LT
SR,
777

7

Mastering OpenStack

Design, deploy, and manage a scalable OpenStack infrastructure

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering OpenStack

Design, deploy, and manage a scalable OpenStack
infrastructure

Omar Khedher

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering OpenStack

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1270715

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-564-3

www . packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Omar Khedher

Reviewers
Derek Chamorro

Ryan Hallisey
Dr. Benoit Hudzia
Bhargesh Patel

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Usha lyer

Content Development Editor
Merwyn D'souza

Technical Editors
Mrunal M. Chavan

Gaurav Suri

Copy Editors
Vedangi Narvekar

Vikrant Phadke

Stuti Srivastava

Project Coordinator
Neha Bhatnagar

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Omar Khedher is a network engineer and cloud computing researcher.

Based in the Netherlands, he has worked in a cloud computing solution project
that turned into an OpenStack deployment and became integrated with it.
Leveraging his skills as a system administrator in virtualization, storage, and
networking, he is currently pursuing a PhD on performance research preparation
in the cloud computing paradigm and architecture patterns in which OpenStack is
taking an active part. He has recently authored a few academic publications based
on new researches for the cloud performance improvement.

A big thanks goes out to my PhD supervisor, Dr. Mohamed, in

KSA, my professional friend Belgacem in Tunisia for his guidance,
critics, and my special colleagues at the company for sharing their
knowledge at HiQInvest. I appreciate the encouragement provided
by my new family in the Netherlands and the warmth they provided
to make me feel at home. I would like to thank all the reviewers of
this book for their accurate notes and precious remarks. I extend a
special thank to Merwyn D'souza for his continued and great work
on this book, which has been a big piece of work. I am grateful to
William Sprakel, who has helped me dive into the cloud computing
world and also Michiel Karnebeek and Rick Stokkingreef for sharing
their knowledge. Of course, a big thank you to the OpenStack
community for the wonderful work in making the cloud computing
solution such a unique and wonderful experience.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Derek Chamorro is a network security engineer/architect with 15 years of
experience in information technology. He first started his career with cable MSOs,
working in a variety of roles ranging from technical support to network architecture.
He has spent the last 3 years focused on abstracted computing and software-defined
networking using a variety of new technologies to enhance security and automation
within next-generation networks. Derek currently works at Cisco Systems as a
technical engineering lead for Cisco Cloud services. He specializes in network
virtualization and enjoys working with Open vSwitch development.

In his spare time, Derek enjoys distance running, Asian cooking, and
microbrewing beer.

Ryan Hallisey is a software engineer at Red Hat. He has worked on OpenStack
for 2 years. Primarily, his focus is on developing SELinux to function for enterprise
OpenStack solutions as well as developing the Tripleo installer and containerizing
OpenStack using Docker.

www.it-ebooks.info

http://www.it-ebooks.info/

Dr. Benoit Hudzia is a cloud/system architect working on designing the next
generation cloud technology as well as running the Irish operations for Stratoscale.

He previously worked as a senior researcher-architect for SAP on HANA
Enterprise Cloud.

Benoit has authored more than 20 academic publications and is also the holder of
numerous patents in the domains of virtualization, OS, cloud, distributed system,
and so on. His code and ideas are included in various SAP commercial solutions
as well as open source solutions such as the QEMU/KVM hypervisor, the Linux
kernel, and OpenStack.

His research currently focuses on bringing together the flexibility of virtualization,
cloud, and high-performance computing (also known as the "Lego cloud"). This
framework aims to provide the memory, I/O, and CPU resource disaggregation
of physical servers while enabling dynamic management and aggregation
capabilities on Linux native applications as well as Linux/KVM VMs using
commodity hardware.

Bhargesh Patel completed his MTech in computer engineering from Dharmsinh
Desai University, Nadiad. He has more than 3 years of teaching experience in cloud
computing security, big data mining, and networking. Currently, he is working with
G H Patel College of Engineering and Technology, Vallabh Vidyanagar. His areas

of interest are cloud computing, grid computing, data mining, operating systems,
computer networks, and cyber security. Currently, he is working on cloud security
and big data mining projects.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub. com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

I'would like to dedicate this book to my family, who supported me immensely
throughout the writing of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface

vii

Chapter 1: Designing OpenStack Cloud Architecture 1
OpenStack — think again 2
Introducing the OpenStack logical architecture 3
Keystone 4
Swift 4
Glance 5
Cinder 6
Nova 7
nova-api 7
nova-compute 8
nova-volume 8
nova-network 8
nova-scheduler 9
Queue 9
Database 9
Neutron 10
The Neutron architecture 1"
Horizon 12
Gathering the pieces and building a picture 13
Provisioning a flow under the hood 16
Expanding the picture 19
A sample architecture setup 21
Deployment 21
The conceptual model design 22
The logical model design 23
The physical model design 31
Summary 37

[il

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 2: Deploying OpenStack — DevOps and OpenStack

Dual Deal 39
DevOps in a nutshell 40
DevOps and cloud — everyone is coding 41
DevOpsing OpenStack 43
Breaking down the OpenStack pieces 44
Making the infrastructure deployment professional 45
Bringing OpenStack to the chain 47
Continuous integration and delivery 47
Eat the elephant 49
Preparing the infrastructure code environment 49
The Chef environment 52
Prerequisites for settings 53
Time to cook OpenStack 58
Summary 72
Chapter 3: Learning OpenStack Clustering — Cloud Controllers
and Compute Nodes 73
Understanding the art of clustering 74
Asymmetric clustering 75
Symmetric clustering 75
Divide and conquer 75
The cloud controller 75
nova-conductor 76
nova-scheduler 77
X-api 78
Image management 79
Network outfit 79
The Horizon decision 80
Planning for the message queue 80
Consolidating the database 80
Cloud controller clustering 81
Cooking the cloud controller 83
The compute node 86
Overcommitment considerations 87
Deciding on the hypervisor 89
Storing instances' alternatives 96
Cooking the compute node 97
Preparing for plan B 99
Back up with backup-manager 100
Simple recovery steps 101
Summary 102

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 4: Learning OpenStack Storage — Deploying the

Hybrid Storage Model 103
Understanding the storage types 104
Ephemeral storage 104
Persistent storage 104
Object storage is not NAS/SAN 104

A spotlight on Swift 105
The Swift architecture 105
Physical design considerations 108
Swift hardware 112

The Swift network 114
Cooking Swift 115
Joining Cinder 118
Choosing the storage 120
CAP under scope 121
Stirring up the storage 122
Cinder can do more 122
Beyond Cinder — Ceph 127
Summary 140
Chapter 5: Implementing OpenStack Networking and Security 141
The story of an API 142
Security groups 143
Managing the security groups using Horizon 145
Managing the security groups using the Neutron CLI 146
Managing the security groups using the Nova CLI 147
An example of a web server DMZ 150
Firewall as a Service 152
Coupling a firewall with Neutron 154
The Neutron plugin 157
There can be more than one plugin 158
Empowering the traffic isolation 158
VPN as a Service — a case study 160
General settings 160
VPNaa$S configuration 164
Summary 170
Chapter 6: OpenStack HA and Failover 171
HA under the scope 172
Do not mix them 173
HA levels in OpenStack 173
A strict service-level agreement 174

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Measuring HA 175
The HA dictionary 177
Hands on HA 178

Understanding HAProxy 178
OpenStack HA under the hood 181
Summary 205
Chapter 7: OpenStack Multinode Deployment — Bringing
in Production 207

Confirming the multinode setup 208
Assigning physical nodes 208
Preparing the OpenStack Initiator 210

The network topology 211
The OpenStack network mode 212
The physical network topology 212

The OpenStack deployment 216
The MIN installation 216
Chef server preinstallation 226
Discover and cook 227

Cooking time 228
Testing the cloud 231
Arming the deployment 232

Summary 244

Chapter 8: Extending OpenStack — Advanced Networking
Features and Deploying Multi-tier Applications 245

Navigating through Neutron 246

Neutron plugins 247

Virtual switching infrastructure 247
Load Balancer as a Service 261
Work around LBaaS 262
Integrate LBaasS in the cloud 263
Stack in OpenStack 265
Summary 274
Chapter 9: Monitoring OpenStack — Ceilometer and Zabbix 275

Telemetry in OpenStack — Ceilometer 276
Ceilometer definition 276
Ceilometer glossary 277
The Ceilometer architecture 278
The Ceilometer installation 281

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Ceilometer and heat 287
Autoscaling 288
Extending HOT for alarming 288
Arming OpenStack monitoring 297
Zabbix in action 297
Placing Zabbix 298
Installing the Zabbix server 298
Configuring the Zabbix agent on OpenStack nodes 300
Summary 303
Chapter 10: Keeping Track for Logs — Centralizing Logs
with Logstash 305
Tackling logging 306
Demystifying logs in OpenStack 306
The log's location 307
Adjusting logs in OpenStack 308
Two eyes are better than one 308
Logstash under the hood 309
The Logstash workflow 310
Placing the Logstash server 311
Installing the Logstash server 312
Configuring Logstash 316
Summary 329
Chapter 11: Tuning OpenStack Performance — Advanced
Configuration 331
Pushing the limits of the database 332
Deciding the resources outfit 334
Caching for OpenStack 334
Memcached in OpenStack 336
Stressing RabbitMQ 341
Benchmarking OpenStack at scale 344
Rally in a nutshell 344
Meeting OpenStack SLA 345
Installing Rally 346
Rally in action 348
Scenario example 1 350
Scenario example 2 355
Summary 362
Index 363

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Since its first official release in 2010, OpenStack has distinguished itself as the
ultimate open source cloud operating system. Today, more than 200 companies
worldwide have joined the development of the OpenStack project, which makes

it an attractive cloud computing solution for thousands of organizations. The

main reason behind the success of OpenStack is not the overwhelming number

of features that it has implemented, but rather its good modularity. Thanks to its
vast community around the world, OpenStack is growing very fast. Each release
exposes new modules and administrative facilities that offer on-demand computing
resources by provisioning a large set of networks of virtual machines. If you are
looking for a cloud computing solution that scales out well, OpenStack is an ideal
option. Nowadays, it is considered to be a mature cloud computing operating
system. Several big, medium, and small enterprises have adopted it as a solution in
their infrastructure. The nirvana of OpenStack comes from its architecture. Designing
your cloud becomes much easier with more flexibility. It is an ideal solution if you
intend either to design a start up cloud environment or to integrate it into your
existing infrastructure. As you build your cloud using OpenStack, you will be able
to integrate with legacy systems and third-party technologies by eliminating vendor
lock-in as much as possible.

This book is designed to discuss what is new in OpenStack with regards to the new
features and incubated projects. You will be guided through this book from design
to deployment and implementation with the help of a set of best practices in every
phase. Each topic is elaborated so that you can see the big and complete picture of
a true production environment that runs OpenStack at scale. It will help you decide
upon the ways of deploying OpenStack by determining the best outfit for your
private cloud, such as the computer, storage, and network components.

[vii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

If you are ready to start a real private cloud running OpenStack, master the
OpenStack design, and deploy and manage a scalable OpenStack infrastructure, this
book will prove to be a clear guide that exposes the latest features of the OpenStack
technology and helps you leverage its power to design and manage any medium or
large OpenStack infrastructure.

What this book covers

Chapter 1, Designing OpenStack Cloud Architecture, will focus on discussing the
several components of the architecture of OpenStack. It will provide the basis that is
needed to start with the first design of your OpenStack private cloud environment.
The chapter will discuss the different models' designs, which will help you begin
your first deployment of OpenStack from scratch. The chapter will contain practical
examples and calculations that are framed in a theoretical approach to give you an
idea about how you can choose the right hardware capacity for your first OpenStack
environment and adapt such information to real-world deployments.

Chapter 2, Deploying OpenStack — DevOps and OpenStack Dual Deal, will introduce you
to the first installation of the OpenStack environment using automation tools. You
will learn how to get the entire infrastructure installed and customized using Chef.
The chapter will highlight the adoption of the DevOps approach and cover several
advantages of how you can conduct your first OpenStack deployment from a test to
production environment with more flexibility. It will provide instructions on how to
install and use the Chef cookbooks to install the first test environment and get ready
for the production stage.

Chapter 3, Learning OpenStack Clustering — Cloud Controllers and Compute Nodes, will
decompose the big parts of your deployment by further refining your design, which
was elaborated on in the previous chapter. It will cover some best practices regarding
the art of clustering. Next, you will learn how to distribute the main OpenStack
services between the cloud controllers and the compute nodes and construct an
efficient OpenStack cluster. It will put under the microscope the choice of the
hypervisor and hardware specifications. A sample design of the Chef cookbooks will
be implemented to help you learn how to automate a cloud controller and install

the compute nodes. The chapter will also explore how to plan the backup of an
OpenStack cluster.

[viii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 4, Learning OpenStack Storage — Deploying the Hybrid Storage Model, will

cover the subject of storage in OpenStack. The chapter will start by focusing on the
storage types and their use cases. You will learn about an object storage code named
Swift and how it works in OpenStack. A real Swift deployment will be shown to
help you calculate the hardware requirements. The chapter will also talk about

the block storage code named Cinder in OpenStack. You will learn how to decide
which storage type will fulfill your needs. It will also explore Ceph and its main
architectural design. It will help you integrate it and install in your test OpenStack
environment using Vagrant and Chef.

Chapter 5, Implementing OpenStack Networking and Security, will focus mainly on the
networking security features in OpenStack. It will cover the concept of namespaces
and security groups in OpenStack and how you can manage them using the Neutron
and Nova APIs. In addition, it will explore the new networking security feature,
Firewall as a Service. A case study will help you understand another networking
feature in Neutron called VPN as a Service.

Chapter 6, OpenStack HA and Failover, will cover the topics of high availability and
failover. For each component of the OpenStack infrastructure, this chapter will
expose several HA options. The chapter will be replete with HA concepts and best
practices, which will help you define the best HA OpenStack environment. It serves
as a good complementary chapter for the previous chapters by bringing a geared,
distributed, and fault-tolerant OpenStack architecture design. Numerous open
source solutions, such as HAProxy, Keepalived, Pacemaker, and Corosync, will be
discussed through a step-by-step instruction guide.

Chapter 7, OpenStack Multinode Deployment - Bringing in Production, will be your
"first production day" guide. It will focus on how you can deploy a complete
multinode OpenStack setup. A sample setup will be explained and described in
detail by exposing the different nodes and their roles, the network topology, and
the deployment approach. The chapter will contain a practical guide to OpenStack
deployment using bare metal provision tools XCAT together with the Chef server. It
will demonstrate the first run of a new OpenStack tenant.

Chapter 8, Extending OpenStack — Advanced Networking Features and Deploying Multi-
tier Applications, will delve into the advanced OpenStack networking features. It will
explain in depth the Neutron plugins such as Linux Bridge and Open vSwitch, how
they differ from the architectural perspective, and how instances can be connected to
networks with the Neutron plugins. The chapter will also cover Load Balancing as a
Service, which is used to load balance the traffic between instances by exploring their
fundamental components. In addition, an orchestration module named Heat will be
introduced in this chapter and will be used to build a complete stack to show how a
real load balancer is deployed in OpenStack.

[ix]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 9, Monitoring OpenStack — Ceilometer and Zabbix, will explore another new
incubated project called Ceilometer as a new telemetry module for OpenStack.

The chapter will discuss briefly the architecture of Ceilometer and how you can
install and integrate it into the existing OpenStack environment. The discussion on
Heat will be resumed, and it will be used to expand a stack installation including
Ceilometer. The purpose of this is to discover the capabilities of heat with regard to
supporting the Ceilometer functions, such as alarms and notifications. This section
will also make sure that the OpenStack environment is well-monitored using some
external monitoring tools such as Zabbix for advanced triggering capabilities.

Chapter 10, Keeping Track for Logs — Centralizing Logs with Logstash, will talk about
the problem of logging in OpenStack. The chapter will present a very sophisticated
logging solution called Logstash. It will go beyond the tailing and grepping of
single log lines to tackle complex log filtering. The chapter will provide instructions
on how to install Logstash and forward the OpenStack log files to a central

logging server. Furthermore, a few snippets will be be provided to demonstrate

the transformation of the OpenStack data logs and events into elegant graphs

that are easy to understand.

Chapter 11, Tuning OpenStack Performance — Advanced Configuration, will wrap things
up by talking about how you can make the OpenStack infrastructure run better with
respect to its performance. Different topics, such as the advanced configuration in the
exiting OpenStack environment, will be discussed. The chapter will put under the
microscope the performance enhancement of MySQL by means of hardware upgrade
and software layering such as memcached. You will learn how to tune the OpenStack
infrastructure component-by-component using a new incubated OpenStack project
called Rally.

What you need for this book

This book assumes a moderate level of Linux system administration and cloud
computing concepts' experience. Though this book will walk you through some
snippets of real-life production environment running OpenStack, some rudimentary
knowledge of the OpenStack components may be required. In addition to this, a
basic knowledge and understanding of networking jargon and connectional design
is required. If you possess some Ruby programming skills, this is a plus. The book
does not specify any specific test environment. Feel free to use any lab environment
that you feel more comfortable with, such as Oracle's VirtualBox, Vagrant, or the
VMware workstation.

This book requires you to install and run OpenStack on physical hardware to
support bare metal provisioning and, for this, a physical network infrastructure
should be in place.

[x]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

In this book, the following essential software is required:

* Operating System: CentOS 6.5
* The following software is required:

o

OpenStack—Havana or a later version
° The Chef server

o

Vagrant
° VirtualBox

Internet connectivity will be required to install the OpenStack packages and several
other packages. Make sure that you use the most convenient hardware to perform
tests of the snippets described in each chapter of this book.

Who this book is for

To speed up with the content of this book, prior knowledge of OpenStack is
required. If you don't have experience in OpenStack, reading small snippets from
the OpenStack community, http://docs.openstack.org/admin-guide-cloud/
content/ch_getting-started-with-openstack.html, will bring you onto the
same wavelength of this book. As the title of the book promises, you should not
expect a long and detailed tutorial on the installation of OpenStack. Although some
chapters provide specific details concerning the installation of the new components,
you are expected to have some basic knowledge on how it works in general so that
you can turn your focus to the advanced methods and tricks that treat the topic

at hand. This book is essentially for the novice cloud and technical architects and
the system administrators who are willing to deploy a cloud based on OpenStack
in a medium to large IT infrastructure. The book is also meant for those who have
already deployed an OpenStack environment and who are willing to discover new
features and expand their knowledge of how this technology works and how you
can integrate new incubated projects during the operational phase.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Create a new role named packtpub-os-compute-worker.json."

[xi]

www.it-ebooks.info

http://docs.openstack.org/admin-guide-cloud/content/ch_getting-started-with-openstack.html
http://docs.openstack.org/admin-guide-cloud/content/ch_getting-started-with-openstack.html
http://www.it-ebooks.info/

Preface

A block of code is set as follows:

heat template version:
description:
parameters:

paraml

type:

label:

description:

default:
paramz2:

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

input {
}
filter{
if [type] == "openstack" {
grok
patterns dir => "/opt/logstash/patterns/"
match=>["message","%{TIMESTAMP IS08601:timestamp}

% {NUMBER:response} %{AUDITLOGLEVEL:level} %{NOTSPACE:module}
\ [%${GREEDYDATA:program}\] %{GREEDYDATA:content}"]

}
Any command-line input or output is written as follows:

yum clean all
yum update -y
yum install nginx redis -y

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "To install
Ruby, you need to go from the Eclipse menu bar and navigate to Help | Install New
Software."

%j%‘\ Warnings or important notes appear in a box like this.
(:l Tips and tricks appear like this.
[xii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub. com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/56430S ColoredImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

[xiii]

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/5643OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/5643OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.it-ebooks.info/

Preface

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questionsepacktpub.com, and we will do our best to address the problem.

[xiv]

www.it-ebooks.info

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Designing OpenStack Cloud
Architecture

Owing to the widespread use of OpenStack development around the globe, several
enterprises have already started switching to a new and amazing way to gain
infrastructural resources and reduce the investment costs of their respective IT
environments. What makes this opportunity great is the open source experience that
it offers. Well, you may claim that there are several other cloud solutions that are
open source as well. What makes OpenStack unique is its exposure; it is widely open
to other open source solutions along with being a shining example of a multiport-
integrated solution with great flexibility. All that you really need is a good design to
fulfill most of your requirements and the right decisions on how and what to deploy.

If you browse the pages of this book, you might wonder what makes a laminated
cover entitled Mastering, such a great deal to you as a system administrator, cloud
architect, DevOps engineer, or any technical personnel operating on the Linux
platform. Basically, you may be working on a project, going on a vacation, building
a house, or redesigning your fancy apartment. In each of these cases, you will
always need a strategy. A Japanese military leader, Miyamoto Musashi, wrote the
following —a very impressive thought on perception and sight —in The Book of Five
Rings, Start Publishing LLC:

"In strategy, it is important to see distant things as if they were close and to take a
distanced view of close things."

Ultimately, based on what you learned from the OpenStack literature, and what

you have deployed, or practiced, you will probably ask the famous key question:
How does OpenStack work? Well, the OpenStack community is very rich in terms of
topics and tutorials —some of which you may have already tried out. It is time to go
ahead and raise the curtain on the OpenStack design and architecture.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

Basically, the goal of this chapter is to get you from where you are today to the point
where you can confidently build a private cloud based on OpenStack with your own
design choice.

At the end of this chapter, you will have a good perspective on ways to design your
project by putting the details under the microscope. You will also learn about how
OpenStack services work together and be ready for the next stage of our adventure
by starting the deployment of an OpenStack environment with best practices.

This chapter will cover the following points:

* Getting acquainted with the logical architecture of the OpenStack ecosystem
and the way its different core components interact with each other

* Learning how to design an OpenStack environment by choosing the right
core services for the right environment

* Designing the first OpenStack architecture for a large-scale environment
while bearing in mind that OpenStack can be designed in numerous ways

* Learning some best practices and the process of capacity planning for a
robust OpenStack environment

Let's start the mission by putting the spot light on the place where the core
OpenStack components come in the first place.

OpenStack - think again

Today, cloud computing is about Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS). The challenge that has been set by
the public cloud is about agility, speed, and service efficiency. Most companies

have expensive IT systems they have developed and deployed over the years,

but they are siloed. In many cases, the IT systems are struggling to respond to the
agility and speed of the public cloud services that are offered within their own
private silos in their own private data center. The traditional data center model

and siloed infrastructure might lead to unsustainability. In fact, today's enterprise
data center focuses on what it takes to become a next-generation data center. The
shift to the new data center generation has evolved the adoption of a model for the
management and provision of software. This has been accompanied by a shift from
workload isolation in the traditional model to a mixed model. With an increasing
number of users utilizing cloud services, the next-generation data centers are able to
handle multitenancy. The traditional one was limited to a single tenancy. Moreover,
enterprises today look for scaling down next to scaling up. It is a huge step in the
data center technology to shift the way of handling an entire infrastructure.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The big move to a software infrastructure has allowed administrators and operators
to deliver a fully automated infrastructure within a minute. The next-generation data
center reduces the infrastructure to a single, big, agile, scalable, and automated unit.
The end result is that the administrators will have to program the infrastructure.
This is where OpenStack comes into the picture — the next-generation data center
operating system. The ubiquitous influence of OpenStack was felt by many big
global cloud enterprises such as VMware, Cisco, Juniper, IBM, Red Hat, Rackspace,
PayPal, and EBay, to name but a few. Today, many of them are running a very large
scalable private cloud based on OpenStack in their production environment. If you
intend to be a part of a winning, innovative cloud enterprise, you should jump to the
next-generation data center and gain a valuable experience by adopting OpenStack
in your IT infrastructure.

% To read more about the success stories of many companies,
s visit https://www.openstack.org/user-stories.

Introducing the OpenStack logical
architecture

Before delving into the architecture of OpenStack, we need to refresh or fill
gaps, if they do exist, to learn more about the basic concepts and usage of each
core component.

In order to get a better understanding on how it works, it will be beneficial to first
briefly parse the things that make it work. Assuming that you have already installed
OpenStack or even deployed it in a small or medium-sized environment, let's put the
essential core components under the microscope and go a bit further by taking the
use cases and asking the question: What is the purpose of such a component?

[31]

www.it-ebooks.info

https://www.openstack.org/user-stories
http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

Keystone

From an architectural perspective, Keystone presents the simplest service in the
OpenStack composition. It is the core component that provides identity service and
it integrates functions for authentication, catalog services, and policies to register
and manage different tenants and users in the OpenStack projects. The API requests
between OpenStack services are being processed by Keystone to ensure that the right
user or service is able to utilize the requested OpenStack service. Keystone performs
numerous authentication mechanisms such as username/password as well as a
token-authentication-based system. Additionally, it is possible to integrate it with an
existing backend directory such as Lightweight Directory Access Protocol (LDAP)
and the Pluggable Authentication Module (PAM).

A similar real-life example is a city game. You can purchase a gaming day card and
profit by playing a certain number of games during a certain period of time. Before
you start gaming, you have to ask for the card to get an access to the city at the main
entrance of the city game. Every time you would like to try a new game, you must
check in at the game stage machine. This will generate a request, which is mapped to
a central authentication system to check the validity of the card and its warranty, to
profit the requested game. By analogy, the token in Keystone can be compared to the
gaming day card except that it does not diminish anything from your request. The
identity service is being considered as a central and common authentication system
that provides access to the users.

Swift

Although it was briefly claimed that Swift would be made available to the users
along with the OpenStack components, it is interesting to see how Swift has
empowered what is referred to as cloud storage. Most of the enterprises in the last
decade did not hide their fears about a critical part of the IT infrastructure — the
storage where the data is held. Thus, the purchasing of expensive hardware to be
in the safe zone had become a habit. There are always certain challenges that are
faced by storage engineers and no doubt, one of these challenges include the task
of minimizing downtime while increasing the data availability. Despite the rise of
many smart solutions for storage systems during the last few years, we still need to
make changes to the traditional way. Make it cloudy! Swift was introduced to fulfill
this mission.

We will leave the details pertaining to the Swift architecture for later, but you should
keep in mind that Swift is an object storage software, which has a number of benefits:

* No central brain indicates no Single Point Of Failure (SPOF)

* Curative indicates autorecovery in case of failure

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

* Highly scalable for large petabytes store access by scaling horizontally

* Better performance, which is achieved by spreading the load over the
storage nodes

* Inexpensive hardware can be used for redundant storage clusters

Glance

When I had my first presentation on the core components and architecture of
OpenStack with my first cloud software company, I was surprised by a question
raised by the CTO: What is the difference between Glance and Swift? Both handle
storage. Well, despite my deployment of OpenStack (Cacti and Diablo were released
at the time) and familiarity with the majority of the component's services, I found the
question quite tough to answer! As a system architect or technical designer, you may
come across the following questions: What is the difference between them? Why do
I need to integrate such a solution? On one hand, it is important to distinguish the
system interaction components so that it will be easier to troubleshoot and operate
within the production environments. On the other hand, it is important to satisfy the
needs and conditions that go beyond your IT infrastructure limits.

To alleviate any confusion, we keep it simple. Swift and Glance are storage systems.
However, the difference between the two is in what they store. Swift is designed to
be an object storage where you can keep data such as virtual disks, images, backup
archiving, and so forth, while Glance stores metadata of images. Metadata can

be information such as kernel, disk images, disk format, and so forth. Do not be
surprised that Glance was originally designed to store images. Since the first release
of OpenStack included only Nova and Swift (Austin code name October 21, 2010),
Glance was integrated with the second release (Bexar code name February 23, 2011).

The mission of Glance is to be an image registry. From this point, we can conclude
how OpenStack has paved the way to being more modular and loosely coupled core
component model. Using Glance to store virtual disk images is a possibility. From an
architectural level, including more advanced ways to query image information via
the Image Service API provided by Glance through an independent image storage
backend such as Swift brings more valuable performance and well-organized system
core services. In this way, a client (can be a user or an external service) will be able

to register a new virtual disk image, for example, to stream it from a highly scalable
and redundant store. At this level, as a technical operator, you may face another
challenge — performance. This will be discussed at the end of the book.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

Cinder

You may wonder whether there is another way to have storage in OpenStack.
Indeed, the management of the persistent block storage is being integrated into
OpenStack by using Cinder. Its main capability to present block-level storage
provides raw volumes that can be built into logical volumes in the filesystem
and mounted in the virtual machine.

Some of the features that Cinder offers are as follows:

* Volume management: This allows the creation or deletion of a volume

* Snapshot management: This allows the creation or deletion of a snapshot
of volumes

* You can attach or detach volumes from instances

* You can clone volumes

* Volume creation from snapshots is possible via Cinder

* You can copy images to volumes and vice versa
Several storage options have been proposed in the OpenStack core. Without a doubt,
you may be asked this question: What kind of storage will be the best for you? With
a decision-making process, a list of pros and cons should be made. The following
is a very simplistic table that describes the difference between the storage types in

OpenStack to avoid any confusion when choosing the storage management option
for your future architecture design:

Specification Storage Type

Object storage Block storage
Performance - OK
Database storage - OK
Restoring backup data OK OK
Setup for volume providers - OK
Persistence OK OK
Access Anywhere Within VM
Image storage OK -

It is very important to keep in mind that unlike Glance and Keystone services, Cinder
features are delivered by orchestrating volume providers through the configurable
setup driver's architectures such as IBM, NetApp, Nexenta, and VMware.

[6]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Whatever choice you have made, it is always considered good advice since nothing
is perfect. If Cinder is proven as an ideal solution or a replacement of the old nova-
volume service that existed before the Folsom release on an architectural level,

it is important to know that Cinder has organized and created a catalog of block-
based storage devices with several differing characteristics. However, it is obvious

if we consider the limitation of commodity storage redundancy and autoscaling.
Eventually, the block storage service as the main core of OpenStack can be improved
if a few gaps are filled, such as the addition of values:

* Quality of service
* Replication

* Tiering

The aforementioned Cinder specification reveals its Non-vendor-lock-in characteristic,
where it is possible to change the backend easily or perform data migration between
two different storage backends. Therefore, a better storage design architecture in a
Cinder use case will bring a third party into the scalability game. More details will be
covered in Chapter 4, Learning OpenStack Storage — Deploying the Hybrid Storage Model.
For instance, you can keep in mind that Cinder is essential for our private cloud
design, but it misses some capacity scaling features.

Nova

As you may already know, Nova is the most original core component of OpenStack.
From an architectural level, it is considered one of the most complicated components
of OpenStack.

In a nutshell, Nova runs a large number of requests, which are collaborated to
respond to a user request into running VM. Let's break down the blob image of nova
by assuming that its architecture as a distributed application needs orchestration to
carry out tasks between different components.

nova-api
The nova-api component accepts and responds to the end user and computes the

API calls. The end users or other components communicate with the OpenStack
Nova API interface to create instances via OpenStack API or EC2 API.

Nova-api initiates most of the orchestrating activities such as the running
A of an instance or the enforcement of some particular policies.

[71

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

nova-compute

The nova-compute component is primarily a worker daemon that creates and
terminates VM instances via the hypervisor's APIs (XenAPI for XenServer, Libvirt
KVM, and the VMware API for VMware).

It is important to depict how such a process works. The following steps delineate
this process:

1. Accept actions from the queue and perform system commands such as the
launching of the KVM instances to take them out when updating the state in
the database.

2. Working closely with nova-volume to override and provide iSCSI or Rados
block devices in Ceph.

. Ceph is an open source storage software platform for object, block, and
% file storage in a highly available storage environment. This will be further
= discussed in Chapter 4, Learning OpenStack Storage - Deploying the Hybrid

Storage Model.

nova-volume

The nova-volume component manages the creation, attaching, and detaching of N
volumes to compute instances (similar to Amazon's EBS).

[% Cinder is a replacement of the nova-volume service.]
nova-network

The nova-network component accepts networking tasks from the queue and
then performs these tasks to manipulate the network (such as setting up bridging
interfaces or changing the IP table rules).

[Neutron is a replacement of the nova-network service.]

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

nova-scheduler

The nova-scheduler component takes a VM instance's request from the queue

and determines where it should run (specifically which compute server host it
should run on). At an application architecture level, the term scheduling or scheduler
invokes a systematic search for the best outfit for a given infrastructure to improve
its performance.

Nova also provides console services that allow end users to access the console of
the virtual instance through a proxy such as nova-console, nova-novncproxy,
and nova-consoleauth.

By zooming out the general components of OpenStack, we find that Nova interacts
with several services such as Keystone for authentication, Glance for images, and
Horizon for the web interface. For example, the Glance interaction is central; the API
process can upload any query to Glance, while nova-compute will download images
to launch instances.

Queue

Queue provides a central hub to pass messages between daemons. This is
where information is shared between different Nova daemons by facilitating
the communication between discrete processes in an asynchronous way.

Any service can easily communicate with any other service via the APIs and queue
a service. One major advantage of the queuing system is that it can buffer a large
buffer workload. Rather than using an RPC service, a queue system can queue a
large workload and give an eventual consistency.

Database

A database stores most of the build-time and runtime state for the cloud
infrastructure, including instance types that are available for use, instances in
use, available networks, and projects. It is the second essential piece of sharing
information in all OpenStack components.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

Neutron

Neutron provides a real Network as a Service (NaaS) between interface devices that
are managed by OpenStack services such as Nova. There are various characteristics
that should be considered for Neutron:

It allows users to create their own networks and then attach server interfaces
to them

Its pluggable backend architecture lets users take advantage of the
commodity gear or vendor-supported equipment

Extensions allow additional network services, software, or hardware to be
integrated

Neutron has many core network features that are constantly growing and maturing.
Some of these features are useful for routers, virtual switches, and the SDN
networking controllers.

Starting from the Folsom release, the Quantum network service has been

replaced by a project named Neutron, which was incorporated into the
L

mainline project in the subsequent releases. The examples elaborated in
this book are based on the Havana release and later.

Neutron introduces new concepts, which includes the following:

Port: Ports in Neutron refer to the virtual switch connections. These
connections are where instances and network services attached to networks.
When attached to the subnets, the defined MAC and IP addresses of the
interfaces are plugged into them.

Networks: Neutron defines networks as isolated Layer 2 network segments.
Operators will see networks as logical switches that are implemented by the
Linux bridging tools, Open vSwitch, or some other software. Unlike physical
networks, this can be defined by either the operators or users in OpenStack.

Subnets in Neutron represent a block of IP addresses associated with a
o

network. They will be assigned to instances in an associated network.

Routers: Routers provide gateways between various networks.

Private and floating IPs: Private and floating IP addresses refer to the IP
addresses that are assigned to instances. Private IP addresses are visible
within the instance and are usually a part of a private network dedicated to
a tenant. This network allows the tenant's instances to communicate when
isolated from the other tenants.

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

° Private IP addresses are not visible to the Internet.

° Floating IPs are virtual IPs that Neutron maps instance to private IPs
via Network Access Translation (NAT). Floating IP addresses are
assigned to an instance so that they can connect to external networks
and access the Internet. They are exposed as public IPs, but the
guest's operating system has completely no idea that it was assigned
an IP address.

In Neutron's low-level orchestration of Layer 1 through Layer 3, components such
as IP addressing, subnetting, and routing can also manage high-level services. For
example, Neutron provides Load Balancing as a Service (LBaaS) utilizing HAProxy
to distribute the traffic among multiple compute node instances.

You can refer to the last updated documentation for more information
on networking in OpenStack at http: //docs.openstack.org/

networking-guide/intro networking.html.

The Neutron architecture

There are three main components of Neutron architecture that you ought to know
in order to validate your decision later with regard to the use case for a component
within the new releases of OpenStack:

* Neutron-server: It accepts the API requests and routes them to the
appropriate neutron-plugin for its action

* Neutron plugins and agents: They perform the actual work such as the
plugging in or unplugging of ports, creating networks and subnets, or IP
addressing.

Agents and plugins differ depending on the vendor technology of
% a particular cloud for the virtual and physical Cisco switches, NEC,
’ OpenFlow, OpenSwitch, Linux bridging, and so on.

* Queue: This routes messages between the neutron-server and various agents
as well as the database to store the plugin state for a particular queue

Neutron is a system that manages networks and IP addresses. OpenStack
networking ensures that the network will not be turned into a bottleneck or limiting
factor in a cloud deployment and gives users real self-service, even over their
network configurations.

[11]

www.it-ebooks.info

http://docs.openstack.org/networking-guide/intro_networking.html
http://docs.openstack.org/networking-guide/intro_networking.html
http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

Another advantage of Neutron is its capability to provide a way for organizations
to relieve stress within the network of cloud environments and to make it easier to
deliver NaaS in the cloud. It is designed to provide a plugin mechanism that will
provide an option for the network operators to enable different technologies via the
Neutron APL

It also lets its tenants create multiple private networks and control the IP addressing
on them.

As a result of the API extensions, organizations have additional control over security
and compliance policies, quality of service, monitoring, and troubleshooting,

in addition to paving the way to deploying advanced network services such as
firewalls, intrusion detection systems, or VPNs. More details about this will be
covered in Chapter 5, Implementing OpenStack Networking and Security, and

Chapter 8, Extending OpenStack — Advanced Networking Features and Deploying
Multi-tier Applications.

% Keep in mind that Neutron allows users to manage and create networks
s or connect servers and nodes to various networks.

The scalability advantage will be discussed in a later topic in the context of the
Software Defined Network (SDN) technology, which is an attraction to many
networks and administrators who seek a high-level network multitenancy.

Horizon

Horizon is the web dashboard that pools all the different pieces together from your
OpenStack ecosystem.

Horizon provides a web frontend for OpenStack services. Currently, it includes

all the OpenStack services as well as some incubated projects. It was designed as a
stateless and data-less web application —it does nothing more than initiating actions
in the OpenStack services via API calls and displaying information that OpenStack
returns to the Horizon. It does not keep any data except the session information

in its own data store. It is designed to be a reference implementation that can be
customized and extended by operators for a particular cloud. It forms the basis

for several public clouds —most notably the HP Public Cloud and at its heart, is its
extensible modular approach to construction.

Horizon is based on a series of modules called panels that define the interaction

of each service. Its modules can be enabled or disabled, depending on the service
availability of the particular cloud. In addition to this functional flexibility, Horizon
is easy to style with Cascading Style Sheets (CSS).

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Most cloud provider distributions provide a company's specific theme for their
dashboard implementation.

Gathering the pieces and building a
picture

Let's try to see how OpenStack works by chaining all the service cores covered in the
previous sections in a series of steps:

1.

A user accesses the OpenStack environment via a web interface
(HTTP/REST).

Authentication is the first action performed. This is where Keystone comes
into the picture.

A conversation is started with Keystone —"Hey, I would like to authenticate
and here are my credentials".

Keystone responds "OK, then you may authenticate and give the token" once
the credentials have been accepted

You may remember that the service catalog comes with the token as a piece
of code, which will allow you to access resources. Now you have it!

The service catalog, during its turn, will incorporate the code by responding
"Here are the resources available, so you can go through and get what you
need from your accessible list".

The service catalog is a JSON structure that exposes the resources
e available upon a token request.

You can use the following example on querying by tenant to get a list of
servers:

$ curl -v -H "X-Auth-Token:token" http://192.168.27.47:8774/v2/
tenant id/servers

A list of server details is returned on how to gain access to the servers:

{

"server": {
"adminPass": "verysecuredpassword",
"id": "Saaee3c3-12ee-7633-b32b-635489236232fbfbf",
"links": [
{

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

"href": "http://myopenstack.com/v2/openstack/
servers/5aaee3c3-12ee-7633-b32b-635489236232fbfbf",
"rel": "self™"
'
{
"href": "http://myopenstack.com/v2/openstack/
servers/5aaee3c3-12ee-7633-b32b-635489236232fbfbf",
"rel": "bookmark"

}

}

7. Typically, once authenticated, you can talk to an API node. There are
different APIs in the OpenStack ecosystem (OpenStack API and EC2 API).

8. Once we authenticate and request access, we have the following services that
will do the homework under the hood:

° Compute nodes that deal with hypervisor

° Volume services that deal with storage

° Network services that make all the connections between VLANSs and
virtual network interfaces that work and talk to each other

The next figure resumes the first blob pieces on how OpenStack works:

User
HTTP mcmceccmcmcmcmmm b e e
h
)
l - ._.I
B i s | Authentication
Hypervisor: KVM, VMware...
Compute Compute J

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9.

10.

However, how do we get these services to talk? In such cases, you should
think about the wondrous connector, the RabbitMQ queuing system.

For anyone who is non-familiar with the queuing system, we can consider an
example of a central airport:

You have booked a flight and have been assigned a specific gateway that
only you are interested in. This gateway gets you directly to your seat on the
plane. A queuing system allows you to tune in to the server or service that
you are interested in.

A queuing system takes care of issues such as; who wants to do the work?
By analogy, since everybody listens to the airport assistance speaker channel,
only one person (same passenger's destination) listens to that information
and makes it work by joining the gateway.

Now, we have this information in the queue.

If you have a look at the Python source tree, for any service, you
will see a network directory for the network code, and there will be
an api . py file for every one of these services.

Let's take an example. If you want to create an instance and implement it

in the compute node, it might say "import the nova-compute node API and
there is method /function there to create the instance". So, it will do all the
jobs of getting over the wire and spinning up the server instances and doing
the same for the appropriate node.

Another element of the picture is the schedule, which looks at the services
and claims "this is what you have as memory, CPU, disk, network, and
soon'.

When a new request comes in, the scheduler might notify "you will get from
these available resources available."

. The scheduling process in OpenStack can perform different
% algorithms such as simple, chance, and zone. An advanced way to
s do this is by deploying weight filtering by ranking the servers as
its available resources.

Using this option, the node will spin up the server while you create your own
rules. Here, you distribute your servers based on the number of processors
and how much memory you may want in your spinning servers.

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

The last piece of this picture is that we need to get the information back. So,
we have all these services that are doing something. Remember that they
have a special airport gateway. Again, our queue performs some actions, and
it sends notifications as these actions occur. They might be subscribed to find
out certain things such as whether the network is up, the server is ready, or
the server has crashed.

Provisioning a flow under the hood

It is important to understand how different services in OpenStack work together,
leading to a running virtual machine. We have already seen how a request is
processed in OpenStack via APIs. Now, we can go further and closely check

how such services and subsystems, which includes authentication, computing,
images, networks, queuing, and databases, work in tandem with performing a
complete workflow to provide an instance in OpenStack. The next series of steps
describes how service components work together once a submission of an instance
provisioning request has been done:

1.

A client enters the user credentials via Horizon, which makes the REST call
to Keystone for authentication.

The authentication request will be handled by Keystone, which generates
and sends back an authentication token. The token will be stored by
Keystone, which will be used to authenticate against the rest of the
OpenStack components by using APIs.

The action of Launch Instance in the dashboard will convert the creation of
a new instance request into an API request, which will be sent to the nova-
api service.

The nova-api service receives the authentication request and sends it for
validation and access permission to Keystone.

Keystone checks the token and sends an authentication validation, which
includes roles and permissions.

The nova-api service later creates an initial entry for an instance in the
database and contacts the queuing system via an RPC call (rpc.cast). The
call request will be sent to nova-scheduler to specify which host ID will run
the instance.

The nova-scheduler contacts the queue and subscribes the new instance
request.

The nova-scheduler performs the information gathering process from
the database to find out the appropriate host based on its weighting and
filtering algorithms.

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9. Once a host has been chosen, the nova-scheduler sends back an RPC call
(rpc.cast) to start launching an instance that remains in the queue.

10. The nova-compute contacts the queue and picks up the call issued
by the nova-scheduler. Therefore, nova-compute proceeds with the
subscription on the instance and sends an RPC call (rpc. call) in order
to get instance-related information such as the instance characteristics
(CPU, RAM, and disk) and the host ID. The RPC call remains in the queue.

11. The nova-conductor contacts the queue and picks up the call.

12. The nova-conductor contacts the queue and subscribes the new instance
request. It interrogates the database to get instance information and publish
its state in the queue.

13. The nova-compute picks the instance information from the queue and sends
an authentication token in a REST call to the glance-api to get a specific
image URI from a glance.

The image URI will be obtained by the Image ID to find the requested one
from the image repository.

14. The glance-api will verify the authentication token with Keystone.

15. Once validated, glance-api returns the image URI, including its metadata,
which specifies the location details of the image that is being scrutinized.

If the images are stored in a Swift cluster, the images will be
. requested as Swift objects via the REST calls. Keep in mind
% that it is not the job of nova-compute to fetch from the swift
L storage. Swift will interface via APIs to perform object requests.
More details about this will be covered in Chapter 4, Learning
OpenStack Storage — Deploying the Hybrid Storage Model.

16. The nova-compute sends the authentication token to a neutron-server via a
REST call to configure the network for the instance.

17. The neutron-server checks the token with Keystone.

18. Once validated, the neutron-server contacts its agents, such as the neutron-12-
agent and neutron-dhcp-agent, by submitting the request in the queue.

19. Neutron agents pick the calls from the queue and reply by sending network
information pertaining to the instance. For example, neutron-12-agent gets
the L2 configuration from Libvirt and publishes it in the queue. On the
contrary, neutron-dhcp-agent contacts dnsmasq for the IP allocation and
returns an IP reply in the queue.

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

Dnsmasq is a software that provides a network infrastructure such as the
L

20.

21.

22.

23.
24.
25.
26.

27.

28.

29.

DNS forwarder and the DHCP server.

The neutron-server collects all the network settings from the queue and
records it in the database. Therefore, it sends back an RPC call to the queue
along with all the network details.

Nova-compute contacts the queue and grabs the instance network
configuration.

Nova-compute sends the authentication token to cinder-api via a REST call to
get the volume, which will be attached to the instance.

The cinder-api checks the token with Keystone.
Once validated, the cinder-api returns the volume information to the queue.
Nova-compute contacts the queue and grabs the block storage information.

At this stage, the nova-compute executes a request to the specified
hypervisor via Libvirt to start the virtual machine.

In order to get the instance state, nova-compute sends an RPC call (rpc.
call) to nova-conductor.

The nova-conductor picks the call from the queue and replies to the queue by
mentioning the new instance state.

The polling instance state is always performed via nova-api, which consults
the database to get the state information and sends it back to the client.

Let's figure out how things can be seen by referring to the following simple
architecture diagram:

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Openstack : EC2 API :

API

Network APl Image API Volume API Compute API Scheduler API

iy A iy JARY i
] Y L0 i i

Vo v v s i i

Y

T T T
Network f Image { Volume Compute

8 =
e S B &
oee e

Expanding the picture

You may have certain limitations that are typically associated with network switches.
Network switches create a lot of virtual LANs and virtual networks that specify
whether there is a lot of input to data centers.

S
RabbitMQ Queues

Compute

Let's imagine that we have 250 compute hosts scenario. You can conclude that a
mesh of rack servers will be placed in the data center.

Now, you take the step to grow our data center, and to be geographically data-
redundant in Europe and Africa: a data center in London, Amsterdam and Tunis.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

We have a data center on each of these new locations and each of these locations
are able to communicate with each other. At this point, a new terminology is
introduced — cell concept.

To scale this out even further, we will take into consideration the entire system. We
will take just the worker nodes and put them in other cells.

Another special scheduler works as a top-level cell and enforces the request into the
child cell. Now, the child cells can do the work, and they can worry about VLAN and
network issues.

The cells can share certain pieces of infrastructure, such as the database,
authentication service Keystone, and some of the Glance image services. This is
depicted in the following diagram:

RabbitMQ Queues

. More information about the concept of cells and configuration setup in
% OpenStack can be found for Havana release at the following reference:
L http://docs.openstack.org/havana/config-reference/
content/section compute-cells.html.

[20]

www.it-ebooks.info

http://docs.openstack.org/havana/config-reference/content/section_compute-cells.html
http://docs.openstack.org/havana/config-reference/content/section_compute-cells.html
http://www.it-ebooks.info/

Chapter 1

A sample architecture setup

Let us first go through the deployment process, which is explained in the following
sections. Bear in mind that this is not a unique architecture that can be deployed.

Deployment

Deployment is a huge step in distinguishing all the OpenStack components that
were covered previously. It confirms your understanding of how to start designing a
complete OpenStack environment. Of course, assuming the versatility and flexibility
of such a cloud management platform, OpenStack offers several possibilities that
might be considered an advantage. However, on the other hand, you may face a
challenge of taking the right design decision that suits your needs.

Basically, what you should consider in the first place is the responsibility in the
Cloud. Depending on your cloud computing mission, it is essential to know what a
coordinating laaS is. The following are the use cases:

* Cloud service brokerage: This is a facilitating intermediary role of Cloud
service consumptions for several providers, including maintenance

* Cloud service provider: This provides XaaS to private instances

* Self cloud service: This provides XaaS with its own IT for private usage

Apart from the knowledge of the aforementioned cloud service model providers,
there are a few master keys that you should take into account in order to bring a
well-defined architecture to a good basis that is ready to be deployed.

Though the system architecture design has evolved and is accompanied by the
adoption of several methodology frameworks, many enterprises have successfully
deployed OpenStack environments by going through a 3D process —a conceptual
model design, logical model design, and physical model design.

It might be obvious that complexity increases from the conceptual to the logical
design and from the logical to the physical design.

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

The conceptual model design

As the first conceptual phase, we will have a high-level reflection on what we will
need from certain generic classes from the OpenStack architecture:

Class Role
Compute Stores virtual machine images
Provides a user interface
Image Stores disk files
Provides a user interface
Object storage Provides a user interface
Block storage Provides volumes
Provides a user interface
Network Provides network connectivity
Provides a user interface
Identity Provides authentication
Dashboard Graphical user interface

Let's map the generic basic classes in the following simplified diagram:

Graphical User Interface

Network connectivity Store Images Image storage
as Objects

Plersistent Storag% f Object Storage for VMs

Authentication

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Keep in mind that the illustrated diagram will be refined over and over again since
we will aim to integrate more services within our first basic design. In other words,
we are following an incremental design approach within which we should exploit the
flexibility of the OpenStack architecture.

At this level, we can have a vision and direction of the main goal without worrying
about the details.

The logical model design

Based on the conceptual reflection phase, we are ready to construct the logical
design. Most probably, you have a good idea about different OpenStack core
components, which will be the basis of the formulation of the logical design that is
done by laying down their logical representations.

Even though we have already taken the core of the OpenStack services component
by component, you may need to map each of them to a logical solution within the
complete design.

To do so, we will start by outlining the relations and dependencies between the
services core of OpenStack. Most importantly, we aim to delve into the architectural
level by keeping the details for the end. Thus, we will take into account the
repartition of the OpenStack services between the new package services — the cloud
controller and the compute node. You may wonder why such a consideration goes
through a physical design classification. However, seeing the cloud controller and
compute nodes as simple packages that encapsulate a bunch of OpenStack services,
will help you refine your design at an early stage. Furthermore, this approach will
plan in advance further high availability and scalability features, which allow you to
introduce them later in more detail.

Chapter 3, Learning OpenStack Clustering — Cloud Controllers and
% Compute Nodes, describes in depth how to distribute the OpenStack
’ services between cloud controllers and compute nodes.

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

Thus, the physical model design will be elaborated based on the previous theoretical
phases by assigning parameters and values to our design. Let's start with our first

logical iteration:

| ControllerNode 2

mysql: wsrep
Pacemaker State: Active
Cluster neutron: agent
State: Standby

nova-api

glance-api

keystone-api
neutron-api

cinder-api

‘ Controller Node1

HAProxy state: Active

mysql: wsrep
Pacemaker state: Active
Cluster neutron: agent

State: Active

nova-api

glance-api

keystone-api

neutron-api

cinder-api

.

I/

N
-

Obviously, in a highly available setup, we should achieve a degree of redundancy
in each service within OpenStack. You may wonder about the critical OpenStack
services claimed in the first part of this chapter —the database and message queue.
Why can't they be separately clustered or packaged on their own? This is a pertinent
question. Remember that we are still in the second logical phase where we try to dive
slowly and softly into the infrastructure without getting into the details. Besides, we
keep on going from general to specific models, where we focus more on the generic
details. Decoupling RabbitMQ or MySQL from now on may lead to your design
being overlooked. Alternatively, you may risk skipping other generic design topics.
On the other hand, preparing a generic logical design will help you to not stick to
just one possible combination, since the future physical designs will rely on it.

What about storage
The previous logical figure includes several essentials solutions for a
high-scalable and redundant OpenStack environment such as virtual IP

(VIP), HAProxy, and Pacemaker. The aforementioned technologies will
be discussed in more detail in Chapter 6, Openstack HA and Failover.

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Compute nodes are relatively simple as they are intended just to run the virtual
machine's workload. In order to manage the VMs, the nova-compute service can be
assigned for each compute node. Besides, we should not forget that the compute
nodes will not be isolated; a Neutron agent and an optional Ceilometer compute
agent may run this node.

What about storage?

You should now have a deeper understanding of the storage types within
OpenStack —Swift and Cinder.

However, we did not cover a third-party software-defined storage called Ceph,
which may combine or replace either or both of Swift and Cinder.

More details will be covered in Chapter 4, Learning OpenStack Storage — Deploying the
Hybrid Storage Model. For now, we will design from a basic point where we have to
decide how Cinder and/or Swift will be a part of our logical design.

Ultimately, a storage system becomes more complicated when it faces an exponential
growth in the amount of data. Thus, the designing of your storage system is one of
the critical steps that is required for a robust architecture.

Depending on your OpenStack business size environment, how much data do you
need to store? Will your future PaaS construct a wide range of applications that run
heavy-analysis data? What about the planned Environment as a Service (EaaS)
model? Developers will need to incrementally back up their virtual machine's
snapshots. We need persistent storage.

Don't put all your eggs in one basket. This is why we will include Cinder and Swift in
the mission. Many thinkers will ask the following question: If one can be satisfied by
ephemeral storage, why offer block storage? To answer this question, you may think
about ephemeral storage as the place where the end user will not be able to access
the virtual disk associated with its VM when it is terminated. Ephemeral storage
should mainly be used in production that takes place in a high-scale environment,
where users are actively concerned about their data, VM, or application. If you plan
that your storage design should be 100 percent persistent, backing up everything
wisely will make you feel better. This helps you figure out the best way to store data
that grows exponentially by using specific techniques that allow them to be made
available at any time. Remember that the current design applies for medium to

large infrastructures. Ephemeral storage can also be a choice for certain users, for
example, when they consider building a test environment. Considering the same case
for Swift, we have claimed previously that the object storage might be used to store
machine images, but when is this the case?

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

Simply, when you provide the extra hardware that fulfils certain Swift requirements:
replication and redundancy.

Running a wide production environment while storing machine images on the local
file system is not really good practice. First, the image can be accessed by different
services and requested by thousands of users at a time. No wonder the controller

is already exhausted by the forwarding and routing of the requests between the
different APIs in addition to the computation of each resources through disk I/O,
memory, and CPU. Each request will cause performance degradation, but it will not
fail! Keeping an image in a filesystem under a heavy load will certainly bring the
controller to a high latency and it may fail.

Henceforth, we might consider loosely coupled models, where the storage with a
specific performance is considered a best fit for the production environment.

Thus, Swift will be used to store images, while Cinder will be used for persistent
volumes for virtual machines (check the Swift controller node):

ControllerNode

Obviously, Cinder LVM does not provide any redundancy capability between the
Cinder LVM nodes. Losing the data in a Cinder LVM node is a disaster. You may
want to perform a backup for each node. This can be helpful, but it will be a very
tedious task! Let's design for resiliency. We have put what's necessary on the table.
Now, what we need is a glue!

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Networking

One of the most complicated system designing steps is the part concerning the
network! Now, let's look under the hood to see how all the different services that
were defined previously should be connected.

The logical networking design

OpenStack shows a wide range of networking configurations that vary between

the basic and complicated. Terms such as Open vSwitch, Neutron coupled with the
VLAN segmentation, and VMware NSX with Neutron are not intuitively obvious
from their appearance to be able to be implemented without fetching their use case in
our design. Thus, this important step implies that you may differ between different
network topologies because of the reasons behind why every choice was made and
why it may work for a given use case.

OpenStack has moved from simplistic network features to complicated features, but
of course there is a reason —more flexibility! This is why OpenStack is here. It brings
as much flexibility as it can! Without taking any random network-related decisions,
let's see which network modes are available. We will keep on filtering until we hit
the first correct target topology:

Network mode Network specification Implementation
Nova-network Flat network design without | Nova-network FlatDHCP
VMs grouping or isolation
Multiple tenants and VMs Nova-network
Predefined fixed private IP VLANManager
space size
Neutron Multiple tenants and VMs Neutron VLAN

Predefined switches and
routers configuration

Increased tenants and VM Neutron GRE
groups

Lower performance

The preceding table shows a simple differentiation between two different logical
network designs for OpenStack. Every mode shows its own requirements, which is
very important and should be taken into consideration before the deployment.

Arguing about our example choice, since we aim to deploy a very flexible large-scale
environment, we will toggle the Neutron choice for networking management instead
of the nova-network.

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

Note that it is also possible to keep on going with nova-network, but you have to
worry about SPOF. Since the nova-network service can run on a single node (cloud
controller) next to other network services such as DHCP and DN, it is required in
this case to implement your nova-network service in a multihost networking model,
where cloning such a service in every compute node will save you from a bottleneck
scenario. In addition, the choice was made for Neutron, since we started from a
basic network deployment. We will cover more advanced features in the subsequent
chapters of this book.

We would like to exploit a major advantage of Neutron compared to the nova-
network, which is the virtualization of layers 2 and 3 of the OSI network model.

Remember that Neutron will enable us to support more subnets per private network
segment. Based on Open vSwitch, you will discover that Neutron is becoming a vast
network technology.

Let's see how we can expose our logical network design. For performance reasons, it
is highly recommended to implement a topology that can handle different types of
traffic by using separated logical networks.

In this way, as your network grows, it will still be manageable in case a sudden
bottleneck or an unexpected failure affects a segment.

Network layout

Let us look at the different networks that are needed to operate the OpenStack
environment.

The external network
The features of an external or a public network are as follows:

* Global connectivity

* It performs SNAT from the VM instances that run on the compute node to
the Internet for floating IPs

SNAT refers to Source Network Address Translation. It allows traffic
from a private network to go out to the Internet. OpenStack supports
%;\ SNAT through its Neutron APIs for routers. More information can be
’ found athttp://en.wikipedia.org/wiki/Network address
translation.

[28]

www.it-ebooks.info

http://en.wikipedia.org/wiki/Network_address_translation
http://en.wikipedia.org/wiki/Network_address_translation
http://www.it-ebooks.info/

Chapter 1

* It provides connection to the controller nodes in order to access the
OpenStack interfaces

* It provides virtual IPs (VIPs) for public endpoints that are used to connect
the OpenStack services APIs

A VIP is an IP address that is shared among several servers. It involves a

one-to-many mapping of the IP addresses. Its main purpose is to provide
’ a redundancy for the attached servers and VIPs.

* It provides a connection to the external services that need to be public, such
as an access to the Zabbix monitoring system

_ While using VLANS, by tagging networks and combining multiple
% networks into one Network Interface Card (NIC), you can optionally
= leave the public network untagged for that NIC to make the access to the
OpenStack dashboard and the public OpenStack API endpoints simple.

The storage network

The main feature of a storage network is that it separates the storage traffic by means
of a VLAN isolation.

The management network

An orchestrator node was not described previously since it is not a native OpenStack
service. Different nodes need to get IP addresses, the DNS, and the DHCP service
where the Orchestrator node comes into play. You should also keep in mind that in
a large environment, you will need a node provisioning technique which your nodes
will be configured to boot, by using PXE and TFTP.

Thus, the management network will act as an Orchestrator data network that
provides the following:

* Administrative networking tasks

* OpenStack services communication

* Separate HA traffic

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

. For alarge-scale OpenStack environment, you can use a dedicated
network for most of the critical internal OpenStack communication,
" such as the RabbitMQ messaging and the DB queries, by separating the
messaging and database into separate cluster nodes.

The internal VM traffic

The features of the internal virtual machine network are as follows:

e Private network between virtual machines
e Nonroutable IPs

¢ (Closed network between the virtual machines and the network L3 nodes,
routing to the Internet, and the floating IPs backwards to the VMs

For the sake of simplicity, we will not go into the details of, for instance, the Neutron
VLAN segmentation.

The next step is to validate our network design in a simple diagram:

Controller Node(s)
Storage Node (s)
Network Node
ManagementNode

Compute Node(s)

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The physical model design

Finally, we will bring our logical design to life in the form of a physical design.

At this stage, we need to assign parameters. The physical design encloses all the
components that we dealt with previously in the logical design. Of course, you will
appreciate how such an escalation in the design breaks down the complexity of the
OpenStack environment and helps us distinguish between the types of hardware
specifications that you will need.

We can start with a limited number of servers just to set the first deployment of our
environment effectively. First, we will consider a small production environment
that is highly scalable and extensible. This is what we have covered previously —
expecting a sudden growth and being ready for an exponentially increasing number
of requests to service instances.

You have to consider the fact that the hardware commodity selection will accomplish
the mission of our massive scalable architecture.

Estimating your hardware capabilities

Since the architecture is being designed to scale horizontally, a commodity cost-
effective hardware can be used.

In order to expect our infrastructure economy, it would be great to make some basic
hardware calculations for the first estimation of our exact requirements.

Considering the possibility of experiencing contentions for resources such as CPU,
RAM, network, and disk, you cannot wait for a particular physical component to fail
before you take corrective action, which might be more complicated.

Let's inspect a real-life example of the impact of underestimating capacity planning.
A Cloud-hosting company set up two medium servers, one for an e-mail server,
and the other to host the official website. The company, which is one of our several
clients, grew in a few months and eventually, we ran out of disk space. We expected
such an issue to get resolved in a few hours, but it took days. The problem was

that all the parties did not make proper use of the "cloud", which points to the "on
demand" way. The issue had been serious for both the parties. The e-mail server,
which is one of the most critical aspects of a company, had been overloaded and the
Mean Time To Repair (MTTR) was increasing exponentially. The Cloud provider
did not expect this!

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

Well, it might be ridiculous to write down your SLA report and describe in your
incident management section the reason —we did not expect such growth! Later,
after redeploying the virtual machine with more disk space, the e-mail server would
irritate everyone in the company with a message saying, "We can authenticate

but our e-mails are not being sent! They are queued!" The other guy claimed,
"Finally, I have sent an e-mail 2 hours ago and I got a phone call that is received."
Unfortunately, the cloud paradigm was designed to avoid such scenarios and

bring more success factors that can be achieved by hosting providers. Capacity
management is considered a day-to-day responsibility where you have to stay
updated with regard to software or hardware upgrades.

Through a continuous monitoring process of service consumption, you will be able
to reduce the IT risk and provide a quick response to the customer's needs.

From your first hardware deployment, keep running your capacity management
processes by looping through tuning, monitoring, and analysis.

The next stop will take into account your tuned parameters and introduce within
your hardware/software the right change, which involves a synergy of the change
management process.

Let's make our first calculation based on certain requirements. We aim to run 200
VMs in our OpenStack environment.

CPU calculations
The following are the calculation-related assumptions:

e 200 virtual machines

* No CPU oversubscribing

. Processor oversubscription is defined as the total number of CPUs that
& are assigned to all the powered-on virtual machines multiplied by the
e hardware CPU core. If this number is greater than the GHz purchased,
the environment is said to be oversubscribed.

* Number of GHz per core: 2.6 GHz

* Hyper-threading supported: use factor 2

* Number of GHz per VM (AVG compute units) = 2 GHz
* Number of GHz per VM (MAX compute units) = 16 GHz
* Intel Xeon E5-2648L v2 core CPU =10

* CPU sockets per server =2

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Number of CPU cores per virtual machine:
16 /(2.6 *2) =3.076

We need to assign at least 3 CPU cores per VM.

The formula for its calculation will be as follows: max GHz /(number of GHz
per core x 1.3 for hyper-threading)

If your CPU does not support hyper-threading, you should multiply the
e

number of GHz per core by 1.3 factors instead of 2.

Total number of CPU cores:
(200 *2) /2.6 = 153.846

We have 153 CPU cores for 200 VMs.

The formula for calculation will be as follows:
(number of VMs x number of GHz per VM) / number of GHz per core

Number of core CPU sockets:
153/10=15.3

We will need 15 sockets.

The formula for calculation will be as follows:
Total number of sockets / number of sockets per server
Number of socket servers:
15/2=75
You will need around 7 to 8 dual socket servers.
The formula for calculation will be as follows:
Total number of sockets / Number of sockets per server

The number of virtual machines per server with 8 dual socket servers will be
calculated as follows:

200/8 =25
The formula for calculation will be as follows:
Number of virtual machines / number of servers

We can deploy 25 virtual machines per server.

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

Memory calculations

Based on the previous example, 25 VMs can be deployed per compute node. Memory
sizing is also important to avoid making unreasonable resource allocations.

Let's make an assumption list:

* 2GBRAM per VM
* 8 GB RAM maximum dynamic allocation per VM
* Compute nodes supporting slots of: 2, 4, 8, and 16 GB sticks

Keep in mind that it always depends on your budget and needs
* RAM available per compute node:
8 *25=200GB

Considering the number of sticks supported by your server, you will need
around 256 GB installed. Therefore, the total number of RAM sticks installed
can be calculated in the following way:

256/16 =16
The formula for calculation is as follows:

Total available RAM / MAX Available RAM-Stick size

The network calculations

To fulfill the plans that were drawn for the network previously, we need to
achieve the best performance and networking experience. Let's have a look at our
assumptions:

* 200 Mbits/second is needed per VM

* Minimum network latency

To do this, it might be possible to serve our VMs by using a 10 GB link for each
server, which will give:

10000 Mbits/second / 25V Ms = 400 Mbits/second

This is a very satisfying value. We need to consider another factor —highly available
network architecture. Thus, an alternative is using two data switches with a
minimum of 24 ports for data.

Thinking about growth from now, two 48-port switches will be in place.

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

What about the growth of the rack size? In this case, you should think about

the example of switch aggregation that uses the Virtual Link Trunking (VLT)
technology between the switches in the aggregation. This feature allows each server
rack to divide their links between the pair of switches to achieve a powerful active-
active forwarding while using the full bandwidth capability with no requirement for
a spanning tree.

VLT is a layer 2 link aggregation protocol between the servers that
are connected to the switches, offering a redundant, load-balancing
g connection to the core network and replacing the spanning-tree protocol.

Storage calculations

Considering the previous example, you need to plan for an initial storage capacity
per server that will serve 25 VMs each.

Let's make the following assumptions:

* The usage of ephemeral storage for a local drive for the VM
* 100 GB for storage for each VM's drive

* The usage of persistent storage for remote attaching volumes to VMs

A simple calculation we provide for 200 VMs a space of 200*100 = 20 TB of
local storage.

You can assign 250 GB of persistent storage per VM to have 200*200 = 40 TB of
persistent storage.

Therefore, we can conclude how much storage should be installed by the server
serving 20 VMs 150*25 = 3.5 TB of storage on the server.

If you plan to include object storage as we mentioned earlier, we can assume that we
will need 25 TB of object storage.

Most probably, you have an idea about the replication of object storage in
OpenStack, which implies the usage of three times the required space for replication.

In other words, you should consider that the planning of X TB for object storage will
be multiplied by three automatically based on our assumption; 25*3 = 75 TB.

Also, if you consider an object storage based on zoning, you will have to
accommodate at least five times the needed space. This means; 25 *5 = 125 TB.

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing OpenStack Cloud Architecture

Other considerations, such as the best storage performance using SSD, can be useful
for a better throughput where you can invest more boxes to get an increased IOPS.

For example, working with SSD with 20K IOPS installed in a server with eight slot
drives will bring you:

(20K *8) /25 = 6.4 K Read IOPS and 3.2K Write IOPS

That is not bad for a production starter!

Best practices

What about best practices? Is it just a theory? Does anyone adhere to such formulas?
Well, let's bring some best practices under the microscope by exposing the
OpenStack design flavor.

In a typical OpenStack production environment, the minimum requirement for
disk space per compute node is 300 GB with a minimum RAM of 128 GB and a
dual 8-core CPUs.

Let's imagine a scenario where, due to budget limitations, you start your first
compute node with costly hardware that has a 600 GB disk space, 16-core CPUs,
and 256 GB of RAM.

Assuming that your OpenStack environment continues to grow, you may decide
to purchase more hardware —a big one at an incredible price! A second compute
instance is placed to scale up.

Shortly after this, you may find out that the demand is increasing. You may start
splitting requests into different compute nodes but keep on continuing scaling up
with the hardware. At some point, you will be alerted to reaching your budget limit!

There are certainly times when the best practices aren't in fact the best for your
design. The previous example illustrated a commonly overlooked requirement
for the OpenStack deployment.

If the minimal hardware requirement is strictly followed, it may result in an
exponential cost with regard to the hardware expenses, especially for new
project starters.

Thus, you may choose what exactly works for you and consider the constraints that
exist in your environment.

Keep in mind that the best practices are a user manual or a guideline; apply them
when you find what you need to be deployed and how it should be set up.

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

On the other hand, do not stick to values, but stick to rules. Let's bring the previous
example under the microscope again—scaling up shows more risk that may lead to
failure than scaling out or horizontally. The reason behind such a design is to allow
for a fast scale of transactions at the cost of a duplicated compute functionality and
smaller systems at a lower cost.

Transactions and requests in the compute node may grow tremendously in a
short time to a point that a single big compute node with 16 core CPUs starts
failing performance wise, while a few small compute nodes with 4 core CPUs
can proceed to complete the job successfully.

Summary

In this chapter, we learned about the design characteristics of OpenStack and

the core components of such an ecosystem. We have also highlighted the design
considerations around OpenStack and discussed the different possibilities of
extending its functionalities. Now, we have a good starting point for the purpose
of bringing the other incubated projects into production. You may notice that
our first basic design covers most of the critical issues that one can face during
the production. In addition, it is important to note that this first chapter might be
considered as a main guideline for the next parts of this book. The next chapters
will treat each concept and technology solution cited in this chapter in more detail
by expanding the first basic design. Thus, the next chapter will take you from
this generic architecture overview theory to a practical stage. Basically, you will
learn how to deploy and expand what was designed by adopting an efficient
infrastructure deployment approach — the DevOps style.

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack —
DevOps and OpenStack
Dual Deal

"Besides black art, there is only automation and mechanization."
— Federico Garcia Lorca

Deploying an OpenStack environment based on the profiled design, as shown in
the previous chapter, is not simple. Although we created our design by taking care
of several aspects related to scalability and performance, we still have to make it
real. If you are still looking at OpenStack as a single block system, you should take
a step back and recheck what was explained in Chapter 1, Designing OpenStack Cloud
Architecture.

Furthermore, in the introductory section of this book, we covered the role of
OpenStack in the next generation of datacenters. The infrastructure has now
become programmable through APIs. However, a large-scale infrastructure used
by cloud providers needs a very different approach in order to set it up with a few
thousand servers.

In our case, deploying and operating the OpenStack Cloud is not as simple as you
might think. Thus, you need some fun. You need to make any operational task easier
or, in other words, automated.

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

In this chapter, we will cover new topics about the ways to deploy OpenStack
and start an excursion of the production day from which you will gain new best
practices. The next part will cover the following points:

* Learning what the DevOps movement is and how it can be adopted in
the cloud

* Knowing how to see your infrastructure as code and how to maintain it

* Getting closer to the DevOps way by including configuration management
aspects in your cloud

* Making your OpenStack environment design deployable via automation

* Discovering and starting your first test deployment using Chef

DevOps in a nutshell

The term DevOps is a conjunction of development (software developers) and
operations (manage and put software into production). Many IT organizations have
started to adopt such a concept, but the question is how and what? Is it a job? Is it a
process or a part of ITIL best practices?

DevOps is a development and operations compound, which basically defines a
methodology of software development. It describes practices that streamline

the software delivery process. This is not all. In fact, it is more about raising
communication and integration between developments, operators (including
administrators), and quality assurance. The essence of the DevOps movement is in
the benefits of collaboration. Different disciplines can relate to DevOps and bring
their experiences and skills together under the DevOps label to build a cover of
shared values.

So, we agree that this is a methodology that puts several disciplines on the same
wave length as shown in the following figure:

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

This new movement is intended to resolve the conflict between developers and
operators. Delivering a new release affects the production systems that put different
teams in a change conflict. DevOps fills the gap and optimizes each side focus.

[DevOps is neither a toolkit nor a job; it is the role of synergy.]

Let's see how DevOps can incubate a cloud project.

DevOps and cloud — everyone is coding

Let's bring down the cloud architecture's layers under the scope and see what we
have. Basically, we have Software as a Service (SaaS), which operates at all layers
of the IT stack. Then comes Platform as a Service (PaaS), where databases and
application containers are delivered on demand to reach the bottom, where we find
Infrastructure as a Service (IaaS) delivering on-demand resources, such as virtual
machines, networks, and storage. All these layers form complete, basic stacks of the
cloud. You should think about how each layer of the cloud should be developed and
implemented.

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

Obviously, layered dependency relies on the ability to create full stacks and deliver
them under a request of simple steps. Remember that we are talking about a large
scalable environment! The amazing switch to bigger environments nowadays is to
simplify everything as much as possible. System architecture and software design
are becoming more and more complicated. Every new release of software affords
new functions and new configurations. Then, you are asked to integrate the new
software in a particular platform where somehow, sufficient documentation about
requirements or troubleshooting is missing! You may ask yourself questions such as:
Did something change? What kind of change? To which person should we assign a
ticket to fix it? What if it just does not work? According to your operational team, the
software needs to be updated often in order to apply the new functions. The update
might happen every time you get that e-mail asking you to update the software.
You may start to wonder whether your operational team will be happy about this
announcement, contrary to the software provider who sent the e-mail with the
header; "we are happy to announce the release of the new version of our software;
please push the button."

Let's take a serious example that crystallizes this situation. A company's operational
team was extremely happy about purchasing a new storage appliance that worked
well on redundancy. During the first few months, everyone was happy; nothing was
broken! It worked like a charm!

When the day came to change the charm to a true headache, the storage system
failed to fail over. Both nodes stopped working. No one could access any data! In
spite of the existence of a backup somewhere else, the operational team did not like
the "was that highly available?" part. After a long night of investigation, the error

of causing the HA to fail was concluded from the log files: there was an appliance
system update! The previous version was somehow automatically updated and
broke the HA function in the active node. The update was propagated to the passive
one. Unfortunately, the active version decided to fail over and tackle the cluster that
was passive. However, that did not work. It was as if there was a bug somewhere in
the code of the previous release!

What about if you are running similar solutions for other systems? Everything is
running software to keep it running! In this case, it is wise to stop for a while and ask
yourself questions such as this: What is missing? Shall I hire more people for system
maintenance and troubleshooting? Obviously, if you take a look at the previous
example, you will probably notice that the owner of the hardware does not really
own it!

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The simple reason is that being dependent on external parties will affect your
infrastructure efficiency. Well, you may ask a pertinent question: Shall I rewrite

the software appliance by myself? Let's reformulate the question: Shall I write the
code? The answer, almost always, is yes! It is an ambiguous answer, right? Let's
keep using examples in order to clear out this fogginess. We talked about DevOps,
the synergetic point between developers and operational guys. Everything is
communicated between them thanks to the magic of DevOps. Remember that it

is our goal to simplify things as much as possible! Administrating and deploying

a large infrastructure would not be possible without adopting a new philosophy:
Infrastructure as code. At this point, we bring in another aspect of the DevOps style:
we see our machines as pieces of code! In fact, we have now assigned the main tasks
of DevOps.

Where everything will be seen as code, it might be possible to model a given
infrastructure as modules of code. What you need to do is just abstract, design,
implement, and deploy the infrastructure.

Furthermore, in such a paradigm, it will be essential to adhere to the same discipline
as an infrastructure developer as compared to a software developer.

Without doubt, these terms are quite misty at the first glance. For this reason, you
should ask this question related to our main topic about OpenStack: if infrastructure
as code is so important for a well-organized infrastructure deployment, what is the
case with OpenStack? The answer to this question is relatively simple: developers,
network, and compute engineers and operators are working alongside each other to
develop OpenStack Cloud that will run our next generation data center. This is the
DevOps spirit.

DevOpsing OpenStack

OpenStack is an open source project, and its code is extended, modified, and fixed
in every release. Of course, it is not your primary mission to check the code and
dive into its different modules and functions. This is not our goal! What can we do
with DevOps, then? Eventually, we will "DevOps" the code that makes the code
run! As you might have noticed, a key measure of the success of a DevOps story is
automation. Everything in a given infrastructure must be automated!

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

Breaking down the OpenStack pieces
Let's gather what we covered previously and signal a few steps towards our first
OpenStack deployment:
* Break down the OpenStack infrastructure into independent and
reusable services
* Integrate the services in such a way that you can provide the expected
functionalities in the OpenStack environment.

It is obvious that OpenStack includes many services, as discussed in Chapter 1,
Designing OpenStack Cloud Architecture. What we need to do is see these services
as packages of code in our "infrastructure as code" experience. The next step will
investigate how to integrate the services and deploy them via automation.

Starting to deploy the services that are seen as code is similar to writing a web
application or some software. Here are important points you should not ignore
during the entire deployment process:

* Simplify and modularize the OpenStack services

* Integrate OpenStack services to use other services

* Compose OpenStack services as building blocks by accomplishing a
complete integration between systems

* Facilitate the modification and improvement of services when demanded
* Use the right tool to build the services
* Be sure that the services provide the same results with the same inputs
* Switch your service vision from how to do it to what we want to do
* Details comes later; focus on the function of the service first
As an infrastructure developer, you will start building and running the entire

infrastructure on which all systems, either being tested or in production in a system
management platform, are operating.

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

In fact, many system-management tools are intensely used nowadays due to their
efficiency of deployment. In other words, there is need for automation!

You have probably used some of the automation tools, such as Chef, Puppet, Salt,
Ansible, and many more. Before we go through them, we need to create a succinct,
professional code-management step.

Making the infrastructure deployment
professional

Ultimately, the code that abstracts, models, and builds the OpenStack infrastructure
is committed to source code management. Most likely, we reach a point where

we shift our OpenStack infrastructure from a code base to a redeployable one by
following the latest software development best practices.

At this stage, you should be aware of the quality of your OpenStack infrastructure
deployment, which roughly depends on the quality of the code that describes it.

Maintaining the code needs more attention in order to have a bug-free environment
when it is delivered as a final release. We will consider the "bug" term in an
infrastructure development context as harmful and functional to the system.

It is important to highlight a critical point that you should keep in mind during all
deployment stages: automated systems are not able to understand human error
when it is propagated to all pieces of your infrastructure. This is essential, and

there is no way to ignore it. The same way is applicable to traditional software
development discipline. You'll have to go through an ensemble of phases and cycles
using agile methodologies to end up with a final release that is a normally bug-free
software version in production.

Remember the example given previously? Surprises do happen! However, if an
error occurs in a small corner of a specific system and needs to be fixed in that
specific independent system, it might not be the same when considering the
automation of a large infrastructure.

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

On the other hand, if mistakes cannot be totally eradicated at the first stage, you
should think about introducing more flexibility into your systems by allowing
wise changes without exaggeration. The code's life management is shown in the
following figure:

Source Repository
Specify environment,

Production configuration and code
Monitor infrastructure . automation.

Feedback and Refine E

Build

Write test cases.
Develop testcases.

frastructure (r

~
-

¥

Code Lifecycle
Management

Staging \

Testlastinfrastructure
code

in staging environment.

Integration testing
Integrate infrastructure
Package Repository

Bring code to package
repository ready to deploy
| production environment.

fortesting

Changes can be scary — very scary indeed! To handle changes, it is recommended
that you:

* Keep track and monitor the changes at every stage

* Flex the code and make it easy to change

* Refactor when it becomes difficult to change

* Test, test, and test
Keep checking every point that has been described previously till you start to get

more confident that your OpenStack infrastructure is being conducted by code that
won't break.

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Bringing OpenStack to the chain

To keep the OpenStack environment working with a minimum rate of surprises,
ensure that its infrastructure code delivers the functionalities that are required.

Beyond these considerations, we will put the OpenStack deployment in a toolchain,
where it will inform you about how we will conduct the infrastructure development
from the test stage to the production stage. Underpinning every tool selection must
be the purpose of your testing endeavors, and it will also help you ensure that you
build the right thing.

Continuous integration and delivery

Let's see how continuous integration can be applied to OpenStack. Whatever we
use for system management tools or automation code will be kept as a standard
and basic topology, as shown in the next model, where the following requirements
are met:

* SMTA can be any System Management Tool Artifact, such as Chef
cookbook, Puppet manifest, Ansible playbook, or juju charms.

* VCS or Version Control System stores the previous artifacts that are
built continuously with a continuous integration server. Git can be a good
outfit for our VCS. Alternatively, you can use other systems, such as CVS,
Subversion, Bazaar, or any other system that you are most familiar with.

* Jenkins is a perfect tool that listens to changes in version control and
makes the continuous integration testing automated in production
clones for test purposes.

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

Take a look at the model:

Continuous Integration/Delivery
OpenStack Production1

A\l
\

q/ = E \

= -

O = La)—

vCs Infrastructure , |
iy Shared Test Integration & Staging

(chef Environment N
cookbooks, 0
e — ¢ 0
ﬁ manifests...) E

OpenStack Producuon 2

SMTA (chef-server,
puppet-master)

‘ Automation
‘

The proposed topology for infrastructure as code consists of infrastructure
configuration files (Chef cookbooks, Puppet artifacts, and Vagrant files) that are
recorded in a version control system and are built continuously by the means of a
continuous integration (CI) server (Jenkins, in our case). Infrastructure configuration
files can be used to set up a unit test environment (a virtual environment using
Vagrant, for example) and makes use of any system-management tool to provision
the infrastructure (Chef, Puppet, and so on). The CI server keeps listening to changes
in version control and automatically propagates any new versions to be tested, and
then it listens to target environments in production.

_ Vagrant allows you to build a virtual environment very easily; it is based
on Oracle VirtualBox (https://www.virtualbox.org/) to run virtual
L= machines, so you will need these before moving on with the installation

in your test environment.

[48]

www.it-ebooks.info

https://www.virtualbox.org/
http://www.it-ebooks.info/

Chapter 2

Using such model designs could make our development and integration code
infrastructure more valuable. Obviously, the previous OpenStack toolchain
highlights the test environment before moving on to production, which is normal!
However, you should give a lot of importance to, and care a good deal about, the
testing stage, although this might be a very time-consuming task.

Especially in our case, with infrastructure code within OpenStack, things can be
difficult for complicated and dependent systems. This makes it imperative to ensure
an automated and consistent testing of the infrastructure code.

The best way to do this is to keep testing thoroughly in a repeated way till you gain
confidence about your code. When you do, introducing changes to your code when
it's needed shouldn't be an issue.

Let's keep on going, get the perfect tool running, and push the button.

Eat the elephant

At first sight, you may wonder what is the best automation tool that will be useful
for our OpenStack "production day". We have already chosen Git and Jenkins to
handle our continuous and delivery code infrastructure. It is time to choose the right
tool for automation.

Eventually, it might be difficult to select the right tool. Most likely, you'll have

to choose between several of them. Covering all the existing IT automation tools
could fill an entire book or even books. Therefore, giving succinct hints on different
tools might be helpful in order to distinguish the best outfit for certain particular
setups. Of course, we are still talking about large infrastructures with heterogeneous
systems, a lot of networking, and distributed services.

Giving the chance for one or more tools to be selected as system management
parties can be effective and fast for our deployment. We will use Chef for the next
deployment phase.

Preparing the infrastructure code
environment

If you are not familiar with the Git command line, do not worry, because we will use
an integrated development environment (such as Eclipse), which provides a great
Git plugin.

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

Later, we will need to write and maintain code written in the Ruby
programming language. Chef cookbooks are written in Ruby. Feel
free to use your best development environment that supports and
simplifies code branching and maintenance within your VCS. There
+ are plenty of preferences for development environments and Ruby
% code editors, such as RubyMine (https://www.jetbrains.com/
T~ ruby/) and Komodo (http: //komodoide.com/). The Netbeans
IDE also comes up with a Ruby plugin (http://plugins.
netbeans.org/plugin/38549/ruby-and-rails) and the
Sublime text editor (http://www.sublimetext.com/) can be a
good candidate for a lightweight text editor for code.

Feel free to use any Linux distribution. The next setup will use CentOS 6.5 64 bit as
the standard operating system.

Ensure that Java and its dependencies are installed:

packtpub@dev$ sudo yum install java

packtpub@dev$ sudo yum install gcc-c++
You can download Eclipse for CentOS from here:

packtpub@devs$ wget http://mirror.netcologne.de/eclipse/technology/
epp/downloads/ release/juno/SR2/eclipse-automotive-juno-SR2-
incubation-linux-gtk-x86 64.tar.gz

Extract the Eclipse to the /opt directory:

packtpub@devs$ sudo tar -xvzf eclipse-automotive-juno-SR2-incubation-
linux-gtk-x86 64.tar.gz -C /opt/

Create a symlink:
packtpub@dev$ sudo 1ln -s /opt/eclipse/eclipse /usr/bin/eclipse

To install Ruby, you need to go from the Eclipse menu bar and navigate to Help
| Install New Software. From the pending list, navigate to Program Languages |
Dynamic Languages Toolkit - Ruby Development Tools:

[50]

www.it-ebooks.info

https://www.jetbrains.com/ruby/
https://www.jetbrains.com/ruby/
http://komodoide.com/
http://plugins.netbeans.org/plugin/38549/ruby-and-rails
http://plugins.netbeans.org/plugin/38549/ruby-and-rails
http://www.sublimetext.com/
http://www.it-ebooks.info/

Chapter 2

Available Software
Check the items that you wish to install.

Work with: June - http://download.eclipse.org/releases/luna

type filter text

MName

L+ Code Recommenders for Java Developers
LJ+ Code Recommenders Mylyn Integration
g+ Code Recommenders Snipmatch
L+ Dynamic Languages Toolkit - iTcl Development Tools

/| 4+ Dynamic Languages Toolkit - Ruby Development Tools
Lg Dynamic Languages Toolkit - TCL Development Tools
L= Dynamic Languages Toolkit - XOTcl Development Tools
L+ Eclipse XWT

Select All | | Deselect All 1 item selected

Details

Towels for Ruby Developers

| Show only the latest versions of available software
/| Group items by category
Show only software applicable to target environment

/| Contact all update sites during install to find required software

—

N

b=

A Add...

Find more software by working with the "Available Software Sites” preferences.

Version
2.1.9.v20140917-1240
2.1.9.,720140917-1240
21.9.,20140817-1240
5.0.0.201306060709
5.0.0.201306060702
5.0.0.201306060702
5.0.0.201306060709
1.0.0.v20140612-1647

m

More...

| Hide itermns that are already installed

What is already installed?

Mext > Finish Cancel

Install Git:

packtpub@dev$ sudo yum install git

Check the correctness of the Git installation:

packtpub@chef$ git --version

Bring the magic EGit plugin into the action link in order to develop with Git in
Eclipse. We do this in the same way from the Eclipse update manager by navigating
to the Help | Install new Software menu entry. You will need to add the following

URL installation to EGit:

http://download.eclipse.org/egit/updates

[51]

www.it-ebooks.info

http://download.eclipse.org/egit/updates
http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

You will then see the following screen:

Available Software ’—
Check the items that you wish to install.)=

Work with: http://downleoad.eclipse.org/egit/updates -

Find more software by working with the "Available Software Sites” preferences.
type filter text

MName Version

4 (0 Eclipse Git Team Provider

V| L+ Eclipse Git Team Provider 3.5.2.201411120430-r
L+ Eclipse Git Team Provider - Source Code 3.5.2.201411120430-r
L+ Task focused interface for Eclipse Git Team Provider 3.5.2.201411120430-r

00 JGit

If you are not familiar with Chef, the following section will cover the basic setup and
the most important parts of a Chef server, and you can see how it looks.

If you do not have the Ruby plugin installed in your Eclipse environment
M by default, you can download and install it from SourceForge at
Q http://sourceforge.net/projects/rubyeclipse/files/
rdt/0.8.0/0org.rubypeople.rdt-0.8.0.604272100PRD.zip/
download?use_mirror=freefr&download=.

The Chef environment

When you think about a typical chef, you may think of cookbooks, recipes, and
knives! These are what a chef needs in order to make awesome dishes. The taste of
the food on a plate depends on the creativity of the chef. We do the same thing in
terms of cooking: we use a basic cookbook, from which we derive the right recipes.
We refine the recipes till we get what fulfills our needs.

Let's see how Chef defines its awesomeness:

* Cookbook: The grained unit of the configuration in Chef describes the kind
of scenario that is there, and how it should be defined in order to deploy an
application in a node.

* Recipe: This is the part of a cookbook that is authored in Ruby and defines
the configuration of the nodes. Note that a recipe can use or be used by
another recipe.

[52]

www.it-ebooks.info

http://sourceforge.net/projects/rubyeclipse/files/rdt/0.8.0/org.rubypeople.rdt-0.8.0.604272100PRD.zip/download?use_mirror=freefr&download=
http://sourceforge.net/projects/rubyeclipse/files/rdt/0.8.0/org.rubypeople.rdt-0.8.0.604272100PRD.zip/download?use_mirror=freefr&download=
http://sourceforge.net/projects/rubyeclipse/files/rdt/0.8.0/org.rubypeople.rdt-0.8.0.604272100PRD.zip/download?use_mirror=freefr&download=
http://www.it-ebooks.info/

Chapter 2

Node: This is where we can apply the cookbook configurations.

Role: This can be considered as a logical function for a node. It can
be customized within a collection of recipes and cookbooks, in a
particular order.

Attribute files: The attributes are very important in order to change the
settings of the nodes.

You should take into consideration the precedence level of the attributes

that define what should be applied. Basically, the evaluation of such

attributes against the node object will be done during each Chef run.

Keep the previous terms in your mind, but do not be surprised when you start to
find much more than these terms during our deployment. We will cover them in
a nutshell.

https://docs.chef.io/.

‘Q To read more about Chef, you can refer to the official Opscode website:

Prerequisites for settings

Before installing the server, we need to set up the right hostname of our CentOS box,
where we can define it as an FQDN with a domain suffix:

1.

Open the /etc/sysconfig/network file and modify the HOSTNAME value to
match your FQDN hostname:

packtpub@chef$ sudo nano /etc/sysconfig/network
HOSTNAME=chef.packtpub.com

Change the host that is associated to your IP address for your server found in
the /etc/hosts file, as follows:

packtpub@chef$ sudo nano /etc/hosts
192.168.47.10 chef.packtpub.com chef

Check your hostname via the following command:
packtpub@chef$ hostname -f
chef .packtpub.com

Make sure that your changes are persistent on reboot:

packtpub@chef$ sudo /etc/init.d/network restart

[53]

www.it-ebooks.info

https://docs.chef.io/
http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

You will need to adjust the settings, such as the hostname,
s FQDN, and IP address, to suit your needs.

As we are using CentOS, it will be much easier for a smooth installation
process in order to modify iptables and SELinux. Note that it is not
recommended that you entirely disable the iptables service in a production
environment where you will have to create extra iptables rules and update
your SELinux as well. We will need to allow access to the following ports:

o

TCP ports: 80, 443 for the Chef server web user interface

° TCP port: 2000 for the Chef server Knife access

The following commands will update the running iptables rules in your
CentOS box:

packtpub@chef$ sudo iptables -A INPUT -p tcp --dport 80 -m state
--state NEW,ESTABLISHED -j ACCEPT

packtpub@chef$ sudo iptables -A INPUT -p tcp --dport 443 -m state
--state NEW,ESTABLISHED -j ACCEPT

packtpub@chef$ sudo iptables -A INPUT -p tcp --dport 4000 -m state
--state NEW,ESTABLISHED -j ACCEPT

Save the new policy update and restart the iptables service:

packtpub@chef$ sudo service iptables save
packtpub@chef$ sudo service iptables restart

Set SELinux to the permissive mode:

packtpub@chef$ sudo setenforce 0

The Chef server installation
The next setup describes some simple steps to install the Chef server:

1.

In your local shell, run the following command to download the Chef server:
packtpub@chef$ sudo rpm -ivh https://opscode-omnibus
packages.s3.amazonaws.com/el/6/x86 64/chef-server-11.0.8-
l.e16.x86_64.rpm

Configure the Chef server:

packtpub@chef$ sudo chef-server-ctl reconfigure

Check whether the installation was successful or not:

packtpub@chef$ sudo chef-server-ctl test
Finished in 0.11742 seconds
0 examples, 0 failures

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

4. The server should be up and running. You can access the web interface via
https://chef.packtpub.com:443:

Chef Server

Messages Where da | get a Login?

ATy Rrisang Admin bevel wrer
You don't have Bccess b hat please login £3R CTEBNE NEW LTErS.

Tor Craate Ma Srst User, plate
Tesgin with th
credensal v

i toh App:

Login condpuiaten
uBErMAME: S0min

Username password piZeswindi
Prease change the defaull

paswword mmediately afier
Eexing in?

Fassword

The Chef server user interface can be accessed using the

~ FQDN edited previously: https://FQDN:443. You can use
Q https://CHEF IP ADDR:443, where CHEF IP ADDRis

the local IP address of your Chef server.

Enter admin as the username and pesswo0d1 as the default password.

Chef Server snenme: I

Edit sccounl Logout adsm {admi

Environments Searc] Roles. MNodes Cookbooks Databags Chents Users.

Environments

List Creale

Copyright & 20092014 Dpscode

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

Workstation installation

We will need additionally one or more Chef workstation(s) as a development toolkit.
This node's role is as follows:

* The Chef client is installed and Knife is configured
* It holds the local repository for the Chef server
* Itinstalls Chef on the nodes via the knife bootstrap operation

* [t dictates nodes, roles, and infrastructure environments to be uploaded to
the Chef server

Our Chef workstation will hold the local repo, and then we can install it on our
VCS node, where all the development will be performed and then uploaded to the
Chef server.

Knife in Chef refers to a tool which provides a Command-Line Interface
(CLI) between a Chef server and the Chef repository. It can be installed

% in a Chef workstation and used to manage nodes, roles, cookbooks, and
environments with the Chef server. To read more about Knife in Chef,
refer to this link https://docs.chef.io/knife.html.

Let's install our Chef workstation:

1. Get the Chef client installed:
packtpub@workstation$ curl -L https://www.opscode.com/chef/
install.sh | bash

2. Verify the installation:

packtpub@workstation$ chef-client -v

3. Create your chef-repos for a proper format of the Chef repository from
GitHub by cloning the structure in /home /packtpub/:

packtpub@workstation$ git clone https://github.com/ opscode/chef-
repo.git

packtpub@workstation$ cd /home/packtpub
packtpub@workstation$ mkdir -p /chef-repo/.chef

In order to authenticate against the Chef server, we will need to add some
inputs for the key files from the Chef server web interface. Go to the Clients
tab and click on Edit with the chef-validator client.

[56]

www.it-ebooks.info

https://docs.chef.io/knife.html
http://www.it-ebooks.info/

Chapter 2

5.

Copy the value of the Private key field. In your workstation, create a new file
for the validator key:

packtpub@workstation$ vi /home/packtpub/chef-repo/.chef/chef-
validator.pem

Paste the content of the copied key and save and close the file.

We perform the same procedure to generate the admin user's key file. In the Users
tab, click on Edit, which is associated with the admin user, and check Regenerate
Private Key followed by Save User.

After copying the private key, create a new file admin.pemin /home/packtpub/
chef-repo/.chef/ again and paste the content of the admin's private key:

1.

Create the Knife configuration file:

packtpub@workstation$ knife configure -i

Overwrite /root/.chef/knife.rb? (Y/N) y

Please enter the chef server URL: [https://test.example.com:443]
https://chef-server.packtpub.com:443/

Please enter a name for the new user: [root] packtpub

Please enter the existing admin name: [admin] Enter

Please enter the location of the existing admin's private key: [/
etc/chefserver/admin.pem] /home/packtpub/chef-repo/.chef/admin.pem

Please enter the validation clientname: [chef-validator]

Please enter the location of the validation key: [/etc/chef-
server/chef-validator.pem] /home/packtpub/chef-repo/.chef/chef-
validator.pem

Please enter the path to a chef repository (or leave blank):
Creating initial API user...

Please enter a password for the new user

Created user[pack-knifel

Configuration file written to /home/packtpub/chef-repo/.chef/
knife.rb

At the end, you should have the following list of files:

packtpub@workstation$ 1ls /home/packtpub/chef-repo/.chef/

admin.pem chef-validator.pem knife.rb pack-knife.pem

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

2. Initialize our Git name and e-mail:

packtpub@workstation$ git config --global user.email
"masteropenstack@packtpub.com"

packtpub@workstation$ git config --global user.name
"masteropenstack"
3. Clean up the repository by adding the .chef line to .gitignore:

packtpub@workstation$ nano /home/packtpub/chef repo/.chef/.
gitignore

.rake test cache

.chef/*.pem
.chef/encrypted data bag secret
.chef

4. Add and commit the current repository:
packtpub@workstation$ git add
packtpub@workstation$ git commit -m 'Finish setting up'

5. Make sure that you are using the right Ruby version:
packtpub@workstation$ vi .bash profile
packtpub@workstation$ echo 'export
PATH="/opt/chef/embedded/bin:$PATH"' >> ~/.bash profile

6. Populate the bash profile settings:
packtpub@workstation$ source ~/.bash profile

7. Test our workstation's Chef server connection:

packtpub@workstation$ knife user list
admin
packt-knife

Time to cook OpenStack

At this stage, we have a complete Chef environment where the OpenStack code
infrastructure will be developed, refined, and released to production.

Let's take a look at the environment topology again. We need nodes and instances to
test how our cookbooks will be applied and tested.

For this purpose, we will use a great tool for testing purposes: Vagrant.

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Vagrant is open source software used to build virtualized development
. environments. Vagrant requires virtual machines to test Chef Cookbooks
% before going to production. VirtualBox is a good candidate which works
L together with Vagrant to provide a complete test environment. For more
information on Vagrant, refer to the following link https://docs.
vagrantup.com/v2/getting-started/.

Vagrant can be integrated with Chef. Then, from a Vagrant file, we push the button
to make Chef run and get instances up, which makes it the cat's meow.

Where is my kitchen?

Be aware that Vagrant will be used for test purposes. This amazing tool will help you
make sure you know how your OpenStack Chef cookbooks work.

This is a suitable test for the virtual machine manager candidate to achieve a clean
state from your nodes. Furthermore, it might be possible to reproduce a whole test
environment in each Chef run, which creates an initial state that mimics a production
environment.

You can manage VMs by means of Vagrant using VirtualBox while using a Chef
client as a provisioner. Then, we have our test development environment: the
OpenStack kitchen. We will describe the use case of Vagrant later in this chapter.

OpenStack cookbooks

There are always challenges facing DevOps, and no doubt, they will occur after you
have conducted your design to be deployed in a real environment. Meeting these
challenges will drive you to acquire new skills related to creating a large complicated
OpenStack infrastructure with simple code that you never thought you could master.

Several organizations and big companies have been involved in writing cookbooks
for OpenStack in different ways. You might be tempted to think how you can use the
existing cookbooks in the cookbook market as well as which ones to choose and how
to develop them for your own needs.

Let's discuss what we need with the help of a simple, generic overview:

e Controller nodes
* Compute nodes
¢ Neutron nodes

* Swift as a single cluster

[59]

www.it-ebooks.info

https://docs.vagrantup.com/v2/getting-started/
https://docs.vagrantup.com/v2/getting-started/
http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

You may note that the controller node, as described in our first design, handles and
runs the majority of native OpenStack services. You can derive many recipes from
OpenStack cookbooks in GitHub. The Opscode community is also an option. We will
base our first cookbooks on StackForge cookbooks. However, before that, we should
take care of the cookbook dependencies for a clean setup.

StackForge aims to facilitate the usage of the OpenStack infrastructure by
other projects, including continuous integration (Jenkins) and repository
mirroring (GitHub). More information on the StackForge project can be
found at http://ci.openstack.org/stackforge.html.

%;%‘ Individual cookbooks for each OpenStack service have been created in
the StackForge GitHub repository, which can be found at https://
github.com/stackforge. The cookbooks used by Chef from the
StackForge repository are listed and described at https://docs.chef.
io/openstack_cookbooks.html.

Resolving OpenStack cookbook dependencies

Without any doubt, the world of dependency is a world of pain! This is when you
plan to install a cookbook that another one depends on it. Manual downloading for
each one might depend on other cookbooks.

A trick for manual downloading can be to use the knife cookbook site install
command, which is somehow great as it installs all the dependencies. However, the
dependencies will be installed in your local repository, and you might not like to see
them flapping in your directory. You will be delighted when you find out that there
is a tool that can do this for you: Berkshelf.

This amazing cookbook manager downloads all dependencies recursively while
keeping your local repository clean. Dependencies will be stored in a different
location.

Berkshelf uses Berksfile, in which we commit our dependencies to our repository.

The first successful step to make this tool do the magic, is to ensure a proper
installation. Somehow, Ruby versioning can be confusing if you have already
installed Chef server or Chef workstation within Ruby version 1.8.7. It is
recommended that you upgrade or switch to 1.9.1 or higher. Note that Berkshelf
requires Ruby version 1.9.1 or higher.

If you already have 1.8.7, no worries; we will perform a trick without diving into
Ruby setup errors.

[60]

www.it-ebooks.info

http://ci.openstack.org/stackforge.html
https://github.com/stackforge
https://github.com/stackforge
https://docs.chef.io/openstack_cookbooks.html
https://docs.chef.io/openstack_cookbooks.html
http://www.it-ebooks.info/

Chapter 2

We can use Ruby Version Manager (rvm) to switch between Ruby versions.

%»\ might require different Ruby versions. Using the rvm will allow you to

Ruby is a very popular programming language that is used by Chef
to write cookbooks. Different versions of Ruby may be necessary for
different projects. Installing and running other Ruby gems (RubyGems)

easily install multiple, contained versions of Ruby and switch between
them. For more information on rvm, refer to this link: https://rvm.
io/rvm/basics.

Install rvm:

packtpub@workstation$ curl -L get.rvm.io | bash -s stable fails

If you get an error issued you will need to specify the gpg2 key. You will

need to run a similar command line from the output shown in the curl
a8

command as follows: gpg2 --keyserver hkp://keys.gnupg.net
--recv-keys D39DCOE3.

Source the rvm variables:

packtpub@workstation$ source /etc/profile.d/rvm.sh

Install Ruby 1.9.2:
packtpub@workstation$ rvm install 1.9.2

Set it as the default Ruby interpreter:
packtpub@workstation$ rvm --default use 1.9.2

Install gem dependencies:

packtpub@workstation$ sudo yum install rubygems

Install Berkshelf dependencies:

packtpub@workstation$ sudo yum install gecode-devel gcc-c++ -y

Install Berkshelf :

packtpub@workstation$ gem install berkshelf
Fetching: nio4r-1.0.1l.gem (100%)

Building native extensions. This could take a while...

Knife's command line will start to complain about the Ruby version when you fire it
in your shell. Thus, you can always reset your default Ruby version 1.8.7 using this:

packtpub@workstation$ rvm system

[61]

www.it-ebooks.info

https://rvm.io/rvm/basics
https://rvm.io/rvm/basics
http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

Uploading cookbooks using Berkshelf

Let's create our main Berkshelf file, which will define all the cookbooks needed
for our first deployment. We will tell Berkshelf to clone the cookbooks and their
dependencies mainly from supermarket .getchef.com:

packtpub@workstation$ nano /home/packtpub/chef-repo/Berksfile

source "https://supermarket.getchef.com"

cookbook 'apache2', '1.9.6"
cookbook 'apt', '2.3.8!

cookbook 'aws', '2.1.1'

cookbook 'build-essential', '1.4.2'
cookbook 'database', '2.2.0!
cookbook 'erlang', '1l.4.2!
cookbook 'memcached', '1.7.2"'
cookbook 'mysql', '5.4.4!'

cookbook 'mysql-chef gem', '0.0.4°
cookbook 'openssl', '1.1.0"'
cookbook 'postgresql', '3.3.4'
cookbook 'python', '1.4.6'°
cookbook 'rabbitmg', '3.0.4'
cookbook 'xfs', '1.1.0'

cookbook 'yum', '3.1.4°

cookbook 'selinux', '0.7.2"
cookbook 'yum-epel', '0.3.4'
cookbook 'galera', '0.4.1°
cookbook 'haproxy', 'l1l.6.6"
cookbook 'keepalived', '1.2.0°
cookbook 'statsd', github: 'att-cloud/cookbook-statsd’

cookbook 'openstack-block-storage', github: 'stackforge/cookbook-
openstack-block-storage'

cookbook 'openstack-common', github: 'stackforge/cookbook-openstack-
common '

cookbook 'openstack-compute', github: 'stackforge/cookbook-openstack-
compute'

cookbook 'openstack-dashboard', github: 'stackforge/cookbook-openstack-
dashboard'

[62]

www.it-ebooks.info

supermarket.getchef.com
http://www.it-ebooks.info/

Chapter 2

cookbook 'openstack-identity', github: 'stackforge/cookbook-openstack-
identity'

cookbook 'openstack-image', github: 'stackforge/cookbook-openstack-image’
cookbook 'openstack-network', github: 'stackforge/cookbook-openstack-
network!

cookbook 'openstack-object-storage', github: 'stackforge/cookbook-
openstack-object-storage'

cookbook 'openstack-ops-database', github: 'stackforge/cookbook-
openstack-ops-database'

cookbook 'openstack-ops-messaging', github: 'stackforge/cookbook-
openstack-ops-messaging'

Then, you need to just upload cookbooks as the following:

packtpub@workstation/home/packtpub/chef-repo $ berks install
Resolving cookbook dependencies...

packtpub@workstation/home/packtpub/chef-repo $ berks upload --no-ssl-
verify

Defining roles

Chef defines roles as a manner to group nodes, seeking simplicity deployment.

From run lists in all nodes, you will just need to assign the node that should be run.
Optionally, you will be able to customize them by overriding attribute values within
your roles. On the other hand, recipes define roles. Thus, you may notice the running
of a list of a bunch of recipes within a role. Besides, it can also include roles from
other run lists.

Let's cover a basic example using only recipes in the role run list within OpenStack.
In your chef -repo directory, create a new directory named roles.

Create the role:
$ nano roles/packtpub-os-base.json

Eventually, the packtpub-os-base role defines the base role of OpenStack nodes
that will be assigned to the majority of servers in our deployment. It provides
common attributes and recipes that define the OpenStack deployment, such as
setting network interfaces of hosts within the existing endpoints:

{

"name": "packtpub-os-base.json",
"description": "PacktPub OpenStack Base Role",
"json class": "Chef::Role",

"default attributes": {

b

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

"override attributes": {
b

"chef type": "role",
"run list": [

"recipe [openstack-common] ",
"recipe [openstack-common: :loggingl ",
"recipe [openstack-common: :set endpoints by interfacel™",
"recipe [openstack-common: :sysctl]"

1,

"env_run lists": {

}

}

Let's carry on with the second role using the previous one.

Create a new role named packtpub-os-compute-worker.json. This role will define
our OpenStack compute node:

{

"name": "packtpub-os-compute-worker",
"description": "PacktPub OpenStack Compute Role",
"json class": "Chef::Role",

"default attributes": {

b

"override attributes": {
"chef type": "role",
"run_ list": [

"role [packtpub-os-basel ",
"recipe [openstack-compute: :compute] "
1,
"env_run lists": {
}
}

You might notice that we have used the base role, packtpub-os-base, within the
compute recipe that we have uploaded in our Chef.

At this point, feel free to add any role that will fit your design from our basic
cookbooks added from supermarket.getchef . com. Distributing roles will depend
on your choice and the number of nodes you plan to deploy for a certain service.

We can assume that any change to a certain node deployment will be made from the
Chef code.

[64]

www.it-ebooks.info

supermarket.getchef.com
http://www.it-ebooks.info/

Chapter 2

In our custom design, we will need a controller node, which will run a bunch

of services. A good practical design of cookbooks is to wisely break down your
infrastructure into reusable roles and recipes. For example, our controller node will
include networking, imaging, messaging, identity, and database services; going on
making a one blob role which includes all the associated recipes might limit your
attention and make you think about scaling out the nodes later. Remember that we
are expanding and not rolling up the infrastructure.

Before creating our custom controller role, we will proceed by creating a basic one:

packtpub-os-base-controller

"name": "packtpub-os-base-controller",
"description": "PacktPub OpenStack Controller Role",
"json class": "Chef::Role",

"default attributes": {

b

"override attributes": {
I

"chef_ type": "role",
"run list": [

"role [packtpub-os-basel",
"role [packtpub-os-ops-databasel ",
"recipe [openstack-ops-database: :openstack-db]l ",
"role [packtpub-os-ops-messaging] ",
"role [packtpub-os-identityl",
"role [packtpub-os-imagel] ",
"role [packtpub-os-compute-setup] ",
"role [packtpub-os-compute-conductor] ",
"role [packtpub-os-compute-scheduler] ",
"role [packtpub-os-compute-apil ",
"role [packtpub-os-block-storagel] ",
"role [packtpub-os-compute-cert]",
"role [packtpub-os-compute-vncproxyl ",
"role [packtpub-os-dashboard] "

1,

"env_run lists": {

}

}

To upload all your created roles, you can use the following command:

packtpub@workstation$ knife role from file /home/packtpub/chef-
cookbooks/roles/*.rb

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

The basic cookbooks for OpenStack have been downloaded from
https://github.com/stackforge. It is recommended that
before starting your Chef deployment, you have to verify the roles
M and their names, the number of environments and their names.
A good practice while customizing a cookbook or defining an
OpenStack environment in Chef is to add as many thin roles as
possible. If you face any error-naming convention while running
Chef, try to adjust the role names in attribute files to reflect the
same names within the defined roles.

Configuring the environment

Now we have a set of cookbooks uploaded to the Chef server and ready to be
deployed. An extra step is needed to make them useful: Defining your environments.
Note that we define the playground environment using Vagrant, where we will
provision our test infrastructure, and the cooking environment, where we define our
infrastructure details from one file and let Chef do the rest:

* Playground environment: Until now, we have our basic cookbooks ready
to be uploaded within defined roles. They need customization and more
development to adjust our infrastructure needs.

Vagrant might be a very cost-effective and the simplest solution to make a
full test environment work together with Chef.

We can use a provider for Vagrant as a VirtualBox, where it can be installed
as a virtual machine while our provisioner will be Chef.

Provisioning with Vagrant can also be performed using Puppet,
s and the providers can be VMware and Amazon AWS.

You can download and install Vagrant from http://downloads.
vagrantup.com:

packtpub@workstation$ wget https://dl.bintray.com/mitchellh/
vagrant/vagrant 1.7.2 x86 64.rpm

packtpub@workstation$ rpm -ivh vagrant 1.7.2 x86 64.rpm
packtpub@workstation$ vagrant --version

Vagrant version 1.7.2

[66]

www.it-ebooks.info

https://github.com/stackforge
http://downloads.vagrantup.com
http://downloads.vagrantup.com
http://www.it-ebooks.info/

Chapter 2

VirtualBox needs to be installed as a Vagrant provider. VMware is
= also a second alternative to run Vagrant boxes.

* Vagrantfile: The vagrant file will define all our OpenStack nodes and the
general configuration, such as networking;:

packtpub@workstation$ mnano /home/packtpub/chef-repo/Vagrantfile

The contents of the Vagrant file are:

Vagrant.require version ">= 1.1"

Vagrant .configure ("2") do |config]
Omnibus plugin configuration
config.omnibus.chef version = :latest

OpenStack settings
chef environment = "vagrant-packtpub"

controller run_list = [
"role [packtpub-os-base-controller] ",
"recipe [openstack-network::identity registration]",
"role [packtpub-os-network-openvswitch] ",
"role [packtpub-os-network-dhcp-agent] ",
"role [packtpub-os-network-metadata-agent]",
"role [packtpub-os-network-server] "

virtualbox provider settings

config.vm.provider "virtualbox" do |vb|

vb.customize ["modifyvm", :id, "--cpus", 2]

vb.customize ["modifyvm", :id, "--memory", 2048]

vb.customize ["modifyvm", :id, "--nicpromisc2", "allow-all"]

vb.customize ["modifyvm", :id, "--nicpromisc3", "allow-all"]
end

OpenStack Controller

config.vm.define :controllerl do |controllerl]

controllerl.vm.hostname = "controllerl"
controllerl.vm.box = "opscode-centos-6.5"
[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

controllerl.vm.box url = "http://opscode-vm-bento.
s3.amazonaws .com/vagrant/virtualbox/opscode centos-6.5 chef-
provisionerless.box"

controllerl.vm.network "forwarded port", guest: 443, host:

9443 # forward to dashboard using ssl : dashboard-ssl
controllerl.vm.network "forwarded port", guest: 8773, host:
9773 # forward to EC2 api : compute-ec2-api

controllerl.vm.network "forwarded port", guest: 8774, host:
9774 # forward to Compute API : compute-api

controllerl.vm.network "private network", ip: "192.168.47.10"

controllerl.vm.network "private network", ip: "172.16.11.10"

controllerl.vm.provision :chef client do |chef |
chef.run list = controller run list
chef.environment = chef environment
Where to find our Chef Server by providing the
authorization key
chef.chef server url = "https://chef.packtpub.com:443"
chef.validation key path = "/home/packtpub/chef repo/.chef/
chef-validator.pem"
end
end

OpenStack Compute

config.vm.define :computel do |computel|
computel.vm.hostname = "computel"
computel.vm.box = "opscode-centos-6.5"
computel.vm.box url = "http://opscode-vm-bento.s3.amazonaws.
com/vagrant/virtualbox/opscode centos-6.5 chef-provisionerless.
box"

computel.vm.network "private network", ip: "192.168.47.11"
computel.vm.network "private network", ip: "172.16.11.11"

computel.vm.provision :chef client do |chef|
chef.run list = ["role[packtpub-os-compute-worker]"]
chef.environment = chef environment
Where to find our Chef Server by providing the
authorization key
chef.chef server url = "https://chef.packtpub.com:443"
chef.validation key path = "/home/packtpub/chef-repo/.chef/
chef-validator.pem"
end
end
end

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

* Cooking environment: We need to define our Chef environment to
accomplish the environment setup within Vagrant.

Use different environments for development and production to
s maintain cookbook changes in isolation.

You can create a development environment in many ways; from the Chef
server GUI or via the Knife command line, as follows:

knife environment create vagrant-packtpub -d "PacktPub Testing
Environment"

Our Chef environment file looks like the following:

{

"name": "vagrant-packtpub",
"description": "PacktPub Testing Environment",

"cookbook versions": {

b

"json class": "Chef::Environment",
"chef type": "environment",
"default attributes": {

b

"override attributes": {
"mysqgl": {
"allow remote root": true,
"root network acl": "&"
b
"openstack": {
"identity": {
"bind interface": "ethl"
b
"endpoints": {
"host": "192.168.47.10",
"mg": |
"host": "192.168.47.10"
b
"db": {
"host": "192.168.47.10"
b
"developer mode": true,
"network": {
"debug": "True",
[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

"dhep': |
"enable isolated metadata": "True"
b
"metadata": {
"nova metadata ip": "192.168.47.10"
b
"openvswitch": {
"network vlan ranges": "physnetl:1000:2999",
"tenant network type": "vlan",
"external network bridge interface": "eth2"
b
"apin: {
"bind interface": "ethl"

}
b

"image": {
llapill . {
"bind interface": "ethl"

Y
"registry": {

"bind interface": "ethl"
b

"image upload": true,

"upload images": [

"centos",

"cirros"
1,
"upload_image": {

"centos": "http://cloud.centos.org/centos/7/devel/
CentOS-7-Atomic-CloudDockerHost-20140820_ 05.gcow2",
"cirros": "https://launchpad.net/cirros/trunk/0.3.0/

+download/cirros-0.3.0-x86_64-disk.img"

}
b

"compute": {
"xvpvnc_proxy": {
"bind interface": "ethl"
I
"novnc_proxy": {
"bind interface": "ethl"

1
"libvirt": {
"virt type": "gemu"

b

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

"network": {
"public interface": "ethl",
"service type": "neutron"

"config": {
"ram allocation ratio": 5.0

As we are using version control, it might be more convenient to create a
new directory under chef -repo named; environments, which will hold our
environments.

Additionally, this will help us test cookbooks in different versions with
several specific attributes and bring them from development to staging,
finishing with promoting them into production. Under chef - repo, create
an environments directory, where the vagrant -packtpub. rb file will be
placed:

packtpub@workstation:/chef repo$ git add environments/vagrant-
packtpub.rb

packtpub@workstation:/chef repo$ git commit -a -m "First OpenStack
Environment"

packtpub@workstation:/chef repo$ git push

Now, you can create the environment on the Chef server from our vagrant-
packtpub.rb file by the means of the Knife command line:

packtpub@workstation:/chef repo$ knife environment from file
vagrant-packtpub.rb

Push the button: At this point, we've done a lot of preparation and
configuration to test and deploy OpenStack. Vagrant and Chef work in
tandem with each other to bring a test environment with less pain and more
simplicity. Everything is in place; what we need to do is to just push

the button.

Set an environment file to specify which Vagrantfile to use:
packtpub@workstation $ export VAGRANT VAGRANTFILE=vagrant-packtpub

Start the nodes:

packtpub@workstation $ vagrant up controllerl
packtpub@workstation $ vagrant up computel

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying OpenStack — DevOps and OpenStack Dual Deal

Summary

In this chapter, we covered several topics and terminologies on how to develop and
maintain a code infrastructure using the DevOps style.

Bringing your OpenStack infrastructure deployment to code will not only simplify
node configuration, but also improve the automation process.

You should keep in mind that DevOps is neither a project nor a goal to attend to, but
it is a methodology that will make your deployment successfully empowered by the
team synergy with different departments.

Despite the existence of numerous system-management tools to bring our OpenStack
up and running in an automated way, we have chosen the Chef server.

Puppet, Ansible, Salt, and others can do the job but in different ways. You should
know that there is no one way to perform automation.

Chef is highly flexible and rich with tools that make life easier. In a similar
manner, with Vagrant and Chef plugins, we were able to bring in a test
environment in a wink.

Although we deployed a basic multinode setup of OpenStack in this chapter, the
next chapter will take you to a third stage, where you can use strong approaches on
towards extending our previous design by clustering, defining the cloud controller,
and compute node distributions.

We will keep on going with what we learned from deployment automation using
Chef under the umbrella of the DevOps style.

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack
Clustering — Cloud Controllers
and Compute Nodes

"If you want to go quickly, go alone. If you want to go far, go together."
—African proverb

Now that you have good knowledge of the approaches taken to deploy a large
OpenStack infrastructure in an automated way, it is time to dive deeper and cover
more specific conceptual designs within OpenStack.

In a large infrastructure, especially if you are looking to keep all your services up
and running, it is essential that you ensure the OpenStack infrastructure is reliable
and guarantees business continuity.

We already discussed several design aspects and highlighted some best practices
of scalable architecture models within OpenStack in Chapter 1, Designing OpenStack
Cloud Architecture.

We adopted a sample architecture based on the cloud controller and compute nodes,
and on each of these, we divided and set up OpenStack services. This is a simplified
way to design a scalable OpenStack environment.

Soon after, we discovered the magic of automation, where we resumed a basic setup
of one cloud controller together with one compute node using the Chef server.

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

This chapter begins by covering some clustering aspects. It soon guides you

to discover more OpenStack design patterns based on cloud controllers' and
compute nodes' clustering. Bear in mind that this chapter will not treat high
availability in detail and will not touch all OpenStack services layers. Instead, it
will target covering a generic overview of several possibilities of the OpenStack
clustering design. The art of clustering is the key to providing a solution that
fits into a methodology that stresses standardized, consistent IT build-out
OpenStack operations.

In this chapter, we will cover the following topics:

* Understanding the art of clustering

* Defining the use case of cloud controllers and compute nodes in an
OpenStack environment

* Covering other OpenStack clustering models based on cloud controller and
compute node distribution

* Understanding backup techniques of cloud controller and compute nodes for
disaster recovery best practices

* Learning how to refine your infrastructure code based on the Chef server for
a fast and automatic deployment

Understanding the art of clustering

Do not be afraid to claim that clustering actually provides high availability in a given
infrastructure. The aggregation of the capacity of two or more servers is meant to be
a server cluster. This aggregation will be performed by means of the accumulation of
several machines.

Do not get confused between scaling up, which is also called vertical
scaling, and scaling down, which is also known as horizontal scaling.

%@“ The horizontal scaling option refers to adding more commodity servers,
unlike the vertical scaling option, which refers to adding more expensive
and robust servers with more CPU and RAM.

This makes it imperative to differ between the terminologies of high availability, load
balancing, and failing over, which will be detailed in depth in Chapter 6, OpenStack
HA and Failover.

Keep this in mind for any of the previously mentioned terms: their configuration
results always start from the clustering concept. You will discover how to
differentiate between them in the next section.

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Asymmetric clustering

Asymmetric clustering is mostly used for high availability purposes as well as for the
scalability of read/write operations in databases, messaging systems, or files.

In such cases, a standby server is involved to take over only if the other server is
facing an event of failure. We may call the passive server the sleepy watcher, where
it can include the configuration of a failover.

Symmetric clustering

This is where all nodes are active and a participator handles the process of requests.
This setup might be cost-effective by serving active applications and users.

A failed node can be discarded from the cluster, while others take over its workload
and continue to handle transactions.

Symmetric clustering can be thought to be similar to a load-balancing cluster
situation where all nodes share the workload by increasing the performance
and scalability of services running in the cloud infrastructure.

Divide and conquer

OpenStack was designed to be horizontally scalable; we have already seen how
its services have been widely distributed in two concepts: cloud controllers and
compute nodes.

The cloud controller

The concept of cloud controllers aims to provide one or many kinds of central
management and control over your OpenStack deployments. We can, for example,
assume that all authentication and messaging transactions are being managed by the
cloud controller by means of our magic hub: the message queue.

Considering a medium- or large-scale infrastructure, we will need, with no doubt,
more than a single node. For an OpenStack cloud operator, controllers can be
thought of as a service aggregator where the majority of running management
services are needed for OpenStack to operate.

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

Let's see what a cloud controller cloud mainly handles:

e It presents a main gateway for access to cloud management and
services consumption

* It provides the API services in order to bring different OpenStack
components to talk to each other

* It concentrates on a set of highly available mechanisms for integrated services
by the means of Pacemaker, Corosync, or HAProxy to expose a VIP for load-
balancing utilities

* It provides critical infrastructure services, such as database and
queue messaging

* It exposes the persistent storage, which might be backed onto separate
storage nodes

Most probably, you have already noticed the main services of the cloud controller in
Chapter 1, Designing OpenStack Cloud Architecture, but we did not take a deep look at
why such services should run in the controller node in the first place. We will now
suggest a second alternative.

We bring, for instance, the cloud controller as a node under the scope.
This aggregates the most critical services for OpenStack. Thus, we can
start by covering them in a nutshell.

nova-conductor

If you have tried to install OpenStack starting from the Grizzly release, while
checking Nova services running in your OpenStack node, you may have noticed

a new service called nova-conductor. Do not panic! This amazing new service has
changed the way the nova-compute service accesses the database. Eventually, it was
added for security reasons as compute nodes running the nova-compute service
may conduct some vulnerability issues. You can imagine how attacking a virtual
machine can bring the compute node under the control of the attacker. Even worse,
it can compromise the database. Then, you can guess the rest: your entire OpenStack
cluster is under attack! Keep in mind that nova-scheduler is intended to carry out
database operations on behalf of compute nodes.

So, you can assume that nova-conductor compiles a new layer on top of
nova-compute. Furthermore, instead of resolving the complexity of the
database requests bottleneck, nova-conductor parallelizes the requests
from compute nodes.

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

M If you are using nova-network and multihost networking in your
Q OpenStack environment, nova-compute will still require direct
access to the database.

nova-scheduler

Several workflow scheduling studies and implementations have been recently
conducted in cloud computing, generally in order to define the best placement of a
resource provisioning.

In our case, we will decide which compute node will host the virtual machine. It's
important to note that there are bunches of scheduling algorithms in OpenStack.

Such internal request information is received from the magic radio station in the
OpenStack core: the message queue.

Nova-scheduler may also influence the performance of the hosts running virtual
machines. Therefore, OpenStack supports a set of filters that implement the available
nodes and give you the choice to configure its options based on a certain number of
metrics and policy considerations. Additionally, nova-scheduler can be thought of
as the decision-maker box in a cloud controller node by applying a few complicated
algorithms for the efficient usage and placement of virtual machines.

On the other hand, you should understand that nova-scheduler assumes a given
OpenStack cluster as a single host within aggregated resources of all hosts present in
the cluster. This happens when you deal with different hypervisors running each of
them and their specific scheduling resource's management, such as vCenter within
Distributed Resource Scheduler (DRS).

DRS is a VMware load-balancing utility, which assigns computing
/— workloads to available hardware resources.

Eventually, the scheduler in OpenStack, as you may understand at this stage,

will be running in the cloud controller node. A very good point here needs to be
investigated: what about different schedulers in a high availability environment? In
this case, we exploit the openness of the OpenStack architecture by running multiple
instances of each scheduler, as all of them are listening to the same queue.

It is important to know that cinder-scheduler is considered a scheduling service
in OpenStack, which might be running in the cloud controller node for block
storage management.

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

The scheduler can be configured in a variety of options. Different
M scheduler settings can be found in /etc/nova/nova.conf. To read
Q more about scheduling in OpenStack, refer to the following link:
http://docs.openstack.org/icehouse/config-reference/
content/section compute-scheduler.html.

X-api

In a nutshell, we have already covered the nova-api service in Chapter 1, Designing
OpenStack Cloud Architecture. It might be important to step forward and learn

that nova-api is considered the orchestrator engine component in cloud controller
specifications. Without any doubt, nova-api is assembled in the controller node
after considering its main role by accepting all the incoming API requests from

all components.

The nova-api service may also fulfill more complicated requests by passing messages
within other daemons by means of writing to the databases and queuing messages.
As this service is based on the endpoint concept where all API queries are initiated,
nova-api provides two different APIs using either the OpenStack API or EC2 APL
This makes it imperative to decide which API will be used before deploying a cloud
controller node that may conduct to a real issue as you may decide to take over both
APIs. The reason behind this is the heterogeneity of the information presentation used
by each APIL for example, OpenStack uses names and numbers to refer to instance,
whereas the EC2 API uses identifiers based on hexadecimal values.

Additionally, we have brought compute, identity, image, network, and storage
APIs to be placed in the controller node, which can also be chosen to run other
API services.

For instance, we satisfy our deployment by gathering the majority of X-api services
to run in the cloud controller node.

An Application Programming Interface (API) enables public access to
the OpenStack services and offers a way to interact with them. The API
% access can be performed either through a command line or through the
"~ Web. To read more about APIs in OpenStack, refer to the following link:
http://developer.openstack.org/#api.

[78]

www.it-ebooks.info

http://docs.openstack.org/icehouse/config-reference/content/section_compute-scheduler.html
http://docs.openstack.org/icehouse/config-reference/content/section_compute-scheduler.html
http://developer.openstack.org/#api
http://www.it-ebooks.info/

Chapter 3

Image management

The cloud controller will also be responsible for the delivery and serving of images
using glance-api and glance-registry, where a decision can be made about which
backend will be used to launch the controller in the cloud.

The glance-api supports several backend options to store images. Swift
\l is a good alternative that allows storing images as objects and provides a
~ scalable placement for image storage. Other alternatives are also possible
Q such as filesystem backend, Amazon S3, and HTTP. Chapter 4, Learning
OpenStack Storage — Deploying the Hybrid Storage Model, covers different
storage models in OpenStack in more detail.

Network outfit

Just like OpenStack's Nova service provides an API for dynamic requests to compute
resources, we adopt the same concept for the network by allowing its API to reside
in the cloud controller, which supports extensions to provide advanced network
capabilities, such as access lists and network monitoring using Neutron. As was
assumed in our first model, separating most of the network workers is highly
recommended. Therefore, the cloud controller will include only the Neutron server
in the second iteration. On the other hand, you are tempted to think about the huge
amount of traffic that hits a cloud controller with regard to its multirunning services;
therefore, you should bear in mind the performance challenges that you may face. In
this case, clustering best practices come in to help your deployment be more scalable
and increase its performance. The previously mentioned techniques are essential

but not sufficient. They need basic hardware support with at least 10 GB of bonded
NICs, for example.

The NIC bonding technique is used to increase the available bandwidth.
s Two or more bonded NICs appear to be the same physical device.

You can always refer to Chapter 1, Designing OpenStack Cloud Architecture, to use
some calculation in order to make your cloud controller capable of responding to all
requests smoothly without a bottleneck.

Complicating your performance metrics at such an early stage will not help to satisfy
your topology resiliency. To do so, scalability features are always there to refine your
deployment. Remember that we tend to scale horizontally when required.

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

The Horizon decision

As the OpenStack dashboard runs in the Apache web server based on the Python
web application, providing a separate node that is able to reach the API servers
in the second step might be an option if you later decide to decrease the load on
your cloud controller node. Several OpenStack deployments in production run
Horizon in the controller node but still leave it up to you to monitor it and take
separate decisions.

Planning for the message queue

Definitely, your queuing message system should be clustered. This is another critical
subsystem where your node may be in a halt status when the message queue fails.

We have chosen RabbitMQ to handle our queuing system as it has its native
clustering support. However, it might be painful in a large-scale OpenStack
environment.

A good practice is to keep in mind such complexity challenges that have to be
undertaken when we start a simple cloud controller holding a RabbitMQ service.

It is a good thing that our design is very elastic and we can cluster by controller
nodes; therefore, we bring in RabbitMQ clustered. With fewer controller nodes,
which need more hardware specs, separating the RabbitMQ node cluster will
be relatively easy.

Consolidating the database

The majority of disasters that could happen in any IT infrastructure indicate loss
not only of data in production, but also historical data. Such critical points may
lead to nonoperational and even nonrecoverable OpenStack environments. Thus,
we have started working with MySQL clustering and high availability solutions
at an early stage.

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Physically, we started adopting MySQL using Galera running in the cloud controller.
This held true until we got a basic environment running, for which you only need

to provide a new node for the MySQL cluster pointing at the right controller. More
details will be covered in Chapter 6, OpenStack HA and Failover. For the moment, we
need a running setup that is easy to deploy and redeploy using Chef.

Cloud controller clustering

Being a proponent of the physical cloud controller, a machine's clustering effort is
considered a step in the right direction: high availability. Several HA topologies will
be discussed in Chapter 6, OpenStack HA and Failover.

As we have seen the use cases of several services at this point, which can be
separated and clustered, we will extend our logical design of the cloud controller
described in Chapter 1, Designing OpenStack Cloud Architecture. Keep in mind that
OpenStack is a highly configurable platform and the rest of the description is an
example that suits a certain requirement and specific conditions.

The next step is to confirm the first logical design. Questions such as this come up:
does it satisfy certain requirements? Are all services in the safe HA zone?

Well, note that we include the MySQL Galera cluster to ensure HA for the
database. Eventually, this means we are missing something! Depending
on the quorum-based system of Galera, at least a third cloud controller has
to join the cloud controller team.

Immediately, you may raise a question: should I add an extra cloud controller
to make the replication and database HA achieved? What about a fourth or
fifth controller?

Great! Keep this mindset for later. At this level, you assume that logically, your
design is on the right path and you already know that some changes have to be
made to fulfill some physical constraints.

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

Then, we extend our cluster setup with a third cloud controller:

ControllerNode2

Pacemaker
Cluster

|
keystone-api @

=3

nova-scheduler

1
=3

o 8

ControllerNode1]

Pacemaker

}l
=
=/
I -
o

ControllerNode 3

Standby

Pacemaker
8 Cluster

nova-api

=

keystone-api

{ o
=

nova-scheduler

At this point, we ensure that our design is deployed in HA at an early stage.

Remember, there should be no Single Point Of Failure in any layer!

Redundancy is implemented by means of virtual IP and Pacemaker. Then,
HAProxy will ensure load balancing. Databases and messaging queue
. servers have been implemented in active/active HA mode when MySQL
uses Galera for replication, while RabbitMQ is built in a cluster capable
&= mode. Other choices can be made for our current design by integrating,
for example, with Corosync, Heartbeat, or Keepalived instead. Aspects of
load balancing, high availability, and failover with relative solutions will
be explained in detail in Chapter 6, OpenStack HA and Failover.

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

It is important to prepare how the cloud controllers should be clustered in advance.
The previous diagram is an example design that scales as well and takes into
account more advanced aspects, such as HA failover and load balancing. You

can refer to Chapter 6, OpenStack HA and Failover, to check out more details and
practical examples. For instance, the overall OpenStack cloud should expand easily
by joining new nodes running several services that require more care. We continue
later by adumbrating an automated approach to facilitating the horizontal expansion
of the cloud.

Cooking the cloud controller

Once we have identified which service will be deployed in the cloud controller, we
jump to the next step by bringing our Chef into action. We have already covered a
general overview of the OpenStack cookbooks, which we have based on the Chef
community website.

As we are aiming for a large-scale infrastructure, we would rather prepare the roles
and recipes and make them more decoupled for service nodes to reach a level of high
availability in the second stage. The cookbook design of the cloud controller seems
quite complicated, which implies that its implementation might not be intuitively
obvious at first glance, but a brief overview of the cookbooks' relationships will make
it easier for you to highlight the flexibility of this model. Thus, you may intend to
choose on your own how to distribute roles and recipes by maintaining the logic

of dependency.

As you may notice in the next figure, we have gathered the majority of services
in the cloud controller, except object storage and compute workers. On the other
hand, assigned roles and recipes can be detached and reassigned to other nodes.
We bring in the cloud controller for it to be deployed first in order to check our
cookbooks' consistency.

Keeping in our mindset and whatever system management tools we might choose,
underpinning every service component on our OpenStack cloud platform must be
a flexible mantra, as much as possible, for the purpose of our first cloud controller
deployment. Based on Chapter 2, Deploying OpenStack - DevOps and OpenStack Dual
Deal, we have covered how to turn the code of our infrastructure into pieces by
means of recipes, while gathering the pieces for a more customized design will
form the roles.

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

This is described in the following cookbook diagram:

set_endpoints
_by_interface

M ‘\;_
= openstack-
logging ‘common
F-y
[= [= =
se;uer ouens;ack—db P s‘er}er
=

= =
packtpub- os-base

[= [= P
= = '.‘Ej =
server registration r;gdie;";tt"i;“ nova-setup

packtpub- os-compute-conductor P

. [5]
cnrld‘uctor scheduler

api packtpub- os-compute-cert

<

————>
packipub- 0s-compute-ec2
nova-cert
——— &
packtpub- os-compute-api-os-
compute E
packtpub- os-compute-vncproxy
|
packtpub- os-compute-api-
M
)
______________ 4 VNCproxy

packtpub- os-image

—

packtpub- 0s-image-api

&

packtpub- os-image-registry

fif<— i

‘: server
packtpub- os-image-upload
packtpub- os-block-storage DacktDu—l—‘os—network
packtpub- os-block-storage-api
B —
—}‘ \5% packtpub- os-network-server
packtpub- os-block-storage-
heduler +—
e =
= packtpub- os-network-
packtpub- os-block-storage- openvswitch

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

You may notice that roles can include not only recipes, but also other roles.

We can go through each role and describe how it is composed in a nutshell by taking
a look at the following table:

Role name

Default recipe

Description

packtpub-os-
base

* openstack-
* openstack-
* openstack-

interface

* openstack-

common
common: : logging
common: :set_endpoints_ by

common: : sysctl

* openstack-common is a set of
recipes and attributes describing
general OpenStack deployment

* openstack-common: :logging
installs and configures common
logging attributes

* openstack-common: :set_
endpoints_by interface iterates
over the endpoints per node hash
and finds any occurrence of bind_
interface to set the IP address

* openstack-common: :sysctl
iterates over a node hash and updates
its entries to /etc/sysctl.d/60-
openstack.conf

packtpub-os-
ops-database

* openstack-
* openstack-

ops-database: :server
ops-database: :openstack-db

* openstack-ops-
database: : server selects the
database server configuration using
attributes

* openstack-ops-
database: :openstack-db defines
the required tables and users for
OpenStack

packtpub-os-

* openstack-

identity: :server

* openstack-identity::server

identity * openstack-identity::registration installs and configures Keystone
services
* openstack-
identity: :registration registers
identity endpoint and service
packtpub- openstack-ops-messaging: :server This installs a single RabbitMQ server
os-ops- instance
messaging
packtpub- openstack-compute: : scheduler This installs and configures a single
os-compute- instance of nova-scheduler
scheduler
packtpub- openstack-compute: : conductor This installs and configures a single
os-compute- instance of nova-conductor
conductor

packtpub-os-
compute-cert

openstack-compute: :

nova-cert

This installs and configures a single
instance of nova-cert

packtpub-os-
compute-api

openstack-compute:

:identity-registration

This registers the identity endpoint for the
Nova service

packtpub-
os-compute-
VNCProxy

openstack-compute:

1 VNCProxy

This installs and configures a single
instance of the Nova VNC service

packtpub-os-
image

openstack-image::identity registration

This registers the identity endpoint for the
Glance service

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

Role name Default recipe Description

packtpub- openstack-dashboard: : server This installs and configures a single
os-compute- instance of Horizon

dashboard

packtpub- openstack-block-storage: :identity This registers the identity endpoint for the
os-block- registration Swift service

storage

packtpub-os- openstack-network::identity registration This registers the identity endpoint for the
network Neutron service

It is possible to customize the automation of the cloud controller based
. onroles and recipes defined in the default cookbooks provided by
StackForge, covered in Chapter 2, Deploying OpenStack — DevOps and
= OpenStack Dual Deal. The main StackForge Chef repository can be found
on GitHub at https://github.com/stackforge/openstack-
chef-repo.

The compute node

Once the orchestrator has evaluated the instruments that should be integrated on the
stage, we still need the players to accomplish the song. All we need are worker horses
where our virtual machines' brains will live. Notice that the brain of this instance
refers to where all the thinking processes are done.

The compute node should be separately deployed in the cluster mode as it forms the
resources part of the OpenStack infrastructure. Even in another cloud deployment
architecture, you may find that the computing part is mostly built in separate farms.
It is imperative to give attention to the fact that compute node resources should not
be overlooked in processing, memory, network, and storage resources.

From a deployment perspective, an OpenStack compute node might not be
complicated to install as it will basically run nova-compute and the network agent
for Neutron. However, its hardware and specification choice might not be obvious.
The cloud controller presents a wide range of services, but we have agreed that using
HA and a separate deployment will crystallize the cloud controller deployment.

This way, we suffer less from the issue of service downtime. On the other hand, a
compute node will be the space where the virtual machine will run, in other words,
the space on which the end user will focus on. They only want to push the button
and get the application running on the top of your IaaS layer. It is your mission to
guarantee a satisfactory amount of resources.

A good design of cloud controller is needed but is not enough; we need to take care
over compute nodes as well: compute resources.

[86]

www.it-ebooks.info

https://github.com/stackforge/openstack-chef-repo
https://github.com/stackforge/openstack-chef-repo
http://www.it-ebooks.info/

Chapter 3

Overcommitment considerations

We have already taken into consideration the need for CPU-supporting
virtualization in Chapter 1, Designing OpenStack Cloud Architecture. What we need to
understand now is the number of cores needed, which might affect the CPU power.
Remember, for example, that hyper-threading is a highly recommended option for
your CPU per compute node in order to double the number of existing cores.

It will be great if you could afford such powerful technology, which is common
nowadays. On the other hand, in many cases, the physical compute nodes you
purchase might be more powerful than are needed. To avoid such loss, you should
keep in mind that sizing your compute nodes is important.

However, this magical catch-all formula that is applicable in all cases won't be easy
to find. You will need to work through three main steps:

1. Estimate a sample calculation for the CPU and RAM size.
2. Use OpenStack resources' overcommitment without overlooking.

3. As much as possible, gather resources' usage statistics periodically.

In Chapter 1, Designing OpenStack Cloud Architecture, we covered how to estimate
such resources. The next step is to extend your assumption by introducing the power
of overcommitment in OpenStack.

The art of memory or CPU overcommitment is an enabled hypervisor feature,
allowing the usage of more resource power by the virtual machine than the compute
host has.

For example, it allows a host server with 4 GB of physical memory to run eight
virtual machines, each with 1 GB of memory space allocated.

Well, there is no secrecy in this case! You should think about the hypervisor; just
calculate the portion of physical memory not used per virtual machine and assign it
to one that may need more RAM at certain moments. This is a technique based on
the dynamic relocation of unused resources that are being held in an idle status. On
the other hand, it might be a nice feature but without exaggeration!

It might be dangerous if resources are exhausted and lead to a server crash.
Therefore, we need to dive into overcommitment use cases.

In OpenStack, you will be able to overcommit CPU and RAM resources by changing
the default limit by their local configuration. Compute nodes use the ratio to
determine how many VMs you can run per hardware thread or core and how much
memory can be associated with the instance. By default, OpenStack uses 16:1 for
CPU allocation and 1.5:1 for RAM allocation ratios.

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

The CPU allocation ratio

The default 16:1 CPU allocation ratio means that you can run a maximum of 16
virtual CPU cores for every physical CPU core within all running virtual machines. If
you choose a physical node that has 24 cores, scheduling CPU resources will consider
24*16 available virtual cores. Thus, defining 4 virtual cores per instance, for example,
will provide 96 instances on each compute node. Ensure that overcommitting the
CPU only makes sense when running workloads are not extremely CPU-intensive. In
the other case, you should limit its ratio value.

Some values of the CPU ratio commitment can be misused by changing it to 1:1,
and then you will not be able to overcommit CPU anymore. Therefore, you will
be limited to running no more vCPUs than there are physical CPU cores in your
hardware. On the other hand, one virtual machine cannot have more virtual CPUs
than the existing physical CPUs, whereas it is still possible to run more virtual
machines than the number of existing physical CPU cores in the compute node.

Additionally, the new ratio value exposes a new way to refine resources' estimation.
Let's add a new formula that might accomplish the resources cited in Chapter 1,
Designing OpenStack Cloud Architecture.

The calculation formula to determine how many virtual instances can run on a
compute node is as follows:

(CPU overcommitment ratio * Number of physical cores)/Number of virtual cores per
instance)

The RAM allocation ratio

The default 1.5:1 memory allocation ratio means that allocating instances to compute
nodes is still possible if the total instance memory usage is less than 1.5 times the
amount of physical memory available. For example, a compute node with 96 GB

of memory can run a number of instances that reach the value of the sum of RAM
associated with 144 GB. In this case, this refers to a total of 36 virtual machines with 4
GB of RAM each.

Use the cpu_allocation ratioand ram allocation ratio directivesin /etc/
nova/nova.conf to change the default settings.

What about surprises? You have done the required resource computation for your
compute nodes and already estimated how many virtual machines within specific
flavors can run for each.

Flavors in OpenStack are a set of hardware templates that define the amount of
RAM, disk space, and the number of cores per CPU.

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Remember that we only use overcommitment when it is needed. To make it more
valuable, you should keep an eye on your servers. Bear in mind that collecting
resource utilization statistics is essential and will eventually conduct a better

ratio update when needed. Overcommitting is the starting point for performance
improvement of your compute nodes; when you think about adjusting such a value,
you will need to know exactly what you need! To answer this question, you will
need active monitoring of the hardware usage at certain periods. For example, you
might miss a sudden huge increase in resources' utilization requirements during
the first or the last days of the month for certain user machines, whereas you were
satisfied by their performance in the middle part of the month.

We are talking about peak times, which can differ from one physical machine to
another. Users who use virtual instances cannot hold the same requirements all

the time, for example, accounting systems. You may face a trade-off between big
resource assignments to fulfill peak times and performance issues when committing
resources. Remember that it is important to have a strong understanding of what
your system is virtualizing. Furthermore, the more information you gather, the better
prepared and the more ready you will be to face surprises. Besides, it becomes your
mission to find the best optimized way of handling those requirements dynamically.
Then, you will need to pick the right hypervisor(s).

Deciding on the hypervisor

The hypervisor is the heart engine of your OpenStack compute node. This is called the
virtual machine monitor (VMM), which provides a set of manageability functions for
virtual machines to access the hardware layer. The amazing part about hypervisors in
OpenStack is the wide range of VMMs that it can offer, including KVM, VMware ESXi,
QEMU, UML, Xen, Hyper-V, LXC, bare metal, and lately, Docker.

If you already have some experience with one or more of these, it will be better to
take a look at how they differ at an architectural level. Currently, the last OpenStack
release at the time of writing this book was Juno, which has many hypervisor
features added or extended. Keep in mind that not all of these support the same
features. The Hypervisor Support Matrix (https://wiki.openstack.org/wiki/
HypervisorSupportMatrix) is a good reference that can help you to choose what
fits your needs.

Obviously, the former hypervisors are not the same, based on their nature and use
cases. For example, Quick EMUlator (QEMU) and User Mode Linux (UML) might
be used for general development purposes, while Xen requires a nova-compute
installation on a paravirtualized platform.

[89]

www.it-ebooks.info

https://wiki.openstack.org/wiki/HypervisorSupportMatrix
https://wiki.openstack.org/wiki/HypervisorSupportMatrix
http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

Paravirtualization is an improvement of virtualization technology in
. which the guest operating system is compiled prior to installation in a
% virtual machine. Xen and IBM have adopted this technology keeping in
L mind the high-performance deliverance that it can provide. The operating
system and the hypervisor work efficiently in tandem, which helps avoid
the overheads imposed by the native system resource emulation.

Most probably, you have heard about most of these previously mentioned
hypervisors, but what do you think Docker could be?

It is interesting to discover another attractive point about OpenStack, which has
steadily grown and can include any virtual technology in its ecosystem, such as the
Docker driver for OpenStack nova-compute.

Out of the box, Docker helps enterprises deploy their applications in highly portable
and self-sufficient containers, independent of the hardware and hosting provider.

It brings the software deployment in to a secure, automated, and repeatable
environment. What makes Docker special is its usage of the terms of several
containers, which can be managed on a single machine. Additionally, it becomes
more powerful when it is used alongside Nova. Therefore, it would be possible

to manage hundreds and even thousands of containers, which makes it the cat's
meow. You may wonder about the use cases of Docker, especially in an OpenStack
environment. Well, as mentioned previously, Docker is based on containers that

are not a replacement for virtual machines, but which are very specific to certain
deployments. Containers are very lightweight and fast, which may be a good option
for the development of new applications and even to port older application faster.
Imagine a virtual machine abstraction that can be shared with any application along
with its own specific configuration requirements without them interfering with
each other. Docker can do this, but in terms of containers where applications run
natively on the Linux kernel and each kernel is segmented from one another to form
the operating system. Uniquely, it might be possible to save the state of a container
as an image that can be shared though a central image registry. This makes Docker
awesome as it creates a portable image across infrastructures and reveals the barrier
of building bridges between different clouds, in other words, hybrid clouds.

As this is an introduction to the Havana release, Docker is going to be an
important tool for OpenStack, which might stand beside virtual machines
in an OpenStack environment.

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

To read more about Docker, check the following reference:
https://www.docker.com/whatisdocker/. The

Docker driver documentation for OpenStack can be found
’ here: http://docs.openstack.org/havana/config-

reference/content/docker.html.

On the other hand, most OpenStack nova-compute deployments run KVM as the
main hypervisor. The fact is that KVM is best suited for workloads that are natively
stateless using libvirt.

KVM is the default hypervisor for OpenStack Compute. You can check out your
compute node from /etc/nova/nova. conf in the following lines:

compute driver=libvirt.LibvirtDriver
libvirt type=kvm

For proper, error-free hypervisor usage, it might be required to first check whether
KVM modules are loaded from your compute node:

lsmod | grep kvm

kvm_intel or kvm amd
Otherwise, you may load the required modules via:
modprobe -a kvm

To make your modules persistent at reboot, which is obviously needed, you can
add the following lines to the /etc/modules file when your compute node is an
Intel-based processor:

kvm
kvm-intel

Note that kvm-intel can be replaced by kvm-amd in the case of an
AMD-based processor.

Our further compute deployments will be based on KVM.

[91]

www.it-ebooks.info

https://www.docker.com/whatisdocker/
http://docs.openstack.org/havana/config-reference/content/docker.html
http://docs.openstack.org/havana/config-reference/content/docker.html
http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

Changing the color of the hypervisor

While we have decided to use KVM for nova-compute, it would be great to

check how OpenStack could support this wide range of hypervisors by means of
nova-compute drivers. You might be suggested to run your OpenStack environment
with two or more hypervisors. It can be a user requirement to choose a typical
hypervisor in order to use its native one. This will help the end user resolve the
challenge of native platform compatibility, and then we can calibrate the usage

of the virtual machine between environments. This would be a great topic in hybrid
cloud environment.

The next figure depicts the integration between nova-compute and KVM, QEMU,
and LXC by means of libvirt tools and XCP through APIs. On the other hand,
vSphere, Xen, or Hyper-V can be managed directly via nova-compute.

Nova - Compute ‘

Let s take an example and see how such wonderful multihypervisor capability

can be factored in to your OpenStack environment. If you already have a VMware
vSphere running in your infrastructure, this example will be suitable for you if you
plan to integrate vSphere with OpenStack. Practically, the term integration on the
hypervisor level refers to the OpenStack driver that will be provided to manage
vSphere by nova-compute. Eventually, OpenStack exposes two compute drivers that
have been coded:

* vmwareapi.VMwareESXDriver: This allows nova-compute to reach the ESXi
host by means of the vSphere SDK

* vmwareapi.VMwareVCDriver: This allows nova-compute to manage multiple
clusters by means of a single VMware vCenter server

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Imagine the several functions we will gain from such an integration using the
OpenStack driver with which we attempt to harness advanced capabilities, such as
vMotion, high availability, and Dynamic Resource Scheduler (DRS). It is important
to understand how such an integration can do the magic.

OpenStack Compute Scheduler

vCenter

vMotion is a component of VMware vSphere that allows the live
, migration of a running virtual machine from one host to another with
no downtime. VMware's vSphere virtualization suite also provides a
' load-balancing utility called DRS, which moves computing workloads to
available hardware resources.

In a vSphere implementation coupled with OpenStack, nova-scheduler will assume
each cluster as a single compute node that has the aggregate of resources of all ESXi
hosts managed by that cluster, as shown in the previous figure.

A good practice retrieved from this layout implementation is to place the compute
node in a separate management vSphere cluster so that nodes that run nova-compute
can take advantage of vSphere HA and DRS. vCenter can be managed by the
OpenStack compute nodes only if a management vSphere cluster is created outside
the OpenStack cluster.

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

M One common use case for host aggregates is when you want to support
Q scheduling instances to a subset of compute hosts because they have a
specific capability.

Our previous example can be thought of as the following if we seek a heterogeneous
hypervisor deployment in an OpenStack installation using KVM and vSphere ESXi.

It is important to guarantee that particular VMs are spun up on their specific
vSphere cluster, which exposes more hardware requirements. To do this, OpenStack
facilitates such requirements by means of host aggregates. They are used with nova-
scheduler in order to place VMs on a subset of compute nodes based on their rank
capabilities in an automated fashion.

A brief example can be conducted with the following steps:

1. Create a new host aggregate; this can be done through Horizon. Then, select
Admin project. Point to the Admin tab and open System Panel. Click on the
Host Aggregates category and create new host named vSphere-Cluster 01.

2. Assign the compute nodes managing the vSphere clusters within the newly
created host aggregate.

3. Create a new instance flavor and name it vSphere . extra with particular VM
resource specifications.

4. Map the new flavor to the vSphere host aggregate.
This is amazing because any user requesting an instance with the vSphere.extra

flavor will be forwarded only to the compute nodes in the vSphere-Cluster 01
host aggregate.

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Therefore, it will be up to vCenter to decide which ESXi server should host the
virtual machine.

vCenter

Q_\ OpenStack Compute Node ESXi

OpenStack Compute Node KV

OpensStack Cloud Controller

At this point, we consider that running multiple hypervisors in a single OpenStack
installation is possible using host aggregates or the terminology of cells. Then, if
you factor in hypervisors' varieties, do not get confused by the fact that a single
hypervisor is running with an individual compute node.

Eventually, the previous figure might consider that the VM instances running on
KVM can be hosted directly on a nova-compute node, whereas the vSphere with
vCenter on OpenStack requires a separate vCenter server host where the VM
instances will be hosted on ESXi.

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

Storing instances' alternatives

Compute nodes have been sized with the total CPU and RAM capacity, but we did
not cover the disk space capacity. Basically, there are many approaches to doing this
but it might expose other trade-offs: capacity and performance.

External shared file storage
The disks of running instances are hosted externally and do not reside in compute

nodes. This will have many advantages, such as the following;:
* Ease of instance recovery in the case of compute node failure

* Shared external storage for other installation purposes
On the other hand, it might present few drawbacks, such as the following;:

* Heavy I/O disk usage affecting the neighboring VM

* Performance degradation due to network latency

Internal nonshared file storage

In this case, compute nodes can satisfy each instance with enough disk space. This
has two main advantages:

* Unlike the first approach, heavy I/O won't affect other instances running in
different compute nodes

* Performance increase due to direct access to the disk I/O
However, some further disadvantages can be seen, such as the following:

* Inability to scale when additional storage is needed
* Difficulties in migrating instances from one compute node to another

* Failure of compute nodes automatically leading to instance loss

In all cases, we might have more concerns for reliability and scalability. Thus,
adopting the external shared file storage would be more convenient for our
OpenStack deployment. Although there are some caveats to the external instances'
disk storage that must be considered, performance can be improved by reducing
network latency.

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Cooking the compute node

Deploying the compute node via Chef is much simpler than understanding the
resource requirements needed for a node. Basically, the compute node will run
nova-compute together with the networking plugin agent. What you should
understand at this stage of automated deployment is how to conduct your
controller to communicate with the compute node when you run Chef.

You got it: create a correct network mapping in your environment file.

Let's refresh our memory about the compute spot against the controller:

154

Management Network

Controller Node o1

nova-api

Network Node

R —

nova-scheduler

nova-conductor

neutron-*-plugin-agent

neutron-dhcp-agent
keystone-all

neutron-L3-agent

neutron-server

glance-api
Internal Data Network

glance-registry

Extenal Network Controller APl Network

We have already defined a role in the cookbook that automates the installation of
the cloud controller instances in The cloud controller section. We will do this for the
compute node as well by defining a new role named packtpub-os-compute.

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

The next cookbook design will highlight a complete independent compute node
setup regardless of the presence of the cloud controller in the environment. Thus,
the design might be tempted to show all dependencies as the compute node will be
deployed out of the box. As was claimed in our Chef cloud controller installation,
many roles can use other recipes within a given role. The same aspect applies to our
compute node. Basically, a compute node that runs nova-compute will depend on
the image, identity, and network services besides the common services and attributes
that describe the OpenStack environment, such as endpoint mapping. If you intend,
for example, to start the deployment of the compute node for the first time, its
cookbooks must be uploaded. On the other hand, you can create a berks file that
defines the list of required cookbook dependencies in your compute node cookbook
Do not be surprised if you find some cookbooks from the Chef community, which
may include the same dependencies. This indicates good design as it is considered
as a nonmonolithic block with which you can deploy services independently but by
sharing the same dependencies. We have our primary cookbooks already uploaded.
Adding new ones will depend on the existing ones if you would like to customize
your OpenStack deployment. In addition, any updates to recipes will be taken into
consideration by Chef. Chef is smart enough to claim that it is already added and
there is no need to upload it again, but just to use it. This is another reusability aspect
of Chef deployments. You may feel the difference between the first deployment in
Chef and the subsequent ones from the perspectives of speed and fewer errors. The
Chef compute node cookbook design may look like the following:

Cloud Controller Node

=
=]

packtpub- os-network

=
==

packtpub- os-base

=
(=] l
packtpub- os-network-openvswitch

=

= -
= =] -
packtpub- os-compute compute

fiy

-
common

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

M The open vSwitch agent service can also run optionally on compute
Q nodes. In this way, scalability of open vSwitch is achieved in case of
compute node failure.

The new packtpub-os-compute Chef role can be defined as the following;:

name "packtpub-os-compute"
description "PacktPub scalable compute node role"
run_ list(

"role [packtpub-os-compute-worker] ",

"role [packtpub-os-network-openvswitch] "

)

To upload the new role to your Chef environment, run the following command from
the Chef workstation using the Knife command line:

packtpub@workstation$ knife role from file /home/packtpub/chef-
cookbooks/roles/packtpub-os-compute.json

Preparing for plan B

One of the most critical tasks for a system administrator or cloud operator is

to plan a backup. Building infrastructure and starting in production without a
disaster recovery background is considered highly risky and you will need to start
taking immediate actions. We may find a bunch of property software in the cloud
computing area that does the job, such as the VMware backup solution.

However, backing up open source clouds will not be that easy. OpenStack does
not, for instance, support any special tool for backup. As it is merely a collection of
components combined to deliver services, an OpenStack operator should think how
to map the components used in its infrastructure and prepare a backup strategy for
each; the strategy should be easy, efficient, and autorecovery-enabled.

Thus, you should not miss the first question: what do we need to back up and how
do we perform such a mission?

At first glance, you might be tempted to think that backing up the cloud controller
will be centered on configuration files and databases.

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

Back up with backup-manager

Considering that there are many backup methods, you may wonder how to choose
the right tool for your system.

One of these methods involves using the backup-manager tool: a simple command-
line backup that is available for most Linux distributions. You can install it on your
nodes and configure it easily from one central file. If you are using CentOS 6 or
earlier, you will need to enable your EPEL repository:

packtpub@cc01l$ sudo rpm -Uvh http://mirrors.kernel.org/fedora-epel/6/
i386/epel-release-6-8.noarch.rpm.

Import the GPG key, as follows:
packtpub@cc01l$ sudo rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-6
Install the backup-manager package:

packtpub@cc01l$ sudo yum install backup-manager

The main configuration file for backup-manager is /etc/backup-manager . conft.
You can edit the file by defining each section by the backup methods and their
associated variables. We can start by listing the directories and files that we
want to back up:

export BM_TARBALL DIRECTORIES="/var/lib/nova /etc/keystone
/etc/cinder /etc/glance /var/lib/glance /var/lib/glance/images
/etc/mysqgl"

Note that we have excluded the /var/lib/nova/instances file
. from the backup folder list, as it contains running KVM instances. It
& might result in nonproper bootable images once you have restored
L them from the backup. For safety reasons, it might be possible to
save the image states first by means of snapshots and backing up the
generated image files in the next step.

Then, we specify the backup methods, such as mysql using mysgldump and tarball
to define the list of directories of corresponding tarballs:

export BM ARCHIVE METHOD="tarball mysqgl"
The next line will point to where you can store the backups:

export BM_REPOSITORY ROOT="/var/backups/"

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

You may plan for a redundancy plan by uploading the archived backup to a
secondary server using rsync. You can use your Swift cluster to provide more data
redundancy across the SWIFT rings.

M Backing up your nodes' configuration files locally needs continuous
monitoring, especially for disk space consumption. Try to keep an eye on
your monitoring system to prevent a full disk space state in your nodes.

Next, we will explain how files will be compressed using gzip, for example:

export BM MYSQL FILETYPE="gzip"

Optionally, you can define the SSH account to upload your archives remotely:

export BM_UPLOAD_SSH USER="root"

Next, we move to backing up our SQL databases. You can use the traditional method
using mysqgldump. We can continue with backup-manager and add the following
sections to /etc/backup-manager.conf:

export BM MYSQL DATABASES="nova glance keystone dash mysgl cinder"
export BM_MYSQL ADMINPASS="Define the root password in /root/.my.cnf"

The downside of this approach is the plaintext presentation of the password of
databases. Thus, if you intend to secure the database, ensure that the permissions are
restricted for /etc/backup-manager. conf, including the root user.

What about compute nodes? In fact, it implies the same folder, /var/lib/nova/,
and excludes the subdirectory instances where the live KVM resides. Backing up the
instances themselves is also possible by either creating a snapshot from Horizon or
by installing a backup tool in the instance itself.

Simple recovery steps
For a safe and successful recovery process, you can follow the next set of
simple steps:
1. Stop all the services that you intend to recover. For example, for a full Glance
recovery in your cloud controller, run these commands:
packtpub@cc01l$ stop glance-api
packtpub@cc01l$ stop glance-registry

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Clustering — Cloud Controllers and Compute Nodes

2. Import the glance backed-up database:
packtpub@cc01l$ mysqgl glance < glance.sql

3. Restore the glance directories:
packtpub@cc0l$ cp -a/var/backups/glance /glance/

4. Start all glance services:

packtpub@cc01l$ service start mysqgl
packtpub@cc01l$ glance-api start
packtpub@cc01l$ glance-registry start

Summary

In this chapter, you learned how to distribute services among cloud controllers by
taking future deployment based on fundamental concepts about high availability
and service clustering into consideration. You also learned how a cloud controller
is composed and how it functions in an OpenStack environment. By breaking
down the cookbooks we uploaded on our Chef server, you covered an example
that showed how you could play with roles to define your own services for them
to be reusable with other recipes. You should also have learned the importance of
compute node requirement from a hardware perspective by refining the decision
related to hypervisor selection and how to conduct the best storage outfit for your
compute nodes.

Another important topic was highlighted, which investigates how to back up

your OpenStack environment. This is not something to ignore; as your OpenStack
installation grows, the size of disk usage per node may increase dramatically and
can bring it down quite easily. In this case, we have to look at the storage approaches
existing in OpenStack and how to harness them to be useful for different purposes,
which will be covered in the next chapter.

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage
— Deploying the Hybrid
Storage Model

"As is our confidence, so is our capacity."

-William Hazlitt

Competing as a large cloud enterprise requires a reliable, scalable, and robust storage
solution. The next generation of data centers aims to leverage the power of cloud
storage. The storage infrastructure in the data center has been simplified by the
means of software-defined storage. With OpenStack, managing storage through the
software stack in the data center becomes easier. Additionally, OpenStack provides
several storage types that need more understanding in order to make the right choice
with regard to which storage solution will suffice for all the workload requirements.

The mission of this chapter is to make the readers self-confident about the design of
their storage in the OpenStack environment. In this chapter, we will learn how to
use Swift and Cinder. Additionally, we will introduce Ceph, a new cloud storage
solution that is seamlessly integrated with OpenStack.

In this chapter, we will go through the following topics:

* Understanding the different storage types in OpenStack

* A few best practices under the umbrella of storage systems

* Simplifying the Swift architecture and explaining how to do it

* Bringing Cinder under the microscope and demonstrating its use case

* Getting to know Ceph and ways to integrate it within OpenStack

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

Understanding the storage types

Which storage technology will fit into your OpenStack cloud implementation?
To answer this question, it is necessary to differentiate between different storage
types, which will make sense of each use case of your further decision. The fact
that OpenStack clouds can work in tandem with many other open source storage
solutions might be an advantage, but on the other hand, it can be overwhelming.

Thus, you are tasked in the beginning as you have to decide what you
need — persistent or ephemeral storage?

Ephemeral storage

For the sake of simplicity, we will start with the nonpersistent storage, which is
called ephemeral storage. As its name suggests, a user who actively uses a virtual
machine in the OpenStack environment will lose the associated disks once the
VM is terminated.

Persistent storage

Persistent storage means that the storage resource is always available. Powering off
the virtual machine does not affect the data. We can divide it into two persistent
storage options in OpenStack — object and block storage with the code names Swift
and Cinder, respectively. We did talk about Swift and Cinder in Chapter 1, Designing
OpenStack Cloud Architecture, in a nutshell. Let's dive into each storage OpenStack-
aware and see how the two different concepts are used to dump

different purposes.

Object storage is not NAS/SAN

Object storage allows a user to store data in the form of objects by using the RESTful
HTTP APIs. If you compare an object storage system to traditional NAS or SAN
storage, it might be claimed that object storage is much better than the latter. You can
refer to an object as a file representation in a traditional way. Let's take a closer look
at how they differ:

* Objects are stored in a flat and vast namespace. Unlike a traditional storage
system, they do not preserve any specific structure or a particular hierarchy.

* The stored objects are not user friendly.

* Accessing the Object Storage Devices (OSDs) by using an API such as REST
or SOAP cannot be done via any file protocol such as BFS, SMB, or CIFS.

* Object storages are not suitable for high-performance requirements or
structured data that is frequently changed, such as databases.

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

A spotlight on Swift

Swift was one of the first OpenStack projects. It was developed by NASA and
Rackspace, and the former contributed towards the project by developing the code
of the block storage of the OpenStack ecosystem. A few major changes to the storage
came about in a very short span of time.

Firstly, the emergence of web and mobile applications fundamentally changed data
consumption. The second major change was introduced in the Software Defined
Storage (SDS), which enables a large distributed storage system to be built by a basic
commodity storage. This dramatically reduces the cost of deploying data into an
application as the individual component is not reliable.

Swift is an object storage system. This means that it treats immediate consistency
before eventual consistency. This allowed Swift to gain HA, redundancy,
throughput, and capacity.

By adopting Swift as a cloud storage solution, you can enjoy several benefits, some of
which are as follows:

* Scalability: Swift is designed as a distributed architecture that allows the
performance to scale

* On-demand: Swift offers an on-demand storage with a centralized
management way

* Elasticity: The dynamic ways to use data allow you to increase and decrease
its available resources as needed

The Swift architecture

By relying on Swift for the logical software management of data instead of some
specialized vendor hardware, you gain incredible flexibility and features related to
deployment scaling that are unique to a storage system.

This is the essence of what an SDS is all about. However, what happens under the
hood is really interesting. Swift is fundamentally a new type of storage system. It is a
monotonic system rather than a distributed system, which means that it scales out and
tolerates failures without compromising the data availability. Swift does not attempt
to be like other storage systems; it doesn't mimic their interfaces. Instead, it changes
how the storage works.

The Swift architecture is very distributed, which prevents any Single Point Of
Failure (SPOF). It is also designed to scale horizontally.

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

The components of Swift consist of the following;:

* The Swift proxy server: This accepts the incoming requests via either
the OpenStack Object API, or just the raw HTTP. It accepts file uploads,
modifications to metadata, or container creation. In addition, it also serves
files or container listings to the web browser. The proxy server may also rely
optionally on the cache, which is usually deployed with memcached which
improves performance.

* The account server: This manages the account that is defined with the object
storage service. It describes the storage area that defines its own descriptive
information (metadata) and the list of containers in the account.

* The container server: This manages a mapping of containers in the account
server. A container refers to the user-defined storage area in an account
server. It defines a list of stored objects in the container. A container can be
conceptually similar to a sample folder in a traditional filesystem.

* The object server: This manages an actual object within a container. The
object storage defines where the actual data and its metadata is stored. Note
that every object must belong to a container.

Metadata provides descriptive information about the object. It is

stored as key-value pairs. For example, a database backup can
’ contain information about the backup time and backup tool.

Also, there are a number of processes that perform the housekeeping task on the
large data stores. The most important of these are the replication services, which
ensure consistency and availability through the cluster. Other post-processing
processes include auditors, updaters, and other reapers.

Auditors, updaters, replicators, and reapers are background
daemons that are run by Swift. Note that these processes can be
high resource consumers, which can be noticed by the increase
in the disk I/O traffic metric. It is recommended to adjust a few
Y settings in every object and container configuration file. For
example, it is possible to limit the number of background processes
running simultaneously on each node by adding a concurrency
value in each replicator, reaper, updater, or section. To see more
about the Swift object, container, and server configurations, check
the following link: http://docs.openstack.org/havana/
config-reference/content/object-server-conf.html.

[106]

www.it-ebooks.info

http://docs.openstack.org/havana/config-reference/content/object-server-conf.html
http://docs.openstack.org/havana/config-reference/content/object-server-conf.html
http://www.it-ebooks.info/

Chapter 4

Fire and forget

What makes Swift an amazing handler of objects in a storage system is the way it
treats the blob data and gives access via the OpenStack API.

It just clears the question: Where is my file and how can I access it? You would instead
change the question to: Do I have the unique object 1D of the corresponding file?

If the answer is yes, then you should really not care about the location of the file.
Make it simple. Exchanging OID with your OSD is enough!

Indexing the data

Searching, retrieving, and indexing the data in an OSD is done via the extensive
usage of metadata. Although a typical NAS storage uses the metadata, you should
consider the fact that the metadata in OSD is stored with the object itself in key-value
pairs. What makes it pretty wonderful is that the OSD keeps tagging the object even
if it is sliced or chunked with its metadata for storage efficiency reasons.

A rich API access

The proxy Swift process is the only process that can communicate outside a storage
cluster, and what it does is listen and speak to a specific HTTP.

Thanks to the RESTful HTTP API, we will be able to access the OSDs. On the other hand,
Swift provides language-specific libraries and APIs in PHP, Java, Python, and so on.

Let's see what the HTTP request looks like within the Swift API:

* GET: This downloads objects with metadata and lists the contents of the
containers or accounts

* PUT: This uploads objects, creates containers, and overwrites the metadata
headers

* POST: This updates the metadata (accounts or containers), overwrites the
metadata (objects), and creates containers if they do not exist

* DELETE: This deletes objects or empty containers

e HEAD: This retrieves header information, which includes the metadata for
the account, container, or object

An object request always requires an authentication token. Therefore, authentication
can be configured through the WSGI middleware, which is typically Keystone.

Objects stores can be mounted and accessed via NFS, SMB, or CIFS if their
/— corresponding stores provide a NAS interface.

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

Physical design considerations

The hallmark of Swift usage is that it requires you to look after your data durability
and availability. By default, a Swift cluster storage design considers a replica of three.

Therefore, once the data is written on a replica, it is spread across two other replicas,
which increases the availability of your data on one hand. On the other hand, you
will need more storage capacity. In addition, referring to the first logical design in
Chapter 1, Designing OpenStack Cloud Architecture, we have dedicated a network

for storage.

That was by purpose firstly for logical network design organization and secondly
to mitigate the load on the network by dedicating a separate storage handler.
Imagine a situation where one of the storage nodes with 50 TB fails when you need
to transfer this huge blob of data remotely to accomplish the required three-replica
design. It can take a few hours, but we need it immediately! Thus, take into account
the bandwidth precisely between your storage servers and proxies. This is a good
reason to put the spotlight on the physical design and the way the data is organized
in Swift.

In the first stage, we saw that the accounts, containers, and objects form the term

data in Swift, which will need physical storage. In this stage, the storage node will

be constructed first. Remember that Swift aims to isolate failures, which makes the
cluster wider in terms of grouping according to the nodes. Thus, Swift defines a new
hierarchy that helps you abstract the logical organization of data from the physical one:

* Region: Being in a geographically distributed environment, data can be
held in multiple nodes that are placed in different regions. This is the case
with a multi-region cluster (MRC). A user can suffer due to higher latency
that comes with the different servers being placed away from each other in
each region. To do so, Swift supports a performance read/write function
called read/write affinity. Based on the latency measurements between the
connections, Swift will favor the data that is closer to read. On the other
hand, it will try to write data locally to transfer the data to the rest of the
regions asynchronously.

* Zone: Regions encapsulate zones, which define the availability level that
Swift aims to provide. A grouping or a set of hardware items, such as a rack
or storage node, can refer to a zone. You can guess the rest—zoning to isolate
hardware failure from the other neighbors.

\
‘Q It is recommended to use five zones and start with at least

one zone in a given cluster.

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

* Storage nodes: The logical organization continues the storage abstraction
from the region which is the highest level, zones within region until we
find the storage servers which define the zone. A set of storage nodes forms
a cluster that runs the Swift processes and stores an account, a container,
the object data, and its associated metadata. What makes Swift unique is a
special storage organizer aware is possibly used to define how your set of
nodes would be grouped by criteria.

* Storage criteria: Depending on how the zones are set within the available
regions, Swift allows us to customize the way you wish to distribute data
across a single region or multiple regions on specific storage hardware or a
defined replica cluster.

* Storage device: This is the smallest grain of the Swift abstraction data
classification. The storage device can be the internal storage node's device or
connected via an external stack of a collection of disks in a drive enclosure.

_ The drives that are used in Swift can be set in a Just a Bunch of
Disks (JBOD) regardless of the configuration and can be accessed
L from the host computer as a separate drive unlike RAID, which

treats a collection of drives as a single storage unit.

The following figure shows the hierarchy in Swift:

O

HTTP Request
Put Object Get Object

Region 2 e

>

Region1 e

Proxy Server Proxy Server

00

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

Where is my data?

Ultimately, considering an MRC and looking for some sample data across a bunch of
storage servers fires up a pertinent question: how could Swift do that?

Whether the request was to read or write, the Swift servers need to map the data
names to physical locations, which are called rings. We can summarize the concept of
the rings as follows:

* Assign accounts, containers, and objects in separate rings
* Logical partition of the storage device in the ring

* Update the ring by redistributing the partitions in case or add/remove a
device to/from the cluster respectively

1
‘\Q It is recommended to use 100 partitions for each device

per zone.

Practically, a ring is a bunch of tables that are distributed to every node in the cluster.
So, why do these tables exist everywhere? The answer is simple. This is because
Swift replicates data everywhere!

There are various rings present in a cluster. When a process
needs to find an account, a container, or an object, it first looks
’ for the data in all the locations on every separate ring.

Does this not make sense? When a process needs to find some account-related data,
it first starts looking in a local copy of the rings, which points to all the locations on
the account ring for the data. For example, the rings in Swift use the hash functions
to determine how to retrieve or store an object. When using several drives in a
multiregion Swift environment, complicated hashing functions can be used to
accomplish such data location.

For example, a simple method to determine where to store an object can use an MD5
algorithm by getting the hash of the object storage location in an account server,
as follows:

md5 ("/account server0l/container0l/objectID")
f46aaa8067cbeb944b547a0fbc3012a2

The ring will define the MD5 hash to a hexadecimal representation, which will give a
value of 654853167495245315274945238545002450045.

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Next, we'll proceed with a modulo operation by dividing its value by the
available number of drives. Assuming that we have three drives, it might
give the following result:

332115198597019796159838990710599741918 % 3 = 2
The remainder of the former division will map the drive ID, which is 2.

Swift uses the ring-builder tool to create builder files by account/container/object
storage that contains information such as the replica count, partition power, and the
location of the storage drives within the cluster.

The total number of partitions that exist in your cluster can be obtained by
using the following partition power formula:
Total_partitons_per_cluster = 2 [partition power]
Here, the partition power is a random integer.

The following figure shows the ring mechanism:

Proxy Server o1 Proxy ServerN

Partition o1

Partition o3

Partitiono

ansssnss

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

Let's sum up our understanding of Swift in a real write-show example, as illustrated
in the previous figure:

1. Get the list of drives by the proxy servers from the ring.

2. Associate the objects to write the data.

3. Devices acknowledge for the ability to perform write operations.

Swift hardware
Basically, we want to know how many proxy and storage nodes (containers,
accounts, and objects) we will need. Note that we can logically group containers,
accounts and/or objects in a node to form a storage tier. Note that the racks formed
by a set of storage tiers that are logically sharing a physical point of failure, such as
a connection to a standalone switch, will be grouped into the same zone. Let's take a
look at an example of the deployment that we intend to have:

* 50 TB of object storage

* C(luster replica of 5

e The Swift filesystem is XFS

* Ahard drive of 2.5 TB

* 30 hard drive slots per chassis

With a few basic calculations, we can conclude how many storage nodes we
will need.

Starting with an important point concerning the factor or the XFS overhead gives a
value of 0.5 percent, which gives a factor of 1.0526.

A nice post can be found at http://rwmj .wordpress.

com/2009/11/08/filesystem-metadata-overhead/.

In this, several filesystem metadata overheads are compared.
On the other hand, by assuming a cluster of five replicas, the total storage capacity
can be calculated in the following way:

50 * 5 replicas = 250 TB

Next, we will get the total raw storage that is needed to calculate the size of the
drive, as follows:

250 TB * 1.0526 = 263 TB

[112]

www.it-ebooks.info

http://rwmj.wordpress.com/2009/11/08/filesystem-metadata-overhead/
http://rwmj.wordpress.com/2009/11/08/filesystem-metadata-overhead/
http://www.it-ebooks.info/

Chapter 4

Now, we need to determine the number of hard drives that are required, as follows:

[263 / 2.5] = 105.2 => 106 drives

Finally, the total number of storage nodes will be calculated in the following way:

106/30 = 3.533333 => 4 nodes

We can use one proxy node per four tier nodes.

1
‘Q If the number of storage nodes increases and has a value of more than six

in high workload traffic, you ought to add more proxy server processes.

Where to place what

Most probably, you will feel more comfortable when it comes to choosing the CPU or
RAM capacity based on our previous calculations in Chapter 1, Designing OpenStack
Cloud Architecture. What will be the case in large distributed storage systems?

We can go for the advanced CPU calculations as we have to make our proxy servers
and storage nodes a good outfit for the commodity hardware that we plan to
deploy in the OpenStack storage system. We will not spend a lot of money while
maintaining the minimum capacity requirements. Let's just make it run.

The proxy server in the Swift cluster will forward the client's request and send back
the responses across the storage nodes, which might increase the CPU utilization.

Storage nodes will perform intensive disk I/O operations, while affording more
CPUs is highly recommended with regards to the Swift process handler for the
replication and auditing of data.

Thus, with more drives per node, more CPUs are needed. Let's optimize the
approach based on the CPU calculation in Chapter 1, Designing OpenStack Cloud
Architecture. So, we already have 106 drives that are distributed in 4 nodes.

Assuming that we intend to use a CPU of 2 GHz processors with a ratio of cores to
drives of 3:4, we can calculate the number of cores that we will need, as follows:

(27 drives * 3/4 (core.GHz/drive))/2 GHz = 10.125 cores

The CPU cores can be obtained by using the following formula:
/S (Total_Number_Drives * (core:drive ration)) / GHz_Cores

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

As was claimed previously, Swift recommends the use of the XFS filesystem, where
it caches its nodes in the RAM. More RAM implies more caching, and therefore,

a faster object access. On the other hand, you might need to cache all nodes in the
RAM because you have to take care that your network limitation does not lead to a
bottleneck. We will start with 2 GB RAM per server.

Finally, the most particular spec that comes now is the disks. Basically, the proxy
nodes will not require any additional drive, but we need to find a cost/ performance
fit for the storage nodes.

Eventually, the account and container servers can be deployed with the use of SSDs,
which will boost the speed during the localization of the data.

On the other hand, the object storage servers can be satisfied by utilizing the
SATA/ATA disks with 6 TB disks, for example. Note that the object storage server
is complaining of a low IOPS. Thus, you should add more disks till you get an
acceptable value of IOPS.

The Swift network

Our first network design assumes that an additional network is dedicated for the
storage system. In fact, we should remind ourselves that we are talking about a large
infrastructure. More precisely, Swift is becoming a big house with small rooms in
our OpenStack deployment. However, Cinder can still provide a big room in a fairly
small house.

For this reason, we will extend the Swift network by deriving more subnets,
as follows:

* The front-cluster network: Proxy servers handle communication with the
external clients over this network. Besides, it forwards the traffic for the
external API access of the cluster.

* The storage cluster network: It allows communication between the storage
nodes and proxies as well as inter-node communication across several racks
in the same region.

* The replication network: We do care about the development of our
infrastructure size, right? Therefore, we will plan for the same for the
multiregion clusters, where we dedicate a network segment for
replication-related communication between the storage nodes.

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The Swift network is shown in the following figure:

| I HTTP Access Dashboard

!

Controller Node

HEN
g Load Bal?.ncer

> ExternallInterface

Proxy Servero1 Proxy Serveroz

Storage Cluster Networlk* Internal Interface

ReplicationStorage Network

Cooking Swift

The cookbooks uploaded to the Chef server in Chapter 2, Deploying OpenStack
- DevOps and OpenStack Dual Deal, include as well the Swift cookbook named
cookbook-openstack-object-storage.

. Ifyou did not upload the Swift cookbook, you can download it and
% add to your Chef cookbook repository from GitHub: https://
L github.com/openstack/cookbook-openstack-object-
storage/tree/stable/havana.

[115]

www.it-ebooks.info

https://github.com/openstack/cookbook-openstack-object-storage/tree/stable/havana
https://github.com/openstack/cookbook-openstack-object-storage/tree/stable/havana
https://github.com/openstack/cookbook-openstack-object-storage/tree/stable/havana
http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

For a large environment, it is recommended to split the proxy and storage layers,

as shown in the previous figure. Optionally, we can assign, for each storage node, a
triple Swift server: account, container and object role while keeping dedicated nodes
for the Swift proxy server. From our Chef server, we can assign the following roles.

A Swift storage node role, add this code:

name "packtpub-os-object-storage"
description "Swift Triple Servers Roles"
run list(

"role [packtpub-os-basel ",

"role [packtpub-os-object-storage-account] ",

"role [packtpub-os-object-storage-management] ",

[
"role [packtpub-os-object-storage-container] ",
[
"role [packtpub-os-object-storage-object]"

)
A Swift proxy node role can be as follows:

name "packtpub-os-object-storage-proxy"
description "Swift Proxy Server Role"
run_ list(

"role [packtpub-os-basel",

"recipe [openstack-object-storage: :proxy-server]"

)
Upload both roles to Chef server via knife command line:

$ knife role from file roles/packtpub-os-object-storage.rb

$ knife role from file roles/packtpub-os-object-storage-proxy.rb

For the sake of simplicity, we can run the Swift proxy server on the cloud controller.
Most importantly, the Swift proxy server should have access to the storage network.
The next code shows an update of our Chef environment file to support Swift in our
first test environment:

"override attributes": {
"object-storage": {
llzonell: lllll ,
"swift hash": "877c0688aa47",
"authmode": "keystone",
"authkey": "swauthkey",
"auto rebuild rings": false,
"git builder ip": "127.0.0.1",

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

"network": {
"proxy-cidr": "192.168.47.0/24",
"object-cidr": "192.168.47.0/24"

}

}

We modify next our Vagrant file which will include a new packtpub-os-object-
storage-proxy role on the cloud controller node. We will add five Swift storage
nodes. The Vagrant file will be updated as the following:

chef environment = "vagrant-packtpub"

controller run list = [
"role [packtpub-os-base-controller]™",

"role [packtpub-os-object-storage-proxy]"

swift _run list = [
"role [packtpub-os-object-storage] "
1

Swift 5 Storage Nodes

(1..5) .each do |7
config.vm.define "storage node#{j}" do |node]
config.vm.provider "virtualbox" do |node|
node.name = "storage node#{j}"
node.vm.box = "opscode-centos-6.5"
node.vm.network "private network", ip: "192.168.47.11#{j}"
end
end
node.vm.provision :chef client do |chef|
chef.run list = swift run list
chef.environment = chef environment
chef.chef server url = "https://chef.packtpub.com:443"
chef.validation key path = "/home/packtpub/chefrepo/.chef/chef-
validator.pem"
end
end

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

After saving the Vagrantfile, update the controller node role and bring the new Swift
nodes up by running the following commands:

export VAGRANT VAGRANTFILE=vagrant-packtpub
vagrant reload --no-provision controllerl

vagrant up

This commands give the following output:

Bringing machine 'storage _nodel' up with 'wirtualbox' provider...
Bringing machine ‘'storage_node2' up with 'wirtualbox' provider...
Bringing machine ‘storage node3' up with ‘wvirtualbox' provider...
Bringing machine ‘storage noded' up with 'wirtualbox' provider...
Bringing machine ‘storage node3' up with 'wirtualbox' provider...

Next, run the following command:

vagrant provision

Running the preceding command gives the following result:

==> Storage_nodel: Running provisioner: chef_client...

==> Storage_nodel: Detected Chef (latest) is already installed
==> Storage_nodel: Creating folder to hold client key...

==> Storage_nodel: Uploading chef client wvalidation key...
Generating chef JS0N and uploading...

==> Storage_nodel: Running chef-client...

Joining Cinder

Now, we will talk about block storage. We made a small comparison between

Swift and Cinder in Chapter 1, Designing OpenStack Cloud Architecture. Since we are
building the infrastructure, we need to decide on the best outfit storage. Without
doubt, we have seen that Cinder is fully integrated into OpenStack Compute, where
users are able to manage their own storage needs by managing the volumes and the
associated snapshots of these volumes.

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

It is imperative to check the use case of Cinder in our storage design. Like object
storage, block storage is mainly a tool for persistent storage. Under the hood,
volumes expose a raw block of storage that can be attached to instances and which
can store data permanently. On the other hand, Cinder manages snapshots. Keep

in mind that the former is a point-in-time copy of a volume, whereas you might

be able to make fast and temporary backups by fully copying a volume's data and
storing the same in the backup system. However, the concept of the snapshot can be
misunderstood when you rely on it purely for long-term backup purposes.

Fundamentally, block storage becomes an essential requirement for virtual
infrastructure within OpenStack that is in favor of ephemeral storage. We should be
glad that Cinder provides a block device that uses iSCSI, NFS, and Fiber Channel.
Alternatively, we can even make it compatible with some other vendor backend
storage connectivity. Moreover, Cinder helps you manage the quotas by limiting
the tenant's usage. You can limit the quota usage by total storage utilized including
snapshots, total of volumes available, or total number of snapshots taken. The
following example shows the current default quota for the packtpub_tenant tenant
by using the following command line:

cinder quota-defaults packtpub tenant
e Fommm - +

| Property | Value |

R R S +
gigabytes	1000
snapshots	50
volumes	50
R R S +

The limiting of the quotas for the packtpub tenant can be done in the following way:

cinder quota-update --volumes 20 packtpub_ tenant
cinder quota-update --gigabytes 500 packtpub tenant
cinder quota-update --snapshots 20 packtpub_ tenant
cinder quota-show packtpub tenant

it e +

| Property | Value |

e 4o mmm - +
| gigabytes | 500 |

| snapshots | 20 |
| volumes | 20 |
e 4o mmm - +

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

Choosing the storage

While dealing with the different storage systems within OpenStack, you may wonder
which outfit would be the best for your storage solution. Based on our previous
discussions, you should proceed into the next stage and discard a few questions and
scenarios to validate your choice.

Why should your environment support block storage and why not object storage?
Should you rely on the compute nodes to store your persistent storage drives?
Alternatively, will the external nodes be more convenient, taking your budget into
consideration? What about performance? Do the internal users need only reliable
storage? Should they turn a blind eye to its performance capabilities? Do you need
real redundant storage to meet the requirements of data-loss scenarios?

As you can see, we throttled a lot of questions. This can be done to a great extent.
Does it sound like an investigation series? Let's keep it simple and bring our case
under the microscope. Keep in mind that it will be one of many possibilities. If you
intend to over engineer your profiled storage design, you may expect complexity,
which may lead to an unknown state. To avoid such confusion, we can make a choice
based on the strategy of using simplicity.

We will assume that block storage is recommended for our OpenStack environment
for the following reasons:

* It provides persistent storage for virtual machines, which guarantees more
consistency than Swift

* It offers a better read /write and input/output storage performance for the
virtual machine volumes

* Itresolves the trade-off between performance and availability through the
use of external storage when a storage backend is supported by Cinder

* It has the snapshot facility to create new volumes for read/write usage
Suddenly, you might be tempted to think that we should not use Swift; the answer

to this will be no! There are several reasons behind arguing in favor of Swift, some of
which are as follows:

* Swift is a good fit if you wish to store large blobs of data, which includes a
large number of images

* Itis suitable for the backing up of archive storage, which brings the
infrastructure-related data in a safe zone

* Itis a very cost-effective storage solution that prevents the need to use an
external RAID-specific controller

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

* With Swift, we can access specific user data from anywhere; it can serve as a
Google data search engine

CAP under scope

OpenStack is designed to facilitate the integration of several existing storage
architectures in the enterprise. In fact, you may have noticed that we escalated such
choices to resolve the CAP theorem.

Eric Brewer of UC Berkeley proposed a theory in 2000, which states the impossibility
of a distributed system to guarantee that the following three important points will
be implemented:

* Consistency: Return the same data once a request has been launched, which
presumes that the clients will see the operations occurring in the same order

* Availability: Return an acknowledgement once a request has been launched
within a response

* Partition tolerance: This is the ability to resist total or partial connectivity
network failures of the system

Read more about the CAP theorem at
i http://en.wikipedia.org/wiki/CAP_theorem.

Therefore, such a choice aspires to bring the challenge that a storage system might
face to a great CAP's narrowed implication opportunity.

Swift belongs to the AP class. We have seen how it was architecturally designed to
provide HA and be a good option for partition tolerance by cluster zoning.

On the other hand, although Swift and Cinder store slightly different OpenStack
data, the volumes of the virtual machines are very critical in the first place.

They need a very high performance bias along with a consistency level, which

is something that Cinder is good at. Thus, we will not take the risk and wait for
a scenario where a write operation to all the nodes in your cloud storage are not
reflected simultaneously.

[121]

www.it-ebooks.info

http://en.wikipedia.org/wiki/CAP_theorem
http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

Stirring up the storage

Once validated, the topology for any system design will go through a hardware
planning phase. For Swift, we will talk about object storage. We are highly
redundant to respect the native requirements of its architecture. Let's examine an
example of hardware selection.

Cinder can do more

By relying on Swift to manage object storage on commodity servers instead of
specialized vendor hardware, we gain a lot of flexibility at a low cost. However,
when we arrive to spend some time on our block storage, we face a few

other options.

Block storage differs from object storage with regard to the consistency. In a cloud
environment, where machines depend on their volumes to run, it might be obvious
to treat this case in a different way. If you already have a special vendor storage
solution deployed in your infrastructure, you can change the way of starting from
scratch, which might not only be time consuming, but also expensive. The awesome
thing about Cinder in OpenStack is that it supports many storage array suppliers.
The former exposes block storage by means of Cinder drivers, such as Dell, Hitachi,
IBM, VMware, HP, NetApp, and so on.

You can check the Cinder support matrix at
i https://wiki.openstack.org/wiki/CinderSupportMatrix.

Cinder provides the available block storage driver support by the vendor product.
The functions that are enabled by OpenStack release code names. Note that most of
the suppliers provide support for protocols such as iSCSI in the first place then Fiber
Channel and NFS. In our case, we will deploy block storage with the EMC plugin.
As shown in the next figure, you will need an EMC Storage Management Initiative
Specification (SMI-S) server to initiate the (CMI) clients operation over HTTP in

the backend.

In our case, the integration of an SMI-S server is very useful if we wish to provide
a common point to manage the heterogeneous storage devices in our OpenStack
environment. Starting with the EMC storage, for example, you will be able to
manage the additional SMI-S-enabled storage property from a unique web-based
console instead of rushing between each vendor-native management interface.

[122]

www.it-ebooks.info

https://wiki.openstack.org/wiki/CinderSupportMatrix
http://www.it-ebooks.info/

Chapter 4

CMI stands for Clariion Message Interface and is used for
& communication between the storage processors.

SMI-S Server

SMI-S Provider
Compute API der AP >= I
CIM Object Manager

h 4

KVM instance

REST

Virtual Device Drive

PIP * « SIP
'VNX Storage
iSCSI 1] | O
> -
EEE

You will need to create a thin PacktPub OpenStack storage pool.

On your SMI-S server, you will need to install some Python dependency packets,
which can be done in the following way:

yum install -y libgcc_s.so.l glibc.i686 *pywbem*
compat-libstdc++-33.x86 64 libstdc++-devel-*

From the EMC website, get the SMI-S install package and install it as follows:

tar -xvf se7628-Linux-i386-SMI.tar
./ se7628 install.sh -install -host

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

Deploy the SMI-S server and configure the storage array in the following way:

cd /opt/emc/ECIM/ECOM/bin/
./TestSmiProvider
(localhost:5988) ? addsys
Add System {y|n} [n]l: vy
ArrayType (1=Clar, 2=Symm) [1]:
One or more IP address or Hostname or Array ID
Elements for Addresses
IP address or hostname or array id 0 (blank to quit): 192.168.1.102
IP address or hostname or array id 1 (blank to quit): 192.168.1.103
IP address or hostname or array id 2 (blank to quit):
Address types corresponding to addresses specified above.
(1=URL, 2=IP/Nodename, 3=Array ID)
Address Type (0) [default=2]:
Address Type (1) [default=2]:
User [null]: adminpack
Password [null]: adminpack

++++ EMCAddSystem ++++

On the Cinder node, check whether you have the following package installed:

yum install -y libgcc s.so.l glibc.i686 *pywbem*
compat-libstdc++-33.x86 64 libstdc++-devel-*

Do not forget to tell Cinder about its backend by editing the /etc/cinder/cinder.
conf file:

iscsi target prefix = ign.1992-04.com.emc

iscsi ip address = 192.168.1.104

volume driver =
cinde;.volume.drivers.emc.emc_smis_iscsi.EMCSMISISCSIDriver

cinder emc config file = /etc/cinder/cinder emc config.xml

Also, we need to tell it which storage pool and which array to use with the
following commands:

touch /etc/cinder/cinder emc_config.xml

Edit /etc/cinder/cinder emc_config.xml

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Append the following configuration to the XML file:

<?xml version='1.0' encoding='UTF-8'?>
<EMC>

<StorageType>OpenStack</StorageType>
<EcomServerIp>192.168.1.110</EcomServerIp>
<EcomServerPort>5985</EcomServerPort>
<EcomUserName>admin</EcomUserName>
<EcomPassword>adminpass</EcomPassword>
</EMC>

After restarting the Cinder service, try to test it as follows:

cinder create --display-name packtpub0l 5

cinder list

For the preceding code, we will get the following output:

AT T P P PR fronmmnnnnn P +
| 1] Status | Display Wame | Size | Volume Type | Bootable | Attached to |
A S PO bemnrns P P P :
| eddgitbe-Iacl-4893-b2ad-3446%ac9973 | avallable | packtpubdl | 5 | None | false | |
e s A N

The Cinder use case

Managing the different storage pools from one centralized management interface
makes Cinder send only the volume management requests to your existing storage
system. At this point, you should realize how OpenStack is open to seamlessly
integrating the existing pieces in your infrastructure without you having to go
through a nightmare when you wish to deploy what you exactly need.

Obviously, you may have a running OpenStack storage with one or multiple
backends where Cinder stands happily. However, there are some limitations that
you must take into consideration. As a system designer, you may come across
different knobs that you might have to twiddle around with in a distributed storage
environment. It starts when you move to the production. A database administrator
may suddenly discover that its Red Hat box has almost reached 95 percent at home
partition. You don't have the time to book a flight and go to Singapore to add a

new storage array to the ESX server in the data center, create a new virtual disk,
and attach it through the vSphere client. Even worse, it is Christmas! The trading
server will expect a peak load the day after, where the database size will increase by
gigabytes and you can't go offline. You have an evening to handle the situation and
then join the Christmas dinner!

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

This kind of situation puts a system administrator under tons of pressure, where
everybody expects to hear things such as: it will work! Between the words, a

lot of words! Stop blaming your monitoring system, which does not send such
notifications on time, and look at the situation from a different perspective. Realize
that virtualization can remove the limits of hardware access for the endpoint
machines, where the cloud computing paradigm just uses it to give a hand and
give exactly what you need without wasting resources. You will need to add a
new disk and your current case to extend an existing home partition. For example,
traditionally creating a new /dev/sdas primary partition and assigning it to

your home partition via LVM will resolve the issue in a few minutes. In a virtual
environment, a precondition needs to be satisfied first, which is the price that

you have to pay to derive benefits from the cloud technology. For example, if you
intend to extend the virtual disk size from your vSphere client while the machine
is running, you will need to check whether it is thin provisioned. In case it is thick
provisioned, you will need to reboot the machine after resizing the disk in the right
partition. For this reason, storage in production should be carefully handled and
managed by keeping a margin of surprises that might happen.

In our deployment scenario, it is worth differentiating the types of volume that are
provisioned in OpenStack by using Cinder and VNX as a backend, as follows:

* Thin provisioning: In this, the volume is virtually provisioned and can be
allocated as needed.

* Thick provisioning: Here, the volume is allocated during the volume
creation and is fully provisioned.

* Deduplicated provisioning: Here, the volumes are virtually provisioned and
made deduplication-aware. In this case, the storing of volumes in the VNX
devices will be done in a more efficient way by eliminating the duplicated
segments in the incoming data and storing only the unique one.

* Compressed provisioning: In this, the volumes are virtually compressed
and made compression-aware. In this case, the block storage devices may
gain more capacity with better, efficient usage by freeing up a greater
amount of valuable storage space with lower performance overheads.
The compressed provisioning applies to all the volumes, unlike the
deduplication provisioning.

The next example depicts how to create a thin volume named Thinvolo01 with
the storagetype: provisioning=thin spec value. Keep in mind that without
specifying the volume type, the driver will create a thick one by default.

$ cinder type-create "ThinVolume"

$ cinder type-key "ThinVolume" set storagetype:provisioning=thin

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The preceding command will produce the following output:

Volumes
Volumes o [

Project Host Mame Site Stabus Type Aliached To Actions

Volume Types + crvonme Trp |

Hama Aztians

Depending on the driver configured against OpenStack, you will be requested to
check each approach for what sort of limitations you will face during the production
phase. For example, you will not be able to extend a thick volume, which is
associated with a snapshot. It is very important to know in advance what kind of
volume you are using in order to avoid an error state. On the other hand, the matrix
that was cited earlier is very useful to bear in mind all the storage management
functionalities. Some of them are not supported directly by Cinder, but you can

use them from the native backend resource storage management.

Beyond Cinder — Ceph

Look carefully at the matrix mentioned previously, and you will find Ceph! It is
not just a driver that has to be installed and configured as a backend for Cinder. It
is more of a standard open source distributed storage. Ceph can be used for object
storage through its S3 API as well as the Swift APL If you intend to gather all the
pieces from the object and network block devices, you should consider Ceph.
Moreover, it is being developed to expose the filesystem interface, which is on the
way towards receiving support from the production. The concept of Ceph as a
scalable storage solution is almost the same as Swift that replicates data across the
commodity storage nodes. Do you think that is all? Of course not. Ceph is a good
data consolidator that enables you to grab both the object and block storages in a
single system. You can even use it as a backend to glance at images. If it is agreed
that Cinder is still recommended in our block storage solution as we need its AP],
will you go for Ceph rather than Swift for the object storage backend? Well, this will
be a difficult question to answer if you do not verify how Ceph is being architected
in a nutshell.

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

Here's the architecture of Ceph:

Authentication
API

Compuie API

Image AP|
libvirt o ‘

QEMU/KVM

Ceph Object Device
Ceph Storage Cluster R.A.D.O.S

i H ‘ i CRUSHMAP

0w (< 1=
537 (g* = = [+
OSD/MO

OSD/MON Cluster_o1 N Cluster_oz OSD/MON Cluster_o3

(4

The main core of Ceph is the Reliable Autonomic Distributed Object Store
(RADOS), which is responsible for the distribution and replication of objects across
the storage cluster. As illustrated in the previous figure, a block storage layer
provides a RADOS Block Device (RBD) for the object's backend. The amazing part
in this architecture is that the RBD devices are thinly provisioned within the RADOS
objects and thanks to the 1ibrbd library, objects can be accessed by means of QEMU
drivers, which make the magical link between Ceph and OpenStack. Unlike Swift,
Ceph defines other basic components as follows:

* Object Storage Devices (OSDs): This corresponds to the physical disks,
which can be a directory residing on a regular filesystem, such as XFS or
Btrfs. OSDs run the OSD daemon for the RADOS service, which will take

care of the replication, coherency, and recovery of objects.

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

A Linux filesystem such as XFS or ext4 is required for the Ceph
. production environment, but Btrfs hasn't been proven to be a
% stable filesystem that is suitable for a production environment.
L Refer to the official Ceph website, http://ceph.com/
docs/master/rados/configuration/filesystem-
recommendations/, for recommendation-related updates.

* Placement groups (PGs): A PG helps you map OSDs for performance and
scalability reasons. It performs object replication by the pool as well. Every
PG that is assigned in a pool will replicate the object into multiple OSDs
within the same pool.

* Pool: You can compare a pool in Ceph to the concept of rings in Swift. It
defines the number of PGs that are not shared. Furthermore, it provides hash
maps for objects in OSDs.

* The CRUSH maps: Based on the defined criteria, a CRUSH algorithm
defines how objects in OSDs will be distributed. Its main purpose is to
ensure that the replicated objects will not end up on the same disks, hosts, or
shelves. Besides OSD, Ceph introduces the following servers:

° The monitor daemon server (MON) mainly focuses on checking the
state of consistency of the data in each node that runs an OSD

° The metadata server (MDS) is required for the Ceph filesystem
to store their metadata if you intend to build a POSIX file on top
of objects

Ceph can be integrated seamlessly with OpenStack. It has emerged as a reliable
and robust storage backend for OpenStack that defines a new way of provisioning
the boot-from-volume instances. This new method of provisioning is named thin
provisioning. Eventually, Ceph compromises on a nice concept, the copy-on-write
cloning feature, allowing many VMs to start instantly from the templates. This
shows a great improvement at the threading level along with an amazing I/O
performance boost.

[129]

www.it-ebooks.info

http://ceph.com/docs/master/rados/configuration/filesystem-recommendations/
http://ceph.com/docs/master/rados/configuration/filesystem-recommendations/
http://ceph.com/docs/master/rados/configuration/filesystem-recommendations/
http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

Thousands of VMs can be created from a single master image derived from a Glance
image stored in a Ceph block device and booted by using Cinder, which requires
only the space needed for their subsequent changes:

@) ceph
I Volume
mage | Driver
CoW
Standard Cinder Volume Creation Fast Copy on Write Clone Volume

To boot the virtual machines in Ceph either from an ephemeral backend
or from a volume, you must use a RAW image for Glance, which is the
T supported format in Ceph.

The creation of the standard Cinder volume and fast copy-on-write clone volume
require you to use the Cinder API to forward a create image request from a defined
image at the Glance storage (1). The Cinder volume service tries to locate the image
under question in the Glance image store (2) and forwards its volume reference
back to the API (4). Using the standard way to boot an instance, as shown in the
Standard Cinder Volume Creation section in the previous figure, an image has to
be pulled from Glance and streamed to the compute node, which is extremely slow
(3). The new approach in the Fast Copy on Write Clone Volume section (3) gives
the functionality to make snapshot of images while they are being imported. Thus,
it might be easier and a more sophisticated to create clones from them as well as for
volume from an image.

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Ceph in OpenStack

We have been using Cinder and its driver-enabled support for Ceph. We already
have an overview of OSDs, which are the workhorses for object and block storage.
Moreover, partitions can be created for the OSD nodes and assigned different
storage pools. Keep in mind that this setup can be an example from many others.
The common point that you should stick to is the way you distribute the Ceph
components across the OpenStack infrastructure. In this example, we made the
ceph-mon daemon run in the controller node, which makes sense if you intend to
centralize all the management services from a logical perspective. The ceph-osd
nodes should run in the replica in separate storage nodes. The compute nodes need
to know which Ceph node will clone the images or store the volumes that require a
Ceph client to run on them.

From the network perspective, the ceph-osd nodes will join the private storage
subnetwork while keeping the nodes that are running the Ceph daemons in the
management network.

A simple integration model with OpenStack can be depicted in the following way:

. StorageNode 3 ‘

' Storage Node 2

Controller Node(s)

Storage Node 1

Ceph-osd

Ceph-osd

‘ Ceph-osd

Compute Node(s)

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

Cooking Ceph

Let's go back to our kitchen and check out the recipes that we have to prepare at
this stage. As we have many options to handle either the object or block storage, we
will try to sum both of them as a storage backend for OpenStack. Cooking time! We
will point to the basic Ceph cookbooks from the main repository of the Opscode
cookbook market. You can add the Ceph cookbook to your Chef workstation,

as follows:

packtpub@workstation$ cd /home/packtpub/chef-repo

packtpub@workstation /home/packtpub/chef-repo $§ git clone
https://github.com/ceph/ceph-cookbooks.git ceph

The Apache cookbook is required as a cookbook dependency for Ceph.
It might not have to be uploaded again because it already exists since the
’ first install of the Berks cookbook dependency.

Upload the Ceph cookbooks again. The Chef server will then take care of it:

packtpub@workstation/home/packtpub/chef-repo$ knife cookbook upload ceph

Let's exploit another flexible feature in Chef — the multienvironment support. We
created a basic environment that defines the distribution of the basic components
and services of OpenStack in Chapter 2, Deploying OpenStack — DevOps and OpenStack
Dual Deal. At this point, you will have two options. You can define a separate
environment that was purely written for Ceph, and then proceed by modifying the
current OpenStack configuration setup. Alternatively, you can use an environment
file, to which you can add a Ceph subenvironment section and make some other
changes to this file. Since Chef won't be bothered to rerun as many times as we want
for the same environment, we will go for the second option. We would like to make
more sense for the automation part. Moreover, when your infrastructure exposes
dozens of nodes, you should avoid the nano way. Trusting your environment file
will give you an easy life. On the other hand, it might not be wise to adopt such an
approach when you only need to modify a few settings or integrate a small plugin
that needs only a little modification within a limited number of attributes in your
existing environment. Depending on your needs, automation always helps but
without a blind eye. Let's bring our new environment file into action and highlight the
spot of Ceph that is shown in bold, as follows:

{

"name": "vagrant-packtpub",

"description": "PacktPub Testing Environment for Ceph Integration
in OpenStack."

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

"cookbook versions": {
b
"json class": "Chef::Environment",
"chef type": "environment",
"default attributes": {
"ceph": {
"config": {

"mon initial members": [
"controllerl™"
1,
"fsid": " 9ee348be-ef99-eal3e-7a7a-bbl33abcef48",

"osd": {
"osd journal size": "1000"
Y
"global": {
"public network": "172.16.24.0/8",
"storage network": "192.168.47.0/24"
}
Y
"openstack": true,
"monitor-secret": "BASkSuJPonHgFHaaZixurLvTvAz4PRo5IKYGts=="

}
h

"override attributes": {
n image n {
n apl ", {
"bind interface": "ethl",

"default store": "rbd",
"store pool": "images"
b
"block-storage": {
"volume": {
"provider": "ceph",
"rbd pool": "volumes"

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

We added three Ceph nodes, which have to be deployed within the two interfaces
for each node. In the next execution of the Chef client, Cinder and Glance will be
aware that we will use Ceph as the backend storage.

To get the filesystem ID (fsid) and the monitor secret key,
- you will need to run the following commands from the ceph-
% common package:
o
uuidgen -r

ceph-authtool --name=monitor-secret --gen-key

As we covered in the previous chapter along with Chef deployment, we again intend
to create a different set of roles for Ceph.

Basically, we need OSD and MON in the first place, which can be performed from
the Chef web interface or via Knife in the following way:

$ nano roles/ceph-osd.json

{
"name": "ceph-osd",
"description": "Ceph Object Storage Device",
"run list": [
"recipe[ceph: :repol",
"recipe[ceph::osdl"
1
}
$ nano roles/ceph-mon.json
{
"name": "ceph-mon",
"description": "Ceph Monitor",
"run list": [
"recipe[ceph: :repol",
"recipe[ceph: :mon]"
1
}

You will need to upload the following roles to the Chef server via the knife
command line:

$ knife role from file roles/ceph-osd.rb

$ knife role from file roles/ceph-mon.rb

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Do not forget to upload any newly created or

updated environment to the Chef server using the
e Knife command line:

knife environment from file <path>

For each OSD host, you can assign ceph-osd as well as ceph-mon if you intend

to run it in the same or a separate node. In our example, we can fire the ceph-

mon daemon to run on the cloud controller by just adding the ceph-mon role to its
Chef run-list. On the other hand, it can be useful to run multiple OSDs in the same
node by running a ceph-osd daemon for each disk in your box from the global file
environment, as follows:

"ceph": {
"config": {

"osd devices": {

ngn, {
"device": "/dev/sdb",
"zap": true

}l

nyn, {
"device": "/dev/sdc",
"journal": "/dev/sdc"

}

You can run OSDs with the Ceph node by editing the node settings of each Ceph
node, as follows:

{

"chef environment": " vagrant-packtpub ",
"run list": [
"recipe [ceph: :repol ",
"role [ceph-osd]"
1,
"normal": {
"ceph": {
"osd devices": [
{
"device": "/dev/sdb",
"journal": "/dev/sdb"

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

b

"name": "cephOl"

}

Let's update the Vagrant file, which will include a new ceph-mon role on the cloud
controller node. For the sake of simplicity, we will include an additional node that
runs three OSDs. The Vagrant file will be updated in the following way:

chef environment = "vagrant-packtpub"

controller run list = [
"role [packtpub-os-base-controller] ™",

"role[ceph-mon] "

Ceph_run list = [
"role[ceph-osd]l"
1
Ceph 3 0SDs Node

config.vm.define :cephl do |cephpp|
cephpp.vm.hostname = "cephl"
cephpp.vm.box = "opscode-centos-6.5"
cephpp.vm.box url =
"http://opscode-vm-bento.s3.amazonaws.com/vagrant/virtualbox/
opscode centos-6.5 chef-provisionerless.box"
cephpp.vm.network "private network", ip: "192.168.47.100"
file to disk = "./tmp/cephpp.osd data.vdi"
(0..2) .each do |osd]|
config.vm.provider :virtualbox do |vb|

vb.customize ['modifyvm', :id, '--memory',6 '2048',
'--cpus', '2']

vb.customize ['createhd', '--filename', disk file,
'--gize', 4048]

vb.customize ['storageattach', :id, '--storagectl',
'SATA Controller', '--port', 3+d, '--device', 0, '--type',
'hdd', '--medium', disk file]

end

end
cephpp.vm.provision :chef client do |chef |
chef.run list = Ceph run list
chef.environment = chef environment
Where to find our Chef Server by providing the
authorization key
chef.chef server url = "https://chefserver.packtpub.com:443"

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

chef.validation key path = "/home/packtpub/chef
repo/.chef/chef-validator.pem"
end
end

The last thing that you have to do is just push the button. Chef will update the new
role for the cloud controller in your Vagrant box, as follows:

export VAGRANT VAGRANTFILE=vagrant-packtpub
vagrant reload --no-provision controllerl

vagrant up ceph

The following is the output for the preceding commands:

deTault: Running provisioner: chef_client...
default: Detected Chef (latest) is already installed
default: Creating folder to hold client key...
default: Uploading chef client validation key...
erating chef JSON and uploading...

== default: Running chef-client...

default: stdin: is mot a tty

il

A new Ceph node with an address of 192.168.47.100 will be created. This node
resides in the same private VB network. This will mimic the storage network in real
production. Thus, you will have to change it to fit your network IP address.

You can check out the newly created Ceph node by issuing the following command:
vagrant ssh ceph01l

You can check whether the Ceph service is running in cepho01, as follows:

ceph -s

For the preceding code, you will get the following result:

cluster eae38p90-9c97-411d-b2ce-T4447a510aed
health HEALTH_ERR 192 pgs stuck inactive; 192 pgs stuck unclean; no osds
monmap el: 1 mons at{ceph@l=192.168.47.100:6789/0},election epoch 2, quorum O ceph@l
osdmap el: O osds: @ up, 0 in
pgmap v2: 192 pgs, 3 pools, @ bytes data, @ objects
0 kB used, @ kB / 8 kB avail
192 creating

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

Storing images in Ceph
It is possible to use Ceph as a storage backend to store an operating system image
for instances.

The following steps show how one can configure Glance to use Ceph as an
alternative for the storage of images:

1.

On the new Ceph instance, create a new Ceph pool for OpenStack Glance,
as follows:

ceph osd pool create images 128

On the cloud controller node, configure OpenStack Glance to use the RBD
store in /etc/glance/glance-api.conf, as follows:

nano /etc/glance/glance-api.conf
rbd store_user=glance

rbd store pool=images

1
‘Q To enable the copy-on-write cloning feature, set the direct_url

= True directive in /etc/glance/glance-api.conf.

Save the configuration file and restart the glance-api service, as follows:

#/etc/init.d/glance-api restart

M It is possible to reload the cloud controller configuration by
Q commenting out the rbd_store_user and rbd_store_pool
lines in the OpenStack image cookbook's attributes file.

On the cloud controller node, download a new image for Glance testing,
as follows:

wget http://cloud.centos.org/centos/7/images/Cent0S-7-
x86 64-GenericCloud.gcow2.xz

Create a new Glance image from the downloaded image in the
following way:

glance image-create --name="CentOS-7-image" --is-public=True
--disk-format-gcow2 --container-format=ovf < CentO0S-7-x86 64-
GenericCloud.gcow2.xz

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The preceding command yields the following output:

+------------ === +------ st e e e e m e s e - - - +
| Property | Value |
e e +
| checksum | 4T26676bcbbb6bd4ac97ba295e8c53285

container_format	owf
created_at	2015-85-12T19:35:58
deleted	False
deleted at	MNone
disk format	gcow?
ITE	5c15e35b-c4a9-4ff7-9197-a09e77d41205]
15 public	True
min_disk	@
min_ram	@
name	Cent05-7-image
owner	c4ea3292ca23id4ddeasd50260e7258193

protected	False
size	286675084
status	active
updated_at	2015-85-12T19:36:06
virtual_size	MNone
o m e e e e e e m o - o d o m e e e e e e e e e e e e m e mm e m e m === +

6. You can check out the image ID in the images Ceph pool by issuing the
following query:

rados -p images 1ls

For the preceding code, we will get the following output:

rbd id.5c15e35b-c4a9-47fT1-9197-a09e77d4T90a

The CentOS image is stored in Ceph, which refers to the CentOS image ID that is
shown in the Glance image output. The object that the Glance image recently stored and
imported from Ceph is identified with the help of the rbd_id.Image Glance IDformat.

Note that it is possible to configure Cinder and Nova to use

Ceph as well. You will need to create a new Ceph pool and

edit the /etc/cinder/cinder. conf file to specify the RBD

Ny driver for Cinder. Instances in OpenStack can be booted directly
into Ceph which requires defining optionally in the /etc/
nova/nova.conf file the ephemeral backend for Nova. To read
more about this specific setup, you may follow this useful link
http://ceph.com/docs/master/rbd/rbd-openstack/.

[139]

www.it-ebooks.info

http://ceph.com/docs/master/rbd/rbd-openstack/
http://www.it-ebooks.info/

Learning OpenStack Storage — Deploying the Hybrid Storage Model

Summary

In this chapter, we covered a vast topic pertaining to storage in OpenStack. By now,
you should be more familiar with the different storage types. We delved into a
variety of aspects of Swift as a former object storage solution for OpenStack.

Moreover, you should now be comfortable moving beyond the block storage
component for OpenStack. You will be able to understand what fits better in

your storage design against Cinder. We discussed the different use cases for the
OpenStack storage solutions and picked up an example from the many possibilities.
You should now be able to take into consideration several factors such as filesystem,
storage protocol, storage design, and performance.

Finally, the last section of this chapter talked about how one can mix and deploy

a block, object, and filesystem storage in a system called Ceph. Thus, thanks to its
APIs, you can seize the wide range of opportunities that are provided by OpenStack.
On the other hand, making the right decision for your own storage solution is on
you. Remember that any storage use case will depend on your needs or, in other
words, the needs of your end users.

However, do you think that only a good storage design will be enough to make

your OpenStack cloud perfect? The answer to this might be yes if you noticed that it
depends on your network design and security considerations, which will be the topic
of the next chapter.

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack
Networking and Security

"To have security, plan ahead."
-A Sicilian Proverb

The first networking concepts in OpenStack introduced you to some easy ways to
manage networking by the means of the nova-network daemon. Different network
providers such as FlatManager, FlatDHCPManager, and VlanManager are used

to construct the network configurations for the internal and external OpenStack
networks. These network managers eventually included a bridging tool as a default
gateway for instances in a compute node.

On the other hand, for management and security reasons, it might be considered
limited for the following reasons:

* Flat network: This is a single IP pool and layer 2 domain without
tenant isolation

* VLAN network: This requires manual VLAN configuration on the layer 2
device (switch) for port tagging and trunking

You might have noticed the different existing networks that were deployed in a
large OpenStack infrastructure and the need to isolate traffic for better performance.
Moreover, securing the OpenStack engine nodes — the user's instances —is without
doubt a must. Many use cases have demonstrated that ignoring such a topic might
expose your environment to serious vulnerabilities. Keep in mind that a user who
has access to an instance in a compute node may take control of other instances and
could even gain access to the other nodes in production if you haven't implemented
a network security plan.

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

In this scenario, you may wonder about the drawbacks of mono-tenancy in a flat
network setup. You may be tempted to think that VLANSs can resolve the issue since
they are the only way to provide multitenancy, which is great. However, what about
ACLs? Are you ready to manage a very complex VLANed network manually?

In this chapter, we will discuss the following topics:

* Understanding how Neutron facilitates the network management in

OpenStack

* Using security groups to enforce a security layer for instances

* Discovering the majesty of the Neutron plugins and using Open vSwitch

* Enabling and using Firewall as a Service in an OpenStack environment

* Enabling and using VPN as a Service in an OpenStack environment
We compared the native Nova network manager and Neutron in a nutshell in
Chapter 1, Designing OpenStack Cloud Architecture. It is obvious that Neutron is much
more powerful for management, especially for the security background. Some of the
advantages of Neutron are as follows:

* More controlled IP addressing and multi-tier networks

* The management of multiple private networks

* Great network topology customization, which is achieved by supporting
virtual, hardware, or mixed networks

* The introduction of new capabilities such as security groups and namespace
to separate domains

The story of an API

By analogy, the OpenStack compute service provides an API that provides a virtual
server abstraction to imitate the compute resources. The network service and
compute service perform in the same way, where we come to a new generation of
virtualization in network resources such as network, subnet, and ports, and can be
continued in the following schema:

* Network: As an abstraction for the layer 2 network segmentation that is
similar to the VLANSs

* Subnet: This is the associated abstraction layer for a block of IPv4/IPv6
addressing per network

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

* Port: This is the associated abstraction layer that is used to attach a virtual
NIC of an instance to a network

* Router: This is an abstraction for layer 3 that is used to perform routing
between the networks

* Floating IP: This is used to perform static public IP mapping from external to
internal networks

Security groups

Imagine a scenario where you have to apply certain traffic management rules for
a dozen compute node instances. Therefore, assigning a certain set of rules for a
specific group of nodes will be much easier instead of going through each node at
a time. Security groups enclose all the aspects of the rules that are applied to the
ingoing and outgoing traffic to instances, which includes the following:

* The source and receiver, which will allow or deny traffic to instances from
either the internal OpenStack IP addresses or from the rest of the world

* Protocols to which the rule will apply, such as TCP, UDP, and ICMP

* Egress/ingress traffic management to a Neutron port

In this way, OpenStack offers an additional security layer to the firewall rules
that are available on the compute instance. The purpose is to manage traffic to
several compute instances from one security group. You should bear in mind that
the networking security groups are more granular-traffic-filtering-aware than the
compute firewall rules since they are applied on the basis of the port instead of
the instance. Eventually, the creation of the network security rules can be done in
different ways.

. For more information on how iptables works on
% Linux, https://www.centos.org/docs/5/html/
s Deployment Guide-en-US/ch-iptables.html is
a very useful reference.

[143]

www.it-ebooks.info

https://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-iptables.html
https://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-iptables.html
http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

Iptables are empowered by means of security groups to perform traffic filtering.
Iptables define a certain number of tables containing chains of rules that determine
how packets will be manipulated: packet filtering, mangling, and NAT ruling.
Basically, packets traverse rules sequentially within four tables:

A filter table used to filter packets
A NAT table used for Network Address Translation

A mangle table used for an intentional alteration of the data in
packet headers

Raw tables are used to configure packets to be exempted from
connection tracking

Tables consist of chains. Every network packet received on any interface of
a computer must at least traverse one chain. Chains can be listed briefly as
the following:

The INPUT chain is used by filter and mangle tables for packets coming to the
local host.

The ouTpUT chain is used by all the tables and defines the outgoing traffic
leaving the host.

The FORWARD chain is used by the filter and mangle tables for packets routed
through the local host.

The PREROUTING chain is used by NAT, mangle, and raw tables. The network
packet is altered before routing. It defines how the destination IP address

of the packet will be translated to match the routing on the localhost called
Destination NAT (DNAT). It is useful for floating IP functionality.

The POSTROUTING chain is used by NAT and mang]le tables. The network
packet is altered after routing. It defines how the source IP address of the
packet will be translated to match the routing on the destination server called
Source NAT (SNAT).

The last piece of the picture is the rule in the chain which determines the packet-
filtering process. A rule is specified by multiple conditions (matches) that the packet
must satisfy so that the rule can be applied; and a target that defines which action
should be taken (in case the match conditions are met). If the condition is not met, it
moves to the next rule.

The following are the possible values of a target:

accepT: This denotes that the packet is accepted
DROP: This denotes that the packet is dropped

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

* RETURN: This denotes that the control will be returned to the calling chain
* sNAT: This denotes that the target rewrites the source IP address

* DNAT: This denotes that the target rewrites the destination IP address

A complete list of possible target values in iptables can be

found here:
= http://www.iptables.info/en/iptables-

targets-and-jumps.html

Managing the security groups using Horizon

From Horizon, in the Access and Security section, you can add a security group and
name it, for example, as PacktPub_SG. Then, a simple click on Edit Rules will do the
trick. The following example illustrates how this network security function can help
you understand how traffic —both in ingress/egress —can be controlled:

Diriefian Emat Typs 1P Predessl Part Ruage Remals

The previous security group contains four rules. The first and the second lines are
rules to open all the outgoing traffic for IPv4 and IPv6 respectively. The third line
allows the inbound traffic by opening the ICMP port, while the last one opens port
22 for SSH for the inbound interface. You might notice the presence of the CIDR
fields, which is essential to know. Based on CIDR, you allow or restrict traffic over
the specified port. For example, using CIDR of 0.0.0.0/0 will allow traffic for all the IP
addresses over the port that was mentioned in your rule. For example, a CIDR with
32.32.15.5/32 will restrict traffic only to a single host with anIP of 32.32.15.5.If
you would like to specify a range of IP addresses in the same subnet, you can use the
CIDR notation, 32.32.15.1/24, which will restrict traffic to the IP addresses starting
from 32.32.15. *; the other IP addresses will not stick to the latter rule.

[145]

www.it-ebooks.info

http://www.iptables.info/en/iptables-targets-and-jumps.html
http://www.iptables.info/en/iptables-targets-and-jumps.html
http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

The naming of the security group must be done with a
S unique name per project.

Managing the security groups using the
Neutron CLI

The security groups also can be managed by using the Python Neutron
command-line interface. Wherever you run the Neutron daemon, you can
list, for example, all the present security groups from the command line in
the following way:

neutron security-group-list

The preceding command yields the following output:

e e it e i +
| id | name | description |
e e e +
6973081d-2721-4268-abcbh-3e5beddcl2ef	default	default
8d472279-d071-4610-399d-6b19%e1de0l09	default	default
f3c3dbcl-93b7-471e-a5fc-e78b4ef53be5	PacktPub 56	default Security Group PacktPub
e e e +

To demonstrate how the packtPub_SG security group rules that were illustrated
previously are implemented on the host, we can add a new rule that allows the
ingress connections to ping (ICMP) in the following way:

neutron security-group-rule-create --protocol icmp --direction
ingress PacktPub-SG

The preceding command produces the following result:

Created a new security group_rule:

e i e e T +
| Field | Value |
e i +
direction	ingress
ethertype	IPw4
id	84297cf5-cd27-469b-ad5b-77T8961Te5737
port_range_max	
port_range_min	
protocol	icmp
remote_group_id	
remote_ip prefix	
security group_id	f3c3dbcl-93b7-471e-a5fc-e78b4e053be5
tenant_id	c4ea3292ca234ddeasd50260e7e58193
e T +

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The following command line will add a new rule that allows ingress connections to
establish a secure shell connection (SSH):

neutron security-group-rule-create --protocol tcp --port-range-max
22 --direction ingress PacktPub-SG

The preceding command gives the following output:

Created a new security_group_rule:

Fomm e e e e e m oo oo - e e i +
| Field | Value |
e e i +
direction	ingress
ethertype	IPw4
id	6b9550T4-b27b-446T-b582-9c895c56abcs
port_range_max	22
port_range_min	22
protocol	tcp
remote_group id	
remote_ip prefix	
security_group_id	f3c3dbcl-93b7-471e-a5fc-e78b4e053bes
tenant_id	cd4ea3292ca23idddea5d50260e7e58193
e e T TR IR +

. By default, if none of the security groups have been created, the
% port of instances will be associated within the default security
= group for any project where all the outbound traffic will be
allowed and blocked in the inbound side.

You may conclude from the output of the previous command line that it lists the
rules that are associated with the current project ID and not by the security groups.

Managing the security groups using the
Nova CLI

The Nova command line also does the same trick if you intend to perform the basic
security group's control, as follows:

$ nova secgroup-list-rules default

Since we are setting Neutron as our network service controller, we will proceed by
using the networking security groups, which will reveal additional traffic control
features. If you are still using the compute API to manage the security groups,

you can always refer to the nova. conf file for each compute node to set

security group api = neutron.

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

To associate the security groups to certain running instances, it might be possible to
use the Nova client in the following way:

nova add-secgroup test-vml PacktPub SG

The following command line illustrates the new association of the packtPub_SG
security group with the test-vm1 instance:

nova show test-vml

The following is the result of the preceding command:

]

progress

[[[
security groups default, PacktPub 5G
y_0 p
status	ACTIVE
temant_id	cd4ea3292ca23d4ddea5d50260e7e58193
updated	2015-04-27T11:22:082
user_id	c6167606b452492a8bF396c4ab2584b0

One of the best practices to troubleshoot connection issues for the running instances
is to start checking the iptables running in the compute node. Eventually, any rule
that was added to a security group will be applied to the iptables chains in the
compute node. We can check the updated iptables chains in the compute host after
applying the security group rules by using the following command:

iptables-save

The preceding command yields the following output:

cA _neutron-openvswi-if7fabcce-f -m state --state RELATED, ESTABLISHED -j RETURN
A neutron-openvswi-if7fabcce-T -p tcp -m tcp --dport 22 -j RETURN

A neutron-openvswi-if7fabcce-f -p icmp -j RETURN
FA neutron-openvswi-if7fabcce-f -5 10.10.10.3/32 -p udp -m udp --sport 67 --dport 68 -j RETURN

The highlighted rules describe the direction of the packet and the rule that is
matched. For example, the inbound traffic to the £7fabcce- £ interface will be
processed by the neutron-openvswi-if7fabcce-£ chain.

It is important to know how iptables rules work in Linux.
Updating the security groups will also perform changes in
* the iptable chains. Remember that chains are a set of rules
%j%“ that determine how packets should be filtered. Network
’ packets traverse rules in chains, and it is possible to jump
to another chain. You can find different chains per compute
host, depending on the network filter setup.

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

If you have already created your own security groups, a series of iptables and
chains are implemented on every compute node that hosts the instance that is
associated within the applied corresponding security group. The following example
demonstrates a sample update in the current iptables of a compute node that runs
instances within the 10.10.10.0/24 subnet and assigns 10.10.10.2 as a default
gateway for the former instances IP ranges:

rA neutron-openvswi-of/fabcce-T -m state --state RELATED,ESTABLISHED -j RETURN

rA neutron-openvswi-of7fabcce-T -j RETURN

rA neutron-openvswi-of7fabcce-T -j neutron-openvswi-sg-fallback
NEUTron-openyswl-s abcce-T -s 10.10.10. -M mMac --mac-source DR e T -] RETUM

The last rule that was shown in the preceding screenshot dictates how the flow of the
traffic leaving the £7fabcce-f interface must be sourced from 10.10.10.2/32 and
the FA:16:3E:7E:79:64 MAC address. The former rule is useful when you wish to
prevent an instance from issuing a MAC/IP address spoofing. It is possible to test
ping and SSH to the instance via the router namespace in the following way:

ip netns exec router grouter-5abdeaf9-fbb6-4a3f-bed2-7£93e91bb904
ping 10.10.10.2

The preceding command provides the following output:

PING 18.16.108.2 (10.10.10.2) 56(84) bytes of data.

64 bytes from 10.18.10.2: icmp_seg=1l ttl=64 time=340 ms
64 bytes Trom 10.10.10.2: icmp_seq=2 ttl=64 time=0.593 ms
64 bytes from 10.10.10.2: icmp seq=3 ttl=64 time=0.583 ms

The testing of an SSH to the instance can be done by using the same router
namespace, as follows:

ip netns exec router grouter-5abdeaf9-fbb6-4a3f-bed2-7£93e91bb904
ssh cirros@10.10.10.2

The preceding command produces the following output:

The authenticity of host '10.10.18.2 (10.10.10.2)° can't be established.
RSA key Tingerprint is B8c:91:40:1e:f4:1e:53:67:4c:60:c3:d4:90:25:02:93.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.10.10.2' (RS5A) to the list of known hosts.

K]

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

An example of a web server DMZ

In the current example, we will show a simple setup of a security group that might
be applied to a pool of web servers that are running in the Compute01, Compute02
and Compute03 nodes. We will allow inbound traffic from the Internet to access
WebServer01, AppServer01, and DBServer01 over HTTP, HTTPS, and MySQL.
This is depicted in the following diagram:

VM WM. VM VM VM. VM VM VM VM VM VM UM

Computeol Computeoz] Computeos

Virtual Network Switch

Internet ;
Firewall

Let's see how we can restrict the traffic ingress/egress via the Neutron API:

$ neutron security-group-create DMZ Zone --description "allow web traffic
from the Internet"

$neutron security-group-rule-create --direction ingress --protocol tcp
--port range min 80 --port range max 80 DMZ Zone --remote-ip-prefix
0.0.0.0/0

$neutron security-group-rule-create --direction ingress --protocol tcp
--port range min 443 --port range max 443 DMZ Zone --remote-ip-prefix
0.0.0.0/0

$neutron security-group-rule-create --direction ingress --protocol tcp
--port range min 3306 --port range max 3306 DMZ Zone --remote-ip-prefix
0.0.0.0/0

[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

From Horizon, we can see the following security rules group have been added:

Manage Security Group Rules: DMZ_Zone
Security Group Rules
Direction Ether Type IP Prolocal Parl Range Remale

1Bv Ay

ngress 1Pvd TGP B (HTTP} 0.0.0,0/0 (GIOH)

ingrass IPya TCP 2306 (MYSOL) 0.0.0.0/0 (CIDRA)

Creating a new security group, DMZ_Zone, will actually update the iptables rules
running on the compute node that hosts the instance. For example, we can see on
the compute node the new iptables rules by running the following command line:

iptables-save

The output of the iptables list is quite long; for the sake of simplicity, we will go only
through the fitter chain list.

Eventually the ingress/egress network will traverse first the FORWARD chain as
the following:

FORWARD -j neutron-filter-top

FORWARD -j neutron-openvswil-FORWARD
-A FORWARD -j nova-filter-top
-A FORWARD -j nova-network-FORWARD
-A FORWARD -j nova-apil-FORWARD

The rules defined in both chains neutron-filter-top and neutron-openvswi-
FORWARD will be processed. Then, iptables return to the calling FORWARD
chain, which defines the following chain:

-A FORWARD -j neutron-openvswi-FORWARD

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

The previous rule will cause to jump to the neutron-openvswi-FORWARD chain.
Therefore, it will jump to the neutron-openvswi-sg-chain chain, as the following;:

-A neutron- g-chain -m physdev --physdev-out ta| 34 --physdev-is-bridged -j neutron-openvswi-i69

-A neutron- g-chain -m physdev --physdev-in tap69l! --physdev-is-bridged -j neutron-openvswi-o691
-A neutron-op -chain -j ACCEPT

The first rule denotes the direction of the traffic entering the tap6919f23b-34 interface.

The external traffic entering the tap6919f23b-34 interface will be processed and
treated by the neurotn-openvsw-i6919f23b-3 chain, as the following:

FA neutron-openvswi-i6919T23b-3 -p tcp -m tcp --dport 8@ -j RETURN
FA neutron-openvswi-i6919t23b-3 -p tcp -m tcp --dport 443 -j RETURN
FA neutron-openvswi-i6919f23b-3 -p tcp -m tcp --dport 3306 -j RETURN

The previous rules reflect the creation of the DMZ_Zone security group, which was
configured previously in the Horizon dashboard.

When the Open vSwitch or the Linux Bridge plugins are used,
tap devices are created to connect the guest instance on the host
as virtual network interface cards. More details will be covered in
= Chapter 8, Extending OpenStack - Advanced Networking Features and
Deploying Multi-tier Applications.

Firewall as a Service

One of the most important reasons behind keeping Neutron in the scope of network
management is that several extensions are offered by this component. These
extensions are not available in the native Nova networking service. Firewall as a
Service (FWaa$) is one such extension. It can be deployed in your network map.
Thus, it can provide advanced management control over your virtual infrastructure.
Can a firewall be abstracted in the software layer? Indeed, the awesomeness of

the virtualization technology is not only limited to the computing part but also

to network virtualization. This is the style of OpenStack! You can see that such a
Cloud solution is not a typical hypervisor, but it encloses all aspects of infrastructure
management, including network services. FWaaS is definitely an extension for
Neutron. As an administrator, you will be able to define your security perimeter
from a logical layer.

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This includes the following options:

* Applying the rules to the ingress and egress network of tenants that are
within their associated routers

* Managing the firewall policies based on a set of proper rules

You may be tempted to think that this is exactly the same as a standard firewall
appliance. It's even more! Neutron in OpenStack provides a firewall that is defined
for each tenant. Tenants can share the firewall policies between them. Thus, the
common firewall rules are still applicable to several OpenStack tenants. But how
does it work? Nothing is kept secret; firewalls in Neutron keep the same firewalling
aspect by filtering the traffic using iptables. Eventually, we will see how the
security groups in a network make life easier by applying a collection of rules to

a certain number of compute nodes. Similarly, the rules regarding the firewall are
implemented by using the Neutron namespace.

. Each tenant has its own private networks, routers, firewalls,
% and load balancers that are isolated by Neutron. It uses a set
~— of logical containers, which are called network namespaces,

that identify any network object by its tenant.

You might ask the following question: Do I need to enable such a firewall service?
Well, it depends on the way you see your security policy. If you intend to operate on
a router level and define a traffic-filtered perimeter, you should think about FWaaS.
Moreover, it is tough for a multi-tier architecture to manage the filtering of traffic,
especially when it is fronted by a load-balancing capability.

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

In addition to this, the application of security groups might not be enough to have
the global filtering of traffic enabled across the Neutron router since they operate at
the instance/ port level. The following figure illustrates a simple FWaaS setup in the
OpenStack environment:

S :

VM VM VM VM VM VM VM VM

Tenant Network 2 :

Tenant Network 1 ———
| Neutron Router
[

Open vSwitch Agent1 | Open vSwitchAgent2

[]
Compute Compute E Network
Node o1 Node eoz I Node

1 Physical Network Switch

Internet Router

Coupling a firewall with Neutron

Like Cinder, several plugins are exposed to relate some other backend
implementation of the OpenStack block storage API requests. Similarly, the Neutron
API supports a variety of plugins by using the Linux VLANs and firewalls. Initially,
FWaaS in Neutron is available, but it needs to be activated. Let's do this.

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In the Neutron node conf file named neutron. conf, insert the following lines:

service plugins = firewall
[service providers]
service provider =
FIREWALL: Iptables:neutron.agent.linux.iptables firewall.OVSHybridIpt
ablesFirewallDriver:default
[fwaas]
driver =
neutron.services.firewall.drivers.linux.iptables fwaas.
IptablesFwaasDriver
enabled = True

To enable firewall management from the dashboard, change the controller node
in /usr/share/openstack-dashboard/openstack dashboard/local/local
settings.py by using the following setting:

'enable_firewall' = True

Then, you need to restart neutron-server and the web server that runs Horizon in
the following way:

root@packtpub# /etc/init.d/neutron-server restart
root@packtpub# service httpd restart

From Horizon, we can see that the new FWaaS section joined the OpenStack
management interface, as shown in the following screenshot:

n Opensta(k PacktPub
Project F“_eWa“S

Compute

Firewalls
Network

Firewalls
Netwerk Topology

Name Policy
Metworks
Routers Dipeying Oilems
Firewalls
Obiact Store
[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

Basically, if you intend to create a firewall, you will need to create a router in the
first place, which will apply the firewall setup. Note that FWaaS is a distributed
implementation of a firewall per tenant. The firewall will be applied to a router that
was created in the same project. You will be able to manage your firewall rules and
policies from Horizon or via the Neutron's command line.

[The FWaaS feature was introduced in the Havana release.]

Starting the configuration of a firewall in OpenStack is very straightforward. For
example, we can apply the rules to allow the ICMP and SSH traffic to go back and
forth. You can do the same on security groups level both the ingress/egress directions
but will be only in the instance- or port-filtering level. For example, in the VPN site-to-
site setup, you will need to allow certain ports in both the L3 devices. We can prepare
our rules for the instance and apply them to our first firewall in data center 01.

Let's create the firewall rule, as follows:

$neutron firewall-rule-create --protocol icmp --action allow --name FWO01l
Next, we will need to specify a firewall policy in the following way:

$neutron firewall-policy-create --firewall-rules FW01l FWpolicyO1l

The last step will require the creation of a firewall named Fwaas, as follows:

$neutron firewall-create FWpolicyOl --name FWaaS

The creation of the firewall will remain in a pending state
= until a router is created and interfaced to it.
[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The Neutron plugin

Ultimately, the goal of implementing networking plugins in OpenStack is to use the
advanced functionalities that the native OpenStack network is not able to perform.
You may remember that the basic network model is able to isolate different networks
by using VLANSs, which is great! But what about exploiting some other features

that are present in both layer 2 and 3 by performing the operation of tunneling?

One of the supported plugins in OpenStack is Open vSwitch. If anything, it is
crucial to understand how to use and configure it in order to validate its use case.
Software Defined Network (SDN) is the most recent network paradigm technology
that has proven its amazing ease with regard to the network configuration and
management. In a nutshell, the SDN concept is based on the separation of the
hardware levels, which can be the device that is meant to forward the packets and
the network intelligence layer or the decision maker layer that abstracts the network
infrastructure to a software controller.

In SDN, the packet forwarding device can be an Ethernet
switch while its control logic is decoupled. The device can be
programmed by using an open interface such as OpenFlow.

Keep in mind that Open vSwitch is an SDN-aware technology. It is a new,
revolutionary way to write a program that can be used to customize and manage
your network. Since we are moving in to the new era of network virtualization, it
essentially provides switching services to virtual networks within the OpenStack
environment.

We have already seen at the start of this chapter the extensions that were brought
by the Neutron API. Basically, Open vSwitch is one of the most well-supported and
stable plugins together with the Linux Bridge plugin. Both of these plugins provide
a layer 2 switching. There is more! If you are wondering how one can make a virtual
switch population talk to another physical one, Open vSwitch will support this mix.
Open vSwitch officially supports the following;:

e 802.1Q VLANSs and trunking
* DPort aggregation
* Tunneling: VXLAN and GRE

* NetFlow
* sFLOW
* OpenFlow

e STP and LCAP
e KVM, Xen, XenServer, and VirtualBox

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

There can be more than one plugin

Many third-party vendors such as VMware, Juniper, IBM, Cisco, Nicira, and many
others have developed and integrated their vendor plugins in order to allow a
Neutron interface with their network resources.

You are lucky if you already have some vendor switches in your current
infrastructure. Thus, it is beneficial to integrate it into Neutron and extend the
network functionality. However, how about using the multiplugins simultaneously?
This is a tricky question! Using Open vSwitch with the Linux Bridge plugins

at the same time can be very fruitful if you wish to exploit a majority of the
advanced networking features that are supported by both. The recent OpenStack
releases support simultaneous Neutron plugins, which alleviate such problems by
introducing the Modular Layer 2 plugin.

Thankfully, there is no more vendor lock-in. You can mix and bring hardware
from different supported Neutron vendors in the same OpenStack infrastructure.
Therefore, any plugin that is being created and integrated can be accessed via any
existing L2 agent.

. [
Since it was not possible to use both the Linux Bridge and Open

vSwitch plugins simultaneously, they have been deprecated in the
+ IceHouse release. The Modular Layer 2 plugin is currently a new
replacement, allowing the utilization of several plugins at the same
’ time. To read more about ML2, refer to the following link http://
docs.openstack.org/juno/config-reference/content/
networking-options-plugins-ml2.html.

Empowering the traffic isolation

Now that we measured the network security requirement by using Neutron, we can
move ahead and extend the first network design in Chapter 1, Designing OpenStack
Cloud Architecture.

Due to the pluggable architecture of the OpenStack networking, we will integrate
Open vSwitch and test the network isolation on an instance level. Before we delve
into the details, let's refresh our knowledge of the overall network topology by
introducing two different logical networks:

* Tenant networks: By default, they are created in isolation and not shared
with any other network that is associated within a user project in OpenStack

* Provider networks: In order to connect to the non-OpenStack resources,
provider networks can be served by the administrator to map to a specific
physical device in the data center

[158]

www.it-ebooks.info

http://docs.openstack.org/juno/config-reference/content/networking-options-plugins-ml2.html
http://docs.openstack.org/juno/config-reference/content/networking-options-plugins-ml2.html
http://docs.openstack.org/juno/config-reference/content/networking-options-plugins-ml2.html
http://www.it-ebooks.info/

Chapter 5

Let's assume that we would like to bring our network design into an existing
physical setup. In other words, we want to create provider and tenant networks
using the VLAN IDs that correspond to the real VLANSs in the data center. We only
need one OVS bridge to customize the connection between the following;:

* Instances in an OpenStack environment
* Load balancers and firewalls

* A network device residing on the same VLAN layer 2

The next illustration depicts the existence of two tenants, A and B, each has a
network with one router and one subnet. The Neutron router connects the tenants to
the physical switch to interface the public Internet. Under the hood, it is possible to
route securely between tenant networks using VLAN (802.1q tagged) and GRE-based
networks. Without the Neutron router, both tenant networks are effectively isolated
from each other.

Tenant Network A Tenant Network B

VM | vm | VM | VM

Provider Network

Tenant A Router Neutron Router Tenant B Router
11

Physical Network

[159]

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

VPN as a Service — a case study

As business grows, it might be needed to expand to the multisite endpoints. In
OpenStack, it can be referred to as a multicell endpoint that can provide access to the
different regions of the same OpenStack infrastructure. Of course, the implementation
of a VPN setup —whether it is a simple SSL one or an IPSEC solution — will empower
the security of traffic across the Internet. We have worked around the host security
level and brought different isolated networks in order to avoid traffic congestion

and improve the security of the internal network of the OpenStack environment.

The following case study will sum up the different aspects that were covered
previously and take things a step further by protecting the integrity of data by using
the tunneling and encryption basis. A fruitful Neutron extension provides VPN

as a Service (VPNaaS) again, thanks to virtualization! Now, if you plan to connect
two machines in different tenants that are geographically located in different data
centers, then you should consider OpenStack, which makes life easier and offers a
simple step-by-step configuration. VPNaaS is proven to be extension capable not
only to build a site-to-site VPN connection between two private networks, but also to
implement several VPN connections per tenant. Thus, you can create as many VPNs
as you want, which brings to you a real, extensible network. Let's go to Horizon and
study an example that helps you run a hybrid application.

General settings

The next figure depicts two different OpenStack sites, and we intend to link their
associated tenants. You may remember that a project in Horizon presents a tenant
description that includes its private networks, routers, and subnets.

o Add an admin user to each project in the Admin role. This will
~ allow you to fully perform administrative tasks in Horizon.
Q Additionally, you can create different users per project and assign
a service type to it using an admin account.

[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Subnet pCor DCoz Subnet
192.168.47.0/24 f 192.168.48.0/24
Tenant A Router P' VM . .1 Tenant B Router
172.24.2.224/28 172.24.4.224/28

IPSEC Tunnel IPSEC Tunnel

Let's create our first project named PackPub01 in D01 and a second project called
PacktPub02 in DCO2.

Based on the previous illustration, we intend to let the machines in both the
OpenStack subnets talk to each other. Note that each subnet is frontended by a
gateway router. Each project's network has a defined subnet that serves local IP
addresses, whereas a router connects to the external public interface of each network.
The connection between both the public IP addresses will be encrypted by the means
of VPNaaS. In other words, the traffic between the networks will be tunneled.

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

The following screenshot shows a basic network topology for bcozi:

Deol

Network Topology

small M Normal

FTI0 LY BATZET

i
-
N
b
=
.
g
s

2=
]
=]

pco2 will have the same network topology by bridging the 192.168.48.0/24 local
subnet to the Internet via an external router interface, which is depicted in the
following screenshot:

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Dco2

Network Topology

Bgmal = Nomal

Router

Instance

BZIVET P T TLT
PZI0BYBIT B

i

IP address ranges.

[Subnets in different tenant projects must have nonoverlapping]
s>

We have configured the setup from Horizon. Let's bring VPNaa$S shining in our
interface by using the following three steps:

1.

In order to create a full site-to-site IPsec VPN, we will use Openswan IPsec
implementation for Linux. Neutron supports Openswan by providing

a driver, which needs to be configured. Additionally, we will need the
neutron-plugin-vpn-agent package to be installed on both network nodes
in each site as follows:

yum install openswan openstack-neutron-vpn-agent

[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

2. Start the ipsec service:

/etc/init.d/ipsec start

3. Configure the Neutron agent file to use the openswan driver as follows:
nano /etc/neutron/vpn_ agent.ini

[vpnagent]

vpn_device_driver=neutron.services.vpn.device drivers.ipsec.
OpenSwanDriver

4. Enable VPNaaS in Neutron by activating its plugin in /etc/neutron/
neutron.conf, as follows:

service plugins =...... ,vpnaas

5. In the same file, enable the VPN service provider to use the Openswan driver
in the service_providers section as the following:
#service provider=VPN:openswan:neutron.services.vpn.service

drivers.ipsec.IPsecVPNDriver:default

6. Next, we will add a VPNaaS module interface in /usr/share/openstack-
dashboard/openstack dashboard/local/local settings.py in the
following way:

'enable VPNaaS': True,

7. Finally, restart neutron-server and neutron-vpn-agent services, and the
web server, as follows:

/etc/init.d/httpd restart
/etc/init.d/neutron-server restart

/etc/init.d/neutron-vpn-agent restart

To read more about Openswan, check the official website:
S

https://www.openswan.org/

VPNaaS configuration
We will start by configuring VPN on Dco1.

[164]

www.it-ebooks.info

https://www.openswan.org/
http://www.it-ebooks.info/

Chapter 5

Creating the Internet Key Exchange policy

In Horizon, we can create the Internet Key Exchange (IKE) policy in the first
VPN phase. The following screenshot shows a simple IKE setup of an OpenStack
environment that is located in the Dco1 site:

Add IKE Policy
Add Mew IKE Policy *

Name *
2 Crea

PP-IKE-Policy
FPF-IKE-Falicy .

Description

Authorization algorithm *

shat |
Encryption algarithm *

aes-256 nd |
IKE version *

w2
Litelime units for IKE keys
secands 'J
Litelime value for IKE keys *
Perlect Forward Secrecy *
QIrGADs

IKE Phasel negoliation mode *

main ﬂ

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

An IKE policy can also be created by using the Neutron command line,
N as follows:

neutron vpn-ikepolicy-create --auth-algorithm
shal --encryption-algorithm aes-256 --ike-version v2
--lifetime units=seconds,value=3600 --pfs group5
--phasel-negotiation-mode main --name PP-IKE-Policy

Creating an IPSec policy

The creation of an IPSec policy in the OpenStack environment that is located in the
Dco1 site in Horizon can be done in the following way:

Add IPSec Policy

Add New IPSec Policy *

Hame * -
Create IPSec Pol
PP IPSEC Pdicy

Assign a name al

Description

Authorization algorithm *

shal j

Encapsulation mode *

| tunned _'J

Encryption algorithm *

Litetime units *

seconds j
Lifetime value for IKE keys

asoo
Perfect Forward Secrecy *

aroups j
Transform Prolocol *

esp fd

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

An IPSec policy can also be created by using the Neutron command line,
\l as follows:

~ # neutron vpn-ipsecpolicy-create --auth-algorithm shal
--encapsulation-mode tunnel --encryption-algorithm
aes-256 --lifetime units=seconds,value=36000 --pfs group5
--transform-protocol esp -name PP IPSEC Policy

Standard VPN settings such as Encapsulation mode, Encryption algorithm, Perfect
Forward Secrecy, and Transform Protocol should remain the same in both the sites
for phase 1.

M If you face a VPN connectivity problem, a best practice of troubleshooting
Q before filtering or debugging the traffic is to begin checking the existence
of any mismatch of the phase 1 and phase 2 settings in both sites.

Creating a VPN service

To create a VPN service, you will need to specify the router facing the external
interface and attach the web server instance to the private network in the Dco1 site.
The router will act as a VPN gateway. We can add a new VPN service from Horizon
in the following way:

Add VPN Service

Add New VPN Service *

Name *

PP_VPN_Serice

Description

Router *

Router-VPNOT1 hd

Admin State

[167]

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

A VPN service can also be created by using the Neutron command line,
s as follows:

Q # neutron vpn-service-create --tenant-id
c4ea3292ca234ddea5d50260e7e58193 --name PP VPN Service
Router-VPN public subnet

Keep in mind that a VPN service is needed to select the router that will perform your
VPN gateway. Note that here, we have exposed our local subnet, 192.168.47.0/24.

Creating an IPSec site connection

The last step needs some information. Usually, we need to set up an external IP address
of the other peer for a VPN site. In OpenStack, you can check it by logging on as an
admin and from the packtPub02 tenant, clicking on the Router section. Here, you

will get all of its details, which includes information regarding the external gateway
interface, 172.24.4.227. The Remote peer subnet(s) value is the CIDR notation
192.168.48.0/24. We will finish our first project, the bco1 VPNaaS connection, by
setting the secret preshared key to AwEsomEVPn. The key will be the same for both the
sides. The process of setting the key is depicted in the following screenshot:

Add IPSec Site Connection

Hame *

Descriplion

VPN Service nssoclated with this connection *

VPN Serice =|

IKE Policy assoclated with this connection
PP-IKE-Palicy |

IPSec Policy assoclated with this connection

I -

PP IPSEC Pdlicy —

Peer gatewny public IPvd/IPvE Address or FQDN
172.24.4

Peer router identity for authentication {(Peer 1D} *
172.24.4.232

Remote peer subnel(s)

182 168 40 0/24

Pre-Shared Key (PSK) siring *

AwEsOmEwP

[168]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

A VPN service can also be created by using the Neutron command line,
as follows:
~ # neutron ipsec-site-connection-create --name PP_IPSEC
Q ---vpnservice-id PP_VPN Service --ikepolicy-id
PP-IKE-Policy --ipsecpolicy-id PP _IPSEC_ Policy
--peer-address 192.168.48.0/24 --peer-id 172.24.4.232

--psk AwWEsOmEvVPn

The peer gateway public IPv4 address can be obtained from the router details of
Dco2. We will need to hit the external interface, as shown in the following screenshot:

Interfaces

Hame Flaed IPs

Status Type Admir

To finish the VPN setup, you will need to follow the latter steps, but changing the IP
gateway addresses of DCo1 and the remote subnet to 192.168.47.0/24. Note that
the VPN settings, encryption algorithms and protocols, and the shared password
must be the same on both the sides.

A small smoke test can evaluate our setup.

From an instance in DC01, we can ping the DC02 site via 192.168.48.12, as follows:

from
from
from
from

ping 192.166.48.12

PING 192.168.48.12 (192.165.48.12): 56 data bytes
192.168.48.12: seq=0 tt1=64 time=1.
192.168.48.12: seq=1 tt1=64 time=0.
192.168.48.12: seq=2 tt1=64 time=0.
192.168.48.12: seq=3 tt1=64 time=0.
192.168.48.12: seq=4 tt1=64 time=0.

From an instance in DC02, we can ping the DC01 site via 192.168.47.13, as follows:

bytes from
bytes from
bytes from

bytes from
bytes from

PING 192.168.47 .13
; 92.168.47.13: = B ttl=64 time=0.
Z.168.47.13 [ttl=64 time=0
.168.47.13 =Z tt1-=-64
L168.47 .13 seq=3 ttl=64 time=
£.168.47.13: seq=4 ttl=649 time=0.Z649 ms

(192.168 56 data bytes

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing OpenStack Networking and Security

1
~ Be sure that you have enabled ICMP on the DC02 router
to allow pings.

Summary

In this chapter, we delved into the various aspects of networking and security in
OpenStack. A major part of the chapter focused on presenting the different security
layouts by using Neutron. At this point, you should be comfortable with security
groups and their use cases. You should also be aware of the benefits of the Neutron
API and the support of several plugins that allow you to diversify the networking
hardware setup within OpenStack.

Although we have left the detailed networking implementation for the next few
chapters, we went through other network and security functions such as FWaaS.
At this stage, you should be able to understand the difference between FWaaS and
the security groups and configure both of them at the network and instance level.
Finally, a straightforward step-by-step guide showed another awesome point of
Neutron by leveraging the networking security using VPNaaS—Neutron is very
extensible and powerful. As it is a critical aspect of your OpenStack infrastructure
that is responsible for network management, you should consider that Neutron
can be a single of failure as well as any other OpenStack engine node in your
environment. Thus, you should be sure that everything works like a charm —not
only in an event of failure, but also when it's time for surprises.

This will be our next topic —investigating how the OpenStack environment has to be
highly available across all layers and services. Also, it should be able to fail over at
any sudden issue.

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

"'Once we accept our limits, we go beyond them."'
—Albert Einstein

So far, you have gained a good knowledge of all the components needed to

provide a functional OpenStack infrastructure. In Chapter 1, Designing OpenStack
Cloud Architecture, we saw one of the many ways to design a complete OpenStack
environment. Chapter 3, Learning OpenStack Clustering — Cloud Controllers and Compute
Nodes, looked at one of the most important logical and physical designs of OpenStack
clustering in depth by iterating through cloud controller and compute nodes.
Distributing services through the mentioned nodes after considering the standalone
storage cluster, as seen in Chapter 4, Learning OpenStack Storage — Deploying the

Hybrid Storage Model, aims to reduce the downtime for a given service. Many design
approaches can fulfill such high-availability goals in OpenStack. On the other hand,
HA may not be as simple as the name suggests: it's the effort to eliminate any Single
Point Of Failure (SPOF) on every layer in your architecture. OpenStack components
can be brought and distributed in different nodes while maintaining a sense of team
work, which OpenStack is good at—again, thanks to our messaging service. In this
chapter, we will:

* Understand how HA and failover mechanisms can guarantee OpenStack
business continuity

* Look for a workaround on how to make different OpenStack components
configured in HA

* Check out different ways to validate a complete HA setup

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

HA under the scope

On a daily basis, system and network administrators are faced with a new challenge
by hitting the same point: we are aiming to make our infrastructure highly available!

Meanwhile, the IT manager sticks to his chair, drinking his tea and claims: our

IT system works just fine and our customers are satisfied. Surprisingly, you get that
phone call from the help desk with a struggling voice: well, the browser said "page

not found". Is the application server down? Obviously, the infrastructure was not as
highly available as it should have been. Despite your extra time spent configuring
clusters to be in uptime, more often than not, servers might not be reachable and
you then face a few special events, and you raise this question: why does it not fail
over? To make sense of an HA infrastructure, on one hand, you should know what
HA offers to your environment and how. On the other hand, you should stay close
to test scenarios of failing over as exemplified in the following real-life show. Many
system administrators feel lucky when they have bought a storage box that is not
supposed to fail, and even has this written: the solution that never shouts I am offline.
They claim that the new NAS box is highly available. Sadly, this is never realized. A
power outage takes place and it takes the fancy cluster out of service for a few hours
so that it can be restarted. If you realized that you need an extra battery, then you can
prevent this physical event failure. Later, you update its software package by clicking
on Update the NAS. Unfortunately, the developers of the NAS appliance have
included a new feature in its HA package that makes the software unstable, but you
are not able to not figure that out, as it is a new release and nobody had complained
about it previously. After a while, a failover happens but the server is unreachable. It
should have worked as intended. But in vain, by checking in the racks, you figured
out that eventually, the slave node is becoming the master according to the shining
LED light, which gets stuck while blinking! The failover is on its way, but the system
is not responsive. There was a software bug in the last release. At this point, the
downtime increases again while the bug waits to be fixed. Unluckily, you were the
first NAS box client to complain about the new features, which you might have to
wait to fix. This might take some time. A real-long unplanned failure could lead to a
bigger problem!

The storage system is not highly available anymore. Downtime is the exact enemy

of HA. Friendly downtime can be planned as you will only need to replace some
pieces of hardware. On the other hand, there are many reasons for unexpected
downtime, such as problems with hardware and software, or any external condition
that leads to the failure of the system.

[172]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Do not mix them

We still remember that one of the several purposes of OpenStack clustering is

to make sure that services remain running in the case of a node failure. The HA
functionality aims to make sure that the different nodes participating in a given
cluster work in tandem to satisfy certain downtime. HA, in fact, is a golden goal for
any organization where some useful concepts can be used to reach it with minimum
downtime, such as the following:

* Failover: Migrate a service running on the failed node to a working one
(switch between primary and secondary)

* Fallback: Once a primary is back after a failed event, the service can be
migrated back from the secondary

* Switchover: Manually switch between nodes to run the required service

On the other side, we may find a different terminology, which you may have most
likely already experienced, that is, load balancing. In a heavily loaded environment,
load balancers are introduced to redistribute a bunch of requests to less loaded
servers. This can be similar to the high performance clustering concept, but you
should note that this cluster logic takes care of working on the same request, whereas
a load balancer aims to relatively distribute the load based on its task handler in an
optimal way.

HA levels in OpenStack

It might be important to understand the context of HA deployments in OpenStack.
This makes it imperative to distinguish the different levels of HA in order to consider
the following in the cloud environment:

* L1: This includes physical hosts, network and storage devices, and
hypervisors

* L2: This includes OpenStack services, including compute, network, and
storage controllers, as well as databases and message queuing systems

* L3: This includes the virtual machines running on hosts that are managed by
OpenStack services

* L4: This includes applications running in the virtual machines themselves

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

The main focus of the supporting HA in OpenStack has been on L1 and L2, which
are covered in this chapter. On the other hand, L3 HA has limited support in the
OpenStack community. By virtue of its multistorage backend support, OpenStack is
able to bring instances online in the case of host failure by means of live migration.
Nova also supports the Nova evacuate implementation, which fires up API calls for
VM evacuation to a different host due to a compute node failure. The Nova evacuate
command is still limited as it does not provide an automatic way of instance failover.
L2 and L3 HA are considered beyond the scope of this book. L4 HA is touched on,
and enhanced by, the community in the Havana release. Basically, a few incubated
projects in OpenStack, such as Heat, Savana, and Trove, have begun to cover
HA and monitoring gaps in the application level. Heat will be introduced in
Chapter 8, Extending OpenStack — Advanced Networking Features and Deploying
Multi-tier Applications, while Savana and Trove are beyond the scope of this book.
B Live migration is the ability to move running instances from one y
host to another with, ideally, no service downtime. By default, live
migration in OpenStack requires a shared filesystem, such as a
* Network File System (NFS). It also supports block live migration
% when virtual disks can be copied over TCP without the need for a
T shared filesystem. Read more on VM migration support within the
last OpenStack release at http: //docs.openstack.org/admin-
guide-cloud/content/section configuring-compute-
migrations.html.

A strict service-level agreement

Normally, if you plan to invest time and money in OpenStack clustering, you should
refer to the HA architectural approaches in the first place. They guarantee business
continuity and service reliability.

At this point, meeting these challenges will drive you to acquire skills you never
thought you could master. Moreover, exposing an infrastructure that accepts failures
might distinguish your environment as a blockbuster private cloud. Remember that
this topic is very important in that all you have built within OpenStack components
must be available to your end user.

[174]

www.it-ebooks.info

http://docs.openstack.org/admin-guide-cloud/content/section_configuring-compute-migrations.html
http://docs.openstack.org/admin-guide-cloud/content/section_configuring-compute-migrations.html
http://docs.openstack.org/admin-guide-cloud/content/section_configuring-compute-migrations.html
http://www.it-ebooks.info/

Chapter 6

Availability means that not only is a service running, but it is also exposed and able to be
consumed. Let's see a small overview regarding the maximum downtime by looking
at the availability percentage or HA as X-nines:

Availability level | Availability Downtime/year Downtime/day
percentage

1 Nine 90 ~36.5 days ~ 2.4 hours

2 Nines 99 ~ 3.65 days ~ 14 minutes

3 Nines 99.9 ~ 8.76 hours ~ 86 seconds

4 Nines 99.99 ~ 52.6 minutes ~ 8.6 seconds

5 Nines 99.999 ~ 5.25 minutes ~ 0.86 seconds

6 Nines 99.9999 ~ 31.5 seconds ~ 0.0086 seconds

Basically, availability management is a part of IT best practices when it comes
to making sure that IT services are running when needed, which reflects your
service-level agreement (SLA):

* Minimized downtime and data loss

* User satisfaction

* No repeat incidents

* Services must be consistently accessible
A paradox may appear between the lines when we consider that eliminating the
SPOF in a given OpenStack environment will include the addition of more hardware

to join the cluster. At this point, you might be exposed to creating more SPOF and,
even worse, complicated infrastructure where maintenance turns into a difficult task.

Measuring HA

The following is a simple tip:

If you do not measure something, you cannot manage it. But what kind of metrics
can be measured in a highly available OpenStack infrastructure?

Agreed, HA techniques come across as increasing the availability of resources, but
still, there are always reasons you may face an interruption at some point! You may
notice that the previous table did not mention any value equal to 100 percent uptime.

[175]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

First, you may appreciate the nonvendor lock-in hallmark that OpenStack offers on
this topic. Basically, you should mark the differences between HA functionalities that
exist in a virtual infrastructure. Several HA solutions provide protection to virtual
machines when there is a sudden failure in the host machine. Then, it will perform a
restore situation for the instance on a different host. What about the virtual machine
itself? Does it hang? So far, we have seen different levels of HA. In OpenStack, we
have already seen cloud controllers run manageable services and compute hosts,
which can be any hypervisor engine and third-rank the instance itself!

The last level might not be a cloud administrator task that maximizes its internal
services' availability as it belongs to the end user. However, what should be taken
into consideration, is what really affects the instance externally, such as:

* Storage attachment

¢ Bonded network devices

A good practice is to design the architecture with an approach that is as simple as
possible by keeping efficient track of every HA level in our OpenStack cluster.

Eliminating any SPOF while designing the OpenStack
/~— infrastructure would help in reaching a scalable environment.

A good strategy to follow is to design an untrustworthy SPOF principle by ruling.
This keyword can be found anywhere in any system. In Chapter 1, Designing
OpenStack Cloud Architecture, within our first design, we highlighted a simple
architecture that brings in many instances in order to maximize availability.
Nowadays, large IT infrastructures are likely to suffer from database scalability
across multiple nodes. Without exception, the database in the OpenStack
environment will need to scale as well. We will cover how to implement a
database HA solution in more detail later in this chapter.

. High availability in OpenStack does not necessarily mean that it
is designed to achieve maximum performance. On the other hand,
— you should consider the limitations of the overhead result on
updating different nodes running the same service.

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The HA dictionary

To ease the following sections of this chapter, it might be necessary to remember few
terminologies to justify high availability and failover decisions later:

* Stateless service: This is the service that does not require any record of the
previous request. Basically, each interaction request will be handled based on
the information that comes with it. In other words, there is no dependency
between requests where data, for example, does not need any replication.

If a request fails, it can be performed on a different server.

* Stateful service: This is the service where request dependencies come
into play. Any request will depend on the results of the previous and the
subsequent ones. Stateful services are difficult to manage, and they need to
be synchronized in order to preserve consistency.

Let's apply our former definition to our OpenStack services:

Stateful services Stateless services

MySQL, RabbitMQ nova-api, nova-conductor, glance-api, keystone-
api, neutron-api, nova-scheduler, and web server
(Apache/nginx)

Any HA architecture introduces an "active/active" or "active/passive" deployment,
as covered in Chapter 1, Designing OpenStack Cloud Architecture. This is where your
OpenStack environment will highlight its scalability level.

First, let's see the difference between both concepts in a nutshell in order to justify
your decision:

* Active/active: Basically, all OpenStack nodes running the same stateful
service will have an identical state. For example, deploying a MySQL
cluster in the active/active mode will bring in a multimaster MySQL node
design, which involves any update to one instance that may be propagated
to all other nodes. Regarding the stateless services, redundancy will invoke
instances to be load-balanced.

* Active/passive: In the case of stateful services, a failure event in one node
will bring its associated redundant instance online. For example, within
database clustering, only one master node comes into play, where the
secondary node will act as a listener when failover occurs. It keeps load
balancing handling requests within stateless services.

[177]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

Hands on HA

Chapter 1, Designing OpenStack Cloud Architecture, provided a few hints on how to
prepare for the first design steps: do not lock keys inside your car. At this point, we can
go further due to the emerging different topologies, and it is up to you to decide
what will fit best. The first question that may come into your mind: OpenStack

does not include native HA components; how you can include them? There are
widely used solutions for each component that we cited in the previous chapter

in a nutshell.

Understanding HAProxy

HAProxy stands for High Availability Proxy. It is a free load balancing software tool
that aims to proxy and direct requests to the most available nodes based on TCP/
HTTP traffic. This includes a load balancer feature that can be a frontend server. At
this point, we find two different servers within an HAProxy setup:

* A frontend server listens for requests coming on a specific IP and port,
and determines where the connection or request should be forwarded

* A backend server defines a different set of servers in the cluster receiving the
forwarded requests

Basically, HAProxy defines two different load balancing modes:

* Load balancing layer 4: Load balancing is performed in the transport layer
in the OSI model. All the user traffic will be forwarded based on a specific IP
address and port to the backend servers.

For example, a load balancer might forward the internal OpenStack system's
request to the Horizon web backend group of backend servers. To do this,
whichever backend Horizon is selected should respond to the request under
scope. This is true in the case of all the servers in the web backend serving
identical content. The previous example illustrates the connection of the

set servers to a single database. In our case, all services will reach the same
database cluster.

* Load balancing layer 7: The application layer will be used for load balancing.
This is a good way to load balance network traffic. Simply put, this mode
allows you to forward requests to different backend servers based on the
content of the request itself.

[178]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Many load balancing algorithms are introduced within the HAProxy setup. This is
the job of the algorithm, which determines the server in the backend that should be
selected to acquire the load. Some of them are as follows:

* Round robin: Here, each server is exploited in turn. As a simple HAProxy
setup, round robin is a dynamic algorithm that defines the server's weight
and adjusts it on the fly when the called instance hangs or starts slowly.

* Leastconn: The selection of the server is based on the lucky node that has the
lowest number of connections.

1
‘Q It is highly recommended that you use the leastconn algorithm in

the case of long HTTP sessions.

* Source: This algorithm ensures that the request will be forwarded to the
same server based on a hash of the source IP as long as the server is still up.

Contrary to RR and leastconn, the source algorithm is considered

a static algorithm, which presumes that any change to the server's
T weight on the fly does not have any effect on processing the load.

* URI: This ensures that the request will be forwarded to the same server
based on its URL. It is ideal to increase the cache-hit rate in the case of proxy
caches' implementations.

Like the source, the URI algorithm is static in that updating the
% server's weight on the fly will not have any effect on processing
"~ theload.

You may wonder how the previous algorithms determine which servers in
OpenStack should be selected. Eventually, the hallmark of HAProxy is a healthy
check of the server's availability. HAProxy uses health check by automatically
disabling any backend server that is not listening on a particular IP address and port.

But how does HAProxy handle connections? To answer this question, you should
refer to the first logical design in Chapter 1, Designing OpenStack Cloud Architecture,
which is created with virtual IP (VIP). Let's refresh our memory about the things
that we can see there by treating a few use cases within a VIP.

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

Services should not fail

A VIP can be assigned to the active servers running all the OpenStack services that
need to be configured to use the address of the server. For example, in the case of a
failover of the nova-api service in controller node 1, the IP address will follow the
nova-api in controller node 2, and all clients' requests, which are the internal system
requests in our case, will continue to work:

s
:
S

Load Balancer

Openstack API Openstack API Openstack API
Service | Service | Service

The load balancer should not fail

The previous use case assumes that the load balancer never fails! But in reality,
this is an SPOF that we have to arm by adding a VIP on top of the load balancer's
set. Usually, we need a stateless load balancer in OpenStack services. Thus, we can
undertake such challenges using software similar to Keepalived:

Keepalived ° [Keepalived

o b VRRP
Load Balancer —_— — Load Balancer
| Failover I

Openstack API Openstack API ‘ Openstack API
Service J Service | Service]
[180]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Keepalived is a free software tool that provides high availability and load
balancing facilities based on its framework in order to check a Linux Virtual
Server (LVS) pool state.

LVS is a highly available server built on a cluster of real servers by

running a load balancer on the Linux operating system. It is mostly
’ used to build scalable web, mail, and FTP services.

As shown in the previous illustration, nothing is magic! Keepalived uses the Virtual
Router Redundancy Protocol (VRRP) protocol to eliminate SPOF by making IPs
highly available. VRRP implements virtual routing between two or more servers in
a static, default routed environment. Considering a master router failure event, the
backup node takes the master state after a period of time.

In a standard VRRP setup, the backup node keeps listening for
_ multicast packets from the master node with a given priority. If the
% backup node fails to receive any VRRP advertisement packets for a
s certain period, it will take over the master state by assigning the routed
IP to itself. In a multibackup setup, the backup node with the same
priority will be selected within its highest IP value to be the master one.

OpenStack HA under the hood

Deep down in the murky depths of HA, the setup of our magnificent OpenStack
environment is much diversified! It may come across as a bit biased to favor a given
HA setup, but remember that depending on which software clustering solution you
feel more comfortable with, you can implement your HA OpenStack setup.

Let's shine the spotlight brightly on our first OpenStack design in Chapter 1,
Designing OpenStack Cloud Architecture, and take a closer look at the pieces in
the HA mode.

Next, we will move on to specific OpenStack core components and end up with
exposing different possible topologies.

[181]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

HA the database

There's no doubt that behind any cluster, lies a story! Creating your database in the
HA mode in an OpenStack environment is not negotiable. We have set up MySQL in
cloud controller nodes that can also be installed on separate ones. Most importantly,
keep it safe not only from water, but also from fire. Many clustering techniques have
been proposed to make MySQL highly available. Some of the MySQL architectures
can be listed as follows:

* Master/slave replication: As exemplified in the following figure, a VIP
that can be optionally moved has been used. A drawback of such a setup
is the probability of data inconsistency due to delay in the VIP failing over
(data loss).

—

B—{)—a

* MMM replication: By setting two servers, both of them become masters by
keeping only one acceptable write query at a given time. This is still not a
very reliable solution for OpenStack database HA as in the event of failure of
the master, it might lose a certain number of transactions:

[182]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

MySQL shared storage: Both servers will depend on a redundant shared
storage. As shown in the following figure, a separation between servers
processing the data and the storage devices is required. Note that an active
node may exist at any point in time. If it fails, the other node will take over
the VIP after checking the inactivity of the failed node and turn it off. The
service will be resumed in a different node by mounting the shared storage

within the taken VIP.

i
E E B

[183]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

Such a solution is excellent in terms of the uptime, but it may require a
powerful storage/hardware system which could be extremely expensive.

* Block-level replication: One of the most adopted HA implementations is the
DRBD replication, which stands for Distributed Replicated Block Device.
Simply put, it replicates data in the block device, which is the physical hard
drive between OpenStack MySQL nodes.

WI;E]_ =

DRDB Primary DRDB Secondary

What you need are just Linux boxes. The DRBD works on their kernel layer
exactly at the bottom of the system I/O stack.

_—
Synchronization DRDB ==

——

With shared storage devices, writing to multiple nodes
% simultaneously requires a cluster-aware filesystem, such as
' the Linux Global File System (GFS).

DRBD can be a costless solution, but performance-wise, it cannot be a deal
when you rely on hundreds of nodes. This can also affect the scalability of
the replicated cluster.

* MySQL Galera multimaster replication: Based on multimaster replication,
the Galera solution has a few performance challenges within an MMM
architecture for the MySQL/innoDB database cluster. Essentially, it uses
synchronous replication where data is replicated across the whole cluster.
As was stated in our first logical design in Chapter 1, Designing OpenStack
Cloud Architecture, a requirement of the Galera setup is the need for at least
three nodes to run it properly. Let's dive into the Galera setup within our
OpenStack environment and see what happens under the hood. In general,
any MySQL replication setup can be simple to set up and make HA-capable,
but data can be lost during the failing over. Galera is tightly designed to
resolve such a conflict in the multimaster database environment. An issue
you may face in a typical multimaster setup is that all the nodes try to update
the same database with different data, especially when a synchronization
problem occurs during the master failure. This is why Galera uses
Certification Based Replication (CBR).

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Keep things simple; the main idea of CBR is to assume that the database can
roll back uncommitted changes, and it is called transactional in addition

to applying replicated events in the same order across all the instances.
Replication is truly parallel; each one has an ID check. What Galera can bring
as an added value to our OpenStack MySQL HA is the ease of scalability;
there are a few more things to it, such as joining a node to Galera while it is
automated in production. The end design brings an active-active
multimaster topology with less latency and transaction loss.

.
' v

Transparent "
B 3
connections Load Balancer

wsTep wsrep |

Nodemm Nodeoz m Nodeo3 m ‘
= 5 =

O Synchronous GaleraReplication ‘

A very interesting point in the last illustration is that every MySQL node

in the OpenStack cluster should be patched within a Write-Set Replication
(wsrep) APL If you already have a MySQL master-master actively working,
you will need to install wsrep and configure your cluster.

Wosrep is a project that aims to develop a generic replication plugin
interface for databases. Galera is one of the projects that use wsrep
A~ . . s . .
APIs by working on its wsrep replication library calls.

You can download and install Galera from https://launchpad.net/
galera/. Every node will need a certain number of steps to configure a
complete MySQL cluster setup.

[185]

www.it-ebooks.info

https://launchpad.net/galera/
https://launchpad.net/galera/
http://www.it-ebooks.info/

OpenStack HA and Failover

HA in the queue

RabbitMQ is mainly responsible for communication between different

OpenStack services. The question is fairly simple: no queue, no OpenStack service
intercommunication. Now that you get the point, another critical service needs to
be available and survive the failures. RabbitMQ is mature enough to support its
own cluster setup without the need to go for Pacemaker or another clustering
software solution.

The amazing part about using RabbitMQ is the different ways by which such a
messaging system can reach scalability using an active/active design with:

* RabbitMQ clustering: Any data or state needed for the RabbitMQ broker to
be operational is replicated across all nodes.

* RabbitMQ mirrored queues: As the message queue cannot survive in
nodes in which it resides, RabbitMQ can act in active/active HA message
queues. Simply put, queues will be mirrored on other nodes within the same
RabbitMQ cluster. Thus, any node failure will automatically switch to using
one of the queue mirrors.

_ Setting up queue mirroring does not enhance any load
% distribution across the cluster and only guarantees availability.
— A good reference on the HA of queues within RabbitMQ can be
found here: https://www.rabbitmg.com/ha.html.

Like any standard cluster setup, the original node handling the queue can be
thought of as a master, while the mirrored queues in different nodes are purely
slave copies. The failure of the master will result in the selection of the oldest
slave to be the new master.

Keep calm and use HA

So far, we have introduced most of the possibilities that can make our OpenStack
environment highly available. OpenStack cloud controller nodes, database clusters,
and network nodes can be deployed in redundancy in the following ways:

* MySQL high availability through Galera active/active multimaster
deployment and Keepalived

* RabbitMQ active-active high availability using mirrored queues and
HAProxy for load balancing

[186]

www.it-ebooks.info

https://www.rabbitmq.com/ha.html
http://www.it-ebooks.info/

Chapter 6

The OpenStack API services' inclusion of nova-scheduler and glance-registry
in cloud controllers nodes in the active-passive model using Pacemaker and
Corosync

Neutrons agents using Pacemaker

Implementing HA on MySQL

In this implementation, we will need three separate MySQL nodes and two HAProxy
servers, so we can guarantee that our load balancer will fail over if one of them fails.
Keepalived will be installed in each HAProxy to control VIP. Different nodes in this
setup will be assigned as the following;:

VIP: 192.168.47.47
HAProxy01: 192.168.47.120
HAProxy02: 192.168.47.121
MySQLO01: 192.168.47.125
MySQL02: 192.168.47.126
MySQLO03: 192.168.47.127

In order to implement HA on MySQL, perform the following steps:

1.

First, let's start by installing and configuring our HAProxy servers:
packtpub@haproxyl$ sudo yum update
packtpub@haproxyl$ sudo yum install haproxy keepalived

Check whether the HAProxy is properly installed:
packtpub@haproxyl$ haproxy -v
HA-Proxy version 1.5.2 2014/07/12

Let's configure our first HAProxy node. We start by backing up the default
configuration file:

packtpub@haproxyl$ sudo cp /etc/haproxy/haproxy.cfg \ /etc/
haproxy/haproxy.cfg.bak

packtpub@haproxyl$ sudo nano /etc/haproxy/haproxy.cfg
global

log 127.0.0.1 local2

chroot /var/lib/haproxy

pidfile /var/run/haproxy.pid
[187]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

maxconn 1020 # See also: ulimit -n
user haproxy

group haproxy

daemon

stats socket /var/lib/haproxy/stats.sock mode 600 level admin

stats timeout 2m

defaults
mode tcp
log global

option dontlognull

option redispatch

retries 3
timeout queue 45s
timeout connect 5s
timeout client 1m
timeout server 1m
timeout check 10s
maxconn 1020

listen haproxy-monitoring *:80
mode tcp

stats enable

stats show-legends

stats refresh 5s

stats uri /

stats realm Haproxy\ Statistics
stats auth monitor:packadmin
stats admin if TRUE

frontend haproxyl # change on 2nd HAProxy
bind *:3306

default backend mysqgl-os-cluster

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

backend mysgl-os-cluster

balance roundrobin

server mysqglOl 192.168.47.125:3306 maxconn 151 check
server mysqgl02 192.168.47.126:3306 maxconn 151 check
server mysqglO03 192.168.47.127:3306 maxconn 151 check

Start the haproxy service:
packtpub@haproxyl$ sudo service haproxy start

Repeat steps 1 to 4, replacing haproxy1 with haproxy2 in the frontend
section.

Now, we arm our HAProxy servers by adding the VRRP /etc/keepalived/
keepalived. conf file. But first, we back up the original configuration file:

packtpub@haproxyl$ sudo cp /etc/keepalived/keepalived.conf \ /etc/
keepalived/keepalived.conf.bak

packtpub@haproxyl$ sudo nano /etc/keepalived/keepalived.conf

To bind a virtual address that does not exist physically on the server, you can
add the following option to sysctl.conf in your CentOS box:

net.ipv4.ip nonlocal bind=1

Do not forget to activate the change using the following;:

packtpub@haproxyl$ sudo sysctl -p
packtpub@haproxyl$ sudo nano /etc/keepalived/keepalived.conf
vrrp script chk haproxy {

script "killall -0 haproxy"

interval 2

weight 2

vrrp_instance MYSQL VIP {
interface etho

virtual router id 120

priority 111 # Second HAProxy is 110

advert int 1

[189]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

10.

virtual ipaddress {

192.168.47.47/32 dev ethO

track script {
chk haproxy

}

Repeat step 6 by replacing the priority to 110, for example, in the HAProxy?2
node.

Check whether the VIP was assigned to etho in both the nodes:
packtpub@haproxyl$ ip addr show ethO
packtpub@haproxy2$ ip addr show ethO

Now you have HAProxy and Keepalived ready and configured; all we need
to do is set up the Galera plugin through all the MySQL nodes in the cluster:

packtpub@db01$ wget https://launchpad.net/codership-
mysql/5.6/5.6.16-25.5/+download/MySQL-server-5.6.16 wsrep 25.5-1.
rhel6.x86 64.rpm

packtpub@db01$ wget https://launchpad.net/galera/0.8/0.8.0/ \
+download/galera-0.8.0-x86 64.rpm

We need to install the previously downloaded rpm files using:
packtpub@db01l$ sudo rpm -Uhv galera-0.8.0-x86 64.rpm

packtpub@db01$ sudo rpm -Uhv MySQL-server-5.6.16 wsrep 25.5 \
l.rhel6.x86 64.rpm

If you did not install MySQL within Galera from scratch, you
should stop the mysqgl service first before proceeding with the
M Galera plugin installation. The example assumes that MySQL
Q is installed and stopped. More information about the usage
of Galera in OpenStack can be found here: http://docs.
openstack.org/high-availability-guide/content/
ha-aa-db-mysgl-galera.html.

[190]

www.it-ebooks.info

http://docs.openstack.org/high-availability-guide/content/ha-aa-db-mysql-galera.html
http://docs.openstack.org/high-availability-guide/content/ha-aa-db-mysql-galera.html
http://docs.openstack.org/high-availability-guide/content/ha-aa-db-mysql-galera.html
http://www.it-ebooks.info/

Chapter 6

11.

12.

Once the Galera plugin is installed, log in to your MySQL nodes and create
anew galera user with the galerapass password and, optionally, the
haproxy username for HAProxy monitoring without a password for the sake
of simplicity. Note that for MySQL clustering, a new sst user must exist. We
will set up a new sstpassword password for node authentication:

mysqgl> GRANT USAGE ON *.* to sst@'%' IDENTIFIED BY 'sstpassword';
mysqgl> GRANT ALL PRIVILEGES on *.* to sst@'s$';

mysqgl> GRANT USAGE on *.* to galera@'%' IDENTIFIED BY
'galerapass';

mysqgl> INSERT INTO mysqgl.user (host,user) values ('%', 'haproxy'):;
mysql> FLUSH PRIVILEGES;
mysql> quit

Configure the MySQL wresp Galera library in each MySQL node in /etc/
mysql/conf.d/wsrep.cnf.
For db01 .packtpub.com, add this code:

wsrep provider=/usr/libé64/galera/libgalera smm.so
wsrep cluster address="gcomm://"

wsrep_ sst _method=rsync

wsrep_sst _auth=sst:sstpass

Restart the MySQL server:
packtpub@db01$ sudo /etc/init.d/mysqgl restart

For db02.packtpub. com, add this code:

wsrep provider=/usr/libé64/galera/libgalera smm.so
wsrep_cluster_address="gcomm://192.168.47.125"
wsrep_sst_method=rsync

wsrep_sst _auth=sst:sstpass

Restart the MySQL server:
packtpub@db01$ sudo /etc/init.d/mysqgl restart

For db03.packtpub.com, add this code:

wsrep provider=/usr/libé64/galera/libgalera smm.so
wsrep_cluster_address="gcomm://192.168.47.126"
wsrep_ sst _method=rsync

wsrep_sst _auth=sst:sstpass

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

13.

Restart the MySQL server:
packtpub@db01$ sudo /etc/init.d/mysqgl restart

Note that the db01.packtpub.com gcomm:// address is left empty to create
the new cluster. The last step will connect to the db03 . packtpub. com node.
To reconfigure it, we will need to modify our /etc/mysql/conf.d/wsrep.
cnf file and point to 192.168.47.127:

wresp cluster address ="gcomm://192.168.47.127"

From the MySQL command line, set your global MySQL settings as follows:

mysql> set global wsrep cluster address='gcomm://192.168.1.140:4567"';

Check whether the Galera replication is running the way it should be
running:

packtpub@db01l$ mysqgl -e "show status like 'wsrep%' "

If your cluster is fine, you should see something like:

wsrep ready = ON

Additional checks can be verified from the MySQL command line. In dbo1.
packtpub.com, you can run:

Mysql> show status like 'wsrep%';
|wsrep cluster size | 3 |
|wsrep cluster status | Primary |

|wsrep connected | ON |

The wsrep cluster_ size node that shows value 3 means that our cluster
is aware of three connected nodes while the current node is designated as a
wsrep_cluster_statusFmﬂnaQIHOde

Starting from step 9, you can add a new MySQL node and join the cluster.

Note that we have separated our MySQL cluster from the cloud controller,
which means that OpenStack services running in the former node, including
Keystone, Glance, Nova, and Cinder as well as Neutron nodes, need to point
to the right MySQL server. Remember that we are using HAProxy while VIP
is managed by Keepalived for MySQL high availability. Thus, you will need
to reconfigure the Virtual IP in each service, as follows:

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Nova: /etc/nova/nova.conf

sgl connection=mysql://nova:openstack@l92.168.47.47/nova

Keystone: /etc/keystone/keystone.conf

sgl connection=mysqgl://keystone:openstack@192.168.47.47/
keystone

Glance: /etc/glance/glance-registry.conf
sgl connection=mysql://glance:openstack@l192.168.47.47/glance

Neutron: /etc/neutron/plugins/openvswitch/ovs neutron
plugin.ini

sgl connection=mysql://neutron:openstack@l192.168.47.47/
neutron

Cinder: /etc/cinder/cinder.conf

sgl connection=mysqgl://cinder:openstack@l92.168.47.47/cinder

Remember that in order to edit your OpenStack configuration files,
you will need to restart the corresponding services. Ensure that after
each restart, the service is up and running and does not show any
error in the log files.

If you are familiar with sed and awk command lines, it might be
easier to reconfigure files using them. You can take a look at another
useful shell tool to manipulate ini and conf files; crudini can be
found athttp://www.pixelbeat.org/programs/crudini/.
To update an existing configuration file, the command line is fairly
simple:

crudini --set <Config File Path> <Section Name>
<Parameter> <Value>

To update, for example, the /etc/nova/nova.conf file showed
previously, you can enter the following command line:

crudini --set /etc/nova/nova.conf database
connection mysqgl://nova:openstack@192.168.47.47/nova

[193]

www.it-ebooks.info

http://www.pixelbeat.org/programs/crudini/
http://www.it-ebooks.info/

OpenStack HA and Failover

Implementing HA on RabbitMQ

In this setup, we will use a node to introduce minor changes to our RabbitMQ
instances running in cloud controller nodes. We will enable the mirrored option in
our RabbitMQ brokers. In this example, we assume that the RabbitMQ service is
running on three OpenStack cloud controller nodes, as follows:

e VIP:192.168.47.47

e HAProxy0l: 192.168.47.120

* HAProxy02: 192.168.47.121

* Cloud controller 01: 192.168.47.100
* Cloud controller 02: 192.168.47.101
* Cloud controller 03: 192.168.47.102

In order to implement HA on RabbitMQ, perform the following steps:

1. Stop RabbitMQ services on the second and third cloud controller. Copy the
erlang cookie from the first cloud controller and add the additional nodes:

packtpub@cc0l$ scp /var/lib/rabbitmqg/.erlang.cookie\ root @cc02:/
var/lib/rabbitmq/.erlang.cookie

packtpub@cc0l$ scp /var/lib/rabbitmqg/.erlang.cookie\ root @cc03:/
var/lib/rabbitmq/.erlang.cookie

2. Set the rabbitmg group and user with 400 file permissions in both the
additional nodes:

packtpub@cc02$ sudo chown rabbitmqg:rabbitmg\ /var/lib/rabbitmg/.
erlang.cookie

packtpub@cc02$ sudo chmod 400 /var/lib/rabbitmq/.erlang.cookie

packtpub@cc03$ sudo chown rabbitmg:rabbitmg\ /var/lib/rabbitmgqg/.
erlang.cookie

packtpub@cc03$ sudo chmod 400 /var/lib/rabbitmq/.erlang.cookie

3. Start the RabbitMQ service in cc02 and cc03:
packtpub@cc02$ service rabbitmg-server start
packtpub@cc02$chkconfig rabbitmg-server on
packtpub@cc03$ service rabbitmg-server start

packtpub@cc03$chkconfig rabbitmg-server on

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Now, it's time to form the cluster and enable the mirrored queue option.
Currently, all the three RabbitMQ brokers are independent and they are not
aware of each other. Let's instruct them to join one cluster unit. First, stop the
rabbimgctl daemon.

On the cc02 node, run these commands:

rabbitmgctl stop app

Stopping node 'rabbit@cc02'

...done.

rabbitmgctl join-cluster rabbit@ccOl

Clustering node 'rabbit@cc02' with 'rabbit@ccOl'

...done.

rabbitmgctl start app

Starting node 'rabbit@cc02'

done

On the cc03 node, run the following commands:

rabbitmgctl stop app

Stopping node 'rabbit@cc03'

...done.

rabbitmgctl join-cluster rabbit@ccOl
Clustering node 'rabbit@cc03' with 'rabbit@ccOl'
...done.

rabbitmgctl start app

Starting node 'rabbit@cc03'

done

Check the nodes in the cluster by running them from any RabbitMQ node:
rabbitmgctl cluster status
Cluster status of node 'rabbit@cc03'

[{nodes, [{disc, ['rabbit@cc0l"', 'rabbit@cc02"',

'rabbit@cc03']}1},
{running_nodes,['rabbit@ccOl','rabbit@cc02',
'rabbit@cc03']},
{partitions, [1}]

...done.

[195]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

6. The last step will instruct RabbitMQ to use mirrored queues. By doing this,
mirrored queues will enable both producers and consumers in each queue
to connect to any RabbitMQ broker so that they can access the same message
queues. The following command will sync all the queues across all cloud
controller nodes by setting an HA policy:

rabbitmgctl set policy HA '“(?!amg\.).*' '{"ha-mode":"all", "ha-
sync-mode" : "automatic" }°'

Note that the previous command line settles a policy where all
— queues are mirrored to all nodes in the cluster.

7. Edit its configuration file in each RabbitMQ cluster node to join the cluster on
restarting /etc/rabbitmg/rabbitmg.config:
[{rabbit,

[{cluster nodes, {['rabbit@cc0l', 'rabbitecc02', 'rabbitecc03'],
ram}}1}]1.

8. We can proceed to set up a load balancer for RabbitMQ. We need to only
add a new section in both the haproxy1 and haproxy2 nodes and reload
the configurations:

listen rabbitmgcluster 192.168.47.47:5670
mode tcp
balance roundrobin
server cc0l 192.168.47.100:5672 check inter 5s rise 2 fall 3
server cc02 192.168.47.101:5672 check inter 5s rise 2 fall 3
server cc03 192.168.47.102:5672 check inter 5s rise 2 fall 3

Note that we are listening on the VIP 192.168.47.47. Reload the
configuration on both HAProxy nodes:

service haproxy reload

Using VIP to manage both HAProxy nodes as a proxy for RabbitMQ might
require you to configure each OpenStack service to use the 192.168.47.47
address and the 5670 port. Thus, you will need to reconfigure the RabbitMQ
settings in each service in the VIP, as the following;:

° Nova: /etc/nova/nova.conf:

crudini --set /etc/nova/nova.conf DEFAULT rabbit host
192.168.47.47

crudini --set /etc/nova/nova.conf DEFAULT rabbit port
5470

[196]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Glance: /etc/glance/glance-api.conf

crudini --set /etc/glance/glance-api.conf DEFAULT
rabbit host 192.168.47.47

crudini --set /etc/glance/glance-api.conf DEFAULT
rabbit port 5470

Neutron: /etc/neutron/neutron. conf:

crudini --set /etc/neutron/neutron.conf DEFAULT rabbit
host 192.168.47.47

crudini --set /etc/neutron/neutron.conf DEFAULT rabbit
port 5470

Cinder: /etc/cinder/cinder.conft:

crudini --set /etc/cinder/cinder.conf DEFAULT rabbit
host 192.168.47.47

crudini --set /etc/cinder/cinder.conf DEFAULT rabbit
port 5470

Implementing HA on OpenStack cloud controllers

Moving on to the setting up of highly available OpenStack cloud controllers
requires a way of managing the services running in the former nodes. Another
alternative for the high-availability game is using Pacemaker and Corosync. As a
native high-availability and load-balancing stack solution for the Linux platform,
Pacemaker depends on Corosync to maintain cluster communication based on the
messaging layer. Corosync supports multicast as the default network configuration
communication method. For some environments that do not support multicast,
Corosync can be configured for unicast. In multicast networks, all the cluster nodes
are connected to the same physical network device, it will be necessary to make sure
that at least one multicast address is configured in the configuration file. Corosync
can be considered as a message bus system that allows OpenStack services running
across different cloud controller nodes to manage quorum and cluster membership
to Pacemaker. But how does Pacemaker interact with these services? Simply

put, Pacemaker uses Resource Agents (RAs) to expose the interface for resource
clustering. Natively, Pacemaker supports over 70 RAs found in http: //www.linux-
ha.org/wiki/Resource Agents.

[197]

www.it-ebooks.info

http://www.linux-ha.org/wiki/Resource_Agents
http://www.linux-ha.org/wiki/Resource_Agents
http://www.it-ebooks.info/

OpenStack HA and Failover

In our case, we will use native OpenStack RAs, including:

* The OpenStack compute service
* The OpenStack identity service

* The OpenStack image service

There is a native Pacemaker RA to manage MySQL databases

and VIP, which you can use as an alternative for the MySQL
T Galera replication solution.

In order to implement HA on OpenStack cloud controllers, perform the
following steps:

1. Install and configure Pacemaker and Corosync on cloud controller nodes:
yum update

yum install pacemaker corosync

Corosync allows any server to join a cluster using active-active or active-
passive fault-tolerant configurations. You will need to choose an unused
multicast address and a port. Create a backup for the original Corosync

configuration file and edit /etc/corosync/ corosync.conf as follows:

cp /etc/corosync/corosync.conf /etc/corosync/corosync.conf.bak
nano /etc/corosync/corosync.conf
Interface {
ringnumber: 0
bindnetaddr: 192.168.47.0
mcastaddr: 239.225.47.10
mcastport: 4000

-}

In the case of a unicast network, you might be needed to specify the
. addresses of all nodes that are allowed as members of the OpenStack
% cluster, in the Corosync configuration file. There is no need for
L a multicast cluster. A sample example template can be found at
http://docs.openstack.org/high-availability-guide/
content/ set up corosync_unicast.html.

[198]

www.it-ebooks.info

http://docs.openstack.org/high-availability-guide/content/_set_up_corosync_unicast.html
http://docs.openstack.org/high-availability-guide/content/_set_up_corosync_unicast.html
http://www.it-ebooks.info/

Chapter 6

Generate an authorization key on the cc0o1 node to enable communication
between cloud controller nodes:

sudo corosync-keygen

Copy the generated /etc/corosync/authkey and /etc/corosync/
corosync . conf files to other nodes in the cluster:

scp /etc/corosync/authkey /etc/corosync/corosync.conf\
packpub@192.168.47.101:/etc/corosync/

scp /etc/corosync/authkey /etc/corosync/corosync.conf\
packpub@192.168.47.102:.etc/corosync/

Start the Pacemaker and Corosync services:
service pacemaker start

service corosync start

A good way to check the setup is to run the following command:
crm mon -1
Online: [cc01l cc02 cc03]

First node (cc01)

By default, Corosync uses Shoot The Other Node In The Head
(STONITH) option. It is used to avoid a split-brain situation where each
service node believes that the other(s) is (are) broken and it is the elected
one. Thus, in the case of a STONITH death match, the second node, for
L example, shoots the first one to ensure that there is only one primary
node running. In a simple two nodes Corosynced environment, it might
be convenient to disable it by running;:

crm configure property stonith-enabled= "false"

On cco1, we can set up a VIP that will be shared between the three servers.
We can use 192.168.47.48 as the VIP with a 3-second monitoring interval:

crm configure primitive VIP ocf:heartbeat:IPaddr2 params \
ip=192.168.47.48 cidr netmask=32 op monitor interval=3s

We can see that the VIP has been assigned to the cc01 node. Note that the
use of the VIP will be assigned to the next cloud controller if cco1 does not
show any response during 3 seconds:

crm mon -1
Online: [cc0l1l cc02]
VIP (ocf::heartbeat:IPaddr2): Started cc0l

[199]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

Optionally, you can create a new directory to save all downloaded resource
agent SCI‘iptS under /usr/lib/ocf/resource.d/openstack.

Creating a new VIP will require you to point OpenStack services
to the new virtual address. You can overcome such repetitive
* reconfiguration by keeping both IP addresses of the cloud controller
% and the VIP. In each cloud controller, ensure that you have

exported the needed environment variables as follows:

export OS_AUTH URL=http://192.168.47.48:5000/v2.0/

2. Set up RAs and configure Pacemaker for Nova.

First, download the resource agent in all the three cloud controller nodes:

cd /usr/lib/ocf/resource.d/openstack

wget https://raw.github.com/leseb/OpenStack-ra/master/nova-api
wget https://raw.github.com/leseb/OpenStack-ra/master/nova-cert
wget https://raw.github.com/leseb/OpenStack-ra/ \
master/nova-consoleauth

wget https://raw.github.com/leseb/OpenStack-ra/ \
master/nova-scheduler

wget https://raw.github.com/leseb/OpenStack-ra/master/nova-vnc

chmod a+rx *

You can check whether the Pacemaker is aware of new RAs or not

by running this:
K

crm ra info ocf:openstack:nova-api

Now, we can proceed to configure Pacemaker to use these agents to control
our Nova service. The next configuration creates p_nova_api, a resource to
manage the OpenStack nova-api:

crm configure primitive p nova-api ocf:openstack:nova-api \
params config="/etc/nova/nova.conf" op monitor interval="5s"\

timeout="5s"

Create p_cert, a resource to manage the OpenStack nova-cert:

crm configure primitive p cert ocf:openstack:nova-cert \

params config="/etc/nova/nova.conf" op monitor interval="5s"\
timeout="5s"

[200]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Create p_consoleauth, a resource to manage the OpenStack nova-
consoleauth:

crm configure primitive p consoleauth ocf:openstack: \
nova-consoleauth params config="/etc/nova/nova.conf" \

op monitor interval="5s" timeout="5s"

Create p_scheduler, a resource to manage the OpenStack nova-scheduler:

crm configure primitive p scheduler ocf:openstack:nova-scheduler

\

params config="/etc/nova/nova.conf" op monitor interval="5s" \
timeout="5s"

Create p_novnc, a resource to manage the OpenStack nova-vnc:

crm configure primitive p novnc ocf:openstack:nova-vnc \
params config="/etc/nova/nova.conf" op monitor interval="5s" \

timeout="5s"

Set up RA and configure Pacemaker for Keystone:

Download the resource agent in all three cloud controller nodes:
cd /usr/lib/ocf/resource.d/openstack
wget https://raw.github.com/madkiss/ \

openstack-resource-agents/master/ocf/keystone

Proceed to configure Pacemaker to use the downloaded resource agent to
control the Keystone service. The next configuration creates p_keysone, a
resource to manage the OpenStack identity service:

crm configure primitive p keystone ocf:openstack:keystone \
params config="/etc/keystone/keystone.conf" op monitor

interval="5s"\ timeout="5s"

Set up RA and configure Pacemaker for Glance.

Download the resource agent in all three cloud controller nodes:
cd /usr/lib/ocf/resource.d/openstack

wget https://raw.github.com/madkiss/ \
openstack-resource-agents/master/ocf/glance-api

wget https://raw.github.com/madkiss/ \

openstack-resource-agents/master/ocf/glance-registry

[201]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

Proceed to configure Pacemaker to use the downloaded resource agent to
control the Glance API service. The next configuration creates p_glance-api,
a resource to manage the OpenStack Image API service:

crm configure primitive p glance-api ocf:openstack:glance-api \

params config="/etc/glance/glance-api.conf" op monitor
interval="5s"\ timeout="5s"

Create p_glance-registry, a resource to manage the OpenStack glance-
registry:

crm configure primitive p glance-registry \
ocf:openstack:glance-registry params config="/etc/glance/ \

glance-registry.conf " op monitor interval="5s" timeout="5s"
5. Set up RA and configure Pacemaker for the Neutron server:

Download the resource agent in all three cloud controller nodes:
cd /usr/lib/ocf/resource.d/openstack
wget https://raw.github.com/madkiss/ \

openstack-resource-agents/master/ocf/neutron-server

Now, we can proceed to configure Pacemaker to use these agents to control
our Neutron server service. The next configuration creates p_neutron-
server, a resource to manage the OpenStack networking server:

crm configure primitive p neutron-server ocf:openstack: \
neutron-server params config="/etc/neutron/neutron.conf" \

op monitor interval="5s" timeout="5s"

Check whether our Pacemaker is handling our OpenStack services correctly:

crm mon -1

Online: [cc0l1l cc02 cc03]

VIP (ocf::heartbeat:IPaddr2): Started ccOl
p_nova-api (ocf::openstack:nova-api):

Started cc01

p_cert (ocf::openstack:nova-cert):

Started cc01

p_consoleauth (ocf::openstack:nova-consoleauth):

Started ccO01l

[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

p_scheduler (ocf::openstack:nova-scheduler):

Started cc0l1

p _nova-novnc (ocf::openstack:nova-vnc):

Started ccO0l1

p_keystone (ocf::openstack:keystone):

Started ccO0l

p _glance-api (ocf::openstack:glance-api):

Started ccO01l

p_glance-registry (ocf::openstack:glance-registry):

Started cc01l

p_neutron-server (ocf::openstack:neutron-server):

Started cc01l

To use private and public IP addresses, you might need to create two
different VIPs. For example, you will have to define your endpoint as
follows:

keystone endpoint-create --region $KEYSTONE REGION \

--service-id $service-id --publicurl \ 'http://PUBLIC
VIP:9292' \

--adminurl 'http://192.168.47.48:9292"' \
--internalurl 'http://192.168.47.48:9292"

Implementing HA on network nodes

Extending our OpenStack deployment will necessitate the network controller be
brought to its own cluster stack. As we have concluded previously, Neutron is very
extensible in terms of the plugin and network configuration. Whichever network
setup you imply, a network controller will have to sit on three different networks:

Management network

Data network

External network or Internet (Internet access for instances)

[203]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack HA and Failover

To ensure a fault-tolerant network controller cluster, we will use Pacemaker to avoid
any SPOF in the overall OpenStack environment:

1.

Set up RA and configure Pacemaker for the Neutron L3 agent.

Download the resource agent in all three cloud controller nodes:
cd /usr/lib/ocf/resource.d/openstack
wget https://raw.github.com/madkiss/ \

openstack-resource-agents/master/ocf/neutron-agent-13

The Neutron L3 agent provides layer 3 and Network Address
% Translation (NAT) forwarding to allow instances, access to the
"~ tenant networks.

Proceed to configure Pacemaker to use the downloaded resource agent to
control Neutron agent L3. The next configuration creates p_neutron-13-
agent, a resource to manage the OpenStack Image API service:

crm configure primitive p neutron-13-agent ocf:openstack: \

neutron-13-agent params config="/etc/neutron/neutron.conf"\
plugin config= "/etc/neutron/13 agent.ini" \

op monitor interval="5s" timeout="5s"

Set up RA and configure Pacemaker for the Neutron DHCP agent.
Download the resource agent in all three cloud controller nodes:

cd /usr/lib/ocf/resource.d/openstack

wget https://raw.github.com/madkiss/ \

openstack-resource-agents/master/ocf/neutron-agent-dhecp

By default, the Neutron DHCP agent uses dnsmasq to assign IP
s addresses to instances.

Proceed to configure Pacemaker to use the downloaded resource agent to
control the Neutron DHCP agent. The next configuration creates p_neutron-
dhcp-agent, a resource to manage the OpenStack DHCP agent:

crm configure primitive p neutron-dhcp-agent ocf:openstack: \

neutron-dhcp-agent params config="/etc/neutron/neutron.conf"\
plugin config= "/etc/neutron/dhcp agent.ini" \

op monitor interval="5s" timeout="5s"

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

3. Set up RA and configure Pacemaker for the Neutron metadata agent.

Download the resource agent in all three cloud controller nodes:
cd /usr/lib/ocf/resource.d/openstack
wget https://raw.github.com/madkiss/ \

openstack-resource-agents/master/ocf/neutron-metadata-agent

The Neutron metadata agent enables instances on tenant
s networks to reach the Compute API metadata.

Proceed to configure Pacemaker to use the downloaded resource agent
to control the Neutron metadata agent. The next configuration creates
p_neutron-metadata-agent, a resource to manage the OpenStack
metadata agent:

crm configure primitive p neutron-metadata-agent ocf:openstack:\

neutron-metadata agent params config="/etc/neutron/neutron.conf"

\
plugin config= "/etc/neutron/metadata agent.ini" \

op monitor interval="5s" timeout="5s

Summary

In this chapter, you learned some of the most important concepts about high
availability and failover. You also learned the different options available to build a
redundant OpenStack architecture with a robust resiliency. You will know how to
diagnose your OpenStack design by eliminating any SPOF across all services. We
highlighted different open source solutions out of the box to arm our OpenStack
infrastructure and make it as fault-tolerant as possible. Different technologies were
introduced, such as HAProxy, database replication such as Galera, Keepalived,
Pacemaker, and Corosync. This completes the first part of the book that aimed to
cover different architecture levels and several solutions to end up with an optimal
OpenStack solution for a medium and large infrastructure deployment.

Now that we have crystallized the high availability aspect in our private cloud, we
will focus on building a multinode OpenStack environment in the next chapter and
dive deeper into orchestrating it. You can call it my first production day.

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode
Deployment — Bringing
iIn Production

"The value of an idea lies in the using of it."
~Thomas A. Edison

The ultimate goal of this book is to get you from where you are today to the point
where you can confidently build an operational OpenStack environment in a
production environment. While going through the previous chapters, you may
notice the diversity of services and components that exist in OpenStack that are
still under intensive development and which are constantly extending their
respective features. Of course, most readers will appreciate that moving OpenStack
from a small test environment to a production setup is not an easy task.

Generally, a complete production setup can be pretty tough to create. It is time

to collect the pieces to form our first big picture. You will realize that different
implementations of OpenStack are suited for the wallets of different organizations.
Chapter 1, Designing OpenStack Cloud Architecture, introduced sample resources and
the hardware computation that is related to the OpenStack nodes to get ready for a
"production day". On the other hand, a major challenge might appear at this stage
that was not detailed in previous chapters: How do we connect the pieces? As you
may have noted, going through a networking setup needs a lot of preparation and
detailed planning.

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

In this chapter, you will learn how to perform the following operations:

* Proceed gradually and decide a first physical layout of your first
production day

* Define the OpenStack production network topology

* Set up your first production environment by using bare metal
provisioning tools

* Automate the OpenStack setup by using Chef in production
* Integrate a failover mechanism into the production setup

The next section will deal with an example of a sample setup derived from a
specific design layout. Thus, it is fundamental to bear in mind that you should
select the solution that will fit your needs, the hardware that you will be able to
offer, and the size of your infrastructure for your first private cloud deployment.
You can always go through the previous chapters to review the component that
can be chosen or replaced by another. Also, do not forget to follow the happenings
in the OpenStack community. Let's start our first production day, which needs
some preparation and a lot of enthusiasm.

Confirming the multinode setup

We can divide our physical setup into the following two categories:

* OpenStack node role assignment: The number of nodes as well as the
services that will be running into each one

* OpenStack node provisioning: The way we will conduct the installation
of each one from the bare metal level

By combining our multinode setup with a bare metal provisioning that configures
the physical servers on a hardware level and a services categorization by using a
group of nodes, we have an end-to-end approach that can quickly install a primary
OpenStack private cloud in a wide range of hardware.

Assigning physical nodes

Depending on the number of physical machines that you would like to deploy, take
into consideration the best practices and recommendations that were discussed in
the previous chapters while building your first OpenStack production environment.
In the current example, the following nodes need to be installed:

e Three controller nodes

* Three compute nodes

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

* Three Ceph OSD nodes

* Two network nodes (Is the health of the L3 agent stable in the Juno release?
This will be covered in the next chapter.)

Node type

Services

Network interfaces

Cloud controller 1

MySQL Active wsrep_1
RabbitMQ Active Mirror_1
Horzion

nova-*

cinder-*

keystone-*

glance-*

neutron-server

2 x 10G network ports
1 x 40G network port

Cloud controller 2

MySQL Active wsrep_2
RabbitMQ Active Mirror_2
Horzion

nova-*

cinder-api

keystone-*

glance-*

neutron-server

2 x 10G network ports
1 x 40G network port

Cloud controller 3

MySQL Active wsrep_3
RabbitMQ Active Mirror_3
Horzion

nova-*

cinder-api

keystone-*

glance-*

neutron-server standby

2 x 10G network ports
1 x 40G network port

Compute 1 nova-compute 2 x 10G network ports
neutron-openvswitch-agent 1 x 40G network port
Ceph client

Compute 2 nova-compute 2 x 10G network ports

neutron-openvswitch-agent

Ceph client

1 x 40G network port

[209]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

Node type Services Network interfaces

Compute 3 nova-compute 2 x 10G network ports
neutron-openvswitch-agent 1 x 40G network port
Ceph client

Storage 1 ceph-osd 2 x 10G network ports
ceph-mon 1 x 40G network port

Storage 2 ceph-osd 2 x 10G network ports
ceph-mon 1 x 40G network port

Storage 3 ceph-osd 2 x 10G network ports
ceph-mon 1 x 40G network port

Network 1 L2 Agent Active 2 x 10G network ports
L3 Agent Active 1 x 40G network port
DHCP Agent Active

Network 2 L2 Agent Standby 2 x 10G network ports
L3 Agent Standby 1 x 40G network port
DHCP Agent Standby

Preparing the OpenStack Initiator

Chapter 2, Deploying OpenStack — DevOps and OpenStack Dual Deal, cited a few ways that
can be used to deploy the OpenStack software by the means of system management
tools such as Chef, Puppet, and many others. We have seen in-depth

how to use Chef to install the OpenStack software across different nodes. Moving to

a larger environment, you will need a second level of automation to provision your
operation system software across all the nodes. Basically, you will need a tool or a
system that makes it quick and easy to set up physical hardware, on which you can
deploy your OpenStack private cloud infrastructure. Several solutions such as Cobbler,
Kickstart, Razor, and Extreme Cluster/Cloud Administration (xCAT) are able to do
the job. In the sample setup, we will use xCAT as a Master Initiator Node (MIN) for
the OpenStack environment. Again, feel free to use any other tool instead of xCAT.

In our setup, XCAT can perform the following tasks:

* Provision operating systems such as CentOS
* Manage the remote system and power
* Run and serve network services such as DNS, DHCP, and TFTP

[210]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Furthermore, xCAT is capable of identifying the nodes by the means of network
autodiscovery, which will be covered later during the installation process. It will
be amazing to bring the Chef server into action, but this time, this process will be
performed in the second stage. Once the operating system for each node in our
network is installed, xCAT triggers some post-install scripts to bootstrap the Chef
environment. The Chef server will take over and bring each OpenStack server to its
final configuration state, as described in the Chef role list.

The xCAT supports Preboot Execution Environment (PXE) as a network boot method. It is
necessary that all the nodes supporting PXE boot the network before the local drive during
the first operating system setup. Be sure that all the NICs for your nodes support PXE.

We have chosen the MIN and Chef server to run the following services with an
appropriate number of network interfaces. For the sake of simplicity, we will run
the Chef workstation in the same node as that of the Chef server. It is recommended
to separate your workstation in a different node. This is more convenient for a better
cookbook's development environment, as was discussed in Chapter 2, Deploying
OpenStack — DevOps and OpenStack Dual Deal.

Node type Services Network interfaces

Master initiator xcatd 2 x 10G network ports
TFTP
DHCP
DNS
Conserver
Kickstart

Post-provision

Chef server Chef server 2 x 10G network ports
Knife

The network topology

At first, choosing the right network setup can be challenging, especially in a large
environment, when you consider different networks and node clusters. Generally,
a good practice for a first successful step is to make it as simple as possible.
Overengineering a network setup might bring more troubleshooting tasks while
running in production rather than extending it. Thus, we will go for a simpler setup
in two phases — the OpenStack network mode and the physical network topology.

[211]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

The OpenStack network mode

We will proceed with our setup by using Neutron as the OpenStack network manager.
We intend to take advantage of the several technologies that are offered by Neutron,
which includes switching and routing first and load balancing the features later on.
Basically, we aim to separate traffic for each tenant in a private network and enable
the VM for each tenant to reach the default gateway of the router device that faces

the public network. The former "per tenant routers with private networks" setup
might be suitable for the following two main reasons:

* Configuration enables deployment of multi-tier applications per tenant by
keeping each tier on a separate network

* Providing a network-level separation leverages the degree of security

The physical network topology

Even though we decided on how we will conduct the OpenStack network
management, picking up the right network devices to connect the "pieces" is
very essential for the formation of the "puzzle".

Firstly, how many networks do we need in the overall setup? Let's refresh our memory
by going to Chapter 1, Designing OpenStack Cloud Architecture, where we had a look at
an example within at least four networks — the external, management, VM internal,
and storage network. Remember that combining or adding more networks in your
infrastructure depends on your choice and the hardware limits and may affect your
network performance output. Since we introduced the MIN bare metal provisioning
node, which needs connectivity to all the nodes along with the Chef server, a fifth
network named Administration will be added to our overall setup. The following
list summarizes our OpenStack networks:

* The administration network

* The management OpenStack network

* The storage network

* The external network

* The VM internal/private network
We can map multiple logical networks to a single physical NIC when we start
setting up the hardware connectivity devices, such as switches and routers. At
this point, you should think in terms of higher requirements in order to avoid a
slowdown of the network. This makes it imperative to install enough network

hardware to satisfy the different former networks as well as the multiple tenant
networks that are involved in the OpenStack environment, in which, considered

[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

as VLAN:Ss. In addition, you should think about the capability of the HA network
devices by using double links.

o Switching the redundancy setup is highly recommended, but it is
~ beyond the scope of the book. Refer to vendor configuration cookbook
Q to set up the L2 and L3 network redundancy functionality for
switches and routers devices.

The following switches are required for the current setup:

* 1x40 GDbE for internal VM/ private, storage, and management networks
* 1x1 GbE switch for the external network

* 1 x1 GbE switch for the administrative network

As your network grows, it is recommended to choose switches of the
= 48 ports and consider uplinks and aggregation switches.

The next step is to identify the different VLANSs across our network layout. In other
words, each network card that is connected to a specific port in a given switch must
be properly configured to the VLAN that it belongs to. The VLAN configuration
differs from one vendor device to another. It is highly recommended to understand
the basics of tagged and untagged concepts. Let's see how it works in a nutshell
before delving deeper into the deployment. As you may have noted, we have five
different types of network traffic across more than one network device. However,
we need a way to separate the packet's traffic since they pass through the same port.
In other words, we need to tell which packet belongs to which VLAN through the
different switches. Therefore, we marked a port as tagged if it is aware about VLAN
information or ID. On the other hand, the untagged ports perform a normal Ethernet
packet without any VLAN identification.

Applying the previous concept to our use case will require the following settings:

* The administration network ports should be marked as untagged since we
provide a dedicated switch to connect the nodes for PXE within VLAN ID 3.

* The external network ports should be marked as untagged since we provide
a dedicated switch to access the Internet within VLAN ID 4.

* The management network ports will be marked as tagged with VLAN ID 5.
* The storage network ports will be marked as tagged within VLAN ID 6.

[213]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

* The VM internal network ports will be marked as tagged. The VLAN ID will
be assigned for each tenant. To do so, a VLAN range should be planned in
advance. We will consider 10 VLANs within a range ID 7-16.

Considering the server-side interface, the ports will be assigned, tagged, and
untagged, as follows:

Node name | Network name Network interface VLAN VLAN
tagging ID
MIN (xCAT) | Admin (PXE) eth0 untagged 3
External (Internet) ethl untagged 4
Chef server Admin (PXE) eth0 untagged 3
External (Internet) ethl untagged 4
Controller Admin (PXE) eth0 untagged 3
External (Internet) ethl untagged 4
Management eth2 tagged 5
Storage eth2 tagged 6
Internal VM eth2 tagged 7-16
Compute Admin (PXE) eth0 untagged 3
External (Internet) ethl untagged 4
Management eth2 tagged 5
Storage eth2 tagged 6
Internal VM eth2 tagged 7-16
Storage Admin (PXE) eth0 untagged 3
Management ethl tagged 5
Storage ethl tagged 6
Internal VM ethl tagged 7-16
Network Admin (PXE) eth0 untagged 3
External (Internet) ethl untagged 4
Management eth2 tagged 5
Internal VM eth2 tagged 7-16

Ensure that each node that is connected to the 40 GbE switch via
~— eth2 is equipped with a 40 GbE adapter.

[214]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The general layout of our minimal physical setup can be illustrated in the
following way:

Master Initiator Chef-server
Nodi Node

A0GDE Ethernet Switch

Cloud Controller
Nodes Ceph Storage
Backend Nodes

‘Compute Nodes

................. 3
H
)

Administrator Network

External Network

Management, Storage,

VM Internal Networks

Each cloud network will use a different IP range. Let's see an example to get an idea

of our setup:

Network name Subnet /IP range

Administrative network 47.147.0.0/16

External network 94.49.0.0/16

Management network 172.16.0.0/16

Storage network 172.17.0.0/16
[215]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

The VM internal network can be defined after completing the OpenStack setup and
moving on to define the tenant networks. Bear in mind that the network and compute
node will communicate physically through eth? in our example, where each tenant
will have a separate private network per VLAN. For example, we can define for
tenant 1 a VLAN 8 within a private range, 192.168.47.0/24, tenant 2 will be

defined in VLAN 9 within a private range, 192.168.48.0/24, and so on.

The OpenStack deployment

Now, it is time to cook. We will start by first preparing the MIN to automate the
base operating system installation across all nodes.

The MIN installation

The MIN installation is straightforward. First, we should be sure that we fulfill the
minimum requirements for our physical machine. Depending on the size of your
cluster, we can go for the following hardware specifications:

* 4CPUs
* 8 GB of memory
* 100 GB free disk space with a RAID setup

1
v Make sure that you provide redundant power supply for each device

or node in your physical infrastructure.

CentOS 6.6 is the chosen Linux distribution for the MIN. We will go through the
following steps to bring the MIN up and running:

1. Once the operating system is installed, we will proceed by disabling, for
instance, SELinux and iptables. Keep in mind that if you expose the CentOS
box to the Internet, disabling the former security tools is not a good idea! In
this setup, we will assume that we are running behind a firewall:

[packtpub@min ~]$ sudo echo "SELINUX=disabled" > /etc/sysconfig /
selinux

[packtpub@min ~]$ sudo iptables stop
[packtpub@min ~]$ chkconfig iptables off

If you intend to rely on iptables for MIN security, you should allow the ports

needed for xCAT. You can find them in http://sourceforge.net/p/xcat/
wiki/XCAT Port Usage/.

[216]

www.it-ebooks.info

http://sourceforge.net/p/xcat/wiki/XCAT_Port_Usage/
http://sourceforge.net/p/xcat/wiki/XCAT_Port_Usage/
http://www.it-ebooks.info/

Chapter 7

2. We will need to configure the two NICs for MIN. Let's edit our first network
card configuration in /etc/sysconfig/network-scripts/ifcfg-etho,
as follows:

DEVICE=ethO
ONBOOT=yes
BOOTPROTO=static
IPADDR=47.147.1.10
NETMASK=255.255.0.0

The second interface will be connected to the external network by editing /
etc/sysconfig/network-scripts/ifcfg-ethi, as follows:

DEVICE=ethl
ONBOOT=yes
BOOTPROTO=static
IPADDR=94.49.1.10
NETMASK=255.255.0.0

Restart the network service, as follows:

[packtpub@min ~]$ sudo service network restart

3. Set the hostname by editing /etc/sysconfig/network, as follows:
HOSTNAME=min

4. Finish the minimal configuration by restarting the machine by using the
following command:

[packtpub@min ~]$ sudo reboot

5. Now, we will proceed by installing xCAT. By referring to the official xCAT
download page, http://sourceforge.net/p/xcat/wiki/Download_xCAT/,
we will grab a stable distribution, regardless of the xCAT version. You will
need xcat-core-*tar.bz2 and xcat-dep*tar.bz2

Once the distribution is downloaded, extract the bundles in the
following way:

[packtpub@min install]$ tar jxf xcat-core*tar.bz2
[packtpub@min install]$ tar jxf xcat-dep*tar.bz2

The xCAT packages include scripts to resolve package dependencies and
help you create the yum repositories, which are included in the bundle, by
running the following commands, as follows:

[packtpub@min install]l$ cd xcat-core
[packtpub@min corel$./mklocalrepo.sh
[packtpub@min corel$./mklocalrepo.sh

[217]

www.it-ebooks.info

http://sourceforge.net/p/xcat/wiki/Download_xCAT/
http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

Now, let's do the magic in one command, as follows:

[packtpub@min install]$ yum install xXCAT xCAT-server xCAT-client
perl-xCAT

The xCAT server is already running. You need to update the next xCAT
commands in your path, as follows:

[packtpub@min ~]$. /etc/profile.d/xcat.sh

A final test can be performed in the following way:
[packtpub@min ~]$ tabdump site

#tkey,value, comments, disable

"blademaxp", "64",,

"fsptimeout","0",,

"installdir","/install®",,

Congratulations! The xCAT server is running and ready to go. Note that the
previous command enquires the site table, which defines the global settings
for the entire cluster.

xCAT uses a database to store the node-related information and
+ details regarding the network's attributes. By default, sqlite3 is used.
%@“ To update the xCAT tables and attributes, you can use simple xCAT
’ commands such as tabdump, tabedit, nodech, and so on. By
default, the database files are stored in /etc/xcat.

Besides the installation of the native xCAT packages, we will need to install
an extra rpm in MIN for the OpenStack and Chef environment installation, as
shown in the following code. You can find the latest rpm version at http://
rpmfind.net/linux/rpm2html/search.php?query=xCAT-OpenStack:

wget ftp://ftp.pbone.net/mirror/ftp.sourceforge.net/pub/
sourceforge/x/xc/xcat/yum/2.8/core-snap/xCAT-OpenStack-2.8.6-
snap201409160710.x86_64.rpm

mv xCAT-OpenStack-2.8.6-snap201409160710.x86 64.rpm xXCAT-
OpenStack.rpm

rpm -ivh xCAT-OpenStack.rpm

. xCAT-OpenStack is a meta-meta package that is used to manage the
% xCAT node setup in an OpenStack environment. The xCAT-OpenStack
s package was developed and maintained by IBM to manage both
hardware and software within an OpenStack deployment.

[218]

www.it-ebooks.info

http://rpmfind.net/linux/rpm2html/search.php?query=xCAT-OpenStack
http://rpmfind.net/linux/rpm2html/search.php?query=xCAT-OpenStack
http://www.it-ebooks.info/

Chapter 7

6. We intend to include a DNS server in our MIN.

Let's define the packtpub domain in /etc/resolv.conf, as follows:

domain packtpub

nameserver 47.147.1.10

Add it to your /etc/hosts file, as follows:

47.147.1.10 min min.packtpub

Alternatively, you can set a list of public DNS as site forwarders in the
following way:
chdef -t site forwarders=8.8.8.8,8.8.4.4

Now, you only need to run the DNS and test it in the following way:

makedns -n

Handling localhost in /etc/hosts.

Handling min in /etc/hosts.

Getting reverse zones, this may take several minutes for a large
cluster. Completed getting reverse zones.

Updating zones.

Completed updating zones.

Restarting named

Restarting named complete

Updating DNS records, this may take several minutes for a large
cluster.

Completed updating DNS records.

7. We also need to set up our DHCP server, which can be done in the
following way:

chdef -t site dhcpinterfaces=eth0

Note that we have enforced the DHCP service to run over the etho network
interface, which is connected directly to the administrator network.

xCAT uses rcons to enable the multiple read-only consoles on a
cluster server by using the conserver package. Optionally, running
conserver will allow a collaborative way to troubleshoot the server
by sharing the console server session between the administrators.

[219]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

8.

The most important stage in the xCAT installation is the process of

ensuring the nodes are seen by the MIN when they boot up. This is called
autodiscovery. Eventually, when a node boots up, it gets an IP address before
the xCAT server knows and populates its MAC address table, then proceeds
by updating the DHCP and finishes by provisioning the desired operating
system. Autodiscovery won't work without defining a dynamic IP range in
advance. This is required since we are not planning to assign a static IP for
each node on the etho interface. Let's define a dynamic discovery range on
the 47.147.50.1-47.147.50.254 administrative network, as follows:

chdef -t network 47_147 0 _0-255 255 0 0
dynamicrange=47.147.50.1-47.147.50.254

Before provisioning our nodes, we should inform MIN about how we
organize them. This is fairly simple and can be accomplished by associating
each node to a certain naming group. Automating the provisioning of the
nodes within the same role, such as the controller cluster nodes or compute
cluster nodes, has proven to be very helpful. To define a chefserver node
in xCAT, you can use the following code:

mkdef chefserver groups=chefserver,management, all

The previous command line defines a node within the chefserver hostname,
which belongs to the chefserver, management, and all groups.

You can extend a group node definition by using the xCAT regular expression.
For example, instead of manually defining 10 compute nodes that are named
computeXxX (assuming that XX is an integer varying in the range 1 to 10), you
can simply type the following command line:

mkdef compute[01-10] groups=compute,all

We will do the same for the cloud controller nodes, storage nodes,
and network nodes, as demonstrated in the following code:

mkdef controller[01-03] groups=controller ,all

mkdef storage[01-05] groups=storage,all

mkdef network[01-02] groups=network,all

You can check whether your nodes were defined by running the nodels
command line. You will see the following output:

nodels

chefserver

computeOl

compute02

compute03

controller0l

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

controller02
controller03
networkO1l
network02
storageO1l
storage02
storage03
storage04

storage05

An additional substep requires a DNS setup for our MIN, which can be
done by adding your nodes to /etc/hosts. However, do you have to type
them manually? What about the scenario where you have hundreds of
nodes? In this case, a simple trick can optimize the configuration time with
zero mistakes. As you may have noted, we have followed a sequential host
numbering naming (node_name + ID_suffix) as well as IP addressing.
This approach can be the simplest and most organized way that can be used
to avoid any host naming complication. You will realize the nirvana of the
xCAT node management if you check the hosts table, as follows:

tabedit hosts
#node, ip, hostnames, otherinterfaces, comments, disable

"min","47.147.1.10",,,,

There is only one stored host, the MIN. Adding more lines to the hosts table
can help us populate /etc/hosts/ and the DNS information later on. Using
regular expressions can get the job done in one command line. It can be
tricky! Let's have a look at a simple input in the hosts table:

"controller", " |controller (\d+) |47.147.50. ($1+0) |","| (.*) | ($1).
packtpub|",,,

Each line in the hosts table is separated by a comma (,). The first column,
controller, defines the node's group name. The second column is a regular
expression, where we take the digit portion (\d+) and create an IP address
from the hostname by using the same suffix that was already captured in
the matching (\d+) part. For example, controllerol would have captured
01 as the digit portion. The IP address creation would take 01 and append
47.147.50.1 by getting rid of the 0 header. The third column, hostnames
"(.*) | (1) .packtpub, will simply grab the first part of the row regular
expression, controller (\d+), and add to the packtpub prefix. Once you
populate the hosts table, you can add nodes to the /etc/hosts file by
running the following command:

makehosts

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

Now, you will see the new hosts added in the /etc/hosts file, as follows:

47.147.50.1 controller0l controller0l.packtpub
47.147.50.2 controller02 controller02.packtpub
47.147.50.3 controller03 controller03.packtpub

Great! We can do the same for the compute, storage, and network nodes
in the following way:

tabedit hosts

Add the following lines:

"compute", " |compute (\d+) |47.147.50. ($1+3) |","| (.*) | ($1).
packtpub|", ,,

"storage", " |storage (\d+) [47.147.50.(S$1+6) ", "] (.*)](51).
packtpub|", ,,

"network", " |network (\d+) [47.147.50.(S1+11)|","|(.*)]| (S1).
packtpub| ", ,,

"chefserver", " |chefserver (\d+) |47.147.50.($1+13)|","|(.*)]|(S1).
packtpub|",,,

\ You can pinpoint a certain group of nodes that you wish to add
~ to /etc/hosts by running makehosts <group names. For
Q example, the #makehosts controller will add only the cloud
controllers' nodes to /etc/hosts.

Let's check out the newly generated /etc/hosts file, as follows:
47.147.50.1 controller0l controller0l.packtpub

47.147.50.2 controller02 controller02.packtpub
47.147.50.3 controller03 controller03.packtpub
47.147.50.4 computeOl computeOl.packtpub
47.147.50.5 compute02 compute02.packtpub
47.147.50.6 compute03 compute03.packtpub
47.147.50.7 storage0l storageOl.packtpub
47.147.50.8 storage02 storage02.packtpub

47.147.50.9 storage03 storage03.packtpub
47.147.50.10 storage04 storage0l4.packtpub
47.147.50.11 storage05 storageO5.packtpub
47.147.50.12 network0l networkOl.packtpub
47.147.50.13 network02 network02.packtpub
47.147.50.14 chefserver chefserver.packtpub

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

10.

Amazing! Now we can map all the IPs that were generated to the DNS
that was running in the MIN, as follows:

makedns

Check whether your DNS settings are running for example:

host chefserver
chefserver.packtpub has address 47.147.50.14

The last OpenStack network topology illustrates the three different networks
that are connected to each node, Chef server, and the MIN. Basically, each
node of the OpenStack cloud environment requires three NICS. Thus, we
have to tell the xCAT server about the different network interfaces for each
node. We can do this either by using command line or via the nics table

of xCAT.

For example, considering the two NICs for the Chef server, we can specify
via chdef which IP address will be assigned to which NIC, as follows:

chdef chefserver nicips.eth0=47.147.50.14
nicips.ethl=94.49.50.14

lsdef chefserver

Object name: chefserver

groups=chefserver,management, all
hostnames=chefserver.packtpub
ip=47.147.50.14
nicips.ethl=94.49.50.14
nicips.eth0=47.147.50.14
postbootscripts=otherpkgs

postscripts=syslog, remoteshell, syncfiles

Let's populate the nics table for all the nodes by using the same regular
expression trick of going through each node group and assigning the
associated IP range per network interface, as follows:

chdef controller nicips.ethO='|controller(\d+)|47.147.50.
($1+0) | '\ nicips.ethl='|controller (\d+) |94.49.50.($1+0) |'\
nicips.eth2='|controller (\d+) |172.16.50. ($1+0) |

chdef compute nicips.ethO='|compute (\d+) |47.147.50.($1+3)|'\
nicips.ethl='|compute (\d+) |94.49.50.($1+3) |'\ nicips.
eth2="'|compute (\d+) [172.16.50. ($1+3) |

chdef storage nicips.ethO='|storage(\d+) |47.147.50.($1+6) |'\
nicips.ethl='|storage(\d+) |94.49.50.($1+6) |'\ nicips.
eth2="'|storage (\d+) |[172.16.50. ($1+6) |

chdef network nicips.ethO='|network(\d+) |47.147.50. ($1+11) |'\
nicips.ethl='|network (\d+) |94.49.50.($1+11) |' nicips.
eth2="'|network (\d+) |[172.16.50. ($1+11) |’

[223]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

11. We will also need to set a few postscripts for each node that is defined
by xCAT, to set up the network configuration and general setup for each
OpenStack cluster node. We will set to a1l group as follows, and eth1 as
the default external interface:

chdef all -p postscripts="confignics -s"
object definitions have been created or modified.

1
chdef all -p postscripts="configgw ethl™"
1l object definitions have been created or modified.

12. The next step is to define the cookbook repository. If you check under /
install/chef-cookbooks/ in your MIN, you will find that the xCAT-
OpenStack package installation placed a bunch of cookbooks within
version-xcat, where version is an OpenStack release. At the time of
writing this book, the cookbooks within XCAT have been designed for
OpenStack Grizzly release. Eventually, you will not stick to the default
ones. Feel free to create or update cookbooks, roles, and environment
files that reside under /install/chef-cookbooks/.

For our example, we intend to deploy the Havana release. By default, the
cookbooks will be cloned from the StackForge repository in GitHub: https://
github.com/stackforge/openstack-chef -repo. First, we will create an
xcat-havana directory under /install/chef-cookbooks/, as follows:

mkdir /install/chef-cookbooks/xcat-havana

Under /install/chef-cookbooks/xcat -havana, clone the former
openstack-chef -repo repository and proceed to resolve all the cookbooks
dependencies, as cited in Chapter 2, Deploying OpenStack — DevOps and
OpenStack Dual Deal, using Berksfile. We will need cookbooks for Ceph.

We will use the official ones, which can be found at https://github.com/
ceph/ceph-cookbook.

Now that the Chef repository is ready, we should tell the Chef server how
our environment would be like. Create a new directory called cloud_
environment. The cloud environment template will be placed under /opt/
xcat/share/xcat/templates/cloud environment/.

By default, the xCAT-OpenStack package places by default
few templates for grizzly release under /root /rpmbuild/

N SOURCES/xCAT-OpenStack/share/xcat/templates/

~ cloud environment/. It is possible to create a new one named

Q Havana.rb.tmpl for example after adjusting few required
settings. For the sake of simplicity, you can refer to the code
source of this chapter and place the Havana.rb. tmpl under the
cloud environment directory as demonstrated previously.

[224]

www.it-ebooks.info

https://github.com/stackforge/openstack-chef-repo
https://github.com/stackforge/openstack-chef-repo
https://github.com/ceph/ceph-cookbook
https://github.com/ceph/ceph-cookbook
http://www.it-ebooks.info/

Chapter 7

13.

14.

15.

Now, you can assign roles for each node, as follows:

chdef controller0l-controller03 cfgmgr=chef
cfgserver=chefserver\ cfgmgtroles=packtpub-os-base-controller
chdef computeOl-compute03 cfgmgr=chef cfgserver=chefserver)\
cfgmgtroles= packtpub-os-compute-worker

chdef networkOl-network02 cfgmgr=chef cfgserver=chefserver)\
cfgmgtroles=packtpub-os-network

chdef storageOl-storage05 cfgmgr=chef cfgserver=chefserver)\
cfgmgtroles=ceph-osd, ceph-mon

Every argument in the previous command set is essential. Let's see what
we have:

o

cfgmgr: This defines which host profile or group in MIN will
manage the node's post-script installation

cfgserver: This defines the name of the configuration host,
chefserver

cfgmgtroles: This defines a list of roles per node/groups from /
install/chef-cookbooks/xcat-havana/roles

We should tell the Chef server how to load cookbooks and which
environment to choose from our MIN. A very simple way is to use a

cloud file, which includes all the information and details regarding

the setup for the OpenStack environment, as follows:

mkdef all cloud=packtpub all extinterface=eth0
admininterface=ethl\ intinterface=eth2 template="/opt/xcat/share/

xcat//templates/cloud environment/havana.rb.tmpl" repository="/
install/chef-cookbooks/xcat-havana/" virttype=kvm

Now, we will generate the cloud data file by using the following code:

makeclouddata packtpub

We have generated a global description of the cloud named packtpub
including all as a group of nodes that were defined previously, named
network per interface, template environment, repository path, and the
hypervisor type.

The final step for the preparation phase involves pinpointing how
chefserver will behave once booted. This has something to do with
postbootscripts, which was defined in xCAT. We will need the
following two scripts:

[e]

The mountinstall postboot script, which is used to mount the
OpenStack Chef cookbooks repository in the /install directory

The loadclouddata script, which is used to load the generated
cloud details previously to the Chef server

[225]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

This can be done in the following way:

chdef chefserver -p postbootscripts=mountinstall, loadclouddata

Chef server preinstallation

The nodes that were defined in the MIN can be provisioned and installed by just
booting each one in a certain order. Note that the MIN and Chef server will work in
tandem. Thus, we should install the second hand of the automated installer process
for the packtpub cloud deployment. Basically, we will install it using the awesome
bare metal tool, xCAT. This will be our first bare metal installation. For a successful
installation for any bare metal node, you should verify the following:

* Every node is being defined in the MIN
* Every node has the PXE boot capability
* MIN contains the OS images

CentOS will be our operating system base that is used to run the Chef server node.
Furthermore, we will add and use a set of kits that are appropriate for the Chef
installer to the CentOS image:

1. On the MIN, download the latest kit for Chef, as follows:

wget http://sourceforge.net/projects/xcat/files/kits/\ chef/
x86_64/chef—11.4.0—1—rhels—6—x86_64.tar.sz/download

addkit chef-11.4.0-1-rhels-6-x86_64.tar.bz2

A software kit is a software bundler for xCAT that combines any

specific configuration setup or scripts for an xCAT operating

system image or to update a running xCAT node.

2. Check the kit components that were added to your MIN, as follows:
#lsdef -t kitcomponent | grep chef
chef client kit-11.4.0-1l-rhels-6-x86 64 (kitcomponent)
chef server kit-11.0.6-1l-rhels-6-x86 64 (kitcomponent)
chef workstation kit-11.4.0-1l-rhels-6-x86 64 (kitcomponent)

3. Add the previous kit to the OS image for Chef server in the following way:

addkitcomp -i centos-6.5 chef server kit,chef workstation kit

[226]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

To verify which OS image was assigned to which node in the MIN, type the

following:

Ny # lsdef chefserver -i provmedthod

If no images have been assigned, you can create a proper one by

visiting http://www-01.ibm.com/support/knowledgecenter/
SSDV85 4.1.0/Admin/tasks/createxcatosimages rhel.dita.

Discover and cook

Any node in the OpenStack environment is defined in the MIN. The Chef server is
not installed yet, but it needs only one click, push the button. Before going through
the deployment process, you should understand how the MIN works or, in other
terms, how it discovers the nodes, which includes the Chef server in the first place.
Eventually, this is fairly simple. Remember that we have defined an IP range for
the PXE boot, where every node is attached to it via ethO. Of course, we should tell
xcat-server which one is doing what.

To do so, we will point the MIN to start the process of node discovery one by one.
We will power on our servers sequentially and let MIN do the rest. We will use a
node discovery process based on a node range naming criteria in the following way:

nodediscoverstart noderange=chefserver
nodediscoverstart noderange=controller[01-03]
nodediscoverstart noderange=compute[01-03]
nodediscoverstart noderange=network[01-02]
nodediscoverstart noderange=storage[01-05]

H 3 H H

Now, time for the Chef server node! First, power on the Chef server node and check
from the MIN what is happening, as follows:

tail /var/log/messages

Feb 25 01:48:40 min dhcpd: DHCPDISCOVER from 00:0c:29:98:86:93 via ethO
Feb 25 01:48:41 min dhcpd: DHCPOFFER on 47.147.50.14 to 00:0c:29:98:86:93
via ethO

Feb 25 01:48:41 min dhcpd: DHCPREQUEST for 47.147.50.14 (47.147.1.10)
from 00:0c:29:98:86:93 via ethO

Feb 25 01:48:41 min dhcpd: DHCPACK on 47.147.50.14 to 00:0c:29:98:86:93
via ethO

Feb 25 01:49:04 min xXCAT[3309]: XCAT: Allowing nodediscoverls -t seq -1
for root from localhost

Feb 25 01:50:00 min dhcpd: DHCPDISCOVER from 00:0c:29:98:86:93 via ethO
Feb 25 01:50:01 min dhcpd: DHCPOFFER on 47.147.50.15 to 00:0c:29:98:86:93
via ethO

Feb 25 01:50:01 min dhcpd: Wrote 0 class decls to leases file.

Feb 25 01:50:01 min dhcpd: Wrote 0 deleted host decls to leases file.

[227]

www.it-ebooks.info

http://www-01.ibm.com/support/knowledgecenter/SSDV85_4.1.0/Admin/tasks/createxcatosimages_rhel.dita
http://www-01.ibm.com/support/knowledgecenter/SSDV85_4.1.0/Admin/tasks/createxcatosimages_rhel.dita
http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

Feb 25 01:50:01 min
Feb 25 01:50:01 min
Feb 25 01:50:01 min
from 00:0c:29:98:86:
Feb 25 01:50:01 min
via ethO

Feb 25 01:50:01 min
Feb 25 01:50:09 min

dhcpd: Wrote 0 new dynamic host decls to leases file.
dhcpd: Wrote 6 leases to leases file.

dhcpd: DHCPREQUEST for 47.147.50.15 (47.147.1.10)

93 via ethO

dhcpd: DHCPACK on 47.147.50.15 to 00:0c:29:98:86:93
CROND[3315]: (root) CMD (/usr/lib64/sa/sal 1 1)

XCAT [3316] : XCAT: Allowing getcredentials x509cert

Great! The PXE is working. After finishing the image provisioning process with
the Chef kit we have added running, we should be able to see the Chef server node
running, as follows:

chefserver: Reading package lists...

chefserver: Building dependency tree...

chefserver: Reading state information...

chefserver: git is already the newest version.

chefserver: rake in already the newest version.

chefserver: 0 upgraded, 0 newly installed, 0 to remove and 119 not
upgraded.

chefserver: chef-validator

chefserver: chef-webui

chefserver: Postscript: install chef workstation existed with code 0

chefserver: Running of postscripts has completed.

The cookbook and all the roles should also be uploaded to the Chef server. To check
whether your assumption is correct or not, you can use the Knife command line to
list the Chef clients in the new Chef server from the MIN, in the following way:

xdsh chefserver 'knife client list'
chef-validator

chef-webui

Cooking time

All we need now is the push button. All the pieces that were required for automation
have been prepared. Now, the Chef is waiting for the signal that initiates the process
of cooking. We will provide nodes to the Chef one by one. Before starting off with
bare metal provisioning, it is a good practice to go through the following checklist in
order to avoid any surprises during the installation process:

* MIN has connectivity to all the nodes through the layer 2, which is also
known as the administrative network

* MIN acts as a DHCP server for the OpenStack nodes

[228]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

* The OS images exist in the MIN
* No VLAN tagging is performed on a switch for the administrative network
* Set the OpenStack nodes to boot using PXE

* The OpenStack compute nodes have hardware virtualization enabled in
the BIOS

Next, we will need to prepare the repository on each OpenStack node to be deployed
later. To do so, we will need to install additional packages using package list defined
in xCAT. Basically, we intend to create an additional OpenStack repository which
will be added to the operating system image. Once deployed, post scripts will
update the package list of the new node based on the additional rpm list. For
example, we can create a new directory to hold an additional Havana OpenStack
RPM as the following:

mkdir -p /install/post/otherpkgs/centos/x86 64
cd / install/post/otherpkgs/centos/x86 64

wget https://repos.fedorapeople.org/repos/openstack/EOL/openstack-
havana/rdo-release-havana-9.noarch.rpm

By default, xCAT defines several netboot package list under /opt/xcat/share/xcat/
netboot/ for different operating system. We will tell xCAT to take into account of our
new OpenStack repository within the CentOS image as the following;:

chdef -t osimage centos imagetype=linux otherpkgdir=/install/post/
otherpkgs/centos/x86 64 otherpkglist=/opt/xcat/share/xcat/netboot/centos/
compute.centos6.pkglist

In order to setup the new repository in all xCAT nodes for OpenStack, the otherpkgs
postbootscripts should be associated within the 'all' group nodes as the following;:

chdef -p -t group all postbootscripts=otherpkgs

We can check for example the association of the otherpkgs postbootscripts with the
controller01 node:

lsdef controller0l -i postbootscripts
Object name: controller0l

postbootscripts=otherpkgs

Each OpenStack node will be provisioned first within the operating system that

is defined by the MIN. Therefore, the Chef server will take over the automation
installation process by installing the right cookbooks, as described by the node role
assignment. However, how will the Chef server be aware of the OpenStack nodes?
We missed a link that connects the chain!

[229]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

Ideally, the node that is aware of the Chef server should have a Chef client running
on it. This means that any node from the OpenStack environment should be
authenticated from the Chef server's perspective. We will not do the authentication
manually. We will just tell the MIN to install the Chef client on the OpenStack nodes
using postboot scripts, as follows:

chdef controller -p postbootscripts=install chef client
chdef compute -p postbootscripts=install chef client

chdef storage -p postbootscripts=install chef client

H+ H H HF

chdef network -p postbootscripts=install chef client

At this stage, we have the following two main concerns that should be taken
into account:

* We will need an external network bridge to make Open vSwitch work
properly in the network node. We can use the configbr-ex script, which is
placed in the MIN, to run on boot time in the following way:

chdef network -p postbootscripts="confignics -script config-ex"

* For every storage node, we will provision each one by using an Ubuntu
image. The reason behind such a choice is the support of the official
cookbook, which is stable and works fine for the Ubuntu operating system
as well as for Debian. The storage nodes that run ceph-osd and ceph-mon
will be provisioned using an Ubuntu OS image. You may associate it in
the storage group node and check it using the following command:

lsdef -i storage -i promethod

Now, let MIN and the Chef server do the rest. Boot the rest of the nodes by
starting first with the controller nodes, network nodes, and the compute nodes
and then ending by the storage nodes. The provision process ended by the Chef
client installation should be accomplished without errors. For example, the
provisioning of the controller01 node should give the following output:

controller0l: Postscript: install chef client exited with code 0

controller0l: Running of postscripts has completed.

To validate the correctness of your network node's provisioning, you should be
able to see the following output for the verbose console:

network0l: Postscript: confignics --script configbr-ex exited with code 0

network0l: Running of postscripts has completed.

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Testing the cloud

Let's test our first production deployment. From the controller01l.packtpub node,
follow these steps:

1.

10.

Populate the keystone admin keys, as follows:
. /root/keystone

Create a new image in the following way:

glance image-create --copy-from http://download.cirros-
cloud.net/0.3.1/cirros-0.3.1-x86 64-disk.img --is-public true
--container-format bare --disk-format gcow2 --name packtpub cirros
Create an external network, as follows:

neutron net-create external0l --router:external=True

Configure the IP for the external network that was created, as follows:

neutron subnet-create --name externalOl-subnetO0l --disable-dhcp
--allocation-pool start=94.49.50.250,end=94.49.50.250 externalOl
94.49.0.0/16

Create a packtpub_tenant tenant, as follows:

keystone tenant-create --name packtpub tenant

keystone user-create --name packtpub --tenant packtpub tenant
--pass secrete

Create a private network in the following way:

neutron net-create pack private

Configure the IP for the tenant network created, as follows:

neutron subnet-create --name privateOl-subnet0Ol --dns-nameserver
8.8.8.8 --gateway 94.49.50.1 pack private 172.16.17.0/24

Create a router in the following way:

neutron router-create external-router

We need to set the external network to the external router. We will
accomplish this by using the following code:

neutron router-gateway-set external-router externalOl

Add the interface to the router for the internal tenant subnet in the
following way:

neutron router-interface-add external-router private0Ol-subnetO0l

[231]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

11. Let's create a virtual machine and assign it to a private network for the
packtpub tenant tenant, as follows:
nova boot --poll --flavor ml.small --image packtpub cirros --nic

net-id=7789a969-4327-4287-a422-bbeff3215472 --key-name packtpub
key packtpub vm

12. Once the VM is built, we need to test whether the virtual machine for
packtpub tenant is able to connect to the Internet. If it is unable to do
so, you should check the following file in the network host:

cat /etc/sysconfig/network-scripts/ifcfg-br-ex
DEVICE=br-ex

DEVICETYPE=ovVvs

TYPE=OVSBridge

ONBOOT=yes

13. Restart the network service to take into account the new changes, as follows:

service network restart
service neutron-openvswitch-agent restart

service neutron-13-agent restart

Arming the deployment

By now, we have collected almost all the pieces, and we have a running OpenStack
environment within a tenant in production. However, the big picture is not complete
yet. Note that the first stage of deployment assumes that only one cloud controller
works actively to handle the OpenStack API's services, queuing, and database. The
current implementation is being conducted to deploy the complete production
environment gradually. This means that the remaining manual configuration has

to be done to satisfy our requirements. The first setup does not take into account

any node clustering or the redundancy of services. This is what we told Chef when
we started deploying the entire environment. We should add the last piece which

is a highly available cluster environment. Although Chapter 3, Learning OpenStack
Clustering - Cloud Controllers and Computer Nodes, outlined a simple trick to automate
high availability within the cloud controller nodes using cookbooks, it might be more
complicated to adjust all the attributes and recipes that were defined in some of them
to provide a complete highly available cluster from the beginning of the deployment.
Nonetheless, you can always develop and extend the cookbooks that suit your needs,
as cited in Chapter 2, Deploying OpenStack — DevOps and OpenStack Dual Deal.

[232]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

For the sake of simplicity, we will follow a gradual procedure by configuring our
current setup to provide a highly available OpenStack environment with a load
balancing feature. Based on Chapter 6, OpenStack HA and Failover, we will perform the
following tasks:

* Installing two HAProxy nodes using MIN

* Configuring HAProxy within Keepalived for stateless OpenStack services

* Reconfiguring the cloud controllers to point to the new Virtual IP

* Reconfiguring the stateful services in the cloud controllers for:

° The MySQL database, by using the Galera-WRESP solution

o

RabbitMQ, by using the queue mirroring technique

* Installing Pacemaker and Corosync to handle the network nodes' resiliency

Bringing HA into action

In Chapter 6, OpenStack HA and Failover, we have given details regarding how
one can configure a highly available MySQL database and a RabbitMQ cluster.
A complete network controller cluster stack has been configured by using
Pacemaker and Corosync for L3, DHCP, and the Neutron metadata.

For instance, we will need to spawn both the HAProxy nodes. From the MIN,
we can define a new node HAProxy set, as follows:

mkdef haproxy[01-02] groups=ha,all
Add them to /etc/hosts and run makedns, as follows:

47.147.50.45 haproxy01l haproxy01l.packtpub
47.147.50.46 haproxy02 haproxy02.packtpub

makedns
Both the HAProxy nodes will use the following three interfaces:

* etho for the administration network
* ethi for the external network

* eth2 for the management network

[233]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

We will tell the MIN about the existing NICs, as follows:

chdef haproxy0l nicips.eth0=47.147.50.45 nicips.ethl=94.49.50.45
nicips.eth2=172.16.50.45

chdef haproxy02 nicips.eth0=47.147.50.46 nicips.ethl=94.49.50.46
nicips.eth2=172.16.50.46

We will finish creating the HAProxy nodes by setting up postscripts, which will
run after the provisioning of the nodes:

chdef haproxy -p postscripts="confignics -s"
1l object definitions have been created or modified.
chdef haproxy -p postscripts="configgw ethl"

1l object definitions have been created or modified.

Check whether both the nodes are configured to boot by using PXE from the BIOS
interface. Power on haproxy01 and then, do the same for haproxy02.

Adapting the deployment

You can refer to Chapter 6, OpenStack HA and Failover, to install HAProxy and
Keepalived in our new machines. Next, the OpenStack API services, queuing
systems, and databases nodes have to be routed to the new virtual IP. First, we
need to create a virtual IP on the management interface. We choose 172.16.50.47.
In HAProxy01, point to /etc/keepalived/keepalived.conf and check the vrrp
instance and virtual ipaddress sections, as follows:

vrrp_instance packtpub-os-vip {
state MASTER
priority 100
interface eth2
virtual router id 47
advert int 3

virtual ipaddress {
172.16.50.47

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

For the second HAProxy node, the content of the /etc/keepalived/keepalived.
conf file will look similar to the following code:

vrrp_instance packtpub-os-vip {
state Master
priority 99
interface eth2
virtual router id 47
advert int 3

virtual ipaddress {
172.16.50.47

}

The next step is to extend the HAProxy configuration files. For each service
that requires a redundant load-balancing feature, we add a new stanza to /etc/
haproxy/haproxy.cfg.

For each service, we will need to specify the virtual IP within the corresponding
port of the running service.

The next snippet shows an example of stanzas that were added to the haproxy.cfg
files on both the HAProxy nodes for the cinder-api service and horizon:

defaults

listen cinder api

bind 172.16.50.47:8776

server controller0l 172.16.50.1:8776 check inter 2000 rise 2 fall 5
server controller02 172.16.50.2:8776 check inter 2000 rise 2 fall 5
server controller03 172.16.50.3:8776 check inter 2000 rise 2 fall 5

listen horizon
bind 172.16.50.47:80

[235]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

balance source

mode http

server controller0l 172.16.50.1:80 cookie control0l check inter 2000
rise 2 fall 5

server controller02 172.16.50.2:80 cookie control02 check inter 2000
rise 2 fall 5

server controller03 172.16.50.3:80 cookie control03 check inter 2000
rise 2 fall 5

It is possible to add other services to the load balancer configuration file by
specifying the right port for each one, as follows:

* The binding port for mysgl_wsrep: 3360

* The binding port for glance-api: 9292

* The binding port for glance-registry: 9191

* The binding port for keystone_admin: 35357

* The binding port for keystone_public: 5000

* The binding port for nova_metadata_api: 8775

* The binding port for nova_osapi: 8774

* The binding port for novnc: 6080

* The binding port for neutron_api: 9696

* The binding port for rabbit_cluster: 5672

You can find a very useful table describing the defaults ports that OpenStack services use
by visiting http://docs.openstack.org/kilo/config-reference/content/
firewalls-default-ports.html.

Make sure that haproxy is enabled by default in both the load balancers, as follows:

vim /etc/default/haproxy
ENABLED=1

Before starting the haproxy and Keepalived services, you can refer to Chapter 6,
OpenStack HA and Failover, to reconfigure the following files in each cloud
controller node:

* /etc/keystone/keystone.conf

* /etc/glance/glance-api.conf

[236]

www.it-ebooks.info

http://docs.openstack.org/kilo/config-reference/content/firewalls-default-ports.html
http://docs.openstack.org/kilo/config-reference/content/firewalls-default-ports.html
http://www.it-ebooks.info/

Chapter 7

® /etc/glance/glance-registry.conf
®* /etc/cinder/cinder.conf
® /etc/cinder/api-paste.ini

* /etc/nova/api-paste.ini

In the network nodes, the /etc/neutron/neutron.conf file should be reconfigured
to point to the virtual IP.

The same should be done for the compute nodes, which require the /etc/nova/
nova. conf file to be reconfigured.

After adjusting the virtual IP in the required section of each node configuration
file service, you will need to restart the OpenStack services in each cloud controller,
compute node, and network node respectively, as follows:

service mysqgl restart
service rabbitmg
service keystone restart
service glance restart
service httpd restart

cd /ete/init.d/; for i in $(1ls nova-*); do sudo service $i restart;
done

service nova-compute restart
service neutron-server restart

service neutron-dhcp-agent restart; service neutron-plugin-openvswitch-
agent restart

For each OpenStack service configuration file, it is easier to refer
W\l to the official OpenStack documentation to perform a proper
L)
setup within the right directives and sections. For example, you
can find a complete list of the available options of nova.conf at
http://docs.openstack.org/havana/config-reference/
content/list-of-compute-config-options.html.

You will later need to reload the new configuration in each load balancer node using
the following command line:

service haproxy reload

[237]

www.it-ebooks.info

http://docs.openstack.org/havana/config-reference/content/list-of-compute-config-options.html
http://docs.openstack.org/havana/config-reference/content/list-of-compute-config-options.html
http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

Running first tenant

Let's test our setup by creating our first tenant, which is called tenanta, and start
our first virtual machine in production. The former instance should be accessible

from the compute node as well as should be able to reach the Internet.

1.

Access the cloud controller and populate the necessary environment

variables from the openrc file that resides under root, as follows:

. /root/openrc

We will need to provision a test image that can be used to create the virtual
machine by using Glance. This can be achieved in the following way:
glance image-create --copy-from http://download.cirros-

cloud.net/0.3.1/cirros-0.3.1-x86 64-disk.img --is-public true
--container-format bare --disk-format gcow2 --name pack cirros img

The preceding command yields the following result:

-
| Propertcy
+ __________________
checksum
container format
created at
deleted
deleted at
disk format
id
iz public

|

|

|

|

|

|

|

|

| min_disk
| min ram
| name

| owner

| protected
| size

| status

| updated_at

| virtual =size
e

|
|
2015-03-06T17:54:49

Fals=e |
None |
goowd |
a717e479-f783-4d99-b7da-3533c5c81c83 |
True |
0 |
0 |
pack cirros img |
d8leabccl44741f=949796d1748778ac |
Fal=e |
13147648 |
gqueusd |
2015-03-06T17:54:49

None |

Add the minimum necessary security group rules, as follows:

nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

nova secgroup-add-rule default tcp 1 65535 0.0.0.0/0

nova secgroup-add-rule default udp 1 65535 0.0.0.0/0

[238]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

4. Create an external network from your network node by using the
following command:

neutron net-create externalOl

The preceding command yields the following result:

--router:external=True

Created a new network:

e e L et e it T +
| Field | Value |
o e e -
admin state_up	True
id	203£453e-3012-49cd-b383-09f4bbed5des
name	externalldl
provider:network type	vxlan
provider:physical network	
provider:segmentation id	15
router:external	True
shared	Falze
status	ACTIVE
subnets	
tenant_id	dBleatcc044741fe5459796d1748778ac
ettt ettt ettt +

The following command creates a subnetwork from the external01
external network:

#neutron subnet-create --name externalOl-subnet0l --disable-dhcp
--allocation-pool start= 94.49.0.99,end=94.49.0.200 externalOl

94.49.0.0/24

The following result is obtained on executing the preceding command:

Created a new subnet:

Value

| allocation pools
| cidr

| dns_nameservers
| enable dhcp
| gateway ip
| host_routes
| id

| ip_wersion
| name

| network id
| tenant_id

{"start™: "94.45.0.9%", "end": "94.4%9.0.200"} |

192.168.120.0/24

False
94.49.0.1

Ebaf6538-553c-4daf-a338-2ces2fefacesd
4

externalll-subnetll
203f453e-3012-49cd-b383-09f4bbed5des
d8leabcc044741f2949796d1T7487T8acC

[239]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

5.

From the controllerol node, create a tenant named tenanta and a user
account, packt user, as follows:

keystone tenant-create --name tenantA

keystone user-create --name packt user --tenant tenantA --pass
Pa55W0rd

You will need to create and populate its credentials' new file, openrc_packt,
as follows:

export OS_USERNAME= packt_user

export OS_TENANT NAME= tenantA

export OS PASSWORD= Pa55WOrd

export OS_AUTH URL=http:// 172.16.50.47:35357/v2.0/

export PSl='[\ue\h \W(keystone packt)]\$ '

Now, run the following command:

./root/openrc packt

From the network node, create a private network for the packt_user
instance user and assign a private IP range for the 192.168.47.0/24

subnet to it in the following way:

neutron net-create privateOl

neutron subnet-create --name privateOl-subnet0l --dns-nameserver

8.8.8.8 --gateway 192.168.47.1 private0l 192.168.47.0/24

For the preceding command, we will get the following output:

Created a new subnet:
| Field Value
e o o o o o o e e e e e e e e e e
| allocation pools | {"starc®: "192.168.47.2%, "end™: "192.16B.47.254"
| cidr | 182.168.47.0/24
| dns_nameservers | 8.8.8.8
| enable dhep | True
| gateway ip | 192.168.47.1
| host_routes
| id | d7255778-0c98-4afd-bd99-5e96de5b2377
| ip_wersion | &
| name | privatefl-subnetOl
| network id | 99255c3d-b48b-4ad%-a057-8511bdedBarl4
| tenant_id | 9d06E05E35cd4911Ee951beb2b3323c3
[240]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Next, we will need to create a router to be able to access other networks.
You should set its corresponding gateway, as follows:

neutron router-gateway-set external-router externalll

Set the gateway for the external-router router. Then, add a router interface
to the created subnet, as follows:

neutron router-interface-add external-router privateOl-subnetO1l
Added interface 79c0958d-6092-4b0c-aecf-3dcca67274dc to router

external-router.

You can check the networks that were created previously in the router,
as follows:

neutron net-list

The preceding command gives the following result:

203£453e-3012-49cd-b383~-09f4bbed5de8 | externalll | 2ba%6538-553c-4daé-a338-2céé2fefaces
99255c3d-b48b-4add-a057-8511bded8af4 | privacedl | d7255778-0c98-4afd-bd35-5e56dcSb2377 192.168.47.0/24
9. Now, we can create the first virtual machine by designating the image,

flavor, network interface, and name. Remember that we will need to create
an authentication key pair first. This can be achieved in the following way:

ssh-keygen -t rsa -b 2048 -N '' -f pack key
nova keypair-add --pub-key pack key.pub tenantA

Let's boot the virtual machine, as follows:

nova boot --poll --flavor ml.tiny --image pack cirros img --nic
net-id=99255c3d-b48b-4ad9-a057-8511bded8af4 --key-name tenantA
Prod0O1

[241]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

The preceding command gives the following result:

| Property | Value |
| O5-DCF:diskCaonfig | MANUAL]
O5-EXT-RZ:availabilicy_ zone	nova
O5-EXT-5TS:power state	0
O5-EXT-5TS:task_state	scheduling
OS-EXT-S5TS5:vm state	building
©5-53RV-U3G:launched at	-
O5-5RV-USG:terminated at	-
accessIPvd	
accessIPve	
adminPass	xSBDCcbhbXMef2
config_drive]	
created	2015-03-06T18:37:532 I
flavor	mi.ciny (1)
hostId I]	
id	928c2f10-9974-40f0-94el-deb52bbd00dd
image	pack cirros_img (a717e4739-f783-4d95-b7da-353)
key_name	pack_kev
metadata	{¥
name	ProdOl
os-extended-volumes:volumes_attached	[]
progress	0
security_groups	default
status	BUILD
tenant_id	2d06805835cd43118e951be62b3323c3
updated	2015-03-06T18:37:542 I
user_id	Tac4488d6lca438cblb485dlacb58eT7d
Ferver building... 0% complete

Ferver building... 100% complete

Finished

10. In order to allow the former instance to connect to the external network, we
will create a floating IP from the network node, as follows:

neutron floatingip-create externalOl
neutron floatingip-list

On executing the preceding code, we will get the following result:

- ————————— o D T o +
| id | fixed ip address | fleoating ip address | port_id |
et e B e P e P e B B Fmmm +
| 76384bbf-f58c-42a8-9d9%6-8cd6aT2fE256 | | 94.45.0.100 | |
- Fom—m—————m———m———— Fommmm e m e m $o———————— +

11. A last step that is required is the assigning of the floating IP, that was created,
to one of the router ports, which can be accomplished in the following way:

neutron port-list

[242]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

From the previous output list, assign an available floating ip to the router
port ID as the following:

neutron floatingip-associate 76384bbf-f58c-42a8-9d96-
8cd6a72£f256 9bbe9442-1864-4b97-a31lb-aade48936£ffd
Associated floatingip 76384bbf-f58c-42a8-9d96-8cd6a72f£256

For the preceding command, we will get the following result:

| id | name mac_address | fized ips]

| Sbbef442-1864-4b87-adlb-aadedE836L0d | fa:16:3e:1bibT:3c | {"subnet_id": "d725577 SE-4ald-bdss- 377", "ip_address™:; "182.168.47.2"} |

12. Now, check the new instance details, as follows:

nova list

For the preceding command, we will get the following result:

| ID | Name | Status | Task State | Power State | Networks]

| 928c2f10-9974-40£0-9421-deb52bbd00dd | Prod0l | ACTIVE | - | Running | private01=192.168.47.2, 94.4%9.0.100 |

You can check out from Horizon the private and public network topology of
tenantA, which looks as shown in following screenshot:

Router

1o

Instance

T0|BUI33XD
To=3eapd

FZIO LY 89T Z6T

[243]

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Multinode Deployment — Bringing in Production

Summary

In this chapter, we delved into our first production day by deploying a complete
OpenStack environment, based on the specifications and custom needs that were
tailored according to the budget of an organization. This is a sample deployment
in which many other layouts can be discussed and implemented as well.

The deployment methodology was adopted to compartmentalize the setup of the
overall environment in such a way that the complexity of the production OpenStack
cloud installation process was simplified and avoided. At this point, you should know
how to smoothly move to production by taking into consideration the various aspects
of an organized deployment. Furthermore, you learned how to provide the OpenStack
environment from the bare metal level by using tools such as the XCAT tool. This is
optional if you started with a medium-sized environment. However, when growing
the environment, you should keep in mind that controlling, troubleshooting, and
joining new nodes to the cluster might be more rushing task.

Note the complexity of the networking feature that was recently integrated within
OpenStack - specifically the Neutron project. You may face more challenges when
users start creating projects and deploy a virtual environment and multi-tier
applications by using the OpenStack private cloud. At this point, you should be
able to take care of their application connectivity as if they are running in a real
environment, and release the enigma of virtual networking in OpenStack private
cloud, which will be the focus of the next chapter.

[244]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending

OpenStack — Advanced
Networking Features
and Deploying Multi-tier
Applications

"Man is essentially ignorant, and becomes learned through acquiring knowledge."

~Ibn Khaldun

The previous chapter was a great opportunity to launch a primary OpenStack

private cloud in a production environment. Depending on your budget and the
hardware solutions available that might better fit your infrastructure, you still have
several ways as well as more than one possibility to bring in a fully implemented
first draft design in a real production environment. What can be challenging at

this stage? Without any doubt, managing networks in OpenStack is still a concern
that we cannot ignore. Chapter 1, Designing OpenStack Cloud Architecture, detailed a
few introductory networking concepts in OpenStack, whereas Chapter 7, OpenStack
Multinode Deployment — Bringing in Production, exemplified a network implementation
using Neutron by extending a previous design in the latter one.

[245]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack - Advanced Networking Features and Deploying Multi-tier Applications

When it comes to actually providing more controlling and administrating networks,
you should be aware that understanding the general functionalities in the network
software core within Neutron is a must in order to "sail" smoothly in production. On
the other hand, it comes to light that not all users will need to build their own virtual
environment in your cloud in the same way. In the previous chapter, we saw an
example of the Neutron implementation by separating networks by tenants per tenant
routers with private networks.

In this chapter, we will dive deeper into OpenStack networking in Neutron and
discover the following topics:

* Learn Neutron plugins: Linux Bridge and Open vSwitch

* Validate the use case of each plugin

In addition, we will cover more advanced features offered by Neutron. As seen in
Chapter 5, Implementing OpenStack Networking and Security, with FWaaS and VPNaaS,
we will highlight another networking service:

* Learn how to integrate Load Balancer as a Service (LBaaS) in OpenStack

* Use LBaaS in a multitier application

The last part of the chapter will explain an amazing orchestrating tool recently added
to OpenStack in a nutshell and use it to deploy a multitier application in the load
balancing mode using Neutron plugins.

Navigating through Neutron

Prior to Neutron, setting up a network for virtual machines in OpenStack was quite
seamless. As was described in Chapter 1, Designing OpenStack Cloud Architecture,
nova-compute uses the nova-network service to connect instances to an existing
network defined by the cloud administrator, where users do not have to bother with
the network setup. Also, there was no possibility to do more. With Neutron, new
horizons are explored to provide more topologies and advanced network setups
that might enrich the user experience and provide more freedom. But first, a slight
learning curve might be needed.

[246]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Neutron plugins

By virtue of the plugins concept in Neutron, more additional networking features
have been introduced in OpenStack, which differ depending on hardware
requirements, vendor specs lock-in, scale, or performance. Some of the plugins
might use the Linux IP tables and VLANs. Many other plugins are created by
third-party vendors that interact with their network devices within Neutron.

A variety of neutron plugins can be listed as the following:

* Open vSwitch

* Linux Bridge

* OpenContrail

e IBMSDN VE

* Big Switch Controller

* Nicira Network Virtualization Platform
* (Cisco Nexus 1000v

Among the mentioned plugins for Neutron, in this section, we will look at the Linux
Bridge and Open vSwitch for OpenStack Neutron. Both plugins are well supported
since Havana release and provide a layer two switching infrastructure. You are
probably anxious to see how they work separately, so let's dive into them.

M Learn more about the available plugins in Neutron at

Q http://docs.openstack.org/admin-guide-
cloud/content/section plugin-arch.html.

Virtual switching infrastructure

Providing layer two connectivity to running instances in your private OpenStack
cloud infrastructure requires more advanced virtual / physical switching
configuration. You may raise this question: how could an instance in a private
tenant "virtual" network connect outside and "ping the world"? Or, is there a way
that allows a virtual machine running within tenant B to establish a connection
with another one running in a different network within a different tenant C? As
you can see, designing complex structures to answer the previous questions is
not a simple matter.

[247]

www.it-ebooks.info

http://docs.openstack.org/admin-guide-cloud/content/section_plugin-arch.html
http://docs.openstack.org/admin-guide-cloud/content/section_plugin-arch.html
http://www.it-ebooks.info/

Extending OpenStack - Advanced Networking Features and Deploying Multi-tier Applications

Thus, you should understand the two main concepts:

* Virtual network interfacing: At instance boot time, a new virtual
network interface is created on the compute node (running the hypervisor
KVM by default), which is referred as a tap interface. The former interface
is actually the responsible portal that exposes the virtual instance to the
physical network.

The tap interface should persist after the reboot of the
K=" compute node.

* Virtual network bridging: Let's tackle this concept as simple thought.
A bridge allows two or more layer two networks to create a single network
called aggregate. Let's virtualize it: a Linux Bridge is a virtual bridge
connecting multiple virtual or physical networks' interfaces.

To connect a physical interface ethX to a bridge, you will

need to change its mode to promiscuous; this means that

the interface should allow all frames to be processed.

The Linux Bridge plugin
In order to forward traffic between instances and to the virtual switch infrastructure,
there is always a necessity to create a bridge, discussed previously, as well as Linux
802.1q kernel modules to ensure connection with the other networks. Eventually, the
Linux Bridge plugin implementation will involve the usage of at least three virtual
and physical devices, as depicted in the next figure:

* Tap interface: TapXX

* Linux bridge: Br

* Physical interface(compute node interface): ethX

[248]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Note that the next network setup illustrates the usage of only
one NIC. It is recommended, if possible, that you use two fast
NICs per OpenStack server in the production environment and
bond them together for high-availability and best performance
+ concerns. By default, Linux offers a bonding module to enable
NIC teaming. For each VLAN, a bonded virtual interface should
be created. The bonded interface will distribute traffic across the
connected NICs using load balancing and failover techniques.
NIC bonding is beyond the scope of this book. You can see a
detailed NIC bonding setup at http://docs.oracle.com/cd/
E37670_01/E41138/html/chl1s05.html.

Etho

[249]

www.it-ebooks.info

http://docs.oracle.com/cd/E37670_01/E41138/html/ch11s05.html
http://docs.oracle.com/cd/E37670_01/E41138/html/ch11s05.html
http://www.it-ebooks.info/

Extending OpenStack - Advanced Networking Features and Deploying Multi-tier Applications

The previous figure shows a Linux Bridge Br-eth0 that contains a single physical
eth0 interface and three virtual interfaces: Tap01, Tap02, and Tap03 corresponding
to a network interface within its respective guest instance. Traffic from eth0 on an
instance can be observed on the respective tap interfaces as well as the bridge and
the physical interface.

Actually, the previous illustration assumes a simple flat network in which no
VLAN tagging may exist. The Ethernet frame trip where all tap interfaces lie in the
same layer 2 broadcast domains is quite simple. On the compute node running the
network agent, we can check how the bridge looks.

In the case of a more complicated network setup where VLANSs exist, the Ethernet
frame trip becomes longer with one additional hop. Thus, before reaching the
physical interface of the hypervisor host passing through a virtual VLAN interface
ethX.ZZ to tag and untag traffic, it will require the following schema:

VMo1 VMoz g
D T

VMo3
eth etho IEE etho |8

Compute Node

External Network *

[250]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Both eth0.VLAN1 and eth0.VLAN2 are bound to the same physical interface, which
is eth0. Keep in mind that each eth0.VLAN1 and eth0.VLAN?2 interface tags traffic as
VLAN1 and VLAN?2, respectively, before dropping it on the eth0 physical interface.
In the other hand, traffic moving toward virtual machines is untagged by each ethO0.
VLANX interface and is forwarded through its respective bridge.

The Open vSwitch plugin

Typically, Open vSwitch is a virtual switch that embodies the emerging concept of
Software Defined Networking (SDN). Overall, the former concept aims to treat
networks as programs that can be easily deployed and provisioned.

Moreover, what makes it the cat's meow is the ability to integrate a virtual switching
environment within a physical one due to many supported features, including:

* 802.1q VLAN tagging

e SIP

* OpenFlow and sFlow protocols support

* Tunneling protocol support, including VXLAN, GRE, IPsec, GRE over IPSec,
and VXLAN over IPsec

* NIC bonding support LACP

Let's see how Open vSwitch is architected in a simplistic figure:

UserSpace

=TS

Kernel Space 1 ‘
Netlink

OVS Kernel Module

[251]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack - Advanced Networking Features and Deploying Multi-tier Applications

The overall architecture should be straightforward to understand:

Open vSwitch daemon (ovs-vswitchd): This is essentially a program
running within the Linux kernel model in each host, which imposes how
the flow would be switched or forwarded

Open vSwitch database (ovsdb-server): An Open vSwitch database is
created in each host running ovs daemon to maintain the virtual switch
configuration

OVS Kernel module: This is a data path where all packets are forwarded
and tunneled or encapsulated and decapsulated

Similar to the Linux Bridge plugin, Open vSwitch relies on the bridge and its kernel
modules. What makes the difference are the unique virtual devices that are created
in the compute host once you start using the OVS plugin. OVS uses more than one
bridge; each one will have a port with the same name as the bridge itself by default.
On first glance, we can enumerate bridges used by OVS compared to the Linux
Bridge plugin:

br-int: This is the integration bridge with the port called br-int by default.
Basically, instances, DHCP servers, routers, and switches will be connected
to br-int. It is imperative to notice that it is not possible to connect the tap
devices (the virtual machine network interface) directly to the integration
bridge; the reason behind this is the use of iptables rules on tap interfaces
whereas Open vSwitch does not support security groups by matter of design.
IP tables are applied directly on tap devices. So, what will be the magic link?
The solution promotes the usage of simple Linux bridges that connect to the
integration bridges in turn. Eventually, tap interfaces will offer a route for
filtering to the kernel.

br-ex: This is the physical bridge (the provider bridge another naming
fashion) that enables instances to communicate with the physical network
on a given interface ethx (X is the numbered physical NIC of the host). The
br-ex bridge can be created and associated within an ethx host physical
interface, which allows both ingress and egress traffic to the physical
network environment.

[252]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

* Dbr-tun: This is a bit confusing if you start forming a picture of how many
bridges an Ethernet frame will need to travel from the external network to
the virtual machine network interface. To make it simple, we will consider
br-tun as a form of a physical bridge but for a different purpose. If you use
Neutron to create tunnels, a tunnel bridge named br-tun will be created
to handle and translate VLAN-tagged traffic coming from the integration
bridge into GRE or VXLAN tunnels. Flow rules will be installed and applied
at this stage.

However, how should br-int and br-tun, for example, connect? Eventually,
integration bridges will connect to either tunnels or physical bridges by means

of virtual patch ports. For example, a patch-tun patch tunnel port connects an
integration bridge to the tunnel one. What about the connection between the
integration bridge and the Linux Bridge carrying the tap interface? To answer this
question, you can imagine two interconnected switches via trunk; physically, they
are connected by means of patch cables. Open vSwitch does the same; each Linux
bridge in the virtual environment acquires a virtual interface veth.

o It is imperative that you remember once you implement OVS,
~ every host in your OpenStack environment, including cloud
Q controllers, compute nodes, and network nodes, must have its
own integration bridge as well as a physical/tunnel bridge.

Let's resume with the number of virtual type networking devices that are involved
when we implement OVS:

* Tap devices

* Linux bridges

* Virtual Ethernet cable (veth)

* OVSbridges: br-int, br-ex/br-tun

* OVS patch ports

[253]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack - Advanced Networking Features and Deploying Multi-tier Applications

Now, let's follow the Ethernet frame traveling from the physical network to a

virtual machine interface. We will use a more sophisticated example by showing

an implementation involving a GRE network setup in an OpenStack network
environment. The next visual representation shows a compute01.packtpub compute
node connected to a network01 .packtpub network node. Both nodes are connected
by means of the br-tun tunnel bridge, as shown in the following figure:

&6
Wmﬂ”ﬂ“‘k

Network Node Compute Node
VMoz

TAP ‘DHCP
TAPgs Router g

= o
..qdhcp

Tunnel GRE

Let's start with the compute node, and check its virtual switch configuration using
the next command line:

ovs-vsctl show
Bridge br-int
Port "gvo6d6eed47e-04"
tag: 1
Interface "gvo6d6eed7e-04"
Port patch-tun

[254]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Interface patch-tun
type: patch
options: {peer=patch-int}
Port br-int
Interface br-int

type: internal

Starting from the virtual machine network interface, the Ethernet packet starts its
trip from the instance connected to the tap interface device on the compute node
tap6déeee47e-04. Then, it drops by the Linux Bridge device attached to it via the
gbrédéees 7e-04 virtual Ethernet cable. Let's take a closer look and see how packets
are processed. Remember that attaching the tap interface to the Linux Bridge instead
of the integration bridge is necessary because of the support of firewall rules'
compatibility. We should then expect the implication of certain iptables rules at

this stage:

iptables -S | grep tap6d6ee47e-04

-A neutron-openvswi-FORWARD -m physdev --physdev-out tap6d6ee47e-04
--physdev-is-bridged -j neutron-openvswi-sg-chain

-A neutron-openvswi-FORWARD -m physdev --physdev-in tap6d6ee47e-04
--physdev-is-bridged -j neutron-openvswi-sg-chain
-A neutron-openvswi-INPUT -m physdev --physdev-in tapé6d6ee47e-04

--physdev-is-bridged -j neutron-openvswi-o7c7ae6le-0

We can check where our security rules are realized. We see clearly that the neutron-
openvswi-sg-chain is the security set that controls egress traffic from the virtual
machine, which can be seen as the following:

-A neutron-openvswi-cc7474ee6-0-m mac ! --mac-source
BA:64:EE:04:50:74 -j DROP

-A neutron-openvswi-cc7474ee6-0-p udp -m udp --sport 68
--dport 67 -j RETURN

-A neutron-openvswi-cc7474ee6-0! -s 172.16.0.5/32 -j DROP

-A neutron-openvswi-cc7474ee6-0-p udp -m udp --sport 67
--dport 68 -3j DROP

-A neutron-openvswi-cc7474ee6-0-m state --state INVALID -j DROP

[255]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack - Advanced Networking Features and Deploying Multi-tier Applications

On the other hand, ingress traffic toward the instance is controlled by the neutron-
openvswi-icc7474ee6-0 chain, which appears as the following:

-A neutron-openvswi-icc7474ee6-0 -m state --state INVALID -j DROP

-A neutron-openvswi-icc7474ee6-0 -m state --state
RELATED, ESTABLISHED -j RETURN

-A neutron-openvswi-icc7474ee6-0 -p icmp -j RETURN
-A neutron-openvswi-icc7474ee6-0 -p tcp -m tcp --dport 22 -j RETURN
-A neutron-openvswi-icc7474ee6-0 -p tcp -m tcp --dport 80 -j RETURN

The next transit point of our frame Ethernet is the second interface of the patch cable
connected to the Linux Bridge, gvb6déee47e-04. It next hits the gvbc7474ee6-05
interface attached to the br-int integration bridge, where it performs VLAN
tagging/untagging for traffic in both ways. In the next output, you can clearly see
that the br-int bridge carries VLAN tagged with the 1 ID, whereas its port interface
is the patch-tun patch port, which connects to the tunnel interface:

ovs-vsctl show
Bridge br-int
Port "gvo6d6ee47e-04"
tag: 1
Interface "gvo6d6ee47e-04"
Port patch-tun
Interface patch-tun
type: patch

options: {peer=patch-int}

Before leaving the compute node, the tunnel bridge implies the tagging of the VLAN
traffic and encapsulates it into GRE tunnels. Remember that at the br-tun level,
flow rules are applied. Basically, flow rules translate VLAN IDs to tunnel IDs. Our
second checkpoint will focus on realizing how the flow is applied. The next output
command line shows the default flow rules that exist before any instance creation:

ovs-ofctl dump-flows br-tun

NXST FLOW reply (xid=0x4):

cookie=0x0, duration=665.284s, table=0, n packets=4, n bytes=300,
idle age=865, priority=1 actions=drop

[256]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Similar to firewall rules, the default set rules of the tunnel bridge imply the dropping
of any traffic.

Let's boot an instance and see what is changed:

ovs-ofctl dump-flows br-tun
NXST FLOW reply (xid=0x4):

cookie=0x0, duration=555.543s, table=0, n packets=2, n bytes=134,
idle age=45, priority=3,tun id=0x2,dl dst=01:00:00:00:00:00/01:00:00:00:0
0:00
actions=mod vlan vid:1l,output:1

cookie=0x0, duration=541.443s, table=0, n packets=74, n bytes=8235,
idle age=13, priority=3,tun id=0x2,dl dst=bb:33:e4:ee:bl:12
actions=mod vlan vid:1l, NORMAL

cookie=0x0, duration=533.543s, table=0, n packets=44, n bytes=12455,
idle age=44, priority=4,in port=1,dl vlan=1l
actions=set tunnel:0x2, NORMAL

cookie=0x0, duration=987.123s, table=0, n packets=3, n bytes=156,
idle age=431, priority=1 actions=drop

What is interesting at this point is the first rule: any traffic on tunnel ID 2 tags our
frame Ethernet with VLAN ID 1 and sends out port 1. It is important to know that
the VLAN ID 1 is a local VLAN with tag 1 of the integration bridge br-tun. The
original VLAN ID — for example, the traffic tagged as vLAN 3 —is replaced by local
VLAN 1 when the traffic reaches the integration bridge. The rule eventually maps
the traffic between VLAN ID 1 used by the integration bridge and the tunnel with
ID 2 used by the GRE tunnel. However, how does our Ethernet frame move to the
integration bridge while the rule has sent it out to port 1? This might be confusing.
Do not despair; it should exist in a way that unveils such ambiguity. To do this, we
need to investigate the existence of port 1. Let's see what our ovs command line
shows in detail:

ovs-ofctl show br-tun

OFPT FEATURES REPLY (xid=0x2): dpid:0000068df4e44a49

n_tables:254, n buffers:256

capabilities: FLOW_STATS TABLE STATS PORT_ STATS QUEUE STATS ARP MATCH IP

actions: OUTPUT SET VLAN VID SET VLAN PCP STRIP VLAN SET DL SRC SET DL
DST SET NW SRC SET NW DST SET NW TOS SET TP SRC SET TP DST ENQUEUE

1(patch-int): addr:34:e3:44:32:ee:£f2

config: 0

[257]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack - Advanced Networking Features and Deploying Multi-tier Applications

state: 0
speed: 0 Mbps now, 0 Mbps max
2(gre-2): addr:ee:3e:aa:23:92:10

config: 0

state: 0

speed: 0 Mbps now, 0 Mbps max
LOCAL (br-tun) : addr:07:de:ff:44:ba:33

config: 0

state: 0

speed: 0 Mbps now, 0 Mbps max
OFPT GET CONFIG REPLY (xid=0x4): frags=normal miss send len=0

We can clearly see that the port is designated as a patch interface. Therefore, it will
be the next transit point for the Ethernet frame toward the integration bridge. The
next rule implies any traffic coming on tunnel 2 within the Ethernet destination
34:e3:44:32:ee:f2 and tags our Ethernet frame with VLAN ID 1 before sending it
out to patch-int

The next rule implies traffic coming in on port 1 in_port=1 with VLANID 1 d1_
vlan=1 and sets the tunnel ID to 2 (actions=set_tunnel:0x2) before sending it out
to the GRE tunnel.

Amazing! Then, our frame Ethernet is able to carry on its trip by reaching the
network host via the GRE tunnel bridge interface attached to br-tun. The next
checkpoint will require the implementation of the flow rules at the network node
level, which are similar to the ones of br-tun in the compute node:

ovs-ofctl dump-flows br-tun
NXST FLOW reply (xid=0x4):

cookie=0x0, duration=1239.229s, table=0, n packets=23, n bytes=4246,
idle age=15, priority=3,tun id=0x2,dl dst=01:00:00:00:00:00/01:00:00:00:0
0:00

actions=mod vlan vid:1,output:1

cookie=0x0, duration=524.477s, table=0, n packets=15, n bytes=3498,
idle age=10, priority=3,tun id=0x2,dl dst=fe:13:2e:45:76:dd
actions=mod vlan vid:1,NORMAL

cookie=0x0, duration=1239.157s, table=0, n packets=50, n bytes=4565,

idle age=148, priority=3,tun id=0x2,dl dst=fe:33:fe:ff:ee:3d
actions=mod vlan vid:1,NORMAL

[258]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

cookie=0x0, duration=1239.304s, table=0, n packets=76, n bytes=9419,
idle age=10, priority=4,in port=1,dl vlan=1
actions=set tunnel:0x2, NORMAL

cookie=0x0, duration=1527.016s, table=0, n packets=12, n bytes=880,
idle age=527, priority=1 actions=drop
Let's analyze the checkpoints in a nutshell:

* Maps multicast traffic on tunnel ID 2 to VLAN 1

e Matches traffic on the tunnel destined for the DHCP server at
fe:13:2e:45:76:dd

* Matches traffic on tunnel ID 2 destined for the router at fe:33:fe:ff:ee:3d,
which is an interface in another network namespace

* Maps outbound traffic on VLAN ID 1 to tunnel ID 2

The existence of two extra rules, as shown, is due to the usage of the DHCP server
and the virtual router device in the network node. We can see this in the next output:

ovs-vsctl show
Bridge br-int
Port patch-tun
Interface patch-tun
type: patch
options: {peer=patch-int}
Port "tapf32fc99e-47"
tag: 1
Interface "tapf32£fc99e-47"
Port br-int
Interface br-int
type: internal
Port "tapcd366e30-54"
tag: 1
Interface "tapcd366e30-54"

[259]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack - Advanced Networking Features and Deploying Multi-tier Applications

Does this make it more complicated? Well, it might be better to first rekindle

the flames and review the namespace concept treated in Chapter 5, Implementing
OpenStack Networking and Security, in a nutshell. Remember that a network
namespace is similar to a network container, which groups a certain number of
Linux kernel facilities in order to form a complete network stack including iptables
rules, routing tables, network interfaces, and so on.

A DHCP service is simply an instance of dnsmasq running in a network namespace.
It also includes a router, as cited in the preceding example. Let's check out our
network namespace:

ip netns
gdhcp-94245cc2-ed34-0452-4632-47£ffe23dee3l
grouter-dd32£f23d-ee73-47dd-4582-9923fee20201

Here, gdhcp-***** is the named DHCP server namespace and grouter-*+*** is the
named router namespace.

So, how can we trace our DHCP tap interface in the network node? The best
way to do this is by checking the DHCP server's unique address: MAC address.
The following command could help us by providing the DHCP namespace:

ip netns exec gdhcp-94245cc2-ed34-0452-4632-47ffe23dee3l ip addr

71: ns-£f32fc99e-47: <BROADCAST, MULTICAST,UP, LOWER UP> mtu 1500 gdisc
pfifo fast state UP glen 1000

link/ether ff:46:ee:07:e3:05 brd ff:ff:ff:ff:ff:ff
inet 172.16.0.0/24 brd 172.16.0.255 scope global ns-f32fc99e-47

We can see that ns-£32fc99e-47 matches the tap interface derived from the
ovs-ofctl output received previously, which makes sense. The tap interface
can be seen as follows:

Port "tapf32fc99e-47"
tag: 1
Interface "tapf32£fc99e-47"

The next checkpoint is the router interface; using the router namespace, we will
identify which interface our Ethernet framework will have to transit:

ip netns exec grouter-dd32f23d-ee73-47dd-4582-9923fee20201 ip addr

66: gg-44de398f-aa: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 gdisc
pfifo fast state UP glen 1000

link/ether ff:12:e3:5c:22:ac brd ff:ff:ff:Eff:£f£f:£ff

[260]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

inet 192.168.47.227/28 brd 192.168.47.239 scope global
gg-44de398f-aa

inet 192.168.47.228/32 brd 192.168.47.228 scope global
gg-44de398f-aa

68: gr-cd366e30-54: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 gdisc
pfifo fast state UP glen 1000

link/ether ff:46:ee:07:e3:05 brd ff:ff:ff:ff:£f£f:ff
inet 172.16.0.1/24 brd 172.16.0.255 scope global qr-cd366e30-54

We have two different interfaces:

* gg-44de398f-aa: This connects the router to the external gateway assuming
that 192.168.47.227/28 is an external network

* gr-cd366e30-54: This connects the router to the integration bridge,
which can be confirmed from the ovs-ofctl output shown previously

Our Ethernet framework is almost connecting to the outside, but before that, we have
to tell it which interface it goes from the router. 192.168.47.227/28 is the external
network connected to qg-44de398f-aa where traffic will flow through the physical
bridge br-ex:

Bridge br-ex
Port "tapd44de398f-aa"
Interface "tapd44de398f-aa"
Port br-ex
Interface br-ex

type: internal

Load Balancer as a Service

The LBaaS extension is an additional feature provided by Neutron. It is possible

to add more resiliency to the instances running in the OpenStack environment by
balancing traffic to applications running on them. In previous releases of OpenStack,
LBaaS was a separate project called Atlas, which was a load-balancing solution

for OpenStack out of the box. Starting from the Grizzly release, LBaaS is an official
extension within the network service and provides even more features within the
Havana release. In Chapter 5, Implementing OpenStack Networking and Security, we
covered some of the security functionalities provided by Neutron, including VPN as
a Service and Firewall as a Service; the nirvana of Neutron is not finished yet: we still
have to discover Load Balancer as Service.

[261]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack - Advanced Networking Features and Deploying Multi-tier Applications

Work around LBaaS

LBaaS has been fully integrated within OpenStack, starting from the Grizzly release.
During this time, the networking service that was formally named quantum

has taken a new turn to tackle several networking aspects thanks to networking
virtualization concepts. Eventually, LBaaS uses drivers to talk to the hardware/
software of the load balancer. The first driver uses HAProxy by default. Within

the Havana release, LBaaS is able to support and talk to many other load balancer
vendors. Here's what LBaaS can offer to your private cloud:

* Load balancing traffic between instances

* Health check monitoring based on HTTP and TCP

* Session persistence by forcibly directing client requests to the same node

Session persistence is frequently used in several web applications.
This method forcibly directs client requests to the same node when
’ an application does not share a state between pool members.

* Numerous load balancer algorithms, such as Round Robin, Least connection
and Source IP

Basically, we find four new fundamental concepts with LBaaS:
* Virtual IP or VIP: This is the IP listening for the incoming connection and
used for load balancer failover
* Pool: This refers to a set of servers handling identical content

* Pool member: This presents one unit from the pool by exposing the IP
address of the service and the listening port

* Health Monitoring: This refers to two types of check monitoring that
can be listed:
° Layer 4: This refer to the test connectivity based on TCP

° Layer 7: This refers to the test member pool connectivity based on
HTTP/HTTPS

[262]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Integrate LBaasS in the cloud

As was mentioned previously, HAProxy is used as the default load balancer in the
Havana release. Let's see how to integrate LBaaS in our private cloud by following
the next few instructions,

On the controller node, perform the following steps:

1.

We start by installing haproxy on the cloud controller node using the
following command:

yum install haproxy -y

Check whether the load balancing plugin is listed in the service plugins in
/etc/neutron/neutron.conf. Depending on the plugins enabled in your
neutron.conf file, you should at least see the service plugins directive as
follows:

service plugins=router, lbaas

In order to make HAProxy work properly, the neutron LBaaS agent needs
to talk to a device driver as an interface between the load balancer and the
networking service APIL. You can enable it by editing the following directive:

service provider = LOADBALANCER:Haproxy:neutron.services.
loadbalancer.drivers.haproxy.plugin driver.HaproxyOnHostPluginDriv
er:default

Restart the Neutron server:

service neutron-server restart

On the network node, perform these steps:

1.

Edit the /etc/neutron/neutron.conf file to enable LBaaS in Neutron:

service plugins=router, lbaas

Enable the HAProxy device driver in the service_provider directive:

service provider = LOADBALANCER:Haproxy:neutron.services.
loadbalancer.drivers.haproxy.plugin driver.HaproxyOnHostPluginDriv
er:default

[263]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack - Advanced Networking Features and Deploying Multi-tier Applications

3. The LBaaS agent in Neutron needs to be configured to use an interface
driver corresponding to a specific networking plugin: either Linux Bridge or
Open vSwitch can be chosen. We will go for the Open vSwitch plugin and
configure the Neutron LBaaS to use it as follows:

vi /etc/neutron/lbaas agent.ini

4. Enable the Open vSwitch driver by commenting out the following line:

interface driver = neutron.agent.linux.interface.
OvSInterfaceDriver

[haproxy]
user_group = haproxy

5. Issue the following commands to start the neutron LBaaS agent and start the
Neutron Open vSwitch agent plugin as follows:

service neutron-plugin-openvswitch-agent restart

service neutron-lbaas-agent start

6. Let's visualize our load balancer management tab in the dashboard by
changing the following settings in the /etc/openstack-dashboard/local_
settings file:

OPENSTACK NEUTRON NETWORK = {'enable_ 1b': True,

7. Restart the web server daemon in the cloud controller node:

service httpd restart

Here we go; our load balancer service is ready to be used from horizon:

Project |_I:JE|d BE‘:EaI-IEET
Compute

Hetwaork

Pools

Rame Descriplian Provider

Displrying 0 ilems

[264]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Moreover, Neutron offers a set of commands to fully manage pools, members,
virtual IPs, and health monitors. The creation of a load balancer and making it
functional is straightforward:

1. Create a pool.
Create pool members.
Associate the pool members.
Create a virtual IP for the pool.

Create a health monitor.

AN N

Associate the health monitor with the pool.

Before bringing a load balancing sample setup into action, we will cover an
additional terminology in OpenStack, which can work in tandem with LBaaS.

Stack in OpenStack

As the title promises: here's building stacks in OpenStack! As you may have guessed
from the stack terminology, this includes any group of connected OpenStack
resources, including instances, volumes, virtual routers, firewalls, load balancers and
so on, that form a stack. However, how can stacks be created and managed? Starting
from the Grizzly release, a new orchestration service named heat has been added.
Using YAML-based template languages called Heat Orchestration Template (HOT),
you will be able to spin up multiple instances, logical networks, and many other
cloud services in an automated fashion.

Now you can guess the rest: create stacks from templates.

If you are familiar with the AWS cloud formation service, heat is fully
compatible with AWS templates and provides an API to align the AWS
T specification using CFN-formatted templates expressed in JSON.

Although the topic of heat might take up a whole chapter, we will rather go for

a simple example and build a stack running a load balancer server using the
orchestration method. Furthermore, heat will be explained in more detail in the next
chapter by joining more servers into the stack and realizing the flexibility of such an
orchestration method.

[265]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending OpenStack - Advanced Networking Features and Deploying Multi-tier Applications

HOT explained

Let's reformulate HOT in a simpler way: define a proper template, and you

get a running stack. If you want to have a stack launch three insta