Mastering Chef

Build, deploy, and manage your IT infrastructure to deliver a
successful automated system with Chef in any environment

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering Chef

Build, deploy, and manage your IT infrastructure to
deliver a successful automated system with Chef in

any environment

Mayank Joshi

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering Chef

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015
Production reference: 1240615

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-156-4

www . packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Mayank Joshi

Reviewers
Omri Bahumi

Evgeny Goldin

Panagiotis Papadomitsos

Commissioning Editor
Edward Gordon

Acquisition Editor
Meeta Rajani

Content Development Editor
Parita Khedekar

Technical Editors
Manali Gonsalves

Taabish Khan

Copy Editors
Trishya Hajare

Aditya Nair

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Sheetal Aute

Disha Haria

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Mayank Joshi works for Indix as a DevOps engineer. He has worn many hats
during his 10-year long career. He has been a developer, a systems analyst, a systems
administrator, a software consultant, and for the past 6 years, he has been fascinated
with the phenomenal growth witnessed in cloud environments and the challenges of
automation associated with the hosting of the infrastructure in such environments.
Prior to Indix, he worked for start-ups such as SlideShare, R&D organizations such
as CDAC, and even had a stint at a highly automated chemical plant of IFFCO.

I would like to thank all my fellow colleagues at Indix for their
wonderful support and allowing me to get some spare time amid
some very tight work schedules.

I wouldn't have been able to work on cloud platforms and
configuration management systems had I not associated with
SlideShare. Thanks much, guys!

I would also like to thank my family for bearing with me while I was
spending most of the time either working or writing the book.

Last but not least, special thanks to the wonderful team at Packt,
especially Parita and Meeta, who really pushed me whenever I was
losing focus.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Omri Bahumi started his relationship with Linux in 1999 at the age of 12. Since then,
he has managed to engage with various areas of Linux-based production systems —
from high performance network servers to low-level debugging and advanced
networking trickery. He serves in EverythingMe's operations team, where he's in
charge of designing, building, and deploying multi-data center cloud infrastructures
for developers and users alike. A typical day in his life includes a mixture of having
coffee, coding in various languages, managing AWS stacks, taming Docker and Chef,
and working with engineers on upcoming features (not necessarily in this order). In
his spare time, he likes to hack on Arduino, Raspberry Pi, ESP8266, and all sorts of
programmable hardware, making cool electronic projects.

Evgeny Goldin is a Ruby, Groovy, and Scala software developer who turned into an
automation and release engineer to introduce order where chaos usually reigns. On an
average day, all things related to cloud, automation, and continuous delivery get his
immediate attention. Back at home, he's a proud father of a 1-year-old son, dreaming of
a day when a proper tech talk would happen between the two! When he has any spare
time left, he explores the subjects of aviation safety, functional programming, and web
security. He's an open source developer, speaker, and passionate advocate when it
comes to tools and techniques that lead to smooth and painless release processes.

www.it-ebooks.info

http://www.it-ebooks.info/

Panagiotis Papadomitsos is a distributed systems architect in the mobile
intelligence division of Splunk, where he is responsible for the design, implementation,
and maintenance of a self-healing, always-on highly distributed application mesh that
spans three clouds and receives more than 450 billion events per hour from devices
spread across the globe. He's been working with distributed systems for the past

10 years in various companies and positions, with responsibilities ranging from
designing and implementing complex heterogeneous infrastructures using Chef

and the Chef ecosystem to architecting and coding low-latency distributed applications
in Erlang and Nginx/Lua, contributing code back to the community whenever
possible. He is a performance-tuning enthusiast; you'll often find him measuring and
optimizing critical code execution paths from the application level down to the OS
kernel level. When away from the computer screen, he enjoys surfing, snowboarding,
and playing the guitar.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

a PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content
* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface iX
Chapter 1: Introduction to the Chef Ecosystem 1
Different modes of running Chef 3
Terminology used in the world of Chef 4
The anatomy of a Chef run 5
A Chef run using chef-client 5
Step 1 — Building a node object 9
Step 2 — Authenticate 12
Step 3 — Synchronization of cookbooks 12
Step 4 — Loading of cookbooks and convergence 14
Step 5 — Reporting and exception handling 15
Using chef-solo 15
Setting up a work environment 17
Summary 29
Chapter 2: Knife and Its Associated Plugins 31
Introducing Knife 31
Managing cookbooks 34
Creating a new cookbook 35
Uploading a cookbook to chef-server 36
Getting the list of all the cookbooks on chef-server 36
Deleting cookbooks 37
Downloading a cookbook 38
Deleting multiple cookbooks 39
Managing environments 39
Creating an environment 40
Deleting an environment 41
Editing an environment 41
Listing all environments 41
Displaying information about an environment 42
Managing roles 42
Creating a new role 42

[il

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Deleting a role 43
Editing a role 43
Listing all available roles 44
Displaying information about a role 44
Managing nodes 44
Creating a node 44
Listing all available nodes 46
Displaying information about a node 46
Editing a node 47
Adding stuff to the run_list associated with a node 47
Deleting stuff from the run_list associated with a node 47
Deleting a node object 48
Managing an API client 49
Creating a new client 49
Listing all available API clients 50
Displaying information about a client 50
Deleting an existing client 50
Reregistering a client 51
The search command 51
Bootstrapping a node 52
Some useful Knife plugins 53
The knife-ssh plugin 53
The knife-ec2 plugin 53
The knife-azure plugin 54
The knife-google plugin 54
The knife-push plugin 54
Summary 55
Chapter 3: Chef and Ruby 57
Ruby 58
IRB 58
Variables and types 59
Symbols 61
Basic operations 63
Arithmetic operators 63
Comparison operators 64
Assignment operators 65
Bitwise operators 65
Logical operators 66
The Ruby ternary operator 66
Ruby range operators 66
The Ruby defined? operator 66
Conditional statements and loops 67
The if statement 67
The unless statement 68

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

The case/when statement 68
The while loop 69
The until loop 69
The for loop 70
Methods 70
Blocks 72
Arrays 76
Creating an array 76
Accessing elements of an array 77
Adding elements to an array 79
Removing elements from an array 79
Iterating over an array 80
Selecting elements of an array 81
The nondestructive way 81

The destructive way 81
Bang methods 82
Hashes 82
Creating hashes 83
Iterating over a hash 85
Classes and objects 85
What's an object and a class? 87
Modules 88
Summary 89
Chapter 4: Controlling Access to Resources 91
The bootstrap process 92
Authentication 93
chef-client 93
Knife 93
Custom API calls 94
Authorization 99
The Open Source Chef server 100
Enterprise Chef 102
Object permissions 102
Groups 103
Summary 104
Chapter 5: Starting the Journey to the World of Recipes 105
Resources 106
Guard attributes 109
Lazy evaluation of attributes 113

The package resource
The cookbook _file resource

114
117

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

The directory resource 120
The file resource 122
The execute resource 124
The cron resource 126
The service resource 128
The bash resource 130
The template resource 133
Recipes 139
Attributes 139
Types of attributes 140
Including recipes 140
The run_list 141
Recipe DSL methods 141
Best practices when writing recipes 143
Summary 144
Chapter 6: Cookbooks and LWRPs 145
Cookbooks 146
Authoring a cookbook 146
Uploading a cookbook to the Chef server 148
Deleting a cookbook 149
Testing a cookbook 149
Cookbook versioning 150
Operators available for use with versioning 150
Freezing versions 151
Maintaining multiple versions of cookbooks 151
Custom resources 152
Setup 153
Resource 154
Provider 154
Provider DSL 157
Logging 158
Summary 159
Chapter 7: Roles and Environments 161
Managing roles 163
Using Knife 163
Creating a new role 163
Editing an existing role 165
Deleting an existing role 165
Showing details about an existing role 166
Listing all roles on the Chef server 166
Using Ruby DSL 166
Using a JSON file 168
Using the Chef API 169
Using the Chef server WebUI 170

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Managing environments 170
Using Knife 171
Creating a new environment 171
Editing an environment configuration 172
Deleting an environment 173
Displaying all the environments configured on the Chef server 173
Showing details associated with an environment 174
Comparing cookbook versions across environments 175
Creating or editing an environment using the configuration specified in a file 176
Using Ruby DSL 176
Setting up an environment on a node 178
Using Knife 179
Editing the client.rb file on the node 180
Role and environment attributes 181
Attribute precedence 181
Environment run lists 183
Summary 184
Chapter 8: Attributes and Their Uses 185
Attribute naming 186
Different types of attributes 187
Different sources of attributes 189
The attribute file 189
Recipes 190
Roles and environments 190
Ohai 191
Attribute precedence 193
Attribute whitelisting 194
Summary 197
Chapter 9: Ohai and Its Plugin Ecosystem 199
Running the Ohai binary 201
Ohai plugins 203
Custom plugins 205
Logging in Ohai plugins 208
Summary 209
Chapter 10: Data Bags and Templates 211
Data bags 212
Management of a data bag 213
Creating a data bag 213
Editing a data bag item 215
Deleting a data bag item or a data bag 215
Getting a list of all the data bags set up on the Chef server 216
Getting a list of items and their properties 216

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Using the data bags in recipes 217
Encrypted data bags 223
Templates 225
Template resources and a template in action 226
Partial templates 229
Summary 231
Chapter 11: Chef APl and Search 233
Prerequisites for using Chef API 234
Authentication of requests 234
Endpoints 238
/users 238
GET 238
POST 238
/users/NAME 239
DELETE 239
GET 239
POST 239
PUT 240
[clients 241
GET 241
POST 241
[/clients/NAME 242
DELETE 242
GET 242
PUT 243
/roles 244
GET 244
POST 244
/roles/INAME 245
DELETE 245
GET 246
PUT 246
/roles/INAME/environments 247
GET 248
/roles/INAME/environments/NAME 248
GET 248
/cookbooks 249
GET 249
/cookbooks/NAME 250
GET 250
/cookbooks/NAME/VERSION 251
DELETE 251
GET 251
PUT 252

[vil

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

/data
GET
POST

/data/NAME
DELETE
GET
POST

/data/NAME/ITEM
DELETE
GET
PUT

/environments
GET
POST

/environments/NAME
DELETE
GET
PUT

/environments/NAME/cookbooks

GET

/environments/NAME/nodes

GET

/environments/NAME/recipes

GET

/environments/NAME/roles/NAME

Search
/search
GET
/search/INDEX
GET
POST
Patterns
Syntax
Exact matching
Wildcard matching
Range matching
Fuzzy matching
Operators
Using search in recipes
Ridley
Summary

253
254
254

255
255
255
256

256
257
257
258

259
259
259

260
260
261
261

262
262

263
263

264
264

264

265

265
265

266
266
267

270
270
270
271
272
272

272

273

274

276

[vii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 12: Extending Chef 277
Custom Knife plugins 277
The skeleton of a Knife plugin 278
Namespace 281
Class name 281
Banner 282
Dependencies 283
Requirements 283
Options 284
Arguments 286
The run method 287
Search inside a custom Knife plugin 287
knife.rb settings 288
User interactions 290
Exception handling 291
A simple Knife plugin 292
Distributing plugins using gems 296
Custom Chef handlers 299
Summary 301
Chapter 13: (Ab)Using Chef 303
The dynamic server list in Capistrano using Chef 303
Installing Capistrano 305
Capistrano style deployments using Chef's "deploy" resource 308
Phases of deployment 309
Callbacks 310
Actions 311
Attributes 311
Extending Chef to bootstrap distributed systems 313
Running jobs from your workstation 315
Running jobs from within recipes 315
Test-driven development with Chef 322
Development without TDD 322
Development with TDD 323
Types of tests 323
What to use where 324
How do we simulate a real-world scenario? 324
Tools 325
Using Chef in a dynamic environment such as the cloud 332
Summary 334
Index 335

[viii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

The core philosophy behind configuration management systems has its roots in
the US Department of Defense, where it was adopted as a technical management
discipline. Today, the philosophy has been adopted by many other disciplines,
including systems and software engineering. The basic idea behind a configuration
management system is to establish and maintain the consistency of a system or
product throughout its lifetime. The following are the fundamental activities
associated with any configuration management system:

Revision Control ConflgL_Jrat_lon
Identification
(Change]
Management Product Release

The purpose of configuration management systems is to ensure that the state of the
system isn't residing in the minds of people, but inside a revision control system, from
which it's easy to figure out the current state of the system along with the changes that
have been made to the underlying system over the course of time. It not only allows to
record "what" changes were made, but also "why" the changes were made.

il

With a phenomenal increase in the usage of cloud platforms, new challenges have
emerged for system architects, as they now need to design systems that are able
to scale up the size of the infrastructure upon the demands laid down by the
application's needs, and the manual configuration of systems in such a dynamic
environment is just not possible.

[ix]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chef is a configuration management system developed by Opscode and is one of the
most widely used systems in its category. It allows you to define the infrastructure
as a code, and it can be used to build, deploy, and automate your infrastructure.
With Chef, the infrastructure becomes as versionable, testable, and repeatable as

an application code.

Mastering Chef is an attempt to provide in-depth knowledge of the underlying
system. It provides users with insights into different components of the underlying
system and also provides users with insight into the APIs that can be used to either
extend Chef, or build toolsets around the ecosystem.

What this book covers

Chapter 1, Introduction to the Chef Ecosystem, serves as a reference to new users

of Chef. After a brief introduction, we jump into the anatomy of a chef-client run
and at the end, we'll see how to go about setting up our workstation for the
development of a Chef code that is thoroughly tested before being pushed to

the production environment.

Chapter 2, Knife and Its Associated Plugins, introduces the reader to one of the most
widely used tools in the Chef ecosystem, called Knife. We will learn to use Knife
to bootstrap instances and also learn about different plugins that can be used to
accomplish daily routine tasks in a more efficient way.

Chapter 3, Chef and Ruby, brings a user up to speed with the required Ruby
knowledge, thereby allowing them to write a more efficient infrastructure code.
By the end of this chapter, the user will be equipped with enough knowledge
of Ruby to extend the code for infrastructure provisioning, beyond what can be
accomplished by merely using the DSL provided by Chef.

Chapter 4, Controlling Access to Resources, introduces the concept of organization,
groups, and users, and explains how you can allow fine-grained access to different
types of objects residing on the Chef server.

Chapter 5, Starting the Journey to the World of Recipes, introduces the reader to the
most fundamental unit of code written by Chef developers —"recipes". We'll learn
about the different components of a recipe and get an understanding of the different
resources that can be used to manage our infrastructure.

Chapter 6, Cookbooks and LWRPs, introduces users to cookbooks and how you can
extend chef-client through the use of lightweight resource/provider. Readers will
also learn how to create their own custom LWRPs by the end of this chapter.

[x]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 7, Roles and Environments, explains that, most of the time, a server is not just
associated with one particular task and can perform many different operations.
For example, you might have a web server that is also performing the role of an
application server and a proxy. Roles allow users to attach multiple recipes to

a server. Also, in most organizations, infrastructure is classified into different
environments depending upon the use. For example, an organization might have a
dev, QA, staging, and production environment. The configuration of applications
running across these environments will be different to some extent. This chapter
will explain what a role is, how we can group multiple recipes in a role, and how
to use roles inside a recipe to do things conditionally. We'll also learn how you

can manage different environments in your infrastructure using Chef.

Chapter 8, Attributes and Their Uses, explains that every service and a server can be
identified with a role and set of properties associated with it. Some properties are
system specific, such as the IP address, kernel, hostname, and so on. While they are
necessary, an effective infrastructure code always needs more properties that can
define the services and the server itself in a more precise manner. In this chapter,
we'll see what the different types of attributes are and how to override values of
the attributes.

Chapter 9, Ohai and Its Plugin Ecosystem, explains that as part of a chef-client run,
many details related to the underlying system, such as architecture, operating system,
network details, filesystem, and so on, are required to be collected by Chef. Ohai is a
tool that allows for this. In this chapter, we'll learn about Ohai and its plugin-based
architecture and associated plugins. We'll also learn how to write our own custom
Ohai plugins.

Chapter 10, Data Bags and Templates, explains that in highly dynamic environments
such as cloud, a configuration management system is only as good as its support for
allowing the specification of the configuration in a form that is dynamic. Templates
are just what the doctor ordered for this use case. Data bags, on the other hand, are
data stores containing the data stored in a JSON format. In this chapter, we'll learn
how to make effective use of databags and templates to define our infrastructure.

Chapter 11, Chef API and Search, explains that the Chef API is perhaps one of the most
powerful features of Chef. Chef has a really wonderful API and its search facility is
what makes it really fun to use. There are lots of cases where you can make use of
Chef's API to build tools that can help in the efficient automation of the tasks. In this
chapter, we'll look at Chef's API, using search in a recipe using Chef API, and also
using a search through Knife.

Chapter 12, Extending Chef, covers the writing of a custom code suited for our
requirements that will help us to extend the functionality of Chef. We'll learn
how to write custom Knife plugins and custom Chef handlers.

[xi]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 13, (Ab)Using Chef, explores some fun uses of Chef, which will allow an
increase in productivity, while managing a large scale infrastructure. We'll see how we
can extend tools such as Capistrano by using Chef API. We'll also learn how to manage
large distributed clusters using an extension of Chef called Ironfan. We will also look at
tools such as the Push Job server, which can be used for the orchestration of chef-client
runs across a set of instances.

What you need for this book

All the code in this book is written/tested against Chef 12.x. A basic list of software
required to run the code in this book is as follows:

* Operating system: Mac OS X/Linux/Windows

* Ruby:1.9.3+
e Chef: 12.x
e Git

* Editor: Atom/Sublime/Vi/Emacs/TextMate

Who this book is for

This is a book for anyone who is interested in learning about Chef. You are not
required to have any prior experience with the use of Chef or any configuration
management system. You aren't expected to have experience with programming
in Ruby; however, some experience with the fundamentals of programming will
definitely be helpful.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Let's see what the knife command has to offer to us."

A block of code is set as follows:

knife[:aws_access_key id] = "AWS ACCESS KEY"
knife[:aws_secret access key] = "AWS SECRET KEY"

[xii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

node_name 'mayank’
client key '~/keys/chef/mayank.pem’
validation_client_name 'chef-validator'

Any command-line input or output is written as follows:

$ knife search '*:*!

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once
you are done with it, click on the Create Role button."

& Warnings or important notes appear in a box like this.
i

a1

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[xiii]

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit -errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[xiv]

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.it-ebooks.info/

Introduction to the Chef
Ecosystem

Chef is a configuration management system written partly in Ruby and Erlang.

Before we begin our exciting journey towards becoming Chef masters, I think it
would be prudent on our part to understand the underlying ecosystem.

The Chef ecosystem is primarily comprised of the following components:

WebUI: This is a Rails application that is used to view information about
the Chef server over the Web.

ErChef: Prior to version 11.x, the Chef server API core (the code responsible
for catering to requests by Knife or chef-client) was written in Ruby.
However, since 11.x, this code has been rewritten in Erlang.

Bookshelf: This is used to store cookbooks content such as files, templates,
and so on, that have been uploaded to chef-server as part of a cookbook
version.

chef-solr: This is a wrapper around Apache Solr and is used to handle the
REST API for indexing and search.

Rabbit MQ: This is used as a message queue for the Chef server. All items
that are to be added to a search index repository are first added to a queue.

chef-expander: This is a piece of code that pulls messages from the
RabbitMQ queue, processes them into a desired format, and finally
posts them to Solr for indexing.

PostgreSQL: This is another major change since version 11.x. Earlier,
CouchDB used to be the data storage; however, since version 11.x,
PostgreSQL has become the data storage solution used by Chef.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Chef Ecosystem

* chef-client: This is a Ruby application that runs on every machine that needs
to be provisioned. It handles the task of authenticating with chef-server,
registering nodes, synchronizing cookbooks, compiling resource collections,
handling exceptions and notifications, and so on.

* Knife: This is a Ruby application that provides an interface between a local
chef repository and the Chef server.

The typical architecture of the Chef ecosystem can be understood by looking at the
following figure:

Chef Ecosystem

Chef Workstation with git and
knife configured along with
maybe test-kitchen

Commit Code

A 4

Git Repository

Push Code

A4

’Chef Server API‘ ’Web ul ‘
4—{ Machine running chef-client

’Bookshelf ‘ ’PostGres/CouchDB‘

RabbitMQ
’ Chef Solr ‘ Shef/chef-shell

Machine running chef-solo

Other than these components, we've chef-shell (shef), Ohai, and chef-solo that
form an integral part of the chef ecosystem. We also have chef-zero, which is being
adopted by people to quickly test their code or deploy chef code locally. It's a small,
fast, and in-memory implementation of the Chef server and it helps developers to
write a clean code without all the hooks that were earlier placed into the code to
ensure that chef-solo can execute the code.

With the understanding of the Chef ecosystem, we will be covering the following
topics in this chapter:

* Different modes of running Chef

* Terminology used in the world of Chef

* The anatomy of a Chef run

* Using the Chef Solo provisioner

* Setting up a work environment

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Different modes of running Chef

Chef can be executed under different modes. It's generally set up in a client-server
fashion. However, if you were to just bootstrap your machine using Chef code, you
don't need to worry about setting up a Chef server. Chef also provides a way of
running as a standalone executable. If you are a developer writing a new piece of
infrastructure code and want to test it, you can even run it in an IRB-like shell.

The most used mode of running Chef is the client-server model. In this model, we've
a Chef server and an agent called chef-client that runs on machine(s) that need to be

set up. The Chef client communicates with a chef-server and bootstraps the machine
appropriately depending upon certain parameters, which we'll learn about shortly.

In a client-server architecture, the Chef ecosystem is comprised of a chef-server,
which in turn is a name given to a set of services running on an instance
(chef-server-web-ui, chef-solr, chef-expander, chef-core-api, and so on) and
chef-client, which is an agent running on machines.

The chef-solo is the tool to be used if you just want to provision an instance using
Chef. With chef-solo, we can do everything except for using the search functionality
or accessing remote data bags that the chef-server provides. The chef-solo tool is
expected to be deprecated in the near future and chef-zero is the expected way to
run the code locally.

Shef is more like a debugging tool that allows you to set breakpoints within a recipe.
It runs as an IRB session. It provides support for interactive debugging too.

By default, chef-shell loads in a standalone mode. However, it can also run as a
chef-client and be used to verify the functionality of a Chef run. Set up chef-shell.
rb with the same settings as those in knife.rb and run with the -z option:

$ chef-shell -z
We'll cover more about using Shef for debugging purposes later in this book.

The Chef server can either be set up privately, or you can choose a managed hosting
service provided by Opscode. Here again, you've a choice of using an open source
Chef or Enterprise Chef.

Enterprise Chef adds the following additional features on top of an open
source Chef:

* Enhanced management console

* Centralized monitoring and reporting
* Role-based access control

* Push client runs

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Chef Ecosystem

Terminology used in the world of Chef

Before jumping into a new territory, it's always wise to learn about the terminology
used by the people already living in the environment. In this section, we'll try to
make sense of what all those terms mean. After you are familiar with the terms,
everything will start making more sense:

Node: Any machine or cloud instance that you are configuring using Chef is
known as a node. On a Chef server it's an object comprising of attributes and
a run list specific to the instance.

Chef server: A Chef server is a machine running chef-core-api, chef-solr,
chef-web-ui, chef-expander, and chef-validator along with a backend data
store such as PostGre/CouchDB and a messaging system such as RabbitMQ.

Workstation: This is the machine where we'll be writing our Chef code.

Repository: This could be a svn/Git repository where we'll be committing
our code. This is useful to maintain revisions of code.

Knife: This is a tool that you can use to manage different aspects of Chef.

Cookbook: This is where you define anything and everything related to
your infrastructure code. Cookbooks contain recipes, attributes, files/
directories to be set up, templates, and so on.

Recipes: Theses are part of a cookbook and most of the code meat goes
into recipes.

Attributes: Every code requires variables, and attributes are like variables
holding values, which can be overridden.

Roles: These are a way of arranging cookbooks together. For example,
a web server is a role and it can comprise of cookbooks to set up the
Nginx web server along with OpenSSL and a few other things.

Run-list: This is an ordered list comprising of roles and/ or recipes.
The chef-client looks at items in run_1ist and executes them in an
order specified in run_list.

Resources: The chef-client does multiple tasks such as setting up packages,
creating users, setting up cron jobs, executing scripts, and so on. Since Chef
is meant to be platform-agnostic, we don't use service providers explicit

to the system to do these jobs. For example, we don't say yum installs this
package, instead we use a resource provider called package, which internally
decides which underlying system to choose for the job eventually. This is
pretty useful as it helps keep Chef code agnostic to platform changes.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

LWRP: Lightweight resources and providers (LWRP) are custom resources
and providers that provide a way to perform a certain action. For example,
you may write your own LWRP to manage Git repositories or install
packages using Makefiles and so on.

Metadata: A metadata file describes properties of a cookbook such as
version, dependencies, and so on, and it's used to verify that a cookbook is
deployed correctly on a node.

Templates: Often, all we want to do is to specify a configuration that changes
due to certain parameters, such as environment and so on. Templates allow
for the creation of such configurations.

chef-client: This is an agent that will run on instances that we want to
bootstrap using Chef.

Ohai: This is a piece of code that allows us to fetch useful information about
a system along with other desired information. Ohai is used extensively to
generate attributes that help in defining a node during a chef-client run.

DSL: Chef cookbooks are primarily written in Ruby. Chef provides a
Domain Specific Language (DSL) that helps to write a code easily and
quickly.

chef-solo: It's a tool similar to chef-client that will help us to execute a
chef code.

chef-zero: It's a lightweight, in-memory implementation of the Chef server,
which can be invoked on a node using chef-client -z. This is going to be a
standard going forward and will be replacing chef-solo in the future.

Now that we know the language, let's jump into the world of Chef and see what
happens when a chef-client run happens.

The anatomy of a Chef run

A Chef run here implies either the execution of chef-client or chef-solo, and we'll look
at each of them separately.

A Chef run using chef-client

As we learned earlier while understanding terminology, a chef-client is an agent
that runs on machines that are meant to be configured using Chef. The chef-client
agent is meant to be executed in an environment where we are using Chef in a
client-server architecture.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Chef Ecosystem

Upon the invocation of a chef-client, the following things happen:

e Ohai is executed and automatic attributes are collected, which are
eventually used to build a node object

* Authentication with a chef-server
* Synchronization of cookbooks
* Loading of cookbooks and convergence

* Checking for the status of chef-client run, reporting, and exception handling.

The chef-client, by default, looks for a configuration file named client.rb. On
Linux/ Unix-based machines this file is located at /etc/chef/client.rb. On
Windows, this file is located at ¢:\chef\client.rb.

The chef-client command supports many options. The following option indicates
which configuration file to use. By default, /etc/chef/client.rb is used for the
purpose of a Chef run:

-c CONFIG, --config CONFIG

Downloading the example code

. You can download the example code files for all Packt books
% you have purchased from your account at http: //www.
I~ packtpub. com. If you purchased this book elsewhere,
you can visit http: //www.packtpub. com/support and
register to have the files e-mailed directly to you.

The following option indicates that chef-client will be executed as a daemon and
not as a foreground process. This option is only available on Linux/Unix. To run
chef-client as a service in a Windows environment, use the chef-client: :service
recipe in the chef-client cookbook:

-d, --daemonize
The following option specifies the name of the environment:

-E ENVIRONMENT, --environment ENVIRONMENT

By default, a chef-client run forks a process where the cookbooks are executed. This
helps prevent issues such as memory leaks and also helps to run a chef code with a
steady amount of memory:

-f, --fork

[6]

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Chapter 1

The following option specifies the output format: summary (default), . json, .yaml,
.txt, and .pp:

-F FORMAT, --format FORMAT

The following option indicates that the formatter output will be used instead of the
logger output:

--force-formatter

The following option indicates that the 1ogger output will be used instead of the
formatter output:

--force-logger

The following option specifies a path to a JSON file, which will be used to override
attributes and maybe specify run_1list as well:

-j PATH, --json-attribute PATH

The following option specifies the location of a file containing a client key. The
default location is /etc/chef/client .pem:

-k KEYFILE, --client KEYFILE

When a chef-client first registers a new machine with a chef-server, it doesn't have /
etc/chef/client.pem. It contacts the chef-server with a key called validation_key
(default location: /etc/chef/validation.pem). Upon contacting the chef-server, the
chef-server responds with a new client key, which is stored in /etc/chef/client.
pem. Going forward, every communication with a chef-server is authenticated with /
etc/chef/client.pem:

-K KEYFILE, --validation key KEYFILE

The following option is the name with which a machine is registered with a chef-
server. The default name of the node is FQDN:

-N NODENAME, --node-name NODENAME
The following command replaces the current run list with specified items:

-o RUN LIST ITEM, --override-runlist RUN LIST ITEM

The following option provides a number in seconds to add an interval that
determines how frequently a chef-client is executed. This option is useful when a
chef-client is executed in daemon mode:

-s SECONDS, -splay SECONDS

[71

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Chef Ecosystem

The following command indicates that the chef-client executable will be run in the
why-run mode. It's a dry-run mode where a chef-client run does everything, but it
doesn't modify the system:

-W, --why-run

The following command specifies the location in which process identification
number (PID) is saved. This is useful to manage a chef daemon via a process
management system such as Monit:

-P PID FILE, --pid PID FILE

Let's presume we've already written a cookbook to install and configure a popular
web server called Nginx.

We will create two files on our target machine:

* client.rb: For our setup, the location will be /etc/chef/client.rb.Itisa
default configuration that will be used by a chef-client executable:

log level :info

log_location "/var/log/chef.log"

chef server url “"http://chef-server:4000"
environment "production"

As you can see, we've mentioned in our configuration that 1og_levelis
INFO, the log file is stored at /var/log/chef . log, chef-client will connect to
a Chef server hosted at a machine accessible by the name chef-server, and
finally we have our setup distributed across different environments and this
machine is in the production environment.

* roles.json: For our setup, the location will be /etc/chef/roles.json.
This is a . json file that defines attributes, and a run_1ist which will be
used to fetch the concerned cookbooks from a chef-server and the bootstrap

machine;
"run list":["role[webserver]"],
"app_user": "www-data",

"log dir": "/var/log",

}

As you can see, we've defined a run_1list that comprises of a role called
webserver. Along with this, we've specified two attributes: app_user and
log dir.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

With client.rb and roles.json in place, now you can run chef-client as follows:

#chef-client -j /etc/chef/roles.json

The following image describes the steps as they happen during the chef-client run:

Anatomy of Chef Client run

Build Node object P Authenticate/Authorize

A4

Synchronize cookbooks

v

Converge (Execute) < Converge (Compile) <

Load cookbooks

l

Report Handler

No

Exception Handler

Let's look at each step closely.

Step 1 — Building a node object

As a first step, a chef-client will build the node object. To do this, the system is
profiled first by Ohai.

Ohai returns a bunch of information about the system in a . j son format. The

following is an output from the Ohai run on our chef-eg01 instance:

ohai

{

"languages": {

"ruby": {
"platform": "x86_64-linux",
"version": "2.1.0",
"release_date": "2013-12-25",

¥
"python": {
"version": "2.6.6",

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Chef Ecosystem

"builddate": "Jun 18 2012, 14:18:47"
"perl": {
"version": "5.10.1",
"archname": "x86 64-linux-thread-multi"
"lua": |
"version": "5.1.4"
"java": |
"version": "1.7.0_09",
"runtime": {
"name": "Java (TM) SE Runtime Environment",
"build": "1.7.0_09-bos"

b

"hotspot": {

"name": "Java HotSpot (TM) 64-Bit Server VM",
"build": "23.5-b02, mixed mode"
"kernel": {
"name": "Linux",
"release": "2.6.32-220.23.1.el6.x86 64",
"version": "#1 SMP Mon Jun 18 18:58:52 BST 2012",
"machine": "x86 64",
"os": "GNU/Linux"
"og": lllinuxll ,
"os version": "2.6.32-220.23.1.el6.x86 64",
n"l1sb": {
"id": "CentOS",
"description": "CentOS release 6.2 (Final)",
"release": "6.2",
"codename": "Final"

b

"chef packages": ({
"ohai": {

"version": "6.14.0",

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

"ohai root": "/usr/local/rvm/gems/ruby-2.1.0/gems/ohai-6.14.0/
lib/ochai™

I
"chef": {
"version": "11.10.4",
"chef root": "/usr/local/rvm/gems/ruby-2.1.0/gems/chef-11.10.4/
lib"
}
I
"hostname": "chef-eg0Ol",
"fgdn": "chef-eg0l.sychonet.com",
"domain": "sychonet.com",
"network": {
"interfaces": {
nlon: |
I

"etho":

¥
"ipaddress": "10.0.0.42",
"macaddress": "OA:F8:4C:7A:C3:B2",
"Ohai_time": 1397945435.3669002,
ndmin" . {
"dmidecode version": "2.11"
¥
"keys": |
"ssh": {
"host dsa public":"XXXXXXX",
"host rsa public":"XXXXXXX

}

As we can see, Ohai gave us plenty of useful information about our machine,

such as the different language interpreters installed on the system, kernel version,
OS platform and release, network, SSH keys, disks, RAM, and so on. All this
information, that is automatic attributes, along with the node name, is used to build
and register a node object with a chef-server. The default name of the node object is
FQDN, as returned by Ohai. However, we can always override the node name in the
client.rb configuration file.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Chef Ecosystem

Step 2 — Authenticate

We won't want our private chef-server to be responding to requests made by anyone.
To accomplish this, each request to the Chef server is accompanied with some
headers encrypted using the private key (client.pem).

As part of this step, a chef-client checks the presence of the /etc/chef/client.pem
file, which is used for the purpose of authentication.

If no client.pemis present, a chef-client looks for a /etc/chef/validation.pem
file, which is a private key assigned to the chef-validator. Once the chef-validator has
authenticated itself to a chef-server, a chef-server creates a public/private key pair.
The chef-server keeps a public key with itself, while a private key is sent back to a
chef-client. After this step, our node object built in step 1 is registered with the
chef-server.

After the initial chef-client run is over, the chef-validator key is no
=" longer required and can (ideally should) be deleted from the machine.

Step 3 — Synchronization of cookbooks

Now, since we are authenticated, we can go about fetching cookbooks from a chef-
server. However, to send cookbooks to the relevant instance, a chef-server has to
know which cookbooks to send across.

In this step, a chef-client fetches a node object from the chef-server. A node object
defines what is in run_1ist and what attributes are associated with the node. A
run_ list list defines what cookbooks will be downloaded from a chef-server.

The following is what we have in our run_list:

"run list": ["role [webserver]"]

Our run_list comprises of one element called role [webserver]. A role is a way
in which the Chef world organizes cookbooks together under one hood. Here is
what our role looks like:

webserver.rb

Role Name:: webserver

Copyright 2014, Sychonet

Author: maxcO0d3r@sychonet.com

name "webserver"

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

description "This role configures nginx webserver"

run list '"recipel[nginx]","recipe [base]l"
override attributes(
;app => {

:base => "/apps",

:user => "ubuntu",

:group => "ubuntu",

:log => "/var/log/nginx",

:data => "/data"

)

Our role has run_1ist, which comprises of two elements: recipe [passenger-nginx]
and recipe [base]. These recipes contain code that will be used to bootstrap
a machine using Chef. Along with this, we've a few attributes:

node [:app] [:base] = "/apps"

node [:app] [:user] = "Ubuntu"

node [:app] [:group] = "Ubuntu"

node [:app] [:1log]l = "/var/log/nginx"
node [:app] [:data] = "/data"

We will be using these attributes in our recipes to set up a machine according to our
requirements. These attributes may already be defined in our cookbook and if they
are, then they are overridden here.

Here is what a typical node json object looks like:

{

"name": "chef-eg0l.sychonet.com",
"json class": "Chef::Node",

"chef type": "node",

"chef environment": "production",
"automatic": { . . . },
"default": { . . . },

"normal": { . . . },

"override": { . . . },

"run list": [. . .]

}

Once the chef-client has obtained the node json object from the chef-server, it
expands run_list. The run list defined in a node object contains roles and recipes,
and roles contain run_list that again contains further roles and recipes. During the
execution of a chef-client, run_1list gets expanded to the level of recipes.

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Chef Ecosystem

Now, with a list of recipes to be executed on the machine, a chef-client downloads
all the cookbooks mentioned in the expanded run 1list from the chef server.

Some cookbooks might not really be defined in run_1ist, but might be part of a
dependency and those cookbooks are also downloaded as part of this event. A chef
server maintains different versions of cookbooks and hence, if we want, we can
request a specific version of a cookbook by specifying it as part of run_1list, as
follows:

{"run list":["recipe[nginx@l.4.2]"]}

This will set up version 1.4.2 of the nginx recipe. We can also mention a version in
the dependency or environment as follows:

depends "nginx", "= 1.4.2"
Alternatively, we can use the following code:

cookbook "nginx", "= 1.4.2"

Downloaded cookbooks are saved in a local filesystem on a machine at the location
specified by file_cache_path, defined in client.rb (defaults to /var/chef/cache).

Upon subsequent chef-client runs, the cookbooks that haven't changed since the last
run aren't downloaded and only the changed cookbooks are resynced.

Step 4 — Loading of cookbooks and convergence

Now, with all the cookbooks synchronized, a chef-client loads the components in
the following order:

* Libraries: Theses are loaded first so that all language extensions and Ruby
classes are available.
* Attributes: An attribute file updates node attributes and recipes.

* Definitions: Theses must be loaded before recipes because they create new
pseudo-resources.

* Recipes: At this point, recipes are evaluated. Nothing is done with any
resource defined in the recipe.

Recipes are loaded in the order they are specified in run_1list. This is a very
important concept to grasp because it can be a deal breaker if not understood
properly. Let's look at our run_list in /etc/chef/roles.json:

"run list":["role[webserver]"]

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The webserver role in turn defines the following run_1list:
run list "recipe[nginx]","recipe [base]l"

This implies that the expanded run_1ist will look something like the following;:
run list T"recipe[nginx]", "recipe [base]"

Now, if there are things mentioned in recipe [nginx] that require things that are
being set up in recipe [base], then our Chef run will fail. For example, say we are
setting up a user www-data in recipe [base] and we need Nginx to be started as a
service with the user www-data in recipe [nginx], then it won't work because the
www-data user won't be created until the base recipe is executed and it'll only be
executed once recipe [nginx] has been executed.

At this point in time, all the evaluated resources found in recipes are put in resource
collection, which is an array of each evaluated resource. Any external Ruby code is
also executed at this point in time.

Now, with resource collection ready for use, a Chef run reaches a stage of execution.
Chef iterates through a resource collection in the following order:

* It runs specified actions for each resource

* A provider knows how to perform actions

Step 5 — Reporting and exception handling

Once a chef-client run has ended, the status of the run is checked. If there has
been an error, Chef exits with unhandled exception and we can write exception
handlers to handle such situations. For example, we might want to notify a system
administrator about an issue with the chef-client run.

In the event of success as well, we might want to do certain things and this is
handled via report handlers. For example, we might want to push a message to
a queue saying that a machine has been bootstrapped successfully.

Using chef-solo

chef-solo is another executable that can be used to bootstrap any machine
using cookbooks.

There are times when the need for a chef-server just isn't there, for example, when
testing a newly written Chef cookbook on a virtual machine. During these times,
we can't make use of a chef-client, as a chef-client requires a chef-server to
communicate with.

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Chef Ecosystem

The chef-solo allows using cookbooks with nodes without requiring a chef-server. It
runs locally and requires those cookbooks (along with dependencies) to be present
locally on the machine too.

Other than this difference, the chef-solo doesn't provide support for the following
features:

* Search

* Authentication or authorization

* Centralized distribution of cookbooks

* Centralized API to interact with different infrastructure components.

The chef-solo can pick up cookbooks from either a local directory or URL where
a tar.gz archive of the cookbook is present.

The chef-solo command uses the /etc/chef/solo. rb configuration file, or we can
also specify an alternate path for this configuration file using the -config option
during the chef-solo execution.

The chef-solo, by default, will look for data bags at /var/chef/data_bags.
However, this location can be changed by specifying an alternate path in the data_
bag_path attribute defined in solo.rb. The chef-solo picks up roles from the /var/
chef/roles folder, but this location again can be modified by specifying an alternate
path in the role_path attribute in solo. rb.

Other than the options supported by a chef-client, the chef-solo executable supports
the following option:

-r RECIPE URL, --recipe-url RECIPE URL
A URL from where a remote cookbook's tar.gz will be downloaded.
For example:

#chef-solo -c¢ ~/solo.rb -j ~/node.json -r http://repo.sychonet.com/chef-
solo.tar.gz

The tar.gz file is first archived into £ile_cache_path and finally, extracted to
cookbook path.

Now that we understand how the Chef run happens, let's get our hands dirty and
go about setting up our developer workstation.

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Setting up a work environment

As we saw earlier, the Chef ecosystem comprises of three components: chef-server,
chef-client, and a developer workstation.

We'll be developing all our beautiful Chef codes on our workstation. As we are
developing a code, it's good practice to keep our code in some version control system
such as git/svn/mercurial and so on. We'll choose Git for our purpose and I'll
presume you've a repository called chef-repo that is being tracked by Git.

The following software should be installed on your machine before you try to set
up your workstation:

* Ruby (Preferably, 1.9.x).

* We need Chef and Knife installed on our workstation and it's pretty easy to
go about installing Chef along with Knife using the Ruby gems. Just open up
a terminal and issue the command:

#gem install chef

* Once Chef is installed, create a . chef folder in your home directory and
create a knife.rb file in it.

Knife is a tool using which we'll use to communicate with a chef-server. Knife can
be used for lots of purposes such as managing cookbooks, nodes, API clients, roles,
environments, and so on. Knife also comes with plugins that allow it to be used for
various other useful purposes. We'll learn more about them in later chapters.

Knife needs the knife.rb file present in the $HOME/ . chef folder. The following is
a sample knife.rb file:

log level :info

log location STDOUT

node name 'NAME OF YOUR CHOICE'

client key '~/ .chef/NAME_OF_ YOUR CHOICE.pem'
validation client name 'chef-validator'

validation key '~/ .chef/validation.pem'

chef server url 'http://chef-server.sychonet.com:4000"
cache type 'BasicFile!

cache options (:path => '~/.chef/checksums')
cookbook path ['~/code/chef-repo/cookbooks']

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Chef Ecosystem

Connect to your chef-server web interface and visit the client section and create a
new client with a name of your choice (ensure that no client with the same name
exists on the chef-server):

Client

List Create

Name

[chef-ego1

The name of the Client

Admin & Whether or not the Client is an admin

Create Client

Once you've created the client, a chef-server will respond with a public/private key
pair as shown in the following screenshot:

Client: chef-eg01

List Create Show Edit Delete

Admin

true

Public Key

=====BEGIN RSA PUBLIC KEY=====
MIIBCgRCAQEAYSETPgXWILOBCAWYIsOufg/38SGTiDyWEPbiEQAmHOTNUhXX xhHe
ubztEJM/mB9basMiRIM46gR6 EXHEASUSGF ImSe THEkGY jBel 368X dada l AgpdON
BEAShDRTMSUU4VNOm/LKNCE5cHAMD+ 28 2uRCQIHenTMogDY XhUK9ELS05box52pE
AWMEvzZOLfWnEad4gIloSgN/AVOSW4AhCE,/ NgjT75tkeA6NE55n sk VCOMKWL 7 VRHC IN
hE 3CTRL29mnUoFXFTW7 j1lffbrpIlZz2u5ailb4s/1EsTRBYWCIDRerFxoulkgDdulf
MfZeeFIHTubfMgeJpNAXiFzgBE+LY6gVdwIDAQAR

=====END RSA PUBLIC KEY=====

Private Key (Will not show again, Please copyl)

Please copy and save as the client's validation key (e.g. client.pem)

=====BEGIN RSA FPRIVATE KEY=====

MIIEpgIBAAKCAQEAYSHTPgXwILOBCAwYIsOufqg/ 385GTiDYyWHPbiEQAmHQTNUhXX
xhHeufz tEJM/mASbasMiRIM4 6gOEExHLBSUSEFIMSeT TNEKGY jBeldfBXdanal Ag
pdONBE8 5hDRTMS Uud VNOm/ LKNC65cH4mD+ 25 2uRke3HenTmeg DY XhUKSEL505bex
SEpfAWMKvZOLIWnEad4gIloSqN/AVIBWAhCE /N 75tksAGNES5n sk VCOMWEL TV
HCINhE3CTKLzZIMnUOFXF7W7jlffbrplZ2u5ailb4s/ 128 TREYWCODRerFxoulkgD
dulfMfZeeFIH7ubfMgeJpNAXiF2gqBE+LY6gVdwIDAQABACI BAQDRKgHEC9 1E+N1P+
czeJXMNvyzDWEomM] ¥YnxP2 780Gn/PUp/ TmoyibATBCSbeyI T#W1VRISb Y+ IkFLT
pBAjpEgwlSRbWE1WRBzSQ0R55a061T2pJKLEZg4BPESevvEGY tFN 1 Lmwd LFUOXOM
9EnTV+uTCh+SJiGtIuV X5 2b0n3xeY IRGV++VMOHTYEKEPXbuMXr T2XWLrof jIPa
rOcnisiVELTjFExJuhLOMpWkXROKL1b8f0sU6uCluRADTEIURIAPABSAT /gUOLRE
XY¥Ys6h+bis2A55mDDojj TOYOLEDMY fROMNIXMul jR2YYgO2CR1S5A0ZIGaaHwihe xE
pCgW02mIAOGEADS 9LC/WEKDSpYauUTyDLX 4 ¥ xWaB5L14 2 SWERLOKgXAVRXY 1 Um++

Copy the contents of the private key and store them in ~/.chef/<NAME_OF_YOUR_
CHOICE>.pem

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Also, copy the private key for the chef-validator (/etc/chef/validation.pem) from
the chef-server to ~/ .chef /validation.pem.

Specify NAME OF_YOUR_CHOICE as the node name.

As you can see, we've specified cookbook_path to be ~/code/chef-repo/
cookbooks. I'm presuming that you'll be storing your Chef cookbooks inside this
folder.

Create the following directory structure inside ~/code/chef-repo:

chef-repo
— cookbooks
— data bags
— environments
L— roles

The cookbooks directory will hold our cookbooks, the data_bags directory will
contain data bags, the environments directory will contain configuration files for
different environments, and the roles directory will contain files associated with
different roles.

Once you've created these directories, commit them to your Git repository.

Now, let's try to see if we are able to make use of the Knife executable and query
the Chef server:

$knife client list
chef-validator
chef-webui

chef-eg01

This command will list all the available API clients registered with the chef-server.
As you can see, chef-eg01 is a newly created client and it's now registered with
the chef-server.

Knife caches the checksum of Ruby and ERB files when performing a cookbook
syntax check with knife cookbook test or knife cookbook upload. The
cache_type variable defines which type of cache to make use of. The most used
type is BasicFile and it's probably best to leave it at that.

The cache_options is a hash for options related to caching. For BasicFile, :path
should be the location on the filesystem where Knife has write access.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Chef Ecosystem

If you want the Knife cookbook to create a command to prefill values for copyright and
e-mail in comments, you can also specify the following options in your knife. rb file:

cookbook copyright "Company name"
cookbook email "Email address"

With this setup, now we are ready to start creating new cookbooks, roles, and
environments, and manage them along with nodes and clients using Knife from

our workstation.

Before we jump into cookbook creation and other exciting stuff, we need to ensure
that we follow a test-driven approach to our Chef development. We will make use of
test-kitchen to help us write Chef cookbooks that are tested thoroughly before being

pushed to a chef-server.

test-kitchen can be installed as a gem:

$ gem install test-kitchen

Also, download Vagrant from http://www.vagrantup.comand install it.

If you want some help, use the help option of the kitchen command:

$ kitchen help
Commands :
kitchen console

kitchen converge [INSTANCE|REGEXP|all]
instances

kitchen create [INSTANCE |REGEXP|alll
kitchen destroy [INSTANCE|REGEXP|alll

kitchen diagnose [INSTANCE|REGEXP|all]
configuration

kitchen driver

kitchen driver create [NAME]
gem project

kitchen driver discover
published on RubyGems

kitchen driver help [COMMAND]
specific subcommand

kitchen help [COMMAND]
or one specific command

kitchen init
your cookbook so Kitchen can rock

Kitchen Console!

Converge one or more

Create one or more instances
Destroy one or more instances

Show computed diagnostic

Driver subcommands

Create a new Kitchen Driver

Discover Test Kitchen drivers

Describe subcommands or one

Describe available commands

Adds some configuration to

[20]

www.it-ebooks.info

http://www.vagrantup.com
http://www.it-ebooks.info/

Chapter 1

kitchen list [INSTANCE|REGEXP|alll Lists one or more instances

kitchen login INSTANCE | REGEXP Log in to one instance
kitchen setup [INSTANCE|REGEXP|all]

kitchen test [INSTANCE|REGEXP|all]

Setup one or more instances
Test one or more instances

kitchen verify [INSTANCE |REGEXP|all] Verify one or more instances

H H H H H H

kitchen version Print Kitchen's version

information

Now, let's create a new cookbook called passenger-nginx:

$knife cookbook create passenger-nginx

Now, we'll add test-kitchen to our project using the init subcommand:

$ kitchen init

create .kitchen.yml

create test/integration/default

run gem install kitchen-vagrant from "."

Fetching: kitchen-vagrant-0.14.0.gem (100%)

Successfully installed kitchen-vagrant-0.14.0

Parsing documentation for kitchen-vagrant-0.14.0

Installing ri documentation for kitchen-vagrant-0.14.0

Done installing documentation for kitchen-vagrant after 0 seconds

1 gem installed

The kitchen init command has created a configuration file called .kitchen.yml,
along with a test/integration/default directory.

It also went on to install a gem called kitchen-vagrant. kitchen needs a virtual
machine to test run the chef code, and drivers are responsible for managing virtual
machines. By default, kitchen makes use of Vagrant to manage the virtual machine.

Let's see what we have in our configuration file, kitchen.yml:

$ cat .kitchen.yml
driver:

name: vagrant
provisioner:

name: chef solo
platforms:

- name: ubuntu-12.04

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Chef Ecosystem

- name: centos-6.4
suites:
- name: default
run list:
- recipelcb-testl::default]

attributes:
The file is divided into four sections:

* Driver: This is where we set up basic stuff such as the SSH username and
credentials. Under this section, we've a name property with a vagrant value.
This tells kitchen to make use of the kitchen-vagrant driver.

* Provisioner: This tells kitchen to make use of a chef-solo to apply the
cookbook to a newly created virtual machine.

* Platforms: This lists the operating systems on which we want to run
our code.

* Suites: Here we describe what we wish to test.

Now, let's see what we have on our hands:

$ kitchen list

Instance Driver Provisioner Last Action
default-ubuntu-1204 Vagrant ChefSolo <Not Created>
default-centos-64 Vagrant ChefSolo <Not Created>

As you can see, it's listing two instances: default-ubuntu-1204 and default-
centos-64. These names are a combination of the suite name and the platform name.

Now, let's spin up one instance to see what happens:

$ kitchen create default-ubuntu-1204
----- > Starting Kitchen (v1.2.1)
----- > Creating <default-ubuntu-1204>...
Bringing machine 'default' up with 'virtualbox' provider...

==> default: Box 'opscode-ubuntu-12.04' could not be found.
Attempting to find and install...

default: Box Provider: virtualbox
default: Box Version: >= 0

==> default: Adding box 'opscode-ubuntu-12.04' (v0) for provider:
virtualbox

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

default: Downloading: https://opscode-vm-bento.s3.amazonaws.
com/vagrant/virtualbox/opscode ubuntu-12.04 chef-provisionerless.box

==> default: Successfully added box 'opscode-ubuntu-12.04' (vO0)
for 'virtualbox!'!

==> default: Importing base box 'opscode-ubuntu-12.04'...
==> default: Matching MAC address for NAT networking...

==> default: Setting the name of the VM: default-ubuntu-1204
default 1398006642518 53572

==> default: Clearing any previously set network interfaces...

==> default: Preparing network interfaces based on
configuration...

default: Adapter 1: nat
==> default: Forwarding ports...

default: 22 => 2222 (adapter 1)
==> default: Running 'pre-boot' VM customizations...
==> default: Booting VM...

==> default: Waiting for machine to boot. This may take a few minutes...
default: SSH address: 127.0.0.1:2222

default: SSH username: vagrant

default: SSH auth method: private key

default: Warning: Connection timeout. Retrying...
==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...
==> default: Setting hostname...
Vagrant instance <default-ubuntu-1204> created.
Finished creating <default-ubuntu-1204> (4m4.17s).

————— > Kitchen is finished. (4m4.71s)

So, this leads to the downloading of a virtual machine image for Ubuntu 12.04
and, eventually, the machine boots up. The default username for SSH connection
is vagrant.

Let us check the status of our instance again:

$ kitchen list

Instance Driver Provisioner Last Action

default-ubuntu-1204 Vagrant ChefSolo Created

default-centos-64 Vagrant ChefSolo <Not Created>
[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Chef Ecosystem

So, our Ubuntu instance is up and running. Now, let's add some meat to our recipe:

Cookbook Name:: cb-testl
Recipe:: default

Copyright 2014, Sychonet

All rights reserved - Do Not Redistribute

H H H HF H H H HF

package "nginx"

log "Cool. So we have nginx installed"

So, now we've got our recipe ready, let's let test-kitchen run it in our instance now:

$ kitchen converge default-ubuntu-1204
————— > Starting Kitchen (v1.2.1)
————— > Converging <default-ubuntu-1204>...
Preparing files for transfer
Preparing current project directory as a cookbook
Removing non-cookbook files before transfer
————— > Installing Chef Omnibus (true)
downloading https://www.getchef.com/chef/install.sh
to file /tmp/install.sh
trying wget...
Downloading Chef for ubuntu...

downloading https://www.getchef.com/chef/metadata?v=&prerelease=false&nig
htlies=false&p=ubuntu&pv=12.04&m=x86 64

to file /tmp/install.sh.1144/metadata.txt
trying wget...

url https://opscode-omnibus-packages.s3.amazonaws.com/ubuntu/12.04/
%86 64/chef 11.12.2-1 amd64.deb

md5 cedd8a2df60a706e51f58adf8441971b
sha256 af53e7ef602be6228dcbf68298e2613d3£37eb061975992abc6cd2d318e4a0c0
downloaded metadata file looks valid...

downloading https://opscode-omnibus-packages.s3.amazonaws.com/
ubuntu/12.04/x86 64/chef 11.12.2-1 amdé64.deb

to file /tmp/install.sh.1144/chef 11.12.2-1 amdé64.deb

trying wget...

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Comparing checksum with sha256sum...
Installing Chef
installing with dpkg...
Selecting previously unselected package chef.
(Reading database ... 56035 files and directories currently installed.)
Unpacking chef (from .../chef 11.12.2-1 amdé64.deb) ...
Setting up chef (11.12.2-1) ...
Thank you for installing Chef!
Transfering files to <default-ubuntu-1204>
[2014-04-20T15:50:31+00:00] INFO: Forking chef instance to converge...
[2014-04-20T15:50:31+00:00] WARN:

* k * k Kk * * k k * k *k *x * k k * *k *k *x * k *k * *k *k *k * *k *k * * *k *x * %k %k

* % *
SSL validation of HTTPS requests is disabled. HTTPS connections are still

encrypted, but chef is not able to detect forged replies or man in the
middle

attacks.

To fix this issue add an entry like this to your configuration file:

~~~

# Verify all HTTPS connections (recommended)

ssl verify mode :verify peer

# OR, Verify only connections to chef-server

verify api cert true

~~~

To check your SSL configuration, or troubleshoot errors, you can
use the

“knife ssl check™ command like so:

~~~

knife ssl check -c /tmp/kitchen/solo.rb

~~~

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Chef Ecosystem

* % % %k * * *k *k * * k *k * k *k * * *k *k * *k *k * * *k *x * *k *k * * %k *

* * * %k k * *

Starting Chef Client, version 11.12.2
[2014-04-20T15:50:31+00:00] INFO: *** Chef 11.12.2 **x*
[2014-04-20T15:50:31+00:00] INFO: Chef-client pid: 1225

[2014-04-20T15:50:39+00:00] INFO: Setting the run list to ["recipelcb-
testl::default]"] from CLI options

[2014-04-20T15:50:39+00:00] INFO: Run List is [recipelcb-testl::default]]
[2014-04-20T15:50:39+00:00] INFO: Run List expands to [cb-testl::default]

[2014-04-20T15:50:39+00:00] INFO: Starting Chef Run for default-
ubuntu-1204

[2014-04-20T15:50:39+00:00] INFO: Running start handlers
[2014-04-20T15:50:39+00:00] INFO: Start handlers complete.
Compiling Cookbooks...

Converging 2 resources

Recipe: cb-testl::default

* package[nginx] action install[2014-04-20T15:50:39+00:00] INFO:
Processing package[nginx] action install (cb-testl::default line 10)

- install version 1.1.19-lubuntu0.6 of package nginx

* log[Cool. So we have nginx installed] action write[2014-04-
20T15:50:52+00:00] INFO: Processing log[Cool. So we have nginx installed]
action write (cb-testl::default line 12)

[2014-04-20T15:50:52+00:00] INFO: Cool. So we have nginx installed

[2014-04-20T15:50:52+00:00] INFO: Chef Run complete in 12.923797655
seconds

Running handlers:
[2014-04-20T15:50:52+00:00] INFO: Running report handlers

Running handlers complete

[2014-04-20T15:50:52+00:00] INFO: Report handlers complete

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Chef Client finished, 2/2 resources updated in 21.14983058 seconds
Finished converging <default-ubuntu-1204> (2ml10.10s).
————— > Kitchen is finished. (2ml10.41s)

So, here is what happened under the hood when kitchen converge was executed:

e Chef was installed on an Ubuntu instance

* Our cb-testl cookbook and a chef-solo configuration were uploaded to
an Ubuntu instance.

* The Chef run was initiated using run_list and attributes defined in
.kitchen.yml

If the exit code of the kitchen command is 0, then the command run was
successful. If it's not 0, then any part of the operation associated with the
command was not successful.

Let's check the status of our instance once more:

$ kitchen list

Instance Driver Provisioner Last Action
default-ubuntu-1204 Vagrant ChefSolo Converged
default-centos-64 Vagrant ChefSolo <Not Created>

So, our instance is converged, but we still don't know if nginx was installed
successfully or not. One way to check this is to log in to the instance using the
following command:

$ kitchen login default-ubuntu-1204

Once you've logged in to the system, you can now go ahead and check for the
presence of the binary named nginx:

vagrant@default-ubuntu-1204:~$ which nginx

/usr/sbin/nginx
So, Nginx is indeed installed.

However, with kitchen, we no longer need to take the pain of logging in to the
system and verifying the installation. We can do this by writing a test case.

We'll make use of bash automated testing system (bats), called for this purpose.

Create a directory using the following command:

$ mkdir -p test/integration/default/bats

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to the Chef Ecosystem

Create a new file package test .bats under the bats directory:

#!/usr/bin/env bats

@test "nginx binary is found in PATH"

{

run which nginx
["$Sstatus" -eq 0]

}

Now, let's run our test using kitchen verify:

$ kitchen verify default-ubuntu-1204
————— > Starting Kitchen (v1.2.1)
————— > Setting up <default-ubuntu-1204>...
Fetching: thor-0.19.0.gem (100%)
Fetching: busser-0.6.2.gem (100%)
Successfully installed thor-0.19.0
Successfully installed busser-0.6.2
2 gems installed
————— > Setting up Busser
Creating BUSSER ROOT in /tmp/busser
Creating busser binstub
Plugin bats installed (version 0.2.0)
————— > Running postinstall for bats plugin
Installed Bats to /tmp/busser/vendor/bats/bin/bats
Finished setting up <default-ubuntu-1204> (1m41.31s).
————— > Verifying <default-ubuntu-1204>...
Suite path directory /tmp/busser/suites does not exist, skipping.
Uploading /tmp/busser/suites/bats/package-test.bats (mode=0644)
————— > Running bats test suite

v nginx binary is found in PATH

1 test, 0 failures
Finished verifying <default-ubuntu-1204> (0ml.03s).

————— > Kitchen is finished. (0Oml.51s)

So, we see that our test has successfully passed verification, and we can proudly go
ahead and upload our cookbook to the chef-server and trigger a chef-client run on
the concerned instance.

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Summary

With this, we've come to the end of our journey to understanding the Chef ecosystem
and various tools of trade. We now know the language used in the world of Chef
and we also know how to go about setting up our machines, which will allow us to
develop the code to automate infrastructure using Chef.

In the next chapter, we'll see how we can make use of Knife and the associated
plugins to make our life a lot easier while managing infrastructure using Chef.

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Knife and Its Associated
Plugins

We learned about the Chef ecosystem in the last chapter and, as we saw, Knife is one
of those tools that we'll be using the most while doing development. In this chapter,
we'll look at the internals of Knife and we'll also see different plugins, which will
make your life a lot easier while managing your infrastructure using Chef.

Introducing Knife

Knife is a command-line tool that comes bundled with the Chef installation.
Depending upon how Chef was installed, you may find the binary at any particular
location on your workstation. Since I have installed Chef using rvm and gem
packaging, it is found at ~/ . rvm/gems/ruby-2.1.0/gems/chef-11.8.2/bin/knife.

Depending upon your setup, you may find it at some other location. Whatever
the location, ensure that it is in your PATH variable.

Knife is used for almost every aspect of managing your interactions with
chef-server. It helps us manage:

e Cookbooks
e Environments

* Roles
* Data bags
¢ Nodes

* APIclients
* Bootstrapping of instances
* Searching for nodes

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Knife and Its Associated Plugins

Let's see what the knife command has to offer to us. Just fire up the terminal and
enter the command:

$knife
ERROR: You need to pass a sub-command (e.g., knife SUB-COMMAND)

Usage: knife sub-command (options)

-s, --server-url URL Chef Server URL
--chef-zero-port PORT Port to start chef-zero on
-k, --key KEY API Client Key
--[no-]lcolor Use colored output, defaults to
false on Windows, true otherwise
-c, --config CONFIG The configuration file to use
--defaults Accept default values for all
questions
-d, --disable-editing Do not open EDITOR, just accept the
data as is
-e, --editor EDITOR Set the editor to use for
interactive commands
-E, --environment ENVIRONMENT Set the Chef environment
-F, --format FORMAT Which format to use for output
-z, --local-mode Point knife commands at local

repository instead of server

-u, --user USER API Client Username
--print-after Show the data after a destructive
operation
-V, --verbose More verbose output. Use twice for

max verbosity

-v, --version Show chef version

-y, --yes Say yes to all prompts for
confirmation

-h, --help Show this message

Available subcommands: (for details, knife SUB-COMMAND --help)

% BOOTSTRAP COMMANDS **

% CLIENT COMMANDS **

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Whoa! That was some output. So that's the power of Knife, and it tells you that you
need to make use of subcommands such as cookbook, node, client, role, databag,
and so on. We will look at each of these in detail later.

Before we start using Knife, we need to configure it. During this configuration, we'll
specify where Knife can contact our chef-server, where cookbooks are residing on
our machine, and so on.

The configuration file for Knife is called knife.rb and is typically found in the
~/ .chef folder. This is a Ruby file, as is visible from its extension; you guessed
right, it can contain actual Ruby code along with some configuration settings
that are required for the working of Knife.

The following are the configuration settings that we'll specify in our knife. rb file:

Setting Description
chef_ server_url This defines where to find our chef-server.
It's usually the FQDN of chef-server along
with the API port.
node name This is typically the name of your workstation.
client key As you saw, we created a client for use in the

workstation on chef-server. This is the path to the
private key we downloaded.

cookbook_path This is the path on your filesystem where cookbooks
are residing.

cookbook copyright Every time we create a new cookbook, role, or
environment using Knife, we'll get files with basic
stuff such as copyright and so on. This will prefill
the value of copyright for you.

cookbook email Every time we create a new cookbook, role, or
environment using Knife, we'll get files with basic
stuff such as e-mail and so on. This will prefill the
value of e-mail for you.

validation_client_name Usually, it is safe to leave this as chef-validator.

validation_key This is the path to the private key for chef -
validator.

knife['editor'] Some Knife subcommands such as knife role

edit require this configuration to be defined. This
contains the path for your favorite editor.

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Knife and Its Associated Plugins

Here is a sample ~/.chef/knife.rb file:

log level :info

log location STDOUT

node_ name 'maxc0d3r'

client key '~/keys/chef/maxc0d3r.pem’

validation client name 'chef-validator'

validation key '~/keys/chef/validation.pem'’

chef server url 'http://chef-server.sychonet.com:4000"
cache type 'BasicFile'

cache options (:path => '~/.chef/checksums')
cookbook path ['~/code/chef-repo/cookbooks!']

Just to verify that Knife has been set up properly, run the following command:

$knife client list
chef-validator
chef-webui

maxc0d3r

So, we queried chef-server about all the API clients and it duly responded back with
the list of 3 clients. As you can see, the API client that I'll be using to communicate
with chef-server is also available there.

With Knife configured, let's see what we can do with it.

Managing cookbooks
Knife is the tool that we'll be using to do all sorts of operations on cookbooks
residing on our development workstation or on a remote chef server. Operations for
a cookbook can be the following:

* Creating a new cookbook

* Uploading a cookbook to chef-server

* Deleting a cookbook from chef-server

* Downloading a cookbook from chef-server

* Deleting multiple cookbooks from chef-server

* Listing all cookbooks on chef-server

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Creating a new cookbook

In order to create a new cookbook, issue the following command:

$knife cookbook create new-cookbook

Creating cookbook new-cookbook

Creating README for cookbook: new-cookbook
Creating CHANGELOG for cookbook: new-cookbook

Creating metadata for cookbook: new-cookbook

This command will create the following directory structure along with some default
files in the path you've specified in the cookbook_path variable in the knife.rb file:

$ tree new-cookbook/

new

— CHANGELOG.md

(T TTTT TTTT

-cookbook/

README .md
attributes
definitions
files

L— default
libraries
metadata.rb
providers

recipes

L— default.

resources
templates

L— default

rb

We'll look at this structure in detail later while finding out more about cookbooks.
For now, it's sufficient for us to know that the new cookbook called new-cookbook

has

been created.

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Knife and Its Associated Plugins

Uploading a cookbook to chef-server

Now we went on to modify this cookbook as per our requirements; once done,

we want to upload this cookbook to chef-server. The following command will help
us get this job done:

$ knife cookbook upload new-cookbook

Uploading new-cookbook [0.1.0]

Uploaded 1 cookbook.

Cool, so our cookbook was uploaded, but what's this 0.1.0? Well, as we'll see in
Chapter 6, Cookbooks and LWRPs, chef-server allows us to maintain different versions

of a cookbook. The version is defined in the file called metadata.rb and, if you look

at new-cookbook/metadata. rb, you will see that the version defined for the cookbook
is 0.1.0. You can maintain different versions of the same cookbook on chef-server and
use any particular version you want while bootstrapping the instances.

Getting the list of all the cookbooks on chef-server

There are times when we'd like to get a list of all the cookbooks residing on a remote
chef-server, and this is all the more important when you are working in teams.
The following command will get you a list of all cookbooks on chef-server:

$ knife cookbook list

new-cookbook 0.1.0

Let's modify the version of our cookbook and upload it once more. To do this,
edit the new-cookbook/metadata. rb file and change the version to 0.1.1:

$sed -i .bak 's/0.1.0/0.1.1/g' new-cookbook/metadata.rb

You can ignore the . bak extension, but on some platforms it's
= kind of necessary (such as Mac OS X).

Let's upload the cookbook once more:

$ knife cookbook upload new-cookbook
Uploading new-cookbook [0.1.1]
Uploaded 1 cookbook.

Now let's see what cookbooks are on chef-server:

$ knife cookbook list

new-cookbook 0.1.1

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

So we see that our newly uploaded cookbook is there. However, where has my
previous version gone? Well, it's not gone anywhere, it's just that by default Knife
is reporting back the latest version of the cookbook. If you want to see all the
versions of cookbooks, use the same command with the -a argument:

$ knife cookbook list -a

new-cookbook 0.1.1 0.1.0

Deleting cookbooks

There are times when you'd like to delete a cookbook or some version of your
cookbook, as you know that it's not going to be in use now. The following command
helps us accomplish this task:

$ knife cookbook delete new-cookbook
Which version(s) do you want to delete?
1. new-cookbook 0.1.1

2. new-cookbook 0.1.0

3. All versions

2
Deleted cookbook [new-cookbook] [0.1.0]

If we don't specify any version, Knife will list all available versions of cookbooks
and ask us to choose one of them for deletion. If you know which version to delete,
you can just specify the version:

$ knife cookbook delete new-cookbook 0.1.0

Deleted cookbook[new-cookbook] [0.1.0]

If you wish to delete all versions of a cookbook, use the command with the -a
argument as follows:

$ knife cookbook delete new-cookbook -a
Do you really want to delete all versions of new-cookbook? (Y/N) y

Deleted cookbook[new-cookbook] [0.1.1]
Deleted cookbook [new-cookbook] [0.1.0]

To avoid confirmation, append -y to the last command or add knife[:yes] to
your knife.rb file.

The delete command doesn't purge the entire cookbook or concerned version from
chef-server, and keeps one copy of files. If you wish to completely delete the concerned
cookbook or a version of it, append the delete command with -purge.

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Knife and Its Associated Plugins

Downloading a cookbook

Let's say you and your friend are working on a cookbook together by collaborating
using Git. It so happens that your friend uploaded a new version of the cookbook
onto chef-server; however, he/she forgot to push the changes to Git. Now, he is on
leave for a week and you want to carry on with the development on this cookbook,
but you also want to know what all changes your friend made. This is one area
where downloading a cookbook really helps. However, ensure that you aren't using
downloaded cookbooks to override content within your SCM repository, or else it
can cause issues when trying to merge changes later on, and will eventually corrupt
your SCM repository.

You can download a cookbook using the following command:

$ knife cookbook download new-cookbook -d /tmp
Which version do you want to download?

1. new-cookbook 0.1.0

2. new-cookbook 0.1.1

1

Downloading new-cookbook cookbook version 0.1.0
Downloading resources
Downloading providers
Downloading recipes
Downloading definitions
Downloading libraries
Downloading attributes
Downloading files
Downloading templates
Downloading root files

Cookbook downloaded to /tmp/new-cookbook-0.1.0

So again, if you've multiple versions of cookbooks, Knife will ask which version
of cookbook to download. I've used the -d option to specify which directory to
download the cookbook to. If it's not specified, the cookbook is downloaded to
the current working directory. If you know which version of cookbook needs to
be downloaded, you can specify that as follows:

$ knife cookbook download new-cookbook 0.1.1 -d /tmp

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Downloading new-cookbook cookbook version 0.1.1
Downloading resources

Downloading providers

Downloading recipes

Downloading definitions

Downloading libraries

Downloading attributes

Downloading files

Downloading templates

Downloading root files

Cookbook downloaded to /tmp/new-cookbook-0.1.1

Deleting multiple cookbooks

Knife also provides a bulk delete subcommand that allows you to delete cookbooks
whose names match a regex pattern.

For example, the following command will delete all versions of all cookbooks
starting with new:

$ knife cookbook bulk delete "“new"

All versions of the following cookbooks will be deleted:
new-cookbook
Do you really want to delete these cookbooks? (Y/N) y

Deleted cookbook new-cookbook [0.1.1]
Deleted cookbook new-cookbook [0.1.0]

Managing environments

Usually in any project, the infrastructure is split across different environments
such as dev, staging, production, and so on. Chef allows us to maintain different
configurations and settings across different environments through the concept
of environments.

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Knife and Its Associated Plugins

Creating an environment

To manage environments, create a directory named environments in the root
of your Chef repository. Your directory structure will look something like
the following:

— README.md
— cookbooks
— data bags
— environments
L— roles

All the environment-related configs will be kept inside the environments directory.
Let's presume that we've an environment called production and another one called
staging. We like to live on the cutting edge in the staging environment and keep the
latest version of our web server package there, whereas, in production environment,
we are cautious and always keep a tested version of the web server. We'll create two
files, namely staging.rb and production.rb, in the environments directory:

staging.rb:

name "staging"

description "Staging Environment"

override attributes :webserver => { :version => "1.9.7" }

production.rb:

name "production"
description "Production Environment"
override attributes :webserver => { :version => "1.8.0" }

Now, all we need to do is ensure that these configurations get pushed to chef-server.
To do this, we run the following command:
$ knife environment from file staging.rb

Updated Environment staging

$ knife environment from file production.rb

Updated Environment production

When using the files in your SCM repository, to manage environments, ensure
that you specify the full path of the . rb files when using the Knife environment
from the file command.

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

One can also create environments directly by issuing the following command:

$ knife environment create <environment name>

This will open up an editor (ensure that either you've an environment variable
called EDITOR set up or the path to your favorite editor specified in knife.rb).
You can modify the content of the file opened up by the last command and save it.

Deleting an environment

You may delete an environment using the following command:

$ knife environment delete <environment name>

For example, the following command will delete the environment named staging
from chef-server:

$ knife environment delete staging
Do you really want to delete staging? (Y/N) vy
Deleted staging

If you wish to override the confirmation, either append the command with -y, or
specify knife[:yes] in your knife.rb file.

Editing an environment

You can edit an environment by modifying the files inside the environments
folder and rerunning the following command:

$ knife environment from file <filename>

Alternatively, you can directly modify the environment by issuing the
following command:

$ knife environment edit <environment name>

Listing all environments

You can see the list of all environments configured on chef-server through
the following command:

$ knife environment list

_default

staging

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Knife and Its Associated Plugins

As you can see, the command listed two environments, namely _default and
staging. The _default environment comes along as the default with chef-server,
and any node that doesn't have an environment associated with it (more on this
later) will have the _default environment associated to it.

Displaying information about an environment

You can view information about an environment through the following command:
$ knife environment show <environment name>
Consider the following as an example:

$ knife environment show staging
chef type: environment
cookbook versions:

default attributes:

description: Staging Environment
json _class: Chef: :Environment
name: staging

override attributes:
webserver:

version: 1.9.7

Managing roles

Roles are used to group together cookbooks under a single roof and apply them on
the node that is to be bootstrapped. Roles in Chef comprise of a run_1list and a set
of attributes. As with environments, you can manage roles through Knife.

Creating a new role

You can create a new role using the following command:

$ knife role create <role name>

This will open your editor with a template, and all you need is to fill that template
to your liking and save.

Alternatively, you can create a role separately in a file inside the roles directory and,
once you are satisfied with the content of that file, just issue the following command:

$ knife role from file <filename>

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

I prefer the second option as it allows me to maintain revisions of code inside a
version control system.

Let's create the role named webserver. To do this, we'll create the file called
webserver.rb inside the roles folder:

#Role to manage webservers

name "webserver"

description "Webserver Role"

run_list '"recipe[webserver]", "recipe[logstash]"

As you can see, ['ve specified two recipes in the run_1ist, namely webserver and
logstash. We'll use the webserver recipe to install and configure a web server,
while the 1logstash recipe is used to push logs from a web server to a central log
server running Graylog.

We'll now push this newly created role onto our chef-server:

$ knife role from file webserver.rb

Updated Role webserver!

Deleting a role

You can delete a role by issuing the following command:
$ knife role delete <rolename>
Consider the following as an example:

$ knife role delete webserver
Do you really want to delete webserver? (Y/N) y

Deleted role[webserver]

Editing a role

You may edit an existing role by using the following command:

$ knife role edit <rolename>

Alternatively, you can edit the corresponding role file in your local Chef repository,
and then use the following command:

$ knife role from file <role file>

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Knife and Its Associated Plugins

Listing all available roles

You can get a list of all available roles using the following command:

$ knife role list

webserver

Displaying information about a role

You can use the following command to see what the role is supposedly doing:

$ knife role show <rolename>

For example

$ knife role show webserver
chef type: role
default attributes:
description: Role to manage webserver
env_run lists:
json class: Chef::Role
name: webserver
override attributes:
run list:
recipe [webserver]

recipe[logstash]

Managing nodes

Nodes are the machines that we'll be configuring using Chef. Chef stores information
about nodes in node objects, which can be viewed in the JSON format. We can
manage details like creating a node, editing a node, listing all available nodes,
modifying run_1list applicable to nodes, overriding some attributes corresponding
to anode, deleting a node, and so on, using Knife.

Creating a node

One can create a new node using the following command:
$ knife node create <node name>
Alternatively, you can use the following command:

$ knife node from file <filename.rb>

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Nodes need to be created explicitly by you as a chef-client run automatically takes care
of creating a new node object for you. However, let's see this command in action:

$ knife node create webserver(Ol

This command will open up your favorite text editor with the following template:

{

"name": "webserver0l",

"chef environment": " default",
"json class": "Chef::Node",
"automatic": {

b

"normal": {

} ’
"chef type": "node",
"default": {

b

"override": {

b

"run list": [

}

Modify the values for chef_environment by replacing _default with staging, and

add recipe [webserver], recipe [logstash], or role [webserver] to the

run list:

{

"name": "webserver01l",

"chef environment": "staging",
"json class": "Chef::Node",
"automatic": {

"normal": {

"chef_ type": "node",

"default":

1

"override":

1

"run list": [
"recipe [webserver] ",
"recipe [logstash] "

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Knife and Its Associated Plugins

Save the file and voila, you get a response from Knife saying that your new node
was created:

Created node[webserver(01]

You could've easily created that JSON file yourself and used the following command:

sknife node from file <filename>

This would've had the same effect.

Listing all available nodes

Okay, so we've our newly created node on chef-server. Let's see if it's actually there.
You can get a list of all available nodes on chef-server using the following command:
$knife node list

webserver01l

Displaying information about a node

If you want to see what all configurations are associated with a particular node,
you can do this by using the following command:

$knife node show webserver(0l

Node Name: webserver01l

Environment: staging

FQDN:

IP:

Run List: recipe [webserver], recipe[logstash]
Roles:

Recipes:

Platform:

Tags:

You might be wondering why few fields are empty in the preceding output. If you
remember, in Chapter 1, Introduction to the Chef Ecosystem, while understanding the
anatomy of a chef-client run, we saw that, as the first step in a chef-client run, Ohai
is executed that profiles the underlying system and tries to fetch system-related
information. This information is finally used to build the node object. When building
the node object directly using Knife, the system-related information is not yet
collected, and hence the corresponding fields are blank.

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Editing a node

You can edit a node object using the following command:

S$knife node edit <node name>

Alternatively, edit the file containing JSON data for the concerned node and issue
the following command:

$knife node from file <filename>

Adding stuff to the run_list associated with a node

Let's say you've created a brand new cookbook that will add some monitoring stuff
to your web server, and you want to add that recipe to a particular node. Now, you
can go on and edit a node and modify the run_1list, but since it's justa run_list
that needs to be modified, you can use the following command:

$ knife node run list add <node name> [ENTRY]

For example, let's presume our monitoring cookbook is called monitoring. Let's add
it to our newly created node —webserver01:
$ knife node run list add webserverOl recipe[monitoring]
webserver01l:
run list:
recipe [webserver]
recipe[logstash]

recipe [monitoringl]

Cool! So now, our node object has three recipes associated with it.

Deleting stuff from the run_list associated with a
node

You can use the following command to delete stuff from a node's run_1list:

$ knife node run list remove <node name> [ENTRY]

For example, let's delete recipe [logstash] from the run_list associated with
node webserver01:

S$knife node run list remove webserver0l recipel[logstashl]

webserver01l:

run list:

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Knife and Its Associated Plugins

recipe [webserver]

recipe [monitoring]

You can also specify multiple entries while deleting elements from the run_1list as
follows:

$ knife node run list remove webserver0l 'recipel[logstash]', 'recipe[monit
oring]'

webserver01l:

run list: recipe[webserver]

Deleting a node object

This is especially necessary for instances running on cloud platforms such as

AWS, Rackspace, Azure, and so on. Cloud platform providers have made it very
easy for people to provision infrastructure on demand. However, as easy as it is

to scale up the infrastructure, it's as hard to maintain it —especially when you've
instances going up and down like crazy due to provisions for elasticity. If we are
managing instances in cloud, it's very essential to find some way to clean up node
objects from chef-server that aren't up-and-running anymore. You can delete a node
object using the following command:

$knife node delete <node name>

For example, let's presume our node webserver01l no longer exists in the
physical world. Let's get rid of this node object then:

$ knife node delete webserver(0l -y

Deleted node[webserver01]

With AWS, you can make use of SNS and SQS to build a system where, if
. aninstance goes down, a SNS notification is issued that writes a message
% to SQS. This message contains the name of the instance (which is a tag).
e You can then write a daemon that runs on one machine and polls SQS for
any message; if there is any message, it pops it out, reads the name of the
instance, and issues a command to delete the node from chef-server.

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Managing an API client

As with node objects, every instance that communicates with chef-server registers
itself as an API client. This client is authenticated with chef-server through a
public/ private key pair, and every communication with the chef-server REST API
is authenticated through this. In general, the node name and client name are usually
the same; however, they can be different too. You can create, delete, edit, reregister,
and list clients using Knife.

Creating a new client

You can create a new client using the following command:
$ knife client create maxc0d3r

This will open up your favorite text editor with the following JSON template:
{

"name": "maxcO0d3r",

"public key": null,

"validator": false,

"admin": false,

"json class": "Chef::ApiClient",
"chef type": "client™

If you want to make your client admin, change the value of false to
true. As you'll see in later chapters, the admin privilege is something
_ that can be very useful in certain cases. Usually, whenever a new
& instance registers itself with chef-server, it's registered as a non-admin
L client. However, a non-admin client doesn't have certain privileges,

such as modifying data bag elements, and so on. If you are running the
Chef setup in a private network, I would suggest modifying the Chef
code so that every client is registered automatically as an admin.

Save this file and exit your editor, and the command will return your private key:

$ knife client create maxc0d3r

Created client [maxc0d3r]

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Knife and Its Associated Plugins

Save this private key in a safe place, and now you can communicate with chef-server
as maxc0d3r using the private key we just downloaded.

Listing all available API clients

You can find a list of all available clients using the following command:

$ knife client list
chef-validator
chef-webui

maxc0d3r

The chef-validator and chef-webui clients come by default along with "
chef-server.

Displaying information about a client

You can use the following command to get the required information about an
API client from chef-server:

$ knife client show maxc0d3r

admin: true

chef type: client

json class: Chef::ApiClient

name: maxc0d3r
public key: ----- BEGIN RSA PUBLIC KEY-----
XXXXXXXXXXXXXXXXXXXX

validator: false

Deleting an existing client

You can delete an existing client using the following command:

$ knife client delete maxc0d3r -y
Deleted client [maxc0d3r]

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Reregistering a client

It might so happen that on one really bad day, you lost your private key that you'd
received while registering the client with chef-server. Well, not everything is lost
here. You can reregister your client with chef-server by issuing the following
command:

$ knife client reregister maxc0d3r

Reregistration of a client will invalidate the previous public/ private key pair,
and chef-server will return you a new private key that you can use now
to communicate with chef-server using the existing client.

The search command

Perhaps one of the most useful use of Chef, while managing large-scale
infrastructures, is through the search facility. The Chef server maintains an index
using Solr, and this index can be queried for a wide range of stuff such as data bags,
environments, nodes, and roles. One can specify exact, wild card, or fuzzy search
patterns to search through this index.

You can use the search command as follows:

$knife search INDEX QUERY

Here, INDEX in the command can either be the client, environment, role, node, or
data bag name. QUERY is the query string that will be executed. The default INDEX
value is node; if it's not specified, it's implied as a node by default.

Consider the following as an example:

$ knife search '*:*!

Node Name: webserver01l

Environment: staging

FQDN:

IP:

Run List: recipe [webserver], recipel[logstashl]
Roles:

Recipes:

Platform:

Tags:

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Knife and Its Associated Plugins

If the search query pattern doesn't contain a colon (:), the default query is:
tags:*#{@query}*, roles: *#{e@query}*, fqdn: *#{@query}*, or addresses: *#{@
query}*.

Let's see some examples of a Knife search in action:

* To find all nodes having the environment as production and the platform as
Ubuntu, the command will be as follows:
$ knife search node 'chef environment:production AND
platform:ubuntu'

* To find all nodes having the environment as production and the platform as
Ubuntu, and to show the users configured on these machines, the command
will be as follows:
$knife search node 'chef environment:production AND
platform:ubuntu' -a users
The -a option is used to restrict the output to attributes that have been
specified. This is especially useful if we want to write a script around the
output from a Knife search.

* To find all nodes having the environment as production and the role as
webserver, the command will be as follows:
$ knife search node 'chef environment:production AND
role:webserver'

* To find all nodes having the environment as production and recipes as
logstash, the command will be as follows:

$ knife search node 'chef environment:production AND
recipes:logstash!'

Bootstrapping a node

Knife can also be put to effective use to bootstrap a machine. Let's presume you've
got a brand-new machine that you want to set up as a web server. For the sake of
this example, I'll presume that it's a Ubuntu 12.04 machine. The service provider has
given you the hardware and has installed the operating system for you. However,
now, in order to configure it with Chef, you need to install the chef-client on the
machine. One way to go about doing this is to manually go to the machine and
install Chef using the gems or omnibus installer.

However, there is a more easy way. You can use your good old friend Knife to set
up chef-client on a newly created instance.

Use the following command to bootstrap your instance:

$ knife bootstrap webserver0l -x user0l -i userOl.key --sudo

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

This command will use user01.key as the SSH key, and try to use SSH to connect to
the remote machine (webserver01) as user (user01). Once it's able to establish SSH
connection, this command will then set up Chef using the omnibus installer using
sudo. Finally, the command will register the node with the chef-server and trigger a
chef-client run.

We'll see more ways to accomplish this job in later chapters.

Some useful Knife plugins

Knife is a wonderful tool on its own. However, there are plenty of plugins available
that help extend the functionality of Knife. We'll be writing some such plugins in
later chapters. Let's take a sneak peak at a few really useful plugins that will help
ease your job of administering a large-scale infrastructure.

The knife-ssh plugin

Say you had around 10 web servers in your infrastructure, with the environment as
production and the role as webserver. Now, one day you realize that you want

to clean up a directory, say /var/log/nginx, as you've forgotten to clean up logs
that have been accumulating over a period of time due to a misconfigured log
rotation script.

No worries, the knife-ssh plugin is just meant to handle this situation. Here is
how we can use it:

$ knife ssh -i <path to ssh key> 'chef environment:production AND
role:webserver' -x user 'sudo -i rm -f /var/log/nginx/*.gz'

This command is presuming that a user named user has sudo privileges on all the
machines that have chef environment as production and webserver as role.

The knife-ec2 plugin

AWS is one of the most popular public cloud service provider, and one of its
offerings is called EC2. This service allows you to create machines that can then
be used for a different purpose.

This plugin provides the ability to create, bootstrap, and manage EC2 instances.
You'll need to install this plugin before being able to use it. To install this plugin,
issue the following command:

$gem install knife-ec2

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Knife and Its Associated Plugins

Once the plugin is installed, you'll need to add these two additional configuration
values to your knife.rb file:

knife[:aws_access_key id] = "AWS ACCESS_ KEY"
knife[:aws_secret access _key] = "AWS SECRET_ KEY"

If you aren't in the US-EAST-1 region, you'll also need to specify one other
configuration parameter:

knife[:region]

You could've also provided these values as arguments to the knife ec2 command,
but keeping them in knife.rb is perhaps the easiest way.

Once you've the plugin set up correctly, you can list all your EC2 instances using
the following command:

$ knife ec2 server list

You can create a new instance using the following subcommand:

$ knife ec2 server create

You'll need to supply some information such as the AMI ID, SSH key pair name,
and so on, for this purpose. You can find more details about the options that this
command accepts using the following command:

$ knife ec2 server create -help

The knife-azure plugin

This is a plugin very similar to the knife-ec2 plugin, and provides capabilities to
manage instances on the Microsoft Azure cloud platform.

The knife-google plugin
This is a plugin on the lines of the knife-ec2 plugin, and provides capabilities to
manage instances on Google Compute Engine.

The knife-push plugin

If you are using Enterprise Chef, you might want to try using the push job facility.
It's an add-on that allows jobs to be executed on a machine independent of chef-
client. A job is a command that has to be executed and the machine on which it
needs to be executed is defined by a search query.

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Push jobs have three main components: jobs (managed by the push jobs server), a
client (which is installed on each machine), and one (or more) workstations.

These components communicate with each other as follows:
* A heartbeat message between the push job server (usually chef-server)
and each node.

* The knife-push plugin that provides four commands: job 1list, job start,
job status, and node status.

* Various job messages are sent from the workstation to job server.

* A single job message is sent from the push job server to one or more
nodes for execution.

You can find more details about push jobs at http://docs.opscode. com/push_
jobs.html.

Other than these plugins, there are many other plugins available for use. You can
find some of them at https://github.com/chef?query=knife.

Summary

In this chapter, we learned about one of the most widely used components

of Chef's ecosystem, called Knife. We looked at the different subcommands

of Knife, configuring Knife, and finally some plugins that can be used to extend
Knife's functionality.

In the next chapter, we will see why we need to learn Ruby and write efficient
infrastructure code using Ruby.

[55]

www.it-ebooks.info

http://docs.opscode.com/push_jobs.html
http://docs.opscode.com/push_jobs.html
https://github.com/chef?query=knife
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

When we say that we will be specifying our infrastructure as a code using Chef,
what we mean is that we'll be writing code using domain-specific language (DSL)
provided by Chef. This code will be executed by chef-client on the concerned
machine, and the machine will be bootstrapped as per the guidelines we specify
in our code. The DSL provided by Chef is very much like Rake tasks, and Ruby
developers will find themselves at home when writing Chef code.

Chef DSL is actually a Ruby DSL, and one can use the full power of Ruby as a
programming language when trying to write Chef code. The term "Chef code" is
used loosely here, to specify recipes, roles, environments, templates, resources,
attributes, libraries, and so on.

Chef provides a DSL that you can use to write your recipes and roles, describe
environments, write custom resource providers and libraries, and so on.

The code that you'll write will be stored as Ruby files in the Chef repository. When
these files are uploaded to the Chef server, they are converted to JSON. Each time
the contents of Chef repository are changed and uploaded to the Chef server, the
Ruby files are recompiled to JSON and uploaded. This needs to be emphasized:
recipes and libraries aren't converted to [SON.

So, do I need to be a Ruby developer now to make use of Chef? This is the question that
first bumps into anyone's mind, who is jumping into the world of Chef. The
answer to this question isn't as easy as a yes/no. Yeah, you need a certain level of
competency with Ruby if you want to really make use of Chef, however, you don't
need to be a hardcore Ruby developer to make the best use of Chef. Knowledge

of Ruby will be helpful, in any case, as it makes for an excellent choice to write
automation scripts.

In this chapter, we'll look at those components of Ruby that you will need to
know in order to make the best use of Chef.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

Ruby

Ruby is a simple, dynamic programming language created by Yukihiro Matsumoto
(also known as Matz). The language is a blend of features provided in different
languages such as Perl, Smalltalk, Lisp, and so on. Ruby was developed with an aim
to provide a new language that balanced functional programming with imperative
programming.

As mentioned earlier, you don't have to be a hardcore Ruby developer. Following are
the things that we'll cover in this chapter, which will allow you to make the best use
of Chef:

* Variables and types

* Basic operations

* Conditional statements and loops

* Blocks

* Arrays and hashes

Yeah, we just need to learn about these five components of the language and we
are all set to conquer the world of Chef.

However, before we go ahead with our journey into the fascinating world of Ruby,
let's take a quick look at IRB. This is one of those tools that can really help you
while playing with small Ruby code snippets.

IRB

IRB is an acronym for "interactive Ruby". It's a tool that provided alongside
Ruby interpreter, which allows for the interactive execution of Ruby expressions.
These expressions are delivered to IRB using standard input.

Let's quickly see IRB in action:
~ irb

2.1-head :001 >

When we enter the irb command, it throws a shell at us. The format of the shell
prompt is as follows:

S$RUBY VERSION :$LINE NUMBER >

You can customize this prompt to your liking. However, for now, just remember
that whatever expression you enter at the prompt is interpreted as a Ruby
expression and is evaluated right away.

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Consider the following as an example:
irb
2.1-head :001 > 2+3

=> 5

As you can see, we entered an arithmetic expression to compute the sum of two
numbers, 2 and 3, and in return IRB returned us the output of computation.

To exit out of IRB, just issue the quit or exit command at the prompt.

To learn more about IRB and how to customize it to your liking, read the IRB
documentation at http://ruby-doc.org/stdlib-2.1.5/1libdoc/irb/rdoc/IRB.
html. Replace 2. 1.5 with the Ruby version installed on your machine.

Variables and types

If you are new to programming, then just for a quick reference: a variable is
nothing, but a memory location where we can save some data. This memory
location can be easily referenced by a name and that name is called the variable
name. Many languages such as C, Java, and so on, force you to declare variables
before you use them, and they also expect you to specify the type associated with
the variable. For example. if you want to store a number in the memory ina C
program, you'd say the following:

int x = 10;

This will create a 2 byte memory space and that memory space will contain a binary
associated with 10. The memory location where 10 is stored can be referenced
through a variable name called x.

Ruby, on the other hand, is pretty lenient and it doesn't expect you to specify data
type associated with a variable. Ruby, hence, belongs to a family of programming
languages that are called dynamically typed languages. Unlike strongly typed
languages, dynamic languages do not declare a variable to be of certain type; instead,
the interpreter determines the data type at the time some value is assigned to the
variable:

x = 10
puts x
X = "Hello"

puts x

[59]

www.it-ebooks.info

http://ruby-doc.org/stdlib-2.1.5/libdoc/irb/rdoc/IRB.html
http://ruby-doc.org/stdlib-2.1.5/libdoc/irb/rdoc/IRB.html
http://www.it-ebooks.info/

Chef and Ruby

The preceding piece of code, when executed, will give the following output:

10
Hello

Variable names in Ruby can be created using alphanumeric characters and
underscores. A variable cannot begin with a number. Variable names cannot begin
with a capital letter, as the Ruby interpreter will consider it to be a constant.

Variable names can also start with special characters called sigils. A sigil is a symbol
that is attached to an identifier (this is just the name of the variable, method, or class).
We'll see more about methods and classes later in this chapter. Sigils in Ruby are
used to determine the scope of variables (scope is the range in your code where the
variable can be referenced). We've the following sigils available in Ruby:

* s
* e

Any variable without a sigil is a local variable. This variable's scope is limited to a
block, method, or class in which it's defined.

Global variables begin with the $ sign. They are visible everywhere across your
program. Though they seem like a good feature, the use of global variables should
be avoided in general.

Any variable starting with the @ character is an instance variable. Instance variables
are valid inside an object.

Finally, any variable with the ee character as prefix is called a class variable.
This variable is valid for all instances of a class.

There are a few methods provided by Ruby that will help you find
local variables, global variables, instance variables, and
class_variables in a given context of the code. Let's see them in action:

#!/usr/bin/env ruby

w = 10

$x = 20
@y = 30
@@z = 40

P local variables
P global variables.include? :$x
p self.instance variables

p Object.class variables

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The p method like put s can be used to display output. However,
+ there is a subtle difference between the two. The put s method calls
% the to s method on the object and returns a readable version of the
’ object. The p method, on the other hand, calls the inspect method
instead of to_s. The p method is better suited for debugging.

The local_variables method gives us an array of all the local variables defined

in a specific context. The global_variables method produces a list of all global
variables. Since there are a lot of default global variables created by Ruby and we
didn't want to list them all, we chose the include method of the Array class, which
tells us whether something belongs to the concerned array or not. The self pseudo
variable points to receiver of the instance variables method. The receiver in our
case is the main method. Finally, we have an array of class variables associated with
Object. The main is an instance of the object class.

Let's run the code and see what happens:

$./sigils.rb
[:w]

true

[:ey]

[:@ez]

Often we need to declare some variables at the operating systems' environment
level, and we might need to make use of them. The ENV constant gives access to
environment variables. This is a Ruby hash. Each environment variable is a key to
the ENV hash. The ARGV constant, on the other hand, holds command-line argument
values. They are passed by a programmer when a script is launched. The ARGV array
is an array that stores arguments as strings. The $* is an alias for ARGV.

Ruby also has some predefined variables such as $0, $*, and $s. The $0 variable
stores the current script name. The $* variable stores command-line arguments.
The $% variable stores the PID of the script.

Symbols

Symbols look like variables, however, with a colon (:) prefixed. For example,
:symbol_1. Symbols need not be predeclared and assigned a value. Ruby guarantees
that the symbol has a particular value, no matter where it appears in a Ruby program.

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

Symbols are very useful because a given symbol name refers to the same object
throughout a Ruby program. Two strings with the same content are two different
objects; however, for a given name, there can only be one single symbol object.
Let's examine the following example to illustrate this fact:

irb
2.1-head :001 > puts "string".object id
70168328185680
=> nil
2.1-head :002 > puts "string".object id
70168328173400
=> nil
2.1-head :003 > puts :symbol.object id
394888
=> nil
2.1-head :004 > puts :symbol.object id
394888
nil
As you can see, we started by creating a string object with the string value and
sought its object ID using the object_id method. Next, we tried the same thing
once more. In both the cases, we received different object IDs. However, when we

applied the same concept to a symbol object called : symbol, we received the same
object ID both the times.

Ruby uses a symbol table to hold the list of symbols. Symbols, like variables, are
names —names of instances, variables, methods, and classes. So, let's say we had a
method called method1; this would automatically create a symbol called :method1
in the symbol table. This symbol table is maintained at all the times while the
program is under execution. To find what is present in this symbol table, you

can execute the Symbol.all symbols method.

Symbols are more effective than strings as they get initialized just once. Let's see
an example.

Let's call the following code snippet as Codel:

day = "Sunday"
if day == "Sunday"
puts "Holiday!"
else
puts "Work day"
end

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Let's call the following code snippet as Code2:

day = :Sunday

if day == :Sunday
puts "Holiday!"
else
puts "Work day"
end

In Codel, we've a Sunday string. It's used once to be assigned to a variable called
day and, the next time, we use this string for comparison. In this case, two instances
of string objects are created in memory. However, in Code2, we've a symbol called
:Sunday and it's declared just once. All later references to the symbol refer to the
same old object.

With this knowledge of symbols, a question arises as to when to use symbols and
when to make use of strings. There is no easy answer to this, but as a general practice:

* If the content of the object is important, a string is a more apt choice
* If the identity of the object is important, a symbol is a more suitable choice

Basic operations

Like all other programming languages, Ruby comes packed with a whole bunch
of operators.

Arithmetic operators

Assumea=2and b =4.

Operator | Description Example
+ Addition: Adds values on either side of the operator a + b will give 6
- Subtraction: Subtracts the right-hand side operand a - b will give -2

from the left-hand side operand

Multiplication: Multiplies values on either side of the | a* b will give 8

operator

/ Division: Divides the left-hand side operand by the b/ awill give 2
right-hand side operand

% Modulus: Divides the left-hand side operand by the b % a will give 0

right-hand side operand and returns the remainder

* Exponent: Performs exponential (power) calculations a** b will give 2

on operators to the power of 4,
which is 16

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

Comparison operators

Operator | Description Example
== Checks whether the values of the two operands (a == D) is not true.
are equal or not; if yes, then the condition
becomes true.
I= Checks whether the values of the two operands (a!=D) is true.
are equal or not; if the values are not equal, then
the condition becomes true.
> Checks whether the value of the left-hand side (a> D) is not true.
operand is greater than that of the right-hand side
operand; if yes, then the condition becomes true.
< Checks whether the value of the left-hand (a <b)is true.
side operand is less than the value of the
right-hand side operand; if yes, then the
condition becomes true.
>= Checks whether the value of the left-hand side (a>=Db) is not true.
operand is greater than or equal to the value of the
right-hand side operand; if yes, then the condition
becomes true.
<= Checks whether the value of the left-hand side (a <=Db) is true.
operand is less than or equal to the value of the
right-hand side operand; if yes, then the condition
becomes true.
<=> This is the combined comparison operator. (a <=>Db) returns -1.
Returns 0 if the first operand equals second, 1 if
the first operand is greater than the second, and -1
if the first operand is less than the second.
=== This is used to test the equality within a when (1...10) ===
clause of a case statement. returns true.
.eql? This returns true if the receiver and argument 1 == 1.0 returns true,
have both the same type and equal values. but 1.eql?(1.0) is
false.
Equal? This returns true if the receiver and arguments If aObj is duplicate
have the same object ID. of bObj, then aObj
== bObj is true,
a.equal?bObj is false,
but a.equal?aObj is
true.

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Assignment operators

Operator | Description Example

= This is the assignment operator. Assigns ¢ =a+ bwill give c the
values from the right-hand side operand to value 6
the operand on the left-hand side.

+= Adds the operand on right-hand side to the c +=aisequivalent to c =
operand on left-hand side, and assigns the cta

result to the left-hand side operand.

-= Subtracts operand on the right-hand side from | c -= a is equivalent to ¢ =
the operand on the left-hand side, and assigns | c-a
the result to the left-hand side operand.

Multiplies the operand on the right-hand side | ¢ *=a is equivalent to c =
with the left-hand side operand, and assigns c*a
the result to the left-hand side operand.

/= Divides the operand on the left-hand side ¢ /=aisequivalent toc=
by the operand on the right-hand side, c/a
and assigns the result to the left-hand side
operand.

%= Takes modulus using two operands, and ¢ %= ais equivalent to c =
assigns the result to the left-hand side c%a
operand.

= Performs exponential calculation on ¢ **=ais equivalent to c =
operators, and assigns the value to the left- c*a

hand side operand.

Bitwise operators

Operator Description Example
& Binary AND (a&b)=0
| Binary OR (alb)y=6
A Binary XOR (@a”"b)=6
~ Binary 1s complement ~a=-3

<< Binary left shift a<<2=8
>> Binary right shift a>>2=0

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

Logical operators

Operator Description Example

and If both the operands are true, condition (a and b) is true
becomes true

&& If both the operands are true, condition (a && b) is true
becomes true

or If any of the operands are true, condition (aorb)is true
becomes true

| | If any of the operands are true, condition (@ | | b)istrue
becomes true

! If a condition is true, logical not will make it !(a && D) is false
false

not If a condition is true, logical not will make it not(a &&b) is false
false

The Ruby ternary operator

Operator

Description

Example

?:

Conditional expression

If the condition is true, then
value x: otherwise value y

Ruby range operators

Operator

Description

Example

Creates a range from the start to end point
inclusive

1..10 creates a range from
1to10

Creates a range from the start to end point
exclusive

1...10 creates a range
from1 to 9

The Ruby defined? operator

The defined? operator is an operator that checks whether the passed expression is
defined or not. If the expression is not defined, it returns nil or else a description of
the expression as a string:

e The defined? variable: If the variable is defined, it returns true

e The defined? method: If the method is defined, it returns true

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

* The defined? super: If the method exists that can be called with superuser,
it returns true

* The defined? yield: If the code block has been passed, it returns true

Conditional statements and loops

Conditional statements and loops allow developers to branch off from the serial flow
of execution of code and also iterate through the code. Ruby provides multiple ways
to do this job. Let's look at a few of them.

The if statement

The if statement is pretty much a basic branching statement that's provided by
many programming languages. It's pretty much how we use the "if" statement in
natural language —if it's true, do this; if it's not, do something else.

xX=2
if x ==

puts "True"
else

puts "False"
end

If we need to check for multiple conditions, we get an elsif statement, that we can
embed between the if and else statements:

height = 164
if height > 170
puts "Tall"
elsif height > 160
puts "Normal"
else
puts "Dwarf"
end

The fun part of doing this in Ruby is that you can assign values returned by the if,
elsif, and else blocks. For example, you might want to save the Tall, Normal, or
Dwarf message inside some variable for later use. You can do this quickly in Ruby
as follows:

size = if height > 170
n Tall n

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

elsif height > 160
"Normal"

else
"Dwarf"

end

Depending on the value of height, whichever block is executed, it'll eventually
become the value of size.

The unless statement

Often, you would want to make a choice, where if a condition is not true, do this

or else do that. In most of the programming languages, and Ruby too, you can
accomplish this using the negation operator (!) before the condition along with the
if statement. However, Ruby provides a more convenient and natural way to handle
this through the unless statement. You can just say this: unless condition, do this

or else do that.

An example for this is as follows:

day today = "Sunday"
unless day today == "Sunday"+

puts "Working day!"
else

puts "Holiday time!"
end

The case/when statement

Many a times, we'll have multiple conditions to deal with and, if that's the case, then
though if then else can be used, it will become messy eventually. The case/when
statement is a much better option in this case:

day today = "Sunday"
case
when day today == "Sunday"
puts "Holiday!"
when day today == "Monday"
puts "Start of week !"
when day today == "Wednesday"

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

puts "Mid week crisis I
end

Alternatively, an even better and concise way to express this would be as follows:

day today = "Sunday"
case day_ today
when "Sunday"
puts "Holiday!"
when "Monday"
puts "Start of week!"
when "Wednesday"
puts "Mid week crisis!"
end

The while loop

A while loop can continue to execute statements until the condition stated is false.
In other words, a while loop can continue to execute statements "while the condition
is true".

count = 1

while count < 10
puts count
count += 1

end

This will print the numbers 1 to 9.

The until loop

As unless is the opposite of i £, until is the opposite of while. It will continue to
iterate over the block of code until the given condition is true:

count = 10
until count ==
puts count
count -=1

end

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

The for loop

The for loop in Ruby is more like a foreach loop in languages such as Perl or PHP.
It's mostly used for iterating over an array or a hash:

x = [1,2,3,4,5]

for item in x
puts x

end

This will print all elements of the x array, one at a time.

Methods

Ruby methods are what we refer to as functions in some other programming
languages. Many a times, we would want all the statements, operators, and so on
that we saw earlier, to be bundled together and used as a single unit. Methods are
means to accomplish this feat.

In Ruby, a method name should begin with a lowercase letter. Methods should be
defined before they are called upon, otherwise an exception is raised by Ruby.

The syntax to define a method is as follows:

def method name [([arg [= default]]...[, *arg [, &expr 11)]
end

Let's look at a few different examples to make this syntax more clear.

Example 1—a simple method:

def method
Method definition goes here
end

Example 2 —a method with two arguments:

def method (argl, arg2)
Method definition goes here
end

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Example 3 —a method with two arguments having some default values. This will
pass default values to the arguments if the method is called without passing the
required parameters:

def method (argl=vall, arg2=val2) # Method definition goes here
end

Example 4 — variable number of parameters:

def method (*args)
Method definition goes here
end

In this case, args is an array that contains all the parameters that are passed to the
method when it's called.

Each method in Ruby returns a value by default. This return value will be the value
of the last statement of the method definition, or whatever is returned explicitly by
the return statement.

Take a look at the following examples.

Example 1—default return value:

def method
x=1
y=2

end

This method, when called, will return the last declared variable y.

Example 2 — explicit return value using the return statement:

def method
return 1
end

This will return 1.
The method can be called by issuing its name. For example:

* method #: This will call a simple method called method
* method("a","b") #: This will call a method with two arguments

* method "a","b" #: This will again call a method with two arguments

You may even assign a value of this method to a variable.

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

Blocks

Blocks are one of the most powerful features of the Ruby programming language
and perhaps one of the most misunderstood ones. Blocks are pieces of code between
braces ({ }), or pieces of code enclosed between do-end. These are a way to group
statements and they can only appear adjacent to method calls. The code written
inside a block is not executed when it's encountered, instead it's called when the
method makes a call to yield.

Blocks can have their own arguments as well. There are many methods in Ruby that
iterate over a range of values, and most of them can take a code block as an argument.
These methods call yield multiple times to allow for the iteration to complete.

Let's explore this using some examples.

Example 1—a simple code block:

Linel #/usr/bin/env ruby
Line2 def call block

Line3 i=0

Line4 puts "Start of method"
Line5 while i < 10

Lineé6 print i + ":\t"
Line7 yield

Line8 i+=1

Line9 end

LinelO puts "End of method"

Linell end

Linel2 call block { puts "Inside code block" }

When executed, we'll get the following output from the preceding code:

Start of method

Inside code block
Inside code block
Inside code block
Inside code block
Inside code block
Inside code block

Inside code block

N o oA W NN B o

Inside code block

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

8: Inside code block
9: Inside code block
End of method

So, the interpreter looked at the code and figured out that we made a call to the
call_block method in Line12. The interpreter then jumps to Line2 where the
method is defined. Starting on Line5s, we enter a while loop; finally, on Line7
we make a call to the block associated with the call block method.

Example 2 —a code block with arguments:

#/usr/bin/env ruby
def call block
i=0
puts "Start of method"
while i < 10
yield i
i+=1
end
puts "End of method"
end

call block { |i| puts "Call #{i} - Inside code block" }

Here, we create a block that accepts an argument. The value passed to the block as an
argument is stored inside a local variable named i. This time, inside the call block
method, we call the block through yield along with the argument. The following is
the output of running this piece of code:

Start of method
Call
Call
Call
Call

- Inside code block
- Inside code block
- Inside code block

- Inside code block

Call
Call
Call
Call
Call

0
1
2
3

Call 4 - Inside code block
5 - Inside code block
6 - Inside code block
7 - Inside code block
8 - Inside code block
9 - Inside code block

End of method

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

Example 3 —a code block using do-end

Both the previous examples made use of braces to declare a code block. Let's see
how we can create a code block using the do-end directives:

#/usr/bin/env ruby
def call block
i=0
puts "Start of method"
while i < 3
yield i
i+=1
end
puts "End of method"
end
call block do |i]
puts "Call #{i} - Inside code block"

end

Again, as in the example 2, this code will generate the same output as the
previous example:

Start of method

Call 0 - Inside code block

Call 1 - Inside code block

Call 2 - Inside code block

End of method

Example 4 —let's see how we handle variable scoping with blocks:

#/usr/bin/env ruby
x=15
3.times do |x|
puts "x in the block is #{x}"
end

puts "x out of the block is #{x}"

When executed, we'll get this output:

x in block is 0

X in block is 1

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

x in block is 2

x out of block is 15

So the x variable in the block was indeed a local variable.

Now let's see another case:

#!/usr/bin/env ruby

x=15
3.times do |y|
X =Y

puts "x in block is #{x}"
end
puts "x out of block is #{x}"

When executed, we'll get this output:

X in block is 0
X in block is 1
X in block is 2

x out of block is 2

In this case, since x is not a block parameter (variables inside | | are called block

parameters), both occurrences of x inside and outside the block are one and

the same.

There has been a change in how we can handle scoping of block parameters

since Ruby 1.9. Since 1.9, blocks have their own scope for block parameters only.

For example:

#/usr/bin/env ruby

x=15
3.times do |y; x|
X =y

puts "x in block is #{x}"
end
puts "x out of block is #{x}"

When executed, we'll get this output:

x in block is 0
x in block is 1
x in block is 2

x out of block is 15

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

Here, the x variable is a variable local to the block. If you want to specify variables
local to the block, just add them as a comma separated list after adding a semicolon
to the block parameter list.

For example, if a block has two block parameters, namely x and y, and you want to
have two block local variables, a and b, you can specify themas: | x,y ; a,b |.

Arrays

Arrays and hashes are perhaps the two data structures that will be used the most by
developers who are writing the Chef code. Be it fetching attributes or values from
data bags, you'll be finding these two data structures almost everywhere.

Arrays are an ordered collection of objects that can be accessed through an integer
index. Each element of an array can be referenced through an index. The first
element of the array is referenced through index number 0 and so on. Ruby also
provides support for negative integers as indexes. -1 refers to the last element of
the array, -2 is the second last element, and so on.

Unlike other languages, arrays in Ruby aren't tied to one single data type, and they
aren't fixed in size either. Ruby arrays grow automatically while elements are added
to it. Ruby arrays can also hold other array objects, thereby allowing us to set up
multidimensional arrays.

Creating an array

There are multiple ways to create arrays.

Way 1—using the new method of the Array class:

countries = Array.new

Let's create this array with an initial size of 10:

countries = Array.new(10)

We can find the size and length of the array using the size and length methods:

#/usr/bin/env ruby
countries = Array.new(10)
puts countries.size

puts countries.length

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

When executed, this will produce the following result:

10
10

Let's assign some values to our array:

countries = Array.new(3, "India")

This will create a countries array with values ["India", "India", "India"].
Way 2 —using the [] method of the Array class:

countries = Array["India","China", "USA"]

Way 3 —directly initializing an array using [1:

countries = ["India","China", "USA"]

Way 4 —specifying the range as an argument to create an array:
digits = Array(0..9)

This is equivalent to saying this:

digits = Array.new(0,1,2,3,4,5,6,7,8,9)

Or it is equivalent to saying this:

digits = Array.new(10) {|x]| x}

Also, it is equivalent to saying this:

digits = [0,1,2,3,4,5,6,7,8,9]

With our array created, we can now do lot of things with it. Let's see a few operations
that we'll be using most often with objects of the Array class.

Accessing elements of an array

Elements of an array can be retrieved using the # [1 method. It can take either a
single integer (absolute index), a range, or start element and length as arguments:
digits = [1,2,3,4,5,6,7,8,9]

digits[0] #=> 1

digits[2] #=> 3

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

digits[-1] #=> 9

digits [-2] #=> 8

digits [2,3] #=> [3,4,5]
digits[2..3] #=> [3,4]
digits[2..-4] #=> [3,4,5,6]

Another way to access an element of an array is to make use of the at method:
digits.at(2) => 3

If you try to access a value beyond the array boundaries, Ruby by default returns
nil. However, there might be circumstances where you might want to throw away
an error, or return some default value, if someone tries to access values beyond the
boundaries of an array. You can make use of the fetch method for this purpose:

digits.fetch(100) #=> IndexError: index 100 outside of array
bounds: -9...9

digits.fetch(100,"Out of bounds!") #=> Out of bounds!

There are two special methods, namely first and last. These methods allow you
to access the first and last element of an array:

digits.first #=> 1
digits.last #=> 9

To get the first n elements of an array, make use of the take statement:
digits.take(4) #=> [1,2,3,4]

There is another method called drop, which ignores the first n elements and returns
the remaining elements:

digits.drop(5) #=> [6,7,8,9]
To check whether an array has any element at all or not, use the empty? method:

digits.empty? #=> returns true if array named digits is empty or
else it'll return false

To check whether a particular element is included in the array, use the
include? method:

digits.include? (8) #=> returns true if array named digits contains
8 or else it'll return false

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Adding elements to an array

Elements can be added to an existing array using the push method or <<.

digits = [0,1,2,3,4]
digits.push(5) #=> [0,1,2,3,5]
digits << 6 #=> [0,1,2,3,4,5,6]

To add an element to the beginning of an array, use the unshift method:
digits.unshift(9) #=> [9,0,1,2,3,4,5,6]

To add an element at a fixed location, use the insert method:
digits.insert (3, 'three') #=> 1[9,0,1,'three',2,3,4,5,6]

We can also add multiple values, as follows:

digits.insert (3, 'three', 'four') #=>
[9,0,1, 'three', 'four',2,3,4,5,6]

Removing elements from an array

Elements can be removed from an array using the pop method:

digits = [0,1,2,3]

digits.pop

digits #=> [0,1,2]

You can use the shift method to remove an element from the start of an array:
digits.shift #=> 0

digits #=> [1,2]

To delete an element in a particular position, you can make use of the
delete_ at method:

digits = [0,1,2,3]
digits.delete at(l) #=> 1
digits #=> [0,2,3]

To delete a particular element, use the delete method:

digits = [0,1,2,2,3]
digits.delete(2) #=> 2
digits #=> [0,1,3]

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

If you want to remove duplicate values from an array, you can make use of the unig
method. It has two variants, uniq and unig!. The former will return a copy of the
array without duplicates, while the second one will remove the duplicate elements
within the array itself:

digits = [0,1,2,2,3]
digits.uniq #=> [0,1,2,3]
digits #=> [0,1,2,2,3]
digits.uniq! #=> [0,1,2,3]
digits #=> [0,1,2,3]

Iterating over an array

There are multiple ways in which one can iterate over an array. You can make use
of the loop constructs that we discussed earlier:

#!/usr/bin/env ruby

counter=0

x=[1,2,3,4]

while counter < x.length
puts x[counter]
counter += 1

end

However, like many other classes, the Array class includes the Enumerable module,
which provides a method called each. This method defines how and which elements
should be iterated. In case of arrays, you can supply a block to this method, and all
the elements of the array will be yielded:

x = [1,2,3,4]

x.each {|i| puts i}

Running this piece of code gives the following output:
1
2
3
4

There is a reverse_each method as well, that as its name suggests, allows for
traversal of the array in the reverse order:

x = [1,2,3,4]

x.reverse each { |i| puts i }

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Running this piece of code gives the following output:
4
3
2
1

There are times when we would like to create a new array based on the original
array, but with some modifications that are consistent across all elements of the
array. We can make use of the map method for this purpose:

[1,2,3,4]

x.map { |e| e**2} #=> y=[1,4,9,16]

X

Y

As you can see, each element of the x array was picked up, squared, and pushed
into a new array, which can be referenced using variable named y.

Selecting elements of an array

One can select elements specifying certain criteria defined in an associated block.
There is a destructive way and a nondestructive way to accomplish this.

The nondestructive way

An example of the nondestructive way is as follows:

= [1,2,3,4,5]

.select { |i]| i > 2 } #=> [3,4,5]
.reject { |i| i < 3 } #=> [3,4,5]
.drop while { |i| i < 3 } #=> [3,4,5]
#=> [1,2,3,4,5]

L T

The destructive way

An example of the destructive way is as follows:

x.select! { |i| i > 2 } #=> [3,4,5]
x.reject! { |i| i < 3 } #=> [3,4,5]

As you can see, in the nondestructive way, the methods returned an array after
performing the operations; however, our original array that is x remained unaffected.
However, in the destructive way, the original array itself was modified. We'll see a
bit more about this in our next section.

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

Bang methods

As you might have noticed, we used two different variants of the same method in
our previous example where we explained destructive and nondestructive ways of
selecting elements from an array. The bang sign after a method doesn't necessarily
mean that the method would be destructive, nor does it imply that methods without
a bang sign are always nondestructive. It's just a means of specifying the fact that
the methods with the ! sign affixed to the method name are more dangerous as
compared to methods without it.

The bang methods are generally used to do modifications in place. Now, what this
means is that, say I'veanx = [1,2,3,4,5] array and I want to remove all elements
from this array that are greater than 2. If I chose x. select, then the x array

would remain the same; however, a new array object containing [3,4,5] would

be returned. However, if I were to choose x.select!, then the x array itself

would be modified:

2.1-head :001 > x=[1,2,3,4,5]

=> [1, 2, 3, 4, 5]

2.1-head :002 > x.select { |i| i > 2 }
=> [3, 4, 5]

2.1-head :003 > x

=> [1, 2, 3, 4, 5]

2.1-head :004 > x.select! { |i| i > 2 }
=> [3, 4, 5]

2.1-head :005 > x

=> [3, 4, 5]

It's generally advisable to choose non-bang variants of a method, as most of the
times, we want to ensure that the objects on which we are working are immutable.
Hence, we would like to perform operations on a copy of the object, rather than
on the object itself.

Hashes

Hashes are also known as associative arrays, and they are dictionary-like objects,
comprising keys and their associated values. Hashes are very similar to arrays;
however, while arrays allow only integers to be used as an index, hashes, on the
other hand, can use any object as a key.

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Creating hashes

Hashes can be created easily using their implicit form as follows:
scores = { "A" => 85, "B" => 70, "C" => 60, "D" => 50, "E" => 35 }

Here, 2, B, ¢, D, and E are keys having associated values 85, 70, 60, 50, and 35,
respectively.

Hashes also allow for a form wherein keys are always symbols:
scores = { :A => 85, :B => 70, :C => 60, :D => 50, :E => 35 }

We may access each key's value using the corresponding symbol as follows:

scores[:A] #=> 85

We can also create a new hash using the new method of the Hash class:

scores = Hash.new

scores["A"] = 85

If no default value is set while creating a hash, then, when we try to access the key,
it'll return nil. One can always set a default value for a hash by passing it as an
argument to the new method:

scores = Hash.new(0)

scores ["A"] #=> 0

Let's now see a few commonly used methods for the Hash class and their
corresponding objects:

* hash.clear: This method removes all existing key-value pairs from a hash:
x = { :A => "a", :B => "b" }

x.clear #=> {}

* hash.delete (key): This deletes all key-value pairs from the hash that
matches the key passed into the arguments:

x ={ :A =>'a', :B => 'b'", :C => 'c' }
x.delete(:2) #=> 'a’'
x #=> {:B => 'b', :C => 'c'}

* hash.empty?: If the hash is empty, it'll return true or else false.

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

* hash.has_value? (value): This checks whether the given hash has the
corresponding value that was passed as an argument to the method. If it
has, then it'll return true or else false:

x = {:A => 'a', :B => 'b'}
x.has value?('a') #=> true

x.has value?('c') #=> false

* has.has_key? (key): This checks whether the given hash has the
corresponding key that was passed as an argument to the method.
If it has, then it'll return true or else it'll return false:

x= {:A => 'a', :B => 'b'}
x.has_key? (:A) #=> true

x.has_key?(:C) #=> false

* hash.keys: This method will return an array containing all the keys
associated with the hash:

x = {:A => 'a', :B => 'b'}

x.keys #=> [:A, :B]

* hash.values: This method will return an array containing all the values
associated with the given hash:

x = {:A => 'a', :B => 'b'}

x.values #=> ['a','b']

* hash.size: This method will return the length of the given hash:
x = {:A => 'a', :B => 'b'}

X.size #=> 2

* hash.to_s: This method will first convert the hash to an array and, finally,
convert this array to a string;:

x = {:A => 'a', :B => 'b'}
x.to s #=> "{:A=>\"a\", :B=>\"b\"}"
* hash.invert: This method will create a new hash with keys and values
from the original hash that is swapped:
x = {:A => 'a', :B => 'b'}

x.invert #=> {'a' => :A, 'b' => :B}

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Iterating over a hash

Like array, hashes also include the Enumeration module. Hence, we can make use
of methods such as each, each_key, and each _value.

An example of the use of the each method is as follows:

x = {:A => 'a', :B => 'b'}

x.each { |key, value| puts "#{key} #{value}" }

If we run the preceding piece of code, we'll get this output:

B b
An example of the use of the each_key method is as follows:
x.each key { |key| puts "#{key} #{x[keyll}" }

If we run the preceding piece of code, we'll get this output:

B b

An example of the use of the each_value method is as follows:
x.each value { |value| puts "#{value}" }

If we run the preceding piece of code, we'll get this output:

a

Classes and objects

Object-oriented programming is a paradigm that has become the foundation of many
modern programming languages, and it's at the core of Ruby. In short, the object-
oriented programming sees the world as data, modeled in code by "objects". When
working with data, this model of programming is most apt, as it allows us to model
our program as we would see the real world.

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

The object-oriented programming paradigm, or OOPs as it's popularly called, is
based upon a few principles, let's look at them one at a time:

Encapsulation: This is a concept that ensures a certain functionality is
hidden from the rest of the code. Its primary use is to ensure that the
underlying data is protected, and can only be manipulated in a way the
object desires. Ruby accomplishes this by creating objects. The objects expose
certain interfaces (also known as methods), using which the interaction can
happen with those objects.

Polymorphism: This is the ability to represent the same thing in multiple
forms. In the context of Ruby, this means that we'll have a single interface

to entities of different types. One way to achieve polymorphism is through
inheritance. This allows one class to inherit functionality of another class. The
class from which the functionality is inherited is referred to as superclass,
while the class that is inheriting the functionality is called a subclass.

For example, let's say we've a class called shape that has a method called draw. We'll
use this shape class as a superclass for two subclasses, namely circle and Square:

class Shape

def draw

end

end

raise NotImplementedError, 'You must implement the draw method'

class Circle < Shape

def draw

puts "We'll draw a circle here."

end

end

class Square < Shape

def draw

end

end

puts "We'll draw a square here."

Now, let's use these subclasses in our script and see what happens:

shape

= Circle.new

circle.draw

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

shape = Square.new

square.draw

When this script is executed, we'll get the following output:

We'll draw a circle here.

We'll draw a square here.

Another way to achieve polymorphism in Ruby is via modules. Modules like classes
contain code that is common in behavior. However, we cannot create an object from

a module. A module must be mixed in a class using the include keyword. This is
referred to as mixin. After the mixing of the module, all the behaviors specified in the
module are available to the class and its objects. We'll look at modules a little later after
being introduced to the concepts of classes and objects.

What's an object and a class?

You might hear this phrase multiple times, "In Ruby, everything is an object!"
Though we've not yet touched the concepts of objects so far, it's true that everything
in Ruby is an object. Objects are created out of classes. One can consider classes to be
the concepts, while objects are real-life incarnations of those concepts. For example,
living beings are a concept whereas you, me, our pets, plants, and so on, are all real
living beings. Different objects might have different information stored about them;
however, all of them might belong to the same class.

Attributes and behaviors associated with an object are defined in a class. Classes
define what an object would finally appear like and what all it will be able to
accomplish. To define a class, we use the class keyword, and use CamelCase
naming convention to name the class. The class definition finishes with the end
keyword. The filename associated with a class is specified in the snake_case format.
So we might have a file called 1iving beings.rb that holds the LivingBeings class:

#living beings.rb
class LivingBeings

Definition of class goes here
end

We can now create an object from this class by using the new method as follows:
humans = LivingBeings.new

The process of creating a new object from a class is called instantiation, and hence an
object is also sometimes referred to as an instance of a class.

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Ruby

Modules

As we discussed earlier, modules are a way to achieve polymorphism. They also
allow for multiple inheritance. A module is a collection of behaviors that is usable
in a class via mixins.

Let's look at an example to see modules, classes, and mixins in action:

module A
def methodAl
end
def methodA2
end

end

module B
def methodB1l
end
def methodB2
end

end

class X

include A
include B
def methodX
end
end
= X.new
.methodAl
.methodA2
.methodB1
.methodB2
.methodX

PO T T

As you can see, we've two modules, namely A and B, and each of them has two
methods. Next, we've a class called x, and we've included both the 2 and 8 modules
in the x class. This class also has its own method called methodx. Finally, when we
create an object of this class, the object has access to all the five methods. Thus, we
can see that the X class is inheriting from both the modules, and hence is showing
multiple inheritance.

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Summary

This brings us to the end of our journey in to the world of Ruby. We have looked at
variables, operators, statements, and methods, and eventually had a sneak peek into
the world of OOPs. We have learned about classes, objects, and modules. We'll make
use of most of the stuff we learned here throughout this book. We'll be extending our
knowledge of Ruby as and when we move on to structures involving JSON objects
and so on.

In the next chapter, we'll cover concepts such as organizations, groups, and users,
and how you can allow for fine-grained access to different types of objects on the
Chef server.

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Access to
Resources

So you decided that you were going to set up a Chef server and configure your
infrastructure in a smart way. Good for you! However, once you've moved past this
stage, the next stage that will come and haunt most organizations is: How do we
ensure that everyone is able to contribute towards using Chef, while ensuring that
no big mess up happens when everyone is busy modifying the Chef code? Above
all, how to ensure that anybody who is not supposed to access resources on the Chef
server is denied access?

Chef provides a very fine-grained, role-based access to resources through
Enterprise Chef.

Any system that has to provide for such a mechanism has to have two components
included in it:

e Authentication

e Authorization

All communication with the Chef server is through the Chef Server API. The

API provided by Chef is a REST API, and the access to the API is restricted using
authentication mechanisms. Public key encryption is used in both Enterprise and
Open Source Chef for authentication purpose. Whenever a node/ client is created to
communicate with the Chef server, a public/private key pair is created. The public
key is stored on the Chef server, while the private key is kept with the client. Every
request that is made to the Chef server API contains a few special HTTP headers that
are signed using the private key. The public key stored on the Chef server is used
to verify the headers and contents. Once a request has been authenticated, the next
thing that the Chef server needs to decide is whether the request should return the
data to the client who has requested access to it.

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Access to Resources

In the Open Source Chef server, there are only two types of roles that a client can
have: either a client can be admin or non-admin. However, in Enterprise Chef, we
can manage access to resources through the role-based access control model.

The bootstrap process

Before we jump into understanding the authentication and authorization
mechanisms available in the Chef ecosystem, let's look at the bootstrap process
used for the purpose of bootstrapping a new machine using Chef. There are two
ways to bootstrap a new node:

* Using the knife bootstrap subcommand

* Using a custom orchestrator, which can bootstrap a new machine

In both the cases, unless you are using the chef-client version 12.1 (or higher)

and the validator-less bootstrap, you'll require the validator's private key for the
first chef-client run on the node. If you are using the Open Source Chef server, this
key can be found in /etc/chef-server/chef-validator.pem, whereas, for the
Enterprise Chef server, this key will be issued to you during the initial setup.

If you are going to use the knife bootstrap subcommand, this key should be
copied over to the machine from where the knife bootstrap subcommand will
be invoked. Also, update your knife.rb file on the workstation with the path of
validation_key along with validation_client_name.

If you are going to use a custom orchestrator to provision your machines, you might
want to copy this key to a location from where it's accessible on a remote machine.
For example, if you are working in an Amazon AWS environment, perhaps you
will want to keep this key in a S3 bucket and use user data to fetch this key from

S3 during the bootstrap process. This method is also useful when trying to do
unattended installs.

During the bootstrap process, if a chef-client is not present, it's installed. Next, the
necessary keys are generated using the name of the node, which can either be the
name provided explicitly, FQDN, machine name, or hostname. Finally, the node is
registered with the Chef server. For this purpose, the validator private key is put
to use. Once the client is set up, a corresponding private key is created on the node
(/etc/chef/client.pem). All subsequent communications with the Chef server
happen through this key.

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

As we can see, the validation.pemfile is the primary source of authentication when
trying to bootstrap a machine. Hence, this key should be secured, and unauthorized
access to this key should be avoided. Also, any keys issued to the users with admin
privileges should be safeguarded as these accounts can be used to perform destructive
operations on the Chef server.

Authentication

Communication with the Chef server can be initiated by different mechanisms such
as chef-client, Knife, and using API in code. Let's see how authentication works
under different circumstances.

chef-client

Every time a chef-client needs to communicate with the Chef server to fetch some
data required for bootstrapping a machine, the chef-client needs to authenticate
itself with the Chef server. It does so by using a private key located at /etc/chef/
client.pem. However, as we saw in the bootstrap process, when a chef-client is
executed for the very first time, there is no private key on the concerned machine.
Hence, a chef-client makes use of the private key assigned to the chef-validator (/
etc/chef/validation.pem). Once the initial request is authenticated, a chef-client
will register with the Chef server using validation.pem, and subsequently the Chef
server will return back a new private key to use for future communication. Once the
initial chef-client run is over, validation.pem should be removed from the node.
The /etc/chef/client.pen file on a node is usable only on the concerned node as
it is signed using the node name. This prevents a node from accessing data that isn't
meant for it, and also allows the administrators to ensure that only the nodes that
are registered with the Chef server are managed by it.

Knife

As a Chef developer/administrator, we are constantly making use of Knife
to perform various tasks on the Chef server. RSA public-key pairs are used to
authenticate every request that is made using knife.

During the set up of workstation, we run knife configure—initially to create
knife.rb and alongside a .pen file that is also generated and that will be used for
communicating with the Chef server in future.

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Access to Resources

One can also generate a new user or client using Chef Web UL Once a new user or
client is generated, you can copy over contents of the private key file into a . pem file,
store it in a safe place, and reference it in knife.rb as follows:

$ cat ~/.chef/knife.rb

log level :info

log location STDOUT

node name 'mayank’

client key '~/keys/chef/mayank.pem'

validation client name 'chef-validator'

validation key '~/keys/chef/validation.pem

chef server url 'http://chef-server.sychonet.com:4000"
cache type 'BasicFile'

cache options(:path => '~/.chef/checksums')

cookbook path ['~/code/chef-repo/cookbooks']

Note that the node_name value must be the one that was used to generate the .pem
file specified in client_key.

As you might have noticed, we mentioned that we can create a client
. oruser using Knife, and use it for all subsequent communications
with the Chef server. Both the client and user are enough to make
s use of Chef APL; however, the only difference between them is that
users can also make use of Web Ul to communicate with the Chef
server, whereas clients only have access to Chef APL

Custom API calls

On a system where Chef is installed, one can also make use of API calls using
different languages. For instance, the following example will make use of Ruby
to make a call to the Chef server, in order to list all the nodes belonging to the
webserver role:

#!/usr/bin/env ruby
require 'chef/rest'
require 'chef/search/query’

Chef::Config.from file(File.expand path("~/.chef/knife.rb"))
query = Chef::Search: :Query.new

query string = "role:webserver"

nodes = query.search('node',query string).first

p nodes.map (&:name)

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

This script when executed, will return names of all the nodes that were
bootstrapped with the webserver role.

Let's see what happens if we provide wrong credentials. We will modify knife.rb
to say the following:

client key /keys/chef/foobar.pem

This file is not present on our machine. Now, if we try and run our script, we'll get an
error as follows:

[2014-06-30T00:51:09+05:30] WARN: Failed to read the private key /keys/
chef/foobar.pem: #<Errno::ENOENT: No such file or directory @ rb sysopen
- /keys/chef/foobar.pem>

/Users/mayank/.rvm/gems/ruby-2.1.0/gems/chef-11.8.2/1ib/chef/http/
authenticator.rb:74:in “rescue in load signing key': I cannot read /keys/
chef/foobar.pem, which you told me to use to sign requests! (Chef::Except
ions: :PrivateKeyMissing)

from /Users/mayank/.rvm/gems/ruby-2.1.0/gems/chef-11.8.2/1ib/chef/
http/authenticator.rb:64:in “load signing key'

from /Users/mayank/.rvm/gems/ruby-2.1.0/gems/chef-11.8.2/1ib/chef/
http/authenticator.rb:38:in “initialize’

from /Users/mayank/.rvm/gems/ruby-2.1.0/gems/chef-11.8.2/1ib/chef/
rest.rb:63:in “new’

from /Users/mayank/.rvm/gems/ruby-2.1.0/gems/chef-11.8.2/1ib/chef/
rest.rb:63:in “initialize’

from /Users/mayank/.rvm/gems/ruby-2.1.0/gems/chef-11.8.2/1ib/chef/
search/query.rb:34:in “new'

from /Users/mayank/.rvm/gems/ruby-2.1.0/gems/chef-11.8.2/1ib/chef/
search/query.rb:34:in “initialize’

from test_api.rb:10:in “new'

from test api.rb:10:in “<main>'

As you can see, authenticator.rb tried to authenticate us with the Chef server,
but couldn't do so.

Let's see what happens if we provide the right private key, but a wrong client name.
Let's modify our knife.rb and state the following:

node _name 'foobar'
Now, if we'll execute our script, we will get an error like the following:

/Users/mayank/.rvm/rubies/ruby-2.1.0/1lib/ruby/2.1.0/net/http/response.
rb:119:in “error!': 401 "Unauthorized" (Net::HTTPServerException)

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Access to Resources

from /Users/mayank/.rvm/gems/ruby-2.1.0/gems/chef-11.8.2/1ib/chef/
http.rb:140:in “request'

from /Users/mayank/.rvm/gems/ruby-2.1.0/gems/chef-11.8.2/1ib/chef/
rest.rb:104:in “get'

from /Users/mayank/.rvm/gems/ruby-2.1.0/gems/chef-11.8.2/1ib/chef/
search/query.rb:42:in “search'

from test api.rb:9:in “<main>'

Now that we know that all requests to the Chef server REST API need to be signed,
let's see how it is actually done.

As we discussed earlier, the Chef server REST API accepts certain HTTP headers that
are signed using our private key. These headers are X-Ops-Authorization-n where n
can be an integer starting from 1.

Chef makes use of mixlib-authentication for the purpose of signing headers.
Apart from other required headers, every request is embedded with X-Ops-
Authorization-n headers, and these headers are populated with values using the
following piece of code:

def sign(private key, sign algorithm=algorithm, sign version=proto_
version)
Our multiline hash for authorization will be encoded in multiple
header
lines - X-Ops-Authorization-1, ... (starts at 1, not 0!)
header hash = {
"X-Ops-Sign" => "algorithm=#{sign algorithm};version=#{sign
version};",
"X-Ops-Userid" => user_ id,
"X-Ops-Timestamp" => canonical time,
"X-Ops-Content-Hash" => hashed body,

string to sign = canonicalize request (sign algorithm, sign version)

signature = Base64.encodeé64 (private key.private encrypt (string to_
sign)) .chomp

signature lines = signature.split(/\n/)

signature lines.each index do |idx|

key = "X-Ops-Authorization-#{idx + 1}"
header hashlkey] = signature lines[idx]
end

Mixlib: :Authentication: :Log.debug "String to sign: '#{string to_
sign}'\nHeader hash: #{header hash.inspect}"

header hash
end

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

These headers, along with other required headers such as Accept, X-Chef-Version,
and so on, are passed along with the request to the Chef server, where they are
decoded and verified for integrity. All the headers are Base64 encoded, and hashing
is done using SHAT.

The following is the tcpdump output, when we tried to execute the knife node
list command:

sudo tcpdump -vvvs 1024 -1 -i any -A host chef.sychonet.com

tcpdump: data link type PKTAP

tcpdump: listening on any, link-type PKTAP (Packet Tap), capture size
1024 bytes

19:25:34.303810 IP (tos 0x0, ttl 64, id 28538, offset 0, flags [DF],
proto TCP (6), length 64)

192.168.200.17.58990 > chef.sychonet.com.http: Flags [S], cksum
0x7630 (correct), seq 1860154782, win 65535, options [mss 1460,nop,wscale
4,nop,nop, TS val 348873058 ecr 0,sackOK,eol]l, length 0

19:25:34.381930 IP (tos 0x0, ttl 63, id 0, offset 0, flags [DF], proto
TCP (6), length 60)

chef.sychonet.com.http > 192.168.200.17.58990: Flags [S.], cksum
0xfle2 (correct), seq 261649376, ack 1860154783, win 17898, options [mss
1268, sackOK,TS val 36293234 ecr 348873058,nop,wscale 7], length 0

.).r..ab....

19:25:34.381959 IP (tos 0x0, ttl 64, id 49771, offset 0, flags I[DF],
proto TCP (6), length 52)

192.168.200.17.58990 > chef.sychonet.com.http: Flags [.], cksum
0x455a (correct), seq 1, ack 1, win 8242, options [nop,nop,TS val
348873135 ecr 36293234], length 0

...E..4.k@.@.8.......
.n.Pn..... S... 2EZ.....
.a..).r

19:25:34.382581 IP (tos 0x0, ttl 64, id 56374, offset 0, flags I[DF],
proto TCP (6), length 1035)

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Access to Resources

192.168.200.17.58990 > chef.sychonet.com.http: Flags [P.], seq 1:984,
ack 1, win 8242, options [nop,nop,TS val 348873135 ecr 36293234], length
983

..a..) .rGET /nodes HTTP/1.1

Accept: application/json

Accept-Encoding: gzip;g=1.0,deflate;qg=0.6,identity;q=0.3
X-Ops-Sign: algorithm=shal;version=1.0;

X-Ops-Userid: maxc0d3r

X-Ops-Timestamp: 2015-04-24T13:55:34%Z
X-Ops-Content-Hash: 2jmj715rSw0yVb/v1WAYKK/YBwk=

X-Ops-Authorization-1: TkyDvBoWHIg3Fmdq6GYpBZyI9nzmrlr3nvWhsFKiHOqYYN4ocd
XG4BDN+29X

X-Ops-Authorization-2: PY0avZQi9InskpfKV6Qx590uHUY/butQd+kCzDbKcQHObhmDZ3
£9CsQLXN1n

X-Ops-Authorization-3: vrH9A69RYrRswIyGNURg8M1Dgr+TWPCnQfdzrTNLjDN8DcuEaJ
HBBPEnwobK

X-Ops-Authorization-4: ecBK9Uw+9rHZ6a06gqZ8aMEVTjRzZGhgboMbmbIP2QpZMMyIUzo
JérLktPjah

X-Ops-Authorization-5: eBTnAHLVElVOg3eWW/rzLcRQHCEf2WuBiO3/
YvyKzmYWvOHzY6plhxaubiing

X-Ops-Authorization-6: i9u8OVFVNNNuH8yzBrEICkxeBffT80cSUF6nyn+w2Q==
Host: chef.sychonet.com:80

X-Remote-Request-Id: cll0eb5b-1528-4165-91de-5a879fela692
X-Chef-Version: 11.14.2

19:25:34.460756 IP (tos 0x0, ttl 63, id 47454, offset 0, flags [DF],
proto TCP (6), length 52)

chef.sychoent.com.http > 192.168.200.17.58990: Flags [.], cksum
0x60cb (correct), seq 1, ack 984, win 156, options [nop,nop,TS val
36293312 ecr 348873135], length 0

....E..4.%e.?.C...

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

As you can see, the following headers were accompanied with the request made
by Knife:

* X-Ops-Sign

* X-Ops-Userid

* X-Ops-Timestamp

* X-Ops-Content-Hash

* X-Ops-Authorization-1

* X-Ops-Authorization-2

* X-Ops-Authorization-3

* X-Ops-Authorization-4

* X-Ops-Authorization-5

* X-Ops-Authorization-6

* Host

* X-Remote-Request-Id

* X-Chef-Version
We'll learn more about these headers in our discussion on APIs later in this book.
In the meantime, if you are interested in more details about how this is all

happening, you can refer to the code for mixlib authentication at https://github.
com/opscode/mixlib-authentication.

Authorization

As we discussed earlier, users of Chef can only perform actions that they are
authorized to perform. There is a difference in the implementation of authorization
between the Enterprise and Open Source Chef server.

The Enterprise Chef server makes use of the role-based access control model.

The Open Source Chef server, on other hand, has a fairly simple model, where
there are either admin users who have the privilege to read, write, update, and
delete resources, or non-admin users who have read-only access to resources on
the Chef server.

Let's look at each of these in detail.

[99]

www.it-ebooks.info

https://github.com/opscode/mixlib-authentication
https://github.com/opscode/mixlib-authentication
http://www.it-ebooks.info/

Controlling Access to Resources

The Open Source Chef server

As we discussed earlier, the Open Source Chef server has a very simple model for
authorization purpose. We've two sets of users: admin and non-admin. Any user
with an admin privilege can read, write, update, or delete any resources on the
Chef server, whereas non-admin users have read-only access to the resources on
the Chef server.

When a node is registered with the Chef server through an initial chef-client run, it gets
registered as a non-admin client. Similarly, if you try to create a new client using Knife,
it'll be registered as a non-admin user, unless you explicitly set it as admin.

As a Chef developer/administrator, you'll be adding/updating/ deleting resources,
such as cookbooks, users, nodes, and so on, on the Chef server. Hence, you should
create the client with admin rights.

There are, however, times when you want your nodes to be registered with admin
privileges. For example, some time ago I was creating Chef code for an infrastructure
on AWS. This setup was being done on an autoscaling group. I wanted all the
machines in the autoscaling group to get a proper hostname. To accomplish this,

I prepopulated a data bag with a set of hostnames. During the bootstrapping of

the machines, I fetched a hostname from the data bag and, once the machine was
bootstrapped, I wanted the Chef recipe to remove the hostname that was assigned to
the node from the data bag.

Data bags are a resource on the Chef server, and nodes are by default registered with
the non-admin privileges on the Chef server. So, we can't just go around deleting
stuff from the Chef server using our Chef recipe that is running via the chef-client.

In order to overcome this issue, we will need to modify the code on the Chef server.

Edit the api client.rb file, which can be found inside the /opt/chef-server/
embedded folder (search for the file inside this folder).

This file defines a class called apiClient, and its constructor initializes a few
variables such as @name, epublic key, @private key, @admin, and @validator.

Around line 38, you'll find that @admin is set as false by default. This is overridden
to true when we create a client using the -a option with Knife. If we want to create
all clients with admin privileges, we need to set this as true.

Now, whenever a request is made to Chef API for the registration of a new client/
node, it will be created with admin rights.

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Before you go about making this change, ensure that you understand

the implications because there is a very good reason why it's set up
A~ s
the way it is.

The following requests require admin privileges:

Client index: knife client list

Client update: knife client edit NAME

Client destroy: knife client delete NAME

Cookbook update: knife cookbook upload COOKBOOK NAME

Cookbook destroy: knife cookbook delete COOKBOOK NAME

Data bag create: knife data bag create DATABAG NAME

Data bag destroy: knife data bag delete DATABAG NAME

Data bag item create: knife data bag create DATABAG NAME ITEM NAME
Data bag item update: knife data bag edit DATABAG NAME ITEM NAME

Data bag item destroy: knife data bag delete DATABAG NAME ITEM
NAME

Environment create: knife environment create ENVIRONMENT NAME
Environment update: knife environment edit ENVIRONMENT NAME
Environment destroy: knife environment delete ENVIRONMENT NAME
Role create: knife role create ROLE_NAME

Role update: knife role edit ROLE_NAME

Role destroy: knife role delete ROLE_NAME

The following are some requests that require admin privileges if executed from a
location where a request was originated:

Client show: knife client show NAME
Node update: knife node edit NAME

Node destroy: knife node delete NAME

The following API requires admin privileges, or is done by the chef-validator
during the initial chef-client run:

Client create: knife client create

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Access to Resources

Enterprise Chef

As we discussed earlier, Enterprise Chef makes use of the role-based access control
model to grant access to the different resources on the Chef server. Access to objects
can be defined by object type, group, user, organization, and so on.

Enterprise Chef uses the concept of organization, group, and user to define this role-
based access. Let's look at each of these in brief:

* Organization: An organization is the top-most entity for role-based access.
Each organization consists of groups such as clients, users, admins, at least
one user, and one node. The on-premise Enterprise Chef server provides
support for multiple organizations as well. When a setup is being done, the
Enterprise Chef server creates one organization by default.

* Groups: A group is used to define access to the object types and objects in
the Chef server. It also assigns permissions that are used to decide which
tasks are available to the members of that group. All the users who are
members of a group inherit permissions associated with the group. The
Enterprise Chef server provides the following groups by default: admins,
clients, and users. Hosted Chef also provides an additional group called
billing admins.

* Users: A user is any non-admin person who is supposed to manage the
data stored on the Chef server. The Enterprise Chef server includes a single
user, which is set up initially, and this user is automatically assigned to the
admins group.

* Chef-client: A client is any agent that makes use of the Chef server API
to interact with the Chef server. Every node on which a chef-client is
configured is automatically added to the client group.

Whenever a request is made to the Enterprise Chef server for a resource, the Chef
server checks whether the requesting entity has permissions over the requested
resource or not. If it's permitted, the resource is served. If it's not, the Chef server
checks whether the group to which the user belongs has permissions over the
requested resource and, if it's permitted, the resource is served back to the user.

Object permissions

The Enterprise Chef server includes the following object permissions:
* Delete: This defines whether a user or group can delete the
concerned resource.

* Grant: This defines whether a user or users belonging to a group
can assign permissions over the concerned resource.

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

* Read: This defines which users or groups have access to the details about the
concerned resource.

* Update: This defines which users or groups have access to edit details
associated with the concerned resource.

The Enterprise Chef server also includes the following global permissions:

* Create: This defines which users or groups can create the following
resources: cookbooks, data bags, environments, roles, nodes, and tags.

* List: This defines which users or groups can view the following resources:
cookbooks, data bags, environments, roles, nodes, and tags.

Groups

As we saw earlier, Enterprise Chef includes the following default groups:

* admins: This group contains all the users who'll have administrative
privileges.

* billing_admins: This group is specific to Hosted Enterprise Chef. It's used
to define a list of users who'll have privileges to manage information related
to billing.

* clients: This group is primarily meant to contain a list of machines that are
registered with the Chef server by a chef-client.

* users: This group is generally meant to house all the users who'll make use
of tools such as Knife or Chef Web UL

A single instance of the Enterprise Chef server comes with one organization by
default. However, one can set up multiple organizations if needed. Each organization
can have a unique set of groups and users. Each organization will manage its own set
of nodes on which chef-client is installed.

A user can belong to multiple organizations, provided that role-based access control
is configured per organization. Using multiple organizations ensures that the same
Chef server is reused to provide support for different groups within an organization.
For a large organization, this is a boon as it allows an organization to set up a single
Chef server, and have different organizations set up for different groups. Each of
these organizations can have different schedules for updates; multiple groups might
want to have access to different resources using the same name.

Before we wrap up with authorization, we should note that the endpoints for
API requests for the Enterprise Chef server and the Open Source Chef server
are not the same.

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Access to Resources

For the Enterprise Chef server, the endpoint should always include /organization/
organization name as part of the name of the endpoint. For the Open Source Chef
server, there is no such constraint.

This is also evident in the knife. rb file. With the Open Source Chef server, we've
chef server_ url as https://chef-server.sychonet.com, whereas, for the
Enterprise Chef server, it will be like https://api.opscode.com/organizations/
maxc0d3r.

Summary

In this chapter, we went on to understand how authentication happens in the Chef
server and how one can make use of custom APlIs to connect securely with the

Chef server. We also saw different models of authorization used by the Enterprise
and Open Source Chef server. I hope by now you know how authentication and
authorization happen in the world of Chef and how you can choose the right variant
of the Chef server for your use, depending on your requirement s with regard to the
granularity of authorization levels needed.

In the next chapter, we'll learn about the most fundamental unit of code written by
Chef developers: is a recipe. Components of a recipe and its resources (among other
things) will be covered next.

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the
World of Recipes

We have our Chef server setup done by now. You must be itching to get your hands
dirty with writing Chef code and bootstrapping your infrastructure using it. We'll look
into the different components that can be managed through Chef using the concept of
resources. Once we are familiar with different resources, we'll see how we can utilize
them in our recipes. We'll also see some best practices in writing recipes.

Before we start off, we need to understand what the term "recipe" really means.

In the world of Chef, a recipe is the most fundamental unit of code that is executed.
It can be considered as the most fundamental configuration element within an
organization. A recipe is a piece of code written in Ruby and it defines everything
that is required to configure a system or part of it. A system can comprise of different
components. For example, you may have a machine that is acting as a database
and web server simultaneously. You can either have a single recipe to configure
this machine or you can have multiple recipes - one to configure a database, one to
configure a web server, and yet another to set up a barebones machine. Eventually,
you can apply all these recipes on the concerned machine using a run_1list. In the
course of this chapter, we will cover the best practices to handle these cases and
many others.

Recipes are nothing but simple Ruby code that defines how the system is going
to get to a particular state. A system comprises multiple components and each
of these components is handled by means of a resource.

A resource is a statement of configuration policy. It describes the desired state of
an element in our system. Each resource statement in a Chef recipe corresponds to
a specific part of infrastructure - a file, cron job, package, service, and so on.

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

Recipes group together these resource statements and describe the working
configuration of the entire system. Cookbooks are eventually used to collect
recipes and store them on the Chef server.

As you can see, resources are used to define the different components of a system.
However, all these components are handled differently across different platforms.
To ensure that resources are handled in the right manner, Chef comes with the
concept of providers. There are different providers for different resources and,
depending on the platform and platform_version, the right provider is selected,
which then acts on the concerned resource.

For example, let's assume that we want to install a package called telnet and we
specify this as follows:

package "telnet" do
action :install
end

Now, depending on the platform on which this is executed, the right provider is
chosen and the telnet package is installed. On Debian-based systems, it will make
use of apt, while on RHEL/CentOS it'll make use of yum.

The platform to be chosen is determined by Ohai. Ohai is a Ruby gem that is
installed alongside Chef during standard installation and can be executed as a
command - ohai. Ohai checks for the platform and platform_version on every
chef-client run and this information is used to decide the provider. We'll discuss
Ohai and its associated plugins at length in later chapters.

In this chapter, we'll learn about the different resources provided by Chef, how
providers help execute resources, and eventually how we bundle resources in
Chef recipes.

Resources

A resource is nothing but a Ruby block with four components - a type, a name,
one or more attributes, and one or more actions. The following is a typical way to
declare a resource in a Chef recipe:

type "name" do
attribute "value"
action :type of action
end

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

All actions have a default value. For example, the package resource's default action
is :install and hence, if we just want to install a package, we can just say:

package "package name"

This will take care of the installation of the latest available version of the package
called package name.

The chef-client handles the processing of recipes in two phases. In the first phase,
resource collection is built. In this phase, all the recipes mentioned in run_list
are evaluated in the order specified. All the resources described in the recipes are
identified and collected into a collection. All the libraries are loaded first to ensure
that all Ruby classes and language extensions are available. This is followed by the
loading of attributes, then by lightweight resources, and eventually all definitions.
Finally, all the resources are loaded in order from the collection. This phase is
referred to as the compilation phase.

With all the information collected, chef-client configures the system. Each resource
is executed in the order identified by the run_1ist and finally by the order in which
it's defined in the recipe. Each recipe is mapped to a provider. The provider takes
the necessary steps to complete the action and finally the resource is processed.

This phase is referred to as the convergence or execution phase.

Every resource in Chef has some actions and some attributes associated with it.
There are some actions and attributes that are common to every resource and then
there are some that are very specific in nature. Let's look at common actions and
attributes first:

Action Description

:nothing It defines a resource that does nothing. It is generally used to
define a resource that is later notified by another resource.

The following is an example of the :nothing action:

service "splunk" do

action :nothing

supports :status => true, :start => true, :stop => true, :restart =>
true
end

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

So here we've defined a resource of type service, having the name splunk. We
don't want this resource to do anything for now. Maybe later on we'll use some
other resource to do something useful with this resource. For example, maybe we'll
use a change in the config file to trigger a restart later on. This concept is referred
to as notification/subscription and we'll have a deeper look at this a little later.

Attribute Description

ignore_failure If the associated resource fails for some reason, it
shouldn't let a Chef run fail. This attribute has the
value false by default.

provider This is used to specify a provider using
Chef: :Provider: :Long: :Name.

retries This specifies how many times we should catch an
exception for this resource and retry. This attribute
has the default value 0.

retry delay This is used to specify a delay between retries. The
default value is 2.

supports This is a hash of options that help in describing
capabilities associated with a resource. This attribute
is primarily used by the user and service
resources.

Let's say you have a service that is flaky in nature; however, you want to give it a
shot by starting it through Chef. It'll be wise to make use of ignore_failure for
such services because, in case it's unable to start, the Chef run will fail:

service "flaky service" do
action :start
ignore failure true
end

Now let's say you are setting up the machine for use using the Node.js app.

You want to set up an npm package and you aren't aware of redguide/nodejs
(https://github.com/redguide/nodejs). You went ahead and wrote your

very own provider to install the package using npm (we'll learn more about
providers later on. For now, just consider them as a mechanism to perform some
action). You can easily make use of the provider resource to specify which provider
Chef should make use of while installing the concerned resource:

package "my npm package" do
provider Chef::Provider: :Package: :NPM
end

[108]

www.it-ebooks.info

https://github.com/redguide/nodejs
http://www.it-ebooks.info/

Chapter 5

Coming back to the flaky service, say you wanted to retry the start of the flaky
service two to three times before declaring it as a failure. You can do so using
the retries and retry delay attributes:

service "flaky service" do
action :start
retries 3
retry delay 5

end

Now Chef will retry starting the service three times with a delay of five seconds
between each retry. If the service is unable to start, the Chef run will eventually fail.

Guard attributes

There are certain attributes that can be used to evaluate the state of a node during
the execution process of a chef-client run. Based on the result of the evaluation,
the attribute is used to tell chef-client whether it should continue the execution

of that specific resource or not. These attributes are referred to as guard attributes
or conditionals. A guard attribute either accepts a string or a block of Ruby code
as a value.

If a string is supplied as a value, the string is considered as a command, and if the
execution of the concerned command yields 0 as the return value (also known as exit
status), the guard is applied or else not.

If a Ruby block is supplied as a value, the block is executed as Ruby code. The block
must return either true or false.

Guard attributes are typically used to ensure that the Chef resource is idempotent.
It checks whether the desired state is present or not. If the state is already present, the
chef-client run does nothing for the concerned resource.

The following attributes can be used to define a guard:

Attribute Description
not_if This prevents a resource from being executed if the condition is true
only if This ensures that a resource is executed only if the condition is true

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

The following arguments can be used with the not_if and only if guard attributes:

Argument Description
:user This specifies which user the command will run as
:group This specifies which group the command will run as

:environment | This can be used to specify a hash containing environment variables

:cwd This is used to set the current working directory before running a
command
:timeout This is used to set the timeout for a command

For example, let's assume that we are installing a package called package_name and
we want to install it only on systems running RHEL 6.x.

Here is how we can accomplish this using the not_if guard attribute:

package "package name" do
action :install
not if { platform family?('rhel') &&
node['platform version'].to £ < 6.0 }
end

Here is how we can accomplish this using the only if guard attribute:

package "package name" do
action :install
only if { platform family? ('rhel') &&
node ['platform version'].to £ >= 6.0 }
end

Resources that pass strings as argument to guard attributes can also specify an
interpreter that can be used to evaluate the string command. This is done using the
guard_interpreter attribute to specify a script-based resource - bash, csh, perl,
powershell script, batch, python, and ruby.

As we saw, we can have an environment attribute associated with a resource. Guard
attributes are generally running commands. However, unless guard_interpreter
is defined, guard attributes won't use environment variables declared using the
environment attribute. To ensure that the right environment variable is passed to
the command that is passed to guard_attribute, the environment variable should
be explicitly defined for guard_attribute or guard_interpreter.

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

For example, say we want to start a Java application but we want to ensure that we
don't trigger the start if the application is already running. Being lazy as most of us
sysadmins are, we didn't bother creating init scripts to manage the start/stop of the
application or check the status. However, our Java application is intelligent enough
to report its status if we pass an argument status to our application. Now, being a
Java app, we want to ensure that we have the right JavA_HOME path set before we
go about triggering the command to start the app or check the status.

The following is one way to handle this:

bash "some app" do
environment { "JAVA HOME" => "/usr/java/default" }
code "java /apps/some_app/app start"
not if "java /apps/some_app/app status"

end

However, this isn't the right way to go about handling our situation because the
environment variable JAVA HOME isn't available to the java some app status
command. One way to do it correctly is this:

bash "some app" do
environment { "JAVA HOME" => "/usr/java/default" }
code "java /apps/some_app/app start"
not if "java /apps/some app/app status", :environment => {
"JAVA HOME' => '/usr/java/default' }
end

Another way to handle this is using guard_instructor as follows:

bash "some app" do
guard interpreter :bash
environment { "JAVA HOME" => "/usr/java/default" }
code "java /apps/some_app/app start"
not if "java /apps/some_app/app status"
end

Now, maybe we want to execute the command to check the application status
as a user called the application and we want to ensure that our current working
directory is /apps/some_app while the command is executed. The following
example will help us accomplish this:

bash "some app" do
environment { "JAVA HOME" => "/usr/java/default" }
code "java /apps/some_app/app start"

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

not_if "java /apps/some_app/app status", :user => "application",
:cwd => "/apps/some_app", :environment => { "JAVA HOME" =>
"/usr/java/default" }
end

Resources can perform some action or trigger an event for another resource using
a notification mechanism. The following are the available notifications for all the
resources available in Chef:

Notification | Description

notifies This is used to notify some other resource to take an action if the
state of this resource changes

subscribes | If the state of any other resource changes and we want some action
to be taken on this resource, then we make use of subscribes

When notified, we may expect action to happen either immediately or we might
want all notifications to be queued up and executed at the end of the chef-client run.
Chef provides us with the concept of notification timers just for this:

Timer Description

:immediately | When immediately is specified, the notification results in the
immediate execution of an action on the concerned resource

:delayed This tells Chef to queue up the notification and execute it right
at the end of the chef-client run

Let's say we are managing a web server such as Nginx and we want Nginx to
reload every time a change is pushed to its configuration file - nginx. conf. We can
accomplish this using the notification mechanism very easily:

service "nginx" do
supports :restart => true, :reload => true
action :enable

end

cookbook file "/etc/nginx/nginx.conf" do
source "nginx.conf"
owner "root"
group "root"
mode "0644"
notifies :reload, "service[nginx]", :immediately

end

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The is can also be done through the subscribes notification as follows:

cookbook file "/etc/nginx/nginx.conf" do
source '"nginx.conf"
owner "root"
group "root"
mode "0644"
end
service "nginx" do

supoorts :restart => true, :reload => true

subscribes :reload, "cookbook file[/etc/nginx/nginx.conf]",
:immediately
end

One thing we need to understand most of all is the fact that notifications on
resources are queued. So let's say we have the following piece of code:

template '/etc/ntp.conf' do
notifies :restart, 'servicel[ntp]'
end
service 'ntp' do
action :start
end

This code will take the following actions:

Update the template.
Queue the restart of the service.

Start the service.

Ll s

Restart the service (due to notification).

Lazy evaluation of attributes

There may be times when we don't know the value of an attribute until the
execution/convergence phase of the chef-client run. During such times, lazy
evaluation of attribute values can be very helpful. In such cases, we pass on a Ruby
block along with the keyword lazy to the attribute and the code block is evaluated
to figure out the value to be associated with the concerned attribute. For example:

cookbook file "some file" do
source "some file"
owner lazy { "ruby block containing some Ruby code" }

end

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

With knowledge about how resources are handled by Chef, let's move on to see
what different resources are available for use and how to make best use of them.
We'll only look at the most commonly used resources here. You can refer to the
documentation at http://docs.getchef .com/chef/resources.html for details
about specific resources not mentioned here.

The package resource

The package resource is one of the most widely used resources. This resource is
used to manage packages on a system.

The package resource uses the following syntax:

package "package name" do
attribute "value"

action :action
end

Here, package_name is the name of the package you want to manage and attribute
refers to some attribute that might be associated with this package; for example, the
version of the package. There is an optional action value that refers to the action
that we want to take against this package. The default action is : install, which
takes care of the installation of the concerned package.

Consider the following as an example:

package "telnet" do
action :install
end

This will install the telnet package on the concerned machine.

As we discussed earlier, we can skip specifying the default actions and hence the
last piece of code can be written in a much more compact form as follows:

package "telnet"

Let's say we want to install a specific version of a package. For example, we might
be making use of MongoDB in our setup and we had set up a machine a few
months back that used version X of MongoDB. However, recently a new version of
MongoDB, Y was added to the repositories. Now, whenever the package resource
is used, it'll pick up version Y of the package for installation. This can result in lots
of issues as there might be compatibility issues between versions X and Y.

[114]

www.it-ebooks.info

http://docs.getchef.com/chef/resources.html
http://www.it-ebooks.info/

Chapter 5

To ensure that the same version of the package is installed, you can specify the
version of the package while making use of the package resource:

package "mongo" do

version "X"

end

The package resource has the following actions associated with it:

Action Description

:install This is the default action and is used to install the package specified.

:upgrade This is used to ensure that the latest version of the package is installed
on the system. If the package is not installed beforehand, then this is
equivalent to using : install.

:remove This is used to uninstall a package.

:purge This will uninstall the concerned package and will also remove the
concerned configuration files.

:reconfig | This action is used to reconfigure a package.

The package resource can have the following attributes associated with it:

Attribute

Description

allow_downgrade | This is used by the yum_package resource to downgrade a

package to satisfy dependency requirements. The default value is
false.

arch

By default, yum will install a version of the package that is in

line with the architecture of your system. However, there might
be times when you want to install a package with a particular
architecture. This attribute can be used to define that architecture.

flush cache

This is used to flush the yum cache before or after a yum resource
is either installed, upgraded, or removed. This can have the
values :before or :after.

options

There will be times when you might want to pass additional
options to apt, yum, and so on. You can pass those options
through the options attribute.

package name

If your package name is weird and you don't want to make your
package resource definition look ugly, you can always specify
the right name of the package to be installed through package
name.

source

This is an optional attribute used to define the path of the local
file that will be used by the package manager for installation
purposes.

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

Attribute Description

version The version attribute helps us define a particular version of the
package that should be installed on the machine.

gem _binary This is very specific to the gem package resource and it is
used to specify which gem command should be used to set up a
Ruby gem. This is most useful in cases where we have multiple
versions of Ruby and RubyGems lying around.

We've already seen the package resource example earlier with the default option.
Let's see how can we make use of other actions and available attributes to fine-tune
our installation requirements if needed.

Case 1: We want to install a specific version of MongoDB, and if any other version is
installed, we should just remove it and install this specific version:

package "mongodb" do
action :upgrade
allow_downgrade true
version "xxxx"

end

Case 2: A new version of Git has appeared in the RPMForge repository and it's
available in the rpmforge-extras repo. However, this repo is not enabled and
you don't want to enable it forever. You also don't want to use the base repository
while installing Git. If Git is already installed on the machine, you want to ensure
that it's upgraded to the latest version available on the RPMForge repository.
(The assumption is that you have RPMForge set up on your machine):

package "git" do

action :upgrade

flush_cache :before

options "--enablerepo=rpmforge-extras --disablerepo=base"
end

Case 3: You've accidentally installed two versions of a package, namely version-1
and version-2. Now you want to get rid of version-1 completely from the machine:

package "package name" do
action :purge
version "version-1"

end

package "package name" do
action :reconfig

end

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Case 4: You have an RPM package on your machine and want to install it
through Chef:

package "package name" do
source "/tmp/package.rpm"
end

This will pick up the default provider for your system type. If it's RHEL/CentOS,
yum will be used. However, you might want to make use of the RPM provider for
installation purposes. You can do that as well as follows:

package "package name" do

source "/tmp/package.rpm"

provider Chef::Provider: :Package: :RPM
end

The package resource can be considered as a wrapper over several other resources
that are also meant to install different software. There are quite a few such resources,
for example, gem_ package, easyinstall package, dpkg package, yum package,
and rpm_package. Unless you are trying to install a software that is specifically
meant to be installed through these resources, it's always good to make use of the
generic package resource.

For more details, refer to http://docs.getchef.com/ resource package.html.

The cookbook_file resource

Most of the time, the job of systems administrators is confined to the installation of
software and eventually configuring them. The configuration is mostly done by means
of files: be it your web server configuration, your database server configuration, or the
management of users. Most of the time, everything is just manageable by modifying
the concerned files. This is especially true for Unix/Linux/BSD systems. In fact, there
is a famous phrase, "Everything is a file", for such systems. Chef allows us to maintain
the right and consistent version of configuration files across a large set of systems
through the cookbook_file resource.

Using the cookbook_file resource, we can transfer files to the concerned machine
running chef-client. The files are initially kept in the COOkBOOK_NAME/files folder.
We'll learn more about the organization of cookbooks later in the book.

The cookbook_file resource has the following syntax:

cookbook file "name" do
attribute "value"

[117]

www.it-ebooks.info

http://docs.getchef.com/resource_package.html
http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

action :action
end

Here, name refers to the name of the file we wish to manage. If the path attribute is not
defined in the resource, then the name attribute is referred to as the path to the file.

Chef makes use of the Chef: : Provider: : CookbookFile provider to manage files
through the cookbook_file resource.

The following actions can be associated with the cookbook_file resource:

Action Description

:create This is used to create a file. This is the default action.

:create_if missing | This is used to create a file only if it does not exist.

:delete This is used to remove a file.

:touch This is used to update the access time and modification
time for a file.

The following attributes can be associated with the cookbook file resource:

Attribute Description

atomic_updates | This is used to perform atomic updates on a per-resource basis.
The default value is true.

backup This defines the number of backups to keep for a file. The default
value is 5.

cookbook This defines the name of the cookbook where the file can be found.
This defaults to the current cookbook.

force_unlink If the target file is a symlink, then this attribute if set to true will
unlink the file and create a new file. The default value is false.

group This is a string or ID to identify the group owner.

owner This is a string or ID to identify the user.

mode This is a quoted string specifying the octal mode of a file.

path This is the path to the location where the file will be created.

source This is the location of file in the /files directory in the cookbook

located in the Chef repository.

manage This is used to detect and manage the source file associated with a
symlink source | symlink. When set to true, chef-client will manage the source file
associated with symlink. If set to nil, chef-client will manage the
source file but will throw a warning. If set to false, chef-client
will not manage the source file. The default value is nil.

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

As we saw earlier, the file is picked up from the /files directory in the cookbook
located in chef repository. Let's say we have a cookbook called nginx that is used to
manage the Nginx web server. The configuration file for Nginx is called nginx.conf
and we want to use our cookbook to set up Nginx on RHEL/CentOS and Ubuntu/
Debian boxes. Now there is catch, as the Nginx configuration uses a different user
to start the Nginx worker process. On Ubuntu, the user is www-data while on RHEL,
the user is nginx. So how do we keep two versions of the same file and yet tell Chef
to set it up correctly? There are two ways to do this.

The following is not the right way (though it works just fine):

1. Create two folders nginx/files/default/debian and nginx/files/
default/redhat and keep nginx.conf for Debian/Ubuntu in nginx/
files/default/debian while keeping nginx. conf for RHEL/CentOS
innginx/files/default/redhat

2. Now declare the cookbook file resource as follows:

cookbook file "/etc/nginx/nginx.conf" do
case node[:platform]
when "centos", "redhat"
source "redhat/nginx.conf"
when "ubuntu", "debian"
source "debian/nginx.conf"
end
mode "0644"
owner "root"
group "root"
end

OR
cookbook file "/etc/nginx/nginx.conf" do
source "#{node[:platform family]}/nginx.conf"
mode "0644"
owner "root"
group "root"
end

So here we've made use of the case statement to decide which platform we are
working on and decide the source for the cookbook_£file resource accordingly.
This will work just fine; however, there is a more elegant and correct way to
accomplish the same thing.

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

The correct way is as follows:

1. Create the following folders: nginx/files/centos, nginx/files/ubuntu,
nginx/files/redhat, and nginx/files/debian and push the correct
nginx.conf file into the concerned folders.

2. Declare the cookbook file resource as follows:

cookbook file "/etc/nginx/nginx.conf" do
source "nginx.conf"
mode "0644"
owner "root"
group "root"
end

This will ensure that the correct nginx. conf file is picked up due to a concept
called file specificity. In Chef, you can ensure the specificity of a file by keeping files
under different folders. The precedence order is as follows in decreasing order
of specificity:

1. host-nodel:fqgdnl
node [:platform] -node[:platform version]
node[:platform] -version components

node [:platform]

ARSI

default

It's sad that there is no way to ensure that you can keep node [:platform_family] in
this precedence order as of now, and hence we have to create nginx/files/centos
and nginx/files/redhat, though both have redhat as a value for node [:platform_
familyl. A request has been made to get this feature soon; however, till then, you
might want to modify the preference_for path method in cookbook version.rb,
which can be found in $GEM_PATH/chef - $CHEF VERSION/lib/chef.

For more details, refer to http://docs.getchef.com/resource cookbook file.
html.

The directory resource

The directory resource is used to manage directories on concerned machines.

[120]

www.it-ebooks.info

http://docs.getchef.com/resource_cookbook_file.html
http://docs.getchef.com/resource_cookbook_file.html
http://www.it-ebooks.info/

Chapter 5

The syntax for using the directory resource is as follows:

directory "name" do
attribute "value"

action :action
end

Here, name is used to define the name of the directory resource. If the path
attribute is not present in the definition of the directory resource, the "name"
is considered to be the path as well.

The following actions are associated with the directory resource:

Action Description
:create This is used to create a directory. This is the default action.
:delete This is used to delete a directory.

The following attributes can be associated with the directory resource:

Attribute Description

path This is used to specify the path of the directory.

owner This is a string or ID used to specify the owner of the directory.

group This is a string or ID used to specify the group owner of the
directory.

mode This is a string to define the permissions associated with the

directory using octal mode. Generally, a directory should have the
execute permission associated with it in order for it to be browsable.

recursive | This is used to create or delete parent directories recursively. The
owner, group, and mode attribute values hold true only for leaf
directories. The default value is false.

Consider the following as an example:

directory "/tmp/a/b" do
owner "user"
group "user"
mode "0755"
recursive true
end

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

This will create a directory, /tmp/a/b, on the concerned machine. However, the
group, owner, and mode attributes will only apply to directory b. There are times
when you'll want them to be applied to the entire directory tree or part of it.

For such cases, you can do something like this:

["/tmp/a", "/tmp/a/b"].each do |dir|
directory dir do
owner "user"
group "user"
mode "0755"
end
end

The following example will delete directories recursively:

directory "/tmp/a" do
action :delete
recursive true

end

For more details, refer to http://docs.getchef. com/resource_directory.html.

The file resource

The file resource can be used to manage the files present on a node. We can use this
resource to even modify the contents of a file. It should be noted, however, that Chef
provides no way to update the existing files using this resource. The original file will
be overwritten if any changes are pushed. This is among the most basic resources to
manage a file on a node. This should only be used if the file contents are not required
to be pushed from some external source other than some strings.

The syntax of the £ile resource is as follows:

file "name" do
attribute "value"

action :action
end

The following actions can be associated with this resource:

Action Description

:create This is used to create a file. This is the default action.

:create_if missing | This is used to create a file only if it's missing.

[122]

www.it-ebooks.info

http://docs.getchef.com/resource_directory.html
http://www.it-ebooks.info/

Chapter 5

Action Description

:delete This is used to delete a file.

:touch This is used to update the access time and modification
time of the file.

The file resource can have the following attributes associated with it:

Attributes

Description

atomic_update

This is used to perform atomic updates on a per-
resource basis. The default value is false.

backup This determines the number of backups to keep for the
file. The default value is 5.

content The value for this attribute is a string that will be
written to the file.

owner This is a string or ID that will determine the owner of
the file.

group This is a string or ID that will determine the group
owner of the file.

mode This is a string containing permissions for the file in

octal mode.

force unlink

If the concerned file is a symlink and the value for this
attribute is true, then the chef-client run will unlink
the file and create a new file. The default value is
false.

manage_symlink source

If the value of this attribute is nil, Chef will manage
the source file associated with symlink and throw a
warning. If the value is t rue, Chef will manage the
source file associated with symlink quietly. If the value
is false, Chef will not manage the source file. The
default value is false.

path

This attribute determines the path to the file. If not
present, the name of the resource is considered for
determining the path of the file.

file "/tmp/somefile" do

content "Hey ya !"
owner "user"

group "user"
mode "0640"
end

Consider the following as an example:

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

This will create a file called somefile in the /tmp directory with the content Hey ya!.
The file will be owned by a user called user and group ownership of the file will be
associated with the group called group. The file will be created with mode 640, which
means read/write for owner, read-only for group, and no permissions for others.

For more details, refer to http://docs.getchef.com/resource file.html.

The execute resource

The execute resource can be used to execute a command. Commands executed by
the execute resource aren't generally idempotent. One must make use of not_if
and only_ if to guard this resource for idempotence.

The syntax of the execute resource is as follows:

execute "name" do
attribute "value"

action :action
end

The following actions can be associated with the execute resource:

Action Description
:run This is used to execute the command. This is the default action.
:nothing This is used to prevent a command from running. It's primarily

meant to ensure that the command is executed only when the
execute resource is notified by some other resource.

The following attributes can be associated with the execute resource:

Attribute Description

command This defines the name of the command to be executed. If not
mentioned, the name of the resource is considered to be the name of
the command by default.

path This is a list containing different strings with each string
corresponding to a location in which to search for the command.
The default value uses the system path.

user This is the username or ID used to execute the command.
group This is the group name or ID used to execute the command.
timeout This is the amount of time the command will wait before getting
timed out.
[124]

www.it-ebooks.info

http://docs.getchef.com/resource_file.html
http://www.it-ebooks.info/

Chapter 5

Attribute Description

cwd This specifies the current working directory from which to run the
command.

creates This is used to prevent a command from creating a file if the file

already exists.

returns This is the return value of the command. This is an array of
acceptable values. This is especially useful in cases when the
command doesn't return 0 upon successful execution.

environment | This is a hash of environment variables.

umask This specifies the file creation mask.

As we discussed earlier, we must make use of the guard attributes not_if and
only_if to ensure the idempotency of the command being executed by the execute
resource or we can use the creates attribute. Let's see a few examples.

Example 1: Run a script to test the Nginx config:

execute "test-nginx-config"
command "nginx -t -c¢ /etc/nginx/nginx.conf"
path ["/opt/nginx/sbin"]
action :nothing
subscribes :run, "cookbook file[/etc/nginx/nginx.confl",
:immediately
end

Example 2: Extract a tar ball archive:

execute "package xyz" do
cwd "/opt"
command <<-EOH
curl <URL> | tar zxf -
EOH
not if { ::File.exists?("/opt/package xyz") }
end

Instead of using a guard attribute, we could've also made use of the creates
attribute associated with the execute resource as follows:

execute "package xyz" do
cwd "/opt"
command <<-EOH
curl <URL> | tar zxf -
EOH
creates "opt/package xyz"
end

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

The creates attribute here ensures that the command doesn't re-run the next time as
the file will already be present.

For more details, refer to http://docs.getchef.com/resource execute.html.

The cron resource

The cron resource is used to handle cron entries that are used for scheduling jobs
to run at a particular time. The cron resource requires crontab to be present on the
concerned machine.

The syntax for the cron resource is as follows:

cron "name" do
attribute "value"

action :action
end

The following actions can be associated with the cron resource:

Action Description

:create This is used to create a new cron job. If an entry already exists with the
same name, then this will update the job settings. This is the default
action.

:delete This is used to remove a cron job.

The cron resource can have the following attributes:

Attributes | Description

command | This attribute defines the command or script that will need to be executed.

day This is the day of the month when the cron job will execute. The
acceptable values for this attribute are integers between 1 and 31. The
default value for this attribute is *.

hour This is the hour at which the cron job will execute. The acceptable values
are 0 to 23. The default value is *.
minute This is the minute at which the cron job will execute. The acceptable

values are 0 to 59. The default value is *.

month This is the month in the year when the cron job should run. The acceptable
values are 1 to 12. The default value is *.

weekday | This is the day of the week when the cron job should run. The acceptable
values are 0 to 6 with Sunday = 0. The default value is *.

path This is used to set the PATH environment variable.

[126]

www.it-ebooks.info

http://docs.getchef.com/resource_execute.html
http://www.it-ebooks.info/

Chapter 5

Attributes | Description

shell This is used to set the SHELL environment variable.

user This specifies the name of the user under whose account the cron job will
be set up.

mailto This sets the MAILTO environment variable.

home This is used to set the HOME environment variable.

A * as a value for the day, hour, minute, month, and weekday attributes should be
interpreted as "every". For example, if the value for the day attribute is *, it means
every day.

Cron jobs, unlike daemons, can only execute a set of instructions every minute at a
minimum. If you need to run commands at intervals that are less than 60 seconds,
make use of a daemon. The following are some examples of cron jobs:

Example 1: Run a command every day at 1 AM as a user named user1:

cron "GIVE ANY USEFUL NAME" do
command "SPECIFY COMMAND HERE"
user "userl"
hour "1
minute "Q"

end

Example 2: Run a command every 5 minutes:

cron "GIVE ANY USEFUL NAME" do
command "SPECIFY COMMAND HERE"
user "userl"
minute "*/5"

end

Example 3: Run a command every Sunday at 8 AM:

cron "GIVE ANY USEFUL NAME" do
command "SPECIFY COMMAND HERE"
user "userl"
hour "8"
minute "O"
weekday "O"

end

Users can verify the sanity of the cron entries by manually inspecting the crontab
entry using the command crontab -1. This command will list all the cron jobs set
for the concerned user.

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

For more details, refer to http://docs.getchef .com/resource cron.html.

The service resource

Most of the daemons and startup scripts are generally managed through the concept of
services. The service resource is useful for managing such scripts. Different operating
systems have different mechanisms to manage services. Most of Unix and its variants
make use of an init daemon to manage services; many modern-day systems on the
other hand have started using an event-based replacement called upstart. Mac OS X
makes use of launchd and so on. Chef provides us with a wrapper resource called
service that allows us to manage the startup scripts in a convenient way.

The syntax of the service resource is as follows:

service "name" do
attribute "value"

action :action
end

When the service_name attribute is not specified, name is also the name of the
service on the concerned machine.

The following actions can be associated with the service resource:

Action Description

:enable This ensures that the service starts up at boot time
:disable This ensures that the service never starts up at boot time
:start This starts the concerned service

:stop This stops the concerned service if running

:restart This restarts the concerned service

:reload This reloads the configuration for the service

The service resource can have the following attributes associated with it:

Attribute Description

init_command This is the path to the init script associated with the service. In
general, it's usually /etc/init.d/SERVICE NAME. Its default
valueisnil.

pattern This is the pattern to look for in a process table.

priority This attribute determines the relative priority of the program for
start and shutdown ordering. It can be an integer or a hash.

[128]

www.it-ebooks.info

http://docs.getchef.com/resource_cron.html
http://www.it-ebooks.info/

Chapter 5

Attribute

Description

reload_ command

This specifies the command used to reload the configuration.

stop_command

This specifies the command used to stop the service.

start_command

This specifies the command used to start the service.

restart command

This specifies the command used to restart the service.

status_command

This specifies the command used to get the status of the service.

supports

This specifies a list of attributes that control how chef-client
will attempt to manage a service - : status, :restart, or
:reload. If the service supports these actions, then set true
against these; if not, say false.

service_ name

This is used to specify the name of the service. If it's not specified,
the name of the service resource is used by default.

There is no fixed provider meant for the service resource and this is quite obvious
too, because we have so many different kinds of systems. The following is a list of
providers for the service resource:

Provider Description

Chef::Provider::Service::Init::Debian This is used on Debian/Ubuntu
platforms

Chef: :Provider: :Service: :Upstart This is used on platforms where
upstart is available

Chef: :Provider::Service: :Init: :Freebsd | This is used on the FreeBSD
platform

Chef::Provider::Service::Init::Gentoo | Thisis used on the Gentoo platform

Chef::Provider::Service::Init::Redhat This is used on Red Hat and
CentOS platforms

Chef::Provider::Service::Init::Solaris | This is used on the Solaris platform

Chef::Provider::Service: :Init::Windows | This is used on the Windows
platform

Chef: :Provider::Service: :Init: :MacosX This is used on the Mac OS X
platform

Let's see some examples of the service resource in action.

Example 1: Manage the nginx web server service:

service "nginx" do

supports :status => true, :restart => true, :reload => true
action [:enable, :start]
end

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

Example 2: We want to manage a service using upstart if we are on a system running
Debian or its variants and the OS version is > X; otherwise, we want to use the
default init daemons to manage a service:

service "example service" do

if node["platform family"] == "debian" and node["platform
version"] .to f > X

provider Chef::Provider::Service: :Upstart
end
action :start
end

Example 3: Do not start the service unless its configuration file has been pushed.
Till then just enable the service:

service "example service" do
action :enable
end
cookbook file "example service config" do
source "example service config"
owner "root"
group "root"
mode "0644"
notify :start, "service[example servicel", :immediately
end

Forrnoreckﬁaﬂs,Nﬁerh)http://docs.getchef.com/resource_service.html.

The bash resource

If you are working on any Unix or its variants and the service/execute/cookbook
file combo wasn't good enough for you, you can use the bash resource, which is like
the mother of all solutions! The bash resource is used to execute scripts using the bash
interpreter. This resource can also use all the actions and attributes associated with the
execute resource. As with execute, the commands that are executed using the bash
resource aren't idempotent by nature and hence we should make use of not_if and
only_ if to ensure idempotency.

The syntax of the bash resource is as follows:

bash "name" do
attribute "value"

action :action
end

[130]

www.it-ebooks.info

http://docs.getchef.com/resource_service.html
http://www.it-ebooks.info/

Chapter 5

When the command attribute is not specified while declaring the bash resource, then
the name of the resource is considered to be the command to be executed.

The following actions can be associated with the bash resource:

Action Description

:run This runs the script. This is the default action.

:nothing This means don't run the script. This is useful in cases where we want
some other resource to trigger the run action for this bash resource.

The following attributes can be associated with the bash resource:

Attributes Description

code This is a quoted string containing the code to be executed.

command This is the name of the command to be executed.

creates This is used to prevent a file from being created if it already exists.

cwd This changes the current working directory. The code concerned
with the bash resource will run from within this directory.

user This is the username or ID that will be used to execute the code.

timeout This is the amount of time (in seconds) a command will wait before
timing out. The default value is one hour or 3,600 seconds.

path This is an array of paths to be used for searching the command.

flags These are one or more flags that are passed on to the bash
interpreter.

environment | This is a hash of environment variables.

returns This can be an array of accepted values. By default, if the command
exits with 0, it's considered to be a success.

group This is the group name or group ID to be used while executing the
command.

umask This is the file creation mask.

In general, if you have a bunch of commands that need to be executed along with some
logic to be placed in between, you are better off using the bash resource rather than
trying to fit in everything under a command inside the execute resource. However,

it has some pitfalls, because the bash resource generally has a set of instructions

to execute and, if one of the instruction misbehaves, it's quite hard to diagnose the
problem very quickly. Let's see a few examples of the bash resource in action.

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

Example 1: Set up HAProxy from source:

bash "setup haproxy" do
user "root"
cwd "/tmp"
code <<-EOH
wget "http://www.haproxy.org/download/1l.5/src/haproxy-
1.5.2.tar.gz"
tar -zxf haproxy-1.5.2.tar.gz
cd haproxy-1.5.2
./configure
make
make install
EOH
end

In this example, we are downloading the 1.5.2 version of HAProxy and trying to
build it rather than installing it through packages.

This example will keep on repeating itself during every chef-client run. In order
to avoid that, let's add a not_1if guard:

Example 2: Set up HAProxy from source with idempotency:

bash "setup haproxy" do
user "root"
cwd "/tmp"
code <<-EOH
wget "http://www.haproxy.org/download/l.5/src/haproxy-
l1.5.2.tar.gz"
tar -zxf haproxy-1.5.2.tar.gz
cd haproxy-1.5.2
./configure
make
make install
EOH
not if { ::File.exists?("/usr/local/sbin/haproxy") }
end

Example 3: Set up a Java application from a tar ball and run it as a user named

userl:

bash "setup javaapp" do
user "userl"

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

cwd "/apps"

path "/usr/default/java/bin"

environment {"JAVA HOME" => "/usr/default/java"}

code <<-EOH

wget "http://www.example.org/javaapp.tgz"

tar -zxf javapp.tgz

cd javaapp

java app &

EOCH

not if { ::File.exists?("/apps/javaapp") }
end

Here, we've ensured that the JAvA HOME environment variable is set and the Java
command is found in the path /usr/default/java/bin. This example obviously
requires write permission for user1 on the path /apps.

For more details, refer to http://docs.getchef.com/resource bash.html.

The template resource

So we've understood how to push the configuration files through the cookbook
file resource. We know how to manage other resources like start, stop, restart,
or reload if a configuration file changes. However, as we were happily going about
managing our infrastructure using these known resources, one day we realized

that now we have multiple files lying around in our chef-repository. Maybe they

are different versions of configurations for different operating systems or different
versions of the same operating system. Mostly, these configuration files won't greatly
differ. Often, we see that there is just one change between configuration files across
different operating systems. Considering this, it seems like a waste to duplicate our
efforts in maintaining different configuration files. Templates are just the right choice
in such cases.

Templates are Embedded Ruby (ERB) templates that can be used to generate files
on-the-fly based on the logic and variables contained within the template. Templates
are allowed to contain Ruby expressions and they are the best way to manage
configurations across different environments in an organization. The templates
should be placed inside the /templates directory of your cookbook.

The template resource has two components:

* The template resource, declared in the recipe itself

* The template file itself

[133]

www.it-ebooks.info

http://docs.getchef.com/resource_bash.html
http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

The syntax for declaring the template resource is as follows:

template "name" do

source "template file.erb"

attribute "value"

action :action
end

The source attribute points to the file in the Chef repository inside the templates/
default directory of the cookbook where the recipe is loaded from.

The following actions can be associated with the template resource:

Action

Description

:create

This creates the file using the ERB template. This is the
default action.

:create_if missing

This creates the file using the ERB template only if the file to
be managed is not already created.

:delete

This deletes the file.

:touch

This updates the access and modification time for the file.

The template resource can have the following attributes:

Attributes Description
atomic_update This is used to perform atomic updates on a per-resource basis.
The default value is true.
backup This is used to specify the number of backups to keep.
The default value is 5.
cookbook This is used to specify the name of the cookbook where the file is
located. The default value is the current cookbook.
force_unlink If the file to be managed is symlink, this attribute if set to true
will unlink the symlink and create a file.
manage_ symlink If set to true, the source file associated with symlink will
source be managed. This is only relevant if the concerned file to be
managed is a symlink.
owner This is a string or an ID used to specify the owner of the file.
group This is a string or an ID used to specify the group owner of
the file.
mode This is a string containing the permissions for the file in
octal mode.
[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Attributes Description

path This is the path to the file. If this attribute is not present,
the name of the resource is used to identify the path.

source This is the location of the template file. By default, chef-client
will look in the /templates directory. When the local
attribute is set to t rue, we can use this attribute

to specify the path to an ERB template on the node.

variables This is where things become different with the cookbook_file
resource. We can pass variables along with the concerned values
to the ERB template using a hash containing the list of variables.
The variables in the ERB template are replaced with the values
passed on from the template resource.

helper This is used to define an inline helper module or function.
The default value is { }.
helpers This is used to define an inline helper module or a library.

The default value is [].

local This is used to load a local template. This will allow us to use
ERB templates residing on the node where chef-client is running.

As with cookbook file, the template resource also follows the same order of
file specificity:
1. host-nodel:fqgdn]
node [:platform] -node[:platform version]
node[:platform] -version components

node [:platform]

AR NN

default

Let's examine a quick example to understand the concept behind the
template resource.

Configure the Nginx web server config. We are assuming that only the config change
between Debian/Ubuntu and RedHat/CentOS is the user used to execute the Nginx
worker. And hence it's a one-line change as shown here.

The following is the Debian/Ubuntu Nginx config:

user www;
worker processes 1;
events {

worker connections 1024;

}

http {

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

}

The following is the CentOS/RedHat Nginx config:

user nginx;
worker processes 1;
events {
worker connections 1024;
}

http {

}

As you can see, the only difference is on the first line and we should make use of
templates here to avoid keeping two copies of this configuration.

First create an ERB template file in templates/default named nginx.conf .erb:

user <%= @user %>;
worker processes 1;
events {
worker connections 1024;

}

http {

}

Next, in your recipe, add the template resource as follows:

if nodel[:platform family] == "debian"
nginx user = "www"

elsif nodel[:platform family] == "redhat"
nginx user = "nginx"

else

nginx user ="nobody"
end
template "/etc/nginx/nginx.conf" do
source '"nginx.conf.erb"
owner "root"
group "root"
mode "0644"
variables ({
:user => nginx user
)}

end

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Helper modules

Chef even allows us to extend the functionality of templates by means of helper
modules. We can adopt one of the following three approaches to implementing
helper modules:

* Aninline helper method
* Aninline helper module

* A cookbook library module

One can use the helper attribute in a recipe to define an inline helper method.
One can make use of the helpers attribute to define an inline helper module or
a cookbook library module.

Let's see a few examples of each.

Inline methods
First of all, embed the helper attribute in your template resource:

template "/tmp/myfile" do
helper (:print_greeting) { "Hey there !" }
end

Next use the helper method in your template file:

Greetings : <%= print greeting %>

Inline modules
First of all, declare the helper modules inline or on a per-resource basis as follows:

template "/tmp/myfile" do
helpers do
def print greeting
"Hey there !"
end
def print goodbye
"Bye my friend !"
end
end
end

Now we can use these helper methods anywhere in our template file.

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

Library modules

We can even keep these helper modules in a library. To do so, create a file
{cookbook_name}helper.rb in the libraries folder of your cookbook and
define all the concerned helper methods there as follows:

helpers do
def print greeting
"Hey there !
end
def print goodbye
"Bye my friend !"
end
end

Once done, you can use these helper methods in your template by first including
the library in your template resource as follows:

template "/tmp/myfile" do
helpers ({cookbook name}helper)
end

Partial templates

A template can be built in such a way that it allows several other smaller templates
to be referenced. These smaller template files are referred to as partials. A partial can
be referenced in a template by using the render method as follows:

<%= render "partial file.erb", :options => { } %>

Here, partial_file.erb is the name of the partial template file and options can
be one of the following:

Option Description

:cookbook | By default, the partial template is searched in the same cookbook where
the top-level template was loaded from. This can be used to load the
partial templates from different cookbooks.

:local This can be used to load the partial template from the local node where
chef-client is executing.

:source By default, the partial template is identified by its filename. This can be
used to specify a different name or local path to use.

:variables | Thisis a hash of the variable name = value that will be used by the
partial template file.

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

One can perform quite a lot of computations and use lots of logic inside ERB
templates, which make them an indispensable tool for managing configuration files;
however, one shouldn't just go about doing all the heavy logic lifting inside the
templates and instead should rely on helper modules or recipes.

For more details, refer to http://docs.getchef.com/resource template.html.

There are plenty of other resources like git, gem package, 1ink, ohai, mount,
python, perl, and so on that can be put to effective use for managing almost every
aspect of system configuration.

Recipes

So we saw how we can make use of resources to manage different components of
the system configuration. Now let's see how to make use of recipes to arrange these
resources in a way that allows us to manage our infrastructure efficiently.

A recipe is nothing but a collection of resources with a stir of Ruby code along with
attributes as spices. Once you've chosen the right attributes, added them in the
right order along with resources, and stirred everything together well using custom
Ruby code, you have a wonderful recipe in your hand that can be happily fed to the
underlying infrastructure.

We have already learned a lot about resources; let's see what attributes are and how
to make good use of them.

Attributes

An attribute is nothing but a key-value pair. We have a whole bunch of attributes to
deal with when working with Chef. Ohai, for example, generates tons of attributes
for us to consume and play around with. Then we can specify the attribute at node
level while running chef-client. Those attributes are referred to as node attributes.
The attributes used in recipes are referred to as recipe attributes. These recipe
attributes can either add to an already large list of attributes or they can override
certain preexistent attributes. When recipe attributes take precedence over default
attributes, the chef-client applies new settings and values during the chef-client run
on the concerned node.

[139]

www.it-ebooks.info

http://docs.getchef.com/resource_template.html
http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

Types of attributes

An attribute can be of one of the following types:

Type Description

default This attribute has the lowest precedence and cookbooks should
make use of these attributes as often as possible.

force_default | If an attribute is already defined in a role or environment and the
cookbook specifies the attribute with the same name but with the
force_default type, then the attribute defined in the cookbook
will take precedence.

normal This attribute persists in the node object. It has higher precedence
than the default attribute.
override This attribute takes precedence over the default, force_

default, and normal attribute. It is most often specified in a
recipe but can be specified in the attribute file, role, or environment
too. It should be used only if required.

force_ This attribute ensures that the override attribute in the cookbook

override takes precedence over the override attribute defined in the role
or environment.

automatic This attribute is usually defined by Ohai during the chef-client
run. These attributes have the highest precedence and they can't be
overridden.

Including recipes

A recipe need not work all alone on its own. Chef provides us with a way to include
other recipes through the include_recipe method. When a recipe is included in
another recipe, then the resources are loaded in the exact order as specified.

The syntax for including a recipe is as follows:
include recipe "recipe"

Any recipe that is included needs to be mentioned as a dependency in the metadata
definition as well.

Say we have a cookbook called x having a default recipe and there is another
cookbook called ¥ having a default recipe. We now want to include v in x. To do so,
we'll need to mention include_recipe "Y" in the default recipe of the cookbook

x and along with that we'll also need to add Y as a dependency in the metadata
associated with the cookbook x.

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

To do so, edit the metadata. rb file associated with the cookbook x and add the
following code:

depends "Y"

The run_list

Finally, in order to execute a recipe, it has to be added to run_1list. Let's say we
have a cookbook with the following structure:

cookbooks/
nginx/
recipes/
default.rb
mod_ssl.rb

Now, as you can see, we have two recipes associated with the cookbook called
nginx. One of them is the default recipe and it can be loaded into run_1list just by
using the name of the cookbook. The other recipe, called mod_ss1.rb, can be loaded
into run_list by using the name nginx: :mod_ssl as shown here:

{

"run list": ["recipe[nginx]","recipe[nginx::mod ssl]"]

}
We can use Knife to add a recipe to run_1list associated with a node as follows:

knife node run list add NODENAME recipel[nginx], recipelnginx::mod ssl]

Recipe DSL methods

Recipe DSL is a Ruby DSL and hence anything that can be done using Ruby can also
be done in a recipe. Other than Ruby code, recipe DSL provides support for using
attributes, data bags, and search results in a recipe. It also provides four helper
methods to check for the node's platform from within the recipe.

The helper methods are as follows.

The platform method

The platform method can be used to identify the platform on which the chef-client
run is executing. For example:

if platform? ("redhat", "centos")
Write code for systems which have platform as redhat or centos
end

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

The platform_family method

The platform_family method can be used to identify the platform family on which
the chef-client run is happening. For example:

if platform family? ("debian")
Write code for systems which have platform family as debian.
These include systems running Debian/Ubuntu etc.

end

The value_for_platform method

The value for platformmethod can be employed to use a hash to select

a particular value depending on the value of node ['platform'] and

node ['platform version']. For example, we may want to set a variable with
a certain value if node ['platform'] is redhat or centos and a different value
if node ['platform'] is debian or ubuntu. This can be easily achieved using the
value for_ platform method. For example:

package name = value for platform(
["centos", "redhat"] => "httpd",
["debian", "ubuntu"] => "apache2"

)

This will set the value for the package name variable to either httpd or apache2
depending on which platform the chef-client run is happening on.

The value_for_platform_family method

Just like value for platform, the value for platform family method uses

a hash to select a particular value depending on the value of node ['platform_
family']. We could've rewritten the last example in value_for platform more
compactly, using value_for platform_family, provided we want to encompass all
operating systems belonging to a particular operating system family. For example:

package name = value for platform family (
"centos" => "httpd",
"debian" => "apache2"

)
There are a few other methods that might be useful while writing recipes.

The attribute method

The attribute method will return true if one of the listed arguments to this method
belongs to the list of attributes returned by Ohai. For example:

if node.attribute? ('ipaddress')

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

#Write code that you wanted to execute if node has an ipaddress
end

The resources method

The resources method can be used to search for a resource in a collection of
resources. The return value of this method is the resource object found in the
collection or nil.

Let's say we have a file resource declared as follows:

file "/tmp/testing" do
owner "root"
end

Maybe after the execution of a few blocks of code, we want to set the content of the
file resource that we declared earlier. We can do this as follows:

f = resources("file[/tmp/testingl™")
f.content "Hey there"

Other than these methods, there are ones that allow us to search data bags and then
there are search methods that allow us to search data that is indexed by the Chef
server. We'll cover those later when we look into data bags and the Chef API in detail.

Best practices when writing recipes

As with any coding practice, there are some good practices that, when adopted,
lead to better code quality:

1. Don't repeat yourself. This is especially important because generally system
administrators have the habit of working in silos. Every other system
administrator feels some sense of pride in having a repository full of tools
of trade that he/she has written himself/herself. Now, there is nothing
wrong with that; however, almost 95 percent of tools are rewrites. Avoid
doing so with your recipes. Reusability is a wonderful concept and rather
than wasting time in writing recipes from scratch, make use of recipes that
are already available within the community. If you are really feeling the
itch, write a wrapper, work with the community to improve features in a
cookbook, or extend the available set of cookbooks by writing recipes for
things for which there isn't any cookbook currently available.

[143]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Journey to the World of Recipes

2.

Don't feel stupid when using the include_recipe method. It's a wonderful method
and you are encouraged to use it as much as possible. In fact, a long recipe
is not a great idea if the functionality associated with it can be broken down
into different smaller entities. For example, consider a recipe to handle the
Nginx web server installation. Now, we can do everything like managing
SSL certificates and so on inside the default . rb file. However, it's not

wise to do that because, as soon as you go down that route, you give up on
reusability as the recipe is no longer reusable.

Don't specify versions of packages directly in the recipe. Rather, make good use
of attributes and declare an attribute like node ["app_name"] ["version"]
and use it in your recipe. The same goes for the specification of ports, log file
locations, PID file locations, and so on.

Try to ensure idempotency, especially with the execute and bash resources.

Summary

This pretty much sums up our journey into the world of recipes. In this chapter,
we learned about resources, the two-phase model used by chef-client, and the use
of guard attributes. We also saw lots of resources and eventually we learned about
using them in recipes. We also learned about DSL methods and run lists. With
knowledge about the best practices you should follow, you should now be able

to write a recipe with all the different resources and attributes.

In the next chapter, we'll look at cookbooks and LWRPS in more detail.

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

Cookbooks and LWRPs

So, we have learned how to manage different components of our infrastructure
using the concept of resources. We also learned what a recipe is and how to
handle attributes.

Recipes are nothing but simple Ruby code that defines how the system is going to
get to a particular state. A system is comprised of multiple components and each of
these components is handled by means of resources.

A resource is a statement of configuration policy. It describes the desired state

of an element in our system. It also describes how that state can be achieved. Each
resource statement in a Chef recipe corresponds to a specific part of infrastructure:
a file, a cron job, a package, a service, and so on.

Recipes group together these resource statements and describe the working
configuration of the entire system.

The recipes by themselves aren't good enough to configure a concerned host and
we need to manage configuration files, along with packages, services, users, and so
on. For this purpose, we rely on resources like cookbook_file, template, and so
on. All these components, along with attributes, are eventually stored collectively in
a container called cookbook. In this chapter, we'll see how a cookbook is authored,
how is it pushed to the Chef server, and so on.

In the previous chapter, we learned about the different resources that can be used to
manage the different aspects of a system configuration, but there are times when the
existing resources aren't sufficient for our purpose. This is when we need to create
custom resource providers, also known as LWRPs or lightweight resource providers.
A LWRP is a piece of code written using Chef DSL that can be used to define a new
resource and provider. A LWRP provides the steps needed to bring a system from
the current state to a desired state. It constitutes two parts - a lightweight resource
and a lightweight provider. In this chapter, we'll see how to make use of LWRPs to
extend Chef. We'll write our own custom LWRP as well.

[145]

www.it-ebooks.info

http://www.it-ebooks.info/

Cookbooks and LWRPs

Cookbooks

While recipes in the world of Chef are a fundamental unit of execution, a cookbook
is the fundamental unit of configuration and policy distribution. A cookbook is

a container that is responsible for holding everything. It is needed to configure a
component of a system, be it the attributes, configuration files, templates, custom
resources (more about resources later in this chapter), recipes, versions, metadata,
or libraries/helper functions; everything is packed into a cookbook and is used
later on during the execution of Chef code when run_1list is expanded during the
chef-client run on the concerned machine.

Authoring a cookbook

A cookbook has the following directory structure:

| -- CHANGELOG.md

| -- README.md

|-- attributes

|-- definitions

|-- files

| “-- default

|-- libraries

| -- metadata.rb

| -- providers

| -- recipes

| “-- default.rb

| -- resources

-- templates
“-- default

The attributes folder is meant to contain a list of attributes that can be used
within the recipes contained in the cookbook.

The definitions folder is meant to contain definitions that can be reused across
recipes. This is very similar to compile-time macros. The definitions are very
useful in cases where we have repeating patterns in our code.

For example, we might have a web server running Nginx along with Passenger
and php-fpm. We would like to have a definition that can help us build the Nginx
configuration for Rails and PHP apps. We can go about doing this by first creating
a definition, say nginx_config, as follows:

define :nginx config, :type => nil, :base => "/var/www/html",
:port => 80, :log file prefix => nil,

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

template "/etc/nginx/conf/#{params[namel] }" do
source "/etc/nginx/conf/#{params[name] }"
owner "root"
group "root"
mode "0644"
variables ({
:root dir => params[base],
:type => params [type],
:port => params [port],
:log file => params|[log file prefix]
3
end
end

Now you can use this definition in your recipes to create a new configuration,
as follows:

nginx config "foobar.conf" do
base "/apps/foobar/public"
type "rails"
port "80"
log file prefix "foobar"
end

The files folder is meant to hold up files that are meant to be distributed using
the cookbook file or remote directory resource.

The libraries folder is meant to contain files that essentially contain Ruby code
that is meant to be used as a helper method.

The metadata.rb file contains metadata information about the concerned cookbook.
It is used to define the version and dependency to other cookbooks as well.

The recipes folder is where the recipes are kept. By default, we have a file
called default.rb. We refer to a cookbook in run_1ist as follows:

run list "cookbook name"

Whenever we do this, we are in effect calling up the default recipe in the
concerned cookbook.

One can store as many recipes as required in a cookbook. However, as a good
practice, it's always nice to store related recipes in a cookbook. For example, you
might not want to store recipes for Nginx and MySQL in the same cookbook.

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

Cookbooks and LWRPs

There are times when a single software component might require different recipes
for different modes of operations. For example, MySQL comes with server, client,
and development libraries. You might want to only install the MySQL server

and client on the server, while on desktop workstations, you might only want to
have development libraries. In such cases, it's wise to separate out recipes for the
management of MySQL server, client, and development libraries, and include the
necessary recipes in run_list.

For example, we might choose to have three different recipes called server.rb,
client.rb, and dev.rb in a cookbook called mysql. For a machine with the role of
SQL server, we would have mysqgl: : server and mysgl::client in the run list,
while for a developer workstation, we would keep mysqgl: :client and mysqgl: :dev
in the run_list.

The resource folder is meant to keep any custom resource provider that we might
create. We'll see more about this later in the chapter.

The templates folder is meant to contain dynamic templates that can be used to
create configuration files dynamically.

This directory structure can either be created manually or you can make use of Knife
to create it automatically for you:

knife cookbook create <cookbook name>

You may add details like copyright, license, and e-mail into knife.rb and whenever
you issue this command, the required information will be automatically filled up for

you. The following are the concerned values that need to be filled up in knife.rb for
this to work:

cookbook copyright "Your Company, Inc."
cookbook license "apachev2"
cookbook email "me@foobar.com"

Knife, by default, will create version 0.1.0 of the cookbook. If you want to change it,
edit the metadata. rb file associated with the concerned cookbook.

Uploading a cookbook to the Chef server

Once you've authored a cookbook on a developer workstation, you can upload it to
the Chef server using Knife as follows:

knife cookbook upload <cookbook name>

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

This command will search for a cookbook called cookbook name in the cookbooks/
folder of your Chef repository on your workstation and will eventually upload the
contents to the concerned Chef server.

The uploaded cookbook is stored on the Chef server in a bookshelf. The content

is stored as flat files as part of a cookbook version. The cookbook content is stored
by content checksum. If two different cookbooks or different versions of the same
cookbook include the same file or template, the bookshelf will store the file just once.

Deleting a cookbook

A cookbook can be deleted from the Chef server using Knife as follows:

knife cookbook delete <cookbook name> [<version>]

If there are multiple versions of a cookbook, it'll ask, "which version do you
want to delete?" If you want to delete all versions of a cookbook, you may use
the following command:

knife cookbook delete <cookbook name> -a

If you are sure that no file in the existing cookbook is being referenced by any
other cookbook, you may even choose to purge the cookbook:

knife cookbook delete <cookbook name> -p

This will entirely remove a cookbook from the Chef server. Purging a cookbook
will disable any cookbook that references one or more files from a cookbook that
has been purged.

Testing a cookbook

So, you've authored the cookbook and are now eager to push it to the Chef server.
However, before you go ahead, you might want to test it for any syntax errors.
You can use Knife to do this job for you, as follows:

knife cookbook test <cookbook name>

This will check all . rb and . erb files for syntax errors in a specified cookbook.

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Cookbooks and LWRPs

Cookbook versioning

The cookbooks on the Chef server are versioned. A cookbook version represents a

set of functionalities that are different from the cookbook on which it is based. One
might keep different versions of a cookbook due to many different reasons - adding
an improvement, updating a bug fix, and so on. This concept of versioning is referred
to as semantic versioning (http://semver.org). A cookbook version can even be
frozen to ensure that no further updates are allowed in the concerned version of

the cookbook.

Cookbook versions follow a format of x.vy . z, where x, y, and z are decimal numbers
and are used to represent major (x), minor (y), and patch (z) versions.

Operators available for use with versioning

The following operators can be used along with cookbook versions:

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

~> Approximately greater than

Say you have two cookbooks, A and B. There are two versions of cookbook A
available on Chef server - 0.1.0and 1.2.0. If you want to have the dependency
set to A@0. 1. 0 for cookbook B, then you can say so in metadata.rb by issuing the
following statement:

depends "A", "= 0.1.0"

However, say you are going to push some patches to the 0.1 .0 version of cookbook
2, and you want to ensure that B is always dependent on the 0.1 .x version, where x
denotes the latest patch number. In such cases, you can specify the dependency

as follows:

depends "A", "< 0.2.0"

If you want to use a particular version of a cookbook in your node's run_1list,
you can do so by using @ as follows:

{"run list": ["recipe [cookbook namee@version number] "]}

[150]

www.it-ebooks.info

http://semver.org
http://www.it-ebooks.info/

Chapter 6

For example, the following statement will set run_1ist with the cookbook version
0.1.1:

{"run list": ["recipe[cookbook name@0.1.1]"]}

Freezing versions

After you've pushed all the different patches to a particular version of the cookbook,
you will eventually land in a situation where you'll not want any further updates to
be pushed to a particular version of a cookbook. In such a an instance, a cookbook
version can be frozen, which will prevent any further updates being pushed to

that version. This is extremely useful in ensuring that accidental updates aren't
pushed to the production environment, and it also helps maintain the reliability of
the production environment.

A cookbook version can be frozen using Knife as follows:

knife cookbook upload cookbook name -freeze

Once a version has been frozen, it can only be updated by making use of the -force
option while uploading the cookbook, or else it'll throw an error saying version
X.y.z of cookbook cookbook name is frozen. Use -force to override.

Maintaining multiple versions of cookbooks

There are two strategies to choose when using version control as part of the
process of managing cookbooks:

¢ Use maximum version control when it is important to keep every bit of
data within version control

* Use branch tracking when cookbooks are being managed in separate
environments using Git branches and when versioning information is
already stored in metadata.rb

Maximum version control strategy
This approach is useful if we want to version control everything. In the
development environment, follow these steps:
1. Bump up the version number of the cookbook as appropriate.
2. Hack.
3. Upload and test.

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Cookbooks and LWRPs

When we are ready to move the cookbooks to production, we need to
do the following;:

1. Upload and freeze the cookbooks:

knife cookbook upload <cookbook> --freeze

2. Modify the environment to specify the new version by editing the
environments/production.rb file.

3. Update the environment:

knife environment from file production.rb

Branch tracking strategy

In the branch tracking strategy approach, we have a branch in our repository for each
environment, and the cookbook versioning policy tracks whatever is at the tip of the
branch. In this case, we have to ensure that the version is always upgraded before the
cookbook is uploaded for testing. For environments that need special protection, we
can upload cookbooks using the -E ENVIRONMENT and -freeze flags. To adopt this
approach, follow these steps in a development environment:

1. Bump up the version number of the cookbook as appropriate.
2. Hack.
3. Upload and test.

When we are ready to move the changes to production, just upload the cookbook
with automatic version constraints, as follows:

knife cookbook upload <cookbook> -E production freeze

Custom resources

There are two ways to define custom resources - via LWRPs (lightweight resource
providers) or HWRPs (heavyweight resource providers). Before LWRPs were
introduced, all extensions to Chef were written using Ruby, and these are referred
to as HWRPs. While LWRPs are simple, a HWRP is extremely flexible. The HWRPs
reside in the 1ibraries folder of the cookbook repository. Chef tries to import
anything residing there at runtime and is interpreted as code, rather than a Chef
DSL. We'll mostly be concerned with LWRPs in this chapter.

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

A LWRP is meant to extend chef-client so that custom actions can be defined and
eventually used in a recipe.

A LWRP has two main components. They are as follows:

* A lightweight resource that defines a set of actions and attributes

* Alightweight provider that tells the chef-client how to handle each action

One may use existing resources or custom Ruby code to build a new LWRP. Once a
LWRP is ready, it's read every time during the chef-client run and processed alongside
all of the other resources. During the chef-client run, each lightweight resource is
identified and associated with a lightweight provider. A lightweight provider does
the job of completing actions that are required by the lightweight resource.

In addition to using a lightweight resource/provider, a custom resource can also
be defined using libraries. These resources cannot make use of the recipe DSL and
must make use of a specific syntax to call core chef-client resources.

Setup

The lightweight resources and providers are loaded from files that are saved in the
following directories inside a cookbook:

* providers/: The subdirectory where lightweight providers are located

* resources/: The subdirectory where lightweight resources are located

You may find files like default.rb, xyz.rb, and so on, and the names of lightweight
resources and providers will be decided by these filenames. For example, if there is a
cookbook called cookbook name and it has a default.rb file in the providers and
resources folder, then the provider and resource can be referred to as cookbook_
name. However, for a resource or provider in a file called xyz . rb, the resource and
provider will be referred to as cookbook name_xyz and xyz respectively.

Let's see an example to understand what elements are required to build our first
custom LWRP. We have been entitled with the responsibility to come up with a
cookbook to set up Node.js and a few npm packages. We would like to make use
of a LWRP called nodejs_npm in our recipe to install the npm packages. This new
resource should be able to accept the name of the package to be installed, the
version of package, and the type of package (local or global) as an argument. If
the package is local, we should be able to specify the path where the package will
be installed. Our cookbook is known as nodejs.

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Cookbooks and LWRPs

Resource

The resource is created under the file resources/npm. rb:

Cookbook Name:: nodejs
Resource:: npm

Copyright 2014, Sychonet

All rights reserved - Do Not Redistribute

H o H HF H HF H HF

actions :install, :uninstall
default_action :install

attribute :package, :name_attribute => true
attribute :type, :kind of => String
attribute :path, :kind of => String

Our resource has two actions, namely install and uninstall. Actions determine
what can be done by the concerned resource. The next line determines the default
action associated with a resource. In our case, the default action is install. If we
don't specify any action while using our custom resource, the default action that
will be triggered would be install.

Next, we define a set of attributes associated with our resource. We would like to be
able to specify a version, a type, and a path along with the package name. The type
would determine if the package is global or local. If a package is local, we can specify
a path where we want the package to be installed.

As you can see, the resource is meant to define what to expect from our new LWRP;
it doesn't deal with the implementation. For example, nowhere in the resource does
it say what the install or uninstall action is supposed to do. We've defined our
resource in a file named npm. rb, and hence it'll be referred to as nodejs_npm.

Provider

The provider is created under the file providers/npm. rb:

require 'json'

def package is_ installed?
if new resource.type == "global"

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

installed packages hash = JSON.parse(npm list -global -

json”) ['dependencies']
else

installed packages hash = JSON.parse(npm list -json~)

['dependencies']
end
installed packages = Array.new

if (new resource.version.nil?)

installed packages hash.each do |key,value]|

installed packages << key
end

installed packages.nil? ? false

(new_resource.name)
else

installed packages hash.each do |key,value]|
installed packages << key+"@"+value["version"]

end

installed packages.nil? ? false

(new_resource.name+"@"+new resource.version)

end
end
def setup
if new resource.type == "global"
path="/tmp"

if new resource.version.nil?

command="npm install #{new

else

command="npm install #{new

e#{new_resource.version}
else
path=new resource.path

if new resource.version.nil?

command="npm install #{new

else

command="npm install #{new

{new_resource.version}"

resource

resource
_gn

resource

resource

directory "#{new resource.path}" do

action :create
recursive true
end
end

.package} -g"

.package}

.package}"

.package}e#

installed packages.include?

installed packages.include?

[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Cookbooks and LWRPs

end

def whyrun supported?
true
end

action :install do
setup
description = "Install #{new resource.package}"
converge by (description) do
execute "Install NPM package #{new resource.package}" do
cwd "#{path}"
command "#{command}"
not if { package is installed? }
end
end
end

action :uninstall do
setup
description = "Uninstall #{new resource.package}"
converge by (description) do
execute "Uninstall NPM package #{new resource.package}" do
cwd "#{path}"
command "npm uninstall #{new resource.package}"
only if { packge is installed? }
end
end
end

The provider is meant to take care of defining these actions. Our provider is

created under the file providers/npm. rb. It is mandatory for the provider to define
all actions declared in the resource. Since we had declared two actions, install and
uninstall, in our resource, we'll need to define both of them in our provider here.

The actions can be written using Ruby and hence allow you the flexibility to write
highly customized code to handle a particular action. In our case, we have used the
attributes associated with the resource to build some logic that we can use to install
or uninstall a given npm package.

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Apart from the definition of actions that are defined inside the action block, we've
used two functions in our code to help us modularize our code. We have also used
a function called whyrun supported?. If this function returns true, then the
provider can be executed in why-run mode.

Provider DSL

The following methods come packaged with the provider DSL in Chef:

converge by: This method is used to define what needs to be done
when a provider is executed in why-run mode.

new_resource: This method is used to represent a resource as loaded
by chef-client during a chef-client run.

action: This method is used to define the steps that need to be taken to
define all possible actions that are declared in the resource. Each action
must be defined in a separate action block.

converge_by: This method is a wrapper used to tell chef-client what to
do if a resource is run in why-run mode. The syntax of the converge by
method is:

converge by ("message")

The code in the converge_by method will actually be executed in the
execution phase and finally the "updated" state of resource will be updated.

current_resource: This method is used to represent a resource as it exists
on the node at the beginning of the chef-client run. The chef-client compares
the resource as it exists on the node and tries to execute the steps to allow it
to be brought to the desired state. This method is often used as an instance
variable (ecurrent_resource). For example:

action :install do
unless @current resource.exists
<code to installs
else
Chef: :Log.debug ("#{@enew resource} already exists.")
end
end

load current resource: This method is used to find a resource on the
basis of a collection of attributes. This method asks chef-client to see if a
resource exists with matching attributes on the node.

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

Cookbooks and LWRPs

* updated_by last_action: This method is used to notify a lightweight
resource that a node was successfully updated.

* whyrun_ supported?: The why-run mode is used to see what chef-client
would've configured on the node without actually modifying the concerned
resources. This is very similar to the no-op mode. The why-run mode is very
helpful in verifying if everything will be configured in the manner we want.
With the whyrun_supported? method, the resource can be configured to
support the why-run mode. The syntax of this method is as follows:

def whyrun supported?
true
end

When the why-run mode is supported by a lightweight provider, the converge_by
method is used to define strings that are logged by the chef-client when it is run in
why-run mode.

Logging
One can make use of the Chef: : Log class in a lightweight provider to define log

entries that are created during the chef-client run. The syntax for a log message is
as follows:

Chef::Log.log type ("message")

Here, 1og_type can be debug, info, warn, error, or fatal, while message is what
we want to log.

One should make use of exception handling to ensure that a log message is always
provided. For example:

action :some_ action
begin
rescue

Chef: :Log.debug("Some log message in event of failure")
end

end

With this information in your hands, you should be comfortable in creating your
own custom lightweight resources and providers and extend Chef. For more
details, you might want to check out http://dougireton.com/blog/2012/12/31/
creating-an-lwrp/.

[158]

www.it-ebooks.info

http://dougireton.com/blog/2012/12/31/creating-an-lwrp/
http://dougireton.com/blog/2012/12/31/creating-an-lwrp/
http://www.it-ebooks.info/

Chapter 6

Summary

In this chapter, we went through how cookbooks are structured and how to manage
recipes stored in a cookbook. We also learned about versioning and its uses. Finally,
we went on to create custom resource providers that can help extend the chef-client
by providing new resources.

In the next chapter, we'll move into the world of roles and environments and see
how we can group together all these cookbooks under a hood to bootstrap machines
with a particular role or in a particular environment.

[159]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Roles and Environments

We now know how to manage a particular component of our infrastructure using a
resource, how to group together resources, and how to manage interactions between
different resources by getting them grouped together in a recipe. We also know how
to group recipes and attributes together in a cookbook.

However, in most practical use cases, you'll find that no single cookbook is useful for
the purpose of configuring a system. This problem can be handled in two ways. One
way to handle this issue is to get everything required to be configured on a machine
inside one cookbook. Now this approach has a very fundamental flaw, as these
recipes/cookbooks won't be reusable to a great extent and they'll be very bulky too.
As we all know, a good development practice is to break down things into smaller
chunks and include whatever is required when required. Roles specifically allow us
to do this.

A role in Chef is a way to group together attributes and cookbooks to facilitate the
accomplishment of a particular function. Each role comprises zero or more attributes
and a run list. Once we have a role in place, we can use it in the run list associated
with the node and then, during the chef-client run, the run list will be expanded

and all the attributes and recipes defined in the role's run list are merged into those
associated with the node.

The following example case will help you understand this better. Let's say you are
a Chef coder at a company and you decide to write a recipe that will help set up a
barebones machine with the setting up of a few packages such as iptraf, htop, and
so on along with the configuration of the SSH server; let's further say you decide
to keep this recipe in a cookbook called base. Now you will be using this recipe on
all machines in your infrastructure; however, you'll also want to set up machines
individually according to their assigned tasks.

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

Roles and Environments

For example, you might have a web server, a database server, and so on. You'll use
recipes such as nginx, mysgl, and so on to configure a web server or a database
server. So, an ideal way to go about bootstrapping a machine with the base recipe
and a specific recipe would be to keep the base recipe and the specific recipe in a role
and eventually use that role in the run list of the machine. The following is a typical
example of a role:

webserver.rb
name "webserver"
description "Webserver Role"
run_list "recipe[basel]", "recipe[passenger]", "recipe [nginx]"
override attributes (
:app => { :user => "application", :group => "application" }

)

This role is meant to configure a web server and, as you can see, it has three
recipes in its run list and it's overriding two attributes: node [: app] [:user] and
node [:app] [:group]. I use these two attributes to identify the credentials under
which the application will be running.

Once a role is created, it can be used in a node's run list as follows:

run list "role[webserver]"

Also, it's a general practice in software development to split infrastructure into
different environments. Generally, you will find at least three environments:
development, staging, and production. Developers write their code in the
development environment; once the code is developed and has passed unit tests, it
progresses to the staging environment, where it undergoes integration testing and
only when the software has been thoroughly tested in the staging environment does
it move to the production environment, where it's exposed to end users.

This practice allows for rapid development without bothering about breaking the
impact of changes on functionality of the final product. In some cases, you might
even find a functional testing environment or a user acceptance testing environment
within your infrastructure. Whatever the number of different environments, one
thing that is prominent here is the fact that the configurations of environments tend
to vary and hence it becomes important to manage different configurations across
different environments. Chef allows us to manage different environments through
the concept of "environment".

An environment in Chef is a way to map an organization's environments to what
can be configured and managed using Chef server. Chef server comes with a default
environment called default and this environment can't be modified or removed.

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In this chapter, we'll see how to manage our infrastructure by classifying it into
different environments along with ways to make use of roles to group multiple
cookbooks together and apply them to a node.

We'll start of by understanding how to manage roles, followed by understanding
how Chef handles environment-specific configurations. Once we have an
understanding of how roles and environments are managed, we'll look into different
types of attributes that can be used with a role or environment and how their
precedence is evaluated.

Managing roles

There are multiple ways to manage roles in the Chef ecosystem.

Using Knife
Knife can be used to create, edit, delete, edit, or show a particular role; alternatively,

it can be used to push a role file created using Ruby DSL to the Chef server. Knife can
also be used to get a list of all roles defined on the Chef server.

Creating a new role

The knife role create ROLE command can be used to create a new role.
Let's use it to create a role called webserver and see the command in action:

$ knife role create webserver

As soon as you issue this command, an editor will open up. The choice of which
editor to make use of can be specified by editing the value of the knife [:editor]
attribute in your knife. rb file.

The file will look like the following;:
{

"name": "webserver",
"description": "",
"json class": "Chef::Role",

"default attributes": {

b

"override attributes": {

b

"chef type": "role",

[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Roles and Environments

"run list": [
1,
"env_run list": [
]
}

This is a simple JSON file containing various key-value pairs. The following is a
description of the different keys and expected values:

Key

Expected value

name

This is the name used to identify this role

description (optional)

This is a description associated with this role

json_class

Chef: :Role

default_attributes
(optional)

This is a hash containing the different default
attributes

override attributes
(optional)

This is a hash containing the different override
attributes

run_list

This is a list containing the recipes and roles that
should be applied on the machine when this role
is expanded during a chef-client run

env_run list (optional)

This is an environment-specific run list

chef type

role

Let's add some meaningful values to this file:

{

"name": "webserver",
"description": "Webserver Role",
"json class": "Chef::Role",
"chef_ type": "role",

"run list": [

recipe["base"], "recipe [nginx]"

}

Now save this file and exit your editor. As soon as you exit your editor, you'll see

that Knife will contact Chef server and create a new role there corresponding to this

JSON file.

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Editing an existing role

The knife role edit ROLE command can be used to edit an existing role on Chef
server. We created our role, webserver, earlier. However, between then and now,
we managed to create a cookbook to set up logstash, which will allow us to push
webserver logs to a central server. Let's edit our role to include this recipe into the
run list associated with the webserver role:

$ knife edit role webserver

This command will once again open up the JSON associated with the webserver
role. Edit the concerned values and exit the editor:

{

"name": "webserver",
"description": "Webserver Role",
"json class": "Chef::Role",
"chef type": "role",
"run list": [
recipe [base] , "recipe [nginx] ", "recipe[logstash]™"

Deleting an existing role

The knife role delete ROLE command can be used to delete an existing role

on Chef server. If you are managing roles through Ruby DSL, then note that this
command won't remove the DSL file from the Chef repository but will only remove
the role from Chef server.

Let's try and delete the webserver role we created earlier:

$ knife role delete webserver
Do you really want to delete webserver? (Y/N)y

Deleted role[webserver]
As you can see, Knife prompted you to confirm the deletion of the concerned role.

If you are very sure about your actions, you can append the command with -y and
now you won't be asked for confirmation.

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

Roles and Environments

Showing details about an existing role

The knife role show ROLE command can be used to see the details associated
with a particular role on Chef server.

Let's see the details of the webserver role we created earlier:

$ knife role show webserver
chef type: role
default attributes:
description: Role to manage webserver
env_run lists:
json class: Chef::Role
name: webserver
override attributes:
run list:

recipe [base]

recipe [nginx]

recipe[logstash]

Listing all roles on the Chef server

The knife role list command can be used to see a list of all the roles defined
on Chef server:

$ knife role list

webserver

As we had just one role, webserver, on the Chef server, we can see that the
command returned the name of the role.

Using Ruby DSL

Instead of directly using Knife to create and edit roles, one can make use

of Ruby DSL to create files that can later be used to set up the concerned role

on Chef server. The benefit of this approach is that we can store these files in the
version control system and hence maintain the history of changes we've been making
to our roles.

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

To create a role using Ruby DSL, you have to create Ruby files in a directory
called roles in your chef-repository. The structure of your repository should look
somewhat like this:

code/chef-repo [master] " tree -L 1 -4

| -- cookbooks
| -- data bags
| -- environments

'-- roles

Once you have the directory created, you can store all your role-related files there
and version them in your version control system.

You can specify the following properties in your roles file:

* name: This is a string used to define the name of your role

* description: This is a string used to give a human-friendly description to
your role

* run_list: This is a comma-separated list of recipes and roles

* env_run_lists: This is again a comma-separated list of recipes and roles
* default attributes: This is a hash used to define default attributes

* override attributes: This is a hash used to define override attributes

Let's create our webserver role once again. Only this time, we'll make use of Ruby
DSL to create a role file first and eventually upload it to Chef server using Knife:

roles/webserver.rb

Role Name:: webserver

Author: maxcOd3r@sychonet.com

name "webserver"

description "Role to manage webserver"
run list "recipe[basel","recipe [nginx]"

With the file in place, now you can create the role on Chef server using the Knife
command knife role from file FILENAME

$ knife role from file roles/webserver.rb

Updated Role webserver!

Knife responds back with a message saying Updated Role webserver!. This means
that the role was successfully created on Chef server.

[167]

www.it-ebooks.info

http://www.it-ebooks.info/

Roles and Environments

Remember that the role is created on Chef server with the name you specify as the
property name in your Ruby file and this has nothing to do with the name of the
file itself. So you can create a file test . rb with the name of the role specified as
webserver, use the command knife role from file test.rb;and you'll still get
the role created under the name webserver.

So now we have our role created on Chef server and we just realized that we forgot
to add the 1ogstash recipe to the run list. No worries, just edit the Ruby DSL file and
add recipe[logstash] to the run list:

roles/webserver.rb

Role Name:: webserver

Author: maxc0d3r@sychonet.com

name "webserver"

description "Role to manage webserver"

run_list "recipe[basel]", "recipe[nginx]", "recipe[logstash]"

Now use Knife to update the role once again:

$ knife role from file roles/webserver.rb

Updated Role webserver!
And voila! Your role is updated with a run list containing the 1ogstash recipe.

Always remember that, if you want to make good use of Chef, you should commit
everything to a version control system in order to track changes being made to your
infrastructure code.

Using a JSON file

As was the case with Ruby DSL, you can make use of a JSON file to manage roles
too. The only difference is that you have to specify the additional property called
json_class with the value Chef: :Role in your JSON file.

Let's create our webserver role using a JSON file:

roles/webserver.json

{

"name": "webserver",

"description": "Role to manage webserver",
"json class": "Chef::Role",

"run list": [

"recipe [base] ",
"recipe [nginx] ",
"recipe [logstash] "

[168]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Use the knife role from file FILENAME command once again to update
the role on Chef server:

$ knife role from file roles/webserver.json

Updated Role webserver!

Using the Chef API

Rather than relying on Knife, you can even use the Chef API to directly
manipulate roles.

For example, the following Ruby script will use the Chef API to load config from
your knife.rb file and use it to find the list of all roles defined on the Chef server:

#!/usr/bin/env ruby
require 'chef'
Chef::Config.from file(File.expand path("PATH TO knife.rb"))
Chef::Role.list.each do |role|
puts role
end

Run this script and you'll get a list of all roles that you've created so far on your
Chef server:

$ruby list roles.rb
webserver

http://chef-server.sychonet.com:4000/roles/webserver

Similarly, you can use POST requests to create a new role or delete a role.
For example, the following piece of Ruby code will delete the role webserver
from Chef server:

#!/usr/bin/env ruby

require 'chef'

Chef::Config.from file(File.expand path("PATH TO knife.rb"))
role = Chef::Role.load ("webserver")

role.destroy

Though you'll be using Knife to manipulate roles most of the times, it's useful to
know that you can accomplish the same task using the Chef API too. We'll look into
this in more detail when we cover the Chef APL

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

Roles and Environments

Using the Chef server WebUI

You can also create a new role or edit or delete an existing role by making use of the
Chef server web interface. Connect to your Chef server's web interface (usually over
port 4040). Once you've logged in to the system, navigate to the section called Roles
and choose to create a role. You'll be presented with a window as follows:

TN T 1 T

Enter the required details such as the name of the role, description, applicable
default, and override attributes and choose the recipes/roles to be added to
the run list corresponding to this new role. Once you are done with it, click on
the Create Role button.

To edit/delete an existing role, you can simply select the concerned role and
choose the appropriate action.

Whatever approach you take, it's wise to stick to one or else there is a very high risk
of messing things up. For example, if you are maintaining roles through Ruby DSL
scripts or JSON files and later you go about editing them through Knife, then you
won't be able to find out about the changes without comparing what's on Chef
server against what's present on the version control system.

Managing environments

There are multiple ways to manage environments in Chef. They are described in
the following subsections.

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Using Knife

Knife can be used to create, edit, delete, show information about a particular
environment, or list all available environments. It can be used to push the
configuration concerned with an environment through a file containing code
written using Ruby DSL and eventually this file can be maintained in the
version control system.

Creating a new environment

The knife environment create ENVIRONMENT NAME command can be used
to create a new environment. Let's use it to create a new environment called
production and see the command in action:

$ knife environment create production

As soon as you execute this command, an editor will open up. The choice of which
editor to make use of can be configured by editing the value of knife[:editor] in
your knife.rb file.

The file will look something like this:
{

"name": "production",

"description": "Production Environment",
"cookbook versions": {

"json class": "Chef::Environment",

"chef type": "environment",

"default attributes": {

"override attributes": {

This is a simple JSON file containing the following key-value pairs:

Key Value

name This is the name used to identify the environment
description This is the description associated with the environment
json_class This should be Chef : : Environment

chef type This should be environment

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

Roles and Environments

Key Value

default_attributes This is a hash containing the different default attributes

override_attributes This is a hash containing the different override attributes

cookbook_versions This is a hash containing a list of cookbooks along with
the versions to be used in the concerned environment

cookbook This is a version constraint for a single cookbook

Let's say you are a developer who loves to be on the cutting edge of technology
and you want to be sure to keep the latest version of Ruby in the development
environment; in the production environment, on the other hand, you want to keep
the stable version of Ruby to ensure that things don't break down. This can be
accomplished with great ease by using the concept of environments.

Let's presume that your environment files are called dev.rb and prod. rb and
you have a default attribute called default ['ruby'] ['version'] in your Ruby
cookbook's attribute file.

We'll create an override attribute called ['ruby'] ['version'] with different
values for different environments and this will help us deploy different versions of
Ruby across the development and production environments.

The dev . rb file will be as follows:

name "dev"
override attribute ("ruby"=>{"version"=>"2.1-head"})

The production. rb file will be as follows:

name "prod"
override attribute ("ruby"=>{"version"=>"2.1.2"})

Now if we do a chef-client run on a machine in the dev environment, the 2.1-head
version of Ruby will get installed; for machines in the prod environment, the 2.1.2
version will be installed.

Editing an environment configuration

The knife environment edit ENVIRONMENT NAME command can be used to edit
the configuration associated with an environment. Let's use this command to edit the
configuration of the production environment we created earlier:

$ knife environment edit production

[172]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

As soon as this command is executed, a JSON file will open up in the editor of your
choice:

{

"name": "production",
"description": "Production Environment",

"cookbook versions": {

"json class": "Chef::Environment",
"chef type": "environment",
"default attributes": {

b

"override attributes": {

}
}

Now make the concerned change to the configuration and save the contents and exit
the editor. Finally, you'll get confirmation about the environment configuration being
saved to Chef server.

Deleting an environment

The knife environment delete ENVIRONMENT NAME command can be used to
delete an existing environment:

$ knife delete environment production

Do you really want to delete production? (Y/N)y

Deleted production

If you don't want to be bothered about the confirmation, add the -y argument
to the last command:

$ knife delete environment production -y

Deleted production

Displaying all the environments configured on the
Chef server

The knife environment list command can be used to get a list of all
environments configured on the Chef server:

$ knife environment list

_default

production

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

Roles and Environments

As you can see, we have two environments on our Chef server. The production
environment was created by us; however, the _default environment is provided
by default with Chef server.

Showing details associated with an environment

The knife environment show ENVIRONMENT NAME command can be used to show
the details associated with an environment on Chef server. This will output the
following results:

$ knife environment show production
chef type: environment
cookbook versions:

default attributes:

description: Production Environment
json _class: Chef: :Environment
name: production

override attributes:

You may also choose to get the output for this command in other formats such as
JSON, using the - - format argument as follows:

$ knife environment show production --format json

"name": "production",

"description": "Production environment",
"cookbook versions": {

"json class": "Chef::Environment",

"chef type": "environment",

"default attributes": {

"override attributes": {

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Comparing cookbook versions across
environments

The knife cookbook compare command can be used to compare cookbook versions
across different environments.

Let's say we have two environments in our setup. The production environment is

as follows:
"name": "production",
"description": "Production environment",
"cookbook versions": {
"nginx": "= 1.0.2"
"json class": "Chef::Environment",
"chef type": "environment",

}

"default attributes": {

b

"override attributes": {

}

And the development environment is as follows:

{

"name": "development",
"description": "Development environment",
"cookbook versions": {
"nginx": "= 2.1.1"
b
"json class": "Chef::Environment",
"chef type": "environment",

"default attributes": {

b

"override attributes": {

}

[175]

www.it-ebooks.info

http://www.it-ebooks.info/

Roles and Environments

To know the cookbook versions corresponding to an individual environment,
use this command:
$ knife environment compare development

development

nginx 2.1.1

To compare cookbook versions between the development and production
environment, use this command:

$ knife environment compare development production

development production

nginx 2.1.1 1.0.2

To compare cookbook versions across all environments, use this command:

$ knife environment compare --all
development production

nginx 2.1.1 1.0.2

Creating or editing an environment using the
configuration specified in a file

Rather than directly modifying the environment specification using the knife
create or knife edit commands, we can instead keep the environment-specific
configuration in a file and use it for the purpose of setting up the environment.
These files can be written either in JSON format or using Ruby DSL.

This is especially useful as it allows us to maintain the configuration file in a version
control system. Once we have the files, we can just set up the environment using the
knife environment from file command as follows:

$ knife environment from file production.rb

Updated environment production

Using Ruby DSL

Instead of directly editing the environment configuration using the knife
environment create/edit commands, we can create the configuration files using
Ruby DSL or in JSON format and store them in the Chef repository. This allows us to
maintain versions of the configuration in a version control system such as Git/SVN.
As we saw earlier, this approach can be used to create/edit an environment using
the knife environment from file command.

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

To create an environment using Ruby DSL, we have to create Ruby files for
each environment in a directory called environments inside the Chef repository.
The structure of the Chef repository will look something like this:

code/chef-repo [master] " tree -L 1 -4

| -- cookbooks
| -- data bags
| -- environments

-- roles
We can specify the following properties in the Ruby files:

* name: This is a string used to define the name of the environment. This has to
be unique for an organization.

* description: This is a string used to provide a description for the concerned
environment.

* cookbook_versions: This is a hash containing the list of cookbooks along
with the versions to be used in the concerned environments.

* default_attributes: This is a method comprising a hash containing
different default attributes.

* override_attributes: This is a method comprising a hash containing
different override attributes.

Let's create an environment called production using Ruby DSL:

environments/production.rb
name "production"
description "Production Environment configuration"
cookbook version ({
"nginx"=>"= 1.0.2"
)}
default attributes "nginx" => { "ports" => ['80',6'443'] }
override attributes "nginx" => { "worker connections" => 2048 }

Now we can make use of the knife environment from file command to push
this configuration to Chef server as follows:

$ knife environment from file environments/production.rb

Updated environment production

[177]

www.it-ebooks.info

http://www.it-ebooks.info/

Roles and Environments

We can also specify this configuration using JSON as follows:

environments/production.json

{

"name": "production",
"description": Production Environment",
"cookbook versions": {
"nginx": "= 1.0.2"
b
"json class": "Chef::Environment",
"chef type": "environment",
"default attributes": {
"nginx": {
"ports": ["80","443"]
}
b
"override attributes": {
"nginx": {
"worker connections": 2048

}
}

When specifying configuration as JSON, we have two additional attributes
to specify, namely:

* json_class: This is always set to Chef : : Environment

* chef_type: This is always set to environment
We can also manage environments using the Chef API or the web interface.

We'll see more about the Chef API in later chapters and I'll leave exploring the
web interface for environment management as an exercise for you.

Setting up an environment on a node

Once environments have been created, we will need to ensure that the nodes are
correctly associated with the environments. Again, as with the management of
environments, there are multiple ways to associate a node with an environment.

[178]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Using Knife
We can make use of the knife node command with the environment_set argument
to set the environment for a node without editing the node object:

$ knife node environment set node0l production

This will set the environment for node01 as production. The next time chef-client
executes on the node, it'll apply the configuration corresponding to the production
environment on node01.

We can also edit the node object itself and set the chef environment property with
the required environment name as follows:

$ knife node edit nodeOl

This will open up the corresponding node01 object's JSON in the text editor.
Add/edit the chef_environment property with the right environment name
and save the file to apply the changes:

{

"normal": {
}l
"mame": "nodeOl",
"override": {
}l
"default": {
}l
"json class": "Chef::Node",
"automatic": {
}l
"run list": [
"recipe [devops] ",
"role [webserver]™"
]l
"chef type": "node",
"chef environment": "production"

}

We can also move nodes from one environment to another using the
knife exec subcommand as follows:

$ knife exec -E 'nodes.transform("chef environment: default") { |n|
n.chef environment ("production")}'

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

Roles and Environments

This will move all nodes in the development environment to the production
environment.

The knife exec subcommand uses the Knife configuration file to execute Ruby
scripts in the context of a full-fledged chef-client. For more details, please refer to
https://docs.chef.io/knife exec.html.

Editing the client.rb file on the node

We can add an environment configuration entry into the client.rb file on the
machine that is associated with the node object. Let's say our machine corresponding
to the node object node01 is called node01.production.domain. To edit client.
rb, SSH to node01.production.domain and edit the client.rb file by adding the
property called environment as follows:

/etc/chef/client.rb

log level :info

log_location STDOUT

chef server url "http://chef-server.sychonet.com:4000"
environment "production"

The next time that chef-client executes on this machine, the configuration
corresponding to the production environment will be applied to the node object.

If no environment configuration is supplied, then Chef picks up the configuration
associated with the default environment.

You may also associate an environment with a node object using the web UL
However, I'll leave that to you to explore as an exercise.

Once an environment has been associated with a node, you can make use of node.
chef_environment to figure out the environment and take the appropriate action in
your recipe. This is especially useful when you want to apply some conditional logic
to the execution of Chef recipes on the basis of environment. For example, it might be
the case that you run a bash script in your recipe using the bash resource; however,
maybe you don't want it to be running in any environment other than production.
To accomplish this, you can do something like the following in your Chef recipe:

if node.chef environment == "production"
bash "script" do
Your chef code here ...
end
end

Now, with the knowledge of how to manage roles and environments, let's see what
we can do with attributes within a role or an environment.

[180]

www.it-ebooks.info

https://docs.chef.io/knife_exec.html
http://www.it-ebooks.info/

Chapter 7

Role and environment attributes

We can define an attribute in a role or an environment and use it to override the
default settings on a node. When a role or an environment is applied during a chef-
client run, the attributes defined in them are compared against those already present
on the node. Finally, depending on the precedence order, the right attributes are
applied to the node.

A role or environment attribute can be either a default attribute or an override
attribute. It can't be a normal attribute.

A default attribute is automatically reset at every start of chef-client runs and has
the lowest attribute precedence. Any cookbook should be authored to make the most
of default attributes.

An override attribute, on the other hand, has higher attribute precedence over the
default, force default, and normal attributes. A cookbook should be authored to
make use of override attribute only when required.

Attribute precedence

Attributes are always applied to a machine by chef-client in the following order:

=

A default attribute specified in an attribute file in a cookbook.

A default attribute specified in a recipe.

A default attribute specified in an environment.

A default attributed specified in a role.

A force_default attribute specified in an attribute file in a cookbook.
A force_default attribute specified in a recipe.

A normal attribute specified in an attribute file in a cookbook.

A normal attribute specified in a recipe.

O X NSOk »DN

An override attribute specified in an attribute file in a cookbook.

—_
o

. An override attribute specified in a recipe.

—_
—_

. An override attribute specified in a role.

—_
N

. An override attribute specified in an environment.

—_
(O8]

. A force_override attribute specified in an attribute file in a cookbook.

—_
S

. A force_override attribute specified in a recipe.

—_
Q1

. An automatic attribute identified by Ohai.

[181]

www.it-ebooks.info

http://www.it-ebooks.info/

Roles and Environments

This precedence order can also be visualized as a table as follows:

Atriute Fies J] Node / Recips || Environment |

force_default

1]

BEOEEAAR
BEEAEAD

force_override

automatic m

Or one can visualize it as an overview diagram as follows:

[182]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Environment run lists

One of the major reasons why roles aren't popular is due to the fact that it's hard to
maintain versioned run lists. For example, you might have created web servers with
the role webserver that had a run list containing the base and nginx recipes. Now,
today you needed to add another recipe, say logstash, to these servers. So you went
ahead and added the recipe to the run list in your role and triggered a chef-client
run either automatically or manually. This is where you didn't realize that your new
recipe code had a bug and now all your ten servers are in a messed-up state.

There are many ways to overcome this issue; however, I like to use environment run
lists just for this very purpose. I split my infrastructure into different environments
such as dev, staging, and production. Whenever I write a new piece of Chef code, 1
ensure that I push it into the run list associated with the dev environment initially for
local testing. Once it has passed there, I add the recipe to the run list associated with
the staging environment and only once I'm satisfied there do I go about adding it to
the run list in the production environment.

Environment-specific run lists can be managed using the env_run_lists property.
Let's see how we can go about adding the 1ogstash recipe to the dev and staging
environments while leaving the production environment as it is:

{

"name": "webserver",
"description": "Role to manage a webserver",
"json _class": "Chef::Role",
"env_run lists": {

"production": ["recipe[basel", "recipe[nginx]" 1,

"staging": ["recipe[basel", "recipe[nginx]",

"recipe [logstash]"],

"dev": ["recipe[basel", "recipe[nginx]", "recipe[logstash]"]
}
"chef type": "role",

"default attributes": {
¥
"override attributes": {
}

}

Update your Chef server by pushing this role using Knife. And now, whenever you
execute a chef-client run on machines within the production environment, only the
base and nginx recipes will be applied; for the staging and dev environments, on
the other hand, the base, nginx, and logstash recipes will be applicable.

[183]

www.it-ebooks.info

http://www.it-ebooks.info/

Roles and Environments

Summary

This pretty much sums up our study of roles and environments and their uses.

We learned about the different ways of managing roles and environments. We saw
how we can make use of attributes in roles or environments and eventually we saw
how we can make use of environment run lists and set up different run lists for
different environments.

In the next chapter, we'll discuss more about attributes and their uses.

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Attributes and Their Uses

As we've seen so far, any machine (henceforth referred to as node) can be described
through Chef by means of recipes, roles, and environment that it is associated with.
However, throughout all this there are a few properties associated with a node as

well. A node will have properties such as name, IP address, kernel, FQDN, OS type,
and so on, associated with it. All these properties help in defining a system in a more
meaningful way. The more properties are associated with a node, the better the quality
of its definition. Some of these properties are tightly coupled to the system — for
example, OS type, kernel, IP address, and so on —while some are abstract in nature.
For example, we might have different kinds of web applications in our setup, some
related to finance and others perhaps related to HR. All these applications may be
deployed on different machines and they all use the same underlying technology stack;
hence, they all have a common role, say web server, associated with them. Maybe we
want to enforce strict access rules on web applications meant for finance as compared
to HR. In order to be able to distinguish between these different sets of instances,

we can add a property called device_class, which will define which class the node
belongs to. This property can have a value Finance, HR, and so on. Now, we can use
this property in our recipes to take an appropriate action. This will also help us identify
the instances associated with a particular class of an application very quickly; this will
be a real help as your infrastructure grows.

All these properties that are either automatically associated with a node or assigned
explicitly by you are called attributes. An attribute is a specific detail about the node
and is used for the following purposes by Chef:

¢ To understand current the state of the node

* To determine which state the node was in at the end of the previous
chef-client run

¢ To determine what state the node will be in at the end of the current
chef-client run

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

Attributes and Their Uses

The attribute list is built during every chef-client run, using various sources:

* Ohai collects lots of properties about the system and returns it in the form of
a JSON object to chef-client

* The node object that was saved to the Chef server at the end of the previous
chef-client run has attributes associated with it

* During the current chef-client run, any additional attributes or edited
attributes — that might come from cookbooks (via an attribute file or recipe),
roles, and environments, or due to change in node configuration itself —are

gathered

Once a node object is built, all of the attributes are compared and finally the node
is updated, depending on the precedence of attributes. Eventually, at the end of the
chef-client run, the current state of the node is pushed to the Chef server so that it
can be indexed for search.

There has been a significant change in how attributes are handled since Chef version
11; thus, if you are coming from Chef versions prior to Chef 11, pay attention as
things have changed considerably.

Attribute naming

This can be confusing for some people, especially those who aren't coming from the
Ruby world. You looked up two different cookbooks and, in one of them, you found
something like the following in the attributes file:

default[:app] [:user] = "web-admin"

On the other hand, the other cookbook had something like the following:

default['app] ['user'] = "web-admin"

These are two different styles of specifying the keys in a Ruby hash. In one, you are
making use of symbols; in the other, you are using strings. You can choose either of
these but, for the sake of sanity, try to be consistent. There are some pitfalls in using
either approach and there are some inherent benefits too. For example, symbols are
immutable and are allocated just once, which is a performance gain. On the other
hand, they can be pretty irritating if you are trying to include stuff such as hyphens
in their names. If symbols confuse you, stick with strings or vice-versa.

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

One of the popular lint tools called Foodcritic will complain if
s symbols are used while accessing node attributes.

Different types of attributes

Chef provides six different types of attributes, as listed in the following table:

Attribute type Description

default This attribute is reset upon the start of every chef-client run
and has the lowest attribute precedence. A cookbook should
make the most use of the default attributes.

force default Say you've specified the same default attribute in role

and environment along with a cookbook, and you want to
ensure that the attribute in the cookbook takes precedence. In
order to do so, one must make use of the force default
attribute type.

normal A normal attribute is never reset and persists with the node
object. It has higher precedence over the default attribute.

override An override attribute has higher precedence over the
default, force default, and normal attributes. It can
be defined in a recipe, role, or environment.

force_override Similar to the force default attribute, the force
override attribute specified in a recipe takes precedence
over the attribute specified in a role or environment.

automatic When data is collected by Ohai, the collected data is
organized as a set of attributes called the automatic
attributes. These attributes cannot be modified and have
highest precedence.

When a chef-client run starts, all the default, override, and automatic attributes
are reset. The chef-client rebuilds them using the data collected by Ohai (the
automatic attributes) and by the attributes defined in cookbooks, roles, and
environments (the default and override attributes). Finally, at the end of the chef-
client run, only a list of the normal attributes is left over; these will persist until the
next chef-client run. These normal attributes persist on a Chef server, and chef-client
uploads it at the end of its run. We'll see a little later in this chapter how to go about
declaring and consuming these different attributes.

[187]

www.it-ebooks.info

http://www.it-ebooks.info/

Attributes and Their Uses

You can also make use of custom JSON to specify a list of attributes to be applied
to a node by chef-client. These attributes are taken up as the normal attributes and
persist, so be very careful if you are treading along that path.

Here is an example of an attribute applied to a node using custom JSON.

Problem: We've a cookbook called nginx with an attribute file that takes care of the
installation of the Nginx web server. We've a default attribute default ['nginx']
['workers'] with value 512. Now, we want to override this value of 512 with 1024
for a particular node.

Solution: Create a JSON file, say /tmp/chef . json, on the concerned node:

/tmp/chef.json

{
"nginx": {
"workers": "1024"

}
}

With the file in place, execute the chef-client as follows:

#chef-client -j /tmp/chef.json

As you'll see once the chef-client run has completed, you'll have nginx ['workers']
as a normal attribute associated with the node object. You can confirm this by issuing
the following command:

$ knife node show NODENAME -a nginx
NODENAME:
nginx:

workers: 1024

If you have a mechanism to automate this process of creating custom JSON and you
are sure that you won't need to adjust the keys or values specified in it, only then use
this way to override attributes; otherwise, things will get really messy once you've
scaled out your infrastructure and have multiple cookbooks and types of nodes to
manage.

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Different sources of attributes

An attribute can be defined at multiple places and it is very important to declare
an attribute at the right place with right precedence order. During a chef-client run,
attributes are collected from the following different sources:

Nodes (collected by Ohai at the start of each chef-client run)
Attribute files (associated with cookbook) are collected during compile time

Recipes (associated with cookbook. The attributes specified in the recipes
might be collected during run time as well

Environments
Roles

The life cycle of an attribute can be understood by the following sequence of steps:

Developer writes attributes in the attribute file, recipe, role, or environment.
The concerned code is pushed to the Chef server.

During the chef-client run, Ohai collects all the automatic attributes from the
node.

The chef-client will pull node object from the chef-server, which will in turn
bring in the normal attributes that are persistent.

The chef-client will update the cookbook (if required). This may change the
set of attributes associated with an attribute file or a recipe.

The chef-client will update role and environment data (if required).

The chef-client will rebuild the attribute list and apply the precedence order
to come down to a final list.

Finally, the node object will be pushed back to the chef-server at the end of
the chef-client run.

Let's look at these sources in more detail,

The attribute file

An attribute file is associated with a cookbook and is placed inside the attributes
directory in a cookbook. During a chef-client run, all the attributes present in an
attribute file are collected and evaluated in the context of a node object. Finally,
node methods are used to set an attribute value on a node.

[189]

www.it-ebooks.info

http://www.it-ebooks.info/

Attributes and Their Uses

The following is a sample attribute file called default . rb for the Nginx web server:

default['nginx'] ['workers'] = "1024"
default['nginx'] ['user'] = "web-admin"
default['nginx'] ['ports'] = ["80", "443"]

The use of node object (node) is implicit in this case, and the following example and
the previous one are both identical:

node.default ['nginx'] ['workers'] = "1024"

node.default['nginx'] ['user'] = "web-admin"

node.default ['nginx'] ['ports'] = ["80","443"]
Recipes

We can define attributes within a recipe itself. When the chef-client run is initiated,
these attributes are collected along with the attributes from other sources, and
eventually precedence order is applied on them to get a final list of attributes to be
applied to the node.

There has been a significant change in how the attributes are handled in Chef 11.
Earlier you could use something as follows to define an attribute in a recipe:

node ['attribute'] = 'value'

This style of declaration is sometimes referred to as Chef 0.7 style. Since Chef 11,
this style of declaring attributes is no longer valid and you have to explicitly specify
the precedence in order to declare an attribute. So the following is a valid syntax to
declare the default attribute in a recipe:

node.default ['attribute'] = 'value'

You can, however, use node ['attribute'] to reference the merged attribute.

Roles and environments

An attribute can be defined in a role/environment, and then be used to override

the default attributes specified in recipes/attribute files. When a role/environment
is assigned to a node, the attributes are collected from the concerned role/
environment and, finally, precedence order is applied to all the attributes collected
from cookbooks, roles, environments, node object, Ohai, and so on, and a final list of
attributes is prepared.

[190]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

A role/environment attribute can only be of a default or override type.

One of the biggest problem with earlier versions of Chef was that the computation
of attribute values using the values overridden in roles or environments was not
possible without unexpected results.

For example, say you had an attribute file that was doing something like the
following;:

node.default ["server fgdn"] = node["server name"] + "." +
node ["domain"]

Also, say you were overriding the server name and domain attributes in your
environment or role. Now, this didn't work as intended because in earlier versions
of Chef, role/environment attributes were not evaluated until after attributes in
attribute files were evaluated. Hence, the server name and domain attributes didn't
get the right values, and server_fqgdn was not populated with the expected values.

In Chef 11, role and environment attributes are managed separately from the
attributes in attribute files. So, while the attribute file is being evaluated, the roles
and environment attributes are readable.

Ohai

All the automatic attributes associated with a node object are collected from the
concerned machine using a tool called Ohai. This is a binary that is installed on the
node as part of the chef-client installation. There are a wide variety of attributes that
are collected by Ohai:

* Platform details

* Network details

* Kernel info

* CPUinfo

* Filesystem details

* Memory details

* Hostname

* FQDN

* Other configuration details and data fetched using custom Ohai plugins

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

Attributes and Their Uses

The automatic attributes are used to identify specific details about a node such as an
IP address, hostname, kernel version, and so on. These attributes remain unchanged
after the chef-client run is over, and are used by the chef-client in read-only mode.

Extending Ohai itself can extend the information provided to the chef-client by Ohai.
This is possible through the concept of Ohai plugins. There are a plenty of Ohai
plugins already available in the Chef community; if that's not good enough for you,
you can write your own custom Ohai plugin really quickly, using a very simple DSL
provided by Chef. We'll look into Ohai plugins a little later.

The following are some of the most commonly used automatic attributes:

Attribute
node ['platform']

Description

This tells us about the platform on which a node
is running. This attribute can be used to decide on
package names or the location of config files. For
example, CentOS.

node ['platform_family'] This can be used to determine the family of the
operating system associated with a node. For
example, both Debian and Ubuntu belong to the

same platform family:thatis, Debian.

node ['platform version']

This can be used to determine the version of the
operating system release.

node['ip address']

This tells us the IP address of the concerned node.

node ['macaddress']

This tells us the MAC address of the concerned

node.

node ['hostname'] This tells us the hostname of the concerned node.

node ['fgdn'] This tells us the fully qualified domain name of

the concerned node.

node ['domain'] This tells us the domain of the concerned node.

node ['recipes'] This tells us the recipes associated with a node.

node['roles"'] This tells us the roles associated with a node.

Generally, Ohai comes with several plugins that you might not require and, unless
these plugins are disabled, they will get loaded eventually during the chef-client run.
For example, you might not need any Windows-related Ohai collectors; alternatively,
if your infrastructure is not on Rackspace, you might not need the Rackspace plugin
too. To disable loading of Ohai plugins, you can use the following configuration in
your node's client . rb file:

Ohai::Config[:disabled plugins] =
"ohai 6 plugin"]

[:OHAT_7_PLUGIN,

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Remember to use the right notation for Ohai 7 versus Ohai 6 plugins. You'll learn
more about the differences in the next chapter.

If you want to know how much time each plugin is taking to load, you can make use
of the following custom script:

benchmark plugin.rb
#!/usr/bin/env ruby
require 'benchmark'
require 'ohai'
sys = Ohai::System.new()
runner = Ohai::Runner.new(sys,true)
sys.all plugins.each do |plugin|
puts plugin.name
Benchmark.bm do |res|
res.report { runner.run plugin(plugin) }
end
end

Attribute precedence

Attributes are always applied by the chef-client in the following order:

=

The default attribute specified in a cookbook attribute file.

The default attribute specified in a recipe.

The default attribute specified in an environment.

The default attribute specified in a role.

The force default attribute specified in a cookbook attribute file.
The force_default attribute specified in a recipe.

The normal attribute specified in a cookbook attribute file.

The normal attribute specified in a recipe.

O X NSO

The override attribute specified in a cookbook attribute file.

—_
o

. The override attribute specified in a recipe.

—_
—_

. The override attribute specified in a role.

—_
N

. The override attribute specified in an environment.

—_
O8]

. The force_override attribute specified in a cookbook attribute file.

—_
S

. The force_override attribute specified in a recipe.

—_
Q1

. The automatic attribute collected during the Ohai run.

[193]

www.it-ebooks.info

http://www.it-ebooks.info/

Attributes and Their Uses

The last attribute in this list has highest precedence and it's the one that dictates the
value associated with an attribute.

Note that the precedence order for roles and environments gets reversed between the
default and override attributes. The precedence order for the default attribute is
environment followed by role; while, for the override attribute, it's role followed by
environment.

The force_override attributes are an addition to the attribute types in Chef
11. These are especially useful for people who rely on specifying attributes in
recipes and don't wish them to be overridden by the values specified in roles or
environments.

Attribute precedence can also be visualized through the following diagram:

ot res | oo oo | envronment | —Rolo
B 0

BEOEEAR

Attribute whitelisting

So, you've got this whole bunch of attributes that have been collected from all
different sources and now a final list of attributes has been prepared by the chef-
client after applying the precedence order. However, you might not want each and
every attribute to persist on the Chef server and this is where we can make good use
of whitelisting capabilities. We can specify a whitelist of a set of attributes that we
want to be saved by a node. This whitelist can be specified in client.rb. A whitelist
is a hash that specifies attributes that need to be saved.

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Each attribute type has to be whitelisted separately. Each attribute type —automatic,
default, normal, and override —may define whitelists by using the following
settings in the client.rb file:

Setting Description

automatic_attribute whitelist | This can be used to specify a hash that
whitelists the automat ic attributes and
prevents non-whitelisted attributes from
being saved. If a hash is empty, no attribute

is saved.
default_attribute whitelist This can be used to specify a hash that
whitelists the default attributes.
normal_attribute whitelist This can be used to specify a hash that

whitelists the normal attributes.

override_attribute_whitelist | This can be used to specify a hash that
whitelists the override attributes.

Generally, you'll only want to whitelist the automatic attributes, as those are the
ones with too many keys.

For example, we might want to only persist the network attribute and prevent all
other attributes in the following list of normal attributes:

{
"filesystems" =>
"/dev/sda" => {
"size" => "10240mb"
}
b
"network" => {
"interfaces" => {
"/dev/etho" => { ... },
"/dev/ethl" =>

}
To do this, we can specify a whitelist of normal attributes as follows:

normal attribute whitelist = ["network/interfaces/"]

[195]

www.it-ebooks.info

http://www.it-ebooks.info/

Attributes and Their Uses

If the attributes contain slashes within the attribute value, for example, in the
filesystem attribute /dev/sda, one should make use of an array as follows:

normal_attribute whitelist = [['filesystem','/dev/sda']l

With the knowledge of attributes to hand, let's quickly use it to write a cookbook to
set up the Passenger gem. Passenger is a very popular Rails application server and is
used by many Rails shops for their web app hosting. Our setup has the production
and staging environments, and we would like to install Passenger version 4.0.40

in production environment, while everywhere else we are happy with the 4.0.48
version of Passenger.

The following is the associated directory structure of our Chef repository:

code/chef-repo [master] " tree -L 1

| -- README.md
| -- cookbooks
| -- data bags
| -- environments

'-- roles

We'll have the following files used in this exercise:

environments/production.rb
name "production"
description "Production Environment"
default attributes (
"passenger" => {
"version" => "4.0.40"

}

environments/staging.rb
name "staging"
description "Staging Environment"
cookbooks/passenger/attributes/default.rb
default ['passenger'] ['version'] ="4.0.48"
cookbooks/passenger/recipes/default.rb
gem_package "passenger" do

version node["passenger"] ["version"]

end

Update the environments, upload the cookbook, and you should be able to see the
right version of Passenger installed on the concerned machines.

[196]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Summary

This brings us to the end of our journey in the world of attributes. We've learned
about different kinds of attributes and the different sources from which attributes are
collected. We've also learned about whitelisting of attributes and touched upon the
use of Ohai for collection of automatic attributes. For more details about attributes,
refer to http://docs.getchef.com/essentials cookbook attribute files.
html. In the next chapter, we'll dive deep into Ohai and its plugin ecosystem. We'll
also see how to go about writing custom Ohai plugins.

[197]

www.it-ebooks.info

http://docs.getchef.com/essentials_cookbook_attribute_files.html
http://docs.getchef.com/essentials_cookbook_attribute_files.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Ohai and Its Plugin
Ecosystem

As part of chef-client run, one of the concerns is to collect information about the
underlying operating system, hardware, and other environment-related details.
The chef-client relies on a utility called Ohai for this purpose.

Ohai is a tool that is used to detect attributes on a node and, once it has profiled the
concerned node, it can emit a JSON data blob, containing all the attributes collected
by it. Ohai can be used as a stand-alone utility. However, generally, a chef-client uses
it to collect node attributes. When Ohai is used in stand-alone mode, it emits the data
as JSON; however, when used by the chef-client, it reports back the data through
node attributes.

Ohai comes with its own set of plugins that can be used to extend its functionality or
scope of its data collection capabilities.

Ohai is a mandatory requirement for a successful chef-client run; hence it
must be present on a node. Generally, it is distributed as a Ruby gem during
installation of Chef. To quickly verify the status of the Ohai installation,

run the following command:

gem list ohai
*** LOCAL GEMS ***

ohai (7.2.4)

[199]

www.it-ebooks.info

http://www.it-ebooks.info/

Ohai and Its Plugin Ecosystem

Cool! So, we have Ohai version 7.2.4 installed on our machine. Keep a note about
the version as things have changed between Ohai 6 and 7. We'll be covering Ohai 7
for most part of this chapter; however, I'll try to explain the difference between the
versions where it's most required.

As we saw earlier, Ohai is used to collect various attributes corresponding to a node.
The following is a list of few different types of attributes collected by Ohai:

* Platform details

e (CPU information

* Memory information

* Disk and filesystem information
* Network information

e Kernel details

¢ Hostnames

* Fully qualified domain name and so on

Attributes collected by Ohai are automatic attributes and chef-client ensures
that these attributes aren't changed after the latter is done with the configuration
of a node.

As you can see, most of these details are exposed by operating systems through
different mechanisms, and hence Ohai comes with collectors for different platforms
including Linux, Windows, FreeBSD, OpenBSD, Solaris, AIX, Darwin, and so on.
All of these collectors are available as plugins and form a part of the Ohai plugin
ecosystem. Now, if you have a particular kind of system to provision and bootstrap,
you would not want to enable collectors for other kinds of system as every plugin
that is enabled is loaded into memory and can reduce the overall performance of the
chef-client run. We'll see how to go about accomplishing this later in this chapter.

There will be times when you want to expose certain attributes via Ohai. For example,
say you are running different kinds of instances on AWS (http://aws.amazon.
com/ec2/instance-types/). Now, these instances are called by different names

on AWS, for example, m1.xlarge, cl.xlarge, and so on. Say you want to expose this
instance type name as a node attribute. Now, since this attribute is associated with a
node and is something that is not required to be overridden by environments, roles,

or cookbooks, we can expose it through Ohai. In order to do this, we can either make
use of community Ohai plugins or, if there are none available, you can write your own
and make use of it. Later, during the course of this chapter, we'll see how to go about
writing our own custom plugins and understanding Ohai AP

[200]

www.it-ebooks.info

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://www.it-ebooks.info/

Chapter 9

Chef uses all these attributes to incorporate system-specific behavior into cookbooks.
For example, Chef utilizes the information provided by Ohai to find out the platform
details and thereby decide the package manager to use for installation of different
packages. It is also used a lot by developers to write the code that can be used to
provision machines across different platforms. For example, you might want to
create a config file called httpd. conf for operating systems belonging to the RedHat
family, while for operating systems of the Debian family you might want to set up a
configuration file called apache2. conf. All this is made possible through different
platform-related attributes provided by Ohai.

Running the Ohai binary

Ohai can be executed in stand-alone mode using the following command:

$ ohai
{
"kernel": {
"name": "Linux",
"release": "2.6.32-220.23.1.el6.x86_64",
"version": "#1 SMP Mon Jun 18 18:58:52 BST 2012",
"machine": "x86 64"

}

The command scanned through the system, tried to fetch the required
details such as kernel, platform, hostname, and so on, and eventually it emitted
the output as JSON.

If you know which attributes to look out for, you can quickly write a wrapper
around Ohai and use it to fetch the required details. For example, the following
script will help you get the required attribute from Ohai output:

#!/usr/bin/env ruby
require 'json'

if ARGV.length !=1
puts "Usage: cohai attribute . For e.g. - cohai kernel.release"
exit 1

end

[201]

www.it-ebooks.info

http://www.it-ebooks.info/

Ohai and Its Plugin Ecosystem

ohai output =
ARGV [0] .split(".") .each do |key|
ohai output

end

JSON.parse('ohai') ')

= ohail output [key]

puts ohai output

The Ohai binary searches for the available plugins in a predefined search path.

If you want to keep Ohai plugins in a directory that is not the default search path,
then you can specify the directory using the -d option, or you can specify the
location of the plugin directory in the client.rb file by modifying the value of the
Ohai::Config[:directoryl] property.

The Ohai binary supports the following options:

Option

Description

ATTRIBUTE NAME

This sets up Ohai to show only the output for
named attributes.

PATH

-d PATHOr --directory

This is the directory in which Ohai plugins are located.

-hor --help

This shows help for a command.

LEVEL

-1 levelor--log level

This is the logging level to be used while storing logs
in a log file.

--logfile c

-L LOGLOCATION or

This is the location for a log file.

-vor --version

This is the version of Ohai.

Ohai can be configured through client.rb as well. The following Ohai
configuration settings can be added to the client.rb file on the node:

Configuration Description
Ohai::Config[:directory] This is the directory where Ohai plugins are
located.
Ohai::Config[:disabled plugins] | This is an array of Ohai plugins to be
disabled.
Ohai::Config[:hints_path] This is the path where the file containing
hints for Ohai can be found.
Ohai::Config[:log levell] This is the logging level to be used while
storing logs in a log file.
Ohai::Config[:logfile] This is the location for a log file.
Ohai::Config[:version] This is the version of Ohai.

[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

When Ohai is executed independently of the chef-client, then the settings in client.
rb have no effect.

The way in which we address plugins in Ohai has changed between version 6 and 7.
Hence be careful when using configurations such as the following:

Ohai::Config[:disabled_plugins]
To disable a Ohai 7 version plugin, use the following syntax:
Ohai::Config[:disabled plugins] = [:PLUGIN NAME]
To disable a Ohai 6 version plugin, use the following syntax:
Ohai::Config[:disabled plugins] = ["PLUGIN NAME"]

Since Ohai 7, a new DSL has been introduced that is far more modular in nature as
compared to the DSL in Ohai 6.

Ohai plugins

Ohai comes with a few plugins by default. These plugins form the ecosystem of Ohai
and help collect diverse information about the machine. Some of the plugins provide
information specific to an operating system, while some of the plugins are specific to
languages, and some are specific to platforms. Let's look at a few of them before we
move ahead into writing our own custom plugins.

Take a sneak peek into the plugins directory (usually, found in $GEMS_PATH/gems/
ohai-xxx/lib/ohai/plugins)and you'll find a bunch of Ruby files lying around.

Some of the useful plugins are kernel, hostname, platform, network, ohai, cloud, ec2,
azure, virtualization, languages, and more.

All these plugins are meant to perform a certain task and emit attributes that can be
useful for the purpose of the chef-client run.

These plugins are loaded by $GEMS_PATH/gems/ohai-xxx/lib/ohai/system.rb
when we invoke the ochai command.

[203]

www.it-ebooks.info

http://www.it-ebooks.info/

Ohai and Its Plugin Ecosystem

Some of these plugins are meant to perform different actions,

depending on the platform on which they are executed. Ohai makes use of
: :RbConfig: :CONFIG['host_os'] to determine the underlying OS, as can
be seen in $GEMS PATH/gems/ohai-xxx/lib/ohai/mixin/os.rb:

require 'rbconfig'
module Ohai

module Mixin
module OS

def collect os
case ::RbConfig::CONFIG['host os']
when /aix(.+)$/
return "aix"
when /darwin(.+)$/
return "darwin"
when /hpux(.+)$/
return "hpux"
when /linux/
return "linux"
when /freebsd(.+)$/
return "freebsd"
when /openbsd(.+)$/
return "openbsd"
when /netbsd(.*)$/
return "netbsd"
when /solaris2/
return "solaris2"
when /mswin|mingw32|windows/
return "windows"
else
return ::RbConfig::CONFIG['host os']
end
end

module_ function :collect_os
end
end
end

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Each of these plugins has different collect_data blocks for different platforms and
there is a collect_data block, with the default platform, that is applicable to all the
platforms that aren't matched to the results found by $GEMS_PATH/gems/ohai-xxx/
lib/ohai/mixin/os.rb.

The $GEMS_PATH/gems/ochai-xxx/lib/ohai/dsl/plugins/versionvii.rb file
ensures that the right collect_data block is called upon, and hence the right
information is provided back to the end user.

For plugins such as ec2, azure, languages, and so on, there is no need for
platform specification, and hence they don't have any collect_data block
specific to any platform.

Custom plugins

For most purpose, the plugins provided by Ohai will be good enough. However,
sooner or later, one lands up in a situation where one wants some attributes
associated with nodes being provisioned, and these attributes define a system-level
property that can be used to make certain decisions during the chef-client run. For
such cases, Ohai provides us with the ability to write our own custom plugins. Ohai
provides a very simple DSL that can be used for this purpose. For example, we

run a large number of machines on AWS and there are different kinds of machines
available known by different names such as m1.xlarge, c1.xlarge, and so on. We want
to push different configurations on the basis of different types of EC2 instance. So,
we go ahead and write our plugin that emits an attribute called node ['machine_
type']. Now, in our cookbooks, we can make use of this attribute to decide which
config to push to the node.

A custom plugin describes a set of attributes to be collected by Ohai, and provided to
chef-client at start of the chef-client run.

The syntax for an Ohai plugin looks like the following:

Ohai.plugin(:Name) do
include Ohai: :Name
provides "attribute", "attribute/subattribute"
depends "attribute", "attribute"

collect data (:default) do
Our code here
attribute my data

end

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

Ohai and

Its Plugin Ecosystem

end

collect data (:platform) do
Our code here
attribute my data

end

The plugin syntax has the following options:

:Name: This is the name of the plugin used to identify the plugin. If two
plugins have the same name, they are joined together and executed as a
single plugin. The name of a plugin must be a valid Ruby class name and
should start with an upper case and contain only alphanumeric characters.

include: This is a standard Ruby method to include a class.

provides: This is a comma-separated list of attributes that are exposed by a
plugin. All these attributes will be the automatic attributes. These attributes
can also be defined using an attribute/subattribute pattern.

depends: This is a comma-separated list of attributes collected by other
Ohai plugins.

collect_data: This is a block of a Ruby code that is called when a plugin
is executed. There can be more than one collect_data block in a plugin
definition; however, only one block is executed.

There can be different collect_data blocks for each platform and Ohai
selects the right collect_data block by determining the platform of a node.
If no platform is defined or matched, the collect_data(:default) code
block is executed.

collect_data (:platform): This is a platform-specific code block. When a

code block with platform is matched, it's picked up for execution. The values
of platform can be 1inux, darwin, aix, windows, and so on. For the entire list
of acceptable values, check the values from RbConfig: : CONFIG['host os'].

my_data: This is a string or an empty mash ({ :key a => 'value_a',
:key_b => 'value_b' }). Thisis used to define the data to be collected by
the plugin.

Ohai uses a mash to store data. This is done by creating a new mash and setting
attributes on it. For example:

provides "some_ name"

some_name Mash.new

some_name [:some_attribute] = "some value"

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Here is an example of using the collect_data block:

Ohai.plugin(:EC2) do
provides "ec2"
collect data do
ec2 Mash.new
require 'open-uri'
ec2[:instance_typel] = open("http://169.254.169.254/
latest/meta-data/instance-type") .read
end
end

This is where a major difference has come up between Ohai 6 and Ohai 7. In Ohai 6,
the plugin class was a single monolithic Ruby file with no method definitions, and
extending the plugins then was hard at times. To extend a plugin in Ohai 6, one had
to "require" the plugin class that defines the attribute. This necessitated locating
the filename of the class that implemented the plugin we wanted to extend and
"requiring" that plugin. With Ohai 7, things are a lot more modular.

Say we wanted to extend an attribute, say ec2 in our last example. Doing so in
Ohai 6 would have necessitated us to require our ec2. rb file as follows:

require '/etc/chef/ohai/custom plugins/ec2.rb'

In Ohai 7, we just need to specify the name of an attribute we wish to extend by
using the depends statement as follows:

depends 'ec2'

With this new DSL, it has become a lot easier to develop new plugins given the rapid
pace of technology changes and heterogeneous nature of platforms.

As we discussed earlier, we can make use of the require method to load any class.
Ohai, by default, will attempt to fully qualify the name of any class by prepending
Ohai: : to the loaded class.

Consider this as an example:
require Mixin::0S

Now consider this example as well:
require Ohai::Mixin::08

Both these examples are understood by Ohai as the same.

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

Ohai and Its Plugin Ecosystem

When a class is an external class, one should use : : to let Ohai know. For example:

require ::External::Class::Library

Logging in Ohai plugins
Like any other application, Ohai plugins can also log output to some log files.
This is especially useful in troubleshooting issues with plugins.

One can make use of the Chef: : Log class in Ohai plugins to define log entries that
are created when the chef-client run is invoked. The syntax for a log message is as
follows:

Ohai::Log.log type ("message")

Here, 1og_type can be .debug, .info, .warn, .error, or . fatal; message is the
message to be logged.

One should make use of the rescue clause to ensure that log messages are always
provided in the event of an issue. For example:

rescue LoadError => e
Ohai::Log.error ("Error loading the plugin")
end

Hints are another concept that are very useful when working with a cloud-based
heterogeneous infrastructure. Ohai's hint system allows a plugin to receive a hint
by the existence of a file. These are JSON files that help the plugin determine which
cloud service provider we are making use of, and it also allows passing additional
information about the environment such as region and so on. When a hint file is
found, Ohai assumes it is running in one of the concerned environments. The files
are named ec2.json, rackspace. json, and so on.

Here is our ec2 plugin with a more robust logging mechanism in place:

Ohai.plugin(:EC2) do
provides "ec2"
collect data do
if hint?('ec2'")
ec2 Mash.new
require 'open-uri'
ec2[:instance_type] = open("http://169.254.169.254/
latest/meta-data/instance-type") .read
else
Ohai::Log.debug("Doesn't look like a EC2 instance")
end
end
end

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Summary

This brings us to the end of our journey to understanding Ohai and its plugin
ecosystem. We learned about Ohai and its associated plugins and went on to develop
our own custom plugin. We learned about how to make use of the Ohai DSL and
how Ohai is used by chef-client to fetch information about the concerned node. In the
next chapter, we are going to learn about data bags and templates in detail and how
they can make your life easier.

[209]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

10

Data Bags and Templates

So we have decided to push the required configuration through Chef into our
infrastructure. However, any configuration management system gets true power
once it allows us to provision different kinds of machines using a minimal piece of
code. Imagine having different types of systems in your infrastructure such as dev
machines running over laptops, staging environments that are set up on virtual
machines, and production environments running on a beefy hardware. It's quite
likely that for one class of application, the configuration for these three different sets
of machines might be different. However, in most cases, the amount of difference
between these configurations is minimal. For example, let's say you are managing
infrastructure, running Hadoop. It's pretty obvious that the amount of data that
you'll be working with in a staging environment would be substantially less than

in a production environment. This would lead to a difference in the configuration
of Hadoop in both these environments. However, usually, the configuration keys
are the same and only the values vary. Now, one way to handle the configuration of
systems in different environments would have been to set up multiple files for each
environment. However, as the number of configuration files increases, or if the number
of environments increase, the complexity of this approach begins to unfold and this
leads to a lot of duplicate information residing in the Chef repository's code base.
As developers, we are always told to reduce the amount of duplicate information in
code bases and there is a good reason for it. The more the duplicity, the higher are the
chances of errors popping out in places you wouldn't have imagined.

Templates are just meant to address these issues and they are a must-know for any
Chef developer. Templates are nothing fancy, but embedded Ruby code, which is
used to create files based on the variables and logic described within the template.
Templates may contain Ruby expressions and statements and are one of the best
ways to manage configurations through Chef.

The chef-client makes use of Erubis to manage templates. You can find more
information about Erubis at http://www.kuwata-lab.com/erubis.

[211]

www.it-ebooks.info

http://www.kuwata-lab.com/erubis
http://www.it-ebooks.info/

Data Bags and Templates

A data bag, on the other hand, is a global variable stored as JSON data and is
accessible from a Chef server. A data bag is indexed by the Chef server and is
searchable. So you can just search for elements in a data bag by invoking search
in a recipe, or just query for items using the knife command.

Let's say you want to manage users on a set of machines being managed by Chef.
One way to do this would be to create each user individually using a user resource.
A better way would be to store information about each user such as the SSH key,
name, home directory, and so on, in a data bag called users and eventually iterate
over this data bag and set up users.

Data bags, thereby, allow us to store structured data as a JSON file and manage them
using some version control system such as Git. One of the other uses of data bags is
being used as databases. We can also encrypt the data bag's contents, and hence you
can make use of a data bag to store credentials or any other sensitive data.

In this chapter, we'll see how to go about making use of the templates and data bags
in our Chef code to write neat and concise code to manage our infrastructure. We'll
cover data bags first, followed by templates, as we'll try to incorporate the use of the
data bags in the templates.

Data bags

A data bag is a global variable that's stored as JSON data and is accessible from
a Chef server or chef-solo. A Chef server indexes a data bag, and hence it can be
searched using Chef API. Recipes can also search a data bag and access its items.

A data bag has the following structure:
{

"id": "item name",
"key 1": "value 1",
"key n": "value n"

}

Before an item can be uploaded to a data bag, a directory structure needs to be put in
place to store the JSON files. In chef-repo, create a directory structure as follows:
chef-repo

| -- cookbooks

| -- data bags

| -- environments

'-- roles

[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

All the data bags will get stored in the data_bags directory. Let's say we've a data
bag called users that will be used to store information such as the name, SSH key,
and home directory of different users. This will require us to create a directory
structure as follows:

chef-repo/data bags

|-- users

All the gson files corresponding to different users will go inside this directory.

Management of a data bag

A data bag can be managed either through the use of Knife or manually.
Generally, Knife is used for this purpose, however, either method is equally
safe and effective to use.

Creating a data bag

Knife can be used to create a data bag and data bag items using the knife data bag
command. This command will need to make use of the create argument to create
the data bag on the Chef server.

For example:
$ knife data bag create users

With a data bag in place, we can go about populating it with items. To do so,
we'll use the same command, however, we'll also pass item name as an argument.

$ knife data bag create users userl
This will open up your default text editor with the following template:
{

"id": "userl"

}

You can now edit this file and add stuff such as the SSH key, home directory, shell
details, and so on:

{

"id": "userl",
"home": "/home/userl",
"ssh keys": ["ssh-rsa XXXXXX", "ssh-rsa YYYYYYY"]

[213]

www.it-ebooks.info

http://www.it-ebooks.info/

Data Bags and Templates

Save and quit your editor and you'll see that Knife will report the data bag item as
created:

v" chef-repo git: (master) X knife data bag create user userl

Data bag user already exists

Created data bag item[userl]

If you look closely at the output, you'll see that Knife tried to create the data bag
named user before creating the item user1. So you don't really need to bother
about the creation of the data bag before populating it with items, and Knife will
gladly do it for you. However, it's a good practice to create a data bag before
pushing items into it.

We could've also accomplished the same by manually creating the required directory
structure and the JSON files.

To do so, create a user1l. json file in the chef-repo/data_bags/users directory:

{

"id": "userl",
"home": "/home/userl",
"ssh_keys": ["ssh-rsa XXXXXX", "ssh-rsa YYYYYYY"]

}

In order to populate the data bag with all the required user details, we'll use the
knife data bagcommand with the from file argument. This command takes

the data bag name and item name.json as arguments. As long as the file is in the
correct directory, Knife will be able to find the data bag and corresponding item from
the J[SON document.

For example:
$ knife data bag from file users userl.json

This will load the contents of userl.json from data bags/users/userl.json to
the data bag.

In some cases where knife is not being executed from the root of the Chef
repository, you might need to provide the full path to ITEM_NAME. json, as follows:

$ knife data bag from file DATA BAG NAME /path/to/file/ITEM NAME.json

Now, to add more users, just add more JSON files and populate the data bag using
the knife data bag from file command.

[214]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

It's beneficial to store the JSON files manually, instead of just using the Knife data
bag to create the DATA BAG_NAME ITEM NAME command because we can store the
JSON files in a version control system and track the changes. This is crucial in order
to maintain different versions; because, unlike cookbooks, you cannot maintain
different versions of data bags on the Chef server.

Editing a data bag item

There will be a time when you might want to edit the contents of a data bag item.

To do so, you can either use the knife data bag edit BAG ITEM command, or you
can modify the data bag item in a locally-stored JSON file and update the data bag
using the knife data bag from file command.

Let's say you want to add another SSH key for the user named user1. To do so, run
the following command:

$ knife data bag users userl

This will open up your configured text editor with JSON associated with user1. Edit
the JSON file and new SSH key:

{

"id": "userl",
"home": "/home/userl",
"ssh keys": ["ssh-rsa XXXXXX", "ssh-rsa YYYYYY",

"ssh-rsa ZZZZZzZ"]

}

Save the file and quit the editor and you are done.

Another way to go about doing this is to edit the chef-repo/data_bags/users/
userl.json file and once you've made the required changes, use the following
command to update the data bag item:

$ knife data bag from file users userl

Deleting a data bag item or a data bag

You can use the knife data bag delete BAG [ITEM] command to delete a
specific data bag item or a data bag all together.

The following command will delete an item called user1 from a data bag
called users:

$ knife data bag delete users userl

[215]

www.it-ebooks.info

http://www.it-ebooks.info/

Data Bags and Templates

The following command, on the other hand, will delete the users data bag itself:

$ knife data bag delete users

Getting a list of all the data bags set up on the Chef
server

You can use the knife data bag list command to get a list of all the data bags
configured on the Chef server, as follows:
$ knife data bag list

users

As you can see, we got users as one of the data bags set up on the Chef server.

Getting a list of items and their properties

The knife data bag show command can be used to get a list of items in a data bag
and the same command can be used to get all the properties associated with an item:
$ knife data bag show users

userl

When only a data bag name is passed as an argument, we get a list of items
associated with the data bag;:
$ knife data bag show users userl
home: /home/userl
id: userl
ssh keys:
ssh-rsa XXXXXX
ssh-rsa YYYYYY

ssh-rsa ZZZZZZ

When an item's name is also passed to the command along with the data bag name,
the properties associated with the item are displayed.

If you look closely, the output of the last command wasn't really a JSON and that's
because the default format for output is text. If you want, you can change the format
to JSON; try the following command:

$ knife data bag show users userl -F json

[216]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Then, you'll get a JSON output:

{

"home": "/home/userl",

"jd": "userl",

"ssh keys": [
"ssh-rsa XXXXXX",
"ssh-rsa YYYYYY",
"ssh-rsa ZZZZZZ"

Using the data bags in recipes

Now, with a data bag created and populated with the necessary items, it's time to
make use of it in our recipes. As we saw earlier, data bags are indexed, and hence can
be searched. We'll be leveraging on this fact to set up a data bag containing the details
of multiple users and we'll use it in a cookbook called base to set up user accounts.

Let's first create a few data bag items:

data_bag/users/userl.json
{

"id": "userl",

"home": "/home/userl",

"ssh keys": ["ssh-rsa
!
data_bag/users/user2.json
{

"id": "user2",

"home": "/home/user2",

"ssh keys": ["ssh-rsa
!
data_bag/users/user3.json
{

"id": "user3",

"home": "/home/user3",

"ssh keys": ["ssh-rsa

XXXXXX",

XXXXXX",

XXXXXX",

"ssh-rsa YYYYYYY"]

"ssh-rsa YYYYYYY"]

"ssh-rsa YYYYYYY"]

[217]

www.it-ebooks.info

http://www.it-ebooks.info/

Data Bags and Templates

We'll now go ahead and upload these items to a Chef server. From the root of the
Chef repository, execute this command:

$ for i in {1...3};do knife data bag from file users user$i;done

The last command presumes that you are making use of a bash shell. If you are using
any other shell, please set up the iterator accordingly or upload each item individually.

Let's quickly check the status of our data bag;:

$ knife data bag show users
userl
user2

user3
Cool! So, now the users data bag has all the information about all the different users.

Now, let's move on to our cookbook setup. As I mentioned earlier, we'll be setting
up user accounts using a cookbook called base. Now, I've this habit of having a
cookbook that does the basic system setup, such as the setting up of user accounts,
the fine-tuning of sudoer's file, the fine-tuning of 1imits. conf, the fine-tuning of
sysctl, and so on, and I call this cookbook base. Every machine that is managed
by Chef in my infrastructure has to have this cookbook in its run-list. This is not
mandatory, but I've found it to be a useful practice.

Let's create a new cookbook called base if it's not already present:

$ knife cookbook create base

In your chef -repo/cookbooks directory, you'll now see a directory called base. Fire
up your favorite editor and open chef -repo/cookbooks/base/recipes/default.rb
and add the following content to the file (don't worry, we'll look at each line in detail in
the next few minutes):

include recipe 'user'
users = data_bag('users')
users.each do |user_name|
user details = data_bag item("users",user name)
user_account user_ name do
home user details|['home']
ssh keys user details|['ssh keys']
end
end

[218]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Also, edit chef -repo/cookbooks/base/metadata.rb and add the following to it:

depends "user"

Ensure that you've a user cookbook available on the Chef server. If not,
download it from https://supermarket.chef.io/cookbooks/

user and upload it to your private Chef repository. To get this cookbook,
’ either use Knife (knife cookbook site install user), or get the

code from a remote repository and publish it into your Chef repository.

With this, we are ready to upload our new cookbook to the Chef server:

$ knife cookbook upload base

Next time, whenever a chef-client will run on any machine that has the base
cookbook in its run list, all the user accounts managed by a data bag called
users will be set up on the machine.

Let's now go on to see what's really happening in our cookbook code. We are using
a community cookbook called user by fnichol (alias Github). The code from this
cookbook can be found at https://github.com/fnichol/chef-user. What this
cookbook does is it provides us with a resource called user_account. This is a more
powerful resource in comparison to a standard user resource provided by Chef as it
allows the management of SSH keys for every user.

To make use of this cookbook, we mention in cookbooks/base/metadata.rb that
our base cookbook depends upon user cookbook, and finally in our base cookbook
recipe, we include this cookbook.

Next, we search for a data bag called users in the Chef server. Chef provides a DSL.
Using this, we can search the data bags and this method is called data_bag. This
takes the name of the data bag to search as an argument and returns an array with
the key for each data bag item found in the data bag. So, in effect, this piece of code:

users = data_bag('users')
This code would've resulted in this:

users = ['userl', 'user2',k 'user3']

Now, we just iterate over this array and for each element of this array, we call a
method called data_bag_item. This method is again provided as part of the recipe
DSL and it takes two arguments: the name of the data bag and item. It eventually
returns a Ruby hash with each property of the item as a key and a value for each
property of the item as the value for the key.

[219]

www.it-ebooks.info

https://supermarket.chef.io/cookbooks/user
https://supermarket.chef.io/cookbooks/user
https://github.com/fnichol/chef-user
http://www.it-ebooks.info/

Data Bags and Templates

So, consider the following code:

user details = data bag item("users",user)

Here, user is coming through iteration, which will result in something like this for
the first iteration:

user details = {"home" => "/home/userl", "id" => "userl",

"ssh key" => ["ssh-rsa XXXXXX",'"ssh-rsa YYYYYY",

"ssh-rsa ZZZZZ7Z"] }

Next, we use this information to set up our user account using the user_account
resource.

The user account resource requires each user's information
s to be stored in a data bag called users.
Apart from using the recipe DSL, Chef also provides a facility called search.
This can be used with Knife or in a recipe.
Any search for a data bag (or item) should specify the name of the data bag and

search a query string, which will be used during a search.

The search query happens against a solr index and this index

is built asynchronously, so you might not find something you
"~ havejust updated.

For example, to search for the users in a data bag called users, we can use the
following knife command:

$ knife search users "(id:*)" -F json

Here, we are asking Chef to search a data bag called users and report back with
results for items where the ID can be anything.

This will result in the following output:

"results": 3,

"rows": [
"name": "data bag item users userl",
"json class": "Chef::DataBagItem",

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

"chef type": "data bag item",
"data bag": "users",
"raw data": {
"home": "/home/userl",
"id": "userl",
"ssh keys": [
"ssh-rsa XXXXXX",
"ssh-rsa YYYYYY",
"ssh-rsa ZZZZZZ"

"name": "data bag item users user2",
"json class": "Chef::DataBagItem",
"chef type": "data bag item",
"data bag": "users",
"raw data": {
"home": "/home/user2",
"id": "user2",
"ssh keys": [
"ssh-rsa XXXXXX",
"ssh-rsa YYYYYY",
"ssh-rsa ZZZZZZ"

"name": "data bag item users user3",
"json class": "Chef::DataBagItem",
"chef type": "data bag item",
"data bag": "users",
"raw data": {

"home": "/home/user3",

n idll . lluser3 n ,

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

Data Bags and Templates

"ssh keys": [
"ssh-rsa XXXXXX",
"ssh-rsa YYYYYY",
"ssh-rsa ZZZZZZ"

}

As you can see, the Chef server reported back three users for this search query,
which is consistent with what we had set up.

You can also make use of the search method in the recipe. Let's modify our base
recipe to make use of the search method instead of the data_bag and data_bag

item DSL methods:

include_recipe 'users'
search (:users, "*:%*").each do |user item|
user_name = user item["id"]
user account user name do
home user item["home"]
ssh _keys user_item["ssh keys"]
end
end

As you can see, we've have used *: * as a query string in our recipe. This will
search for all the items in our data bag. However, if you want to be specific, say you
wanted to set up just an account for a user called user1, the above code would've

looked like this:

include_recipe 'users'
user item = search(:users, "id:userl")
user_name = user item["id"]
user account user name do
home user item["home"]
ssh _keys user_item["ssh keys"]

end

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Encrypted data bags

An item in a data bag can be encrypted using a shared secret encryption. This allows
each data bag item to store confidential information. Each data bag item may be
encrypted individually.

An encrypted data bag item is written using JSON and Base64 encoding is used

to preserve special characters in encrypted contents. The data is encrypted using
AES-256-CBC. A data bag item is encrypted using a random initialization vector each
time a value is encrypted. The encrypted content can be decrypted on the node, only

if a matching shared key is present on the node. The matching shared key can be set
up on the node through various mechanisms. For example, on AWS, user data can be
used to set up the shared key, or the machine image itself can contain the shared key.
In other environments, some pre-bootstrap script can be used to set up this shared key.

The /etc/chef/client.rb eventually looks for a secret at the path specified by
encrypted_data_bag_secret, setting in client.rb.

Knife can be used to encrypt or decrypt a data bag item when the knife data bag
command is executed with the create, edit, from file, or show arguments, along
with either of the following options:

* --secret SECRET: This is the encryption key that is used for the values
contained within a data bag item.

* --secret-file FILE: This is the path to the file that contains the encryption
key.

You can make use of openssl to generate a secret key as follows:

$ openssl rand -base64 512 | tr -d '\r\n' > my secret key

This will generate a file called my_secret_key, which can be used to encrypt a data
bag item.

The following command shows how we can use Knife to encrypt a data bag item:
$ knife data bag create passwords db -secret-file my secret key

This will open your text editor, and as with the other data bags that we created
earlier, we'll create a property called password along with a valid password:

{
Ilidll . "dpb" ,
"password": "123456"

[223]

www.it-ebooks.info

http://www.it-ebooks.info/

Data Bags and Templates

Save the file and exit the editor and you'll see that the item in question has been set
up on the Chef server.

Now, to verify that the password is indeed stored in an encrypted form, let's quickly
try and see the contents of an item, the db inside a data bag, and passwords:

$ knife data bag show passwords db -F json

{
nidv: "db",
"password": {
"version": 1,
"cipher": "aes-256-cbc",
"encrypted data": "CJl6quHZQyr...j8=\n",
"iv": "R5ZuEapsXmlg7nFO2CvmJA==\n"
}
}

As you can see, the property password has an encrypted value instead of a default
value, 123456.

In order to see the real content of the data bag item, we'll need to pass our secret key
to the knife command as follows:

$ knife data bag show passwords db -secret-file my secret key -F json

Also, now we'll get the decrypted version as follows:

{
Ilidll: Ildbll ’
"password": "123456"

}

In the case of recipes, you can use the EncryptedbataBagItem.load method, which
takes the data bag name, item name, and shared secret as arguments. However,
most likely, you'll have a secret stored as a file somewhere on the node. Thus, you
can make use of the EncryptedDataBagItem.load secret method to first load the
secret from the file into some variable, and then use that variable as an argument to
the EncryptedDataBagItem.load method.

[224]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Let's say you've kept the shared secret in /etc/chef/shared_secret on the node.
Now, you can use the following code in your recipe to get the desired password for
an item, the db in a data bag, and passwords:

secret = Chef::EncryptedDataBagItem.load secret ("/etc/chef/shared
secret")

creds = Chef::EncryptedDataBagltem.load ("passwords", "db", secret)
password = creds["password"]

Templates

As we mentioned earlier, templates are Embedded Ruby (ERB) templates, which can
be used to generate configuration files based upon some variables and logic. These
files may contain Ruby statements and expressions. To make use of templates, one has
to use the template resource in a cookbook and specify in the source the path to the
template itself. The template file is placed in the templates directory of a cookbook.

Unless you are creating your cookbooks manually, Knife will automatically take

care of creating the templates directory structure. A template is stored in the
cookbook_name/templates directory and is referenced by the template resource in
the cookbook recipe. Generally, cookbooks are developed, keeping different platforms
in mind, and hence one can keep different files per platform type using the concept of
file specificity. The template directory can have the following structure on Chef repo:

templates

| -- host-nodel:£qdn]

| -- nodel:platform] -node[:platform version]
|-- nodel:platform version components]

| -- nodel:platform]

'-- default

During the chef-client, the template source is fetched from the Chef server
for the first time and cached (generally, in the /var/chef/cache directory of
a node). However, during all subsequent runs, the template is not fetched
unless there is a change.

[225]

www.it-ebooks.info

http://www.it-ebooks.info/

Data Bags and Templates

Template resources and a template in action

In our discussion about data bags, we went on to create a data bag containing users'
details and we used that data bag in a cookbook called base to manage user accounts.

Now, say you wanted to ensure that all these users in the data bag are able to run
commands/scripts as a super user. To do this, we'll need to modify the sudoers

file on the node. One way to accomplish this would be to use the cookbook_file
resource and push a custom sudoers file on to the node during the chef-client run.
However, this will require us to modify the sudoer source file in the chef-repo, every
time we go about adding a new user to the data bag. This is one such case where we
can make use of templates.

Let's modify our base cookbook to use template resource to manage the
/etc/sudoers file:

include_recipe 'user'
users = data_bag('users')

users.each do |user_name|
user_details = data_bag item("users",user name)
user_account user_name do
home user_details['home']
ssh_keys user_details['ssh keys']
end
end

template '/etc/sudoers' do
source 'sudoers.erb'
owner 'root'
group 'root'
mode '0440'
variables ({
:sudoers_user => users

}

end
Next, let's add an ERB template named sudoers.erb to base/templates/default:

#/etc/sudoers

#Generated by Chef for <%= nodel[:fqgdn] %>
Defaults requiretty

Defaults lvisiblepw

[226]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Defaults always set home
Defaults secure_path = /sbin:/bin:/usr/sbin:/usr/bin
root ALL=(ALL) ALL

<% @sudoers_user.each do |user| %>
<%= user %> ALL=NOPASSWD: ALL

<% end %>
Let's dissect this piece of code and see what's happening here.

In our template resource, we asked Chef to set up a configuration file called /etc/
sudoers. This file will be set up according to a ERB template called sudoers, which
can be found in the templates/default directory. Next, we went on to set the
ownership and permission of the file in question. Finally, we decided to pass some
variables to the ERB template. When a template is rendered, Ruby expressions

and statements are evaluated by the chef-client. The variables listed in a resource's
variables parameter and node object are evaluated. The chef-client then goes on to
pass these variables to the template, where they are accessible as instance variables
within the template; the node objects can be accessed in the same fashion as they are
accessed in recipes.

In our cookbook recipe, we searched for a data bag called users and got an array
containing a list of all users. Next, we iterated over this array to set up user accounts.
Finally, we went on to pass this array as a variable named sudoers_user to the
template resource.

In our sudoers. erb template, we created a skeleton of the desired sudoers file.
Finally, in the end, we iterated over the @sudoers_user array (as you can see, this is
an instance variable, prefixed by a @ sign) and populated the template.

Templates and data bags together are a very powerful combination. For example,
you might have split your infrastructure into different environments. Now, we can
set up a data bag for different applications and have the environment name as the
item name and use this data bag to fetch the desired properties for applications per
environment.

For example, let's say we want to set up Hadoop in different environments. I,
generally, go about setting a default attribute called device_class in my custom
JSON file on the node. This attribute is used to describe the applications that are
running on the node. For a Hadoop name node, I set this attribute as namenode,
while for data nodes, it's set as datanode.

[227]

www.it-ebooks.info

http://www.it-ebooks.info/

Data Bags and Templates

Next, in my chef-repo, I create data bags called namenode and datanode and for each
of these data bags, I go about adding items as follows:

coresite.json (used to manage core-site.xml)

{
"id": "coresite",
"production": {
"hadoop.tmp.dir": "/data/hadoops",
"io.compression.codecs":
"com.hadoop.compression.lzo.LzoCodec",

b
"staging": {
"hadoop.tmp.dir": "/data/hadoops",
"io.compression.codecs":
"com.hadoop.compression.lzo.LzoCodec",

}
}

In my cookbook, I go about searching the data bag as follows:

config coresite =
data_bag item("#{node[:device class]}", "coresite") ["#{node.chef
environment}"]

Finally, in my template resource, I say something like this:

template "/apps/hadoop/conf/core-site.xml" do
source "/apps/hadoop/conf/core-site.xml.erb"
owner "#{node["app"] ["user"]}"
group "#{node["app"] ["user"]}"
mode "0644"
variables ({
:hadoop tmp dir => config coresite["hadoop.tmp.dir"],
:io_compression codecs =>
config coresite["io.compression.codecs"],
:io_compression codec lzo class =>
config coresite["io.compression.codec.lzo.class"],
:fs_default name => config coresite["fs.default.name"],
:hadoop security authorization =»>
config coresite["hadoop.security.authorization"],
:io_serialization => config coresite["io.serializations"]
})

end

[228]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

The template itself looks something like this:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configurations>

<propertys>
<name>hadoop.tmp.dir</name>
<value><%= @hadoop tmp dir %></value>

<description>A base for other temporary
directories.</descriptions>

</propertys>

<propertys>
<name>io.compression.codecs</name>
<value><%= @io_ compression codecs %></value>
</propertys>

<propertys>
<name>io.compression.codec.lzo.class</name>
<value><%= @io_compression codec_lzo class %$></valuex>
</propertys>

<propertys>
<name>fs.default.name</name>
<value><%= @fs default name %></value>

<description>The name of the default file system.
A URI which determines the FileSystem implementation.</descriptions

</propertys>

<propertys>
<name>hadoop.security.authorization</name>
<value><%= @hadoop security authorization %></value>
</propertys>
</configurations>

Partial templates

Often, you'll come across large configuration files and you'll be sweating, considering
the fact that you'll need to tune all those different parameters in the configuration.
Fortunately, Chef allows us to break apart these configurations into small chunks,
known as partial templates. This way, we can only process a part of the configuration,
which we actually need to configure.

[229]

www.it-ebooks.info

http://www.it-ebooks.info/

Data Bags and Templates

Let's split our template in the previous example into multiple partial templates,
and finally use them to build our final template.

We'll have five different ERB templates for each configuration property, and we'll
use the render method to render these partial templates inside the final template.

Here are few of those partial templates:

hadoop tmp dir.erb
<property>
<name>hadoop.tmp.dir</name>
<value><%= @hadoop_tmp_dir %$></value>
<description>A base for other temporary
directories.</description>
</property>

final template.erb

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configurations>

<%= render "hadoop_ tmp dir.erb", :variables =>
{:hadoop_tmp dir => @hadoop tmp dir } %>

<%= render "io compression codecs.erb", :variables => {:
io compression codecs => @io compression codecs} %>

<%= render "io compression codecs lzo class.erb",
:variables => {: io compression codecs lzo class =>

@io compression codecs lzo class} %>

<%= render "fs default name.erb", :variables =>

{:fs _default name => @fs default name } %>

<%= render "hadoop_ security authorization.erb", :variables
=> {:hadoop security authorization =»>

@hadoop_security authorization} %>

</configurations>

Try to avoid using partials inside partial templates, as they can lead to unexpected
results and often, they just fail.

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Summary

This brings us to the end of our journey in to the world of data bags and templates.
We've seen how to manage data bags, and use data bags to store sensitive data

by encrypting the content. We have, finally, learnt about using templates and

also touched upon the use of partial templates. By now, you would've realized
how useful these two features of Chef are. With the proper use of data bags and
templates, you can write really efficient Chef code, which is more robust and clean.
In the next chapter, we will look into one of the very powerful features of Chef,
called search, and along the way we will also explore its APIL.

[231]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11

Chef APl and Search

Chef provides a simple and wonderful API to interact with it and get information
about different objects that are stored within it. The API provided by Chef is the
REST API, and hence it can be used with any programming language that provides
support to make HTTP calls. However, one of the more fundamental questions is:
why would we even want to learn about API interfaces provided by Chef?

Well, most of the time, we will be writing cookbooks for handling the installation
and configuration of different aspects of our infrastructure. At other times, we'll

be managing information stored in data bags, or defining environments and roles.
However, there will be a time when configuration of a machine or service won't be
enough and you'll want to rely on information about the nodes stored in the Chef
server for the purpose of configuration. These are times when we'll need to rely on
Chef API and the search capabilities provided by Chef. Then, there is another case
where you are entitled to the responsibility of integrating a third party application
with Chef, and this is when you'll want to make use of your understanding of Chef
API to handle the integration effectively.

Through Chef API, you can get access to objects such as nodes, environments,
roles, cookbooks, client lists, and so on. You can make use of the API to either
query a Chef server for information about different objects, or it can even be used
to edit the objects.

In this chapter, we'll see some use cases where we'll make use of Chef API to perform
some tasks that would otherwise seem very complex to perform. We
will also look at ridley, which is a Chef API client written in Ruby.

[233]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

Prerequisites for using Chef API

Before we start using Chef API, we need to follow a few rules:

1. Use a Chef server running the version 11.X.
2. The Accept header must be set to application/JSON.

3. For the pUT and POST requests, the Content-Type header must be an
application/JSON.

4. The X-Chef-Version header should be set to the version of Chef that we
are using.

5. The request must be signed using Mixlib: :Authentication.
We'll see more about this later in this chapter.

6. The request must be well formatted. You can use the Chef : :REST library
to ensure this or use ridley.

Authentication of requests

As is the case with most APls, Chef API is authenticated before the request is
processed, and the result is transmitted back to the client. The authorization of the
request is done by the Chef server. A few HTTP headers are signed by the private
key on the client machine, and the Chef server verifies the signature by using the
public key. Only once the request has been authorized, can processing take place.

Generally, when using utilities such as Knife and so on, we don't have to be really
concerned about handling authorization, as this is something that is automatically
taken care of by the tool. However, when using libraries such as cURL or any
arbitrary Ruby code, it is necessary to include a full authentication header as part
of a request to the Chef server.

All of the hashing is done using the SHA1 algorithm and encoding in Base64.
Each header should be encoded in the following format:

Method: HTTP_METHOD

Hashed Path: HASHED PATH
X-Ops-Content-Hash: HASHED_BODY
X-Ops-Timestamp: TIME
X-Ops-UserId: USERID

The HTTP_METHOD refers to the method used in the API request (GET, POST, and
so on.).

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

The HASHED_PATH is the path of the request: /organizations/organization_name/
name_of endpoint.

The hashed path should not include a query string.
The private key must be an RSA key in the SSL . pem file format.

Once the request is received by the Chef server, along with these headers, the Chef
server decrypts this header and ensures that the content of the nonencrypted headers
matches with what it has. The request also has a timestamp, and it's checked if the
request was received in time by evaluating the timestamp.

The following are the headers that are required to carry out the authentication of
every request:

Header Description

Accept This header is to used to define the format in which
the response data will be provided by the Chef server.
For Chef's use, this header should always have a value:
application/json.

Content-Type This header describes the format in which the data is sent
to the Chef server. This header should always have a value:
application/json.

Host This is the hostname and port to which the request is sent.

X-Chef-Version This header describes the version used by the chef-client
executable.

X-Ops-Authorization-N | One (or more) 60 character segments that comprise the
canonical header. N here represents the integer used by the
last header as part of the request.

X-Ops-Content-Hash This is the body of the request. The body is hashed using
SHALI1 and is encoded using Base6t4. The Base64 encoding
should have line breaks every 60 characters.

X-Ops-Sign This header should be set to a value: version=1.0.

X-Ops-Timestamp This is the timestamp in the ISO-8601 format and the time
zone is in UTC. For example, 2014-09-28T11:10:43Z.

X-Ops-Userld This is the name of the API client whose private key is going

to be used for the purpose of signing the headers.

Let's try to make use of this knowledge to get a list of nodes set up on our Chef
server. We'll make use of cURL for the purpose of connecting to our Chef server:

#!/usr/bin/env bash

_chomp () {

[235]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

awk '{printf "%s", S0}’

}

chef api request () {

local method path body timestamp chef server url client name hashed
body hashed path

local canonical request headers auth headers

chef server url="https://chef.indix.tv"
endpoint=5{2%%\?*}
path=${chef server url}s$2

client name="mayank"

method=S$1

body=$3

hashed path=$ (echo -n "$endpoint" | openssl dgst -shal -binary |
openssl enc -base64)

hashed_body=$ (echo -n "$body" | openssl dgst -shal -binary | openssl
enc -baseé64)

timestamp=$ (date -u "+%Y-%m-%dT%H:%M:%SZ")

canonical request="Method:$method\nHashed Path:Shashed path\nX-
Ops-Content-Hash: $hashed body\nX-Ops-Timestamp:$timestamp\nX-Ops-
UserId:$client name"
headers="-H X-Ops-Timestamp:$timestamp \
-H X-Ops-Userid:$client name \
-H X-Chef-Version:0.10.4 \
-H Accept:application/json \
-H X-Ops-Content-Hash:$hashed body \
-H X-Ops-Sign:version=1.0"

auth_headers=$ (printf "S$Scanonical request" | openssl rsautl -sign
-inkey \
"/Users/mayank/.chef/${client name}.pem" | openssl enc -baseé64 |
_chomp | awk '{ll=int(length/60);i=0; \
while (i<=11) {printf " -H X-Ops-Authorization-%s:%s", i+1,

substr ($0,1*60+1,60) ;i=i+1}}")

case Smethod in
GET)
curl command="curl -k $headers $auth headers s$path"
$curl command

*)

[236]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

echo "Unknown Method. I only know: GET" >&2

return 1
s

esac

chef api request "$e@"

This script can now be executed as follows:

bash curl chef.sh GET "/users"

{"admin":"https:\/\/chef.sychonet.com:443\/users\/
admin", "user":"https:\/\/chef.sychonet.com:443\/users\/
user,“mayank":"https:\/\/chef.sychonet.com:443\/users\/mayank“}

Here, we are hitting the endpoint /users using the GET method. There are plenty of
other endpoints provided to us by the Chef server and some of them accept methods
other than GET, such as POST, DELETE, and so on.

You can also use Knife's subcommand raw to send a REST request to the Chef server
APIL The syntax of the command is as follows:

knife raw REQUEST PATH [options]

The command accepts the following options:

Option

Description

-i FILE, --input FILE

The request body should be defined in this file
and used with a PUT or POST request.

-- [no-]pretty

This can be used to disable pretty-print output
of JSON.

-m METHOD, --method METHOD This option can be used to specify a request

method. The values allowed are DELETE, GET,
POST, and PUT. The default value for this
method is GET.

For example, the following command will help us get a list of all the users on the

Chef server:

knife raw -m GET /users

Alternatively, we can use this command:

knife raw /users

[237]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

Endpoints

With our understanding of authorization, we can now go ahead and start playing
with the Chef server API; however, before we jump ahead and get our hands dirty,
lets quickly check what endpoints are provided to us by the Chef server and also see
what to expect from them.

Jlusers

The users endpoint has two methods:

e The GET method
¢ The PoST method

GET

The GET method is used to get a list of users set up on the Chef server. This method
has no parameters. We had used this method to get a list of users configured on our
Chef server in the example earlier.

For a request, we can use the following code:
GET /users
Response:

The response will return a JSON, containing a username and URI corresponding to
users on the Chef server:

{

"mayank"=>"https://chef.sychonet.com:443/users/mayank"

}

POST

The posT method is used to create a user on the Chef server.
For a request, we can use the following code:
POST /users

For a response, we can use the following code:

{

"user name": "https://chef.sychonet.com:443/users/user name"

}

[238]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Jlusers/INAME

The /users/NaME endpoint has the following methods:

* The DELETE method
* The GET method

e The POST method

* The PUT method

DELETE

The DELETE method is used to delete a user.
For a request, we can use the following code:
DELETE /users/USER_NAME
Response:
This will return a JSON as follows:
{

"name": "USER_NAME"

}

GET

The GET method is used to get details about a user.

For a request, we can use the following code:

GET /users/USER_NAME

For a response, we can use the following code:

{

"name": "USER NAME"

}

POST

The posT method is used to create a new user on the Chef server.

For a request, we can use the following code:

POST /users/USER_NAME

[239]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

This method accepts a request body that looks something like this:
{

"name": "User Name"

}

Response:

The Chef server will respond with a private key corresponding to this user, as
follows:

{

"name": "User Name",
"private key": "----- BEGIN PRIVATE KEY----- \n
MIGENAOXXXXXXXXXXXXXXXXXXXXXXXXXXX\n

"admin": false

}

PUT

The pUT method is used to update a specific user on the Chef server. This method
accepts a Boolean:

{"private key": "true"}.

If this is specified, a new private key is generated.

For a request, we can use the following code:
PUT /users/USER_NAME

This method accepts a request body that looks something like this:
POST /users { "name": "User Name" }

Response:

The response will return something like this:

{

"name": "User Name'",
"private key": "----- BEGIN PRIVATE KEY----- \n
MIGENAOXXXXXXXXXXXXXXXXXXXXXXXXXXX\n

"admin": false

[240]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

If a new private key is generated, then both the public and private keys are returned
in response.

/clients

The /clients endpoint is used to manage an API client list and their associated
public-private key pairs.

The /clients endpoint has two methods: GET and POST.

GET

The GET method is used to return a list of clients registered with the Chef server,
including nodes such as the chef-validator and chef-server-webui clients.

For a request, we can use the following code:

GET /clients
Response:

The response for this request will look something like this:

{

"chef-validator": "https://chef.sychonet.com:443/clients/chef-
validator",

"chef-webui": "https://chef.sychonet.com:443/clients/chef-webui",

"client01l": "https://chef.sychonet.com:443/clients/client0l1"

POST

The posST method is used to create a new API client on the Chef server.
For request we can use the following code:
POST /clients

with a request body like this:
{

"name": "Name of new API client",
"admin": false

[241]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

Here, name refers to the name of the new API client, and admin indicates if the new
API client will be an admin API client or not.

Response:

The response for this request will look something like this:

{

"uri": "https://chef.indix.tv:443/clients/Name of new API client",
"private key": "----- BEGIN PRIVATE KEY----- \n

}

The private key returned by the Chef server should be saved in a safe place as this
will be used to communicate with the Chef server later on.

Iclients/NAME

The /clients/NAME endpoint is used to manage a particular Chef API client. This
endpoint has the following methods:

¢ The DELETE method
e The GET method
¢ The PUT method

DELETE

The DELETE method is used to remove a specific API client.

For a request, we can use the following code:

DELETE /clients/NAME
Response:

This method has no response body.

GET

The GET method is used to get details about a specific client.

For a request, we can use the following code:

GET /clients/NAME

[242]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Response:

The response will look something like this:

{

"clientname": "client name",

"validator": false,

"certificate": "------ BEGIN CERTIFICATE ------ \n
MIIDO]jCAE45XXXXXXXXXXXXX
——————— END CERTIFICATE -------",

"name": "node_name"

PUT

The pUT method is used to update a specific API client. This method has no
parameters.

For a request, we can use the following code:

PUT /clients/NAME

This has a request body like this:
{

"name": "client name",
"private key": true,
"admin": false

}

If private_key is set to true, a new RSA private key will be generated, and if admin
is set to true, the API client will be configured as an admin API client.

Response:

The response will return something like this:

{

"name": "client name",
"private key": "----- BEGIN PRIVATE KEY----- \n

"admin": false

[243]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

[roles

The /roles endpoint can be used to manage roles on the Chef server. This endpoint
has two methods: GET and POST.

GET

The GET method can be used to get a list of roles along with their associated URIs.
This method has no parameters.

For a request, we can use the following code:

GET /roles
Response:

The response will return something like this:

{

"cannonball-turbo":"https://chef.sychonet.com:443/roles/cannonball-
turbo",

"datanode":"https://chef. sychonet.com:443/roles/datanode",

"namenode" : "https://chef. sychonet.com:443/roles/namenode",

"services":"https://chef. sychonet.com:443/roles/services",

"solr":"https://chef. sychonet.com:443/roles/solr",

"webapp":"https://chef. sychonet.com:443/roles/webapp"

POST

The posT method can be used to create a new role on the Chef server. Again, this
method accepts no parameters.

For a request, we can use the following code:
POST /roles

Which has a request body like this:
{

"name": "webserver",

"chef_ type": "role",
"json_class": "Chef::Role",
"default attributes": {},
"description": "A webserver",
"run list": [

"recipe [passenger] ",

[244]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

"recipe [nginx]"
1,

"override attributes": {}

}

Response:

The response will return something like this:

{

"uri": "https://chef.sychonet.com:443/roles/webserver"

[roles/INAME

The /roles/NAME endpoint can be used to manage an individual role. This endpoint

has the following methods:

¢ The GET method
e The DELETE method
¢ The PUT method

DELETE

The DELETE method can be used to delete an existing role from the Chef server.

For a request, we can use the following code:

DELETE /roles/webserver
Response:

The response will return something like this:

{

"name": "webserver",

"chef type": "role",

"json class": "Chef::Role",
"default attributes": {},
"description": "A webserver",
"run list": [

"recipe [passenger] ",
"recipe [nginx] "
] !

"override attributes": {}

[245]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

GET

The GET method can be used to get the details about a particular role.
For a request, we can use the following code:

GET /roles/webserver
Response:

The response will return something like this:

{

"name": "webserver",
"chef type": "role",

"json class": "Chef::Role",
"default attributes": {},
"description": "A webserver",
"run list": [

"recipe [passenger] ",
"recipe [nginx] "
1,

"override attributes": {}

PUT

The pUT method can be used to edit an individual role. Let's say we had a role called
the webserver already set up, and now we want to override an attribute ["nginx"]
["port"] with a value 8080.

For a request, we can use the following code:
PUT /roles/webserver

Which has a request body like this:
{

"name": "webserver",

"chef type": "role",

"json class": "Chef::Role",
"default attributes": {},
"description": "A webserver",
"run list": [

"recipe [passenger] ",

[246]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

}

"recipe [nginx]"

1,

"override attributes": {
"nginx" { "port": 8080 }

Response:

The response will look something like this:

{

[roles/INAME/environments

Let's say we had a role called webserver with the following definition:

"name": "webserver",
"chef type": "role",

"json class": "Chef::Role",
"default attributes": {},
"description": "A webserver",
"run list": [

"recipe [passenger] ",
"recipe [nginx]"

1,

"override attributes": {
"nginx" { "port": 8080 }

Role Name:: webapp
Copyright 2014, Sychonet
name "webapp"

description "Web Role"

env_run_lists "production" =>
["recipe[ochail ", "recipe [basel] ", "recipe [passenger-nginx] ", "recipe [nodej
s]","recipe [nodejs: :nodepkgs] ", "recipe [memcached] ", "recipe [crons: :weba
ppl", "recipe [monit] ", "recipe [splunk::forwarder]", "recipe [monitoring: :s
ensul] ", "recipe[monitoring: :ganglial "],
"staging" =>
["recipe[ochail ", "recipe [basel]", "recipe [passenger-nginx] ", "recipe [nodej
s]","recipe [nodejs: :nodepkgs] ", "recipe [memcached] ", "recipe [crons: :weba
ppl ", "recipe [monit] "],

[247]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

"perf" =>
["recipe [ohail ", "recipe [base]", "recipe [passenger-nginx] ", "recipe [nodej
s]","recipe [nodejs: :nodepkgs] ", "recipe [memcached] ", "recipe [crons: :weba
ppl", "recipe [monit] "],

"_default" =>
["recipe [ohail ", "recipe [base] ", "recipe [passenger-nginx] ", "recipe [nodej
s]","recipe [nodejs: :nodepkgs] ", "recipe [memcached] "]
run list "recipel[ohail]", "recipe[basel]", "recipe [passenger-nginx]", "rec
ipe[nodejs]", "recipe [nodejs: :nodepkgsl]l", "recipe [memcached] "

As you can see, we've created environment-specific run-lists and we can make use
of the /roles/webapp/environments to get a list of environments for which the
environment specific run-lists have been defined in our role.

This endpoint has just one method called GET.

GET

This method has no parameters and it just returns a list of environments that have
environment-specific run-lists in a given role.

For a request, we can use the following code:
/roles/webapp/environments
For a response, we can use the following code:

[" default", "perf", "production", "staging"]

[roles/INAME/environments/NAME

This endpoint takes the name of the role and the name of the environment as an
argument and returns the run-list corresponding to the concerned environment.

This method just has the GET method.

GET

For a request, we can use the following code:

/roles/webapp/environment /production

This will return run_1list corresponding to environment production for the
webapp role.

[248]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Response:

The response will look something like this:

{

"run list":["recipe[ohai]", "recipe [base]", "recipe [passenger-nginx]",
"recipe [nodejs]", "recipe [nodejs: :nodepkgs] ", "recipe [memcached] ", "recip
e[crons: :webappl ", "recipe [monit] ", "recipe [splunk: :forwarder]", "recipe [
monitoring: :sensul", "recipe[monitoring: :ganglial "]

}
Icookbooks

The /cookbooks endpoint is used to return hash of all the cookbooks and cookbook
versions. This endpoint has the GET method.

GET

This method has the num_versions=n parameters where n is the number of versions
to return in the response.

For a request, we can use the following code:

GET /cookbooks

For a response, we can use the following code:

{

"passenger-nginx" : {
"url":"https://chef.sychonet.com:443/cookbooks/passenger-nginx",
"versions": [{"version":"0.1.1","url":"https://chef.sychonet.

com:443/cookbooks/passenger-nginx/0.1.1"}]

}
}

As you can see, we got a response with the latest version of cookbook named
passenger-nginx. However, I know that we have two versions of passenger-nginx
and the following request will help us get both versions in our response.

For a request, we can use the following code:

GET /cookbooks?num versions=2

[249]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

For a response, we can use the following code:

{

"passenger—nginx":{
"url":"https://chef.sychonet.com:443/cookbooks/passenger-nginx",
"versions": [

{"version":"0.1.1","url":"https://chef.sychonet.com:443/
cookbooks/passenger-nginx/0.1.1"}

{"version":"0.1.0","url":"https://chef.sychonet.com:443/
cookbooks/passenger-nginx/0.1.0"}

]

}

To get a list of all the versions, replace N in num_versions=N with all.

/cookbooks/NAME

The /cookbooks/NAME endpoint can be used to get information about a particular
cookbook. This endpoint has just one method GET.

GET

The GET method can be used to get information about a particular cookbook.
Let's use it to get details of our cookbook called passenger-nginx.

For a request, we can use the following code:

GET /cookbooks/passenger-nginx
Response:

The response will look something like this:

{

"passenger—nginx":{
"url":"https://chef.sychonet.com:443/cookbooks/passenger-nginx",
"versions": [

{"version":"0.1.1","url":"https://chef.sychonet.com:443/
cookbooks/passenger-nginx/0.1.1"}

{"version":"0.1.0","url":"https://chef.sychonet.com:443/
cookbooks/passenger-nginx/0.1.0"}

]

[250]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

/cookbooks/NAME/VERSION

The /cookbooks/NAME /version endpoint can be used to get information about a
particular version of a cookbook. This endpoint has the following methods:

¢ The DELETE method
e The GET method
¢ The pPUT method

DELETE

This method can be used to delete a particular version of a cookbook called NAME
from the Chef server.

For a request, we can use the following code:

DELETE /cookbooks/NAME/VERSION

Or, we can use the following code:

DELETE /cookbooks/passenger-nginx/0.1.0
This request can be used to delete version 0.1.0 of the passenger-nginx cookbook.
Response:

This method has no response body. Unused checksum values will be garbage
collected.

GET

The GET method is used to get the description of a cookbook, including all of its
metadata and links to component files. This method has no parameters.

For a request, we can use the following code:
GET /cookbooks/NAME/VERSION

Or, we can use the following code:
GET /cookbooks/passenger-nginx/0.1.0

Here, version can be _latest in order to get the latest version.

[251]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

Response:

The response will return something like this:

{

"cookbook name": "passenger-nginx",
"files": [
1,
"chef type": "cookbook version",
"definitions": [
1,
"libraries": [
1,
"attributes": [
{
"name": "default.rb",
"path": "attributes/default.rb",
"checksum": "XXX",
"specificity": "default",
"url": "https://chef.sychonet.com:443/bookshelf/

organization-0000/checksum-XXX"

}
]
"fileg": [

{

"name": "nginx.conf

PUT

The pUT method is used to create or update a cookbook version. This method has
no parameters.

For a request, we can use the following code:
PUT /cookbooks/NAME/VERSION

It has a request body that looks like this:
{

"cookbook name": "passenger-nginx",

[252]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

"files": [

1,

"chef type": "cookbook version",

"definitions": [

1,

"libraries": [

1,

"attributes": [

{

"name": "default.rb",
"path": m"attributes/default.rb",
"checksum": "XXX",
"specificity": "default",

"url": "https://chef.sychonet.com:443/bookshelf/
organization-0000/checksum-XXX"

1
]
"fileg": [
{

"name": "nginx.conf

}

Here, the checksum values must have already been uploaded to the Chef server,
using the sandbox endpoint. Once a file with a particular checksum has been
uploaded by a user, redundant updates are not necessary. Unused checksums are
garbage collected.

Response:

This method has no response body.

/data

The /data endpoint is used to manage the data bags stored on the Chef server.
The /data endpoint has two methods:

e The GET method
e The poST method

[253]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

GET

The GET method is used to return a list of all the data bags on the Chef server.
This method has no parameters.

For a request, we can use the following code:
GET /data
Response:

The response will return something like this:

{

"hdfs":"https://chef.sychonet.com:443/data/hdfs",
"ganglia":"https://chef.sychonet.com:443/data/ganglia",
"sensu":"https://chef.sychonet.com:443/data/sensu",
"users":"https://chef.sychonet.com:443/data/users"

POST

The posT method can be used to create a new data bag on the Chef server. This
method has no parameters.

For a request, we can use the following code:

POST /data
Which has a request body that looks something like this:
{

}

Here data_bag_name holds the name of the data bag to create.

"name": "data bag name"

Response:

The response will return something like this:

{
"chef type": "data bag",
"data bag": "data bag name",
mid": "123456"

[254]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

/data/NAME

The /data/NAME endpoint is used to view and update a specific data bag. This
endpoint has the following methods:

¢ The DELETE method
e The GET method
¢ The pPUT method

DELETE

The DELETE method can be used to delete the data bag specified in the request.

For a request, we can use the following code:

DELETE /data/NAME

For example, DELETE /data/sensu will delete the data bag named sensu from the
Chef server.

Response:

The response will look something like this:

"id": "sensu",
"real name": "sensu"

GET

The GET method can be used to return a hash of all the entries in the specified data
bag.

For a request, we can use the following code:
GET /data/NAME

Or, we can use the following code:

GET /data/users.

[255]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

Response:

The response will return something like this:

{

"application":"https://chef.sychonet.com:443/data/users/application",
"hadoop" : "https://chef.sychonet.com:443/data/users/hadoop",
"sychonet"" "https://chef.sychonet.com:443/data/users/sychonet™

}

POST

The PosT method can be used to create a new data bag item. This method has no
parameters.

For a request, we can use the following code:
POST /data/NAME

It has a request body that looks something like this:
{

"id": "data_bag name",

"real name": "data bag name"

}
For example, the following request can be used to create a new user called mayank.

POST /data/mayank

It has a request body that looks something like this:
{

n idn . "mayank n ,
"real name": "Mayank"
Response:

This method has no response body.

/data/NAME/ITEM

The /data/NaME/ITEM endpoint allows the key-value pairs within a data bag to be
viewed or managed. The endpoint has the following methods:

¢ The DELETE method

[256]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

¢ The GET method
e The pUT method

DELETE

The DELETE method is used to delete the key-value pair in the data bag.
For a request, we can use the following code:
DELETE /data/NAME/ITEM

For example, we might have a user called mayank and we might want to delete
this user. The following request can be used to accomplish this:

DELETE /data/users/mayank
Response:

The response will return something like this:

{

"name": "data bag item users mayank",
"json class": "Chef::DataBagItem",
"chef type": "data bag item",
"data bag": "users",
"raw_data":

"id": "mayank",

"ssh keys": [

"ssh-rsa XXXXXXXXXXX mayank@sychonet.com"
1.

"home": "/home/mayank",
"comment": "Mayank"

GET

The GET method can be used to get all the key-value pairs in a data bag item.
For a request, we can use the following code:
GET /data/NAME/ITEM

For example, we can use the following request to get details about the data bag item
called mayank in a data bag called users:

GET /data/users/mayank

[257]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

Response:

The response will be something like this:

{ "id": "mayank",
"ssh keys": ["ssh-rsa XXXXXX mayank@sychonet.com"],
"home" : " /home/mayank",
"comment" : "Mayank"

PUT

The pUT method can be used to replace the contents of a data bag item with those
from the request.

For a request, we can use the following code along with a request body:
PUT /data/NAME/ITEM

For example, we might want to replace the SSH key for the user mayank, and this
can be accomplished as follows:

PUT /data/users/mayank
It has a request body as follows:

{

"ssh keys": ["ssh-rsa YYYYYYY mayank@sychonet.com"]
"home": "/home/mayank",
"comment": "Mayank"
}
Response:

The response will return something like this:

{
n idn . "mayank n ,
"ssh keys": [
"ssh-rsa YYYYYY mayank@sychonet.com"
1.

"home": "/home/mayank",
"comment": "Mayank",

"chef type": "data bag item",
"data bag": "users"

[258]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

lenvironments

The /environments endpoint can be used to view or edit environments. This
endpoint has two methods:

¢ The GET method
e The poST method

GET

The GET method returns a JSON containing a link to each available environment
on the Chef server.

For a request, we can use the following code:
GET /environments
Response:

The response will return something like this:

{

" default": "https://chef.sychonet.com:443/environments/ default",
"staging": "https://chef.sychonet.com:443/environments/staging",
"perf": "https://chef.sychonet.com:443/environments/perf",

"prod": "https://chef.sychonet.com:443/environments/prod"

POST

The posT method is used to create a new environment.
For a request, we can use the following code with a request body:
POST /environments

For example, we might want to create a new environment called ga. This can be
accomplished with the following request:

POST /environments
It has the following request body:
{

"name n . "qa" ,
"override attributes": {},

[259]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

"json class": "Chef::Environment",

"description": "",

"cookbook versions": {},

"chef type": "environment"
Response:

The response will return something like this:

{

"uri": "https://chef.sychonet.com:443/environments/qga"

}

/lenvironments/NAME

The /environments/NAME endpoint can be used to manage an individual
environment. This endpoint supports the following methods:

¢ The DELETE method
¢ The GET method
¢ The pPUT method

DELETE

The DELETE method can be used to delete an environment.

For a request, we can use the following code:

DELETE /environments/NAME

For example, the following request will delete the environment called ga, which we
created in the last example:

DELETE /environments/ga
Response:

The response will return something like this:

{

llname n : llqall ,

"override attributes": {},
"json_class": "Chef::Environment",
"description": "",

[260]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

"cookbook versions": {},
"chef type": "environment",
"default attributes": {}

}

GET

The GET method can be used to get the details of an environment.
For a request, we can use the following code:
GET /environments/NAME

For example, the following request will help us get details of an environment
called prod:

GET /environments/prod
Response:

The response will return something like this:

{

"name": "prod",

"description": "Production Environment",
"cookbook versions": {},

"json class": "Chef::Environment",

"chef type": "environment",

"default attributes": {},

"override attributes": {}

PUT

The pUT method can be used to edit an existing environment.
For a request, we can use the following code along with its request body:
PUT /environments/NAME

For example, we might want to set a default attribute called 1dap_server with a
value, 1daps://1dap.sychonet.com, for an environment called prod. This task
can be accomplished using the following request:

PUT /environments/prod

[261]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

It has the following request body:
{

llnamell . llqall ,
"default attributes": { "ldap server": "ldap.sychonet.com" },
"override attributes": {},
"json class": "Chef::Environment",
"description": "",
"cookbook versions": {},
"chef type": "environment"
Response:

The response will return something like this:

{

"name": "ga",
"default attributes": {
"ldap server": "ldap.sychonet.com"
b
"override attributes": {},
"json class": "Chef::Environment",
"description": "",
"cookbook versions": {},
"chef type": "environment"

lenvironments/NAME/cookbooks

The /environments/NAME/cookbooks endpoint can be used to get a list of
cookbooks and cookbook versions that are available to the specified environment.

This method accepts num_versions=n as a parameter. This parameter determines
how many versions of cookbooks to include in the response.

This endpoint accepts the GET method.

GET

For a request, we can use the following;:

GET /environments/NAME/cookbooks

[262]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

For example, the following request will list all the cookbooks associated with a
production environment:

GET /environments/prod/cookbooks
Response:

The response will return something like this:

{
"passenger-nginx": {
"url": "https://chef.sychonet.com:443/cookbooks/passenger-nginx",
"versions": [

{

"url": "https://chef.sychonet.com:443/cookbooks/passenger-
nginx/0.1.1",

"version": "0.1.1"

/lenvironments/NAME/nodes

The /environments/NAME/nodes endpoint can be used to get a list of all the nodes
in a particular environment. This endpoint has the GET method.

GET

The GET method will return a list of nodes in a given environment.
For a request, we can use the following code:
GET /environments/NAME/nodes

For example, the following request will give a list of all the nodes in a production
environment.

GET /environments/prod/nodes
Response:

The response will return something like this:

{

"web0l.production.sychonet.com": "https://chef.sychonet.com:443/
nodes/web0l.production.sychonet.com",

[263]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

"web02.production.sychonet.com": "https://chef.sychonet.com:443/
nodes/web02.production. sychonet.com"

}

/lenvironments/NAME/recipes

The endpoint /environments/NAME/recipes can be used to get a list of recipes
available to a particular environment. This endpoint has the GET method.

GET

The GET method will return a list of recipes available to a given environment:
For a request, we can use the following code:
GET /environments/NAME/recipes

For example, the following request will give a list of recipes available to the
production environment:

GET /environments/prod/recipes
Response:
The response will return something like this:

[

"passenger-nginx"

/lenvironments/NAME/roles/NAME

This endpoint can be used to return the run_1list attribute of the role, when the
environment is _default, or to return env_run lists[environment name] for
non-default environments.

This endpoint only has the GET method.
For a request, we can use the following code:
GET /environments/NAME/roles/NAME

For example, we might want to get the run-list associated with a role called
webserver in the prod environment. To accomplish this, we'll need to make
the following request:

GET /environments/prod/roles/webserver

[264]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Response:

The response will return something like this:

{
"run list": [
"recipe [ohail ",
"recipe [basel ",
"recipe [passenger-nginx]",

Search

Apart from these endpoints, the Chef server API provides us with an endpoint to
query data indexed by the Chef server. This includes data bags, environments, roles,
and nodes. The Chef server API provides two endpoints for the purposes of search:
/search and /search/INDEX. The search engine used by Chef is based on Apache
Solr. You can do a full-text query using a defined query syntax. Chef provides
support for search, using different patterns such as exact, wildcard, range, and fuzzy.

Isearch

The /search endpoint allows you to search for data bags, roles, nodes, and
environments. It has support for the GET method.

GET

The GET method returns a JSON with links to each available search index.

For a request, we can use the following code:

GET /search
Response:

The response will return something like this:

{

"client": "https://chef.indix.tv:443/search/client",
"environment": "https://chef.indix.tv:443/search/environment",
"node": "https://chef.indix.tv:443/search/node",
"role": "https://chef.indix.tv:443/search/role",
"hdfs": "https://chef.indix.tv:443/search/hdfs",

[265]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

"ganglia": "https://chef.indix.tv:443/search/ganglia",
"sensu": "https://chef.indix.tv:443/search/sensu",
"users": "https://chef.indix.tv:443/search/users"

}

As you can see, the request has returned a client, environment, node, role, and
different data bags (hdfs, ganglia, sensu, and users) configured on the Chef server.

Isearch/INDEX

The /search/INDEX endpoint can be used to access the search indexes on the Chef
server. This endpoint has the following methods:

¢ The GET method
e The poST method

A search query comprises of two parts: the key and search pattern with the following
format:

key:search pattern

Both key and search _pattern are case sensitive. The key has very limited support
for multiple characters' wildcard matching using *.

GET

The GET method is used to return data matching the query in the GET request.

This method accepts the following parameters:

Parameter Description

q The search query used to identify a list of items on a Chef server
rows This parameter can be used to limit the number of rows returned
sort This parameter determines the order in which results are sorted
start This parameter determines the row in which results will start

For a request, we can use the following code:

GET /search/INDEX

For example, the following request will help us get a list of all clients with
their details:

GET /search/clients

[266]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Response:

The response from the last request will return something like this:

{

"total": 2,
"start": O,
"rows": [
{
"public_key": TXXXXXX",
"name": "chef-webui",
"admin": true,

"validator": false,

"json class": "Chef::ApiClient",
"chef type": "client™
b
{
"public_key": "YYYYYY",
"name": "chef-validator",

"admin": false,

"validator": true,

"json class": "Chef::ApiClient",
"chef type": "client™

POST

However, there will be times when we'll only want a partial search query to be
made. A partial search query allows a search query to be made against specific
attribute keys that are stored on the Chef server. It can specify an object index and
provide a query that can be matched to the relevant index. You must use a partial
query instead of a full-text query most of the times as it requires less memory and
network bandwidth.

The posT method is used to return partial search results. For example, perhaps we
only want the name, IP address, and run-list associated with nodes. For such a use
case, we'll need to make a POST request as follows:

For a request, we can use the following code:

POST /search/nodes

[267]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

It has the following request body:

{
"name" : ["name"],
"ip": ["ipaddress"],
"run-list": ["run list"]
}

Response:

The response will return something like this:

{

"total": 2,
"start": O,
"rows": [
{
"url": "https://chef.sychonet.com:443/nodes/webserver0l.
production. sychonet.com",
"data": |
"name": "webserver0l.production.sychonet.com",
"ip": "10.181.1.219",
"run-list": [
"role [webserver]"

}
b
{

"url":
"https://chef.sychonet.com:443/nodes/webserver02.production. sychonet.
com",

"data": |

"name": "webserver02.production.sychonet.com",
"ip": "10.181.1.189",
"run-list": [

"role [webserver] "

[268]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

The search till now has been made against indexes such as nodes, data bags, clients,
and so on, using the keys. However, there might be a case where you wanted to
search for an index by virtue of its value. For example, you might want to search
for an IP address and a run-list for a node with FQDN, starting with the string
webserver01l. For such cases, you can use the following request.

For a request, we can use the following code:
POST /search/node?g=fqgdn:webserver0l*
Along with the following request body:
{

"name": ["name"],
"ip": ["ipaddress"],
"run list": ["run list"]
1
Response:

This request will result in a response like this:

{

"total": 1,
"start": O,
"rows": [
{
"url": "https://chef.sychonet.com:443/nodes/webserver0l.
production. sychonet.com",
"data": |
"name": "webserver0l.production.sychonet.com",
"ip": "10.181.1.219",
"run list": [

"role [webserver]"

If you want to try out this request, create a JSON file (say request_body . json) with
content similar to that found in the request body and use the following command:

$ knife raw -m POST \

-i request _body.json \

' /search/node?qg=fgdn=webserver0l*"

[269]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

Patterns

As we mentioned earlier, we can make use of search patterns to fine-tune search
results by returning anything that matches some type of incomplete search query.
Chef provides us with four types of search patterns, namely: exact, wildcard, range,
and fuzzy.

Let's see how we can make use of each of them for the purpose of search.

We'll make use of the knife subcommand called search for the purpose of examples
in the following sections.

Syntax

The syntax for the knife search subcommand is as follows:

knife search INDEX QUERY [options]

One of the most used options with this subcommand is -a, which is used to filter
attributes returned in the search result.

For example, the following command will display an IP address and a run-list
associated with a node with FQDN, starting with the webservero1 string:

knife search node "fgdn:webserver0l*" -a "name" -a "ipaddress" -a "run
list"
1 items found
webserver0l.production.sychonet.com:
ipaddress: 10.181.1.219
name: webserver0l.production.sychonet.com

run list: role[webserver]

Exact matching

An exact pattern is used to search for a key with a name that exactly matches a
search query. If the name of the key contains spaces, quotes must be used to ensure
that the search query finds the key. You should quote the entire search query in
single quotes and the search pattern should be quoted in double quotes.

For example, the following query will try to find a node with FQDN equal to
webserver0l.production. sychonet.comand will display an IP address and a run-
list associated with the node.

knife search node "fgdn:webserver(Ol.production.sychonet.com" -a "name" -a
"ipaddress" -a "run list"

[270]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

This will result in the following output:

1 items found
webserver0l.production.sychonet.com:

ipaddress: 10.181.1.219

name: webserver0l.production.sychonet.com

run list: rolelwebserver]

Wildcard matching

Sometimes, instead of an exact match you might want to get a list of search results
matching some criteria. For example, you might be interested in knowing the IP
addresses and run-lists of all the nodes whose FQDN begins with the webserver
string. A wildcard match can be of a great help in these cases. You can use the
following two types of wildcard searches:

* Use * to replace zero or more characters
* Use 2 to replace exactly one character.

For example, the following query will help us achieve our goal to find nodes with
FQDN beginning with the webserver string;:

knife search node "fgdn:webserver*" -a "name" -a "ipaddress" -a "run
list"

This will result in the following output:

2 items found
webserver0l.production.sychonet.com:

ipaddress: 10.181.1.219

name: webserver0l.production.sychonet.com

run list: rolelwebserver]

webserver02.production.sychonet.com:
ipaddress: 10.181.1.189
name: webserver02.production.sychonet.com

run list: rolelwebserver]

[271]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

Range matching

If there is any key with values limited between an upper and lower boundary, then
you can make use of range matching to limit the search within a range. The range
can be inclusive or exclusive. We can use [] to specify a range that denotes inclusive
boundaries and {} to specify a range that denotes exclusive boundaries.

Let's say, we've a bunch of data bag items called bago01, bag02, ..., and bag10 in a
data bag called bag, and we only want to see details of the bags between bago03 to
bag 07.

The following query will help us get this done:

knife search bag "id: [bag03 TO bag07]1"

If we don't want bago3 and bag07 in the result, the query would look something
like this:

knife search bag "id:{bag03 TO bag07}"

Fuzzy matching

This pattern is used to search based on the proximity of two strings of characters.
A fuzzy matching search pattern has the following syntax:

"search query"~edit distance

While search_guery is the string to be used during the search, edit_distance
determines the proximity. A tilde ~ is used to separate a search string from
edit distance.

The edit distance is actually the Levenshtein distance and the algorithm for this
kind of search is known as the Levenshtein distance algorithm. The edit distance
can have values between 0 and 1, with a value closer to 1, and only terms with
higher similarity are matched.

You can find more details about this algorithm at: http://en.wikipedia.org/
wiki/Levenshtein distance.

Operators

We can use operators to build complex search queries by combining search results or
negating the effects of search. Chef provides the following operators for this purpose:

[272]

www.it-ebooks.info

http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Levenshtein_distance
http://www.it-ebooks.info/

Chapter 11

Operator Description

AND Finds a match when both terms exist

OR Finds a match when either of the terms exist

NOT Excludes the term after NOT from the search results

For example, we might want to find a list of machines belonging to a production
environment, which has webserver as a role. This can be accomplished using the
following search query:

$ knife search node 'chef environment:production AND roles:webserver'

Using search in recipes

Till now, we've seen the use of search via the API or through Knife. Chef also
provides a DSL that allows you to query from within recipes.

If you are doing a full-text query, all you need to do is to make a call to a search
method. The syntax of the search method is as follows:

search (: INDEX, "QUERY")
Or it can also be used with the following syntax:
search(:node, "hostname:webserver0l")

This method will return a JSON with all the important information about a node
with a hostname equal to webservero1, which is indexed by the Chef server.

In the case of partial search queries, you need to ensure that the recipe contains a
dependency on the partial_ search cookbook.

The syntax for a partial search query is as follows:

partial search(:INDEX, "QUERY", :keys => { tattrl' => ['keyl' 1,
'attr2' => ['key2']l ... })

For example:

partial search(:node, 'role:webserver',

:keys => { 'name' => ['name'],
'ip! => ['ipaddress' 1,
'kernel version' => ['kernel', 'version']

}

) .each do |result]

[273]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef API and Search

puts result['name']

puts result['ip']

puts result['kernel version']
end

This will search for nodes with webserver as the role in the top-level run_1list, and
finally prints name, ipaddress, and kernel_version for the nodes.

Ridley
Ridley is a Chef API client written in Ruby, which can be used to perform all the
operations we looked at earlier, in a very elegant way.

Ridley is available as a gem and can be installed using the following command:

gem install ridley

Before we can use Ridley in our application, we need to require the library. This can
be done using the standard Ruby require:

require 'ridley!'

Once the library has been required, we just need to create our ridley client and use
it to perform all the actions:

ridley = Ridley.new(
server_url: "CHEF_SERVER URL",
client name: "CLIENT_NAME",
client _key: "PATH TO_CLIENT_ KEY"
)

You can also provide encrypted_data_bag_secret as a key, which can be used to
provide a secret that can be used to decrypt the encrypted data bags.

You can use different functions exposed by Ridley to either retrieve or create objects
on the Chef server. For example, the following example will help us get a list of all
the users configured on the Chef server:

ridley.user.all

If you already have knife.rb with you, you can make use of Ridley.from_chef_
config to set up the ridley client.

[274]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

All the resources are accessed by the instance functions on a new instance of
Ridley::Client

® ridley.client #=> Ridley::ClientResource

® ridley.cookbook #=> Ridley::CookbookResource

®* ridley.data _bag #=> Ridley::DataBagResource

® ridley.environment #=> Ridley::EnvironmentResource

®* ridley.node #=> Ridley::NodeResource

® ridley.role #=> Ridley::RoleResource

® ridley.sandbox #=> Ridley::SandboxResource

® ridley.search #=> Ridley::SearchResource

®* ridley.user #=> Ridley::UserResource

Most of the resources are able to perform Create, Read, Update, and Delete
(CRUD) operations.

A new Chef object can be created with the create method or the save method. The
create method can be invoked along with an attribute hash or an instance of a Chef
object. The save method can be invoked on an instance of a Chef object or a Chef
object built from serialized JSON.

For reading purposes, most of the resources support two read functions, namely a1l
and find. The all function lists all of the Chef objects, while the £ind function can
be used to retrieve a specific Chef object.

Any resource on the Chef server can also be modified using the update and save
functions. The update function can be expressed in three different ways. It can be
expressed with an ID of an object to update along with an attribute hash. It can also
be expressed with an instance of a Chef object. Finally, you can use a save function
on an instance of a Chef object.

A resource can be destroyed using a delete function. This function can be expressed
either with an ID of an object to destroy, or with an instance of a Chef object. You can
also destroy a resource using a destroy method.

For more details about using Ridley, refer to https://github.com/reset/ridley.

[275]

www.it-ebooks.info

https://github.com/reset/ridley
http://www.it-ebooks.info/

Chef API and Search

Summary

This brings us to the end of our journey into the world of the Chef server API and
search. We have learned about the authentication mechanisms used by Chef API
and we have also seen various endpoints provided by Chef to perform actions across
multiple resources. We have also learned about Ridley, one of the very few popular
Chef API clients. We have also seen how you can use the power of search to find
details about resources present on the Chef server. You can build pretty nice tools
to use by using the Chef server API. We'll see some of these tools in later chapters.
Search is perhaps one of the most beneficial features of the Chef server and this can
be used either in a command line or in your recipes to gain a quick insight into your
infrastructure or the Chef server itself. With this knowledge in hand, you can build
a really robust and scalable infrastructure with a very high degree of automation.

[276]

www.it-ebooks.info

http://www.it-ebooks.info/

12

Extending Chef

So far, we have seen the different components of Chef and we have also seen what is
possible by making use of the Chef server APIL. The Chef ecosystem is built for use by
operations people and developers alike, and it comes with a bunch of tools such as
Ohai, Knife, and so on, which can be used to manage your infrastructure easily using
Chef.

However, every now and then you'll find that the available tools just aren't good
enough to meet your requirements and this is the time when you can utilize the
knowledge that you gathered about the API and internals of Ohai and Knife, and
extend the Chef ecosystem by developing your very own resource providers, Ohai
plugins, Knife plugins, or an all together different tool set using Chef API meshed
up with other APIs.

We have already seen how to write our own custom resource provider and Ohai
plugin in the previous chapters. In this chapter, we'll learn how to go about building
custom Knife plugins and we'll also see how we can write custom handlers that can
help us extend the functionality provided by a chef-client run to report any issues
with a chef-client run.

Custom Knife plugins

As we saw in Chapter 2, Knife and Its Associated Plugins, Knife is one of the most
widely used tools in the Chef ecosystem. Be it managing your clients, nodes,
cookbooks, environments, roles, users, or handling stuff such as provisioning
machines in Cloud environments such as Amazon AWS, Microsoft Azure, and

so on, there is a way to go about doing all of these things through Knife. However,
Knife, as provided during installation of Chef, isn't capable of performing all these
tasks on its own. It comes with a basic set of functionalities, which helps provide
an interface between the local Chef repository, workstation and the Chef server.

[277]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Chef

The following are the functionalities, which is provided, by default, by the
Knife executable:

* Management of nodes

* Management of clients and users

* Management of cookbooks, roles, and environments

* Installation of chef-client on the nodes through bootstrapping

* Searching for data that is indexed on the Chef server.

However, apart from these functions, there are plenty more functions that can be
performed using Knife; all this is possible through the use of plugins. Knife plugins
are a set of one (or more) subcommands that can be added to Knife to support an
additional functionality that is not built into the base set of Knife subcommands.
Most of the Knife plugins are initially built by users such as you, and over a period
of time, they are incorporated into the official Chef code base. A Knife plugin is
usually installed into the ~/ . chef/plugins/knife directory, from where it can

be executed just like any other Knife subcommand. It can also be loaded from the
.chef/plugins/knife directory in the Chef repository or if it's installed through
RubyGems, it can be loaded from the path where the executable is installed.

Ideally, a plugin should be kept in the ~/.chef/plugins/knife directory so that it's
reusable across projects, and also in the . chef/plugins/knife directory of the Chef
repository so that its code can be shared with other team members. For distribution
purpose, it should ideally be distributed as a Ruby gem.

The skeleton of a Knife plugin

A Knife plugin is structured somewhat like this:

require 'chef/knife'

module ModuleName
class ClassName < Chef::Knife

deps do
require 'chef/dependencies’
end

banner "knife subcommand argument VALUE (options)™"

option :name_of_ option

[278]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

:short => "-1 value",

:long => "--long-option-name value",
:description => "The description of the option",
:proc => Proc.new { code to be executed },
:boolean => true | false,

:default => default value

def run
#Code
end
end

end

Let's look at this skeleton, one line at a time:

require: This is used to require other Knife plugins required by a new plugin.

module ModuleName: This defines the namespace in which the plugin will
live. Every Knife plugin lives in its own namespace.

class ClassName < Chef::Knife: This declares that a plugin is a subclass
of Knife.

deps do: This defines a list of dependencies.

banner: This is used to display a message when a user enters Knife
subcommand -help.

option :name_of_option: This defines all the different command line
options available for this new subcommand.

def run: This is the place in which we specify the Ruby code that needs
to be executed.

Here are the command-line options:

:short defines the short option name
: long defines the long option name

:description defines a description that is displayed when a user enters
knife subclassName -help

:boolean defines whether an option is true or false; if the : short and :long
names define value, then this attribute should not be used

:proc defines the code that determines the value for this option

:default defines a default value

[279]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Chef

The following example shows a part of a Knife plugin named knife-windows:

require 'chef/knife'
require 'chef/knife/winrm base'base’

class Chef
class Knife
class Winrm < Knife

include Chef::Knife::WinrmBase

deps do
require 'readline'
require 'chef/search/query’
require 'em-winrm'

end

attr writer :password
banner "knife winrm QUERY COMMAND (options)"
option :attribute,
:short => "-a ATTR",
:long => "--attribute ATTR",
:description => "The attribute to use for opening the
connection - default is fgdn",
:default => "fgdn"

more options

def session

session opts = {}
session opts[:logger] = Chef::Log.logger if Chef::Log.level ==
:debug
@session ||= begin
s = EventMachine: :WinRM: :Session.new(session opts)

s.on_output do |host, data]|
print data (host, data)

end

s.on_error do |host, err|
print data (host, err, :red)

end

[280]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

s.on_command complete do |host|
host = host == :all ? 'All Servers' : host
Chef: :Log.debug ("command complete on #{host}")
end
s
end

end
. # more def blocks

end
end
end

Namespace

As we saw with skeleton, the Knife plugin should have its own namespace and the
namespace is declared using the module method as follows:

require 'chef/knife'
#Any other require, if needed

module NameSpace
class SubclassName < Chef::Knife

Here, the plugin is available under the namespace called NameSpace. One should
keep in mind that Knife loads the subcommand irrespective of the namespace to
which it belongs.

Class name

The class name declares a plugin as a subclass of both Knife and Chef. For example:

class SubclassName < Chef::Knife

The capitalization of the name is very important. The capitalization pattern can be
used to define the word grouping that makes the best sense for the use of a plugin.

For example, if we want our plugin subcommand to work as follows:

knife bootstrap hdfs

[281]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Chef

We should have our class name as: BootstrapHdfs.

If, say, we used a class name such as Boot StrapHdfs, then our subcommand would
be as follows:

knife boot strap hdfs

It's important to remember that a plugin can override an existing Knife subcommand.
For example, we already know about commands such as knife cookbook upload.If
you want to override the current functionality of this command, all you need to do is
create a new plugin with the following name:

class CookbookUpload < Chef::Knife

Banner

Whenever a user enters the knife -help command, he/she is presented with a list
of available subcommands. For example:
knife --help
Usage: knife sub-command (options)
-8, --server-url URL Chef Server URL

Available subcommands: (for details, knife SUB-COMMAND --help)

% BACKUP COMMANDS **
knife backup export [COMPONENT [COMPONENT ...]] [-D DIR] (optiomns)
knife backup restore [COMPONENT [COMPONENT ...]] [-D DIR] (options)

** BOOTSTRAP COMMANDS **

knife bootstrap FQDN (options)

Let us say we are creating a new plugin and we would want Knife to be able to list it
when a user enters the knife -help command. To accomplish this, we would need
to make use of banner.

For example, let's say we've a plugin called BootstrapHdfs with the following code:

module NameSpace
class BootstrapHdfs < Chef::Knife

[282]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

banner "knife bootstrap hdfs (options)"

end
end

Now, when a user enters the knife -help command, he'll see the
following output:

** BOOTSTRAPHDFS COMMANDS **

knife bootstrap hdfs (options)

Dependencies

Reusability is one of the key paradigms in development and the same is true for
Knife plugins. If you want a functionality of one Knife plugin to be available in
another, you can use the deps method to ensure that all the necessary files are
available. The deps method acts like a lazy loader, and it ensures that dependencies
are loaded only when a plugin that requires them is executed.

This is one of the reasons for using deps over require, as the overhead of the
loading classes is reduced, thereby resulting in code with a lower memory
footprint; hence, faster execution.

One can use the following syntax to specify dependencies:

deps do
require 'chef/knife/name of command'
require 'chef/search/query’
#Other requires to fullfill dependencies
end

Requirements

One can acquire the functionality available in other Knife plugins using the require
method. This method can also be used to require the functionality available in other
external libraries. This method can be used right at the beginning of the plugin script,
however, it's always wise to use it inside deps, or else the libraries will be loaded
even when they are not being put to use.

The syntax to use require is fairly simple, as follows:

require 'path from where to_load library'

[283]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Chef

Let's say we want to use some functionalities provided by the bootstrap plugin.
In order to accomplish this, we will first need to require the plugin:

require 'chef/knife/bootstrap’

Next, we'll need to create an object of that plugin:

obj = Chef::Knife::Bootstrap.new

Once we've the object with us, we can use it to pass arguments or options to that
object. This is accomplished by changing the object's config and the name_arg
variables. For example:

obj.config[:use_sudo] = true
Finally, we can run the plugin using the run method as follows:

obj.run

Options

Almost every other Knife plugin accepts some command line option or other. These
options can be added to a Knife subcommand using the option method. An option
can have a Boolean value, string value, or we can even write a piece of code to
determine the value of an option.

Let's see each of them in action once:

An option with a Boolean value (true/false):

option :true or false,
:gshort => "-t",
:long => "—true-or-false",
:description => "True/False?",
:boolean => true | false,
:default => true

Here is an option with a string value:

option :some string value,
:short => "-s VALUE",
:long => "—some-string-value VALUE",
:description => "String value",
:default => "xyz"

[284]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

An option where a code is used to determine the option's value:

option :tag,
:short => "-T T=V[,T=V,...]",
:long => "—tags Tag=Value[,Tag=Value,...]",
:description => "A list of tags",
:proc => Proc.new { |tags| tag.split(',') }

Here the proc attribute will convert a list of comma-separated values into an array.

All the options that are sent to the Knife subcommand through a command line are
available in form of a hash, which can be accessed using the config method.

For example, say we had an option:

option :optionl
:short => "-s VALUE",
:long => "—some-string-value VALUE",
:description => "Some string value for optionl",
:default => "optionl"

Now, while issuing the Knife subcommand, say a user entered something like this:
$ knife subcommand -optionl "optionl value"

We can access this value for option1 in our Knife plugin run method using
config[:optionl]

When a user enters the knife -help command, the description attributes are
displayed as part of help. For example:

**EXAMPLE COMMANDS* *
knife example
-8, --some-type-of-string-value This is not a random string value.

-t, --true-or-false Is this value true? Or is this
value false?

-T, --tags A list of tags associated with the
virtual machine.

[285]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Chef

Arguments

A Knife plugin can also accept the command-line arguments that aren't specified
using the option flag, for example, knife node show NODE. These arguments are
added using the name_args method:

require 'chef/knife'
module MyPlugin
class ShowMsg << Chef::Knife
banner 'knife show msg MESSAGE'
def run
unless name_args.size ==
puts "You need to supply a string as an argument."
show_usage
exit 1
end
msg = name_args.join(" ")
puts msg
end
end
end

Let's see this in action:

knife show msg
You need to supply a string as an argument.
USAGE: knife show msg MESSAGE
-s, --server-url URL Chef Server URL

--chef-zero-host HOST Host to start chef-zero on

Here, we didn't pass any argument to the subcommand and, rightfully, Knife sent
backzanuﬁsagesayhu;You need to supply a string as an argument.

Now, let's pass a string as an argument to the subcommand and see how it behaves:

knife show msg "duh duh"
duh duh

Under the hood what's happening is that name_args is an array, which is getting
populated by the arguments that we have passed in the command line. In the

last example, the name_args array would've contained two entries ("duh", "duh").
We use the join method of the Array class to create a string out of these two entities
and, finally, print the string.

[286]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

The run method

Every Knife plugin will have a run method, which will contain the code that will
be executed when the user executes the subcommand. This code contains the Ruby
statements that are executed upon invocation of the subcommand. This code can
access the options values using the config[:option_hash symbol_name] method.

Search inside a custom Knife plugin

Search is perhaps one of the most powerful and most used functionalities provided
by Chef. By incorporating a search functionality in our custom Knife plugin, we can
accomplish a lot of tasks, which would otherwise take a lot of efforts to accomplish.
For example, say we have classified our infrastructure into multiple environments
and we want a plugin that can allow us to upload a particular file or folder to all

the instances in a particular environment on an ad hoc basis, without invoking a

full chef-client run. This kind of stuff is very much doable by incorporating a search
functionality into the plugin and using it to find the right set of nodes in which you
want to perform a certain operation. We'll look at one such plugin in the next section.

To be able to use Chef's search functionality, all you need to do is to require the
Chef's query class and use an object of the Chef : : Search: : Query class to execute
a query against the Chef server. For example:

require 'chef/search/query’

query object = Chef::Search::Query.new

query = 'chef environment:production'

query object.search('node',query) do |node|
puts "Node name = #{node.name}"

end

Since the name of a node is generally FODN, you can use the values returned in
node . name to connect to remote machines and use any library such as net-scp
to allow users to upload their files/folders to a remote machine. We'll try to
accomplish this task when we write our custom plugin at the end of this chapter.

We can also use this information to edit nodes. For example, say we had a set of
machines acting as web servers. Initially, all these machines were running Apache
as a web server. However, as the requirements changed, we wanted to switch over
to Nginx. We can run the following piece of code to accomplish this task:

require 'chef/search/query’

query object = Chef::Search::Query.new

[287]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Chef

query = 'run_list:*recipe\\ [apache2\\]*'
query object.search('node',query) do |node|
ui.msg "Changing run_ list to recipe[nginx] for #{node.name}"
node.run list ("recipe[nginx]")
node.save
ui.msg "New run list: #{node.run list}"
end

knife.rb settings

Some of the settings defined by a Knife plugin can be configured so that they can be
set inside the knife.rb script. There are two ways to go about doing this:

* By using the :proc attribute of the option method and code that references
Chef::Config[:knife] [:setting name]
* By specifying the configuration setting directly within the def Ruby

blocks using either Chef: :Config[:knife] [:setting name] or
config[:setting name]

An option that is defined in this way can be configured in knife.rb by using the
following syntax:

knife [:setting name]

This approach is especially useful when a particular setting is used a lot. The
precedence order for the Knife option is:

1. The value passed via a command line.
2. The value saved in knife.rb
3. The default value.

The following example shows how the Knife bootstrap command uses a value in
knife.rb using the :proc attribute:

option :ssh port
:short => '-p PORT',
:long => '—ssh-port PORT',
:description => 'The ssh port',
:proc => Proc.new { |key| Chef::Config[:knife] [:ssh port] = key

[288]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Here chef: :Config[:knife] [:ssh port] tells Knife to check the knife. rb file for
aknife[:ssh_port] setting.

The following example shows how the Knife bootstrap command calls the knife
ssh subcommand for the actual SSH part of running a bootstrap operation:

def knife_ssh
ssh = Chef::Knife::Ssh.new
ssh.ui = ui
ssh.name args = [server name, ssh command]
ssh.config[:ssh user] = Chef::Configl[:knife] [:ssh user] |
configl:ssh_user]
ssh.config[:ssh password] = config[:ssh password]
ssh.config[:ssh port] = Chef::Configl[:knife] [:ssh port] ||
config[:ssh port]
ssh.config[:ssh gateway] = Chef::Configl[:knife] [:ssh gateway] ||
config[:ssh gateway]
ssh.config[:identity file] =
Chef::Config[:knife] [:identity file] || config[:identity file]
ssh.config[:manual] = true
ssh.config[:host_key verify] =
[:
[:

Chef::Config[:knife] [:host key verify] || configl[:host key verify]
ssh.configl[:on_error] = :raise
ssh

end

Let's take a look at the preceding code:
* ssh = Chef::Knife::Ssh.new creates a new instance of the ssh subclass
named ssh

* A series of settings in Knife ssh are associated with a Knife bootstrap using
thessh.config[:setting_name]Syrﬁax

®* Chef::Configl:knife] [:setting name] tells Knife to check the knife.rb
file for various settings

* Italso raises an exception if any aspect of the SSH operation fails

[289]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Chef

User interactions

The ui object provides a set of methods that can be used to define user
interactions and to help ensure a consistent user experience across all different
Knife plugins. One should make use of these methods, rather than handling user

interactions manually.

Method

Description

ui.ask(*args, &block)

The ask method calls the corresponding ask
method of the HighLine library. More details about
the HighLine library can be found at http://www.
rubydoc.info/gems/highline/1.7.2.

ui.ask question(question,
opts={})

This is used to ask a user a question. If :default
=> default value is passed as a second
argument, default_value will be used if the user
does not provide any answer.

ui.color (string, *colors)

This method is used to specify a color.

For example:

server connections.server.
create (server def)

puts "#{ui.color("Instance ID",
:cyan) }: #{server.id}"

puts "#{ui.color ("Flavor", :cyan)}:
#{server.flavor id}"

puts "#{ui.color ("Image", :cyan)}:
#{server.image id}"

puts "#{ui.color ("SSH Key", :cyan)}:

#{server.key name}"
print "\n#{ui.color ("Waiting for
server", :magenta)}"

ui.color? ()

This indicates that the colored output should be
used. This is only possible if an output is sent across
to a terminal.

ui.confirm(question,
append_instructions=true)

This is used to ask (Y/N) questions. If a user
responds back with N, the command immediately
exits with the status code 3.

ui.edit data(data,parse_
output=true)

This is used to edit data. This will result in firing up
of an editor.

uil.edit object (class,name)

This method provides a convenient way to
download an object, edit it, and save it back to the
Chef server. It takes two arguments, namely, the
class of object to edit and the name of object to edit.

[290]

www.it-ebooks.info

http://www.rubydoc.info/gems/highline/1.7.2
http://www.rubydoc.info/gems/highline/1.7.2
http://www.it-ebooks.info/

Chapter 12

Method Description

ui.error This is used to present an error to a user.

ui.fatal This is used to present a fatal error to a user.

ui.highline This is used to provide direct access to a highline
object provided by many ui methods.

ui.info This is used to present information to a user.

ui.interchange This is used to determine whether the output is in a
data interchange format such as JSON or YAML.

ui.list (*args) This method is a way to quickly and easily lay

out 1ists. This method is actually a wrapper to
the list method provided by the HighLine library.
More details about the HighLine library can be
found at http://www.rubydoc.info/gems/
highline/1.7.2.

ui.msg (message) This is used to present a message to a user.

ui.output (data) This is used to present a data structure to a user.
This makes use of a generic default presenter.

ui.pretty print (data) This is used to enable the pretty print output
for JSON data.

ui.use_ This is used to specify a custom output presenter.

presenter (presenter_ class)

ui.warn (message) This is used to present a warning to a user.

For example, to show a fatal error in a plugin in the same way that it would be
shown in Knife, do something similar to the following:

unless name args.size ==
ui.fatal "Fatal error !!!I"
show_usage
exit 1

end

Exception handling

In most cases, the exception handling available within Knife is enough to ensure
that the exception handling for a plugin is consistent across all the different plugins.
However, if the required one can handle exceptions in the same way as any other
Ruby program, one can make use of the begin-end block, along with rescue clauses,
to tell Ruby which exceptions we want to handle.

[291]

www.it-ebooks.info

http://www.rubydoc.info/gems/highline/1.7.2
http://www.rubydoc.info/gems/highline/1.7.2
http://www.it-ebooks.info/

Extending Chef

For example:

def raise and rescue
begin
puts 'Before raise'
raise 'An error has happened.'
puts 'After raise'
rescue
puts 'Rescued’'
end
puts 'After begin block'
end

raise and rescue

If we were to execute this code, we'd get the following output:

ruby test.rb
Before raise
Rescued

After begin block

A simple Knife plugin

With the knowledge about how Knife's plugin system works, let's go about writing
our very own custom Knife plugin, which can be quite useful for some users. Before
we jump into the code, let's understand the purpose that this plugin is supposed to
serve. Let's say we've a setup where our infrastructure is distributed across different
environments and we've also set up a bunch of roles, which are used while we try to
bootstrap the machines using Chef.

So, there are two ways in which a user can identify machines:

* By environments

* Byroles

Actually, any valid Chef search query that returns a node
%j%‘\ list can be the criteria to identify machines. However, we are
g limiting ourselves to these two criteria for now.

[292]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Often, there are situations where a user might want to upload a file or folder to all the
machines in a particular environment, or to all the machines belonging to a particular
role. This plugin will help users accomplish this task with lots of ease. The plugin

will accept three arguments. The first one will be a key-value pair with the key being
chef_environment or a role, the second argument will be a path to the file or folder
that is required to be uploaded, and the third argument will be the path on a remote
machine where the files/folders will be uploaded to. The plugin will use Chef's search
functionality to find the FQDN of machines, and eventually make use of the net-scp
library to transfer the file/folder to the machines.

Our plugin will be called knife-scp and we would like to use it as follows:

knife scp chef environment:production /path of file or folder locally /
path on remote machine

Here is the code that can help us accomplish this feat:

require 'chef/knife'

module CustomPlugins
class Scp < Chef::Knife
banner "knife scp SEARCH QUERY PATH OF LOCAL FILE OR FOLDER PATH
ON_REMOTE_MACHINE"

option :knife config path,
:short => "-c PATH OF knife.rb",
:long => "--config PATH OF knife.rb",
:description => "Specify path of knife.rb",
:default => "~/.chef/knife.rb"

deps do
require 'chef/search/query’
require 'net/scp'
require 'parallel!'

end
def run
if name args.length != 3

ui.msg "Missing arguments! Unable to execute the command
successfully."

[293]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Chef

show usage
exit 1
end
Chef::Config.from file(File.expand
path("#{config[:knife config pathl}"))
query = name_ args[0]
local path = name args[1]
remote path = name args([2]
query object = Chef::Search::Query.new
fgdn list = Array.new
query object.search('node',query) do |node|
fgdn list << node.name
end
if fgdn list.length < 1
ui.msg "No valid servers found to copy the files to"
end
unless File.exist?(local path)
ui.msg "#{local path} doesn't exist on local machine"
exit 1
end

Parallel.each((1l..fgdn list.length).to a, :in processes => fqgdn
list.length) do |1i]
puts "Copying #{local path} to #{Chef::Config[:knife] [:ssh_
user] }e#{fqgdn_list[i-1]}:#{remote path}
Net::SCP.upload! (fgdn list[i-1],"#{Chef::Config[:knife]
[:ssh user]}","#{local path}", "#{remote path}",:ssh => { :keys =»>
["#{Chef::Config[:knife] [:identity file]}"] }, :recursive => true)
end
end
end
end

This plugin uses the following additional gems:
* The parallel gem to execute statements in parallel. More information about

this gem can be found at https://github.com/grosser/parallel.

* The net-scp gem to do the actual transfer. This gem is a pure Ruby
implementation of the SCP protocol. More information about the gem
can be found at https://github.com/net-ssh/net-scp.

[294]

www.it-ebooks.info

https://github.com/grosser/parallel
https://github.com/net-ssh/net-scp
http://www.it-ebooks.info/

Chapter 12

Both these gems and the Chef search library are required in the deps block to define
the dependencies.

This plugin accepts three command line arguments and uses knife.rb to get
information about which user to connect over SSH and also uses knife.rb to fetch
information about the SSH key file to use. All these command line arguments are
stored in the name_args array.

A Chef search is then used to find a list of servers that match the query, and
eventually a parallel gem is used to parallely SCP the file from a local machine
to a list of servers returned by a Chef query.

As you can see, we've tried to handle a few error situations, however, there is still
a possibility of this plugin throwing away errors as the Net : : SCP.upload function
can error out at times.

Let's see our plugin in action:

Casel: The file that is supposed to be uploaded doesn't exist locally. We expect the
script to error out with an appropriate message:
knife scp 'chef environment:ft' /Users/mayank/test.py /tmp

/Users/mayank/test.py doesn't exist on local machine

Case2: The /Users/mayank/test folder is:

knife scp 'chef environment:ft' /Users/mayank/test /tmp
Copying /Users/mayank/test to ec2-user@host02.ft.sychonet.com:/tmp
Copying /Users/mayank/test to ec2-user@host0l.ft.sychonet.com:/tmp

Case3: A config other than /etc/chef/knife.rb is specified:

knife scp -c /Users/mayank/.chef/knife.rb 'chef environment:ft' /Users/
mayank/test /tmp

Copying /Users/mayank/test to ec2-user@host02.ft.sychonet.com:/tmp
Copying /Users/mayank/test to ec2-user@host0l.ft.sychonet.com:/tmp

[295]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Chef

Distributing plugins using gems

As you must have noticed, until now we've been creating our plugins under

~/ .chef /plugins/knife. Though this is sufficient for plugins that are meant to be
used locally, it's just not good enough to be distributed to a community. The most
ideal way of distributing a Knife plugin is by packaging your plugin as a gem and
distributing it via a gem repository such as rubygems . org. Even if publishing your
gem to a remote gem repository sounds like a far-fetched idea, at least allowing
people to install your plugin by building a gem locally and installing it via gem
install. This is a far better way than people downloading your code from an
SCM repository and copying it over to either ~/.chef/plugins/knife or any
other folder they've configured for the purpose of searching for custom Knife
plugins. With distributing your plugin using gems, you ensure that the plugin is
installed in a consistent way and you can also ensure that all the required libraries
are preinstalled before a plugin is ready to be consumed by users.

All the details required to create a gem are contained in a file known as Gemspec,
which resides at the root of your project's directory and is typically named

the <project_name>.gemspec. Gemspec file that consists of the structure,
dependencies, and metadata required to build your gem.

The following is an example of a . gemspec file:

Gem: :Specification.new do |s|

s.name = 'knife-scp'

s.version = '1.0.0'

s.date = '2014-10-23"

s.summary = 'The knife-scp knife plugin'

s.authors = ["maxcoder"]

s.email = 'maxcoder@sychonet.com"

s.files = ["lib/chef/knife/knife-scp.rb"]

s.homepage = "https://github.com/maxc0d3r/knife-plugins"

s.add runtime dependency "parallel","~> 1.2", ">= 1.2.0"

s.add runtime dependency "net-scp","~> 1.2", ">= 1.2.0"
end

The s. files variable contains the list of files that will be deployed by a gem install
command. Knife can load the files from gem path/lib/chef/knife/<file names.
rb, and hence we've kept the knife-scp.rb script in that location.

The s.add_runtime_dependency dependency is used to ensure that the required
gems are installed whenever a user tries to install our gem.

[296]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Once the file is there, we can just run a gem build to build our gem file as follows:

— knife-scp git: (master) X gem build knife-scp.gemspec

WARNING: 1licenses is empty, but is recommended. Use a license
abbreviation from:

http://opensource.org/licenses/alphabetical

WARNING: See http://guides.rubygems.org/specification-reference/ for
help

Successfully built RubyGem
Name: knife-scp
Version: 1.0.0

File: knife-scp-1.0.0.gem

The gem file is created and now, we can just use gem install knife-scp-
1.0.0.gem to install our gem. This will also take care of the installation of any
dependencies such as parallel, net-scp gems, and so on.

You can find a source code for this plugin at the following location:
https://github.com/maxc0d3r/knife-plugins.
Once the gem has been installed, the user can run it as mentioned earlier.

For the purpose of distribution of this gem, it can either be pushed using a local
gem repository, or it can be published to https://rubygems.org/. To publish it to
https://rubygems.org/, create an account there.

Run the following command to log in using a gem:

gem push

This will ask for your email address and password.

Next, push your gem using the following command:

gem push your gem name.gem

That's it! Now you should be able to access your gem at the following location:

http://www.rubygems.org/gems/your gem name

[297]

www.it-ebooks.info

https://github.com/maxc0d3r/knife-plugins
https://rubygems.org/
https://rubygems.org/
http://www.rubygems.org/gems/your_gem_name
http://www.it-ebooks.info/

Extending Chef

As you might have noticed, we've not written any tests so far to check the plugin.
It's always a good idea to write test cases before submitting your plugin to the
community. It's useful both to the developer and consumers of the code, as both
know that the plugin is going to work as expected. Gems support adding test files
into the package itself so that tests can be executed when a gem is downloaded.
RSpec is a popular choice to test a framework, however, it really doesn't matter
which tool you use to test your code. The point is that you need to test and ship.

Some popular Knife plugins, built by a community, and their uses, are as follows:
knife-elb:

This plugin allows the automation of the process of addition and deletion of nodes
from Elastic Load Balancers on AWS.

knife-inspect:

This plugin allows you to see the difference between what's on a Chef server versus
what's on a local Chef repository.

knife-community:
This plugin helps to deploy Chef cookbooks to Chef Supermarket.
knife-block:

This plugin allows you to configure and manage multiple Knife configuration files
against multiple Chef servers.

knife-tagbulk:

This plugin allows bulk tag operations (creation or deletion) using standard Chef
search queries. More information about the plugin can be found at: https://
github.com/priestjim/knife-tagbulk.

You can find a lot of other useful community-written plugins at: https://docs.
chef.io/community plugin knife.html.

[298]

www.it-ebooks.info

https://github.com/priestjim/knife-tagbulk
https://github.com/priestjim/knife-tagbulk
https://docs.chef.io/community_plugin_knife.html
https://docs.chef.io/community_plugin_knife.html
http://www.it-ebooks.info/

Chapter 12

Custom Chef handlers

A Chef handler is used to identify different situations that might occur during a
chef-client run, and eventually it instructs the chef-client on what it should do to
handle these situations. There are three types of handlers in Chef:

* The exception handler: This is used to identify situations that have caused
a chef-client run to fail. This can be used to send out alerts over an email
or dashboard.

* The report handler: This is used to report back when a chef-client run has
successfully completed. This can report details about the run, such
as the number of resources updated, time taken for a chef-client run to
complete, and so on.

* The start handler: This is used to run events at the beginning of a
chef-client run.

Writing custom Chef handlers is nothing more than just inheriting your class from
Chef : :Handler and overriding the report method.

Let's say we want to send out an email every time a chef-client run breaks. Chef
provides a failed? method to check the status of a chef-client run. The following
is a very simple piece of code that will help us accomplish this:

require 'net/smtp’'
module CustomHandler
class Emailer < Chef::Handler
def send email (to,opts={})

opts[:server] ||= 'localhost'

opts[:from] ||='maxcoder@sychonet.com'

opts[:subject] ||='Error'

opts[:body] ||= 'There was an error running chef-client'

msg = <<EOF

From: <#{optsl[:£from]}>

To: #{to}

Subject: #{opts[:subject]}

#{opts[:body] }
EOF

[299]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Chef

Net::SMTP.start (opts[:server]) do |smtp]|
smtp.send message msg, opts[:from], to
end
end

def report
name = node.name
subject = "Chef run failure on #{name}"
body = [run status.formatted exception]
body += ::Array(backtrace).join("\n")
if failed?
send email (
"ops@sychonet.com",
:subject => subject,
:body => body
)
end
end
end
end

If you don't have the required libraries already installed on your machine, you'll
need to make use of chef_gem to install them first before you actually make use of
this code.

With your handler code ready, you can make use of the chef_handler cookbook
to install this custom handler. To do so, create a new cookbook, email-handler,
and copy the file emailer.rb created earlier to the file's source. Once done, add the
following recipe code:

include_recipe 'chef handler'

handler_path = node['chef handler'] ['handler_ path']
handler = ::File.join handler path, 'emailer'

cookbook file "#{handler}.rb" do
source "emailer.rb"
end

chef handler "CustomHandler::Emailer" do
source handler
action :enable

end

[300]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Now, just include this handler into your base role, or at the start of run_1ist and
during the next chef-client run, if anything breaks, an email will be sent across to
ops@sychonet .com.

You can configure many different kinds of handlers like the ones that push
notifications over to IRC, Twitter, and so on, or you may even write them for
scenarios where you don't want to leave a component of a system in a state that

is undesirable. For example, say you were in a middle of a chef-client run that
adds/ deletes collections from Solr. Now, you might not want to leave the Solr setup
in a messed-up state if something were to go wrong with the provisioning process.
In order to ensure that a system is in the right state, you can write your own custom
handlers, which can be used to handle such situations and revert the changes done
until now by the chef-client run.

Summary

In this chapter, we learned about how custom Knife plugins can be used. We also
learned how we can write our own custom Knife plugin and distribute it by packaging
it as a gem. Finally, we learned about custom Chef handlers and how they can be used
effectively to communicate information and statistics about a chef-client run to users/
admins, or handle any issues with a chef-client run.

In the next chapter, we'll go about building a set of tools that can be used to manage
your infrastructure with a lot of ease using Chef. These tools will combine the Chef
API with some other APIs to accomplish goals that otherwise would be very difficult
to accomplish.

[301]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

15

(Ab)Using Chef

We've explored various aspects of the Chef ecosystem and we've tried to get our hands
dirty with the exploration of Chef's wonderful API as well. However, as a common
practice, nothing is good enough on its own, and the real benefits of a particular
technology or tool can be only realized once we've used it along with other tool sets.
This is true for Chef too. Chef on its own is a wonderful piece of software; however,
once we start integrating it along with other tools, we realize the true benefits of Chef.
In this chapter, we'll look at a few such integrations and also see how we can extend
Chef by mashing together various different APIs with Chef's APIL This chapter is going
to be very code intensive and you'll be introduced to a few APIs outside Chef. These
APIs can change at any point in time and if you plan on using the code given in this
chapter directly, ensure that you have read through the API documentation. If the API
provider has introduced any changes, make sure you've taken care of incorporating
those changes into your code. Last but not the least, since we are trying to specify our
infrastructure as code, it makes a lot more sense to ensure that the code we are writing
works as expected in the production environment. We'll see how we can go about
writing code that is tested thoroughly before it's pushed to the Chef server.

The dynamic server list in Capistrano
using Chef

Capistrano is a remote server automation tool. It can be used to execute an arbitrary
set of tasks on remote servers. It's primarily used for the purpose of remote
deployments. As per their official documentation, Capistrano can be used to:

* Reliably deploy to any number of machines simultaneously, in the
sequence of a rolling set
* Automate audits of any number of machines

* Script arbitrary workflows over SSH

[303]

www.it-ebooks.info

http://www.it-ebooks.info/

(Ab)Using Chef

Although Chef also provides a deploy resource, I personally prefer push-based
deployment solutions such as Capistrano, as they provide more control and I can
easily hook them up with a release management system to provide visibility.

Capistrano considers a list of servers as a role and it can either deploy to an individual
host or an entire fleet. Usually, this list of servers is maintained in configuration files,

or supplied as a command line option during execution. This works pretty well for
environments where the total number of servers isn't too big and also where the
infrastructure isn't very fragile. For example, say you are running a web app shop,
consisting of a couple of web servers, a couple of application servers, and maybe three or
four database servers in a data center. With such a setup, it's pretty easy to manage the
list of servers in a configuration file, and to allow Capistrano to handle deployments by
reading configuration files and figuring out the right set of servers to deploy the code to.

However, in today's world, where most shops are moving to cloud-based
deployments, this approach isn't very well suited. In a cloud-based deployment,
there are two concerns in terms of deployments:

* Scaling: One of the main reasons for hosting an infrastructure in a cloud-
based environment, is the fact that they allow for the easy scaling of the
infrastructure. You can set up Auto Scaling groups, which can increase/
decrease capacity of your infrastructure depending on your requirements.

* Fragile nature of the infrastructure: The infrastructure in a cloud-based
environment isn't as robust as a classic data center. The virtual machines in
cloud-based environments can go down at any point in time, and when you
bring up new instances in lieu of instances that were lost, you might get a
different IP address for a new instance and all these issues will add to the
complexity of deployments.

In all these cases, we see that the infrastructure isn't static and is very dynamic by
nature. With such a setup, you need a mechanism to map machines with services
dynamically. One way to go about doing this is to use some sort of service discovery
mechanism such as Consul, Etcd, and so on. However, you can very easily rely

on Chef and use it to discover services in your infrastructure, and map services

with machines. We'll make use of Chef's search API along with the attributes to

find the machines associated with the services running in your setup, and use this
information to deploy code using Capistrano.

Before we go about integrating Chef with Capistrano, let's take a quick look
at how Capistrano manages deployments. We'll be considering a use case for
a PHP application.

[304]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

We'll be only looking at Capistrano 3.x, and if you are using Capistrano 2.x, you
might find a few subtle changes. However, the way we'll be integrating Chef will
remain the same for both versions of Capistrano.

Installing Capistrano

Capistrano can be installed easily using a gem package as follows:

$ gem install capistrano

You can verify the installation by issuing the following command:

$ cap -version

Capistrano Version: 3.3.5 (Rake Version: 10.1.0)
Preparing your application:

Go to the project directory of your application and run the following command:

$ cd /path/to/app
$ cap install

This will create the following files/directories:

-- Capfile
-- config

|-- deploy

| | -- production.rb
“-- deploy.rb
-- config.rb
-- 1lib

“-- capistrano

~

|
|
|
|
| | “-- staging.rb
|
|

-- tasks
Let's look at the purpose of these files :
* cCapfile: It's similar to a bootstrap. All the necessary configs generally go in
here. It's the basic file of Capistrano and is mandatory.
* config/deploy.rb: Tasks that are common across environments go in here.

* config/deploy/{production, staging}.rb: Tasks that are concerned with
a specific environment go in here.

[305]

www.it-ebooks.info

http://www.it-ebooks.info/

(Ab)Using Chef

* 1lib/capistrano/tasks: You can create any number of files with the . rake
extension in this directory, and you'll be able to use the tasks that you've
declared here automatically.

Roles:

Roles are how the division of responsibility between servers is taken care of. You can
map a role such as :web to a bunch of machines running a web server, while :db can
map to servers where our database is residing.

For example, the following code will map webservero01l.sychonet.comand
webserver02.sychonet . com to the :web role:

role :web, %w{ webserver0l.sychonet.com webserver02.sychonet.com}
Tasks:

Tasks are a unit of execution in the world of Capistrano, and you can create as many
tasks as you need. You can also create before and after hooks that allow you to
decide which task is supposed to be called once a particular task is called upon, or
once it's over.

The following is a sample task that runs the 'uptime' command on remote server(s):

desc 'uptime'
task :get uptime do
on roles(:web) do
execute 'uptime'
end
end

You can execute this task using the following command:
$ cap get uptime

This will in turn run the 'uptime' command across webserver{01,02}.sychonet.
com.

Use case:

We've a couple of web servers hosted on Amazon AWS. AWS provides hostnames
such as ec2-12-34-56-78.us-west-2.compute.amazonaws . com, where the name
consists of the AWS domain, the service (in this case, compute), the region, and a
form of public IP address.

[306]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

We have two such web servers with the following FQDNs:

® ec2-12-34-56-78.us-west-2.compute.amazonaws.com

® ec2-12-37-59-104.us-west-2.compute.amazonaws.com

We've set up our role called :web as follows in our Capistrano configuration:

role :web, %w { ec2-12-34-56-78.us-west-2.compute.amazonaws.com
ec2-12-37-59-104.us-west-2.compute.amazonaws.com }

Since AWS doesn't guarantee the life cycle of an instance, one of the instances

goes away (ec2-12-37-59-104.us-west-2.compute.amazonaws . com) and our
provisioning system automatically takes care of bringing up a new instance in lieu
of the instance that has been terminated, and finally Chef takes care of bootstrapping
the instance correctly. Let's presume that this instance as FQDN, ec2-12-34-59-

114 .us-west-2.compute.amazonaws . com.

Now, however, our new instance is up and running, the Capistrano config is still
considering ec2-12-37-59-104.us-west-2.compute.amazonaws .com to be a server
where our web application needs to be deployed.

We can go about manually editing the Capistrano scripts and making the required
change. However, this is where we can use the power of the Chef search API and
generate a list of servers for Capistrano dynamically. Since the instance has been
provisioned with Chef, we can always query the Chef server to get the list of nodes,
which are of type web server. The type can be identified by run_1list or by some
attribute. Though we could have used roles for this purpose, often we find roles to
be generic in nature and hence, I prefer the attribute way as it allows me to use an
attribute as a tag and also allows me to modify my run lists at any point in time. Let's
call our Chef attribute server type, and this attribute can have a value webserver.
The following code will help integrate Chef with Capistrano and get the list of
servers dynamically:

require 'chef/rest’'
require 'chef/search/query’

def set_role(rolename,value)
roles.delete rolename.to sym
role (rolename) {value}

end

Chef::Config.from file(File.expand path("/path/to/knife.rb"))
query = Chef::Search::Query.new

query string = "server_ type:webserver'
nodes = query.search('node', query string).first rescue []
[307]

www.it-ebooks.info

http://www.it-ebooks.info/

(Ab)Using Chef

set role('web',6 nodes.map (&:name))

desc 'uptime'
task :get uptime do
on roles(:web) do
execute 'uptime'
end
end

Now, if we run the following command:
$ cap get uptime

The script will first query the Chef server for the name of the node (generally FQDN)
for machines, which have the server type attribute with the webserver value. The
query will return a list of nodes, which we'll assign to the role called :web. Since we
are considering a Chef server to be a source of truth for our infrastructure, we'll get
the updated list of servers every time we go about triggering deployment.

If you have been watching this closely, we've not yet removed the instance
that has been terminated from the list of nodes on the Chef server, and
this can result in a search query yielding results that contain servers that

% aren't present anymore. You need to be aware of such a scenario, and
either clean up the Chef server automatically, or ensure that deployment
scripts don't error out if an instance is not reachable. I'll leave this as an
exercise for you to figure out the right way to handle this issue.

Capistrano style deployments using
Chef's "deploy"” resource

Capistrano is a very popular push-based deployment tool used extensively in

the world of Ruby on Rails applications. However, once you've moved your
infrastructure to the cloud, in addition to the automatic provisioning of machines,
you also need to be interested in ensuring that once the machines are up and
running, they come up with the right version of your application code. Now, the
provisioning of machines is the domain of Chef, while application deployment

is classically a task belonging to the realm of Capistrano. However, now with the
"deploy" resource of Chef, you can deploy your favorite Ruby on Rails application,
just as you would do with Capistrano.

[308]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

The deploy resource is meant to provide the facility of the deploy and
deploy:migration tasks in Capistrano.

The syntax of the deploy resource is as follows:

deploy "name" do

attribute "value"

callback do
callback, include release path or new resource
end

purge before symlink
create dirs before symlink
symlink

action :action

end

The various attributes of the preceding code are as follows:

deploy: This tells the chef-client to use either the Chef: : Provider: :Deploy
::Revision Or Chef: :Provider: :Deploy: : TimeStamped providers.

name: This is the name of the resource block. If the deploy to attribute

is not specified, name is also used to determine where the deployment

will take place.

attribute: It has zero or more attributes that are available for this resource.
callback: This represents an additional Ruby code that can be used to
provide additional information to the chef-client during the execution of

the deploy resource.

purge before symlink, create dirs before symlink, and symlink:
These are attributes used to link configuration files, delete/create directories,
or map files during the process of deployment.

:action: This identifies which steps the chef-client will take to bring a node
to the desired state.

Phases of deployment
The deployment happens in four phases:

1.

Checkout: During this phase, the chef-client will use the SCM resource to get
a specific revision of the application. The code will be either checked out or
cloned into a directory called cached-copy, which is a subdirectory of the
deploy directory. A copy of the application is finally placed in a subdirectory
called releases.

[309]

www.it-ebooks.info

http://www.it-ebooks.info/

(Ab)Using Chef

2. Migrate: During migration, the chef-client symlinks the database
configuration into a checkout (configs/database.yml) and runs the
migration command. For Ruby on Rails applications, the migration
command is usually rake db:migrate.

3. Symlink: During this phase, the directories for shared and temporary files
are removed (log, tmp/pids, and public/system by default). After this step,
the directories (tmp, public, and config by default) are created. Finally, the
releases directory is symlinked to current.

4. Restart: During this phase, the application is finally restarted as per the
restart policy specified in the application.

Callbacks

In between the deployment process, callbacks are allowed to be executed. The
callbacks can be an arbitrary Ruby code or even a recipe. Each callback expects a
shell command when providing a string as an input.

The following callbacks are supported:

Callback Description

after_ restart A block of code to be executed after the application is
restarted. The default value is deploy/after restart.rb.

before restart A block of code to be executed before the application is
restarted. The default value is deploy/before restart.
rb.

before migrate A block of code to be executed before migration. The default

value is deploy/before migrate.rb.

before symlink A block of code to be executed before symlinks are handled.
The default value is deploy/before symlink.rb.

Each of these callbacks can be used in one of three ways:

* To pass a block of code
* To specify a file

e To do neither

Within a callback, there are two ways to get access to information about
the deployment:

* release_path: This can be used to get the path to the current release.

[310]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

* new_resource: This can be used to access deploy_resource, including
environment variables that have been set there.

Actions
The resource can have the following actions:
Action Description
:deploy This is used to deploy an application
:force_deploy This is used to remove the existing release of an application and

redeploy the application.

:rollback This is used to rollback the application to the previous release.

Attributes

The deploy resource has perhaps the largest set of attributes:

Attribute Description

after restart This a block of code or path to a file that is
executed after the application is restarted.

before migrate This a block of code or path to a file that is
executed before migration is started.

before_restart This is a block of code or path to a file that is
executed before the application is restarted.

before symlink This is a block of code or path to a file that is
executed before symlinks are created.

create_dirs_before_symlink | Thisis used to create directories before a
symlink.

deploy_to This is used to specify a path where the
application is actually deployed.

environment This is a hash of environment variables of the
{"ENV_VARIABLE" => "VALUE" }form

keep releases This is the number of releases for which a
backup is kept.

migrate If a migration command is required to be
executed, this should be set to true.

migration_ command This specifies which migration command to
execute.

[311]

www.it-ebooks.info

http://www.it-ebooks.info/

(Ab)Using Chef

Attribute Description

purge_before_symlink This specifies a list of directories from a
checkout before symbolic links are created.
This runs before create dirs before
symlink and symlinks.

repo This is an alias for the repository.
revision This specifies which revision to check out.
rollback_on_error This attribute is used to decide whether or not

we should rollback to the previous release if an
error occurs during the deployment of a new
release. The default value for this attribute is
false.

scm_provider This is used to define the name of a
source control management provider.
The default value for this attribute is
Chef::Provider: :Git. If using
subversion, this value should be set to
Chef: :Provider: : Subversion.

symlink before migrate This is used to map files in a shared directory
to the current release directory. The symbolic
links for these files will be created before any
migration is run.

timeout This attribute is used to specify the amount of
time to wait before a command is considered to
have timed out.

user This attribute is used to specify the name of the
user responsible for the checked-out code.

There are a few other attributes available as well, and readers should refer to the
official documentation of Chef for the deploy resource.

The following is an example of a deploy resource in action. It's going to deploy the
myapp application available at the gitegithub.com/maxc0d3r/myapp to /apps/
myapp directory on the server where the chef-client run is executed:

deploy "/apps/myapp" do
repo "gitegithub.com/maxc0d3r/myapp"
revision "xxxxx"
user "application"
enable submodules true
migrate true

[312]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

migration command "rake db:migrate"
environment "RAILS ENV" => "production"
keep releases 7
action :deploy
restart command "touch tmp/restart.txt"
scm_provider "Chef::Provider::Git"

end

If you are deploying a non-Rails application and you don't need any symbolic links,
you should use the following code:

deploy "/apps/myapp" do
symlinks ({})
end

Alternatively, you can use the following code:

deploy "/apps/myapp" do
symlinks Hash.new
end

Extending Chef to bootstrap distributed
systems

Most configuration management systems such as Chef, Puppet, CFEngine, Ansible,
and so on, operate at a node level, and any configuration change that is required to
be made is applied only upon the convergence runs that happen at the scheduled
intervals and aren't event-based. For example, say you've a setup comprising of

a load balancer (say HAProxy) and web servers. Now, you are running a website
and you want to ensure that as soon as the traffic spikes up, you should be able to
provision a new web server.

You've written the HAProxy cookbook so that it searches for nodes of type webserver,
populates its config, and reloads the HAProxy process. You've also written the Chef
code to bring up the web server; however, even once the server is up and running,
your load balancer has no knowledge of this and either you have to manually trigger
the chef-client run, or if you are running a chef-client as a daemon or cron job, you
have to wait for the next run to trigger. This can lead to unnecessary delays in the
deployment of a new web server and may eventually lead to business losses. It
would've been awesome if the load balancer could automatically know that a new
web server has joined the fleet and is waiting to serve.

[313]

www.it-ebooks.info

http://www.it-ebooks.info/

(Ab)Using Chef

There are many different ways to accomplish this. One of the popular ways is to
make use of a service discovery solution such as Consul, and write a wrapper over
Chef, which is able to trigger the chef-client run on a load balancer machine as soon
as a new web server has registered the web server service with it. Another way is
to make use of a service such as Serf, which is a decentralized solution for cluster
membership, failure detection, and orchestration. You are encouraged to look at
these options for this purpose. However, we are looking at one other alternative
provided by the Opscode folks. It's called Pushy or opscode-push-job-server/client.

There are two additional components, which are required to be installed, the Push Job
server and the Push Job client. The server component used to be a premium feature,
but with Chef 12, you can just go ahead and install it alongside the erchef project. To
install the Push Job server, issue the following command on your Chef server:

$ chef-server-ctl install opscode-push-job-server

Once the installation is over, you can configure it through the following command:
$ opscode-push-jobs-server-ctl reconfigure

After the preceding command, run the following one:

$ chef-server-ctl reconfigure
The client component can be installed using the push-jobs cookbook.
Once the components are installed, there are two things that you need to be aware of:

1. How to allow commands to be executed via "Push jobs"
2. How to start jobs

The commands to be executed are controlled by a whitelist attribute. The push-jobs
cookbook can be used to set this attribute, and the cookbook also writes a configuration
file /etc/chef/push-jobs-client.rb. This script makes use of the node ['push_
jobs'] ['whitelist'] attribute to identify the commands that can be executed.

For example:

"default attributes": {
"push jobs": {
"whitelist": {
"chef-client": "chef-client -j /etc/chef/roles.json"

[314]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

Now the jobs can be either triggered from your workstation manually, or you can set
up your cookbooks to trigger jobs.

Running jobs from your workstation

Before you can run a job, you'll need to install the knife-push plugin. This can
be accomplished by running the following command:

$ gem install knife-push

This will add the following subcommands to your Knife arsenal:

% JOB COMMANDS **
knife job list
knife job start <command> [<node> <node> ...]

knife job status <job id>

Let's say we have configured the node to be able to execute the chef-client
command as mentioned in the node ['push_jobs'] ['whitelist'] attribute
earlier. Now, we can trigger the job using the following command:

$ knife job start chef-client <node name>

You can search for a list of available jobs using the following command:

$ knife search 'name: node name' -a push jobs.whitelist

One of the great things about using push-jobs is that you don't need to worry
about setting up SSH keys and you can use the same credentials that are used
to access Chef, in order to fire commands.

Running jobs from within recipes

This feature is extremely useful if you want to orchestrate actions between different
nodes. For example, let's revisit the use case we discussed earlier.

"We are setting up a web server and we want it to be automatically attached to a
load balancer, once the web server is configured."

One way to go about doing this is to configure the chef-client run scheduled to
happen at regular interval on the load balancer so that it can search for the available
nodes of the type web server and add them to its backend list. However, this is not
the most efficient way to do this as it would lead to delays. A better way would've
been if somehow the chef-client run on the web server could trigger a chef-client run
on the load balancer automatically.

[315]

www.it-ebooks.info

http://www.it-ebooks.info/

(Ab)Using Chef

To our advantage, Push Jobs can also be used inside recipes. There is an LWRP called
"pushy", which can be found at https://github.com/mfdii/pushy. This LWRP
provides a resource called "pushy" that can be used to run commands added to the
node ["push jobs"] ["whitelist"] attribute on remote nodes.

Here is how you can use it in your web server recipe:

pushy "chef-client" do
action :run
nodes ["haproxy"]
end

This code will in turn execute the chef-client run on a node named haproxy,
provided we've configured the node ["push_jobs"] ["whitelist"] attribute
on the haproxy node, and configured the "chef-client" command.

Push Jobs is really useful in the context of applications where coordination between
services running across multiple machines is of grave importance.

Apart from triggering a full chef-client run, you can also perform some other tasks
such as restart/reload of services, and so on.

You can even create your very own template engine that can generate configs on
the fly and trigger a run of that engine upon an event.

For example, rather than triggering a full complete run of a chef-client, we could've

set up a basic templating engine on a load balancer, which would've queried chef-
server for the list of machines with type web server, and recreated the load balancer's
configuration file. We would then add the command responsible for running the
templating engine to the whitelist attribute and invoke the command from within

a web server recipe, followed by a command to reload the load balancer process.

The following is an example of a templating engine:

#!/usr/bin/env ruby
require 'erb'

require 'chef/rest'

require 'chef/search/query’

Chef::Config.from file(File.expand path('/path/to/knife.rb'))
query string = "type:webserver'
servers = query.search('node',query string) .first.map (&:name)

renderer = ERB.new(File.read('/path/to/haproxy.erb'))
File.write('/path/to/haproxy.cfg', renderer.result ())

[316]

www.it-ebooks.info

https://github.com/mfdii/pushy
http://www.it-ebooks.info/

Chapter 13

Ensure that this script is present on the load balancer, along with the haproxy.erb
template. For easy use, let's place it at /usr/bin/regen_haproxy_ config.

The following is a sample haproxy . erb:

global
daemon
maxconn 10000
ulimit-n 65536
log 127.0.0.1 1local2 info
stats socket /tmp/haproxy level admin

defaults
log global
mode http
option httplog
timeout connect 60000ms
timeout client 60000ms
timeout server 60000ms

frontend webapp
bind *:80
default backend webservers
option http proxy

backend webservers
option http proxy
<% servers.each with index do |server, index| %>

server server<%= index %> <%= server %>:80 check inter 2s rise 5
fall 2

<% end %>
balance leastconn

listen admin
bind *:9090
stats enable

Just add the script to the node ["push_jobs"] ["whitelist"] attribute as follows:

"default attributes": {
"push jobs": {
"whitelist": {

[317]

www.it-ebooks.info

http://www.it-ebooks.info/

(Ab)Using Chef

"regen_ haproxy config": "/usr/bin/regen haproxy config",
"reload haproxy": "/etc/init.d/haproxy reload"

}
}

Now, in your web server recipe, you can just call this command using the pushy
resource, followed by the reload of HAProxy as follows:

pushy "regen haproxy config" do
action :run
nodes ["haproxy"]
end
push "reload haproxy" do
action :run
nodes ["haproxy"]
end

Push Jobs is just one way to ensure that you are able to set up distributed machines
with a lot of ease. However, there are many other ways to accomplish the same
thing. One of the really nice ways to accomplish this feat is by making use of a
framework called Ironfan. This is a framework developed by Infochimps, which
provides abstraction over Chef and allows us to provision, deploy, and manage

a cluster. Though there are projects such as Ambari and so on that allow you to
configure a distributed cluster such as Hadoop, Ironfan allows us to retain the
benefits of Chef while extending it outside the realm of a configuration management
system for a node to a cluster management system.

Let's see how we can go about using Ironfan to set up a distributed Hadoop cluster:
Installation:

Install Ironfan using the documentation available at https://github.com/
infochimps-labs/ironfan/wiki/INSTALL.

Finally, in your homebase directory, rename example-clusters to clusters.
This directory contains cluster files, which are sample definitions of clusters
provided by Infochimps.

Let's run the knife cluster list command once:

$ knife cluster list
Cluster Path: /.../homebase/clusters
T e +

| cluster | path |

[318]

www.it-ebooks.info

https://github.com/infochimps-labs/ironfan/wiki/INSTALL
https://github.com/infochimps-labs/ironfan/wiki/INSTALL
http://www.it-ebooks.info/

Chapter 13

Fommmmmmmmmm o e +
| dev | /.../homebase/clusters/dev.rb |
| stg | /.../homebase/clusters/stg.rb |

So now, we are pretty much set to specify our very own cluster configuration. You
can specify the following configuration settings in the cluster configuration file:

Cloud provider settings:

Ironfan provides support for various Cloud providers such as AWS, Rackspace,
OpenStack, and so on. We'll look at AWS as an example over the course of this
chapter. We can provide information such as which AMI to make use of, what type
of instance to use, which region and availability zone should the server be created
in, what security group to use for use on the instance, and so on.

Base role definition:

You can define a base role for the cluster and store the definition inside the
$CHEF_HOMEBASE/ roles directory. This role can be applied to all the instances in the
cluster. You can, however, override the definition for a particular facet or server.

Environment definition:

You can manage multiple environments using a single Chef server and this holds
true for Ironfan as well. One can define multiple environments in the $CHEF
HOMEBASE/ environments directory.

Various facets definition:

Facets are a group of servers within a cluster. For example, in a Kafka cluster, you
might have a few instances as part of the zookeeper quorum, while the rest of
them are acting as Kafka brokers. We can define one group of servers under the
zookeeper facet and others under the kafka broker facet inside the Kafka cluster.

Facet-specific roles and recipes:

You can define roles and recipes that are very specific to a facet. The following is a
sample cluster configuration file that can be used to set up a Hadoop HDFS cluster:

Ironfan.cluster test0l' do

Environment under which chef nodes will be placed
environment :dev

Global roles for all servers

role :base

cloud(:ec2) do

[319]

www.it-ebooks.info

http://www.it-ebooks.info/

(Ab)Using Chef

permanent true
region 'us-east-1'
availability zones ['us-east-1lc', 'us-east-1d']
flavor 'tl.micro'
backing 'ebs'
image name 'ironfan-natty'
chef client script 'client.rb'
security group (:ssh).authorize port range(22..22)
mount ephemerals
end

facet :master do
instances 1
cloud(:ec2) do
flavor 'ml.small'’
security group (:hadoop) do
authorize port range(5700..5900)
role :hadoop namenode
role :hadoop secondarynamenode

end

facet :worker do
instances 2
role :hadoop datanode

end

end

The preceding code will spin up a cluster with one m1.small instance running
namenode and secondarynamenode, along with two t1.micro instances
running datanode.

Just add this configuration file to the $CHEF_HOMEBASE/clusters directory under
afile such asmy first cluster.rb.

Now, when we issue the knife cluster list command, we'll see the following
clusters listed in the output:

* (Cluster management commands: With configuration at our disposal, now
let's go ahead and look at a set of commands that would make the task of
cluster management a lot easier.

* List clusters: This command will list the clusters available with us in $CHEF
HOMEBASE/clusters:
$ knife cluster list

Cluster Path: /.../homebase/clusters

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

| cluster | path |
Fommmm oo e +
test01l HOMEBASE/clusters/test0l.rb
Fommmm oo e +

Launch a cluster: This command will launch a cluster as per the configuration
specified in the cluster's configuration file:

$knife cluster launch testOl

Loaded information for 3 computers in cluster my first cluster

Name | Chef? | State | Flavor | az

| Env | MachineID | Public IP | Private IP | Created On
|

e e e e eeeo o O D Fmmmmm oo $--mm--
—————— B e et T
—————— +

| testOl-master-0 | yes | running | ml.small | us-east-lc |
dev | i-a5 | 101.23.157.51 | 10.106.57.77 | 2012-12-10 |

| testOl-client-0 | yes | running | tl.micro | us-east-lc |
dev | i-cfell7b3 | 101.23.157.52 | 10.106.57.78 | 2012-12-10 |
| testOl-client-1 | yes | running | tl.micro | us-east-lc |
dev | i-cbell7b7 | 101.23.157.52 | 10.106.57.79 | 2012-12-10 |
e e e e eeeo o O D Fmmmmm oo $--mm--
—————— B e et T
—————— +

Launch a single instance of a facet using the following command:

$ knife cluster launch test0l master 0

Launch all instances of a single facet using the following command:

$ knife cluster launch test0l worker

Stop the whole cluster using the following command:

$ knife cluster stop test0l

Stop a single instance of a facet using the following command:

$ knife cluster stop test0l master 0

Stop all instances of a facet using the following command:

$ knife cluster stop test0l worker

[321]

www.it-ebooks.info

http://www.it-ebooks.info/

(Ab)Using Chef

Using Ironfan can make the life of someone such as a Hadoop admin a lot easier, as it
allows you to get a complete cluster view of your infrastructure, rather than looking
at instances one at a time.

Last but not least, you are encouraged to make use of service discovery mechanisms,
such as Consul and Serf, and integrate them with Chef. These tools are pretty stable
for production use now, and the possibilities of using them for the management of a
distributed cluster is very enticing.

Test-driven development with Chef

As we are trying to specify our infrastructure as code, it would be prudent of us
to take some good stuff from devs practices and incorporate them into our coding
practices. The following figure illustrates a few such ideas:

TDD\A u A/C D

Ops:

* TDD: Test-Driven Development
* CI: Continuous Integration

* (CD: Continuous Delivery/Deployment

Development without TDD

The usual practice followed by operations people can be understood from this
flow chart:

Write Code
Upload it to server
Test/Run it there
If all is good

Yes ll
Beer

[322]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

Development with TDD

With TDD practices in use, the following is how the development cycle looks:

Write tests

Test _L Beer

l

Write code

With TDD, the tests are an integral part of the development phase and either tests are
written even before the code is written, or they are written alongside the code. So,
whether you are building a new feature or fixing a bug, you'll always be writing test
cases and running them continuously to ensure that things are behaving as intended.
This is a habit that needs to be cultivated, and the following are the steps you need
to take to follow the TDD practice for development:

1. Write tests to demonstrate a new feature or expose a bug.

2. Implement a feature or expose a bug.

3. Tests pass.
In this approach, you need to first think of test cases for new features or tests that
will expose bugs. This will require a lot of practice, but you'll get the following
immediate benefits by adopting this form of development practice:

1. Better test coverage

2. Itallows you to think through the feature

3. [Itallows you to follow the practice of incremental development

Types of tests

The following are the two main categories of tests that are written by developers:
Unit tests:

These tests are meant to test an individual component and such testing is also known
as "component testing". Ideally, each test case is independent of the other. It's written
to ensure that the code meets its design and behaves as intended.

Unit tests are usually written before the code is written. When the tests pass, the code
is considered to be complete. In case the test fails, it's an indicator of a bug in the
code or test itself.

[323]

www.it-ebooks.info

http://www.it-ebooks.info/

(Ab)Using Chef

The following are the key points related to unit tests:

1. Tests only a single component.

2. Does not require other components.

3. Should be fast.
Integration tests:
Integration testing is a phase in software testing where individual software modules
are combined and tested as a collective group. During the integration test, input

modules that have already been unit tested are taken as input, grouped into larger
aggregates, and the tests defined in the integration test plan are applied.

Integration testing is done to verify the functionality, performance, and reliability
requirements of the overall system.

What to use where

Now that we know about different types of tests, we need to determine what kind of
test should be used where. In the context of Chef, you can use the following approach:

Unit Tests Integration Tests

Cookbooks Chef server installation
Recipes Chef client installation
Templates Top-level role

Attributes Application installation testing
Files

Libraries

Data bags

How do we simulate a real-world scenario?

One of the major challenges of testing the Chef code lies in the fact that your
development environment might be very different from your actual deployment
environment. For example, you might be developing on a Mac while your servers
are running Linux. Moreover, you might not be interested in actually running

the Chef code locally on your machine as you don't want to install unnecessary
components on your local box.

[324]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

One of the workarounds to this problem is to make use of Cloud platforms. However,
if, like most of us, you aren't interested in spending money over running test suites,
one of the most used alternatives is Vagrant. Vagrant (https://www.vagrantup.com)
is a wrapper over VirtualBox that allows you to spin up a cluster of virtual machines
locally on your laptop/workstation. You can simulate an entire data center on your
laptop, provided you've enough compute/ memory capacity locally.

Tools

There are a large set of tools that allow for setting up the testing framework of your
Chef code. For our purpose, we'll be looking at the following tools:

* ChefSpec (https://github.com/sethvargo/chefspec)

* minitest-chef-handler (https://github.com/calavera/minitest-chef-
handler)

. Serverspec (https ://github.com/ serverspec/serverspec)

ChefSpec is a unit testing framework that runs on a local machine for the purpose of
simulating the convergence of resources. One of the major advantages of ChefSpec is
that it's blazingly fast as it doesn't provision a real node. It's also highly adaptable, in
the sense that you might be running code on Mac, but want the recipe tested against
a different platform. With ChefSpec, you don't really need to find the real node
corresponding to the platform in order to run the test. However, with these strengths,
comes a major disadvantage too. You cannot really verify the sanity of custom
providers using ChefSpec. For example, say you've written a custom provider to
install a package. Now, since ChefSpec will be doing a no-op, you won't really know
if your custom provider will be actually doing installation of a software or not.

minitest-chef-handler is an integration testing framework that runs the minitest-chef-
handler infrastructure as part of the chef-client run. It incorporates a report handler
that tells at the end what really happened at the end of the run of minitest tests. The
advantage of using this is that it actually runs on a real node, however, it's slow.

With the tools decided, we need to decide on the workflow. The following is one way
to incorporate TDD practices into your coding workflow:

1. Create the ChefSpec test.

2. Modify the cookbook.

3. Ensure that chefspec tests passes.

4

Create a real test environment using virtual machines spawned

through Vagrant.

[325]

www.it-ebooks.info

https://www.vagrantup.com
https://github.com/sethvargo/chefspec
https://github.com/calavera/minitest-chef-handler
https://github.com/calavera/minitest-chef-handler
https://github.com/serverspec/serverspec
http://www.it-ebooks.info/

(Ab)Using Chef

5. Write minitest tests.
6. Ensure minitest tests pass.
7. Push code to Git.

Before we jump into details of writing unit tests using ChefSpec, and the integration
test plan using minitest-chef-handler, let's look at how we can achieve continuous
deployment by adhering to the following basic steps:

1. The master branch of your SCM should always be ready for deployment.

2. Each feature/bug fix should be committed to a master, while ensuring that
no dependencies break the master.

This approach requires that you have tests for all the commits and no commit is
made to master a branch until all the tests have passed.

ChefSpec is perhaps one of the most widely used "unit test frameworks" for Chef.

Install ChefSpec using the following command:

$ gem install chefspec

Also, since we'll be writing all our test cases inside the specs directory in the
cookbook, install the knife-spec gem as well:

$ gem install knife-spec

This gem will ensure that the specs directory is automatically created whenever a
cookbook is created using the knife cookbook create command.

The following code shows the basic structure of a unit test described with ChefSpec:

require '../spec_helper.rb'
describe 'cookbook name::recipe name' do
let (:chef rum) ({
ChefSpec: :ChefRunner.new.converge ('cookbook name::recipe name')
}
it 'should do something' do
expect (chef run).to ACTION RESOURCE (NAME)
end

end
Let's look at each line of code and see what's happening out here:

* The ../spec_helper.rb path directs to the spec_helper.rb file, typically
found in root of the /spec folder that contains ChefSpec unit tests.

[326]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

* The describe method is a RSpec method used to define the unit test. There
is another method called context that is used to group specific contexts.

* The cookbook_name: :recipe_name variable is used to identify a recipe in a
cookbook that is being tested.

* The let method is a RSpec method used to kick-start a chef-client run, using
(:chef_run).

* The it method is a RSpec method that puts the context around each unit test.
The actual test is defined within the it block. It generally looks like this:

expect (chef run).to action('object)
expect () .to is the assertion syntax in RSpec.

(chef run) calls the Chef::Runner class to execute the mock chef-
client run.
ACTION_RESOURCE (name) is the action from a resource.

For example:

it 'starts service nginx' do
expect (chef run).to start service('nginx')
end

minitest-Chef-Handler (https://github.com/calavera/minitest-chef-
handler) is a wonderful integration testing framework. It works by gathering all

the files that match the files/default/tests/minitest/*_test.rb path for
cookbooks in your run_1list. Once the regular chef-client run is over, minitest

runs each of the tests and displays the results. It eventually makes use of a minitest
framework (https://github.com/seattlerb/minitest) that provides support for
writing unit, spec, mock, and benchmark test cases.

It can be installed using the following command:

$ gem install minitest-chef-handler

In order to make use of minitest-chef-handler, you need the actual machines on
which the code will be executed. In most cases, using Vagrant is the best possible
solution.

The following is a Vagrant file that can be used to set up VMs for testing your
cookbooks:

Vagrant .configure (2) do |config]|
config.vm.box = "chef/centos-6.5"
config.vm.box check update = false
config.vm.provider "virtualbox" do |vDb|

vb.gui = false

[327]

www.it-ebooks.info

https://github.com/calavera/minitest-chef-handler
https://github.com/calavera/minitest-chef-handler
https://github.com/seattlerb/minitest
http://www.it-ebooks.info/

(Ab)Using Chef

vb.memory = "256"

end

config.vm.provision :chef solo do |chef |
chef .cookbook path = ["/code/chef-repo/cookbooks/"]
chef.log level = :debug
chef.add recipe "chef handler"
chef.add recipe "minitest-handler"
chef.add recipe "docker::test"

end

end

Keep this Vagrant file at the root of your cookbook. We'll be using this file later on to
start our VM.

Let's say we have a cookbook called docker with the following code in the default
recipe:

package "docker-io"

cookbook file "/etc/pki/tls/certs/ca-bundle.crt" do
source "/certs/ca-bundle.crt"
owner "root"
group "root"
mode "0644"
end

bash "enable public olé6 latest" do
user "root"
code <<-EOH
yum-config-manager --enable public olé latest
EOH
end

package "device-mapper-event-libs" do
version "1.02.90-2.el6 6.1"
action :install

end

service "docker" do
supports :status => true
action :start

end

unless node["users"] .empty? do
group "docker" do

[328]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

action :modify
members node["users"]
append true
end
end

This recipe will install the docker binary, manage certificates, install device-mapper-
event-1ibs, start the docker service, and finally it will check for an attribute called
users, and if we've the attribute present, it'll add those users to the docker group.

To set up test cases for the code, create a file <recipe name> test.rb inside the
files/default/tests/minitest directory in the relevant cookbook. In our example
case, our recipe is called default . rb and hence, we've a file called default test.rb.
In order to invoke the tests, either you can add the report handler to client.rb,

or add the minitest-handler recipe to the run list:

* Option 1: Adding report handler to client.rb:

require 'minitest-chef-handler'
report_handlers << MiniTest::Chef::Handler.new

* Option 2: Using minitest-handler:

chef.run list = [
"our recipes",
"minitest-handler"

]

Let's now write our tests which will help ascertain the sanity of our Chef cookbook:

require 'minitest/spec'
describe recipe 'docker::default' do
include MiniTest::Chef::Assertions
include MiniTest::Chef: :Context
include MiniTest::Chef: :Resources
describe "packages" do
it "test_if docker_ is_ installed" do
package ("docker-io") .must_be installed
end
it "test if device mapper events lib is installed" do
package ("device-mapper-event-1libs") .must _be installed
end
end
describe "files" do
it "creates the certificate" do
file("/etc/pki/tls/certs/ca-bundle.crt") .must exist
end

[329]

www.it-ebooks.info

http://www.it-ebooks.info/

(Ab)Using Chef

end

describe "services" do

it "docker is running" do

service ("docker") .must be running

end

it "docker is configured to start on boot" do
service ("docker") .must be enabled

end

end

describe "users and groups" do

it "checks that group docker is created" do
group ("docker") .must_exit

end

it "checks that users are there having right membership" do
unless node["users"] .empty? do
node ["users"] .each do |node user|
user (node user) .must_exist
group ("docker") .must_include (node_ user)
end
end
end
end
end

Now, with code ready, let's start up our VM using the following command from the
root of your cookbook:

$ vagrant up
This will use the Vagrant file we created earlier to spin up a VM.

Now, once the chef-run is complete, we'll see that at the end, we'll have our test cases
executing and, in the event of any errors, report handler will report back with the
errors.

Serverspec:

So, you have your servers configured via Chef, but how do you know if they have
been configured correctly? This is where Serverspec comes into picture. Serverspec is a
framework that allows you to write RSpec tests to verify the configuration of servers.

[330]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

You can test the actual state of servers by running commands locally via SSH, the
Docker API, and so on.

To install Serverspec, use the following command:

gem install serverspec

Once Serverspec has been installed, you can use the serverspec-init binary to
create the required directory structure and files.

This binary requires a few questions to be answered, such as which OS is the test
suite meant for, what shall be the mode of execution of test suite: SSH/local, and
SO on.

Once you've the files in place, you can edit the spec file as per your requirements.
Here is an example of spec to test the installation of nginx webserver:

require 'spec helper'
describe package('nginx') do
it { should be installed }
end
describe port (80) do
it { should be listening }
end

With the test case in place, you can just execute this test case using the following
command:

rake spec

If you have opted for SSH as a mode of connection, Serverspec will try to connect to
the remote machine as the user configured in ~/ . ssh/config or as the current user.
If you want to modify this option, edit the spec/spec_helper.rb script and add the
following;:

options[:user] ||= Etc.getlogin

With the test setup ready, you can now hook up the entire setup with a CI server
such as Jenkins and use it for the purpose of running the test suite, and once
everything looks good, just do a knife upload of the cookbook to your remote
Chef server from the CI server itself.

[331]

www.it-ebooks.info

http://www.it-ebooks.info/

(Ab)Using Chef

Using Chef in a dynamic environment such as the
cloud

Today, with increase in the use of cloud-based environments, it's not too long

before you might find yourself dealing with infrastructure in one of the Cloud
environments. The benefits that Cloud-based environments give, which are

agility and a dynamic nature, are also one of the major pain points. Managing an
infrastructure spread across such a dynamic environment is a pretty challenging job
on its own. Added to it are features such as Auto Scaling, wherein spot instances
and the complexity can grow overwhelmingly and become a nightmare. Chef is a
wonderful choice to provision instances in such an environment. However, you have
to ensure that few things are taken care of, before we decide to make use of Chef for
all the purposes such as service discovery, and integrate it in deployment workflows
like we did earlier by tying Capistrano to Chef.

One of the major hurdles is with the fact that instances can come and go in a Cloud-
based environment. This means that the state of infrastructure maintained on Chef
might be different from what it actually is. There are multiple ways to get around
this. One of the ways is to ensure that before the machine is terminated, a script is
executed that takes care of the cleanup of the node/client information associated
with that instance from Chef.

The following is a sample script that does this job:

#!/bin/bash

#

chkconfig: 2345 74 26
BEGIN INIT INFO

Provides: cleanup instance

Required-Start: Snetwork $named S$remote fs $syslog
Required-Stop: Snetwork $named S$remote fs $syslog
Default-Stop: 0

END INIT INFO
source /etc/profile.d/rvm.sh
set -e

case "$1" in
stop)
<% if node.attribute? ("fgdn") %>
knife node delete -y -c /etc/chef/knife.rb <%= node.fqgdn %> #
remove node from Chef

knife client delete -y -c /etc/chef/knife.rb <%= node.fqgdn %> #
deletes the client certificate from Chef

rm -f /etc/chef/client.pem

<% end %>

[332]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

rm -f /var/lock/subsys/cleanup instance
start)
chef-client
touch "/var/lock/subsys/cleanup instance"
*)
echo "Usage: cleanup_ instance {start|stop}" >&2
exit 1

esac

exit 0

Save this script as a template in your base cookbook or any cookbook that is used
across every machine in your infrastructure. Now, in your recipe, add the following

code to set up this script:

template "/etc/init.d/cleanup instance" do
source "/cleanup instance.erb"
owner "root"
group "root"
mode "Q755"
end

file "/var/lock/subsys/cleanup instance" do
action :create
owner "root"
group "root"
mode "0644"
end

(0..6) .each do |index|
link "/etc/rc.d/rc#{index}.d/K74cleanup instance" do

to "/etc/init.d/cleanup instance"
owner "root"
group "root"
mode "0755"
end

link "/etc/rc.d/rc#{index}.d/S74cleanup instance" do
to "/etc/init.d/cleanup instance"
owner "root"
group "root"

[333]

www.it-ebooks.info

http://www.it-ebooks.info/

(Ab)Using Chef

mode "0755"
end
end

This code is meant for the RHEL/ CentOS family. If you want to
use this on any other Linux variant, modify the Chef code and
’ script appropriately.

This code will set up the script. Now, whenever the instance terminates, the script
will be invoked and the node/client entry associated with the instance will be
removed from the Chef server. This approach will require you to push a chef-
validator key to a machine, which can then be used for the purpose of reregistration.
If you are using AWS, you can make use of the IAM role to pull the validator key
from a secure S3 bucket. Remember to delete the validator key once the instance

has been reregistered.

Another way is to monitor the instance and in case an instance goes down, the
monitoring solution should trigger the cleanup code. Sensu (https://sensuapp.org)
is a monitoring solution that is designed with this thought process in mind and can
be used for the purpose of the deregistration of a node and client. The disadvantage
of this approach lies in the fact that it might so happen that the monitoring instance
itself is not able to connect to the remote host due to some issue and, in the event of
such an issue, the clean up script might trigger on the monitoring host, leading to an
unnecessary clean up of records.

Summary

In this chapter, we saw a few practical uses of Chef. We learnt how we can extend it
to manage deployments using a dynamic server list via Capistrano. Next, we went
about learning how to deploy applications using the deploy resource provided by
Chef. This resource is extremely useful as it allows Chef to act as both a configuration
management system and a deployment system. We also saw how we can use Chef to
provision clusters and build distributed systems. Finally, we learnt about Test-driven
development using Chefspec and minitest-chef-handler.

[334]

www.it-ebooks.info

https://sensuapp.org
http://www.it-ebooks.info/

Symbols

:nothing action 107
/search endpoint
about 265
GET method 265, 266
/search/INDEX endpoint
about 266
GET method 266, 267
POST method 267-269

A

actions, Capistrano
:deploy 311
:force_deploy 311
:rollback 311
API client
existing client, deleting 50
information, displaying 50
listing 50
managing 49
new client, creating 49, 50
reregistering 51
arguments 286
arithmetic operators 63
arrays
about 76
creating 76,77
destructive way, of selecting elements 81
elements, accessing 77, 78
elements, adding 79
elements, removing 79
elements, selecting 81

Index

iterating over 80, 81
nondestructive way, of selecting
elements 81

assignment operators 65
attribute file 189
attribute list

building 186
attribute naming 186
attribute precedence 181, 193
attributes

about 139, 185

automatic 140

default 140

defining 189

force_default 140

force_override 140

ignore_failure 108

life cycle 189

normal 140

override 140

provider 108

recipe DSL methods 141

retries 108

retry_delay 108

run_list, defining 141

sources 189

supports 108
attributes, Capistrano

after_restart 311

before_migrate 311

before_restart 311

before_symlink 311

create_dirs_before_symlink 311

deploy_to 311

[335]

www.it-ebooks.info

http://www.it-ebooks.info/

environment 311
keep_releases 311
migrate 311
migration_command 311
purge_before_symlink 312
repo 312
revision 312
rollback_on_error 312
scm_provider 312
symlink_before_migrate 312
timeout 312
user 312
attribute types
automatic 187
collected, by Ohai 200
default 187
defining 187, 188
force_default 187
force_override 187
normal 187
override 187
attribute whitelisting 194-196
authentication
about 93
chef-client 93
custom API calls 94-99
Enterprise Chef 102
Knife 93,94
Open Source Chef server 100
authorization 99
automatic attributes
defining 192
node['domain'] 192
node['fqdn'] 192
node['hostname'] 192
node['ip_address'] 192
node['macaddress'] 192
node['platform'] 192
node['platform_family'] 192
node['platform_version'] 192
node|'recipes'] 192
node['roles'] 192

B

bang methods 82
base 217,218
bash automated testing system (bats) 27
bash resource
about 130-132
syntax 130
URL 133
bash resource, actions
nothing 131
run 131
bash resource, attributes
code 131
command 131
creates 131
cwd 131
environment 131
flags 131
group 131
path 131
returns 131
timeout 131
umask 131
user 131
basic operations
about 63
arithmetic operators 63
assignment operators 65
bitwise operators 65
comparison operators 64
logical operators 66
Ruby defined? operator 66
Ruby range operators 66
Ruby ternary operator 66
bitwise operators 65
bootstrap process 92

Cc

Cache_options 19

callbacks, Capistrano
after_restart 310
before_migrate 310

[336]

www.it-ebooks.info

http://www.it-ebooks.info/

before_restart 310
before_symlink 310
new_resource 311
release_path 310
using 310
Capistrano
about 303
application, preparing 305
dynamic server list, Chef used 303-305
installing 305
roles 306
tasks 306
use case 306-308
using 303
case/when statement 68
Chef
about 1, 57, 233
attributes 4
chef-client 5
Chef server 4
chef-solo 5
chef-zero 5
cookbook 4
defining 4
Domain Specific Language (DSL) 5
example 161
extending, for bootstrapping distributed
systems 313-315
Knife 4
LWRP 5
metadata 5
node 4
Ohai 5
recipes 4
repository 4
resources 4
roles 4
run-list 4
running, modes 3
used, for dynamic server list in
Capistrano 303-305
utilizing 201
workstation 4
Chef API
prerequisites 234

using 169
chef-client
used, for Chef run 5-8
Chef DSL 57
Chef ecosystem
architecture 2
Chef handlers
defining 299-301
chef-npm
URL 108
chef-repo 17
Chef run
anatomy 5
chef-client, using 5-8
chef-solo, using 15, 16
Chef run, using chef-client
authenticate 12
convergence, loading 14, 15
cookbooks, loading 14, 15
cookbook, synchronization 12-14
exception handling 15
node object, building 9-11
reporting 15
Chef server
cookbook, uploading 149
Chef server WebUI
using 170
chef-shell (shef) 2
chef-solo
about 3
used, for Chef run 15, 16
ChefSpec
about 325, 326
advantages 325
URL 325
classes
about 85
example 86
client-server model, Chef 3
Cloud-based deployment
defining 304
Cloud-based environments
benefits 332
command-line option, Knife plugin 279
community-written plugins
URL 298

[337]

www.it-ebooks.info

http://www.it-ebooks.info/

comparison operators 64
compilation phase 107
components, chef-client
attributes 14
definitions 14
libraries 14
recipes 14
components, Chef ecosystem
Bookshelf 1
chef-client 2,17
chef-expander 1
chef-server 17
chef-solr 1
developer workstation 17
ErChef 1
Knife 2
PostgreSQL 1
Rabbit MQ 1
WebUI 1
conditional statements and loops
about 67
case/when statement 68
for loop 70
if statement 67
unless statement 68
until loop 69
while loop 69
configuration settings, cluster
configuration file
base role definition 319
Cloud provider settings 319
environment definition 319
facet-specific roles and recipes 319
various facets definition 319
configuration settings, knife.rb file
chef_server_url 33
client_key 33
cookbook_copyright 33
cookbook_email 33
cookbook_path 33
knife['editor'] 33
node_name 33
validation_client_name 33
validation_key 33

convergence phase 107
cookbook

about 146

authoring 146-148

deleting 37, 149

downloading 38

list, obtaining on chef-server 36
managing 34

multiple cookbooks, deleting 39
new cookbook, creating 35
operations 34

testing 149

uploading, to Chef server 36, 148
URL 219

versioning 150

cookbook_file resource

about 117,118
URL 120

cookbook_file resource, actions

:create 118
:create_if_missing 118
:delete 118
itouch 118

cookbook_file resource, attributes

cookbook multiple versions, maintaining

atomic_updates 118

backup 118

cookbook 118

force_unlink 118

group 118
manage_symlink_source 118
mode 118

owner 118

path 118

source 118

branch tracking strategy 152

maximum version control strategy 151

cookbook versions

freezing 151
multiple versions, maintaining 151
operators 150

Create, Read, Update, and Delete

(CRUD) 275

cron resource

continuous deployment about 126
achieving 326 syntax 126
URL 128
[338]

www.it-ebooks.info

http://www.it-ebooks.info/

cron resource, actions default groups, Enterprise Chef

:create 126 admins 103
:delete 126 billing_admins 103
cron resource, attributes clients 103
command 126 users 103
day 126 dependencies 283
home 127 deployment, Capistrano
hour 126 actions 311
mailto 127 attributes 311, 312
minute 126 callbacks 310
month 126 defining 308, 309
path 126 phases 309, 310
shell 127 deployment phases, Capistrano
user 127 Checkout 309
weekday 126 Migrate 310
custom plugins Restart 310
about 205 Symlink 310
examples 207 development, without TDD 322
logging in 208 development, with TDD 323
syntax 206 directory resource
custom resources about 120, 122
about 152 URL 122
logging 158 directory resource, actions
provider 154-156 create 121
provider DSL 157, 158 :delete 121
resource 154 directory resource, attributes
setup 153 group 121
mode 121
D owner 121
path 121
data bag recursive 121
about 212, 213 distributed systems
creating 213, 214 bootstrapping 313-315
data bag item, editing 215
defining 212 E
deleting 215
encrypting 223, 224 Embedded Ruby (ERB) templates 133, 225
list of items, obtaining 216 encapsulation 86
managing 213 encrypted data bag item 223
using, in recipes 217-222 endpoints
data bag item /clients 241
deleting 215 /clients/NAME 242
editing 215 /cookbooks 249
data_bag method 219 /cookbooks/NAME 250
default attribute 181 /cookbooks/NAME/VERSION 251
[339]

www.it-ebooks.info

http://www.it-ebooks.info/

/data 253 syntax 124

/data/NAME 255 URL 126
/data/NAME/ITEM 256 execute resource, actions
/environments 259 :nothing 124
/environments/ NAME 260 run 124
/environments/ NAME/cookbooks 262 execute resource, attributes
/environments/ NAME/nodes 263 command 124
/environments/ NAME/recipes 264 creates 125
/environments/ NAME/roles/NAME 264 cwd 125
/roles 244 environment 125
/roles/NAME 245 group 124
/roles/ NAME/environments/NAME 248 path 124
/users 238 returns 125
/users/NAME 239 timeout 124
about 238 umask 125
Enterprise Chef user 124
Chef-client 102 execution phase 107
default groups 103
global permissions 103 F
group 102 .
object permissions 102 file resource
organization 102 about 122
user 102 syntax 122
environment attribute URL 124
defining 181 file resource, actions
environment, on node ‘create _122 o
client.rb file, editing on node 180 :create_if_missing 122
Knife, using 179 :delete 123
environment run lists 183 ‘touch 123
environments file resource, attributes
creating 40 atomic_update 123
deleting 41 backup 123
editing 41 content 123
information, displaying 42 force_unlink 123
listing 41 group 123 _
managing 39, 170 manage_symlink_source 123
Ruby DSL, using 176-178 mode 123
setting up, on node 178 owner 123
ERB templates path 123
using 230 files/directories, Capistrano
Erubis creating 305, 306
URL 211 for loop 70
exception handling 291 fuzzy matching
execute resource URL 272
about 124

[340]

www.it-ebooks.info

http://www.it-ebooks.info/

G

gem repository
URL 297
gems
used, for distributing plugins 296-298
GET method
parameters 266
global permissions, Enterprise Chef
about 103
create 103
list 103
guard attributes
about 109-113
not_if 109
only_if 109
guard attributes, arguments
:cwd 110
:environment 110
:group 110
:timeout 110
:user 110

H

handlers, in Chef
exception handler 299
report handler 299
start handler 299
hashes
about 82
creating 83
iterating over 85
headers, request authentication
accept 235
Content-Type 235
host 235
X-Chef-Version 235
X-Ops-Authorization-N 235
X-Ops-Content-Hash 235
X-Ops-Sign 235
X-Ops-Timestamp 235
X-Ops-Userld 235
helper modules
about 137
inline methods 137

inline modules 137
library modules 138
hints 208

if statement 67
infrastructure

managing 163
instances, on AWS

URL 200
integration tests 324
IRB 58, 59
Ironfan

installing 318

URL 318

using 322

J

jobs
running, from within recipes 315-322
running, from workstation 315
JSON file
key-value pairs 171
using 168

K

key-value pairs 164

Knife
about 17, 31
API client, managing 49
cookbooks, managing 34
environments, managing 39
knife command 32
knife.rb 33
node, bootstrapping 52
nodes, managing 44
options 223
plugins 53
roles, managing 42
search command 51
used, for encryption 223
using 223

knife-azure plugin 54

[341]

www.it-ebooks.info

http://www.it-ebooks.info/

knife cluster list command
using 320

knife command 212

knife cookbook compare command 175

knife data bag command 213

knife data bag from file command 215

knife data bag list command 216

knife data bag show command 216

knife-ec2 plugin 53

knife environment create
ENVIRONMENT_NAME
command 171

knife environment delete
ENVIRONMENT NAME
command 173

knife environment edit
ENVIRONMENT_NAME
command 172

knife environment from file command 176

knife environment list command 173
Knife, environments
cookbook versions, comparing
across environments 175

details, displaying with environment 174
environment configuration, editing 172

environment, creating 176
environment, deleting 173
environment, displaying 173
environment, editing 176
new environment, creating 171, 172
using 171
knife environment show
ENVIRONMENT_NAME
command 174
knife-google plugin 54
Knife plugins
arguments 286
banner 282
class name, defining 281
defining 277, 278
dependencies 283
distributing, gems used 296-298
exception handling 291
knife-block 298
knife-community 298
knife-elb 298
knife-inspect 298

knife.rb script, settings 288, 289

knife-tagbulk 298

namespace 281

options 284, 285

requirements 283

run method 287

search functionality 287

skeleton 278

user interactions 290, 291

working 292-295
knife-push plugin 54
knife.rb file

configuration settings 33, 34
knife role create ROLE command 163
knife role delete ROLE command 165
knife role edit ROLE command 165
knife role list command 166
Knife, roles

existing role, defining 166

existing role, deleting 165

existing role, editing 165

new role, creating 163, 164

roles, on Chef server 166

using 163
knife role show ROLE command 166
knife-ssh plugin 53

L

logical operators 66

methods, /clients endpoint
GET method 241
POST method 241

methods, /clients/NAME endpoint
DELETE method 242
GET method 242
PUT method 243

methods, /cookbooks endpoint
GET method 249, 250

methods, /cookbooks/NAME endpoint
GET method 250

methods, /cookbooks/NAME/VERSION

endpoint

DELETE method 251

[342]

www.it-ebooks.info

http://www.it-ebooks.info/

GET method 251
PUT method 252, 253
methods, /data endpoint
GET method 254
POST method 254
methods, /data/NAME endpoint
DELETE method 255
GET method 255
POST method 256
methods, /data/NAME/ITEM endpoint
DELETE method 257
GET method 257
PUT method 258
methods, /environments endpoint
GET method 259
POST method 259
methods, /environments/NAME/cookbooks
endpoint
GET method 262
methods, /environments/NAME endpoint
DELETE method 260
GET method 261
PUT method 261, 262
methods, /environments/NAME/nodes
endpoint
GET method 263
methods, /environments/NAME/recipes
endpoint
GET method 264
methods, Hash class
has.has_key?(key) 84
hash.clear 83
hash.delete(key) 83
hash.empty? 83
hash.has_value? (value) 84
hash.invert 84
hash.keys 84
hash.size 84
hash.to_s 84
hash.values 84
methods, /roles endpoint
GET method 244
POST method 244
methods, /rolesyNAME endpoint
DELETE method 245
GET method 246

PUT method 246, 247

methods, /rolesyNAME/environments

endpoint
GET method 248

methods, /rolesyNAME/environments/

NAME endpoint
GET method 248, 249
methods, user interactions
about 290
ui.ask(*args, &block) 290

ui.ask_question(question, opts={}) 290

ui.color?() 290
ui.color (string, *colors) 290
ui.confirm 290
ui.edit_data 290
ui.edit_object 290
ui.error 290
ui.fatal 291
ui.highline 291
ui.info 291
ui.interchange 291
ui.list(*args) 291
ui.msg(message) 291
ui.output(data) 291
ui.pretty_print 291
ui.use_presenter 291
ui.warn(message) 291

methods, /users endpoint
GET method 238
POST method 238

methods, /fusersyNAME endpoint
DELETE method 239
GET method 239
POST method 239
PUT method 240

minitest-chef-handler
about 325
advantages 325
URL 325

minitest framework
URL 327

mixin 87

mixlib authentication
URL 99

modules 88

[343]

www.it-ebooks.info

http://www.it-ebooks.info/

N

namespace 281
net-scp gem
URL 294
nodes
about 44
bootstrapping 52
creating 44-46
editing 47
information, displaying 46
listing 46
managing 44
node object, deleting 48
stuff, adding to run_list 47
stuff, deleting from run_list 47
notifications, Chef
notifies 112
subscribes 112
notification timers, Chef
defining 112

(0

object permissions, Enterprise Chef
delete 102
grant 102
read 103
update 103
objects 87
Ohai 6
and Ohai 7, comparing 207
Ohai binary
configuration settings 202
options 202
running 201, 202
Ohai plugins
defining 203-205
Ohai tool
about 191, 199
attributes 191
Open Source Chef server
about 100

requests, requiring admin privileges 101

operators
about 272
AND 273

NOT 273
OR 273

operators, used for cookbook versioning

< 150

<= 150

= 150

> 150

>= 150

~> 150
options, commands 237
override attribute 181

P

package resource
about 114, 115
URL 117
package resource, actions
iinstall 115
;purge 115
‘reconfig 115
remove 115
:upgrade 115
package resource, attributes
allow_downgrade 115
arch 115
flush_cache 115
gem_binary 116
options 115
package_name 115
source 115
version 116
parallel gem
URL 294
partial templates
about 138, 229
using 230
partial templates, options
:cookbook 138
:local 138
:source 138
:variables 138
patterns
about 270
exact matching 270
fuzzy matching 272
range matching 272

[344]

www.it-ebooks.info

http://www.it-ebooks.info/

syntax 270
wildcard matching 271
plugins
knife-azure plugin 54
knife-ec2 plugin 53
knife-google plugin 54
knife-push plugin 54
knife-ssh plugin 53
URL 55
polymorphism 86
proc attribute 285
process identification number (PID) 8
properties, Ruby files
cookbook_versions 177
default_attributes 177
description 177
name 177
override_attributes 177
provider DSL
action method 157
converge_by method 157
current_resource method 157
load_current_resource method 157
new_resource method 157
updated_by_last_action method 158
whyrun_supported? method 158
push jobs
about 55
components 55
URL 55

R

recipe DSL methods
about 141
attribute method 142
platform_family method 142
platform method 141
resources method 143
value_for_platform_family method 142
value_for_platform method 142
recipes
about 105, 139, 190
attributes 139
data bag, using 217-222
including 140

writing, best practices 143
request authentication
defining 234-237
resources
about 105-108
attributes, evaluating 113, 114
bash resource 130-133
cookbook_file resource 117-120
cron resource 126-128
defining 106
directory resource 120,121
execute resource 124-126
file resource 122-124
guard attributes 109-113
package resource 114-117
service resource 128-130
template resource 133-136
URL 114
resource template
URL 139
Ridley
about 274
URL 275
role attribute
defining 181
role/environment attribute 190
role file
properties 167
roles
about 42
Chef API, using 169
Chef server WebU], using 170
deleting 43
editing 43
information, displaying 44
JSON file, using 168
Knife, using 163
listing 44
managing 42, 163
new role, creating 42, 43
Ruby DSL, using 166, 167
Ruby DSL
benefits 166
using 166, 168
Ruby files
properties 177

[345]

www.it-ebooks.info

http://www.it-ebooks.info/

Ruby methods

about 70,71

blocks 72-75
Ruby range operators 66
Ruby ternary operator 66
run_list

defining 141
run method 287

S

search
about 265
using, in recipes 273, 274
search command
about 51
examples 52
search facility 220
search functionality 287
semantic versioning
URL 150
Sensu
URL 334
Serf 314
Serverspec
about 330
URL 325
service resource
about 128
providers 129
syntax 128
URL 130
service resource, actions
:disable 128
:enable 128
:reload 128
restart 128
:start 128
:stop 128
service resource, attributes
init_command 128
pattern 128
priority 128
reload_command 129
restart_command 129
service_name 129
start_command 129

status_command 129
stop_command 129
supports 129

settings, attribute whitelisting

automatic_attribute_whitelist 195

default_attribute_whitelist 195
normal_attribute_whitelist 195
override_attribute_whitelist 195
skeleton, Knife plugin
banner 279
def run 279
deps do 279
module ModuleName 279
option :name_of_option 279
require 279
symbols 61, 62

T

TDD 322
TDD practices
incorporating 325
template resource
about 133
components 133
helper modules 137
partial templates 138
syntax 134
using 226-229
template resource, actions
create 134
:create_if_missing 134
:delete 134
:touch 134
template resource, attributes
atomic_update 134
backup 134
cookbook 134
force_unlink 134
group 134
helper 135
helpers 135
local 135
manage_symlink_source 134
mode 134
owner 134
path 135

[346]

www.it-ebooks.info

http://www.it-ebooks.info/

source 135
variables 135
templates
about 211, 225
template resource, using 226-229
using 226, 227
tests
Chef, using in Cloud 332-334
real-world scenario, simulating 324
tools, using 325-330
using 324
test, types
about 323
integration tests 324
unit tests 323

U

unit tests 324
unless statement 68
until loop 69

\'

Vagrant

URL 325
variable name 59
variables 59-61

w

web server
configuring 162
while loop 69
whitelist attribute 316
work environment
setting up 17-28

[347]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Mastering Chef

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Chef Essentials
ISBN: 978-1-78398-304-9 Paperback: 218 pages

Discover how to deploy software, manage hosts, and
scale your infrastructure with Chef

1. Learn how to use Chef in a concise manner.

2. Learn ways to use Chef to integrate with cloud
services such as EC2 and Rackspace Cloud.

3. See advanced ways to integrate Chef into your
environment, develop tests, and even extend
Chef's core functionality.

Configuration Management
with Chef-Solo

Configuration Management with

Chef-Solo
ISBN: 978-1-78398-246-2 Paperback: 116 pages

A comprehensive guide to get you up and running
with Chef-Solo

1. Explore various techniques that will help you
save time in Infrastructure management.

2. Use the power of Chef-Solo to run your servers
and configure and deploy applications in an
automated manner.

3. This book will help you to understand the
need for the configuration management tool
and provides you with a step-by-step guide
to maintain your existing infrastructure.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

[PACKT] open source™

PUBLISHING

EEEmew i

Managing Windows
Servers with Chef

Managing Windows Servers

with Chef
ISBN: 978-1-78398-242-4 Paperback: 110 pages

Harness the power of Chef to automate management
of Windows-based systems using hands-on examples

1. Discover how Chef can be used to manage
a heterogeneous network of Windows and
Linux systems with ease.

2. Configure an entire .NET application stack,
deploy it, and scale in the cloud.

3. Employ a step-by-step and practical approach
to automate provisioning and configuration
of Windows hosts with Chef.

Chef Infrastructure
Automation Cookbook

Chef Infrastructure Automation

Cookbook
ISBN: 978-1-84951-922-9 Paperback: 276 pages

Over 80 delicious recipes to automate your cloud and
server infrastructure with Chef

1. Configure, deploy, and scale your applications.

2. Automate error prone and tedious
manual tasks.

3. Manage your servers on-site or in the cloud.

4. Solve real world automation challenges
with task-based recipes.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to the Chef Ecosystem
	Different modes of running Chef
	Terminology used in the world of Chef
	The anatomy of a Chef run
	A Chef run using chef-client
	Step 1 – Building a node object
	Step 2 – Authenticate
	Step 3 – Synchronization of cookbooks
	Step 4 – Loading of cookbooks and convergence
	Step 5 – Reporting and exception handling

	Using chef-solo

	Setting up a work environment
	Summary

	Chapter 2: Knife and Its Associated Plugins
	Introducing Knife
	Managing cookbooks
	Creating a new cookbook
	Uploading a cookbook to chef-server
	Getting the list of all the cookbooks on chef-server
	Deleting cookbooks
	Downloading a cookbook
	Deleting multiple cookbooks

	Managing environments
	Creating an environment
	Deleting an environment
	Editing an environment
	Listing all environments
	Displaying information about an environment

	Managing roles
	Creating a new role
	Deleting a role
	Editing a role
	Listing all available roles
	Displaying information about a role

	Managing nodes
	Creating a node
	Listing all available nodes
	Displaying information about a node
	Editing a node
	Adding stuff to the run_list associated with a node
	Deleting stuff from the run_list associated with a node
	Deleting a node object

	Managing an API client
	Creating a new client
	Listing all available API clients
	Displaying information about a client
	Deleting an existing client
	Reregistering a client

	The search command
	Bootstrapping a node
	Some useful Knife plugins
	The knife-ssh plugin
	The knife-ec2 plugin
	The knife-azure plugin
	The knife-google plugin
	The knife-push plugin

	Summary

	Chapter 3: Chef and Ruby
	Ruby
	IRB
	Variables and types
	Symbols
	Basic operations
	Arithmetic operators
	Comparison operators
	Assignment operators
	Bitwise operators
	Logical operators
	The Ruby ternary operator
	Ruby range operators
	The Ruby defined? operator

	Conditional statements and loops
	The if statement
	The unless statement
	The case/when statement
	The while loop
	The until loop
	The for loop

	Methods
	Blocks

	Arrays
	Creating an array
	Accessing elements of an array
	Adding elements to an array
	Removing elements from an array
	Iterating over an array
	Selecting elements of an array
	The nondestructive way
	The destructive way

	Bang methods
	Hashes
	Creating hashes
	Iterating over a hash

	Classes and objects
	What's an object and a class?
	Modules

	Summary

	Chapter 4: Controlling Access to Resources
	The bootstrap process
	Authentication
	chef-client
	Knife
	Custom API calls

	Authorization
	The Open Source Chef server
	Enterprise Chef
	Object permissions
	Groups

	Summary

	Chapter 5: Starting the Journey to the World of Recipes
	Resources
	Guard attributes
	Lazy evaluation of attributes
	The package resource
	The cookbook_file resource
	The directory resource
	The file resource
	The execute resource
	The cron resource
	The service resource
	The bash resource
	The template resource

	Recipes
	Attributes
	Types of attributes
	Including recipes
	The run_list
	Recipe DSL methods

	Best practices when writing recipes
	Summary

	Chapter 6: Cookbooks and LWRPs
	Cookbooks
	Authoring a cookbook
	Uploading a cookbook to the Chef server
	Deleting a cookbook
	Testing a cookbook
	Cookbook versioning
	Operators available for use with versioning

	Freezing versions
	Maintaining multiple versions of cookbooks

	Custom resources
	Setup
	Resource
	Provider
	Provider DSL

	Logging

	Summary

	Chapter 7: Roles and Environments
	Managing roles
	Using Knife
	Creating a new role
	Editing an existing role
	Deleting an existing role
	Showing details about an existing role
	Listing all roles on the Chef server

	Using Ruby DSL
	Using a JSON file
	Using the Chef API
	Using the Chef Server WebUI

	Managing environments
	Using Knife
	Creating a new environment
	Editing an environment configuration
	Deleting an environment
	Displaying all the environments configured on the
Chef server
	Showing details associated with an environment
	Comparing cookbook versions across environments
	Creating or editing an environment using the configuration specified in a file

	Using Ruby DSL

	Setting up an environment on a node
	Using Knife
	Editing the client.rb file on the node

	Role and environment attributes
	Attribute precedence

	Environment run lists
	Summary

	Chapter 8: Attributes and Their Uses
	Attribute naming
	Different types of attributes
	Different sources of attributes
	The attribute file
	Recipes
	Roles and environments
	Ohai

	Attribute precedence
	Attribute whitelisting
	Summary

	Chapter 9: Ohai and Its Plugin Ecosystem
	Running the Ohai binary
	Ohai plugins
	Custom plugins
	Logging in Ohai plugins

	Summary

	Chapter 10: Data Bags and Templates
	Data bags
	Management of a data bag
	Creating a data bag
	Editing a data bag item
	Deleting a data bag item or a data bag
	Getting a list of all the data bags set up on the Chef server
	Getting a list of items and their properties
	Using the data bags in recipes

	Encrypted data bags

	Templates
	Template resources and a template in action
	Partial templates

	Summary

	Chapter 11: Chef API and Search
	Prerequisites for using Chef API
	Authentication of requests
	Endpoints
	/users
	GET
	POST

	/users/NAME
	DELETE
	GET
	POST
	PUT

	/clients
	GET
	POST

	/clients/NAME
	DELETE
	GET
	PUT

	/roles
	GET
	POST

	/roles/NAME
	DELETE
	GET
	PUT

	/roles/NAME/environments
	GET

	/roles/NAME/environments/NAME
	GET

	/cookbooks
	GET

	/cookbooks/NAME
	GET

	/cookbooks/NAME/VERSION
	DELETE
	GET
	PUT

	/data
	GET
	POST

	/data/NAME
	DELETE
	GET
	POST

	/data/NAME/ITEM
	DELETE
	GET
	PUT

	/environments
	GET
	POST

	/environments/NAME
	DELETE
	GET
	PUT

	/environments/NAME/cookbooks
	GET

	/environments/NAME/nodes
	GET

	/environments/NAME/recipes
	GET

	/environments/NAME/roles/NAME

	Search
	/search
	GET

	/search/INDEX
	GET
	POST

	Patterns
	Syntax
	Exact matching
	Wildcard matching
	Range matching
	Fuzzy matching

	Operators
	Using search in recipes

	Ridley
	Summary

	Chapter 12: Extending Chef
	Custom Knife plugins
	The skeleton of a Knife plugin
	Namespace
	Class name
	Banner
	Dependencies
	Requirements
	Options
	Arguments
	The run method
	Search inside a custom Knife plugin
	knife.rb settings
	User interactions
	Exception handling
	A simple Knife plugin
	Distributing plugins using gems

	Custom Chef handlers
	Summary

	Chapter 13: (Ab)Using Chef
	The dynamic server list in Capistrano using Chef
	Installing Capistrano

	Capistrano style deployments using Chef's "deploy" resource
	Phases of deployment
	Callbacks
	Actions
	Attributes

	Extending Chef to bootstrap distributed systems
	Running jobs from your workstation
	Running jobs from within recipes

	Test-driven development with Chef
	Development without TDD
	Development with TDD

	Types of tests
	What to use where
	How do we simulate a real-world scenario?
	Tools
	Using Chef in a dynamic environment such as the cloud

	Summary

	Index

