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Preface
Apache Mahout is a scalable machine learning library that provides algorithms  
for classification, clustering, and recommendations.

This book helps you to use Apache Mahout to implement widely used machine 
learning algorithms in order to gain better insights about large and complex  
datasets in a scalable manner.

Starting from fundamental concepts in machine learning and Apache Mahout, 
real-world applications, a diverse range of popular algorithms and their 
implementations, code examples, evaluation strategies, and best practices are  
given for each machine learning technique. Further, this book contains a complete 
step-by-step guide to set up Apache Mahout in the production environment, using 
Apache Hadoop to unleash the scalable power of Apache Mahout in a distributed 
environment. Finally, you are guided toward the data visualization techniques for 
Apache Mahout, which make your data come alive!

What this book covers
Chapter 1, Introducing Apache Mahout, provides an introduction to machine learning 
and Apache Mahout.

Chapter 2, Clustering, provides an introduction to unsupervised learning and 
clustering techniques (K-Means clustering and other algorithms) in Apache Mahout 
along with performance optimization tips for clustering.

Chapter 3, Regression and Classification, provides an introduction to supervised 
learning and classification techniques (linear regression, logistic regression,  
Naïve Bayes, and HMMs) in Apache Mahout.
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Chapter 4, Recommendations, provides a comparison between collaborative- and 
content-based filtering and recommenders in Apache Mahout (user-based, item-
based, and matrix-factorization-based).

Chapter 5, Apache Mahout in Production, provides a guide to scaling Apache Mahout  
in the production environment with Apache Hadoop.

Chapter 6, Visualization, provides a guide to visualizing data using D3.js.

What you need for this book
The following software libraries are needed at various phases of this book:

•	 Java 1.7 or above
•	 Apache Mahout
•	 Apache Hadoop
•	 Apache Spark
•	 D3.js

Who this book is for
If you are a Java developer or a data scientist who has not worked with Apache 
Mahout previously and want to get up to speed on implementing machine learning 
on big data, then this is a concise and fast-paced guide for you.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Save the following content in a file named as KmeansTest.data."

A block of code is set as follows:

<dependency>
    <groupId>org.apache.mahout</groupId>
    <artifactId>mahout-core</artifactId>
    <version>${mahout.version}</version>
</dependency>
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When we wish to draw your attention to a particular part of a code block,  
the relevant lines or items are set in bold:

private static final String DIRECTORY_CONTAINING_CONVERTED_INPUT = 
"Kmeansdata";

Any command-line input or output is written as follows:

mahout seq2sparse -i kmeans/sequencefiles -o kmeans/sparse

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.
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Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/B03506_4997OS_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Introducing Apache Mahout
As you may be already aware, Apache Mahout is an open source library  
of scalable machine learning algorithms that focuses on clustering, classification,  
and recommendations.

This chapter will provide an introduction to machine learning and Apache Mahout.

In this chapter, we will cover the following topics:

•	 Machine learning in a nutshell
•	 Machine learning applications
•	 Machine learning libraries
•	 The history of machine learning
•	 Apache Mahout
•	 Setting up Apache Mahout
•	 How Apache Mahout works
•	 From Hadoop MapReduce to Spark
•	 When is it appropriate to use Apache Mahout?

Machine learning in a nutshell
"Machine learning is the most exciting field of all the computer sciences. 
Sometimes I actually think that machine learning is not only the most exciting 
thing in computer science, but also the most exciting thing in all of human 
endeavor."

       – Andrew Ng, Associate Professor at Stanford and Chief Scientist of Baidu
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Giving a detailed explanation of machine learning is beyond the scope of this book. 
For this purpose, there are other excellent resources that I have listed here:

•	 Machine Learning by Andrew Ng at Coursera (https://www.coursera.org/
course/ml)

•	 Foundations of Machine Learning (Adaptive Computation and Machine Learning 
series) by Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalker

However, basic machine learning concepts are explained very briefly here, for those 
who are not familiar with it.

Machine learning is an area of artificial intelligence that focuses on learning from the 
available data to make predictions on unseen data without explicit programming.

To solve real-world problems using machine learning, we first need to represent the 
characteristics of the problem domain using features.

Features
A feature is a distinct, measurable, heuristic property of the item of interest being 
perceived. We need to consider the features that have the greatest potential in 
discriminating between different categories.

Supervised learning versus unsupervised 
learning
Let's explain the difference between supervised learning and unsupervised learning 
using a simple example of pebbles:

•	 Supervised learning: Take a collection of mixed pebbles, as given in  
the preceding figure, and categorize (label) them as small, medium, and large 
pebbles. Examples of supervised learning are regression and classification.
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•	 Unsupervised learning: Here, just group them based on similar sizes but 
don't label them. An example of unsupervised learning is clustering.

For a machine to perform learning tasks, it requires features such as the diameter  
and weight of each pebble.

This book will cover how to implement the following machine learning techniques 
using Apache Mahout:

•	 Clustering
•	 Classification and regression
•	 Recommendations

Machine learning applications
Do you know that machine learning has a significant impact in real-life day-to-day 
applications? World's popular organizations, such as Google, Facebook, Yahoo!,  
and Amazon, use machine learning algorithms in their applications.

Information retrieval
Information retrieval is an area where machine learning is vastly applied in the 
industry. Some examples include Google News, Google target advertisements,  
and Amazon product recommendations.

Google News uses machine learning to categorize large volumes of online  
news articlesL:
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The relevance of Google target advertisements can be improved by using  
machine learning:

Amazon as well as most of the e-business websites use machine learning  
to understand which products will interest the users:

Even though information retrieval is the area that has commercialized most of the 
machine learning applications, machine learning can be applied in various other 
areas, such as business and health care.
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Business
Machine learning is applied to solve different business problems, such as market 
segmentation, business analytics, risk classification, and stock market predictions.

A few of them are explained here.

Market segmentation (clustering)
In market segmentation, clustering techniques can be used to identify the 
homogeneous subsets of consumers, as shown in the following figure:

Take an example of a Fast-Moving Consumer Goods (FMCG) company that 
introduces a shampoo for personal use. They can use clustering to identify the 
different market segments, by considering features such as the number of people 
who have hair fall, colored hair, dry hair, and normal hair. Then, they can decide  
on the types of shampoo required for different market segments, which will 
maximize the profit.

Stock market predictions (regression)
Regression techniques can be used to predict future trends in stocks by considering 
features such as closing prices and foreign currency rates.

Health care
Machine learning is heavily used in medical image processing in the health care 
sector. Using a mammogram for cancer tissue detection is one example of this.

www.it-ebooks.info

http://www.it-ebooks.info/


Introducing Apache Mahout

[ 6 ]

Using a mammogram for cancer tissue detection
Classification techniques can be used for the early detection of breast cancers by 
analyzing the mammograms with image processing, as shown in the following figure, 
which is a difficult task for humans due to irregular pathological structures and noise.

Machine learning libraries
Machine learning libraries can be categorized using different criteria, which are 
explained in the sections that follow.

Open source or commercial
Free and open source libraries are cost-effective solutions, and most of them provide 
a framework that allows you to implement new algorithms on your own. However, 
support for these libraries is not as good as the support available for proprietary 
libraries. However, some open source libraries have very active mailing lists to 
address this issue.

Apache Mahout, OpenCV, MLib, and Mallet are some open source libraries.

MATLAB is a commercial numerical environment that contains a machine  
learning library.
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Scalability
Machine learning algorithms are resource-intensive (CPU, memory, and storage) 
operations. Also, most of the time, they are applied on large volumes of datasets. 
So, decentralization (for example, data and algorithms), distribution, and replication 
techniques are used to scale out a system:

•	 Apache Mahout (data distributed over clusters and parallel algorithms)
•	 Spark MLib (distributed memory-based Spark architecture)
•	 MLPACK (low memory or CPU requirements due to the use of C++)
•	 GraphLab (multicore parallelism)

Languages used
Most of the machine learning libraries are implemented using languages such as 
Java, C#, C++, Python, and Scala.

Algorithm support
Machine learning libraries, such as R and Weka, have many machine learning 
algorithms implemented. However, they are not scalable. So, when it comes to 
scalable machine learning libraries, Apache Mahout has better algorithm support 
than Spark MLib at the moment, as Spark MLib is relatively young.

Batch processing versus stream processing
Stream processing mechanisms, for example, Jubatus and Samoa, update a model 
instantaneously just after receiving data using incremental learning.

In batch processing, data is collected over a period of time and then processed 
together. In the context of machine learning, the model is updated after collecting 
data for a period of time. The batch processing mechanism (for example, Apache 
Mahout) is mostly suitable for processing large volumes of data.

LIBSVM implements support vector machines and it is specialized for that purpose.

www.it-ebooks.info

http://www.it-ebooks.info/


Introducing Apache Mahout

[ 8 ]

A comparison of some of the popular machine learning libraries is given in the 
following table Table 1: Comparison between popular machine learning libraries:

Machine 
learning library

Open source or 
commercial

Scalable? Language 
used

Algorithm 
support

MATLAB Commercial No Mostly C High
R packages Open source No R High
Weka Open source No Java High
Sci-Kit Learn Open source No Python
Apache Mahout Open source Yes Java Medium 
Spark MLib Open source Yes Scala Low
Samoa Open source Yes Java

The story so far
The following timeline will give you an idea about the way machine learning has 
evolved and the maturity of the available machine learning libraries. Also, it is 
evident that even though machine learning was found in 1952, popular machine 
learning libraries have begun to evolve very recently.
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Apache Mahout
In this section, we will have a quick look at Apache Mahout.

Do you know how Mahout got its name?

As you can see in the logo, a mahout is a person who drives an elephant. Hadoop's 
logo is an elephant. So, this is an indicator that Mahout's goal is to use Hadoop in the 
right manner.

The following are the features of Mahout:

•	 It is a project of the Apache software foundation
•	 It is a scalable machine learning library

°° The MapReduce implementation scales linearly with the data
°° Fast sequential algorithms (the runtime does not depend on  

the size of the dataset)

•	 It mainly contains clustering, classification, and recommendation 
(collaborative filtering) algorithms

•	 Here, machine learning algorithms can be executed in sequential  
(in-memory mode) or distributed mode (MapReduce is enabled)

•	 Most of the algorithms are implemented using the MapReduce paradigm
•	 It runs on top of the Hadoop framework for scaling
•	 Data is stored in HDFS (data storage) or in memory
•	 It is a Java library (no user interface!)
•	 The latest released version is 0.9, and 1.0 is coming soon
•	 It is not a domain-specific but a general purpose library
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For those of you who are curious! What are the problems that Mahout is 
trying to solve? The following problems that Mahout is trying to solve:
The amount of available data is growing drastically.
The computer hardware market is geared toward providing better 
performance in computers. Machine learning algorithms are 
computationally expensive algorithms. However, there was no 
framework sufficient to harness the power of hardware (multicore 
computers) to gain better performance.
The need for a parallel programming framework to speed up machine 
learning algorithms.
Mahout is a general parallelization for machine learning algorithms (the 
parallelization method is not algorithm-specific).
No specialized optimizations are required to improve the performance 
of each algorithm; you just need to add some more cores.
Linear speed up with number of cores.
Each algorithm, such as Naïve Bayes, K-Means, and Expectation-
maximization, is expressed in the summation form. (I will explain this in 
detail in future chapters.)
For more information, please read Map-Reduce for Machine Learning on 
Multicore, which can be found at http://www.cs.stanford.edu/
people/ang/papers/nips06-mapreducemulticore.pdf.

Setting up Apache Mahout
Download the latest release of Mahout from https://mahout.apache.org/
general/downloads.html.

If you are referencing Mahout as a Maven project, add the following dependency  
in the pom.xml file:

<dependency>
  <groupId>org.apache.mahout</groupId>
  <artifactId>mahout-core</artifactId>
  <version>${mahout.version}</version>
</dependency>
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If required, add the following Maven dependencies as well:

<dependency>
  <groupId>org.apache.mahout</groupId>
  <artifactId>mahout-math</artifactId>
  <version>${mahout.version}</version>
</dependency>
<dependency>
  <groupId>org.apache.mahout</groupId>
  <artifactId>mahout-integration</artifactId>
  <version>${mahout.version}</version>
</dependency>

Downloading the example code
You can download the example code files from your account at http://
www.packtpub.com for all the Packt Publishing books you have 
purchased. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files e-mailed 
directly to you.

More details on setting up a Maven project can be found at http://maven.apache.
org/.

Follow the instructions given at https://mahout.apache.org/developers/
buildingmahout.html to build Mahout from the source.

The Mahout command-line launcher is located at bin/mahout.

How Apache Mahout works?
Let's take a look at the various components of Mahout.

The high-level design
The following table represents the high-level design of a Mahout implementation. 
Machine learning applications access the API, which provides support for 
implementing different machine learning techniques, such as clustering, 
classification, and recommendations.

Also, if the application requires preprocessing (for example, stop word removal and 
stemming) for text input, it can be achieved with Apache Lucene. Apache Hadoop 
provides data processing and storage to enable scalable processing.
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Also, there will be performance optimizations using Java Collections and the  
Mahout-Math library. The Mahout-integration library contains utilities such  
as displaying the data and results.

The distribution
MapReduce is a programming paradigm to enable parallel processing. When it is 
applied to machine learning, we assign one MapReduce engine to one algorithm  
(for each MapReduce engine, one master is assigned).

Input is provided as Hadoop sequence files, which consist of binary key-value pairs. 
The master node manages the mappers and reducers. Once the input is represented 
as sequence files and sent to the master, it splits data and assigns the data to different 
mappers, which are other nodes. Then, it collects the intermediate outcome from 
mappers and sends them to related reducers for further processing. Lastly, the final 
outcome is generated.

From Hadoop MapReduce to Spark
Let's take a look at the journey from MapReduce to Spark.

Problems with Hadoop MapReduce
Even though MapReduce provides a suitable programming model for batch data 
processing, it does not perform well with real-time data processing. When it comes 
to iterative machine learning algorithms, it is necessary to carry information across 
iterations. Moreover, an intermediate outcome needs to be persisted during each 
iteration. Therefore, it is necessary to store and retrieve temporary data from the 
Hadoop Distributed File System (HDFS) very frequently, which incurs significant 
performance degradation.
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Machine learning algorithms that can be written in a certain form of summation 
(algorithms that fit in the statistical query model) can be implemented in the 
MapReduce programming model. However, some of the machine learning 
algorithms are hard to implement by adhering to the MapReduce programming 
paradigm. MapReduce cannot be applied if there are any computational 
dependencies between the data.

Therefore, this constrained programming model is a barrier for Apache Mahout  
as it can limit the number of supported distributed algorithms.

In-memory data processing with Spark  
and H2O
Apache Spark is a large-scale scalable data processing framework, which claims to 
be 100 times faster than Hadoop MapReduce when in memory and 10 times faster in 
disk, has a distributed memory-based architecture. H2O is an open source, parallel 
processing engine for machine learning by 0xdata.

As a solution to the problems of the Hadoop MapReduce approach mentioned 
previously, Apache Mahout is working on integrating Apache Spark and H2O  
as the backend integration (with the Mahout Math library).

Why is Mahout shifting from Hadoop 
MapReduce to Spark?
With Spark, there can be better support for iterative machine learning algorithms 
using the in-memory approach. In-memory applications are self-optimizing. An 
algebraic expression optimizer is used for distributed linear algebra. One significant 
example is the Distributed Row Matrix (DRM), which is a huge matrix partitioned 
by rows.

Further, programming with Spark is easier than programming with MapReduce 
because Spark decouples the machine learning logic from the distributed backend. 
Accordingly, the distribution is hidden from the machine learning API users. This 
can be used like R or MATLAB.
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When is it appropriate to use Apache 
Mahout?
You should consider the following aspects before making a decision to use Apache 
Mahout as your machine learning library:

•	 Are you looking for a machine learning algorithm for industry use with 
performance as a critical evaluation factor?

•	 Are you looking for a free and open source solution?
•	 Is your dataset large and growing at an alarming rate? (MATLAB, Weka, 

Octave, and R can be used to process KBs and MBs of data, but if your data 
volume is growing up to the GB level, then it is better to use Mahout.)

•	 Do you want batch data processing as opposed to real-time data processing?
•	 Are you looking for a mature library, which has been there in the market for 

a few years?

If all or most of the preceding considerations are met, then Mahout is the right 
solution for you.

Summary
Machine learning is about discovering hidden insights or patterns from the available 
data. Machine learning algorithms can be divided in two categories: supervised 
learning and unsupervised learning. There are many real-world applications of 
machine learning in diverse domains, such as information retrieval, business,  
and health care.

Apache Mahout is a scalable machine learning library that runs on top of the  
Hadoop framework. In v0.10, Apache Mahout is shifting toward Apache Spark  
and H20 to address performance and usability issues that occur due to the 
MapReduce programming paradigm.

In the upcoming chapters, we will dive deep into different machine  
learning techniques.
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Clustering
This chapter explains the clustering technique in machine learning and its 
implementation using Apache Mahout.

The K-Means clustering algorithm is explained in detail with both Java and 
command-line examples (sequential and parallel executions), and other important 
clustering algorithms, such as Fuzzy K-Means, canopy clustering, and spectral 
K-Means are also explored.

In this chapter, we will cover the following topics:

•	 Unsupervised learning and clustering
•	 Applications of clustering
•	 Types of clustering
•	 K-Means clustering
•	 K-Means clustering with MapReduce
•	 Other clustering algorithms
•	 Text clustering
•	 Optimizing clustering performance

Unsupervised learning and clustering
Information is a key driver for any type of organization. However, with the rapid 
growth in the volume of data, valuable information may be hidden and go unnoticed 
due to the lack of effective data processing and analyzing mechanisms.

Clustering is an unsupervised learning mechanism that can find the hidden patterns 
and structures in data by finding data points that are similar to each other. No 
prelabeling is required. So, you can organize data using clustering with little or no 
human intervention.
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For example, let's say you are given a collection of balls of different sizes without 
any category labels, such as big and small, attached to them; you should be able to 
categorize them using clustering by considering their attributes, such as radius and 
weight, for similarity.

In this chapter, you will learn how to use Apache Mahout to perform clustering 
using different algorithms.

Applications of clustering
Clustering has many applications in different domains, such as biology, business, 
and information retrieval. A few of them are shown in the following image:

Information
Retrieval

Google news
categorization
Social network
analysis
Search engines

Biology

Medical image
processing
Human genetic
clustering

Business

Market
segmentation
Data mining

Computer vision and image processing
Clustering techniques are widely used in the computer vision and image processing 
domain. Clustering is used for image segmentation in medical image processing 
for computer aided disease (CAD) diagnosis. One specific area is breast cancer 
detection.

In breast cancer detection, a mammogram is clustered into several parts for further 
analysis, as shown in the following image. The regions of interest for signs of breast 
cancer in the mammogram can be identified using the K-Means algorithm, which is 
explained later in this chapter.
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Image features such as pixels, colors, intensity, and texture are used during 
clustering:

Types of clustering
Clustering can be divided into different categories based on different criteria.

Hard clustering versus soft clustering
Clustering techniques can be divided into hard clustering and soft clustering based 
on the cluster's membership.

In hard clustering, a given data point in n-dimensional space only belongs to 
one cluster. This is also known as exclusive clustering. The K-Means clustering 
mechanism is an example of hard clustering.

A given data point can belong to more than one cluster in soft clustering. This is also 
known as overlapping clustering. The Fuzzy K-Means algorithm is a good example 
of soft clustering. A visual representation of the difference between hard clustering 
and soft clustering is given in the following figure:

y

Hard clustering x

cluster 02

cluster 01

y

Soft clustering x

cluster 01

cluster 02
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Flat clustering versus hierarchical clustering
In hierarchical clustering, a hierarchy of clusters is built using the top-down 
(divisive) or bottom-up (agglomerative) approach. This is more informative and 
accurate than flat clustering, which is a simple technique where no hierarchy is 
present. However, this comes at the cost of performance, as flat clustering is faster 
and more efficient than hierarchical clustering.

For example, let's assume that you need to figure out T-shirt sizes for people of 
different sizes. Using hierarchal clustering, you can come up with sizes for small (s), 
medium (m), and large (l) first by analyzing a sample of the people in the population. 
Then, we can further categorize this as extra small (xs), small (s), medium, large (l), 
and extra large (xl) sizes.

Model-based clustering
In model-based clustering, data is modeled using a standard statistical model to 
work with different distributions. The idea is to find a model that best fits the data. 
The best-fit model is achieved by tuning up parameters to minimize loss on errors. 
Once the parameter values are set, probability membership can be calculated for new 
data points using the model. Model-based clustering gives a probability distribution 
over clusters.

K-Means clustering
K-Means clustering is a simple and fast clustering algorithm that has been widely 
adopted in many problem domains. In this chapter, we will give a detailed explanation 
of the K-Means algorithm, as it will provide the base for other algorithms. K-Means 
clustering assigns data points to k number of clusters (cluster centroids) by minimizing 
the distance from the data points to the cluster centroids.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 19 ]

Let's consider a simple scenario where we need to cluster people based on their size 
(height and weight are the selected attributes) and different colors (clusters):

We can plot this problem in two-dimensional space, as shown in the following figure 
and solve it using the K-Means algorithm:
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         d1< d2
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Getting your hands dirty!
Let's move on to a real implementation of the K-Means algorithm using Apache 
Mahout. The following are the different ways in which you can run algorithms in 
Apache Mahout:

•	 Sequential
•	 MapReduce

You can execute the algorithms using a command line (by calling the correct bin/
mahout subcommand) or using Java programming (calling the correct driver's run 
method).

Running K-Means using Java programming
This example continues with the people-clustering scenario mentioned earlier.

The size (weight and height) distribution for this example has been plotted in  
two-dimensional space, as shown in the following image:
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50
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Data preparation
First, we need to represent the problem domain as numerical vectors.
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The following table shows the size distribution of people mentioned in the  
previous scenario:

Weight (kg) Height (cm)
22 80
25 75
28 85
55 150
50 145
53 153

Save the following content in a file named KmeansTest.data:

22 80
25 75
28 85
55 150
50 145
53 153

Understanding important parameters
Let's take a look at the significance of some important parameters:

•	 org.apache.hadoop.fs.Path: This denotes the path to a file or directory  
in the filesystem.

•	 org.apache.hadoop.conf.Configuration: This provides access to 
Hadoop-related configuration parameters.

•	 org.apache.mahout.common.distance.DistanceMeasure: This determines 
the distance between two points. Different distance measures are given and 
explained later in this chapter.

•	 K: This denotes the number of clusters.
•	 convergenceDelta: This is a double value that is used to determine whether 

the algorithm has converged.
•	 maxIterations: This denotes the maximum number of iterations to run.
•	 runClustering: If this is true, the clustering step is to be executed after the 

clusters have been determined.
•	 runSequential: If this is true, the K-Means sequential implementation is to 

be used in order to process the input data.
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The following code snippet shows the source code:

private static final String DIRECTORY_CONTAINING_CONVERTED_INPUT =  
"Kmeansdata";

public static void main(String[] args) throws Exception {

  // Path to output folder
  Path output = new Path("Kmeansoutput");

  // Hadoop configuration details
  Configuration conf = new Configuration();
  HadoopUtil.delete(conf, output);

  run(conf, new Path("KmeansTest"), output, new  
  EuclideanDistanceMeasure(), 2, 0.5, 10);
}

public static void run(Configuration conf, Path input, Path  
output, DistanceMeasure measure, int k,
double convergenceDelta, int maxIterations) throws Exception {

  // Input should be given as sequence file format
  Path directoryContainingConvertedInput = new Path(output,  
  DIRECTORY_CONTAINING_CONVERTED_INPUT);
  InputDriver.runJob(input, directoryContainingConvertedInput,  
  "org.apache.mahout.math.RandomAccessSparseVector");

  // Get initial clusters randomly
  Path clusters = new Path(output, "random-seeds");
  clusters = RandomSeedGenerator.buildRandom(conf,  
  directoryContainingConvertedInput, clusters, k, measure);

  // Run K-Means with a given K
  KMeansDriver.run(conf, directoryContainingConvertedInput,  
clusters, output, convergenceDelta,
  maxIterations, true, 0.0, false);

  // run ClusterDumper to display result
  Path outGlob = new Path(output, "clusters-*-final");
  Path clusteredPoints = new Path(output,"clusteredPoints");

  ClusterDumper clusterDumper = new ClusterDumper(outGlob,  
  clusteredPoints);
  clusterDumper.printClusters(null);
}
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The console output is shown in the following image. The details of the two clusters 
that are formed, positions of the centroids, and distance from centroids to each data 
point are given in this output:

Use the following code example in order to get a better (readable) outcome to 
analyze the data points and the centroids they are assigned to:

Reader reader = new SequenceFile.Reader(fs,new Path(output,  
Cluster.CLUSTERED_POINTS_DIR + "/part-m-00000"), conf);
IntWritable key = new IntWritable();
WeightedPropertyVectorWritable value = new  
WeightedPropertyVectorWritable();
while (reader.next(key, value)) {
  System.out.println("key: " + key.toString()+ " value: "+  
  value.toString());
}
reader.close();

The following image shows the outcome of the preceding code example:
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After you run the algorithm, you will see the clustering output generated for each 
iteration and the final result in the filesystem (in the output directory you have 
specified; in this case, Kmeansoutput) as shown here:

Cluster visualization
You can use the DisplayKMeans.java class in org.apache.mahout.clustering.
display to visualize the clusters generated by the K-Means algorithm, as shown in 
the following image:

Refer to https://mahout.apache.org/users/clustering/
visualizing-sample-clusters.html for more information.
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Distance measure
The clustering problem is based on evaluating the distance between data points. 
The distance measure is an indicator of the similarity of the data points. For any 
clustering algorithm, you need to make a decision on the appropriate distance 
measure for your context. Essentially, the distance measure is more important for 
accuracy than the number of clusters.
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Further, the criteria for choosing the right distance measure depends on the 
application domain and the dataset, so it is important to understand the different 
distance measures available in Apache Mahout. A few important distance measures 
are explained in the following section. The distance measure is visualized using a 
two-dimensional visualization here.

The Euclidean distance is not suitable if the magnitude of possible values for each 
feature varies drastically (if all the features need to be assessed equally):

Euclidean distance
Class org.apache.mahout.common.distance.

EuclideanDistanceMeasure

Formula
( ) ( ) ( )2 2 2
1 1 2 2 n nd a b a b a b= − + − + + −L

Euclideanx

y

Squared Euclidean distance has better performance than Euclidean distance. It saves 
computation time by not taking the square root as in the case of Euclidean distance:

Squared Euclidean distance
Class org.apache.mahout.common.distance.

SquaredEuclideanDistanceMeasure

Formula ( ) ( ) ( )2 2 2
1 1 2 2 n nd a b a b a b= − + − + −L
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Cosine distance is mostly suitable for text clustering. It disregards the length of  
the vectors:

Cosine distance
Class org.apache.mahout.common.distance.

CosineDistanceMeasure

Formula ( )
( ) ( )( )

1 1 2 2

2 2 2 2 2 2
1 2 1 2

1 n n

n n

a b a b a b
d

a a a b b b

+ + +
= −

+ + + + + +

L

L L

x

y

cosine

�

Manhattan distance is easy to generalize to higher dimensions:

Manhattan distance
Class org.apache.mahout.common.distance.

ManhattenDistanceMeasure

Formula
1 1 2 2 n nd a b a b a b= − + − + + −L

Manhattan
x

y

Tanimoto distance is also known as Jaccard distance. It captures information about 
the relative distance between two points and their angle:

Tanimoto distance
Class org.apache.mahout.common.distance.

TanimotoDistanceMeasure

Formula ( )
( ) ( )( ) ( )

1 1 2 2

2 2 2 2 2 2
1 2 1 2 1 1 2 2

1 n n

n n n n

a b a b a b
d

a a a b b b a b a b a b

+ + +
= −

+ + + + + + + − + + +

L

L L L
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Weighted distance measure gives weights for different dimensions to evaluate 
similarity:

Weighted distance
Class org.apache.mahout.common.distance.

WeightedEuclideanDistanceMeasure

org.apache.mahout.common.distance.
WeightedManhattanDistanceMeasure

Writing a custom distance measure
If the distance measures that are already available in Apache Mahout do not suit 
your problem domain, then you can come up with your own custom distance 
measures by following these steps:

•	 Implement the org.apache.mahout.common.distance.DistanceMeasure 
interface

•	 Provide custom distance logic in the distance (Vector v1 and Vector v2) 
method

K-Means clustering with MapReduce
The key strength of Apache Mahout lies in its ability to scale. This is achieved 
by implementing machine learning algorithms according to the MapReduce 
programming paradigm.

If your dataset is small and fits into memory, then you can run Mahout in local 
mode. If your dataset is growing and it comes to a point where it can't fit into 
memory, then you should consider moving the computation to the Hadoop cluster. 
The complete guide on Hadoop installation is given in Chapter 5, Apache Mahout in 
Production.

In this section, we will explain how the K-Means algorithm is implemented in 
Apache Mahout in a scalable manner.
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However, please note that it is not mandatory for you to thoroughly understand the 
MapReduce concept in order to use the algorithms in your applications. So, you can 
proceed with this section only if you are interested in understanding the internals.

Let's continue with the previous people size example, with height and weight as 
features. The data distribution (d1, d2, d3, and d4) and the initial centroids selected 
(c1, c2, and c3) are shown in the following image:

Weight

Height

d c1 3

d c1 2

d4

c3

c1
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MapReduce in Apache Mahout
In Apache Mahout, MapReduce tasks are implemented on top of the Apache 
Hadoop framework. The org.apache.hadoop.mapreduce.Job class handles the 
distribution of tasks across multiple nodes (distributed computation). HDFS is used 
to handle storage distribution.

When implementing the K-Means algorithm, the MapReduce phase is used 
iteratively until the given termination criteria (until convergence or until a  
given number of iterations) is reached.
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The Hadoop job segments the data points into independent HDFS blocks, which are 
processed by map tasks in a parallel way. In this scenario, assume that the dataset is 
segmented across nodes in the cluster by assigning d1 and d2 to node 1 and d3 and 
d4 to node 2, as shown in the following image:
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The map function
Datasets (d1 and d2 for node 1, and d3 and d4 for node 2) and initial centroids  
(c1, c2, and c3) are given as input to the map phase in the sequence file format.

During the map phase, distance is computed from each data point to all the initial 
centroids, and the data point is assigned to the closest centroid in order to find the 
associativity of the data points to the clusters. For example, d1c1 is less than d1c3 
and d2c2, so d1 is assigned to c1 as the intermediate result of the map phase.

The output is given as a key-value pair (key = centroid id and value = data 
point) to the reduce phase.

The reduce function
The data points that belong to a particular centroid are processed in a single node in 
the reduce phase. For example, intermediate results from the map phase (c2, d4 and 
c2, d2) are processed in node 2.

During the reduce phase, centroid points are recalculated using the average of the 
coordinates of all data points in that cluster. The related data points are averaged  
out to produce the new position of the centroid.

The new centroids are then fed back to the next iteration as the centroid vector.

Additional clustering algorithms
The K-Means algorithm is a simple and fast algorithm for clustering. However, 
this algorithm has its own limitations in certain scenarios. So, we will explain other 
clustering algorithms that are available in Apache Mahout here.

Canopy clustering
The accuracy of the K-Means algorithm depends on the number of clusters (K)  
and the initial cluster points that we randomly generated.

K-Means used org.apache.mahout.clustering.kmeans.RandomSeedGenerator 
to determine initial clusters randomly. However, with this approach, there is no 
guarantee about the time to converge, so it might take a long time for a large dataset 
to converge. Sometimes, premature convergence may occur due to the inability to 
pass a local optimum.
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As a solution, canopy clustering is used with K-Means clustering as the initial step to 
determine the initial centroids (without getting initial centroids randomly). This will 
speed up the clustering process for the K-Means algorithm and provide more accurate 
initial centroids. The execution steps for canopy clustering are given as follows:

1.	 Define two distance thresholds, namely T1 and T2, where T1 > T2.
2.	 Remove one data point from the dataset to be clustered to form a new 

canopy (this is the current centroid).
3.	 Evaluate the remaining data points in the dataset iteratively, as follows:

°° If the distance from the selected remaining data point to the current 
centroid (d) is less than T1, then assign it to the canopy

°° If d is also less than T2, then remove the data point from the dataset, 
as it cannot be a centroid itself

°° If d is greater than T1, then it is not a member of the canopy

These are some important parameters:

•	 T1, T2: These denote the distance thresholds as shown in the following image:

'

The following is the code example. Please refer to the code example for the K-Means 
algorithm for the complete Java code that includes input preparation and displaying 
the outcome:

// Run Canopy to get initial clusters
Path canopyOutput = new Path(output, "canopies");
CanopyDriver.run(new Configuration(),  
directoryContainingConvertedInput, canopyOutput, measure, t1, t2,  
false, 0.0, false);
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// Run K-Means using the initial clusters found using Canopy algorithm
KMeansDriver.run(conf, directoryContainingConvertedInput, new  
Path(canopyOutput, Cluster.INITIAL_CLUSTERS_DIR + "-final"),  
output, convergenceDelta, maxIterations, true, 0.0, false);

However, this algorithm has been deprecated in Mahout v0.10, so if you want to use 
this refer to the prior version (v0.9).

For more information, refer to https://mahout.apache.org/users/clustering/
canopy-clustering.html.

Fuzzy K-Means
The K-Means algorithm is for hard clustering. In hard clustering, one data point 
belongs only to one cluster. However, there can be situations where one point 
belongs to more than one cluster. For example, a news article may belong to both 
the Technology and Current Affairs categories. In that case, we need a soft clustering 
mechanism.

The Fuzzy K-Means algorithm implements soft clustering. It generates overlapping 
clusters. Each point has a probability of belonging to each cluster, based on the 
distance from each centroid.

The steps that need to be performed in order to implement Fuzzy K-Means 
clustering are as follows:

1.	 Initialize the K clusters.
2.	 For each data point, find the probability of data points that belong  

to a cluster.
3.	 Recompute the cluster's centroid based on the probability membership 

values of the data points to the clusters.
4.	 Iterate until convergence or a given termination criteria is met.

In this example, we apply the Fuzzy K-Means algorithm for a similar dataset as that 
used in the K-Means example (the size distribution of people, represented as their 
weights and heights) with one additional data point (38, 115) to represent someone 
who had medium weight and height, as shown in the following image.

Save the following details as fuzzykmeans.data in the fuzzykmeanstest directory:

22 80
25 75
28 85
55 150
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50 145
53 153
38 115

The following is the source code for the preceding example; please note that input 
preparation and displaying the outcome with the clusterdump utility is similar  
to that used in the K-Means algorithm and hence has been excluded to avoid 
duplicate code:

FuzzyKMeansDriver.run(conf, directoryContainingConvertedInput,  
clusters, output, convergenceDelta, maxIterations,2F, true, false,  
0, false);

Weight

Height

size

150

100

50

20 40 60 80

Some important parameters are:

•	 M – fuzzy ness argument: If m is closer to 1, the cluster center closest to the 
point considered is given more weight

•	 emitMostLikely: This emits the most likely cluster that the cluster point 
belongs to

The outcome of the preceding code example is given in the following figure. Note 
that the newly added data point (someone who had medium weight and height) 
belongs to cluster 3 in 0.52 probability and to cluster 1 in 0.47 probability, whereas 
other data points (people who are either large or small) belongs to nearly 0.9 to a 
particular cluster.
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For more information on the Fuzzy K-Means algorithm, refer to https://mahout.
apache.org/users/clustering/fuzzy-k-means.html.

Streaming K-Means
If the volume of data is too large to be stored in the main memory available, the 
K-Means algorithm is not suitable, as it's batch processing mechanism iterates over 
all the data points. Also, the K-Means algorithm is sensitive to the noise and outliers 
in data. Moreover, its random initialization step causes problems when it comes to 
computation time and accuracy.

Streaming K-Means algorithms has provided a solution for these problems by 
operating in two steps, as follows:

•	 The streaming step
•	 The ball K-Means step

The idea is to read data points sequentially, storing very few data points in memory. 
Then, after the first step, a better representative set of weighted data points is 
produced for further processing. The final K number of clusters is produced in the 
ball K-Means step. During the second step, potential outliers are eliminated.
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The streaming step
During the streaming step, the algorithm makes only one pass through the data and 
evaluates the data points as follows:

1.	 Select a data point randomly as the initial centroid (c1).
2.	 If d1 is a new point and c1 is the closest cluster to d1, measure the distance 

between d1 and c1 (d1c1):
1.	 If d1c1 is smaller than the distanceCutoff parameter, then assign 

the data point to c1.
2.	 If d1c1 is greater than the distanceCutoff, then create a new cluster 

with the data point.

3.	 For all the data points, follow the preceding steps.
4.	 This step will roughly cluster the input data points and obtain a set of 

weighted clusters for the ball K-Means step.

x

y

Distance cutoff

closest cluster (c )1

new point (d )1

d c1 1

The following are some important parameters to consider for the streaming step:

1.	 numClusters: This is an approximate value of the number of clusters 
produced in the streaming K-Means step. This is not the final number of 
clusters generated by the algorithm, and this number is subject to change.

2.	 distanceCutoff: This is a parameter that represents the value of the 
distance between a point and its closest centroid, after which the new point 
will definitely be assigned to a new cluster. This parameter will influence the 
number of clusters generated during this step.

3.	 beta (double): This is a constant parameter that controls the growth of 
distanceCutoff.
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4.	 clusterLogFactor: This is a runtime estimation of the number of clusters 
produced by the streaming step.

5.	 clusterOvershoot: This is a constant multiplicative slack factor that slows 
down the collapsing of clusters.

The ball K-Means step
The ball K-Means step is used to refine the outcome of the streaming step and to get 
the number of clusters required.

1.	 First, determine the initial centroids using K-Means++ or random 
mechanism.

2.	 Then, assign the data points to their closest clusters.
3.	 Trim the clusters. If the distance from the data point to its closest cluster is 

greater than the distance from the closest cluster to another cluster, then 
eliminate that data point as an outlier using the trim fraction. For example,  
if d1c1 > trimFraction* c1c2, then eliminate the d1 point in the following.

4.	 Form new centroids using trimmed clusters.

x

y

Trim fraction

d c1 1 c c1 2

d1

c -another centroid2

c -nearest centroid1

The following are some important parameters for the ball K-Means step:

•	 trimFraction: This parameter is used to eliminate outliers.
•	 kMeansPlusPlusInit: If true, the seeding method is K-Means++. If false, 

the seeding method is used to select points uniformly at random.
•	 correctWeights: If correctWeights is true, outliers will be considered 

when calculating the weight of centroids.
•	 numRuns (int): This is the number of runs to perform.
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Spectral clustering
The spectral clustering algorithm is helpful in hard, nonconvex clustering problems. 
It clusters points using the eigenvectors of matrices derived from data.

For more information, check out http://mahout.apache.org/users/clustering/
spectral-clustering.html.

Spectral vs. K- eansM

K- eansMSpectral

The command-line example can be found at https://mahout.apache.org/users/
clustering/spectral-clustering.html.

Dirichlet clustering
The Fuzzy K-Means and K-Means algorithms model clusters as spheres (circles in 
n-dimensional space.) K-Means assumes a common fixed variance. Further, K-Means 
does not model the data point distribution.

A normal data distribution should be there for the K-Means and Fuzzy K-Means 
algorithms to process effectively. If the data distribution is different, for example, 
an asymmetrical normal distribution (different standard deviations), the K-Means 
algorithm will not perform well and will not give good results.

Dirichlet clustering can be applied to model different data distributions (data points 
that are not in normal distribution) effectively. Dirichlet clustering fits a model over 
a dataset and tunes parameters to adjust the model's parameters to correctly fit 
the data. This approach is suitable to address the hierarchical-clustering problem. 
However, Apache Mahout's Dirichlet implementation is deprecated now and is not 
included after v8.0.
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Example scripts for different clustering algorithms can be found at the following 
locations:

•	 MAHOUT_HOME/ examples/ bin/cluster-reuters.sh (The K-Means,  
Fuzzy K-Means, LDA, and streaming K-Means algorithms)

•	 MAHOUT_HOME/ examples/ bin/cluster-syntheticcontrol.sh  
(canopy, K-Means, Fuzzy K-Means)

Text clustering
Text clustering is a widely used application of clustering that is used in areas such as 
records, management systems, searches, and business intelligence.

The vector space model and TF-IDF
In text clustering, the terms of the documents are considered as features in text 
clustering. The vector space model is an algebraic model that maps the terms in a 
document into n-dimensional linear space.

However, we need to represent textual information (terms) as a numerical 
representation and create feature vectors using the numerical values to evaluate the 
similarity between data points.

Each dimension of the feature vector represents a separate term. If a particular term 
is present in the document, then the vector value is set using the Term Frequency 
(TF) or Term Frequency-Inverse Document Frequency (TF-IDF) calculation. TF 
indicates the frequency at which the term appears in a given document. TF-IDF  
is an improved way of TF, which indicates how important a word to a document.

In order to facilitate the preceding concept, Apache Mahout uses the following classes:

•	 org.apache.mahout.vectorizer.DictionaryVectorizer.
createTermFrequencyVector

•	 org.apache.mahout.vectorizer.tfidf.TFIDFConverter.calculateDF

•	 org.apache.mahout.vectorizer.tfidf.TFIDFConverter.processTfIdf

www.it-ebooks.info

http://www.it-ebooks.info/


Clustering

[ 40 ]

N-grams and collocations
Even though we consider individual terms as features for clustering, there are 
situations where certain terms co-occur frequently and can be considered as a single 
term (for example, machine learning).

Apache Mahout provides a sound way to handle this issue with the N-gram concept 
during term vector creation. By default, bigrams are considered and you can change 
this using the configuration value for maxNGramSize.

For more details about N-grams and collocations in Apache Mahout, read https://
mahout.apache.org/users/basics/collocations.html.

Preprocessing text with Lucene
As a preprocessing step, we first need to tokenize the document using the following 
method in Apache Mahout:

•	 org.apache.mahout.vectorizer.DocumentProcessor.
tokenizeDocuments

During tokenization, we need to decide on the other text preprocessing steps.

Before generating term vectors, Apache Mahout applies some text preprocessing 
steps, such as stop word removal, lower case removal, and length-based filtering to 
improve the accuracy of the end result and reduce computation time, using org.
apache.lucene.analysis.Analyzer.

The following image shows a detailed example that demonstrates the vector space, 
TF-IDF, and preprocessing concepts:
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xy

.3

Generated TF-IDF vectors are given as input to the K-Means algorithm or any 
preferred clustering algorithm.

Text clustering with the K-Means algorithm
The following example demonstrates text document clustering using the K-Means 
algorithm in the command line. Wikipedia content is given in the text documents. 
The files are copied to HDFS and processed with Hadoop MapReduce.

A step-by-step guide to Hadoop installation is provided in Chapter 5, Apache 
Mahout in Production, so please refer to that guide in order to set up the Hadoop 
environment. You can try out the commands in local mode as well. To do this, 
perform the following steps:

1.	 Copy the files from the local filesystem folder to HDFS:
hdfs dfs -put kmeans/input/ kmeans/input
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2.	 Use the following command to display the copied files, as shown in the 
image that follows:
hdfs dfs -ls kmeans/input

3.	 Convert the input to sequence files:
mahout seqdirectory -i kmeans/input/ -o kmeans/sequencefiles

4.	 Use the preceding command to display sequence files, as shown in the 
following image:
hdfs dfs -text kmeans/sequencefiles/part-m-00000

Note that the filename is taken as the key, and the file's content is 
taken as the value for each document in a sequence file.

5.	 Generate TF-IDF vectors from sequence files:
mahout seq2sparse -i kmeans/sequencefiles -o kmeans/sparse
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The outcome and intermediate results during the TF-IDF vector creation are 
shown in the following image:

6.	 Execute the K-Means algorithm, as shown here:
mahout kmeans -i kmeans/sparse/tfidf-vectors/ -c kmeans/
cl -o kmeans/out -dm org.apache.mahout.common.distance.
CosineDistanceMeasure -x 10 -k 2 --clustering –cl

The outcome directory, which is kmeans.out in this case, will contain the 
files shown in the following image:

7.	 Display the results of the K-Means clustering:

mahout clusterdump -dt sequencefile -d kmeans/sparse/dictionary.
file-0 -i kmeans/out/clusters-1-final

The outcome of the clusterdump command is shown in the following image; 
the image shows the terms that belong to each cluster with their associated 
weights and the top terms for each cluster:

Result of the clusterdump command
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More details on the clusterdumper tool can be found at https://mahout.apache.
org/users/clustering/cluster-dumper.html.

Only the required command-line options are given for the preceding commands. 
Please refer to Mahout command-line help for complete reference.

Topic modeling
Topic modeling (Latent Dirichlet Allocation – CVB) is one way of implementing 
clustering for a text document collection. This technique is widely applied to 
categorize Google news and reviews.

In topic modeling, each document is represented as a distribution of topics  
(the doc-topic distribution). And essentially, a topic is a probability distribution  
over words (the topic-term distribution).

More details on topic modeling can be found at http://jayaniwithanawasam.
blogspot.com/2013/12/infer-topics-for-documents-using-latent.html.

Optimizing clustering performance
Developing a clustering algorithm without having any programming errors may 
not give you the expected results. There are many factors to consider based on the 
application's context and the requirements.

Selecting the right features
Selecting the right features requires a comprehensive knowledge of the applied 
domain. You can ensure that you select the right features to accurately represent  
the problem domain using the following techniques:

•	 Selecting and weighing features properly
•	 Normalizing dimensions when values are not comparable (For example, 

the number of bedrooms in a house and the land price in dollars are not 
comparable in their innate forms.)

•	 Using effective preprocessing mechanisms (custom Lucene analyzers and 
noise reduction)

•	 Selecting the suitable vector representation 
(SequentialAccessSparseVector, RandomAccessSparseVector or 
DenseVector)

•	 Normalizing data points to remove the effect of outliers in each dimension
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Selecting the right algorithms
An algorithm should be selected so that it naturally solves the given problem.  
For example, if your data does not fit into the normal distribution, then you might 
not need to consider the K-Means algorithm.

Selecting the right distance measure
Cluster quality is also dependent on the measure used to calculate the similarity 
between two feature vectors.

Apache Mahout already provides a number of distance measures. You need to 
carefully select the distance measure that best represents the problem of these 
distance measures.

If none of the existing distance measures satisfy the requirement at hand, implement 
a custom distance measure.

Evaluating clusters
You need to ensure that high intracluster similarity and low intercluster similarity 
are present once clustering is completed. This is achieved by measuring intercluster 
distance and intracluster distance.

The initialization of centroids and the number 
of clusters
You can try multiple random initializations before finalizing the initial centroids to 
avoid K-Means getting stuck in local optima.

The cost function can be used to decide the optimal number of clusters. The number 
of clusters can be decided by focusing on the purpose of clustering as well.

The initialization of centroids to optimal values is important to reduce the execution 
time by having fewer iterations.

Tuning up parameters
The use of machine learning algorithms frequently involves the careful tuning 
of learning parameters. If the K-Means algorithm takes longer than expected to 
converge, then you can tune the convergence delta and the number of iterations to 
find the optimal value for these parameters that gives reasonable results. The values 
are chosen mostly by trial and error.
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The decision on infrastructure
Ideally, increasing the number of the nodes should reduce the execution time. 
However, for small datasets, it can result in the under utilization of computation 
resources.

The following is a small checklist that you can use to ensure the quality of the 
clustering application:

•	 Did you select a distance measure that correctly distinguishes chosen 
features?

•	 Did you select the correct algorithm that is capable of clustering by 
accurately considering the distribution of the dataset?

•	 Did you make some effort to improve the weights or the scale of the better 
features relative to the features that are not discriminating well?

Summary
Clustering is an unsupervised learning mechanism that requires minimal human 
effort. Clustering has many applications in different areas, such as medical image 
processing, market segmentation, and information retrieval.

Clustering mechanisms can be divided into different types, such as hard, soft, flat, 
hierarchical, and model-based clustering based on different criteria.

Apache Mahout implements different clustering algorithms, which can be accessed 
sequentially or in parallel (using MapReduce).

The K-Means algorithm is a simple and fast algorithm that is widely applied. 
However, there are situations that the K-Means algorithm will not be able to cater 
to. For such scenarios, Apache Mahout has implemented other algorithms, such as 
canopy, Fuzzy K-Means, streaming, and spectral clustering.

Text clustering is an important area of clustering that requires special preprocessing 
steps, such as stop word removal, stemming, and TF-IDF vector generation. Topic 
modeling is a special case of text clustering.

There are several techniques that can be used to optimize cluster performance to 
get expected results, such as selecting the right features, distance measures, and 
algorithms, to name a few.
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Regression and Classification
This chapter explains the regression and classification technique in machine 
learning and its implementation using different machine learning algorithms in 
Apache Mahout. The machine learning theory behind the algorithm and real-world 
applications with example scripts are also explained.

In this chapter, we will cover the following topics:

•	 Supervised learning
•	 Target variables and predictor variables
•	 Predictive analytics techniques
•	 Classification versus regression
•	 Linear regression with Apache Spark
•	 Logistic regression with Stochastic Gradient Descent (SGD)
•	 Naïve Bayes algorithm
•	 Hidden Markov Models (HMMs)

Supervised learning
Supervised learning is a machine learning technique that requires labeled  
training data.

In supervised learning, algorithms model the relationship between features  
and labels during the learning phase. The training algorithm uses a known  
dataset (called the training dataset) to make predictions.

The data (including observations, measurements, and so on) is labeled with 
predefined classes.
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For example, let's say we are given a collection of balls of different sizes with 
category labels such as big and small attached to them; we should be able to 
categorize them using supervised learning by considering their attributes,  
such as radius and label values.

Target variables and predictor variables
There are two types of variables in classification and regression, as follows:

•	 Target variables: These are the variables that should be the output
•	 Predictor variables: These are the observations or the variables that are 

mapped to the target variable

The target variable represents the output or effect. The predictor variables represent 
the input or cause.

For example, in a loan approval scenario, the decision on approval (yes or no) is the 
target variable.

The characteristics or features that the previous decision is based on, such as age, 
marital status, outstanding debts, and annual salary are predictor variables.

The target variable is also known as the dependent variable. Predictor variables are 
also known as independent variables.

Predictive analytics' techniques
There are different types of predictive analytics techniques based on the method of 
analysis. The nature of the learning input and predicted outcome remains the same 
for all the techniques, which are explained in the sections that follow.

Regression-based prediction
Regression-based prediction is predicting the unknown value of a variable from the 
known value of another variable. We predict scores on one variable based on the 
scores of a second (or more) variable.

There are two methods of regression that are based on the outcome/target variable:

•	 Linear regression
•	 Logistic regression

An example of regression-based prediction is Stochastic Gradient Descent (SGD).

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 49 ]

Model-based prediction
In model-based prediction, we assume that the data follows a specific statistic model. 
By following this method, we can take advantage of the structure of the data by 
building a parametric model for a given data distribution.

An example of model-based prediction is Naïve Bayes.

Tree-based prediction
A tree-based prediction iteratively splits the outcome to different groups. It evaluates 
the similarity of outcomes in each group.

This method is relatively simple and easy. This has better performance in nonlinear 
settings. However, it is hard to work with tree-based prediction in uncertain situations.

Some examples of tree-based prediction are decision trees and random forests.

Classification versus regression
Methods for prediction can be divided into two general groups, based on the 
outcome of the prediction algorithm, as follows:

•	 When the data is discrete, we will refer to it as classification. Discriminant 
analysis and pattern recognition are the other similar terms used for 
classification.

•	 When the data is continuous, we will refer to it as regression. Other terms 
used for regression are smoothing and curve estimation.

Linear regression with Apache Spark
Linear regression is the most commonly used method for describing the relationship 
between predictors (or covariates) and outcomes.

Linear regression can solve problems that require a continuous target variable to 
predict real, valued outcomes. There can be multiple variables or features in the 
problem domain.

www.it-ebooks.info

http://www.it-ebooks.info/


Regression and Classification

[ 50 ]

How does linear regression work?
Linear regression focuses on finding optimal values for parameters (coefficients) to 
fit the best possible hyper plane to the training data.

Linear regression is approached as a minimization problem. The mean squared error, 
which is the difference between the expected outcome and the actual outcome for the 
training set, is minimized.

The squared error function is also known as the cost function. So, the goal is to 
minimize the cost function.

Each value of the parameter given in the cost function refers to one hypothesis 
function. The idea is to find the optimal hypothesis that has values for parameters 
which best minimize the cost function.

A real-world example
Now, let's go through a real-world scenario to further understand this algorithm  
and implement it using Apache Mahout.

The impact of smoking on mortality and different 
diseases
During observational studies using regression analysis, it has been found that 
tobacco smoking can cause mortality and diseases, such as bronchitis and 
emphysema.

Linear regression helps you to perform data analysis and come up with observations 
or insights, as follows:

•	 The impact of the socioeconomic status of a person, such as income and 
education, on mortality or diverse diseases

•	 The risk of mortality or getting different diseases for smokers
•	 The relationship between the number of cigarettes consumed per day  

and mortality
•	 The relationship between the number of cigarettes consumed per day  

and having different diseases, such as bronchitis and emphysema

An example outcome of linear regression analysis with one variable or observation 
(cigarette smoking frequency) is shown in the following image.
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After the analysis, it is evident that a higher cigarette smoking frequency has a 
higher risk of mortality.

Life span (years)

cigarette
smoking frequency
(number of cigarettes per day)

80

60

40

20

1 2 3 4 5 6

Linear regression with one variable and 
multiple variables
The following table contains some sample data on the impact of cigarette smoking 
on lifespan. Lifespan can be affected by several other factors such as a person's 
socioeconomic status, in addition to smoking.

Socioeconomic status is an economic and sociological collective measure of a person's 
work experience and of an individual's or family's economic and social position in 
relation to others, based on income, education, and occupation (refer to http://
en.wikipedia.org/wiki/Socioeconomic_status for more information regarding 
this).

Here, we can consider the cigarette smoking frequency and socioeconomic status 
(SES) as predictor variables and lifespan as the target variable.

We represent the socioeconomic status on a scale of 1 to 10, where 1 represents the 
lowest SES and 10 represents the highest SES.
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The following image shows the preceding scenario modeled in linear regression:

Training data

Learning algorithm

h

hypothesis

expected life span (y)
cigarette
smoking
frequency (x )1

socio-economic
status (x )2

The following table shows the impact of cigarette smoking on lifespan:

Cigarette smoking frequency

(per day) (x1)

Socioeconomic status 
(x2)

Lifespan 
(years)

(y)

10 2 43

20 1 30

2 10 70

5 5 54

0 10 98
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The following image shows a visual representation of the preceding scenario:

y

x2 x1
cigarette
smoking frequency

socio-economic
status

Life span
(years)

The integration of Apache Spark
In Chapter 1, Introducing Apache Mahout, we gave a brief introduction to Apache Spark 
integration with Apache Mahout and the problem that it is intended to address.

In this chapter, we will continue the linear regression code example with the 
integration of Apache Spark and Apache Mahout. Apache Spark's integration  
with Apache Mahout has been officially released with Mahout v0.10.

If you want to know more about the integration of Apache Spark with 
Mahout, go to http://www.slideshare.net/tdunning/whats-
new-in-apache-mahout.

Setting up Apache Spark with Apache Mahout
Before proceeding to the linear regression example, we need to download and set  
up Apache Spark with Apache Mahout by performing the following steps:

1.	 Download Apache Spark from https://spark.apache.org/downloads.
html.

The Apache Spark version you download here has to match the Apache 
Spark version that is mentioned in the Apache Mahout MAHOUT_HOME/
pom.xml file as shown here:

<spark.version>[Version_downloaded]</spark.version>
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2.	 Change the directory to the Spark downloaded directory and build using the 
following command:
sbt/sbt assembly

3.	 Switch the directory to downloaded the Spark directory and then start the 
Spark servers:
sbin/start-all.sh

Now, Apache Spark should be successfully running in http://
localhost:8080/, as shown in the following screenshot. Note the URL 
of Spark (for example, spark://jwithanawasam:7077 in the following 
screenshot):

4.	 Set the environment variables as follows:
export MAHOUT_HOME=[directory into which you downloaded Mahout]

export SPARK_HOME=[directory where you unpacked Spark]

export MASTER=[url of the Spark master]

5.	 Finally, change the directory to the MAHOUT_HOME directory path and type the 
following commands:
bin/mahout spark-shell

mahout> prompt screen should appear.

An example script
Before continuing to the code example, let's understand a few important concepts 
regarding Mahout Spark integration.
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Distributed row matrix
The Apache Mahout DSL has frequently used the concept of distributed memory to 
improve performance.

The distributed row matrix (DRM) is a matrix partitioned by rows and distributed 
in the memory of clustered computers. Matrix operations are executed on distributed 
memory in a parallel manner (for example, a matrix transpose).

Here's the code example for the previously mentioned scenario:

// Load the data
val drmData = drmParallelize(dense(
  (10, 2, 43),
  (20,   1, 30),
  (2,   10, 70),
  (5,   5, 54),
  (0,   10, 98),
  (45,   2,  20),
  (4,   4,  48),
  (7,   6,  65),
  (8,   7,  68)),
  numPartitions = 2);

// Extract target and predictor variables

val drmX = drmData(::, 0 until 2)
val y = drmData.collect(::, 2)

// Estimate the parameter vector
val drmXtX = drmX.t %*% drmX
val drmXty = drmX.t %*% y

val XtX = drmXtX.collect
val Xty = drmXty.collect(::, 0)

val beta = solve(XtX, Xty)

// Evaluation of the model
val yFitted = (drmX %*% beta).collect(::, 0)
(y - yFitted).norm(2)

// Refactored OLS function
def ols(drmX: DrmLike[Int], y: Vector) =  
solve(drmX.t %*% drmX, drmX.t %*% y)(::, 0)
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// Goodness of fit
def goodnessOfFit(drmX: DrmLike[Int], beta: Vector, y: Vector) = {
  val fittedY = (drmX %*% beta).collect(::, 0)
  (y - fittedY).norm(2)
}

// Adding bias term
val drmXwithBiasColumn = drmX.mapBlock(ncol = drmX.ncol + 1) {
  case(keys, block) =>

  val blockWithBiasColumn = block.like(block.nrow, block.ncol + 1)
  blockWithBiasColumn(::, 0 until block.ncol) := block
  blockWithBiasColumn(::, block.ncol) := 1

  keys -> blockWithBiasColumn
}

val betaWithBiasTerm = ols(drmXwithBiasColumn, y)
goodnessOfFit(drmXwithBiasColumn, betaWithBiasTerm, y)

val cachedDrmX = drmXwithBiasColumn.checkpoint()

val betaWithBiasTerm = ols(cachedDrmX, y)
val goodness = goodnessOfFit(cachedDrmX, betaWithBiasTerm, y)

cachedDrmX.uncache()

To execute the example, you need to give this code example in the Mahout shell.

An explanation of the code
The following is an explanation for the preceding code:

val drmData = drmParallelize(dense(
  (10, 2, 43),
  (20,   1, 30),
  (2,   10, 70),
  (5,   5, 54),
  (0,   10, 98),
  (45,   2,  20),
  (4,   4,  48),
  (7,   6,  65),
  (8,   7,  68)),
  numPartitions = 2);
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•	 drmParallelize: This loads the dataset to the clustered environment
In each row, give the values for the predictor variables in the first two 
columns and the target variable in the last column.
For example, in the first row, 10 (cigarette smoking frequency), 2 
(socioeconomic status)are predictor variable values and 43 (life span)  
is the value for target variable for a given instance.

•	 dense: This creates a dense matrix
val drmX = drmData(::, 0 until 2)

Here, we extract only the first two columns (cigarette smoking frequency 
and socioeconomic status), which are the predictor variables to one matrix 
(slicing).
The result is a DRM. Mahout's DSL will automatically optimize and 
parallelize operations on DRMs and runs them on Apache Spark.

val y = drmData.collect(::, 2)

Then, we extract the target variable.

•	 drmData.collect: This is the fetch to memory of the driver machine's 
memory
The outcome is:
y: org.apache.mahout.math.Vector =  
{0:43.0,1:30.0,2:70.0,3:54.0,4:98.0,5:20.0,6:48.0,7:65.0,8:68.0  
}

Estimating the parameter vector (β) is done using the ordinary least squares 
(OLS) method, as follows:

β is estimated as (XTX)−1XTy
val drmXtX = drmX.t %*% drmX
val drmXty = drmX.t %*% y

val XtX = drmXtX.collect
val Xty = drmXty.collect(::, 0)

•	 The .t() operation transposes a matrix and related to R %*% denotes matrix 
multiplication
This is the outcome for this:

XtX: org.apache.mahout.math.Matrix =  
{
  0  =>  {0:2683.0,1:289.0}
  1  =>  {0:289.0,1:335.0}
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}

Xty: org.apache.mahout.math.Vector = {0:3531.0,1:3164.0}

val beta = solve(XtX, Xty)

•	 solve: This computes the beta (the beta is a vector of unknown parameters)
This is the outcome for this:

beta: org.apache.mahout.math.Vector =  
{0:0.32931959905995917,1:9.160676524990066}

The implementation of the linear regression algorithm is completed now.
Note that all the complicated details related to distribution and 
parallelization are abstracted away from the user here.
The following is the evaluation of the model:

val yFitted = (drmX %*% beta).collect(::, 0)
(y - yFitted).norm(2)

yFitted: org.apache.mahout.math.Vector =  
{0:21.614549040579725,1:15.74706850618925,2:92.265404448020  
58,3:47.44998062025012,4:91.60676524990066,5:33.14073500767  
8295,6:37.9599844962001,7:57.26929634336011,8:66.7592924674  
1013}

The result is Double = 39.68364865597313.

•	 Goodness of fit:
The goodness of fit of a statistical model explains how well the model fits a 
set of observations

Mahout references
You can take a look at a similar example available at https://mahout.apache.org/
users/sparkbindings/play-with-shell.html.

The bias-variance trade-off
In this section, we will be giving a brief explanation on a few machine learning 
problems that can occur in practical scenarios, which might lead to inaccurate models.
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The problems are listed down, as follows:

•	 Over-fitting
•	 Under-fitting

Model over-fitting and under-fitting, which is shown in the following image, can 
occur due to the errors caused by the bias and variance of the model. The difference 
between the expected prediction and the actual prediction is the error due to bias. The 
inconsistency of a model prediction for a given data point is the error due to variance.

Usually, there will be a trade-off between minimizing bias and variance. A low 
variance with high bias can lead to model under-fitting, whereas a low bias with 
high variance can lead to over-fitting. Accordingly, the model is unable to generalize 
well for new observations because it is too specific.

under-fitting over-fitting

How to avoid over-fitting and under-fitting
You can perform the following steps to avoid model over-fitting and under-fitting:

1.	 Give an optimal number of iterations to train the model by minimizing errors 
(too many iterations can cause over-fitting and too few iterations can cause 
under-fitting).

2.	 Have the right number of features (too many features leads to over-fitting,  
as it fails to generalize new/unseen observations).

3.	 Have sufficient training data (too little training data along with a high 
number of features can lead to over-fitting).

4.	 Add regularization terms (keep all the features but reduce the values of  
the parameters).

These issues apply to logistic regression as well, which we will explain in the  
next section.
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Logistic regression with SGD
Logistic regression solves problems that require the target variable to be a discrete 
value / categorical target variable. For example, a person's gender (male or female) 
can be a discrete output variable.

Even though a continuous outcome variable generated in linear regression can be 
converted to a categorical variable, it is not advisable to do so as it can drastically 
reduce the precision of the results.

Logistic regression can be applied in any of the following situations:

•	 When there is a nonlinear relationship between the predictor variables  
and the target variable

•	 When the variance of errors is not constant

The fundamental principle behind the logistic regression algorithm (using the 
maximum likelihood estimation) is dissimilar to that of linear regression.

In its basic form, logistic regression estimates the probability of an event occurring. 
Logistic regression generally uses conditional maximum likelihood estimation. 
Parameters (w) that make the probability of the observed (y) values of the training 
data the highest are selected, when (x) observations are given.

Predictor variables can be numerical or categorical. This algorithm is included only 
in Apache Mahout v0.9 (not in Apache Mahout v1.0).

Logistic functions
Logistic regression is built on the logistic function shown in the following image 
(Logistic function). Here, only a single input value (I) is given on the x.

In logistic regression, there can be multiple input variables. Moreover, it contains 
coefficients for each input variable.
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Minimizing the cost function
To classify data with high accuracy, the optimal coefficients (β) to each input variable 
should be assigned.

If the difference between the observed and actual probabilities (cost) is low, then 
we can consider the model to be accurate. We can determine the values for the 
coefficient (β) by minimizing the cost function.

Minimizing the cost function is achieved using SGD, which is also known as the 
Online Gradient Descent. The coefficients are updated iteratively while minimizing 
the cost and improving accuracy.

SGD has become popular in the machine learning community due to its scalability. 
SGD uses a constant amount of memory, irrespective of the input training dataset.

So, even though Mahout's SGD implementation is sequential, it claims to have a 
significant performance.

If the number of the training data points is large, then it is advisable to use SGD 
instead of Gradient Descent (GD) as SGD converges much faster than GD.

However, the performance of SGD comes at the cost of accuracy, as due to its 
stochastic nature, as error function is not minimized optimally.

This algorithm successfully pertains to large-scale and sparse machine learning 
problems in text classification and natural language processing.
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Multinomial logistic regression versus binary 
logistic regression

•	 Binary logistic regression: In binary logistic regression, the dependent 
variable is binary. The number of available categories is restricted to two.
Gene-based cancer classification is an example of binary logistic regression 
(this is shown in the following image).
Cancer classification and prediction has become one of the most important 
applications of DNA microarray due to their capabilities in cancer diagnostic 
and prognostic predictions.

•	 Multinomial logistic regression: Problems with more than two categories 
are referred to as multinomial logistic regressions.

Insurance risk classification is an example of multinomial logistic regression.
Risk classification (high risk, medium risk, and low risk) is an important part 
of the actuarial process in insurance companies. It helps set fair premiums 
and it is capable of classifying the clients according to their behavioral 
patterns.
Furthermore, credit risk analysis (credit models) is used to evaluate the risk 
of consumer loans, evaluate loan applicants, and credit scoring based on 
historical and existing client bank transactions.

probability not cancerous
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model output

x
x

x x

x x

x

x

x

x

x
x

x
x
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A real-world example
We can use logistic regression to predict whether a patient has a given disease,  
based on the available symptoms and other circumstances, such as age and heredity.

In this example, we will see how we can predict whether the patient has a risk of 
having cancer (breast cancer, for example) based on their gene information.

Gene selection is performed with thousands of genes (shown in the next image)  
to find potential cancer-causing genes.

The following is a sample dataset that we will be using in our example; this should 
be available in the .csv format (for example, save the following table as gene.csv):

gene1 gene2 gene3 gene4 Has cancer?

1 0 1 0 1

1 0 1 0 1

1 1 1 1 0

1 1 1 1 0

0 1 1 1 0
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The logistic function for the preceding scenario is shown in the following image:
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An example script
The following is the Mahout command for the logistic regression algorithm:

./mahout  trainlogistic --input "gene.csv" --output ./model --target 
HasCancer --categories 2  --predictors gene1 gene2 gene3 gene4  --types 
numeric --features 4

The important parameters for the trainlogistic function are explained in the 
following table:

Parameter name Description
input This is the input dataset (file resource) 
output The model is saved as the name given 

here
target This is the target variable field
categories This refers to the number of categories 

or labels 
predictors These are the predictor variable fields
types This is the list of types of the predictor 

variables (numeric, word, and text)
features This is the number of features
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The outcome of the execution of the trainlogistic method is shown in the 
following image:

Testing and evaluation
Now, let's evaluate the model generated using the same dataset, using the  
following command:

./mahout runlogistic --input "gene.csv" --model ./model --auc –confusion

The following image shows the output result of the runlogistic method:

There are several methods to access the accuracy of the model.

The confusion matrix
A confusion matrix (shown in the following image) is a table that is used to describe 
the performance of a classification model on a set of test data for which the true 
values are known.

p
(Actual)

n
(Actual)

p'
(Predicted)

n'
(Predicted)

True NegativeFalse Positive

False NegativeTrue Positive
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The area under the curve
Accuracy is measured by the area under the Receiver Operating Characteristic 
(ROC) curve measure.

A perfect model will achieve a true positive rate of 1 and a false positive rate of 0.

A perfect model will score an Area Under the Curve (AUC) of 1, while random 
guessing will score an AUC of around 0.5. In practice, all models will fit somewhere 
in between.

The Naïve Bayes algorithm
The Naïve Bayes is a probabilistic classifier based on Bayes' theorem. This assumes 
strong (naive) independence assumptions between the features.

As long as features are not correlated and not repetitive, both Naïve Bayes and 
logistic regression will perform in a similar manner. However, when features are 
correlated and repetitive, the Naïve Bayes algorithm behaves differently due to its 
conditional independence assumption.

The Bayes theorem
This is the mathematical equation for the Bayes theorem:

( ) ( ) ( )
( )
|

|
P B A P A

P A B
P B

=

Bayes theorem

Here, A and B are events:

•	 P(A) and P(B) are the probabilities of A and B, independent of each other
•	 P(A|B), a conditional probability, is the probability of A given that B is true
•	 P(B|A), is the probability of B given that A is true

Text classification
Text classification is the task of classifying documents by their content (by the words 
that they contain). The best-known current text classification problem is e-mail spam 
filtering.
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Did you know?
Spam filtering using text classification
Naive Bayes classifiers are a popular statistical technique of e-mail 
filtering. They typically use bag-of-words features to identify spam 
e-mails, an approach that is commonly used in text classification.

•	 By volume, spam filtering is easily the biggest application of text 
classification

•	 Extract features from the header and content
•	 Misspellings, character set choice, and HTML games mislead the extraction 

of words
•	 It also puts content in to images
•	 Forge headers (in order avoid identification but also interfere with 

classification)

An example spam e-mail is shown in the following image:
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Naïve assumption and its pros and cons in 
text classification
Naive Bayes is fast and easy to implement. However, individual words in a textual 
content are not independent of each other in a realistic scenario.

Accordingly, even though the Naïve assumption in the Naïve Bayes algorithm 
enables efficiency in processing, it adversely affects the quality or accuracy of results.

Improvements that Apache Mahout has made 
to the Naïve Bayes classification
Apache Mahout has provided simple heuristic solutions to address the problems,  
as follows:

1.	 Multinomial Naive Bayes does not model text well in terms of handling  
word occurrence dependencies.

2.	 When one class has more training examples than another, Naive Bayes 
selects poor weights for the decision boundary (the bias effect) or the 
problem of uneven training data.

A text classification coding example using  
the 20 newsgroups' example
Let's take a look at an example with 20 newsgroups.

Understand the 20 newsgroups' dataset
The 20 newsgroups collection has been used in many experiments related to text 
classification. This has around 20,000 documents that belong to 20 newsgroups.
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The following screenshot shows the organization of the newsgroups (categories):

The 20 newsgroups dataset consists of messages, one per file. Here's one  
such message:
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Execute the complete example script using the following commands:

cd MAHOUT_HOME/examples/bin/

./classify-20newsgroups.sh

Text classification using Naïve Bayes – a 
MapReduce implementation with Hadoop
The instructions for setting up Hadoop are given in Chapter 5, Apache Mahout in 
Production, of this book.

1.	 Set the HADOOP_HOME variable to the Hadoop installation folder:
HADOOP_HOME="/home/jayani/hadoop-2.6.0"

2.	 Set the Hadoop configuration paths:
HADOOP_CONF_DIR="/home/jayani/hadoop-2.6.0/etc/hadoop"

You can add MAHOUT_HOME/bin as the PATH variable for ease of use,  
as follows:
export PATH=$PATH:/home/jayani/mahout_home/bin

3.	 Copy data to HDFS using Hadoop's dfs put command.
4.	 Create sequence files:

mahout seqdirectory -i 20news-all -o 20news-seq –ow

The following image shows the generated sequence files:

You can display the content in the sequence file using the following command:

hdfs dfs -text 20news-seq/part-m-00000
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An example key, value pair is shown in the following screenshot:

1.	 Convert sequence files to vectors:
mahout seq2sparse -i 20news-seq -o 20news-vectors  -lnorm -nv  -wt 
tfidf

The files generated from the preceding step are shown in the following 
screenshot:
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2.	 Split the training and test datasets:
mahout split -i 20news-vectors/tfidf-vectors --trainingOutput 
20news-train-vectors --testOutput 20news-test-vectors 
--randomSelectionPct 40 --overwrite --sequenceFiles -xm sequential

3.	 Train using the Naïve Bayes algorithm:
mahout trainnb -i 20news-train-vectors -el -o model -li labelindex 
–ow

4.	 Test the generated model:

mahout testnb -i 20news-test-vectors -m model -l labelindex -ow -o 
20news-testing

The output of the preceding step is shown in the following screenshot:

The different measures mentioned in the outcome to evaluate the model are 
mentioned here:

•	 Kappa statistics: The Kappa statistic is a metric that compares an observed 
accuracy with an expected accuracy

•	 Reliability: This is the extent to which a measurement gives results that  
are consistent

•	 Precision: This is the fraction of retrieved instances that are relevant
•	 Recall: This is the fraction of relevant instances that are retrieved
•	 F1 measure: This is a measure that combines precision and recall
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Further, you can display the label index using the following command:

mahout seqdumper -i labelindex

The label index displayed using the preceding command is shown in the  
following screenshot:

You can use the vectordumper command to display the content of TF-IDF vectors:

mahout vectordump -i 20news-vectors/tfidf-vectors

Text classification using Naïve Bayes – the 
Spark implementation
We have mentioned how to set up Spark in detail in the previous section (using linear 
regression). Here are the steps that you need to perform in order to set up Spark:

1.	 Set the SPARK_HOME path.
2.	 Start the Spark server.
3.	 Train the dataset and generate the model:

mahout spark-trainnb -i 20news-train-vectors -el -o model -li 
labelindex -ow

4.	 Test and evaluate the dataset:

mahout spark-testnb -i 20news-train-vectors -m model -l labelindex 
-ow -o 20news-testing
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Apache Mahout contains an example script, which includes all the steps in one  
go in the following path.

It contains several classification algorithms such as CNaiveBayes, Naïve Bayes,  
and SGD.

To execute the script, use the following command:

MAHOUT_HOME/examples/bin/classify-20newsgroups.sh

The Markov chain
The Markov chain is a finite state machine with probabilistic state transitions.

It is a probabilistic method that depends on the current state to predict the next state. 
For the Markov chain to be successful, the current state has to be dependent on the 
previous state in some way.

It makes the Markov assumption that the next state only depends on the current state 
and is independent of previous history.

Hidden Markov Model
A Hidden Markov Model (HMM) is a statistical Markov model in which the system 
being modeled is assumed to be a Markov process with unobserved (hidden) states.

HMM is a generative probabilistic model. HMM is used with data that is represented 
as a series of states from a series of observations. The transitions between hidden 
states are assumed to have the form of a (first-order) Markov chain.

HMM is mostly applied in temporal pattern recognition problems.
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A real-world example – developing a POS 
tagger using HMM supervised learning
To demonstrate the HMM algorithm, let's take Part Of Speech (POS) tagging as an 
example.

POS tagging
POS tagging is important for many Natural Language Processing (NLP) tasks, such 
as word sense disambiguation, syntax parsing, machine language translation, and 
Named Entity Recognition (NER). In POS tagging, we identify words as part of 
speech, such as nouns, verbs, adjectives, and adverbs.

This is a key step in the lowest level of syntactical analysis.

POS tagging can be done using rule-based methods and learning-based methods. 
However, learning-based approaches have been found to be more effective.

The following image contains an example sentence with POS tags:

A bird flies fast

DT NN VB JJ
(Determiner) (Noun) (Verb) (Adjective)

Annotating a sequence of words with their POS tags:

•	 Input: A bird flies fast
•	 Output: A (DT) bird (NN) flies (VB) fast (JJ)
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HMM for POS tagging
In HMM, POS tagging is considered to be a sequence labeling problem. The sequence 
of tags is viewed as a Markov chain.

(DT)
Determiner

(NN)
Noun

(VB)
Verb

start

0.1

0.05

0.9
0.05

0.9
0.5

stop

0.1

0.95

As shown in the previous image, we make the assumption that a word's tag only 
depends on the previous tag. We don't get to observe the actual sequence of states 
(POS tags). Somewhat, we can only observe some of the outcome generated by each 
state (words).

Before moving onto the code examples, let's understand some important concepts 
about HMMs, as follows:

•	 Hidden states: Hidden states are unobserved states. In POS tagging content, 
hidden states are POS tags for each word.

•	 Observed states: Observed states are the output or are dependent on the 
hidden state. In POS tagging, words form the output.

•	 Transition matrix: All the possible transition probabilities from one hidden 
state to the next hidden state are represented in the transition matrix. For 
example, in POS tagging, the transition matrix consists of the probabilities of 
the next POS tag given the previous POS tag.
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•	 Emission matrix: The probabilities of observed states that are given a hidden 
state are represented in an emission matrix. In POS tagging, the emission 
probability is the probabilities of the possible observed states (words), given 
a hidden state (a POS tag).

The preceding concepts are represented in the following image of a POS-tagging 
scenario:

Hidden
(postags)

Observed
(words)

Hidden

Observed

transitions

Emissions

JJVBNNDT

A Bird Flies Fast

HMM implementation in Apache Mahout
Apache Mahout has different implementations of the HMM algorithm, as follows:

•	 Training
°° Supervised

HMM

°° Unsupervised

Viterbi training
Baum Welch training

•	 Evaluation
°° Viterbi decoding
°° Forward/backward (compute likelihood)
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HMM supervised learning
Apache Mahout contains an example on POS tagging using the supervised HMM 
algorithm as given as follows under Mahout examples:

•	 Package: org.apache.mahout.classifier.sequencelearning.hmm
•	 Class: POStagger.java

Code example:

1.	 Train the model:
HmmModel  
org.apache.mahout.classifier.sequencelearning.hmm.HmmTrainer.train  
SupervisedSequence(int nrOfHiddenStates, int nrOfOutputStates,  
Collection<int[]> hiddenSequences, Collection<int[]>  
observedSequences, double pseudoCount)

Create a supervised initial estimate of an HMM model based on a number of 
sequences of observed and hidden states.

The important parameters
Important parameters for HMM supervised learning algorithm is given in the 
following table:

Parameter name Description

nrOfHiddenStates The total number of hidden states

nrOfOutputStates The total number of output states

hiddenSequences A collection of hidden sequences to use for 
training (tags are given an ID)

observedSequences A collection of the observed sequences to 
use for training, associated with hidden 
sequences (words are given an ID)

pseudoCount The value that is assigned to nonoccurring 
transitions in order to avoid zero 
probabilities
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Returns
An initial model using the estimated parameters (HmmModel).

Test the model using HMMEvaluator.

The HMMEvaluator class offers several methods to evaluate a HMM model.

The following use cases are covered:

1.	 Generate a sequence of output states from a given model (prediction).
2.	 Compute the likelihood that a given model generated a given sequence of 

output states (a model likelihood).
3.	 Compute the most likely hidden sequence for a given model and a given 

observed sequence (decoding) using the Viterbi algorithm.

The following screenshot contains the console output of the HMM POS  
tagging example:

The Baum Welch algorithm
The Baum Welch algorithm is an unsupervised learning mechanism. It is used 
to estimate the parameters of the model. This sets the emission probability and 
transmission probabilities using the iterative expectation maximization algorithm.

When given only the observed states of the model, the Baum Welch algorithm gives 
the following outcomes:

•	 Most likely hidden transition probabilities
•	 Most likely set of emission probabilities
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A code example
1.	 Prepare the input data:

echo "0 1 2 2 2 1 1 0 0 3 3 3 2 1 2 1 1 1 1 2 2 2 0 0 0 0 0 0 2 2 
2 0 0 0 0 0 0 2 2 2 3 3 3 3 3 3 2 3 2 3 2 3 2 1 3 0 0 0 1 0 1 0 2 
1 2 1 2 1 2 3 3 3 3 2 2 3 2 1 1 0" > hmm-input

2.	 Train the model:
$ export MAHOUT_LOCAL=true

$ $MAHOUT_HOME/bin/mahout baumwelch -i hmm-input -o 
hmm-model -nh 3 -no 4 -e .0001 -m 1000

The important parameters
Important parameters for Baum-Welch algorithm is given in the following table:

Parameter name Description
-i Input
-o Output
-nh The number of hidden states
-no The number of observed states
-e The convergence threshold
-m Maximum number of iterations

The following screenshot shows the output of the training algorithm:

The Viterbi evaluator
Once you have trained HMM using any of the preceding methods, use the Viterbi 
decoding algorithm to compute the most likely sequence of states, which may have 
generated your observations.
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The transition probabilities for the hidden part of your model and the emission 
probabilities for the visible outputs of your model have to be known in order to 
apply Viterbi evaluation on the data.

This is used in the HMMEvaluator.java class for model evaluation purposes.

•	 Project: Mahout-core
•	 Package: org.apache.mahout.classifier.sequencelearning.hmm
•	 Class: HMMEvaluator.java

In the POS scenario, this refers to tagging each token (word) in a sequence with a 
label (a POS tag).

In a POS scenario, we now turn to the problem of finding the most likely tag 
sequence for an input sentence.

The Apache Mahout references
•	 (HMM Baum Welch): https://mahout.apache.org/users/

classification/hidden-markov-models.html

Summary
In this chapter we learned that classification and regression are supervised learning 
problems, which require labeled data. Predictor variables and output variables 
should be defined to come up with a model during the training phase.

We also saw that supervised learning can be achieved using different techniques, 
namely model-based, regression-based and tree-based techniques.

Regression can be divided into two categories based on the outcome of the 
algorithm, that is linear regression and logistic regression.

We saw that text classification is an important application and this is explained  
using the Naïve Bayes algorithm.

In the next chapter, we will discuss the recommendation techniques using  
Apache Mahout.
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Recommendations
In this chapter, we will cover the recommendation techniques used in  
Apache Mahout. We will discuss the related MapReduce- and Spark-based 
implementations with respect to a real-world example, with Java code examples  
as well as command-line executions.

In this chapter, we will cover the following topics:

•	 Collaborative versus content-based filtering
•	 User-based recommenders
•	 Data models
•	 Similarity
•	 Neighborhoods
•	 Recommenders
•	 Item-based recommenders with Spark
•	 Matrix factorization-based recommenders

°° SVD recommenders
°° ALS-WS

•	 Evaluation techniques
•	 Recommendation tips and tricks

"A lot of times, people don't know what they want until you show it to them."

                                                                                               – Steve Jobs
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Before we proceed with the chapter, let's think about the significance of the 
preceding quote for a moment.

•	 How many times have you come across relevant items to buy, which were 
suggested by Amazon recommendations?

•	 How many times have you found your friends when suggested by Facebook, 
which you did not notice earlier?

•	 How many videos have you watched when recommended by YouTube, 
which you ultimately found to be useful later?

The volume of available information is growing at an alarming rate.

By 2014, Facebook had around 1.35 billion active users. The number of electronic 
items itself is around 24 million in Amazon. There are approximately 9,796 movies 
on Netflix.

Consequently, filtering out relevant information is essential to make the right 
decisions and realize new information.

Collaborative versus content-based 
filtering
There are two main approaches you can take when it comes to filtering information.

Content-based filtering
Content-based filtering is an unsupervised mechanism based on the attributes of the 
items and the preferences and model of the user.

For example, if a user views a movie with a certain set of attributes, such as genre, 
actors, and awards, the systems recommend items with similar attributes. The 
preferences of the user (for example, previous "likes" for movies) are mapped with 
the attributes or features of the recommended item.

User ratings are not required in this approach. However, this approach requires 
considerable effort when it comes to feature or attribute extraction, and it is also 
relatively less precise than collaborative filtering approaches, which we will  
discuss later.
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Collaborative filtering
Collaborative filtering approaches consider the notion of similarity between items 
and users. The features of a product or the properties of users are not considered 
here, as in content-based filtering.

As shown in the following image, you must be familiar with statements such  
as "people who bought this item also bought.." and "people who viewed this  
item also viewed…," which represent the collaborative filtering approach in  
real-world applications.

In collaborative filtering, for each item or user, a neighborhood is formed with 
similar related items or users. Once you view an item, recommendations are  
drawn from that neighborhood.

The collaborative filtering approach uses historical data on user behavior, such as 
clicks, views, and purchases, to provide better recommendations.

Collaborative filtering can be achieved using the following techniques.

•	 Item-based recommendations
•	 User-based recommendations
•	 Matrix factorization-based recommendations

Apache Mahout has implemented machine learning algorithms to enable 
collaborative filtering approaches. So, in this chapter, we will mainly discuss  
this approach as opposed to content-based approaches.
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Hybrid filtering
If both content-based and collaborative filtering approaches are used at the same 
time to provide recommendations, then the approach is known as hybrid filtering.

User-based recommenders
In user-based recommenders, similar users from a given neighborhood are identified 
and item recommendations are given based on what similar users already bought or 
viewed, which a particular user did not buy or view yet.

For example, as shown in the following figure, if Nimal likes the movies Interstellar 
(2014) and Lucy (2014) and Sunil also likes the same movies, and in addition, if 
Sunil likes The Matrix (1999) as well, then we can recommend The Matrix (1999)  
to Nimal, as the chances are that Nimal and Sunil are like-minded people.

The Matrix (1999)

Lucy (2014)

Lucy (2014)

Interstellar (2014)

Interstellar
(2014)

likes

likes

likes

likes

likes

Like-minded

Sunil

Recommend

Nimal
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A real-world example – movie 
recommendations
Let's explain this approach using a real-world example on a movie recommendation 
site, as shown in the following figure:

user 01

Sanduni
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6

user 02
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Users who watched the movies (items) rated them according to their preferences. 
The rating is a value between 1 (lowest) and 10 (highest).

The user, item, and preferences (ratings) information is given in the following  
table; you need to save this data as movies.csv in order to execute the example  
that follows:

User Item Rating

1 1 10

1 2 6

1 3 5

2 1 4

2 2 5

2 3 10

2 4 4

3 1 5

3 4 8

3 5 9

3 7 10

4 1 10

4 3 6

4 4 9

4 6 8

5 1 8

5 2 6

5 3 4

5 4 8

5 5 7
5 6 8
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The Java code example for user-based recommendations is given as follows:

DataModel model = new FileDataModel (new File("movie.csv"));

UserSimilarity similarity = new PearsonCorrelationSimilarity (model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood (2, 
similarity, model);

Recommender recommender = new GenericUserBasedRecommender (model, 
neighborhood, similarity);

List<RecommendedItem> recommendations = recommender.recommend(3, 2);

for (RecommendedItem recommendation : recommendations) {
  System.out.println(recommendation);
}

In this example, we need to get the top two recommendations for user 03 (Nimal). 
User 03 liked the following movies, with the given ratings in brackets:

User 3 > Item 1 (5), Item 4 (8), Item 5 (9), Item 7 (10)

Here, we can see that user 04 and user 05 share some similar interests (Item 01 and 
Item 04) with user 03. So, we assume that user 03 might like the other items that 
user 04 and user 05 likes, which user 03 has not tried out before. Accordingly, we 
recommend Item 06 and Item 03.

User 4 > Item 1, Item 4, Item 6 (8), Item 3 (6)
User 5 > Item 1, Item 2, Item 3 (4), Item 4, Item 5, Item 6 (8)

This shows the result of the code example:

RecommendedItem[item:6, value:8.0]
RecommendedItem[item:3, value:5.181073]

The value of item:6 is higher than that of item:3 because both User 4 and User 5 
have rated item:6 higher.

Even though user 01 and user 02 have some common interests (Item 01 and  
Item 04) with user 03, they are not considered due to low ratings given to these  
co-occurring items.

When we walk-through this code, we learn a few significant abstractions that have 
been provided by Apache Mahout.
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Data models
A data model represents how we read data from different data sources. In our code 
example, we used FileDataModel, which takes comma-separated values (CSV)  
as input.

In addition, Apache Mahout supports the following input methods:

•	 JDBCDataModel: This method reads from the JDBC driver
•	 GenericDataModel: This is populated through Java calls
•	 GenericBooleanPrefDataModel: This uses the given user data, which is 

suitable for small experiments

The following is the code example with GenericDataModel:

// Preferences for all users
FastByIDMap<PreferenceArray> userData=new  
FastByIDMap<PreferenceArray>();

// Preferences for user 1
List<Preference> prefsUser1=new ArrayList<Preference>();
prefsUser1.add(new GenericPreference(1,1,10));
prefsUser1.add(new GenericPreference(1,4,9));

// Preferences for user 2
List<Preference> prefsUser2=new ArrayList<Preference>();
prefsUser2.add(new GenericPreference(2,1,10));

// Preferences for user 3
List<Preference> prefsUser3=new ArrayList<Preference>();
prefsUser3.add(new GenericPreference(3,1,10));
prefsUser3.add(new GenericPreference(3,2,8));
prefsUser3.add(new GenericPreference(3,3,5));

// Add preferences for all users
userData.put(1,new GenericUserPreferenceArray(prefsUser1));
userData.put(2,new GenericUserPreferenceArray(prefsUser2));
userData.put(3,new GenericUserPreferenceArray(prefsUser3));

DataModel model = new GenericDataModel(userData); 
// Get possible unseen preferred items for user 2
CandidateItemsStrategy strategy=new  
SamplingCandidateItemsStrategy(1,1);
FastIDSet candidateItems=strategy.getCandidateItems(2,new  
GenericUserPreferenceArray(prefsUser2),model);
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for (Long candidateRecommendation : candidateItems) {
  System.out.println("Candidate item: " +  
  candidateRecommendation);
}

The userData variable contains preferences of all the users for the items available 
along with their ratings. PreferenceArray is a memory-efficient way of having a 
collection of preferences for each user. Preference contains a user's preference for 
an item with the preference value (rating). You can filter out the considered items 
and users for result candidate items using CandidateItemStrategy.

The result for the preceding code example is given as follows:

Candidate item: 2
Candidate item: 3
Candidate item: 4

As you can see from the result, items 2, 3, and 4 are recommended for user 2, as 
these are the items that user 2 has not rated but users with similar preferences to 
user 2 (user 1 and user 2) have rated.

The similarity measure
Similarity represents the similarity between two users in user-based 
recommendations or the similarity between two items in item-based 
recommendations.

Two users can be considered to be similar if the distance or angle between them is 
small in the user – item space. An example of this is shown in the following figure:

Interstellar (2014)

Lucy (2014)

likes

likes

Nimal

Sunil

Euclidean Distance Similarity

cosine similarity
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In our example, we have used the PearsonCorrelationSimilarity measure to  
find similarity between two users. Some other available similarity measures are 
listed as follows:

•	 EuclideanDistanceSimilarity: This measures the Euclidean distance 
between two users or items as dimensions and preference values given will 
be values along those dimensions. EuclideanDistanceSimilarity will not 
work if you have not given preference values.

•	 TanimotoCoefficientSimilarity: This is applicable if 
preference values consist of binary responses (true and false). 
TanimotoCoefficientSimilarity is the number of similar items two users 
bought or the total number of items they bought.

•	 LogLikelihoodSimilarity: This is a measure based on likelihood ratios. 
The number of co-occurring events, in this context, the number of times 
either users or items that occurred together and the number of times either 
users or items that do not occur together, are considered for evaluating 
similarity.

•	 SpearmanCorrelationSimilarity: In SpearmanCorrelationSimilarity, 
the relative rankings of preference values are compared instead of preference 
values.

•	 UncenteredCosineSimilarity: This is an implementation of cosine 
similarity. The angle between two preference vectors is considered for 
calculation.

When defining similarity measures, you need to keep in mind that not all datasets 
will work with all similarity measures. You need to consider the nature of the dataset 
when selecting a similarity measure.

Also, to determine the optimal similarity measure for your scenario, you need to 
have a good understanding of the dataset.

Trying out different similarity measures with your training dataset is essential to 
find the optimal similarity measure.

The neighborhood
Using the selected neighborhood algorithm, we can compute the "neighborhood" of 
users for a given user. This neighborhood can be used to compute recommendations.
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An example of a movie recommendation scenario is given in the following figure:

Interstellar
(2014)

Lucy (2014)

likes

likes

Find similar users for Nimal

Similarity measure

Abi

Roshan

Sunil

Nimal

k=2

We have used the nearest neighbour algorithm in the preceding example.

•	 Nearest neighbour algorithm: This calculates a neighborhood comprising  
of the nearest N users to a given user

•	 ThresholdUserNeighborhood: This calculates a neighborhood comprising  
of all the users whose similarity to the given user is the same as or outstrips  
a given threshold

Recommenders
Given the data model neighborhood and similarity, the selected Apache Mahout 
recommender estimates similar items for unseen or new items for the user.

Different recommenders such as GenericUserBasedRecommender, 
GenericItemBasedRecommender, and SVDRecommender are explained in  
this chapter in detail.

Evaluation techniques
A good recommender should be able to infer the items that users are likely to be 
interested in.
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There are two different methods to evaluate the quality of a recommender for a given 
dataset, as follows:

•	 Prediction-based
•	 Information Retrieval (IR-based)

During the evaluation, the dataset is split into training and test datasets. The training 
dataset is used to create the model, and evaluation is done based on the test dataset. 
In the following example, 0.8 is given as the evaluation percentage.

The IR-based method (precision/recall)
The code example to evaluate the recommender with the IR-based method is  
given here.

In the recommendation context, Precision denotes the fraction of top 
recommendations that are relevant recommendations. Recall denotes the fraction  
of relevant recommendations that appear in the top recommendations:

DataModel model = new FileDataModel (new File("movie.csv"));

RecommenderIRStatsEvaluator evaluator = new  
GenericRecommenderIRStatsEvaluator();
RecommenderBuilder builder = new RecommenderBuilder() {
  public Recommender buildRecommender(DataModel model) throws  
  TasteException {
    UserSimilarity similarity = new  
    LogLikelihoodSimilarity(model);
    UserNeighborhood neighborhood = new  
    NearestNUserNeighborhood(5, similarity, model);
    return new GenericUserBasedRecommender(model, neighborhood,  
    similarity);
  }
};

IRStatistics stats = evaluator.evaluate(builder, null, model,  
null, 2, GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD,  
0.8);
System.out.println("Precision: " + stats.getPrecision()+" Recall:  
" + stats.getRecall());
}
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Addressing the issues with inaccurate 
recommendation results
The accuracy of the recommendation results mainly relies on finding the right 
similarity measure and the right neighborhood algorithm that fits the dataset in  
hand well.

If the dataset is sparse (if there are large number of items and less number of user 
preferences), PearsonCorrelationSimilarity will provide a better solution than 
UncenteredCosineSimilarity.

The nearest neighbor graph and the distance similarity distribution can be used to 
examine the similarity measure further.

Distance distribution is based on measures such as average neighbor similarity, 
neighbor similarity ratio, and neighbor stability, whereas the nearest neighbor graph 
is based on average graph distance, clustering coefficient, graph density, graph 
diameter, and maximum graph distance.

Moreover, a threshold can be used to filter out the inaccurate results. If values are 
missing, we can introduce some default values or eliminate that data.

Item-based recommenders
An item-based recommender measures the similarities between different items  
and picks the top k closest (in similarity) items to a given item in order to arrive  
at a rating prediction or recommendation for a given user for a given item.

For the movie recommendation scenario, an item-based recommender works as 
given in the following figure:
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Let's say both Sunil and Roshan like the movies Interstellar (2014) and Star Wars 
(1977). Then, we can infer that Interstellar (2014) and Star Wars (1977) could be 
similar items. So, when Nimal likes Interstellar (2014), we recommend Star Wars 
(1977) to Nimal based on our previous observation.

likes

likes

likes

likeslikes

Interstellar
(2014)

Nimal

Similar
Items

Sunil

Star Wars
(1977)

Recommend

Roshan

The following is the Java code example for item-based recommenders:

DataModel model = new FileDataModel (new File("movie.csv"));

ItemSimilarity itemSimilarity = new EuclideanDistanceSimilarity  
(model);

Recommender itemRecommender = new  
GenericItemBasedRecommender(model,itemSimilarity);

List<RecommendedItem> itemRecommendations =  
itemRecommender.recommend(3, 2);

for (RecommendedItem itemRecommendation : itemRecommendations) {
  System.out.println("Item: " + itemRecommendation);
}

In the preceding code example, we recommend two items for user 3. The result is 
given as follows:

Item: RecommendedItem[item:2, value:7.7220707]
Item: RecommendedItem[item:3, value:7.5602336
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Item-based recommenders with Spark
An item-based recommender can also be executed on top of Spark. We have given 
the steps to set up the Spark server in Chapter 3, Regression and Classification in detail.

1.	 Start the Spark servers:
[SPARK_HOME]/sbin/start-all

2.	 Prepare the input data (only the user ID and item ID, no preference values).
3.	 Copy the input data to HDFS.
4.	 Execute the following mahout command to generate recommendations for 

each item:
mahout spark-itemsimilarity --input inputfile --output 
outputdirectory

movie.csv can be used as inputfile, or else you can give your own data file  
as well.

The generated indicator matrix is given in the following figure; this can be found in 
the outputdirectory/indicator-matrix/ directory:

Similar items for each other item are given in the indicator matrix, with a similarity 
value according to the following format:

itemIDx  itemIDy:valuey itemIDz:valuez

Matrix factorization-based recommenders
So far, we have discussed two main collaborative filtering approaches, namely  
user-based and item-based recommenders.

Even though they are capable of providing users with relevant recommendations,  
a major challenge that these approaches face is the sparsity of large datasets. Not  
all users will provide ratings on all the available items. Also, new items and new 
users tend to lack sufficient historical data to predict good recommendations.  
This is known as the cold start problem.
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Further, the requirement for scalable recommendation algorithms remains the same 
along with the requirement to perform well in sparse datasets.

Also, some users tend to have a bias toward ratings, and the previous approaches 
have not made an attempt to correct this bias. Also, hidden patterns between the 
features of available items and the features of users that lead to certain ratings are 
not exploited.

Matrix factorization is another way of doing collaborative filtering, which is intended 
to solve the previously mentioned problems.

Ratings can be induced by certain imperceptible factors, which are not 
straightforward for us to estimate, so we need to use mathematical techniques  
to do that for us.

For example, if a particular user has rated The Matrix, the influence factor to do 
this can be the "amount of sci-fi involved in the movie." If the same user has rated 
Titanic, then the influence factor can be the "amount of romance involved in the 
movie." So, using matrix factorization methods, we can recommend Her movie to 
that particular user by inferring these factors (latent factors).

The following figure denotes an example feature space of the preceding scenario. 
However, factors are not necessarily intuitively understandable by humans.  
The distance between each movie can be used to relate those movies.
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In Apache Mahout, there are a few methods on which matrix factorization can be 
done, as follows:

•	 Alternative Least Squares with Weighted-Lamda-Regularization (ALS-WS)
•	 SGD

SVD++ is a combination of matrix factorization and the latent factor model.

Alternative least squares
ALS-WS is one of the factorizers that can be used to generate recommendations, 
which is inherently parallel.

Mahout's ALS recommender is a matrix factorization algorithm that uses ALS-WR.

Singular value decomposition
Using Singular Value Decomposition (SVD), we can come up with a more 
generalized set of features to represent the user-item preferences for a large dataset 
using dimensionality reduction techniques. This approach helps to generalize users 
into lesser dimensions.

The following is the Java code example for SVD using ALS-WR as the factorizer;  
the number of target features should be given as input, which in this case (3. 0.065) 
is given as lambda (the regularization parameter), and the number of iterations is 
given as 1:

DataModel svdmodel = new FileDataModel (new File("movie.csv"));

ALSWRFactorizer factorizer = new ALSWRFactorizer(svdmodel, 3,  
0.065, 1);

Recommender svdrecommender = new SVDRecommender(svdmodel, factorizer);
for (RecommendedItem recommendation :svdrecommender.recommend(3,1))
{
  System.out.println(recommendation);
}

The following is the output of the preceding code:

RecommendedItem[item:3, value:7.2046385]
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The following is the command-line execution of the ALS-WS algorithm; the input 
and output directories should be available in HDFS:

mahout parallelALS --input alsmovieinput --output alsmovieoutput --lambda 
0.1 --implicitFeedback true --alpha 0.8 --numFeatures 2 --numIterations 5  
--numThreadsPerSolver 1 --tempDir tmp

In this approach, the user-to-item matrix is factored into the user-to-feature matrix 
(U) and the item-to-feature matrix (M), as shown in the following figure:

Then, we can get use the following command to get only the topmost 
recommendation for each item:

mahout recommendfactorized --input alsmovieinput --userFeatures 
alsmovieoutput/U/ --itemFeatures alsmovieoutput/M/ --numRecommendations 1 
--output recommendations --maxRating 1

The following figure shows the outcome of the preceding command:

The resulting information can be embedded in a search engine, such as Apache Solr, 
to provide better search recommendations.

Algorithm usage tips and tricks
The optimal recommendation algorithm depends on the nature of data and the 
scenario in hand.

However, if you have fewer users than items, then it is better to use user-based 
recommendations. In contrast, if you have fewer items than users, then it is better  
to use item-based recommendations to gain better performance.

In SVD algorithms, preprocessing can be slow. However, execution is faster than in 
other methods.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 101 ]

Summary
The Apache Mahout recommendations module helps you to recommend items 
to users which they have not seen before, based on their previous preferences. 
The collaborative filtering approach is implemented in Mahout. User-based 
recommendations, item-based recommendations, and matrix factorization  
are the key approaches that are geared toward collaborative filtering in Mahout.
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Apache Mahout in Production
This chapter talks about achieving scalability in Apache Mahout with an Apache 
Hadoop ecosystem.

In this chapter, we will cover the following topics:

•	 Key components of Apache Hadoop
•	 The life cycle of a Hadoop application
•	 Setting up Hadoop

°° Local mode
°° The pseudo-distributed mode
°° The fully-distributed mode

•	 Setting up Apache Mahout with Hadoop
•	 Monitoring Hadoop
•	 Troubleshooting Hadoop
•	 Optimization tips

Introduction
So far, we have discussed key machine learning techniques, such as clustering, 
classification, and recommendations. However, there are several machine learning 
libraries, such as MATLAB, R, and Weka out there to implement the preceding 
techniques.
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The volume of available information is growing at an alarming rate. Most of the  
time, analyzing enormous datasets causes processors to run out of memory. Hence, 
processing large datasets or datasets with an exponential growth potential is a key 
challenge in modern machine learning applications.

The key characteristic that makes Apache Mahout shine out from other machine 
learning libraries is its ability to scale.

In this chapter, you will see how Apache Mahout achieves scalability in a production 
environment with Apache Hadoop.

Apache Mahout with Hadoop
Apache Mahout uses Apache Hadoop, which is a distributed computing framework, 
to achieve scalability. The following figure clearly shows the place where Apache 
Hadoop fits into Apache Mahout:

Mahout Learning
Applications

Clustering Classification Recommendations

Mahout Utilities

Apache
Lucene

Mahout Math

Apache Spark

Apache
Hadoop

Data Storage
Hadoop Distributed File System (HDFS)

Yarn

Data processing

Map Reduce

As shown in the previous figure, Yarn (Data processing) and HDFS (Data Storage) 
are key components in Apache Hadoop.
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In this chapter, we will explain the important subcomponents of Yet Another 
Resource Negotiator (YARN) and HDFS and their behavior in detail before 
proceeding to the Hadoop installation steps.

Slave 01 Slave 03

Client Application
(Apache Mahout)

Node Manager
(NM)

Data
node

Node Manager
(NM)

Data
node

Master

Secondary
node

Slave 02

Node
Manager

container

Data
node

Application
Master

Name Node

Schedular
Application
Manager

Resource Manager (RM)

Master

HDFS (storage)
Yarh (processing)

...

YARN with MapReduce 2.0
First, let's understand YARN, which is a new addition to Apache Hadoop 2.0.

Earlier, Apache Hadoop operated with MapReduce 1.0. It had some drawbacks in 
cluster resource utilization due to the constraints incurred with the static allocation 
of map and reduce slots.
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YARN, along with MapReduce 2.0, has overcome this drawback by inventing  
a novel, flexible resource allocation model that contains containers.

The YARN architecture consists of the following subcomponents:

The resource manager
There is one resource manager per cluster to schedule applications (jobs) and 
manage resource (CPU and memory) allocation globally. The resource manager 
resides in the master node. The resource manager monitors node managers and 
application masters by tracking heartbeats. Further, the resource manager ensures 
the security of the cluster as well.

The application manager
The application manager is responsible for launching application masters in node 
managers, when an application is submitted for processing. This is a subcomponent 
of the resource manager.

The resource manager along with the application manager is equivalent to the job 
tracker in the previous Hadoop version.

A node manager
A node manager is the simplified version of the task tracker in the previous Hadoop 
version. Resource allocation in the node manager is adjustable, whereas in task 
trackers, the number of map and reduce slots are fixed.

Node managers reside in the slave nodes of the cluster, and they communicate with 
the resource manager.

The application master
The application master is the key component that is responsible for gaining better 
resource utilization in the cluster, and this component does not have a counterpart in 
the previous Hadoop version.
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The application manager executes map and reduce tasks on containers after 
negotiating for resources with the resource manager. The application master  
itself is executed in a container, and it monitors and schedules the tasks of a 
submitted application.

Containers
A particular application submitted for processing can be executed in one or more 
containers as separate tasks, depending on the resources requested.

Managing storage with HDFS
HDFS is the distributed filesystem that manages data in a Hadoop cluster in a  
cost-effective and fault-tolerant manner. HDFS has a master-slave architecture.  
It consists of the following key components:

•	 Name node: The name node plays the role of the master in the HDFS cluster. 
It manages files and their metadata, such as the number of blocks, rack 
information for data nodes, and so on.

•	 Data node: The data node is responsible for storing data in HDFS.  
Also, this is responsible for data replication and HDFS block  
creation/deletion tasks as well.

•	 Secondary node: The secondary name node is responsible for regularly 
reading the changes log and applying the changes in the HDFS fsimage file, 
which the name node stores in the HDFS filesystem information.

Now that you have understood the main responsibilities of each component and 
subcomponent in Apache Hadoop, let's look at the way they interact with each other 
to get a particular job done.
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The life cycle of a Hadoop application
Here, we will explain the life cycle of a machine learning application  
(for example, a K-Means job) with reference to the following figure:
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1.	 The application client (in our case, Apache Mahout) submits a new 
application (job) to the Hadoop Resource Manager.

2.	 The resource manager launches the Application Master to manage the 
submitted application.
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3.	 The Application Master requests the required resources (for example,  
1 GB memory and 1 core) from the Resource Manager in order to execute  
the map tasks.

4.	 The Resource Manager requests containers that fulfill the resource 
requirements of the map task in hand from node managers and assigns  
them to be managed by the application master.

5.	 The Application Master assigns map tasks for the given containers.
6.	 The Application Master requests resources for the reduce task from the 

Resource Manager.
7.	 The Resource Manager assigns containers for the reduce task.
8.	 The Application Master assigns reduce tasks to the assigned containers.
9.	 Once all the tasks for the submitted application are completed, the 

application notifies the Resource Manager about the completion of the work.

With the preceding information in mind, let's now get our hands dirty with  
Hadoop installation!

Setting up Hadoop
If you want to run Apache Mahout in local mode (without Hadoop), then you  
need to set some value for the MAHOUT_LOCAL environment variable, as follows:

Set MAHOUT_LOCAL=true

Also, if HADOOP_HOME is not set, then Apache Mahout runs locally.

So, if you want to run Apache Mahout with Hadoop, then there are three  
possible options available:

•	 Local mode
•	 The pseudo-distributed mode
•	 The fully-distributed mode

You can select the Hadoop mode that best suits you, depending on the  
requirement at hand.
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Setting up Mahout in local mode
Local mode is the simplest of all modes in Hadoop with the least number of 
configuration changes.

Hadoop is running as a single JVM instance in this mode. Hadoop daemons, such as 
resource manager, name node, node manager, data nodes, and secondary node are 
not running. Also, there is no HDFS-related file processing with this mode.

Prerequisites
The Hadoop framework is an open source software implementation in Java.

Java installation
Hadoop requires Java 7 or a later version of Java 6. We used Java 1.7.0_76 for  
this setup.

1.	 First, copy or download the Java installation.
2.	 Set the classpath using the following command:

export JAVA_HOME=/usr/lib/jvm/java-7-oracle

The instructions to set path variables for Apache Hadoop and 
Apache Mahout in Ubuntu are given here so that it is easier to 
execute the commands.
Apache Hadoop:
export PATH=$PATH:/home/user/hadoop-2.6.0/bin

Apache Mahout:
export PATH=$PATH:/home/user/mahout-0.9/bin

Setting up Mahout in Hadoop distributed 
mode
Hadoop contains two possible distributed modes:

•	 Pseudo-distributed mode
•	 The fully-distributed mode
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You can download Apache Hadoop from https://hadoop.apache.org/releases.
html.

Linux is the supported OS to execute Apache Hadoop operations.

Prerequisites
The following prerequisites are important for both of the previously given 
distributed modes. So, let's go through them first.

Creating a Hadoop user
A Hadoop user is important in order to communicate with other nodes.  
Perform the following steps to create a dedicated Hadoop user account:

1.	 Here, let's create a Hadoop user called hduser. You can give any name  
you prefer, as follows:
    sudo addgroup hadoop

    sudo adduser --ingroup hadoop hduser

2.	 The Hadoop user should have access to the files in the Hadoop  
installation directory:
chown -R huser:hadoop [Hadoop installation directory]/

Passwordless SSH configuration
In the Hadoop cluster environment, the master node needs to communicate and 
coordinate with remote slave nodes to execute the submitted applications.  
SSH is used as a secure communication channel to achieve this aim.

The master node uses public key cryptography (RSA) to communicate with slave 
nodes. Each slave node has a public key, and the master node uses the private key 
when communicating.

Perform the following steps to enable passwordless SSH configuration:

1.	 Switch the current user to the Hadoop user:
 su – hduser

2.	 Generate the SSH key (the RSA key pair with an empty password):
    ssh-keygen -t rsa -P ""
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3.	 Enable SSH access to the local machine:
    .ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

4.	 Verify the SSH connection:

    ssh localhost

In the fully-distributed mode, you need to distribute the ssh public key among all  
the slaves.

The pseudo-distributed mode
The pseudo-distributed mode is a simulation of Hadoop clusters in a single server.

If you are a novice in Hadoop, it's always better to play around with  
pseudo-distributed mode before trying the fully-distributed mode.

All the daemons are run in this mode as separate processes (separate JVM instances) 
and HDFS is used for storage.

First, copy or download the Hadoop installation and make the Hadoop user the 
owner of the directory.

Configuration changes
Hadoop configuration changes are located in the Hadoop installation folder, /etc/
hadoop, for both master and slaves.

There are two types of configuration files in Hadoop, as follows:

•	 *-default.xml: This reads only default configurations for Hadoop
•	 *-site.xml: This reads site-specific configurations for Hadoop

You need to do the required configurations in site-specific configuration files.

Refer to the following links for more details on each configuration entry:

•	 Core-default.xml: https://hadoop.apache.org/docs/stable/hadoop-
project-dist/hadoop-common/core-default.xml

•	 hdfs-default.xml: https://hadoop.apache.org/docs/stable/hadoop-
project-dist/hadoop-hdfs/hdfs-default.xml
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•	 mapred-default.xml: https://hadoop.apache.org/docs/stable/
hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-
default.xml

•	 yarn-default.xml: https://hadoop.apache.org/docs/stable/hadoop-
yarn/hadoop-yarn-common/yarn-default.xml

The following code snippet shows the core-site.xml file:

<configuration>
  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://localhost:9000</value>
  </property>
  <property>
    <name>fs.hdfs.impl</name>
    <value>org.apache.hadoop.hdfs.DistributedFileSystem</value>
    <description>The file system for hdfs: uris. </description>
  </property>
</configuration>

The following code snippet shows the hdfs-site.xml file:

<configuration>
  <property>
    <name>dfs.replication</name>
    <value>1</value>
  </property>
  <property>
    <name>dfs.namenode.name.dir</name>
    <value>file:///home/hduser/hadoop/name</value>
  </property>
  <property>
    <name>dfs.datanode.data.dir</name>
    <value>file:///home/hduser/hadoop/data</value>
  </property>
</configuration>

This is how the mapred-site.xml file looks:

<configuration>
  <property>
    <name>mapreduce.framework.name</name>
    <value>yarn</value>
  </property>
</configuration>
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The following code snippet shows the yarn-site.xml file:

<configuration>
  <property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
  </property>
</configuration>

Formatting the DFS filesystem
Before starting the server, you need to format the namenode to format the metadata 
related to DataNodes, as follows:

./[Hadoop installation directory]/bin/hdfs namenode –format

Starting the servers
Then, start the server using the following commands:

1.	 Start HDFS by the following command:
./[Hadoop installation directory]/sbin/start-dfs.sh

2.	 Start YARN (MapReduce):

./[Hadoop installation directory]/sbin/start-yarn.sh

The fully-distributed mode
Hadoop can operate to its full potential in the fully-distributed mode. The master 
node is in one server, and the slave nodes are in a separate server.

With the master-slave architecture, a large number of servers are working on 
processing data simultaneously.

In this chapter, we set up the Hadoop cluster with one master and two slave nodes  
in the Ubuntu environment.
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Prerequisites
These are the specific prerequisites to run Hadoop in the fully-distributed mode:

1.	 Copy the SSH public key for other slave nodes:
ssh-copy-id -i $HOME/.ssh/id_rsa.pub hduser@slave01

2.	 Enable SSH configuration for all the slaves:

ssh-copy-id -i $HOME/.ssh/id_rsa.pub hduser@slave01

3.	 Verify the SSH configuration using the following command:

ssh master.net

Host file configuration
Perform the following host file configuration as shown here:

etc/hosts - all machines

33.33.33.10    master.net

33.33.33.11    slave01.net

33.33.33.12     slave02.net

33.33.33.10      master

33.33.33.11     slave01

33.33.33.12     slave02
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Hadoop configuration changes
The following are the Hadoop configuration changes for the fully-distributed mode:

The core-site.xml file:

<configuration>
  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://master.net:9000</value>
  </property>
  <property>
    <name>fs.hdfs.impl</name>
    <value>org.apache.hadoop.hdfs.DistributedFileSystem</value>
    <description>The file system for hdfs: uris. </description>
  </property>
</configuration>

The yarn-site.xml file:

<configuration>

<!-- Site specific YARN configuration properties -->

  <property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
  </property>
  <property>
    <name>yarn.nodemanager.aux-  
    services.mapreduce.shuffle.class</name>
    <value>org.apache.hadoop.mapred.ShuffleHandler</value>
  </property>
  <property>
    <name>yarn.resourcemanager.scheduler.address</name>
    <value>master.net:8030</value>
  </property>
  <property>
    <name>yarn.resourcemanager.address</name>
    <value>master.net:8032</value>
  </property>
  <property>
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    <name>yarn.resourcemanager.webapp.address</name>
    <value>master.net:8088</value>
  </property>
  <property>
    <name>yarn.resourcemanager.resource-tracker.address</name>
    <value>master.net:8031</value>
  </property>
  <property>
    <name>yarn.resourcemanager.admin.address</name>
    <value>master.net:8033</value>
  </property>
</configuration>

The hdfs-site.xml file:

<configuration>
  <property>
    <name>dfs.replication</name>
    <value>2</value>
  </property>
  <property>
    <name>dfs.namenode.name.dir</name>
    <value>file:///home/hduser/hadoop/name</value>
  </property>
  <property>
    <name>dfs.datanode.data.dir</name>
    <value>file:///home/hduser/hadoop/data</value>
  </property>
</configuration>

Slaves (master only):

slave01.net
slave02.net

Masters (master only):

master.net

Formatting the DFS filesystem
Format the HDFS namenode using the following command:

./[Hadoop installation directory]/bin/hdfs namenode -format
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Starting servers
1.	 Start HDFS using the following command:

./[Hadoop installation directory]/sbin/start-dfs.sh

2.	 Start YARN (MapReduce):
./[Hadoop installation directory]/sbin/start-yarn.sh

Monitoring Hadoop
Apache Hadoop daemons can be monitored using different mechanisms.

Commands/scripts
The running JVMs related to Hadoop can be displayed using the following 
command (use the correct Java installation location):

/usr/lib/jvm/java-7-oracle/bin/jps

The outcome of the preceding command is given in the following figure:
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Data nodes
Active data nodes in the cluster can be displayed using the following command:

[Hadoop installation directory]/bin/hdfs dfsadmin –report

The outcome of the preceding command for a cluster with two data nodes is shown 
in the following figure:
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Node managers
Active node managers can be monitored using the following command:

 [Hadoop installation directory]/bin /yarn node –list

The outcome of the preceding command for a cluster with two node managers is 
shown in the following figure:

Web UIs
Apache Hadoop has provided Web UIs to monitor MapReduce job processing 
details.

As shown in the following figure, NameNode operations in HDFS can be monitored 
at http://localhost:50070/:
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YARN resource manager and node manager operations can be monitored at  
http://localhost:8088/, as shown in the following figure:

Setting up Mahout with Hadoop's  
fully-distributed mode
Once Apache Hadoop is successfully installed, we can integrate Apache Mahout 
with it using the following simple steps:

1.	 Download and install Apache Mahout.
2.	 Set the following environment variables:

HADOOP_CONF_DIR="[HADOOP INSTALLATION  
DIRECTORY]/etc/hadoop"

HADOOP_HOME="[HADOOP INSTALLATION DIRECTORY]"

MAHOUT_HOME="[MAHOUT INSTALLATION DIRECTORY]"

Troubleshooting Hadoop
During the installation process, you might encounter issues related to configuration 
values, ports, and connectivity problems. Even though it is not possible to provide 
solutions for each and every potential issue that you might encounter, the following 
hints will be helpful to troubleshoot effectively and efficiently:

1.	 Check the following environment variable values for different logs:
MAHOUT_LOG_DIR

MAHOUT_LOGFILE
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2.	 Check the log files at the following location for Hadoop application  
specific issues:
[Hadoop installation directory]/logs/user logs

3.	 Make sure that hostnames are specified correctly across all the nodes in  
the cluster:
Check the /etc/hosts file for correct IP/ host name mapping in all 
nodes

4.	 Check port numbers for accuracy in the configuration files, and check 
whether you have given hostname:port correctly in all the relevant 
configuration f﻿iles.

Optimization tips
Configuring the values of the following configuration entries according to the 
hardware/software configurations of the Hadoop cluster helps to use the available 
resources, such as CPU and memory, optimally.

The important configurations in the mapred-site.xml file are given as follows:

1.	 Set the maximum tasks that can be executed in the map phase and the  
reduce phase:
mapreduce.tasktracker.map.tasks.maximum

mapreduce.tasktracker.reduce.tasks.maximum

2.	 Set the number of map and reduce tasks according to number of cores 
available:
mapreduce.job.reduces

mapreduce.job.maps

The important configurations in the hdfs-site.xml file are given as follows:

1.	 Set the block size for the files according to the storage requirements of  
your problem:
dfs.blocksize

However, discussing the performance-tuning approaches for Hadoop in detail is 
beyond the scope of this book.
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Summary
Apache Hadoop plays a key role in Apache Mahout's scalability, which differentiates 
it from other machine learning libraries.

Apache Hadoop provides data processing (YARN) and data storage (HDFS) 
capabilities to Apache Mahout. The key components of Apache Hadoop (daemons) are 
the resource manager, node managers, name node, data nodes, and secondary node.

Apache Hadoop can be installed in three different modes, namely local mode, 
pseudo-distributed mode, and fully-distributed mode.

Furthermore, Apache Hadoop provides scripts and Web UIs to monitor its daemons.

In next chapter, we will discuss visualization techniques in Apache Mahout.
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Visualization
In this chapter, we will discuss the visualization techniques for Apache Mahout 
using D3.js.

This chapter covers the following topics:

•	 The significance of visualization in machine learning
•	 D3.js
•	 A visualization example for K-Means clustering

The significance of visualization in 
machine learning

"A picture is worth a thousand words"

The ultimate goal of machine learning is to discover better insights from large 
volumes of data.

If we present the results of a data analysis in table format or as row numbers, it is 
tiring to perceive the real insights that machine learning has truly obtained. If we 
visualize the results or the data itself, then it helps us to get a clear picture of the 
extracted data.

Also, visualization assists us to get the right intuition of the behavior of certain 
machine learning algorithms easily.

So, visualization is an important aspect in any machine learning application.

However, Apache Mahout does not contain visualization as a component in its 
library yet.
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In this chapter, we will discuss the visualization techniques that can be applied to 
Apache Mahout using simple integration with D3.js.

D3.js
Data-Driven Documents (D3.js) is a JavaScript library that provides dynamic and 
interactive data visualizations. It is based on open web standards, such as HTML, 
CSS, DOM, and Scalable Vector Graphics (SVG).

You can attach your data to DOM elements using D3.js and then you can use HTML, 
CSS, and SVG to add design properties to the data.

Further, transformations and transitions in D3 provide interactivity with data, which 
differentiates D3.js from other JavaScript libraries.

A visualization example for K-Means 
clustering
In this example, we demonstrate the visualization of clusters in K-Means clustering. 
We use the same example as that given in Chapter 2, Clustering, K-Means clustering 
section (Clustering people based on height and weight).

Follow the given step-by-step guide to come up with a visualization for the previous 
example using D3.js:

1.	 Download the D3.js JavaScript file from https://github.com/mbostock/
d3/releases.

2.	 You can directly use the web reference as well from http://d3js.org/
d3.v3.min.js.

3.	 Create a basic HTML file named kmeans.html using any text editor,  
as follows:

Save kmeans.html in the same directory as the one in which 
d3.v3.min.js resides, or give the path accordingly if you are 
referencing D3.js as a local resource.
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<html>
  <head><meta charset="utf-8"></head>
  <body>
  </body>
</html>

4.	 Add D3.js as a reference in the HTML header, as shown here:
<head>
  <meta charset="utf-8">
  <script src="d3.v3.min.js" charset="utf-8"></script>
</head>

You can directly give D3.js as a web reference, or you can use the 
following code:

<script src="http://d3js.org/d3.v3.min.js" 
charset="utf-  
8"></script>
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5.	 You can use any of the web browser inspectors (for example, Firebug) to 
ensure that D3.js is referenced successfully by typing d3. in the console.  
You should get a result as shown in the following screenshot:
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6.	 Read the data given as the outcome of Apache Mahout. Before proceeding 
to the D3.js visualization, you need to read the output from the Mahout 
K-Means clustering algorithm.
The following screenshot shows the output of the K-Means clustering when 
read from ClusterDumper:

7.	 If the K-Means output is directly read from the sequence file, then the output 
will be as shown in the following figure:

Either way, you need to extract the data points and centroids from the result in order 
to use them as input for the D3.js visualization. The method that you can use  
to achieve this depends on your system architecture.

For example, you can come up with a REST API to send the data from Apache 
Mahout to D3.js in the JSON format, or you can save the results in the CSV format 
and read this from D3.js.

The following are the possible options to load data from external resources:

•	 A CSV file
•	 A tab-Separated Values (TSV) file
•	 A text file
•	 A JSON blob
•	 An HTML document fragment
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•	 An XML document fragment
•	 XMLHttpRequest (XHR)

In this example, we define an array to hold the data points and centroids,  
for simplicity. However, please note that it can be replaced with any of the  
preceding methods:

1.	 We need to define the data points (x and y), centroids (x and y), and the 
clusters which the data points belong to, as follows:
var dataPoints = [[22.000, 80.000],[25.000, 75.000],[28.000,  
85.000],[55.000, 150.000],[50.000, 145.000],[53.000, 153.000]];
var centroids = [[25.000, 80.000],[52.667, 149.333]];
var clusters = [[0],[0],[0],[1],[1],[1]];

2.	 Specify the following constants, which are used during drawing of the 
clustered points:
//X Axis maximum value
var maxX = 100;
// Y Axis maximum value
var maxY = 100;
// Drawing area width
var w =600;
// Drawing area height
var h = 600;

3.	 Use D3.js to add an SVG element to the HTML page using the following 
statement; the g element is used in SVG to group SVG shapes:
var svg = d3.select('#draw').append('svg').attr({'width':w,  
'height':h});
var graph = svg.append('g');

4.	 Using the D3.js scale, we convert the numbers in domain to numbers in 
range. The intention is to move the drawing area toward the center:
var xScale =  
d3.scale.linear().domain([0,maxX]).range([0,350]);
var yScale =  
d3.scale.linear().domain([0,maxY]).range([0,350]);

5.	 The category specifies that we need to construct a new scale with a range  
of ten colors:
var color = d3.scale.category10();
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Then, data binding is performed for DOM elements using selectAll and  
the data elements.

The relevant attributes are set for shapes, such as circles and lines, as required.  
The X and Y values are determined as given by the data points and centroids arrays.

An example data binding visualization that displays the data points is shown here:

var dataPointDots = graph.selectAll('datapoints').data(dataPoints);
dataPointDots.enter().append('circle')
.attr('r', 3)
.attr('cx',function(d){ return xScale(d[0]); })
.attr('cy',function(d){ return yScale(d[1]); });

Once you open the .html file in your web browser, you will get the  
following output:
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The complete code example for visualizing the K-Means clustering outcome is given 
as follows, and its outcome can be seen in the following figure:

<html>
  <head>
    <meta charset="utf-8">
    <script src="d3.v3.min.js" charset="utf-8"></script>
  </head>
  <body>
    <div id="draw"></div>
    <script>
      // Outcome from Mahout K-means clustering
      var dataPoints = [[22.000, 80.000],[25.000, 75.000],[28.000,  
      85.000],[55.000, 150.000],[50.000, 145.000],[53.000,  
      153.000]];
      var centroids = [[25.000, 80.000],[52.667, 149.333]];
      var clusters = [[0],[0],[0],[1],[1],[1]];
      //X Axis maximum value
      var maxX = 100;
      // Y Axis maximum value
      var maxY = 100;
      // Drawing area width
      var w =600;
      // Drawing area height
      var h = 600;

      // Add SVG
      var svg = d3.select('#draw').append('svg').attr({'width':w,  
      'height':h});

      // Moving the drawing area towards the center
      var graph = svg.append('g');
      var xScale =  
      d3.scale.linear().domain([0,maxX]).range([0,350]);
      var yScale =  
      d3.scale.linear().domain([0,maxY]).range([0,350]);
      var color = d3.scale.category10();

      function draw(){
        // Draw data points
        var dataPointDots =  
        graph.selectAll('dataPoints').data(dataPoints);
        dataPointDots.enter().append('circle')
        .attr('r', 3)
        .attr('cx',function(d){ return xScale(d[0]); })
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        .attr('cy',function(d){ return yScale(d[1]); });

        // Draw centroids
        var centroidDots =  
        graph.selectAll('centroids').data(centroids);
        centroidDots.enter().append('circle')
        .attr('r', 3)
        .attr('stroke', function(d, i) { return color(i); })
        .attr('stroke-width', 3)
        .attr('fill', function(d, i) { return color(i); })
        .attr('cx',function(d){ return xScale(d[0]); })
        .attr('cy',function(d){ return yScale(d[1]); });

        // Draw lines
        var clusterLines =  
        graph.selectAll('lines').data(clusters);
        clusterLines.enter().append('line')
        .attr('x1',function(d, i){ return  
        xScale(dataPoints[i][0]);  
        })
        .attr('y1',function(d, i){ return  
        yScale(dataPoints[i][1]);  
        })
        .attr('x2',function(d, i){ return xScale(centroids[d][0]);  
        })
        .attr('y2',function(d, i){ return yScale(centroids[d][1]);  
        })
        .attr('stroke', function(d) { return color(d); });
      }
      // Execute drawing
      draw();
    </script>
  </body>
</html>
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The resultant output will be as follows:

Another prospect of D3.js with the K-Means algorithm is to visualize the way initial 
randomly-selected centroids and their associated data points iteratively converge 
into correct clusters in a step-by-step and interactive manner.

This is a great way of understanding the intuition behind developing the  
K-Means algorithm.

What you have seen is a just a glimpse of what D3.js is capable of doing on top of big 
data. D3.js can be used to visualize other algorithms, such as linear regression, as well.

However, providing a comprehensive guide on D3.js is beyond the scope of this book.

If you want to learn further, you can refer to https://github.com/mbostock/d3/
wiki/Tutorials for more information.

Summary
Visualizing data is an important aspect of machine learning. Apache Mahout does not 
contain an in-built feature for data visualization. However, it can be easily integrated 
with data visualization tools, such as D3.js. In this chapter, a simple example of 
visualization was given for Apache Mahout K-Means clustering using D3.js.
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