 2 (actions=set_tunnel:0x2) before sending it out
to the GRE tunnel.

Amazing! Then, our frame Ethernet is able to carry on its trip by reaching the
network host via the GRE tunnel bridge interface attached to br-tun. The next
checkpoint will require the implementation of the flow rules at the network node
level, which are similar to the ones of br-tun in the compute node:

ovs-ofctl dump-flows br-tun

NXST_FLOW reply (xid=0x4):

 cookie=0x0, duration=1239.229s, table=0, n_packets=23, n_bytes=4246,
idle_age=15, priority=3,tun_id=0x2,dl_dst=01:00:00:00:00:00/01:00:00:00:0
0:00
actions=mod_vlan_vid:1,output:1

 cookie=0x0, duration=524.477s, table=0, n_packets=15, n_bytes=3498,
idle_age=10, priority=3,tun_id=0x2,dl_dst=fe:13:2e:45:76:dd
actions=mod_vlan_vid:1,NORMAL

 cookie=0x0, duration=1239.157s, table=0, n_packets=50, n_bytes=4565,
idle_age=148, priority=3,tun_id=0x2,dl_dst=fe:33:fe:ff:ee:3d
actions=mod_vlan_vid:1,NORMAL

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[259]

 cookie=0x0, duration=1239.304s, table=0, n_packets=76, n_bytes=9419,
idle_age=10, priority=4,in_port=1,dl_vlan=1
actions=set_tunnel:0x2,NORMAL

 cookie=0x0, duration=1527.016s, table=0, n_packets=12, n_bytes=880,
idle_age=527, priority=1 actions=drop

Let's analyze the checkpoints in a nutshell:

•	 Maps multicast traffic on tunnel ID 2 to VLAN 1

•	 Matches traffic on the tunnel destined for the DHCP server at
fe:13:2e:45:76:dd

•	 Matches traffic on tunnel ID 2 destined for the router at fe:33:fe:ff:ee:3d,
which is an interface in another network namespace

•	 Maps outbound traffic on VLAN ID 1 to tunnel ID 2

The existence of two extra rules, as shown, is due to the usage of the DHCP server
and the virtual router device in the network node. We can see this in the next output:

ovs-vsctl show

Bridge br-int

 Port patch-tun

 Interface patch-tun

 type: patch

 options: {peer=patch-int}

 Port "tapf32fc99e-47"

 tag: 1

 Interface "tapf32fc99e-47"

 Port br-int

 Interface br-int

 type: internal

 Port "tapcd366e30-54"

 tag: 1

 Interface "tapcd366e30-54"

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[260]

Does this make it more complicated? Well, it might be better to first rekindle
the flames and review the namespace concept treated in Chapter 5, Implementing
OpenStack Networking and Security, in a nutshell. Remember that a network
namespace is similar to a network container, which groups a certain number of
Linux kernel facilities in order to form a complete network stack including iptables
rules, routing tables, network interfaces, and so on.

A DHCP service is simply an instance of dnsmasq running in a network namespace.
It also includes a router, as cited in the preceding example. Let's check out our
network namespace:

ip netns

qdhcp-94245cc2-ed34-0452-4632-47ffe23dee31

qrouter-dd32f23d-ee73-47dd-4582-9923fee20201

Here, qdhcp-***** is the named DHCP server namespace and qrouter-**** is the
named router namespace.

So, how can we trace our DHCP tap interface in the network node? The best
way to do this is by checking the DHCP server's unique address: MAC address.
The following command could help us by providing the DHCP namespace:

ip netns exec qdhcp-94245cc2-ed34-0452-4632-47ffe23dee31 ip addr

71: ns-f32fc99e-47: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
pfifo_fast state UP qlen 1000

 link/ether ff:46:ee:07:e3:05 brd ff:ff:ff:ff:ff:ff

 inet 172.16.0.0/24 brd 172.16.0.255 scope global ns-f32fc99e-47

We can see that ns-f32fc99e-47 matches the tap interface derived from the
ovs-ofctl output received previously, which makes sense. The tap interface
can be seen as follows:

Port "tapf32fc99e-47"

 tag: 1

 Interface "tapf32fc99e-47"

The next checkpoint is the router interface; using the router namespace, we will
identify which interface our Ethernet framework will have to transit:

ip netns exec qrouter-dd32f23d-ee73-47dd-4582-9923fee20201 ip addr

66: qg-44de398f-aa: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
pfifo_fast state UP qlen 1000

 link/ether ff:12:e3:5c:22:ac brd ff:ff:ff:ff:ff:ff

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[261]

 inet 192.168.47.227/28 brd 192.168.47.239 scope global
qg-44de398f-aa

 inet 192.168.47.228/32 brd 192.168.47.228 scope global
qg-44de398f-aa

......

68: qr-cd366e30-54: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
pfifo_fast state UP qlen 1000

 link/ether ff:46:ee:07:e3:05 brd ff:ff:ff:ff:ff:ff

 inet 172.16.0.1/24 brd 172.16.0.255 scope global qr-cd366e30-54

We have two different interfaces:

•	 qg-44de398f-aa: This connects the router to the external gateway assuming
that 192.168.47.227/28 is an external network

•	 qr-cd366e30-54: This connects the router to the integration bridge,
which can be confirmed from the ovs-ofctl output shown previously

Our Ethernet framework is almost connecting to the outside, but before that, we have
to tell it which interface it goes from the router. 192.168.47.227/28 is the external
network connected to qg-44de398f-aa where traffic will flow through the physical
bridge br-ex:

 Bridge br-ex

 Port "tapd44de398f-aa"

 Interface "tapd44de398f-aa"

 Port br-ex

 Interface br-ex

 type: internal

Load Balancer as a Service
The LBaaS extension is an additional feature provided by Neutron. It is possible
to add more resiliency to the instances running in the OpenStack environment by
balancing traffic to applications running on them. In previous releases of OpenStack,
LBaaS was a separate project called Atlas, which was a load-balancing solution
for OpenStack out of the box. Starting from the Grizzly release, LBaaS is an official
extension within the network service and provides even more features within the
Havana release. In Chapter 5, Implementing OpenStack Networking and Security, we
covered some of the security functionalities provided by Neutron, including VPN as
a Service and Firewall as a Service; the nirvana of Neutron is not finished yet: we still
have to discover Load Balancer as Service.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[262]

Work around LBaaS
LBaaS has been fully integrated within OpenStack, starting from the Grizzly release.
During this time, the networking service that was formally named quantum
has taken a new turn to tackle several networking aspects thanks to networking
virtualization concepts. Eventually, LBaaS uses drivers to talk to the hardware/
software of the load balancer. The first driver uses HAProxy by default. Within
the Havana release, LBaaS is able to support and talk to many other load balancer
vendors. Here's what LBaaS can offer to your private cloud:

•	 Load balancing traffic between instances
•	 Health check monitoring based on HTTP and TCP
•	 Session persistence by forcibly directing client requests to the same node

Session persistence is frequently used in several web applications.
This method forcibly directs client requests to the same node when
an application does not share a state between pool members.

•	 Numerous load balancer algorithms, such as Round Robin, Least connection
and Source IP

Basically, we find four new fundamental concepts with LBaaS:

•	 Virtual IP or VIP: This is the IP listening for the incoming connection and
used for load balancer failover

•	 Pool: This refers to a set of servers handling identical content
•	 Pool member: This presents one unit from the pool by exposing the IP

address of the service and the listening port
•	 Health Monitoring: This refers to two types of check monitoring that

can be listed:

°° Layer 4: This refer to the test connectivity based on TCP
°° Layer 7: This refers to the test member pool connectivity based on

HTTP/HTTPS

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[263]

Integrate LBaaS in the cloud
As was mentioned previously, HAProxy is used as the default load balancer in the
Havana release. Let's see how to integrate LBaaS in our private cloud by following
the next few instructions,

On the controller node, perform the following steps:

1.	 We start by installing haproxy on the cloud controller node using the
following command:
yum install haproxy –y

2.	 Check whether the load balancing plugin is listed in the service plugins in
/etc/neutron/neutron.conf. Depending on the plugins enabled in your
neutron.conf file, you should at least see the service_plugins directive as
follows:
service_plugins=router,lbaas

3.	 In order to make HAProxy work properly, the neutron LBaaS agent needs
to talk to a device driver as an interface between the load balancer and the
networking service API. You can enable it by editing the following directive:
service_provider = LOADBALANCER:Haproxy:neutron.services.
loadbalancer.drivers.haproxy.plugin_driver.HaproxyOnHostPluginDriv
er:default

4.	 Restart the Neutron server:

service neutron-server restart

On the network node, perform these steps:

1.	 Edit the /etc/neutron/neutron.conf file to enable LBaaS in Neutron:
service_plugins=router,lbaas

2.	 Enable the HAProxy device driver in the service_provider directive:
service_provider = LOADBALANCER:Haproxy:neutron.services.
loadbalancer.drivers.haproxy.plugin_driver.HaproxyOnHostPluginDriv
er:default

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[264]

3.	 The LBaaS agent in Neutron needs to be configured to use an interface
driver corresponding to a specific networking plugin: either Linux Bridge or
Open vSwitch can be chosen. We will go for the Open vSwitch plugin and
configure the Neutron LBaaS to use it as follows:
vi /etc/neutron/lbaas_agent.ini

4.	 Enable the Open vSwitch driver by commenting out the following line:
interface_driver = neutron.agent.linux.interface.
OVSInterfaceDriver
[haproxy]
user_group = haproxy

5.	 Issue the following commands to start the neutron LBaaS agent and start the
Neutron Open vSwitch agent plugin as follows:
service neutron-plugin-openvswitch-agent restart

service neutron-lbaas-agent start

6.	 Let's visualize our load balancer management tab in the dashboard by
changing the following settings in the /etc/openstack-dashboard/local_
settings file:
OPENSTACK_NEUTRON_NETWORK = {'enable_ lb': True,

7.	 Restart the web server daemon in the cloud controller node:

service httpd restart

Here we go; our load balancer service is ready to be used from horizon:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[265]

Moreover, Neutron offers a set of commands to fully manage pools, members,
virtual IPs, and health monitors. The creation of a load balancer and making it
functional is straightforward:

1.	 Create a pool.
2.	 Create pool members.
3.	 Associate the pool members.
4.	 Create a virtual IP for the pool.
5.	 Create a health monitor.
6.	 Associate the health monitor with the pool.

Before bringing a load balancing sample setup into action, we will cover an
additional terminology in OpenStack, which can work in tandem with LBaaS.

Stack in OpenStack
As the title promises: here's building stacks in OpenStack! As you may have guessed
from the stack terminology, this includes any group of connected OpenStack
resources, including instances, volumes, virtual routers, firewalls, load balancers and
so on, that form a stack. However, how can stacks be created and managed? Starting
from the Grizzly release, a new orchestration service named heat has been added.
Using YAML-based template languages called Heat Orchestration Template (HOT),
you will be able to spin up multiple instances, logical networks, and many other
cloud services in an automated fashion.

Now you can guess the rest: create stacks from templates.

If you are familiar with the AWS cloud formation service, heat is fully
compatible with AWS templates and provides an API to align the AWS
specification using CFN-formatted templates expressed in JSON.

Although the topic of heat might take up a whole chapter, we will rather go for
a simple example and build a stack running a load balancer server using the
orchestration method. Furthermore, heat will be explained in more detail in the next
chapter by joining more servers into the stack and realizing the flexibility of such an
orchestration method.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[266]

HOT explained
Let's reformulate HOT in a simpler way: define a proper template, and you
get a running stack. If you want to have a stack launch three instances connected
by a private network and make it load balanced, then the heat engine will expect
the definitions for three instances in your template, a network, a subnet, a load
balancer, and three network ports. As described previously, HOT has a specific
structure based on the YAML syntax. A typical HOT structure would look like the
following code:

heat_template_version:
description:
parameters:
 param1
 type:
 label:
 description:
 default:
 param2:

resources:
 resource_name:
 type: OS::*::*
 properties:
 prop1: { get_param: param1}
 prop2: { get_param: param2}

outputs:
 output1:
 description:
 value: { get_attr: resource_name,attr] }

Let's check out the overall sections of the previous template:

•	 heat_template_version: This specifies the version of the template syntax
that is used. Standard versions are 2013-05-23, while new ones labeled 2014-
10-16 are introduced with the Juno release and contain a few additions.

•	 description: This includes the description of the template.
•	 parameters: These declare a list of inputs. Each parameter is given a name,

type, and description; the default value is optional. Parameters can be any
information, such as a specific image or a network ID specified by the user.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[267]

•	 resources: These can be referred to as objects that heat will create or
modify as part of its operation. The resources section is where the different
components are defined. For example, a resource_name name can be
virtual_web with the OS::Nova::Server type, which indicates the type
of nova compute instance. It can be forwarded by a list of subproperties
that identify which image, flavor, and private network can be used for the
virtual_web instance resource.

•	 outputs: It is possible to export the attributes of a stack after its deployment,
defined in this section.

Installing heat
To see how heat can bring charm to your private cloud infrastructure, we will
perform these steps to install and run heat on the cloud controller node:

1.	 Install the required heat packages:
yum install openstack-heat-api openstack-heat-api-cfn \

heat-engine python-heatclient

2.	 Log in to the database and create a new heat database and grant privileges to
the heat user:
mysql -u root -p

CREATE DATABASE heat;

GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'localhost'\

IDENTIFIED BY 'password';

GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'%'\

IDENTIFIED BY 'password';

3.	 Source the keystone environment variables for admin access:
source keystonerc_admin

4.	 Create a new user for the heat user:
keystone user-create –name heat –pass password

5.	 Assign the admin role to the heat user:
keystone user-role-add --user heat --tenant service --role admin

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[268]

6.	 Edit the /etc/heat/heat.conf file to configure the database as well as
RabbitMQ access:
[database]
...
connection = mysql://heat:HEAT_DBPASS@cc01/heat

[DEFAULT]
...
rpc_backend = rabbit
rabbit_host = cc01.packtpub
rabbit_password = RABBIT_PASSWORD

7.	 Specify the identity service endpoint access in the [keystone_authtoken]
section:
[keystone_authtoken]
...
auth_uri = http://cc01.packtpub:5000/v2.0
identity_uri = http://cc01.packtpub:35357
admin_tenant_name = service
admin_user = heat
admin_password = HEAT_PASS

8.	 Populate the heat database:
su -s /bin/sh -c "heat-manage db_sync" heat

9.	 Configure the orchestration service for it to be started automatically on boot:

systemctl enable openstack-heat-api.service openstack-heat-api-
cfn.service \

 openstack-heat-engine.service

systemctl start openstack-heat-api.service openstack-heat-api-
cfn.service \

 openstack-heat-engine.service

Heating things up
Building a load-balanced stack using heat is straightforward. The following setup
describes the first implementation of a stack running a load balancer within two web
servers instances that share a virtual IP. It is important to note that instances will run
in a private network called private_network. For the sake of simplicity, we will not
configure the template to reach the external or public network; we will leave that to
the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[269]

For instance, we will need to prepare a proper structure for our template. Heat
templates are modular; you can call other templates for a defined library to be used
as HOT objects and launch them based on the default or defined parameters. The
way to perform the nesting of templates alleviates the complexity of coding the
stack. In addition, it proves the simplicity of treating your stack as independent
resources rather than introducing multiple changes every time you plan to update
them, which is error-prone.

The structure of our file stack is as follows:

----stackers
 |--------- web_lb.yaml
 |--------- Lib
 |---------- env.yaml

Let's see the components:

•	 web_lb.yaml: This file contains the main load-balanced web server stack
definition.

•	 Lib/env.yaml: This contains global definitions that are imported from
templates before parsing them. For example, it can contain only one basic
resource section definition as follows:
resource_registry:
 packtpub::lb_server: lb_server.yaml

Let's understand the terms in this code:

°° resource_registry: This is the mapping section of the resource type
to the path of the nested template lb_server.yaml.

°° Lib: This is the prefix name to indicate the usage of nested templates.
We will need it later for nested template directory.

°° packtpub: This is the definition of a customized namespace.

For the instance, we will need only web_lb.yaml file to run our first load balanced
stack whereas we keep the file's tree of the for later. The next web_lb.yaml file
should create a stack with the following details:

•	 Two instances running httpd
•	 A virtual IP shared between both web servers

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[270]

•	 Instances will start being deployed and attached in a private network:

heat_template_version: 2013-05-23
description: Load balanced web servers
parameters:
 image:
 type: string
 label: Image name or ID
 description: Image to be used for compute instance
 default: fedora20_box
 flavor:
 type: string
 label: Flavor
 description: Type of instance (flavor) to be used
 default: m1.small
 key:
 type: string
 label: Key name
 description: Name of key-pair for compute instance
 default: my_key
 private_network:
 type: string
 label: Private network name or ID
 description: Network to attach instance to.
 default: private
 subnet_id:
 type: string
 description: subnet on which the load balancer will be located
 default: 9a4d4443-37f0-4680-8efa-7495b52fd8c5
 cluster_size:
 type: number
 description: Number of servers in the cluster
 default: 2
 pool_id:
 type: string
 description: Pool to contact
 external_network_id:
 type: string
 description: UUID of a Neutron external network
 default: 2d4b050b-2cfa-41ac-9b9a-d4ffd5dc3784
resources:
 web_cluster:
 type: OS::Heat::ResourceGroup
 properties:
 count: {get_param: cluster_size}
 resource_def:
 type: OS::Nova::Server
 properties:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[271]

 flavor: {get_param: flavor}
 image: {get_param: image}
 key_name: {get_param: key}
 networks: [{network: {get_param: network} }]
 user_data_format: RAW
 user_data:
 str_replace:
 template: |
 #!/bin/bash -v
 yum -y install httpd
 systemctl enable httpd.service
 systemctl start httpd.service
 setsebool -P httpd_can_network_connect_db=1
 systemctl restart httpd.service
 member:
 type: OS::Neutron::PoolMember
 properties:
 pool_id: {get_param: pool_id}
 address: {get_attr: [web_cluster, first_address]}
 protocol_port: 80

 pool:
 type: OS::Neutron::Pool
 properties:
 name: pool.vip
 protocol: HTTP
 subnet_id: {get_param: subnet_id}
 lb_method: ROUND_ROBIN
 vip:
 protocol_port: 80
 lb:
 type: OS::Neutron::LoadBalancer
 properties:
 protocol_port: 80
 pool_id: {get_resource: pool }
 members: {get_resource: web_cluster}

 lb_floating:
 type: OS::Neutron::FloatingIP
 properties:
 floating_network_id: {get_param: external_network_id}
 port_id: {get_attr: [pool, vip, port_id]}
outputs:
 instance_ip:
 description: IP address of the instance
 value: { get_attr: [web_cluster, first_address] }

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[272]

Let's build the lb_stacker stack using the following command:

heat stack-create lb_stacker -f web_lb.yaml

This command gives the following result:

Parameter values can be also specified via heat command line. For
example, the following command line creates the same heat stack without
going through default values of parameters in the template file:
heat stack-create lb_stacker -f web_lb.yaml -P subnet_
id=9a4d4443-37f0-4680-8efa-7495b52fd8c5 -P key="my_key"
-P flavor=m1.small -P image=14614d95-d9c5-43ef-9dfd-
25eb526850d5 -P external_network_id=2d4b050b-2cfa-41ac-
9b9a-d4ffd5dc3784 -P network=private

We can further check out the creation of a virtual IP for the load balancing settings:

neutron lb-vip-list

This command gives the following output:

From horizon, we can check whether a new member has been newly added to the
load balancer pool:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[273]

The installation of the apache web server (httpd) will be processed by cloud-init.
It might be useful to monitor the process of the instance deployment and service
installation by going checking in the Log section of every instance from horizon as
the following:

When the installation of both instances is accomplished successfully, we intend
to test the access to the web server default page using the VIP. Basically, we
should associate a floating IP to the VIP shown previously. We can pick up a non
assigned floating IP from the neutron floatingip-list and associate it to the VIP
as the following:

neutron lb-vip-show pool.vip | grep port_id

neutron floatingip-list

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack – Advanced Networking Features and Deploying Multi-tier Applications

[274]

 # neutron floatongip-associate 15e329aa-2821-457a-8622-1c85df5e1b59
d4e9b15-dae6-bd0d-ca45a6322295

Now we can verify the access to the default web page of apache using the VIP:

Summary
This chapter covered a few topics on Neutron plugins in OpenStack. Open
vSwitch and Linux Bridge have proven to be flexible and a great solution to
manage networks for instances in the OpenStack private cloud. You should
understand that Open vSwitch has played a big part in this chapter due to its
multiple features as compared to the Linux Bridge plugin. You also learned about
the difference between them and how you can control traffic ingress and egress
in your virtual machines environment by means of flow rules. We were guided
through the discovery of a third service, which can be linked to VPNaaS and FWaaS,
covered in Chapter 5, Implementing OpenStack Networking and Security, which is
LBaaS. Today, tenants in OpenStack are able to scale their application and balance
traffic to pools. The usage of LBaaS from the dashboard is straightforward. It was a
good opportunity to build a first LBaaS setup by means of an advent orchestration
service called heat. You may realize the modularity of such an orchestration engine
and imagine how you can build a larger stack in no time. Although this chapter
introduced LBaaS, which might be great to scale instances for tenants, you still need
to monitor them and investigate how to bring in a more transparent solution to
watch your OpenStack private cloud performance.

The next chapter will introduce monitoring topics such as Ceilometer, Zabbix, and
stack health check monitoring and continue to extend our stack example based on
heat with more details.

www.it-ebooks.info

http://www.it-ebooks.info/

[275]

Monitoring OpenStack –
Ceilometer and Zabbix

"Tomorrow is often the busiest day of the week."
–Spanish Proverb

OpenStack is intended to run like a charm, from private clouds to large and public
clouds. So far, you have learned about the modular architecture of OpenStack and
should be aware of how it is growing within several incubating projects, which
make it an amazing cloud set: a real cloud. But unfortunately, concentrating on
building and extending your infrastructure might jeopardize the stability of your
cloud environment. The rule of thumb prioritizes a good strategy on how to keep
your cloud under control; in other words, keeping a close eye on every piece of
the OpenStack cloud. Running a large and complex infrastructure will need the
best effort management that comes in tandem with a well-maintained monitoring
strategy. As you will learn in this chapter, a new telemetry module in OpenStack
called Ceilometer provides a dedicated monitoring solution for your instances,
as well as alerting and triggering events capabilities. In this chapter, you will learn
the following:

•	 Ceilometer concepts and integration in OpenStack
•	 How to install Ceilometer in the cloud controller node

The next part will guide you through an extension of HOT, defined in
Chapter 8, Extending OpenStack – Advanced Networking Features and Deploying
Multi-tier Applications, and learn to:

•	 Integrate heat within the Ceilometer service from the architectural level
•	 Extend the heat template to support metering and alarming
•	 Create a first alarming event in Ceilometer

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring OpenStack – Ceilometer and Zabbix

[276]

On the other hand, you will see the varying the ways in which monitoring the
OpenStack environment is a sort of necessity when we intend to implement more
complicated monitoring features. By the end of this chapter, you will have learned
the following:

•	 Integrating an external monitoring system in your production environment
•	 Installing Zabbix Server and its agents
•	 Discovering a flexible way to monitor your OpenStack nodes in no time
•	 Starting to monitoring your first node using Zabbix server and getting

your first alert

Telemetry in OpenStack – Ceilometer
The telemetry module has been fully integrated since the launch of OpenStack's
Grizzly release. The project named Ceilometer provides an expandable monitoring
and metering platform for OpenStack.

The Ceilometer naming concept originally comes from light device
technology to detect and measure the height of the cloud generally
used in a plane metering system.

Ceilometer definition
Ceilometer was originally intended (due the Folsom release) to collect usage data
and transform it into billable items so that the cloud operator would be able to create
the customer's invoice.

The Ceilometer project has been intensively developed and has enlarged its features
to cover more measurement purposes for other needs in OpenStack. The primary
targets of Ceilometer can be seen as follows:

•	 Customer billing
•	 System infrastructure monitoring
•	 System infrastructure alerting

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[277]

Ceilometer glossary
It might be crucial to provide a basic understanding of the Ceilometer terminology
before we take a closer look at its overall architecture within OpenStack's
core integration:

•	 Resource: The Ceilometer resource can be any OpenStack entity that is being
metered, such as instance, volume, and so on.

•	 Meters: A meter is a measurement tracked for a resource. It can also be
called a counter. Meters simply convert a particular resource usage to a
human-readable value, such as CPU utilization per instance or overall
bandwidth consumption in a particular host. Meters are defined as string
values that have a unit of measurement and can be categorized essentially
in three types:

°° Cumulative: This increases over a period of time
°° Gauge: The value is updated only when a change occurs in the

current gauge or duration
°° Delta: This changes over a period of time when the previous

value is updated

•	 Samples: Each meter is associated with a data sample compelling
its attributes.

•	 Agent: This is a software service that runs on the OpenStack infrastructure
and measures the usage and sends the results to a collector.

•	 Pipelines: Ideally, a given metric data gathered by agents is pushed to the
transformer for it to be manipulated and visualized via pipelines before
delivering it to the publisher and being emitted to the collector afterwards.

•	 Alarms: These define a trigger that is launched once a certain threshold
is attained. It has been newly implemented within Ceilometer, starting
from the Havana release, and has well-supported functionality by the
OpenStack community.

•	 Statistics: Similar to any other monitoring tool, collecting a set of values
in certain laps of time and applying a defined function might construct a
statistical overview of a given metric. We find five functions in Ceilometer to
perform different kinds of preliminary calculations, and they are as follows:

°° avg: This is the average value in the specified laps of time
°° sum: This is the sum of all the values in the specified laps of time

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring OpenStack – Ceilometer and Zabbix

[278]

°° min: This is the minimum value registered in the specified laps
of time

°° max: This is the maximum value registered in the specified laps
of time

°° count: This gives the number or values registered in the specified
laps of time

The Ceilometer architecture
Putting the Ceilometer architecture under the micro scope might clarify how such
a telemetry module has been integrated in OpenStack. The following bullets
highlight a general overview of the Ceilometer components evaluated within
the Grizzly release:

•	 The API server (ceilometer-api): This is a standard API that provides access
to the Ceilometer database via a REST API to access the metering data.

•	 The compute agent (ceilometer-agent-compute): The main role of a compute
agent is to gather statistics mainly from instances running in the compute
node and poll them to the message queue.

Note that every compute node must run an agent.

•	 The central agent (ceilometer-agent-central): Unlike the compute agent,
a central agent specifically polls statistics of resources other than instances.

Note that a central agent can run in a central
management server, such as the cloud controller node.

•	 The collector (ceilometer-collector): This monitors the message queues
and takes care of the notification messages processed in the queue by the
agent. Any notification message will be translated to a metering message
before pushing it back to the appropriate message queue. Therefore, the new
metering message will be written and saved in the data store.

•	 The data store: This is a sample database to store the collected data
for telemetry. Databases such as MongoDB and SQLs compatible with
SQLAlchemy are supported. Due to write concurrency from different
collectors from the API server, MongoDB is mostly used in Ceilometer,
which is capable of handling concurrent read/write operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[279]

For our sanity, let's take a step back and first analyze the agents that manipulate
gathered data by using the pipeline mechanism:

Eventually, agents periodically send requests for sample objects, which reflect a
certain meter. Every sample request will be forwarded to the pipeline.

You may note that the compute agent will poll meters for
instances via the hypervisor, whereas the central agent polls
statistics of other resources, such as Nova, Cinder, and others.

Once passed to the pipeline, meters can be manipulated by several transformer types:

•	 Accumulator: This accumulates multivalues and sends them in a batch
•	 Aggregator: This aggregates multivalues into a single one
•	 Arithmetic: This includes arithmetic functions to compute the percentage
•	 Rate of change: This identifies trends by deriving another meter from the

previous data
•	 Unit conversion: This gives the type of unit conversion to be used

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring OpenStack – Ceilometer and Zabbix

[280]

Once manipulated and transformed, a meter might follow its path via one of the
multiple publisher types:

•	 Notifier: This is the meter data pushed over reliable AMQP messaging
•	 rpc: This is the synchronous RPC meter data publisher
•	 udp: This is the meter data sent over UDP
•	 file: This is the meter data sent into a file

An overall of the Ceilometer architecture can be seen as the following:

Now, it is time for the bigger picture. As you might have noticed in the previous
section, the metric data has been manipulated and is ready to be grabbed by the
collector. To do this, notifications will be sent via the AMQP system message bus,
as well as other external APIs, which the collector forwards to the store to be saved.
So, now that we have the monitoring information saved in the database, how can an
alarm be triggered and fire a notification event? Eventually, an alarm-evaluator
service checks the store periodically via the API server by determining whether a
certain condition is satisfied for a certain meter; then, it can be declared to the
alarm-notifier service in the case of a match and then it can start to shout.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[281]

The Ceilometer installation
The next steps show how to install Ceilometer in our existing environment. We will
begin by configuring our controller node, cc01.packtpub:

1.	 Install the core components described previously:
yum install openstack-ceilometer-api openstack-ceilometer-
collector openstack-ceilometer-central python-ceilometerclient

2.	 Install MongoDB, which Ceilometer needs for the backend database:
yum --enablerepo=epel -y install mongodb-server mongodb

3.	 Start the MongoDB server and make it autostart on machine boot:
service mongod start

chkonfig mongod on

4.	 Ensure that MongoDB binds to the management IP address of our cloud
controller in the /etc/mongodb.conf file:
bind_ip = 172.16.50.1

By default, MongoDB creates a file of 1 GB to journal in the
/var/lib/mongodb/journal directory. Optionally, you
can reduce the size of the journaling space allocation, asserting
a directive in /etc/mongodb.conf file:smallfiles
= true. In order for the changes to take effect, follow your
modification by restarting the mongodb service:
service mongodb stop

rm /var/lib/mongodb/journal/prealloc.*

service mongodb start

5.	 Create a database for Ceilometer:
mongo --host 172.16.50.1 --eval '

db = db.getSiblingDB("ceilometer");

db.createUser({user: "ceilometer",

pwd: "ceilometer_password",

roles: ["readWrite", "dbAdmin"]})'

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring OpenStack – Ceilometer and Zabbix

[282]

After getting a successful configuration issued, you should see the output
as follows:

MongoDB shell version: 2.6.5

connecting to: 172.16.50.1:27017/test

Successfully added user: { "user" : "ceilometer", "roles" : [
"readWrite", "dbAdmin"] }

For the sake of simplicity, MongoDB has been installed in
the controller node within one running database instance.
Remember that we have created a Single Point Of Failure
within the Ceilometer database, which might need a
mongodb cluster among other cloud controller nodes.
Deploying Ceilometer with the MongoDB shared cluster
is out of the scope of this book.

6.	 Point the Ceilometer service to use the created database:
openstack-config --set /etc/ceilometer/ceilometer.conf \

 database connection mongodb://ceilometer: ceilometer_password @
cc01:27017/ceilometer

7.	 For a secure connection between the Ceilometer service and its agents
running in other nodes in our OpenStack environment, define a secret key
that can be generated by using OpenSSL. We will need to install the rest of
the agents in compute nodes later:
ADMIN_TOKEN=$(openssl rand -hex 10)

8.	 Store the token generated in the Ceilometer configuration file:
openstack-config --set /etc/ceilometer/ceilometer.conf\
publisher_rpc metering_secret $ADMIN_TOKEN

9.	 Like any other newly added service, we will always tell Keystone to
authenticate against it. To do this, we create a new ceilometer user, which
will have the role of admin:
keystone user-create --name=ceilometer --pass=ceil_pass\
--email=ceilometer@example.com

keystone user-role-add --user=ceilometer --tenant=service\
--role=admin

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[283]

10.	 Register the Ceilometer service with the Keystone identity service by
specifying its correspondent endpoint as follows:
keystone service-create --name=ceilometer --type=metering \

 --description="Ceilometer Telemetry Service"

keystone endpoint-create \

 --service-id $(keystone service-list | awk '/ metering / {print
$2}') \

 --publicurl http://cc01:8777 \

 --internalurl http://cc01:8777 \

 --adminurl http://cc01:8777 \

11.	 Edit the /etc/ceilometer/ceilometer.conf file and change the right
directives in each section of the file as follows:
Change the following database connection information for MongoDB:
connection= mongodb://ceilometer: ceilometer_password @cc01:27017/
ceilometer

Change the following in the RabbitMQ section:
rabbit_host=172.16.50.1

rabbit_port=5672

rabbit_password=RABBIT_PASS

rpc_backend=rabbit

Authentication info for Ceilometer:

 [service_credentials]

os_username=ceilometer

os_password=service_password

os_tenant_name=service

os_auth_url=http:// 172.16.50.1:35357/v2.0

Connection info for Keystone

[keystone_authtoken]

auth_host=172.16.50.1

auth_port=35357

auth_protocol=http

auth_uri=http://172.16.50.1:5000/v2.0

admin_user=ceilometer

admin_password=service_password

admin_tenant_name=service

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring OpenStack – Ceilometer and Zabbix

[284]

Change the shared secret key among the nodes participating in the
telemetry service:

[publisher]
metering_secret=ceilo_secret

12.	 Finally, restart Ceilometer services, as follows:

service ceilometer-agent-central ceilometer-agent-notification\
ceilometer-api ceilometer-collector ceilometer-alarm-evaluator\
ceilometer-alarm-notifier restart

The next stage will basically tell our compute nodes to run a set of agents to
communicate via the API service to collect metrics' data and send them back to the
database, where it will be stored and visualized. Remember that it is imperative that
you install a Ceilometer agent in each compute node.

StackForge cookbooks' repository provides a stable Telemetry cookbook
for Chef, which can be found at https://github.com/stackforge/
cookbook-openstack-telemetry. It is advisable that you automate
the installation of the Ceilometer agent in the rest of your OpenStack
environment if you intend to include glance, network, and object storage
to be metered as well. A simple update of the right settings has to be done
in the default attribute file of the Telemetry cookbook before executing
the Chef client.

To install a Ceilometer agent in each compute node, perform the following steps:

1.	 Install the Ceilometer agent on the first compute node, cn01.packtpub:
yum install openstack-ceilometer-compute

2.	 Edit the /etc/nova/nova.conf file to enable the Ceilometer notification
drivers in the default section:
notification_driver = nova.openstack.common.notifier.rpc_notifier
notification_driver = ceilometer.compute.nova_notifier
instance_usage_audit = True
instance_usage_audit_period = hour
notify_on_state_change = vm_and_task_state

www.it-ebooks.info

https://github.com/stackforge/cookbook-openstack-telemetry
https://github.com/stackforge/cookbook-openstack-telemetry
http://www.it-ebooks.info/

Chapter 9

[285]

3.	 Keep updating the following sections in the /etc/ceilometer/ceilometer.
conf file. Add the same $ADMIN_TOKEN shared secret key generated in our
cloud controller node:
[publisher_rpc]
metering_secret= 47583f5423df27685ced

Configure RabbitMQ access:
[DEFAULT]
rabbit_host = cc01
rabbit_password = $RABBIT_PASS

Add identity service credentials:
[keystone_authtoken]
auth_host = cc01
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = ceilometer
admin_password = service_password

Add service credentials:
[service_credentials]
os_auth_url = http://cc01.packtpub:5000/v2.0
os_username = ceilometer
os_tenant_name = service
os_password = service_password

For troubleshooting purposes, we will need to configure the log directory by
commenting out the log_dir directive:

[DEFAULT]
log_dir = /var/log/ceilometer

4.	 Restart ceilometer-agent and nova-compute:

service ceilometer-agent-compute nova-compute restart

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring OpenStack – Ceilometer and Zabbix

[286]

Let's check our telemetry service installation by logging in through the Admin
account to the System Info section in Horizon. You can see the Ceilometer service
enabled and running in the controller node:

Prior to the OpenStack Grizzly release, Ceilometer is capable
of only monitoring virtual machines belonging to tenants.
Latter releases incubate an extension of Ceilometer to
monitor physical devices.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[287]

Ceilometer and heat
Remember that in Chapter 8, Extending OpenStack – Advanced Networking Features and
Deploying Multi-tier Applications, we had promised to continue with heat. Well, at
first glance, it might be difficult to find a face of commonality between the metering
infrastructure Ceilometer and the cloud application orchestration heat.

Before extending the latter example, we will shine a bright spotlight on
understanding how heat is architected. Essentially, heat has a few major
components, as follows:

•	 heat-api: This is a native OpenStack HTTPd RESTful API. It mainly
processes API calls by sending them to the heat engine via an advanced
message queuing protocol.

•	 heat-api-cfn: This is a CloudFormation API service that's compatible with
heat. It forwards API requests to the heat engine via an advanced messaging
queue protocol.

•	 Heat Engine: This is the main part of the orchestration service where
templates are processed and launched.

Note that the heat engine is able to provide autoscaling and
high-availability functionalities implemented in its core.

•	 Heat CLI tools: The heat tool client CLI communicates with heat-api.
•	 heat-api-cloudwatch: This is an additional API that is essentially

responsible for monitoring stacks and orchestration services when the
AWS CloudFormation service is used.

Note that all these components could be installed on the cloud
controller, whereas heat uses a backend database to maintain
the state information.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring OpenStack – Ceilometer and Zabbix

[288]

Autoscaling
Since the big move of Ceilometer within the Havana release and it starting to
perform alarmingly for OpenStack, billing aside, it has been performed as an event
trigger to the heat API to autoscale systems using the alarms. For example, alarms
can be created based on instance CPU usage to perform trigger actions based on
the threshold match. The actions triggered might vary by spinning up new virtual
machines (upscale) or terminating old virtual machines (downscale), as shown in the
next figure:

Extending HOT for alarming
Our first template, web_lb.yaml, exemplified in Chapter 8, Extending OpenStack –
Advanced Networking Features and Deploying Multi-tier Applications, provides a sample
web server cluster with a load balancer but does not provide an autoscaling feature,
as we did not define any alarm policy. To meet autoscaling requirements, we will
need to add two new types of resource:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[289]

•	 OS::Ceilometer::Alarm: This triggers an alarm based on the threshold
value defined in the metric parameter

•	 OS::Heat::ScalingPolicy: This manages scaling defined in the
OS::Heat::AutoScalingGroup resource

The new file structure of our stack is as the following:

----stackers
 |--------- web_lb.yaml
 |--------- Lib
 |---------- env.yaml
 |---------- lb_server.yaml

You can notice that we have added a new lb_server.yaml file. This is a template
definition for a load balancer server. The file is imported from the GitHub repository
and serves as the library file for our stack. It can be found at https://github.com/
openstack/heat-templates/blob/master/hot/lb_server.yaml. The Lib/env.
yaml file will contain the following resource section:

resource_registry:
 lamp_stack::lb_server: lb_server.yaml

Note that the lamp_stack field defines a customized namespace which will be referred
in the core of the new template. Additionally, we will try to install a LAMP stack
running wordpress. Before adding in our main template the scale policies and
alarming for Ceilometer, we will need first to adjust our resources by adding a new
server to run the wordpress database as the following:

parameters:
 database_name:
 type: string
 description: Name of the wordpress DB
 default: wordpress
 database_user:
 type: string
 description: Name of the wordpress user
 default: wordpress

www.it-ebooks.info

https://github.com/openstack/heat-templates/blob/master/hot/lb_server.yaml. The Lib/env.yaml
https://github.com/openstack/heat-templates/blob/master/hot/lb_server.yaml. The Lib/env.yaml
https://github.com/openstack/heat-templates/blob/master/hot/lb_server.yaml. The Lib/env.yaml
http://www.it-ebooks.info/

Monitoring OpenStack – Ceilometer and Zabbix

[290]

Then we need to create new resource for the database. The next snippet will install
a new mariadb database instance. Keep in mind that you will need to specify the
username and the password on heat command line. Optionally, it is possible to
mention them in the template:

resources:
 database_password:
 type: OS::Heat::RandomString
 database_root_password:
 type: OS::Heat::RandomString
 db:
 type: OS::Nova::Server
 properties:
 flavor: {get_param: flavor}
 image: {get_param: image}
 key_name: {get_param: key}
 networks: [{network: {get_param: network} }]
 user_data_format: RAW
 user_data:
 str_replace:
 template: |
 #!/bin/bash -v
 yum -y install mariadb mariadb-server
 systemctl enable mariadb.service
 systemctl start mariadb.service
 mysqladmin -u root password $db_rootpassword
 cat << EOF | mysql -u root --password=$db_rootpassword
 CREATE DATABASE $db_name;
 GRANT ALL PRIVILEGES ON $db_name.* TO "$db_user"@"%"
 IDENTIFIED BY "$db_password";
 FLUSH PRIVILEGES;
 EXIT
 EOF
 params:
 $db_rootpassword: {get_attr: [database_root_password,
 value]}
 $db_name: {get_param: database_name}
 $db_user: {get_param: database_user}
 $db_password: {get_attr: [database_password, value]}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[291]

The last important check of the new resource template will require to replace the
resources section named web_cluster by lamp_scale resource specified in the
env.yaml file as follows:

lamp_scale:
 type: OS::Heat::AutoScalingGroup
 properties:
 min_size: 3
 max_size: 3
 resource:
 type: Lib::lamp_scale::lb_server.yaml
 properties:
 flavor: {get_param: flavor}
 image: {get_param: image}
 key_name: {get_param: key}
 network: {get_param: network}
 pool_id: {get_resource: pool}
 metadata: {"metering.stack": {get_param: "OS::stack_id"}}
 user_data:
 str_replace:
 template: |
 #!/bin/bash -v
 yum -y install httpd wordpress
 systemctl enable httpd.service
 systemctl start httpd.service
 setsebool -P httpd_can_network_connect_db=1

 sed -i "/Deny from All/d" /etc/httpd/conf.d/
 wordpress.conf
 sed -i "s/Require local/Require all granted/"
 /etc/httpd/conf.d/wordpress.conf
 sed -i s/database_name_here/$db_name/
 /etc/wordpress/wp-config.php
 sed -i s/username_here/$db_user/
 /etc/wordpress/wp-config.php
 sed -i s/password_here/$db_password/
 /etc/wordpress/wp-config.php
 sed -i s/localhost/$db_host/
 /etc/wordpress/wp-config.php

 systemctl restart httpd.service
 params:
 $db_name: {get_param: database_name}
 $db_user: {get_param: database_user}
 $db_password: {get_attr: [database_password, value]}
 $db_host: {get_attr: [db, first_address]}

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring OpenStack – Ceilometer and Zabbix

[292]

You may notice the line on bold type Lib::lamp_scale::lb_server.yaml which
will create a load balancer instance based on the nested template in Lib directory.

Now, it is time to monitor our LAMP stack by updating our Heat Orchestration
Template (HOT) web_lb.yaml. This can be done by adding the following section
at the end of the resources section:

. . .
web_server_scaleup_policy:
 type: OS::Heat::ScalingPolicy
 properties:
 adjustment_type: change_in_capacity
 auto_scaling_group_id: {get_resource: lamp_scale }
 cooldown: 60
 scaling_adjustment: 1

 web_server_scaledown_policy:
 type: OS::Heat::ScalingPolicy
 properties:
 adjustment_type: change_in_capacity
 auto_scaling_group_id: {get_resource: lamp_scale }
 cooldown: 60
 scaling_adjustment: -1
. . .

Eventually, we define two scaling policies to spin up and destroy a web server node
referred to the web_server_scaleup_policy and web_server_scaledown_policy
policies, respectively. Most importantly, you must realize the auto_scaling_group_
id property, which has to point to the AutoScalingGroup resource instance,
lamp_scale. Thus, the heat engine might be aware which pool resource is to
be scaled from after getting notified by Ceilometer.

Let's arm our Ceilometer alarm by adding the next section to our HOT:

….
cpu_alarm_high:
 type: OS::Ceilometer::Alarm
 properties:
 description: Scale-up if the average CPU > 75% for 30 seconds
 meter_name: cpu_util
 statistic: avg
 period: 30
 evaluation_periods: 1
 threshold: 75

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[293]

 alarm_actions:
 - {get_attr: [web_server_scaleup_policy, alarm_url]}
 matching_metadata: {'metadata.user_metadata.stack':
 {get_param: "OS::stack_id"}}
 comparison_operator: gt

 cpu_alarm_low:
 type: OS::Ceilometer::Alarm
 properties:
 description: Scale-down if the average CPU < 5% for 5 minutes
 meter_name: cpu_util
 statistic: avg
 period: 300
 evaluation_periods: 1
 threshold: 5
 alarm_actions:
 - {get_attr: [web_server_scaledown_policy, alarm_url]}
 matching_metadata: {'metadata.user_metadata.stack':
 {get_param: "OS::stack_id"}}
 comparison_operator: lt
....

The previous sections declare two alarms: cpu_usage_high and cpu_usage_low.
Analyzing them brings the following properties derived from the Ceilometer alarm
resource under the microscope:

•	 Description: This is a simple description of the action that should be taken.
•	 meter_name: This is a predefined metric watched by the alarm in Ceilometer.
•	 statistic: This is the evaluated statistical value of the metric: average, max,

min, count, and sum.
•	 period: This is the watching period of the evaluated metric in seconds.
•	 evaluation_periods: This defines how many periods keep watching

the metric.
•	 threshold: This defines the value to trigger the alarm against.
•	 alarm_actions: This is the action taken after changing the state to alarm.

The trigger uses an alarm URL to launch the action Webhooks.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring OpenStack – Ceilometer and Zabbix

[294]

•	 matching_metadata: Every meter corresponds to a predefined resource
metadata within the key=value form . To run the action, the resource
metadata should match, such as verifying the right stack ID.

•	 comparaison_operator: This is the comparison operator to compare the
value of the threshold and statistic values in question. Different operators
can be used as follows:

°° ge: > =
°° gt: >
°° eq: =
°° ne: <>
°° lt: <
°° le: <=

Finally, we will need to keep an eye on our load balancer health monitors
as well. This might be crucial if you intend to ensure the availability of
an application running in your stack. Simply put, we will add a new
OS::Neutron::HealthMonitor resource type named monitor to the
following code:

...
monitor:
 type: OS::Neutron::HealthMonitor
 properties:
 type: TCP
 delay: 5
 max_retries: 5
 timeout: 5
...

You can clearly see that we have told heat to deploy health check monitoring using
Neutron based on TCP. A timeout of 5 seconds has been defined before changing the
connection to the next member in the pool. Five permissible connection failures are
defined in max_retries before transiting the member status to INACTIVE. Finally, a
delay value of 5 seconds determines the minimum time of the regular connection of
a member in the pool.

Let's update our stack by using the following command:

heat stack-update lb_stacker -f web_lb.yaml -e Lib/env.yaml

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[295]

Note that this time we have mentioned in the command line the environment file to
pinpoint to the nested template of lb_server using –e argument.

From the Stack section in Horizon, an amazing connection diagram is created,
which visualizes all the dependency of all the resources defined in the heat
template, as shown in the next illustration:

The previous graph shows the state of each resource deployed in the LAMP stack.

On the other hand, we should check the new alarms created by issuing the following
command in our cloud controller node:

ceilometer alarm-list

This command yields the following output:

Accidently, Ceilometer reports the alarm state as insufficient data in the State
column from the previous output. Eventually, /etc/ceilometer/ceilometer.conf
points a default value or the evaluation_interval value to 60 seconds. The
latter value must be greater or equal to the source interval defined in the
/etc/ceilometer/pipeline.yaml configuration file in each compute node.
It is the responsibility of the alarm evaluator to find recent data that might
need an evaluation period superior to the one defined in the pipeline set in
the compute node.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring OpenStack – Ceilometer and Zabbix

[296]

Ceilometer offers a number of commands that can be used to create and manage
alarms, metric thresholds, events, resources, and statistics.

A complete description of the telemetry client command line can be found
at http://docs.openstack.org/cli-reference/content/
ceilometerclient_commands.html.

By keeping the default value of the evaluation_interval in /etc/ceilometer/
ceilometer.conf, it might be needed to wait some time to change the alarm state
from insufficient data state to OK or alarm state. The new stack is composed of 3
servers including web server and database. To test the autoscaling feature within
Ceilometer, we can create a CPU spike of the first web server instance by running the
following command line:

[fedora@lb-xj3f-5f6nxkmt64pv-ngbjv7v2fpm3-server-5355mfznt57l ~]$ dd if=/
dev/zero of=/dev/null &

dd is a perfect tool to benchmark which can be invoked to test the
write speed of disk. Additionally, it is a good alternative to stress
the CPU on any GNU/Linux system without the need to install any
additional software. From CPU perspective, results might not be
very accurate, a very specific tool named 'stress' can be installed in
any Linux distributions. A simple example can be stressing 4 cores
for 2 minutes described in the following command line:
stress --cpu 4 --timeout 120

We can check again the alarm status by issuing the previous command line:

ceilometer alarm-list

This command yields the following output:

Here we go! It looks like our telemetry service started already to shout and triggers
an alarm. You should notice that the scaleup policy is fired up by launching a new
server in the stack.

www.it-ebooks.info

http://docs.openstack.org/cli-reference/content/ceilometerclient_commands.html
http://docs.openstack.org/cli-reference/content/ceilometerclient_commands.html
http://www.it-ebooks.info/

Chapter 9

[297]

Let's grab a statistical overview of our CPU usage defined in our cpu_util HOT:

ceilometer statistics –m cpu_util

This command yields the following output:

Note that you should access to the web server instance firstly to run the
dd command line. List any available floating ip and associate it to the
instance. You can use simply neutron floatingip-associate or nova add-
floating-ip command line.

Arming OpenStack monitoring
There are several ways to keep an eye on and watch what is going on in your
OpenStack private cloud. We have already hacked Ceilometer as an official
monitoring service well integrated into OpenStack. It might be a very fruitful
solution to facilitate customer billing as well. You have noticed already how
Ceilometer can even watch customer instances that we have deployed in a sample
example via HOT. Although the former telemetry module is expanding its metrics to
cover the image, block and object storage, and network service, it might be necessary
to bring in your more mature infrastructure monitoring tools for additional alerting.
Zabbix is one of the greatest tools that keeps an eye on our OpenStack environment.

Zabbix in action
You have most probably used and installed one or many monitoring tools in your
infrastructure. Nagios, Munin, and StatsD are also good candidates to fulfill the
monitoring position in our system. Feel free to bring any of the monitoring tools that
you might feel more familiar with. In the next section, we will use the Zabbix server.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring OpenStack – Ceilometer and Zabbix

[298]

Placing Zabbix
We will be configuring Zabbix on a separate server that has access to all OpenStack
servers. In addition, we will need Internet access to download the required package
for the Zabbix server installation.

Our new monitoring server will eventually join:

•	 Administrative networks
•	 External networks

If you intend to get e-mail notifications using Zabbix, you may need
to ensure external network access to the Zabbix server in order to
contact the SMTP server if you are running an external one.

Installing the Zabbix server
The next steps assume the installation of a Zabbix server in a dedicated server
running in the OpenStack environment. We must install it as follows:

1.	 Configure and enable the CentOS repository to update the operating system
and download the Zabbix server package dependency. CentOS version is
6.5, whereas the Zabbix server version is 2.2, which can be installed by using
the repository configuration management as follows (http://repo.zabbix.
com/zabbix/2.2/rhel/6/x86_64/zabbix-release-2.2-1.el6.noarch.
rpm):
rpm -ivh

2.	 Install Zabbix packages: Zabbix server, MySQL database, and web frontend:
yum install zabbix-server-mysql zabbix-web-mysql

3.	 Create the Zabbix database:
mysql -uroot

mysql> create database zabbix character set utf8 collate utf8_bin;

mysql> grant all privileges on zabbix.* to zabbix@localhost
identified by 'zabbix';

mysql> exit

www.it-ebooks.info

http://repo.zabbix.com/zabbix/2.2/rhel/6/x86_64/zabbix-release-2.2-1.el6.noarch.rpm
http://repo.zabbix.com/zabbix/2.2/rhel/6/x86_64/zabbix-release-2.2-1.el6.noarch.rpm
http://repo.zabbix.com/zabbix/2.2/rhel/6/x86_64/zabbix-release-2.2-1.el6.noarch.rpm
http://www.it-ebooks.info/

Chapter 9

[299]

4.	 Configure database settings in /etc/zabbix/zabbix_server.conf:
nano /etc/zabbix/zabbix_server.conf

DBHost=localhost

DBName=zabbix

DBUser=zabbix

DBPassword=Zabbix

5.	 Disable SELinux on your CentOS box:
setenforce 0

nano /etc/sysconfig/selinux

SELINUX=disabled

6.	 Start the Zabbix server:
service zabbix-server start

7.	 Configure PHP for the Zabbix frontend:
nano /etc/httpd/conf.d/zabbix.conf

php_value max_execution_time 300

php_value memory_limit 512M

php_value post_max_size 16M

php_value upload_max_filesize 2M

php_value max_input_time 250

php_value date.timezone Europe/Amsterdam

8.	 Finally, restart the Apache server:

service httpd restart

If everything went well without any errors, you will be able to access the Zabbix
frontend from your favorite browser by following http://zabbix_host_ip_
address/zabbix. By default, the username and password are Admin and
zabbix, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring OpenStack – Ceilometer and Zabbix

[300]

Configuring the Zabbix agent on OpenStack nodes
Now that you have a Zabbix installation that is properly completed, you will want to
actually start monitoring your OpenStack nodes. We will go straightforward without
delving into the details of the Zabbix architecture and data flow, which is out of
the scope of this book. However, if you are not familiar with Zabbix's monitoring
concepts, you should understand what exactly you need to configure for a proper
monitoring process. Zabbix handles metrics such as Ceilometer and they are defined
as items. They are highly customized with a multitude of features. To collect and
process data items to the Zabbix server, we will need a particular probe to grab these
items. Zabbix, in fact, defines several ways to do this, but we will only concentrate on
two of them:

•	 Passive agent: The server periodically asks the agent to get the desired
measurement and report it back

•	 Active agent: The agent asks the server about the kind of monitoring data it
should send them back

Now, you can see the difference between both modes; more flexibility of the
monitoring period within the active agents. From a configuration standpoint, we will
proceed by installing the Zabbix agent in each OpenStack node, starting with the first
cloud controller node, as follows:

1.	 Depending on your CentOS version, install the Zabbix agent by using the
repository configuration management:
rpm -Uvh (http://repo.zabbix.com/zabbix/2.2/rhel/6/x86_64/
zabbix-release-2.2-1.el6.noarch.rpm)

yum install zabbix zabbix-agent

2.	 Update the Zabbix agent configuration file to be able to connect to the Zabbix
server for the active mode in /etc/zabbix/zabbix_agentd.conf:
...
Server = 47.147.0.225
Hostname = cc01.packtpub

3.	 Allow port access for the Zabbix agent:
iptables -D INPUT -p tcp -m tcp --dport 10050 -j ACCEPT

4.	 Restart the Zabbix agent:

/etc/init.d/zabbix-agent restart

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[301]

Watching OpenStack
Now, we have a basic monitoring setup in our OpenStack infrastructure. Therefore,
we should proceed by collecting some monitored data. But first, we need to define
items. Most probably, we intend to measure several metrics in our production
machines. One of the most powerful features in Zabbix is the usage of templates.
We are deploying a large environment with thousands of objects, including items,
hosts, graphs, and triggers. It might even become impossible to manually check
and configure each of them. Furthermore, it would be cumbersome to loop over
your OpenStack nodes and add the same items in a repetitive fashion. The template
facility in Zabbix can solve this complexity. What we need to do is just define a
collection of items and triggers and apply them to all hosts from one template.
Let's start with the basic monitoring of our OpenStack Linux boxes. The Zabbix
website offers amazing templates, which can be found at http://www.zabbix.org/
wiki/Zabbix_Templates. Let's pick up one and see how to start a flexible
monitoring experience within Zabbix in OpenStack.

Since we are running Linux boxes within the CentOS operating system, we can
eventually make it easier by just grabbing, as a starting example, a Zabbix template
for the Linux operating system monitoring from https://www.zabbix.org/mw/
images/4/49/Template_OS_Linux-2.2.0.xml.

Going through the template we have just added, you may notice a predefined list
of triggers. Without any doubt, Zabbix also takes care of checking the conditions
and alarms of your OpenStack infrastructure. Ceilometer is able to do this within
instances. The exclusiveness within triggers in Zabbix comes from their high
flexibility. You can upload the template using the Zabbix frontend by pointing to the
configuration template and create template. Then, you can choose to import it from
your own local drive. Once successfully uploaded, you should see it in the template
list and you can associate to it a certain number of hosts or a group. To validate your
upload, you can check the collection of items, triggers, and graphs in the template
section, as illustrated in the next screenshot:

www.it-ebooks.info

http://www.zabbix.org/wiki/Zabbix_Templates
http://www.zabbix.org/wiki/Zabbix_Templates
https://www.zabbix.org/mw/images/4/49/Template_OS_Linux-2.2.0.xml
https://www.zabbix.org/mw/images/4/49/Template_OS_Linux-2.2.0.xml
http://www.it-ebooks.info/

Monitoring OpenStack – Ceilometer and Zabbix

[302]

Let's define our monitored host, cc01.packtpub, in the Zabbix frontend. Navigate to
Configuration | Hosts and click on the create host button. We will need to fill in the
following fields, as shown in the next screenshot:

Next, we can create a trigger and stress our CPU to start overheating. For example,
a few simple command lines can do the job, as follows:

dd if=/dev/zero of=/dev/null &

dd if=/dev/zero of=/dev/null &

dd if=/dev/zero of=/dev/null &

Eventually, the Linux OS template defines a trigger that fires up once the host CPU
activity reaches 3.5 after a period of 5 minutes. In the following section, we can
observe that the trigger starts shouting:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[303]

Summary
In this chapter, we barely scratched the surface of what is possible once you begin
to configure the telemetry module in your existing OpenStack environment. You
should also notice the awesomeness of heat by supporting Ceilometer resources
and note that they work in tandem to manage instance scalability in a given stack.
You should also keep in mind that Ceilometer is under heavy development and is
extended to cover more metrics and monitoring facilities for image, block storage,
object storage, and compute and network services. Although we did not cover them
at all once, you should learn how metrics are implemented and measured. More
advanced monitoring features are now available via Ceilometer resources, which
might dictate an integration of an external monitoring tool, such as the Zabbix
server. Relying on alarms in Ceilometer and Zabbix triggers, for example, might help
you have a better understanding of your OpenStack environment and give you more
control over what alerts or alarms you should receive.

An OpenStack service might be down, the cluster node could suddenly be stopped,
or the API might be not reachable; you already have alerts generated and you can
directly see what happened but still know how it happened and how to get to
the root cause of the errors. Answers to these questions can be found in the next
chapter, in which you will explore the utility of log files in OpenStack and the
wealth of information that we might get from them for a fast and straightforward
troubleshooting task.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[305]

Keeping Track for
Logs – Centralizing Logs

with Logstash
"Somewhere, something incredible is waiting to be known."

–Carl Sagan

You may have realized the importance of a complete suite of monitoring solutions
for your private OpenStack Cloud environment. Chapter 9, Monitoring OpenStack
– Ceilometer and Zabbix, demonstrated a mixed approach by adopting an inbox
telemetry solution named Ceilometer, which works in tandem with an external
monitoring solution such as Zabbix for a more advanced monitoring strategy in order
to store detailed information of what is happening in the Cloud. On the other hand,
we have mainly focused on the first part of the equation, namely the exposing of
alerts and warnings. The second part of the equation involves reacting to the issues.
Troubleshooting a complex suite of software such as OpenStack might not be an easy
task for system administrators. The issues can be resolved by relying on the logs that
help you track down the root cause of errors. Furthermore, if you attempt to upgrade
the OpenStack packages, it can result in pressing fire on the new bugs that are not
fixed yet. Diving into the logs is a great way of encountering them. While logging is
a standard practice for the system administrators to trace system errors, identifying
the exact issue quickly and efficiently is highly required to minimize the downtime.
Although the existence of many free and commercial logging tools is able to serve
the complex IT infrastructure logging strategy, it is vital to learn how to deal with
logs of information in OpenStack and bring them into a highly customized logging
system solution.

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track for Logs – Centralizing Logs with Logstash

[306]

This chapter draws back the curtain on logging in OpenStack and discusses the
following topics:

•	 Where the OpenStack logs reside
•	 Adjusting the logging options with the OpenStack service
•	 Centralizing the tones of the OpenStack log files in a logging system named

Logstash
•	 Integrating the Logstash server in the OpenStack private cloud
•	 Using Logstash to serve logs of the OpenStack services

Tackling logging
Tackling logging is a painful but crucial process. This is what many system
administrators and developers claim when they start debugging an error by
consulting a huge log file. Depending on the system that you are trying to fix, cutting
down on the troubleshooting time is valid if you do not know where the OpenStack
logs are stored and how they are organized.

Demystifying logs in OpenStack
Most probably, you have installed a version of OpenStack that was released prior
to the Grizzly or Havana releases. You might be tempted to start looking for logs
in the default location in the Linux system, /var/log. Eventually, their locations
may vary depending on how you deployed OpenStack. Since you deployed your
first OpenStack infrastructure using Chef, you can check or modify the location of
the logs by service in each attribute file that corresponds to its respective OpenStack
service. For example, you can have a look at the Chef openstack-compute cookbook
that was used in Chapter 2, Deploying OpenStack DevOps and OpenStack Dual Deal. In
the attributes directory, the default.rb filename describes all the default settings
of your nova service installation, including the directory location of the nova log
files. For example, the next line from the recipe code dictates the default location of
the nova log files that are to be created in /var/log/nova:

default['openstack']['compute']['log_dir'] = '/var/log/nova'

If you have tried to install OpenStack using DevStack
from https://git.openstack.org/openstack-
dev/devstack, you will need to activate the logging
option in the localrc file once it is installed.

www.it-ebooks.info

https://git.openstack.org/openstack-dev/devstack
https://git.openstack.org/openstack-dev/devstack
http://www.it-ebooks.info/

Chapter 10

[307]

The log's location
Most of the standard services in the Linux/Unix systems write their logs under the
/var/log directory in the subdirectories. A node that runs any OpenStack service
stores its log files under the /var/log/ directory. The following table depicts, in a
nutshell, where the logs reside by default:

Service name Log location
Compute /var/log/nova

Image /var/log/glance

Identity /var/log/keystone

Dashboard /var/log/apache2/

/var/log/httpd/

Block storage /var/log/cinder/

Object storage /var/log/swift/

/var/log/syslog/

Console /var/lib/nova/instances/instance-ID/

Network /var/log/neutron/

Metering /var/log/ceilometer/

Orchestration /var/log/heat/

Note that Horizon merges its log files depending on the Apache
convention names.

If you are using Fedora's distribution, log files will reside under /var/log/httpd.
An operating system based on the Ubuntu or Debian distribution supports the
apache2 naming. By default, you will find the log files under /var/log/apache2.
In addition, the compute nodes generally merge the log files for the VM boot up
messages that reside in the console.log file. Every instance within its ID will
generate the same file in a different subdirectory: /var/lib/nova/instances/
instance-ID.

Ceph is not a native OpenStack service. Since it operates and is
well-integrated in the OpenStack private Cloud setup, you can find
all the Ceph log files regardless of how OSD and the monitors have
been distributed in the numerous nodes under /var/log/ceph.

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track for Logs – Centralizing Logs with Logstash

[308]

Adjusting logs in OpenStack
It is possible to adjust the logging level in OpenStack for each running service. If you
get an alert or a message from your monitoring system telling you that one of the
services has encountered a problem, you can always refer to your logs by using a
different logging method. For example, if you would like to troubleshoot a compute
service, it is best practice to refer to its configuration file, /etc/nova/nova.conf,
and increase the debug level by changing its default value from False to True,
as follows:

debug=True

Once you finish fixing the issue, it will be necessary to disable the debug directive
by changing True to False. Doing so will protect your node from being overloaded
with a huge amount of debug messages, which might not be necessary when your
nodes are running without any issues.

Two eyes are better than one eye
OpenStack produces tons of log files in a real production environment. It becomes
harder for a Cloud operating team to analyze and parse them by extracting data
in each file using a few combinations of tail, grep, and perl tools. The more hosts
you build, the more logs you have to manage. Moving forward a few paces should
be accompanied by a serious trace keeper. To overcome such challenges, the log
environment must become centralized. A good way to accomplish this is by starting
flowing logs in a dedicated rsyslog server. You may put so much data that your log
server may start craving for a larger storage capacity. Furthermore, archiving the
former data will not be handy when you need to extract information for a particular
context. Additionally, correlating the logs' data that has a different format (taking
into consideration the RabbitMQ and MySQL logs) with the generated event might
even be impossible. So, what we need at this point is a set of quality requirement
points for a good OpenStack logging experience. These points are as follows:

•	 A better way to parse logs
•	 A more meaningful log searching process
•	 Indexing the processed log data
•	 An elegant exposure of logs

Emerging as the spearhead of the free logging open source project called Logstash,
let's take a moment and see how it is useful to log a task for the OpenStack
production environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[309]

Logstash under the hood
The Logstash server receives any types of logs. The server processes and filters
them based on some predefined filters. A source of input is supported by Logstash,
such as TCP, UDP, files, Syslog, and so on. What you need to do is just push the
logs to the Logstash server. This process is also known as shipping. Once collected,
Logstash helps you query any stored event and sort logs the way you wish. A basic
understanding of the Logstash architecture will be very helpful for a successful
OpenStack logging mission. Logstash eventually does not work alone. The
following illustration depicts the major components of the logging platform:

In the preceding figure, the various components involved are as follows:

•	 The Logstash shipper: This transfers the logs and events to Logstash

A Logstash shipper can be any host that runs a Logstash agent
or forwarder, which sends the log files to the Logstash server.

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track for Logs – Centralizing Logs with Logstash

[310]

•	 The Broker: This keeps receiving the events' logs from the Logstash shippers

Generally, Logstash uses Redis to act as a broker to hold the
data received by an agent running in the Logstash shipper.

•	 The Logstash Indexer: This indexes the events within the Logstash server
•	 Elasticsearch: This is a powerful search and analytics engine for text data
•	 Kibana: This is a graphical user interface that is used to visualize and search

log data

The previous figure depicts a simplistic overview of the Logstash architecture, which
is sometimes called the ELK stack, as an abbreviation of Elasticsearch, Logstash,
Kibana; the log event that was started by sending the collected logs by the Logstash
agent to the central logging server. At this stage, where the Logstash server is
running, the broker (Redis) buffers the formerly collected logs, which will be indexed
next by the Logstash indexer. Now, it comes the role of the Elasticsearch engine to
store the former log events and provide a full-text index so that the logs become
searchable. The final stage of the log event ends up executing the log queries at the
Logstash dashboard or Kibana.

It is possible to run each component independently for
scalability reasons.

The Logstash workflow
Getting up to speed for Logstash involves getting to grips with the basic
configuration parameterization. Basically, we will come across three main sections in
any given Logstash configuration file. These sections are as follows:

•	 The input: This defines how the events are generated and get into Logstash
•	 The filters: This defines the way the events are manipulated and customized
•	 The output: This defines how the events can be sent from Logstash to the

external system

The following code serves as an example of a Logstash configuration file:

input {
 stdin { }
 ...
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[311]

filter {
 ...
}
output {
 stdout {

}

The input and output blocks define an event respectively from the STDIN and to the
STDOUT standards streams in the I/O of the terminal. In Logstash, the events that
enter via the input that was modified in the filter and end up via the output form
a pipeline.

Placing the Logstash server
Now, we will configure the Logstash server on a separate server that has access to all
the OpenStack servers.

Our new monitoring server will join eventually:

•	 The administrative network
•	 The external network

Let's discover the different players that need to be installed in our logging server in
order to ensure a successful installation:

•	 Redis: This will be installed as a broker for Logstash. It ameliorates the
logging environment by acting as a cache buffer for the log events.

•	 Java: Both Elasticsearch and Logstash require Java. The latest Java version
is recommended, while using OpenJDK is also an alternative to the Java
installation.

•	 Elasticsearch: This is a powerful indexing and search engine for events that
are shipped to the Logstash.

•	 Logstash: This defines the central log server that processes the incoming logs.
•	 Kibana: This is a powerful web interface that is used to query the log events.

It is highly customizable with several visualization capabilities.
•	 Nginx: The Kibana web interface will need a reverse proxy that can be

accessed externally. For this purpose, we will use nginx.

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track for Logs – Centralizing Logs with Logstash

[312]

Installing the Logstash server
The next installation snippet will guide you through the package-based installation
of the following Logstash components on a CentOS operation system:

•	 Logstash 1.4.2
•	 Elasticsearch 1.4.0
•	 Kibana 4.0
•	 Java 8
•	 Nginx
•	 Redis

We intend to gather a substantial volume of log files for the OpenStack environment.
It is essential to plan for the consumption of resources that is expected in the future
as your private Cloud keeps growing gradually. Thus, a minimum set of specs will
be required for the Logstash server. The requirements are as follows:

•	 Processor: 64-bit x86
•	 Memory: 8 GB RAM
•	 Disk space: 500 GB
•	 Network: Two 1 Gbps Network Interface Cards (NICs)

Running CentOS with the default configuration might prevent
the new services from running due to the SELinux and iptables
restrictions. Be sure that SELinux is running at least in the
permissive mode or is disabled and update the iptables so that
the packets can be forwarded to the Logstash server.

Let's get started with the setting up of the central log management server:

1.	 Download and install Java 8 from the Oracle website (http://download.
oracle.com/otn-pub/java/jdk/8u40-b25/jre-8u40-linux-x64.tar.gz),
as follows:
wget --no-cookies --no-check-certificate --header "Cookie:
gpw_e24=http%3A%2F%2Fwww.oracle.com%2F; oraclelicense=accept-
securebackup-cookie"

tar xvf jre-8*.tar.gz

www.it-ebooks.info

http://download.oracle.com/otn-pub/java/jdk/8u40-b25/jre-8u40-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u40-b25/jre-8u40-linux-x64.tar.gz
http://www.it-ebooks.info/

Chapter 10

[313]

2.	 Add a symbolic link in the /usr/bin directory to the java command,
as follows:
alternatives --install /usr/bin/java java /jre1.8*/bin/java 1

3.	 Install Elasticsearch, which first requires setting up the repository file,
/etc/yum.repos.d/elasticsearch.repo, as follows:
nano /etc/yum.repos.d/elasticsearch.repo

[elasticsearch]

name=Elasticsearch

baseurl=http://packages.elasticsearch.org/elasticsearch/1.4/centos

gpgcheck=1

gpgkey=http://packages.elasticsearch.org/GPG-KEY-elasticsearch

enabled=1

4.	 Then, install Elasticsearch by using the yum command line, as follows:
yum install elasticsearch –y

5.	 Download and install Kibana version 4 (https://download.
elasticsearch.org/kibana/kibana/kibana-4.0.1-linux-x64.tar.gz),
as follows:
wget https://download.elasticsearch.org/kibana/kibana/kibana-
4.0.1-linux-x64.tar.gz

tar xvf kibana-4.0.1-linux-x64.tar.gz

Relocate the kibana-4.0.1 directory under /usr/share/kibana.
mv kibana-4.0.1 /usr/share/kibana

6.	 Reconfigure Kibana to pinpoint the location of Elasticsearch. For this, you
can use the FQDN of your Logstash server, as follows:
nano /usr/share/kibana/config.js

...

elasticsearch: "http://logstash.packtpub:9200"

...

Add the FQDN to the /etc/hosts file, hostname, and its
external IP for name service resolution.

7.	 Next, make sure that your system is up to date. Then, we can install nginx
and Redis using the yum command line, as follows:
yum clean all

yum update –y

yum install nginx redis –y

www.it-ebooks.info

https://download.elasticsearch.org/kibana/kibana/kibana-4.0.1-linux-x64.tar.gz
https://download.elasticsearch.org/kibana/kibana/kibana-4.0.1-linux-x64.tar.gz
http://www.it-ebooks.info/

Keeping Track for Logs – Centralizing Logs with Logstash

[314]

8.	 Now, we need to configure nginx to run Kibana. First, be sure that the
following excerpt in /etc/nginx/nginx.conf is commented out:
...
include /etc/nginx/conf.d/*.conf;
...

9.	 Create a new nginx server block for Kibana in a new file, as follows:
nano /etc/nginx/conf.d/kibana.conf

server {

 listen *:80 ;

 server_name logstash.packtpub;

 access_log /var/log/nginx/kibana.log;

 location / {

 root /usr/share/kibana;

 index index.html index.htm;

proxy_pass http://localhost:5601/;

proxy_next_upstream error timeout invalid_header http_500 http_502
http_503 http_504;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_
forwarded_for;

 }

}

10.	 Update the /etc/redis/redis.conf file to point to the appropriate IP
address of the Logstash server so that it can listen on an external interface to
receive events, as follows:
nano /etc/redis.conf

...

bind 127.0.0.1

 bind 47.147.50.240

…

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[315]

11.	 Let's install Logstash by creating a new yum repository file, as follows:
nano /etc/yum.repos.d/logstash.repo

[logstash]

name=Logstash

baseurl=http://packages.elasticsearch.org/logstash/1.4/centos

gpgcheck=1

gpgkey=http://packages.elasticsearch.org/GPG-KEY-elasticsearch

enabled=1

12.	 Install Logstash using the yum command line, as follows:
yum install logstash -y

13.	 Start the ELK stack services and configure them to run on boot:

service elasticsearch start

service nginx start

service redis start

service logstash start

cd /usr/share/kibana/bin; . /kibana

Note that at the time of writing this book, Kibana 4 is the
newest version of Kibana.

Kibana 4 includes a lot of changes and improvements as compared to the previous
version, Kibana 3. As a site plugin, you can easily run Kibana by navigating to its /
bin directory and running the kibana shell script, as shown in the last command
line. Optionally, you can create a start up init script under /etc/init.d/ for Kibana.

You can use the following init script at GitHub
https://github.com/Xaway/script/blob/
master/init_kibana.

Be sure to change the Kibana directory line to point to the right path in your
directory tree, as follows:

chkconfig –level 2345 elasticsearch on

chkconfig –level 2345 redis on

chkconfig –level 2345 nginx on

chkconfig –level 2345 logstash on

www.it-ebooks.info

https://github.com/Xaway/script/blob/master/init_kibana
https://github.com/Xaway/script/blob/master/init_kibana
http://www.it-ebooks.info/

Keeping Track for Logs – Centralizing Logs with Logstash

[316]

By default, the Kibana web interface uses the 5601 port. We can access the graphical
user interface via FQDN or the IP of the Logstash server following the URL
http://logstash.packtpub/:

Configuring Logstash
At this point, the ELK stack is up and running. We need to tell the Logstash
server how to handle the upcoming events. To do so, we need to create a Logstash
configuration file under /etc/logstash. Let's call it openstash.conf. We will edit
and explain the file block by block for better understanding, as follows:

nano /etc/logstash/openstash.conf

input {

 redis {

 host => "47.147.50.240"

 type => "redis-input"

 data_type => "list"

 key => "logstash"

 }

}

output {

 elasticsearch { host => "logstash.packtpub" }

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[317]

The input block defines the Redis plugin to listen to events on the 47.147.50.240
host interface. The broker will listen for the incoming Logstash events and pass
them to the logstash list. Therefore, the received events will be labeled with the
redis-input type. The output block defines another plugin named elasticsearch,
which sends the events from Logstash to Elasticsearch, which will be saved and
transformed for searching. We have specified the host option to announce the name
of the Elasticsearch node to the Logstash server.

Logstash at your beck and call
The Logstash server is up and running and is now waiting to receive events. We
need somebody to send the events. Shipping logs to the central monitoring server
can be done in the following different ways:

•	 You can use the Logstash agent that is installed in each host to generate logs
and ship them to the Logstash server.

•	 You can also use syslog by activating the syslog plugin in the Logstash
configuration file.

Rsyslog, syslog-ng, and syslogd are the three typical syslog
daemons that are supported in many Linux distributions and
which are used to send log messages to the Logstash server.

•	 The Logstash forwarder (Lumberjack), a very lightweight client, can be used
to send messages to Logstash. In addition, it includes better security features
that are based on SSL encryption, unlike the previous message transports.

We will go for the third option. Every node in the OpenStack environment needs
a Logstash forwarder installed and configured to connect to the Logstash server.
Let's make it happen and install it on the OpenStack Cloud controller node with the
47.147.50.1 IP address. The generated log traffic will be secure. Thus, the first step
in configuring the forwarder is to generate a self-signed certificate and a key pair,
as follows:

1.	 Add the Logstash server's IP address to the SAN (subjectAltName) directive
of the SSL certificate, as follows:
nano /etc/pki/tls/openssl.cnf

…

[v3_ca]

subjectAltName = IP : 47.147.50.240

...

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track for Logs – Centralizing Logs with Logstash

[318]

2.	 Generate the SSL certificate and private key. Feel free to create a new
directory to store your files, as follows:
mkdir certs

openssl req -config /etc/pki/tls/openssl.cnf -x509 -days 3650
-batch -nodes -newkey rsa:2048 -keyout certs/server.key -out
certs/server.crt

3.	 Now, let's update the Logstash configuration file by adding a new section
in the input block to specify the Logstash forwarder plugin named
Lumberjack, as follows:
input {
...
lumberjack {
 port => 6782
 ssl_certificate => "/certs/server.crt"
 ssl_key => "/certs/server.key"
 type => "lumberjack"
 }

The Lumberjack input defines the listening port on the 6782 TCP port, which
will use the SSL certificate and the private key that we created previously.

4.	 Restart the Logstash service in the following way so that the new changes
will take effect:
service logstash restart

5.	 Let's move to our first OpenStack node to install the Logstash forwarder. We
will start with our first Cloud controller. We will begin by creating a new yum
repository for the Logstash forwarder, as follows:
nano /etc/yum.repos.d/Logstash-forwarder.repo

[logstash-forwarder]

name=logstash-forwarder repository

baseurl=http://packages.elasticsearch.org/logstashforwarder/centos

gpgcheck=1

gpgkey=http://packages.elasticsearch.org/GPG-KEY-elasticsearch

enabled=1

6.	 Install the Logstash forwarder package by using the yum command line:
yum install logstash-forwarder –y

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[319]

7.	 To authenticate against the Logstash server, we need to copy the SSL
certificate to the new Logstash client. You can use the scp command to copy
the certificate. We will create a certs directory in the Cloud controller node
to copy over the file, as follows:
mkdir certs

scp packtpub@47.147.50.1:/home/packtpub/certs/server.crt certs/

8.	 The Logstash forwarder is configured with a JSON-based configuration file.
Let's create a new logstash-forwarder.conf file in the following way so
that we can start shipping logs to the server:
nano /etc/logstash-forwarder.conf

{

 "network": {

 "servers": ["47.147.50.240:6782"],

 "ssl ca": "/certs/logstash-forwarder.crt",

 "timeout": 15

 }

}

The network section defines the Logstash server IP and uses the SSL
certificate that we copied earlier.

9.	 The previous step constructs the minimum configuration requirements to
connect to the Logstash server. We should tell our forwarder which files we
need to ship to our server. Let's start by shipping a nova-api log file under
/var/log/nova/api.log. We will add more log files later. To do so, we
need to create a new files section in the logstash-forwarder.conf file to
specify the path of the log files, as follows:
{
 "network": {
 "servers": ["47.147.50.240:6782"],
 "ssl ca": "/etc/logstash/logstash-forwarder.crt",
 "timeout": 15
 },
 "files": [
 {
 "paths": ["/var/log/nova/api.log"],
 "fields": { "type": "openstack", "component":"nova" }
 }
]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track for Logs – Centralizing Logs with Logstash

[320]

A very interesting point in the last configuration snippet is the additional
component option in the fields line. Each log file is a JSON object that
contains some standard fields, such as the timestamp and filename. The
additional field will help us tag each message. We can easily browse logs
and show only the interesting messages from the Kibana interface within
a specific tag. For example, we can classify the logs that come from the
OpenStack nodes into two different types: system and OpenStack logs.
The second type can also be refined to support the other subtypes that are
tagged by the component option, such as nova, glance, keystone, cinder,
ceph, and so on.

10.	 Test the connection to the server. We can use the –config option to test the
configuration file in the debug level. It is very useful for troubleshooting
further. Let's see how this works. On the Cloud controller node, run the
following command after restarting the logstash-forwarder service,
and do not forget to adjust the settings according to your needs:

service Logstash-forwarder restart

/opt/logstash-forwarder/bin/logstash-forwarder -config /etc/
logstash-forwarder.conf

...

2015/04/11 16:54:22.991945 --- options -------

2015/04/11 16:54:22.992827 config-arg: /etc/
logstash-forwarder.conf

2015/04/11 16:54:22.992874 idle-timeout: 5s

2015/04/11 16:54:22.992893 spool-size: 1024

...

 2015/04/11 16:54:22.995550 Waiting for 2 prospectors to
initialise

2015/04/11 16:54:22.995985 Launching harvester on new file: /var/
log/nova/api.log

2015/04/11 16:54:23.186545 All prospectors initialised with 0
states to persist

2015/04/11 16:54:23.193737 harvest: "/var/log/nova/api.log"
(offset snapshot:0)

2015/04/11 16:54:24.260040 Setting trusted CA from file: /certs/
server.crt

 2015/04/11 16:54:24.277672 Connecting to
[47.147.50.240]:6782 (47.147.50.240)

2015/04/11 16:54:25.207739 Failure connecting to 47.147.50.240:
dial tcp 47.147.50.240:6782: connection refused

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[321]

2015/04/11 16:54:25.208219 Connecting to [47.147.50.240]:6782
(47.147.50.240)

2015/04/11 16:54:26.208403 Failure connecting to 47.147.50.240:
dial tcp 47.147.50.240:6782: connection refused

2015/04/11 16:54:26.208865 Connecting to [47.147.50.240]:6782
(47.147.50.240)

2015/04/11 16:54:27.827370 Connected to 47.147.50.240

Note that it might take a while to connect to the server. The initial connection
attempts might be refused. Once the Logstash server becomes aware of
the client, the new connection will be established. On the other hand, if the
Logstash server is not initialized, the connection refused loop will continue
until you start the server.

Filtering the OpenStack logs
We will not be able to parse or browse any log files in the graphical user interface.
We have only prepared and established a connection between the client and the
server. We will need to update the Logstash configuration file on the Logstash
server to define a way of manipulating the files that are shipped by the forwarder.
The format of the file logs is not standard. Sending logs as one blob of data will not
be useful. Therefore, we want a way to identify their type and drill down into the
events to extract their values. The heart of the Logstash contribution in the log files'
management is filtering.

In our case, we have different log files that were generated either by the Linux
system or other services, most importantly the OpenStack ones.

Note that the syslog messages are useful as well since they track
down the internal system messages of the base operating system
that runs the OpenStack node.

However, the most interesting aspect is how we can classify our logs by type in the
first place. The following code snippet depicts a new filter section in the central
Logstash configuration file:

input {
. . .
 }
filter{
 if [type] == "openstack" {
 grok {
 patterns_dir => "/opt/logstash/patterns/"

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track for Logs – Centralizing Logs with Logstash

[322]

 match=>["message","%{TIMESTAMP_ISO8601:timestamp}
%{NUMBER:response} %{AUDITLOGLEVEL:level} %{NOTSPACE:module} \
[%{GREEDYDATA:program}\] %{GREEDYDATA:content}"]
 }
multiline {
 negate => false
 pattern => "^%{TIMESTAMP_ISO8601}%{SPACE}%{NUMBER}?%{SPACE}?TRA
CE"
 what => "previous"
 stream_identity => "%{host}.%{filename}"
 }
 date {
 type => "openstack"
 match => ["timestamp", "yyyy-MM-dd HH:mm:ss.SSS"]
 }
 }
}

output {
...
}

Let's take a closer look at the new filter plugin section, grok. The grok filter parses
text and with the help of its patterns, processes and structures it in an elegant way.

We will not go much deeper into this context, but it might be very
useful to check the official Logstash website, http://logstash.
net/docs/1.1.8/filters/grok, for extra filtering functionalities
and more than 120 patterns that can be used.

The grok section defines the following options:

•	 patterns_dir: By default, Logstash comes with a few patterns, which can
be found under /opt/logstash/patterns. Keep in mind that patterns are
packaged regular expressions that are needed by the filter to parse the text
and forward any match within the regular expression.

•	 match: The match option is the workhorse of filtering events. It defines any
matching of the grok expression within the log file format.

www.it-ebooks.info

http://logstash.net/docs/1.1.8/filters/grok
http://logstash.net/docs/1.1.8/filters/grok
http://www.it-ebooks.info/

Chapter 10

[323]

Of course, if you intend to run the Logstash service with the new filter plugin,
it will throw an error that shows that the matched pattern is not supported. To
be more precise, the AUDITLOGLEVEL tag is not defined and Logstash will need to
know how its pattern should be. Thus, we will need to create a new AUDITLOGLEVEL
file under /opt/logstash/patterns/ and add the following regular expression
package content:

AUDITLOGLEVEL([C|c]ritical|CRITICAL[A|a]udit|AUDIT|[D|d]
ebug|DEBUG|[N|n]otice|NOTICE|[I|i]nfo|INFO|[W|w]
arn?(?:ing)?|WARN?(?:ING)?|[E|e]rr?(?:or)?|ERR?(?:OR)?|[C|c]rit?(?:ica
l)?|CRIT?(?:ICAL)?|[F|f]atal|FATAL|[S|s]evere|SEVERE)

Moreover, if you intend to create more patterns and test them,
you can use http://grokdebug.herokuapp.com/.

The online grok syntax checker is very useful if you wish to verify the correctness of
the customized patterns. You can validate the default patterns within the conjunction
of the custom ones and test by pasting an event line from the log file that is being
considered. The custom OpenStack grok filter pattern was tested first via the grok
debug application and added later to the Logstash configuration file.

The next multiline block is very useful when we intend to combine disparate events
into a single event. Let's grab the following events from the ceilometer api log file:

2015-04-07 20:51:42.833 2691 CRITICAL ceilometer [-]
ConnectionFailure: could not connect to 47.147.50.1:27017: [Errno 101]
ENETUNREACH
2015-04-07 20:51:42.833 2691 TRACE ceilometer Traceback (most recent
call last):
2015-04-07 20:51:42.833 2691 TRACE ceilometer File "/usr/bin/
ceilometer-api", line 10, in <module>
2015-04-07 20:51:42.833 2691 TRACE ceilometer sys.exit(api())
2015-04-07 20:51:42.833 2691 TRACE ceilometer File "/usr/lib/
python2.6/site-packages/ceilometer/cli.py", line 96, in api

www.it-ebooks.info

http://grokdebug.herokuapp.com/
http://www.it-ebooks.info/

Keeping Track for Logs – Centralizing Logs with Logstash

[324]

The previous output shows a number of Python exception stack traces. Ceilometer
was not able to find the IP address of the Cloud controller to connect to and so it
threw an exception from its native Python code. Now imagine a situation where we
keep the default grok filter. Logstash will parse each line as a separate event. We
won't be able to identify which line belongs to which exception. Moreover, such
information about the exceptions treated in each line might hide the root cause of
its generator. For example, we will need to point firstly at the first line CRITICAL
ceilometer [-] ConnectionFailure: could not connect. Then, the exception
in the first line that matches the same date will appear in our dashboard. In this way,
you will be able to trace the event and its exception separately.

We can resume the multiline options in the following:

•	 negate: The value of this is false by default. Any message matching the
pattern will not be considered a match by the multiline filter and vice
versa when it is set to true.

•	 pattern: Any regular expression indicating that the fields of a certain event
constitute multiple lines of logs.

•	 what: If the line matches the regular expressions defined in the pattern, the
Logstash will merge the current event either with the previous or the next
line. In the case of our Python stack traces, we want to merge the event with
the one prior to it.

•	 stream_identity: Imagine a scenario where the Logstash forwarder has
been restarted and needs to reconnect. In this case, Logstash will create a new
TCP connection for the same stream. In this case, we will need to identify
which stream belongs to which event by the %{host} host. Also, we are
asking Logstash to differentiate the events coming from multiple files in the
same file input, %{filename}.

The last filter, date, is the simplest plugin. Its main task is to parse dates and use
them as a Logstash timestamp. We would like to use the yyyy-MM-dd HH:mm:ss.SSS
date format to parse the timestamps of the OpenStack log files. An example of this
date format is 2015-04-07 20:51:42.833.

We can see the date filter with a type of openstack that was specified to ensure that
it only matches the OpenStack events.

The Logstash configuration file is continued in the next figure. You may note that the
filters are independent and the log file is being manipulated sequentially, starting
with the first grok filter when the filter matches the openstack type. Therefore, it is
manipulated by the multiline filter, and it ends up with the final filtering process by
stamping the date of Logstash using the date filter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[325]

The main Logstash configuration file is ready. A final step requires us to tell every
node in our OpenStack environment to start shipping its logs to the Logstash server.
We will show a simple example in which the log files are shipped from the Cloud
controller for the compute, image, block storage, and telemetry services. The new
files section of the Logstash forwarder will look like the following code:

…
"files": [
{
 "paths": ["/var/log/nova/*.log"],
 "fields": { "type": "openstack", "component":"nova" }
},
{
 "paths": ["/var/log/glance/*.log"],
 "fields": { "type": "openstack", "component":"glance" }
},
{

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track for Logs – Centralizing Logs with Logstash

[326]

 "paths": ["/var/log/cinder/*.log"],
 "fields": { "type": "openstack", "component":"cinder" }
},
{
 "paths": ["/var/log/ceilometer/*.log"],
 "fields": { "type": "openstack", "component":"ceilometer" }
}
]

Visualizing the OpenStack logs
Once the Logstash forwarder and the central server are configured and restarted,
we can start browsing the Kibana interface. Make sure that the Logstash forwarder
has successfully run and started processing events to the central logging server,
as follows:

2015/04/12 00:43:30.445923 Registrar: processing 638 events

Amazing! Now it is time for Kibana. The first web page will ask you to define an
index pattern so that you will be able to run searches against it. We can use the
default Logstash value, logstash-*, in the index field. Then, select the default time
field, @timestamp, from the drop-down menu, as shown in the following screenshot:

Now, we have defined an index that we can rely on when searching for data in our
logs. Let's jump to the Discover link in the upper toolbar of the Kibana interface.
Generally, no data is displayed. It might take a while. By default, the log data will
be refreshed after every 15 minutes. On the other hand, you can specify a certain
interval to process data, as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[327]

Once you see the data flooding into the Log View section and counted by the
date histogram, start browsing the OpenStack logs using the Search Bar under
the main navigation menu. For example, we can type a search keyword, such as
cinder. The search query will give results that show only the events within the
cinder string from all the collected files. Most importantly, we can see how useful
the multiline filter is by going through a cinder exception trace, as shown in the
following screenshot:

We find visualizing data more interesting then parsing through individual lines.
For example, vertical bars or pie charts provide a better analysis of the overall picture
of the behavior of certain services in a certain amount of time. For example, we can
visualize different IP addresses by using certain services in a given period of time
or compare the logging status between the OpenStack services, which reflects how
they are being consumed or used. The next example will look at a simple statistical
overview of events that were generated in a period of half a day between the
compute, image, telemetry, and block storage services.

Using the search bar, we will start browsing the event that matches the query,
as follows:

type: "openstack" AND component: "glance"

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track for Logs – Centralizing Logs with Logstash

[328]

The preceding command gives the following result:

Next, save the query result from the right side of the search bar where the Save
button is. We can name it Glance_OS-04132015.

To create the visualization, click on the Visualize menu item and select the pie
charts type. The search source is Glance_OS-04132015, which was created
previously by us. First, select the Split Slices bucket. Click on the Aggregation
drop-down list and select Significant Terms. Then, click on the Field drop-down
list and select component.raw. Finally, click on the Size field and press Enter.
Now, click on the Apply button, and you should see something that looks
like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[329]

Summary
In this chapter, we covered the process of logging information in OpenStack. You
should give importance to how the log files are treated. The troubleshooting tasks
rely primarily on the logs' content. A major part of this chapter talks about how one
can centralize the OpenStack log files using a Logstash server. Also, it shows a few
examples of how one can filter specific log information and present it in an elegant
way using Kibana. This forces you to be precise and requires you to take a lot of care
during the troubleshooting task. Regarding the increasing load on your OpenStack
private Cloud, logs can be huge, and searching for the right information will not be
easy. You should appreciate how Logstash makes life easier for the OpenStack logs,
with its overwhelming features and filtering capabilities.

Based on the logging and monitoring results, you can conclude that some pieces of
the OpenStack environment may face performance degradation and may need to be
tuned. Thus, some advanced settings should be adjusted to keep your private Cloud
responsive to a heavy workload. This aspect will be covered in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[331]

Tuning OpenStack
Performance – Advanced

Configuration
"Millions saw the apple fall, Newton was the only one who asked why?"

–Bernard M. Baruch

Understanding OpenStack to know how it works is great, but that's not enough.
The previous chapters guided you through several topics about deploying your first
OpenStack infrastructure. Now you may intend to expose your environment and let
users start creating and managing virtual resources in your private OpenStack cloud,
and you are most probably self-confident that you have a monitoring process that
keeps watching what is happening in the cloud and works in tandem with a logging
system, helping you troubleshoot if an error occurs. It sounds amazing! But when it
actually comes to troubleshooting issues related to performance degradation, you
will most probably ask your team: why didn't we expect that? It was so fast that the
server was suddenly overloaded and could not handle any new requests to launch
virtual machines. This can be one out of dozens of questions that you may ask when
you face surprises. From the user's perspective, a cloud environment should always
respond to their requests. Whatever they demand from your resources, the cloud has
to say, "Here it is!" Basically, to become more efficient as the user population grows,
it might be crucial to know your limits in advance; then you can go beyond and
improve. A practical way is to measure your OpenStack cloud by simply generating
workloads and watching what happens.

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[332]

On the other hand, you will sooner or later have to proof your service-level
agreement (SLA). This can be done in different ways. We will choose the easiest one:
benchmarking our OpenStack environment. Our private cloud is a vast ecosystem,
where each component of our OpenStack system has the potential to become a
bottleneck if it is not chosen carefully. The database and the message queuing system
are ones of the most critical components in OpenStack. In the following, final pages
of this book, you will learn these topics:

•	 How to improve the database's performance in OpenStack
•	 What memcached is and how it helps to empower the database in OpenStack
•	 How to detect possible bottlenecks in the queuing message in OpenStack
•	 How to benchmark OpenStack at scale
•	 What Rally is and how it can help boost your OpenStack infrastructure's

performance
•	 How to formulate assumptions based on test benchmarking and resolve

performance issues

Pushing the limits of the database
One of the most critical parts of OpenStack is the database. Usually, MySQL is
used when there is no special configuration to prepare specifically for OpenStack
to run smoothly and satisfy its multiple services. On the other hand, it becomes
pretty tough to maintain your MySQL databases when your cloud keeps growing.
Database inconsistency constitutes one of the biggest challenges when running
OpenStack in production. For example, it could happen that you have disassociated
a network from an instance but the status in the database has not been changed.
Nova claims that the network is associated within the instance, while Neutron
claims the opposite. In this case, you will have to edit the database manually and
change the state in the database. In rare cases, manual intervention can be error-
prone. Generally, it is much more difficult to keep consistency when other changes
are being performed in a given database table. All of this points to another database
challenge—concurrency. For example, Nova keeps relying on a wrong status of a
terminated instance that expects to deassociate the floating IP. At the same time,
a new instance is being created, but it is not able to associate a floating IP (it is an
extreme case when only one floating IP remains). Again, manual intervention can
resolve the issue.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[333]

However, you will need to enter many MySQL queries, and this might lead to
another inconsistent state where you accidently remove a table entry, using a wrong
instance ID for example. We will consider that manual correction of an OpenStack
database can be left as a last resort. On the other hand, we first keep track of how
to avoid such cases but taking care of our OpenStack databases. Of course, as your
infrastructure grows, the risk of inconsistency in your data might increase. With a
large number of tables for every OpenStack service, it might be a good idea to plan in
advance for preventive actions that can save your production day.

Eventually, you should guarantee completion of the query in a shorter period of
time from the database level. In other words, reduce the response time of database
statements for a given workload. Several factors come into play if you aim to
improve your OpenStack database's performance. Typically, there are these ways:

•	 Learn the OpenStack core software and start measuring performance when
you get expertise in the internal system calls and database queries

•	 Keep improving the hardware capabilities and the configuration that is
running in the databases

In our case, the second approach might be more convenient for the first OpenStack
production cycle. For example, your database administrator can decide how
the hardware should be configured to avoid any unexpected bottleneck in your
environment. We have seen in Chapter 6, OpenStack HA and Failover, a few examples
focusing on the use case of database architecture to reach a certain level of high
availability and scalability. These concepts are vast and need deeper hacks and
expertise to adjust to your needs. Eventually, from the alerts sent by your monitoring
system, you can decide what kind of improvement should be done at the hardware
level. For example, watching the CPU of your master database increasing slightly
everyday during 2 weeks could be graded to a critical issue after a longer period.
There are high chances that the CPU will be saturated when a huge amount of
MySQL data in a short period of time fits in the memory and needs to be processed.
I/O saturation is also considered a primary cause of bottlenecks affecting the
performance of your MySQL database. This happens when your OpenStack
environment generates much more data than you can fit in the memory.

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[334]

Deciding the resources outfit
Investing in the input/output subsystem's performance might be the best option
when you consider that you still have to add memory to fit your data. The nature of
physical disks has a great influence on their capability to perform a certain number
of operations. For example, it might be a good option to use in Solid State Devices
(SSDs) for database nodes. Depending on the type of database query, starting to play
on the input/output wait factor can be very beneficial by improving the access time
and transfer data speed. As we have stated previously, SSDs have evolved recently
to forth many improvements to storage design. They are known as Flash storage
devices and perform pretty well by:

•	 Improving read and write operations
•	 Handling high operations rate concurrency well

Once the data is fitted into the memory, you should ensure that your memory-disk
ratio is proper. On the other hand, such a goal cannot be achieved if you do not take
into consideration the following challenge: avoid disk input/output. Increasing
memory per MySQL node does not necessarily mean that you are improving the
performance of your OpenStack databases. It still needs to find a good match to
balance the memory and your disk's characteristics, such as size and speed.

Caching for OpenStack
Planning for the best outfit of hardware configuration to boost your OpenStack
database's performance is strongly recommended. Even if you are not able to afford
the right hardware specifications to handle the workload, you still have more
options. You can shine brightly on an inexpensive solution that might come in the
second place to tackle your MySQL database workload—caching. This technique
might be very powerful to handle high-load applications.

Caching might happen at every step along the way, from the servers to the browsers
of end users. In our case, Horizon, as an application level from the end user's
perspective, can benefit from caching by minimizing any unresponsive status
when passing queries all the way to the database. Moreover, caching might be very
suitable to move a long queue of database queries entirely outside of the database
server. In such cases, you are better off looking at an external caching solution,
such as memcached.

It can be used by OpenStack components to cache data. Then your database will
appreciate it!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[335]

In a nutshell, memcached is a high-performance and distributed memory object
caching system. By exposing a memory server, your OpenStack database servers
can benefit from a caching layer for Horizon to store OpenStack services data. One
important thing to be taken into consideration is that memcached does not store
data. Once a memcached instance restarts, the data will be lost.

memcached uses the least recently used cache. The oldest data will be
replaced with new data when its memory capacity limit is reached.

You can run memcached in any type of configuration, unless you prefer to choose
a dedicated server to run it. It can also run in a memcached cluster architecture, or
even in multiple instances in the same server. A typical memcached setup requires
only the usage hardware with less CPU specifications in contrast to database
requirements. What you need is a set of instances providing memory. The next
illustration depicts how memcached is used in a proposed OpenStack setup:

This workflow diagram exposes a write-through caching mechanism by getting data
that is stored in memcached while it performs a read to the MySQL database.

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[336]

Memcached in OpenStack
We will discuss in this section an example of a performance problem that might
appear frequently, especially in an expanded OpenStack production environment.
Basically, every service in OpenStack asks for a token while trying to execute a
command or to perform a specific task. A basic scenario could be the creation of a
new instance. Several API requests are generated from different services:

•	 Horizon to Nova
•	 Nova to Glance to retrieve an image
•	 Nova to Cinder to attach a volume
•	 Nova to Neutron to assign network ports, bring up firewall rules, and so on

Such processes include internal token checks' validity by Keystone. The former
Keystone process will have to check its records lying in the database at every request.
Now imagine thousands of API requests being performed and forwarded by token
checks at every call. This can affect your OpenStack's performance, since Keystone
spends lots of CPU cycles to fetch tokens from large database tables. Furthermore, it
can reach a point at which Keystone hangs and is not able to handle new incoming
authorization requests. The end result is a long delay in lookup through the database
table caused by expired tokens. So, this is what we can conclude from this scenario:

•	 Keystone keeps eating CPU
•	 Keystone's data layer becomes inconsistent

At the first glance, you may think of introducing a CPU upgrade. This can be useful
unless you want to spend more time and money. On the other hand, do you think
expired tokens are still useful? Continuously expanding tables might generate
unwanted database behavior at some workload, since it keeps running inefficient
queries. Let's see how memcached can be part of a complementary solution to this
problem. We make it simple: we tell Keystone to stop saving our tokens in the
database and find our memcached layer. Keystone will save all its token records in
a memcached server. This is also beneficial for speeding up authentication. The next
section will show you how to install a memcached instance and integrate it with
your OpenStack environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[337]

Integrating memcached
As mentioned previously, it is up to you to decide whether to offer dedicated
servers for memcached instances or not. The following example assumes a simple
installation of memcached on cloud controller nodes running the Keystone service.
So, do not forget to adjust your settings when installing memcached, including the IP
addresses of cloud controllers:

1.	 Install memcached on your first cloud controller, as follows:
yum install -y memcached python-memcache

If you have installed OpenStack using other automated tools,
check whether memcached was installed and configured in /etc/
keystone/keystone.conf. If the driver directive in the token
section looks like keystone.token.backends.memcache.
Token, you can skip the next two steps.

2.	 Ensure that memcached starts automatically on system boot time:
chkconfig memcached on

If you intend to set up a new memcached node, be sure that the
time zone of the operating system is set properly by changing
the ZONE parameter in your /etc/sysconfig/clock file. This
is very important to verify because memcached determines the
expiration date for Keystone according to Coordinated Universal
Time (UTC).

3.	 You can check the current statistics of your memcached instance like this:
memcached-tool 127.0.0.1:11211 stats

4.	 Optionally, you can adjust the cache size by editing the /etc/sysconfig/
memcached file as follows:
nano /etc/sysconfig/memcached

CACHESIZE=2048

5.	 Restart your memcached service:
service memcached restart

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[338]

6.	 Adjust the Keystone configuration file to use the memcached driver
as shown here:
nano /etc/keystone/keystone.conf

[token]

driver = keystone.token.backends.memcache.Token

…

[cache]

enabled = True

config_prefix = cache.keystone

expiration_time = 300

backend = dogpile.cache.memcached

backend_argument = url:localhost:11211

use_key_mangler = True

debug_cache_backend = False

7.	 Restart the Keystone service:
service keystone restart

8.	 Keystone should start connecting to the memcached instance that is running
in our snippet example in the same machine. We can check the connection
establishment within the 11211 default port used by memcached:
lsof -i :11211

This command gives the following result:

9.	 We can dynamically check every second the get_hits value increasing using
the watch command line, as follows:

watch –d –n 1 'memcached-tool 127.0.0.1:11211 stats'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[339]

This command yields the following result:

Nova services can also get benefits from the usage of memcached. In each compute
and controller node, you will need to specify in each nova.conf file where
memcached is running. It is important to bring under the scope how memcached
can scale out easily. The deployment of a large OpenStack environment will
require a scalable memcached setup if a single instance is not able to handle the
current workload. For this purpose, you can use HAProxy to make use of multiple
memcached instances in the tcp mode. The next snippet describes how HAProxy
should be configured for a proper, scalable memcached setup.

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[340]

We assume in this setup the configuration elaborated in Chapter 6, OpenStack HA and
Failover, for an HAProxy node. We will just add a new stanza at the end of both the
/etc/haproxy/haproxy.cfg files, and restart both the HAProxy nodes, as follows:

...

listen memcached-cluster 192.168.47.47:11211

 balance roundrobin

 maxconn 10000

 mode tcp

 server cc01 192.168.47.100:11211 check inter 5s rise 2 fall 3

 server cc02 192.168.47.101:11211 check inter 5s rise 2 fall 3

 server cc03 192.168.47.102:11211 check inter 5s rise 2 fall 3

haproxy01# service haproxy reload

haproxy02# service haproxy reload

We will need to tell Nova services that we already have multiple memcached
instances running in three different cloud controller nodes. When cc01 becomes
unavailable, cc02 takes over, and so on. We set the following directive in each
controller and compute node in the /etc/nova/nova.conf file:

...
memcached_servers = cc01:11211,cc02:11211,cc03:11211
...

Memcached can also be beneficial for our dashboard. We can tell Horizon to use
memcached for the Web for Django web caching. It just needs to point to the virtual
IP, considering a scalable cloud controller setup. The dashboard includes the CACHES
settings, which we need to edit/add. On your cloud controller nodes, edit the /etc/
openstack-dashboard/local_settings.py file like this:

...
CACHES = {
 'default': {
 'BACKEND' : 'django.core.cache.backends.memcached.
MemcachedCache',
 'LOCATION' : '192.168.47.47:11211',
 }
}
...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[341]

We can add the next stanza to each HAProxy instance to boost a scalable Django
dashboard, which is now using a scalable memcached setup:

...
listen horizon 192.168.47.47:80
 balance roundrobin
 maxconn 10000
 mode tcp
 server cc01 192.168.47.100:80 cookie cc01 check inter 5s rise
2 fall 3
 server cc02 192.168.47.101:80 cookie cc02 check inter 5s rise
2 fall 3
 server cc03 192.168.47.102:80 cookie cc03 check inter 5s rise
2 fall 3

We finish our new, empowering caching setup with some scalability extension by
reloading the newest configuration in each HAProxy node:

haproxy01# service haproxy reload

haproxy02# service haproxy reload

Stressing RabbitMQ
We have classified in Chapter 1, Designing OpenStack Cloud Architecture, the database
and queuing message system as very critical components in the OpenStack
environment. If you have already found different ways to boost your database and
ensured that is performing well, you will need on the other hand to measure the
RabbitMQ capacity so you can identify any bottleneck at an early stage. Although
we have clustered our message queuing system, we should take into account that
if one of the nodes in the cluster becomes down or unreachable, the remaining one
can face a sudden heavy workload which may lead to a bottleneck. Then what? All
the OpenStack services will not be able to talk to RabbitMQ and the entire cluster
stops working. Basically, when adding new compute nodes simultaneously to the
controller node, RabbitMQ will need to create more processes and threads to be
able to manage the new compute services and join them to talk to other running
OpenStack services. Default RabbitMQ parameters such as Socket Descriptors and
File Descriptors can be limited factors when the system scales. It is possible to check
these parameters by issuing the command line on your RabbitMQ node:

rabbitmqctl status

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[342]

This will generate few lines including the instance version and a detailed description
of the memory and disk status reserved for RabbitMQ. At the end of the command
line output, we can focus on the file descriptors section as the following:

By default, the previous illustration shows that RabbitMQ was installed by
limiting the maximum number of file descriptors to 924 and maximum number
of sockets to 829. Eventually, the real number of total_limit is 1024. By default,
RabbitMQ omits 100 for any ulimit assigned to its processes. It is obvious that the
total_used and sockets_used values did not reach respectively the total_limit
and sockets_limit values which indicates that our OpenStack environment is
in a safe zone. However, bringing more compute nodes to the cluster will require
more file and socket descriptors and both values will increase. Moreover, with
more additional load on each compute node that runs hundreds of VMs each might
increase the total number of sockets and file descriptors drastically. Thus, it might
maximize the risk of a possible bottleneck. In this case, RabbitMQ can behave very
strangely: For example, creating a new instance from Horizon can hang in infinite
scheduling state. However, the RabbitMQ service keeps running but the OpenStack
cannot communicate with it due to lack of file and socket descriptors. With this
thought in mind, the performance limits of the RabbitMQ system should be known
as early as possible. This will bring its performance to its optimization limits and get
ready to respond unexpected issues. To work around such serious issue, it is possible
to edit the default security limits in the Linux box as the following:

1.	 Create a new file in /etc/security/limits.d/ named rabbitmq.conf with the
following content:
OpenStack: RabbitMQ
Increase maximum number of open fi to 4096 for RabbitMQ

#<domain> <type> <item> <value>
rabbitmq soft nofile 4096

We have adjusted the number of file descriptors to 4096.

2.	 Check if the new setting is accepted:
su - rabbitmq -s /bin/sh -c 'ulimit -n'

4096

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[343]

3.	 A simple restart of the rabbitmq-server service will be enough to detect the
new settings.
service rabbitmq-server restart

It will take some time to clean the RabbitMQ cache and start rabbitmq-server
service.

4.	 Now, we can see the new updated ulimit values by running the following
command line:
rabbitmqctl status | grep -A 4 file_descriptors

Note that by default, the RabbitMQ omits 100 from the new adjusted 4096 value as
discussed previously.

It is possible to apply the new changes without restarting the
RabbitMQ service. This can be needed to avoid the reestablishment
of all connections of the OpenStack services which are trying to reach
the RabbitMQ service. To do so, you will need to figure out all the
RabbitMQ processes by running:
ps auxw | grep ^rabbit | cut -d' ' -f 3

Then, for each PID listed in the ps command line, you will need to
increase its ulimit value by taking into account to subtract 100 from the
new ulimit value. For example to increase the default ulimit value 1024
for the RabbitMQ user with PID 2231 to 4096, you can run the following
command lines:
echo -n "Max open files=1024:4096" > /proc/2231/limits

rabbitmqctl eval 'file_handle_cache:set_limit(3996)'

Performing stress tests on the RabbitMQ cluster will make sure how many compute
nodes can a controller node handle. On the other hand, it not advised to adjust the
security limits to unlimited. This can be a real problem when the RabbitMQ reaches
a huge number of file and socket descriptors while other services compete as well
to create new descriptors. This case is very special when the RabbitMQ cluster is
designed to run in the controller nodes and not in a dedicated cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[344]

Benchmarking OpenStack at scale
You still have one last step left to accomplish the production day mission. As the title
of this book promises, we will ensure that our design and deployment are done well
by testing our OpenStack scalability.

In other words, we will make sure that our private cloud keeps functioning
as it faces a huge amount of workload or sudden sizing changes of resources.
We keep our smiley users' faces. How we can do that? We will benchmark our
OpenStack environment.

Bear in mind that benchmarking OpenStack is not an option, but it's highly
demanded. This is when you can rate both your design and deployment:

•	 Determine what sort of improvements should be made from the hardware or
software perspective

•	 Rate our OpenStack private cloud by analyzing how other cloud providers
achieve a high performance level

•	 Improve our OpenStack performance environment based on the collected
information from the benchmarking results

Generally, benchmarking a computer application is a slightly complicated task that
needs a specific test environment with complex hands-on lab installation. Set up the
test environment to mimic a real workload, picking up the right tool and decide to
execute several scenarios might be a time-consuming phase. Moreover, the results
cannot be accurate if you mistakenly choose the wrong benchmark test. Do we need
to build or develop the right benchmarking tools for OpenStack? The answer is, no! If
you want to set aside a part of your budget and time, then the answer is a slight "Yes!"
Most probably, you have noticed over the course of this book that OpenStack is very
modular, with multiple extensions and features. Incubated projects make OpenStack
unique. Even in benchmarking art, specifically for OpenStack, we have Rally.

Rally in a nutshell
Rally is simply a benchmarking tool designed to tell you more about how your
OpenStack infrastructure performs under a workload at scale. Originally, the
OpenStack's official test suite was Tempest. It is built on many Python testing
frameworks. Tempest basically accommodates several test scenarios against
OpenStack service endpoints by executing API calls, and ends up with response
verification and validation from the endpoints.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[345]

You can read more about Tempest and execute individual tests cited
on GitHub at https://github.com/openstack/tempest.

Tempest is used by the OpenStack community for the continuous integration
process, which is covered in Chapter 2, Deploying OpenStack – DevOps and OpenStack
Dual Deal. Eventually, it might be useful to report and publish relevant results based
on Tempest execution, which helps identify what should be changed or improved
in OpenStack code. It might also be useful if you intend to adopt any system
configuration tool, such as Chef or Puppet, to deploy and manage your OpenStack
infrastructure, which will help you zero in on what should be fixed from the
OpenStack code base in the first stage and reflect high-level changes in the second
stage to your cookbooks for example.

Using the power of Tempest is very fruitful with respect to testing your
OpenStack cluster environment. However, it might become more complicated and
time-consuming by diving into inline Python code to start testing. Moreover, the
results should be collected and easily deduced. To overcome such challenges, Rally
might be a perfect solution. You should know that Rally is not an alternative to
Tempest. However, it is a performance and benchmarking framework that installs,
configures, and uses Tempest tests during the benchmarking process.

Eventually, Rally expands the Tempest use cases to:

•	 Verify and validate OpenStack deployment at scale
•	 Run with more flexibility tests in more than one OpenStack cloud site
•	 Compare benchmarking results by reposing on the historical data residing

in Rally's database
•	 Execute more realistic test workloads within multiple simulated tenants

and active users

Meeting OpenStack SLA
Service uptime is what your cloud user is concerned about. Most probably,
the SLA in the cloud still somehow silent on some points most importantly the
variation of the cloud performance level during a certain period of time. With this
thought in mind, performance awareness should be taken into consideration as early
as possible where comes SLA into play to act for both parties (the cloud provider
and the end user) as a road map for possible changes in the OpenStack cloud service.
Running your OpenStack in production is not the end of the journey—we have just
begun the fun!

www.it-ebooks.info

https://github.com/openstack/tempest
http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[346]

The next aim is to agree on the desired service level for your cloud end user and
take realistic measurement results. Bear in mind that an SLA is something not to be
ignored. In some sense, end users would rather be informed about the cloud limits
and expectations. In other words, you should represent the workload performance
metrics. Issues such as frequency of failures, mean time between failures, and
mean time to recover are some of the indicators that can be stated in an SLA for
the OpenStack cloud infrastructure. Submitting credible performance benchmarks
might help you, as a provider, appear as a more trustworthy party, while giving
more confidence to the consumer cloud service. A growing cloud infrastructure will
be accompanied by working on SLA improvement. In order to consistently put the
headlines of our OpenStack SLA, we will use Rally.

Installing Rally
We will install Rally on a separate server that has access to all OpenStack servers.
The Rally node will eventually join the following OpenStack networks:

•	 Administrative network
•	 External network

The next installation snippet will guide you through a package-based installation
of Rally on a CentOS operation system, with minimum hardware and software
requirements as follows:

•	 Processor: 64-bit x86
•	 Memory: 2 GB RAM
•	 Disk space: 100 GB
•	 Network: Two 1 Gbps Network Interface Cards (NICs)
•	 Python 2.6 or a higher version

Let's get some hands-on experience and install Rally:

1.	 Download Rally from the GitHub repository and run the install_rally.sh
installation script as follows:
git clone https://github.com/stackforge/rally.git

cd rally && sudo ./install_rally.sh

2.	 Register your OpenStack environment with Rally. This can be done via the
openrc local environment variables, for example. You can copy it from your
cloud controller to the Rally server and source it as follows:
scp packtpub@cc01:/openrc .

source openrc admin admin

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[347]

The next command will register your OpenStack cloud with Rally based on
the environment variables:
rally deployment create --name existing--fromenv

A sample deployment create output may look as follows:

3.	 Verify the availability of your OpenStack deployment by means of the
deployment check command:

rally deployment check

This command yields the following output:

The preceding output shows a proper Rally setup by listing the status of the
running services from an OpenStack environment.

If the deployment check command throws the
Authentication Issue: wrong keystone credentials specified
in your endpoint properties. (HTTP 401) error message,
you will have to update your registration credentials in your
openrc file by including the right credentials.

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[348]

Rally in action
Now that we have a Rally server installed and properly configured to talk to
the OpenStack APIs, it's time for cloud benchmarking. By default, you may find
numerous benchmarking scenarios under /rally/sample/tasks/scenarios for
all OpenStack services, including incubated projects such as murano, sahara, and
others. We will concentrate on benchmarking our existing and running OpenStack
services. Before starting our first benchmark test, it might be great to shine the
spotlight on how Rally works. Scenarios in Rally are performed based on tasks.
A task might include a set of running benchmarks against your OpenStack cloud
written in sample JSON or YAML file formats. The former file generally has the
following structure:

 ScenarioClass.scenario_method:
-
 args:
...
 runner:
 ...
 context
 ...
 sla:
 …

Let's understand this structure:

•	 ScenarioClass.scenario_method: This defines the name of the
benchmark scenario.

•	 args: Every method corresponding to a specific class scenario can be
customized by passing parameters before launching the benchmark.

•	 runners: This defines the workload frequency type and the order of the
benchmarking scenarios. The runners stanza can support different types,
as follows:

°° constant: Running the scenario for a fixed number of times.
For example, a scenario can be run 10 times in the total test period.

°° constant_for_duration: Running the scenario for a fixed number
of times up to a certain point in time.

°° periodic: Define a certain period of time (intervals) to run two
consecutive benchmark scenarios.

°° serial: Running the scenario for a fixed number of times in a single
benchmark thread.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[349]

•	 context: This defines the environment type in which our benchmark
scenario (or scenarios) can run. Usually, the concept of context defines how
many tenants and active users will be associated with a given OpenStack
project. It can also specify the quota per tenant/user for certain granted roles.

•	 sla: This is very useful for identifying the overall scenario average success
rate of the benchmark.

For those hoping to find a convenient benchmarking scenario that will reveal
more significant results from your current OpenStack deployment, you'll have
to keep looking for a real use case that is more specific for cloud operators. For
example, Rally can help developers to easily run synthetic workloads, such as VM
provisioning and destroy, for a limited period of time.

However, the case of cloud operators seems more complicated. Such results
generated from workloads are more high-level results, but allow you to identify
bottlenecks in the cloud. Let's see a real-world example: companies have several
applications that need to be deployed in different usage patterns. If we have multiple
concurrent instances application for QA/dev, they will be deployed in a different
version of that application on the cloud several times a day. Consider a use case
of a large deployment where there is a set number of teams running a bunch of
standard stack applications, and each application contains a lot of VMs that need to
be deployed a certain number of times a day. Such workload requirements might be
translated into OpenStack terms as follows: we have M number of users provisioning
N number of virtual machines within a specific flavor T times in a certain period of
time and in a concurrent way.

As we know, OpenStack is not just a monolithic structure. It is a distributed system,
with different daemons and services talking to each other. If we decompose a
use case of provisioning of an instance to the primitives, it will be amazing
to understand where we spend most of the time during the virtual machine
provisioning phase. As soon as we get the baseline, our main goal is to provide
some historical data, for example, running the same benchmark several times
by changing a certain number of parameters, in each runtime, in the database
configuration, or by enabling glance caching.

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[350]

Scenario example 1
Our first shining example is to mimic a simple real workflow that consists
of creating an image using Glance and booting an instance from it. The next scenario
is based on the GlanceImages class running a method named create_image_and_
boot_instances:

 GlanceImages.create_image_and_boot_instances:
 -
 args:
 image_location: "http://download.cirros-
 cloud.net/0.3.1/cirros-0.3.1-x86_64-disk.img"
 container_format: "bare"
 disk_format: "qcow2"
 flavor:
 name: "m1.nano"
 number_instances: 2
 runner:
 type: "constant"
 times: 10
 concurrency: 2
 context:
 users:
 tenants: 3
 users_per_tenant: 5

How does this work? We intend to run three tenants. Each tenant has five users, so in
all, we will have 15 temporary users trying to create the Glance image by downloading
a cirros image within an OpenStack flavor nano. Be sure that the nano flavor exists,
otherwise Rally will throw an error message because of the missing flavor name, as
was defined in its task file. The benchmark will run 10 times in total. At any time, only
two users will be running the scenario workflow simultaneously.

To run the benchmark, you can use the following command:

rally task start create-image-and-boot-instances.yaml

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[351]

You can check the validity of the task inputs via the Rally task command output:

Such kinds of scenarios might take some time to complete. It might be interesting
to monitor the task process in two ways. First, the task status can be checked by
opening a new terminal in your Rally server and running this command:

rally task status

This gives the following output:

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[352]

The second way is to keep an eye on your monitoring server and check the resource
activity on both cloud controller and your compute node. This is very useful for
checking any bottleneck that may occur in advance. Then you can formulate your
results' analysis as early as possible. For example, a quick look at the top command
on the compute node depicts the following sorted resource consumption per process:

We can see clearly that qemu-kvm is the most frequent computing resources
consumer, which might be understandable. On the other hand, if such a process
keeps hanging on our process list, it will be interesting to take a closer look from the
logging perspective and check the Nova and Glance log files. We can first check what
is going on in our instance deployment process from Horizon:

Unfortunately, a few instances have failed to boot, as illustrated previously. The
fact is that Rally kept sending the workload, trying all different iterations, which
we were not able to check it from the Rally task process. Instead of waiting longer
for Rally to finish the execution, we can abort the task execution and adjust our
scenario to make the cluster capable of handling such a workload. The previous
screenshot shows the No valid host was found error message. The root cause of this
issue is that the compute host selected by the nova-scheduler does not have enough
free resources to host more virtual machines. As you may know, nova-scheduler is
responsible for determining which physical host the instance should launch on. In
some cases, instances need to be evacuated from compute nodes when they fail due
to a hardware malfunction. The default scheduler will not pick up the next host, and
you will have to declare the evacuation process explicitly using the nova evacuate
command line. This is can be valid assumption when your monitoring server
declares a serious hardware problem on your compute node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[353]

Scheduling in OpenStack is a very interesting topic for performance
boosting, which is beyond the scope of this book. To learn more
about scheduling in OpenStack, check out http://docs.
openstack.org/havana/config-reference/content/
section_compute-scheduler.html.

For the sake of simplicity, we will free a few RAM and CPU resources on a specific
host by dismissing unused virtual machines, and let the scheduler filter it and launch
our instances from the benchmark task. More physical resources can be optionally
patched to the physical host. At least, you have a first impression about your
hardware capacity.

Let's run our task again by keeping an eye on the monitoring server:

rally task start create-image-and-boot-instances.yaml

After a while, we can see some results:

We have conducted a benchmark test with a 100% success rate. We now have golden
information about our physical hardware capabilities. To make our results more
elegant to analyze further, Rally gives the hand to generate plots and graphs in
HTML format, using the following Rally powerful command:

rally task report 473e3499-545a-dd32-1238-197821dafe470 - -output
inst_report.html

www.it-ebooks.info

http://docs.openstack.org/havana/config reference/content/section_compute-scheduler.html
http://docs.openstack.org/havana/config reference/content/section_compute-scheduler.html
http://docs.openstack.org/havana/config reference/content/section_compute-scheduler.html
http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[354]

The 473e3499-545a-dd32-1238-197821dafe470 value refers to the task ID
generated by Rally when executing the rally task start command line.
The benchmark results can be illustrated as the following:

The graphs are pretty useful and help derive under-the-hood results during the
image and boot instance among the different iterations. We can clearly see, for
example, where the workflow takes longer time, which is the Nova boot phase in
our case. When the workload becomes error-prone, it might be useful to conduct a
granular analysis of every phase based on your logging output information.

This example might be very useful to identify how many VMs a single compute
node can handle. Of course, you will not stick to a single Rally configuration. A
good stress performance practice is to vary the different parameters during the Rally
benchmarking exercise as the following:

•	 Increase the number of tenants;
•	 Increase the number of users per tenant;
•	 Increase the number of active users;
•	 Use different flavors with different compute pools

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[355]

A practical way of performance analysis is simply generating the load for each
configuration test and watching how resources are being consumed for each
compute node. Therefore, it might be clear to identify the limitation of the compute
nodes capability based on different indicators: Number of Active VMs, Number
of VMs in Error state and number of VMs failed to service. Using monitoring tools
such as Zabbix or Linux tools such as 'vmstat' help reach a successful performance
measurement. From different observed results, it is possible to conclude several
points of interest as the following:

•	 Maximum number of VMs of a certain flavor per compute node
•	 Maximum number of VMs with a mixed number of flavors per

compute node
•	 Maximum number of VMs in all compute nodes
•	 Max/Min/Avg provisioning time required for each VM per compute node
•	 Maximum number of provisioned VMs with a certain over-commit value

Additionally, this kind of benchmarking exercise validates the first decisions made
for different hardware specifications discussed in Chapter 1, Designing OpenStack
Cloud Architecture. Based on the new observations, you might be tempted to adjust
your hardware settings and the OpenStack configurations such as:

•	 Change the over-commit ratio for RAM/CPU per compute node;
•	 Use a different or a custom scheduler for better resources provisioning;
•	 Limit the number of provisioned VM for a given flavor;
•	 Limit the number of tenants per controller node with a fixed number

of users

Most importantly, these are not all the possible adjustments. As you start
benchmarking your OpenStack computing infrastructure, several performance use
cases can be brought under the hood and become more aware of its limits, then you
go beyond.

Scenario example 2
Our second shining example will be Keystone authentication based on a Rally
scenario named KeystoneBasic.authenticate. Let's create a new file named
keystone_pp.yaml.

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[356]

The content of the file task looks as follows:

Authenticate.keystone:
 -
 runner:
 type: "rps"
 times: 600
 rps: 20
 context:
 users:
 tenants: 5
 users_per_tenant: 10
 sla:
 max_avg_duration: 5

How does this work? We intend to create, in all, 5 tenants. Each tenant will
have 10 users who will authenticate 600 times against Keystone. The rps (that is,
request per second) option defines 20 authentications per second, which means
executing one authentication every 0.05 seconds. The sla section defines the
following condition: if the maximum average duration of an authentication takes
longer than 5 seconds, the task will be aborted.

Running similar scenarios with several authentication requests
running simultaneously is a very useful use case for testing DDoS
attack use cases against your Keystone service.

Let's run the previous benchmark using the Rally command line, as follows:

rally task start --abort-on-sla-failure keystone_pp.yaml

Note that, this time, we add a new option to our command—abort-on-sla-
failure. This is a very useful argument if you are running such a benchmark
scenario in a real OpenStack production environment. Rally generates a heavy
workload, which might cause performance troubles to the existing cloud. Thus,
we tell Rally to stop the load at a certain moment when the sla conditions are met.

The output of our executed task is as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[357]

The Rally benchmark results show that Rally performed 560 authentication requests
instead of 600, while the average time was high compared to what was mentioned in
our sla section.

To dive into more details, we generate the HTML report by running this command:

rally task report 3e734a11-d52e-42ad-ab33-400ca1d797cd - -out
keystone_report01.html

It generates the following result:

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[358]

We can observe from the chart the end of load generation when the duration of
authentication request reaches 80 seconds. Without sufficient success criteria, Rally
has stopped generating load of the attempts to authenticate. We can see in detail the
reasons for failure from the HTML report. Go to the Failures section, as shown in the
following screenshot:

We can adjust our success criteria parameters a bit in the next iteration to
perform a more realistic scenario. For example, we can modify our sla section
to become like this:

...
sla:
 max_avg_duration: 5
 max_seconds_per_iteration: 50
 failure_rate:
 max: 1

The new sla section defines three conditions:

•	 max_avg_duration: If the maximum average duration of an authentication
takes longer than 5 seconds, the task will be aborted

•	 max_seconds_per_iteration: If the maximum duration of an
authentication request takes longer than 50 seconds, the task will be aborted

•	 failure rate: max: More than one failed authentication will abort the task

Rerun the task:

rally task start --abort-on-sla-failure keystone_pp.yaml

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[359]

Let's check out our charts again by generating a new report with a different name so
that we can compare the difference in results with the previous iteration:

rally task report 43e26392-dd23-3e33-be12-0024736fdc239- -out
keystone_report02.html

Here's the result:

According to the last graph, the load stopped at 532 iterations. Most probably, at
the first 50-second period, the authentication requests realized about 275 iterations,
followed by a silent time when no authentication was processed. The last 20 seconds
kept generating the authentication load gradually. It might be interesting to take a
closer look at the logs in the Failure section:

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[360]

The AuthenticationFailure exception might not be very useful for surrounding the
root cause of bad requests. Thus, we can check out what was happening from our
monitoring server or our Keystone files. A very interesting line can explain part of
the problem:

Basically, once Rally finished running the benchmark, the cloud controller under
test kept the tenants created by Rally active. We can check this by using the
following command on our cloud controller node:

keystone tenant-list

It yields the following result:

Each tenant has 10 users, which makes it impossible to satisfy new coming
connections. For instance, our cloud controller should be in idle state, except
for connections handled for the admin and the default tenant service. However,
you can check the remaining connections listening on port 35357 using the
following command:

lsof -a -i 35357 | wc –l

Thus, the problem can be escalated to the operation system level itself, which
might be undersized in terms of file descriptors that can be opened. On the other
hand, it can be seen as a software bug. In our case, Rally kept sending requests by
keystoneclient to the cloud controller. Each request initiated by the client will
create a session which does not get closed and kept open for reuse. The problem
apparently relies on the opened socket for each session; they never get closed, neither
by the server nor by the client. The end result is reaching the limit of the opened file
of the cloud controller. A preliminary workaround for this problem can be simply
increasing the files descriptor's limits on the CentOS box of the cloud controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[361]

Then, we will have to look at the following system parameters:

cat /proc/sys/fs/file-max

75000

cat /proc/sys/net/core/somaxconn

1024

ulimit -Sn

1024

ulimit -Hn

4096

We simply adjust the aforementioned parameters by increasing the ulimit,
file-max, and somaxconn values, as follows:

sysctl -w net.core.somaxconn=150000

sysctl -w fs.file-max=100000

Add the following lines to the /etc/security/limits.conf file:

* soft nofile 65535
* hard nofile 65535

To free the unused Keystone connections and reconstruct a clean Keystone
benchmark, the Keystone service should be restarted. After running the
authentication scenario several times, we can clearly see an improvement in
the SLA success rate, which has increased to 99.1%, as shown in this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning OpenStack Performance – Advanced Configuration

[362]

Summary
Our journey of mastering the OpenStack cloud system has come to an end. In the
course of this book, you learned how to plan and design the general OpenStack
architecture, deploy and manage your cloud using automation tools, such as Chef
(covering more incubated projects for storage), as well as decide and use a network
in OpenStack. You were also informed about several design patterns for clustering,
high availability, and scalability in OpenStack. Your OpenStack production day was
accompanied by an exploration of ways to monitor and collect logging data for faster
troubleshooting tasks. You should notice how rich and welcoming such a cloud
platform is for new cloud-based open source solutions.

In this chapter, we highlighted real-world scenarios for performance enhancement
in OpenStack database, queuing message system and OpenStack services. Now
you should also be able to use Rally and perform scenario benchmarking based on
more advanced workflows. You may have noticed how Rally can be fruitful for an
OpenStack cloud operator by detecting performance issues as quickly as possible.
This is useful for considering new approaches and deciding what sort of hardware
should be used or improved, how to refine your deployment design, and how to
create better infrastructure code. You should focus on proving that your OpenStack
cloud can scale enough to handle a massive workload, which might be your next
stage for a new OpenStack journey.

With this book, we hope that you have refreshed your knowledge and have
discovered what is newly introduced in OpenStack. Before ending this book, you
should be confident that you are ready to take a step further and be one of hundreds
of organizations which are enjoying such amazing cloud computing adventure led
by OpenStack where the journey of knowledge never ends.

www.it-ebooks.info

http://www.it-ebooks.info/

[363]

Index
Symbols
 HA level

L1 173

A
account server, Swift 106
AMQP system message bus 280
apache web server (httpd)

installing 273
Application Programming

Interface (API) 78
architecture, Ceilometer

about 278
API server (ceilometer-api) 278
central agent (ceilometer-agent-central) 278
collector (ceilometer-collector) 278
compute agent

(ceilometer-agent-compute) 278
data store 278

architecture, Swift
about 105
account server 106
container server 106
object server 106
Swift proxy server 106

args 348
asymmetric clustering 75
Atlas 261

B
back up

with backup-manager 100
benchmarking

OpenStack 344

Berksfile 60
Berkshelf 60
block live migration 174
Broker 310

C
caching 334
CAP

about 121
availability 121
consistency 121
partition tolerance 121
URL, for theorem 121

Ceilometer
about 275, 276
and heat 287
architecture 278
autoscaling 288
definition 276
glossary 277
Heat Orchestration Template (HOT),

extending for alarming 288-295
installation 281-286

Ceilometer alarm resource, properties
alarm_actions 293
comparaison_operator 294
Description 293
evaluation_periods 293
matching_metadata 294
meter_name 293
period 293
statistic 293
threshold 293

www.it-ebooks.info

http://www.it-ebooks.info/

[364]

Ceph
about 25, 127
architecture 128
CRUSH maps 129
deploying 132-137
images, storing 138, 139
in OpenStack 131
Object Storage Devices (OSDs) 128
Placement groups (PGs) 129
pool 129

Certification Based Replication (CBR) 184
cfgmgr 225
cfgmgtroles 225
cfgserver 225
chains, iptables

about 144
FORWARD chain 144
INPUT chain 144
OUTPUT chain 144
POSTROUTING chain 144
PREROUTING chain 144

Chef
about 52
attribute files 53
cookbook 52
node 53
prerequisites 53, 54
recipe 52
role 53
server installation 54, 55
workstation installation 56-58

Chef server preinstallation 226
Cinder

about 6, 7, 118-124
features 6
use case 119, 125-127

Cinder support matrix
URL 122

cloud
LBaaS, integrating 263-265

cloud controller
about 75
database, consolidating 80
deploying 83-85
Horizon decision 80
image management 79
message queue, planning for 80

network outfit 79
nova-conductor 76
nova-scheduler 77
services 76
X-api 78

cloud controller clustering 81-83
Cloud service brokerage 21
Cloud service provider 21
cloud storage 4
clustering

about 74
asymmetric clustering 75
symmetric clustering 75

CMI (Clariion Message Interface) 123
components, Logstash

Broker 310
Elasticsearch 310
Kibana 310
Logstash Indexer 310
Logstash shipper 309

components, Neutron architecture
Neutron agents 11
Neutron plugins 11
Neutron-server 11
queue 11

components, Nova
nova-api 7
nova-compute 8
nova-network 8
nova-scheduler 9
nova-volume 8

compressed provisioning 126
compute node

about 86
deploying 97-99
hypervisor, deciding 89-91
overcommitment considerations 87
 storing instances alternatives 96

concepts, Neutron
floating IPs 11
networks 10
ports 10
private IPs 11
routers 10

conceptual model design 22, 23
container server, Swift 106
continuous integration (CI) 48

www.it-ebooks.info

http://www.it-ebooks.info/

[365]

Coordinated Universal Time (UTC) 337
copy-on-write cloning feature 129
CPU allocation ratio 88
crudini

URL 193
CRUSH maps 129

D
database

about 9
consolidating 80

database performance, OpenStack
caching 334, 335
improving 332, 333
memcached 336
resources-wise 334

dd tool 296
deduplicated provisioning 126
deployment, example setup architecture

about 21
conceptual model design 22, 23
logical model design 23, 24
physical model design 31

Destination NAT (DNAT) 144
DevOps

about 40
cloud project 41, 42

Distributed Resource Scheduler (DRS) 77
Django web caching 340
Dnsmasq 18
Dynamic Resource Scheduler (DRS) 93

E
EGit

URL 51
Elasticsearch 310, 311
ELK stack 310
EMC Storage Management Initiative

Specification (SMI-S) server 122
Environment as a Service (EaaS) 25
ephemeral storage 104
example setup architecture

about 21
deployment 21

external shared file storage
about 96

advantages 96
drawbacks 96

Extreme Cluster/Cloud Administration
(xCAT) 210

F
File Descriptors 341
filesystem ID (fsid) 134
filtering 321
Firewall as a Service (FWaaS)

about 152, 153
firewall, coupling with Neutron 154-156
Neutron plugin 157
VPN as a Service (VPNaaS) 160

flat network 141
floating IP 143
front-cluster network, Swift 114

G
Galera

URL 185
Git 47
Glance 5
glossary, Ceilometer

agent 277
alarms 277
meter 277
pipelines 277
resource 277
samples 277
statistics 277

grok filter
about 322
match option 322
patterns_dir option 322

H
HA

about 172, 178, 181
database 182-185
failover 173
fallback 173
implementing, on MySQL 187-193
implementing, on network nodes 203-205

www.it-ebooks.info

http://www.it-ebooks.info/

[366]

implementing, on OpenStack cloud
controllers 197-203

implementing, on RabbitMQ 194-196
measuring 175, 176
RabbitMQ 186, 187
stateful service 177
stateless service 177
strict service-level agreement 174, 175
switchover 173

HA levels
L2 173
L3 173
L4 173

HAProxy
about 178
Leastconn 179
load balancer failure 180, 181
Load balancing layer 4 178
Load balancing layer 7 178
Round robin 179
service failure 180
Source 179
URI 179

heat
about 287
heat-api 287
heat-api-cfn 287
heat-api-cloudwatch 287
Heat CLI tools 287
Heat Engine 287
installing 267, 268
using 268-272

Heat Orchestration Template (HOT)
about 265, 292
extending, for alarming 291-297

High Availability Proxy. See HAProxy
high performance clustering 173
Horizon

about 12
used, for managing security groups 145

Horizon decision 80
horizontal scaling 74
HTTP request, Swift API

DELETE 107
GET 107
HEAD 107

POST 107
PUT 107

hypervisor
color, changing 92-95
deciding 89-91
integration 92

I
image management 79
Infrastructure as a Service (IaaS) 2, 41
infrastructure code environment

preparing 49-52
init script, Kibana

URL 315
installation

Ceilometer 281-285
internal nonshared file storage

about 96
advantages 96
disadvantages 96

internal VM traffic
features 30

Internet Key Exchange (IKE) policy
creating 165

IPSec policy
creating 166, 167

IPSec site connection
creating 168, 169

iptables
about 144
chains 144
reference 145
target 144
target values 144

iptables, working on Linux
reference 143

J
Java 311
Java 8

download link 312
Jenkins 47
Juno 89
Just a Bunch of Disks (JBOD) 109

www.it-ebooks.info

http://www.it-ebooks.info/

[367]

K
Keystone 4
Kibana 310, 311
Komodo

URL 50

L
Lightweight Directory Access

Protocol (LDAP) 4
Linux Bridge plugin 248-251
Linux Virtual Server (LVS) pool state 181
live migration 174
Load Balancer as a Service (LBaaS)

about 246, 261
integrating, in cloud 263-265
working 262

load balancing 173
logging

tackling 306
logical architecture, OpenStack

about 3
Cinder 6, 7
database 9
Glance 5
Horizon 12
Keystone 4
Neutron 10
Nova 7
queue 9
Swift 4

logical model design 23, 24
logical networking design 27, 28
logs

adjusting, in OpenStack 308
demystifying, in OpenStack 306
location 307

Logstash
about 309-311
components 309, 310
configuring 316
installing 312-315
placing 311
requisites 312
URL 322
workflow 310

Logstash configuration
about 316
logs, shipping to central monitoring

server 317-320
OpenStack logs, filtering 321-324
OpenStack logs, visualizing 326-328

Logstash configuration file
filters section 310
input section 310
output section 310

Logstash Indexer 310
Logstash shipper 309

M
management network

features 29
Master Initiator Node (MIN) 210
Mean Time To Repair (MTTR) 31
memcached

about 334-336
integrating 337-341
running 335

message queue
planning 80

metadata server (MDS) 129
MIN installation 216-225
monitor daemon server (MON) 129
multiline options

negate 324
pattern 324
stream_identity 324
what 324

multinode setup
confirming 208
OpenStack Initiator, preparing 210, 211
OpenStack node provisioning 208
OpenStack node role assignment 208
physical nodes, assigning 208

multiple conditions (matches) 144
multiport-integrated solution 1
murano 348
MySQL

architectures 183-185
HA, implementing 187-193

MySQL architectures
Block-level replication 184

www.it-ebooks.info

http://www.it-ebooks.info/

[368]

Master/slave replication 182
MMM replication 182
MySQL Galera multimaster replication 184
MySQL shared storage 183, 184

N
nano flavor 350
network 142
Network Address Translation (NAT) 204
Network as a Service (NaaS) 10
Network File System (NFS) 174
networking

about 27
logical networking design 27, 28

network layout
about 28
external network 28
internal VM traffic 30
management network 29
public network 28
storage network 29

network nodes
HA, implementing 203-205

network outfit 79
network switches

limitations 19, 20
network topology

about 211
OpenStack network mode 212
physical network topology 212-216

Neutron
about 10, 246
characteristics 10
concepts 10
plugins 247
URL 247
virtual switching infrastructure 247
components 11

Neutron CLI
used, for managing security

groups 146, 147
neutron floatingip-associate 297
Neutron plugin

about 157
multiplugins, using simultaneously 158
traffic isolation, empowering 158, 159

Ngnix 311
NIC bonding setup

URL 249
Nova 7
nova add-floating-ip 297
nova-api component 7
nova-api service 78
Nova CLI

used, for managing security
groups 147-149

nova-compute 8
nova-conductor 76
Nova evacuate 174
nova-network 8
nova-scheduler 9, 77
nova-volume 8

O
object server, Swift 106
Object Storage Devices (OSDs) 128
one-to-many mapping 29
OpenStack

about 2, 3, 43
benchmarking, at scale 344
database performance, improving 332, 333
deploying 39, 44
DevOps, using 43
flow, provisioning 16, 17
HA 181
logical architecture 3
logs, demystifying 306
monitoring 301, 302
reference link, for success stories

of companies 3
stack 265
URL 174
working 13-16

OpenStack cloud controllers
HA, implementing 197-202

OpenStack deployment
about 216
adapting 234-237
arming 232, 233
Chef server preinstallation 226
continuous integration 47-49
cooking time 228-230

www.it-ebooks.info

http://www.it-ebooks.info/

[369]

HA, implementing 233
HAProxy nodes 233
in toolchain 47
MIN installation 216-225
nodes, discovering 227, 228
tenant, running 238-242
testing 231, 232

OpenStack deployment, with Chef
about 58
cookbooks uploading, Berkshelf used 62, 63
cooking environment 69-71
environment, configuring 66
OpenStack cookbooks 59
OpenStack cookbooks' dependencies,

resolving 60, 61
playground environment 66
roles, defining 63-65
vagrant file 67

OpenStack infrastructure
maintaining 45, 46

OpenStack monitoring
arming 297
Zabbix, used 297

OpenStack networks 212
OpenStack SLA 345, 346
Open vSwitch plugin

about 251-261
Open vSwitch daemon (ovs-vswitchd) 252
Open vSwitch database (ovsdb-server) 252
OVS Kernel Module 252
versus Linux Bridge plugin 252

Oracle VirtualBox
URL 48

overcommitment considerations,
compute node

about 87
CPU allocation ratio 88
RAM allocation ratio 88, 89

P
panels 12
paravirtualization 90
persistent storage

about 104
object storage 104

physical design considerations, Swift
about 108
region 108
rings 110-112
storage criteria 109
storage device 109
storage nodes 109
zone 108

physical model design
about 31
best practices 36
CPU calculations 32, 33
hardware capabilities, estimating 31, 32
memory calculations 34
network calculations 34
storage calculations 35

physical network topology 212-216
PID 343
Placement groups (PGs) 129
Platform as a Service (PaaS) 2, 41
Pluggable Authentication

Module (PAM) 4
pool, Ceph 129
port 143
Preboot Execution Environment (PXE) 211
preliminary calculations, Ceilometer

avg 277
count 278
max 278
min 278
sum 277

provider networks 158
ps command line 343
public network

features 28
publisher types

file 280
notifier 280
rpc 280
udp 280

Q
Quantum network service 10
queue 9
Quick EMUlator (QEMU) 89

www.it-ebooks.info

http://www.it-ebooks.info/

[370]

R
RabbitMQ

about 186
clustering 186
defining 341-343
HA, implementing 194-196
mirrored queues 186

RADOS Block Device (RBD) 128
Rally

about 344, 345
installing 346, 347
scenarios 350-361
using 348, 349

RAM allocation ratio 88, 89
recovery steps 101, 102
Redis 311
Reliable Autonomic Distributed Object

Store (RADOS) 128
replication network, Swift 114
request per second 356
Resource Agents (RAs)

URL 198
rings 110-112
router 143
rsyslog server 308
RubyMine

URL 50
Ruby plugin

URL 50
Ruby Version Manager (rvm)

about 61
URL 61

runners 348

S
sahara 348
scaleup policy 296
scaling down 74
scaling up 74
ScenarioClass.scenario_method 348
scheduling, in OpenStack

about 353
reference 353

scheduling state 342

security groups
about 143
managing, Horizon used 145
managing, Neutron CLI used 146, 147
managing, Nova CLI used 147-149

self cloud service 21
service-level agreement (SLA) 175, 332
service uptime 345
session persistence 262
shared values 40
Single Point Of Failure (SPOF) 4, 105, 171
sla section

failure rate$ max 358
max_avg_duration 358
max_seconds_per_iteration 358

SMTA (System Management
Tool Artifact) 47

snapshot management 6
Socket Descriptors 341
Software as a Service (SaaS) 2, 41
Software Defined Networking

(SDN) 157, 251
Software Defined Storage (SDS) 105
Solid State Devices (SSDs) 334
Source NAT (SNAT) 144
stack

about 265
heat, installing 267, 268
Heat Orchestration Template

(HOT) 265, 266
heat, using 268-272

stateful service, HA 177
stateless service, HA 177
storage

CAP under scope 121
selecting 120
stirring up 122

storage cluster network, Swift 114
storage network

features 29
storage types

about 104
ephemeral storage 104
persistent storage 104

www.it-ebooks.info

http://www.it-ebooks.info/

[371]

storing instances alternatives, compute node
about 96
external shared file storage 96
internal nonshared file storage 96

strict service-level agreement, HA 174, 175
Sublime text editor

URL 50
subnet 142
Swift

about 4, 105
API access 107
architecture 105, 106
benefits 105
cooking 115-118
data, indexing 107
elasticity 105
fire and forget 107
hardware 112, 113
hierarchy 109
on-demand storage 105
physical design considerations 108
scalability 105

Swift API
HTTP request 107

Swift network
about 114
front-cluster network 114
replication network 114
storage cluster network 114

Swift proxy server 106
symmetric clustering 75
system management tools

Chef environment 52
infrastructure code environment 49
selecting 49

T
tagged port 213
tap interface 248
target values, iptables

ACCEPT 144
DNAT 145
DROP 144
RETURN 145
SNAT 145

telemetry module 276
Tempest 344
tenant networks 158
thick provisioning 126
thin provisioning 126
traffic isolation, Neutron plugin

empowering 158, 159
transactional 185
transformer types

accumulator 279
aggregator 279
arithmetic 279
rate of change 279
unit conversion 279

U
unicast network

URL 198
untagged port 213
User Mode Linux (UML) 89

V
Vagrant

about 59
URL 66
using 59

VCS (Version Control System) 47
vertical scaling 74
virtual IP (VIP) 179
Virtual Link Trunking (VLT) 35
virtual machine monitor (VMM) 89
Virtual Router Redundancy Protocol

(VRRP) 181
virtual switching infrastructure

virtual network bridging 248
virtual network interfacing 248

VLAN network 141
vMotion 93
vmstat 355
volume management 6
VPN as a Service (VPNaaS)

about 160
general settings 160-163

www.it-ebooks.info

http://www.it-ebooks.info/

[372]

VPN as a Service (VPNaaS) configuration
about 164
Internet Key Exchange (IKE) policy,

creating 165
IPSec policy, creating 166, 167
IPSec site connection, creating 168, 169
VPN service, creating 167, 168

VPN service
creating 167, 168

W
web server DMZ

example 150-152
wordpress database 289
Write-Set Replication (wsrep) API 185

X
X-api 78
xCAT

about 211
reference 216, 217
tasks 210

Z
Zabbix

about 297
installing 298, 299
placing 298

Zabbix agent
active agent 300
configuring, on OpenStack nodes 300
passive agent 300

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Mastering OpenStack

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

OpenStack Cloud Computing
Cookbook
Second Edition
ISBN: 978-1-78216-758-7 Paperback: 396 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with complete
coverage of Nova, Swift, Keystone, Glance, Horizon,
Neutorn, and Cinder

1.	 Chapter 1 is available for free.

2.	 Updated for OpenStack Grizzly.

3.	 Learn how to install, configure, and manage
all of the OpenStack core projects including
new topics like block storage and software
defined networking.

Learning OpenStack
Networking (Neutron)
ISBN: 978-1-78398-330-8 Paperback: 300 pages

Architect and build a network infrastructure for
your cloud using OpenStack Neutron networking

1.	 Build a virtual switching infrastructure
for virtual machines using the Open vSwitch
or Linux Bridge plugins.

2.	 Create networks and software routers
that connect virtual machines to the Internet
using built-in Linux networking features.

3.	 Scale your application using Neutron's
load-balancing-as-a-service feature using
the haproxy plugin.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Cloud Storage with
OpenStack Swift
ISBN: 978-1-78216-805-8 Paperback: 140 pages

Design, implement, and successfully manage
your own cloud storage cluster using the popular
OpenStack Swift software

1.	 Learn about the fundamentals of cloud
storage using OpenStack Swift.

2.	 Explore how to install and manage
OpenStack Swift along with various hardware
and tuning options.

3.	 Perform data transfer and management using
REST APIs.

VMware vCloud
Director Cookbook
ISBN: 978-1-78217-766-1 Paperback: 364 pages

Over 80 recipes to help you master VMware
vCloud Director

1.	 Learn how to work with the vCloud API.

2.	 Covers the recently launched VMware
vCloud Suite 5.5.

3.	 Step-by-step instructions to simplify
infrastructure provisioning.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Designing OpenStack Cloud Architecture
	OpenStack – think again

	Introducing the OpenStack logical architecture
	Keystone
	Swift
	Glance
	Cinder
	Nova
	nova-api
	nova-compute
	nova-volume
	nova-network
	nova-scheduler

	Queue
	Database
	Neutron
	The Neutron architecture

	Horizon

	Gathering the pieces and building a picture
	Provisioning a flow under the hood
	Expanding the picture

	A sample architecture setup
	Deployment
	The conceptual model design

	The logical model design
	The physical model design

	Summary

	Chapter 2: Deploying OpenStack – DevOps and OpenStack
Dual Deal
	DevOps in a nutshell
	DevOps and cloud – everyone is coding
	DevOpsing OpenStack
	Breaking down the OpenStack pieces

	Making the infrastructure deployment professional
	Bringing OpenStack to the chain
	Continuous integration and delivery

	Eat the elephant
	Preparing the infrastructure code environment
	The Chef environment
	Prerequisites for settings
	Time to cook OpenStack

	Summary

	Chapter 3: Learning OpenStack Clustering – Cloud Controllers and Compute Nodes
	Understanding the art of clustering
	Asymmetric clustering
	Symmetric clustering

	Divide and conquer
	The cloud controller
	nova-conductor
	nova-scheduler
	X-api
	Image management
	Network outfit
	The Horizon decision
	Planning for the message queue
	Consolidating the database

	Cloud controller clustering
	Cooking the cloud controller

	The compute node
	Overcommitment considerations
	Deciding on the hypervisor
	Storing instances' alternatives

	Cooking the compute node

	Preparing for plan B
	Back up with backup-manager
	Simple recovery steps

	Summary

	Chapter 4: Learning OpenStack Storage – Deploying the Hybrid Storage Model
	Understanding the storage types
	Ephemeral storage
	Persistent storage
	Object storage is not NAS/SAN

	A spotlight on Swift
	The Swift architecture
	Physical design considerations
	Swift hardware
	The Swift network

	Cooking Swift
	Joining Cinder

	Choosing the storage
	CAP under scope
	Stirring up the storage
	Cinder can do more
	Beyond Cinder – Ceph

	Summary

	Chapter 5: Implementing OpenStack Networking and Security
	The story of an API
	Security groups
	Managing the security groups using Horizon
	Managing the security groups using the Neutron CLI
	Managing the security groups using the
Nova CLI
	An example of a web server DMZ

	Firewall as a Service
	Coupling a firewall with Neutron
	The Neutron plugin
	There can be more than one plugin
	Empowering the traffic isolation

	VPN as a Service – a case study
	General settings
	VPNaaS configuration

	Summary

	Chapter 6: OpenStack OpenStack HA and Failover

	HA under the scope
	Do not mix them
	HA levels in OpenStack
	A strict service-level agreement

	Measuring HA
	The HA dictionary
	Hands on HA
	Understanding HAProxy
	OpenStack HA under the hood

	Summary

	Chapter 7: OpenStack Multinode Deployment – Bringing
in Production
	Confirming the multinode setup
	Assigning physical nodes
	Preparing the OpenStack Initiator

	The network topology
	The OpenStack network mode
	The physical network topology

	The OpenStack deployment
	The MIN installation
	Chef server preinstallation
	Discover and cook
	Cooking time
	Testing the cloud
	Arming the deployment

	Summary

	Chapter 8: Extending
OpenStack – Advanced Networking Features and Deploying Multi-tier Applications
	Navigating through Neutron
	Neutron plugins
	Virtual switching infrastructure

	Load Balancer as a Service
	Work around LBaaS
	Integrate LBaaS in the cloud
	Stack in OpenStack

	Summary

	Chapter 9: Monitoring OpenStack – Ceilometer and Zabbix
	Telemetry in OpenStack – Ceilometer

	Ceilometer definition
	Ceilometer glossary
	The Ceilometer architecture
	The Ceilometer installation

	Ceilometer and heat
	Autoscaling
	Extending HOT for alarming

	Arming OpenStack monitoring
	Zabbix in action
	Placing Zabbix
	Installing the Zabbix server
	Configuring the Zabbix agent on OpenStack nodes

	Summary

	Chapter 10: Keeping Track for
Logs – Centralizing Logs
with Logstash
	Tackling logging
	Demystifying logs in OpenStack
	The log's location
	Adjusting logs in OpenStack

	Two eyes are better than one eye
	Logstash under the hood
	The Logstash workflow

	Placing the Logstash server
	Installing the Logstash server
	Configuring Logstash

	Summary

	Chapter 11: Tuning OpenStack Performance – Advanced Configuration
	Pushing the limits of the database
	Deciding the resources outfit
	Caching for OpenStack
	Memcached in OpenStack

	Stressing RabbitMQ
	Benchmarking OpenStack at scale
	Rally in a nutshell
	Meeting OpenStack SLA
	Installing Rally
	Rally in action
	Scenario example 1
	Scenario example 2

	Summary

	Index

