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Foreword for the Second Edition

A lot has changed since the first edition of the book. Yes, the language has
had some enhancements, such as protocols and records. Most significant,
though, is that Clojure has seen adoption across a wide variety of domains.
People are building start-ups, analyzing large data sets, and doing communi-
cations, financial, web, and database work in Clojure. A large and supportive
community has grown up around Clojure and, with it, a ton of libraries. These
libraries are particularly exciting, not just in the facilities they provide. The
best of them embrace the Clojure approach and mechanisms and, in doing
so, reach new levels of simplicity and interoperability.

In this second edition, Stuart and Aaron make sure to cover the language
enhancements and include a taste of what it’s like to leverage some of the
community libraries, while taking care to convey the concepts that make it
all work. The book remains an exhilarating introduction to Clojure, and I
hope it inspires you to join the community and, eventually, contribute to the
library ecosystem.

—Rich Hickey
Creator of Clojure



Foreword for the First Edition

We are drowning in complexity. Much of it is incidental—arising from the way
we are solving problems, instead of the problems themselves. Object-oriented
programming seems easy, but the programs it yields can often be complex
webs of interconnected mutable objects. A single method call on a single
object can cause a cascade of change throughout the object graph. Under-
standing what is going to happen when, how things got into the state they
did, and how to get them back into that state in order to try to fix a bug are
all very complex. Add concurrency to the mix, and it can quickly become
unmanageable. We throw mock objects and test suites at our programs but
too often fail to question our tools and programming models.

Functional programming offers an alternative. By emphasizing pure functions
that take and return immutable values, it makes side effects the exception
rather than the norm. This is only going to become more important as we
face increasing concurrency in multicore architectures. Clojure is designed
to make functional programming approachable and practical for commercial
software developers. It recognizes the need for running on trusted infrastruc-
ture like the JVM and supporting existing customer investments in Java
frameworks and libraries, as well as the immense practicality of doing so.

What is so thrilling about Stuart’s book is the extent to which he “gets” Clojure,
because the language is targeted to professional developers just like himself.
He clearly has enough experience of the pain points Clojure addresses, as
well as an appreciation of its pragmatic approach. This book is an enthusiastic
tour of the key features of Clojure, well grounded in practical applications,
with gentle introductions to what might be new concepts. I hope it inspires
you to write software in Clojure that you can look back at and say, “Not only
does this do the job, but it does so in a robust and simple way, and writing
it was fun too!”

—Rich Hickey
Creator of Clojure
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Preface

Clojure is a dynamic programming language for the Java Virtual Machine
(JVM), with a compelling combination of features:

Clojure is elegant. Clojure’s clean, careful design lets you write programs
that get right to the essence of a problem, without a lot of clutter and
ceremony.

Clojure is Lisp reloaded. Clojure has the power inherent in Lisp but is not
constrained by the history of Lisp.

Clojure is a_functional language. Data structures are immutable, and most
functions are free from side effects. This makes it easier to write correct
programs and to compose large programs from smaller ones.

Clojure simplifies concurrent programming. Many languages build a con-
currency model around locking, which is difficult to use correctly. Clojure
provides several alternatives to locking: software transactional memory,
agents, atoms, and dynamic variables.

Clojure embraces Java. Calling from Clojure to Java is direct and fast,
with no translation layer.

Unlike many popular dynamic languages, Clojure is fast. Clojure is written
to take advantage of the optimizations possible on modern JVMs.

Many other languages cover some of the features described in the previous
list. Of all these languages, Clojure stands out. The individual features listed
earlier are powerful and interesting. Their clean synergy in Clojure is com-
pelling. We will cover all these features and more in Chapter 1, Getting Started,

on page 1.

Who This Book Is For

Clojure is a powerful, general-purpose programming language. As such, this
book is for experienced programmers looking for power and elegance. This
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book will be useful for anyone with experience in a modern programming
language such as C#, Java, Python, or Ruby.

Clojure is built on top of the Java Virtual Machine, and it is fast. This book
will be of particular interest to Java programmers who want the expressiveness
of a dynamic language without compromising on performance.

Clojure is helping to redefine what features belong in a general-purpose lan-
guage. If you program in Lisp, use a functional language such as Haskell, or
write explicitly concurrent programs, you will enjoy Clojure. Clojure combines
ideas from Lisp, functional programming, and concurrent programming and
makes them more approachable to programmers seeing these ideas for the
first time.

Clojure is part of a larger phenomenon. Languages such as Erlang, F#,
Haskell, and Scala have garnered attention recently for their support of
functional programming or their concurrency model. Enthusiasts of these
languages will find much common ground with Clojure.

What Is in This Book

Chapter 1, Getting Started, on page 1 demonstrates Clojure’s elegance as a
general-purpose language, plus the functional style and concurrency model
that make Clojure unique. It also walks you through installing Clojure and
developing code interactively at the REPL.

Chapter 2, Exploring Clojure, on page 21 is a breadth-first overview of all of
Clojure’s core constructs. After this chapter, you will be able to read most
day-to-day Clojure code.

The next two chapters cover functional programming. Chapter 3, Unifying
Data with Sequences, on page 55 shows how all data can be unified under
the powerful sequence metaphor.

Chapter 4, Functional Programming, on page 85 shows you how to write
functional code in the same style used by the sequence library.

Chapter 5, State, on page 113 delves into Clojure’s concurrency model. Clojure
provides four powerful models for dealing with concurrency, plus all of the
goodness of Java’s concurrency libraries.

Chapter 6, Protocols and Datatypes, on page 143 walks through records, types,
and protocols in Clojure. These concepts were introduced in Clojure 1.2.0
and enhanced in 1.3.0.




How to Read This Book ® xix

Chapter 7, Macros, on page 165 shows off Lisp’s signature feature. Macros
take advantage of the fact that Clojure code is data to provide metaprogram-
ming abilities that are difficult or impossible in anything but a Lisp.

Chapter 8, Multimethods, on page 187 covers one of Clojure’s answers to
polymorphism. Polymorphism usually means “take the class of the first
argument and dispatch a method based on that.” Clojure’s multimethods let

you choose any function of all the arguments and dispatch based on that.

Chapter 9, Java Down and Dirty, on page 203 shows you how to call Java from
Clojure and call Clojure from Java. You will see how to take Clojure straight
to the metal and get Java-level performance.

Finally, Chapter 10, Building an Application, on page 227 provides a view into
a complete Clojure workflow. You will build an application from scratch,
working through solving the various parts to a problem and thinking about
simplicity and quality. You will use a set of helpful Clojure libraries to produce
and deploy a web application.

Appendix 1, Editor Support, on page 253 lists editor support options for Clojure,
with links to setup instructions for each.

How to Read This Book

All readers should begin by reading the first two chapters in order. Pay par-
ticular attention to Section 1.1, Why Clojure?, on page 2, which provides an
overview of Clojure’s advantages.

Experiment continuously. Clojure provides an interactive environment where
you can get immediate feedback; see Using the REPL, on page 12 for more
information.

After you read the first two chapters, skip around as you like. But read
Chapter 3, Unifying Data with Sequences, on page 55 before you read Chapter
5, State, on page 113. These chapters lead you from Clojure’s immutable data
structures to a powerful model for writing correct concurrency programs.

As you make the move to longer code examples in the later chapters, make
sure you use an editor that provides Clojure indentation for you. Appendix
1, Editor Support, on page 253 will point you to common editor options. If you
can, try to use an editor that supports parentheses balancing, such as Emacs’
paredit mode or the CounterClockWise plug-in for eclipse. This feature will

be a huge help as you are learning to program in Clojure.
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For Functional Programmers

¢ Clojure’s approach to FP strikes a balance between academic purity and
the realities of execution on the current generation of JVMs. Read Chapter
4, Functional Programming, on page 85 carefully to understand how Clojure
idioms differ from languages such as Haskell.

e The concurrency model of Clojure (Chapter 5, State, on page 113) provides
several explicit ways to deal with side effects and state and will make FP
appealing to a broader audience.

For Java/C# Programmers

e Read Chapter 2, Exploring Clojure, on page 21 carefully. Clojure has very
little syntax (compared to Java or C#), and we cover the ground rules
fairly quickly.

e Pay close attention to macros in Chapter 7, Macros, on page 165. These
are the most alien part of Clojure when viewed from a Java or C# perspec-
tive.

For Lisp Programmers

e Some of Chapter 2, Exploring Clojure, on page 21 will be review, but read
it anyway. Clojure preserves the key features of Lisp, but it breaks with
Lisp tradition in several places, and they are covered here.

¢ Pay close attention to the lazy sequences in Chapter 4, Functional Program-
ming, on page 85.

e Get an Emacs mode for Clojure that makes you happy before working
through the code examples in later chapters.

For Perl/Python/Ruby Programmers

¢ Read Chapter 5, State, on page 113 carefully. Intraprocess concurrency is
very important in Clojure.

e Embrace macros (Chapter 7, Macros, on page 165). But do not expect to
easily translate metaprogramming idioms from your language into macros.
Remember always that macros execute at read time, not runtime.

Notation Conventions

The following notation conventions are used throughout the book.
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Literal code examples use the following font:
(+ 2 2)
The result of executing a code example is preceded by ->.

(+ 2 2)
-> 4

Where console output cannot easily be distinguished from code and results,
it is preceded by a pipe character (|).
(println "hello")

| hello
-> nil

When introducing a Clojure form for the first time, we will show the grammar
for the form like this:

(example-fn required-arg)

(example-fn optional-arg?)

(example-fn zero-or-more-arg*)

(example-fn one-or-more-arg+)

(example-fn & collection-of-variable-args)

The grammar is informal, using ?, *, +, and & to document different argument-
passing styles, as shown previously.

Clojure code is organized into libs (libraries). Where examples in the book
depend on a library that is not part of the Clojure core, we document that
dependency with a use or require form:

(use '[lib-name :only (var-names+)])
(require '[lib-name :as alias])

This form of use brings in only the names in var-names, while require creates an
alias, making each function’s origin clear. For example, a commonly used
function is file, from the clojure.java.io library:

(use '[clojure.java.io :only (file)l)

(file "hello.txt")
-> #<File hello.txt>

or the require-based counterpart:

(require '[clojure.java.io :as iol)
(io/file "hello.txt")
-> #<File hello.txt>

Clojure returns nil from a successful call to use. For brevity, this is omitted
from the example listings.
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While reading the book, you will enter code in an interactive environment
called the REPL. The REPL prompt looks like this:

user=>

The user before the prompt tells the namespace you are currently working in.
For most of the book’s examples, the current namespace is irrelevant. Where
the namespace is irrelevant, we will use the following syntax for interaction
with the REPL:

(+ 2 2) ; input line without namespace prompt
-> 4 ; return value

In those few instances where the current namespace is important, we will
use this:

user=> (+ 2 2) ; input line with namespace prompt-> 4 ; return value

Web Resources and Feedback

Programming Clojure’s official home on the Web is the Programming Clojure
home page' at the Pragmatic Bookshelf website. From there you can order
electronic or paper copies of the book and download sample code. You can
also offer feedback by submitting errata entries” or posting in the forum® for
the book.

Downloading Sample Code

The sample code for the book is available from one of two locations:

e The Programming Clojure home page” links to the official copy of the source
code and is updated to match each release of the book.

e The Programming Clojure git repository’ is updated in real time. This is
the latest, greatest code and may sometimes be ahead of the prose in the
book.

Individual examples are in the examples directory, unless otherwise noted.

http://www.pragprog.com/titles/shcloj2/programming-clojure
http://www.pragprog.com/titles/shcloj2/errata
http://forums.pragprog.com/forums/207
http://www.pragprog.com/titles/shcloj2
http://github.com/stuarthalloway/programming-clojure

oLk N
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Throughout the book, listings begin with their filename, set apart from the
actual code by a gray background. For example, the following listing comes
from src/examples/preface.clj:

src/examples/preface.clj
(println "hello")

If you are reading the book in PDF form, you can click the little gray box
preceding a code listing and download that listing directly.

With the sample code in hand, you are ready to get started. We will begin by
meeting the combination of features that make Clojure unique.



CHAPTER 1

Getting Started

Many factors have contributed to Clojure’s quick rise. A quick web search
will likely tell you that Clojure:

e is a functional language,
¢ is a Lisp for the JVM, and
¢ has special features for dealing with concurrency.

All of these things are important, but none of them is the key to thinking in
Clojure. In our opinion, there are two key concepts that drive everything else
in Clojure: simplicity and power.

Simplicity has several meanings that are relevant in software, but the definition
we mean is the original and best one: a thing is simple if it is not compound.
Simple components allow systems to do what their designers intend, without
also doing other things irrelevant to the task at hand. In our experience,
irrelevant complexity quickly becomes dangerous complexity.

Power also has many meanings. The one we care about here is sufficiency to
the tasks we want to undertake. To feel powerful as a programmer, you need
to build on a substrate that is itself capable and widely deployed, e.g., the
JVM. Then, your tools must give you full, unrestricted access to that power.
Power is often a gatekeeping requirement for projects that must get the most
out of their platform.

As programmers, we have spent years tolerating baroquely complex tools that
were the only way to get the power we needed or accepting reduced power for
a sanity-enhancing simplification of the programming model. Some trade-offs
are truly fundamental, but power vs. simplicity is not one of them. Clojure
shows that power and simplicity can go hand in hand.
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Why Clojure?

All of the distinctive features in Clojure are there to provide simplicity, power,
or both. Here are a few examples:

Functional programming is simple, in that it isolates calculation from
state and identity. Benefits: functional programs are easier to understand,
write, test, optimize, and parallelize.

Clojure’s Java interop forms are powerful, giving you direct access to the
semantics of the Java platform. Benefits: you can have performance and
semantic equivalence to Java. Most importantly, you will never need to
“drop down” to a lower-level language for a little extra power.

Lisp is simple in two critical ways: it separates reading from evaluation,
and the language syntax is made from a tiny number of orthogonal parts.
Benefits: syntactic abstraction captures design patterns, and S-expressions
are XML, JSON, and SQL as they should have been.

Lisp is also powerful, providing a compiler and macro system at runtime.
Benefits: Lisp has late-bound decision making and easy DSLs.

Clojure’s time model is simple, separating values, identities, state, and
time. Benefits: programs can perceive and remember information, without
fear that somebody is about to scribble over the past.

Protocols are simple, separating polymorphism from derivation. Benefits:
you get safe, ad hoc extensibility of type and abstractions, without a
tangle of design patterns or fragile monkey patching.

This list of features acts as a road map for the rest of the book, so don’t worry
if you don'’t follow every little detail here. Each feature gets an entire chapter
later.

Let’s see some of these features in action by building a small application.
Along the way, you will learn how to load and execute the larger examples we
will use later in the book.

Clojure Is Elegant

Clojure is high-signal, low-noise. As a result, Clojure programs are short
programs. Short programs are cheaper to build, cheaper to deploy, and
cheaper to maintain.' This is particularly true when the programs are concise

1.

Software Estimation: Demystifying the Black Art [McCO6] is a great read and makes
the case that smaller is cheaper.
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rather than merely terse. As an example, consider the following Java code,
from Apache Commons:

data/snippets/isBlank.java
public class StringUtils {
public static boolean isBlank(String str) {
int strlLen;
if (str == null || (strLen = str.length()) == 0) {
return true;
}
for (int i = 0; i < strLen; i++) {
if ((Character.isWhitespace(str.charAt(i)) == false)) {
return false;
}
}

return true;

}

The isBlank() method checks to see whether a string is blank: either empty or
consisting of only whitespace. Here is a similar implementation in Clojure:

src/examples/introduction.clj
(defn blank? [str]
(every? #(Character/isWhitespace %) str))

The Clojure version is shorter. But even more important, it is simpler: it has
no variables, no mutable state, and no branches. This is possible thanks to
higher-order functions. A higher-order function is a function that takes func-
tions as arguments and/or returns functions as results. The every? function
takes a function and a collection as its arguments and returns true if that
function returns true for every item in the collection.

Because the Clojure version has no branches, it is easier to read and test.
These benefits are magnified in larger programs. Also, while the code is con-
cise, it is still readable. In fact, the Clojure program reads like a definition of
blank: a string is blank if every character in it is whitespace. This is much
better than the Commons method, which hides the definition of blank behind
the implementation detail of loops and if statements.

As another example, consider defining a trivial Person class in Java:

data/snippets/Person.java

public class Person {
private String firstName;
private String lastName;

public Person(String firstName, String lastName) {
this.firstName = firstName;
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this.lastName = lastName;

}

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getLastName() {
return lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;
}
}

In Clojure, you would define Person with a single line:
(defrecord Person [first-name last-name])
and work with the record like so:

(def foo (->Person "Aaron" "Bedra"))

-> #'user/foo

foo

-> #:user.Person{:first-name "Aaron", :last-name "Bedra"}

defrecord and related functions are covered in Section 6.3, Protocols, on page
147.

Other than being an order of magnitude shorter, the Clojure approach differs
in that a Clojure Person is immutable. Immutable data structures are naturally
thread safe, and update capabilities can be layered when using Clojure’s ref-
erences, agents, and atoms, which are covered in Chapter 5, State, on page
113. Because records are immutable, Clojure also provides correct implemen-
Eons of hashCode() and equals() automatically.

Clojure has a lot of elegance baked in, but if you find something missing, you
can add it yourself, thanks to the power of Lisp.

Clojure Is Lisp Reloaded

Clojure is a Lisp. For decades, Lisp advocates have pointed out the advantages
that Lisp has over, well, everything else. At the same time, Lisp’s world dom-
ination plan seems to be proceeding slowly.
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Like any other Lisp, Clojure faces two challenges:

¢ Clojure must succeed as a Lisp by persuading Lisp programmers that
Clojure embraces the critical parts of Lisp.

e At the same time, Clojure needs to succeed where past Lisps have failed
by winning support from the broader community of programmers.

Clojure meets these challenges by providing the metaprogramming capabilities
of Lisp and at the same time embracing a set of syntax enhancements that
make Clojure friendlier to non-Lisp programmers.

Why Lisp?

Lisps have a tiny language core, almost no syntax, and a powerful macro
facility. With these features, you can bend Lisp to meet your design, instead
of the other way around. By contrast, consider the following snippet of Java
code:

public class Person {
private String firstName;
public String getFirstName() {
// continues

In this code, getFirstName() is a method. Methods are polymorphic and can bend
to meet your needs. But the interpretation of every other word in the example
is fixed by the language. Sometimes you really need to change what these
words mean. So, for example, you might do the following:

¢ Redefine private to mean “private for production code but public for serial-
ization and unit tests.”

e Redefine class to automatically generate getters and setters for private
fields, unless otherwise directed.

¢ Create a subclass of class that provides callback hooks for life-cycle events.
For example, a life cycle-aware class could fire an event whenever an
instance of the class is created.

We have seen programs that needed all these features. Without them, pro-
grammers resort to repetitive, error-prone workarounds. Literally millions of
lines of code have been written to work around missing features in program-
ming languages.

In most languages, you would have to petition the language implementer to
add the kinds of features mentioned earlier. In Clojure, you can add your
own language features with macros (Chapter 7, Macros, on page 165). Clojure
itself is built out of macros such as defrecord:
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(defrecord name [argl arg2 arg3])

If you need different semantics, write your own macro. If you want a variant
of records with strong typing and configurable null-checking for all fields,
you can create your own defrecord macro, to be used like this:

(defrecord name [Type :argl Type :arg2 Type :arg3]
:allow-nulls false)

This ability to reprogram the language from within the language is the unique
advantage of Lisp. You will see facets of this idea described in various ways:

e Lisp is homoiconic.” That is, Lisp code is just Lisp data. This makes it
easy for programs to write other programs.

¢ The whole language is there, all the time. Paul Graham’s essay “Revenge
of the Nerds™ explains why this is so powerful.

Lisp syntax also eliminates rules for operator precedence and associativity.
You will not find a table documenting operator precedence or associativity
anywhere in this book. With fully parenthesized expressions, there is no
possible ambiguity.

The downside of Lisp’s simple, regular syntax, at least for beginners, is Lisp’s
fixation on parentheses and on lists as the core datatype. Clojure offers an
interesting combination of features that makes Lisp more approachable for
non-Lispers.

Lisp, with Fewer Parentheses
Clojure offers significant advantages for programmers coming to it from other
Lisps:

* Clojure generalizes Lisp’s physical list into an abstraction called a

sequence. This preserves the power of lists, while extending that power
to a variety of other data structures.

¢ Clojure’s reliance on the JVM provides a standard library and a deploy-
ment platform with great reach.

¢ Clojure’s approach to symbol resolution and syntax quoting makes it
easier to write many common macros.

N

http://en.wikipedia.org/wiki/Homoiconicity
3.  http://www.paulgraham.com/icad.html
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Many Clojure programmers will be new to Lisp, and they have probably heard
bad things about all those parentheses. Clojure keeps the parentheses (and
the power of Lisp!) but improves on traditional Lisp syntax in several ways:

* Clojure provides a convenient literal syntax for a wide variety of data
structures besides just lists: regular expressions, maps, sets, vectors,
and metadata. These features make Clojure code less “listy” than most
Lisps. For example, function parameters are specified in a vector: [] instead
of a list: ().

src/examples/introduction.clj
(defn hello-world [username]
(println (format "Hello, %s" username)))

The vector makes the argument list jump out visually and makes Clojure
function definitions easy to read.

¢ In Clojure, unlike most Lisps, commas are whitespace.

; make vectors look like arrays in other languages
[1, 2, 3, 4]
-> [1 2 3 4]

¢ Idiomatic Clojure does not nest parentheses more than necessary. Con-
sider the cond macro, present in both Common Lisp and Clojure. cond
evaluates a set of test/result pairs, returning the first result for which a
test form yields true. Each test/result pair is grouped with parentheses,
like so:
; Common Lisp cond

(cond ((= x 10) "equal")
((> x 10) "more"))

Clojure avoids the extra parentheses:

; Clojure cond
(cond (= x 10) "equal"
(> x 10) "more")

This is an aesthetic decision, and both approaches have their supporters.
The important thing is that Clojure takes the opportunity to be less Lispy
when it can do so without compromising Lisp’s power.

Clojure is an excellent Lisp, both for Lisp experts and for Lisp beginners.

Clojure Is a Functional Language

Clojure is a functional language but not a pure functional language like
Haskell. Functional languages have the following properties:
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e Functions are first-class objects. That is, functions can be created at
runtime, passed around, returned, and in general used like any other
datatype.

e Data is immutable.
e Functions are pure; that is, they have no side effects.

For many tasks, functional programs are easier to understand, less error-
prone, and much easier to reuse. For example, the following short program
searches a database of compositions for every composer who has written a
composition named “Requiem”:

(for [c compositions :when (= "Requiem" (:name c))] (:composer c))
-> ("W. A. Mozart" "Giuseppe Verdi")

The name for does not introduce a loop but a list comprehension. Read the
earlier code as “For each c in compositions, where the name of c is "Requiem", yield
the composer of c.” List comprehension is covered more fully in Transforming
Sequences, on page 66.

This example has four desirable properties:
e It is simple; it has no loops, variables, or mutable state.
e It is thread safe; no locking is needed.

e It is parallelizable; you could farm out individual steps to multiple threads
without changing the code for each step.

e It is generic; compositions could be a plain set or XML or a database result
set.

Contrast functional programs with imperative programs, where explicit
statements alter program state. Most object-oriented programs are written
in an imperative style and have none of the advantages listed earlier; they are
unnecessarily complex, not thread safe, not parallelizable, and difficult to
generalize. (For a head-to-head comparison of functional and imperative
styles, skip forward to Section 2.7, Where’'s My for Loop?, on page 48.)

People have known about the advantages of functional languages for a while
now. And yet, pure functional languages like Haskell have not taken over the
world, because developers find that not everything fits easily into the pure
functional view.

There are four reasons that Clojure can attract more interest now than
functional languages have in the past:
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¢ Functional programming is more urgent today than ever before. Massively
multicore hardware is right around the corner, and functional languages
provide a clear approach for taking advantage of it. Functional program-
ming is covered in Chapter 4, Functional Programming, on page 85.

e Purely functional languages can make it awkward to model state that
really needs to change. Clojure provides a structured mechanism for
working with changeable state via software transactional memory and
refs (on page 115), agents (on page 123), atoms (on page 122), and dynamic
binding ( on page 127).

e Many functional languages are statically typed. Clojure’s dynamic typing
makes it more accessible for programmers learning functional program-
ming.

¢ Clojure’s Java invocation approach is not functional. When you call Java,
you enter the familiar, mutable world. This offers a comfortable haven for
beginners learning functional programming and a pragmatic alternative
to functional style when you need it. Java invocation is covered in Chapter
9, Java Down and Dirty, on page 203.

Clojure’s approach to changing state enables concurrency without explicit
locking and complements Clojure’s functional core.

Clojure Simplifies Concurrent Programming

Clojure’s support for functional programming makes it easy to write thread-
safe code. Since immutable data structures cannot ever change, there is no
danger of data corruption based on another thread’s activity.

However, Clojure’s support for concurrency goes beyond just functional pro-
gramming. When you need references to mutable data, Clojure protects them
via software transactional memory (STM). STM is a higher-level approach to
thread safety than the locking mechanisms that Java provides. Rather than
creating fragile, error-prone locking strategies, you can protect shared state
with transactions. This is much more productive, because many programmers
have a good understanding of transactions based on experience with
databases.

For example, the following code creates a working, thread-safe, in-memory
database of accounts:

(def accounts (ref #{}))
(defrecord Account [id balance])
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The ref function creates a transactionally protected reference to the current
state of the database. Updating is trivial. The following code adds a new
account to the database:

(dosync
(alter accounts conj (->Account "CLJ" 1000.00)))

The dosync causes the update to accounts to execute inside a transaction. This
guarantees thread safety, and it is easier to use than locking. With transac-
tions, you never have to worry about which objects to lock or in what order.
The transactional approach will also perform better under some common
usage scenarios, because (for example) readers will never block.

Although the example here is trivial, the technique is general, and it works
on real-world problems. See Chapter 5, State, on page 113 for more on concur-
rency and STM in Clojure.

Clojure Embraces the Java Virtual Machine

Clojure gives you clean, simple, direct access to Java. You can call any Java
API directly:

(System/getProperties)
-> {java.runtime.name=Java(TM) SE Runtime Environment
. many more ...

Clojure adds a lot of syntactic sugar for calling Java. We won’t get into the
details here (see Section 2.5, Calling Java, on page 43), but notice that in the
following code the Clojure version has both fewer dots and fewer parentheses
than the Java version:

// Java
"hello".getClass().getProtectionDomain()

; Clojure
(.. "hello" getClass getProtectionDomain)

Clojure provides simple functions for implementing Java interfaces and sub-
classing Java classes. Also, Clojure functions all implement Callable and Runnable.
This makes it trivial to pass the following anonymous function to the construc-
tor for a Java Thread.

(.start (new Thread (fn [] (println "Hello" (Thread/currentThread)))))
-> Hello #<Thread Thread[Thread-0,5,main]>

The funny output here is Clojure’s way of printing a Java instance. Thread is
the class name of the instance, and Thread[Thread-0,5,main] is the instance’s
toString representation.
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(Note that in the preceding example the new thread will run to completion,
but its output may interleave in some strange way with the REPL prompt.
This is not a problem with Clojure but simply the result of having more than
one thread writing to an output stream.)

Because the Java invocation syntax in Clojure is clean and simple, it is
idiomatic to use Java directly, rather than to hide Java behind Lispy wrappers.

Now that you have seen a few of the reasons to use Clojure, it is time to start
writing some code.

Clojure Coding Quick Start

To run Clojure and the code in this book, you need two things:

e A Java runtime. Download® and install Java version 5 or greater. Java
version 6 has significant performance improvements and better exception
reporting, so prefer this if possible.

e Leiningen.’ Leiningen is a tool for managing dependencies and launching
tasks against your code. It is also the most common tool for this job in
the Clojure space.

You will use Leiningen to install Clojure and all of the dependencies for the
sample code in this book. If you already have Leiningen installed, you should
be familiar with the basics. If not, you should take a quick tour of Leiningen’s
GitHub page,® where you will find install instructions as well as basic usage
instructions. Don’t worry about learning everything now, though, because
this book will guide you through the commands necessary to follow along at
home.

While you are working through the book, use the version of Clojure tied to
the book’s sample code. After you read the book, you can follow the instruc-
tions in Building Clojure Yourself, on page 12 to build an up-to-the-minute
version of Clojure.

See Section 6, Downloading Sample Code, on page xxii for instructions on
downloading the sample code. Once you have downloaded the sample code,
you will need to use Leiningen to fetch the dependencies. From the root of
the example code folder, run this:

lein deps

4. http://www.oracle.com/technetwork/java/javase/downloads/index.html
5. http://github.com/technomancy/leiningen
6.  http://github.com/technomancy/leiningen
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You may want to build Clojure from source to get access to newer features and bug
fixes. Here’s how:

git clone git://github.com/clojure/clojure.git
cd clojure
mvn package

The sample code is regularly updated to match the current development head of
Clojure. Check the README file in the sample code to see the revision numbers that
the samples were most recently tested with.

The dependencies will be downloaded and placed in the proper location. You
can test your install by navigating to the directory where you placed the
sample code and running a Clojure read-eval-print loop (REPL). Leiningen
contains a REPL launch script that loads Clojure along with the dependencies
that we will need later in the book.

lein repl
When you successfully launch the REPL, it should prompt you with user=>:

Clojure
user=>

Now you are ready for “Hello World.”

Using the REPL

To see how to use the REPL, let’s create a few variants of “Hello World.” First,
type (printin "hello world") at the REPL prompt:

user=> (println "hello world")
-> hello world

The second line, hello world, is the console output you requested.

Next, encapsulate your “Hello World” into a function that can address a person
by name:

(defn hello [name] (str "Hello, " name))
-> #'user/hello

Let’s break this down:
e defn defines a function.
e hello is the function name.

¢ hello takes one argument, name.

report erratum -« discuss
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e stris a function call that concatenates an arbitrary list of arguments into
a string.

e defn, hello, name, and str are all symbols, which are names that refer to
things. Legal symbols are defined in Symbols, on page 25.

Look at the return value, #'user/hello. The prefix #' indicates that the function
was stored in a Clojure var, and user is the namespace of the function. (The
user namespace is the REPL default, like the default package in Java.) You do
not need to worry about vars and namespaces yet; they are covered in Section
2.4, Vars, Bindings, and Namespaces, on page 36.

Now you can call hello, passing in your name:

user=> (hello "Stu")
-> "Hello, Stu"

If you get your REPL into a state that confuses you, the simplest fix is to kill
the REPL with CTRi+C on Windows or CTRi+D on *nix and then start another
one.

Special Variables

The REPL includes several useful special variables. When you are working in
the REPL, the results of evaluating the three most recent expressions are
stored in the special variables *1, *2, and *3, respectively. This makes it easy
to work iteratively. Say hello to a few different names:

user=> (hello "Stu")
-> "Hello, Stu"

user=> (hello "Clojure")
-> "Hello, Clojure"

Now, you can use the special variables to combine the results of your recent
work:

(str *1 " and " *2)
-> "Hello, Clojure and Hello, Stu"

If you make a mistake in the REPL, you will see a Java exception. The details
are often omitted for brevity. For example, dividing by zero is a no-no:

user=> (/ 1 0)
-> ArithmeticException Divide by zero clojure.lang.Numbers.divide

Here the problem is obvious, but sometimes the problem is more subtle and
you want the detailed stack trace. The *e special variable holds the last
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exception. Because Clojure exceptions are Java exceptions, you can ask for
the stacktrace by calling pst (print stacktrace).”

user=> (pst)

-> ArithmeticException Divide by zero

| clojure.lang.Numbers.divide

| sun.reflect.NativeMethodAccessorImpl.invoke®

| sun.reflect.NativeMethodAccessorImpl.invoke

| sun.reflect.DelegatingMethodAccessorImpl.invoke
| java.lang.reflect.Method.invoke

| clojure.lang.Reflector.invokeMatchingMethod

| clojure.lang.Reflector.invokeStaticMethod

| user/evall677
| clojure.lang.Compiler.eval
| clojure.lang.Compiler.eval
| clojure.core/eval

Java interop is covered in Chapter 9, Java Down and Dirty, on page 203.

If you have a block of code that is too large to conveniently type at the REPL,
save the code into a file, and then load that file from the REPL. You can use
an absolute path or a path relative to where you launched the REPL:

; save some work in temp.clj, and then ...

user=> (load-file "temp.clj")

The REPL is a terrific environment for trying ideas and getting immediate

feedback. For best results, keep a REPL open at all times while reading this
book.

Adding Shared State

The hello function of the previous section is pure; that is, it has no side effects.
Pure functions are easy to develop, test, and understand, and you should
prefer them for many tasks.

That said, most programs have some shared state and will use impure func-
tions to manage that shared state. Let’s extend hello to keep track of past
visitors. First, you will need a data structure to track the visitors. A set will
do the trick:

#{}
-> #{}

The #{} is a literal for an empty set. Next, you will need conj:

(conj coll item)

7. pstis available only in Clojure 1.3.0 and greater.
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conj is short for conjoin, and it builds a new collection with an item added.
conj an element onto a set to see that a new set is created:

(conj #{} "Stu")
-> #{"Stu"}

Now that you can build new sets, you need some way to keep track of the
current set of visitors. Clojure provides several reference types (refs) for this
purpose. The most basic reference type is the atom:

(atom initial-state)
To name your atom, you can use def:
(def symbol initial-value?)

def is like defn but more general. A def can define functions or data. Use atom
to create an atom, and use def to bind the atom to the name visitors:

(def visitors (atom #{}))
-> #'user/visitors

To update a reference, you must use a function such as swap!:
(swap! r update-fn & args)

swap! applies an update-fn to reference r, with optional args if necessary. Try to
swap! a visitor into visitors, using conj as the update function:

(swap! visitors conj "Stu")
-> #{"Stu"}

atom is one of several reference types in Clojure. Choosing the appropriate
reference type requires care (discussed in Chapter 5, State, on page 113).

At any time, you can peek inside the ref with deref or with the shorter @:

(deref visitors)
-> #{"Stu"}

@visitors
S #{“Stu“}

Now you are ready to build the new, more elaborate version of hello:

src/examples/introduction.clj
(defn hello
"Writes hello message to *out*. Calls you by username.
Knows if you have been here before."
[username]
(swap! visitors conj username)
(str "Hello, " username))
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Next, check that visitors are correctly tracked in memory:

(hello "Rich")
-> "Hello, Rich"

@visitors
-> #{"Aaron" "Stu" "Rich"}

In all probability, your visitors list is different from the one shown here. That’s
the problem with state! Your results will vary, depending on when things
happened. You can reason about a function with direct local knowledge.
Reasoning about state requires a full understanding of history.

Avoid state where possible. But when you need it, make it sane and manage-
able by using refs such as atoms. Atoms (and all other Clojure reference types)
are safe for multiple threads and processors. Better yet, this safety comes
without any need for locks, which are notoriously tricky to use.

At this point, you should feel comfortable entering small bits of code at the
REPL. Larger units of code aren’t that different; you can load and run Clojure
libraries from the REPL as well. Let’s explore that next.

Exploring Clojure Libraries

Clojure code is packaged in libraries. Each Clojure library belongs to a
namespace, which is analogous to a Java package. You can load a Clojure
library with require:

(require quoted-namespace-symbol)

When you require a library named clojure.java.io, Clojure looks for a file named
clojurefjavafio.clj on the CLASSPATH. Try it:

user=> (require 'clojure.java.io)
-> nil

The leading single quote (') is required, and it quotes the library name (quoting
is covered in Section 2.2, Reader Macros, on page 30). The nil returned indicates
success. While you are at it, test that you can load the sample code for this
chapter, examples.introduction:

user=> (require 'examples.introduction)
-> nil

The examples.introduction library includes an implementation of the Fibonacci
numbers, which is the traditional “Hello World” program for functional lan-
guages. We will explore the Fibonacci numbers in more detail in Section 4.2,
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How to Be Lazy, on page 90. For now, just make sure that you can execute
the sample function fibs. Enter the following line of code at the REPL to take
the first ten Fibonacci numbers:

(take 10 examples.introduction/fibs)
-> (01123581321 34)

If you see the first ten Fibonacci numbers as listed here, you have successfully
installed the book samples.

The book samples are all unit tested, with tests located in the examples/test
directory. The tests for the samples themselves are not explicitly covered in
the book, but you may find them useful for reference. You can run the unit
tests yourself with lein test.

Require and Use

When you require a Clojure library, you must refer to items in the library with
a namespace-qualified name. Instead of fibs, you must say examples.introduction/fibs.
Make sure to launch a new REPL,® and then try it:

(require 'examples.introduction)
-> nil

(take 10 examples.introduction/fibs)
-=> (001123581321 34)

Fully qualified names get old quickly. You can refer a namespace, creating
mappings for all its names in your current namespace:

(refer quoted-namespace-symbol)
Call refer on examples.introduction, and verify that you can then call fibs directly:

(refer 'examples.introduction)
-> nil

(take 10 fibs)
-=> (01123581321 34)

For convenience, the use function will require and refer a library in a single step:

(use quoted-namespace-symbol)

From a new REPL you should be able to do the following:

8. Creating a new REPL will prevent name collisions between your previous work and
the sample code functions of the same name. This is not a problem in real-world
development, as you will see in Namespaces, on page 40.
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(use 'examples.introduction)
-> nil

(take 10 fibs)
-> (001123581321 34)

As you are working through the book samples, you can call require or use with
a :reload flag to force a library to reload:

(use :reload 'examples.introduction)
-> nil

The :reload flag is useful if you are making changes and want to see results
without restarting the REPL.

Finding Documentation

Often you can find the documentation you need right at the REPL. The most
basic helper function® is doc:

(doc name)
Use doc to print the documentation for str:

user=> (doc str)

clojure.core/str

([1 [x] [x & ys])

With no args, returns the empty string. With one arg x, returns
x.toString(). (str nil) returns the empty string. With more than
one arg, returns the concatenation of the str values of the args.

The first line of doc’s output contains the fully qualified name of the function.
The next line contains the possible argument lists, generated directly from
the code. (Some common argument names and their uses are explained in
Conventions for Parameter Names, on page 19.) Finally, the remaining lines
contain the function’s doc string, if the function definition included one.

You can add a doc string to your own functions by placing it immediately
after the function name:

src/examples/introduction.clj

(defn hello
"Writes hello message to *out*. Calls you by username"
[username]
(println (str "Hello, " username)))

9. doc is actually a Clojure macro.
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The documentation strings for reduce and areduce show several terse parameter names.
Here are some parameter names and how they are normally used:

Parameter Usage

a A Java array
agt An agent

coll A collection
expr An expression
f A function
idx Index

r A ref

v A vector

val A value

These names may seem a little terse, but there is a good reason for them: the “good
names” are often taken by Clojure functions! Naming a parameter that collides with
a function name is legal but considered bad style: the parameter will shadow the
function, which will be unavailable while the parameter is in scope. So, don’t call
your refs ref, your agents agent, or your counts count. Those names refer to functions.

Sometimes you will not know the exact name you want documentation for.
The find-doc function will search for anything whose doc output matches a
regular expression or string you pass in:

(find-doc s)
Use find-doc to explore how Clojure does reduce:

user=> (find-doc "reduce")
clojure/areduce
([a idx ret init exprl])
Macro

. details elided ...
clojure/reduce
([f coll] [f val colll])

. details elided ...

reduce reduces Clojure collections and is covered in Transforming Sequences,
on page 66. areduce is for interoperation with Java arrays and is covered in
Using Java Collections, on page 216.

Much of Clojure is written in Clojure, and it is instructive to read the source
code. You can view the source of a Clojure function using the repl library.

report erratum -« discuss
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(clojure.repl/source a-symbol)

Try viewing the source of the simple identity function:

(use 'clojure.repl)
(source identity)

-> (defn identity
"Returns its argument."

{:added "1.0"
:static true}
[x] x)

Of course, you can also use Java’'s Reflection API. You can use methods such
as class, ancestors, and instance? to reflect against the underlying Java object
model and tell, for example, that Clojure’s collections are also Java collections:

(ancestors (class [1 2 31))

-> #{clojure.lang.ILookup clojure.lang.Sequential
java.lang.0Object clojure.lang.Indexed
java.lang.Iterable clojure.lang.IObj
clojure.lang.IPersistentCollection
clojure.lang.IPersistentVector clojure.lang.AFn
java.lang.Comparable java.util.RandomAccess
clojure.lang.Associative
clojure.lang.APersistentVector clojure.lang.Counted
clojure.lang.Reversible clojure.lang.IPersistentStack
java.util.List clojure.lang.IEditableCollection
clojure.lang.IFn clojure.lang.Seqable
java.util.Collection java.util.concurrent.Callable
clojure.lang.IMeta java.io.Serializable java.lang.Runnable}

Clojure’s complete API is documented online at http://clojure.github.com/clojure. The
right sidebar links to all functions and macros by name, and the left sidebar
links to a set of overview articles on various Clojure features.

Wrapping Up

You have just gotten the whirlwind tour of Clojure. You have seen Clojure’s
expressive syntax, learned about Clojure’s approach to Lisp, and seen how
easy it is to call Java code from Clojure.

You have Clojure running in your own environment, and you have written
short programs at the REPL to demonstrate functional programming and the
reference model for dealing with state. Now it is time to explore the entire
language.
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CHAPTER 2

Exploring Clojure

Clojure offers great power through functional style, concurrency support, and
clean Java interop. But before you can appreciate all these features, you have
to start with the language basics. In this chapter, you will take a quick tour
of the Clojure language, including the following:

¢ Forms

¢ Reader macros

e Functions

¢ Bindings and namespaces
¢ Flow control

e Metadata

If your background is primarily in imperative languages, this tour may seem
to be missing key language constructs, such as variables and for loops. Section
2.7, Where's My for Loop?, on page 48 will show you how you can live better
without for loops and variables.

Clojure is very expressive, and this chapter covers many concepts quite
quickly. Don’t worry if you don’t understand every detail; we will revisit these
topics in more detail in later chapters. If possible, bring up a REPL, and follow
along with the examples as you read.

Forms

Clojure is homoiconic," which is to say that Clojure code is composed of Clojure
data. When you run a Clojure program, a part of Clojure called the reader
reads the text of the program in chunks called forms and translates them

1.  http://en.wikipedia.org/wiki/Homoiconicity
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into Clojure data structures. Clojure then compiles and executes the data
structures.

The Clojure forms covered in this book are summarized in Table 1, Clojure
JSorms, on page 23. To see forms in action, let’s start with some simple forms
supporting numeric types.

Using Numeric Types
Numeric literals are forms. Numbers simply evaluate to themselves. If you
enter a number, the REPL will give it back to you:

42
-> 42

A vector of numbers is another kind of form. Create a vector of the numbers
1, 2, and 3:

[12 3]
-> [1 2 3]

A list is also a kind of form. A list is “just data,” but it is also used to call
functions. Create a list whose first item names a Clojure function, like the
symbol +:

(+12)
-> 3

As you can see, Clojure evaluates the list as a function call. The style of
placing the function first is called prefix notation,” as opposed to the more
familiar infix notation 1 + 2 = 3. Of course, prefix notation is perfectly familiar
for functions whose names are words. For example, most programmers would
correctly expect concat to come first in this expression:

(concat [1 2] [3 4])
-> (1 2 3 4)

Clojure is simply being consistent in treating mathematical operators like all
other functions and placing them first.

A practical advantage of prefix notation is that you can easily extend it for
arbitrary numbers of arguments:

(+ 12 3)
-> 0

2. More specifically, it's called Cambridge Polish notation.



Form
Boolean
Character
Keyword
List

Map

Nil
Number
Set

String
Symbol

Vector

Example(s)
true, false
\a
:tag, :doc
(12 3), (println "foo")

{:name "Bill", :age 42}
nil

1,42

#{:snap :crackle :pop}

"hello"

user/foo,
java.lang.String

[123]
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Primary Coverage

Booleans and nil, on page 27

Strings and Characters, on page 25

Maps, Keywords, and Records, on page 28

Chapter 3, Unifying Data with Sequences, on
page 55

Maps, Keywords, and Records, on page 28

Booleans and nil, on page 27

Using Numeric Types, on page 22

Chapter 3, Unifying Data with Sequences, on
page 55

Strings and Characters, on page 25

Symbols, on page 25

Chapter 3, Unifying Data with Sequences, on
page 55

Table 1—Clojure forms

Even the degenerate case of no arguments works as you would expect,
returning zero. This helps to eliminate fragile, special-case logic for boundary

conditions:

(+)
-> 0

Many mathematical and comparison operators have the names and semantics
that you would expect from other programming languages. Addition, subtrac-
tion, multiplication, comparison, and equality all work as you would expect:

(- 10 5)
-> 5

(* 3 10 10)
-> 300

(>5 2)
-> true

(>= 5 5)
-> true
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(<5 2)
-> false

(=5 2)
-> false

Division may surprise you:

(/22 7)
-> 22/7

As you can see, Clojure has a built-in Ratio type:

(class (/ 22 7))
-> clojure.lang.Ratio

If what you actually want is decimal division, use a floating-point literal for
the dividend:

(/ 22.0 7)
-> 3.142857142857143

If you want to stick to integers, you can get the integer quotient and remainder
with quot and rem:

(quot 22 7)
-> 3

(rem 22 7)
-> 1

If you need to do arbitrary-precision floating-point math, append M to a
number to create a BigDecimal literal:

(+1 (/ 0.00001 1000000000000000000))
0

-> 1

(+1 (/ 0.00001M 1000000000000000000) )
-> 1.00000000000000000000001M

For arbitrary precision integers, you can append N to create a Bigint literal:

(* 1000N 1000 1000 1000 1000 1000 1000)
-> 1000000000000000000000N

Notice that only one Bigint literal is needed and is contagious to the entire
calculation.
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Symbols

Forms such as +, concat, and java.lang.String are called symbols and are used to
name things. For example, + names the function that adds things together.
Symbols name all sorts of things in Clojure:

e Functions like str and concat

e “Operators” like + and -, which are, after all, just functions
e Java classes like java.lang.String and java.util.Random

e Namespaces like clojure.core and Java packages like java.lang
¢ Data structures and references

Symbols cannot start with a number but can consist of alphanumeric char-
acters, plus +, -, *, /, !, ?, ., and _. The list of legal symbol characters is a
minimum set that Clojure promises to support. You should stick to these
characters in your own code, but do not assume the list is exhaustive. Clojure
can use other, undocumented characters in symbols that it employs internally
and may add more legal symbol characters in the future. See Clojure’s online
documentation® for updates to the list of legal symbol characters.

Clojure treats / and . specially in order to support namespaces; see Names-
paces, on page 40 for details.

Strings and Characters

Strings are another kind of reader form. Clojure strings are Java strings. They
are delimited by double quotes, and they can span multiple lines:

"This is a\nmultiline string"
-> "This is a\nmultiline string"

"This is also
a multiline string"
-> "This is also\na multiline string"

As you can see, the REPL always shows string literals with escaped newlines.
If you actually print a multiline string, it will print on multiple lines:

(println "another\nmultiline\nstring")
| another

| multiline

| string

-> nil

Clojure does not wrap most of Java’s string functions. Instead, you can call
them directly using Clojure’s Java interop forms:

3.  http://clojure.org/reader
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(.toUpperCase "hello")
-> "HELLO"

The dot before toUpperCase tells Clojure to treat it as the name of a Java method
instead of a Clojure function.

One string function that Clojure does wrap is toString. You do not need to call
toString directly. Instead of calling toString, use Clojure’s str function:

(str & args)

str differs from toString in two ways. It smashes together multiple arguments,
and it skips nil without error:

(str 1 2 nil 3)
-> II123II

Clojure characters are Java characters. Their literal syntax is \{letter}, where
letter can be a letter or the name of a character: backspace, formfeed, newline, return,
space, or tab:

(str \h \e \y \space \y \o \u)
_> II'.|ey youll

As is the case with strings, Clojure does not wrap Java’s character functions.
Instead, you can use a Java interop form such as Character/toUpperCase:

(Character/toUpperCase \s)
->\S

The Java interop forms are covered in Section 2.5, Calling Java, on page 43.
For more on Java’s Character class, see the API documentation at http://tinyurl.com/
java-character.

Strings are sequences of characters. When you call Clojure sequence functions
on a string, you get a sequence of characters back. Imagine that you wanted
to conceal a secret message by interleaving it with a second, innocuous
message. You could use interleave to combine the two messages:

(interleave "Attack at midnight" "The purple elephant chortled")
-> (\A \T \t \h \t \e \a \space \c \p \k \u \space \r

\a \p \t \1 \space \e \m \space \i \e \d \1 \n \e

\i \p \g \h \h \a \t \n)

That works, but you probably want the resulting sequence as a string for
transmission. It is tempting to use str to pack the characters back into a string,
but that doesn’t quite work:

(str (interleave "Attack at midnight" "The purple elephant chortled"))
-> "clojure.lang.LazySeq@d4ea9f36"
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The problem is that str works with a variable number of arguments, and you
are passing it a single argument that contains the argument list. The solution
is apply:

(apply f args* argseq)

apply takes a function f, some optional args, and a sequence of args called argseq.
It then calls f, unrolling args and argseq into an argument list. Use (apply str ...)
to build a string from a sequence of characters:

(apply str (interleave "Attack at midnight" "The purple elephant chortled"))
-> "ATthtea cpku raptl em iedlneipghhatn"

You can use (apply str...) again to reveal the message:

(apply str (take-nth 2 "ATthtea cpku raptl em iedlneipghhatn"))
-> "Attack at midnight"

The call to (take-nth 2 ...) takes every second element of the sequence, extracting
the obfuscated message.
Booleans and nil
Clojure’s rules for booleans are easy to understand:
e true is true, and false is false.
¢ In addition to false, nil also evaluates to false when used in a boolean context.

e Other than false and nil, everything else evaluates to true in a boolean
context.

Lisp programmers be warned: the empty list is not false in Clojure:

; (if part) (else part)
(if () "We are in Clojure!" "We are in Common Lisp!")
-> "We are in Clojure!"

C programmers be warned: zero is not false in Clojure, either:

; (if part) (else part)
(if @ "Zero is true" "Zero is false")
-> "Zero is true"

A predicate is a function that returns either true or false. In Clojure, it is
idiomatic to name predicates with a trailing question mark, for example true?,
false?, nil?, and zero?:

(true? expr)

(false? expr)
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(nil? expr)
(zero? expr)

true? tests whether a value is actually true, not whether the value evaluates to
true in a boolean context. The only thing that is true? is true itself:

(true? true)
-> true

(true? "foo")
-> false

nil? and false? work the same way. Only nil is nil?, and only false is false?.

zero? works with any numeric type, returning true if it is zero:

(zero? 0.0)
-> true

(zero? (/ 22 7))
-> false

There are many more predicates in Clojure. To review them, enter (find-doc
#"\?$") at the REPL.

Maps, Keywords, and Records

A Clojure map is a collection of key/value pairs. Maps have a literal form
surrounded by curly braces. You can use a map literal to create a lookup
table for the inventors of programming languages:

(def inventors {"Lisp" "McCarthy" "Clojure" "Hickey"})
-> #'user/inventors

The value "McCarthy" is associated with the key "Lisp", and the value "Hickey" is
associated with the key "Clojure".

If you find it easier to read, then you can use commas to delimit each
key/value pair. Clojure doesn’t care. It treats commas as whitespace:

(def inventors {"Lisp" "McCarthy", "Clojure" "Hickey"})
-> #'user/inventors

Maps are functions. If you pass a key to a map, it will return that key’s value,
or it will return nil if the key is not found:

(inventors "Lisp")
-> "McCarthy"

(inventors "Foo")
-> nil
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You can also use the more verbose get function:
(get the-map key not-found-val?)

get allows you to specify a different return value for missing keys:

(get inventors "Lisp" "I dunno!")
-> "McCarthy"

(get inventors "Foo" "I dunno!")
-> "I dunno!"

Because Clojure data structures are immutable and implement hashCode cor-
rectly, any Clojure data structure can be a key in a map. That said, a very
common key type is the Clojure keyword.

A keyword is like a symbol, except that keywords begin with a colon (:). Key-
words resolve to themselves:

:foo
-> :foo

This is different from symbols, which want to refer to something:

foo
-> CompilerException java.lang.RuntimeException:
Unable to resolve symbol: foo in this context

The fact that keywords resolve to themselves makes keywords useful as keys.
You could redefine the inventors map using keywords as keys:

(def inventors {:Lisp "McCarthy" :Clojure "Hickey"})
-> #'user/inventors

Keywords are also functions. They take a map argument and look themselves
up in the map. Having switched to keyword keys for the inventors, you can look
up an inventor by calling the map or by calling a key:

(inventors :Clojure)
-> "Hickey"

(:Clojure inventors)
-> "Hickey"

This flexibility in ordering comes in handy when calling higher-order functions,
such as the reference and agent APIs in Chapter 5, State, on page 113.

If several maps have keys in common, you can document (and enforce) this
fact by creating a record with defrecord:

(defrecord name [arguments])
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The argument names are converted to keys that have the values passed in
when creating the record. Use defrecord to create a Book record:

(defrecord Book [title author])
-> user.Book

Then, you can instantiate a record with user.Book.:

(->Book "title" "author")

Once you instantiate a Book, it behaves almost like any other map:

(def b (->Book "Anathem" "Neal Stephenson"))
-> #'user/b

b
-> #:user.Book{:title "Anathem", :author "Neal Stephenson"}

(:title b)
-> "Anathem"

Records also have alternative invocations. There is the original syntax that
you may have already seen:

(Book. "Anathem" "Neal Stephenson")
-> #user.Book{:title "Anathem", :author "Neal Stephenson"}

You can also instantiate a record using the literal syntax. This is done by
typing in exactly what you have seen returned to you at the REPL. The only
difference you will notice is that record literals have to be fully qualified:

#user.Book{:title "Infinite Jest", :author "David Foster Wallace"}
-> f#user.Book{:title "Infinite Jest", :author "David Foster Wallace"}

So far, you have seen numeric literals, lists, vectors, symbols, strings, char-
acters, booleans, records, and nil. The remaining forms are covered later in
the book, as they are needed. For your reference, see Table 1, Clojure forms,
on page 23, which lists all the forms used in the book, a brief example of
each, and a pointer to more complete coverage.

Reader Macros

Clojure forms are read by the reader, which converts text into Clojure data
structures. In addition to the basic forms, the Clojure reader also recognizes
a set of reader macros.* Reader macros are special reader behaviors triggered
by prefix macro characters.

4. Reader macros are totally different from macros, which are discussed in Chapter 7,
Macros, on page 165.
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The most familiar reader macro is the comment. The macro character that
triggers a comment is the semicolon (;), and the special reader behavior is
“ignore everything else up to the end of this line.”

Reader macros are abbreviations of longer list forms and are used to reduce
clutter. You have already seen one of these. The quote character (') prevents
evaluation:

(1 2)
-> (1 2)

'(12) is equivalent to the longer (quote (1 2)):

(quote (1 2))
-> (1 2)

The other reader macros are covered later in the book. In the following table,
you’ll find a quick syntax overview and references to where each reader macro
is covered.

Reader Macro Example(s) Primary Coverage
Anonymous #(.toUpperCase %) Section 2.3, Functions, on page 32
function
Comment ; single-line comment  Section 2.2, Reader Macros, on page

30
Deref @form => (deref Chapter 5, State, on page 113
form)
Metadata “metadata form Section 2.8, Metadata, on page 51
Quote 'form => (quote form) Section 2.1, Forms, on page 21
Regex pattern #"foo" =>a Seq-ing Regular Expressions, on page
java.util.regex.Pattern 72
Syntax-quote "X Section 7.3, Making Macros Simpler,
on page 172
Unquote ~ Section 7.3, Making Macros Simpler,
on page 172
Unquote-splicing ~@ Section 7.3, Making Macros Simpler,
on page 172
Var-quote #'x => (var x) Chapter 5, State, on page 113

Clojure does not allow programs to define new reader macros. The rationale
for this has been explained (and debated) on the Clojure mailing list.” If you

5.  http://tinyurl.com/clojure-reader-macros
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come from a Lisp background, this may be frustrating. We feel your pain. But
this compromise in flexibility gives Clojure a more stable core. Custom reader
macros could make Clojure programs less interoperable and more difficult
to read.

Functions

In Clojure, a function call is simply a list whose first element resolves to a
function. For example, this call to str concatenates its arguments to create a
string:

(str "hello" " " "world")
-> "hello world"

Function names are typically hyphenated, as in clear-agent-errors. If a function
is a predicate, then by convention its name should end with a question mark.
As an example, the following predicates test the type of their argument, and
all end with a question mark:

(string? "hello")
-> true

(keyword? :hello)
-> true

(symbol? 'hello)
-> true

To define your own functions, use defn:
(defn name doc-string? attr-map? [params*] body)

The attrmap associates metadata with the function’s var. It's covered separately
in Section 2.8, Metadata, on page 51. To demonstrate the other components
of a function definition, create a greeting function that takes a name and returns
a greeting preceded by “Hello™:

src/examples/exploring.clj

(defn greeting
"Returns a greeting of the form 'Hello, username.
[username]
(str "Hello, " username))

You can call greeting:

(greeting "world")
-> "Hello, world"

You can also consult the documentation for greeting:
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user=> (doc greeting)

exploring/greeting
([usernamel)
Returns a greeting of the form 'Hello, username.'

What does greeting do if the caller omits username?

(greeting)
-> ArityException Wrong number of args (0) passed to: user$greeting
clojure.lang.AFn.throwArity (AFn.java:437)

Clojure functions enforce their arity, that is, their expected number of argu-
ments. If you call a function with an incorrect number of arguments, Clojure
will throw an ArityException. If you want to make greeting issue a generic greeting
when the caller omits username, you can use this alternate form of defn, which
takes multiple argument lists and method bodies:

(defn name doc-string? attr-map?
([params*] body)+)

Different arities of the same function can call one another, so you can easily
create a zero-argument greeting that delegates to the one-argument greeting,
passing in a default username:

src/examples/exploring.clj
(defn greeting
"Returns a greeting of the form 'Hello, username.'
Default username is 'world'."
([1 (greeting "world"))
([username] (str "Hello, " username)))

You can verify that the new greeting works as expected:

(greeting)
-> "Hello, world"

You can create a function with variable arity by including an ampersand in
the parameter list. Clojure will bind the name after the ampersand to a
sequence of all the remaining parameters.

The following function allows two people to go on a date with a variable
number of chaperones:

src/examples/exploring.clj
(defn date [person-1 person-2 & chaperones]
(println person-1 "and" person-2
"went out with" (count chaperones) "chaperones."))

(date "Romeo" "Juliet" "Friar Lawrence" "Nurse")
| Romeo and Juliet went out with 2 chaperones.
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Variable arity is very useful in recursive definitions. See Chapter 4, Functional

Programming, on page 85 for examples.

Writing function implementations differing by arity is useful. But if you come
from an object-oriented background, you'll want polymorphism, that is, differ-
ent implementations that are selected by type. Clojure can do this and a whole
lot more. See Chapter 8, Multimethods, on page 187 and Chapter 6, Protocols
and Datatypes, on page 143 for details.

defn is intended for defining functions at the top level. If you want to create a
function from within another function, you should use an anonymous function
form instead.

Anonymous Functions

In addition to named functions with defn, you can also create anonymous
functions with fn. There are at least three reasons to create an anonymous
function:

e The function is so brief and self-explanatory that giving it a name makes
the code harder to read, not easier.

e The function is being used only from inside another function and needs
a local name, not a top-level binding.

e The function is created inside another function for the purpose of closing
over some data.

Filter functions are often brief and self-explanatory. For example, imagine
that you want to create an index for a sequence of words, and you do not care
about words shorter than three characters. You can write an indexable-word?
function like this:

src/examples/exploring.clj

(defn indexable-word? [word]
(> (count word) 2))

Then, you can use indexable-word? to extract indexable words from a sentence:

(require '[clojure.string :as str])

(filter indexable-word? (str/split "A fine day it is" #"\W+"))

-> ("fine" "day")

The call to split breaks the sentence into words, and then filter calls indexable-
word? once for each word, returning those for which indexable-word? returns true.

Anonymous functions let you do the same thing in a single line. The simplest
anonymous fn form is the following:
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(fn [params*] body)

With this form, you can plug the implementation of indexable-word? directly into
the call to filter:

(filter (fn [w] (> (count w) 2)) (str/split "A fine day" #"\W+"))
-> ("fine" "day")

There is an even shorter syntax for anonymous functions, using implicit
parameter names. The parameters are named %1, %2, and so on. You can also
use % for the first parameter. This syntax looks like this:

#(body)
You can rewrite the call to filter with the shorter anonymous form:

(filter #(> (count %) 2) (str/split "A fine day it is" #"\W+"))
> (llfinell lldayll)

A second motivation for anonymous functions is wanting a named function
but only inside the scope of another function. Continuing with the indexable-
word? example, you could write this:

src/examples/exploring.clj
(defn indexable-words [text]
(let [indexable-word? (fn [w] (> (count w) 2))]
(filter indexable-word? (str/split text #"\W+"))))

The let binds the name indexable-word? to the same anonymous function you
wrote earlier, this time inside the lexical scope of indexable-words. (let is covered
in more detail under Section 2.4, Vars, Bindings, and Namespaces, on page
36.) You can verify that indexable-words works as expected:

(indexable-words "a fine day it is")
-> (Ilfinell lldayll)

The combination of let and an anonymous function says the following to
readers of your code: “The function indexable-word? is interesting enough to have
a name but is relevant only inside indexable-words.”

A third reason to use anonymous functions is when you create a function
dynamically at runtime. Earlier, you implemented a simple greeting function.
Extending this idea, you can create a make-greeter function that creates greeting
functions. make-greeter will take a greeting-prefix and return a new function that
composes greetings from the greeting-prefix and a name.

src/examples/exploring.clj

(defn make-greeter [greeting-prefix]
(fn [username] (str greeting-prefix ", " username)))
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It makes no sense to name the fn, because it is creating a different function
each time make-greeter is called. However, you may want to name the results
of specific calls to make-greeter. You can use def to name functions created by
make-greeter:

(def hello-greeting (make-greeter "Hello"))
-> #'user/hello-greeting

(def aloha-greeting (make-greeter "Aloha"))
-> #'user/aloha-greeting

Now, you can call these functions, just like any other functions:

(hello-greeting "world")
-> "Hello, world"

(aloha-greeting "world")
-> "Aloha, world"

Moreover, there is no need to give each greeter a name. You can simply create
a greeter and place it in the first (function) slot of a form:

((make-greeter "Howdy") "pardner")
-> "Howdy, pardner"

As you can see, the different greeter functions remember the value of greeting-
prefix at the time they were created. More formally, the greeter functions are
closures over the value of greeting-prefix.

When to Use Anonymous Functions

Anonymous functions have a terse syntax that is not always appropriate. You
may actually prefer to be explicit and create named functions such as indexable-
word?. That’s perfectly fine and will certainly be the right choice if indexable-word?
needs to be called from more than one place.

Anonymous functions are an option, not a requirement. Use the anonymous
forms only when you find that they make your code more readable. They take
a little getting used to, so don’t be surprised if you gradually use them more
and more.

Vars, Bindings, and Namespaces

When you define an object with def or defn, that object is stored in a Clojure
var. For example, the following def creates a var named user/foo:

(def foo 10)
-> #'user/foo
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The symbol user/foo refers to a var that is bound to the value 10. If you ask
Clojure to evaluate the symbol foo, it will return the value of the associated
var:

foo
-> 10

The initial value of a var is called its root binding. Sometimes it is useful to
have thread-local bindings for a var; this is covered in Section 5.5, Managing
Per-Thread State with Vars, on page 127.

You can refer to a var directly. The var special form returns a var itself, not
the var’s value:

(var a-symbol)
You can use var to return the var bound to user/foo:

(var foo)
-> #'user/foo

You will almost never see the var form directly in Clojure code. Instead, you
will see the equivalent reader macro #', which also returns the var for a
symbol:

#'foo
-> #'user/foo

Why would you want to refer to a var directly? Most of the time, you won't,
and you can often simply ignore the distinction between symbols and vars.

But keep in the back of your mind that vars have many abilities other than
just storing a value:

¢ The same var can be aliased into more than one namespace (Namespaces,
on page 40). This allows you to use convenient short names.

e Vars can have metadata (Section 2.8, Metadata, on page 51). Var metadata
includes documentation (Finding Documentation, on page 18), type hints
for optimization, and unit tests.

e Vars can be dynamically rebound on a per-thread basis (Section 5.5,
Managing Per-Thread State with Vars, on page 127).

Bindings

Vars are bound to names, but there are other kinds of bindings as well. For
example, in a function call, argument values bind to parameter names. In
the following call, 10 binds to the name number inside the triple function:
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(defn triple [number] (* 3 number))
-> #'user/triple

(triple 10)
-> 30

A function’s parameter bindings have a lexical scope: they are visible only
inside the text of the function body. Functions are not the only way to create
a lexical binding. The special form let does nothing other than create a set of
lexical bindings:

(Let [bindings*] exprs*)

The bindings are then in effect for exprs, and the value of the let is the value of
the last expression in exprs.

Imagine that you want coordinates for the four corners of a square, given the
bottom, left, and size. You can let the top and right coordinates, based on the values
given:
src/examples/exploring.clj
(defn square-corners [bottom left size]

(let [top (+ bottom size)

right (+ left size)]
[[bottom left] [top left] [top right] [bottom right]]))

The let binds top and right. This saves you the trouble of calculating top and
right more than once. (Both are needed twice to generate the return value.)
The let then returns its last form, which in this example becomes the return
value of square-corners.

Destructuring

In many programming languages, you bind a variable to an entire collection
when you need to access only part of the collection.

Imagine that you are working with a database of book authors. You track
both first and last names, but some functions need to use only the first name:

src/examples/exploring.clj
(defn greet-author-1 [author]
(println "Hello," (:first-name author)))

The greet-author-1 function works fine:

(greet-author-1 {:last-name "Vinge" :first-name "Vernor"})
| Hello, Vernor

Having to bind author is unsatisfying. You don’t need the author; all you need
is the first-name. Clojure solves this with destructuring. Any place that you bind
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names, you can nest a vector or a map in the binding to reach into a collection
and bind only the part you want. Here is a variant of greet-author that binds
only the first name:

src/examples/exploring.clj
(defn greet-author-2 [{fname :first-name}]
(println "Hello," fname))

The binding form {fname ‘first-name} tells Clojure to bind fname to the :first-name
of the function argument. greet-author-2 behaves just like greet-author-1:

(greet-author-2 {:last-name "Vinge" :first-name "Vernor"})
| Hello, Vernor

Just as you can use a map to destructure any associative collection, you can
use a vector to destructure any sequential collection. For example, you could
bind only the first two coordinates in a three-dimensional coordinate space:

(let [[x y] [1 2 3]]
[x yl)
-> [1 2]

The expression [x y] destructures the vector [1 2 3], binding x to 1 and y to 2.
Since no symbol lines up with the final element 3, it is not bound to anything.

Sometimes you want to skip elements at the start of a collection. Here’s how
you could bind only the z coordinate:

(et [[_ _ z] [1 2 3]]
z)
> 3

The underscore () is a legal symbol and is used idiomatically to indicate “I
don’t care about this binding.” Binding proceeds from left to right, so the _is
actually bound twice:

; *not* idiomatic!

(Let [[_ _ z] [1 2 3]]

)
-> 2

It is also possible to simultaneously bind both a collection and elements
within the collection. Inside a destructuring expression, an :as clause gives
you a binding for the entire enclosing structure. For example, you could
capture the x and y coordinates individually, plus the entire collection as
coords, in order to report the total number of dimensions:

(let [[x y :as coords] [1 2 3 45 6]]

(str "x: " x ", y: y ", total dimensions
-> "x: 1, y: 2, total dimensions 6"

(count coords)))
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Try using destructuring to create an ellipsize function. ellipsize should take a
string and return the first three words followed by ....

src/examples/exploring.clj
(require '[clojure.string :as str])
(defn ellipsize [words]
(Let [[wl w2 w3] (str/split words #"\s+")]
(str/join " " [wl w2 w3 "..."])))

(ellipsize "The quick brown fox jumps over the lazy dog.")
-> "The quick brown ..."

split splits the string around whitespace, and then the destructuring form [wl
w2 w3] grabs the first three words. The destructuring ignores any extra items,
which is exactly what we want. Finally, join reassembles the three words,
adding the ellipsis at the end.

Destructuring has several other features not shown here and is a mini-lan-
guage in itself. The Snake game in Section 5.6, A Clojure Snake, on page 132
makes heavy use of destructuring. For a complete list of destructuring options,
see the online documentation for let.’

Namespaces

Root bindings live in a namespace. You can see evidence of this when you
start the Clojure REPL and create a binding:

user=> (def foo 10)
-> #'user/foo

The user=> prompt tells you that you are currently working in the user
namespace.’ You should treat user as a scratch namespace for exploratory
development.

When Clojure resolves the name foo, it namespace-qualifies foo in the current
namespace user. You can verify this by calling resolve:

(resolve sym)

resolve returns the var or class that a symbol will resolve to in the current
namespace. Use resolve to explicitly resolve the symbol foo:

(resolve 'foo)
-> #'user/foo

6. http://clojure.org/special forms

7. Most of the REPL session listings in the book omit the REPL prompt for brevity. In this
section, the REPL prompt will be included whenever the current namespace is impor-
tant.
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You can switch namespaces, creating a new one if needed, with in-ns:
(in-ns name)
Try creating a myapp namespace:

user=> (in-ns ‘'myapp)
-> #<Namespace myapp>
myapp=>

Now you are in the myapp namespace, and anything you def or defn will belong
to myapp.

When you create a new namespace with in-ns, the java.lang package is automat-
ically available to you:

myapp=> String
-> java.lang.String

While you are learning Clojure, you should use the clojure.core namespace
whenever you move to a new namespace, making Clojure’s core functions
available in the new namespace as well:

myapp=> (clojure.core/use 'clojure.core)
-> nil

By default, class names outside java.lang must be fully qualified. You cannot
just say File:

myapp=> File/separator
-> java.lang.Exception: No such namespace: File

Instead, you must specify the fully qualified java.io.File. Note that your file
separator character may be different from that shown here:

myapp=> java.io.File/separator
> oy

If you do not want to use a fully qualified class name, you can map one or
more class names from a Java package into the current namespace using
import.

(import '(package Class+))
Once you import a class, you can use its short name:

(import '(java.io InputStream File))
-> java.io.File

(.exists (File. "/tmp"))
-> true
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import is only for Java classes. If you want to use a Clojure var from another
namespace, you must use its fully qualified name or map the name into the
current namespace. Take, for example, Clojure’s split function that resides in
clojure.string:

(require 'clojure.string)

(clojure.string/split "Something, separated,by,commas" #",")
-> ["Something" "separated" "by" "commas"]

(split "Something,separated,by,commas" #",")
-> Unable to resolve symbol: split in this context

To alias split in the current namespace, call require on split's namespace and
give it the alias str:
(require '[clojure.string :as str])

(str/split "Something,separated,by,commas" #",")
-> ["Something" "separated" "by" "commas"]

The simple form of require shown earlier causes the current namespace to
reference all public vars in clojure.string and provide access to them under the
alias str. This can be confusing, because it does not make explicit which names
are being referred to.

It is idiomatic to import Java classes and require namespaces at the top of a
source file, using the ns macro:

(ns name & references)

The ns macro sets the current namespace (available as *ns*) to name, creating
the namespace if necessary. The references can include :import, :require, and :use,
which work like the similarly named functions to set up the namespace
mappings in a single form at the top of a source file. For example, this call to
ns appears at the top of the sample code for this chapter:

src/examples/exploring.clj

(ns examples.exploring
(:require [clojure.string :as strl])
(:import (java.io File)))

Clojure’s namespace functions can do quite a bit more than I have shown
here.

You can reflectively traverse namespaces and add or remove mappings at any
time. To find out more, issue this command at the REPL. Since we have moved
around a bit in the REPL, we will also ensure that we are in the user names-
pace so that our REPL utilities are available to us:
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(in-ns 'user)
(find-doc "ns-")

Alternately, browse the documentation at http://clojure.org/namespaces.

Calling Java

Clojure provides simple, direct syntax for calling Java code: creating objects,
invoking methods, and accessing static methods and fields. In addition, Clojure
provides syntactic sugar that makes calling Java from Clojure more concise
than calling Java from Java!

Not all types in Java are created equal: the primitives and arrays work differ-
ently. Where Java has special cases, Clojure gives you direct access to these
as well. Finally, Clojure provides a set of convenience functions for common
tasks that would be unwieldy in Java.

Accessing Constructors, Methods, and Fields

The first step in many Java interop scenarios is creating a Java object. Clojure
provides the new special form for this purpose:

(new classname)
Try creating a new Random:

(new java.util.Random)
-> <Random java.util.Random@667chde6>

The REPL simply prints out the new Random instance by calling its toString()
method. To use a Random instance, you will need to save it away somewhere.
For now, simply use def to save the Random into a Clojure Var:

(def rnd (new java.util.Random))
-> #'user/rnd

Now you can call methods on rd using Clojure’s dot () special form:

(. class-or-instance member-symbol & args)
(. class-or-instance (member-symbol & args))

The . can call methods. For example, the following code calls the no-argument
version of nextlnt():

(. rnd nextInt)
-> -791474443

Random also has a nextint() that takes an argument. You can call that version
by simply adding the argument to the list:
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(. rnd nextInt 10)
-> 8

In the previous call, the . form is used to access an instance method. But .
works with all kinds of class members: fields as well as methods, and statics
as well as instances. Here you can see the . used to get the value of pi:

(. Math PI)
-> 3.141592653589793

Notice that Math is not fully qualified. It doesn’t have to be, because Clojure
imports java.lang automatically. To avoid typing java.util.Random everywhere, you
could explicitly import it:

(import [& import-lists])
; Import-list => (package-symbol & class-name-symbols)

import takes a variable number of lists, with the first part of each list being a
package name and the rest being names to import from that package. The
following import allows unqualified access to Random, Locale, and MessageFormat:
(import '(java.util Random Locale)

'(java.text MessageFormat))
-> java.text.MessageFormat

Random
-> java.util.Random

Locale
-> java.util.Locale

MessageFormat
-> java.text.MessageFormat

At this point, you have almost everything you need to call Java from Clojure.
You can do the following:

e Import class names
¢ Create instances

¢ Access fields

¢ Invoke methods

However, there isn’t anything particularly exciting about the syntax. It is just

“Java with different parentheses.”

Javadoc

Although reaching into Java from Clojure is easy, remembering how all of the
Java bits underneath work can be daunting. Clojure provides a javadoc function
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that will make your life much easier. This provides a pleasant experience from
REPL when exploring.

(javadoc java.net.URL)
->

Flow Control

Clojure has very few flow control forms. In this section, you will meet if, do,
and loop/recur. As it turns out, this is almost all you will ever need.

Branch with if

Clojure’s if evaluates its first argument. If the argument is logically true, it
returns the result of evaluating its second argument:

src/examples/exploring.clj
(defn is-small? [number]
(if (< number 100) "yes"))

(is-small? 50)
> "yes"

If the first argument to if is logically false, it returns nil:

(is-small? 50000)
-> nil

If you want to define a result for the “else” part of if, add it as a third argument:

src/examples/exploring.clj
(defn is-small? [number]
(if (< number 100) "yes

no"))

(is-small? 50000)
-> "no

The when and when-not control flow macros are built on top of if and are
described in when and when-not, on page 171.

Introduce Side Effects with do

Clojure’s if allows only one form for each branch. What if you want to do more
than one thing on a branch? For example, you might want to log that a certain
branch was chosen. do takes any number of forms, evaluates them all, and
returns the last.

You can use a do to print a logging statement from within an if:
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src/examples/exploring.clj
(defn is-small? [number]
(if (< number 100)
"yes"
(do
(println "Saw a big number" number)
"no")))

which results in:

(is-small? 200)
| Saw a big number 200
-> "no"

This is an example of a side effect. The printin doesn’t contribute to the return
value of is-small? at all. Instead, it reaches out into the world outside the
function and actually does something.

Many programming languages mix pure functions and side effects in a com-
pletely ad hoc fashion. Not Clojure. In Clojure, side effects are explicit and
unusual. do is one way to say “side effects to follow.” Since do ignores the
return values of all its forms save the last, those forms must have side effects
to be of any use at all.

Recur with loop/recur

The Swiss Army knife of flow control in Clojure is loop:

(Loop [bindings *] exprs*)

The loop special form works like let, establishing bindings and then evaluating

exprs. The difference is that loop sets a recursion point, which can then be targeted
by the recur special form:

(recur exprs¥*)

recur binds new values for loop’s bindings and returns control to the top of the
loop. For example, the following loop/recur returns a countdown:
src/examples/exploring.clj
(Loop [result [] x 5]
(if (zero? x)
result
(recur (conj result x) (dec x))))

-> [543 21]

The first time through, loop binds result to an empty vector and binds x to 5.
Since x is not zero, recur then rebinds the names x and result:
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e result binds to the previous result conjoined with the previous x.
¢ x binds to the decrement of the previous x.

Control then returns to the top of the loop. Since x is again not zero, the loop
continues, accumulating the result and decrementing x. Eventually, x reaches
zero, and the if terminates the recurrence, returning result.

Instead of using a loop, you can recur back to the top of a function. This makes
it simple to write a function whose entire body acts as an implicit loop:

src/examples/exploring.clj
(defn countdown [result x]
(if (zero? x)
result
(recur (conj result x) (dec x))))

(countdown [] 5)
-> [543 21]

recur is a powerful building block. But you may not use it very often, because
many common recursions are provided by Clojure’s sequence library.

For example, countdown could also be expressed as any of these:

(into [] (take 5 (iterate dec 5)))

-> [543 21]

(into [] (drop-last (reverse (range 6))))
-> [543 21]

(vec (reverse (rest (range 6))))
-> [543 21]

Do not expect these forms to make sense yet—just be aware that there are
often alternatives to using recur directly. The sequence library functions used
here are described in Section 3.2, Using the Sequence Library, on page 60.
Clojure will not perform automatic tail-call optimization (TCO). However, it
will optimize calls to recur. Chapter 4, Functional Programming, on page 85
defines TCO and explores recursion and TCO in detail.

At this point, you have seen quite a few language features but still no variables.
Some things really do vary, and Chapter 5, State, on page 113 will show you
how Clojure deals with changeable references. But most variables in traditional
languages are unnecessary and downright dangerous. Let’s see how Clojure
gets rid of them.
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Where's My for Loop?

Clojure has no for loop and no direct mutable variables.® So, how do you write
all that code you are accustomed to writing with for loops?

Rather than create a hypothetical example, we decided to grab a piece of open
source Java code (sort of) randomly, find a method with some for loops and
variables, and port it to Clojure. We opened the Apache Commons project,
which is very widely used. We selected the StringUtils class in Commons Lang,
assuming that such a class would require little domain knowledge to under-
stand. We then browsed for a method that had multiple for loops and local
variables and found indexOfAny:

data/snippets/StringUtils.java
// From Apache Commons Lang, http://commons.apache.org/lang/
public static int indexOfAny(String str, char[] searchChars) {
if (isEmpty(str) || ArrayUtils.isEmpty(searchChars)) {
return -1;
}
for (int i = 0; i < str.length(); i++) {
char ch = str.charAt(i);
for (int j = 0; j < searchChars.length; j++) {
if (searchChars[j] == ch) {
return i;
}
}
}
return -1;

}

indexOfAny walks str and reports the index of the first char that matches any
char in searchChars, returning -1 if no match is found.

Here are some example results from the documentation for indexOfAny:

StringUtils.indexOfAny(null, *) = -1
StringUtils.indexOfAny("", *) = -1
StringUtils.index0fAny(*, null) = -1
StringUtils.indexOfAny(*, [1]) -1

(

(

(

StringUtils.indexOfAny("zzabyycdxx",['z','a']) = 0
StringUtils.index0fAny("zzabyycdxx",['b','y"]) 3
StringUtils.indexOfAny("aba", ['z']) = -1

8. Clojure provides indirect mutable references, but these must be explicitly called out
in your code. See Chapter 5, State, on page 113 for details.
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There are two ifs, two fors, three possible points of return, and three mutable
local variables in indexOfAny, and the method is fourteen lines long, as counted
by David A. Wheeler’s SLOCCount.’

Now let’s build a Clojure index-of-any, step by step. If we just wanted to find the
matches, we could use a Clojure filter. But we want to find the index of a
match. So, we create indexed, a function that takes a collection and returns
an indexed collection:

src/examples/exploring.clj
(defn indexed [coll] (map-indexed vector coll))

indexed returns a sequence of pairs of the form [idx elt]. Try indexing a string:

(indexed "abcde")
-> ([0 \al [1 \b] [2 \c] [3 \d] [4 \el])

Next, we want to find the indices of all the characters in the string that match
the search set.

Create an index-filter function that is similar to Clojure’s filter but that returns
the indices instead of the matches themselves:

src/examples/exploring.clj
(defn index-filter [pred coll]
(when pred
(for [[idx elt] (indexed coll) :when (pred elt)] idx)))

Clojure’s for is not a loop but a sequence comprehension (see Transforming
Sequences, on page 66). The index/element pairs of (indexed coll) are bound to
the names idx and elt but only when (pred elt) is true. Finally, the comprehension
yields the value of idx for each matching pair.

Clojure sets are functions that test membership in the set. So, you can pass
a set of characters and a string to index-filter and get back the indices of all
characters in the string that belong to the set. Try it with a few different
strings and character sets:

(index-filter #{\a \b} "abcdbbb")
-> (0 1456)

(index-filter #{\a \b} "xyz")
-> ()

At this point, we have accomplished more than the stated objective. index-filter
returns the indices of all the matches, and we need only the first index. So,
index-of-any simply takes the first result from index-filter:

9.  http://www.dwheeler.com/sloccount/
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src/examples/exploring.clj
(defn index-of-any [pred coll]
(first (index-filter pred coll)))

Test that index-of-any works correctly with a few different inputs:

(index-of-any #{\z \a} "zzabyycdxx")
-> 0
(index-of-any #{\b \y} "zzabyycdxx")
> 3

The Clojure version is simpler than the imperative version by every metric
(see Table 2, Relative complexity of imperative and functional indexOfAny, on
page 51). What accounts for the difference?

e The imperative indexOfAny must deal with several special cases: null or
empty strings, a null or empty set of search characters, and the absence
of a match. These special cases add branches and exits to the method.
With a functional approach, most of these kinds of special cases just work
without any explicit code.

e The imperative indexOfAny introduces local variables to traverse collections
(both the string and the character set). By using higher-order functions
such as map and sequence comprehensions such as for, the functional
index-of-any avoids all need for variables.

Unnecessary complexity tends to snowball. For example, the special case
branches in the imperative indexOfAny use the magic number -1 to indicate a
nonmatch. Should the magic number be a symbolic constant? Whatever you
think the right answer is, the question itself disappears in the functional
version. While shorter and simpler, the functional index-of-any is also vastly
more general:

¢ indexOfAny searches a string, while index-of-any can search any sequence.

e indexOfAny matches against a set of characters, while index-of-any can match
against any predicate.

¢ indexOfAny returns the first match, while index-filter returns all the matches
and can be further composed with other filters.

As an example of how much more general the functional index-of-any is, you
could use code like we just wrote to find the third occurrence of “heads” in a
series of coin flips:

(nth (index-filter #{:h} [:t :t :h :t :h :t :t :t :h :h])

2)
-> 8
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Metric LOC Branches Exits/Method Variables
Imperative version 14 4 3 3
Functional version 6 1 1 0

Table 2—Relative complexity of imperative and functional indexOfAny

So, it turns out that writing index-of-any in a functional style, without loops or
variables, is simpler, less error prone, and more general than the imperative
indexOfAny.'® On larger units of code, these advantages become even more
telling.

Metadata

The Wikipedia entry on metadata'' begins by saying that metadata is “data
about data.” That is true but not usably specific. In Clojure, metadata is data
that is orthogonal to the logical value of an object. For example, a person’s first
and last names are plain old data. The fact that a person object can be seri-
alized to XML has nothing to do with the person and is metadata. Likewise,
the fact that a person object is dirty and needs to be flushed to the database
is metadata.

Reader Metadata

The Clojure language itself uses metadata in several places. For example,
vars have a metadata map containing documentation, type information, and
source information. Here is the metadata for the str var:

(meta #'str)

-> {:ns #<Namespace clojure.core>,
:name str,
:file "core.clj",
:line 313,
rarglists ([1 [x] [x & ysl),
:tag java.lang.String,
:doc "With no args, ... etc."}

Some common metadata keys and their uses are shown in Table 3, Common
metadata keys, on page 52.

10. Itis worth mentioning that you could write a functional indexOfAny in plain Java, although
it would not be idiomatic. It may become more idiomatic when closures are added to
the language. See http://functionaljava.org/ for more information.

11. http://en.wikipedia.org/wiki/Metadata
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Metadata Key Used For

:arglists Parameter info used by doc

:doc Documentation used by doc

file Source file

line Source line number

:macro True for macros

:name Local name

:ns Namespace

‘tag Expected argument or return type

Table 3—Common metadata keys

Much of the metadata on a var is added automatically by the Clojure compiler.
To add your own key/value pairs to a var, use the metadata reader macro:

“metadata form

For example, you could create a simple shout function that upcases a string
and then document that shout both expects and returns a string, using the
tag key:

; see also shorter form below
(defn ~{:tag String} shout [~{:tag String} s] (.toUpperCase s))
-> #'user/shout

You can inspect shout’s metadata to see that Clojure added the :tag:

(meta #'shout)

-> {:arglists ([sl]),
:ns #<Namespace user>,
:name shout,
:line 32,
:file "NO SOURCE FILE",
:tag java.lang.String}

You provided the :tag, and Clojure provided the other keys. The :file value
NO_SOURCE_FILE indicates that the code was entered at the REPL.

Because :tag metadata is so common, you can also use the short-form ~Class-
name, which expands to "{:tag Classname}. Using the shorter form, you can
rewrite shout as follows:

(defn ~String shout ["String s] (.toUpperCase s))
-> #'user/shout
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If you find the metadata disruptive when you are reading the definition of a
function, you can place the metadata last. Use a variant of defn that wraps
one or more body forms in parentheses, followed by a metadata map:

(defn shout
([s] (.toUpperCase s))
{:tag String})

Wrapping Up

This has been a long chapter. But think about how much ground you have
covered: you can instantiate basic literal types, define and call functions,
manage namespaces, and read and write metadata. You can write purely
functional code, and yet you can easily introduce side effects when you need
to do so. You have also met Lisp concepts including reader macros, special
forms, and destructuring.

The material here would take hundreds of pages to cover in most other lan-
guages. Is the Clojure way really that much simpler? Yes, in part. Half the
credit for this chapter belongs to Clojure. Clojure’s elegant design and
abstraction choices make the language much easier to learn than most.

That said, the language may not seem so easy to learn right now. That's
because we are taking advantage of Clojure’s power to move much faster than
most programming language books.

So, the other half of the credit for this chapter belongs to you, the reader.
Clojure will give back what you put in, and then some. Take the time you
need to feel comfortable with the chapter’s examples and with using the REPL.
The rest of the book will give you the opportunity to do that.
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Unifying Data with Sequences

Programs manipulate data. At the lowest level, programs work with structures
such as strings, lists, vectors, maps, sets, and trees. At a higher level, these
same data structure abstractions crop up again and again. For example:

e XML data is a tree.

¢ Database result sets can be viewed as lists or vectors.

¢ Directory hierarchies are trees.

 Files are often viewed as one big string or as a vector of lines.

In Clojure, all these data structures can be accessed through a single
abstraction: the sequence (or seq).

A seq (pronounced “seek”) is a logical list. It’s logical because Clojure does
not tie sequences to implementation details of a list such as a Lisp cons cell
(see The Origin of Cons, on page 58 for the history of cons). Instead, the seq
is an abstraction that can be used everywhere.

Collections that can be viewed as seqs are called seq-able (pronounced “SEEK-
a-bull”). In this chapter, you will meet a variety of seq-able collections:

¢ All Clojure collections

¢ All Java collections

e Java arrays and strings

¢ Regular expression matches
¢ Directory structures

¢ 1/0 streams

e XML trees

You will also meet the sequence library, a set of functions that can work with
any seq-able. Because so many things are sequences, the sequence library
is much more powerful and general than the collection APIs in most languages.
The sequence library includes functions to create, filter, and transform data.
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These functions act as the Collections API for Clojure, and they also replace
many of the loops you would write in an imperative language.

In this chapter, you will become a power user of Clojure sequences. You will
see how to use a common set of very expressive functions with an incredibly
wide range of datatypes. Then, in the next chapter (Chapter 4, Functional
Programming, on page 85), you will learn the functional style in which the
sequence library is written.

Everything Is a Sequence
Every aggregate data structure in Clojure can be viewed as a sequence. A
sequence has three core capabilities:
* You can get the first item in a sequence:
(first aseq)
first returns nil if its argument is empty or nil.

* You can get everything after the first item, in other words, the rest of a
sequence:

(rest aseq)
rest returns an empty seq (not nil) if there are no more items.

* You can construct a new sequence by adding an item to the front of an
existing sequence. This is called consing:

(cons elem aseq)

Under the hood, these three capabilities are declared in the Java interface
clojure.lang.ISeq. (Keep this in mind when reading about Clojure, because the
name ISeq is often used interchangeably with seq.)

The seq function will return a seq on any seq-able collection:
(seq coll)

seq will return nil if its coll is empty or nil. The next function will return the seq
of items after the first:

(next aseq)

(next aseq) is equivalent to (seq (rest aseq)). Table 4, Clarifying rest/next behavior,
on page 57 clarifies the rest/next behavior.

If you have a Lisp background, you expect to find that the seq functions work
for lists:
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Form Result

(rest () ()
(next ()) nil
(seq (rest ())) nil

Table 4—Clarifying rest/next behavior

(first '(1 2 3))
-> 1

(rest '(1 2 3))
-> (2 3)

(cons 0 '(1 2 3))
-> (012 3)

In Clojure, the same functions will work for other data structures as well.
You can treat vectors as seqs:

(first [1 2 3])
_>1

(rest [1 2 3])
-> (2 3)

(cons 0 [1 2 3])
-> (012 3)

When you apply rest or cons to a vector, the result is a seq, not a vector. In the
REPL, segs print just like lists, as you can see in the earlier output. You can
check the actual returned type by taking its class:

(class (rest [1 2 31))
-> clojure.lang.PersistentVector$ChunkedSeq

The $ChunkedSeq at the end of the class name is Java’s way of mangling nested
class names. Seqs that you produce from a specific collection type are often
implemented as a ChunkedSeq class nested inside the original collection class
(PersistentVector in this example).

The generality of seqs is very powerful, but sometimes you want to produce
a specific implementation type. This is covered in Section 3.5, Calling Structure-
Specific Functions, on page 76.

You can treat maps as segs, if you think of a key/value pair as an item in
the sequence:
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Clojure’s sequence is an abstraction based on Lisp’s concrete lists. In the original
implementation of Lisp, the three fundamental list operations were named car, cdr,
and cons. car and cdr are acronyms that refer to implementation details of Lisp on the
original IBM 704 platform. Many Lisps, including Clojure, replace these esoteric
names with the more meaningful names first and rest.

The third function, cons, is short for construct. Lisp programmers use cons as a noun,
verb, and adjective. You use cons to create a data structure called a cons cell, or just
a cons for short.

Most Lisps, including Clojure, retain the original cons name, since “construct” is a
pretty good mnemonic for what cons does. It also helps remind you that sequences
are immutable. For convenience, you might say that cons adds an element to a
sequence, but it is more accurate to say that cons constructs a new sequence, which
is like the original sequence but with one element added.

(first {:fname "Aaron" :lname "Bedra"})
-> [:lname "Bedra"]

(rest {:fname "Aaron" :lname "Bedra"})
-> ([:fname "Aaron"])

(cons [:mname "James"] {:fname "Aaron" :lname "Bedra"})
-> ([:mname "James"] [:lname "Bedra"] [:fname "Aaron"])

You can also treat sets as seqs:

(first #{:the :quick :brown :fox})
-> :brown

(rest #{:the :quick :brown :fox})
-> (:quick :fox :the)

(cons :jumped #{:the :quick :brown :fox})
-> (:jumped :brown :quick :fox :the)

Maps and sets have a stable traversal order, but that order depends on
implementation details, and you should not rely on it. Elements of a set will
not necessarily come back in the order that you put them in:

#{:the :quick :brown :fox}
-> #{:brown :quick :fox :the}

If you want a reliable order, you can use this:
(sorted-set & elements)

sorted-set will sort the values by their natural sort order:

report erratum -« discuss



Everything Is a Sequence * 59
(sorted-set :the :quick :brown :fox)
-> #{:brown :fox :quick :the}

Likewise, key/value pairs in maps won’'t necessarily come back in the order
you put them in:

{:ta'l:b2:c3}
-> {:a 1, :c 3, :b 2}

You can create a sorted map with sorted-map:

(sorted-map & elements)

sorted-maps won’'t come back in the order you put them in either, but they will
come back sorted by key:

(sorted-map :c 3 :b 2 :a 1)
-> {:a 1, :b 2, :c 3}

In addition to the core capabilities of seq, two other capabilities are worth
meeting immediately: conj and into.

(conj coll element & elements)

(into to-coll from-coll)

conj adds one or more elements to a collection, and into adds all the items in
one collection to another. Both conj and into add items at an efficient insertion
spot for the underlying data structure. For lists, conj and into add to the front:

(conj '(1 2 3) :a)
-> (:al23)

(into '(1 2 3) '(:a :b :c))
-> (:c :b :a 12 3)

For vectors, conj and into add elements to the back:

(conj [1 2 3] :a)
-> [1 2 3 :a]

(into [1 2 3] [:a :b :c])
-> [1 23 :a:b :c]

Because conj (and related functions) do the efficient thing for the underlying
data structure, you can often write code that is both efficient and completely
decoupled from a specific underlying implementation.

The Clojure sequence library is particularly suited for large (or even infinite)
sequences. Most Clojure sequences are lazy: they generate elements only
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When you try examples at the REPL, the results of rest and cons appear to be lists,
even when the inputs are vectors, maps, or sets. Does this mean that Clojure is
converting everything to a list internally? No! The sequence functions always return
a seq, regardless of their inputs. You can verify this by checking the Java type of the
returned objects:

(class '(1 2 3))
-> clojure.lang.PersistentList

(class (rest [1 2 3]))
-> clojure.lang.PersistentVector$ChunkedSeq

As you can see, the result of (rest [1 2 3]) is some kind of Seq, not a List. So, why does
the result appear to be a list?

The answer lies in the REPL. When you ask the REPL to display a sequence, all it
knows is that it has a sequence. It does not know what kind of collection the sequence
was built from. So, the REPL prints all sequences the same way: it walks the entire
sequence, printing it as a list.

when they are actually needed. Thus, Clojure’s sequence functions can process
sequences too large to fit in memory.

Clojure sequences are immutable: they never change. This makes it easier to
reason about programs and means that Clojure sequences are safe for con-
current access. It does, however, create a small problem for human language.
English-language descriptions flow much more smoothly when describing
mutable things. Consider the following two descriptions for a hypothetical
sequence function triple:

e triple triples each element of a sequence.
o triple takes a sequence and returns a new sequence with each element of
the original sequence tripled.

The latter version is specific and accurate. The former is much easier to read,
but it might lead to the mistaken impression that a sequence is actually
changing. Don’t be fooled: sequences never change. If you see the phrase “foo
changes x,” mentally substitute “foo returns a changed copy of x.”

Using the Sequence Library

The Clojure sequence library provides a rich set of functionality that can work
with any sequence. If you come from an object-oriented background where
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nouns rule, the sequence library is truly “Revenge of the Verbs.”' The functions
provide a rich backbone of functionality that can take advantage of any data
structure that obeys the basic first/rest/cons contract.

The following functions are grouped into four broad categories:

e Functions that create sequences

¢ Functions that filter sequences

e Sequence predicates

¢ Functions that transform sequences

These divisions are somewhat arbitrary. Since sequences are immutable, most
of the sequence functions create new sequences. Some of the sequence
functions both filter and transform. Nevertheless, these divisions provide a
rough road map through a large library.

Creating Sequences

In addition to the sequence literals, Clojure provides a number of functions
that create sequences. range produces a sequence from a start to an end,
incrementing by step each time.

(range start? end step?)

Ranges include their start but not their end. If you do not specify them, start
defaults to zero, and step defaults to 1. Try creating some ranges at the REPL:

(range 10)
>(01234567809)

(range 10 20)
-> (10 11 12 13 14 15 16 17 18 19)
(range 1 25 2)
-> (135791113 15 17 19 21 23)

The repeat function repeats an element x n times:
(repeat n x)
Try to repeat some items from the REPL:

(repeat 5 1)
->(11111)

(repeat 10 "x")
> (IIXII IIXII IIXII IIXII IIXII IIXII IIXII IIXII IIXII IIXII)

1. Steve Yegge’s “Execution in the Kingdom of Nouns” (http://tinyurl.com/the-kingdom-of-nouns)
argues that object-oriented programming has pushed nouns into an unrealistically
dominant position and that it is time for a change.
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Both range and repeat represent ideas that can be extended infinitely. You can
think of iterate as the infinite extension of range:

(iterate f x)

iterate begins with a value x and continues forever, applying a function f to
each value to calculate the next.

If you begin with 1 and iterate with inc, you can generate the whole numbers:

(take 10 (iterate inc 1))
-> (1234567 89 10)

Since the sequence is infinite, you need another new function to help you
view the sequence from the REPL.

(take n sequence)

take returns a lazy sequence of the first n items from a collection and provides
one way to create a finite view onto an infinite collection.

The whole numbers are a pretty useful sequence to have around, so let’s defn
them for future use:

(defn whole-numbers [] (iterate inc 1))
-> #'user/whole-numbers

When called with a single argument, repeat returns a lazy, infinite sequence:

(repeat x)

Try repeating some elements at the REPL. Don'’t forget to wrap the result in a
take:

(take 20 (repeat 1))
->(l11111111111111111111)

The cycle function takes a collection and cycles it infinitely:
(cycle coll)
Try cycling some collections at the REPL:

(take 10 (cycl

e (r
-=> (0120120

nge 3)))
2

a
120)

The interleave function takes multiple collections and produces a new collection

that interleaves values from each collection until one of the collections is
exhausted.

(interleave & colls)
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When one of the collections is exhausted, the interleave stops. So, you can mix
finite and infinite collections:

(interleave (whole-numbers) ["A" "B" "C" "D" "E"])
> (1 IIAII 2 IIBII 3 IICII 4 IIDII 5 IIEII)

Closely related to interleave is interpose, which returns a sequence with each of
the elements of the input collection segregated by a separator:

(interpose separator coll)

You can use interpose to build delimited strings:

(interpose "," ["apples" "bananas" "grapes"])
> (Ilapplesll II,II Ilbananasll II,II llgrapesll)

interpose works nicely with (apply str...) to produce output strings:

(apply str (interpose \, ["apples" "bananas" "grapes"l))
-> "apples,bananas,grapes"

The (apply str...) idiom is common enough that Clojure wraps it as clojure.string/join:
(join separator sequence)
Use clojure.string/join to comma-delimit a list of words:

(use '[clojure.string :only (join)])
(join \, ["apples" "bananas" '"grapes"])
-> "apples,bananas,grapes"

For each collection type in Clojure, there is a function that takes an arbitrary
number of arguments and creates a collection of that type:

(list & elements)

(vector & elements)
(hash-set & elements)
(hash-map key-1 val-1 ...)

hash-set has a cousin set that works a little differently: set expects a collection
as its first argument:

(set [1 2 3])
-> #{1 2 3}

hash-set takes a variable list of arguments:

(hash-set 1 2 3)
-> #{1 2 3}
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vector also has a cousin, vec, that takes a single collection argument instead
of a variable argument list:

(vec (range 3))
-> [0 1 2]

Now that you have the basics of creating sequences, you can use other Clojure
functions to filter and transform them.
Filtering Sequences

Clojure provides a number of functions that filter a sequence, returning a
subsequence of the original sequence. The most basic of these is filter:

(filter pred coll)

filter takes a predicate and a collection and returns a sequence of objects for
which the filter returns true (when interpreted in a boolean context). You can
filter the whole-numbers from the previous section to get the odd numbers or
the even numbers:

(take 10 (filter even? (whole-numbers)))
-> (246810 12 14 16 18 20)

(take 10 (filter odd? (whole-numbers)))
-> (1357911 13 15 17 19)

You can take from a sequence while a predicate remains true with take-while:
(take-while pred coll)

For example, to take all the characters in a string up to the first vowel, use
this:

(take-while (complement #{\a\e\ilo\u}) "the-quick-brown-fox")
-> (\t \h)

There are a couple of interesting things happening here:

e Sets also act as functions. So, you can read #{\a\e\i\o\u} either as “the set
of vowels” or as “the function that tests to see whether its argument is
vowel.”

e complement reverses the behavior of another function. The previous comple-
mented function tests to see whether its argument is not a vowel.

The opposite of take-while is drop-while:

(drop-while pred coll)
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drop-while drops elements from the beginning of a sequence while a predicate
is true and then returns the rest. You could drop-while to drop all leading non-
vowels from a string:

(drop-while (complement #{\a\e\il\o\u}) "the-quick-brown-fox")
-> (\e \- \g \u \i \c \k \- \b \r \o \w \n \- \f \o \x)

split-at and split-with will split a collection into two collections:
(split-at index coll)

(split-with pred coll)

split-at takes an index, and split-with takes a predicate:

(split-at 5 (range 10))
->[(01234) (567 829)]

(split-with #(<= % 10) (range 0 20 2))
->[(0 246 8 10) (12 14 16 18)]

All the take-, split-, and drop- functions return lazy sequences, of course.

Sequence Predicates

Filter functions take a predicate and return a sequence. Closely related are
the sequence predicates. A sequence predicate asks how some other predicate
applies to every item in a sequence. For example, the every? predicate asks
whether some other predicate is true for every element of a sequence.

(every? pred coll)

(every? odd? [1 3 5])
-> true

(every? odd? [1 3 5 8])
-> false

A lower bar is set by some:
(some pred coll)

some returns the first nonfalse value for its predicate or returns nil if no element
matched:

(some even? [1 2 31])
-> true

(some even? [1 3 5])
-> nil
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Notice that some does not end with a question mark. some is not a predicate,
although it is often used like one. some returns the actual value of the first
match instead of true. The distinction is invisible when you pair some with
even?, since even? is itself a predicate. To see a non-true match, try using some
with identity to find the first non-nil value in a sequence:

(some identity [nil false 1 nil 2])
-> 1

The behavior of the other predicates is obvious from their names:
(not-every? pred coll)

(not-any? pred coll)

Not every whole number is even:

(not-every? even? (whole-numbers))
-> true

But it would be a lie to claim that not any whole number is even:

(not-any? even? (whole-numbers))
-> false

Note that we picked questions to which we already knew the answer. In gen-
eral, you have to be careful when applying predicates to infinite collections.
They might run forever.

Transforming Sequences

Transformation functions transform the values in the sequence. The simplest
transformation is map:

(map f coll)

map takes a source collection coll and a function f, and it returns a new
sequence by invoking f on each element in the coll. You could use map to wrap
every element in a collection with an HTML tag.

(map #(format "<p>%s</p>" %) ["the" "quick" "brown" "fox"])
-> ("<p>the</p>" "<p>quick</p>" "<p>brown</p>" "<p>fox</p>")

map can also take more than one collection argument. f must then be a function
of multiple arguments. map will call f with one argument from each collection,
stopping whenever the smallest collection is exhausted:

(map #(format "<%s>%s</%s>" %1 %2 %1)

["h1" "h2" "h3" "h1"] ["the" "quick" "brown" "fox"])

-> ("<hl>the</h1>" "<h2>quick</h2>" "<h3>brown</h3>"
"<h1l>fox</h1>")
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Another common transformation is reduce:

(reduce f coll)

f is a function of two arguments. reduce applies f on the first two elements in
coll and then applies f to the result and the third element, and so on. reduce is
useful for functions that “total up” a sequence in some way. You can use
reduce to add items:

(reduce + (range 1 11))
-> 55

or to multiply them:

(reduce * (range 1 11))
-> 3628800

You can sort a collection with sort or sort-by:
(sort comp? coll)
(sort-by a-fn comp? coll)

sort sorts a collection by the natural order of its elements, where sort-by sorts
a sequence by the result of calling a-fn on each element:

(sort [42 1 7 11])
-> (17 11 42)

(sort-by #(.toString %) [42 1 7 11])
-> (111 42 7)

If you do not want to sort by natural order, you can specify an optional com-
parison function comp for either sort or sort-by:

(sort > [42 1 7 111])
-> (42 11 7 1)

(sort-by :grade > [{:grade 83} {:grade 90} {:grade 77}1])
-> ({:grade 90} {:grade 83} {:grade 77})

The granddaddy of all filters and transformations is the list comprehension.
A list comprehension creates a list based on an existing list, using set notation.
In other words, a comprehension states the properties that the result list
must satisfy. In general, a list comprehension will consist of the following:

e Input list(s)
e Placeholder variables® for elements in the input lists

2. “Variables” in the mathematical sense, not the imperative programming sense. You
can’'t vary them. I humbly apologize for this overloading of the English language.
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¢ Predicates on the elements
¢ An output form that produces output from the elements of the input lists
that satisfy the predicates

Of course, Clojure generalizes the notion of list comprehension to sequence
comprehension. Clojure comprehensions use the for macro.’

(for [binding-form coll-expr filter-expr? ...] expr)

for takes a vector of binding-form/coll-exprs, plus an optional filter-expr, and then
yields a sequence of exprs.

List comprehension is more general than functions such as map and filter and
can in fact emulate most of the filtering and transformation functions
described earlier.

You can rewrite the previous map example as a list comprehension:

(for [word ["the" "quick" "brown" "fox"]]
(format "<p>%s</p>" word))
-> ("<p>the</p>" "<p>quick</p>

<p>brown</p> <p>fox</p>")

This reads almost like English: “For [each] word in [a sequence of words] for-
mat [according to format instructions].”

Comprehensions can emulate filter using a :when clause. You can pass even? to
:when to filter the even numbers:

(take 10 (for [n (whole-numbers) :when (even? n)] n))
-> (246810 12 14 16 18 20)

A :while clause continues the evaluation only while its expression holds true:

(for [n (whole-numbers) :while (even? n)] n)
-> ()

The real power of for comes when you work with more than one binding
expression. For example, you can express all possible positions on a chess-
board in algebraic notation by binding both rank and file:

(for [file "ABCDEFGH" rank (range 1 9)] (format "%c%d" file rank))
-> ("A1" "A2" ... elided ... "H7 ""H8")

Clojure iterates over the rightmost binding expression in a sequence compre-
hension first and then works its way left. Because rank is listed to the right of
file in the binding form, rank iterates faster. If you want files to iterate faster,
you can reverse the binding order and list rank first:

3. The list comprehension for has nothing to do with the for loop found in imperative
languages.
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(for [rank (range 1 9) file "ABCDEFGH"] (format "%c%d" file rank))
-> ("A1" "Bl1" ... elided ... "G8" "H8")

In many languages, transformations, filters, and comprehensions do their
work immediately. Do not assume this in Clojure. Most sequence functions
do not traverse elements until you actually try to use them.

Lazy and Infinite Sequences

Most Clojure sequences are lazy; in other words, elements are not calculated
until they are needed. Using lazy sequences has many benefits:

* You can postpone expensive computations that may not in fact be needed.
e You can work with huge data sets that do not fit into memory.
* You can delay I/O until it is absolutely needed.

Consider the code and following expression:

src/examples/primes.clj
(ns examples.primes)
;; Taken from clojure.contrib.lazy-seqs
; primes cannot be written efficiently as a function, because
; 1t needs to look back on the whole sequence. contrast with
; fibs and powers-of-2 which only need a fixed buffer of 1 or 2
; previous values.
(def primes
(concat
[2357]
(lazy-seq
(let [primes-from
(fn primes-from [n [f & r]]
(if (some #(zero? (rem n %))
(take-while #(<= (* % %) n) primes))
(recur (+ n f) r)

(lazy-seq (cons n (primes-from (+ n f) r)))))
wheel (cycle [2 4246264246626 4 2
6 4684242486462 4 6
266424626424210 2 10])]
(primes-from 11 wheel)))))

(use 'examples.primes)
(def ordinals-and-primes (map vector (iterate inc 1) primes))
-> #'user/ordinals-and-primes

ordinals-and-primes includes pairs like [5, 11] (eleven is the fifth prime number).
Both ordinals and primes are infinite, but ordinals-and-primes fits into memory
just fine, because it is lazy. Just take what you need from it:
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(take 5 (drop 1000 ordinals-and-primes))
-> ([1001 7927] [16002 7933] [1003 7937] [1004 7949] [1605 79511])

When should you prefer lazy sequences? Most of the time. Most sequence
functions return lazy sequences, so you pay only for what you use. More
important, lazy sequences do not require any special effort on your part. In
the previous example, iterate, primes, and map return lazy sequences, so ordinals-
and-primes gets laziness “for free.”

Lazy sequences are critical to functional programming in Clojure. Section
4.2, How to Be Lazy, on page 90 explores creating and using lazy sequences
in much greater detail.

Forcing Sequences

When you are viewing a large sequence from the REPL, you may want to use
take to prevent the REPL from evaluating the entire sequence. In other contexts,
you may have the opposite problem. You have created a lazy sequence, and
you want to force the sequence to evaluate fully. The problem usually arises
when the code generating the sequence has side effects. Consider the following
sequence, which embeds side effects via printin:

(def x (for [1 (range 1 3)] (do (println i) 1i)))
-> #'user/x

Newcomers to Clojure are surprised that the previous code prints nothing.
Since the definition of x does not actually use the elements, Clojure does not
evaluate the comprehension to get them. You can force evaluation with doall:

(doall coll)

doall forces Clojure to walk the elements of a sequence and returns the elements
as a result:

(doall x)

| 1

| 2

-> (1 2)

You can also use dorun:

(dorun coll)

dorun walks the elements of a sequence without keeping past elements in
memory. As a result, dorun can walk collections too large to fit in memory.

(def x (for [1 (range 1 3)] (do (println i) 1i)))
-> #'user/x
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run Xx)

(do
| 1
| 2

-> nil

The nil return value is a telltale reminder that dorun does not hold a reference
to the entire sequence. The dorun and doall functions help you deal with side
effects, while most of the rest of Clojure discourages side effects. You should
use these functions rarely.

Clojure Makes Java Seq-able

The seq abstraction of first/rest applies to anything that there can be more
than one of. In the Java world, that includes the following:

e The Collections API

e Regular expressions

e File system traversal

¢ XML processing

¢ Relational database results

Clojure wraps these Java APIs, making the sequence library available for
almost everything you do.

Seq-ing Java Collections

If you try to apply the sequence functions to Java collections, you will find
that they behave as sequences. Collections that can act as sequences are
called seq-able. For example, arrays are seq-able:

; String.getBytes returns a byte array

(first (.getBytes "hello"))
-> 104

(rest (.getBytes "hello"))
-> (101 108 108 111)

(cons (int \h) (.getBytes "ello"))
-> (104 101 108 168 111)

Hashtables and Maps are also seq-able:

; System.getProperties returns a Hashtable
(first (System/getProperties))
-> #<Entry java.runtime.name=Java(TM) SE Runtime Environment>

(rest (System/getProperties))
-> (#<Entry sun.boot.library.path=/System/Library/... etc.
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Remember that the sequence wrappers are immutable, even when the
underlying Java collection is mutable. So, you cannot update the system
properties by consing a new item onto (System/getProperties). cons will return a new
sequence; the existing properties are unchanged.

Since strings are sequences of characters, they also are seq-able:

(first "Hello")
-> \H

(rest "Hello")
-> (\e \1 \l \o)

(cons \H "ello")
-> (\H \e \1 \1 \o)

Clojure will automatically wrap collections in sequences, but it will not auto-
matically rewrap them back to their original type. With most collection types
this behavior is intuitive, but with strings you will often want to convert the
result to a string. Consider reversing a string. Clojure provides reverse:

; probably not what you want
(reverse "hello")
-> (\o \1 \1 \e \h)

To convert a sequence back to a string, use (apply str seq):

(apply str (reverse "hello"))
-> "olleh"

The Java collections are seq-able, but for most scenarios they do not offer
advantages over Clojure’s built-in collections. Prefer the Java collections only
in interop scenarios where you are working with legacy Java APIs.

Seqg-ing Regular Expressions

Clojure’s regular expressions use the java.util.regex library under the hood. At
the lowest level, this exposes the mutable nature of Java’s Matcher. You can
use re-matcher to create a Matcher for a regular expression and a string and then
loop on re-find to iterate over the matches.

(re-matcher regexp string)

src/examples/sequences.clj
; don't do this!
(Let [m (re-matcher #"\w+" "the quick brown fox")]
(Loop [match (re-find m)]
(when match
(println match)
(recur (re-find m)))))
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| the
| quick
| brown
| fox
-> nil

Much better is to use the higher-level re-seq.

(re-seq regexp string)

re-seq exposes an immutable seq over the matches. This gives you the power
of all of Clojure’s sequence functions. Try these expressions at the REPL:

(re-seq #"\w+" "the quick brown fox")
-> ("the" uquicku "brOWn“ ufoxu)

(sort (re-seq #"\w+" "the quick brown fox"))
-> ("brown" "fox" "quick" "the")

(drop 2 (re-seq #"\w+" "the quick brown fox"))
-> ("brown" "fox")

(map #(.toUpperCase %) (re-seq #"\w+" "the quick brown fox"))
> (HTHEH HOUICKH HBROWNH HFOXH)

re-seq is a great example of how good abstractions reduce code bloat. Regular
expression matches are not a special kind of thing, requiring special methods
to deal with them. They are sequences, just like everything else. Thanks to
the large number of sequence functions, you get more functionality for free
than you would likely end up with after a misguided foray into writing regexp-
specific functions.

Seg-ing the File System
You can seq over the file system. For starters, you can call java.io.File directly:

(import '(java.io File))
(.listFiles (File. "."))
-> [Ljava.io.File;@1f70f15e

The [Ljava.io.File... is Java’s toString() representation for an array of Files. Sequence
functions would call seq on this automatically, but the REPL doesn’t.

So, seq it yourself:

(seq (.listFiles (File. ".")) )
-> (#<./concurrency> #<./sequences> ...)

If the default print format for files does not suit you, you could map them to
a string form with getName:
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; overkill
(map #(.getName %) (seq (.listFiles (File. "."))))
-> ("concurrency" "sequences" ...)

Once you decide to use a function like map, calling seq is redundant. Sequence
library functions call seq for you, so you don’t have to. The previous code
simplifies to this:

(map #(.getName %) (.listFiles (File. ".")))
-> ("concurrency" "sequences" ...)

Often, you want to recursively traverse the entire directory tree. Clojure pro-
vides a depth-first walk via file-seq. If you file-seq from the sample code directory
for this book, you will see a lot of files:

(count (file-seq (File. ".")))
-> 104 ; the final number will be larger!

What if you want to see only the files that have been changed recently? Write
a predicate recently-modified? that checks to see whether File was touched in the
last half hour:

src/examples/sequences.clj
(defn minutes-to-millis [mins] (* mins 1000 60))

(defn recently-modified? [file]
(> (.lastModified file)
(- (System/currentTimeMillis) (minutes-to-millis 30))))

Give it a try: *

(filter recently-modified? (file-seq (File. ".")))
-> (./sequences ./sequences/sequences.clj)
Seg-ing a Stream

You can seq over the lines of any Java Reader using line-seq. To get a Reader, you
can use Clojure’s clojure.java.io library. The clojure.java.io library provides a reader
function that returns a reader on a stream, file, URL, or URI.

(use '[clojure.java.io :only (reader)l])

; leaves reader open...

(take 2 (line-seq (reader "src/examples/utils.clj")))

-> ("(ns examples.utils" " (:import [java.io BufferedReader InputStreamReader]))")

Since readers can represent nonmemory resources that need to be closed,
you should wrap reader creation in a with-open. Create an expression that uses

4. Your results will vary from those shown here.
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the sequence function count to count the number of lines in a file and uses
with-open to correctly close the reader:

(with-open [rdr (reader "src/examples/utils.clj")]
(count (line-seq rdr)))
-> 64

To make the example more useful, add a filter to count only nonblank lines:

(with-open [rdr (reader "src/examples/utils.clj")]
(count (filter #(re-find #"\S" %) (line-seq rdr))))
-> 55

Using seqs both on the file system and on the contents of individual files, you
can quickly create interesting utilities. Create a program that defines these
three predicates:

¢ non-blank? detects nonblank lines.
¢ non-svn? detects files that are not Subversion metadata.
e clojure-source? detects Clojure source code files.

Then, create a clojure-loc function that counts the lines of Clojure code in a
directory tree, using a combination of sequence functions along the way:
reduce, for, count, and filter.

src/examples/sequences.clj
(use '[clojure.java.io :only (reader)])
(defn non-blank? [line] (if (re-find #"\S" line) true false))

(defn non-svn? [file] (not (.contains (.toString file) ".svn")))
(defn clojure-source? [file] (.endsWith (.toString file) ".clj"))

(defn clojure-loc [base-file]
(reduce
+
(for [file (file-seq base-file)
:when (and (clojure-source? file) (non-svn? file))]
(with-open [rdr (reader file)]
(count (filter non-blank? (line-seq rdr)))))))

Now let’s use clojure-loc to find out how much Clojure code is in Clojure itself:

(clojure-loc (java.io.File. "/home/abedra/src/opensource/clojure/clojure"))
-> 38716

The clojure-loc function is very task-specific, but because it is built out of
sequence functions and simple predicates, you can easily tweak it to very
different tasks.
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Seg-ing XML
Clojure can seq over XML data. The examples that follow use this XML:

data/sequences/compositions.xml
<compositions>
<composition composer="J. S. Bach">
<name>The Art of the Fugue</name>
</composition>
<composition composer="F. Chopin">
<name>Fantaisie-Impromptu Op. 66</name>
</composition>
<composition composer="W. A. Mozart">
<name>Requiem</name>
</composition>
</compositions>

The function clojure.xml/parse parses an XML file/stream/URI, returning the
tree of data as a Clojure map, with nested vectors for descendants:

(use '[clojure.xml :only (parse)l])

(parse (java.io.File. "data/sequences/compositions.xml"))
-> {:tag :compositions,

rattrs nil,

:content [{:tag :composition, ... etc.

You can manipulate this map directly, or you can use the xml-seq function to
view the tree as a seq:

(xml-seq root)

The following example uses a list comprehension over an xml-seq to extract
just the composers:

src/examples/sequences.clj
(for [x (xml-seq
(parse (java.io.File. "data/sequences/compositions.xml")))
:when (= :composition (:tag x))]
(:composer (:attrs x)))

-> ("J. S. Bach" "F. Chopin" "W. A. Mozart")

Calling Structure-Specific Functions

Clojure’s sequence functions allow you to write very general code. Sometimes
you will want to be more specific and take advantage of the characteristics
of a specific data structure. Clojure includes functions that specifically target
lists, vectors, maps, structs, and sets.
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We will take a quick tour of some of these structure-specific functions next.
For a complete list of structure-specific functions in Clojure, see the Data
Structures section of the Clojure website.”

Functions on Lists

Clojure supports the traditional names peek and pop for retrieving the first
element of a list and the remainder, respectively:

(peek coll)
(pop coll)

Give a simple list a peek and pop:

peek is the same as first, but pop is not the same as rest. pop will throw an
exception if the sequence is empty:

(rest ())
-> ()

(pop ())
-> java.lang.IllegalStateException: Can't pop empty list

Functions on Vectors

Vectors also support peek and pop, but they deal with the element at the end
of the vector:

(peek [1 2 31)

-> 3
(pop [1 2 3])
-> [1 2]

get returns the value at an index or returns nil if the index is outside the vector:

(get [:a :b :c] 1)
-> b

(get [:a :b :c] 5)
-> nil

5.  http://clojure.org/data_structures
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Vectors are themselves functions. They take an index argument and return
a value, or they throw an exception if the index is out of bounds:

([:a :b :c] 1)
-> b

([:a :b :c] 5)
-> java.lang.ArrayIndexOutOfBoundsException: 5

assoc associates a new value with a particular index:

(assoc [0 1 2 3 4] 2 :two)
-> [0 1 :two 3 4]

subvec returns a subvector of a vector:

(subvec avec start end?)

If end is not specified, it defaults to the end of the vector:

(subvec [1 2 3 4 5] 3)
-> [4 5]

(subvec [1 2 3 45] 13)
-> [2 3]

Of course, you could simulate subvec with a combination of drop and take:

(take 2 (drop 1 [1 2 3 4 5]))
-> (2 3)

The difference is that take and drop are general and can work with any sequence.
On the other hand, subvec is much faster for vectors. Whenever a structure-
specific function like subvec duplicates functionality already available in the
sequence library, it is probably there for performance. The documentation
string for functions like subvec includes performance characteristics.

Functions on Maps

Clojure provides several functions for reading the keys and values in a map.
keys returns a sequence of the keys, and vals returns a sequence of the values:

(keys map)

(vals map)

Try taking keys and values from a simple map:

(keys {:sundance "spaniel", :darwin "beagle"})
-> (:sundance :darwin)
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(vals {:sundance "spaniel", :darwin "beagle"})
-> ("spaniel" "beagle")
get returns the value for a key or returns nil.

(get map key value-if-not-found?)

Use your REPL to test that get behaves as expected for keys both present and

missing:

(get {:sundance "spaniel", :darwin "beagle"} :darwin)
-> "beagle"

(get {:sundance "spaniel", :darwin "beagle"} :snoopy)
-> nil

There is an approach even simpler than get. Maps are functions of their keys.
So, you can leave out the get entirely, putting the map in function position at
the beginning of a form:

({:sundance "spaniel", :darwin "beagle"} :darwin)
-> "beagle"

({:sundance "spaniel", :darwin "beagle"} :snoopy)
-> nil

Keywords are also functions. They take a collection as an argument and look
themselves up in the collection. Since :darwin and :sundance are keywords, the
earlier forms can be written with their elements in reverse order.

(:darwin {:sundance "spaniel", :darwin "beagle"} )
-> "beagle"

(:snoopy {:sundance "spaniel", :darwin "beagle"} )
-> nil

If you look up a key in a map and get nil back, you cannot tell whether the
key was missing from the map or present with a value of nil. The contains?
function solves this problem by testing for the mere presence of a key.

(contains? map key)

Create a map where nil is a legal value:

(def score {:stu nil :joey 100})

:stu is present, but if you see the nil value, you might not think so:

(:stu score)
-> nil
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If you use contains?, you can verify that :stu is in the game, although presumably
not doing very well:

(contains? score :stu)
-> true

Another approach is to call get, passing in an optional third argument that
will be returned if the key is not found:

(get score :stu :score-not-found)
-> nil

(get score :aaron :score-not-found)
-> :score-not-found

The default return value of :score-not-found makes it possible to distinguish that
:aaron is not in the map, while :stu is present with a value of nil.

If nil is a legal value in map, use contains? or the three-argument form of get to
test the presence of a key.

Clojure also provides several functions for building new maps:

e assoc returns a map with a key/value pair added.

e dissoc returns a map with a key removed.

e select-keys returns a map, keeping only the keys passed in.

e merge combines maps. If multiple maps contain a key, the rightmost map
wins.

To test these functions, create some song data:

src/examples/sequences.clj

(def song {:name "Agnus Dei"
rartist "Krzysztof Penderecki"
:album "Polish Requiem"
:genre "Classical"})

Next, create various modified versions of the song collection:

(assoc song :kind "MPEG Audio File")

-> {:name "Agnus Dei", :album "Polish Requiem",
:kind "MPEG Audio File", :genre "Classical",
rartist "Krzysztof Penderecki"}

(dissoc song :genre)
-> {:name "Agnus Dei", :album "Polish Requiem",
;artist "Krzysztof Penderecki"}

(select-keys song [:name :artist])
-> {:name "Agnus Dei", :artist "Krzysztof Penderecki"}
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(merge song {:size 8118166, :time 507245})

-> {:name "Agnus Dei", :album "Polish Requiem",
:genre "Classical", :size 8118166,

rartist "Krzysztof Penderecki", :time 507245}

Remember that song itself never changes. Each of the functions shown previ-
ously returns a new collection.

The most interesting map construction function is merge-with.
(merge-with merge-fn & maps)

merge-with is like merge, except that when two or more maps have the same key,
you can specify your own function for combining the values under the key.
Use merge-with and concat to build a sequence of values under each key:
(merge-with

concat

{:rubble ["Barney"], :flintstone ["Fred"]}

{:rubble ["Betty"], :flintstone ["Wilma"]}

{:rubble ["Bam-Bam"], :flintstone ["Pebbles"]})

-> {:rubble ("Barney" "Betty" "Bam-Bam"),
:flintstone ("Fred" "Wilma" "Pebbles")}

Starting with three distinct collections of family members keyed by last name,
the previous code combines them into one collection keyed by last name.

Functions on Sets

In addition to the set functions in the clojure namespace, Clojure provides a
group of functions in the clojure.set namespace. To use these functions with
unqualified names, call (use 'clojure.set) from the REPL. For the following
examples, you will also need the following vars:

src/examples/sequences.clj

(def languages #{"java" "c" "d" "clojure"})
(def beverages #{"java" "chai" "pop"})

The first group of clojure.set functions performs operations from set theory:

¢ union returns the set of all elements present in either input set.

e intersection returns the set of all elements present in both input sets.

e difference returns the set of all elements present in the first input set, minus
those in the second.

e select returns the set of all elements matching a predicate.

Write an expression that finds the union of all languages and beverages:

(union languages beverages)
> #{njavau ||C|| ||d|| uc'l_ojureu uchaiu upopu}
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Next, try the languages that are not also beverages:

(difference languages beverages)
> #{IICII lldll llclojurell}

If you enjoy terrible puns, you will like the fact that some things are both
languages and beverages:

(intersection languages beverages)
-> #{"java"}

A surprising number of languages cannot afford a name larger than a single
character:

(select #

=1 (.length %)) languages)
> #{”C“ lldll}

Set union and difference are part of set theory, but they are also part of
relational algebra, which is the basis for query languages such as SQL. The
relational algebra consists of six primitive operators: set union and set differ-
ence (described earlier), plus rename, selection, projection, and cross product.

You can understand the relational primitives by following the analogy with
relational databases (see the following table).

Relational Algebra Database Clojure Type System
Relation Table Anything set-like
Tuple Row Anything map-like

The following examples work against an in-memory database of musical
compositions. Load the database before continuing:

src/examples/sequences.clj
(def compositions
#{{:name "The Art of the Fugue" :composer "J. S. Bach"}
{:name "Musical Offering" :composer "J. S. Bach"}
{:name "Requiem" :composer "Giuseppe Verdi"}
{:name "Requiem" :composer "W. A. Mozart"}})
(def composers
#{{:composer "J. S. Bach" :country "Germany"}
{:composer "W. A. Mozart" :country "Austria"}
{:composer "Giuseppe Verdi" :country "Italy"}})
(def nations
#{{:nation "Germany" :language "German"}
{:nation "Austria" :language "German"}
{:nation "Italy" :language "Italian"}})

The rename function renames keys (database columns), based on a map from
original names to new names.
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(rename relation rename-map)
Rename the compositions to use a title key instead of name:

(rename compositions {:name :title})

-> #{{:title "Requiem", :composer "Giuseppe Verdi"}
{:title "Musical Offering", :composer "J.S. Bach"}
{:title "Requiem", :composer "W. A. Mozart"}

{:title "The Art of the Fugue", :composer "J.S. Bach"}}

The select function returns maps for which a predicate is true and is analogous
to the WHERE portion of a SQL SELECT:

(select pred relation)
Write a select expression that finds all the compositions whose title is "Requiem":

(select #(= (:name %) "Requiem") compositions)
-> #{{:name "Requiem", :composer "W. A. Mozart"}
{:name "Requiem", :composer "Giuseppe Verdi"}}

The project function returns only the parts of maps that match a set of keys.
(project relation keys)

project is similar to a SQL SELECT that specifies a subset of columns. Write
a projection that returns only the name of the compositions:

(project compositions [:name])

-> #{{:name "Musical Offering"}

{:name "Requiem"}

{:name "The Art of the Fugue"}}

The final relational primitive, which is a cross product, is the foundation for
the various kinds of joins in relational databases. The cross product returns
every possible combination of rows in the different tables. You can do this
easily enough in Clojure with a list comprehension:

(for [m compositions c composers] (concat m c))
-> ... 4x 3 =12 rows ...

Although the cross product is theoretically interesting, you will typically want
some subset of the full cross product. For example, you might want to join
sets based on shared keys:

(join relation-1 relation-2 keymap?)
You can join the composition names and composers on the shared key :composer:

(join compositions composers)
-> #{{:name "Requiem", :country "Austria",
:composer "W. A. Mozart"}
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{:name "Musical Offering", :country "Germany",
:composer "J. S. Bach"}

{:name "Requiem", :country "Italy",

:composer "Giuseppe Verdi"}

{:name "The Art of the Fugue", :country "Germany",

:composer "J. S. Bach"}}

If the key names in the two relations do not match, you can pass a keymap
that maps the key names in relation-1 to their corresponding keys in relation-2.
For example, you can join composers, which uses :country, to nations, which uses
:nation. For example:

(join composers nations {:country :nation})

-> #{{:language "German", :nation "Austria",
:composer "W. A. Mozart", :country "Austria"}
{:language "German", :nation "Germany",
:composer "J. S. Bach", :country "Germany"}
{:language "Italian", :nation "Italy",
:composer "Giuseppe Verdi", :country "Italy"}}

You can combine the relational primitives. Perhaps you want to know the set
of all countries that are home to the composer of a requiem. You can use select
to find all the requiems, join them with their composers, and project to narrow
the results to just the country names:

(project

(join

(select #(= (:name %) "Requiem") compositions)

composers)

[:countryl])
-> #{{:country "Italy"} {:country "Austria"}}

The analogy between Clojure’s relational algebra and a relational database is
instructive. Remember, though, that Clojure’s relational algebra is a general-
purpose tool. You can use it on any kind of set-relational data. And while
you're using it, you have the entire power of Clojure and Java at your disposal.

Wrapping Up

Clojure unifies all kinds of collections under a single abstraction, the sequence.
After more than a decade dominated by object-oriented programming, Clojure’s
sequence library is the “Revenge of the Verbs.”

Clojure’s sequences are implemented using functional programming tech-
niques: immutable data, recursive definition, and lazy realization. In the next
chapter, you will see how to use these techniques directly, further expanding
the power of Clojure.
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CHAPTER4

Functional Programming

Functional programming (FP) is a big topic, not to be learned in twenty-one
days' or in a single chapter of a book. Nevertheless, you can reach a first
level of effectiveness using lazy and recursive techniques in Clojure fairly
quickly, and that is what we’ll accomplish this chapter.

Here’s how we’ll do that:

e In Section 4.1, Functional Programming Concepts, on page 85, you'll get

a quick overview of FP terms and concepts. This section also introduces
the “Six Rules of Clojure FP” that we will refer to throughout the chapter.

In Section 4.2, How to Be Lazy, on page 90, you'll experience the power
of lazy sequences. You will create several implementations of the
Fibonacci numbers, starting with a terrible approach and improving it to
an elegant, lazy solution.

¢ As cool as lazy sequences are, you rarely need to work with them directly.

In Section 4.3, Lazier Than Lazy, on page 98, you'll see how to rethink
problems so that they can be solved directly using the sequence library
described in Chapter 3, Unifying Data with Sequences, on page 55.

¢ And in Section 4.4, Recursion Revisited, on page 103, we’ll explore some

advanced issues. Some programmers will never need the techniques dis-
cussed here. If you are new to FP, it is OK to skip this section.

Functional Programming Concepts

Functional programming leads to code that is easier to write, read, test, and
reuse. Here’s how it works.

http://norvig.com/21-days.html
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Pure Functions

Programs are built out of pure functions. A pure function has no side effects;
that is, it does not depend on anything but its arguments, and its only influ-
ence on the outside world is through its return value.

Mathematical functions are pure functions. Two plus two is four, no matter
where and when you ask. Also, asking doesn’t do anything other than return
the answer.

Program output is decidedly impure. For example, when you println, you change
the outside world by pushing data onto an output stream. Also, the results
of printin depend on state outside the function: the standard output stream
might be redirected, closed, or broken.

If you start writing pure functions, you will quickly realize that pure functions
and immutable data go hand in hand. Consider the following mystery function:

(defn mystery [input]
(if input data-1 data-2))

If mystery is a pure function, then regardless of what it does, data-1 and data-2
have to be immutable! Otherwise, changes to the data would cause the
function to return different values for the same input.

A single piece of mutable data can ruin the game, rendering an entire call
chain of functions impure. So, once you make a commitment to writing pure
functions, you end up using immutable data in large sections of your appli-
cation.

Persistent Data Structures

Immutable data is critical to Clojure’s approach to both FP and state. On the
FP side, pure functions cannot have side effects, such as updating the state
of a mutable object. On the state side, Clojure’s reference types require
immutable data structures to implement their concurrency guarantees.

The fly in the ointment is performance. When all data is immutable, “update”
translates into “create a copy of the original data, plus my changes.” This will
use up memory quickly! Imagine that you have an address book that takes
up 5MB of memory. Then, you make five small updates. With a mutable
address book, you are still consuming about 5MB of memory. But if you have
to copy the whole address book for each update, then an immutable version
would balloon to 25MB!
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Clojure’s data structures do not take this naive “copy everything” approach.
Instead, all Clojure data structures are persistent. In this context, persistent
means that the data structures preserve old copies of themselves by efficiently
sharing structure between older and newer versions.

Structural sharing is easiest to visualize with a list. Consider list a with two
elements:

(def a '(1 2))
-> #'user/a

Then, from a you can create a b with an additional element added:

(def b (cons 0 a))
-> #'user/b

b is able to reuse all of a’s structure, rather than having its own private copy:

b a

\ \

o| 1| P2

All of Clojure’s data structures share structure where possible. For structures
other than simple lists, the mechanics are more complex, of course. If you
are interested in the details, check out the following articles:

e “Ideal Hash Trees” by Phil Bagwell
e “Understanding Clojure’s PersistentVector Implementation™ by Karl
Krukow

Laziness and Recursion

Functional programs make heavy use of recursion and laziness. A recursion
occurs when a function calls itself, either directly or indirectly. With laziness,
an expression’s evaluation is postponed until it is actually needed. Evaluating
a lazy expression is called realizing the expression.

In Clojure, functions and expressions are not lazy. However, sequences are
generally lazy. Because so much Clojure programming is sequence manipu-
lation, you get many of the benefits of a fully lazy language. In particular, you
can build complex expressions using lazy sequences and then pay only for
the elements you actually need.

2. http://lampwww.epfl.ch/papers/idealhashtrees.pdf
3. http://tinyurl.com/clojure-persistent-vector
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Lazy techniques imply pure functions. You never have to worry about when
to call a pure function, since it always returns the same thing. Impure
functions, on the other hand, do not play well with lazy techniques. As a
programmer, you must explicitly control when an impure function is called,
because if you call it at some other time, it may behave differently!

Referential Transparency

Laziness depends on the ability to replace a function call with its result at
any time. Functions that have this ability are called referentially transparent,
because calls to such functions can be replaced without affecting the behavior
of the program. In addition to laziness, referentially transparent functions
can also benefit from the following:

e Memoization, automatic caching of results
e Automatic parallelization, moving function evaluation to another processor
or machine

Pure functions are referentially transparent by definition. Most other functions
are not referentially transparent, and those that are must be proven safe by
code review.

Benefits of FP

Well, that is a lot of terminology, and we promised it would make your code
easier to write, read, test, and compose. Here’s how.

You'll find functional code easier to write because the relevant information is
right in front of you, in a function’s argument list. You do not have to worry
about global scope, session scope, application scope, or thread scope. Func-
tional code is easier to read for exactly the same reason.

Code that is easier to read and write is going to be easier to test, but functional
code brings an additional benefit for testing. As projects get large, it often
takes a lot of effort to set up the right environment to execute a test. This is
much less of a problem with functional code, because there is no relevant
environment beyond the function’s arguments.

Functional code improves reuse. To reuse code, you must be able to do the
following:

¢ Find and understand a piece of useful code.
e Compose the reusable code with other code.

The readability of functional code helps you find and understand the functions
you need, but the benefit for composing code is even more compelling.
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Composability is a hard problem. For years programmers have used encapsu-
lation to try to create composable code. Encapsulation creates a firewall,
providing access to data only through a public API.

Encapsulation helps, but it is nowhere near enough. Even with encapsulated
objects, there are far too many surprising interactions when you try to com-
pose entire systems. The problem is those darn side effects. Impure functions
violate encapsulation, because they let the outside world reach in (invisibly!)
and change the behavior of your code. Pure functions, on the other hand, are
truly encapsulated and composable. Put them anywhere you want in a system,
and they will always behave in the same way.

The Six Rules

Although the benefits of FP are compelling, FP is a wholesale change from
the imperative programming style that dominates much of the programming
world today. Plus, Clojure takes a unique approach to FP that strikes a balance
between academic purity and the reality of running well on the JVM. That
means there is a lot to learn all at once. But fear not. If you are new to FP,
the following “Six Rules of Clojure FP” will help you on your initial steps
toward FP mastery, Clojure-style:

1. Avoid direct recursion. The JVM cannot optimize recursive calls, and
Clojure programs that recurse will blow their stack.

2. Use recur when you are producing scalar values or small, fixed sequences.
Clojure will optimize calls that use an explicit recur.

3. When producing large or variable-sized sequences, always be lazy. (Do
not recur.) Then, your callers can consume just the part of the sequence
they actually need.

4. Be careful not to realize more of a lazy sequence than you need.

5. Know the sequence library. You can often write code without using recur
or the lazy APIs at all.

6. Subdivide. Divide even simple-seeming problems into smaller pieces, and
you will often find solutions in the sequence library that lead to more
general, reusable code.

Rules 5 and 6 are particularly important. If you are new to FP, you can
translate these two rules to this: “Ignore this chapter and just use the tech-
niques in Chapter 3, Unifying Data with Sequences, on page 55 until you hit
a wall.”
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Like most rules, the six rules are guidelines, not absolutes. As you become
comfortable with FP, you will find reasons to break them.

Now, let’s get started writing functional code.

How to Be Lazy

Functional programs make great use of recursive definitions. A recursive def-
inition consists of two parts:

* A basis, which explicitly enumerates some members of the sequence

¢ An induction, which provides rules for combining members of the sequence
to produce additional members

Our challenge in this section is converting a recursive definition into working
code. You might do this in several ways:

e A simple recursion, using a function that calls itself in some way to
implement the induction step.

¢ A tail recursion, using a function only calling itself at the tail end of its
execution. Tail recursion enables an important optimization.

¢ A lazy sequence that eliminates actual recursion and calculates a value
later, when it is needed.

Choosing the right approach is important. Implementing a recursive definition
poorly can lead to code that performs terribly, consumes all available stack
and fails, consumes all available heap and fails, or does all of these. In Clojure,
being lazy is often the right approach.

We will explore all of these approaches by applying them to the Fibonacci
numbers. Named for the Italian mathematician Leonardo (Fibonacci) of Pisa
(c.1170-c.1250), the Fibonacci numbers were actually known to Indian
mathematicians as far back as 200 BC. The Fibonacci numbers have many
interesting properties, and they crop up again and again in algorithms, data
structures, and even biology.* The Fibonaccis have a very simple recursive
definition:

e Basis: Fy, the zeroth Fibonacci number, is zero. F;, the first Fibonacci
number, is one.

¢ Induction: For n > 1, F,, equals F_;+F .

4. http://en.wikipedia.org/wiki/Fibonacci_number
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Using this definition, the first ten Fibonacci numbers are as follows:

(01123581321 34)

Let’s begin by implementing the Fibonaccis using a simple recursion. The
following Clojure function will return the nth Fibonacci number:

src/examples/functional.clj

Line1 ; bad idea
2 (defn stack-consuming-fibo [n]
3 (cond
4 (=no0)o
5 (=n1l)1
6 :else (+ (stack-consuming-fibo (- n 1))
7 (stack-consuming-fibo (- n 2)))))

Lines 4 and 5 define the basis, and line 6 defines the induction. The imple-
mentation is recursive because stack-consuming-fibo calls itself on lines 6 and 7.

Test that stack-consuming-fibo works correctly for small values of n:

(stack-consuming-fibo 9)
-> 34

Good so far, but there is a problem calculating larger Fibonacci numbers
such as Fyggg00:

(stack-consuming-fibo 1000000)
-> StackOverflowError clojure.lang.Numbers.minus (Numbers.java:1837)

Because of the recursion, each call to stack-consuming-fibo for n > 1 begets two
more calls to stack-consuming-fibo. At the JVM level, these calls are translated
into method calls, each of which allocates a data structure called a stack
frame.®

The stack-consuming-fibo creates a depth of stack frames proportional to n, which
quickly exhausts the JVM stack and causes the StackOverflowError shown earlier.
(It also creates a total number of stack frames that is exponential in n, so its
performance is terrible even when the stack does not overflow.)

Clojure function calls are designated as stack-consuming because they allocate
stack frames that use up stack space. In Clojure, you should almost always
avoid stack-consuming recursion as shown in stack-consuming-fibo.

5. For more on how the JVM manages its stack, see “Runtime Data Areas” at http://tinyurl.com/
jvm-spec-toc.
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Tail Recursion

Functional programs can solve the stack-usage problem with tail recursion.
A tail-recursive function is still defined recursively, but the recursion must
come at the tail, that is, at an expression that is a return value of the function.
Languages can then perform tail-call optimization (TCO), converting tail
recursions into iterations that do not consume the stack.

The stack-consuming-fibo definition of Fibonacci is not tail-recursive, because it
calls add (+) after both calls to stack-consuming-fibo. To make fibo tail-recursive,
you must create a function whose arguments carry enough information to
move the induction forward, without any extra “after” work (like an addition)
that would push the recursion out of the tail position. For fibo, such a function
needs to know two Fibonacci numbers, plus an ordinal n that can count down
to zero as new Fibonaccis are calculated. You can write tail-fibo thusly:

src/examples/functional.clj
tine1 (defn tail-fibo [n]
(Letfn [(fib
[current next n]
(if (zero? n)
current
(fib next (+ current next) (dec n))))]
(fib ON 1IN n)))

N o o A ow N

Line 2 introduces the letfn macro:

(Letfn fnspecs & body) ; fnspecs ==> [(fname [params*] exprs)+]

letfn is like let but is dedicated to letting local functions. Each function declared
in a letfn can call itself or any other function in the same letfn block. Line 3
declares that fib has three arguments: the current Fibonacci, the next Fibonacci,
and the number n of steps remaining.

Line 5 returns current when there are no steps remaining, and line 6 continues
the calculation, decrementing the remaining steps by one. Finally, line 7 kicks
off the recursion with the basis values 0 and 1, plus the ordinal n of the
Fibonacci we are looking for.

tail-fibo works for small values of n:

(tail-fibo 9)
-> 34N

But even though it is tail-recursive, it still fails for large n:

(tail-fibo 1000000)
-> StackOverflowError java.lang.Integer.numberOfLeadingZeros (Integer.java:1054)
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The problem here is the JVM. While functional languages such as Haskell
can perform TCO, the JVM was not designed for functional languages. No
language that runs directly on the JVM can perform automatic TCO.®

The absence of TCO is unfortunate but not a showstopper for functional
programs. Clojure provides several pragmatic workarounds: explicit self-
recursion with recur, lazy sequences, and explicit mutual recursion with
trampoline.

Self-recursion with recur

One special case of recursion that can be optimized away on the JVM is a
self-recursion. Fortunately, the tail-fibo is an example: it calls itself directly,
not through some series of intermediate functions.

In Clojure, you can convert a function that tail-calls itself into an explicit self-
recursion with recur. Using this approach, convert tail-fibo into recur-fibo:

src/examples/functional.clj
; better but not great
(defn recur-fibo [n]
(Letfn [(fib
[current next n]
(if (zero? n)
current
(recur next (+ current next) (dec n))))]
(fib ON 1IN n)))

The critical difference between tail-fibo and recurfibo is on line 7, where recur
replaces the call to fib.

The recur-fibo will not consume stack as it calculates Fibonacci numbers and
can calculate F,, for large n if you have the patience:

(recur-fibo 9)
-> 34N

(recur-fibo 1000000)
-> 195 ... 208,982 other digits ... 875N

The complete value of F, g0 is included in the sample code at output/f-1000000.

The recur-fibo calculates one Fibonacci number. But what if you want several?
Calling recur-fibo multiple times would be wasteful, since none of the work from

6. On today’s JVMs, languages can provide automatic TCO for some kinds of recursion
but not for all. Since there is no general solution, Clojure forces you to be explicit.
When and if general TCO becomes widely supported on the JVM, Clojure will support
it as well.
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any call to recurfibo is ever cached for the next call. But how many values
should be cached? Which ones? These choices should be made by the caller
of the function, not the implementer.

Ideally you would define sequences with an API that makes no reference to
the specific range that a particular client cares about and then let clients pull
the range they want with take and drop. This is exactly what lazy sequences
provide.

Lazy Sequences
Lazy sequences are constructed using the macro lazy-seq:

(Lazy-seq & body)

A lazy-seq will invoke its body only when needed, that is, when seq is called
directly or indirectly. lazy-seq will then cache the result for subsequent calls.
You can use lazy-seq to define a lazy Fibonacci series as follows:

src/examples/functional.clj
(defn lazy-seq-fibo
([1
(concat [0 1] (lazy-seq-fibo ON 1N)))
([a b]
(let [n (+ a b)]
(lazy-seq
(cons n (lazy-seq-fibo b n))))))

On line 3, the zero-argument body returns the concatenation of the basis
values [0 1] and then calls the two-argument body to calculate the rest of the
values. On line 5, the two-argument body calculates the next value n in the
series, and on line 7 it conses n onto the rest of the values.

The key is line 6, which makes its body lazy. Without this, the recursive call
to lazy-seg-fibo on line 7 would happen immediately, and lazy-seg-fibo would recurse
until it blew the stack. This illustrates the general pattern: wrap the recursive
part of a function body with lazy-seq to replace recursion with laziness.

lazy-seq-fibo works for small values:

(take 10 (lazy-seq-fibo))
-> (0 1 1IN 2N 3N 5N 8N 13N 21N 34N)

lazy-seq-fibo also works for large values. Use (rem ... 1000) to print only the last
three digits of the one millionth Fibonacci number:

(rem (nth (lazy-seq-fibo) 1000000) 1000)
-> 875N
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The lazy-seg-fibo approach follows rule 3, using laziness to implement an infinite
sequence. But as is often the case, you do not need to explicitly call lazy-seq
yourself. By rule 5, you can reuse existing sequence library functions that
return lazy sequences. Consider this use of iterate:

(take 5 (iterate (fn [[a b]l] [b (+ a b)]) [0 11))
-> ([0 11 [1 11 [1 2] [2 3] [3 5])

The iterate begins with the first pair of Fibonacci numbers: [0 1]. By working
pairwise, it then calculates the Fibonaccis by carrying along just enough
information (two values) to calculate the next value.

The Fibonaccis are simply the first value of each pair. They can be extracted
by calling map first over the entire sequence, leading to the following definition
of fibo suggested by Christophe Grand:

src/examples/functional.clj
(defn fibo []
(map first (iterate (fn [[a b]] [b (+ a b)]) [ON 1IN1)))

fibo returns a lazy sequence because it builds on map and iterate, which also
return lazy sequences. fibo is also simple. fibo is the shortest implementation
we have seen so far. But if you are accustomed to writing imperative, looping
code, correctly choosing fibo over other approaches may not seem simple at
all! Learning to think recursively, lazily, and within the JVM’s limitations on
recursion—all at the same time—can be intimidating. Let the rules help you.
The Fibonacci numbers are infinite: rule 3 correctly predicts that the right
approach in Clojure will be a lazy sequence, and rule 5 lets the existing
sequence functions do most of the work.

Lazy definitions consume some stack and heap. But they do not consume
resources proportional to the size of an entire (possibly infinite!) sequence.
Instead, you choose how many resources to consume when you traverse the
sequence. If you want the one millionth Fibonacci number, you can get it
from fibo, without having to consume stack or heap space for all the previous
values.

There is no such thing as a free lunch. But with lazy sequences, you can have
an infinite menu and pay only for the menu items you are eating at a given
moment. When writing Clojure programs, you should prefer lazy sequences
over loop/recur for any sequence that varies in size and for any large sequence.

Coming to Realization

Lazy sequences consume significant resources only as they are realized, that
is, as a portion of the sequence is actually instantiated in memory. Clojure
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works hard to be lazy and avoid realizing sequences until it is absolutely
necessary. For example, take returns a lazy sequence and does no realization
at all. You can see this by creating a var to hold, say, the first billion
Fibonacci numbers:

(def lots-o-fibs (take 1000000000 (fibo)))
-> #'user/lots-o-fibs

The creation of lots-o-fibs returns almost immediately, because it does almost
nothing. If you ever call a function that needs to actually use some values in
lots-o-fibs, Clojure will calculate them. Even then, it will do only what is neces-
sary. For example, the following will return the 100th Fibonacci number from
lots-o-fibs, without calculating the millions of other numbers that lots-o-fibs
promises to provide:

(nth lots-o-fibs 100)
-> 354224848179261915075N

Most sequence functions return lazy sequences. If you are not sure whether
a function returns a lazy sequence, the function’s documentation string typi-
cally will tell you the answer:

(doc take)

clojure.core/take

([n coll])

Returns a lazy seq of the first n items in coll, or all items if
there are fewer than n.

The REPL, however, is not lazy. The printer used by the REPL will, by default,
print the entirety of a collection. That is why we stuffed the first billion
Fibonaccis into lots-o-fibs, instead of evaluating them at the REPL. Don’t enter
the following at the REPL:

; don't do this
(take 1000000000 (fibo))

If you enter the previous expression, the printer will attempt to print a billion
Fibonacci numbers, realizing the entire collection as it goes. You will probably
get bored and exit the REPL before Clojure runs out of memory.

As a convenience for working with lazy sequences, you can configure how
many items the printer will print by setting the value of *print-length*:

(set! *print-length* 10)
-> 10

For collections with more than ten items, the printer will now print only the
first ten followed by an ellipsis. So, you can safely print a billion fibos:
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(take 1000000000 (fibo))
-> (ON IN 1IN 2N 3N 5N 8N 13N 2IN 34N ...)

Or even all the fibos:

(fibo)
-> (ON IN 1IN 2N 3N 5N 8N 13N 2IN 34N ...)

Lazy sequences are wonderful. They do only what is needed, and for the most
part you don’t have to worry about them. If you ever want to force a sequence
to be fully realized, you can use either doall or dorun, discussed in Forcing
Sequences, on page 70.

Losing Your Head

There is one last thing to consider when working with lazy sequences. Lazy
sequences let you define a large (possibly infinite) sequence and then work
with a small part of that sequence in memory at a given moment. This clever
ploy will fail if you (or some API) unintentionally hold a reference to the part
of the sequence you no longer care about.

The most common way this can happen is if you accidentally hold the head
(first item) of a sequence. In the examples in the previous sections, each
variant of the Fibonacci numbers was defined as a function returning a
sequence, not the sequence itself.

You could define the sequence directly as a top-level var:

src/examples/functional.clj
; holds the head (avoid!)
(def head-fibo (lazy-cat [ON 1IN] (map + head-fibo (rest head-fibo))))

This definition uses lazy-cat, which is like concat except that the arguments are
evaluated only when needed. This is a very pretty definition in that it defines
the recursion by mapping a sum over (each element of the Fibonaccis) and
(each element of the rest of the Fibonaccis).

head-fibo works great for small Fibonacci numbers:

(take 10 head-fibo)
-> (ON 1IN 1IN 2N 3N 5N 8N 13N 21N 34N)

but not so well for huge ones:

(nth head-fibo 1000000)
-> java.lang.OutOfMemoryError: GC overhead limit exceeded

The problem is that the top-level var head-fibo holds the head of the collection.
This prevents the garbage collector from reclaiming elements of the sequence
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after you have moved past those elements. So, any part of the Fibonacci
sequence that you actually use gets cached for the life of the value referenced
by head-fibo, which is likely to be the life of the program.

Unless you want to cache a sequence as you traverse it, you must be careful
not to keep a reference to the head of the sequence. As the head-fibo example
demonstrates, you should normally expose lazy sequences as a function that
returns the sequence, not as a var that contains the sequence. If a caller of
your function wants an explicit cache, the caller can always create its own
var. With lazy sequences, losing your head is often a good idea.

Lazier Than Lazy

Clojure’s lazy sequences are a great form of laziness at the language level. As
a programmer, you can be even lazier by finding solutions that do not require
explicit sequence manipulation at all. You can often combine existing sequence
functions to solve a problem, without having to get your hands dirty at the
level of recur or lazy sequences.

As an example of this, you will implement several solutions to the following
problem.” You are given a sequence of coin toss results, where heads is :h and
tails is :t:

[:h :t :t :h :h :h]

How many times in the sequence does heads come up twice in a row? In the
previous example, the answer is two. Toss 3 and toss 4 are both heads, and
toss 4 and toss 5 are both heads.

The sequence of coin tosses might be very large, but it will be finite. Since
you are looking for a scalar answer (a count), by rule 2 it is acceptable to use
recur:

src/examples/functional.clj
(defn count-heads-pairs [coll]
(Loop [cnt O coll coll]
(if (empty? coll)

cnt
(recur (if (= :h (first coll) (second coll))
(inc cnt)
cnt)
(rest coll)))))

7. Hat tip to Jeff Brown, who posed this problem over breakfast at a No Fluff, Just Stuff
symposium.



Lazier Than Lazy ® 99

Since the purpose of the function is to count something, the loop introduces
a cnt binding, initially zero on line 2. The loop also introduces its own binding
for the coll so that we can shrink the coll each time through the recur. Line 3
provides the basis for the recurrence. If a sequence of coin tosses is empty,
it certainly has zero runs of two heads in a row.

Line 5 is the meat of the function, incrementing the cnt by one if the first and
second items of coll are both heads (:h).

Try a few inputs to see that count-heads-pairs works as advertised:

(count-heads-pairs [:h :h :h :t :h])
-> 2

(count-heads-pairs [:h :t :h :t :h])
-> 0

Although count-heads-pairs works, it fails as code prose. The key notion of “two
in a rowness” is completely obscured by the boilerplate for loop/recur. To fix
this, you will need to use rules 5 and 6, subdividing the problem to take
advantage of Clojure’s sequence library.

The first problem you will encounter is that almost all the sequence functions
do something to each element in a sequence in turn. This doesn’t help us at
all, since we want to look at each element in the context of its immediate
neighbors. So, let’s transform the sequence. When you see this:

[:h :t :t :h :h :h]
you should mentally translate that into a sequence of every adjacent pair:
[[:h :t] [:t :t] [:t :h] [:h :h] [:h :h]]

Write a function named by-pairs that performs this transformation. Because
the output of by-pairs varies based on the size of its input, by rule 3 you should
build this sequence lazily:

src/examples/functional.clj
tine1 ; overly complex, better approaches follow...
2 (defn by-pairs [coll]
(Llet [take-pair (fn [c]
(when (next c) (take 2 c)))]

(when-1let [pair (seq (take-pair coll))

3
4
5 (Lazy-seq
6
7 (cons pair (by-pairs (rest coll)))

1
))))

Line 3 defines a function that takes the first pair of elements from the collec-
tion. Line 5 ensures that the recursion is evaluated lazily.
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Line 6 is a conditional: if the next pair does not actually contain two elements,
we must be (almost) at the end of the list, and we implicitly terminate. If we
do get two elements, then on line 7 we continue building the sequence by
consing our pair onto the pairs to be had from the rest of the collection.

Check that by-pairs works:

(by-pairs

[:h :t :t :h :h :h])
-> ((:h :t) (: :

t :t) (:t :h) (:h :h) (:h :h))
Now that you can think of the coin tosses as a sequence of pairs of results,
it is easy to describe count-heads-pairs in English:

“Count the pairs of results that are all heads.”

This English description translates directly into existing sequence library
functions: “Count” is count, of course, and “that are all heads” suggests a filter:

src/examples/functional.clj
(defn count-heads-pairs [coll]
(count (filter (fn [pair] (every? #(= :h %) pair))
(by-pairs coll))))

This is much more expressive than the recur-based implementation, and it
makes clear that we are counting all the adjacent pairs of heads. But we can
make things even simpler. Clojure already has a more general version of by-
pairs named partition:

(partition size step? coll)

partition breaks a collection into chunks of size size. So, you could break a
heads/tails vector into a sequence of pairs:

(partition 2 [:h :t :t :h :h :h])

-> ((:h :t) (:t :h) (:h :h))

That isn’t quite the same as by-pairs, which yields overlapping pairs. But partition
can do overlaps too. The optional step argument determines how far partition
moves down the collection before starting its next chunk. If not specified, step
is the same as size. To make partition work like by-pairs, set size to 2 and set step
to 1:

(partition 2 1 [:h :t :t :h :h :h])
-=> ((:h :t) (:t :t) (:t :h) (:h :h) (:h :h))

(by-pairs [:h :t :t :h :h :h])
-=> ((:h :t) (:t :t) (:t :h) (:h :h) (:h :h))
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Throughout the book you will use various def forms to create vars, such as defn, defmacro,
and defmulti. These forms are all eventually wrappers around the def special form.

defonce ensures that a var exists and sets the root binding for the var only if it is not
already set:

(defonce a-symbol initial-value?)

defn- works just like defn but yields a private function that is accessible only in the
namespace where it was defined.

(defn- name & args-as-for-defn)

Many other def forms also have dash-suffixed variants that are private.

Another possible area of improvement is the count/filter idiom used to count
the pairs that are both heads. This combination comes up often enough that
it is worth encapsulating in a count-if function:

src/examples/functional.clj
(def ~{:doc "Count items matching a filter"}
count-if (comp count filter))

comp is used to compose two or more functions:

(comp f & fs)

The composed function is a new function that applies the rightmost function
to its arguments, the next-rightmost function to that result, and so on. So,
count-if will first filter and then count the results of the filter:

(count-if odd? [1 2 3 4 5])
-> 3

Finally, you can use count-if and partition to create a count-runs function that is
more general than count-heads-pairs:

src/examples/functional.clj

(defn count-runs

"Count runs of length n where pred is true in coll."
[n pred coll]

(count-if #(every? pred %) (partition n 1 coll)))

count-runs is a winning combination: both simpler and more general than the
previous versions of count-heads-pairs. You can use it to count pairs of heads:

(count-runs 2 #(= % :h) [:h :t :t :h :h :h])
> 2

report erratum -« discuss
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But you can just as easily use it to count pairs of tails:

(count-runs 2 #(= % :t) [:h :t :t :h :h :h])
-> 1

Or, instead of pairs, how about runs of three heads in a row?

(count-runs 3 #(= % :h) [:h :t :t :h :h :h])
> 1

If you still want to have a function named count-heads-pairs, you can implement
it in terms of count-runs:

src/examples/functional.clj
(def ~{:doc "Count runs of length two that are both heads"}
count-heads-pairs (partial count-runs 2 #(= % :h)))

This version of count-heads-pairs builds a new function using partial:
(partial f & partial-args)

partial performs a partial application of a function. You specify a function f and
part of the argument list when you perform the partial. You specify the
remainder of the argument list later, when you call the function created by
partial. So, the following:

(partial count-runs 1 #(= % :h))

is a more expressive way of saying this:

(fn [coll] (count-runs 1 #(= % :h) coll))

Partial application is similar but not identical to currying.

Currying and Partial Application

When you curry a function, you get a new function that takes one argument
and returns the original function with that one argument fixed. (Curry is
named for Haskell Curry, an American logician best known for his work in
combinatory logic.) If Clojure had a curry, it might be implemented like this:

; almost a curry
(defn faux-curry [& args] (apply partial partial args))

One use of curry is partial application. Here is partial application in Clojure:

(def add-3 (partial + 3))
(add-3 7)
-> 10

And here is partial application using our faux-curry:
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(def add-3 ((faux-curry +) 3))
(add-3 7)
-> 10

If all you want is partial application, currying is just an intermediate step.
Our faux-curry is not a real curry. A real curry would return a result, not a
function of no arguments, once all the arguments were fixed. You can see the
difference here, using the function true?, which takes only one argument:

; faux curry
((faux-curry true?) (=1 1))
-> #<... mangled function name ...>

; 1f the curry were real
((curry true?) (=11))
-> true

Since Clojure functions can have variable-length argument lists, Clojure
cannot know when all the arguments are fixed. But you, the programmer, do
know when you are done adding arguments. Once you have curried as many
arguments as you want, just invoke the function. That amounts to adding
an extra set of parentheses around the earlier expression:

(((faux-curry true?) (=11)))
-> true

The absence of curry from Clojure is not a major problem, since partial is available
and that is what people generally want out of curry anyway. In fact, many
programmers use the terms currying and partial application interchangeably.

You have seen a lot of new forms in this section. Do not let all the details
obscure the key idea: by combining existing functions from the sequence
library, you were able to create a solution that was both simpler and more
general than the direct approach. And, you did not have to worry about lazi-
ness or recursion at all. Instead, you worked at a higher level of abstraction
and let Clojure deal with laziness and recursion for you.

Recursion Revisited

Clojure works very hard to balance the power of functional programming with
the reality of the Java Virtual Machine. One example of this is the well-moti-
vated choice of explicit TCO through loop/recur.

But blending the best of two worlds always runs the risk of unpleasant com-
promises, and it certainly makes sense to ask the question “Does Clojure
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contain hidden design compromises that, while not obvious on day one, will
bite me later?”

This question is never fully answerable for any language, but let’s consider
it by exploring some more complex recursions. First we will look at mutual
recursion.

A mutual recursion occurs when the recursion bounces between two or more
functions. Instead of A calls A calls A, you have A calls B calls A again. As a
simple example, you could define my-odd? and my-even? using mutual recursion:

src/examples/functional.clj
(declare my-odd? my-even?)

(defn my-odd? [n]
(if (= n 0)
false
(my-even? (dec n))))

(defn my-even? [n]
(if (= n 0)
true
(my-odd? (dec n))))

Because my-odd? and my-even? each call the other, you need to create both vars
before actually defining the functions. You could do this with def, but the
declare macro lets you create both vars (with no initial binding) in a single line
of code.

Verify that my-odd? and my-even? work for small values:

(map my-even? (range 10))
-> (true false true false true false true false true false)

(map my-odd? (range 10))
-> (false true false true false true false true false true)

my-odd? and my-even? consume stack frames proportional to the size of their
argument, so they will fail with large numbers.

(my-even? (* 1000 1000 1000))
-> StackOverflowError clojure.lang.Numbers$LongOps.equiv (Numbers.java:490)

This is very similar to the problem that motivated the introduction of recur.
But you cannot use recur to fix it, because recur works with self-recursion, not
mutual recursion. Of course, odd/even can be implemented more efficiently
without recursion anyway. Clojure’s implementation uses bit-and (bitwise and)
to implement odd? and even?:
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; from core.clj
(defn even? [n] (zero? (bit-and n 1)))
(defn odd? [n] (not (even? n)))

We picked odd/even for its simplicity. Other recursive problems are not so
simple and do not have an elegant nonrecursive solution. We will examine
four approaches that you can use to solve such problems:

e Converting to self-recursion

e Trampolining a mutual recursion

¢ Replacing recursion with laziness

¢ Shortcutting recursion with memoization

Converting to Self-recursion

Mutual recursion is often a nice way to model separate but related concepts.
For example, oddness and evenness are separate concepts but clearly related
to one another.

You can convert a mutual recursion to a self-recursion by coming up with a
single abstraction that deals with multiple concepts simultaneously. For
example, you can think of oddness and evenness in terms of a single concept:
parity. Define a parity function that uses recur and returns 0 for even numbers
and 1 for odd numbers:

src/examples/functional.clj
(defn parity [n]
(Loop [n n par 0]
(if (= n 0)
par
(recur (dec n) (- 1 par)))))

Test that parity works for small values:

e 10))
101)

(map parity (rang
->> (01010160
At this point, you can trivially implement my-odd? and my-even? in terms of
parity:

src/examples/functional.clj

(defn my-even? [n] (= 0 (parity n)))

(defn my-odd? [n] (= 1 (parity n)))

Parity is a straightforward concept. Unfortunately, many mutual recursions
will not simplify down into an elegant self-recursion. If you try to convert a
mutual recursion into a self-recursion and you find the resulting code to be
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full of conditional expressions that obfuscate the definition, then do not use
this approach.

Trampolining Mutual Recursion

A trampoline is a technique for optimizing mutual recursion. A trampoline is
like an after-the-fact recur, imposed by the caller of a function instead of the
implementer. Since the caller can call more than one function inside a tram-
poline, trampolines can optimize mutual recursion.

Clojure’s trampoline function invokes one of your mutually recursive functions:
(trampoline f & partial-args)

If the return value is not a function, then a trampoline works just like calling
the function directly. Try trampolining a few simple Clojure functions:

(trampoline 1list)
-> ()
(trampoline + 1 2)
-> 3

If the return value is a function, then trampoline assumes you want to call it
recursively and calls it for you. trampoline manages its own recur, so it will keep
calling your function until it stops returning functions.

Back in Tail Recursion, on page 92, you implemented a tail-fibo function. You
saw how the function consumed stack space and replaced the tail recursion
with a recur. Now you have another option. You can take the code of tail-fibo
and prepare it for trampolining by wrapping the recursive return case inside
a function.

This requires adding only a single character, the #, to introduce an anonymous
function:

src/examples/trampoline.clj

tne1 ; Example only. Don't write code like this.

- (defn trampoline-fibo [n]
(let [fib (fn fib [f-2 f-1 current]
(let [f (+ f-2 f-1)]

5 (if (= n current)
f
#(fib f-1 f (inc current)))))]
(cond
(=n0)o

10 (=n1l)1
:else (fib ON 1 2))))
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The only difference between this and the original version of tail-fibo is the initial
# on line 7. Try bouncing trampoline-fibo on a trampoline:

(trampoline trampoline-fibo 9)
-> 34N

Since trampoline does a recur for you, it can handle large inputs just fine, without
throwing a StackOverflowError:

(rem (trampoline trampoline-fibo 1000000) 1000)
-> 875N

We have ported tail-fibo to use trampoline in order to compare and contrast tram-
poline and recur. For self-recursions like trampoline-fibo, trampoline offers no
advantage, and you should prefer recur. But with mutual recursion, trampoline
comes into its own.

Consider the mutually recursive definition of my-odd? and my-even?, which we
presented at the beginning of Section 4.4, Recursion Revisited, on page 103.

You can convert these broken, stack-consuming implementations to use
trampoline using the same approach you used to convert tail-fibo: simply prepend
a # to any recursive tail calls:

src/examples/trampoline.clj
(declare my-odd? my-even?)

- (defn my-odd? [n]

w

(if (= n 0)
false
#(my-even? (dec n))))

- (defn my-even? [n]

(if (= n 0)
true
#(my-odd? (dec n))))

The only difference from the original implementation is the # wrappers on
lines 6 and 11. With this change in place, you can trampoline large values of n
without blowing the stack:

(trampoline my-even? 1000000)
-> true

A trampoline is a special-purpose solution to a specific problem. It requires
doctoring your original functions to return a different type to indicate recur-
sion. If one of the other techniques presented here provides a more elegant
implementation for a particular recursion, that is great. If not, you will be
happy to have trampoline in your box of tools.
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Replacing Recursion with Laziness

Of all the techniques for eliminating or optimizing recursion discussed in this
chapter, laziness is the one you will probably use most often.

For our example, we will implement the replace function developed by Eugene
Wallingford to demonstrate mutual recursion. (See http://www.cs.uni.edu/~wallingf/
patterns/recursion.html.)

replace works with an s-list data structure, which is a list that can contain
both symbols and lists of symbols. replace takes an s-list, an oldsym, and a newsym
and replaces all occurrences of oldsym with newsym. For example, this call to
replace replaces all occurrences of b with a:

(replace '((a b) (((bgr) (fr))c
-> ((aa) (((agr) (fr)) c(de))

The following is a fairly literal translation of the Scheme implementation from
Wallingford’s paper. We have converted from Scheme functions to Clojure
functions, changed the name to replace-symbol to avoid collision with Clojure’s
replace, and shortened names to better fit the printed page, but we otherwise
have preserved the structure of the original:

src/examples/wallingford.clj
; overly-literal port, do not use
(declare replace-symbol replace-symbol-expression)
(defn replace-symbol [coll oldsym newsym]
(if (empty? coll)
()
(cons (replace-symbol-expression
(first coll) oldsym newsym)
(replace-symbol
(rest coll) oldsym newsym))))
(defn replace-symbol-expression [symbol-expr oldsym newsym]
(if (symbol? symbol-expr)
(if (= symbol-expr oldsym)
newsym
symbol-expr)
(replace-symbol symbol-expr oldsym newsym)))

The two functions replace-symbol and replace-symbol-expression are mutually recur-
sive, so a deeply nested structure could blow the stack. To demonstrate the
problem, create a deeply-nested function that builds deeply nested lists contain-
ing a single bottom element:

src/examples/replace_symbol.clj
(defn deeply-nested [n]
(Loop [n n
result '(bottom)]
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(if (= n 0)
result
(recur (dec n) (list result)))))

Try deeply-nested for a few small values of n:

(deeply-nested 5)
-> ((((((bottom))))))

(deeply-nested 25)
=> (CCCCCCeeeeeeeeeeeeecec(bottom))))NNNNiNgiiiiINIIIIIIID)

Clojure provides a *print-level* that controls how deeply the Clojure printer will
go into a nested data structure. Set the *print-level* to a modest value so that
the printer doesn’t go crazy trying to print a deeply nested structure. You will
see that when nesting deeper, the printer simply prints a # and stops:

(set! *print-level* 25)
-> 25

(deeply-nested 5)
-> ((((((bottom))))))

(deeply-nested 25)
> (CCCCCCOOOEEEeEeeeeeecc#)NNNNNIIIIIIIIIIIIIIIII D)

Now, try to use replace-symbol to change bottom to deepest for different levels of
nesting. You will see that large levels blow the stack. Depending on your JVM
implementation, you may need a larger value than the 10000 shown here:

(replace-symbol (deeply-nested 5) 'bottom 'deepest)
-> ((((((deepest))))))

(replace-symbol (deeply-nested 10000) 'bottom 'deepest)
-> java.lang.StackOverflowError

All of the recursive calls to replace-symbol are inside a cons. To break the recur-
sion, all you have to do is wrap the recursion with lazy-seq. It’s really that
simple. You can break a sequence-generating recursion by wrapping it with
a lazy-seq. Here’s the improved version. Since the transition to laziness was so
simple, we could not resist the temptation to make the function more Clojurish
in another way as well:

src/examples/replace_symbol.clj

Linel (defn- coll-or-scalar [x & ] (if (coll? x) :collection :scalar))

2 (defmulti replace-symbol coll-or-scalar)

3 (defmethod replace-symbol :collection [coll oldsym newsym]
4 (lazy-seq

5 (when (seq coll)

6 (cons (replace-symbol (first coll) oldsym newsym)
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(replace-symbol (rest coll) oldsym newsym)))))
(defmethod replace-symbol :scalar [obj oldsym newsym]
(if (= obj oldsym) newsym obj))

On line 4, the lazy-seq breaks the recursion, preventing stack overflow on deeply
nested structures. The other improvement is on line 2. Rather than have two
different functions to deal with symbols and lists, there is a single multimethod
replace-symbol with one method for lists and another for symbols. (Multimethods
are covered in detail in Chapter 8, Multimethods, on page 187.) This gets rid
of an if form and improves readability.

Make sure the improved replace-symbol can handle deep nesting:

(replace-symbol (deeply-nested 10000) 'bottom 'deepest)
=> (CCCCCCOCOEEEeEeeeeeecc#)NNNNNIIIIIIIIIIIIIIIII D)

Laziness is a powerful ally. You can often write recursive and even mutually
recursive functions and then break the recursion with laziness.

Shortcutting Recursion with Memoization

To demonstrate a more complex mutual recursion, we will look at the Hofs-
tadter Female and Male sequences. The first Hofstadter sequences were
described in Gédel, Escher, Bach: An Eternal Golden Braid [Hof99]. The Female
and Male sequences are defined as follows:®

F(0)=1; M(@©0) =0

Fn)=n-M(F(n-1),n>0

MMn) =n-FM(mn-1),n>0

This suggests a straightforward definition in Clojure:

src/examples/male_female.clj
; do not use these directly
(declare m f)

(defn m [n]
(if (zero? n)
0
(= n (f (m (dec n))))))
(defn f [n]
(if (zero? n)
1

(= n (m (f (dec n))))))

The Clojure definition is easy to read and closely parallels the mathematical
definition. However, it performs terribly for large values of n. Each value in

8.  http://en.wikipedia.org/wiki/Hofstadter sequence
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the sequence requires calculating two other values from scratch, which in
turn requires calculating two other values from scratch. On one of our Mac-
Book Pro computers,” it takes more than half a minute to calculate (m 250):

(time (m 250))
"Elapsed time: 38443.902083 msecs"
-> 155

Is it possible to preserve the clean, mutually recursive definition and have
decent performance? Yes, with a little help from memoization. Memoization
trades space for time by caching the results of past calculations. When you
call a memoized function, it first checks your input against a map of previous
inputs and their outputs. If it finds the input in the map, it can return the
output immediately, without having to perform the calculation again.

Rebind m and f to memoized versions of themselves, using Clojure’s memoize
function:

src/examples/memoized_male_female.clj
(def m (memoize m))
(def f (memoize f))

Now Clojure needs to calculate F and M only once for each n. The speedup is
enormous. Calculating (m 250) is thousands of times faster:
(time (m 250))

"Elapsed time: 5.190739 msecs"
-> 155

And, of course, once the memoization cache is built, “calculation” of a cached
value is almost instantaneous:
(time (m 250))

"Elapsed time: 0.065877 msecs"
-> 155

Memoization alone is not enough, however. Memoization shortcuts the
recursion only if the memoization cache is already populated. If you start
with an empty cache and ask for m or f of a large number, you will blow the
stack before the cache can be built:

(m 10000)
-> java.lang.StackOverflowError

The final trick is to guarantee that the cache is built from the ground up by
exposing sequences, instead of functions. Create m-seq and f-seq by mapping
m and f over the whole numbers:

9. 3.06 GHz Intel Core 2 Duo, 4 GB 667 MHz DDR2 SDRAM, Ubuntu 10.10, SSD
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src/examples/male_female_seq.clj
(def m-seq (map m (iterate inc 0)))
(def f-seq (map f (iterate inc 0)))

Now callers can get M(n) or F(n) by taking the nth value from a sequence:

(nth m-seq 250)
-> 155

The approach is quite fast, even for larger values of n:

(time (nth m-seq 10000))
"Elapsed time: 0.735 msecs"
-> 6180

The approach we have used here is as follows:

¢ Define a mutually recursive function in a natural way.

e Use memoization in order to shortcut recursion for values that have
already been calculated.

¢ Expose a sequence so that dependent values are cached before they are
needed.

This approach is heap-consuming, in that it does cache all previously seen
values. If this is a problem, you can in some situations eliminate it by
selecting a more complex caching policy.

Wrapping Up

In this chapter you've seen how Clojure’s support for FP strikes a well-moti-
vated balance between academic purity and effectiveness on the Java Virtual
Machine. Clojure provides a wide variety of techniques including self-recursion
with recur, mutual recursion with trampoline, lazy sequences, and memoization.

Better still, for a wide variety of everyday programming tasks, you can use
the sequence library, without ever having to define your own explicit recursions
of lazy sequences. Functions like partition create clean, expressive solutions
that are much easier to write.

If Clojure were an exclusively FP language, we would turn our attention next
to the challenges of living in a world without mutable state and perhaps begin
discussing the state monad. But Clojure leads us in a different direction with
its most innovative feature: explicit APIs for managing mutable state. Clojure
reference model provides four different semantics to model state and is what
we’ll tackle in Chapter 5, State, on page 113.




CHAPTER 5

State

A state is the value of an identity at a point in time.

Quite a lot is packed into the previous sentence. Let’s unpack the word value
first. A value is an immutable, persistent data structure. When you can pro-
gram entirely with values, life is easy, as we saw in Chapter 4, Functional
Programming, on page 85.

The flow of time makes things substantially more difficult. Are the New York
Yankees the same now as they were last year? In 1927? The roster of the
Yankees is an identity whose value changes over time.

Updating an identity does not destroy old values. In fact, updating an identity
has no impact on existing values whatsoever. The Yankees could trade every
player, or disband in a fit of boredom, without in any way altering our ability
to think about any past Yankees we happen to care about.

Clojure’s reference model clearly separates identities from values. Almost
everything in Clojure is a value. For identities, Clojure provides four reference

types:

e Refs manage coordinated, synchronous changes to shared state.

e Atoms manage uncoordinated, synchronous changes to shared state.
e Agents manage asynchronous changes to shared state.

e Vars manage thread-local state.

Each of these APIs is discussed in this chapter. At the end of the chapter, we
will develop a sample application. The Snake game demonstrates how to divide
an application model into immutable and mutable components.

Before we start, we will review the intersection of state with concurrency and
parallelism, as well as comment on the difficulty with traditional lock-based
approaches.
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Concurrency, Parallelism, and Locking

A concurrent program models more than one thing happening simultaneously.
A parallel program takes an operation that could be sequential and chooses
to break it into separate pieces that can execute concurrently to speed overall
execution.

There are many reasons to write concurrent or parallel programs:

e For decades, performance improvements have come from packing more
power into cores. Now, and for the near future, performance improvements
will come from using more cores. Our hardware is itself more concurrent
than ever, and systems must be concurrent to take advantage of this
power.

e Expensive computations may need to execute in parallel on multiple cores
(or multiple boxes) in order to complete in a timely manner.

e Tasks that are blocked waiting for a resource should stand down and let
other tasks use available processors.

e User interfaces need to remain responsive while performing long-running
tasks.

e Operations that are logically independent are easier to implement if the
platform can recognize and take advantage of their independence.

Concurrency makes it glaringly obvious that more than one observer (e.g.,
thread) may be looking at your data. This is a big problem for languages that
complect' value and identity. Such languages treat a piece of data as a bank
ledger with only one line. Each new operation erases history, potentially cor-
rupting the work of every other thread on the system.

While concurrency makes the challenges more obvious, it is a mistake to
assume that multiple observers come into play only with concurrency. If your
program ever has two variables that refer to the same data, those variables
are different observers. If your program allows mutability at all, then you
must think carefully about state.

Mutable languages tend to tackle the challenge by locking and defensive
copying. Continuing the ledger analogy: the bank hires guards (locks) to su-
pervise the activities of anybody using a ledger, and nobody is allowed to
modify a ledger while anybody else is using it.

1.  http://www.infog.com/presentations/Simple-Made-Easy
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When the performance becomes really bad, the bank may even ask ledger
readers to make their own private copies of the ledger so they can get out of
the way and let transactions continue. These copies must still be supervised
by the guards!

As irritating as this model sounds, it gets worse at the level of implementation
detail. Choosing what and where to lock is a difficult task. If you get it wrong,
all sorts of bad things can happen. Race conditions between threads can
corrupt data. Deadlocks can stop an entire program from functioning at all.
Java Concurrency in Practice [Goe06] covers these and other problems, plus
their solutions, in detail. It is a terrific book, but it is difficult to read it and
not ask yourself, “Is there another way?”

Clojure’s model for state and identity solves these problems. The bulk of
program code is functional. The small parts of the codebase that truly benefit
from mutability are distinct and must explicitly select one of four reference
models. Using these models, you can split your models into two layers:

¢ A functional model that has no mutable state. Most of your code will nor-
mally be in this layer, which is easier to read, easier to test, and easier
to parallelize.

¢ Reference models for the parts of the application that you find more con-
venient to deal with using mutable state (despite its disadvantages).

Let’s get started working with state in Clojure, using the most notorious of
Clojure’s reference models: software transactional memory.

Refs and Software Transactional Memory

Most objects in Clojure are immutable. When you really want mutable data,
you must be explicit about it, such as by creating a mutable reference (ref)
to an immutable object. You create a ref with this:

(ref initial-state)

For example, you could create a reference to the current song in your music
playlist:

(def current-track (ref "Mars, the Bringer of War"))
-> #'user/current-track

The ref wraps and protects access to its internal state. To read the contents
of the reference, you can call deref:

(deref reference)
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The deref function can be shortened to the @ reader macro. Try using both
deref and @ to dereference current-track:

(deref current-track)
-> "Mars, the Bringer of War"

@current-track
-> "Mars, the Bringer of War"

Notice how in this example the Clojure model fits the real world. A track is
an immutable entity. It doesn’t change into another track when you are fin-
ished listening to it. But the current track is a reference to an entity, and it
does change.

ref-set

You can change where a reference points with ref-set:

(ref-set reference new-value)

Call ref-set to listen to a different track:

(ref-set current-track "Venus, the Bringer of Peace")
-> java.lang.IllegalStateException: No transaction running

Oops. Because refs are mutable, you must protect their updates. In many
languages, you would use a lock for this purpose. In Clojure, you can use a
transaction. Transactions are wrapped in a dosync:

(dosync & exprs)
Wrap your ref-set with a dosync, and all is well.

(dosync (ref-set current-track "Venus, the Bringer of Peace"))
-> "Venus, the Bringer of Peace"

The current-track reference now refers to a different track.

Transactional Properties

Like database transactions, STM transactions guarantee some important
properties:

e Updates are atomic. If you update more than one ref in a transaction, the
cumulative effect of all the updates will appear as a single instantaneous
event to anyone not inside your transaction.

e Updates are consistent. Refs can specify validation functions. If any of
these functions fail, the entire transaction will fail.
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¢ Updates are isolated. Running transactions cannot see partially completed
results from other transactions.

Databases provide the additional guarantee that updates are durable. Because
Clojure’s transactions are in-memory transactions, Clojure does not guarantee
that updates are durable. If you want a durable transaction in Clojure, you
should use a database.

Together, the four transactional properties are called ACID. Databases provide
ACID; Clojure’s STM provides ACI.

If you change more than one ref in a single transaction, those changes are
all coordinated to “happen at the same time” from the perspective of any code
outside the transaction. So, you can make sure that updates to current-track
and current-composer are coordinated:

(def current-track (ref "Venus, the Bringer of Peace"))
-> #'user/current-track

(def current-composer (ref "Holst"))

-> #'user/current-composer

(dosync
(ref-set current-track "Credo")
(ref-set current-composer "Byrd"))
-> "Byrd"

Because the updates are in a transaction, no other thread will ever see an
updated track with an out-of-date composer, or vice versa.

alter

The current-track example is deceptively easy, because updates to the ref are
totally independent of any previous state. Let’s build a more complex example,
where transactions need to update existing information. A simple chat
application fits the bill. First, create a message record that has a sender and
some text:

src/examples/chat.clj
(defrecord Message [sender text])

Now, you can create messages by instantiating the record:

(user.Message. "Aaron" "Hello")
-> #:user.Message{:sender "Aaron", :text "Hello"}

Users of the chat application want to see the most recent message first, so a
list is a good data structure. Create a messages reference that points to an
initially empty list:
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(def messages (ref ()))

Now you need a function to add a new message to the front of messages. You
could simply deref to get the list of messages, cons the new message, and then
ref-set the updated list back into messages:

; bad idea

(defn naive-add-message [msg]
(dosync (ref-set messages (cons msg @messages))))

But there is a better option. Why not perform the read and update in a single
step? Clojure’s alter will apply an update function to a referenced object within
a transaction:

(alter ref update-fn & args...)

alter returns the new value of the ref within the transaction. When a transaction
successfully completes, the ref will take on its last in-transaction value. Using
alter instead of ref-set makes the code more readable:

(defn add-message [msg]
(dosync (alter messages conj msg)))

Notice that the update function is conj (short for “conjoin”), not cons. This is
because conj takes arguments in an order suitable for use with alter:

(cons item sequence)
(conj sequence item)

The alter function calls its update-fn with the current reference value as its first
argument, as conj expects. If you plan to write your own update functions,
they should follow the same structure as con;:

(your-func thing-that-gets-updated & optional-other-args)
Try adding a few messages to see that the code works as expected:

(add-message (user.Message. "user 1" "hello"))
-> (#:user.Message{:sender "user 1", :text "hello"})

(add-message (user.Message. "user 2" "howdy"))
-> (#:user.Message{:sender "user 2", :text "howdy"}
#:user.Message{:sender "user 1", :text "hello"})

alter is the workhorse of Clojure’s STM and is the primary means of updating
refs. But if you know a little about how the STM works, you may be able to
optimize your transactions in certain scenarios.
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How STM Works: MVCC

Clojure’s STM uses a technique called Multiversion Concurrency Control
(MVCC), which is also used in several major databases. Here’s how MVCC
works in Clojure.

Transaction A begins by taking a point, which is simply a number that acts
as a unique timestamp in the STM world. Transaction A has access to its own
effectively private copy of any reference it needs, associated with the point.
Clojure’s persistent data structures (Persistent Data Structures, on page 86)
make it cheap to provide these effectively private copies.

During Transaction A, operations on a ref work against (and return) the
transaction’s private copy of the ref’s data, called the in-transaction value.

If at any point the STM detects that another transaction has already
set/altered a ref that Transaction A wants to set/alter, Transaction A will be
forced to retry. If you throw an exception out of the dosync block, then Trans-
action A will abort without a retry.

If and when Transaction A commits, its heretofore private writes will become
visible to the world, associated with a single point in the transaction timeline.

Sometimes the approach implied by alter is too cautious. What if you don’t
care that another transaction altered a reference out from under you in the
middle of your transaction? If in such a situation you would be willing to
commit your changes anyway, you can beat alter's performance with commute.

commute
commute is a specialized variant of alter allowing for more concurrency:

(commute ref update-fn & args...)

Of course, there is a trade-off. Commutes are so named because they must
be commutative. That is, updates must be able to occur in any order. This
gives the STM system freedom to reorder commutes.

To use commute, simply replace alter with commute in your implementation of
add-message:

(defn add-message-commute [msg]
(dosync (commute messages conj msg)))

commute returns the new value of the ref. However, the last in-transaction
value you see from a commute will not always match the end-of-transaction
value of a ref, because of reordering. If another transaction sneaks in and
alters a ref that you are trying to commute, the STM will not restart your
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transaction. Instead, it will simply run your commute function again, out of
order. Your transaction will never even see the ref value that your commute
function finally ran against.

Since Clojure’s STM can reorder commutes behind your back, you can use
them only when you do not care about ordering. Literally speaking, this is
not true for a chat application. The list of messages most certainly has an
order, so if two message adds get reversed, the resulting list will not correctly
show the order in which the messages arrived.

Practically speaking, chat message updates are commutative enough. STM-
based reordering of messages will likely happen on time scales of microseconds
or less. For users of a chat application, there are already reorderings on much
larger time scales due to network and human latency. (Think about times
that you have “spoken out of turn” in an online chat because another
speaker’s message had not reached you yet.) Since these larger reorderings
are unfixable, it is reasonable for a chat application to ignore the smaller
reorderings that might bubble up from Clojure’s STM.

Prefer alter

Many updates are not commutative. For example, consider a counter that
returns an increasing sequence of numbers. You might use such a counter
to build unique IDs in a system. The counter can be a simple reference to a
number:

src/examples/concurrency.clj
(def counter (ref 0))

You should not use commute to update the counter. commute returns the in-
transaction value of the counter at the time of the commute, but reorderings
could cause the actual end-of-transaction value to be different. This could
lead to more than one caller getting the same counter value. Instead, use alter:

(defn next-counter [] (dosync (alter counter inc)))
Try calling next-counter a few times to verify that the counter works as expected:

(next-counter)
> 1

(next-counter)
-> 2

In general, you should prefer alter over commute. Its semantics are easy to
understand and error-proof. commute, on the other hand, requires that you
think carefully about transactional semantics. If you use alter when commute
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would suffice, the worst thing that might happen is performance degradation.
But if you use commute when alter is required, you will introduce a subtle bug
that is difficult to detect with automated tests.

Adding Validation to Refs

Database transactions maintain consistency through various integrity checks.
You can do something similar with Clojure’s transactional memory, by speci-
fying a validation function when you create a ref:

(ref initial-state options*)

; options include:

; :validator validate-fn
; :meta metadata-map

The options to ref include an optional validation function that can throw an
exception to prevent a transaction from completing. Note that options is not a
map; it is simply a sequence of key/value pairs spliced into the function call.

Continuing the chat example, add a validation function to the messages refer-
ence that guarantees that all messages have non-nil values for :sender and :text:
src/examples/chat.clj

(def validate-message-list
(partial every? #(and (:sender %) (:text %))))

(def messages (ref () :validator validate-message-list))

This validation acts like a key constraint on a table in a database transaction.
If the constraint fails, the entire transaction rolls back. Try adding an ill-
formed message such as a simple string:

(add-message "not a valid message")
-> java.lang.IllegalStateException: Invalid reference state

@messages
-> ()

Messages that match the constraint are no problem:

(add-message (user.Message. "Aaron" "Real Message"))
-> (#:user.Message{:sender "Aaron", :text "Real Message"})

Refs are great for coordinated access to shared state, but not all tasks require
such coordination. For updating a single piece of isolated data, prefer an
atom.
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Use Atoms for Uncoordinated, Synchronous Updates

Atoms are a lighter-weight mechanism than refs. Where multiple ref updates
can be coordinated in a transaction, atoms allow updates of a single value,
uncoordinated with anything else.

You create atoms with atom, which has a signature very similar to ref:

(atom initial-state options?)
; options include:

; :validator validate-fn

; :meta metadata-map

Returning to our music player example, you could store the current-track in an
atom instead of a ref:

(def current-track (atom "Venus, the Bringer of Peace"))
-> #'user/current-track

You can dereference an atom to get its value, just as you would a ref:

(deref current-track)
-> "Venus, the Bringer of Peace"

@current-track
-> "Venus, the Bringer of Peace"

Atoms do not participate in transactions and thus do not require a dosync. To
set the value of an atom, simply call reset!

(reset! an-atom newval)
For example, you can set current-track to "Credo":

(reset! current-track "Credo")
-> "Credo"

What if you want to coordinate an update of both current-track and current-composer
with an atom? The short answer is “You can’t.” That is the difference between
refs and atoms. If you need coordinated access, use a ref.

The longer answer is “You can...if you are willing to change the way you
model the problem.” What if you store the track title and composer in a map
and then store the whole map in a single atom?

(def current-track (atom {:title "Credo" :composer "Byrd"}))
-> #'user/current-track

Now you can update both values in a single reset!

(reset! current-track {:title "Spem in Alium" :composer "Tallis"})
-> {:title "Spem in Alium", :composer "Tallis"}
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Maybe you like to listen to several tracks in a row by the same composer. If
so, you want to change the track title but keep the same composer. swap! will
do the trick:

(swap! an-atom f & args)

swap! updates an-atom by calling function f on the current value of an-atom, plus
any additional args.

To change just the track title, use swap! with assoc to update only the :title:

(swap! current-track assoc :title "Sancte Deus")
-> {:title "Sancte Deus", :composer "Tallis"}

swap! returns the new value. Calls to swap! might be retried, if other threads
are attempting to modify the same atom. So, the function you pass to swap!
should have no side effects.

Both refs and atoms perform synchronous updates. When the update function
returns, the value is already changed. If you do not need this level of control
and can tolerate updates happening asynchronously at some later time, prefer
an agent.

Use Agents for Asynchronous Updates
Some applications have tasks that can proceed independently with minimal
coordination between tasks. Clojure agents support this style of task.

Agents have much in common with refs. Like refs, you create an agent by
wrapping some piece of initial state:

(agent initial-state)
Create a counter agent that wraps an initial count of zero:

(def counter (agent 0))
-> #'user/counter

Once you have an agent, you can send the agent a function to update its state.
send queues an update-fn to run later, on a thread in a thread pool:

(send agent update-fn & args)
Sending to an agent is very much like commuting a ref. Tell the counter to inc:

(send counter inc)
-> #<clojure.lang.Agent@23451c74: 0>
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Notice that the call to send does not return the new value of the agent,
returning instead the agent itself. That is because send does not know the new
value. After send queues the inc to run later, it returns immediately.

Although send does not know the new value of an agent, the REPL might know.
Depending on whether the agent thread or the REPL thread runs first, you
might see a 1 or a 0 after the colon in the previous output.

You can check the current value of an agent with deref/@, just as you would
a ref. By the time you get around to checking the counter, the inc will almost
certainly have completed on the thread pool, raising the value to 1:

@counter
> 1

If the race condition between the REPL and the agent thread bothers you,
there is a solution. If you want to be sure that the agent has completed the
actions you sent to it, you can call await or await-for:

(await & agents)
(await-for timeout-millis & agents)

These functions will cause the current thread to block until all actions sent
from the current thread or agent have completed. await-for will return nil if the
timeout expires and will return a non-nil value otherwise. await has no timeout,
so be careful: await is willing to wait forever.

Validating Agents and Handling Errors

Agents have other points in common with refs. They also can take a validation
function:

(agent initial-state options*)

; options include:

; :validator validate-fn
; :meta metadata-map

Re-create the counter with a validator that ensures it is a number:

(def counter (agent 0 :validator number?))
-> #'user/counter

Try to set the agent to a value that is not a number by passing an update
function that ignores the current value and simply returns a string:

(send counter (fn [ ] "boo"))
-> #<clojure.lang.Agent@4de8ceb2: 0>
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Everything looks fine (so far) because send still returns immediately. After the
agent tries to update itself on a pooled thread, it will enter an exceptional
state. You will discover the error when you try to dereference the agent:

@counter
-> java.lang.Exception: Agent has errors

To discover the specific error (or errors), call agent-errors, which will return a
sequence of errors thrown during agent actions:

(agent-errors counter)
-> (#<IllegalStateException ...>)

Once an agent has errors, all subsequent attempts to query the agent will
return an error. You make the agent usable again by calling clear-agent-errors:

(clear-agent-errors agent)

which returns the agent to its pre-error state. Clear the counter’s errors, and
verify that its state is the same as before the error occurred:

(clear-agent-errors counter)
-> nil

@counter
> 0

Now that you know the basics of agents, let’s use them in conjunction with
refs and transactions.

Including Agents in Transactions

Transactions should not have side effects, because Clojure may retry a
transaction an arbitrary number of times. However, sometimes you want a
side effect when a transaction succeeds. Agents provide a solution. If you
send an action to an agent from within a transaction, that action will be sent
exactly once, if and only if the transaction succeeds.

As an example of where this would be useful, consider an agent that writes
to a file when a transaction succeeds. You could combine such an agent with
the chat example from commute, on page 119, to automatically back up chat
messages. First, create a backup-agent that stores the filename to write to:

src/examples/concurrency.clj
(def backup-agent (agent "output/messages-backup.clj"))

Then, create a modified version of add-message. The new function add-message-
with-backup should do two additional things:
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e Grab the return value of commute, which is the current database of mes-
sages, in a let binding.

e While still inside a transaction, send an action to the backup agent that
writes the message database to filename. For simplicity, have the action
function return filename so that the agent will use the same filename for
the next backup.

(defn add-message-with-backup [msg]
(dosync
(let [snapshot (commute messages conj msg)]
(send-off backup-agent (fn [filename]
(spit filename snapshot)
filename))
snapshot)))

The new function has one other critical difference: it calls send-off instead of
send to communicate with the agent. send-off is a variant of send for actions that
expect to block, as a file write might do. send-off actions get their own
expandable thread pool. Never send a blocking function, or you may unneces-
sarily prevent other agents from making progress.

Try adding some messages using add-message-with-backup:

(add-message-with-backup (user.Message. "John" "Message One"))
-> (#:user.Message{:sender "John", :text "Message One"})

(add-message-with-backup (user.Message. "Jane" "Message Two"))
-> (#:user.Message{:sender "Jane", :text "Message Two"}
#:user.Message{:sender "John", :text "Message One"})

You can check both the in-memory messages as well as the backup file messages-
backup to verify that they contain the same structure.

You could enhance the backup strategy in this example in various ways. You
could provide the option to back up less often than on every update or back
up only information that has changed since the last backup.

Since Clojure’s STM provides the ACI properties of ACID and since writing to
a file provides the D (“durability”), it is tempting to think that STM plus a
backup agent equals a database. This is not the case. A Clojure transaction
promises only to send/sendoff an action to the agent; it does not actually perform
the action under the ACI umbrella. So, for example, a transaction could
complete, and then someone could unplug the power cord before the agent
writes to the database. The moral is simple. If your problem calls for a real
database, use a real database.
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The Unified Update Model

As you have seen, refs, atoms, and agents all provide functions for updating
their state by applying a function to their previous state. This unified model
for handling shared state is one of the central concepts of Clojure. The unified
model and various ancillary functions are summarized in the following tabler.

Update Mechanism Ref Function Atom Function Agent Function
Function application alter swap! send-off
Function (commutative) commute N/A N/A
Function (nonblocking) N/A N/A send

Simple setter ref-set reset! N/A

The unified update model is by far the most important way to update refs,
atoms, and agents. The ancillary functions, on the other hand, are optimiza-
tions and options that stem from the semantics peculiar to each API:

e The opportunity for the commute optimization arises when coordinating
updates. Since only refs provide coordinated updates, commute makes
sense only for refs.

e Updates to refs and atoms take place on the thread they are called on,
so they provide no scheduling options. Agents update later, on a thread
pool, making blocking/nonblocking a relevant scheduling option.

Clojure’s final reference type, the var, is a different beast entirely. They do
not participate in the unified update model and are instead used to manage
thread-local, private state.

Managing Per-Thread State with Vars

When you call def or defn, you create a dynamic var, often called just a var. In
all the examples so far in the book, you pass an initial value to def, which
becomes the root binding for the var. For example, the following code creates
a root binding for foo of 10:

(def ~:dynamic foo 10)
-> #'user/foo

The binding of foo is shared by all threads. You can check the value of foo on
your own thread:

foo
-> 10
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You can also verify the value of foo from another thread. Create a new thread,
passing it a function that prints foo. Don’t forget to start the thread:
user=> (.start (Thread. (fn [] (println foo0))))

-> nil
| 10

In the previous example, the call to start() returns nil, and then the value of foo
is printed from a new thread.

Most vars are content to keep their root bindings forever. However, you can
create a thread-local binding for a var with the binding macro:

(binding [bindings] & body)

Bindings have dynamic scope. In other words, a binding is visible anywhere
a thread’s execution takes it, until the thread exits the scope where the
binding began. A binding is not visible to any other threads.

Structurally, a binding looks a lot like a let. Create a thread-local binding for
foo and check its value:

(binding [foo 42] foo)
-> 42

To see the difference between binding and let, create a simple function that
prints the value of foo:

(defn print-foo [] (println foo))
-> #'user/print-foo

Now, try calling print-foo from both a let and a binding:

(let [foo "let foo"] (print-foo))
| 10

(binding [foo "bound foo"] (print-foo))
| bound foo

As you can see, the let has no effect outside its own form, so the first print-foo
prints the root binding 10. The binding, on the other hand, stays in effect down
any chain of calls that begins in the binding form, so the second print-foo prints
bound foo.

Acting at a Distance

Vars intended for dynamic binding are sometimes called special variables. It
is good style to name them with leading and trailing asterisks. For example,
Clojure uses dynamic binding for thread-wide options such as the standard
I/0 streams *in*, *out*, and *err*. Dynamic bindings enable action at a distance.
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When you change a dynamic binding, you can change the behavior of distant
functions without changing any function arguments.

One kind of action at a distance is temporarily augmenting the behavior of a
function. In some languages this would be classified as aspect-oriented pro-
gramming; in Clojure it is simply a side effect of dynamic binding. As an
example, imagine that you have a function that performs an expensive calcu-
lation. To simulate this, write a function named slow-double that sleeps for a
tenth of a second and then doubles its input.

(defn ~:dynamic slow-double [n]
(Thread/sleep 100)
(*n 2))

Next, write a function named calls-slow-double that calls slow-double for each item
in[121212]:

(defn calls-slow-double []
(map slow-double [1 2 121 2]))

Time a call to calls-slow-double. With six internal calls to slow-double, it should take
a little over six tenths of a second. Note that you will have to run through the
result with dorun; otherwise, Clojure’s map will outsmart you by immediately
returning a lazy sequence.

(time (dorun (calls-slow-double)))

| "Elapsed time: 601.418 msecs"
-> nil

Reading the code, you can tell that calls-slow-double is slow because it does the
same work over and over again. One times two is two, no matter how many
times you ask.

Calculations such as slow-double are good candidates for memoization. When
you memoize a function, it keeps a cache mapping past inputs to past outputs.
If subsequent calls hit the cache, they will return almost immediately. Thus,
you are trading space (the cache) for time (calculating the function again for
the same inputs).

Clojure provides memoize, which takes a function and returns a memoization
of that function:

(memoize function)

slow-double is a great candidate for memoization, but it isn’t memoized yet, and
clients like calls-slow-double already use the slow, unmemoized version. With
dynamic binding, this is no problem. Simply create a binding to a memoized
version of slow-double, and call calls-slow-double from within the binding.
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(defn demo-memoize []
(time
(dorun
(binding [slow-double (memoize slow-double)]
(calls-slow-double)))))

With the memoized version of slow-double, calls-slow-double runs three times faster,
completing in about two-tenths of a second:

(demo-memoize)
"Elapsed time: 203.115 msecs"

This example demonstrates the power and the danger of action at a distance.
By dynamically rebinding a function such as slow-double, you change the
behavior of other functions such as calls-slow-double without their knowledge or
consent. With lexical binding forms such as let, it is easy to see the entire
range of your changes. Dynamic binding is not so simple. It can change the
behavior of other forms in other files, far from the point in your source where
the binding occurs.

Used occasionally, dynamic binding has great power. But it should not become
your primary mechanism for extension or reuse. Functions that use dynamic
bindings are not pure functions and can quickly lose the benefits of Clojure’s
functional style.

Working with Java Callback APIs

Several Java APIs depend on callback event handlers. GUI frameworks such
as Swing use event handlers to respond to user input. XML parsers such as
SAX depend on the user implementing a callback handler interface.

These callback handlers are written with mutable objects in mind. Also, they
tend to be single-threaded. In Clojure, the best way to meet such APIs halfway
is to use dynamic bindings. This will involve mutable references that feel
almost like variables, but because they are used in a single-threaded setting,
they will not present any concurrency problems.

Clojure provides the set! special form for setting a thread-local dynamic
binding;:

(set! var-symbol new-value)

set! should be used rarely. In fact, the only place in the entire Clojure core
that uses set! is the Clojure implementation of a SAX ContentHandler.

A ContentHandler receives callbacks as a parser encounters various bits of an
XML stream. In nontrivial scenarios, the ContentHandler needs to keep track of
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where it is in the XML stream: the current stack of open elements, current
character data, and so on.

In Clojure-speak, you can think of a ContentHandler's current position as a
mutable pointer to a specific spot in an immutable XML stream. It is unnec-
essary to use references in a ContentHandler, since everything will happen on a
single thread. Instead, Clojure’s ContentHandler uses dynamic variables and set!.
Here is the relevant detail:

; redacted from Clojure's xml.clj to focus on dynamic variable usage
(startElement
[uri local-name g-name #"Attributes atts]
; details omitted
(set! *stack* (conj *stack* *current*))
(set! *current* e)
(set! *state* :element))
nil)
(endElement
[uri local-name g-name]
; details omitted
(set! *current* (push-content (peek *stack*) *current*))
(set! *stack* (pop *stack*))
(set! *state* :between)
nil)

A SAX parser calls startElement when it encounters an XML start tag. The call-
back handler updates three thread-local variables. The *stack* is a stack of all
the elements the current element is nested inside. The *current* is the current

element, and the *state* keeps track of what kind of content is inside. (This is
important primarily when inside character data, which is not shown here.)

endElement reverses the work of startElement by popping the *stack* and placing
the top of the *stack* in *current*.

It is worth noting that this style of coding is the industry norm: objects are
mutable, and programs are single-threadedly oblivious to the possibility of
concurrency. Clojure permits this style as an explicit special case, and you
should use it for interop purposes only.

The ContentHandler’'s use of set! does not leak mutable data out into the rest of
Clojure. Clojure uses the ContentHandler implementation to build an immutable
Clojure structure.

You have now seen four different models for dealing with state. And since
Clojure is built atop Java, you can also use Java’s lock-based model. The
models, and their use, are summarized in the following table.
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Model Usage Functions
Refs and STM Coordinated, synchronous updates Pure
Atoms Uncoordinated, synchronous updates Pure
Agents Uncoordinated, asynchronous updates Any
Vars Thread-local dynamic scopes Any
Java locks Coordinated, synchronous updates Any

Let’s put these models to work in designing a small but complete application.

A Clojure Snake

The Snake game features a player-controlled snake that moves around a game
grid hunting for an apple. When your snake eats an apple, it grows longer by
a segment, and a new apple appears. If your snake reaches a certain length,
you win. But if your snake crosses over its own body, you lose.

Before you start building your own snake, take a minute to try the completed
version. From the book’s REPL, enter the following:

(use 'examples.snake)

(game)

-> [#<Ref clojure.lang.Ref@65694ee6>
#<Ref clojure.lang.Ref@261ae209>
#<Timer javax.swing.Timer@7f0df737>]

Select the Snake window, and use the arrow keys to control your snake.

Our design for the snake is going to take advantage of Clojure’s functional
nature and its support for explicit mutable state by dividing the game into
three layers:

e The functional model will use pure functions to model as much of the
game as possible.

e The mutable model will handle the mutable state of the game. The mutable
model will use one or more of the reference models discussed in this
chapter. Mutable state is much harder to test, so we will keep this part
small.

e The GUI will use Swing to draw the game and to accept input from the
user.

These layers will make the Snake easy to build, test, and maintain.
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As you work through this example, add your code to the file reader/snake.clj in
the sample code. When you open the file, you will see that it already
imports/uses the Swing classes and Clojure libraries you will need:

src/reader/snake.clj
(ns reader.snake
(:import (java.awt Color Dimension)
(javax.swing JPanel JFrame Timer JOptionPane)
(java.awt.event ActionListener KeylListener))
(:use examples.import-static))
(import-static java.awt.event.KeyEvent VK LEFT VK RIGHT VK UP VK DOWN)

Now you are ready to build the functional model.

The Functional Model
First, create a set of constants to describe time, space, and motion:

(def width 75)

(def height 50)

(def point-size 10)

(def turn-millis 75)

(def win-length 5)

(def dirs { VK LEFT [-1 0]
VK RIGHT [ 1 0]
VK_UP [ 0 -1]
VK. DOWN [ 0 11})

width and height set the size of the game board, and point-size is used to convert
a game point into screen pixels. turn-millis is the heartbeat of the game, control-
ling how many milliseconds pass before each update of the game board.
win-length is how many segments your snake needs before you win the game.
(Five is a boringly small number suitable for testing.) The dirs maps symbolic
constants for the four directions to their vector equivalents. Since Swing
already defines the VK constants for different directions, we will reuse them
here rather than defining our own.

Next, create some basic math functions for the game:

(defn add-points [& pts]
(vec (apply map + pts)))

(defn point-to-screen-rect [pt]
(map #(* point-size %)
[(pt 0) (pt 1) 1 1]))

The add-points function adds points together. You can use add-points to calculate
the new position of a moving game object. For example, you can move an
object at [10, 10] left by one:
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There’s more than one way to skin a snake. You may enjoy comparing the snake
presented here with these other snakes:

e David Van Horn’s Snake,? written in Typed Scheme, has no mutable state.

e Jeremy Read wrote a Java Snake” designed to be “just about as small as you
can make it in Java and still be readable.”

e Abhishek Reddy wrote a tiny (35-line) Snake® in Clojure. The design goal was to
be abnormally terse.

e Dale Vaillancourt’s Worm Game.4

e Mark Volkmann wrote a Clojure Snake® designed for readability.

Each of the snake implementations has its own distinctive style. What would your
style look like?

http://planet.plt-scheme.org/package-source/dvanhorn/snake.plt/1/0/main.ss
http://www.pltl.com/1069/smaller-snake/

http://www.plt1.com/1070/even-smaller-snake/

http://www.ccs.neu.edu/home/cce/acl2/worm.html includes some verifications using the
theorem prover ACL2.

€. http://www.ociweb.com/mark/programming/ClojureSnake.htm|

(add-points [10 10] [-1 0])
-> [9 10]

apo o

point-to-screen-rect simply converts a point in game space to a rectangle on the
screen:

(point-to-screen-rect [5 101])
-> (50 100 10 10)

Next, let’s write a function to create a new apple:

(defn create-apple []
{:location [(rand-int width) (rand-int height)]
:color (Color. 210 50 90)
:type :apple})

Apples occupy a single point, the :location, which is guaranteed to be on the
game board. Snakes are a little bit more complicated:

(defn create-snake []
{:body (list [1 1])
:dir [1 0]
:type :snake
:color (Color. 15 160 70)})

report erratum - discuss
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Because a snake can occupy multiple points on the board, it has a :body,
which is a list of points. Also, snakes are always in motion in some direction
expressed by :dir.

Next, create a function to move a snake. This should be a pure function,
returning a new snake. Also, it should take a grow option, allowing the snake
to grow after eating an apple.

(defn move [{:keys [body dir] :as snake} & grow]

(assoc snake :body (cons (add-points (first body) dir)
(if grow body (butlast body)))))

move uses a fairly complex binding expression. The {:keys [body dir]} part makes
the snake’s body and dir available as their own bindings, and the :as snake part
binds snake to the entire snake. The function then proceeds as follows:

1. add-points creates a new point, which is the head of the original snake offset
by the snake’s direction of motion.

2. cons adds the new point to the front of the snake. If the snake is growing,
the entire original snake is kept. Otherwise, it keeps all the original snake
except the last segment (butlast).

3. assoc returns a new snake, which is a copy of the old snake but with an
updated :body.

Test move by moving and growing a snake:

(move (create-snake))
-> {:body ([2 1]), ; etc.

(move (create-snake) :grow)
-> {:body ([2 1] [1 1]), ; etc.

Write a win? function to test whether a snake has won the game:

(defn win? [{body :body}]
(>= (count body) win-length))

Test win? against different body sizes. Note that win? binds only the :body, so
you don’t need a “real” snake, just anything with a body:

(win? {:body [[1 1]1})
-> false

(win? {:body [[1 1] [1 2] [1 3] [1 4] [1 511})
-> true
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A snake loses if its head ever comes back into contact with the rest of its
body. Write a head-overlaps-body? function to test for this, and use it to define
lose?:

(defn head-overlaps-body? [{[head & body] :body}]
(contains? (set body) head))

(def lose? head-overlaps-body?)

Test lose? against overlapping and nonoverlapping snake bodies:

(Lose? {:body [[1 1] [1 2] [1 311})
-> false

(Lose? {:body [[1 1] [1 2] [1 111})
-> true

A snake eats an apple if its head occupies the apple’s location. Define an eats?
function to test this:

(defn eats? [{[snake-head] :body} {apple :location}]
(= snake-head apple))

Notice how clean the body of the eats? function is. All the work is done in the
bindings: {[snake-head] :body} binds snake-head to the first element of the snake’s
:body, and {apple :location} binds apple to the apple’s :location. Test eats? from the
REPL:

(eats? {:body [[1 1] [1 211} {:location [2 2]})
-> false

(eats? {:body [[2 2] [1 211} {:location [2 2]})
-> true

Finally, you need some way to turn the snake, updating its :dir:

(defn turn [snake newdir]
(assoc snake :dir newdir))

turn returns a new snake, with an updated direction:

(turn (create-snake) [0 -1])
-> {:body ([1 1]), :dir [0 -1], ; etc.

All of the code you have written so far is part of the functional model of the
Snake game. It is easy to understand in part because it has no local variables
and no mutable state. As you will see in the next section, the amount of
mutable state in the game is quite small. (It is even possible to implement the
Snake with no mutable state, but that is not the purpose of this demo.)
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Building a Mutable Model with STM

The mutable state of the Snake game can change in only three ways:
e A game can be reset to its initial state.

e Every turn, the snake updates its position. If it eats an apple, a new apple
is placed.

¢ A snake can turn.

We will implement each of these changes as functions that modify Clojure
refs inside a transaction. That way, changes to the position of the snake and
the apple will be synchronous and coordinated.

reset-game is trivial:

(defn reset-game [snake apple]
(dosync (ref-set apple (create-apple))
(ref-set snake (create-snake)))
nil)
You can test reset-game by passing in some refs and then checking that they
dereference to a snake and an apple:

(def test-snake (ref nil))
(def test-apple (ref nil))

(reset-game test-snake test-apple)
-> nil

@test-snake
-> {:body ([1 1]), :dir [1 O], ; etc.

@test-apple
-> {:location [52 8], ; etc.

update-direction is even simpler; it’s just a trivial wrapper around the functional
turn:

(defn update-direction [snake newdir]
(when newdir (dosync (alter snake turn newdir))))

Try turning your test-snake to move in the “up” direction:

(update-direction test-snake [0 -1])
-> {:body ([1 11), :dir [0 -1], ; etc.

The most complicated mutating function is update-positions. If the snake eats
the apple, a new apple is created, and the snake grows. Otherwise, the snake
simply moves:
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(defn update-positions [snake applel
(dosync
(if (eats? @snake @apple)
(do (ref-set apple (create-apple))
(alter snake move :grow))
(alter snake move)))
nil)

To test update-positions, reset the game:

(reset-game test-snake test-apple)
-> nil

Then, move the apple into harm’s way, under the snake:

(dosync (alter test-apple assoc :location [1 1]))
-> {:location [1 1], ; etc.

Now, after you update-positions, you should have a bigger, two-segment snake:

(update-positions test-snake test-apple)
-> nil

(:body @test-snake)
-> ([2 11 [1 1])

And that is all the mutable state of the Snake world: three functions, about
a dozen lines of code.

The Snake GUI

The Snake GUI consists of functions that paint screen objects, respond to
user input, and set up the various Swing components. Since snakes and
apples are drawn from simple points, the painting functions are simple. The
fill-point function fills in a single point:

(defn fill-point [g pt color]
(Let [[x y width height] (point-to-screen-rect pt)]
(.setColor g color)
(.fillRect g x y width height)))

The paint multimethod knows how to paint snakes and apples:

tinel (defmulti paint (fn [g object & 1 (:type object)))
2
(defmethod paint :apple [g {:keys [location color]}]
(fill-point g location color))

(doseq [point body]

3
4
5
6 (defmethod paint :snake [g {:keys [body color]}]
7
8 (fill-point g point color)))
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paint takes two required arguments: g is a java.awt.Graphics instance, and object
is the object to be painted. The defmulti includes an optional rest argument so
that future implementations of paint have the option of taking more arguments.
(See Section 8.2, Defining Multimethods, on page 189 for an in-depth description
of defmulti.) On line 3, the :apple method of paint binds the location and color of the
apple and uses them to paint a single point on the screen. On line 6, the :snake
method binds the snake’s body and color and then uses doseq to paint each point
in the body.

The meat of the Ul is the game-panel function, which creates a Swing JPanel with
handlers for painting the game, updating on each timer tick, and responding
to user input:

tine1 (defn game-panel [frame snake apple]
(proxy [JPanel ActionListener KeylListener] []
(paintComponent [g]
(proxy-super paintComponent g)
5 (paint g @snake)
(paint g @apple))
(actionPerformed [e]
(update-positions snake apple)
(when (lose? @snake)
10 (reset-game snake apple)
(JOptionPane/showMessageDialog frame "You lose!"))
(when (win? @snake)
(reset-game snake apple)
(JOptionPane/showMessageDialog frame "You win!"))
15 (.repaint this))
(keyPressed [e]
(update-direction snake (dirs (.getKeyCode e))))
(getPreferredSize []
(Dimension. (* (inc width) point-size)
20 (* (inc height) point-size)))
(keyReleased [e])
(keyTyped [e])))

game-panel is long but simple. It uses proxy to create a panel with a set of Swing
callback methods.

e Swing calls paintComponent (line 3) to draw the panel. paintComponent calls
proxy-super to invoke the normal JPanel behavior, and then it paints the snake
and the apple.

e Swing will call actionPerformed (line 7) on every timer tick. actionPerformed
updates the positions of the snake and the apple. If the game is over, it
displays a dialog and resets the game. Finally, it triggers a repaint with
(.repaint this).
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e Swing calls keyPressed (line 16) in response to keyboard input. keyPressed
calls update-direction to change the snake’s direction. (If the keyboard input
is not an arrow key, the dirs function returns nil and update-direction does
nothing.)

e The game panel ignores keyReleased and keyTyped.
The game function creates a new game:

(defn game []

(let [snake (ref (create-snake))

(
apple (ref (create-apple))
frame (JFrame. "Snake")
panel (game-panel frame snake apple)

timer (Timer. turn-millis panel)]
(doto panel
(.setFocusable true)
(.addKeyListener panel))
(doto frame
(.add panel)
(.pack)
(.setVisible true))
(.start timer)
[snake, apple, timer]))

On line 2, game creates all the necessary game objects: the mutable model
objects snake and apple and the Ul components frame, panel, and timer. Lines 7
and 10 perform boilerplate initialization of the panel and frame. Line 14 starts
the game by kicking off the timer.

Line 15 returns a vector with the snake, apple, and time. This is for conve-
nience when testing at the REPL: you can use these objects to move the snake
and apple or to start and stop the game.

Go ahead and play the game again; you have earned it. To start the game,
use the snake library at the REPL, and run game. If you have entered the code
yourself, you can use the library name you picked (examples.reader in the
instructions); otherwise, you can use the completed sample at examples.snake:

(use 'examples.snake)

(game)

-> [#<Ref clojure.lang.Ref@6ea27cbe>
#<Ref clojure.lang.Ref@6dabd6b0>
#<Timer javax.swing.Timer@32f60451>]

The game window may appear behind your REPL window. If this happens,
use your local operating-system fu to locate the game window.



5.7

Wrapping Up * 141

There are many possible improvements to the Snake game. If the snake
reaches the edge of the screen, perhaps it should turn to avoid disappearing
from view. Or (tough love) maybe you just lose the game! Make the Snake
game your own by improving it to suit your personal style.

Snakes Without Refs

We chose to implement the Snake game’s mutable model using refs so that
we could coordinate the updates to the snake and the apple. Other
approaches are also valid. For example, you could combine the snake and
apple state into a single game object. With only one object, coordination is no
longer required, and you can use an atom instead.

The file examples/atom-snake.clj demonstrates this approach. Functions like update-
positions become part of the functional model and return a new game object
with updated state:

src/examples/atom_snake.clj
(defn update-positions [{snake :snake, apple :apple, :as game}]
(if (eats? snake apple)
(merge game {:apple (create-apple) :snake (move snake :grow)})
(merge game {:snake (move snake)})))

Notice how destructuring makes it easy to get at the internals of the game:
both snake and apple are bound by the argument list.

The actual mutable updates are now all atom swap!s. We found these to be
simple enough to leave them in the Ul function game-panel, as this excerpt
shows:
(actionPerformed [e]

(swap! game update-positions)

(when (lose? (@game :snake))

(swap! game reset-game)
(JOptionPane/showMessageDialog frame "You lose!"))

There are other possibilities as well. Chris Houser’s fork of the book’s sample
code” demonstrates using an agent that Thread/sleeps instead of a Swing timer,
as well as using a new agent per game turn to update the game’s state.

Wrapping Up

Clojure’s reference model is the most innovative part of the language. The
combination of software transactional memory, agents, atoms, and dynamic

2.  http://github.com/Chouser/programming-clojure
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binding that you have seen in this chapter gives Clojure powerful abstractions
for all sorts of stateful systems. It also makes Clojure one of the few languages
suited to the coming generation of multicore computer hardware.

Next, we will look at one of Clojure’s newer features. Some call it a solution
to the “expression problem.”® We call it a protocol.

3.  http://en.wikipedia.org/wiki/Expression_problem
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CHAPTER 6

Protocols and Datatypes

Abstractions lay at the foundation of reusable code. The Clojure language
itself has abstractions for sequences, collections, and callability. Traditionally,
these abstractions were described with Java interfaces and implemented
using Java classes. In the beginning, Clojure provided proxy and genclass,
removing the need to drop all the way to Java to achieve this, but that has
changed with the introduction of protocols.

* Protocols provide an alternative to Java interfaces for high-performance
polymorphic method dispatch.

e Datatypes provide an alternative to Java classes for creating implementa-
tions of abstractions defined with either protocols or interfaces.

Protocols and datatypes provide a high-performance, flexible mechanism for
abstraction and concretion that removes the need to write Java interfaces
and classes when programming in Clojure. With protocols and datatypes, you
can create new abstractions and new types that implement those abstractions
and even extend new abstractions to existing types.

In this chapter, we will explore Clojure’s approach to abstraction using proto-
cols and datatypes. First, we will implement our own version of Clojure’s
built-in spit and slurp functions. Then, we will take a short detour to build a
CryptoVault, where you will learn about extending some of Java’s standard
library. Finally, we will put everything together using records and protocols
to define musical notes and sequences. After working through these exercises,
you will certainly see the power of Clojure’s composable abstractions.

Programming to Abstractions

Clojure’s spit and slurp I/O functions are built on two abstractions, reading
and writing. This means you can use them with a variety of source and desti-
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nation types, including files, URLs, and sockets, and they can be extended
to support new types by anybody, whether they are existing types or newly
defined.

¢ The slurp function takes an input source, reads the contents, and returns
it as a string.

e The spit function takes an output destination and a value, converts the
value to a string, and writes it to the output destination.

We will start by writing basic versions of the two functions that can read from
and write to files only. We will then refactor the basic versions several times
as we explore different approaches to supporting additional datatypes.
Working through this will give you a good feel for the usefulness of program-
ming to abstractions in general and the flexibility and power of Clojure’s
protocols and datatypes in particular.

After writing our versions of spit and slurp, called expectorate and gulp, respectively,
that work with several existing datatypes, we will create a new datatype, Crypto-
Vault, that can be used with our versions of the functions as well as the
originals.

gulp and expectorate

The gulp function is a simplified version of Clojure’s slurp function, and expecto-
rate, despite its highfalutin name, is a dumbed-down version of Clojure’s spit
function. Let’s write a basic version of gulp that can read from a java.io.File only.

src/examples/gulp.clj
(ns examples.gulp
(:import (java.io FileInputStream InputStreamReader BufferedReader)))
(defn gulp [src]
(Let [sb (StringBuilder.)]
(with-open [reader (-> src
FileInputStream.
InputStreamReader.
BufferedReader.)]
(Lloop [c (.read reader)]
(if (neg? c)
(str sb)
(do
(.append sb (char c))
(recur (.read reader))))))))

The gulp function creates a BufferedReader from a given File object and then
loops /recurs over it, reading a character at a time and appending each to a
StringBuilder until it reaches the end of the input where it returns a string. The
basic expectorate function is even smaller:
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src/examples/expectorate.clj
(ns examples.expectorate
(:import (java.io FileOutputStream OutputStreamWriter BufferedWriter)))

(defn expectorate [dst content]
(with-open [writer (-> dst
FileOutputStream.
OutputStreamWriter.
BufferedWriter.)]
(.write writer (str content))))

It creates a BufferedWriter file, converts the value of the content parameter to a
string, and writes it out to the BufferedWriter.

But what if we want to support additional types like Sockets, URLs, and basic
input and output streams? We need to update gulp and expectorate to be able
to make BufferedReaders and BufferedWriters from datatypes other than files. So,
let’s create two new functions, make-reader and make-writer, that will be respon-
sible for this behavior.

e The make-reader function makes a BufferedReader from an input source.
e The make-writer makes a BufferedWriter from an output destination.

(defn make-reader [src]
(-> src FileInputStream. InputStreamReader. BufferedReader.))

(defn make-writer [dst]
(-> dst FileOutputStream. OQutputStreamWriter. BufferedWriter.))

Like our basic gulp and expectorate functions, make-reader and make-writer work
only on files, but that will change shortly. Now let’s refactor gulp and expectorate
to use the new functions:

src/examples/protocols.clj
(defn gulp [src]
(let [sb (StringBuilder.)]
(with-open [reader (make-reader src)]
(loop [c (.read reader)]
(if (neg? c)
(str sb)
(do
(.append sb (char c))
(recur (.read reader))))))))

(defn expectorate [dst content]
(with-open [writer (make-writer dst)]
(.write writer (str content))))
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We can now add support for additional source and destination types to gulp
and expectorate just by updating make-reader and make-writer. One approach to
supporting additional types is to use a cond, or condp, statement to process
different types appropriately. For example, the following version of make-reader
replaces the call to the FilelnputStream constructor with a condp statement that
creates an InputStream from the given input, whether it is a File, Socket, or URL or
already is an InputStream.

(defn make-reader [src]
(-> (condp = (type src)
java.io.InputStream src
java.lang.String (FileInputStream. src)
java.io.File (FileInputStream. src)
java.net.Socket (.getInputStream src)
java.net.URL (if (= "file" (.getProtocol src))
(-> src .getPath FileInputStream.)
(.openStream src)))
InputStreamReader.
BufferedReader.))

Here’s a version of make-writer using the same strategy:

(defn make-writer [dst]
(-> (condp = (type dst)
java.io.OutputStream dst
java.io.File (FileOutputStream. dst)
java.lang.String (FileQutputStream. dst)
java.net.Socket (.getOutputStream dst)
java.net.URL (if (= "file" (.getProtocol dst))
(-> dst .getPath FileOutputStream.)
(throw (IllegalArgumentException.
"Can't write to non-file URL"))))
OQutputStreamWriter.
BufferedWriter.))

The problem with this approach is that it is closed: nobody else can come
along and add support for new source and destination types without rewriting
make-reader and make-writer. What we need is an open solution, one where support
for new types can be added after the fact and by different parties. What we
need is two abstractions, one for reading and one for writing.

Interfaces

In Java, the usual mechanism for supporting this form of abstraction is the
interface. The interface mechanism provides a means for dispatching calls to
an abstract function, specified in an interface definition, to a specific imple-
mentation based on the datatype of the first parameter passed in the call. In
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Java, the first parameter is implicit; it is the object that implements the
interface.

The following are the strengths of interfaces:

¢ Datatypes can implement multiple interfaces.

¢ Interfaces provide only specification, not implementation, which allows
implementation of multiple interfaces without the problems associated
with multiple class inheritance.

The weakness of interfaces is that existing datatypes cannot be extended to
implement new interfaces without rewriting them.

We can create Java interfaces in Clojure with the definterface macro. This takes
a name and one or more method signatures:

(definterface name & sigs)

Let’s create our abstraction for things-that-can-read-from-and-be-written-to
as an interface, which we’ll call IOFactory.

(definterface IOFactory
(~java.io.BufferReader make-reader [this])
(~java.io.BufferedWriter make-writer [this]))

This will create an interface called IOFactory that includes two abstract func-
tions, make-reader and make-writer. Any class that implements this interface must
include make-reader and make-writer functions that take a single parameter and
an instance of the datatype itself and that return a BufferedReader and Buffered-
Writer, respectively.

Unfortunately, the interfaces that a class supports are determined at design
time by the author; once a Java class is defined, it cannot be updated to
support new interfaces without rewriting it. Therefore, we can’t extend the
File, Socket, and URL classes to implement the IOFactory interface.

Like the versions of make-reader and make-writer we based on condp, our interface
is closed to extension by parties other than the author. This is part of what
is called the expression problem.' Fortunately, Clojure has a solution to it.>

Protocols

One piece of Clojure’s solution to the expression problem is the protocol.
Protocols provide a flexible mechanism for abstraction that leverages the best

1. http://lambda-the-ultimate.org/node/2232
2. http://www.ibm.com/developerworks/java/library/j-clojure-protocols/?ca=drs-
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parts of interfaces by providing only specification, not implementation, and
by letting datatypes implement multiple protocols. Additionally, protocols
address the key weaknesses of interfaces by allowing nonintrusive extension
of existing types to support new protocols.

The following are the strengths of protocols:
e Datatypes can implement multiple protocols.

¢ Protocols provide only specification, not implementation, which allows
implementation of multiple interfaces without the problems associated
with multiple-class inheritance.

¢ Existing datatypes can be extended to implement new interfaces with no
modification to the datatypes.

¢ Protocol method names are namespaced, so there is no risk of name col-
lision when multiple parties choose to extend the same extant type.

The defprotocol macro works just like definterface, but now we are able to extend
existing datatypes to implement our new abstraction.

(defprotocol name & opts+sigs)

Let’s redefine I0Factory as a protocol, instead of an interface.

(defprotocol IOFactory
"A protocol for things that can be read from and written to."
(make-reader [this] "Creates a BufferedReader.")
(make-writer [this] "Creates a BufferedWriter."))

Notice we can include a document string for the protocol as a whole, as well
as for each of its methods. Now let’s extend java.io.InputStream and java.io.Output-
Stream to implement our IOFactory protocol.

We use the extend function to associate an existing type to a protocol and to
provide the required function implementations, usually referred to as methods
in this context. The parameters to extend are the name of the type to extend,
the name of the protocol to implement, and a map of method implementations,
where the keys are keywordized versions of the method names.

(extend type & proto+mmaps)

The make-reader implementation for an InputStream just wraps the value passed
to it in a BufferedReader.

src/examples/protocols.clj

(extend InputStream
IOFactory
{:make-reader (fn [src]
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(=> src InputStreamReader. BufferedReader.))
:make-writer (fn [dst]
(throw (IllegalArgumentException.
"Can't open as an InputStream.")))})

Similarly, the implementation of make-writer for an OutputStream wraps its given
input in a BufferedWriter. And since you can’t write to an InputStream or read from
an OutputStream, the respective implementations of make-writer and make-reader
throw lllegalArgumentExceptions.

(extend OutputStream
IOFactory
{:make-reader (fn [src]
(throw
(IllegalArgumentException.
"Can't open as an OutputStream.")))
:make-writer (fn [dst]
(-> dst OutputStreamWriter. BufferedWriter.))})

We can extend the java.io.File type to implement our IOFactory protocol with the
extend-type macro, which provides a slightly cleaner syntax than extend.

(extend-type type & specs)

It takes the name of the type to extend and one or more specs, which includes
a protocol name and its respective method implementations.

(extend-type File
IOFactory
(make-reader [src]
(make-reader (FileInputStream. src)))
(make-writer [dst]
(make-writer (FileOutputStream. dst))))

Notice that we create an InputStream, specifically, a FilelnputStream, from our file
and then make a recursive call to make-reader, which will be dispatched to the
implementation defined earlier for InputStreams. We use the same recursive
pattern for the make-writer method, as well as for the methods of the following
remaining types.

We can extend the remaining types all at once with the extend-protocol macro:
(extend-protocol protocol & specs)

This takes the name of the protocol followed by one or more type names with
their respective method implementations.

(extend-protocol IOFactory
Socket
(make-reader [src]
(make-reader (.getInputStream src)))
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(make-writer [dst]
(make-writer (.getOutputStream dst)))

URL
(make-reader [src]
(make-reader
(if (= "file" (.getProtocol src))
(-> src .getPath FileInputStream.)
(.openStream src))))

(make-writer [dst]
(make-writer
(if (= "file" (.getProtocol dst))
(-> dst .getPath FileInputStream.)
(throw (IllegalArgumentException.
"Can't write to non-file URL"))))))

Now let’s put it all together.

(ns examples.io
(:import (java.io File FileInputStream FileOutputStream
InputStream InputStreamReader
OQutputStream OQutputStreamWriter
BufferedReader BufferedWriter)
(java.net Socket URL)))

(defprotocol IOFactory
"A protocol for things that can be read from and written to."
(make-reader [this] "Creates a BufferedReader.")
(make-writer [this] "Creates a BufferedWriter."))

(defn gulp [src]
(Let [sb (StringBuilder.)]
(with-open [reader (make-reader src)]
(Lloop [c (.read reader)]
(if (neg? c)

(str sb)

(do
(.append sb (char c))
(recur (.read reader))))))))

(defn expectorate [dst content]
(with-open [writer (make-writer dst)]
(.write writer (str content))))

(extend-protocol IOFactory
InputStream
(make-reader [src]
(=> src InputStreamReader. BufferedReader.))
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(make-writer [dst]
(throw
(ITlegalArgumentException.
"Can't open as an InputStream.")))

OutputStream
(make-reader [src]
(throw
(ITlegalArgumentException.
"Can't open as an OutputStream.")))

(make-writer [dst]
(-> dst OutputStreamWriter. BufferedWriter.))

File
(make-reader [src]
(make-reader (FileInputStream. src)))

(make-writer [dst]
(make-writer (FileOutputStream. dst)))

Socket
(make-reader [src]
(make-reader (.getInputStream src)))

(make-writer [dst]
(make-writer (.getOutputStream dst)))

URL
(make-reader [src]
(make-reader
(if (= "file" (.getProtocol src))
(=> src .getPath FileInputStream.)
(.openStream src))))

(make-writer [dst]
(make-writer
(if (= "file" (.getProtocol dst))
(-> dst .getPath FileInputStream.)
(throw (IllegalArgumentException.
"Can't write to non-file URL"))))))

Datatypes

We have shown how to extend existing types to implement new abstractions
with protocols, but what if we want to create a new type in Clojure? That is
where datatypes come in.
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A datatype provides the following:

¢ A unique class, either named or anonymous

e Structure, either explicitly as fields or implicitly as a closure

¢ Fields that can have type hints and can be primitive

e Optional implementations of abstract methods specified in protocols or
interfaces

e Immutability on by default

e Unification with maps (via records)

We will use the deftype macro to define a new datatype, called CryptoVault, that
will implement two protocols, including IOFactory.

Now that gulp and expectorate support several existing Java classes, let’s create
a new supported type, CryptoVault. You’ll create an instance of a CryptoVault by
passing in an argument that implements the clojure java.io.lOFactory protocol (not
the one we've defined here), a path to a cryptographic key store, and a pass-
word. The contents expectorated into the CryptoVault will be encrypted and
written to the IOFactory object and then decrypted when gulped back in.

We'll use deftype to create the new type.
(deftype name [& fields] & opts+specs)

It takes the name of the type and a vector of fields contained by the type. The
naming convention for datatypes is the same as used by Java classes, i.e.,
PascalCase or CamelCase.

user=> (deftype CryptoVault [filename keystore password])
user.CryptoVault

Once the type has been defined, we can create an instance of our CryptoVault
like so:

user=> (def vault (->CryptoVault "vault-file" "keystore" "toomanysecrets"))
#'user/vault

And its fields can be accessed using the same prefix-dot syntax used to access
fields in Java objects.

user=> (.filename vault)
"vault-file"

user=> (.keystore vault)
"keystore"

user=> (.password vault)
"toomanysecrets"
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Now that we have defined the basic CryptoVault type, let’s add behavior with
some methods. Datatypes can implement only those methods that have been
specified in either a protocol or an interface, so let’s first create a Vault protocol.

(defprotocol Vault
(init-vault [vault])
(vault-output-stream [vault])
(vault-input-stream [vault]))

The protocol includes three functions—init-vault, vault-output-stream, and vault-input-
stream—that every Vault must implement.

We can define our new type’s methods inline with deftype; we just pass the
type name and vector of fields as before, followed by a protocol name and one
or more method bodies:

src/examples/cryptovault.clj
(ns examples.cryptovault
(:use [examples.io :only [IOFactory make-reader make-writer]])
(:require [clojure.java.io :as iol)
(:import (java.security KeyStore KeyStore$SecretKeyEntry
KeyStore$PasswordProtection)
(javax.crypto KeyGenerator Cipher CipherOutputStream
CipherInputStream)
(java.io FileOutputStream)))
(deftype CryptoVault [filename keystore password]
Vault
(init-vault [vault]
. define method body here ...)

(vault-output-stream [vault]
. define method body here ...)

(vault-input-stream [vault]
. define method body here ...)

IOFactory
(make-reader [vault]

(make-reader (vault-input-stream vault)))
(make-writer [vault]

(make-writer (vault-output-stream vault))))

Notice that the methods for more than one protocol can be defined inline; we
have defined the methods for the Vault and IOFactory protocols together, although
the bodies of the Vault methods have been elided and will be described next.

The init-vault method will generate an Advanced Encryption Standard (AES)
key, place it in a java.security.KeyStore, write the keystore data to the file specified
by the keystore field in the CryptoVault, and then password-protect it.
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(init-vault [vault]
(let [password (.toCharArray (.password vault))
key (.generateKey (KeyGenerator/getInstance "AES"))
keystore (doto (KeyStore/getInstance "JCEKS")
(.load nil password)
(.setEntry "vault-key"
(KeyStore$SecretKeyEntry. key)
(KeyStore$PasswordProtection. password)))]
(with-open [fos (FileOutputStream. (.keystore vault))]
(.store keystore fos password))))

Both the vault-output-stream and vault-input-stream methods will use a function,
vault-key, to load the keystore associated with the CryptoVault and extract the
AES key used to encrypt and decrypt the contents of the vault.

(defn vault-key [vault]
(Let [password (.toCharArray (.password vault))]
(with-open [fis (FileInputStream. (.keystore vault))]
(-> (doto (KeyStore/getInstance "JCEKS")
(.load fis password))
(.getKey "vault-key" password)))))

The vault-output-stream method uses the vault-key method to initialize an AES
cipher object, creates an OutputStream from the Vault’s filename, and then uses
the cipher and OutputStream to create an instance of a CipherOutputStream.

(vault-output-stream [vault]
(Let [cipher (doto (Cipher/getInstance "AES")
(.init Cipher/ENCRYPT MODE (vault-key vault)))]
(CipherQOutputStream. (io/output-stream (.filename vault)) cipher)))

The vault-input-stream method works just like vault-output-stream, except it returns
a CipherlnputStream.

(vault-input-stream [vault]
(let [cipher (doto (Cipher/getInstance "AES")
(.init Cipher/DECRYPT MODE (vault-key vault)))]
(CipherInputStream. (io/input-stream (.filename vault)) cipher)))

To create an instance of a CryptoVault, just pass the location where data should
be stored, the keystore filename, and the password protecting the keystore.

user=> (def vault (->CryptoVault "vault-file" "keystore" "toomanysecrets"))
#'user/vault

If the keystore hasn’t been initialized yet, call the init-vault method:

user=> (init-vault vault)
nil
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Then use the CryptoVault like any other source/destination used by gulp and
expectorate.

user=> (expectorate vault "This is a test of the CryptoVault")
nil

user=> (gulp vault)
"This is a test of the CryptoVault"

We can use the CryptoVault with the built-in spit and slurp functions by extending
it to support the clojure java.io/IOFactory protocol. This version of the IOFactory has
four methods, instead of two like ours, and there are default method imple-
mentations defined in a map called default-streams-impl. We’ll override just two
of its methods, make-input-stream and make-output-stream, by assoc’ing our new
implementations into this map and passing it to the extend function.

(extend CryptoVault
clojure.java.io/I0Factory
(assoc clojure.java.io/default-streams-impl
:make-input-stream (fn [x opts] (vault-input-stream x))
:make-output-stream (fn [x opts] (vault-output-stream x))))

That’s it; now we can read and write to a CryptoVault using slurp and spit.

user=> (spit vault "This is a test of the CryptoVault using
spit and slurp")
nil

user=> (slurp vault)
"This is a test of the CryptoVault using spit and slurp"

Let’s put all the pieces together in a .clj file. Make a src/examples/datatypes subdi-
rectory within your project directory, and create a file called vault.clj.

src/examples/cryptovault_complete.clj
(ns examples.cryptovault-complete
(:require [clojure.java.io :as io]
[examples.protocols.io :as proto])
(:import (java.security KeyStore KeyStore$SecretKeyEntry
KeyStore$PasswordProtection)
(javax.crypto Cipher KeyGenerator CipherQutputStream
CipherInputStream)
(java.io FileInputStream FileQutputStream)))
(defprotocol Vault
(init-vault [vault])
(vault-output-stream [vault])
(vault-input-stream [vault]))
(defn vault-key [vault]
(let [password (.toCharArray (.password vault))]
(with-open [fis (FileInputStream. (.keystore vault))]



6.5

156 * Chapter 6. Protocols and Datatypes

(-> (doto (KeyStore/getInstance "JCEKS")
(.load fis password))
(.getKey "vault-key" password)))))
(deftype CryptoVault [filename keystore password]
Vault
(init-vault [vault]
(Llet [password (.toCharArray (.password vault))
key (.generateKey (KeyGenerator/getInstance "AES"))
keystore (doto (KeyStore/getInstance "JCEKS")
(.load nil password)
(.setEntry "vault-key"
(KeyStore$SecretKeyEntry. key)
(KeyStore$PasswordProtection. password)))]
(with-open [fos (FileOutputStream. (.keystore vault))]
(.store keystore fos password))))

(vault-output-stream [vault]
(Let [cipher (doto (Cipher/getInstance "AES")
(.init Cipher/ENCRYPT MODE (vault-key vault)))]
(CipherOutputStream. (io/output-stream (.filename vault)) cipher)))

(vault-input-stream [vault]
(let [cipher (doto (Cipher/getInstance "AES")
(.init Cipher/DECRYPT MODE (vault-key vault)))]
(CipherInputStream. (io/input-stream (.filename vault)) cipher)))

proto/IOFactory
(make-reader [vault]

(proto/make-reader (vault-input-stream vault)))
(make-writer [vault]

(proto/make-writer (vault-output-stream vault))))

(extend CryptoVault
clojure.java.io/I0Factory
(assoc io/default-streams-impl
:make-input-stream (fn [x opts] (vault-input-stream x))
:make-output-stream (fn [x opts] (vault-output-stream x))))

Records

Classes in object-oriented programs tend to fall into two distinct categories:
those that represent programming artifacts, such as String, Socket, InputStream,
and OutputStream, and those that represent application domain information,
such as Employee and PurchaseOrder.

Unfortunately, using classes to model application domain information hides
it behind a class-specific micro-language of setters and getters. You can no
longer take a generic approach to information processing, and you end up
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with a proliferation of unnecessary specificity and reduced reusability. See
Clojure’s documentation on datatypes® for more information.

For this reason, Clojure has always encouraged the use of maps for modeling
such information, and that holds true even with datatypes, which is where
records come in. A record is a datatype, like those created with deftype, that
also implements PersistentMap and therefore can be used like any other map
(mostly); and since records are also proper classes, they support type-based
polymorphism through protocols. With records, we have the best of both
worlds: maps that can implement protocols.

What could be more natural than using records to play music? So, let’s create
a record that represents a musical note, with fields for pitch, octave, and
duration; then we’ll use the JDK’s built-in MIDI synthesizer to play sequences
of these notes.

Since records are maps, we will be able to change the properties of individual
notes using the assoc and update-in functions, and we can create or transform
entire sequences of notes using map and reduce. This gives us access to the
entirety of Clojure’s collection API.

We will create a Note record with the defrecord macro, which behaves just like
deftype.

(defrecord name [& fields] & opts+specs)

A Note record has three fields: pitch, octave, and duration.

(defrecord Note [pitch octave duration])
-> user.Note

The pitch will be represented by a keyword like :C, :C#, and :Db, which represent
the notes C, C (C sharp), and D (D flat), respectively. Each pitch can be
played at different octaves; for instance, middle C is in the fourth octave.
Duration indicates the note length; a whole note is represented by 1, a half
note by 1/2, a quarter note by 1/4, and a 16th note by 1/16. For example,
we can represent a D half note in the fourth octave with this Note record:

(->Note :D# 4 1/2)
-> #user.Note{:pitch :D#, :octave 4, :duration 1/2}

We can treat records like any other datatype, accessing their fields with the
dot syntax.

(.pitch (->Note :D# 4 1/2))
-> D#

3.  http://clojure.org/datatypes
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But records are also map-like:

(map? (->Note :D# 4 1/2))
-> true

so we can also access their fields using keywords:

(:pitch (->Note :D# 4 1/2))
-> :D#

We can create modified records with assoc and update-in.

(assoc (->Note :D# 4 1/2) :pitch :Db :duration 1/4)
-> #user.Note{:pitch :Db, :octave 4, :duration 1/4}

(update-in (->Note :D# 4 1/2) [:octave] inc)
-> #user.Note{:pitch :D#, :octave 5, :duration 1/2}

Records are open, so we can associate extra fields into a record:

(assoc (->Note :D# 4 1/2) :velocity 100)
-> #user.Note{:pitch :D#, :octave 4, :duration 1/2, :velocity 100}

We will use the optional :velocity field to represent the force with which a note
is played.

When used on a record, both assoc and update-in return a new record, but the
dissoc function works a bit differently; it will return a new record if the field
being dissociated is optional, like velocity in the previous example, but it will
return a plain map if the field is mandated by the defrecord specification, like
pitch, octave, or duration.

In other words, if you remove a required field from a record of a given type,
it is no longer a record of that type, and it simply becomes a map.

(dissoc (->Note :D# 4 1/2) :octave)
-> {:pitch :D#, :duration 1/2}

Notice that dissoc returns a map in this case, not a record. One difference
between records and maps is that, unlike maps, records are not functions of
keywords.

((->Note. :D# 4 1/2) :pitch)
-> user.Note cannot be cast to clojure.lang.IFn

ClassCastException is thrown because records do not implement the IFn interface
like maps do. This is by design and drives a stylistic difference that makes
code more readable.

When accessing a collection, you should place the collection first. When
accessing a map that is acting (conceptually) as a data record, you should
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place the keyword first, even if the record is implemented as a plain map.
Now that we have our basic Note record, let’'s add some methods so we can
play them with the JDK’s built-in MIDI synthesizer. We'll start by creating a
MidiNote protocol with three methods:

src/examples/protocols.clj

(defprotocol MidiNote
(to-msec [this tempo])
(key-number [this])
(play [this tempo midi-channell]))

To play our note with the MIDI synthesizer, we need to translate its pitch and
octave into a MIDI key number and its duration into milliseconds. Here we
have defined to-msec, key-number, and play, which we will use to create our MidiNote.

e to-msec returns the duration of the note in milliseconds.
¢ key-number returns the MIDI key number corresponding to this note.
e play plays this note at the given tempo on the given channel.

Now let’s extend our Note record to implement the MidiNote protocol.

(import 'javax.sound.midi.MidiSystem)
(extend-type Note
MidiNote
(to-msec [this tempo]
(let [duration-to-bpm {1 240, 1/2 120, 1/4 60, 1/8 30, 1/16 15}]
(* 1000 (/ (duration-to-bpm (:duration this))
tempo))))

The to-msec function translates the note’s duration from whole note, half note,
quarter note, and so on, into milliseconds based on the given tempo, which
is represented in beats per minute (bpm).

(key-number [this]

(let [scale {:C O, :C#1, :Db 1, :D 2,
:D# 3, :Eb 3, :E 4, :F 5,
:F# 6, :Gb 6, :G 7, :G# 8,
:Ab 8, :A 9, :A# 10, :Bb 10,

:B 11}]
(+ (* 12 (inc (:octave this)))
(scale (:pitch this)))))

The key-number function maps the keywords used to represent pitch into a
number ranging from O to 11 [1] and then uses this number along with the
given octave to find the corresponding MIDI key-number.*

4. Notice more than one pitch maps to 1, 3, 6, 8, and 10.
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(play [this tempo midi-channel]
(Llet [velocity (or (:velocity this) 64)]
(.noteOn midi-channel (key-number this) velocity)
(Thread/sleep (to-msec this tempo)))))

Finally, the play method takes a note, a tempo, and a MIDI channel; sends a
noteOn message to the channel; and then sleeps for the note’s duration. The
note continues to play even while the current thread is asleep, stopping only
when the next note is sent to the channel.

Now we need a function that sets up the MIDI synthesizer and plays a
sequence of notes:

(defn perform [notes & {:keys [tempo] :or {tempo 120}}]
(with-open [synth (doto (MidiSystem/getSynthesizer) .open)]
(Let [channel (aget (.getChannels synth) 0)]
(doseq [note notes]
(play note tempo channel)))))

The perform function takes a sequence of notes and an optional tempo value,
opens a MIDI synthesizer, gets a channel from it, and then calls each note’s
play method.

Now that all the pieces are in place, let’s make music using a sequence of Note
records:

(def close-encounters [(->Note :D 3 1/2)
(->Note :E 3 1/2)
(->Note :C 3 1/2)
(->Note :C 2 1/2)
(->Note :G 2 1/2)])

-> #'user/close-encounters

In this case, our “music” consists of the five notes used to greet the alien
ships in the movie Close Encounters of the Third Kind. To play it, just pass
the sequence to the perform function:

(perform close-encounters)
-> nil

We can also generate sequences of notes dynamically with the for macro.

(def jaws (for [duration [1/2 1/2 1/4 1/4 1/8 1/8 1/8 1/8]
pitch [:E :F]]
(Note. pitch 2 duration)))
-> #'user/jaws

(perform jaws)
-> nil
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The result is the shark theme from Jaws—a sequence of alternating E and F
notes progressively speeding up as they move from half notes to quarter notes
to eighth notes.

Since notes are records and records are map-like, we can manipulate them
with any Clojure function that works on maps. For instance, we can map the
update-in function across the Close Encounters sequence to raise, or lower, its
octave.

(perform (map #(update-in % [:octave] inc) close-encounters))
-> nil

(perform (map #(update-in % [:octave] dec) close-encounters))
-> nil

Or we can create a sequence of notes that have progressively larger values of
the optional :velocity field:

(perform (for [velocity [64 80 90 100 110 120]]
(assoc (Note. :D 3 1/2) :velocity velocity)))
-> nil

This results in a sequence of increasingly more forceful D notes. Manipulating
sequences is a particular strength of Clojure, so there are endless possibilities
for programmatically creating and manipulating sequences of Note records.

Let’s put the MidiNote protocol, the Note record, and the perform function
together in a Clojure source file called src/examples/midi.clj so we can use them
in the future.

src/examples/midi.clj
(ns examples.datatypes.midi

(:import [javax.sound.midi MidiSystem]))
(defprotocol MidiNote

(to-msec [this tempo])

(key-number [this])

(play [this tempo midi-channell))

(defn perform [notes & {:keys [tempo] :or {tempo 88}}]
(with-open [synth (doto (MidiSystem/getSynthesizer).open)]
(Let [channel (aget (.getChannels synth) 0)]
(doseq [note notes]
(play note tempo channel)))))

(defrecord Note [pitch octave duration]
MidiNote
(to-msec [this tempo]
(let [duration-to-bpm {1 240, 1/2 120, 1/4 60, 1/8 30, 1/16 15}]
(* 1000 (/ (duration-to-bpm (:duration this))
tempo))))
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(key-number [this]
(let [scale {:C O, :C#1, :Db 1, :D 2,
:D# 3, :Eb 3, :E 4, F 5

:F# 6, :Gb 6, :G 7, :G# 8,
:Ab 8, :A 9, :A# 10, :Bb 10,
:B 11}]

(+ (* 12 (inc (:octave this)))
(scale (:pitch this)))))
(play [this tempo midi-channel]
(Llet [velocity (or (:velocity this) 64)]
(.noteOn midi-channel (key-number this) velocity)
(Thread/sleep (to-msec this tempo)))))

reify

The reify macro lets you create an anonymous instance of a datatype that
implements either a protocol or an interface. Note that you get access by
closure, not by declaration. This is because there are no declared members.

(reify & opts+specs)

reify, like deftype and defrecord, takes the name of one or more protocols, or
interfaces, and a series of method bodies. Unlike deftype and defrecord, it doesn’t
take a name or a vector of fields; datatype instances produced with reify don’t
have explicit fields, relying instead on closures.

Let’s compose some John Cage-style® aleatoric music® or, better yet, create
an aleatoric music generator. We’'ll use reify to create an instance of a MidiNote
that will play a different random note each time its play method is called.

src/examples/generator.clj
(import '[examples.datatypes.midi MidiNote])
(let [min-duration 250
min-velocity 64
rand-note (reify
MidiNote
(to-msec [this tempo] (+ (rand-int 1000) min-duration))
(key-number [this] (rand-int 100))
(play [this tempo midi-channel]

(let [velocity (+ (rand-int 100) min-velocity)]
(.noteOn midi-channel (key-number this) velocity)
(Thread/sleep (to-msec this tempo)))))]

(perform (repeat 15 rand-note)))

5.  http://en.wikipedia.org/wiki/john Cage

6. http://en.wikipedia.org/wiki/Aleatoric_music
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The first thing we need to do is import (not use or require) our MidiNote protocol
from the examples.midi namespace. Next we bind two values, min-duration and min-
velocity, that we will use in the MidiNote method implementations. Then we use
reify to create an instance of an anonymous type, which implements the
MidiNote protocol, that will select a random note, duration, and velocity each
time its play method is called. Finally, we use the repeat function to create a
sequence of fifteen notes, consisting of a single instance of rand-note, and per-
form it. Voila, you now have a virtual John Cage!

Wrapping Up

We covered a lot of ground in this chapter, from the general use of abstraction
in programming to some (but not all) of the specific abstraction mechanisms
Clojure provides. We explored creating concrete abstractions using protocols
in Clojure and had some fun in the process!

But there’s still more. Clojure’s macro implementation is easy to learn and
use correctly for common tasks and yet powerful enough for the harder macro-
related tasks. In the next chapter, you will see how Clojure is bringing macros
to mainstream programming.
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CHAPTER 7

Macros

Macros give Clojure great power. With most programming techniques, you
build features within the language. When you write macros, it is more accurate
to say that you are “adding features to” the language. This is a powerful and
dangerous ability, so you should follow the rules in Section 7.1, When to Use
Macros, on page 165, at least until you have enough experience to decide for
yourself when to bend the rules. Section 7.2, Writing a Control Flow Macro,
on page 166 jump-starts that experience, walking you through adding a new
feature to Clojure.

While powerful, macros are not always simple. Clojure works to make macros
as simple as is feasible by including conveniences to solve many common
problems that occur when writing macros. Section 7.3, Malking Macros Simpler,
on page 172 explains these problems and shows how Clojure mitigates them.

Macros are so different from other programming idioms that you may struggle
to know when to use them. There is no better guide than the shared experience
of the community, so Section 7.4, Taxonomy of Macros, on page 177 introduces
a taxonomy of Clojure macros, based on the macros in Clojure and contrib
libraries.

When to Use Macros

Macro Club has two rules, plus one exception.

The first rule of Macro Club is Don’t Write Macros. Macros are complex, and
they require you to think carefully about the interplay of macro expansion
time and compile time. If you can write it as a function, think twice before
using a macro.
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The second rule of Macro Club is Write Macros If That Is the Only Way to
Encapsulate a Pattern. All programming languages provide some way to
encapsulate patterns, but without macros these mechanisms are incomplete.
In most languages, you sense that incompleteness whenever you say, “My
life would be easier if only my language had feature X.” In Clojure, you just
implement feature X using a macro.

The exception to the rule is that you can write any macro that makes life
easier for your callers when compared with an equivalent function. But to
understand this exception, you need some practice writing macros and com-
paring them to functions. So, let’s get started with an example.

Writing a Control Flow Macro

Clojure provides the if special form as part of the language:

(if (=1 1) (println "yep, math still works today"))
| yep, math still works today

Some languages have an unless, which is (almost) the opposite of if. unless per-
forms a test and then executes its body only if the test is logically false.

Clojure doesn’t have unless, but it does have an equivalent macro called when-
not. For the sake of having a simple example to start with, let’s pretend that
when-not doesn’t exist and create an implementation of unless. To follow the
rules of Macro Club, begin by trying to write unless as a function:
src/examples/macros.clj

; This is doomed to fail...

(defn unless [expr form]
(if expr nil form))

Check that unless correctly evaluates its form when its test expr is false:

(unless false (println "this should print"))
| this should print

Things appear fine so far. But let’s be diligent and test the true case too:

(unless true (println "this should not print"))
| this should not print

Clearly something has gone wrong. The problem is that Clojure evaluates all
the arguments before passing them to a function, so the println is called before
unless ever sees it. In fact, both calls to unless earlier call printin too soon, before
entering the unless function. To see this, add a printin inside unless:
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(defn unless [expr form]
(println "About to test...")
(if expr nil form))

Now you can clearly see that function arguments are always evaluated before
passing them to unless:

(unless false (println "this should print"))
| this should print
| About to test...

(unless true (println "this should not print"))
| this should not print
| About to test...

Macros solve this problem, because they do not evaluate their arguments
immediately. Instead, you get to choose when (and if!) the arguments to a
macro are evaluated.

When Clojure encounters a macro, it processes it in two steps. First, it expands
(executes) the macro and substitutes the result back into the program. This
is called macro expansion time. Then, it continues with the normal compile
time.

To write unless, you need to write Clojure code to perform the following trans-
lation at macro expansion time:

(unless expr form) -> (if expr nil form)

Then, you need to tell Clojure that your code is a macro by using defmacro,
which looks almost like defn:

(defmacro name doc-string? attr-map? [params*] body)

Because Clojure code is just Clojure data, you already have all the tools you
need to write unless. Write the unless macro using list to build the if expression:

(defmacro unless [expr form]
(list 'if expr nil form))

The body of unless executes at macro expansion time, producing an if form for
compilation. If you enter this expression at the REPL:

(unless false (println "this should print"))
then Clojure will (invisibly to you) expand the unless form into the following:

(if false nil (println "this should print"))
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Then, Clojure compiles and executes the expanded if form. Verify that unless
works correctly for both true and false:

(unless false (println "this should print"))
| this should print
-> nil

(unless true (println "this should not print"))
-> nil

Congratulations, you have written your first macro. unless may seem pretty
simple, but consider this: what you have just done is impossible in most
languages. In languages without macros, special forms get in the way.

Special Forms, Design Patterns, and Macros

Clojure has no special syntax for code. Code is composed of data structures.
This is true for normal functions but also for special forms and macros.

Consider a language with more syntactic variety, such as Java.' In Java, the
most flexible mechanism for writing code is the instance method. Imagine
that you are writing a Java program. If you discover a recurring pattern in
some instance methods, you have the entire Java language at your disposal
to encapsulate that recurring pattern.

Good so far. But Java also has lots of “special forms” (although they are not
normally called by that name). Unlike Clojure special forms, which are just
Clojure data, each Java special form has its own syntax. For example, if is a
special form in Java. If you discover a recurring pattern of usage involving if,
there is no way to encapsulate that pattern. You cannot create an unless, so
you are stuck simulating unless with an idiomatic usage of if:

if (!something) ...

This may seem like a relatively minor problem. Java programmers can cer-
tainly learn to mentally make the translation from if (!foo) to unless (foo). But
the problem is not just with if: every distinct syntactic form in the language
inhibits your ability to encapsulate recurring patterns involving that form.

As another example, Java new is a special form. Polymorphism is not available
for new, so you must simulate polymorphism, for example with an idiomatic
usage of a class method:

Widget w = WidgetFactory.makeWidget(...)

1. We are not trying to beat up on Java in particular; it is just easier to talk about a
specific language, and Java is well known.
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This idiom is a little bulkier. It introduces a whole new class, WidgetFactory.
This class is meaningless in the problem domain and exists only to work
around the constructor special form. Unlike the unless idiom, the “polymorphic
instantiation” idiom is complicated enough that there is more than one way
to implement a solution. Thus, the idiom should more properly be called a
design pattern.

Wikipedia defines a design pattern® to be a “general reusable solution to a
commonly occurring problem in software design.” It goes on to state that a
“design pattern is not a finished design that can be transformed directly
(emphasis added) into code.”

That is where macros fit in. Macros provide a layer of indirection so that you
can automate the common parts of any recurring pattern. Macros and code-
as-data work together, enabling you to reprogram your language on the fly
to encapsulate patterns.

Of course, this argument does not go entirely in one direction. Many people
would argue that having a bunch of special syntactic forms makes a program-
ming language easier to learn or read. We do not agree, but even if we did,
we would be willing to trade syntactic variety for a powerful macro system.
Once you get used to code as data, the ability to automate design patterns is
a huge payoff.

Expanding Macros

When you created the unless macro, you quoted the symbol if:

(defmacro unless [expr form]
(list 'if expr nil form))

But you did not quote any other symbols. To understand why, you need to
think carefully about what happens at macro expansion time:

* By quoting 'if, you prevent Clojure from directly evaluating if at macro
expansion time. Instead, evaluation strips off the quote, leaving if to be
compiled.

¢ You do not want to quote expr and form, because they are macro arguments.
Clojure will substitute them without evaluation at macro expansion time.

¢ You do not need to quote nil, since nil evaluates to itself.

2. http://en.wikipedia.org/wiki/Design_pattern (computer science)
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Thinking about what needs to be quoted can get complicated quickly. Fortu-
nately, you do not have to do this work in your head. Clojure includes
diagnostic functions so that you can test macro expansions at the REPL.

The function macroexpand-1 will show you what happens at macro expansion
time:

(macroexpand-1 form)

Use macroexpand-1 to prove that unless expands to a sensible if expression:

(macroexpand-1 '(unless false (println "this should print")))
-> (if false nil (println "this should print"))

Macros are complicated beasts, and we cannot overstate the importance of
testing them with macroexpand-1. Let’s go back and try some incorrect versions
of unless. Here is one that incorrectly quotes the expr:

(defmacro bad-unless [expr form]
(list 'if 'expr nil form))

When you expand bad-unless, you will see that it generates the symbol expr,
instead of the actual test expression:

(macroexpand-1 '(bad-unless false (println "this should print")))
-> (if expr nil (println "this should print"))

If you try to actually use the bad-unless macro, Clojure will complain that it
cannot resolve the symbol expr:

(bad-unless false (println "this should print"))
-> java.lang.Exception: Unable to resolve symbol: expr in this context

Sometimes macros expand into other macros. When this happens, Clojure
will continue to expand all macros, until only normal code remains. For
example, the .. macro expands recursively, producing a dot operator call,
wrapped in another .. to handle any arguments that remain. You can see this
with the following macro expansion:

(macroexpand-1 '(.. arm getHand getFinger))
-> (clojure.core/.. (. arm getHand) getFinger)

If you want to see .. expanded all the way, use macroexpand:
(macroexpand form)

If you macroexpand a call to .., it will recursively expand until only dot operators
remain:

(macroexpand '(.. arm getHand getFinger))
-> (. (. arm getHand) getFinger)
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(It is not a problem that arm, getHand, and getFinger do not exist. You are only
expanding them, not attempting to compile and execute them.)

Another recursive macro is and. If you call and with more than two arguments,
it will expand to include another call to and, with one less argument:

(macroexpand '(and 1 2 3))

-> (let* [and 3585 auto 1]
(if and_ 3585 auto  (clojure.core/and 2 3)
and_ 3585 auto ))

This time, macroexpand does not expand all the way. macroexpand works only
against the top level of the form you give it. Since the expansion of and creates
a new and nested inside the form, macroexpand does not expand it.

when and when-not

Your unless macro could be improved slightly to execute multiple forms,
avoiding this error:
(unless false (println "this") (println "and also this"))

-> java.lang.IllegalArgumentException: \
Wrong number of args passed to: macros$unless

Think about how you would write the improved unless. You would need to
capture a variable argument list and stick a do in front of it so that every form
executes. Clojure provides exactly this behavior in its when and when-not macros:

(when test & body)
(when-not test & body)
when-not is the improved unless you are looking for:

(when-not false (println "this") (println "and also this"))
| this

| and also this

-> nil

Given your practice writing unless, you should now have no trouble reading
the source for when-not:

; from Clojure core
(defmacro when-not [test & body]
(list 'if test nil (cons 'do body)))

And, of course, you can use macroexpand-1 to see how when-not works:

(macroexpand-1 '(when-not false (print "1") (print "2")))
-> (if false nil (do (print "1") (print "2")))
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when is the opposite of when-not and executes its forms only when its test is true.
Note that when differs from if in two ways:

e if allows an else clause, and when does not. This reflects English usage,
because nobody says “when ... else.”

¢ Since when does not have to use its second argument as an else clause, it
is free to take a variable argument list and execute all the arguments
inside a do.

You don’t really need an unless macro. Just use Clojure’s when-not. Always check
to see whether somebody else has written the macro you need.

Making Macros Simpler

The unless macro is a great simple example, but most macros are more complex.
In this section, we will build a set of increasingly complex macros, introducing
Clojure features as we go. For your reference, the features introduced in this
section are summarized in the following table.

Form Description

foo# Auto-gensym: Inside a syntax-quoted section, create a
unique name prefixed with foo.

(gensym prefix?) Create a unique name, with optional prefix.

(macroexpand form) Expand form with macroexpand-1 repeatedly until the

returned form is no longer a macro.
(macroexpand-1 form)  Show how Clojure will expand form.
(list-frag? ~@form list-  Splicing unquote: Use inside a syntax quote to splice an
frag?) unquoted list into a template.

“form Syntax quote: Quote form, but allow internal unquoting
so that form acts a template. Symbols inside form are
resolved to help prevent inadvertent symbol capture.

~form Unquote: Use inside a syntax quote to substitute an
unquoted value.

First let’s build a replica of Clojure’s .. macro. We'll call it chain, since it chains
a series of method calls. Here are some sample expansions of chain:

Macro Call Expansion
(chain arm getHand) (. arm getHand)
(chain arm getHand getFinger) (. (. arm getHand) getFinger)
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Begin by implementing the simple case where the chain calls only one method.
The macro needs only to make a simple list:

src/examples/macros/chain_1.clj
; chain reimplements Clojure's .. macro
(defmacro chain [x form]

(list '. x form))

chain needs to support any number of arguments, so the rest of the implemen-
tation should define a recursion. The list manipulation becomes more complex,
since you need to build two lists and concat them together:

src/examples/macros/chain_2.clj
(defmacro chain
([x form] (list '. x form))
([x form & more] (concat (list 'chain (list '. x form)) more)))

Test chain using macroexpand to make sure it generates the correct expansions:

(macroexpand '(chain arm getHand))
-> (. arm getHand)

(macroexpand '(chain arm getHand getFinger))
-> (. (. arm getHand) getFinger)

The chain macro works fine as written, but it is difficult to read the expression
that handles more than one argument:

(concat (list 'chain (list '. x form)) more)))

The definition of chain oscillates between macro code and the body to be gen-
erated. The intermingling of the two makes the entire thing hard to read. And
this is just a baby of a form, only one line in length. As macro forms grow
more complex, assembly functions such as list and concat quickly obscure the
meaning of the macro.

One solution to this kind of problem is a templating language. If macros were
created from templates, you could take a “fill-in-the-blanks” approach to
creating them. The definition of chain might look like this:

; hypothetical templating language

(defmacro chain

([x form] (. ${x} ${form}))
([x form & more] (chain (. ${x} ${form}) ${more})))

In this hypothetical templating language, the ${} lets you substitute arguments
into the macro expansion.

Notice how much easier the definition is to read and how it clearly shows
what the expansion will look like.
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Syntax Quote, Unquote, and Splicing Unquote

Clojure macros support templating without introducing a separate language.
The syntax quote character, which is a backquote ('), works almost like normal
quoting. But inside a syntax-quoted list, the unquote character (~, a tilde)
turns quoting off again. The overall effect is templates that look like this:

src/examples/macros/chain_3.clj
(defmacro chain [x form]
(. ~x ~form))

Test that this new version of chain can correctly generate a single method call:

(macroexpand '(chain arm getHand))
-> (. arm getHand)

Unfortunately, the syntax quote/unquote approach will not quite work for
the multiple-argument variant of chain:

src/examples/macros/chain_4.clj
; Does not quite work
(defmacro chain
([x form] " (. ~x ~form))
([x form & more] " (chain (. ~x ~form) ~more)))

When you expand this chain, the parentheses aren’t quite right:

(macroexpand '(chain arm getHand getFinger))
-> (. (. arm getHand) (getFinger))

The last argument to chain is a list of more arguments. When you drop more
into the macro “template,” it has parentheses because it is a list. But you
don’t want these parentheses; you want more to be spliced into the list. This
comes up often enough that there is a reader macro for it: splicing unquote
(~@). Rewrite chain using splicing unquote to splice in more:

src/examples/macros/chain_5.clj
(defmacro chain
([x form] " (. ~x ~form))
([x form & more] " (chain (. ~x ~form) ~@more)))

Now, the expansion should be spot on:

(macroexpand '(chain arm getHand getFinger))
-> (. (. arm getHand) getFinger)

Many macros follow the pattern of chain, aka Clojure ..:

1. Begin the macro body with a syntax quote (') to treat the entire thing as
a template.
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2. Insert individual arguments with an unquote (~).
3. Splice in more arguments with splicing unquote (~@).

The macros we have built so far have been simple enough to avoid creating
any bindings with let or binding. Let’s create such a macro next.

Creating Names in a Macro

Clojure has a time macro that times an expression, writing the elapsed time
to the console:

(time (str "a" "b"))
| "Elapsed time: 0.06 msecs"
> Ilabll

Let’s build a variant of time called bench, designed to collect data across many
runs. Instead of writing to the console, bench will return a map that includes
both the return value of the original expression and the elapsed time.

The best way to begin writing a macro is to write its desired expansion by
hand. bench should expand like this:

; (bench (str "a" "b"))
; should expand to
(let [start (System/nanoTime)
result (str "a" "b")]
{:result result :elapsed (- (System/nanoTime) start)})

-> {:elapsed 61000, :result "ab"}

The let binds start to the start time and then executes the expression to be
benched, binding it to result. Finally, the form returns a map including the
result and the elapsed time since start.

With the expansion in hand, you can now work backward and write the macro
to generate the expansion. Using the technique from the previous section, try
writing bench using syntax quoting and unquoting;:

src/examples/macros/bench_1.clj
; This won't work
(defmacro bench [expr]
“(let [start (System/nanoTime)
result ~expr]
{:result result :elapsed (- (System/nanoTime) start)}))

If you try to call this version of bench, Clojure will complain:

(bench (str "a" "b"))
-> java.lang.Exception: Can't let qualified name: examples.macros/start



176 * Chapter 7. Macros

Clojure is accusing you of trying to let a qualified name, which is illegal.
Calling macroexpand-1 confirms the problem:

(macroexpand-1 '(bench (str "a" "b")))
-> (clojure.core/let [examples.macros/start (System/nanoTime)
examples.macros/result (str "a" "b")]
{:elapsed (clojure.core/- (System/nanoTime) examples.macros/start)
:result examples.macros/result})

When a syntax-quoted form encounters a symbol, it resolves the symbol to
a fully qualified name. At the moment, this seems like an irritant, because
you want to create local names, specifically start and result. But Clojure’s
approach protects you from a nasty macro bug called symbol capture.

What would happen if macro expansion did allow the unqualified symbols
start and result and then bench was later used in a scope where those names
were already bound to something else? The macro would capture the names
and bind them to different values, with bizarre results. If bench captured its
symbols, it would appear to work fine most of the time. Adding one and two
would give you three:

(let [a 1 b 2]
(bench (+ a b)))

-> {:result 3, :elapsed 39000}

...until the unlucky day that you picked a local name like start, which collided
with a name inside bench:

(let [start 1 end 2]
(bench (+ start end)))

-> {:result 1228277342451783002, :elapsed 39000}

bench captures the symbol start and binds it to (System/nanoTime). All of a sudden,
one plus two seems to equal 1228277342451783002.

Clojure’s insistence on resolving names in macros helps protect you from
symbol capture, but you still don’t have a working bench. You need some way
to introduce local names, ideally unique ones that cannot collide with any
names used by the caller.

Clojure provides a reader form for creating unique local names. Inside a
syntax-quoted form, you can append an octothorpe (#) to an unqualified
name, and Clojure will create an autogenerated symbol, or auto-gensym: a
symbol based on the name plus an underscore and a unique ID. Try it at the
REPL:
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“foo#
foo 1004

With automatically generated symbols at your disposal, it is easy to implement
bench correctly:
(defmacro bench [expr]

“(let [start# (System/nanoTime)

result# ~expr]
{:result result# :elapsed (- (System/nanoTime) start#)}))

Test it at the REPL:

(bench (str "a" "b"))
-> {:elapsed 63000, :result "ab"}

Clojure makes it easy to generate unique names, but if you are determined,
you can still force symbol capture. The sample code for the book includes an
evil-bench that shows a combination of syntax quoting, quoting, and unquoting
that leads to symbol capture. Don’t use symbol capture unless you have a
thorough understanding of macros.

Taxonomy of Macros

Now that you have written several macros, we can restate the rules of Macro
Club with more supporting detail.

The first rule of Macro Club is Don’t Write Macros. Macros are complex. If
none of the macros in Clojure seems complex to you, my company is hiring.’

The second rule of Macro Club is Write Macros If That Is the Only Way to
Encapsulate a Pattern. As you have seen, the patterns that resist encapsula-
tion tend to arise around special forms, which are irregularities in a language.
So, the second rule can also be called the Special Form Rule.

Special forms have special powers that you, the programmer, do not have:

e Special forms provide the most basic flow control structures, such as if
and recur. All flow control macros must eventually call a special form.

e Special forms provide direct access to Java. Whenever you call Java from
Clojure, you are going through at least one special form, such as the dot
Or new.

e Names are created and bound through special forms, whether defining a
var with def, creating a lexical binding with let, or creating a dynamic
binding with binding.

3.  http://thinkrelevance.com
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As powerful as they are, special forms are not functions. They cannot do some
things that functions can do. You cannot apply a special form, store a special
form in a var, or use a special form as a filter with the sequence library. In
short, special forms are not first-class citizens of the language.

The specialness of special forms could be a major problem and lead to repet-
itive, unmaintainable patterns in your code. But macros neatly solve the
problem, because you can use macros to generate special forms. In a practical
sense, all language features are first-class features at macro expansion time.

Macros that generate special forms are often the most difficult to write but
also the most rewarding. As if by magic, such macros seem to add new fea-
tures to the language.

The exception to the Macro Club rules is caller convenience: you can write
any macro that malkes life easier for your callers when compared with an
equivalent function. Because macros do not evaluate their arguments, callers
can pass raw code to a macro, instead of wrapping the code in an anonymous
function. Or, callers can pass unescaped names, instead of quoted symbols
or strings.

We have reviewed the macros in Clojure and contrib libraries, and almost all
of them follow the rules of Macro Club. Also, they fit into one or more of the
categories shown in the following table, which shows the taxonomy of Clojure

macros.
Justification Category Examples
Special form Conditional evaluation when, when-not, and, or, comment
Special form Defining vars defn, defmacro, defmulti, defstruct,
declare
Special form Java interop .., doto, import-static

Caller convenience Postponing evaluation lazy-cat, lazy-seq, delay

Caller convenience Wrapping evaluation with-open, dosync, with-out-str, time,
assert

Caller convenience Avoiding a lambda (Same as for “Wrapping
evaluation”)

Let’s examine each of the categories in turn.

Conditional Evaluation

Because macros do not immediately evaluate their arguments, they can be
used to create custom control structures. You have already seen this with
the unless example in Section 7.2, Writing a Control Flow Macro, on page 166.
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Macros that do conditional evaluation tend to be fairly simple to read and
write. They follow a common form: evaluate some argument (the condition);
then, based on that evaluation, pick which other arguments to evaluate, if
any. A good example is Clojure’s and:

Line1 (defmacro and
2 ([] true)
([x1 x)
([x & rest]
“(let [and# ~x]
(if and# (and ~@rest) and#))))

[< Y, TN NV}

and is defined recursively. The zero- and one-argument bodies set up the base
cases:

e For no arguments, return true.
¢ For one argument, return that argument.

For two or more arguments, and uses the first argument as its condition,
evaluating it on line 5. Then, if the condition is true, and proceeds to evaluate
the remaining arguments by recursively anding the rest (line 6).

and must be a macro in order to short-circuit evaluation after the first nontrue
value is encountered. Unsurprisingly, and has a close cousin macro, or. Their
signatures are the same:

(and & exprs)
(or & exprs)

The difference is that and stops on the first logical false, while or stops on the
first logical true:

(and 1 0 nil false)
-> nil

(or 1 0 nil false)
> 1

The all-time short-circuit evaluation champion is the comment macro:
(comment & exprs)

comment never evaluates any of its arguments and is sometimes used at the
end of a source code file to demonstrate the usage of an API.

For example, the Clojure inspector library ends with the following comment,
demonstrating the use of the inspector:
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(comment

(Load-file "src/inspector.clj")

(refer 'inspector)

(inspect-tree {:a 1] :b 2 :c [1 23 {:d4 :e5 :f [67 8]1}1})
(inspect-table [[1 2 3][4 5 6][7 8 9][10 11 12]1)

)

Notice the lack of indentation. This would be nonstandard in most Clojure
code but is useful in comment, whose purpose is to draw attention to its body.

Creating Vars

Clojure vars are created by the def special form. Anything else that creates a
var must eventually call def. So, for example, defn, defmacro, and defmulti are all
themselves macros.

To demonstrate writing macros that create vars, we will look at two macros
that are also part of Clojure: defstruct and declare.

Clojure provides a low-level function for creating structs called create-struct:
(create-struct & key-symbols)
Use create-struct to create a person struct:

(def person (create-struct :first-name :last-name))
-> #'user/person

create-struct works, but it is visually noisy. Given that you often want to imme-
diately def a new struct, you will typically call defstruct, which combines def and
create-struct in a single operation:

(defstruct name & key-symbols)
defstruct is a simple macro, and it is already part of Clojure:

(defmacro defstruct
[name & keys]
*(def ~name (create-struct ~@keys)))

This macro looks so simple that you may be tempted to try to write it as a
function. You won'’t be able to, because def is a special form. You must generate
def at macro time; you cannot make “dynamic” calls to def at runtime.

defstruct makes a single line easier to read, but some macros can also condense
many lines down into a single form. Consider the problem of forward declara-
tions. You are writing a program that needs forward references to vars a, b,
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¢, and d. You can call def with no arguments to define the var names without
an initial binding:

(def a)
(def b)
(def c)
(def d)

But this is tedious and wastes a lot of vertical space. The declare macro takes
a variable list of names and defs each name for you:

(declare & names)

Now you can declare all the names in a single compact form:

(declare a b c d)
-> #'user/d

The implementation of declare is built into Clojure:

(defmacro declare
[& names] " (do ~@(map #(list 'def %) names)))

Let’s analyze declare from the inside out. The anonymous function #(list 'def %)
is responsible for generating a single def. Test this form alone at the REPL:

(#(list 'def %) 'a)
-> (def a)

The map invokes the inner function once for each symbol passed in. Again,
you can test this form at the REPL:

(map #(list 'def %) '[a b c d])
-> ((def a) (def b) (def c) (def d))

Finally, the leading do makes the entire expansion into a single legal Clojure
form:

“(do ~@(map #(list 'def %) '[a b c d]))
-> (do (def a) (def b) (def c) (def d))

Substituting '[a b c d] in the previous form is the manual equivalent of testing
the entire macro with macroexpand-1:

(macroexpand-1 '(declare a b c d))
-> (do (def a) (def b) (def c) (def d))

Many of the most interesting parts of Clojure are macros that expand into
special forms involving def. We have explored a few here, but you can read
the source of any of them. Most of them live at src/clj/clojure/core.clj in the Clojure
source distribution.
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Java Interop

Clojure programs call into Java via the . (dot), new, and set! special forms.
However, idiomatic Clojure code often uses macros such as .. (threaded
member access) and doto to simplify forms that call Java.

You (or anyone else) can extend how Clojure calls Java by writing a macro.
Consider the following scenario. You are writing code that uses several of the
constants in java.lang.Math:

Math/PI

-> 3.141592653589793

(Math/pow 10 3)
-> 1000.0

In a longer segment of code, the Math/ prefix would quickly become distracting,
so it would be nice if you could say simply Pl and pow. Clojure doesn’t provide
any direct way to do this, but you could define a bunch of vars by hand:

(def PI Math/PI)

-> #'user/PI

(defn pow [b e] (Math/pow b e))
-> #'user/pow

Stuart Sierra automated the boilerplate with the import-static macro:

(examples.import-static/import-static class & members)

import-static imports static members of a Java class as names in the local name-
space. Use import-static to import the members you want from Math.
(use '[examples.import-static :only (import-static)])

(import-static java.lang.Math PI pow)
-> nil

PI
-> 3.141592653589793

(pow 10 3)
-> 1000.0

Postponing Evaluation

Most sequences in Clojure are lazy. When you are building a lazy sequence,
you often want to combine several forms whose evaluation is postponed until
the sequence is forced. Since evaluation is not immediate, a macro is required.

You have already seen such a macro in Section 3.3, Lazy and Infinite
Sequences, on page 69: lazy-seq. Another example is delay:

(delay & exprs)
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When you create a delay, it holds on to its exprs and does nothing with them
until it is forced to. Try creating a delay that simulates a long calculation by
sleeping:

(def slow-calc (delay (Thread/sleep 5000) "done!"))
-> #'user/slow-calc

To actually execute the delay, you must force it:

(force x)

Try forcing your slow-calc a few times:

(force slow-calc)
-> "done!"
(force slow-calc)
-> "done!"

The first time you force a delay, it executes its expressions and caches the
result. Subsequent forces simply return the cached value.

The macros that implement lazy and delayed evaluation all call Java code in
clojure.jar. In your own code, you should not call such Java APIs directly. Treat
the lazy/delayed evaluation macros as the public API, and treat the Java
classes as implementation detail that is subject to change.

Wrapping Evaluation

Many macros wrap the evaluation of a set of forms, adding some special
semantics before and/or after the forms are evaluated. You have already seen
several examples of this kind of macro:

e time starts a timer, evaluates forms, and then reports how long they took
to execute.

e let and binding establish bindings, evaluate some forms, and then tear down
the bindings.

* with-open takes an open file (or other resource), executes some forms, and
then makes sure the resource is closed in a finally block.

¢ dosync executes forms within a transaction.
Another example of a wrapper macro is with-out-str:
(with-out-str & exprs)

with-out-str temporarily binds *out* to a new StringWriter, evaluates its exprs, and
then returns the string written to *out*. with-out-str makes it easy to use print
and printin to build strings on the fly:
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(with-out-str (print "hello, ") (print "world"))
-> "hello, world"

The implementation of with-out-str has a simple structure that can act as a
template for writing similar macros:

Lire1 (defmacro with-out-str

2 [& body]

3 “(let [s# (new java.io.StringWriter)]
4 (binding [*out* s#]

5 ~@body

6 (str s#))))

Wrapper macros usually take a variable number of arguments (line 2), which
are the forms to be evaluated. They then proceed in three steps:

1. Setup: Create some special context for evaluation, introducing bindings
with let (line 3) and bindings (line 4) as necessary.

2. Evaluation: Evaluate the forms (line 5). Since there are typically a variable
number of forms, insert them via a splicing unquote: ~@.

3. Teardown: Reset the execution context to normal and return a value as
appropriate (line 6)

When writing a wrapper macro, always ask yourself whether you need a
finally block to implement the teardown step correctly. For with-out-str, the answer
is no, because both let and binding take care of their own cleanup. If, however,
you are setting some global or thread-local state via a Java API, you will need
a finally block to reset this state.

This talk of mutable state leads to another observation. Any code whose
behavior changes when executed inside a wrapper macro is obviously not a
pure function. print and printin behave differently based on the value of *out*
and so are not pure functions. Macros that set a binding, such as with-out-str,
do so to alter the behavior of an impure function somewhere.

Not all wrappers change the behavior of the functions they wrap. You've
already seen time, which times a function’s execution. Another example is assert:

(assert expr)

assert tests an expression and raises an exception if it is not logically true:

(assert (=1 1))
-> nil
(assert (=1 2))

-> java.lang.Exception: Assert failed: (= 1 2)
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Macros like assert and time violate the first rule of Macro Club in order to avoid
unnecessary lambdas.

Avoiding Lambdas

For historical reasons, anonymous functions are often called lambdas.
Sometimes a macro can be replaced by a function call, with the arguments
wrapped in a lambda. For example, the bench macro from Syntax Quote,
Unquote, and Splicing Unquote, on page 174 does not need to be a macro. You
can write it as a function:

(defn bench-fn [f]
(Let [start (System/nanoTime)
result (f)]
{:result result :elapsed (- (System/nanoTime) start)}))

However, if you want to call bench-fn, you must pass it a function that wraps
the form you want to execute. The following code shows the difference:

; macro
(bench (+ 1 2))
-> {:elapsed 44000, :result 3}

; function
(bench-fn (fn []1 (+ 1 2)))
-> {:elapsed 53000, :result 3}

For things like bench, macros and anonymous functions are near substitutes.
Both prevent immediate execution of a form. However, the anonymous function
approach requires more work on the part of the caller, so it is OK to break the
first rule and write a macro instead of a function.

Another reason to prefer a macro for bench is that bench-fn is not a perfect
substitute; it adds the overhead of an anonymous function call at runtime.
Since bench’s purpose is to time things, you should avoid this overhead.

Wrapping Up

Clojure macros let you automate patterns in your code. Because they trans-
form source code at macro expansion time, you can use macros to abstract
away any kind of pattern in your code. You are not limited to working within
Clojure. With macros, you can extend Clojure into your problem domain.
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Multimethods

Clojure multimethods provide a flexible way to associate a function with a
set of inputs. This is similar to Java polymorphism but more general. When
you call a Java method, Java selects a specific implementation to execute by
examining the type of a single object. When you call a Clojure multimethod,
Clojure selects a specific implementation to execute by examining the result
of any function you choose, applied to all the function’s arguments.

In this chapter, you will develop a thirst for multimethods by first living
without them. Then you will build an increasingly complex series of multi-
method implementations, first using multimethods to simulate polymorphism
and then using multimethods to implement various ad hoc taxonomies.

Multimethods in Clojure are used much less often than polymorphism in
object-oriented languages. But where they are used, they are often the key
feature in the code. Section 8.5, When Should I Use Multimethods?, on page
198 explores how multimethods are used in several open source Clojure projects
and offers guidelines for when to use them in your own programs.

If you are reading the book in chapter order, then once you have completed
this chapter, you will have seen all the key features of the Clojure language.

Living Without Multimethods

The best way to appreciate multimethods is to spend a few minutes living
without them, so let’'s do that. Clojure can already print anything with
print/printin. But pretend for a moment that these functions do not exist and
that you need to build a generic print mechanism. To get started, create a
my-print function that can print a string to the standard output stream *out*:
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src/examples/life_without_multi.clj
(defn my-print [ob]
(.write *out* ob))

Next, create a my-println that simply calls my-print and then adds a line feed:

src/examples/life_without_multi.clj
(defn my-println [ob]
(my-print ob)
(.write *out* "\n"))

The line feed makes my-printin’s output easier to read when testing at the REPL.
For the remainder of this section, you will make changes to my-print and test
them by calling my-printin. Test that my-println works with strings:

(my-println "hello")

| hello
-> nil

That is nice, but my-printin does not work quite so well with nonstrings such
as nil:

(my-println nil)
-> java.lang.NullPointerException

That’s not a big deal, though. Just use cond to add special-case handling for
nil:
src/examples/life_without_multi.clj
(defn my-print [ob]
(cond
(nil? ob) (.write *out* "nil")
(string? ob) (.write *out* ob)))

With the conditional in place, you can print nil with no trouble:

(my-println nil)

| nil

-> nil

Of course, there are still all kinds of types that my-printin cannot deal with. If
you try to print a vector, neither of the cond clauses will match, and the pro-
gram will print nothing at all:

(my-println [1 2 31])
-> nil

By now you know the drill. Just add another cond clause for the vector case.
The implementation here is a little more complex, so you might want to sepa-
rate the actual printing into a helper function, such as my-print-vector:



8.2

Defining Multimethods * 189

src/examples/life_without_multi.clj
(require '[clojure.string :as str])
(defn my-print-vector [ob]
(.write *out*"[")
(.write *out* (str/join " " ob))
(.write *out* "]"))

(defn my-print [ob]
(cond
(vector? ob) (my-print-vector ob)
(nil? ob) (.write *out* "nil")
(string? ob) (.write *out* ob)))

Make sure that you can now print a vector:

(my-println [1 2 3])
| 112 3]
-> nil

my-println now supports three types: strings, vectors, and nil. And you have a
road map for new types: just add new clauses to the cond in my-printin. But it
is a crummy road map, because it conflates two things: the decision process
for selecting an implementation and the specific implementation detail.

You can improve the situation somewhat by pulling out helper functions like
my-print-vector. However, then you have to make two separate changes every
time you want to a add new feature to my-printin:

e Create a new type-specific helper function.
¢ Modify the existing my-println to add a new cond invoking the feature-specific
helper.

What you really want is a way to add new features to the system by adding
new code in a single place, without having to modify any existing code. Clojure
offers this by way of protocols, covered in Section 6.3, Protocols, on page 147,
and multimethods.

Defining Multimethods

To define a multimethod, use defmulti:

(defmulti name dispatch-fn)

name is the name of the new multimethod, and Clojure will invoke dispatch-fn
against the method arguments to select one particular method (implementa-
tion) of the multimethod.
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Consider my-print from the previous section. It takes a single argument, the
thing to be printed, and you want to select a specific implementation based
on the type of that argument. So, dispatch-fn needs to be a function of one
argument that returns the type of that argument. Clojure has a built-in
function matching this description, namely, class. Use class to create a multi-
method called my-print:

src/examples/multimethods.clj
(defmulti my-print class)

At this point, you have provided a description of how the multimethod will
select a specific method but no actual specific methods. Unsurprisingly,
attempts to call my-print will fail:

(my-println "foo")

-> java.lang.IllegalArgumentException: \
No method for dispatch value

To add a specific method implementation to my-printin, use defmethod:

(defmethod name dispatch-val & fn-tail)

name is the name of the multimethod to which an implementation belongs.
Clojure matches the result of defmulti's dispatch function with dispatch-val to
select a method, and fn-tail contains arguments and body forms just like a
normal function.

Create a my-print implementation that matches on strings:

src/examples/multimethods.clj
(defmethod my-print String [s]
(.write *out* s))

Now, call my-printin with a string argument:

(my-println "stu")
| stu
-> nil

Next, create a my-print that matches on nil:

src/examples/multimethods.clj
(defmethod my-print nil [s]
(.write *out* "nil"))

Notice that you have solved the problem raised in the previous section. Instead
of being joined in a big cond, each implementation of my-println is separate.
Methods of a multimethod can live anywhere in your source, and you can
add new ones any time, without having to touch the original code.
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Dispatch Is Inheritance-Aware

Multimethod dispatch knows about Java inheritance. To see this, create a
my-print that handles Number by printing a number’s toString representation:

src/examples/multimethods.clj
(defmethod my-print Number [n]
(.write *out* (.toString n)))

Test the Number implementation with an integer:

(my-println 42)
| 42
-> nil

42 is an Integer, not a Number. Multimethod dispatch is smart enough to know
that an integer is a number and match anyway. Internally, dispatch uses the
isa? function:

(isa? child parent)
isa? knows about Java inheritance, so it knows that an Integer is a Number:

(isa? Integer Number)
-> true

isa? is not limited to inheritance. Its behavior can be extended dynamically at
runtime, as you will see later in Section 8.4, Creating Ad Hoc Taxonomies, on
page 194.

Multimethod Defaults

It would be nice if my-print could have a fallback representation that you could
use for any type you have not specifically defined. You can use :default as a
dispatch value to handle any methods that do not match anything more
specific. Using :default, create a my-printin that prints the Java toString value of
objects, wrapped in #<>:

src/examples/multimethods.clj
(defmethod my-print :default [s]
(.write *out* "#<")
(.write *out* (.toString s))
(.write *out* ">"))

Now test that my-printin prints random things, using the default method:

(my-println (java.sql.Date. 0))
-> #<1969-12-31>

(my-println (java.util.Random.))
-> #<java.util.Random@1c398896>
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In the unlikely event that :default already has some specific meaning in your
domain, you can create a multimethod using this alternate signature:

(defmulti name dispatch-fn :default default-value)

The default-value lets you specify your own default. Maybe you would like to
call it :everything-else:

src/examples/multimethods/default.clj
(defmulti my-print class :default :everything-else)
(defmethod my-print String [s]
(.write *out* s))
(defmethod my-print :everything-else [ ]
(.write *out* "Not implemented yet..."))

Any dispatch value that does not otherwise match will now match against
:everything-else.

Dispatching a multimethod on the type of the first argument, as you have
done with my-print, is by far the most common kind of dispatch. In many object-
oriented languages, in fact, it is the only kind of dynamic dispatch, and it
goes by the name polymorphism.

Clojure’s dispatch is much more general. Let’s add a few complexities to my-
print and move beyond what is possible with plain ol’ polymorphism.

Moving Beyond Simple Dispatch

Clojure’s print function prints various “sequencey” things as lists. If you
wanted my-print to do something similar, you could add a method that dis-
patched on a collection interface high in the Java inheritance hierarchy, such
as Collection:

src/examples/multimethods.clj
(require '[clojure.string :as str])
(defmethod my-print java.util.Collection [c]
(.write *out* "(")
(.write *out* (str/join " " c))
(.write *out* ")"))

Now, try various sequences to see that they get a nice print representation:

(my-println (take 6 (cycle [1 2 31)))
| (123123)
-> nil

(my-println [1 2 31])
| (123)
-> nil



Moving Beyond Simple Dispatch ¢ 193

Perfectionist that you are, you cannot stand that vectors print with rounded
braces, unlike their literal square-brace syntax. So, add yet another my-print
method, this time to handle vectors. Vectors all implement an IPersistentVector,
so this should work:

src/examples/multimethods.clj

(defmethod my-print clojure.lang.IPersistentVector [c]
(.write *out* "[")
(.write *out* (str/join " " c))
(.write *out* "J"))

But it doesn’t work. Instead, printing vectors now throws an exception:

(my-println [1 2 3])

-> java.lang.IllegalArgumentException: Multiple methods match
dispatch value: class clojure.lang.LazilyPersistentVector ->
interface clojure.lang.IPersistentVector and

interface java.util.Collection,

and neither is preferred

The problem is that two dispatch values now match for vectors: Collection and
[PersistentVector. Many languages constrain method dispatch to make sure these
conflicts never happen, such as by forbidding multiple inheritance. Clojure
takes a different approach. You can create conflicts, and you can resolve them
with prefer-method:

(prefer-method multi-name loved-dispatch dissed-dispatch)

When you call prefer-method for a multimethod, you tell it to prefer the loved-dis-
patch value over the dissed-dispatch value whenever there is a conflict. Since you
want the vector version of my-print to trump the collection version, tell the
multimethod what you want:

src/examples/multimethods.clj
(prefer-method
my-print clojure.lang.IPersistentVector java.util.Collection)

Now, you should be able to route both vectors and other sequences to the
correct method implementation:
(my-println (take 6 (cycle [1 2 3])))

| (123123)
-> nil

(my-println [1 2 3])
| 112 3]
-> nil

Many languages create complex rules, or arbitrary limitations, in order to
resolve ambiguities in their systems for dispatching functions. Clojure allows
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a much simpler approach: just don’t worry about it! If there is an ambiguity,
use prefer-method to resolve it.

Creating Ad Hoc Taxonomies

Multimethods let you create ad hoc taxonomies, which can be helpful when
you discover type relationships that are not explicitly declared as such.

For example, consider a financial application that deals with checking and
savings accounts. Define a Clojure struct for an account, using a tag to distin-
guish the two. Place the code in the namespace examples.multimethods.account. To
do this, you will need to create a file named examples/multimethods/account.clj on
your classpath' and then enter the following code:

src/examples/multimethods/account.clj
(ns examples.multimethods.account)

(defstruct account :id :tag :balance)

Now, you are going to create two different checking accounts, tagged as
::Checking and ::Savings. The capital names are a Clojure convention to show the
keywords are acting as types. The doubled :: causes the keywords to resolve
in the current namespace. To see the namespace resolution happen, compare
entering :Checking and ::Checking at the REPL:

:Checking
-> :Checking

::Checking
-> :user/Checking

Placing keywords in a namespace helps prevent name collisions with other
people’s code. When you want to use :Savings or :Checking from another
namespace, you will need to fully qualify them:

(struct account 1 ::examples.multimethods.account/Savings 100M)
-> {:id 1, :tag :examples.multimethods.account/Savings, :balance 100M}

Full names get tedious quickly, so you can use alias to specify a shorter alias
for a long namespace name:

(alias short-name-symbol namespace-symbol)
Use alias to create the short name acc:
1. Note that the example code for the book includes a completed version of this example,

already on the classpath. To work through the example yourself, simply move or rename
the completed example to get it out of the way.
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(alias 'acc 'examples.multimethods.account)
-> nil

Now that the acc alias is available, create two top-level test objects, a savings
account and a checking account:

(def test-savings (struct account 1 ::acc/Savings 100M))
-> #'user/test-savings

(def test-checking (struct account 2 ::acc/Checking 250M))
-> #'user/test-checking

Note that the trailing M creates a BigDecimal literal and does not mean you have
millions of dollars.

The interest rate for checking accounts is 0 and for savings accounts is 5
percent. Create a multimethod interest-rate that dispatches based on :tag, like
so:

src/examples/multimethods/account.clj

(defmulti interest-rate :tag)

(defmethod interest-rate ::acc/Checking [ ] OM)
(defmethod interest-rate ::acc/Savings [ ] 0.05M)

Check your test-savings and test-checking to make sure that interest-rate works as
expected.

(interest-rate test-savings)
-> 0.05M

(interest-rate test-checking)
-> OM

Accounts have an annual service charge, with rules as follows:

¢ Normal checking accounts pay a $25 service charge.

e Normal savings accounts pay a $10 service charge.

e Premium accounts have no fee.

¢ Checking accounts with a balance of $5,000 or more are premium.
* Savings accounts with a balance of $1,000 or more are premium.

In a realistic example, the rules would be more complex. Premium status
would be driven by average balance over time, and there would probably be
other ways to qualify. But the previous rules are complex enough to demon-
strate the point.

You could implement service-charge with a bunch of conditional logic, but premium
feels like a type, even though there is no explicit premium tag on an account.
Create an account-level multimethod that returns ::Premium or ::Basic:
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src/examples/multimethods/account.clj
(defmulti account-level :tag)
(defmethod account-level ::acc/Checking [acct]
(if (>= (:balance acct) 5000) ::acc/Premium ::acc/Basic))
(defmethod account-level ::acc/Savings [acct]
(i1f (>= (:balance acct) 1000) ::acc/Premium ::acc/Basic))

Test account-level to make sure that checking and savings accounts require
different balance levels to reach ::Premium status:

(account-level (struct account 1 ::acc/Savings 2000M))
-> :examples.multimethods.account/Premium

(account-level (struct account 1 ::acc/Checking 2000M))
-> :examples.multimethods.account/Basic

Now you might be tempted to implement service-charge using account-level as a
dispatch function:

src/examples/multimethods/service_charge_1.clj

; bad approach

(defmulti service-charge account-level)

(defmethod service-charge ::Basic [acct]
(if (= (:tag acct) ::Checking) 25 10))

(defmethod service-charge ::Premium [ ] 0)

The conditional logic in service-charge for ::Basic is exactly the kind of type-driven
conditional that multimethods should help us avoid. The problem here is that
you are already dispatching by account-level, and now you need to be dispatching
by :tag as well. No problem—you can dispatch on both. Write a service-charge
whose dispatch function calls both account-level and :tag, returning the results
in a vector:

src/examples/multimethods/service_charge_2.clj

(defmulti service-charge (fn [acct] [(account-level acct) (:tag acct)]))
(defmethod service-charge [::acc/Basic ::acc/Checking] [ 1 25)
(defmethod service-charge [::acc/Basic ::acc/Savings] [ 1 10)
(defmethod service-charge [::acc/Premium ::acc/Checking] [ ] 0)
(defmethod service-charge [::acc/Premium ::acc/Savings] [ ] 0)

This version of service-charge dispatches against two different taxonomies: the
itag intrinsic to an account and the externally defined account-level. Try a few
accounts to verify that service-charge works as expected:

(service-charge {:tag ::acc/Checking :balance 1000})
-> 25

(service-charge {:tag ::acc/Savings :balance 1000})
-> 0
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Notice that the previous tests did not even bother to create a “real” account
for testing. Structs like account are simply maps that are optimized for storing
particular fields, but nothing is stopping you from using a plain old map if
you find it more convenient.

Adding Inheritance to Ad Hoc Types

There is one further improvement you can make to service-charge. Since all
premium accounts have the same service charge, it feels redundant to have
to define two separate service-charge methods for ::Savings and ::Checking accounts.
It would be nice to have a parent type ::Account so you could define a multi-
method that matches ::Premium for any kind of ::Account. Clojure lets you define
arbitrary parent-child relationships with derive:

(derive child parent)

Using derive, you can specify that both ::Savings and :Checking are kinds of
::Account:

src/examples/multimethods/service_charge_3.clj
(derive ::acc/Savings ::acc/Account)
(derive ::acc/Checking ::acc/Account)

When you start to use derive, isa? comes into its own. In addition to understand-
ing Java inheritance, isa? knows all about derived relationships:

(isa? ::acc/Savings ::acc/Account)
-> true

Now that Clojure knows that Savings and Checking are Accounts, you can define
a service-charge using a single method to handle ::Premijum:

src/examples/multimethods/service_charge_3.clj

(defmulti service-charge (fn [acct] [(account-level acct) (:tag acct)]))
(defmethod service-charge [::acc/Basic ::acc/Checking] [ 1 25)
(defmethod service-charge [::acc/Basic ::acc/Savings] [ 1 10)
(defmethod service-charge [::acc/Premium ::acc/Account] [ ] 0)

At first glance, you may think that derive and isa? simply duplicate functional-
ity that is already available to Clojure via Java inheritance. This is not the
case. Java inheritance relationships are forever fixed at the moment you define
a class. derived relationships can be created when you need them and can be
applied to existing objects without their knowledge or consent. So, when you
discover a useful relationship between existing objects, you can derive that
relationship without touching the original objects’ source code and without
creating tiresome “wrapper” classes.
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If the number of different ways you might define a multimethod has your
head spinning, don’t worry. In practice, most Clojure code uses multimethods
sparingly. Let’s take a look at some open source Clojure code to get a better
idea of how multimethods are used.

When Should | Use Multimethods?

Multimethods are extremely flexible, and with that flexibility comes choices.
How should you choose when to use multimethods, as opposed to some other
technique? We approached this question from two directions, asking the fol-
lowing;:

e Where do Clojure projects use multimethods?
e Where do Clojure projects eschew multimethods?

The most striking thing is that multimethods are rare—about one per 1,000
lines of code. So, don’t worry that you are missing something important if
you build a Clojure application with few, or no, multimethods. A Clojure
program that defines no multimethods is not nearly as odd as an object-ori-
ented program with no polymorphism.

Many multimethods dispatch on class. Dispatch-by-class is the easiest kind
of dispatch to understand and implement. We already covered it in detail with
the my-print example, so I will say no more about it here.

Clojure multimethods that dispatch on something other than class are fairly
rare. We can look directly in Clojure for some examples. The clojure.inspector
and clojure.test libraries use unusual dispatch functions.

The Inspector

Clojure’s inspector library uses Swing to create simple views of data. You can
use it to get a tree view of your system properties:

(use '[clojure.inspector :only (inspect inspect-tree)l])
(inspect-tree (System/getProperties))
-> #<JFrame ...>

inspect-tree returns (and displays) a JFrame with a tree view of anything that is
treeish. So, you could also pass a nested map to inspect-tree:

(inspect-tree {:clojure {:creator "Rich" :runs-on-jvm true}})
-> #<JFrame ...>

Treeish things are made up of nodes that can answer two questions:
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e Who are my children?
e Am I a leaf node?

”

node,” and “leaf” all sound like candidates for
classes or interfaces in an object-oriented design. But the inspector does not
work this way. Instead, it adds a “treeish” type system in an ad hoc way to
existing types, using a dispatch function named collection-tag:

The treeish concepts of “tree,

; from Clojure's clojure/inspector.clj
(defn collection-tag [x]
(cond

(instance? java.util.Map$Entry x) :entry
(instance? clojure.lang.IPersistentMap x) :map
(instance? java.util.Map x) :map
(instance? clojure.lang.Sequential x) :seq
:else :atom))

collection-tag returns one of the keywords :entry, :map, :seq, or :atom. These act as
the type system for the treeish world. The collection-tag function is then used
to dispatch three different multimethods that select specific implementations
based on the treeish type system.

(defmulti is-leaf collection-tag)

(defmulti get-child
(fn [parent index] (collection-tag parent)))

(defmulti get-child-count collection-tag)
; method implementations elided for brevity

The treeish type system is added around the existing Java type system.
Existing objects do not have to do anything to become treeish; the inspector
library does it for them. Treeish demonstrates a powerful style of reuse. You
can discover new type relationships in existing code and take advantage of
these relationships simply, without having to modify the original code.

clojure.test

The clojure.test library in Clojure lets you write several different kinds of
assertions using the is macro. You can assert that arbitrary functions are
true. For example, 10 is not a string;:

(use :reload '[clojure.test :only (is)])
(is (string? 10))

FAIL in clojure.lang.PersistentList$EmptyList@1 (NO SOURCE FILE:2)
expected: (string? 10)

actual: (not (string? 10))

-> false
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Although you can use an arbitrary function, is knows about a few specific
functions and provides more detailed error messages. For example, you can
check that a string is not an instance? of Collection:

(is (instance? java.util.Collection "foo"))

FAIL in clojure.lang.PersistentList$EmptyList@1 (NO SOURCE FILE:3)
expected: (instance? java.util.Collection "foo")

actual: java.lang.String

-> false

is also knows about =. Verify that power does not equal wisdom.

(is (= "power" "wisdom"))

FAIL in clojure.lang.PersistentList$EmptyList@l (NO SOURCE FILE:4)
expected: (= "power" "wisdom")

actual: (not (= "power" "wisdom"))

-> false

Internally, is uses a multimethod named assert-expr, which dispatches not on
the type but on the actual identity of its first argument:

(defmulti assert-expr (fn [form message] (first form)))

Since the first argument is a symbol representing what function to check,
this amounts to yet another ad hoc type system. This time, there are three
types: =, instance?, and everything else.

The various assert-expr methods add specific error messages associated with
different functions you might call from is. Because multimethods are open
ended, you can add your own assert-expr methods with improved error messages
for other functions you frequently pass to is.

Counterexamples

As you saw in Section 8.4, Creating Ad Hoc Taxonomies, on page 194, you can
often use multimethods to hoist branches that are based on type out of the
main flow of your functions. To find counterexamples where multimethods
should not be used, we looked through Clojure’s core to find type branches
that had not been hoisted to multimethods.

A simple example is Clojure’s class, which is a null-safe wrapper for the
underlying Java getClass. Minus comments and metadata, class is as follows:

(defn class [x]
(if (nil? x) x (. x (getClass))))
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You could write your own version of class as a multimethod by dispatching on
identity:

src/examples/multimethods.clj

(defmulti my-class identity)

(defmethod my-class nil [ ] nil)
(defmethod my-class :default [x] (.getClass x))

Any nil-check could be rewritten this way. But I find the original class function
easier to read than the multimethod version. This is a nice “exception that
proves the rule.” Even though class branches on type, the branching version
is easier to read.

Use the following general rules when deciding whether to create a function
or a multimethod:

e If a function branches based on a type, or multiple types, consider a
multimethod.

e Types are whatever you discover them to be. They do not have to be
explicit Java classes or data tags.

e You should be able to interpret the dispatch value of a defmethod without
having to refer to the defmulti.

e Do not use multimethods merely to handle optional arguments or
recursion.

When in doubt, try writing the function in both styles, and pick the one that
seems more readable.

Wrapping Up

Multimethods support arbitrary dispatch. Usually multimethods work based
on type relationships. Sometimes these types are formal, as in Java classes.
Other times they are informal and ad hoc and emerge from the properties of
objects in the system.
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Java Down and Dirty

Clojure’s Java support is both powerful and lean. It's powerful, in that it
brings the expressiveness of Lisp syntax, plus some syntactic sugar tailored
to Java. It’s lean, in that it can get right to the metal. Clojure code compiles
to bytecode and does not have to go through any special translation layer on
the way to Java.

Clojure embraces Java and its libraries. Idiomatic Clojure code calls Java
libraries directly and does not try to wrap everything under the sun to look
like Lisp. This surprises many new Clojure developers but is very pragmatic.
Where Java isn’t broken, Clojure doesn’t fix it.

In this chapter, you will see how Clojure access to Java is convenient, elegant,
and fast:

e Calling Java is simple and direct. Clojure provides syntax extensions for
accessing anything you could reach from Java code: classes, instances,
constructors, methods, and fields. Although you will typically call Java
code directly, you can also wrap Java APIs and use them in a more func-
tional style.

e Clojure is fast, unlike many other dynamic languages on the JVM. You
can use custom support for primitives and arrays, plus type hints, to
cause Clojure’s compiler to generate the same code that a Java compiler
would generate.

* Clojure’s exception handling is easy to use. Better yet, explicit exception
handling is rarely necessary. Clojure’s exception primitives are the same
as Java’s. However, Clojure does not require you to deal with checked
exceptions and makes it easy to clean up resources using the with-open
idiom.
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9.1 Exception Handling

In Java code, exception handling crops up for three reasons:

e Wrapping checked exceptions (see Checked Exceptions, on page 205 if you
are unfamiliar with checked exceptions)

e Using a finally block to clean up nonmemory resources such as file and
network handles

¢ Responding to the problem: ignoring the exception, retrying the operation,
converting the exception to a nonexceptional result, and so on

In Clojure, things are similar but simpler. The try and throw special forms give
you all the capabilities of Java’s try, catch, finally, and throw. But you should not
have to use them very often, for the following reasons:

* You do not have to deal with checked exceptions in Clojure.
* You can use macros such as with-open to encapsulate resource cleanup.

Let’s see what this looks like in practice.

Keeping Exception Handling Simple

Java programs often wrap checked exceptions at abstraction boundaries. A
good example is Apache Ant, which tends to wrap low-level exceptions (such
as I/0 exceptions) with an Ant-level build exception:

// Ant-like code (simplified for clarity)
try {

newManifest = new Manifest(r);
} catch (IOException e) {

throw new BuildException(...);

}

In Clojure, you are not forced to deal with checked exceptions. You do not
have to catch them or declare that you throw them. So, the previous code
would translate to the following:

(Manifest. r)

The absence of exception wrappers makes idiomatic Clojure code easier to
read, write, and maintain than idiomatic Java. That said, nothing prevents
you from explicitly catching, wrapping, and rethrowing exceptions in Clojure.
It simply is not required. You should catch exceptions when you plan to
respond to them in a meaningful way.
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Java’s checked exceptions must be explicitly caught or rethrown from every method
where they can occur. This seemed like a good idea at first: checked exceptions could
use the type system to rigorously document error handling, with compiler enforcement.
Most Java programmers now consider checked exceptions a failed experiment, because
their costs in code bloat and maintainability outweigh their advantages. For more on
the history of checked exceptions, see Rod Waldhoff's article® and the accompanying
links.

a. http://tinyurl.com/checked-exceptions-mistake

Cleaning Up Resources

Garbage collection will clean up resources in memory. If you use resources
that live outside of garbage-collected memory, such as file handles, you need
to make sure that you clean them up, even in the event of an exception. In
Java, this is normally handled in a finally block.

If the resource you need to free follows the convention of having a close method,
you can use Clojure’s with-open macro:

(with-open [name init-form] & body)

Internally, with-open creates a try block, sets name to the result of init-form, and
then runs the forms in body. Most important, with-open always closes the object
bound to name in a finally block.

A good example of with-open is the spit function in clojure.string:
(clojure.core/spit file content)
spit simply writes a string to file. Try it:

(spit "hello.out" "hello, world")
-> nil

You should now find a file at hello.out with the contents hello, world.

The implementation of spit is simple:

; from clojure.core
(defn spit
"Opposite of slurp. Opens f with writer, writes content, then
closes f. Options passed to clojure.java.io/writer."
{:added "1.2"}
[f content & options]
(with-open [“java.io.Writer w (apply jio/writer f options)]
(.write w (str content))))

report erratum -« discuss
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spit creates a PrintWriter on f, which can be just about anything that is writable:
a file, a URL, a URI, or any of Java’s various writers or output streams. It
then prints content to the writer. Finally, with-open guarantees that the writer is
closed at the end of spit.

If you need to do something other than close in a finally block, the Clojure try
form looks like this:

(try expr* catch-clause* finally-clause?)
; catch-clause -> (catch classname name expr*)
; finally-clause -> (finally expr*)

It can be used thusly:

(try
(throw (Exception. "something failed"))
(finally
(println "we get to clean up")))
| we get to clean up
-> java.lang.Exception: something failed

The previous fragment also demonstrates Clojure’s throw form, which simply
throws whatever exception is passed to it.

Responding to an Exception

The most interesting case is when an exception handler attempts to respond
to the problem in a catch block. As a simple example, consider writing a
function to test whether a particular class is available at runtime:

src/examples/interop.clj

; not caller-friendly

(defn class-available? [class-name]
(Class/forName class-name))

This approach is not very caller-friendly. The caller simply wants a yes/no
answer but instead gets an exception:

(class-available? "borg.util.Assimilate")
-> java.lang.ClassNotFoundException: borg.util.Assimilate

A friendlier approach uses a catch block to return false:

src/examples/interop.clj
(defn class-available? [class-name]
(try
(Class/forName class-name) true
(catch ClassNotFoundException  false)))

The caller experience is much better now:
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(class-available? "borg.util.Assimilate")
-> false

(class-available? "java.lang.String")
-> true

Clojure gives you everything you need to throw and catch exceptions and to
cleanly release resources. At the same time, Clojure keeps exceptions in their
place. They are important but not so important that your mainline code is
dominated by the exceptional.

Clojure is designed to let you get things done and have fun while doing it.
However, an important part of getting things done is being able to use your
platform to its full potential. Throughout the rest of the book, we have looked
at doing things the idiomatic Clojure way. In this chapter, we will do it Java

style.

To provide the full power of the Java platform, Clojure does several things:

e Type hinting and inference, where needed, give the performance that
people (incorrectly) associate with statically typed languages.

e Ahead-of-time (AOT) compilation lets Clojure programs participate in the
binary-artifact-centric Java ecosystem as an equal player.

e While reify, defrecord, and deftype are preferable as flexible implementation
tools, Clojure also provides interop forms that give you access to the ugly
parts of Java interop.

¢ Clojure (and Clojure Contrib) have a rapidly expanding set of “batteries
included” libraries for common tasks. (But, you can always call the raw
Java libraries if these libraries do not include something you need.)

¢ If the techniques in this chapter seem ugly or unnecessary for the problem
you are solving, that’s great! Run with it. But if you need to squeeze out
that last bit of performance or play well with an ancient, ugly library, this
chapter is for you.

9.2 Wrestling with the Integers

Clojure provides three different sets of operations for integer types:

¢ The unchecked operators
¢ The default operators
e The promoting operators
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The following table gives a sampling of these operator types.

Unchecked Default Promoting
unchecked-add + +!'
unchecked-subtract

unchecked-multiply ~ * *!
unchecked-inc inc inc'
unchecked-dec dec dec'

The unchecked operators correspond exactly with primitive math in Java.
They are fast but terrifically dangerous in that they can overflow silently and
give incorrect answers. In Clojure, the unchecked operators should be used
only in the rare situation that overflow is the desired behavior or when perfor-
mance is paramount and you are certain overflow is impossible or irrelevant.

(unchecked-add 9223372036854775807 1)
-> -9223372036854775808

The default operators use Java primitives where possible for performance but
always make overflow checks and throw an exception.

(+ 9223372036854775807 1)
-> ArithmeticException integer overflow

The promoting operators will automatically promote from primitives to big
numbers on overflow. This makes it possible to handle an arbitrary range but
at significant performance cost. Because primitives and big numbers share
no common base type, math with the promoting operators precludes the use
of primitives as return types.

(+' 9223372036854775807 1)
-> 9223372036854775808N

Clojure relies on Java’s BigDecimal class for arbitrary-precision decimal numbers.
See the online documentation’ for details. BigDecimals provide arbitrary precision
but at a price: BigDecimal math is significantly slower than Java’s floating-point
primitives.

Clojure has its own BigInt class to handle Biginteger conversions. Clojure’s Bigint
has some performance improvements over using Java’s Biginteger directly. It
also wraps some of the rough edges of Biginteger. In particular, it properly
implements hashCode. This makes equality take precedence over representation,
which you will see in almost every abstraction in the language.

1. http://docs.oracle.com/javase/6/docs/api/java/math/BigDecimal.html
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Under the hood, Clojure uses Java’s Biginteger. The performance difference
comes in how BigInt treats its values. A Bigint consists of a Long part and a BigIn-
teger part. When the value passed into a Bigint is small enough to be treated
as a Long, it is. When numerical operations are performed on Bigints, if their
result is small enough to be treated as a Long, it is. This gives the user the
ability to add the overflow hint (N) without paying the Biginteger cost until it is
absolutely necessary.

Optimizing for Performance

In Clojure, it is idiomatic to call Java using the techniques described in Section
2.5, Calling Java, on page 43. The resulting code will be fast enough for 90
percent of scenarios. When you need to, though, you can make localized
changes to boost performance. These changes will not change how outside
callers invoke your code, so you are free to make your code work and then
make it fast.

Using Primitives for Performance

In the preceding sections, function parameters carry no type information.
Clojure simply does the right thing. Depending on your perspective, this is
either a strength or a weakness. It’s a strength, because your code is clean
and simple and can take advantage of duck typing. But it’s also a weakness,
because a reader of the code cannot be certain of datatypes and because
doing the right thing carries some performance overhead.

Consider a function that calculates the sum of the numbers from 1 to n:

; performance demo only, don't write code like this
(defn sum-to [n] (loop [i 1 sum 0]
(if (<=1 n) (recur (inc i) (+ i sum)) sum)))

You can verify that this function works with a small input value:

(sum-to 10)
=> 55

Let’s see how sum-to performs. To time an operation, you can use the time
function. When benchmarking, you’ll tend to want to take several measure-
ments so that you can eliminate start-up overhead plus any outliers; therefore,
you can call time from inside a dotimes macro:

(dotimes bindings & body)

dotimes will execute its body repeatedly, with the name bound to integers from
zero to n-1. Using dotimes, you can collect five timings of sum-to as follows:
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(dotimes [_ 5] (time (sum-to 10000)))
| "Elapsed time: 0.149 msecs"
| "Elapsed time: 0.126 msecs"
| "Elapsed time: 0.194 msecs"
| "Elapsed time: 0.279 msecs"
-> "Elapsed time: 0.212 msecs"

To speed things up, you can hint the argument and return type as long. Clo-
jure’s type inference will flow this hint to all the internal operations and
function calls inside the function.

(defn ~long integer-sum-to [“long n]
(Loop [1 1 sum 0]
(if (<=1 n)
(recur (inc i) (+ i sum))
sum)))

The integer-sum-to is indeed faster:

(dotimes [ 5] (time (integer-sum-to 10000)))
| "Elapsed time: 0.044 msecs"

| "Elapsed time: 0.023 msecs"

| "Elapsed time: 0.025 msecs"

| "Elapsed time: 0.023 msecs"

-> "Elapsed time: 0.02 msecs"

Clojure’s primitive math is still correct, in that it will check for overflow and
throw an exception. Is that as fast as things can get? Java programmers have
access to super-fast busted math: arithmetic operations that have the maxi-
mum possible performance but can silently overflow and corrupt data.

Clojure provides access to Java’s arithmetic semantics through the unchecked
family of functions. Maybe you can get an even faster function by using the
unchecked version of +, unchecked-add:

(defn ~long unchecked-sum-to [“long n]
(Loop [1 1 sum 0]
(if (<=1 n)
(recur (inc i) (unchecked-add i sum))
sum)))

The unchecked-sum-to is not significantly faster:

(dotimes [_ 5] (time (unchecked-sum-to 10000)))
| "Elapsed time: 0.039 msecs"
| "Elapsed time: 0.018 msecs"
| "Elapsed time: 0.014 msecs"
| "Elapsed time: 0.015 msecs"
-> "Elapsed time: 0.015 msecs"
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Orders of magnitude are important! Primitive hinting can make certain
operations significantly faster. However, switching to Java’s unchecked
semantics is generally a losing proposition. You get a trivial performance gain
on average, with the possibility of data corruption tomorrow.

So, why does Clojure provide these operations at all? Two reasons:

e Sometimes you actually want Java semantics. The primary use case for
the unchecked operations is when you need to interoperate with other
libraries that expect this behavior.

e Without trying them, nobody would know (or believe) that they weren’'t
faster.

Prefer accuracy first and then optimize for speed only where necessary. integer-
sum-to will throw an exception on overflow. This is bad, but the problem is
easily detected:

(integer-sum-to 10000000000)
-> java.lang.ArithmeticException: integer overflow

unchecked-sum-to will fail silently on overflow. In a program setting, it can quietly
but catastrophically corrupt data:

(unchecked-sum-to 10000000000)
-> -5340232216128654848 ; WRONG!!

Given the competing concerns of correctness and performance, you should
normally prefer simple, undecorated code such as the original sum-to. If profiling
identifies a bottleneck, you can force Clojure to use a primitive type in just
the places that need it.

The sum-to example is deliberately simple in order to demonstrate the various
options for integer math in Clojure. In a real Clojure program, it would be
more expressive to implement sum-to using reduce. Summing a sequence is the
same as summing the first two items, adding that result to the next item, and
so on. That is exactly the loop that (reduce + ...) provides. With reduce, you can
rewrite sum-to as a one-liner:

(defn better-sum-to [n]
(reduce + (range 1 (inc n))))

The example also demonstrates an even more general point: pick the right
algorithm to begin with. The sum of numbers from 1 to n can be calculated
directly as follows:

(defn best-sum-to [n]
(/ (* n (inc n)) 2))
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Even without performance hints, this is faster than implementations based
on repeated addition:

(dotimes [_ 5] (time (best-sum-to 10000)))
| "Elapsed time: 0.029 msecs"
| "Elapsed time: 0.0040 msecs"
| "Elapsed time: 0.0040 msecs"
| "Elapsed time: 0.0040 msecs"
-> "Elapsed time: 0.0030 msecs"

Performance is a tricky subject. Don’t write ugly code in search of speed. Start
by choosing appropriate algorithms and getting your code to work correctly.
If you have performance issues, profile to identify the problems. Then, intro-
duce only as much complexity as you need to solve those problems.

Adding Type Hints

Clojure supports adding type hints to function parameters, let bindings,
variable names, and expressions. These type hints serve three purposes:

e Optimizing critical performance paths
¢ Documenting the required type
¢ Enforcing the required type at runtime

For example, consider the following function, which returns information about
a Java class:

(defn describe-class [c]
{:name (.getName c)
:final (java.lang.reflect.Modifier/isFinal (.getModifiers c))})

You can ask Clojure how much type information it can infer, by setting the
special variable *warn-on-reflection* to true:

(set! *warn-on-reflection* true)
-> true

The exclamation point on the end of set! is an idiomatic indication that set!
changes mutable state. set! is described in detail in Working with Java Callback
APIs, on page 130. With *warn-on-reflection* set to true, compiling describe-class will
produce the following warnings:

Reflection warning, line: 87
- reference to field getName can't be resolved.

Reflection warning, line: 88
- reference to field getModifiers can't be resolved.
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These warnings indicate that Clojure has no way of knowing the type of c.
You can provide a type hint to fix this, using the metadata syntax AClass:

(defn describe-class ["~Class c]
{:name (.getName c)
:final (java.lang.reflect.Modifier/isFinal (.getModifiers c))})

With the type hint in place, the reflection warnings will disappear. The com-
piled Clojure code will be exactly the same as compiled Java code. Further,
attempts to call describe-class with something other than a Class will fail with a
ClassCastException:

(describe-class StringBuffer)

{:name "java.lang.StringBuffer", :final true}

(describe-class "foo")
-> java.lang.ClassCastException: \
java.lang.String cannot be cast to java.lang.Class

If your ClassCastException provides a less helpful error message, it is because
you are using a version of Java prior to Java 6. Improved error reporting is
one of many good reasons to run your Clojure code on Java 6 or newer.

When you provide a type hint, Clojure will insert an appropriate class cast
in order to avoid making slow, reflective calls to Java methods. But if your
function does not actually call any Java methods on a hinted object, then
Clojure will not insert a cast. Consider this wants-a-string function:

(defn wants-a-string ["String s] (println s))
-> #'user/wants-a-string

You might expect that wants-a-string would complain about nonstring arguments.
In fact, it will be perfectly happy:

(wants-a-string "foo")
-> foo

(wants-a-string 0)
-> 0

Clojure can tell that wants-a-string never actually uses its argument as a string
(printin will happily try to print any kind of argument). Since no string methods
need to be called, Clojure does not attempt to cast s to a string.

When you need speed, type hints will let Clojure code compile down to the
same code Java will produce. But you won’t need type hints that often. Make
your code right first, and then worry about making it fast.
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Creating Java Classes in Clojure

Clojure’s objects all implement reasonable Java interfaces:

¢ Clojure’s data structures implement interfaces from the Java Collections
APL
¢ Clojure’s functions implement Runnable and Callable.

In addition to these generic interfaces, you will occasionally need domain-
specific interfaces. Often this comes in the form of callback handlers for event-
driven APIs such as Swing or some XML parsers. Clojure can easily generate
one-off proxies or classes on disk when needed, using a fraction of the lines
of code necessary in Java.

Creating Java Proxies

To interoperate with Java, you will often need to implement Java interfaces.
A good example is parsing XML with a Simple API for XML (SAX) parser. To
get ready for this example, go ahead and import the following classes. We'll
need them all before we are done:

(import '(org.xml.sax InputSource)
(org.xml.sax.helpers DefaultHandler)
'(java.io StringReader)
'(javax.xml.parsers SAXParserFactory))

To use a SAX parser, you need to implement a callback mechanism. The
easiest way is often to extend the DefaultHandler class. In Clojure, you can extend
a class with the proxy function:

(proxy class-and-interfaces super-cons-args & fns)

As a simple example, use proxy to create a DefaultHandler that prints the details
of all calls to startElement:

(def print-element-handler
(proxy [DefaultHandler] [1]
(startElement [uri local gname atts]
(println (format "Saw element: %s" gname)))))

proxy generates an instance of a proxy class. The first argument to proxy is
[DefaultHandler], a vector of the superclass and superinterfaces. The second
argument, [], is a vector of arguments to the base class constructor. In this
case, no arguments are needed.

After the proxy setup comes the implementation code for zero or more proxy
methods. The proxy shown earlier has one method. Its name is startElement,
and it takes four arguments and prints the name of the gname argument.
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Now all you need is a parser to pass the handler to. This requires plowing
through a pile of Java factory methods and constructors. For a simple
exploration at the REPL, you can create a function that parses XML in a
string:

(defn demo-sax-parse [source handler]

(.. SAXParserFactory newInstance newSAXParser
(parse (InputSource. (StringReader. source)) handler)))

Now the parse is easy:

(demo-sax-parse "<foo>
<bar>Body of bar</bar>
</foo>" print-element-handler)
| Saw element: foo
| Saw element: bar

The previous example demonstrates the mechanics of creating a Clojure proxy
to deal with Java’s XML interfaces. You can take a similar approach to
implementing your own custom Java interfaces. But if all you are doing is
XML processing, the clojure.data.xml library already has terrific XML support
and can work with any SAX-compatible Java parser.

The proxy mechanism is completely general and can be used to generate any
kind of Java object you want, on the fly. Sometimes the objects are so simple
you can fit the entire object in a single line. The following code creates a new
thread and then creates a new dynamic subclass of Runnable to run on the new
thread:

(.start (Thread.
(proxy [Runnable] [] (run []1 (println "I ran!")))))

In Java, you must provide an implementation of every method on every
interface you implement. In Clojure, you can leave them out:

(proxy [Callablel] [1) ; proxy with no methods (?7)

If you omit a method implementation, Clojure provides a default implementa-
tion that throws an UnsupportedOperationException:

(.call (proxy [Callable] [1))
-> java.lang.UnsupportedOperationException: call

The default implementation does not make much sense for interfaces with
only one method, such as Runnable and Callable, but it can be handy when you
are implementing larger interfaces and don’t care about some of the methods.

So far in this section, you have seen how to use proxy to create implementations
of Java interfaces. This is very powerful when you need it, but often Clojure
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is already there on your behalf. For example, functions automatically imple-
ment Runnable and Callable:

; normal usage: call an anonymous function
(#(println "foo"))

foo

; call through Runnable's run

(.run #(println "foo"))

foo

; call through Callable's call

(.call #(println "foo"))

foo

This makes it very easy to pass Clojure functions to other threads:

(dotimes [1i 5]
(.start
(Thread.
(fn []
(Thread/sleep (rand 500))
(println (format "Finished %d on %s" i (Thread/currentThread)))))))

For one-off tasks such as XML and thread callbacks, Clojure’s proxies are
quick and easy to use. If you need a longer-lived class, you can generate new
named classes from Clojure as well.

Using Java Collections

Clojure’s collections supplant the Java collections for most purposes. Clojure’s
collections are concurrency-safe, have good performance characteristics, and
implement the appropriate Java collection interfaces. So, you should generally
prefer Clojure’s own collections when you are working in Clojure and even
pass them back into Java when convenient.

If you do choose to use the Java collections, nothing in Clojure will stop you.
From Clojure’s perspective, the Java collections are classes like any other,
and all the various Java interop forms will work. But the Java collections are
designed for lock-based concurrency. They will not provide the concurrency
guarantees that Clojure collections do and will not work well with Clojure’s
software transactional memory.

One place where you will need to deal with Java collections is the special case
of Java arrays. In Java, arrays have their own syntax and their own bytecode
instructions. Java arrays do not implement any Java interface. Clojure collec-
tions cannot masquerade as arrays. (Java collections can't either!) The Java
platform makes arrays a special case in every way, so Clojure does too.

Clojure provides make-array to create Java arrays:
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(make-array class length)
(make-array class dim & more-dims)

make-array takes a class and a variable number of array dimensions. For a one-
dimensional array of strings, you might say this:

(make-array String 5)
-> #<String[] [Ljava.lang.String;@45a270b2>

The odd output is courtesy of Java’s implementation of toString() for arrays:
[Ljava.lang.String; is the JVM specification’s encoding for “one-dimensional array
of strings.” That’s not very useful at the REPL, so you can use Clojure’s seq
to wrap any Java array as a Clojure sequence so that the REPL can print the
individual array entries:

(seq (make-array String 5))
-> (nil nil nil nil nil)

Clojure also includes a family of functions with names such as int-array for
creating arrays of Java primitives. You can issue the following command at
the REPL to review the documentation for these and other array functions:

(find-doc "-array")

Clojure provides a set of low-level operations on Java arrays, including aset,
aget, and alength:

(aset java-array index value)

(aset java-array index-diml index-dim2 ... value)
(aget java-array index)

(aget java-array index-diml index-dim2 ...)
(alength java-array)

Use make-array to create an array, and then experiment with using aset, aget,
and alength to work with the array:

(defn painstakingly-create-array []
(let [arr (make-array String 5)]

(aset arr 0 "Painstaking")
(aset arr 1 "to")
(aset arr2 "fill")
(aset arr 3" in")
(aset arr 4 "arrays")
arr))

(aget (paintakingly-create-array) 0)
-> "Painstaking"

(alength (painstakingly-create-array))
-> 5



218 ¢ Chapter 9. Java Down and Dirty

Most of the time, you will find it simpler to use higher-level functions such
as to-array, which creates an array directly from any collection:

(to-array sequence)
to-array always creates an Object array:

(to-array ["Easier" "array" "creation"])
-> #<0bject[] [Ljava.lang.Object;@1639f9%e3>

to-array is also useful for calling Java methods that take a variable argument
list, such as String/format:

; example. prefer clojure.core/format (String/format "Training Week: %s Mileage:

(String/format "Training Week: %s Mileage: %d"
(to-array [2 26]))
-> "Training Week: 2 Mileage: 26"

to-array’s cousin into-array can create an array with a more specific type than
Object.

(into-array type? seq)
You can pass an explicit type as an optional first argument to into-array:

(into-array String ["Easier", "array", "creation"])
-> #<String[] [Ljava.lang.String;@391ecf28>

If you omit the type argument, into-array will guess the type based on the first
item in the sequence:

(into-array ["Easier" "array" "creation"])
-> #<String[] [Ljava.lang.String;@76bfd849>

As you can see, the array contains Strings, not Objects. If you want to transform
every element of a Java array without converting to a Clojure sequence, you
can use amap:

(amap a idx ret expr)

amap will create a clone of the array a, binding that clone to the name you
specify in ret. It will then execute expr once for each element in a, with idx bound
to the index of the element. Finally, amap returns the cloned array. You could
use amap to uppercase every string in an array of strings:

(def strings (into-array ["some" "strings" "here"]))
-> #'user/strings

(seq (amap strings idx _ (.toUpperCase (aget strings idx))))
-> ("SOME" "STRINGS" "HERE")

%d"
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The ret parameter is set to _ to indicate that it is not needed in the map
expression, and the wrapping seq is simply for convenience in printing the
result at the REPL. Similar to amap is areduce:

(areduce a idx ret init expr)

Where amap produces a new array, areduce produces anything you want. The
ret is initially set to init and later set to the return value of each subsequent
invocation of expr. areduce is normally used to write functions that “tally up” a
collection in some way. For example, the following call finds the length of the
longest string in the strings array:

(areduce strings idx ret 0 (max ret (.length (aget strings idx))))
-> 7

amap and areduce are special-purpose macros for interoperating with Java
arrays.

A Real-World Example

While it’s great to talk about the different interop cases and learn how to eke
out some additional performance using Java’s primitive forms, you still need
to have some practical, hands-on knowledge. In this example, we will be
building an application to test the availability of websites. The goal here is to
check to see whether the website returns an HTTP 200 OK response. If anything
other than our expected response is received, it should be marked as
unavailable.

Again, we will use the Leiningen build tool. Refer to Section 1.2, Clojure Coding
Quick Start, on page 11 if you don’t have Leiningen installed already. Let’s
start by creating a new project:

lein new pinger

Open your project.clj file and modify the contents to match what we are going
to be working on. Be sure to update Clojure to the latest version:

(defproject pinger "0.0.1-SNAPSHOT"
:description "A website availability tester"
:dependencies [[org.clojure/clojure 1.3.0]])

Grab the dependencies by running lein deps:
lein deps

First we need to write the code that connects to a URL and captures the
response code. We can accomplish this by using Java’s URL class.
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(ns pinger.core
(:import (java.net URL HttpURLConnection)))

(defn response-code [address]
(let [conn “HttpURLConnection (.openConnection (URL. address))
code (.getResponseCode conn)]
(when (< code 400)
(-> conn .getInputStream .close))
code))

Give it a try in the REPL:

(response-code "http://google.com")
-> 200

Now let’s create a function that uses response-code and decides whether the
specified URL is available. We will define available in our context as returning
an HTTP 200 response code.

(defn available? [address]
(= 200 (response-code address)))

(available? "http://google.com")
-> true

(available? "http://google.com/badurl")
-> false

Next we need a way to start our program and have it check a list of URLs that
we care about every so often and report their availability. Let’s create a -main
function.

(defn -main []

(let [addresses '("http://google.com"
"http://amazon.com"
"http://google.com/badurl")]

(while true
(doseq [address addresses]
(println (available? address)))
(Thread/sleep (* 1000 60)))))

In this example, we create a list of addresses (two good and one bad) and use
a simple while loop that never exits to obtain a never-ending program execution.
It will continue to check these URLs once a minute until the program is ter-
minated. Since we are exporting a -main function, don’t forget to add :gen-class
to your namespace declaration.

(ns pinger.core

(:import (java.net URL))
(:gen-class))
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Now that we have the fundamentals in place, we need to tell Leningen where
our main function is located. Open project.clj and add the :main declaration:

(defproject pinger "0.0.1-SNAPSHOT"
:description "A website availability tester"
:dependencies [[org.clojure/clojure "1.3.0"]1]
:main pinger.core)

It’s time to compile our program into a JAR file and run it. To do this, run
the following:

lein uberjar

java -jar pinger-0.0.1-SNAPSHOT-standalone.jar
true

false

true

You should see your program start and continue to run until you press Ctrl-C
to stop it.

Adding Real Continuous Loop Behavior

A while loop that is always true will continue to run until terminated, but it’s
not really the cleanest way to obtain the result because it doesn’t allow for a
clean shutdown. We can use a scheduled thread pool that will start and exe-
cute the desired command in a similar fashion as the while loop but with a
much greater level of control. Create a file in the src directory called scheduler.clj
and enter the following code:

(ns pinger.scheduler
(:import (java.util.concurrent ThreadPoolExecutor
ScheduledThreadPoolExecutor TimeUnit)))
(defn scheduled-executor
"Create a scheduled executor."
~ScheduledThreadPoolExecutor [threads]
(ScheduledThreadPoolExecutor. threads))

(defn periodically
"Schedules function f to run on executor e every 'delay'
milliseconds after a delay of 'initial-delay' Returns
a ScheduledFuture."
~ScheduledFuture [e f & {:keys [initial-delay delay]}]
(.scheduleWithFixedDelay
e f
initial-delay delay
TimeUnit/MILLISECONDS))
(defn shutdown-executor
"Shutdown an executor."
[*“ThreadPoolExecutor e]
(.shutdown e))
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This namespace provides functions to create and shut down a Java ScheduledEx-
ecutor. It also defines a function called periodically that will accept an executor,
a function, an initial-delay, and a repeated delay. It will execute the function for
the first time after the initial delay and then continue to execute the function
with the delay specified thereafter. This will continue to run until the thread
pool is shut down.

Let’s update pinger.core to take advantage of the scheduling code as well as
make the -main function responsible only for calling a function that starts the
loop. Replace the old -main with the following functions:

(defn check []
(let [addresses

("http://google.com"
"http://google.com/404"
"http://amazon.com")]

(doseq [address addresses]

(println (available? address)))))

(def immediately 0)
(def every-minute (* 60 1000))

(defn start [el
"REPL helper. Start pinger on executor e."
(scheduler/periodically e check
:initial-delay immediately
:delay every-minute))

(defn stop [e]
"REPL helper. Stop executor e."
(scheduler/shutdown-executor e))

(defn -main []
(start (scheduler/scheduled-executor 1)))

Make sure to update your namespace declaration to include the scheduler
code:

(ns pinger.core

s
(:import (java.net URL))

(:require [pinger.scheduler :as scheduler])
(:gen-class))

Not everything in the previous sample is necessary, but it makes for more
readable code. Adding the start and stop functions makes it easy to work
interactively from the REPL, which will be a huge advantage should you choose
to extend this example. Give everything one last check by running lein uberjar
and executing the JAR file. The program should function exactly as it did
before.
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Logging

So far, we have produced a program capable of periodically checking the
availability of a list of websites. However, it lacks the ability to keep track of
what it has done and to notify us when a site is unavailable. We can solve
both of these issues with logging. There are a lot of logging options for Java
applications, but for this example we will use log4j. It gives us a real logger to
use, and it gives us an email notification. This is great because we will have
the ability to send email alerts when a website isn’t available. To do this, we
will need to pull the logdj and mail libraries into our application. To make it
easier to take advantage of log4j, we will also pull in clojure.tools.logging. Open
your project.clj file and add clojure.tools.logging, log4j, and mail:

(defproject pinger "0.0.1-SNAPSHOT"
:description "A website availability tester
:dependencies [[org.clojure/clojure "1.3.0"]
[org.clojure/tools. logging "0.2.3"]
[log4j "1.2.16"]
[javax.mail/mail "1.4.1"]]
:main pinger.core)

Also pull the dependencies in with Leiningen:
lein deps

The great part about the Clojure logging library is that it will use any standard
Java logging library that is on the classpath, so there is no additional wiring
required between log4j and your application. Create a folder in the root of your
project called resources. Leiningen automatically adds the contents of this
folder to the classpath, and you will need that for your log4j properties file.
Create a file under the resources directory named log4j.properties and add the
following contents:

log4j.rootLogger=info, R, email
log4j.appender.R=org.apache.log4j.RollingFileAppender
log4j.appender.R.File=1logs/pinger. log

log4j .appender.R.MaxFileSize=1000KB

log4j.appender.R.MaxBackupIndex=1
log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%d{IS08601} %-5p [%C] - %m%n
log4j .appender.email=org.apache.log4j.net.SMTPAppender
log4j.appender.email.SMTPHost=1ocalhost
log4j.appender.email.From=system@yourapp.com
log4j.appender.email.To=recipient@yourapp.com

log4j .appender.email.Subject=[Pinger Notification] - Website Down
log4j.appender.email.threshold=error
log4j.appender.email.layout=org.apache.log4j.PatternLayout

log4j .appender.email.layout.conversionPattern=%d{IS08601} %-5p [%C] - %m%n
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This sets up standard logging to pinger.log and will send an email notification
for anything logged to the error log level, which in our case is when a website
doesn’t respond with an HTTP 200 response or when an exception is thrown
while checking the site. Make sure to change the email information to some-
thing that works in your environment.

Let’s update the code and add logging. The goal here is to replace any printin
statements with log messages. Open core.clj, add the info and error functions
from clojure.tools.logging into your namespace declaration, and create a function
to record the results.

(ns pinger.core
(:import (java.net URL))
(:require [pinger.scheduler :as scheduler]
[clojure.tools.logging :as logger])
(:gen-class))

(defn record-availability [address]
(if (available? address)
(logger/info (str address " 1is responding normally"))
(logger/error (str address " is not available"))))

Also update check to reflect the changes:

(defn check []

(let [addresses '("http://google.com"
"http://google.com/404"
"http://amazon.com")]

(doseq [address addresses]
(record-availability address))))

Rebuild to try your program again. You should notice a newly created logs
directory that you can check for program execution. You should also notice
an email come in with an error message. If you get a “connection refused”
error on port 25, you will need to set up a mail transport agent on your
machine to enable mail sending. You now have a way to notify people of a
website failure!

Configuration

We have hard-coded our list of websites to monitor, and that simply won’t
work! We need a way to give a list of sites to monitor from some external
source. We could use a properties file, database, or web service to accomplish
this. For ease of explanation, we will go with a properties file. Create a file
named pinger.properties in the root directory of the application and add the fol-
lowing to it:
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urls=http://google.com,http://amazon.com,http://google.com/badurl

We need a way to load this file and create a collection of sites to feed into the
check function. Create a file named config.clj in the src directory:

pinger.config

(ns

(:use [clojure.java.io :only (reader resource)l)
(:

(:

require [clojure.string :as str])
import (java.util Properties)))

(defn load-properties [src]
(with-open [rdr (reader src)]
(doto (Properties.)
(.load rdr))))

(defn config

[
(load-properties (resource "pinger.properties")))

As long as pinger.properties is on the classpath, the config function will read
pinger.properties into a Java properties object. All we have left to do is get the
urls attribute and put it into a list. Add the following function into the config
namespace:

(defn urls [conf]
(str/split (.get conf "urls") #","))

Finally, update the check function in core.clj to use the new configuration
function.
(ns pinger.core
(:import (java.net URL))
(:require [pinger.scheduler :as scheduler]
[clojure.tools.logging :as logger]

[pinger.config :as configl)
(:gen-class))

(defn check []
(doseq [address (config/urls (config/config))]
(record-availability address)))

Rebuild your application with Leiningen and try it. Remember to put the root
directory on the classpath so that the application can find pinger.properties.

java -cp .:pinger-0.0.1-standalone.jar pinger.core

We now have what we need to succeed. In this example, we covered the
following;:
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e Using Java’s URL to check a website to see whether it was available

¢ Using Java’s ScheduledTheadPoolExecutor to create a periodically running task
e Using log4j with clojure.tools.logging to send error notifications

e Using Java’s property system for configuration

e Using Leiningen to create stand-alone executable JAR files

We could do quite a few things to expand this example. We could redefine
what it means for a website to be available by adding requirements for certain
HTML elements to be present or for the response to return in a certain time
to cover an SLA. Try adding to this example and see what you can come up
with.

Wrapping Up

We just covered a good chunk of how Clojure and Java get along. We even
mixed the two up in some interesting ways. Since we have started to experi-
ment with things outside of the Clojure language, it is probably a good time
to start talking about different libraries you can use to build real-world Clojure
applications. We will do just that in the next chapter.
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Building an Application

Now that you have learned the basics of the Clojure language, it is time for
you to begin using Clojure in your own projects. But when you run out the
door to start work on your killer Clojure app, you quickly discover that lan-
guage knowledge is only part of what you need to work effectively in an
ecosystem. You have questions like these:

e What tools do I use to organize projects and dependencies?
e What is a good workflow for writing code?

e How do I make sure that my code is correct?

e How do I keep code flexible and maintainable?

e What libraries do I need?

e How do I put Clojure on the Web?

There will never be a single, one-size-fits-all answer to these questions. Clojure
runs on the JVM, a huge ecosystem where hundreds of approaches have
flourished. But you have to start somewhere. In this chapter, we will give you
temporary answers to these questions. These answers have worked well for
us, and you can use them for a short while. As your own preferences and
sensibilities evolve, you can adapt or abandon the approaches in this chapter
in favor of approaches that work best for you.

As our sample application, we will implement a web version of the Clojure-
breaker game. In Clojurebreaker, a code-maker (the program) creates a secret
code of N-ordered colored pegs. A code-breaker (the human player) then
submits a guess. The code-maker scores the guess as follows:

e One black peg for each peg of the right color in the right position
e One white peg for each peg of the right color but not in the right position

The game ends with a correct guess or after reaching some predetermined
limit on the number of guesses.
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While we will show you all the code as we go, this chapter is not really about
code. It is about a style of attacking problems and about the details of deliv-
ering solutions within the Clojure ecosystem. Let’s get started.

Scoring a Clojurebreaker Game

As a Clojure programmer, one question you will often ask is, “Where do I need
state to solve this problem?” Or, better yet, “How much of this problem can
I solve without using any state?”

With Clojurebreaker (and with many other games), the game logic itself is a
pure function. It takes a secret and a guess and returns a score. Identifying
this fact early gives us two related advantages:

e The score function will be trivial to write and test in isolation.
e We can comfortably proceed to implement score without even thinking
about how the rest of the system will work.

Scoring itself divides into two parts: tallying the exact matches and tallying
the matches that are out of order. Each of these parts can be its own function.
Let’s start with the exact matches. To make things concrete, we will pick a
representation for the pegs that facilitates trying things at the REPL: the four
colors :r (red), :g (green), :b (blue), and :y (yellow). The function will return the
count of exact matches, which we can turn into black pegs in a separate step
later. Here is the shell of the function we think we need:

clojurebreaker/snippets.clj

(defn exact-matches
"Given two collections, return the number of positions where
the collections contain equal items."
[cl c2])

Hold the phone—that doc string doesn’t say anything about games or colors
or keywords. What is going on here? While some callers (e.g., the game) will
eventually care about the representation of the game state, exact-matches doesn’t
need to care. So, let’s keep it generic. A key component of responsible Clojure
design is to think in data, rather than pouring object concrete at every
opportunity.

When described as a generic function of data, exact-matches sounds like a
function that might already exist. After searching through the relevant
namespaces (clojure.core and clojure.data), we discover that the closest thing to
exact-matches is clojure.data’s diff. diff recursively compares two data structures,
returning a three-tuple of things-in-a, things-in-b, and things-in-both. The
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things-in-both is nothing other than the exact matches we are looking for.
Try it at the REPL:

(require '[clojure.data :as datal)
(data/diff [:r :g :g :b] [:r :y :y :b])
-> [[nil :g :g] [nil :y :y] [:r nil nil :bl]]

The non-nil entries in [:rnil nil :b] are the exact matches when comparing r/g/g/b
and r/y/y/b. With diff in hand, the implementation of exact-matches is trivial:
clojurebreaker/src/clojurebreaker/game.clj
(defn exact-matches

"Given two collections, return the number of positions where

the collections contain equal items."

[cl c2]

(let [[_ _ matches] (data/diff cl c2)]
(count (remove nil? matches))))

Again, we test at the REPL against an example input:

(exact-matches [:r :g :g :b] [:r :y :y :bl)
2

Now let’s turn our attention to the unordered matches. To calculate these,
we need to know how many of each colored peg are in the secret and in the
guess. This sounds like a job for the frequencies function:

(def example-secret [:r :g :g :b])
(frequencies example-secret)

-> {:r 1, :g 2, :b 1}

(def example-guess [:y :y :y :gl)
(frequencies example-guess)

-> {:y 3, :g 1}

To turn those two frequencies into the unordered-matches, we need to do two
additional things:

¢ Consider only the keys that are present in both the secret and the guess
e Count only the overlap (i.e., the minimum of the vals under each key)

Again, we hope these operations already exist, and happily they do. You can
keep the keys you need with select-keys:

(select-keys (frequencies example-secret) example-guess)
-> {:g9 2}

(select-keys (frequencies example-guess) example-secret)
-> {:g 1}
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And you can count the overlap between two frequency maps using merge-with:

(merge-with min {:g 1} {:g 2})
-> {:qg 1}

Combining frequencies and select-keys and merge-with gives the following definition
for unordered-matches:

clojurebreaker/src/clojurebreaker/game.clj
(defn unordered-matches
"Given two collections, return a map where each key is an item
in both collections, and each value is the number of times the
value occurs in the collection with fewest occurrences."
[cl c2]
(let [f1l (select-keys (frequencies cl) c2)
f2 (select-keys (frequencies c2) cl)]
(merge-with min f1 f2)))

which, of course, we should verify at the REPL:

(unordered-matches [:r :g :g :b] [:y :y :y :g])
-> {:q9 1}

That’s nice, with one subtlety. unordered-matches counts matches regardless of
order, while the game will want to know only the matches that are not in the
right order. Even though the game doesn’t seem to need unordered-matches,
writing it was a win because of the following:

e unordered-matches does exactly one thing. To write a not-ordered match, we
would have to reimplement exact-matches inside unordered-matches.

e The two simple functions we just wrote are exactly the functions we need
to compose together to get the not-ordered semantics. Just subtract the
results of exact-matches from the results of unordered-matches.

With the two primitives in place, the score operation simply compounds them:

clojurebreaker/src/clojurebreaker/game.clj
(defn score
[cl c2]
(Llet [exact (exact-matches cl c2)
unordered (apply + (vals (unordered-matches cl c2)))]
{:exact exact :unordered (- unordered exact)}))

And the REPL rejoices:

(score [:r :g :g :b] [:r :y :y :qgl)
-> {:exact 1, :unordered 1}

At this point, we have demonstrated a partial answer to the question, “What
is a good workflow for writing code?” In summary:
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¢ Break apart the problem to identify pure functions.

¢ Learn the standard library so you can find functions already written.
¢ Pour no concrete (use data as data).

¢ Test inside out from the REPL.

In our experience, programmers trying this workflow for the first time make
two typical mistakes:

¢ Coding too much
e Complicating the tests

You have written too much code whenever you don’t understand the behavior
of a form, but you haven’t yet tested and understood all of its subforms. Many
developers have an intuition of “write X lines of code and then test,” where X
is the smallest number of lines that can do something substantial. In Clojure,
X is significantly smaller than one, which is why we emphasize building
functions inside out at the REPL.

“Complicating the tests” is more subtle, and we will take it up in the next
section.

Testing the Scorer

In the previous section, we developed the score function iteratively at the REPL
and saw it work correctly with a few example inputs. It doesn’t take much
commitment to quality to want to do more validation than that! Let’s begin
by teasing apart some of the things that people mean when they say “testing.”
Testing includes the following:

e Thinking through whether the code is correct

¢ Stepping through the code in a development environment where you can
see everything that is happening

e Crafting inputs to cover the various code paths

¢ Crafting outputs to match the crafted inputs

¢ Running the code with various inputs

e Validating the results for correctness

e Automating the validation of results

e Organizing tests so that they can be automatically run for regression
purposes in the future

This is hardly an exhaustive list, but it suffices to make the point of this
section. In short, testing is often complex, but it can be simple.
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Traditional unit-testing approaches complect many of the testing tasks listed
earlier. For example, input, output, execution, and validation tend to be woven
together inside individual test methods. On the other hand, the minimal REPL
testing we did before simply isn’t enough. Can we get the benefit of some of
the previous ideas of testing, without the complexity of unit testing? Let’s try.

Crafting Inputs

We have already seen the score function work for a few handcrafted inputs.
How many inputs do we need to convince ourselves the function is correct?
In a perfect world, we would just test all the inputs, but that is almost always
computationally infeasible. But we are lucky in that the problem of scoring
the game is essentially the same for variants with a different number of colors
or a different number of pegs. Given that, we actually can generate all possible
inputs for a small version of the game.

The branch of math that deals with the different ways of forming patterns is
called enumerative combinatorics. It turns out that the Clojure library
math.combinatorics has the functions we need to generate all possible inputs.
Add the following form under the :dependencies key in your project.clj file, if it is
not already present:

[org.clojure/math.combinatorics "0.0.1"]

The selections function takes two arguments (a collection and a size), and it
returns every structure of that size made up of elements from that collection.
Try it for a tiny version of Clojurebreaker with only three colors and two
columns:

(require '[clojure.math.combinatorics :as comb])
(comb/selections [:r :g :b] 2)

-> ((:r :r) (:r :g) (:r :b)
(:g :r) (:g9 :g) (:g :b)
(:b :r) (:b :g) (:b :b))

So, selections can give us a possible secret or a possible guess. What about
generating inputs to the score function? Well, that is just selecting two selec-
tions from the selections:

(-> (comb/selections [:r :g :b] 2)
(comb/selections 2))
-> (81 pairs of game positions omitted for brevity)

Let’s put that into a named function:

clojurebreaker/src/clojurebreaker/game.clj
(defn generate-turn-inputs
"Generate all possible turn inputs for a clojurebreaker game
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with colors and n columns"

[colors n]

(-> (comb/selections colors n)
(comb/selections 2)))

All right, inputs generated. We are going to skip thinking about outputs (for
reasons that will become obvious in a moment) and turn our attention to
running the scorer with our generated inputs.

Running a Test

We are going to write a function that takes a sequence of inputs and reports
a sequence of inputs and the result of calling score. We don’t want to commit
(yet) to how the results of this test run will be validated. Maybe a human will
read it. Maybe a validator program will process the results. Either way, a good
representation of each result might be a map with the keys secret, guess, and
score.

All this function needs to do is call score and build the collection of responses:

clojurebreaker/src/clojurebreaker/game.clj
(defn score-inputs
"Given a sequence of turn inputs, return a lazy sequence of
maps with :secret, :guess, and :score."
[inputs]
(map
(fn [[secret guess]]
{:secret (seq secret)
rguess (seq guess)
:score (score secret guess)})
inputs))

Try it at the REPL:

(->> (generate-turn-inputs [:r :g :b] 2)
(score-inputs))
-> ({:secret (:r :r), :quess (:r :r),
:score {:exact 2, :unordered 0}}
{:secret (:r :r), :gquess (:r :g),
:score {:exact 1, :unordered 0}}
;5 remainder omitted for brevity

If a human is going to be reading the test report, you might decide to format
a text table instead, using score print-table. While we are at it, let’'s generate a
bigger game (four colors by four columns) and print the table to a file:

(use 'clojure.pprint)

(require '[clojure.java.io :as iol)

(with-open [w (io/writer "scoring-table")]
(binding [*out* w]
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(print-table (->> (generate-turn-inputs [:r :g :b :y] 4)
(score-inputs)))))
-> nil

If you look at the scoring-table file, you should see 65,536 different secret/guess
combinations and their scores.

Validating Outputs

At this point, it is obvious why we skipped crafting the outputs. The program
has done that for us. We just have to decide how much effort to spend vali-
dating them. Here are some approaches we might take:

e Have a human code-breaker expert read the entire output table for a small
variant of the game. This has the advantage of being exhaustive but might
miss logic errors that show up only in a larger game.

¢ Pick a selection of results at random from a larger game and have a human
expert verify that.

Because the validation step is separated from generating inputs and running
the program, we can design and write the various steps independently, possibly
at separate times.

Moreover, the validator knows nothing about how the inputs were generated.
With unit tests, the inputs and outputs come from the same programmer’s
brain at about the same time. If that programmer is systematically mistaken
about something, the tests simply encode mistakes as truth. This is not
possible when the outputs to validate are chosen exhaustively or randomly.

We will return to programmatic validation later, but first let’s turn to regression
testing.

Regression Testing

How would you like to have a regression suite that is more thorough than
the validation effort you have made? No problem.

e Write a program whose results should not change.

¢ Run the program once, saving the results to a (well-named!) file.

¢ Run the program again every time the program changes, comparing with
the saved file. If anything is different, the program is broken.

The nice thing about this regression approach is that it works even if you
never did any validation of results. Of course, you should still do validation,
because it will help you narrow down where a problem happened. (With no
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validation, the regression error might just be telling you that the old code was
broken and the new code fixed it.)

How hard is it write a program that should produce exactly the same output?
Call only pure functions from the program, which is exactly what our score-
inputs function does.

Wiring this kind of regression test into a continuous integration build is not
difficult. If you do it, think about contributing it to whatever testing framework
you use.

Now we have partially answered the question, “How do I make sure that my
code is correct?” In summary:

¢ Build with small, composable pieces (most should be pure functions).

e Test forms from the inside out at the REPL.

e When writing test code, keep input generation, execution, and output
validation as separate steps.

This last idea is so important that it deserves some library support. So, before
we move on, we are going to introduce test.generative, a library that aspires to
bring simplicity to testing.

test.generative

The test.generative library divides testing into three key steps:

¢ Generating test inputs
¢ Invoking test functions
¢ Validating results

Each of these three steps is implemented via functions, which are then com-
posed into tests via the defspec form.

Let’s install test.generative and take it for a spin. Add the following line to your
project.clj:

[org.clojure/test.generative "0.1.3"]
Now execute whatever steps you use to reload project code and meet us at

the REPL to generate some test data.

Generating Data
From the REPL, require the generators namespace as follows:

(require '[clojure.test.generative.generators :as genl])
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The generators namespace contains functions to generate pseudorandom values
for different common datatypes. For example, for every Java primitive, there
is a generator function with the same name. Try a few of them:

(gen/int)
-> 977378563

(gen/char)
-> \A

(gen/boolean)
-> true

Note that your results will likely not be identical to those shown earlier, since
the point of these values is to be random.

You can also generate random values for different Clojure collection types.
These functions are parameterized by the type of collection to make. For
example:

(gen/vec gen/boolean)
-> [false false true true true false]

(gen/hash-map gen/byte gen/int)
-> {32 -504310803, 100 424501842, 5 1439482147, 37 1161641068}

In addition to the basic types, you can use several knobs to control how the
types are generated. You can choose a probability distribution:

(gen/geometric 0.02)
-> 10

And you can control how collections are sized, with either a constant or a
distribution:

(gen/list gen/int 2)
-> (-1029960512 1985289448)

(gen/list gen/int (gen/uniform 0 5))
-> (315829211)

There are several other goodies, but we won'’t spoil all the fun of discovery.
Do a dir of the namespace, and familiarize yourself with the other standard
generators that are available.

To test the Clojurebreaker scorer, we will want a function that generates a
random secret (or guess). Sticking with the keyword representation for peg
colors, such a function could be as follows:
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clojurebreaker/test/clojurebreaker/game_test.clj
(defn random-secret

[
(gen/vec #(gen/one-of :r :g :b :y) 4))

Don’t forget to try random-secret at the REPL before moving on to think about
validation.

Programmatic Validation

Programmatic validation should be more than just a hand-coded spot-check
of specific values. Such spot-checks are a poor use of time when we can
easily review a set of outputs for validity and then save them as a regression
test. Instead, programmatic validators should enforce logical invariants about
the input and output data.

Here are some invariant properties of the Clojurebreaker scoring function:

¢ Scoring is symmetric. If you invert the secret and guess arguments, the
score should be the same.

e The sum of the exact and unordered matches must be greater than or
equal to zero and less than or equal to the number of pegs.

e If you scramble the order of pegs in a guess, the sum of exact and
unordered matches in the score will not change.

Let’s encode each of these invariants as a boolean function of secret, guess, and
score:

clojurebreaker/test/clojurebreaker/game_test.clj
(ns clojurebreaker.game-test
(:use [clojure.test.generative :only (defspec) :as test])
(:require [clojure.test.generative.generators :as gen]
[clojurebreaker.game :as game]
[clojure.math.combinatorics :as comb]))

(defn matches
"Given a score, returns total number of exact plus
unordered matches."
[score]
(+ (:exact score) (:unordered score)))

(defn scoring-is-symmetric
[secret guess score]
(= score (game/score guess secret)))

(defn scoring-is-bounded-by-number-of-pegs
[secret guess score]
(< 0 (matches score) (count secret)))
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(defn reordering-the-guess-does-not-change-matches
[secret guess score]
(= #{(matches score)}
(into #{} (map
#(matches (game/score secret %))
(comb/permutations guess)))))

While we often type code at the REPL and then paste it into the appropriate
file, we went the other way with the invariant functions earlier, adding them
to the source file first. But this doesn’t mean we have to lose the immediacy
of the REPL. From the REPL, we can reload the namespace and then move
into the namespace with in-ns:

(require :reload 'clojurebreaker.game-test)
(in-ns 'clojurebreaker.game-test)

Now that we are in the namespace we want to use, we have access to all of
its public names and aliases. This makes it convenient to handcraft some
sample data as a quick sanity check for the validation functions:

(def secret [:r :g :g :b])
(def guess [:r :b :b :y])

(scoring-is-symmetric secret guess
(game/score secret guess))
-> true

(scoring-is-bound-by-number-of-pegs
secret guess (game/score secret guess))
-> true

(reordering-the-guess-does-not-change-matches
secret guess (game/score secret guess))
-> true

With a test data generator and some validation functions in hand, we are now
ready to wire everything together in a defspec.

defspec
The defspec takes three required arguments:
¢ A name for the spec

e The function to test
e The arguments to generate

After the arguments come zero or more body forms, which perform validations.
Here is a trivial example:
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clojurebreaker/snippets.clj

(defspec closed-under-addition
+
[“long a ~long b]
(assert (integer? %)))

The arguments look like normal Clojure arguments, but there is a twist.
Normal function arguments can optionally be tagged with type hints. Spec
arguments must be tagged, with hints that tell how to generate the arguments.

The test.generative function generate-test-data takes an argument spec and generates
an infinite sequence of test data. You can call generate-test-data directly to gen-
erate arguments separately from any test execution:

(take 3
(test/generate-test-data '[long long]))

-> ([-5025562857975149833 -5843495416241995736]
[5694868678511409995 5111195811822994797]
[-6169532649852302182 -1782466964123969572])

The body of a defspec has access to the arguments by name, just like a normal
function. In addition, it also has access to %, which holds the return values
from calling the test function. In the closed-under-addition example, the single
validator form checks that the result of addition is an integer, without even
bothering to look at the input arguments:

(assert (integer? %))
More sophisticated validators will typically refer to both the input arguments
and the result.

Running Tests

Specs are still functions, so you can run them by simply invoking the function.
If you evaluated the closed-under-addition spec at the REPL while reading the
previous section, you can invoke it now, passing in some integers:

(closed-under-addition 1 2)
-> nil

But the more interesting thing is to run the spec with generated inputs. There
are three helpers in test.generative for this purpose:

e test-vars takes one or more vars and runs the specs referenced by the vars.

e test-dirs takes one or more directories and reflectively finds all specs in
those directories and runs them:.
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e test-namespaces takes on more namespaces and reflectively finds all specs
in those namespaces and runs them.

Let’s run the closed-under-addition spec:

(require '[clojure.test.generative :as test])
(test/test-vars #'closed-under-addition)

-> [#<core$future call$reify 5684@603a3e2l: :pending>
#<core$future call$reify 5684@fc519e2: :pending>]

The call to test-vars returns some number of futures (two in the earlier output).
Then nothing happens for about ten seconds, followed by REPL output similar
to this:

{:iterations 179766,
:msec 10228,
:var #'clojurebreaker.game-test/closed-under-addition,
:seed 43}

{:iterations 156217,
:msec 10249,
:var #'clojurebreaker.game-test/closed-under-addition,
:seed 42}

Behind the scenes, test.generative has created a future per processor on your
local hardware. Each future runs the tests as many times as possible in ten
seconds. The output then shows how many iterations ran on each thread,
how much wall-clock time each thread took to finish, and the random seed
used to generate the data for each var that was tested.

test.generative exposes several dynamic vars to customize a test run. You can
bind test/*msec* to change the length of the test run, or you can bind test/*cores*
to change the number of cores utilized by the test run. You can also bind
test/*verbose* to have all the inputs printed to *out* during the test run.

When a Spec Fails

When a spec fails, test.generative provides additional output to assist you in
reproducing the problem. Let’s write a spec that will fail by asserting that the
sum of two numbers is less than either:

clojurebreaker/snippets.clj
(defspec incorrect-spec
4
[“long a "“long b]
(assert (< a %))
(assert (< b %)))

If you run incorrect-spec, it will fail quickly with an error like this:
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{:form (#'clojurebreaker.game-test/incorrect-spec
-5025562857975149833 -5843495416241995736) ,
:iteration 0,
:seed 42,
:error "Assert failed: (< a %)",
:exception #<AssertionError java.lang.AssertionError:
Assert failed: (< a %)>}

The :form key gives you the input that failed, and the iteration tells what iteration
of the input generator caused the failure. Because the test data generation
is pseudorandom with a well-known seed, you can get the failure to repeat
by simply rerunning the entire test (possibly after adding logging or attaching
a debugger).

If you do not want to repeat the entire run to get back to the point of a failure,
you can access a collection of the forms that caused errors by calling the failures
function:

(test/failures)
-> ({:form
(#'clojurebreaker.game-test/incorrect-spec
-5025562857975149833 -5843495416241995736) }
{:form
(#'clojurebreaker.game-test/incorrect-spec
-5027215341191833961 -2715953330829768452)}

From here, it is a simple matter of collection traversal to reevaluate past failing
inputs:

(eval (:form (first (test/failures))
-> AssertionError Assert failed: (<

)

)
a %)

We have now written and run specs and seen how to explore when things go
wrong. Next we will put these techniques to use testing the Clojurebreaker
score function.

Generative Testing the score Function

In Programmatic Validation, on page 237, we created several functions that
validated invariants in Clojurebreaker scoring. Now let’s add them to a spec:

clojurebreaker/test/clojurebreaker/game_test.clj
(defspec score-invariants
game/score
[~{:tag 'random-secret} secret
~{:tag "random-secret} guess]
(assert (scoring-is-symmetric secret guess %))
(assert (scoring-is-bounded-by-number-of-pegs secret guess %))
(assert (reordering-the-guess-does-not-change-matches secret guess %)))
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This spec shows one new bit of defspec semantics: the use of the syntax quote
(') character. The syntax quote on random-secret indicates that the generator
function is a custom one written by us. There are two rules for quoting names
in an argument spec:

¢ If a name is not syntax-quoted, then that name is interpreted against the
built-in generators from the namespace clojure.test.generative.generators. These
names happen to be shadow types and factory names from clojure.core,
which is why the built-in generators look like type hints.

¢ If a name is syntax-quoted, then the name is interpreted by the rules of
the namespace the defspec resides in. This allows you to use all the normal
namespace tools to manage your own generators.

And now, the moment of truth. When we run the spec, do the invariants
actually hold?

#'clojurebreaker.game-test/score-invariants
-> [#<core$future call$reify 5684@590e130c: :pending>
#<core$future call$reify 5684@2b04a681: :pending>]

;5 ten seconds pass

{:iterations 1794, :msec 10002, :seed 42,

:var #'clojurebreaker.game-test/score-invariants}
{:iterations 1787, :msec 10001, :seed 43,

:var #'clojurebreaker.game-test/score-invariants}

Looks good. Can you think of other interesting invariants to test?

At this point, we have only scratched the surface of test.generative. And, while
we like the separation of input generation, execution, and validation, it is
certainly possible to use more familiar unit testing, TDD, and BDD
approaches in Clojure. If you are interested in these, you should check out
the following libraries:

e clojure.test' is a modest unit testing library that is built into Clojure’s own
test suite.

e Lazytest’ is a generic library that supports different testing styles atop a
few generic representations of tests.

e Midie® emphasizes readable tests, while allowing for both top-down and
bottom-up testing.

1.  http://clojure.github.com/clojure/clojure.test-api.html
2.  https://github.com/stuartsierra/lazytest
3. https://github.com/marick/Midje
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Many of the ideas in test.generative are inspired by QuickCheck,” a testing library
originally written in Haskell but now ported to many languages. If you find
test.generative interesting, you should definitely check out QuickCheck, which has
a long development history and many capabilities not yet found in test.generative.

Now that we have some confidence in our scoring function, let’'s see about
running a game of Clojurebreaker on the Web.

Creating an Interface

With a solid foundation, introducing an interface and a playable version of
the game should be a breeze. Let’s start with a basic web application. The
noir web framework will serve as a nice base for us to build our application.
Creating a new noir project is easy.

First, you will need to install the lein-noir plug-in to leiningen:
$ lein plugin install lein-noir 1.2.0
Now we can generate our application and launch it:

$ lein noir new clojurebreaker
$ cd clojurebreaker
$ lein run

Point your browser to http://localhost:8080. You will get the default noir landing
page, which isn’t interesting to you at the moment, but it will ensure that you
have things set up correctly.

It's Finally Time for Some State

This is where we will introduce our one and only piece of state. Since we want
multiple players to be able to enjoy our game at once and we want to be able
to maintain the game’s solution between requests, we will need to store this
value somewhere. The great part is that we don’t have to manage it in our
code. We can just put it in the browser’s session, leaving our application code
free of state management.

Let’s start by opening src/clojurebreaker/views/welcome.clj. Change the /welcome page
to just /. We need a way to put something in the session if it isn’t already
there. Luckily, noir has session/put! and session/get. Let’s use them.

(defpage "/" []

(when-not (session/get :game)
(session/put! :game (.nextInt (java.util.Random.) 1000000)))

4. http://en.wikipedia.org/wiki/QuickCheck
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(common/layout
[:p "Welcome to clojurebreaker.
Your current game id is " (session/get :game)]))

If you refresh your browser, you will now see that you have a game ID in your
session. If you continue to refresh, it shouldn’t change. If you clear your
sessions and refresh, you should see a new game ID. We will use this tech-
nique going forward, but we won’'t need a randomly generated ID anymore.
That was just to demonstrate that the session store is working properly.

Create a new file named game.clj in src/clojurebreaker/models. Here we will put the
function we need to generate a new game secret and return it to the view.

(ns clojurebreaker.models.game)

(defn create []
(vec (repeatedly 4 (fn [] (rand-nth ["r" "g" "b" "y"1)))))

Let’s give this a try in the REPL just to make sure it is producing what we
need.

(in-ns 'clojurebreaker.models.game)
clojurebreaker.models.game=> (dotimes [ 5] (println (create)))

| [9yghb]
| [grrrl
| [rygr]
| [byy bl
| [bgrgl
-> nil

This is everything we need to start our game. We just need to go back to our
view and wire up the code. Remember that test.generative can also create your
game secret, so feel free to use it instead of the earlier function. This just
demonstrates another way of creating a secret.
(defpage "/" [1

(when-not (session/get :game)

(session/put! :game (game/create)))
(common/layout

[:p "Welcome to clojurebreaker.
Your current game solution is " (session/get :game)l]))

Also, don'’t forget to require clojurebreaker.models.game :as game in your namespace
declaration. When you refresh your browser, you will see your game solution
printed. If the solution is still an ID, you will need to clear your browser’s
session data and refresh. Try opening a different browser and visiting the
application. You should see a different game solution.
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The Player Interface

Now that we have game state, we need an interface for the players. Let’s start
by creating a game board. We will need to add the hiccup.form-helpers namespace
into our namespace declaration with the rest of the hiccup imports. We will
now take advantage of noir’s defpartial macro.

(defpartial board []
(form-to [:post "/guess"]
(text-field "one")
(text-field "two")
(text-field "three")
(text-field "four")
(submit-button "Guess")))

The defpartial macro is quite useful here, because it is used just like a regular
Clojure function. This will come in handy later when we wire in scoring. Give
it a try at the REPL:

clojurebreaker.models.game=> (in-ns 'clojurebreaker.views.welcome)
clojurebreaker.views.welcome=> (board)

| "<form action=\"/guess\" method=\"POST\">

|  <input id=\"one\" name=\"one\" type=\"text\" />

| <input id=\"two\" name=\"two\" type=\"text\" />

| <input id=\"three\" name=\"three\" type=\"text\" />

|  <input id=\"four\" name=\"four\" type=\"text\" />

|  <input type=\"submit\" value=\"Guess\" /></form>"

Now we just need to wire it in:

(defpage "/" [1
(when-not (session/get :game)
(session/put! :game (game/create)))
(common/layout (board)))

Since we have verified that the session bits are working, we can just remove
their display and replace them with the actual game. We now have a way for
users to guess. Well, at least we have a way for users to type into a browser.
Let’s wire up the server side.

Back in the view, we need to create another page to respond to the post to
/guess. Here we will need to do the following:

e Accept the four inputs and send them to the scorer.

e Determine whether the player has won the game (four exact matches). If
so, congratulate them on winning and add a button to start a new game.

e If the user has not won, return the number of exact and unordered
matches, as well as the last set of inputs, and display them to the user.
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To score the request, we need to add the game-scoring functions we created
earlier in the chapter. Let’s add exact-matches, unordered-matches, and score to our
model. With our scoring functions in place, we can wire up our post handler
and complete the first phase of the game.

clojurebreaker/src/clojurebreaker/views/welcome.clj
(defpage [:post "/guess"] {:keys [one two three fourl}
(Let [result (game/score (session/get :game) [one two three fourl)]
(if (= (:exact result) 4)
(do (session/remove! :game)
(common/layout
[:h2 "Congratulations, you have solved the puzzle!"]
(form-to [:get "/"]
(submit-button "Start A New Game"))))
(do (session/flash-put! result)
(render "/" {:one one
:two two
:three three
:four four
:exact (:exact result)
:unordered (:unordered result)})))))

OK, so this is a bit of a REPL-full. Here we are able to determine whether the
player has won the game and handle it appropriately. There are a couple of
new things pulled in from noir here that haven’t been introduced yet, though.
The :keys destructuring after defpage is dealing with the arguments passed in
from the browser. session/remove! does exactly what you think it might do. The
interesting bits start with session/flash-put!. This will add something to the session
for the request immediately following to consume, and then it will disappear.
It is similar to the Ruby on Rails flash method. Finally, the render function
calls the route with the arguments that follow.

With just a few modifications, we will be ready to give the game a try. Our /
route needs to be able to accept the arguments that it is passed via the call
to render that we just wrote. Let’s fix that. First modify the board partial to
accept and destructure arguments passed to it and render results:

clojurebreaker/src/clojurebreaker/views/welcome.clj
(defpartial board [{:keys [one two three four exact unordered]}]
(when (and exact unordered)
[:div "Exact: " exact " Unordered: " unordered])
(form-to [:post "/guess"]
(text-field "one" one)
(text-field "two" two)
(text-field "three" three)
(text-field "four" four)
(submit-button "Guess")))
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Here we have changed the rendering of the board to respond to the player’s
guesses. We will display the results of the guess and place the player’s previous
guess back onto the board so that they can modify it and continue. Experiment
with this at the REPL to see what output is yielded given certain inputs:

clojurebreaker.views.welcome=> (board {:one "r"
:two "b"

ithree "y
:four "g"})

"<form action=\"/guess\" method=\"POST\">

<input id=\"one\" name=\"one\" type=\"text\" value=\"r\" />
<input id=\"two\" name=\"two\" type=\"text\" value=\"b\" />
<input id=\"three\" name=\"three\" type=\"text\" value=\"y\" />
<input id=\"four\" name=\"four\" type=\"text\" value=\"g\" />
-> <input type=\"submit\" value=\"Guess\" /></form>"

clojurebreaker.views.welcome=> (board {:one "r
:two "b"
:three "y"
:four "g"
rexact 2
:unordered 0})

| "<div>Exact: 2 Unordered: 0</div>

|  <form action=\"/guess\" method=\"POST\">

| <input id=\"one\" name=\"one\" type=\"text\" value=\"r\" />

| <input id=\"two\" name=\"two\" type=\"text\" value=\"b\" />

| <input id=\"three\" name=\"three\" type=\"text\" value=\"y\" />
| <input id=\"four\" name=\"four\" type=\"text\" value=\"g\" />
-> <input type=\"submit\" value=\"Guess\" /></form>"

Just one minor change to the / page definition, and we are ready to start
playing!

clojurebreaker/src/clojurebreaker/views/welcome.clj
(defpage "/" {:as guesses}
(when-not (session/get :game)
(session/put! :game (game/create)))
(common/layout (board (or guesses nil))))

Here we are just accepting the arguments from render so that we can pass
them along to the board partial. Since board works like a standard Clojure
function, this process is trivial.

There is just one more thing to do before we can take the game for a spin. We
need to add math.combinatorics to the project.clj file in our noir project.
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clojurebreaker/project.clj
(defproject clojurebreaker "0.1.0-SNAPSHOT"
:description "Clojurebreaker game for Programming Clojure 2nd Edition"
:dependencies [[org.clojure/clojure "1.3.0"]
[org.clojure/math.combinatorics "0.0.1"]
[org.clojure/test.generative "0.1.3"]
[noir "1.2.0"]1]
:main clojurebreaker.server)

Rerun leindeps and leinrun, and you can now play Clojurebreaker to your heart’s
content.

10.5 Deploying Your Code

Now that you have a complete application, it’s time to put it somewhere for
the world to enjoy! Deploying an application to production can be a long and
arduous task that involves adding code or moving parts to your application.
Luckily, we are going to skip all of those steps and just get to the point. There
is a service available that fully supports Clojure application deployment and
makes it drop-dead easy. They call themselves Heroku.’

There are a few initial steps to getting an account set up at Heroku, but the
deployment process is as easy as checking code into a source control reposi-
tory. In fact, that is all you have to do. A simple git push is how you deploy.

To get to the deployment step, you will need to sign up for an account at
Heroku. It is fairly straightforward and is completely free. Heroku does have
paid offerings, but this example should not cost you a dime. After signing up,
you will need to create an application on the Heroku platform.

The Procfile

Heroku uses a special file in your program to let it know how the program
should be started. It is called the Procfile. Add this to the root of the project.

web: lein run

If you want to ensure that things are set up properly, you can install the
foreman gem and run foreman start. If that successfully starts your application,
you should have no trouble on Heroku.

foreman start

14:35:28 web.1 | started with pid 34538
14:35:33 web.1 | Starting server...

5.  http://heroku.com
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14:35:33 web.1 | 2011-12-09 14:35:33.042:INF0::Logging to STDERR

14:35:33 web.1 | Server started on port [5000].

14:35:33 web.1 | You can view the site at http://localhost:5000

14:35:33 web.1 | #<Server Server@63cel5f6>

14:35:33 web.1 | 2011-12-09 14:35:33.044:INFO::jetty-6.1.26

14:35:33 web.1 | 2011-12-09 14:35:33.070:INFO::Started SocketConnector@d.0.0.0:5000
The Heroku Library

Heroku provides a nice way to programmatically interact with its platform.
The only gotcha here is that it requires some additional setup if you don’t
already have it. You will need the Ruby programming language along with
RubyGems. Your systems package manager should be able to provide you
with these items. If not, you can always visit http://ruby-lang.org.

Installing the Heroku library is done via RubyGems:

gem install heroku

Git

This will provide a heroku command that you will use for all of your Heroku-
based interactions.

The next step is to create a git repository inside of your Clojurebreaker code-
base. Again, your system’s package manager should be able to provide you
with a suitable version of git. If not, you can visit http://git-scm.org.

Once you have git installed, simply run gitinit in the root of the clojurebreaker
application:

git init
-> Initialized empty Git repository in ~/clojurebreaker/.git/

This will create the initial git shell for your application. Next you need to
locally commit your code:

git add .
git commit -m "Initial commit"

[master (root-commit) dd4f8a8] initial commit

13 files changed, 65860 insertions(+), 0 deletions(-)
create mode 100644 .gitignore

create mode 100644 project.clj

create mode 100644 resources/public/css/reset.css
create mode 100644 src/clojurebreaker/game.clj

create mode 100644 src/clojurebreaker/models/game.clj
create mode 100644 src/clojurebreaker/server.clj

create mode 100644 src/clojurebreaker/views/common.clj
create mode 100644 src/clojurebreaker/views/welcome.clj
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Housing Your Application

At this point, you have staged your code locally to be pushed up to Heroku.
Now it’s time to create a Heroku application to house your program:

heroku create --stack cedar

Creating freezing-waterfall-3937... done, stack is cedar
http://freezing-waterfall-3937.herokuapp.com/ |
git@heroku.com: freezing-waterfall-3937.git

Git remote heroku added

The --stack argument specifies the platform on Heroku that supports Clojure
applications. The application will get a random name provided by Heroku
with a URL that you can visit to see your running program. You can rename
this later if you want.

The Deployment
The last step is to run git push, and Heroku will take care of the rest.

git push heroku master

Counting objects: 24, done.

Delta compression using up to 4 threads.
Compressing objects: 100% (15/15), done.
Writing objects: 100% (24/24), 230.67 KiB, done.
Total 24 (delta 0), reused 0 (delta 0)

..... > Heroku receiving push

_____ > Clojure app detected

----- > Installing Leiningen
Downloading: leiningen-1.5.2-standalone.jar
Downloading: rlwrap-0.3.7
Writing: lein script

----- > Installing dependencies with Leiningen

. Output elided ...

----- > Discovering process types
Procfile declares types -> web

----- > Compiled slug size is 12.8MB

----- > Launching... done, v4
http://stormy-water-3888.herokuapp.com deployed to Heroku

You can visit your application using the heroku command as well:
heroku open

This will open a browser and send you right to your deployed application. It
might take some time to load on the first visit, but subsequent requests will
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get faster. You can find an additional Heroku/Clojure tutorial on Heroku'’s
dev center at http://devcenter.heroku.com/articles/clojure-web-application.

Have fun with your new Clojure web application. Make it better, give it some
personality, and share it with the world!

Farewell

Congratulations. You have come a long way in a short time. You have learned
the many ideas that combine to make Clojure great: Lisp, Java, functional
programming, and explicit concurrency. And in this chapter, you saw one (of
a great many) possible workflows for developing a full application in Clojure.

We have only scratched the surface of Clojure’s great potential, and we hope
you will take the next step and become an active part of the Clojure commu-
nity. Join the mailing list.® Hang out on IRC.” The Clojure community is
friendly and welcoming, and we would love to hear from you.

6.  http://groups.google.com/group/clojure

7.  #clojure on irc.freenode.net
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Editor Support

Editor support for Clojure is evolving rapidly, so some of the information here
may be out-of-date by the time you read this. For the latest information, see
the Getting Started' page in the community wiki, which has child pages for
a number of different dev environments.

Clojure code is concise and expressive. As a result, editor support is not quite
as important as for some other languages. However, you will want an editor
that can at least indent code correctly and can match parentheses.

While writing the book, we used Emacs plus Jeffrey Chu’s clojure-mode.”
Emacs support for Clojure is quite good, but if you are not already an Emacs
user, you might prefer to start with an editor you are familiar with from among
those shown here:

Editor Project Name Project URL

Eclipse Counterclockwise http://code.google.com/p/counterclockwise/

Emacs clojure-mode http://github.com/jochu/clojure-mode

Intellid IDEA La Clojure http://plugins.intellij.net/plugin/?id=4050

jEdit jedit modes http://github.com/djspiewak/jedit-modes/tree/master/
NetBeans enclojure http://enclojure.org

TextMate textmate-clojure  https://github.com/swannodette/textmate-clojure
Vim VimClojure http://www.vim.org/scripts/script.php?script id=2501

1. http://dev.clojure.org/display/doc/Getting+Started
2.  http://github.com/jochu/clojure-mode
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SYMBOLS

! character, 212

# character, 106-107, 176
#' prefix, 13, 37

#{} literal, 14

${} macro expansion, 173
% parameter, 35

' character
in loading libraries, 16
macros, 169
preventing evaluation, 31

* character, 128, 207
+ character, 207, 210
- character, 207

. character
Java, 26, 43, 182
records, 157

.. macro, 170, 172-175
i syntax, 194

; reader macro, 31

= character, 200

@ character
agents, 124
displaying refs with, 15
shortening with, 116
variable arity, 33

[1 syntax, 7

~ character, 52, 213
_symbol in binding, 39
* character, 174, 242
~ character, 172, 174
~@ character, 174, 184
AClass, 213

DIGITS

*1 variable, 13
*2 variable, 13
*3 variable, 13

A
a-fn, 67
abstractions
about, 143
datatypes, 151-161
gulp and expectorate, 144—
146
Java interfaces, 146
protocols, 147-150
records, 156-161
spit and slurp, 143
account-level, 195
ACID, 117, 126
acting at a distance, 128-130
actionPerformed, 139
ad hoc taxonomies, 194-198
add-message, 125
add-message-with-backup, 125
add-points, 133, 135
addition, 208
AES (Advanced Encryption
Standard) keys, 153
agent-errors, 125
agents
creating, 123
errors, 125
naming conventions, 19
Snake game, 141
state and, 113, 123-127
transactions, 125
updates, 123-127
validating, 124

Index

aget, 217

Ahead-of-Time (AOT) compila-
tion, 207

aleatoric music, 162

alength, 217

algebra, relational, 82, 84

alias, 194

aliasing, 37, 42, 194

alter, 117, 120

amap, 218

ampersand character, see @
character

an-atom, 123
ancestors, reflecting with, 20
and, 171, 179
anonymous functions
avoiding with macros,
185
creating, 34-36
Java classes, 10
wrapping, 106
anonymous instances of
datatypes, 162
AOT (Ahead-of-Time) compila-
tion, 207
Apache Ant, 204
Apache Commons example,
3, 48-51
:apple, 139
apply, 27
(apply str...), 27, 63
(apply strseq), 72
arbitrary functions, 199
arbitrary-precision, 24, 208
areduce, 219
:arglists, 52
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arity, 33

arrays
Java, 216-219
naming conventions, 19
seq-ing, 71

:as clause, 39

aset, 217

aspect-oriented programming,

129
assert, 184
assert-expr, 200

assoc
atoms, 123
maps, 80
records, 158
Snake game, 135
vectors, 78

associativity, 6

asterisk character, 128, 207
atom, 122

atomicity, 116

atoms
creating, 15, 122
Snake game, 141
state and, 113
updates, 122-123, 127

auto-gensym, 172, 176

automatic tail-call optimiza-
tion (TCO), 47, 92

await, 124
await-for, 124

B

backquote character, 174,
242

backup-agent, 125

bad-unless, 170

Bagwell, Phil, 87

basis in recursive definitions,

90

BDD, 242

bench, 175-177

BigDecimal, 24, 195, 208

Bigint, 24, 208

Biginteger, 208

binding
thread-local, 128
wrapping evaluation with,

183

bindings
about, 37
anonymous functions, 35
cloned arrays, 218

cnt, 99

destructuring, 38-40
dynamic, 127-132
index/element pairs, 49
lexical, 38

list comprehension, 68
loop/recur, 46

macros, 175

names to atoms, 15
namespaces and, 40
painting functions, 139
protocols, 163

root, 37, 40, 101, 127
Snake game, 135-136
tests, 240

thread-local, 128, 130
vars, 37, 101, 127-130

bindings variable, 38, 46
bit-and, 104
blocks, REPL, 14

board, Clojurebreaker, 245-
248

:body, 135

Boolean reader form, 27
boundary conditions, 23
branching with if, 45
Brown, Jeff, 98
BufferedReader, 144, 148
by-pairs, 99

C

C# programmers, Xx

caching
lazy sequences, 94, 97
memoization, 88, 110-
112, 129

Cage, John, 162
Callable, 10, 214-215

callback event handlers, 130,
214

calls-slow-double, 129

Cambridge Polish notation,
22

car, 58

catch, 206

cdr, 58

chain, 172-175

characters, reader form, 25—
27, 30

chat example, 117-121, 125
checked exceptions, 204-205
Chu, Jeffrey, 253

ChunkedSeq, 57

cipher objects, 154
CipherinputStream, 154
CipherOutputStream, 154
class
multimethods, 190, 200
reflecting with, 20
ClassCastException, 158, 213
classes
cast, 158, 213
defining, 3
dispatch on, 198
extending with proxy, 214—
216
Java, 10, 143, 182, 214-
219
namespaces, 41
in object-oriented pro-
gramming, 156
~Classname, 52
clear-agent-errors, 125
Clojure
benefits, xvii, 2-11
building from source, 12
coding quick start, 11-16
diagnostics, 170
editor support, 253
elegance, 2-4
Lisp comparison, 4-7
power, 1
resources, xxii, 20, 31,
251
simplicity, 1, 3
source code, 19, 75
syntax, 7
version, 11
Clojure Contrib, 207
clojure-loc, 75
clojure-mode, 253
clojure-source?, 75
clojure.test, 242
clojure.test library, 199
Clojurebreaker
deploying, 248-251
game board, 245-248
interface, 243-248
playing, 227
scoring, 228-243, 246
cloning arrays, 218
close, 205
closed-under-addition, 239-240
closing readers, 74
closures, 162
cnt binding, 99



code game, see Clojurebreak-
er
coding quick start, 11-16
coin toss example, 50, 98-102
Collection, 192
collection-tag, 199
collections
cycling, 62
destructuring, 38-40
dispatching, 192
generating test data, 236
infinite, 62
interleaving, 62
interposing, 63
Java, 216-219
naming conventions, 19
reducing, 67
seq-ing, 55, 71
sorting, 67
splitting, 65, 100
transformations, 66
color, 139
colors
Clojurebreaker pegs, 228
Snake game, 139
combining sequence func-
tions, 98-103
commas, 7, 28, 63
comment, 179
comment reader macro, 31
commute, 119-121, 126-127
comp, 67, 101
comparison operators, 23, 67
complement, 64
composability, 89
composers example, 8, 76,
80, 82-84
comprehension, list, 8, 67,
76, 83
concat, 81, 173
concretion, 143
concurrency, see also STM
(Software Transactional
Memory)
Clojure support, 9
commute, 119
Java collections, 216
need for, 114
cond, 7, 146
conditional evaluation, 178-
180
condp, 146
config.clj, 225

conflicts, multimethods, 193
conj, 14, 59, 118

cons, Lisp, 55, 58

cons function, 56, 58, 60, 135
consistency in updates, 116
contains?, 79

ContentHandler, 130

control flow macro, 166-168

conventions
notation, xx
parameter names, 19

coordinating
atoms, 122
refs, 117

copying, defensive, 114

count, 74

count-if, 101

count-runs, 101

count/filter, 101

counter example, 120, 123

Counterclockwise, xix, 253

create-struct, 180

cross product, 82-83

cryptographic key store, 152—
153

CryptoVault, 152-155

current, 92

*current*, 131

current-track, 115, 122

Curry, Haskell, 102

currying functions, 102

customizing testing, 240

cycle, 62

D

data
defining, 15
generating test, 235, 238
databases
relational, 82-84
vs. transactions, 117,
126
datatypes
about, 143, 151
anonymous instance, 162
documentation, 156
naming, 152
records, 156-161
using, 152-155
deadlocks, 115
dec, 47
decimals, 24
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declare, 104, 180

decryption, datatypes, 152—
153
deep nesting, 108
deeply-nested, 108
def, 15, 101
:default, 191
default operators, 207
default-value, 192
defensive copying, 114
defining
classes, 3
data, 15
functions, 12, 15, 32-34
multimethods, 189
recursive definitions, 90

definterface, 147
defmacro, 167
defmethod:, 190
defmulti, 139, 189
defn, 12, 32-34
defn-, 101
defonce, 101
defpartial, 245
defprotocol, 148
defrecord
creating, 5, 157
defining classes, 4
keys, 29
defspec, 235, 238
defstruct, 180
deftype, 152
delay, 182
delays, loops, 222
delimited strings, 63
dependencies, 11, 232
deployment, 6, 248-251
deref
agents, 124
atoms, 122
refs, 15, 115

derive, 197
describe-class, 212
design patterns, 169

destructuring, 38-40, 141,
246

diagnostic functions, 170
diff, 228

difference, 81

.dir, 135-136

directories, testing, 239



260 ® Index

dirs, 133

disassoc, 80

dispatch-fn, 189

dispatch-val, 190

dispatching, 189-194, 196,
198-200

dissoc, 158

division operator, 24

do, 45, 181

doall, 70

doc, 18

:doc key, 52

document strings, 18, 148

documentation
arrays, 217
datatypes, 156
laziness, 96
let, 40
metadata, 37, 51
predicates, 28
REPL, 18
source code, 19

dorun, 70
dosync, 10, 183
dot character

Java, 26, 43, 182
records, 157

dotimes, 209

drop, 78

drop-while, 64

dynamic binding, 127-132

dynamic dispatch, 192

dynamically typed languages,
9

E
*e variable, 13
eats?, 136
Eclipse, 253
editor support, 253
elegance, 2-4
ellipsize, 40
else, 172
elt, 49
Emacs, xix, 253
email logging, 223
empty lists, 27
encapsulation
pattern, 166, 168, 177
resource cleanup, 204-
205
side effects, 89

enclojure, 253
encryption, datatypes, 152-
153
end, 61
endElement, 131
enumerative combinatorics,
232
equals(), 4
Erlang, xviii
error, 224
errors, see exceptions
evaluation
conditional, 178-180
forcing, 70
postponing, 182
preventing, 31
wrapping, 183-185
even?, 66, 68
every?, 3, 65
evil-bench, 177
exact-matches, 228
exceptions
agents, 124
checked, 204-205
class cast, 213
is, 200
Java, 203-207, 215
logging, 224
records, 158
recursion, 91

REPL, 13

retry and, 119

unchecked operators,
211

“Execution in the Kingdom of
Nouns”, 60

expanding macros, 167, 169-
172

expectorate, 144-146
expr, 169
expression problem, 147

expressions naming conven-
tions, 19

extend, 148
extend-protocol, 149
extend-type, 149

F

f function, 62, 66
F#, xviii

fseq, 111

failures, 241

false?, 28

faux-curry, 102

Fibonacci example, 90-98
file, 52

file-seq, 74

FilelnputStream, 146, 149
files, seq-ing, 73

fill-point, 138

filter, 34, 64, 100

filtering
index, 34, 49
sequences, 64, 100

finally, 183, 204-205

financial application example,
194-198

find-doc, 19, 217

first, 56, 58

first-class objects, 8
flash-put!, 246
floating-point literal, 24

flow control, 45-47, 166-168,
177

fn, 34-36
fn-tail, 190
foo#, 172

for
list comprehension, 8, 68
loop, 48
music records example,
160

force, 183

forcing
delays in evaluation, 183
library reload, 18
sequences, 70

foreman rubygem, 248

foreman start, 248

form, 169

forms, see reader forms; spe-
cial forms
forward declarations, 180
frequencies, 229
functional programming
benefits, 2, 7, 88
vs. imperative program-
ming, 8, 50, 89
laziness, 87, 89
persistent data struc-
tures, 86
properties, 7, 85-88
pure functions and, 86
recursion, 87, 90-112



referential transparency,
88
rules, 89

functions, see also sequence
library
anonymous, 10, 34-36,
106, 185
arbitrary, 199
arity, 33
combining, 98-103
composing, 101
currying, 102
defining, 12, 15, 32-34
diagnostic, 170
documentation, 18
filter, 34
first-class objects, 8
higher-order, 3
vs. macros, 165
maps, 78-81
vs. multimethods, 201
naming, 19, 32
painting, 138
partial application, 102
private, 101
pure, 8, 14, 86, 88
reader, 74
reversing, 64
sets, 64, 81-84
vs. special forms, 178
structure-specific, 76-84

G
game, 140
game-panel, 139

games, see Clojurebreaker;
Snake game

garbage collection, 97, 204,
see also resource cleanup
:gen-class, 220
generate-test-data, 239
genericity, 8
(gensym prefix?), 172
get
key/value pairs, 29
keys, 79
noir, 243
vectors, 77

getName, 73

git, 249

git init, 249

git push, 248, 250

Godel, Escher, Bach: An Eter-
nal Golden Braid, 110

Graham, Paul, 6

Grand, Christophe, 95

greeting, 32
grow, 135
guess, 233, 237

GUI, Snake game, 132, 138-
141

gulp, 144-146

H

hash-map, 63

hash-set, 63

hashCode, 4, 29, 208
Hashtable class, seq-ing, 71
Haskell, xviii, 243

head in lazy sequences, 97
head-overlaps-body?, 136
height, 133

Hello, World, 12-16, 32
Heroku, 248-251

heroku command, 249
hiccup imports, 245
higher-order functions, 3

Hofstadter Female and Male
sequences, 110

homoiconicity, 6, 21
Houser, Chris, 141

HTTP response example,
see website example

I

“Ideal Hash Trees”, 87
idx, 49

if, 45, 166, 170, 172
IFn, 158

immutability

advantages, 4

datatypes, 152

functional programming,
8

pure functions, 86

sequences, 60

imperative vs. functional pro-
gramming, 8, 50, 89

implicit parameter names, 35
import, 41, 44, 163

:import reference, 42
import-static, 182

in-ns, 41, 238

in-transaction value, 119

inc, 62, 123

incorrect-spec, 240
indentation, xix, 180
index-filter, 49
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index-of-any, 49-51

indexOfAny, 48, 50

indexable-word?, 34

indexed, 49

indexing
filtering with, 34, 49
instead of for loops, 49-51
naming conventions, 19
values, 77

induction in recursive defini-
tions, 90
inference, 207
infinite collections, 62
infinite sequences, 62, 69, 95
infix notation, 22
info, 224
inheritance, 191, 197
init-vault, 153
initial-delay, 222
inputs
gulp, 144-146
protocols, 147-150
slurp, 143

testing, 231-232
validation, 237

InputStream, 146, 148
inspect-tree, 198

inspector library, 198
instance?, 20
instantiating records, 30

integer operators, 22-24,
207-210

integer-sum-to, 210
IntelliJ IDEA, 253
interest-rate, 195

interfaces, Java, 143, 146,
see also protocols

interleave, 26, 62
interpose, 63

intersection, 81

into, 59

into-array, 218
inventors example, 28
|OFactory, 147-148
IPersistentVector, 193

is, 199

isBlank() method, 3

isa?, 191, 197
isolation in updates, 117
iterate, 62, 95

iteration, 241



262 * Index

J
jEdit, 253
Java, see also datatypes; pro-
tocols
. character, 26, 43, 182
advantages, 9
arrays, 216-219
callback APIs, 130, 214
class creation, 214-219
classes, 10, 143, 182
collections, 216-219
exceptions, 203-207
inheritance, 191, 197
instances printing, 10
integer operators, 207-
210
interfaces, 143, 146
libraries, 207
Lisp comparison, 5
macros, 182
objects, 43
performance, 203, 209-
213
primitives, 82-84, 203,
208-212, 217
programmers, Xx
proxies, 214-216
resource cleanup, 205
seq-ing, 71-76
Snake game, 134
special forms, 168, 177
stack management, 91
syntax, 10, 43-45, 168,
203
tail-call optimization
(TCO), 93
type hints, 207, 212
versions, 11
website example, 219-
226

Java Concurrency in Practice,
115

Java Reflection API, 20
javadoc, 44

jedit modes, 253
JFrame, 198

join, 63, 83

JPanel, 139

K

key, 241

key-number, 159

key/value pairs
about, 28
adding, 52
functions, 78
sequences, 57

keyPressed, 140

keymap, 84

keys
about, 28
AES, 153
cryptographic, 152-153
joining sets, 83
removing from maps, 80
renaming, 82
select-keys, 229
testing, 79

:keys destructuring, 246

keys function, 78

keywords
about, 29
as functions, 79
naming, 194
records, 158

Krukow, Karl, 87

L
La Clojure, 253

lambdas, see anonymous
functions

lazy sequences

benefits, 69, 87, 95

combining functions, 98—
103

creating, 94-95

documentation, 96

head, 97

memory and, 59, 69, 95—
98

realization, 95-98

replacing recursion with,
90, 94-98, 108-110

rules, 89

take, 62

lazy-cat, 97
lazy-seq, 94-97, 109

Lazytest, 242

legal symbols, 25

lein deps, 219

lein-noir, 243

Leiningen
about, 11
Clojurebreaker, 243
logging, 223
noir plug-in, 243
pinger example, 219-226

let
anonymous functions, 35
binding, 38, 128
documentation, 40

macros, 175
wrapping evaluation with,
183
letfn, 92
lexical binding, 38

libraries, see also sequence
library
forced reloading, 18
Heroku, 249
Java, 207
loading, 16
mail, 223
repl, 19
unit testing, 242
:line, 52
line-seq, 74
Lisp
advantages, 5
benefits, 2
Clojure comparison, 4-7
cons, 55, 58
programmers, Xx
list, 63
list comprehension, 8, 67,
76, 83
lists
comma-delimited, 63
concating, 173
empty, 27
functions, 77
Lisp, 6
list comprehension, 8,
67, 76, 83
reader form, 22
s-list data structure, 108
sequences, 56, 59-60
location in Snake game, 134,
139

locking, 9, 114, see also STM
(Software Transactional
Memory)

log4j, 223

logging
with log4j, 223
printing with do, 45

loop, 46, 99

loops
binding, 99
continuous, 221
for, 48

lose?, 136

M

M form, 24, 195

m-seq, 111



:macro, 52
macro characters, 30
macroexpand, 170
(macroexpand form), 172
macroexpand-1, 170
(macroexpand-1 form), 172
macros, see also reader
macros
.. macro, 170, 172-175
advantages, 5
anonymous functions,
185
conditional evaluation,
178-180
control flow, 166-168,
177
creating, 5
expanding, 167, 169-172
vs. functions, 165
Java, 182
names, 175-177
readability, 173
rules, 165, 177
simple, 172-175
special forms and pat-
terns, 168
syntax, 7
syntax quote, 174
table, 172, 178
templates, 173
vars, 180-181
wrapping evaluation,

183-185
mail library, 223
main, 220-221

make-array, 216
make-greeter, 35
make-reader, 145, 147-148
make-writer, 145, 147, 149
map
declare and, 181
seq-ing files, 73
transformations, 66
Map class, seq-ing, 71
map first, 95
maps
creating, 80
datatypes, 152, 156-161
destructuring, 38
functions, 78-81
keymap, 84
memoization, 111, 129
merging, 80
namespaces, 42
reader form, 28
seq-ing XML, 76

sequences, 57, 59
set functions, 82
Matcher, 72
matching
exact-matches, 228
regular expressions, 72
math.combinatorics, 232, 247
mathematical operators, 23,
133, 232, 247
memoization, 88, 110-112,
129
memoize, 111, 129
memory
forcing sequences and,
70
lazy sequences and, 59,
69, 95-98
merge, 80
merge-with, 81, 230
metadata, 51-53, 213
MIDI player, 159-161
MidiNote, 159, 163
Midje, 242
min-duration, 163
min-velocity, 163
more, 174
move, 135
multicores, 9, 114
multimethods
about, 187
ad hoc taxonomies, 194—
198
collections, 192
conflicts, 193
counter examples, 200
defaults, 191
defining, 189
dispatching, 189-194,
196, 198-200
vs. functions, 201
inheritance, 191, 197
when to use, 198, 201
multiplication, 208

Multiversion Concurrency
Control (MVCC), 119
music
aleatoric, 162
composers example, 8,
76, 80, 82-84
MIDI player, 159-161
note example, 157-161
playlist example, 115-
117, 122
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mutability
mutable references, 115
Snake game, 137-138,
141
mutablity, see refs; STM
(Software Transactional
Memory)
mutual recursion, 104-107

MVCC (Multiversion Concur-
rency Control), 119

my-even?, 104, 107

my-odd?, 104, 107

my-print, 187, 190, 192-193
my-print-vector, 188

my-printin, 188, 190-194

N

N form, 24

name collisions, 17, 19, 194
:name key, 52

name multimethod, 189

namespaces

about, 40

classes, 41

keywords, 194

libraries and, 16

mapping, 42

protocols, 148

refer, 17

switching, 41

syntax, xxii

testing, 240

vars, 37, 42

naming

atoms, 15

classes, 41

datatypes, 152

destructuring, 38-40

functions, 19, 32

keys, 82

keywords, 194

libraries, 16

in macros, 175-177

multimethods, 189

parameter name conven-
tions, 19

predicates, 32

quoting, 242

with special forms, 176-
177

symbols, 25, 176

nesting, 7, 108
NetBeans, 253
new, 43

newsym, 108
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next, 56

nextint(), 43

nil
keys, 79
macros, 169
printing on, 190
rules, 27

nil?, 28

noir web framework, 243, 246

non-blank?, 75

non-svn?, 75

not-any?, 66

not-every?, 66

notation
conventions, xx
postfix, 157
prefix, 22, 152

Note record, 157
nouns, 60
ns macro, 42, 52
Number, 191

numeric operators and types,
22-24, 207-210

(@)
Object array, 218
object-oriented programming,
60, 156
odd/even example, 104-107
oldsym, 108
operator precedence, 6
operators
integers, 22-24, 207-210
mathematical, 23, 133,
232, 247
unchecked, 207, 210
options, 121
or, 179
order
binding, 68
commute, 120
sequences, 58
sorting collections, 67
ordinals-and-primes, 69
*out¥, 183
outputs
expectorate, 144-146
protocols, 147-150
spit, 143
strings, 63
testing, 231, 234
validation, 234, 237
OutputStream, 149, 154

p

paint, 139

paintComponent, 139

painting functions, 138

parallelization, 8, 88, 114

parameter names
conventions, 19
implicit, 35

parent-child relationships,

197

parentheses
balancing, xix
Clojure vs. Lisp, 6
Java, 10

parity, 105

parsers, XML, 130, 214-216

partial, 102

partition, 100

passwords, cryptographic,
152-153

patterns, encapsulation, 166,
168, 177

peek, 77

peg game, see Clojurebreaker
per-thread state, 127

perform, 160

performance
immutability and, 86
Java, 203, 209-213
memoization, 110
recursion, 91
type hints, 212
unchecked operators,

208

periodically, 222
Perl, xx

persistent data structures,
86, 119

pinger example, 219-226
play, 159

playlist example, 115-117,
122

point-size, 133
point-to-screen-rect, 134

polymorphism, 5, 156-157,
168, 187, 192, see al-
so records

pop, 77

postfix notation, 157
postponing evaluation, 182
power, 1

precedence, operator, 6

predicates
about, 27
documentation, 28
filter, 64
naming, 32
seq-ing files, 74
sequence, 65
prefer-method, 193
prefix notation, 22, 152
primitives
arrays, 217
datatypes, 152
exceptions, 203
performance, 208-212
relational, 82-84
print, 183
print mechanism example,
187-194
*print-length*, 96
*print-level*, 109
printing
deep nesting, 109
forcing sequences and,
70
Java arrays, 217
Java interfaces, 10
lazy sequences, 96
logging statements, 45
print mechanism exam-
ple, 187-194
stacktrace, 13
strings, 183
tests, 240
vectors, 188, 193
println, 70, 183
private copies, 119
private functions, 101
probability distribution, 236
Procfile, 248
programmatic validation,
234, 237-239
project, 82-84
projection, 82
promoting operators, 207
properties file for website ex-
ample, 224
protocols
benefits, 2, 143
binding, 163
datatypes, 151-155
using, 147-150
proxy, 139, 214-216
proxy-super, 139
pst, 13



pure functions, 8, 14, 86, 88
put!, 243

Q

gname, 214
quick start, coding, 11-16
QuickCheck, 243
quot, 24
quote character
library names, 16
macros, 169
preventing evaluation, 31

quoting, see also syntax
quoting
specs, 242
symbols, 169

R

race conditions, 115, 124

rand-note, 163

Random, 43

random-secret, 236, 242

range, 61

Ratio type, 24

re-matcher, 72

re-seq, 73

Read, Jeremy, 134

read-eval-print loop (REPL),
see REPL

readability, 3, 88, 173

Reader class, 74

reader forms
about, 21
Booleans and nil, 27
maps, 28
metadata, 51
numeric types, 22-24
records, 29
strings and characters,

25-27

symbols, 25
table, 23

reader functions, 74
reader macros, 30, 52
rebinding vars, 37

recent expressions special
variables, 13

recently-modified?, 74
records

creating, 157

datatypes and, 152, 156—

161
instantiating, 30
reader form, 29

recur
converting mutual to self-
recursion, 105
converting tail to self-re-
cursion, 93
loop/recur, 46
scalar values, 89
recursion
avoiding direct, 89
defined, 87
in functional program-
ming, 89
macros, 170
memoization, 110-112
mutual, 104-112
recursive definitions, 90
replacing with laziness,
90, 94-98, 108-110
self-, 93, 105
simple, 90-91
tail, 90, 92-94, 106
recursion point, 46
Reddy, Abhishek, 134
reduce, 67, 211
ref, 10, 115
ref-set, 116
refer, 17
reference types, see refs
references, 42
referential transparency, 88
Reflection API, 20
refs
about, 15
displaying, 15
naming conventions, 19
state and, 113
STM (Software Transac-
tional Memory), 115-
121, 137-138
transactions, 116-121
unified model, 127
validation, 121
regression testing, 234

regular expressions, seq-ing,
72

reify, 162

relational algebra, 82, 84
relational databases, 82-84
relational primitives, 82-84
rreload flag, 18

reloading, library, 18

rem, 24

remove!, 246

rename, 82
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render, 246
repaint, 139
repeat, 61
repeated delay, 222
REPL
documentation, 18
killing, 13
laziness, 96
prompt, xxii
sequences appearing as
lists, 60
Snake game testing, 140
special variables, 13
testing installation, 12
using, 12-14
repl library, 19
replace, 108
replace-symbol, 108
replace-symbol-expression, 108
require, xxi, 16-17, 42
:require reference, 42
reset!, 122
reset-game, 137
resolve, 40
resource cleanup, 204-205
resources
Clojure documentation,
20
community, 31, 251
web, xxii
response-code, 220
rest, 56, 58, 60
result, 46
ret parameter, 219
retry, 119
reusing code, 88
“Revenge of the Nerds”, 6
reverse, 72

reversing
functions, 64
strings, 72

root binding
namespaces, 40
vars, 37, 101, 127

Ruby, xx
RubyGems, 249
Runnable, 10, 214-215

S

s-list data structure, 108
sample code, xxii, 11, 16
sample data, see data
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SAX parser, 130, 214-216
Scala, xviii
scalar values, 89
scheduled thread pools, 221
ScheduledExecutor, 222
scope, 88, 128
score, 230, 233, 237
scoring in Clojurebreaker,
228-243, 246
secret, 233, 237, 244
select, 81-84
select-keys, 80, 229
selections, 232
self-recursion, 93, 105
semicolon reader macro, 31
send, 123, 126
send-off, 126
seq function, 56
seq-ing, 55, 71-76
seqs, see sequences
sequence library, see alsolazy
sequences; sequences
about, 55
avoiding laziness and re-
cursion, 89
creating sequences, 61—
64
filtering, 64
predicates, 64-65
seq-ing Java, 71-76
structure-specific func-
tions, 76-84
transforming sequences,
66-69
sequences, see also lazy se-
quences; sequence library
about, 55
advantages, 6
appearing as lists, 60
capabilities, 56-60
combining, 98-103
creating, 61-64
exposing in memoization,
111
filtering, 64
forcing, 70
immutability, 60
infinite, 62, 69, 95
list comprehension, 68
order, 58
predicates, 65
seq-ing Java, 71-76
structure-specific func-
tions, 76-84
transforming, 66-69, 99

service-charge, 195
session/flash-put!, 246
session/get, 243
session/put!, 243
session/remove!, 246
set, 63
set theory, 81
set!, 130, 212
sets
as functions, 64
collection function, 63
creating, 14
functions on, 81-84
indices and, 49
sequences, 58
shared state, see state,
shared
shared structure, 87
shout, 52
side effects
adding with agents, 125
adding with do, 45
encapsulation and, 89
forcing sequences, 70
Sierra, Stuart, 182
simplicity, 1-3, 8
size, 100
SLOCCount, 49
slow-double, 129
slurp, 143, 155
:snake, 139
Snake game
functional model, 132-
136
GUI, 132, 138-141
mutable model, 137—
138, 141
other implementations,
134
playing, 132
without refs, 141
Software Estimation: Demysti-
fying the Black Art, 2
software transactional memo-
ry (STM), see STM (Software
Transactional Memory)
some?, 65
sort, 67
sort-by, 67
sorted-map, 59
sorted-set, 58

sorting
collections, 67
sets, 58

source, 19
source code, 19, 75
source metadata, 51
special forms, 168, 177-178
special variables, REPL, 13
specs, testing, 235-241
spit, 143, 155, 205
splicing unquote, 172, 174,
184
split, 34
split-at, 65
split-with, 65
splitting
collections, 65, 100
sentences, 34

--stack, 250

stack consumption
deep nesting, 108
lazy definitions, 95
memoization, 111
mutual recursion, 104
recursion and, 91, 93,
106

stack frames, 91

*stack*, 131
StackOverflowError, 91
stacktrace, printing, 13
start, 61, 128
startElement, 131, 214

state

agents, 113, 123-127

atoms, 122-123

Clojurebreaker, 243

concurrency, 114

defined, 113

functional programming
and, 9, 86

immutability, 4

Java callback APIs, 130

locking, 114

parallelism, 114

reference models, 113,
131

refs and STM, 115-121

set!, 212

shared, 9, 14-16, 87

Snake game, 132, 137-
138, 141

unified model, 127

vars, 113, 127



wrapping macros, 184
XML parsers, 131
*state*, 131
statically typed languages, 9,
207
step, 61, 100
STM (Software Transactional
Memory)
advantages, 9
agents, 125
Java collections, 216
Multiversion Concurrency
Control (MVCC), 119
properties, 116
refs, 115-121, 137-138
Snake game, 137-138
validation, 121
stopping REPL, 13
str, 26
streams, seq-ing, 74
strings
delimited, 63
document, 18, 148
gulp and expectorate, 144
Java arrays, 217
multimethods, 190-191
output, 63
reader form, 25-27
reversing, 72
seq-ing, 72
spit and slurp, 144
with-out-str, 183
structs, creating, 180
structural sharing, 87
structure-specific functions,
76-84
subdividing, 89, 99
subtraction, 208
subvec, 78
subvectors, 78
Subversion files, 75
sum-to, 209
swap!, 15, 123, 141
Swing, 138-139, 198
switching namespaces, 41
symbol capture, 176

symbols
about, 13, 25
legal, 25

names, 25, 176

quoting, 169

resolution, 6

s-list data structure, 108

syntax
anonymous functions, 35
Clojure, 7
Java, 10, 43-45, 168,
203
namespaces, xxii
postfix, 157
syntax quoting
benefits, 6
macros, 172, 174
specs, 242
symbols, 176
synthesizer, see MIDI player

system properties, seq-ing, 72

T

‘tag, 52

tail recursion, 90, 92-94, 106

tail-call optimization (TCO),
47, 92

take, 62, 78

take-while, 64

taxonomies

macros , 177-185
multimethods, 194-198

TCO (tail-call optimization),

47, 92

TDD, 242

teardown, wrapping, 184

templating language, 173

test-checking, 195

test-dirs, 239

test-namespaces, 240

test-savings, 195

test-vars, 239

test.generative library, 235-

243

test/*cores*, 240

test/*msec*, 240

test/*verbose*, 240

testing, see also unit tests
about, 231
customizing, 240
generating test data,

235, 238

inputs, 231-232
inside-out, 231, 235
installation, 12
keys, 79
macro expansions, 170
macros, 181
namespaces, 240
organization, 231
outputs, 231, 234
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programmatic validation,
234, 237-239
regression, 234
running tests, 239-241
scoring in Clojurebreak-
er, 231-243
Snake game, 140
test.generative library,
235-243
URLs, 219-226
validation, 231, 234
TextMate, 253
textmate-clojure, 253
thread pools, scheduled, 221
thread safety, see STM (Soft-
ware Transactional Memo-
ry)
thread-local binding, 128,
130
thread-safety, 4, 8-9
throw, 204, 206
tilde character, 172, 174
time, 175, 183
timeouts, 124
timer
Snake game, 139
wrapping evaluation with,
183
to-array, 218
to-msec, 159
toString, 26, 191
toString(), 217
trampoline, 106
trampolining mutual recur-
sion, 106-107
transactions
advantages, 9
agents, 125
vs. databases, 117, 126
properties, 116
refs, 116-121
validation, 121
transforming, sequences, 66—
69, 99
transparency, referential, 88
traversal order, 58
tree views, 198
true?, 28
try, 204, 206
turn, 136
turn-millis, 133
type hints
adding, 212
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datatypes, 152
Java, 207, 212
spec arguments, 239
vars metadata, 37, 51

U

unchecked operators, 207,
210
unchecked-add, 210
unchecked-sum-to, 210
underscore symbol in bind-
ing, 39
“Understanding Clojure’s
PersistentVector Implemen-
tation”, 87
unified update model, 127
union, 81
unit tests, see also testing
about, 232
libraries, 242
sample code, 17
validation, 234
vars metadata, 37
unless, 166, 170
unordered-matches, 229-230

unquote character, 172, 174,
184
UnsupportedOperationException, 215
update-direction, 137, 140
update-fn, 15, 118
update-in, 158, 161
update-positions, 137
updating
agents, 123-127
with alter, 117
asynchronous, 123-127
atoms, 122-123, 127
with conjoin, 15
immutability and, 4
refs, 116-121, 127
with swap!, 15
synchronous, 123
system properties and
seq-ing, 72
table, 127
transactions, 10, 116-
121
unified model, 127
vars, 127
URIs, seq-ing, 74
URLs
deploying with Heroku,
250
seq-ing, 74
testing, 219-226

urls attribute , 225
use, xxi, 17
:use reference, 42

user interface
Clojurebreaker, 243-248
Snake game, 132, 138-
141

\Y%
Vaillancourt, Dale, 134

validation
agents, 124
inputs, 237
outputs, 234, 237
programmatic, 234, 237-
239
refs, 121
testing, 231, 234
vals, 78
values
agents, 124
atoms, 122
identity and state, 113
in-transaction value, 119
naming conventions, 19
Van Horn, David, 134
var special form, 37
variable arity, 33
variables, special, 13
vars
#' prefix, 13
about, 36
binding, 37, 101, 127-
130
declare, 104
lazy sequences, 98
macros, 180-181
metadata, 37, 51
namespaces, 37, 42
state and, 113, 127
testing, 239
updating, 127
uses, 37
Vault protocol, 153-155
vault-input-stream, 153
vault-key, 154
vault-output-stream, 153
vec, 64
vectors
destructuring, 38
functions, 77
naming conventions, 19
printing, 188, 193
reader form, 22
sequences, 57, 59

subvectors, 78
syntax, 7
:velocity, 158, 161
versions, 11
Vim, 253
VimClojure, 253
Volkmann, Mark, 134

w
Waldhoff, Ralph, 205
Wallingford, Eugene, 108
wants-a-string, 213
*warn-on-reflection*, 212
website example, 219-226
Wheeler, Davis A., 49
when, 171
:when clause, 68
when-not, 166, 171
:while, 68
whitespaces as commas, 7,
28
width, 133
win-length, 133
win?, 135
with-open, 74, 183, 204-205
with-out-str, 183
workflow, 227, 230
Worm game, 134
wrapping
agents, 123
collections with map, 66
evaluation, 183-185
exceptions, 204
Java APIs by seq-ing, 71—
76
Java arrays, 217
readers, 74
recursion, 109
recursive definitions, 94
string functions, 26
teardown, 184

X

XML
parsers, 130, 214-216
seq-ing, 76

Y

Yegge, Steve, 60

Z

zero, 27
zero?, 28
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