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Preface

There are numerous books on the subject of optimization, attributable to a
number of reasons. First, the subject itself is mathematically rigorous and
there are a number of solution methods that need to be examined and under-
stood. No single solution method can be applied to all types of optimization
problems. Thus a clear understanding of the problem, as well as solution
techniques, is required to obtain a proper and meaningful solution to the
optimization problem. With the progression of time, optimization prob-
lems have also become complex. It is necessary not only to obtain the global
optimum solution, but to find local optima as well. Today’s problems are
also of the multiobjective type, where conflicting objective functions are to
be handled. There is also a need to simultaneously handle objective func-
tions and constraints of different disciplines, resulting in multidisciplinary
design optimization (MDO) problems that are handled using different archi-
tectures. Gradient-based methods were popular until the 1990s. At pres-
ent, a large number of complex problems are solved using guided random
search methods such as genetic algorithm, simulated annealing, and particle
swarm optimization (PSO) techniques. Even hybrid algorithms, that use a
combination of gradient-based and stochastic methods, are also very popu-
lar. Different authors have addressed these issues separately, resulting in a
number of books in this area.

So how does this book differ from the others? The solution techniques
are detailed in such a way that more emphasis is given to the concepts and
rigorous mathematical details and proofs are avoided. It is observed that a
method can be understood better if different parameters in the algorithm are
plotted or printed over different iterations while solving a problem. This can
be accomplished by writing a software code for the method or the algorithm.
It is often difficult for a newcomer to write a software code if the algorithm
such as, say, Broyden-Fletcher—Goldfarb—Shanno (BFGS) or PSO is given to
him or her. In this book, a step-by-step approach is followed in developing
the software code from the algorithm. The codes are then applied to solve
some standard functions taken from the literature. This creates understand-
ing and confidence in handling different solution methods. The software
codes are then suitably modified to solve some real-world problems. A few
books on optimization have also followed this approach. However, the soft-
ware code in these books is hard to correlate with the corresponding algo-
rithms mentioned in the book and readers are forced to use them as black
box optimization tools. The codes presented in this book are user friendly in
the sense that they can be easily understood. A number of practical problems
are solved using these codes.

xi
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xii Preface

The codes are written in the MATLAB® environment and the use of ready-
made optimization routines available in MATLAB is avoided. The algorithms
are developed right from computing the gradient or Hessian of a function to
a complex algorithm such as for solving a constraint optimization problem.
MATLAB is a software package for technical computing that performs both
computing and visualization with ease. It has a number of built-in func-
tions that can be used by an individual’s application. The main advantage
of MATLARB is the ease with which readers can translate their ideas into an
application.

The book covers both gradient and stochastic methods as solution tech-
niques for unconstrained and constrained optimization problems. A sepa-
rate chapter (Chapter 5) is devoted to stochastic methods, where genetic
algorithm, PSO, simulated annealing, ant colony optimization, and tabu
search methods are discussed. With simple modifications of the basic PSO
code, one can also solve nonconvex multiobjective optimization problems.
This is probably the first optimization book in which MDO architectures
are introduced (Chapter 9). Software codes are also developed for the sim-
plex method and affine-scaling interior point method for solving linear pro-
gramming problems. Gomory’s cutting plane method, branch-and-bound
method, and Balas’ algorithm are also discussed in the chapter on integer
programming (Chapter 10). A number of real-world problems are solved
using the MATLAB codes given in the book. Some applications that are
included in this book are solving a complex trajectory design problem of a
robot (Chapter 3), multiobjective shape optimization problem of a reentry
body (Chapter 7), portfolio optimization problem (Chapter 4), and so forth.

I thank my organization, Vikram Sarabhai Space Centre (a lead center of
Indian Space Research Organisation [ISRO]), for giving permission to pub-
lish this book. The book has been reviewed internally by Dr. Mohankumar
D., Head, Computer Division. I thank him for his suggestions and correc-
tions. I thank Mr. Pandian, S., Deputy Director, VSSC for supporting the idea
to write this book. I am ever grateful to Prof. M Seetharama Bhat from IISc,
Bangalore and Dr. Adimurthy, V. for their support during the last ten years.
I thank my colleagues Dr. Jayakumar K., Mr. Priyankar, B., Mr. Sajan Daniel
and Mr. Amit Sachdeva for many hours of discussions on book-related
aspects.

I am grateful to Taylor & Francis Group for agreeing to publish this book
and agreeing to most of my suggestions. Much credit should be given to
Ms. Aastha Sharma, Editor, for her prompt actions and follow-up with the
reviewers. Thanks are also due to three anonymous reviewers for their criti-
cal remarks, corrections, and suggestions. I thank Mr. Sarfraz Khan, assistant
to Ms. Aastha Sharma, for providing online support in signing the contract.
I also thank Mr. David Fausel for coordinating and reviewing the style and
art files of the book. My sincere thanks to Mr. Ed Curtis and Ms. Amor Nanas
for language corrections, copyediting, and other production related works.
The cover page is designed by Mr. Kevin Craig.
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I thank the MATLAB book program for supporting the idea of this book
on optimization with MATLAB codes. They have also agreed to give wide
publicity to this book on their website, for which I am grateful.

Ithank my wife, Manju, and children, Abhinav and Aditi, for their patience
during the last two years. In fact my whole family—father, brothers, sister,
and in-laws—are eagerly waiting for the launch of this book.

This is the first edition of this book. Some errors and omissions are
expected. The MATLAB codes are validated with a number of test problems
taken from the literature. It is still possible that some pathways in the codes
would not have been exercised during this validation. As a result, no claim is
made that these codes are bug-free. I request readers to report corrections and
suggestions on this book at rk_arora@vssc.gov.in or arora_rajesh@rediffmail
.com.

The MATLAB codes mentioned in this book can be downloaded from the
weblink http://www.crcpress.com/product/isbn/9781498721127.

Rajesh Kumar Arora, PhD, MBA, FIE

MATLAB® is a registered trademark of The MathWorks, Inc. For product
information, please contact:

The MathWorks, Inc.
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1

Introduction

1.1 Historical Review

Optimization means finding the best solution among many feasible solu-
tions that are available to us. Feasible solutions are those that satisfy all the
constraints in the optimization problem. The best solution could be mini-
mizing the cost of a process or maximizing the efficiency of a system. Some
simple optimization problems that come to mind are machine allocation
and diet problems. In the machine allocation problem, one has to find how
jobs are to be allocated to different machines of different capacities and with
different operating costs so as to meet the production target with minimum
cost. In the diet problem, different food types are available with different
nutritional contents at different costs. The aim is to estimate different quan-
tities of food so that nutritional requirements are met for an individual at
minimum cost.

Though rigorous mathematical analysis of the optimization problems was
carried out during the 20th century, the roots can be traced back to about
300 B.c., when the Greek mathematician Euclid evaluated the minimum dis-
tance between a pointand a line. Another Greek mathematician, Zenedorous,
showed in 200 B.c. that a figure bounded by a line that has a maximum area
for a given perimeter is a semicircle.

In the 17th century, Pierre de Fermat, a French mathematician, laid the
foundation of calculus. He showed that the gradient of a function vanishes
at the maximum or minimum point. Moving further in the timeline, Newton
and Leibniz laid mathematical details for the calculus of variations. This
method deals with maxima or minima of functionals. The foundation for the
calculus of variations is credited to Euler and Lagrange (in the 18th century),
as they provided rigorous mathematical details on this topic. Subsequently,
Gauss and Legendre developed the least squares method, which is exten-
sively used even today. Cauchy used the steepest descent method to solve
unconstrained optimization problems.
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2 Optimization: Algorithms and Applications

The first textbook on optimization was authored by Harris Hancock and
published in 1917. In 1939, Leonid Kantorovich presented the linear pro-
gramming (LP) model and an algorithm for solving it. A few years later in
1947, George Dantzig presented a simplex method for solving LP problems.
Kantorovich and Dantzig are regarded as pioneers who provided break-
throughs in the development of optimization techniques. The conditions
for constrained optimization were brought together by Harold Kuhn and
Albert Tucker in 1951 and also earlier by William Karush in 1939. Richard
Bellman laid the principles of dynamic programming problems in which a
complex problem is broken down into smaller subproblems. Ralph Gomory’s
contribution to the development of integer programming is worth noting,
as in this type of optimization problem, design variables can take integer
values such as 0 and 1.

With the advent of computers in the 1980s, subsequently many large-scale
problems were solved. Present-day problems in the optimization area are
of the multidisciplinary and multiobjective type. The solution techniques
that are employed today to solve complex optimization problems are not just
gradient-based algorithms, but also include nontraditional methods such as
genetic algorithms, ant colony optimization, and particle swarm optimiza-
tion that mimic natural processes.

Today, optimization methods are required to solve problems from all dis-
ciplines, whether economics, sciences, or engineering. As a result of stiff
competition in virtually all disciplines, the role of optimization has become
still more substantial as one aims to minimize the cost of a product or wants
to allocate resources judiciously. A simple example from the subject field of
aerospace engineering can prove this point. The cost of putting 1 kilogram
of payload in a low Earth orbit is typically about US$15,000. The fuel and
structural weight of the different stages of the rocket strongly influence the
payload mass, as does the trajectory of the rocket. Of course, one can reduce
the structural weight of a stage only to the extent it should not fail because of
aerodynamic and other loads. The optimization problem that aims at maxi-
mizing the payload mass is highly complex and requires algorithms that run
on high-speed computers. Even if the optimization technique results in few
extra kilograms in payload, it represents large revenue for the space agency.

In the next section, we introduce to the optimization problem design vari-
ables, constraints, and applications of optimization in different domains.
Further in the chapter, modeling aspects of a physical problem are explained
that convert the verbal problem to a mathematical form. The solution of sim-
ple optimization problems with up to two design variables is explained by
the graphical method. The importance of convex function in optimization
is then explained. The chapter concludes with an introduction to the math-
ematical preliminaries of the gradient vector, Hessian matrix, directional
directive, and linear and quadratic approximation of the function. The road
map of this chapter is given in Figure 1.1.
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Introduction 3

[ Optimization problem ]

l

[ Modeling of the problem ]

[

[ Solution with graphical method ]

l

[ Convexity ]

l

[ Gradient vector, Hessian matrix, and

directional derivative

l

Linear and quadratic ’

approximation
[ Book layout ]
FIGURE 1.1
Road map of Chapter 1.
L]

1.2 Optimization Problem

In an optimization problem, a function is to be maximized or minimized.
The function that is being optimized is referred to as the objective function
or the performance index. The function is a quantity such as cost, profit,
efficiency, size, shape, weight, output, and so on. It goes without saying that
cost minimization or profit maximization are prime considerations for most
organizations. Certain types of equipment, such as air conditioners or refrig-
erators, are designed with different optimization criteria to have higher effi-
ciency in terms of reducing energy consumption requirements of the user.
However, this higher efficiency evidently comes at a higher cost to the user.
Weight minimization is a prime consideration for aerospace applications.
The variables in the objective function are denoted the design variables
or decision variables. Typically it could be the dimensions of a structure or
its material attributes, for a structure optimization problem. From practical
considerations, design variables can take values within a lower and an upper
limit only. For instance, the maximum capacity of a machine is limited to a
certain value. The design variables can be a real or a discrete number, binary,
or integer type. Though a majority of the design variables in the optimi-
zation problems are real, some variables can also be discrete. For example,
pipe sizes come in standard numbers such as 1, 2, or 5 inches. If pipe size is
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4 Optimization: Algorithms and Applications

used as a design variable in an optimization problem, it has to be treated as
discrete only. There is no point in selecting it as a real number and getting a
solution such as, say, 3.25 inches, a pipe dimension that really does not exist.
See Table 1.1 for some typical objective functions and design variables for
optimization problems from different disciplines.

The optimization problem can be mathematically expressed as follows.

Minimize
ftx) (1)
subject to
gx)<0 i=12..,m<n (1.2)
h(x)=0 j=1,2..,r<n (1.3)
X <x<x

The functions f, g, and h; are all differentiable. The design variables are
bounded by x; and x,. The constraints g; are called inequality constraints and

Objective Function

TABLE 1.1

Typical Optimization Problems

Discipline Design Variables
Manufacturing  Productivity from different machines
Corporate Different capitals from projects
Airline Different aircrafts, different routes
Aerospace Propellant fraction in different stages
Agriculture Different crops

Biology Gene interaction

Electronics Size of the devices

Portfolio Investment in stocks/bonds
Thermal Dimensions and material properties

Minimize cost

Maximize the net present value
Maximize the profit

Maximize the payload

Maximize the yield

Network stability

Minimize the power consumption
Maximize the return

Minimize the heat load
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Introduction 5

h; are called equality constraints. An example in the aerospace industry is
to restrict the dimensions of the spacecraft so that in can be accommodated
inside the payload fairing of a rocket. These restrictions are the constraints of
the optimization problem. The constraints are functions of the design vari-
ables. In addition, the number of equality or inequality constraints is lower
than the number of design variables (). If the design variables satisfy all
the constraints, they represent a feasible set and any element from the set
is called a feasible point. The design variables at which the minimum of f(x)
is reached are given by x* If the optimization problem does not have any
constraints, it is referred to as an unconstrained optimization problem. If the
objective function and constraints are linear functions in x then the optimi-
zation problem is termed a linear programming problem (LPP).

1.3 Modeling of the Optimization Problem

Modeling refers to expressing observations about a problem in mathemati-
cal form using basic building blocks of mathematics such as addition, sub-
traction, multiplication, division, functions, and numbers with proper units.
Observations refer to data obtained for the problem in hand, by varying cer-
tain parameters of the problem through experiments. Further, mathemati-
cal models provide predictions of the behavior of the problem for different
inputs. If the model does not yield expected results, it has to be refined by
conducting further experiments. The mathematical model is not unique for
different problems, as observed data can be discrete (defined at select inter-
vals) or continuous and can vary in different fashion (say, linear or quadratic)
with change in input parameters. Some simple mathematical models of dif-
ferent physical phenomena are presented next.

The pressure (P), volume (V), and temperature (T) relationship of a gas is
given by Boyle’s law as

PV =kT (14)

where k is a constant. Using this mathematical model, the behavior of a gas
can be predicted (say, pressure) for the different input parameters (say, tem-
perature), keeping the volume of the gas constant.

An example from economics could be constructing a mathematical model
for the demand-supply problem. The price of a product is to be calculated so
as to maximize the profit. It is well known that if the price of the merchan-
dise is kept high, profit per unit will increase but then demand for the prod-
uct may be low. Likewise, if the price of the product is kept low, profit per
unit will decrease, but then demand for the product may be higher. Typically,
demand (D) varies with price (P) as
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D=1
c, +P?

(1.5)

where ¢, and ¢, are constants.

Some problems can be written mathematically in differential equation form.
A differential equation contains an unknown function and its derivatives.
As the derivative represents the rate of change of a function, the differen-
tial equation represents the continuously varying quantity and its rate of
change. For example, the temperature change (with respect to time) of an
object is proportional to the difference between the temperature (T) of the
object and that of its surroundings (T;) and can be represented in differential
equation form as

ar
o k(T-T,) (1.6)

Equation 1.6 is also referred to as Newton’s law of cooling. The solution of the
differential equation is a function that satisfies the differential equation for
all values of the independent variable in the domain. As the name suggests,
independent variables are changed during an experiment and the dependent
variable responds to this depending on on the type of the experiment being
conducted. A differential equation can have many solutions (referred to as
general solution). A particular solution is one such solution. Often, a differ-
ential equation has a closed form solution. For example, the solution for the
differential equation representing Newton's law of cooling is

T#) =T, + (T, - T)e* (1.7)

Not all problems have closed form solutions and such problems have to be
numerically simulated to arrive at the solutions.

Therefore, using modeling, one can construct the objective function as well
as the constraint functions for the optimization problem. One can then use
different optimization techniques for solving such problems. The following
examples illustrate how to formulate an optimization problem by construct-
ing the objective and constraint functions.

Example 1.1

In a diet problem, an individual has to meet his daily nutritional require-
ments from a menu of available foods at a minimum cost. The avail-
able food items are milk, juice, fish, fries, and chicken. The nutrient
requirements to be met are for proteins, vitamins, calcium, calories, and
carbohydrates. Table 1.2 shows the cost in dollars of the food items per
serving, nutrient values are shown in rows against their names (such as
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TABLE 1.2
Data for the Diet Problem

Milk Juice Fish Fries Chicken Required
Cost 1.1 1.2 2.0 1.3 3.0
Proteins 8 2 15 4 30 60
Vitamins 9 3 3 1 9 100
Calcium 35 3 17 1 16 120
Calories 100 90 350 200 410 2100
Carbohydrates 10 20 40 25 40 400

Note: Construct the objective function and the constraints for this optimization problem.

proteins, vitamins, etc.) per serving, and the last column indicates the
minimum daily requirements of the nutrients.

The first step is to select the design variables for the problem. It appears
obvious to select quantities of food items such as fish, fries, and so on as
the design variables. Let us represent the design variables by x;, x,, x5, x,,
and x; for quantities in milk, juice, fish, fries, and chicken respectively.
As discussed earlier, the objective function and constraints are a func-
tion of these design variables. In this particular problem, the objective
function is to minimize the cost of the food items purchased. If x; is
the quantity of fish ordered and $2 is its unit price, then the total cost
of the fish item is 2x;. In a similar way, we can evaluate the cost of other
items such as milk, juice, and so on. Hence the total cost of the food
items is

1.1x; + 1.2x, + 2x5 + 1.3x, + 3x;

Note that the cost function or the objective function is linear; that is, x,
is not dependent on x, or any other variable. Having defined the objec-
tive function, let us define the constraints for the problem. In the prob-
lem it is clearly mentioned that the nutritional needs of the individual
have to be met. For example, a minimum protein requirement of 60 units
is to be met. Similarly, minimum requirements of other nutrients such
as vitamins, calcium, and so forth are also to be met. Now, we can write
the first constraint as

8x; + 2x, + 15x; + 4x, + 30x5 > 60 (1.8)

Note that this constraint is an inequality. In a similar fashion, we can
write other constraints. We are now ready to write the objective function
and constraints for the diet problem.

Minimize

1.1x; + 1.2x, + 2x5 + 1.3x, + 3x; (1.9)
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subject to
8x; + 2x, + 15x; + 4x, + 30x5 > 60 (1.10)
9x; + 3x, + 3x; + x, + 9x5 > 100 (1.11)
35x; + 3x, + 17x; + x, + 16x5 = 120 (112)
100x; + 90x, + 350x; + 200x, + 410x; > 2100 (1.13)
10x, + 20x, + 40x, + 25x, + 40x5 > 400 (1.14)

Once the optimization problem is defined, one has to use standard
optimization techniques in evaluating the design variables x;, x,, x5, x,,
and x;. These methods are described in the later chapters. In this chapter,
we are focusing on the formulation of the optimization problem.

Example 1.2

A soft drink manufacturer needs to produce a cylindrical can that can
hold 330 mL of a soft drink. He wants to make the dimensions of the
container such that the amount of material used in its construction is
minimized. Formulate the optimization problem by writing down the
objective function and the constraint.

The design variables for the optimization problem are the radius and
the height of the can. Let these variables be denoted by x, and x, with
units in millimeters (Figure 1.2). The cylindrical can consists of a curved
portion and two circular ends. The area of the curved portion is given by
2nx,x, and the area of two circular lids is given by 27x?. Hence, the total
area that needs to be minimized is 27x,x, +2mx}. The volume of the can
is given by mx;x,. This volume is to be limited to 330 mL or 330,000 mm?3.
Now we are ready to formulate the optimization problem.

Minimize

27, X, + 2mx2 (1.15)

X

FIGURE 1.2
Cylindrical can.
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subject to
nxix, = 330,000 (1.16)

Note that in this optimization problem, the constraint is an equality.

Example 1.3

The shape of a reentry body is a spherical nose, a conical body, and a flared
bottom (see Figure 1.3). The design variables through which the configura-
tion of the reentry body can be altered are nose radius (R,), cone length (1),
cone angle (8,), flare length (1,), and flare angle (8,). By varying the design
variables, the area (A) of the reentry capsule is to be minimized. As the
reentry capsule has to house electronic packages and other instruments,
it must have a certain minimum volume (V), which is specified as 1 m3.

The design variables are bounded between a minimum and maximum
value. R, can take a value between 0.4 and 0.6 m, [, and [, can take a value
between 0.4 and 0.8 m, 6, can take a value between 22 and 27 degrees,
and 6, can take a value between (8, + 5) and (0, + 10) degrees. Formulate
the shape optimization problem of the reentry capsule.

The total surface area and volume of the capsule are computed using
the equations

A=2mR*(1-sin0,)+n(R, +Ry)\/(R, —R,)* +12

+7(R, + RpW(Ry —R,)* +12 + 7R3 (117)
V= M(m{f +R2(1- sin@l)z)
l 2 2 l 2 2
o (R2+R2+R,R,)+ S (R2+R2+R,R,) (1.18)
R

Spherical nose

Conical body

Flare L

FIGURE 1.3
Reentry capsule.
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where
R, =R, cos 6, (1.19)
R, =R, cos 6, + 1, tan 6, (1.20)
Rz;=R,+,tan 6, (1.21)

The optimization problem can now be written as

Minimize
2mR2(1-sin0,) + T(R, + R\ (R, — R, ) +12

+7(R, + Ry (R, —Rz)2 +12 +7R3 (1.22)

subject to

M(?’Rf +R(1- sm91)2)+%nll (Rlz +R? +R1R2)
l 2 2

+3ﬂARB+R2+Rgg)21 (1.23)
04<R,<06 (1.24)
22<9, <27 (1.25)
0,+5<0,<0,+10 (1.26)
04<1,<08 (1.27)
04<1,<08 (1.28)

Example 1.4

It is required to find the optimum diameter (d) of a solid steel shaft
whose mass (M) is to be minimized and the first cantilever frequency
has to be greater than 20 Hz. Formulate this as an optimization problem
by writing down the objective function and the constraint.

If L is the length of the rod (Figure 1.4) and p is its density, then the
mass of the rod is given by

M:%fm (1.29)
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FIGURE 1.4
Cantilever rod.

For this problem, L =1 m and p = 7800 kg/m?. The first cantilever fre-

quency is given by
1 3.5156 |EI
- / 1.30
h 2r  I? k (1.30)

where E is Young’s modulus of steel and its value is 2 x 10! N/m?. The
variable k is mass per unit length. The moment of inertia I for the rod is
given by

I= 6£4d4 (1.31)

The optimization problem can be written as follows.

Minimize
T rLp (1.32)
4
subject to
1 3.5156 /EI
= = >20 1.33
2 I? k 133)
N

1.4 Solution with the Graphical Method

Having formulated the optimization problems in the previous section, it
is tempting for readers to get solutions for these problems. The graphical
method is a simple technique for locating the optimal solution for problems
with up to two to three design variables. Beyond three variables, the rep-
resentation of the optimization problem through graphs becomes complex.
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The optimization problem mentioned in Example 1.2 requires two design
variables, x; and x,, to be evaluated such that it minimizes the total surface
area and at the same time satisfying the equality constraint. A MATLAB®
code, graph_exampl2.m, given at the end of this book, is used for drawing the
graph for this problem. For a quick introduction to MATLAB, see Appendix A.

The variable x, is varied from 1 to 100 mm and the variable x, is varied
from 1 to 200 mm in the code. The surface area is calculated based on the val-
ues x; and x, and contour of the objective function is plotted (Figure 1.5) for
different values of x; and x,. The constraint function is then plotted (marked
with *). Because this is an equality constraint optimization problem, the min-
imum value of the objective function is the contour curve that touches the
constraint curve and has the lowest value. The minimum value of the objec-
tive function is 26,436 mm? corresponding to design variables x; as 3745 mm
and x, as 74.9 mm. Note that the length of the can is two times its radius at the
minimum point. This can be proved analytically using elementary calculus.

Similarly, the optimization problem mentioned in Example 1.4 has only
one design variable, the diameter d of the rod. Again, we can use a graphical
method to solve this problem. A MATLAB code, graph_exampl4.m, is written
for this problem.

On executing the code, the output is in the form of a graph or a plot as
shown in Figure 1.6. The value of the objective function (along the y-axis)
decreases with the reduction in the value of the design variable (along the
x-axis). However, the constraint value (also plotted along the y-axis) also
decreases with the reduction in the value of the design variable. In the opti-
mization problem, it is given that the constraint should have a value that is
equal to or greater than 20 Hz. Hence the optimum solution corresponds to

\

200
180
160
140
120
100
80
601
40
201

*

—

T - - - -
° & Objective function
2 *  Constraint 1

AN

Xk
%

000'ST-

\u'\

5 =]
* 2
=3

9ev'9

%y (mm)
LA

10 20 30 40 50 60 70 80 90 100

FIGURE 1.5
Function contours for the optimization problem in Example 1.2.
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FIGURE 1.6
Objective function and constraint plot for the problem in Example 1.4.

d =0.0283 m, where the value of the objective function mass is 4.94 kg and the
constraint value is 20 Hz.

1.5 Convexity

Consider two design points, x; and x,, that belong to a set S. If the line join-
ing these two points is also within the set S, then the set S is a convex set. If
the line joining the design points x, and x, does not belong to the set S, then
the set S is a nonconvex set. See Figure 1.7 for convex and nonconvex sets. In
optimization, often we have to check a function for its convexity. Consider a
single variable function f(x) as shown in Figure 1.8 and two points x; and x,
at which the value of the function is f(x;) and f(x,) respectively. Consider any
point ¥ on the line joining x, and x,. If f(#) is less than the value of the func-
tion at the corresponding point X on the line joining f(x;) and f(x,) then f(x) is
a convex function, that is, for convexity

f(B)<f@) (1.34)

Examples of convex functions are x2, e, etc. If Ji(x) is a convex function then
™ is also a convex function. Hence, e* and e° are also convex functions.
Let us plot (Figure 1.9) these functions in MATLAB (convexity.m) to show that
these functions are indeed convex.

© 2015by Taylor & FrancisGroup,LLC



14 Optimization: Algorithms and Applications

Convex set
S

Nonconvex set

N

FIGURE 1.7
Convex and nonconvex sets.

FIGURE 1.8
Convex function.

The concept of convexity is important in declaring that a function has one
minimum only. A convex function thus has a global minimum. If a function
is nonconvex, the optimum reached might be a local one (see Figure 1.10).
Such functions with more than one minimum or maximum are referred to as
multimodal functions. Traditional gradient-based algorithms have difficulty
in locating a global optimum solution. In addition, a designer often has to
look for an alternative solution to a global optimum because of the pres-
ence of the constraints. For example, at a global optimum solution, the design
variables may be such that it might be difficult to manufacture the product or
the particular material might be very costly. The task of the designer is thus
difficult. He not only has to find a global optimum solution, but also locate
local optimum solutions.
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FIGURE 1.9
Examples of convex functions.

Local optimum

Global optimum

X1 Xy

FIGURE 1.10
Local and global optima for a nonconvex function.

If f(x) is a convex function, then —f(x) is a concave function. Similarly, if f(x)
is a concave function, then —f(x) is a convex function. Figure 1.11 shows both
convex and concave functions for y = e*.

Typically, optimization algorithms are developed to minimize the objec-
tive function. As discussed earlier, convexity plays an important role for
functions where their minima are to be located. However, there can be opti-
mization problems where one needs to maximize the objective function f(x).
The maximization problem can be converted to the minimization type by
changing the sign of the objective function to —f(x). Mathematically,
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4t Convex
y=e

Concave
-4t y=-e*

-8
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FIGURE 1.11
Concave and convex functions.

Maximize
f)
is the same as
Minimize
%)
1

1.6 Gradient Vector, Directional Derivative,
and Hessian Matrix

The derivative or gradient of a function f(x) at a point x, generally denoted by
f'(x), is the slope of the tangent (see Figure 1.12) at that point. That is,
f(x)=tan© (1.35)

where 6 is the angle measured by the tangent with respect to the horizon-
tal. Along the gradient direction, there is the maximum change in the value
of the function. Thus, gradient information provides the necessary search
direction to locate the maximum or minimum of the function.
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Tangent

v

X
o]

FIGURE 1.12
Concept of derivative.

In most optimization problems, which are generally nonlinear, f'(x) has to
be evaluated numerically. We can use forward difference, backward difference,
and central difference methods to find the derivative of a function at a point. If
the value of a function f(x) is known at a point x, then the value of the func-
tion at its neighboring point x + Ax can be computed using Taylor’s series as

’ sz ” AxS ”
f(x+Ax)=f(x)+Axf(x)+7f (x)+?f (x)+-- (1.36)
Rearranging Equation 1.36 gives

W: f'(x)+%f”(x)+%f”'(x)+"' (1.37)

The forward difference formula for evaluating the derivative of a function
can be written as

frn = LB AA’Z =I® 4 o) (1.38)

The quantity O(Ax) represents that this formula is first-order accurate. In a
similar fashion, the backward difference formula can be written as

fray= SO =20) JA:(CX ~M) 4 o) (1.39)
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Using the forward and backward difference formulas, one can derive the
central difference formula as

(x+Ax)— f(x—Ax)

s +0(Ax?) (1.40)

F=1

Because the central difference formula for computing the derivative of
a function is of second order, it is more accurate than forward/backward
difference method. Again, the second derivative can be evaluated using the
equation

fry = L A= 2{;?) +fla-An) (1.41)

Let us take a function
flx) =2sin5x +3x% - 2x2 + 3x - 5 (142)

and compute the first and second derivatives using the central difference
formula for x ranging from 0.1 to 1.0 with Ax as 0.01. A MATLAB code,
derivative.m, is written and the output is plotted in Figure 1.13.

The top plot in the Figure 1.13 is f(x) varying with x. Note that the function
has one maximum and one minimum and these points are shown with *.
The derivative of the function is plotted in the second plot. Note that f'(x) = 0
at the maximum and minimum of the function. From the third plot, observe

-2
E 3
<
)
0
20
L o0
N
-2
%
100
S of
N
~100

0.2 0.4 0.6 0.8 1

FIGURE 1.13
Plot of a function with its first and second derivative.
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that f"(x) 2 0 at the minimum and f"(x) < 0 at the maximum of the function.
The second derivative provides curvature information of the function.

For certain functions such as f(x) = x% both f'(x) = f"(x) = 0 at x* = 0. In such
instances, one has to look for higher order derivatives. Here f”(x) = 6, which
is nonzero. If the first nonzero higher order derivative is denoted by #, then
x* is an inflection point (or a saddle point) if n is odd and x* is local optimum if
n is even. Therefore, x* is an inflection point for the function f(x) = x5, as the
first nonzero higher order derivative is odd (third derivative). Similarly, it
can be shown that the function f(x) = x* has a local minimum at x* = 0. These
two functions are plotted in Figure 1.14.

So far we considered the derivative of a function with one variable only.
The gradient is a vector that contains partial derivatives of the function with
respect to the design variables (x;, x,, -+, x,,) and is mathematically written as

oS
ax,

o

Vf = ox, (1.43)

9
ox

n

Let us plot a tangent and gradient at a given point (x;, x,) on the function
contours for Example 1.2. For a single-variable case, we observed that the
tangent at any point for a function and its gradient are the same (Figure 1.12).

8 16

6 14}

4 12

2 y=a 10 y=at

y 0 y 8 :
D) 6 H H
-4 4
-6 2
D) 0 2 % 0 2
X X

FIGURE 1.14
Saddle point and local minimum functions.
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However, for a two-variable case, the tangent for each function contour is
different and the value of the function remains the same along the tangent,
that is, along a tangent

o of
A =2 L Ax, = 144
\f ax, Ax, + o, Ax, =0 (1.44)

The gradient is normal to the tangent. A MATLAB code, grad.m, is written
that on execution gives an output shown in Figure 1.15. On the function con-
tour with a value of 15,000, a point (25, 70.493) is located where we desire to
plot the tangent and gradient. Using Equation 1.44, we can write

of

Ax, = — %’}1 A, = 2x1x+ %2 Ay, (145)
9 1
ox,

Using the incremental Equation 1.45, a tangent can be drawn at the point
(25, 70.493). If the slope of the tangent is given by m,, then the slope of the
gradient m, can be computed from the relation

m,m, = -1 (1.46)

Consider three functions, fi(x;, X,, X3), fo(x1, X,, X3), and f5(x;, x,, x3), which
are functions of three variables, x,, x,, and x;. The gradient of these functions

100
ol & % 2 7 & Objective function| |
< 2 - - — Tangent
80 \ \ + Gradient
ol VoS
S \ o % 2 %
g 2 ) A A 2 %
E st 3 g 2 % K K
é\‘ 40 o \
\
301 A 1
\ \ N >
20 3 5 2 7 4]
2 g E?) 2 2
o AL A AL AL

10 20 30 40 50 60 70 80 90 100

FIGURE 1.15
Tangent and gradient for the objective function given in Example 1.2.
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can be put in a single matrix referred to as a Jacobian J and is expressed in
mathematical form as

9 Hh A

dx;  dx, dx,

go| % %

Clox,  ox, ox, (147)
P S I

dx; Odx, dxg

For constrained optimization problems, it is possible that moving in the
gradient direction can result in moving into the infeasible region. In such an
instance one wishes to move in some other search direction and would like
to know the rate of change of function in that direction. The directional deriva-
tive provides information on the instantaneous rate of change of a function
in a particular direction. If u is a unit vector, then the directional derivative
of a function f(x) in the direction of u is given by

Vi) u

The Hessian matrix H represents the second derivative of a function with
more than one variable. For a function f(x;, x,, x;) with three variables, the
Hessian matrix is written as

T 7
ox; o, x,  oxx,
f f O f
H]= or 2
[H] 0x,X, ox; 0x,X5 (1.48)
If f Of
I 0X;x;  0X3X, ox; |

The Hessian matrix should be positive definite at the minimum of the func-
tion. A matrix is positive definite if its eigenvalues are positive. For a square
matrix, there exists a nonzero vector such that when multiplied with the
square matrix it results in a vector that differs from the original by a multipli-
cative scalar. The nonzero vector is termed the eigenvector and the multipli-
cative scalar the eigenvalues. Let us check the eigenvalues for the following
matrix by executing a MATLAB code, positive_definite.m:

2 1 1
H=|1 2 1 (149)
0 2 3
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The eigenvalues of the matrix are 1, 1.5858, and 4.4142. Because all the
eigenvalues are positive, the matrix is positive definite.

Example 1.5

Write a gradient and Hessian matrix for the function
F(x)= %7 + 22,2, +3x3 + 4%5 —5x,%,

Also find the directional derivative of the function at (1, 1, 1) in the

direction
1
d=|2
3
The gradient is given by
2%, +2x,
Vi(x)=| 2x, +6x, —5x4
8x; —5x,
The Hessian is given by
2 2 0
H={2 6 -5
0 5 8

The unit vector in direction d is given by

1/4/14

1
d 1
U=gpr=—————12 |=| 2/ /14
Il 12422 432
31 | 3414

Now, the directional derivative of the function at (1, 1, 1) in the direc-
tion of the unit vector u is given by

1414
Vi u=[4 3 3]|2/14 |=19/14
3/14
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1.7 Linear and Quadratic Approximations

A quadratic approximation of a function is often desired in optimization, as
certain solution methods such as Newton’s method show faster convergence
for these functions. The Taylor series approximation, as discussed in an ear-
lier section, is used to make linear or quadratic approximations of a function
by appropriately considering the number of terms in the series. A MATLAB
code, quadr.m, is written that demonstrates linear and quadratic approxima-
tions (Figure 1.16) of a function e™*.

The Taylor series approximation can be easily extended to a function with
n variables and is given by the expression

f(x+Ax):f(x)+Vf(x)TAx+%AxTHAx+~- (1.50)

For a linear approximation of the function, only the gradient term is used
and the Hessian term is ignored. For a quadratic approximation of the func-
tion, the Hessian term is considered along with the gradient term.

For a function with two variables, as in Example 1.2, a MATLAB code,
quadr_exampl2.m, is written to make a quadratic approximation of the func-
tion. On executing the code, quadratic approximations are plotted (Figure
1.17) along with the function contours. The gradient and Hessian for this
function are

27mx, + 4mx,

Vi@ =1,

(1.51)

Exp(-«)
= = = Linear
''''' Quadratic ||

fx)

FIGURE 1.16
Linear and quadratic approximation of the function e=~.
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FIGURE 1.17
Quadratic approximation of the objective function in Example 1.2.

(1.52)

=
I

it 2w
2r 0

Example 1.6
Construct linear and quadratic approximations for the function
x
x)=3x, -+
f(x)=3x, xz

at a point (2, 1).

The gradient is given by
1
x -1
Vf(x)= St Vf(xo)=[ }
X, 5
3+
X2
The Hessian is given by
1
o =
H= Y2 1_|0 1
1 2x 1 -4
Gooxn
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The linear approximation of the function is given by
I(x)= f(xy)+ Vf(xO)T(x —Xp)

—1+[ 1 5]{"1_2}

x,—1

=-x;+5x, -2

The quadratic approximation of the function is given by

g(x) = f(x)+ Vf(xo)T(x— x0)+%(x— xO)TH(x— x,)

4 =57, -, _2+{<x1—2) B xl(xz—n}(xz_l)+ (1, = 2)(x, = 1)

2x2 x3 242

1.8 Organization of the Book

The book is organized into 11 chapters. Chapter 2 discusses 1-D algorithms
such as the bisection, Newton-Raphson, secant, and golden-section methods.
These algorithms form the building blocks for the unconstrained optimiza-
tion methods such as the steepest descent, Newton, Levenberg-Marquardt,
conjugate gradient, Davidon-Fletcher—Powell (DFP), and Broyden—Fletcher—
Goldfarb—Shanno (BFGS) methods, which are discussed in Chapter 3. The
direct search Powell’s method is used to solve a complex robotics problem.
Chapter 4 elaborates on linear programming where simplex, dual simplex,
and interior-point methods are discussed. A practical portfolio optimiza-
tion problem is also solved in this chapter. Genetic algorithm, simulated
annealing, and particle swarm optimization techniques are elaborated in
Chapter 5. Ant colony optimization and the tabu search method are also
briefly introduced here. Solution techniques such as penalty function, aug-
mented Lagrangian, sequential quadratic programming, and methods of
feasible directions are discussed in Chapter 6 for constrained optimization
problems. Multiobjective optimization methods are discussed in Chapter 7.
The shape design of a reentry body is optimized and discussed in this chap-
ter. In Chapter 8, both unconstrained and constrained problems are solved
using geometric programming techniques. Chapter 9 discusses multidisci-
plinary design optimization (MDO), where different architectures are con-
sidered. The importance of response surface methodology is highlighted for
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MDO problems. Gomory’s cutting plane method, zero-one problem, Balas’
method, branch-and-bound method, and so forth are discussed in Chapter 10
on integer programming. Both deterministic and probabilistic aspects of
dynamic programming are discussed in Chapter 11. See Figure 1.18 for a
quick glance at the organization of the book.

« Unidirectional search

« Test problem

« Solution techniques

« Additional test functions
« Application to robotics )

Chapter 1
Introduction
» Test problem
Chapter 2 « Solution techniques

1-D optlmlzatlon « Comparison

T

» Graphical method

Chapter 3
Standard form

Unconstrained optimization

.

» Genetic algorithm

2 .

Basic solution

« Simulated annealing
« Particle swarm
optimization

+ ACO and tabu search

M

|

Chapter 4 « Simplex method
Linear programming « Interior-point method
« Portfolio optimization
¥
Chapter 5
Random search methods
¥
Chapter 6 + Optimality conditions

« Solution techniques

Constrained optimization O
+ Application

l

Chapter 7
Multiobjective optimization

g/:,:g

» Weighted sum
approach

+ Goal programming

« g-constraints method

« Utility function method

+ Application

+ Architecture
+ Framework
« Response surface

+ Deterministic
« Probabilistic

FIGURE 1.18
Organization of the book.

v

» Unconstrained problem
+ Dual problem
« Constrained problems

Chapter 8
Geometric programming

« Application

o

W

Chapter 9
MDO
+ Gomory’s method
Chapter 10 « Balas’ method

Integer programmmg + Branch-and-bound

method

Chapter 11
Dynamic programming

gl
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Chapter Highlights

In an optimization problem, we write the objective function that is to
be maximized or minimized along with inequality and equality con-
straints. The objective function and constraints are a function of the
design variables that need to be evaluated by the optimization methods.

The design variables can be a real number or could be of the discrete,
binary, or integer type.

Modeling refers to writing down the observations of a problem in
mathematical form using basic building blocks of mathematics such
as addition, subtraction, multiplication, division, functions, and
numbers with proper units.

The gradient at a point is the slope of the tangent at that point.

If the objective function and constraints are linear functions of the
design variables, it is referred to as a linear programming problem.
These functions do not contain terms such as x,x, and x;.

The graphical method can be applied to solve the optimization prob-
lem with up to three design variables.

Functions with more than one minimum or maximum are referred
to as multimodal functions.

The concept of convexity is important in declaring a function to have
one minimum only. A convex function thus has a global minimum.

Typically, optimization algorithms are written to minimize a func-
tion. If the objective function is to be maximized, it is negated and
then solved as a minimization problem.

The necessary condition for optimality (either maximum or mini-
mum) is that the gradient vanishes at the point of consideration.

At the point of optimality, if the second derivative of the objective
function is positive, it is a case of the minimum and if the second
derivative is negative, it is case of the maximum.

The derivative of a function can be numerically evaluated using for-
ward, backward, and central difference methods. The central differ-
ence method is more accurate than forward or backward difference
methods.

The directional derivative provides information on the instanta-
neous rate of change of a function in a particular direction.

The Hessian matrix H represents the second derivative of a function
with more than one variable.

The Hessian matrix should be positive definite at the minimum of the
function. A matrix is positive definite if its eigenvalues are positive.
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* A quadratic approximation of a function is often desired in optimi-
zation, as certain solution methods such as Newton’s method show
faster convergence for these functions.

e Taylor’s series approximation is used to make linear or quadratic
approximations of a function by appropriately considering the num-
ber of terms in the series.

Formulae Chart

Forward difference:

f’(x): f(x‘*'AAx;_f(x)

Backward difference:

f’(x) — f(x)_ ,L(Cx - Ax)

Central difference:

(x+Ax)— f(x—Ax)
2Ax

Fay="1

Central difference formula for the second derivative:

f”(x): f(x"'Ax)_z,Af;-‘Zx)"'f(x_Ax)

Jacobian of three functions with three variables:

% Hh K
dx; dx, dxg
g-| % %%
dx; Odx, dxg
9 S K
dx;  dx,  dx
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Hessian for a three-variable function:

If  f  If
ox?  0xx,  0xyXs
2 2 2
L51= ai {c 37]’: 8?( J;
241 2 273
*f o’ f O f
03X, 0X3X, ox;

Quadratic approximation:

Flx+0w) = f(x)+ V() Ax+ %AxTHAx

29

Problems

1.

An airline company in India uses A320 aircraft to fly passengers
from New Delhi to Mumbai. Though the maximum seating capacity
of the aircraft is 180, the airline observes that on average it flies only
130 passengers per flight. The regular fare between the two cities
is Rs. 15,000. From the market survey, the company knows that for
every Rs. 300 reduction in fare, it would attract an additional four
passengers. The company would like to find a fare policy that would
maximize its revenue. Formulate this as an optimization problem.

. The average yield in a farm is 300 apples per tree, if 50 apple trees

are planted per acre. The yield per tree decreases by 3 apples for each
additional tree planted per acre. How many additional trees per acre
should be planted to maximize the yield? Formulate this as an opti-
mization problem.

. Determine the area of the largest rectangle that can be inscribed in

a circle of radius 5 cm. Formulate this as an optimization problem
by writing down the objective function and the constraint. Solve the
problem using the graphical method.

. A field needs to be enclosed with a fence, with a river flowing on one

side of the field. We have 300 m of fencing material. Our aim is to use
the available fencing material and cover the maximum area of the field.
Formulate this as an optimization problem by writing down the objec-
tive function and the constraint and clearly stating the design variables.

. A traveling salesman has to start from city A, cover all other n number

of cities, and then come back to city A. The distance between the ith
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and jth cities is given by ;. How could he plan the route so to cover
the minimum distance? Formulate this as an optimization problem.

6. A company has initial wealth W and would like to invest this to get
maximum returns. It can get higher returns (r,) if it invests in risky
assets, but the return is not guaranteed. A return (r,) is guaranteed if
it invests in safe assets. How much should the company invest in risky
assets (R), to maximize its wealth at the end of a stipulated period?
Formulate the objective function for the optimization problem.

7. In an experiment, the following observations (see Table 1.3) are made
where x is an independent variable and y is a dependent variable. It
is desired to fit these data with a straight line

y=mx+c

where m and ¢ are to be determined. The data are to be fitted in the
least squares sense, that is, 2( yi—y )2 is tobe minimized. Formulate
this as an optimization problem.

8. The cost of a solar energy system (King 1975) is given by

U =35A + 208V

where A is the surface area of the collector and V is the volume of the
storage (Figure 1.19). Owing to energy balance considerations, the
following relation between A and V is to be satisfied:

A(290 - 180j =5833.3

TABLE 1.3

Data Observed from an Experiment
x, 1 2 3 4 5
Yi 45 55 70 85 105

Solar flux \ »
\\\\

Solar collector

of area A Energy

storage tank
of volume V

FIGURE 1.19
Solar energy problem.
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The design variable T is related to V as

The variable T has to be restricted between 40°C and 90°C. The cost
U is to be minimized. Formulate this as an optimization problem.

9. Write the gradient and Hessian matrix for the function

F(x) =520, +In (227 +322)

10. A company manufactures three products: A, B, and C. Each product
requires time for three processes: 1, 2, and 3, and this information is
given in Table 1.4.

The maximum available capacity on each process is given in
Table 1.5.

The profit per unit for the product is given in Table 1.6.

What quantities of A, B, and C should be produced to maximize
profit? Formulate this as an optimization problem.

11. A company has three factories and five warehouses. The warehouse
demand, factory capacity, and the cost of shipping are given in
Table 1.7.

Determine the optimal shipment plan to minimize the total cost of
transportation. Formulate the optimization problem.

TABLE 1.4

Time Required for Each Process

Time Required (minute)/Unit

Product A B C
Process 1 12 25 7
Process 2 11 6 20
Process 3 15 6 5
TABLE 1.5
Maximum Capacity of Each Process
Process Capacity (minutes)
1 28,000
2 35,000
3 32,000
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TABLE 1.7
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TABLE 1.6

Profit per Unit of Each Product
Product Profit/Unit
A 5

B 7

C 4

Cost per Unit of Shipment from Factory to Warehouse

From Factory

Warehouse

A B C D E

P

Q
R

Demand

Cost per Unit of Shipment Capacity (No. of Units)
3 7 4 6 5 150
5 4 2 5 1 110
6 3 2 2 4 90

12. Plot the function

Sfx) = (x + 3)(x — D(x + 4)

and locate minimum and maximum of the function in [-4, 0].

13. An oil refinery company blends four raw gasoline types (A, B, C,
and D) to produce two grades of automobile fuel, standard and pre-
mium. The cost per barrel of different gasoline types, performance
rating and number of barrels available each day is given in Table 1.8.

The premium should have a rating greater than 90 while the stan-
dard fuel should have a performance rating in excess of 80. The
selling prices of standard and premium fuel are 90 dollars and 100
dollars per barrel respectively. The company should produce at least
6000 barrels of fuel per day. How much quantity of fuel (of each

TABLE 1.8

Cost, Performance Rating, and Production Level of Different Gasoline Types
Cost/Barrel in Dollars Performance Rating Barrels/Day

A 60 75 3000

B 65 85 4000

C 70 920 5000

D 80 95 4000
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type) should be produced to maximize profit? Formulate this as an
optimization problem.

14. Check whether the following functions are convex or not.

a.2x*-3x+5 x €[—4,4]
b.x*-2x*+4x-10 xe[-3,1]
1
C. xe[-1.6,-0.8
1 [ ]

d. Vx*+2x+5 xe[-5,5]

15. Write the first three terms of the Taylor series for the function
fx) =1In(x - 1)

atx =3.
16. Find the linear approximation of the function

F() = (1 + 207 + (1 — 20

atx=1.

17. Write the Taylor series expansion (up to four terms) for the function
e* centered at x = 3.

18. Write the Taylor series expansion (up to three terms) for the function
e«s* centered at x = m.

19. Find the quadratic approximation of the function
fx) =In(1 + sin x)

atx=0.
20. Find the directional derivative of the function

flx)= XTX, + X5X5 — X,X,X5

1
at (1, 1, -1) in the direction | 2 |
3

21. Using MATLAB, plot the functions x* and ‘x‘ and check whether
these functions are convex.
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22. Solve the following optimization problems using the graphical
method.

i. Maximize z = 125x; + 150x,
subjectto  6x; + 11x, < 66
8x; +9x,<72

Xy, %, 20
ii. Maximize z =3x; +4x,
subjectto  2x; +x, <30
X, + 3x, 240

Xy, %, 20

23. Calculate the Jacobian of the following system of equations:
X, +2x3 +3x3

X7X,%5

3x1x, = 2%1X5 + 4%, X4
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1-D Optimization Algorithms

2.1 Introduction

The one-dimensional (1-D) optimization problem refers to an objective func-
tion with one variable. In practice, optimization problems with many vari-
ables are complex, and rarely does one find a problem with a single variable.
However, 1-D optimization algorithms form the basic building blocks for
multivariable algorithms. As these algorithms form a subproblem of mul-
tivariable optimization problems, numerous methods (or algorithms) have
been reported in the literature, each with some unique advantage over the
others. These algorithms are classified into gradient-based and non-gradient-
based algorithms. Some popular algorithms are discussed in this chapter.
As an example, a single-variable objective function could be

flx)=2x2-2x+8

This is an unconstrained optimization problem where x has to be deter-
mined, which results in minimization of f(x). If we have to restrict x within
a < x <b where a and b are real numbers, then it becomes a constrained
optimization problem. If the function f(x) is either continuously increasing
or decreasing between two points 2 and b, then it is referred to as a monotonic
function (see Figure 2.1). In a unimodal function, the function is monotonic
on either side of its minimum point (x*). The function f(x) = 2x> — 2x + 8 is
plotted in Figure 2.2, in which we observe that f(x) is a unimodal function.
Using the property of the unimodal function that it continuously decreases
or increases on either side of the minimum point, the single-variable search
algorithms can be devised in such a way that they eliminate certain regions
of the function where the minimum is not located.

In the next section, a test problem in a solar energy system is defined. Both
gradient-based and direct search methods are discussed and tested for this
problem. Subsequently, these solution techniques will also be tested on some
more standard optimization problems. The performances of these methods
are compared toward the end of the chapter. The road map of this chapter is
given in Figure 2.3.

35
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Sla) < f(b) fla) > f(b)

FIGURE 2.1
Monotonic increasing and decreasing functions.

70

FIGURE 2.2
Unimodal function.

[ 1-D optimization algorithms ]
Il

[ Test problem (solar energy)

!

[ Solution techniques ]

[ !
[ Gradient-based methods ] [ Direct search methods
- |
* Bisection method
* Newton-Raphson method * Golden section method
* Secant method * Other methods
* Cubic polynomial fit

l ,
!

[ Comparison of solution methods

)

FIGURE 2.3
Road map of Chapter 2.
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2.2 Test Problem

Before we discuss the optimization algorithms, let us set a problem on which
we will be testing these algorithms. The solar energy problem is defined in
Problem 8 of Chapter 1. In this cost minimization problem, the cost is a func-
tion of the volume of the storage system and the surface area of the collector.
The volume and surface area are functions of the design variable tempera-
ture T. Let us rewrite the cost function in terms of T alone as

_ 204,165.5 10,400
" 330-2T T-20

2.1)

The variable T is restricted between 40°C and 90°C. The function U is plot-
ted as a function of T in Figure 2.4. The minimum occurs at T* = 55.08 and
the minimum value of the function is U* = 1225.166. Observe from the figure
that the cost function is unimodal. A MATLAB® code, exhaustive.m, is used
to plot the cost function by varying the design variable T from 40 to 90 in
steps of 0.01. One may ask why;, if this method is able to locate the minimum
and is also simple, there is a need to discuss other algorithms. It may be
noted that the number of function evaluations by this particular method is
(90 — 40)/0.01 = 5000. For more complex problems, the time required for the
function evaluation is at a premium and it may not be practical to evaluate
the function so many times. This necessitates exploring new algorithms that
require fewer function evaluations to reach the minimum of any function.

On executing this code, the output obtained is

Minimum cost = 1225.17
Occurs at T = 55.08

1550

1500

1450

1400 |

1350 ¢

1300

1250

1200 - - . .
40 50 60 70 80 90

FIGURE 2.4
Cost function for the test problem.
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2.3 Solution Techniques

As mentioned previously, the solution techniques for one-dimensional opti-
mization problems can be classified into gradient-based and non—gradient-
based algorithms. As the name suggests, gradient-based algorithms require
derivative information. These methods find applications to problems in
which derivatives can be calculated easily. In the search processes of these
algorithms, the derivative of the function is driven to zero. The algorithm is
terminated when the derivative of the function is very close to zero and the
corresponding x is declared as the point (x* = x) at which minimum of the
function occurs. The following gradient-based methods are discussed in this
section:

¢ Bisection method

¢ Newton-Raphson method
¢ Secant method

¢ Cubic polynomial fit

For certain types of optimization problems, the variable x may not be real,
but can take only certain discrete values. Recall the pipe size problem dis-
cussed in Chapter 1, where pipe size comes in some standard sizes such as
1, 2 inches, and so forth. For such discontinuous functions, gradient infor-
mation will not be available at all points, and the search algorithm has to
proceed using the function evaluations alone to arrive at the minimum of the
function. The golden section method is a very effective solution technique
for such problems and is discussed later in this section. The golden sec-
tion method can also be applied to continuous functions. Some other direct
search methods such as dichotomous search, the interval halving method,
and the Fibonacci method are also briefly discussed.

2.3.1 Bisection Method

In Chapter 1, we discussed that at the maximum or minimum of a function,
f'(x) = 0. Because in these problems we are considering a unimodal function
of minimization type, the condition that the gradient vanishes at the mini-
mum point still holds. The gradient function changes sign near the optimum
point. If f(x,) and f'(x,) are the derivatives of a function computed at points
x, and x,, then the minimum of the function is located between x, and x, if

flepf () <0 2.2)

Based on this condition, certain regions of the search space can be elimi-
nated. The algorithm is described in Table 2.1.
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TABLE 2.1
Algorithm for the Bisection Method
Step 1: Given g, b, &, and Ax

Step 2: Compute o = izh ,f(a) and f' (o)
Iff (@) f (o) < O
then b=«
else a=a
If la-b| >¢
then goto Step 2
else goto Step 3
Step 3: Converged. Print x* = a, f(x*) = f(a)

In this algorithm a and b are the bounds of the function, and Ax is used
in the central difference formula for computing the derivative and ¢ is a
small number required for terminating the algorithm when |a - b| < €. See
Figure 2.5, which gives physical insight into this method. The algorithm is
coded in MATLAB (bisection.m). The objective function is coded in MATLAB
file (func.m). Users can change the function in this file to minimize another
objective function that may be of interest to them. In doing so, they also need
to give appropriate bounds for the function, given by a and b in the main
program (bisection.m).

FIGURE 2.5
Bisection method.

S
A
» X
S®)f(@) <0
£ N/l
|
4 «— T —S>— — —>:
Region eliminated l
: x
| b i

a [0
T
|
|
I
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1550 : 1550
- Region

1500 . eliminated 1500
. after first Reion;

1450 © iteration 1450} °8lOM:
: eliminated

1400 : > 1400} after second

s} > iteration

1350 1350 <

1300 1300

1250 1250

1200 3 1200 e ; ;

40 50 60 70 80 90 40 50 60 70 80 920
T T
FIGURE 2.6

Region elimination with iterations (bisection method).

On executing the code for the test problem, the output obtained is

a b
40.000 90.000
40.000 65.000
52.500 65.000
52.500 58.750
52.500 55.625
54.063 55.625
54 .844 55.625
54 .844 55.234
55.039 55.234
55.039 55.137
55.039 55.088
55.063 55.088
55.076 55.088

X* = 55,082 Minimum = 1225.166
Number of function calls = 52

The minimum obtained from this method matches very closely with the
exhaustive search method. But the number of function evaluations in the
bisection method is only 52 as compared to 5000 in the exhaustive search
method. For this test problem, Figure 2.6 shows the regions that are elimi-
nated in the first two iterations.

2.3.2 Newton-Raphson Method

Isaac Newton evaluated the root of an equation using a sequence of poly-
nomials. The method in the present form was given by Joseph Raphson in
1960, with successive approximation to x given in an iteration form. The
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Newton-Raphson method is a root finding technique in which the root of
the equation f'(x) = 0 is evaluated. Using the Taylor series, the function f'(x)
can be approximated as

foa) + flx)Ax 2.3)
where the gradient is approximated at point x;. Setting Equation 2.3 to zero,
the next approximation point can then be given as

_ _f’(xk)
Y

Figure 2.7 illustrates the steps of this method. The method shows quadratic
convergence. That is, if x* is the root of the equation, then

(2.4)

el
———<¢, ¢20 (2.5)
e -
The Newton-Raphson algorithm is described in Table 2.2.

The algorithm is coded in MATLAB (newtonraphson.m). On executing the
code, the output obtained is

x f (x) Deriv. Second deriv.
45.000 1266.690 -9.551 1.449
51.590 1229.340 -2.485 0.800
54.697 1225.214 -0.249 0.650
55.079 1225.166 -0.003 0.636
55.084 1225.166 -0.000 0.635

Tangents

v

FIGURE 2.7
Newton-Raphson method.
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TABLE 2.2
Algorithm for the Newton—-Raphson Method

Step 1: Given x and Ax

Step 2: Compute, f'(x) and f"(x)
Store, xprev = x

fx)

Update x = xprev—
p p f//(x)

If |x —xprev|>e
then goto Step 2
else goto Step 3
Step 3: Converged. Print x* = x, f{x*) = f(x), f (x*), f' (x*)

The minimum obtained by this method is in agreement with the earlier
methods. The number of function evaluations in this method is 25 as com-
pared to those in the bisection method, for which 52 function evaluations were
required. The Newton—-Raphson method has the following disadvantages:

¢ The convergence is sensitive to the initial guess. For certain initial
guesses, the method can also show divergent trends. For example
(Dennis and Schnabel 1983), the solution to the function tan! x con-
verges when the initial guess, |x| < a, diverges when |x| > a and
cycle indefinitely if the initial guess is taken as |x| = a, where a =
1.3917452002707.

* The convergence slows down when the gradient value is close to
zero.

e The second derivative of the function should exist.

2.3.3 Secant Method

In the bisection method, the sign of the derivative was used to locate zero of
f/(%). In the secant method, both the magnitude and the sign of the derivative
are used to locate the zero of f'(x). The first step in the secant method is the
same as in the bisection method, That is, if f'(x,) and f'(x,) are the derivatives
of a function computed at point x; and x,, then the minimum of the function
is located between x; and x, if

fx)f(x) <0 (2.6)

Further, it is assumed that f'(x) varies linearly between points x, and x,. A
secant line is drawn between the two points x; and x,. The point @ where the
secant line crosses the x-axis is taken as the improved point in the next itera-
tion (see Figure 2.8).

One of the points, x; or x,, is then eliminated using the aforementioned
derivative condition. Thus, either the (x;, o) or the («, x,) region is retained
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f'x)

Secant

|

------a

FIGURE 2.8
Secant method.

for the next iteration. The iteration continues until f'(a) is close to zero. The
algorithm is coded in MATLAB (secant.m) and is described in Table 2.3.
On executing the code for the test problem, the output obtained is

Alpha Deriv
65.000 5.072
59.832 2.675
57.436 1.402
56.265 0.726
55.680 0.373
55.385 0.190
55.237 0.097
55.161 0.049
55.123 0.025
55.104 0.013
55.094 0.006
55.089 0.003
55.086 0.002

X* = 55,085 Minimum = 1225.166
Number of function calls = 82

The secant method is able to locate the minimum of the function, but with
a higher number of function evaluations as compared to other gradient-
based methods.
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TABLE 2.3
Algorithm for the Secant Method

Step 1: Given g, b, €, and Ax, flag = 0;
Step 2: Compute o= % ,f(a) and f' (o)
Iff(a) f (o) <O
then b=«
set flag = 1(zero is bracketed)
else a=a
Ifflag=1
then goto Step 3
else goto Step 2

) - f(x)
Step 3: Compute o= x, — (f'(xz)— f/(xl))/(xz o
If f() >0
then b=«
else a=a
If |f(@)|<e

then goto Step 4
else goto Step 3
Step 4: Converged. Print x* = a, f(x*) = fla)

2.3.4 Cubic Polynomial Fit

In this method, the function f(x) to be minimized is approximated by a cubic
polynomial P(x) as

P(x) =ay + a;x + a,x> + ax® 2.7)

If the function f(x) is evaluated at four different points, then the polynomial
coefficients a, a,, a,, and a, can be evaluated by solving four simultaneous
linear equations. Alternatively, if the value of the function and its derivatives
are available at two points, the polynomial coefficients can still be evaluated.
Once a polynomial is approximated for the function, the minimum point can
be evaluated using the polynomial coefficients.

The first step in this search method is to bracket the minimum of the func-
tion between two points, x, and x,, such that the following conditions hold:

f)f(a) <0 (2.8)

Using the information of f{x,), f'(x), f(x,), and f(x,), the minimum point of
the approximating cubic polynomial can be given as

X, ifu<0
X=9%-u,—x) if0<p<l 29)
X ifu>0
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where
_ fx)+w-z 210
BT ) - )+ 2w -0
- W )+ (1) @11)

Xy

+2° = f(x) f(xy) (2.12)

The algorithm for this method is coded in MATLAB (cubic.m) and is described
in Table 2.4.
On executing the code for the test problem, the output obtained is

—x
w= !
_xl‘

‘xz

a b
40.000 65.000
54.109 65.000
54.109 55.120

X* = 55,084 Minimum = 1225.166
Number of function calls = 28

This method is able to capture the minimum point of the function with the
number of function evaluations comparable to that in the Newton-Raphson
method.

TABLE 2.4
Algorithm for Cubic Polynomial Fit

Step 1: Given x, &, and Ax
Step 2: Compute o= azib ,f'(a) and f'(ar)
If f(a) f (o) <0
then b=«
else a=a
Step 3: Repeat Step 2 until f'(a) f'(a) <0
Step 4: Using f(a), f (a), f(b), f (b), compute p, z, and w
Step 5: Compute x
If| f ’(E)‘ < e goto Step 6
If f'(a)f'(x)<0
then b=Xx
else a=x
goto Step 4
Step 6: Converged. Print x* = x, f(x*) = f(x)
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2.3.5 Golden Section Method

Two numbers, p and g, are in a golden ratio if

PRI _P_q 213)
poq

Equation 2.13 can be written as

1+9 =1 (2.14)
p
or
1
1+-=1 (2.15)
T
On solving the quadratic equation
2?2-1-1=0 (2.16)
we get
=1 V5 _ 1.618033 2.17)

2

7 is called the golden number, which has a significance in aesthetics (e.g., the
Egyptian pyramids).

Gradient information was required in the search methods that were dis-
cussed earlier. In the golden section method, the search is refined by elimi-
nating certain regions based on function evaluations alone. No gradient
computation is required in the golden section method. This method has two
significant advantages over other region elimination techniques:

* Only one new function evaluation is required at each step.
¢ There is a constant reduction factor at each step.

The algorithm is coded in MATLAB (golden.m) and is described in
Table 2.5.
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TABLE 2.5
Algorithm for the Golden Section Method

Step 1: Given x, &, and ©

Step 2: Compute
a,=a(l —1)+bt
a,=at+b(l 1)
Step 3: If flo,) > fiow)
then a=o, oy =a, a,=at+b(l - 1)
else a=a, 0, =0y, ay=a(l —7) + bt
Step 4: Repeat Step 3 until |fla;) — floy) | <e
Step 5: Converged. Print x* = o, f(x*) = flay)

On executing the code for the test problem, output obtained is

a b
40.000 90.000
40.000 70.902
40.000 59.098
47.295 59.098
51.803 59.098
51.803 56.312
53.526 56.312
54.590 56.312
54.590 55.654
54.590 55.248
54.841 55.248
54.996 55.248
54.996 55.152
55.056 55.152
55.056 55.115
55.056 55.092

X* = 55.077 Minimum = 1225.166
Number of function calls = 18

2.3.6 Other Methods

In addition to the golden section method, there are other direct search meth-
ods that can be used to solve the one-dimensional optimization problems,
including

¢ Dichotomous search
¢ Interval halving method
¢ Fibonacci method
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In the dichotomous search, a function is evaluated at two points, close to the
center of the interval of uncertainty. Let these two points be x, and x, given by

L §
=——— 2.18
v=2- @18)

L &
=—+— 2.19
Xp 2"'2 (2.19)

where § is a small number and L is the region of uncertainty. Depending
on the computed value of the function at these points, a certain region is
eliminated. In Figure 2.9, the region toward the right-hand side of x;, is elimi-
nated. In this method, the region of uncertainty after n function evaluations
is given by

L 1
271/2 +8(1_ 2;1/2) (220)

In the interval halving method, half of the region of uncertainty is deleted
in every iteration. The search space is divided into four equal parts and func-
tion evaluation is carried out at x;, x,, and x;. Again, a certain region gets
eliminated based on the value of the functions computed at three points. In
Figure 2.10, the region toward the right-hand side of x, is eliminated. In this
method, the region of uncertainty after n function evaluations is given by

n-1

1 2
(2) L (2.21)

v

FIGURE 2.9
Dichotomous search.
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v

FIGURE 2.10
Interval halving method.

A Fibonacci sequence is given by
F,=F,,+F,,
where
F,=F, =1
In the Fibonacci method, the functions are evaluated at points
x,=a+L*
x,=b-L*

where [g, b] define the region of uncertainty and L* is given by

n2 7

n

L*=

In this method n has to be defined before the start of the algorithm.

49

2.22)

(2.23)

(2.24)

(2.25)

(2.26)

2.4 Comparison of Solution Methods

Having defined a number of solution methods to find the minimum of a
function, it is natural to ask the question of which solution method to use for
a given problem. The answer is quite straightforward: no single method can
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be used for all types of problems. Different methods may have to be tried for
different problems.

Let us evaluate the efficiency of each of the methods for the test case problem
that we discussed in an earlier section. One way of defining efficiency of an
optimization method could be to show how x approaches x* with increasing
iterations. Because the number of function evaluations in each iteration is dif-
ferent for different methods, we can plot |x — x*| versus number of function
evaluations for a meaningful comparison. Figure 2.11 shows this plot for differ-
ent solution methods for the solar energy test problem. It is observed from this
figure that the cubic polynomial fit and Newton-Raphson approach x* with 25
number of function evaluations. The bisection and secant methods take a much
larger number of function evaluations to reach the minimum. The golden sec-
tion method takes a minimum number of function evaluations.

Let us further evaluate these methods for some well-known test problems
(Philips et al. 1976; Reklaitis et al. 1983). Table 2.6 summarizes the number
of function evaluations required by each of the methods in reaching the
minimum of the function. The golden section, cubic polynomial fit, and
Newton-Raphson methods perform well for all the test problems except for
the function

2(x—30 +e"* 0<x<100

which is highly skewed. The Newton-Raphson method requires a good ini-
tial guess for convergence. It takes 275 function evaluations for convergence
with an initial guess of x = 5. The method takes fewer function evaluations
for convergence with x < 5. However, the method diverges for x > 10. The
cubic polynomial fit did not converge for this particular function. The golden

16 T r
—©6— Newton—Raphson
141 —+&— Golden section
—»— Bisection
12 Cubic
—+— Secant
__ 1oy
8
2
6 -
4 -
2 -
0 * —
40 60 80 100

Number of function evaluations

FIGURE 2.11
Comparing different solution methods.
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TABLE 2.6

Comparing Different Solution Techniques for Different Problems

Number of Function Evaluations

Minimize x* f&x*)  Golden Bisection Cubic Newton Secant

3xt + (x — 1)? 0.451 0.426 16 36 36 35 346
0O<x<4

—4x sin x 2029 -7.28 14 36 24 20 32
O<x<m

2(x—3)% +¢%5 1591 7516 14 36 - 275 -
0<x<100

3%+ % -5 1431 5238 14 32 28 20 604

e

05<x<25

2x? +1—6 1.587  15.12 12 36 28 25 70
1<x<5

and bisection methods converged for all the test functions. The solution to
these problems is obtained by modifying the func.m routine and executing
the code for the corresponding method.

Chapter Highlights

¢ The one-dimensional (1-D) optimization problems refer to an objec-
tive function that has one variable. 1-D optimization algorithms
form the basic building blocks for the multivariable algorithms.

e If a function is either continuously increasing or decreasing between
two points, then it is referred as a monotonic function.

¢ In a unimodal function, the function is monotonic on either side of
its minimum point.

® The solution techniques for one-dimensional optimization problems
can be classified into gradient-based and non-gradient-based algo-
rithms. Some popular gradient-based algorithms are bisection, cubic
polynomial fit, secant, and Newton-Raphson methods. The golden sec-
tion algorithm does not require derivative information of the function.

¢ The Newton—-Raphson method requires the second derivative of the
function, and convergence of this method is strongly dependent on
a good initial guess.

¢ In the bisection method, the sign of the derivative is used to locate
the zero of f'(x). In the secant method, both magnitude and sign of
the derivative are used to locate the zero of f'(x).
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* In the golden section method, the search is refined by eliminating
certain regions based on function evaluations only. No gradient
computation is required in the golden section method. This method
derives its name from the number 1.61803, referred to as the golden
number, which has significance in aesthetics.

——
Formulae Chart
Newton-Raphson method:

f(x)
1)

X1 = X —

Secant method:

_ f'(xy)
? (f'(x2) = f/(x1))/ (2 — x7)

aA=x

Problems
1. For a lifting body, lift (L) to drag (D) ratio varies with angle of attack

(o) as

% =-0.0040%> +0.160.+ 0.11

where o lies between 0 and 35 degrees. Find the o at which L/D is
maximum. Use different algorithms presented in this chapter to
arrive at the optimum.

2. Use golden section, cubic polynomial fit, bisection, and secant meth-
ods to minimize the following functions:

3 —x3+5x -3<x<3
b. —x*+4x2-3x+5 -2<x<2

C. e"2 -2x% -05<x<?2

d. 2xz+E 0<x<4
x
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3. Find the maximum value of the function

f(x):;[l— lz—xtan‘l(zlﬂ 0<x<3

1+x X

4. Find the maximum value of the function
flx)=5x2-¢ 0<x<5

5. Find the maximum and minimum of the function
COosXx n
f(x)=In(cos x*** +1) 0£x<§

6. The strength of a beam varies as the product of its breadth and
square of its depth. Find the dimension of the strongest beam that
can be cut from a circular log of diameter 1 m.

300  x
7. A car burns petrol at the rate of [x+ 3 liters per 100 km where

x is the speed in km/h. The cost of petrol is one dollar per liter and
the chauffeur is paid $7 per hour. Find the steady speed that will
minimize the total cost of the trip of 600 km.

8. A swimmer in the sea is at a distance of 5 km from the closest point
C on the shore on a straight line. The house of the swimmer is on the
shore at a distance of 7 km from point C. He can swim at a speed of
2 km/h and run at a speed of 6 km/h. At what spot on the shore should
he land so that he reaches his house in the shortest possible time?

9. The following data are given for an aircraft that is flying at an alti-
tude of 5 km:

Weight = W = 700,000 N
Reference area = S = 140 m?
Aspect ratio= AR =8
Efficiency factor = e = 0.82
Drag coefficient = C, = 0.018
Atmospheric density = p = 0.73612 kg/m3
The thrust (T) of the aircraft is related to its velocity (v) by the

equation
2W? 1
pv*S TeAR

T= % pvSCp + 100<v<300m/s

Find the velocity of the aircraft at which the thrust requirement is
minimum.
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10. Plot the function
f)=xt+x3-x2-5 2<x<2

and identify the region where the function is concave and convex.
Identify the local and global minima for this function.

11. The consumer demand function is given by

F= K x- Py
P2 2]

where k =90, p; = 10, and p, = 5. Maximize the function f(x).
12. Minimize the function

f(x)=2(\/;—3)+m\/.;0 03<x<06

13. A cone-shaped biscuit cup is to be designed for minimum surface
area so that it can hold 130 mL of ice cream. Determine the dimen-
sions of the cone.

14. Microorganisms such as bacteria have an elongated shape (see
Figure 2.12). The frictional coefficient 7 relates the force on a particle
and its velocity when moving through a viscous fluid:

= 427Wl
a

In| 2% |- 2

(b) 2

where p is fluid viscosity (for water this value is 1 (ug/s)/pm). For
a short axis of b = 1 pm, find the value of a that corresponds to the
minimum in the friction coefficient in water (King and Mody 2011).

FIGURE 2.12
Elliptical shape of a bacterium.
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Unconstrained Optimization

3.1 Introduction

The solution techniques for unconstrained optimization problems with mul-
tiple variables are dealt in this chapter. In practice, optimization problems
are constrained, and unconstrained optimization problems are few. One
example of an unconstrained optimization problem is data fitting, where
one fits a curve on the measured data. However, the algorithms presented in
this chapter can be used to solve constrained optimization problems as well.
This is done by suitably modifying the objective function, which includes a
penalty term in case constraints are violated.

The solution methods for unconstrained optimization problems can
be broadly classified into gradient-based and non—gradient-based search
methods. As the name suggests, gradient-based methods require gradi-
ent information in determining the search direction. The gradient-based
methods discussed in this chapter are steepest descent, Davidon—Fletcher—
Powell (DFP), Broyden-Fletcher—Goldfarb-Shanno (BFGS), Newton, and
Levenberg-Marquardt methods. The search direction computed by these
methods uses the gradient information, Hessian information, or a combina-
tion of these two. Some methods also make an approximation of the Hessian
matrix. Once the search direction is identified, one needs to evaluate how
much to move in that direction so as to minimize the function. This is a
one-dimensional problem. We will be using the golden section method, as
discussed in Chapter 2, for solving the one-dimensional problem. The non-
gradient-based method does not require derivatives or second derivative
information in finding the search direction. The search direction is guided
by the function evaluations as well as the search directions computed from
earlier iterations. Powell’s conjugate direction method, a non—gradient-based
method, is elaborated in this chapter as it is much superior (shows quadratic
convergence) to other non-gradient methods such as simplex and pattern
search methods. The simplex method (Nelder-Mead algorithm) is also
discussed in Section 3.4.9 on the direct search method. In the last section,
Powell’s method is used to solve a complicated motion design problem of a
robot. The road map of this chapter is shown in Figure 3.1.

55
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Unconstrained
optimization

Test problem
(spring system)

Multivariable
optimization methods

[ Gradient-based methods ] [ Direct search method

« Steepest descent method

* Newton’s method

* Modified Newton’s method
* Marquardt’s method

» Conjugate gradient method -
o DFP method * Powell’s method ’

+ BEGS method * Nelder—Mead algorithm

1 I
Il

Additional test functions
* Rosenbrock’s function
* Wood’s function

* Quadratic function

* Nonlinear function

!

[ Application to robotics ]

FIGURE 3.1
Road map of Chapter 3.

For a single-variable function, it was discussed earlier that the derivative
of the function vanishes at the optimum and the second derivative of the
function is greater than zero at the minimum of the function. The same can
be extended to a multivariable function. The necessary conditions for x* to
be a minimum are that

Vx*) =0 (3.1)

and xT Hx is positive definite (xT Hx > 0). To ensure this, eigenvalues of H are
to be positive. Consider a two-variable function

f(x)=x7 + x5 —2x; (3.2
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0 .

404+

Sy, %)

FIGURE 3.2
Surface-contour plot of the function.

The gradient is

2%, -2
Vﬂw={z } (3.3)

Xy

Equating the gradient to zero, the optimum is at (1, 0). For this function
xT Hx > 0. Hence, the point (1, 0) is the minimum of f(x). The surface-contour
plot of this function is shown in Figure 3.2.

For a two-variable function

fx)=xt -3 (34)

the optimum is at (0, 0) from the first-order condition. Checking the second-
order condition, we find that xT Hx = 0. Therefore, the point (0, 0) represents
saddle point (see Figure 3.3).

3.2 Unidirectional Search

The unidirectional search refers to minimizing the value of a multivariable
function along a specified direction. For example, if x; is the initial starting
point of the design variables for minimizing a multivariable function and S;
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 ‘Saddle point

Slxy, %)

FIGURE 3.3
Surface-contour plot of the function with saddle point.

is the search direction, then we need to determine a scalar quantity o such
that the function

flo) =x; + aS; (3.5

is minimized. The value of a at which this function reaches a minimum is
given by a. This is a one-dimensional optimization problem and we can use
the golden section technique to minimize this function. The golden section
method is modified to handle multivariable functions and the MATLAB®
code golden_functl.m is given.

Let us perform a unidirectional search on the Rosenbrock function given by

F)=100(x, = x2) +(1-x,)? (3.6)

with different starting values of x and with different search directions.
The results are summarized in Table 3.1. It is observed from this table that

TABLE 3.1

Unidirectional Search for a Multivariable Function
x; flx) S; o* flo¥)
(3,0.5) 7229 @,1) -1.3731 88.45
(3,0.5) 7229 2,3) -1.1249 1181.7
a,1) 0 @,2) 0 0
2,2) 401 1,1) -1 0
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Sx1, %)

FIGURE 3.4
Rosenbrock function.

performing a linear search in the direction (2, 1) from the starting point
(3, 0.5) results in f(a*) = 88.45 as compared to initial function value of 7229.
This can be easily shown on the MATLAB command prompt as

>> x = [3 0.5];
>> search = [2 1];
>> [alphal, falphal] = golden functl (x,search)

alphal =
-1.3731

falphal =
88.4501

The function has to be appropriately coded in func_multivar.m. Note that
this function has a minimum at (1, 1) and the minimum value of the function
is zero. If we are at minimum point, then any search direction should not
improve the function value. It is the reason why search in the direction (2, 2)
from the point (1, 1) results in flo*) = 0 with o* = 0. Similarly, search in the
direction (1, 1) from the point (2, 2) results in flo*) = 0 with o* = 1. This func-
tion is plotted in Figure 3.4 and is constructed by executing the MATLAB
code (rosenbrock.m).

3.3 Test Problem

Let us define a spring system as a test problem on which we will apply multi-
variable optimization algorithms such as the steepest descent, DFP, BEGS,
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2

k1

Fy,

k>

FIGURE 3.5
Spring system.

Newton, and Levenberg-Marquardt methods. Consider two springs of unit
length and with stiffness k; and k,, joined at the origin. The other two ends
of the springs are fixed on a wall (see Figure 3.5). On applying a force, the
spring system will deflect to an equilibrium position, which we are inter-
ested in determining. The potential of the spring system is given by

U=k (,/xf +(x, +1)* - 1)2 +k, (,/xf +(x, —1)* - 1)2 —(F,x, +F. x,) (37)

where (Fx1 /F, ) is the force applied at the origin due to which it moves to a posi-
tion (xy, x,). Assuming k; = 100 N/m, k, = 90 N/m, and (FW E, ) =(20,40), our
aim is to evaluate (x;, x,) such that U is minimized.

A MATLAB code (springsystem.m) is used to find the minimum of the
potential function by varying the design variables from -1 to 1 in steps of

0.01. On executing this code, the output obtained is
Minimum Potential = -9.6547

occurs at x1,x2 0.5000 0.1200

3.4 Solution Techniques

Similar to 1-D optimization algorithms, solution techniques for multivari-
able, unconstrained optimization problems can be grouped into gradi-
ent- and non-gradient-based methods. Gradient-based methods require
derivative information of the function in constituting a search. The first and
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second derivatives can be computed using the central difference formula as
given below.

i= fx +Ax;) = f(x; — Ax;)
ox; 2Ax;

3.8)

ﬂ_ fO+Ax)=2f(x)+ f(x; — Ax;)
ol Ax?

1

(3.9)

& f
drox, = [ £, + A, x; + Ax,) - f(x, + A, x; — Ax)

— £, = Ax, x4 Ax))+ f(x; — Ax, x, — Ax) | /(40 Ax,)  (310)

The computation of first derivative requires two function evaluations with
respect to each variable. So for an n variable problem, 2n function evalua-
tions are required for computing the gradient vector. The computation of the
Hessian matrix requires O(n?) function evaluations. Note that in the Hessian
matrix

’f  Of
0x;0x; B ox;0x;

(3.11)

Alternatively, one can also compute the derivative of a function using com-
plex variables as

Imaginary [ f(x+iAx)/ Ax]
Ax

f'(x)= (3.12)

The gradient-based methods such as steepest descent, DFP, BFGS, Newton,
and Levenberg-Marquardt methods are discussed next followed by Powell’s
conjugate direction method, which is a direct search method. The efficiency
of solution methods can be gauged by three criteria:

e Number of function evaluations.
e Computational time.

* Rate of convergence. By this we mean how fast the sequence x;, x;,,,...
converges to x*. The rate of convergence is given by the parameter n
in the equation
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xiﬂ_X*
7HSC, CZO, n=0 (313)

x. —x*

1

e Forn =1and 0 < c <1 the method is said to have linear convergence.
For n = 2, the method is said to have quadratic convergence. When the
rate of convergence is higher, the optimization method is better. A
method is said to have superlinear convergence if

X —x*
LMl <c¢, ¢20, n>0 (3.14)

o0 n

x; —x*

3.4.1 Steepest Descent Method

The search direction S, that reduces the function value is a descent direction.
It was discussed earlier that along the gradient direction, there is the maxi-
mum change in the function value. Thus, along the negative gradient direc-
tion, the function value decreases the most. The negative gradient direction
is called the steepest descent direction. That is,

S; = -Vflx) (3.15)

In successive iterations, the design variables can be updated using the
equation

Xy = x; — aVf(x) (3.16)

where a is a positive scalar parameter that can be determined using the line
search algorithm such as the golden section method.

The steepest descent method ensures a reduction in the function value at
every iteration. If the starting point is far away from the minimum, the gra-
dient will be higher and the function reduction will be maximized in each
iteration. Because the gradient value of the function changes and decreases
to a small value near the optimum, the function reduction is uneven and
the method becomes sluggish (slow convergence) near the minimum. The
method can therefore be utilized as a starter for other gradient-based algo-
rithms. The algorithm for the steepest descent method is described in Table
3.2 and a MATLAB code of its implementation is given in steep_des.m.

On executing the code with a starting value of x as (-3, 2), following output
is produced for the test problem. After the first iteration, the function value
decreases from 1452.2619 to —2.704. Notice from the output that as the gradi-
ent value decreases, the reduction in function value at each iteration also

© 2015by Taylor & FrancisGroup,LLC



Unconstrained Optimization

TABLE 3.2
Algorithm for the Steepest Descent Method

Step 1: Given x; (starting value of design variable)

g, (tolerance of function value from previous iteration)
€, (tolerance on gradient value)
Ax (required for gradient computation)

Step 2: Compute f(x;) and Vf(x;) (function and gradient vector)

S;=-Vfl(x) (search direction)
Minimize f(x;,;) and determine « (use golden section method)
X =X+ aS; (update the design vector)

I [f(x00) = flx)] > & o VAl > e,
then goto Step 2
else goto Step 3

Step 3: Converged. Print x* = x;,,, f(x*) = f(x;,,)

63

decreases. The steepest descent algorithm converges to the minimum of the
test problem in 15 iterations. Observe the sluggishness of the algorithm as it
approaches the minimum point. The convergence history is shown pictorially
in Figure 3.6 along with the function contours of the test problem. The func-
tion contours can be plotted using the MATLAB code contour_testproblem.m.

Initial function value = 1452.2619

No x-vector f (x) Deriv.

1 0.095 0.023 -2.704 1006.074
2 0.170 0.141 -5.278 37.036
3 0.318 0.048 -7.369 23.451
4 0.375 0.138 -8.773 26.656
5 0.448 0.092 -9.375 14.021
6 0.470 0.127 -9.583 10.071
7 0.491 0.114 -9.639 4.403
8 0.497 0.123 -9.652 2.509
9 0.501 0.120 -9.655 1.050
10 0.503 0.122 -9.656 0.554
11 0.504 0.122 -9.656 0.236
12 0.504 0.122 -9.656 0.125
13 0.504 0.122 -9.656 0.047
14 0.504 0.122 -9.656 0.027
15 0.504 0.122 -9.656 0.016

3.4.2 Newton’s Method

The search direction in this method is based on the first and second deriva-
tive information and is given by

S; = —[H]"'Vf(x)
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FIGURE 3.6
Function contours of the test problem and convergence history.

where [H] is the Hessian matrix. If this matrix is positive definite, then S,
will be a descent direction. The same can be assumed true near the vicinity
of the optimum point. However, if the initial starting point is far away from
the optimum, the search direction may not always be descent. Often a restart
is required with a different starting point to avoid this difficulty. Though
the Newton’s method is known for converging in a single iteration for a qua-
dratic function, seldom do we find functions in practical problems that are
quadratic. However, Newton’s method is often used as a hybrid method in
conjunction with other methods.

The algorithm for the Newton’s method is described in Table 3.3 and a
MATLAB code of its implementation is given in newton.m. A MATLAB code
that computes Hessian matrix is given in hessian.m.
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TABLE 3.3
Algorithm for Newton’s Method

Step 1: Given x; (starting value of design variable)
g, (tolerance of function value from previous iteration)
g, (tolerance on gradient value)
Ax (required for gradient computation)
Step 2: Compute f(x;), Vf(x;), and [H] (function, gradient, and Hessian)
S, = -[H]'Vf(x) (search direction)
X =%+ S; (update the design vector)
I f(xi,0)= i) > & or VA > e,
then goto Step 2
else goto Step 3
Step 3: Converged. Print x* = x;,,, f(x*) = f(x,,,)

On executing the code with a starting value of x as (-3, 2), the following
output is displayed in the command window for the test problem. Note that
in some iteration, the search direction is not a descent as the function value
increases instead of monotonically decreasing. The method, however, con-
verges to the minimum point.

Initial function value = 1452.2619

No X-vector f(x) Deriv.
1 -0.754 0.524 44 .244 1006.074
2 -0.362 -0.010 8.398 116.281
3 0.094 0.125 -3.920 50.597
4 11.775 0.324 22007.14 21.420
5 1.042 0.093 14.533 4076.916
6 0.640 0.142 -8.479 102.745
7 0.524 0.122 -9.635 18.199
8 0.505 0.122 -9.656 2.213
9 0.504 0.122 -9.656 0.059
10 0.504 0.122 -9.656 0.000

Let us restart the method with x as (1, 1). The output is given below. If the
starting value is closer to the minimum, the function value reduces mono-
tonically in all the iterations and eventually converges to the minimum.

Initial function value = 92.7864
No. x-vector f (x) Deriv.
1 0.818 0.041 -1.428 202.492
2 0.569 0.138 -9.386 56.085
3 0.510 0.122 -9.655 8.516
4 0.504 0.122 -9.656 0.602
5 0.504 0.122 -9.656 0.004

© 2015by Taylor & FrancisGroup,LLC



66 Optimization: Algorithms and Applications

TABLE 3.4
Algorithm for Modified Newton’s Method

Step 1: Given x; (starting value of design variable)
g, (tolerance of function value from previous iteration)
€, (tolerance on gradient value)
Ax (required for gradient computation)
Step 2: Compute f(x;), VA(x;), and [H] (function, gradient, and Hessian)
S;=-[H]'VA(x) (search direction)
Minimize f(x;,,) and determine « (use golden section method)
X = X; +aS; (update the design vector)
If | f(xi01) — f(x;)] > & o1 |V]Atx)ll > &,
then goto Step 2
else goto Step 3
Step 3: Converged. Print x* = x;,,, f(x*) = f(x;,,)

3.4.3 Modified Newton’s Method

The method is similar to Newton’s method with a modification that a unidi-
rectional search is performed in the search direction S; of the Newton method.
The algorithm for the modified Newton method is described in Table 3.4 and
a MATLAB code of its implementation is given in modified_newton.m.

On executing the code with a starting value of x as (-3, 2), the following
output is displayed in the command window for the test problem. For the
same starting point, the modified Newton’s method converges to the mini-
mum point in just six iterations as compared to Newton’s method, which
converges in ten iterations.

Initial function value = 1452.2619

No. x-vector f (x) Deriv.
1 0.006 0.025 -1.010 1006.074
2 0.498 0.026 -8.227 36.392
3 0.496 0.121 -9.653 29.839
4 0.504 0.122 -9.656 0.873
5 0.504 0.122 -9.656 0.018
6 0.504 0.122 -9.656 0.003

3.4.4 Levenberg—Marquardt Method

The advantage of the steepest descent method is that it reaches closer to the
minimum of the function in a few iterations even when the starting guess
is far away from the optimum. However, the method shows sluggishness
near the optimum point. On the contrary, Newton’s method shows a faster
convergence if the starting guess is close to the minimum point. Newton’s
method may not converge if the starting point is far away from the optimum
point.
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The Levenberg-Marquardt method is a kind of hybrid method that com-
bines the strength of both the steepest descent and Newton’s methods. The
search direction in this method is given by

S; = —[H + MI"Vf(x) (3.18)

where Iis an identity matrix and A is a scalar that is set to a high value at the start
of the algorithm. The value of A is altered during every iteration depending on
whether the function value is decreasing or not. If the function value decreases
in the iteration, A it decreases by a factor (less weightage on steepest descent
direction). On the other hand, if the function value increases in the iteration,
A it increases by a factor (more weightage on steepest descent direction). The
algorithm for the Levenberg-Marquardt method is described in Table 3.5 and a
MATLAB code of its implementation is given in levenbergmarquardt.m.

On executing the code with a starting value of x as (-3, 2), following output
is displayed at the command window for the test problem.

Initial function value = 1452.2619

No. x-vector f (x) Deriv.
1 -2.384 1.604 815.738 1006.074
2 -1.680 1.139 325.925 733.709
3 -1.104 0.705 102.059 429.113
4 -0.740 0.327 28.673 201.554
5 -0.444 0.133 8.324 86.884
6 -0.164 0.105 1.186 34.005
7 0.546 0.091 -9.390 20.542
8 0.508 0.122 -9.655 11.361
9 0.505 0.122 -9.656 0.409
10 0.504 0.122 -9.656 0.016
TABLE 3.5

Algorithm for the Levenberg-Marquardt Method

Step 1: Given x; (starting value of design variable)
g, (tolerance of function value from previous iteration)
€, (tolerance on gradient value)
Ax (required for gradient computation)
Step 2: Compute f(x;), Vf(x;), and [H] (function, gradient, and Hessian)
S;=—[H + M]'Vf(x) (search direction)

X=X+ S; (update the design vector)
If flxi) < flx)

then change the value of A as A/2

else change the value of A as 2\

[ f(xii) = fx)| > & or VA > e,
then goto Step 2
else goto Step 3
Step 3: Converged. Print x* = x;,,, f(x*) = f(x,,,)
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3.4.5 Fletcher-Reeves Conjugate Gradient Method

The Levenberg-Marquardt method uses the strengths of both steepest
descent and Newton’s method for accelerating the convergence to reach the
minimum of a function. The method is a second-order method, as it requires
computation of the Hessian matrix. On the other hand, the conjugate gra-
dient method is a first-order method, but shows the property of quadratic
convergence and thus has a significant advantage over the second-order
methods. Two directions, S; and S,, are said to be conjugate if

STHS, =0 (3.19)

where H is a symmetric matrix. For example, orthogonal directions are con-
jugate directions. In Figure 3.7, starting from point x,,, the search direction S,
results in the minimum point x,. Similarly, starting from point x,,,, the search
direction S, results in the minimum point x;. The line joining x; and x} is the
search direction S,. Then, S; and S, are conjugate directions.

The steepest descent method was modified by Fletcher and Reeves in the
conjugate gradient method. Starting with the search direction

S, = -Vfx) (3.20)

the subsequent search direction is taken as a linear combination of S; and
-Vf(x,). That is,

S, = -Vflx,) + a$, 3.21)

X¥1b,
X1a|
o

FIGURE 3.7
Conjugate directions.
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Using the property S{HS, = 0 of conjugate directions, « can be evaluated as

va(xi+1)H2

va(xi) ’

(3.22)

Starting with S; = —Vf(x;), the search direction in every iteration is calcu-
lated using the equation

va(xi+1)H S

Si =-Vf(x;))+ > S (3.23)
HVf (x;)

The algorithm for the conjugate gradient method is described in Table 3.6
and a MATLAB code of its implementation is given in conjugate.m.

On executing the code with a starting value of x as (-3, 2), the following
output is displayed at the command window in the test problem. The effi-
ciency of conjugate gradient method can be seen from Figure 3.8, where it

TABLE 3.6
Algorithm for Fletcher—Reeves’s Conjugate Gradient Method

Step 1: Given x; (starting value of design variable)
g, (tolerance of function value from previous iteration)
€, (tolerance on gradient value)
Ax (required for gradient computation)

Step 2: Compute f(x;) VA(x;) (function and gradient)
S, =-Vflx) (search direction)
Minimize f(x;,,) and determine o (use the golden section method)
X = X; +aS; (update the design vector)
2
Step 3: S,y = -Vf(xi1)+ MS‘
va (x;)

Minimize f(x;,,) and determine o (use the golden section method)
Xiup = Xjpq + 0Si
Minimize f(x;,,) and determine o (use the golden section method)
If f(x;0) = f(xi0)] > & or [[Vfx,)ll > &,
then goto Step 3
else goto Step 4
Step 4: Converged. Print x* = x;,,, f(x*) = f(x;,,)
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Conjugate gradient ..-*" -

Minimum point

Steepest descent

FIGURE 3.8
Convergence plot of conjugate gradient/steepest descent method.

is compared with the first-order, steepest descent method. The conjugate
method does not show sluggishness in reaching the minimum point.

Initial function value = 1452.2619

No. x-vector f (x) Deriv.
1 0.095 0.023 -2.704 1006.074
2 0.178 0.145 -5.404 37.036
3 0.507 0.136 -9.627 23.958
4 0.510 0.123 -9.655 4.239
5 0.505 0.121 -9.656 0.605
6 0.504 0.122 -9.656 0.340
7 0.504 0.122 -9.656 0.023

3.4.6 DFP Method

In the DFP method, the inverse of the Hessian is approximated by a matrix
[A] and the search direction is given by

S = -[AlVf(x) (3.24)

The information stored in the matrix [A] is called as the metric and because
it changes with every iteration, the DFP method is known as the variable
metric method. Because this method uses first-order derivatives and has the
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property of quadratic convergence, it is referred to as a quasi-Newton method.
The inverse of the Hessian matrix can be approximated as

AxAx"  [A],VgVg'[A],

[A] =[A]; + MTVg Vg'[ALVg (3.25)

where
Ax = Ax; — Ax; (3.26)
Vg = V8= V8i4 3.27)

The matrix [A] is initialized to the identity matrix. The algorithm for the
DFP method is described in Table 3.7 and a MATLAB code of its implementa-
tion is given in dfp.m.

On executing the code with a starting value of x as (-3, 2) the following
output is displayed in the command window for the test problem. Observe
that in the second and the third iterations, search points are similar in this
method and the conjugate gradient method, indicating that search directions
were similar. In further iterations, however, the search direction is differ-
ent. Further, on typing inv(A) in the MATLAB command prompt and then

TABLE 3.7
Algorithm for the DFP Method

Step 1: Given x; (starting value of design variable)
g, (tolerance of function value from previous iteration)
g, (tolerance on gradient value)
Ax (required for gradient computation)
[A] (initialize to identity matrix)
Step 2: Compute f(x;) and Vf(x;) (function and gradient vector)
S, =-Vfix) (search direction)
X = X; + aS; (update the design vector)
Minimize f(x;,;) and determine o (use the golden section method)
Step 3: Compute Ax and Vg
AxAx” [A]ngVgT[A]i
A’V Vg'[A] Vg
Si = ~[ALn Vfxi,y)
Xip = Xipq + (XS,-H
Minimize f(x;,,) and determine o (use the golden section method)
If ‘f(xnz)_f(xm)‘ >g; or || Vfx )l > &,
then goto Step 3
else goto Step 4
Step 4: Converged. Print x* = x;,,, f(x*) = f(x,,,)

[A]i+1 = [A]z +
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printing the Hessian matrix at the converged value of x, it is observed that
[A] approaches [H] ™.

Initial function value = 1452.2619

No x-vector f (x) Deriv.
1 0.095 0.023 -2.704 1006.074
2 0.179 0.145 -5.418 37.036
3 0.508 0.145 -9.576 23.983
4 0.501 0.122 -9.656 7.004
5 0.504 0.122 -9.656 0.396
6 0.504 0.122 -9.656 0.053
7 0.504 0.122 -9.656 0.038
8 0.504 0.122 -9.656 0.028
9 0.504 0.122 -9.656 0.005
>> A
A =

0.0091 0.0005

0.0005 0.0033
>> inv (hessian(x,delx,n of var))
ans =

0.0091 0.0005

0.0005 0.0033

3.4.7 BFGS Method

In the BFGS method, the Hessian is approximated using the variable metric
matrix [A] given by the equation

gVg" L Vf)Vf (x)" (3.28)

(Al =[A] + Vgl Ax VF(x,)'S,;

It is important to note that whereas the matrix [A] converges to the inverse
of the Hessian in the DFP method, the matrix [A] converges to the Hessian
itself in the BFGS method. As the BFGS method needs fewer restarts as com-
pared to the DFP method, it is more popular than the DFP method. The algo-
rithm for the BFGS method is described in Table 3.8 and a MATLAB code of
its implementation is given in BFGS.m.

On executing the code with a starting value of x as (-3, 2) the following
output is displayed in the command window for the test problem. Again, it
is observed that in the second and third iterations, search points are similar
to this method as compared to DFP and the conjugate gradient methods,
indicating that search directions were similar. Further, on typing A in the
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TABLE 3.8
Algorithm for the BFGS Method

Step 1: Given x; (starting value of design variable)

Step 2: Compute f(x;) and Vf(x;) (function and gradient vector)

Step 3:

g, (tolerance of function value from previous iteration)

€, (tolerance on gradient value)
Ax (required for gradient computation)
[A] (initialize to identity matrix)

S;=-Vfix)
X =X + aS;

Minimize f(x;,,) and determine o (use golden section method)

Compute Ax and Vg

(search direction)
(update the design vector)

(AL, =[a], + $¥8, WV @)
Vi(x;)'S;

Vg Ax

Sia = —[[ALal"VAx.)
Xip =X + 0S4

Minimize f(x;,,) and determine « (use the golden section method)
>g; or || Vf(xi))ll > &,

If ‘f(xwz) = f(xi)

then goto Step 3
else goto Step 4
Step 4: Converged. Print x* = x;,,, f(x*) = f(x;,,)
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MATLAB command prompt and then printing the Hessian matrix at the

converged value of x, it is observed that [A] approaches [H].

Initial function value = 1452.2619

No x-vector f (x) Deriv.
1 0.095 0.023 -2.704 1006.074
2 0.179 0.145 -5.418 37.036
3 0.508 0.145 -9.578 24.017
4 0.501 0.122 -9.655 6.900
5 0.504 0.122 -9.656 0.471
6 0.504 0.122 -9.656 0.077
7 0.504 0.122 -9.656 0.056
8 0.504 0.122 -9.656 0.040
9 0.504 0.122 -9.656 0.007
>> A
A =

110.5001 -16.9997

-16.9997 306.7238
>> hessian(x,delx,n of var)
ans =

111.0981 -15.9640

-15.9640 308.5603
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3.4.8 Powell Method

The Powell method is a direct search method (no gradient computation is
required) with the property of quadratic convergence. Previous search direc-
tions are stored in this method and they form a basis for the new search
direction. The method makes a series of unidirectional searches along these
search directions. The last search direction replaces the first one in the new
iteration and the process is continued until the function value shows no
improvement. A MATLAB code (powell.m) is written in which this method is
implemented and the algorithm is described in Table 3.9.

On executing the code with a starting value of x as (-3, 2), following output
is displayed at the command window for the test problem.

Initial function value = 1452.2619

No. x-vector f (x)

1 0.504 0.122 -9.656

2 0.505 0.122 -9.656

3 0.504 0.122 -9.656

4 0.504 0.122 -9.656

5 0.505 0.122 -9.656
TABLE 3.9

Algorithm for the Powell Method

Step 1: Given x; (starting value of design variable)

¢ (tolerance of function value from previous iteration)

S; (linearly independent vectors)

f(Xprcv) :f(xi)
Step 2: X = x; + aS;

Minimize f(X) and determine a (use the golden section method)
Step3:SetY=X,i=1

do

Minimize f(X) and determine a (use the golden section method)

X=X+ aS,

i=i+1

while i < (number of variable) + 1

I F(X) = (X )| <&

then goto Step 4
else continue

S,=X-Y

X=X+aS;

fX ) = )

goto Step 3
Step 4: Converged. Print x* = X, f(x*) = f{X)
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3.4.9 Nelder-Mead Algorithm

Simplex refers to a geometric figure formed by # + 1 points in an n dimension
space. For example, in a two-dimensional space, the figure formed is a trian-
gle. The Nelder-Mead algorithm is a direct search method and uses function
information alone (no gradient computation is required) to move from one
iteration to another. The objective function is computed at each vertex of the
simplex. Using this information, the simplex is moved in the search space.
Again, the objective function is computed at each vertex of the simplex. The
process of moving the simplex is continued until the optimum value of the
function is reached. Three basic operations are required to move the simplex
in the search space: reflection, contraction, and expansion.

In an optimization problem with two dimensions, the simplex will be a
triangle, whose vertices are given by (say) x;, x,, and x;. Of these, let the worst
value of the objective function be at x; = x,,.,. If the point x,. is reflected
on the opposite face of the triangle, the objective function value is expected
to decrease. Let the new reflected point be designated as x,. The new simplex
(see Figure 3.9) is given by the vertices x;, x,, and x,. The centroid point x. is

WOrs

computed using all the points but with the exclusion of x,,,,. That is,
1 n+1
Yo = 2 X; (3:29)

i=1
i#worst

The reflected point is computed as

X, =x.+ax.—x (3.30)

worst)

where a is a predefined constant. Typically, a = 1 is taken in the simulations.
If the reflected value does not show improvement, the second worst value is
taken and the process as discussed earlier is repeated. Sometimes reflection

Xx1
X3 = Xworst

Xr

X2

FIGURE 3.9
Reflection operation.
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can lead to cycling with no improvement in the objective function value.
Under such conditions, a contraction operation is performed.

If x, results in a new minimum point, then it is possible to further expand
the new simplex (see Figure 3.10) in the hope of further reducing the objec-
tive function value. The expanded point is computed as

X, =X+ Y(xc - xworst) (331)

where v is a predefined constant. Typically, y = 2 is taken in the simulations.
If x, results in the new minimum point, it replaces the x,,. point. Else, x,
replaces the x,,,., point.

The contraction operation is used when it is certain that the reflected point
is better than the second worst point (Xs..ong worst)- 1he contracted point is
computed as

worst

Xeontr = X T p(xc - xworst) (332)

where pisa predefined constant. Typically, p=—0.5is taken in the simulations.

The preceding operations are continued until the standard deviation of
the functions computed at the vertices of the simplex becomes less than e.
That is,

L) - feT 639)
n+1

i=1

The Nelder-Mead algorithm is described in Table 3.10 and a MATLAB
code (neldermead.m) is written in which this method is implemented.

X3 = Xworst

FIGURE 3.10
Expansion operation.
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TABLE 3.10
Nelder-Mead Algorithm

Step 1: Given x; (randomly select starting value of design variables)

a, v, p, o, € (value of constants)

Compute fx;), fXpest) < -+ < f¥second worst) < fHvorst)

Step 2: Compute the centroid as

i=1
i#worst

Step 3: Reflection
X, = X+ A = Xyorsy)

If f(xpese) < -+ SAX) < f(Xgecond worst) then replace x,,.., with x, and goto Step 1

Step 3: Expansion

I£ f(x,) < f(x) then
X, =X+ Y(xc - xworst)

If f(x,) < f(x,) then replace x,,. with x, and goto Step 1

Else
replace x,,, With x,
Else
goto Step 5
Step 4: Contraction

Xeontr = X + p(xc - anrst)

If f(x cone) S f(Xyorse) then replace x,,. With x, and goto Step 1

Step 5: If )
S [f@)-reol

p n+1
then converged,
else

goto Step 1
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On executing the code with a random value of x, the following output is

displayed at the command window for the test problem.

Iteration Deviation f (x)
1 72.2666 -0.733
2 36.7907 -0.733
3 6.8845 -0.733
4 9.7186 -8.203
5 5.0965 -8.203
6 3.8714 -8.426
7 1.3655 -8.426
8 0.7944 -9.351
9 0.6497 -9.509
10 0.2242 -9.509
11 0.1083 -9.509
12 0.1068 -9.641
13 0.0794 -9.641
14 0.0299 -9.641
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15 0.0173 -9.641
16 0.0126 -9.653
17 0.0079 -9.653
18 0.0034 -9.654
19 0.0025 -9.654
20 0.0021 -9.656
21 0.0011 -9.656
22 0.0003 -9.656
23 0.0004 -9.656
24 0.0003 -9.656
XCc =
0.5028 0.1219

1

3.5 Additional Test Functions

Different solution techniques were applied to the test problem on the spring
system in the previous section. In this section, some additional test prob-
lems such as Rosenbrock’s function, Wood’s function, quadratic function,
and so forth are taken, on which different solution methods will be tested.
The performance of each method is compared in terms of the computational
time. The MATLAB functions tic and toc can be used to estimate the compu-
tational time.

3.5.1 Rosenbrock Function

The two-variable function is given by

F()=100(x, = x2) +(1-x,)? (3.34)

The minimum of this “banana valley” function is zero (see Figure 3.11
where the minimum is marked with *) and occurs at (1, 1). Different solution
methods are applied from the same starting point (-1.5, 1.5) and their per-
formances are summarized in Table 3.11. All methods are able to track the
minimum of the function. The steepest descent method takes a maximum
computational time as compared to all other methods. The computational
time required by other methods is comparable. The convergence history of
the steepest descent method is plotted in Figure 3.12 and marked with °.
Because of the particular nature of the problem, the method dwells in the
region with a low gradient value. The Nelder-Mead method is not compared
here as it uses more than one starting point.
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FIGURE 3.11
Contours of Rosenbrock function.

TABLE 3.11

Performance Comparison of Different
Solution Methods for Rosenbrock’s Function

Computational Time

Method (ms)
Steepest descent 49.7
Newton 8.04
Modified Newton 11.9
Marquardt 9.4

Conjugate gradient 18.8
DFP 11.23
BFGS 10.34
Powell 10.52

3.5.2 Quadratic Function
The two-variable function is given by
fl) =1 —x7)* + 2 — x,)? (3.35)

The minimum of this function is zero (see Figure 3.13, where the minimum
is marked with *) and occurs at (1, 2). Different solution methods are applied
from a starting point (2, -3) and their performances are summarized in
Table 3.12. All methods are able to track the minimum of the function. The
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FIGURE 3.12

Behavior of steepest descent method on Rosenbrock function.
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FIGURE 3.13
Contours of a quadratic function.
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TABLE 3.12

Performance Comparison of Different Solution Methods

for a Quadratic Function

Computational Time

Method (ms)
Steepest descent 6.06
Newton 7.5

Modified Newton 10.38
Marquardt 9.72
Conjugate gradient 5.79
DFP 7.69
BFGS 7.45
Powell 7.26

conjugate gradient method takes minimum computational time compared to

other solution methods.

3.5.3 Nonlinear Function

The two-variable function is given by

f(x)=4x] —4x,x, +3x5 +x,

The minimum of this function is —0.09375 (see Figure 3.14, where the mini-

81

(3.36)

mum is marked with *) and occurs at (-3/16, —1/8). Different solution meth-
ods are applied from a starting point (4, 3) and their performances are

5

%)
(=}
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5
x
0.

P,
d
(=3
&

FIGURE 3.14
Contours of a nonlinear function.
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TABLE 3.13

Performance Comparison of Different Solution Methods
for a Nonlinear Function

Computational Time

Method (ms)
Steepest descent 11.19
Newton 7.67
Modified Newton 10.51
Marquardt 10.0
Conjugate gradient 6.27
DFP 7.85
BFGS 7.70
Powell 8.32

summarized in Table 3.13. All methods are able to track the minimum of
the function. The conjugate gradient method takes minimum computational
time compared to other solution methods.

3.5.4 Wood’s Function

The two-variable function is given by

L+x} | 100+x7x] J 637

1
f(x)=10[12+xf +

X (1, )4

The minimum of this function is 1.744 (see Figure 3.15, where the minimum
is marked with *) and occurs at (1.743, 2.03). Different solution methods are

10

10+

10

FIGURE 3.15
Contours of Wood’s function.
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TABLE 3.14

Performance Comparison of Different Solution
Methods for Wood’s Function

Computational Time

Method (ms)
Steepest descent 7.16
Newton 9.46
Modified Newton 121
Marquardt 10.6
Conjugate gradient 6.22
DFP 9.54
BFGS 8.33
Powell 12.75

applied from a starting point (0.5, 0.5) and their performances are summa-
rized in Table 3.14. All methods are able to track the minimum of the func-
tion. The conjugate gradient method takes minimum computational time
compared to other solution methods.

3.6 Application to Robotics

An industrial robot typically comprises a number of mechanical links with
one end fixed and the other end-effector free to move. If the joint angles (8;, 6,,
and 6;) are known, then the trajectory of the end-effector can be calculated
using kinematic relationships. Often a predefined motion of the end-effector
is given for which we have to evaluate the joint angles. This can be stated as
an unconstrained optimization problem (Andreas 2007).

The design variables for the optimization problem are

6,
x= 0, (3.38)
65
The kinematic equations are
f1%) = €450, + a303 — dyS53) — dssy — (3.39)
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Fox) = 81(a20; + a5055 — dy83) + 381 — p, (3.40)
f3x) =dy — a5, — a55,5 — dyCo3 — P, (341
where
¢, = cos(®,)
¢, = cos(0,)

Cy3 = c0s(0, + 05)
s, = sin(6,)
s, = sin(®,)
Sy = sin(0, + 6;)

d, = 66.04, d, = 1491, d, = 43.31, a, = 4318, 2, = 2.03

The desired trajectory equation is given by

Px 30cost
Py, | =| 100sint (3.42)
P, 10t + 66.04

The unconstrained optimization problem is
3
Minimize z f2(x) (3.43)
i=1

Here —n < t < m. t is divided into 100 parts. It means there are 100 variables for
0,, 100 variables for 6,, and 100 variables for 6;. The unconstrained problem
thus has 300 variables that need to be determined. The optimization problem
is solved using the Powell method.

Go to the Robotics directory in Chapter 3 and type powell in the command
prompt. Then generate the optimized trajectory by executing the MATLAB
code generate_optimized_traj(x). Give a hold on command and then execute
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FIGURE 3.16
Comparison of manipulator’s trajectories (optimized with nominal).

robotics_nominal_traj.m. The desired (nominal shown by solid line) and opti-
mized (shown by *) trajectories are compared in Figure 3.16. It is observed
that in some regions, the motion of the end-effector is not exactly matched
with the desired profile. Similar results are also seen in Andreas (2007),
where the reason for the difference is attributed to “beyond manipulators
reach.”

Chapter Highlights

¢ The unidirectional search refers to minimizing the value of a multi-
variable function along a specified direction.

® Solution techniques for multivariable, unconstrained optimization
problems can be grouped into gradient- and non-gradient-based
methods.

¢ The negative gradient direction is addressed as the steepest descent
direction.

* The steepest descent method ensures a reduction in the function
value at every iteration. If the starting point is far away from the
minimum, the gradient will be higher and function reduction will
be maximum in each iteration. Because the gradient value of the
function decreases near the optimum, the method becomes sluggish
(slow convergence) near the minimum.
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* Newton’s method requires computation of the Hessian matrix,
which is computationally expensive. Newton’s method is known
for converging in one iteration for a quadratic function. The method
requires a restart if the starting point is far away from optimum.

¢ In the modified Newton method, a line search is performed in the
search direction computed by the Newton method.

* The Levenberg-Marquardt method is a sort of hybrid method that
combines the strength of both the steepest descent and Newton
methods.

¢ The conjugate gradient method is a first-order method, but shows
the property of quadratic convergence and thus has a significant
advantage over the second-order methods.

¢ DFP and BFGS methods are called the variable metric methods.

e It is important to note that whereas the matrix [A] converges to the
inverse of the Hessian in the DFP method, it converges to the Hessian
itself in the BFGS method.

* The Powell method is a direct search method (no gradient computa-
tion is required) with the property of quadratic convergence.

¢ In the Nelder-Mead algorithm, the simplex is moved using reflec-
tion, expansion, and contraction.

Formulae Chart

Necessary conditions for minimum of a function:

VAx*) =0

VH(x*) 20
Unidirectional search:

fla) =x; + aS;

Search direction in steepest descent method:

S; = -Vflx)
Search direction in the Newton method:

S; = -[H]'Vf(x))

© 2015by Taylor & FrancisGroup,LLC



Unconstrained Optimization

Search direction in the Levenberg-Marquardt method:
S, = —[H + M]'Vfix)

Search direction in the conjugate gradient method:

2
V xi+
Sin =-Vf(x)+ Msi
HVf (x;)
Search direction in the DFP method:
5, = ~[AIVfx)

AxAx” [A], VngT [A];

Al =[A]; +
[ ]1+1 [ ]l AxTVg VgT[A]IVg

Search direction in the BFGS method:

S; = —[A]"'Vf(x)

gvg" | VF(x)Vf(x)'
VgTar | Vf(x)TS,

[A],, =[A]; +

87

.|
Problems

1. Find the steepest descent direction for the function

f(x)=x7 +3x,x, +2x;

at point (1, 2).
2. Minimize the function

f(x)=10,000x,x, + e~ +¢~2 —2.0001

from a starting value of (2, 2) using the BFGS, DFP, and steepest
descent methods.

3. Minimize the function

2

f(x)=(xf +x, —11)2 + (x§ +x, —7)
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from a starting value of (2, 3) using the following methods:
i. Steepest descent
ii. Newton
iii. Modified Newton
iv. Levenberg-Marquardt
v. DFP
vi. BFGS
vii. Powell
viii. Nelder-Mead
4. Show that in the DFP method, the variable metric [A] approaches
the inverse of the Hessian matrix for the following function which
needs to be minimized.

f(x)=x7 +3x,x, +5x;

Take starting value as (1, 1).

5. Show that in the BFGS method, the variable metric [A] approaches the
Hessian matrix for the following function which needs to be minimized.

f(x)=x7 +3x,%, + 5x3
Take the starting value as (1, 1).
6. Minimize the function using the DFP method with a starting value
of (1, 1)

f(x)= et 4 X, +x, —3—sin(3(x; +x,))

7. Minimize the function

2
f(x)=100(x; — 108)* + 100(,/x12 +x; - 1) +x3

where

270 = tan™! ("Zj x>0

X1

2n0=n+tan”! ("Zj x, <0

X1

Take the starting value as (-1, 0, 0).
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8. Instead of using the central difference formula for computing the
derivative of a function, use the complex variable formula

_ Imaginary | f(x +iAx)/Ax |
- Ax

f'(x)

The MATLAB code grad_vec.m can be modified as

MATLAB code grad vec.m

o° o o o

function deriv = grad vec complex(x,delx,n of var)
Xvec = X;

h = 1le-14;

for j = 1:length(x)

Xxvec = X;

c = complex(xvec(j) , h);

xvec (j) = c;

deriv(j) = imag(func _multivar (xvec)/h) ;

Now use the steepest descent method to optimize the test function
given in the main text.

9. Compare the accuracy of the derivative computation using the cen-
tral difference formula and the complex variable formula against the
analytical value of the derivative of the test function

flx) =sinx +Inx

at=0.1.
10. Use the line search algorithm to minimize the function

f(x)= (xf +x, —11)2 +(x§ +x; —7)2

starting from different initial points and different search directions:
i. Starting point (1, 1) and search direction (2, 4)
ii. Starting point (0, 0) and search direction (1, 2)
iii. Starting point (3, 2) and search direction (1, 1)
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11. Minimize the function
1 2 2
f(x)= E(x1 + 8x2)

from the starting point (1, 2) using the steepest descent method.
Observe the sluggishness of this method. Again, solve the function
by the conjugate gradient method and compare the performance
with the steepest descent method.

12. A manufacturing firm wants to divide its resources suitably between
capital (x;) and labor (x,) so as to maximize the profit function given by

f(x) = pfin(1 + x,) + In(1 + x,)} — wx, — vx,

where p is the unit price of the product, w is the wage rate of labor,
and v is the unit cost of capital.

i. By computing the gradient vector of the above function with
respect to x; and x, and then equating it to zero, compute the
design variables x, and x, as a function of p, v, and w.

ii. Using the second-order condition, check whether the solution
corresponds to a maximum of the function.

iii. Compute numerical values of x; and x, by assuming suitable val-
ues of p, v, and w (p > w, v).

iv. Starting with an initial guess of (0, 0) and using the values of p,
v, and w as assumed in (iii), find the maximum of the function
using the steepest descent method. Compare the values of x; and
x, with those obtained from (iii).

13. The stable equilibrium configuration (Haftka and Gurdal 1992) of a
two-bar unsymmetrical shallow truss (Figure 3.17) can be obtained

v
A
Y

FIGURE 3.17
Two-bar truss.
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by minimizing the potential energy function of the nondimensional
displace variables x, and x, as

2
1 1 1 1 X _
f(x)=2m7[_a1x1 +Ex% +x2j +2[_alx1 +§xf _YZJY4 — P

where m, v, o, and p are the nondimensional quantities defined as

L

» b

where E is the elastic modulus and A, and A, are the cross-sectional
areas of the bars. Take m =5, y =4, a = 0.02, and p = 0.00002. Staring
with an initial guess of (0, 0), minimize the function using the DFP
and BFGS methods.
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4

Linear Programming

4.1 Introduction

Linear programming refers to an optimization problem that has the objec-
tive and the constraints as a linear function of the design variables. The con-
straints could be of an equality or inequality type or both. Mathematically, a
linear function satisfies the following properties:

flx +y) = fx) + f(y) 4.1)
flkx) = kf(x) 4.2)

where x and y are the variables and k is a scalar. A practical linear program-
ming problem (LPP) might contain hundreds of design variables and con-
straints and thus require special solution techniques that are different from
the methods that were described in the previous chapters. A number of
applications of LPP can be found in the literature, some of which include

* An airline company would like to assign crews to different flights
in an optimal way so that total cost is minimized while covering its
entire network.

¢ In a portfolio optimization problem, an investor would like to know
the investment allocation to different assets that would maximize
the return.

* An oil company blends different qualities of oil to produce differ-
ent grades of gasoline, which need to be shipped to users who are
located in different places. The quantity of gasoline that can be pro-
duced is fixed at a certain maximum and so is the input oil quantity.
The company would like to maximize its profit.

¢ A company produces a number of products and this requires a num-
ber of processes on different machines. The profit from each prod-
uct is known and the maximum time available for each machine

93
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is fixed. The company would like to determine the manufacturing
policy that would maximize its profit.

* A government-run bus company has to cover different places in a
metro city. As a government company, it has an obligation to cover
all parts of the city, irrespective of whether a particular route is prof-
itable or not. The company would like to find the number of routes
and allocate a number of buses for each of these routes in such a way
that it can maximize its profit.

The next section discusses the solution to LPP using the graphical method
and its limitations. The need to convert an LPP into the standard form
along with procedural details is discussed next. Basic definitions of linear
programming such as feasible solutions, basic solutions, basic feasible solu-
tions, and optimal solution are further introduced. The simplex method is
discussed in detail for solving LPPs. The degeneracy problem in the simplex
method and how it can be overcome is also discussed. The importance of
converting a primal problem into a dual problem is explained followed by
the dual-simplex method to solve such problems. In the simplex method, the
algorithm moves from one feasible point to another feasible point. For a large
LPP, this can be time consuming. As an alternate, interior point methods
move inside the feasible region to reach the optimum. The road map of this
chapter is given in Figure 4.1.

[ Solution with graphical method ]
¥
[ Standard form of LPP ]
3

[ Basic solution ]

]

Simplex method

* Multiple solutions

¢ Degeneracy

* Two-phase method

* Dual simplex method

v

Interior-point method

1

[ Portfolio optimization ]

FIGURE 4.1
Road map of Chapter 4.
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4.2 Solution with the Graphical Method

The graphical method is a simple technique for locating the optimal solu-
tion of problems with up to two to three design variables only. Beyond three
variables and with many constraints, the representation of the optimization
problem through graphs becomes complex. Consider the LPP

Maximize
z=x+2y @.3)

subject to
2x+y 24 44)
-2x +4y 2 -2 4.5)
2x+y=z-8 4.6)
2x+y<-2 4.7)
y<6 4.8)

The intersection of five constraints leads to a feasible region ABCDE as
shown in Figure 4.2. To make this plot, first type MuPad in the MATLAB®
command prompt. Open a new window in MuPad and then type the follow-
ing commands:

k := [{2*x + v >= 4, -2%x + 4%y >= -2, -2%x + y >= -8,
-2%x + y <= -2, y <= 6}, X + 2*yl:
g := linopt::plot_data(k, I[x, yl):

plot (g, Color = RGB::Grey)

The coordinate value of the vertex is given in the brackets. The values of
the objective function at points A, B, C, D, and E are given as 9, 13/5, 7/2, 16
and 19 respectively. In an LPP, the optimal value of the objective function
occurs at the edge of the convex polyhedron. Thus, the maximum value of
the objective function is 19 and the values of the variables x and y are 7 and
6 respectively at the optimal point. Note that the objective function z = x +
2y, also referred to as the cost equation represents, a family of parallel lines
(shown by the dashed line in Figure 4.2) called equicost lines. The value of
the objective function is constant along this line.
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FIGURE 4.2
Feasible region (ABCDE) for the LPP.

An LPP need not have a unique solution. For example, if we change the
previous LPP to

Minimize
z=2x+y 4.9)

subject to
2x+y =>4 (4.10)
2x+4y>-2 411
2x+y=>2-8 4.12)
2x+y<-2 4.13)
y<6 414

Open a new window in MuPad and then type the following command and
observe the plot in Figure 4.3.

k := [{2*x + Yy >= 4, -2*%X + 4%y >= -2, -2*X 4+ y >= -8,
“2%X + y <= -2, Yy <= 6}, -2*x - yl:
g := linopt::plot data(k, I[x, yl):

plot (g, Color = RGB::Grey)
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FIGURE 4.3
Infinite solutions for the LPP.

The equicost line z = 4 passes through points B and C. The minimum value
of the objective function is 4 and occurs at (3/2, 1) and (9/5, 2/5). In fact, for
infinite number of points in the line joining points B and C, the objective
function value is 4. That is, in the given LPP, the solution is not unique.

Now consider the LPP in which one of the constraints is removed. The LPP
is given by

Maximize
z=x+2y 4.15)

subject to
2x+y =4 4.16)
2x+4y=>-2 417)
2x+y=2-8 (4.18)
2x+y<-2 4.19)

The constraints are plotted in Figure 4.4. Observe that the value of the
objective function can be increased to an infinitely large value, without leav-
ing the feasible region. The solution of the LPP, in this case, is said to be
unbounded.
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y Unbounded

FIGURE 4.4
Unbounded solution for the LPP.

In addition, there can be inconsistent constraints in a LPP or the constraints
may be such that no feasible solution exists for the problem. The solution of
the LPP, in this case, is said to be infeasible. From the discussion so far, we can
say that an LPP can have

¢ A unique solution
¢ Infinite solutions
¢ An unbounded solution

¢ An infeasible solution

4.3 Standard Form of an LPP

In the previous section, the graphical method was used to find the optimal
solution of a two-variable LPP. In practice, LPP would contain several vari-
ables and constraints. Thus, there is a need to put LPP in a standard form.
For an n variable LPP, the scalar form is given as

Minimize
Z=CX + Xy + e+ C

X, 4.20)

n
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subject to
A3 Xy + AppXy + =+ + a1, X, = by
Ay Xy + ApXy + -+ + Ay, X, = b,
Ay X1 + AypXy + 200 + 4, X, = bm
X, b, 20

99

4.21)

4.22)

4.23)

4.24)

whereay(i=1,2, .-, m;j=1,2, -, n), b, c; are constants and x; are the design
variables. LPP can also be put in matrix form as

Minimize
z=cTx
subject to
Ax=Db
x,b>0
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The following important points are to be noted when an LPP is written in
standard form.

¢ The objective function needs to be in the minimization type.
e All of the design variables should be nonnegative.
¢ All of the components of the vector b are to be nonnegative.

e All of the constraints are of the equality type.

If the objective function is the maximization type, it can be converted to
the minimization type by multiplying the cost coefficients by —1. For exam-
ple, if the objective function is

Maximize z=x;+2x,
Then it can be converted to the minimization type as
Minimize -z=-x;-2x,

If a < type constraint is present, then it can be converted into an equality
constraint by adding a slack variable. For example, the inequality constraint

4x, — 5%, + 6x5 + 9x, <20
can be converted to an equality constraint by the addition of the slack variable s,
4x, — 5x, + 6x5+ 9x, + 5, =20
where s, 2 0. If a 2 type constraint is present, then it can be converted into an
equality constraint by subtracting it with a surplus variable. For example, the
inequality constraint
2x, +4x, — 6x3+ 7x, 28

can be converted to an equality constraint by subtracting it with a surplus
variable e,

2x, +4x, —6x;+7x,— e, =8

An unrestricted or free variable (without any specified bounds) can be
replaced by a pair of nonnegative variables. If x, is an unrestricted variable,
then it can be replaced by

4 ’”

X1 =X1—X

with x{ 20 and x7>0.
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Example 4.1

Transform the following LPP into the standard form.

Maximize

z=—4x; — 2%, + x5 — 3x,
subject to

2x;+ 3%, —x3—3x,=5
—5x; — 2%, +4x;— 7x, <8
4x, —x, —2x5+ 5x, < -6
x,2-1,0<x,<3,x;20, x, free

Since the objective function is of the maximization type, it needs to be
converted into the minimization type. This can be done by multiplying
the objective function by -1, that is,

Minimize
—z=4x; +2x, — x5+ 3x,

The right-hand side of the third constraint is negative (-6). In standard
form, this has to be positive. Hence, the third constraint has to be multi-
plied by -1 throughout. Third constraint thus becomes

—4x, + X, +2x3 - 5%, 26

Note that inequality type also changes during this operation.
Now transforming the variables

x;=x+1
Xy =Xp— Xy
and substituting these variables in the LPP, we get
Minimize
z'=4x]+2x, —x;+3x;—3x;—4

subject to

2x71+3x, —x3—3x,+3x7=7
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—5x]—2x, +4x, - 7x;+7x7<3

—4x] +x, +2x, —5x, +5x7 =2
X, <3

”

4 ’
X1,Xy,X3,X5,x720

Using the slack and surplus variables, inequality constraints can be
converted into equality constraints. Thus, the LPP problem converted
into standard form is

Minimize
” ’ ’ ’ ’”
7/ =z"+4=4x]+2x, — x5 +3x; — 3x]

subject to

2x1+3x, —x3—3x,+3x7=7

—5x7—2x, +4x; - 7x, +7x]+5,=3

’ ’ ” _
—4x]+x, +2x, —5x, +5x]—e; =2
X,+5,=3

’ 7’ 2
X1,Xy,X3,X4,X4,5,,€3,5, 20

In matrix form, the LPP in standard form can be written as
Minimize
z" =c"x

subject to
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where

- 4 - -xi_
2 Y2
2 3 1 3 3 0 0 0 -1 7 X3
A= 24 7 7 1 0 0] 3|, 3] _|%
4 1 2 -5 5 0 -1 0 -3 2 X!
0 1 0 0 0O 0 0O 1 0 2 s
0 “
LY s
|
4.4 Basic Solution
Consider an LPP in the standard form
Minimize
z=cTx 4.29)
subject to
Ax=Db 4.30)
x,b>0 4.31)

with n variables and m constraints. If m = n, then the solution is given by
satisfying the constraint equations Ax = b and there is no need for optimiza-
tion. For m > n, there will be m — n redundant equations. The case m < n will
correspond to an underdetermined system of linear equations that will have
infinite solutions. The solution technique of LPP is to determine the optimal
solution among many solutions.

A solution that satisfies the constraints is called the feasible solution. If we
set n — m variables to zero and solve the constraint equations Ax = b, we
get the basic solution. The corresponding variable x obtained from the basic
solution is termed the basis. A basic solution that also satisfies x > 0 is called
the basic feasible solution. It may be noted that every basic feasible solution is
an extreme point of the convex set of feasible solutions. If the basic feasible
solution is optimal then it is said to be the optimal basic solution.
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Example 4.2

Find all the basic solutions for the system of equations:
3x; —4x, + 2x3+ x, =0
X, + 3x, + 2x5 + x, = 500
7x1 + X, + X3 — x, =700

Writing the above equations in matrix form

Ax=Db
where

X4
3 4 2 1 . 0

2
A=|1 3 1;x=x;b:500
7 1 1 - 3 700

Xy

Let x4, x,, and x; be the basic variables and x, be the nonbasic variable.
Since the nonbasic variable(s) take the value zero in the basic solution,
we can rewrite the matrix equation as

Bx=b
where
3 4 2 Xy 0
B=\1 3 2|, x=|x |; b=]|500
7 1 1 X, 700

The matrix B corresponds to the basic variable columns of A. If B is
invertible, then we can evaluate x as

x=B"b

3 4 2 0 6800/89
x=|x =1 3 2 500 | = | 8300/89
7 1 1 700 6400/89
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Since xy, x,, and x; are all greater than zero, the solution obtained is a
basic feasible solution.

Similarly, we can take x;, x,, and x, as the basic variables and x; as the
nonbasic variable. Then,

3 4 1 0 100
X=1x (=1 3 1 500 | =1 100
7 1 -1 700 100

Again, the basic variables obtained have a value greater than zero, cor-
responding to a basic feasible solution.

If we take x;, x5, and x, as the basic variables and x, as the nonbasic
variable, then

-1

X 3 2 1 0 -250
X=|1x [=]1 2 1 500 | =| 3200/3
X, 7 1 -1 700 -4150/3

Since some of the basic variables are negative, the basic solution is not
feasible.

Now take x,, x;, and x, as the basic variables and x, as the nonbasic
variable. Then,

-1

X 4 2 1 0 500/7
X=|x;3 |=| 3 2 1 500 |=| 6400/21
x, 1 1 -1 700 —6800/21

Since some of the basic variables are negative, the basic solution is not
feasible.

4.5 Simplex Method

In the previous example, we examined four basic solutions for a system of
equations with four variables and three constraints. The number of basic
solutions that need to be inspected for an n variable problem with m con-
straints is given by

n!
(n—m)!m!
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For a large LPP, the number of basic solutions could be very high. For
example, for a 15-variable problem with 10 constraints, number of basic solu-
tions is 3003.

In the simplex method, all the basic solutions are not evaluated. Rather,
this is an iterative method that moves from one basic feasible solution to
another until the basis becomes optimal. To begin with, the simplex method
requires an initial basic feasible solution for the problem. This can be accom-
plished by the introduction of artificial variables in the problem. The coeffi-
cient matrix associated with the artificial variables will be an identity matrix.
The artificial variables can provide initial bases since the columns of an iden-
tity matrix are linearly independent.

Consider an LPP
Maximize

z=6x;+7x,
subject to

3x;+x,<10

X, +2x,<8

X <3
Xy, %, 20

Writing the problem in standard form
Minimize
z=-6x; —7x,
subject to
3x;+x,+x,=10
X+ 2%, +x,=8

X, +x=3

X1, Xo, X3, X4, X520
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Writing the constraints in matrix form

Ax=b
where
Xy
3 1 1 0 X 10
A=11 0 1 0|, x=|x;|; b=|38
1 0 O 1 x, 3
X5

Taking x, x,, and x5 as basic variables, we can evaluate them as

-1

X, 1 0 0 10 10
xp=|x, [=B'b={0 1 0 8 |=|8
X 0 0 1 3 3

The solution obtained is a basic feasible solution since all the elements of x are
positive. This is not surprising since all the elements of the vector b are positive
(problem already written in the standard form) and B is an identity matrix. In
this way, a basic feasible solution is ensured at the start of the simplex method.
Now we need to check whether the basic feasible solution is optimal.

Since nonbasic variables (x; and x,) have zero values, the objective function

z=-6x; —7x,
takes the value zero. That is,
z=0

The value of z will decrease if x; or x, is increased from zero. Thus, the cur-
rent basis is not optimal. In the simplex method, we can add or remove only
one variable from the basis. So we can bring either x, or x, into the basis. Since
the coefficient of x, is most negative (-7 < —6), we bring x, into the basis. The
idea is that z decreases more rapidly when x, is brought into the basis.

Keeping the other nonbasic variable x; equal to zero, let us write the basic
variable equations in terms of x, as

x;=10-x,
x,=8-2x,

X5=3
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To maintain nonnegativity of the basic variables x;, x,, and x;, the variable
x, can take a maximum value of 10 in the equation

x;=10-x,
and x, can take a maximum value of 4 in the equation
x,=8-2x,

Though we would like to take x, as large as possible to minimize the objec-
tive function, it can take a maximum value of 4 without making x, negative.
Thus, x, is the leaving basic variable. Note that if the coefficients of x, on
the left-hand side of the constraint equations were negative, then x, can be
increased to any larger value without violating the nonnegativity constraint
of the basic variable. The preceding discussion can be put in a ratio test for
determining the leaving basic variable. In this test we compute the mini-
mum of the ratios

In the present example, since x, is the new basic variable, j becomes 2. So
the ratios are

00, 8-y
1 2

Since the second row has the minimum value (4 < 10), the second basic
variable (x,) leaves the basis. The new basic feasible solution is

Rewriting the objective function in terms of the new nonbasic variables x,
and x, by using the second constraint equation, we get

z=—28—§x1+zx4
2 2

In the first iteration of the simplex method, the objective function is mini-
mized to —28 and since the coefficient of the nonbasic variable x, is nega-
tive, the basic feasible solution obtained is not optimal. The steps described
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earlier are to be repeated until the cost coefficients associated with nonbasic
variables in the objective function are all nonnegative. Based on the discus-
sion, let us write the algorithm for the simplex method (see Table 4.1) and
corresponding MATLAB code (simplex.m).

The initial simplex tableau is written as follows:

e A vector of basic variables
¢ A vector of nonbasic variables
e The matrix[B N b],and

e The cost coefficients [c}, ¢} ]
The simplex tableau at the end of each iteration is written as follows:

¢ A vector of basic variables

¢ A vector of nonbasic variables

e The matrix[I BN B7'b], and

e The cost coefficients [c} ¢1, —z]
TABLE 4.1

Algorithm for Simplex Method
Step 1: Write the LPP in the canonical form

Minimize z=c"x
subjectto Ax=0b
x20

Compute matrices B and N from matrix A, corresponding to basic and nonbasic variable
sets. ¢y and ¢; are the cost coefficients. Print the initial simplex tableau.
Step 2: Compute the minimum(cy), which gives ith entering basic variable
Compute the entering column as A, =B™'A,
Step 3: For all components of A; that are greater than zero, compute the ratios —
From the minimum of these ratios decide the leaving basic variable. A
Step 4: Using the updated basic and nonbasic variable sets, update the B and N matrix along
with ¢y and ¢;.
Step 5: Compute

i

xXp = l; =B
yT - C]B"Bfl
cv=cv-y'N
Z=—Chxy

If e, >0
then  goto Step 6
else print simplex tableau and goto Step 2
Step 6: Print the optimal basis, value of basic variables, and the objective function value.
The components of the vector y are called simplex multipliers.
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Let us execute the code for the LPP
Minimize
z=-6x; —7x,

subject to

3x;+x, +x,=10

X +2x%,+x,=8

X, +x=3
Xy, Xo, Xg, Xy X520

The output obtained is

basic_set = 3 4 5
nonbasic_set = 1 2
Initial Table =
1 0 0 3 1 10
0 1 0 1 2 8
0 0 1 1 0 3
Cost =
0 0 0 -6 -7 0
basic_set = 3 2 5 (%63, %9, X5)
nonbasic_set = 1 *//,ﬁzz”//////lxpxy
Table = —
1 0 0 5/2 -1/2 6
0 1 0 1/2 1/2 4
0 0 1 1 0 3
Cost =
0 0 0 -5/2 7/2 28
basic_set = 1 2 5
nonbasic_set = 3 4
Table =
1 0 0 2/5 -1/5 12/5
0 1 0 -1/5 3/5 14/5
0 0 1 -2/5 1/5 3/5
Cost =
0 0 0 1 3 34
— — — SOLUTION — — —
basic_set = 1 (%1, %9, X5)

xb
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Since the reduced cost coefficients (1 and 3) of the nonbasic variables are
nonnegative, the basis is optimal. The basis for the optimal solution is x;, x,,
and x; and their values are

v =12
5
x —E
25
x —é
5

and the objective function is minimized to
z=-34

Let us graph the constraints (see Figure 4.5) for this problem. The initial
basic feasible solution in the simplex method corresponds to point A (0, 0). In
the first iteration, the method moved to point B (0, 4) as the next basic feasible
solution where objective function value was reduced to —28. The basis here is
X3, X,, and x5 and their values are

x,=4
X;=6
X5=3
X2
A

Feasible region

A (0,0)

e

-1.0 -0.5 0.5 1‘.0 1‘.5 210 215 3.0 \&5 4.0

X1

FIGURE 4.5
Feasible region for the problem solved by the simplex method.
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In the second iteration, the simplex method moved to point C (152, Mj

5
as the next basic feasible solution where the objective function value was

reduced to —34. Since all the cost coefficients corresponding to the nonbasic
variable were nonnegative, the basic feasible solution was optimal and fur-
ther iterations were terminated.

4.5.1 Multiple Solutions

Let us modify the objective function of the previous problem and rewrite
LPP as

Minimize
z = —6x;
subject to
3x;+x, +x,=10
X, +2x,+x,=8
X, +x5=3
Xy, Xo, X3, X4, X520

The MATLAB code (simplex.m) is executed again with the following
modification:

c = [-6;0;0;0;0];

The output obtained is

basic_set =

3 4 5
nonbasic_set =
1 2
Initial Table =
1 0 0 3 1 10
0 1 0 1 2
0 0 1 1 0 3
Cost =
0 0 0 -6 0 0
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basic_set =

3 4
nonbasic_set =

2 5
Table =
1 0 0
0 1 0
0 0 1
Cost =
0 0 0

—————— SOLUTION

basic_set =

3 4
xb =

1

5

3
Zz =

-18

-3
-1

ul

18

113

The simplex method converges to the optimal solution in one iteration and
the minimum value of the objective function is —18. Observe from the output
that at the end of the first iteration the cost coefficient corresponding to the
nonbasic variable x, is zero as compared to another nonbasic variable x; that
has a value of 6. Allow the MATLAB code (simplex.m) to be executed for one

more iteration by commenting the terminating criterion as follows:

o o

o

end

The output obtained in the second iteration is

if cn _cap >=0
break;

basic_set =
nonbasic_set

Table =
1 0 0
0 1 0
0 0 1
Cost =
0 0 0
—————— SOLUTION

basic_set =

2 4
xb =

1

3

3
zzZ =

-18
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X2
54

T
34

I
21 Multiple solutions
11
' t : : : : ‘ . s
-1.0 -0.5 05 10 15 20 25 30 35 40

FIGURE 4.6
Concept of multiple solutions.

Observe that this basis is also optimal. An LPP is said to have multiple solu-
tions when the cost coefficient of a nonbasic variable is zero in the optimal
basis. This is also shown in Figure 4.6, where these points correspond to an
edge of the convex polyhedron.

4.5.2 Degeneracy

Sometimes, during the course of the simplex procedure, the method can
become cyclic with no further improvement in the objective function. This
occurs when the entering basic variable becomes zero in a basis. That is, com-
ponent of vector b; becomes zero during the iteration. Let us show this with
an example for the following LPP:

Minimize
z=-3x; — 3x,
subject to
x, <4
X, +2x,<4
Xy, %, 20
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Modity the simplex.m code with the following changes:

A=[1 0 1 0;

1 2 0 11;
b [4;4]1;
¢ = [-3;-3;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];

On executing the code, the following output is displayed on the command
window.

basic_set = 3 4
nonbasic _set = 1 2
Initial Table =

1 0 1 0 4

0 1 1 2 4
Cost =

0 0 -3 -3 0
basic_set = 1
nonbasic _set = 2 3
Table =

1 0 0 1

0 1 2 -1 0
Cost =

0 0 -3 3 12
basic_set = 1 2
nonbasic _set = 3 4
Table =

0 1 0

0 1 -1/2 1/2 0
Cost =

0 0 3/2 3/2 12

Note that in the first iteration, the basic variable x, becomes zero. The value
of the objective function does not improve during the second iteration. The
problem can be avoided by adding a small perturbation on the b vector and
the same can be implemented in the simplex.m code as

b = [4;4];
pertb = [le-2;1le-3];
b = b+pertb;

On executing the modified code, the following output is displayed on the
command window.
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basic_set = 3 4
nonbasic_set = 1 2
Initial Table =

1 0 1 0 401/100

0 1 1 2 4001/1000
Cost =

0 0 -3 -3 0
basic_set = 3 1
nonbasic_set = 2 4
Table =

1 0 -2 -1 9/1000

0 1 2 1 4001/1000
Cost =

0 0 3 3 3997/333
basic_set = 3 2
nonbasic_set = 1 4
Table =

1 0 1 0 401/100

0 1 1/2 1/2 4001/2000
Cost =

0 0 -3/2 3/2 4003/667

—————— SOLUTION---- - -

basic_set = 3 2
Xb =

401/100

4001/2000
zz =

-4003/667

Note that by making a small perturbation on b, we are able to achieve the
minimum value of the objective function as —6.0015 at (x;, x,) = (0, 2.0005). The
exact minimum value of the objective function is —6 and occurs at (x;, x,) = (0, 2).

4.5.3 Two-Phase Method

As discussed earlier, to start a simplex method, a basic feasible solution is
required. A basic feasible solution may not be readily available for an LPP.
For example, the addition of a negative slack variable in a > type constraint
will not lead to the canonical form of equations. By addition of artificial vari-
ables, this problem can be overcome. The original LPP gets modified as a
result of the introduction of the artificial variables. In phase I of the simplex
method, we solve the modified LPP to get a basic feasible solution. Once a
basic feasible solution is available from phase I, phase II involves solving the
original LPP. Let us explain the two-phase simplex method with an example.
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Consider a LPP
Minimize
z =3x, + 4x,
subject to
3x; +2x,=10
2x, —4x,23
3x; +4x,<16
Xy, %, 20

Writing the LPP with slack (x;, x,) and artificial variables (y,, y,) as
Minimize
z=3x; +4x,
subject to
3x; +2x, +y; =10
2x, —4x, —x3+Y,=3
3x; +4x, +x,=16
Xy, Xo, Xz, X4y Y1, Yp 2 0
The objective function in the phase I problem is
Minimize
2= Y=+ 4.32)

The constraints of the phase I problem remain same as in the original LPP.
The variables y,, y,, and x, can be taken as the basic variables. The objective
function in the phase I problem is not a function of the nonbasic variables.
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Writing the modified objective function in terms of the nonbasic variables
using the first and second constraint equations:

Y1+ Y, =13 = 5x; + 2x, + x5

This can also be done using the formula
cn=cy—-y'N 4.33)
where

T _ Tp-1
y =B (4.34)

By executing the MATLAB code (initial_cost.m), the cost coefficients for the
nonbasic variables can be obtained as

With a minor modification of the MATLAB code (simplex.m), phase I code is
written in phasel.m. On executing the code, the following output is displayed
on the command window.

basic_set = 5 6 4
nonbasic_set = 1 2 3

Initial Table =

1 0 0 3 2 0 10

0 1 0 2 -4 -1 3

0 0 1 3 4 0 16
Cost =

0 0 0 -5 2 1 -13
basic_set = 5 1 4
nonbasic_set = 2 3 6

Table =

1 0 0 8 3/2 -3/2 11/2
0 1 0 -2 -1/2 1/2 3/2
0 0 1 10 3/2 -3/2 23/2
Cost =

0 0 0 -8 -3/2 5/2 -11/2

The variable number 6 (y,) has left the basis and so can be removed from
the basis. A MATLAB code (remove_variable.m) removes the user-specified
column from the nonbasic set. Note that this variable corresponds to the
third column in the nonbasic set. On executing the code, the following out-
put is displayed on the command window.
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----Table after removing artificial variable------

basic_set = 5 1 4
nonbasic_set = 2 3

Initial Table =

1 0 0 8 3/2 11/2
0 1 0 -2 -1/2 3/2

0 0 1 10 3/2 23/2
Cost =

0 0 0 -8 -3/2 -11/2

Now rerun the phase I code without initializing the A and b matrix. This
can be done by modifying the code phasel.m to phasel_without_ initialization.m.
On executing the code phasel_without_initialization.m, the following output is
displayed on the command window.

basic_set = 2 1 4
nonbasic_set = 3 5

Table =

1 0 0 3/16 1/8 11/16
0 1 0 -1/8 1/4 23/8
0 0 1 -3/8 -5/4 37/8
Cost =

0 0 0 0 1 0

Again, the variable number 5 () has left the basis and so can be removed
from the basis. This corresponds to the second column in the nonbasic set.
Make the following modification in the code remove_variable.m and then
rerun this code.

remove_column = 2;

----Table after removing artificial variable------

basic_set = 2 1 4
nonbasic_set = 3
Initial Table =
1 0 0 3/16 11/16
0 1 0 -1/8 23/8
0 0 1 -3/8 37/8
Cost =
0 0 0 0 0

This basis does not involve any artificial variable and the value of the objective
function is zero. So this is the feasible solution for the original problem. In case
the objective function value was greater than zero, the solution would be infea-
sible. This is the end of phase I. The objective function of the original problem is

z=3x; +4x,
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The objective function has to be written in terms of the nonbasic variable.
Again using the code initial_cost.m, with the following modifications, the
cost coefficients for the nonbasic variable can be computed.

cb = [3 4 0];

cn = [0];

N = [3/16;
-1/8;
-3/81;

B=[010;100;00 1];

In phase II of the simplex method, execute the phasel.m code with follow-
ing modifications.

A =[0 1 3/16 0;

10 -1/8 0;

0 0 -3/8 11;
b = [11/16;23/8;37/8];
c = [0;0; -3/8; 0];
basic set = [2 1 4];
nonbasic _set = [3];
zzl = 91/8;

On executing the phasel.m code the following output is printed on the com-
mand window.

basic_set = 2 1 4
nonbasic _set = 3
Initial Table =
1 0 0 3/16 11/16
0 1 0 -1/8 23/8
0 0 1 -3/8 37/8
Cost =
0 0 0 -3/8 -91/8
basic_set = 3 1 4
nonbasic _set = 2
Table =
1 0 0 16/3 11/3
0 1 0 2/3 10/3
0 0 1 2 6
Cost =
0 0 0 2 -10

Since all the cost coefficients are nonnegative, the basis is optimal. The

. L L 10
minimum value of the objective function is 10 and occurs at (x;,x,)=| —,0 |

3 7
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4.5.4 Dual Simplex Method

Every LPP, called the primal, is associated with another LPP, called its dual.
The optimal solution of the primal problem and its dual remain the same. In
the dual problem, the components of the b vector (right-hand side of the con-
straint equation in the primal problem) become the cost coefficients in the
objective function and vice versa. If there are n variables and m constraints
in the primal problem, then there will be m variables and 7 constraints in the
dual problem. If the objective function in the primal problem is of the mini-
mization type, then it becomes a maximization type in the dual problem. All
constraints are to be written as < in the dual problem. An equality constraint
x = b can be converted into two < constraints by writing it as x < b and —x <
—b. For a primal LPP

Maximize
z=cTx
subject to
Ax2D
x20
Its corresponding dual is
Minimize
w=>bTy
subject to
ATy<c
y=0

The transformation rules from primal to dual problems are given in
Table 4.2. In the primal LPP, the simplex method moves from one feasible
solution to another. The dual simplex method moves from one primal infea-
sible solution to another with reduced infeasibility. On reaching the primal
feasibility conditions, the method stops as the solution obtained is the opti-
mal one. One may argue the need for a dual problem and its solution. It is
observed that some of the LPPs show degeneracy when used with the pri-
mal problems. The corresponding dual problems are much easier to solve in
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TABLE 4.2

Transformation Rules from Primal to
Dual Conversion

Primal Dual
axzb; ;20
ax <b; ¥;<0
ax=>b; y; free
x>0 ajy<c;
%<0 alyzc
X; free u;ry = C/-

such cases. Further, dual methods are more suited for mixed-integer type
problems.

Let us write the algorithm for the dual-simplex method (Table 4.3) and the
corresponding MATLAB code is written in the file dual.m.

Consider the primal LPP

Maximize

z =3y, + 4y, + 25y; + 26y,

subject to
Y+ 2y;+y, <9
Yo+ Y3+ 3y, <8
Yi Y2 Y3 ¥s20
Its dual is
Minimize
z=9x; + 8x,
subject to
X 23
X, 24
2x,+x,225
X, +3x,226
Xy, %, 20
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TABLE 4.3

Algorithm for the Dual-Simplex Method
Step 1: Write the dual LPP in canonical form

Minimize z=clx
subjectto Ax=b
x>0

Compute matrices B and N from matrix A, corresponding to basic and nonbasic variable sets.
¢y and ¢ are the cost coefficients of basic and nonbasic variables. Print the initial tableau.
Step 2: Compute minimum(b,), which gives the ith leaving basic variable.
Compute the pivot row as A;= BA, c.
Step 3: For all components of A; which are less than zero, compute the ratios ——.
Minimum of these ratios decide the entering basic variable. 4
Step 4: Using the updated basic and nonbasic variable sets, update B and N matrix along
with ¢y and c;.
Step 5: Compute

Xp = b=B"b
y' =c;B”
cn=cy-y'N
z=—cpxg
If 520
then  goto Step 6

else print the simplex tableau and goto Step 2
Step 6: Print the optimal basis, value of basic variables and the objective function value.

Since the constraints are of > type, the dual problem is not in standard
form. Writing the constraints in the canonical form,

Ax=Db
where

_xl_
-1 0 1 0 0 O X2 -3
A=| 0 1 0 10 0 L _F| | 4
2 -1 0 0 1 0 X, -25
-1 3 0 0 0 1 % -26

X6
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On executing the code dual.m, the following output is printed on the
MATLAB command window.

basic _set = 3 4 5 6
nonbasic_set = 1 2
Initial Table =
1 0 0 0 -1 0 -3
0 1 0 0 0 -1 -4
0 0 1 0 -2 -1 -25
0 0 0 1 -1 -3 -26
Cost =
0 0 0 0 9 8 0
basic _set = 3 4 5 2
nonbasic_set = 1 6
Table =
1 0 0 0 -1 0 -3
0 1 0 0 1/3 -1/3 14/3
0 0 1 0 -5/3 -1/3 -49/3
0 0 0 1 1/3 -1/3 26/3
Cost =
0 0 0 0 19/3 8/3 -208/3
basic set = 3 4 1 2
nonbasic_set = 5 6
Table =
1 0 0 0 -3/5 1/5 34/5
0 1 0 0 1/5 -2/5 7/5
0 0 1 0 -3/5 1/5 49/5
0 0 0 1 1/5 -2/5 27/5
Cost =
0 0 0 0 19/5 7/5 -657/5
—————— FINAL SOLUTION------

basic _set = 3 4 1 2
Xb =

34/5

7/5

49/5

27/5
Zz =

657/5

Since all the b; are nonnegative, the basis is optimal. The minimum value

of the objective function is @57 and occurs at (x;,x,)= (49 27)

5’5
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4.6 Interior-Point Method

In the simplex method, one moves along the boundary of the feasible region
to arrive at the optimum. For an LPP with a large number of constraints, this
may be time consuming if the initial guess is far from the optimal. On the
other hand, interior-point methods move inside the feasible region to reach
the optimal solution. Narenndra Karmarkar proposed a new polynomial-
time algorithm (Karmarkar 1984) that claimed to be up to 50 times faster as
compared to the simplex method for large LPP. His algorithm did create fur-
ther interest in such methods. Interior point methods can be classified into

e Barrier function methods
¢ Potential-reduction methods
¢ Affine scaling methods

The affine scaling method is very simple to implement and has been suc-
cessful in solving large LPP. The method is due to Barnes and Vanderbei
(Barnes 1986; Vanderbei et al. 1986). In this method, we start with a point
inside the feasible region (see Figure 4.7) and then use the projected steepest-
descent direction to get the next improved point. Note that if the point (x,)
is close to the central position, a considerable improvement in the objective
function can be made. On the other hand, if the point (x,) is away from the
central position, the improvement in the objective function would be less.
The affine scaling method transforms LPP to another equivalent problem so
that the point is closer to the central position.

Let us write an algorithm for the affine scaling method (Table 4.4) and the
corresponding MATLAB code is written in the file interior.m.

Let us take the same problem that was solved by the simplex method. The LPP

Maximize

z=6x+7x,

FIGURE 4.7
Interior-point method.
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TABLE 4.4
Algorithm for the Interior-Point Method
Step 1: Write the LPP in the form

Maximize z=cx
subjectto Ax=0b
x20
Give inputs A, b, ¢, x, (initial feasible point), y (accelerating parameter), and ¢ (tolerance
parameter).
Step 2: Compute v; = b — Ax;

D = diag(v;)

h, = (ATD2A)"lc

Step 3: If |z(x,,,) — z(x;)
then  goto Step 2
else  goto Step 4

Step 4: Print x and z.

>€

subject to
3x;+x,<10
X, +2x,<8
X <3
X1, %, 20
On executing the code, the maximum value of the objective function
obtained is 34, which occurs at (x;, x,) = (2.4, 2.8). This matches with the result

that was obtained by the simplex method. The convergence history of the
affine scaling method is shown in Figure 4.8.
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Feasible region

A(0,0)

-1.0 -0.5 05 1.0 15 20 25 30 \3.5 4.

FIGURE 4.8
Convergence history for the affine scaling method.
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4.7 Portfolio Optimization

Let us solve a 10-variable portfolio optimization problem using some of
the techniques described earlier in this chapter. A company has to invest
$600,000 in different financial products such that its earnings are maxi-
mized. The expected return on investment for different financial products

is given in Table 4.5.

TABLE 4.5

Portfolio Optimization Problem Description

Financial Product Market Return (in %)
X Trucks—Germany 9.5
X, Cars—Japan 11.2
X3 Laptops—USA 10.5
Xy Computers—USA 11.9
X5 Appliances—Australia 11.7
X6 Appliances—Europe 13.2
X, Insurance—Germany 10.5
Xg Insurance—USA 10.9
Xy Currency carry trade 55
Xy0 Others 5.1
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The following constraints are specified on the investment.

¢ No more than $140,000 in the transport segment
¢ No more than $160,000 in the computer segment
* No more than $120,000 in the appliances segment
e No more than $230,000 in the German segment

* No more than $220,000 in the USA segment

The LPP can be written mathematically as
Maximize

z =0.095x; + 0.112x, + 0.105x; + 0.119x, + 0.117x5 + 0.132x, + 0.105x,
+ 0.109x5 + 0.055x4 + 0.051x,

subject to
X, + x, <140
X5+ x4 <160
X5 + x4 < 120
X, +x,<230
X5+ X, + xg <220
Xq+ Xy + X5+ X4+ X5+ X+ X7 + Xg + Xg + X9 = 600
X1, Xo, X3, X4, X5, X, X7, Xg, Xo1, X192 0
Writing the problem in standard form
Minimize

z = —0.095x, — 0.112x, — 0.105x; — 0.119x, — 0.117x5 — 0.132x,
~0.105x, — 0.109x5 — 0.055x, — 0.051x,,

subject to

X+ X, + x4 =140
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X5+ X, + Xqp = 160
X5+ X + X153 = 120
Xy + Xy + x4 =230
X5+ X4 + Xg + X35 = 220
Xq+ Xy + X5+ X4+ X5 + Xg + X7 + Xg + Xg + Xy + Xq6 = 600
X1, Xp, X, Xy, X5, X, X7 Xg, Xoy X1g, X115 X125 X13, X4y X135, X162 0

The variables x;, x,, and so on are in thousands of dollars. Update the fol-
lowing input data in the code simplex.m and then execute the code.

A=

P O OoORr o
P O OoORr o
o O+ O o
o O O o
o O O o
P O O O o
o O O O o
o O O O o
o O o o
o O o r o
O O oK+ O o
O Or OO o
o+ OO O o
P O O O o o

1111111100 1;

140;160;120;230;220;600] ;
-0.095;-0.112;-0.105;-0.119;-0.117;-0.132;-0.105;-0.109;-0.055;
-0.051;0;0;0;0;0;01;

basic_set = [11 12 13 14 15 16];

nonbasic set = [1 2 3 4 56 7 8 9 10]

1
0
0
0
0
1
4

b

1
0
0
1
0
1
[
c =

The following output is displayed on the command window.

basic_set = 11 12 13 14 15 16
nonbasic set = 1 2 3 4 5 6 7 8 9 10
Initial Table
000 140
160
120
230
220

600

O O O o o -
O O O O
O O O o
O O O o
O OO o o
P O O O o o
P OFr O OoR
P O O o o Il
PR OOHRrO
PR OOHRrO
P O oOPRr OO
P O oOPRr OO
P O Fr OO O
PP OOOOoO
P O O O o o
P O O O o o

Cost =
000O0O0O0-19/200 -14/125 -21/200 -119/1000 -117/1000 -33/250
-21/200 -109/1000 -11/200 -51/1000 0

basic_set = 11 12 6 14 15 16
nonbasic_set = 1 2 3 4 5 7 8 9 10 13
Table =
1000
0
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0010000011 0000O0OO0T1120

000100100001 000 0230

0000100011 00100 0220

000001111101 111-1 480

Cost =

000O0O0O -19/200 -14/125 -21/200 -119/1000 3/200 -21/200

-109/1000 -11/200 -51/1000 33/250 396/25

basic_set = 11 4 6 14 15 16

nonbasic_set =1 2 3 5 7 8 910 12 13

Table =

100000110000O0O0O0 0140

01 0000001O00O0O0OCO0T1 0160

0010000001T0O0O0O0O0 1120

00010010001000O0 0230

000010000O0OO0C1TO00O0-1 0 60

0000011100111 1-1-1 320

Cost =

000O0O0O0O -19/200 -14/125 7/500 3/200 -21/200 -109/1000

-11/200 -51/1000 119/1000 33/250 872/25

basic _set = 2 4 6 14 15 16

nonbasic set =1 3 5 7 8 9 10 11 12 13

Table =

100000100O00O0O0OT1 O 0 140

0100000100000 O0 1 0160

00100000100O0O0OTO0O0O 1120

0001001001000 O0O0 0230

0000100000100 O0-1 0 60

000001000111 1-1-1-1 180

Cost =

000O0O0OO 17/1000 7/500 3/200 -21/200 -109/1000 -11/200

-51/1000 14/125 119/1000 33/250 1264/25

basic_set = 2 4 6 14 8 16

nonbasic_set = 1 3 5 7 9 10 11 12 13 15

Table =

10000010000O0T1 0 O 0 140

010000010000 O0O1 0 0160

0010000O01T00O0O0OO0O 1 0120

0001001001000 0 0 0230

000010000O0O0O0O0O-1 0 1 60

00000100011 1-1 0-1-1 120

Cost =

000O0O0O 17/1000 7/500 3/200 -21/200 -11/200 -51/1000
14/125 1/100 33/250 109/1000 571/10

basic_set = 2 4 6 14 8 7

nonbasic set =1 3 5 9 101112 13 15 16
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Table =
100000100 O0O0OT1O0O0 O O 140
010000010 O0O0OOT1ITO0O0 0160
001000001 0OOTOTZ1O0 0120
ocooo0o1o00100-1-121 0 1 1-1 110
00001000OO0OO0OTO0OUO-1 01 0 660
0000010001 1-1 0-1-1 1 120
Cost =
000O0O0O 17/1000 7/500 3/200 1/20 27/500 7/1000

1/100 27/1000 1/250 21/200 697/10
—————— SOLUTION------
basic_set = 2 4 6 14 8 7
xb =

140

160

120

110

60

120
zZZ =

-697/10

The optimal solution for the LPP is
X1, Xo, X3, Xa, X5, Xg, X7, Xg, Xo, X109 = (0, 140, 0, 160, 0, 120, 120, 60, 0, 0)

Again notice that the variables x,, x,, and so on are in thousands of dol-
lars. Since the maximization problem was converted into the minimization
problem, the optimal solution has to be multiplied by —1. Thus the maximum
earnings are $69,700.

Chapter Highlights

® An optimization problem that has the objective and the constraints
as a linear function of the design variables is a linear programming
problem.

¢ The graphical method is a simple technique for locating the optimal
solution for problems with up to two or three design variables only.

¢ Inequalities can be plotted in MATLAB in the MuPad command
window.

¢ In an LPP, the optimal value of the objective function occurs at the
edge of the convex polyhedron.
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¢ When the objective function can be increased to an infinitely large
value, without leaving the feasible region, the solution of the LPP is
said to be unbounded.

¢ In the standard form of an LPP, the objective function is of mini-
mization type, all the design variables should be nonnegative, all
the constraints should be of the equality type, and all the num-
bers on the right-hand side of the constraint equation should be
nonnegative.

* A < type constraint can be converted into an equality constraint by
adding a slack variable.

* A >type constraint can be converted into an equality constraint by
subtracting it with a surplus variable.

* An unrestricted or free variable (without any specified bounds) can
be replaced by a pair of nonnegative variables.

¢ A solution that satisfies the constraints is called a feasible solution.

* The variables x obtained from the basic solution are termed the
basis. A basic solution that also satisfies x > 0 is called the basic
feasible solution. It may be noted that every basic feasible solution
is an extreme point of the convex set of feasible solutions. If the
basic feasible solution is optimal then it is called the optimal basic
solution.

¢ The simplex method is an iterative method that moves from one
basic feasible solution to another until the basis becomes optimal.
The method requires an initial basic feasible solution for the prob-
lem. This can be achieved by the introduction of artificial variables
in the problem. The coefficient matrix associated with the artificial
variables will be an identity matrix. The artificial variables can pro-
vide initial bases because the columns of an identity matrix are lin-
early independent.

* An LPP is said to have multiple solutions when the cost coefficient of
a nonbasic variable is zero in the optimal basis.

¢ The simplex method can become cyclic with no improvement in the
objective function during iterations. This occurs when the entering
basic variable becomes zero in a basis.

¢ The degeneracy problem in the simplex method can be avoided by
adding a small perturbation on the b vector.

¢ In phase I of the simplex method, we solve the modified LPP to get
a basic feasible solution. Once a basic feasible solution is available
from phase I, phase II involves solving the original LPP.

¢ Every LPD, called the primal, is associated with another LPP, called
its dual. The optimal solution of the primal problem and its dual
remain the same.
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¢ It is observed that some of the LPPs show degeneracy when used
with the primal problems. The corresponding dual problems are
much easier to solve in such cases.

¢ Interior-point methods move inside the feasible region to reach the
optimal solution.

Formulae Chart

LPP in the standard matrix form:

Minimize

z=cTx
subject to

Ax=b

x20
Simplex tableau:
x;=b=B"b
yT — Cz;B—l

cn=cn—-y'N

Z=—CLxp

Problems

1. A manufacturer produces two components, X and Y. Component X
requires 2 hours of machining and 3 hours of polishing. Component
Y requires 3 hours of machining and 4 hours of polishing. Every
week, 42 hours of machining and 48 hours of polishing can be done.
The company makes a profit of $5 on X and $7 on Y. Assume that
whatever is produced gets sold in the market. Formulate the LPP
and solve it using the graphical method.
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2. Solve the following LPP using the graphical method.
i. Minimize

z=3x; — 2x,
subject to
X, +2x,<10
2%, —x, <5
—4x,+3x,25
Xy, %, 20
ii. Maximize
z=2x,+5x,
subject to
3x;+x,<11
X, +Xx,26
2x, +x,<10
Xy, %, 20
iii. Maximize
z =4x, + 5x,
subject to
2x; +x,<20

—3x; +2x,<25
-X; + x, <30

Xy, %, 20
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iv. Maximize
zZ=-X; +2x,
subject to
2x;+x,25
4x, +x,210
2x; +3x,<8
X1, %, 20

3. Determine all the basic solutions (feasible and infeasible) for the fol-
lowing system of linear equations.

X, — 2%, — X3+ 4x,=3
X+ 2x;+2x,=4
2x; =X+ X3+ X, =5
4. Find the value of k so that the following LPP has an optimal solution
44 48
7°'7)
Minimize

at

z = -3x; + 2x,
subject to
—x; + 2x, > 10k
2x; + x, < 5k
2x, + 3x, < 4k
X1, %, 20

5. Convert the following LPP into standard form with matrix notations:
i. Minimize

z=2x; 4+ 3%, — X4
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subject to
—X; +2x,—3x;<5
2x; — X, +4x3;< -5
3x; —2x, = 5x532 -7
X1, Xp, X320
ii. Maximize
z=2x, — 3x, + 4x;
subject to
3x; — 2x, — 3x; 2 11
—4x, - 3x,+x;2 -6
X+ 2x, +x,<10

X, 22,x,<5, x5 free

6. Consider the system of equations Ax = b, x > 0 where

X1
2 3 1 0 O X2 7
A=|2 1 0 1 0]; x=|x3|; b=|8
4 2 0 0 1 X, 5

Find the initial basic solution.

7. Solve the following LPP using the simplex method.

Minimize
z=3x; — 2x,
subject to
X, +2x,<10
2%, —x, <5
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—4x,+3x,25
Xy, %, 20

8. Using the simplex method check whether the following LPP has
multiple solutions

Minimize
Z=X)— 2X,
subject to
2x, —4x,<2
X, +x,<3
x <4
Xy, %, 20

9. Use Phase I of the simplex method to find a basic feasible solution for
the system of equations

2x; —4x, + X322
=3x; +2x, + 2x; >4

X1, Xp, X520

10. Write the dual of the following LPP:
Maximize

z =4y, + 5y, + 23y, + 24y,
subject to
Y1+ 2Y3+1y, <7
Yo+ Y3+ 3y, <6
Yi Y2 Y3 Y220

Solve the dual problem. Show that the optimal solution is same for
the primal and the dual problem.
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11. Use the affine scaling method to solve the following LPP.

Maximize
Z=X;+X,
Ax<b
where
01 1] [1.00]
02 1 1.01
04 1 1.04
06 1 1.09
08 1 N 1.16
A={10 1|; «x= xl ; b={125
12 1 2 1.36
14 1 1.49
16 1 1.64
18 1 1.81
20 1] 2.00)

Take initial x as (0, 0) and y = 0.9.
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Guided Random Search Methods

5.1 Introduction

The solution techniques for unconstrained optimization problems that have
been described in earlier chapters invariably use the gradient information
to locate the optimum. Such methods, as we have seen, require the objec-
tive function to be continuous and differentiable, and the optimal solution
depends on the chosen initial conditions. These methods are not efficient in
handling discrete variables and are more likely to stay at a local optimum for
a multimodal objective function. Gradient-based methods often have to be
restarted to ensure that the local optimum reached is indeed the global one.

In this chapter we explore five different types of solution techniques that
do not require the objective function to be either continuous or differentia-
ble. The solution techniques are

* Genetic algorithms (GAs)
Particle swarm optimization (PSO)

Simulated annealing (SA)
¢ Ant colony optimization (ACO)
e Tabu search

All these methods are based on random searches in locating the optima.
However, these methods are different from pure “random walk” methods
in the sense that they use information from the previous iteration in locat-
ing the next best point(s). These methods are hence classified under guided
random search methods. The guided random search techniques can be
subclassified into evolutionary methods. GA and PSO methods fall under
the heading of evolutionary methods. Instead of using a single point in the
search space, both GA and PSO techniques use population of points in the
search space and hence have a better chance of locating the global optima.
The GA technique mimics the biological process (genetics) whereas the PSO
technique is based on the idea of natural phenomena such as birds flocking
together or school of fishes moving together. The SA method is based on

139
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Guided random search methods

1

Genetic algorithm

+ Initialize population
Fitness evaluation
Reproduction
Crossover
Mutation
Multimodal test function

!

[ Simulated annealing ’

!

[ Particle swarm optimization ]

]

Other methods
* Ant colony optimization
» Tabu search

FIGURE 5.1
Road map of Chapter 5.

the physical analogy of the annealing process of a material that is heated to a
high temperature and then slowly cooled in a controlled manner. The prop-
erties of the material get improved through this process. In a similar way,
using the SA technique, the transformation is made from the nonoptimal
solution for an optimized solution. Some other popular methods such as ant
colony optimization and tabu search, which are used for solving combinato-
rial problems, are briefly discussed in the last section. The road map of this
chapter is shown in Figure 5.1.

5.2 Genetic Algorithms

Genetic algorithms (GAs) are search algorithms based on the mechanism
of natural selection. They rely on one of the most important principles of
Darwin: survival of the fittest. Globally the population is submitted to many
transformations. After some generations, when the population is enduring
no more, the best individual in the population is assumed to represent the
optimal solution. GA mimics the genetic process in which hereditary char-
acteristics are transmitted from a parent to an offspring. The basic unit of
inheritance is a gene. Several such genes, encoding specific characteristics
(eye color, height, etc.) are present on a chromosome. For example, humans
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have 23 pairs of chromosomes. One chromosome in each pair is derived from
the maternal and and one from the paternal parent. As a result of the crossover
operation, some characteristics of each parent can be seen in the offspring.
In the natural hereditary process, some genes also randomly mutate. For
instance, if the gene corresponding to eye color mutates, the offspring can
have blue eyes even if both of the parents’ eyes are brown. The mutation in
a sense brings variety into the offspring and improves his survivability in a
changing environment.

In gradient-based methods, the solution moves from one point to another
using the gradient and the Hessian information. In GA, one works with a
population of points rather than a single point. The fitness (value of the objec-
tive function) of each individual in the population (corresponding to a point
in the search space) is then computed. Individuals who have high fitness
value undergo crossover and mutation with the hope that they produce bet-
ter offspring. By better offspring, we mean that they have higher fitness value
as compared to their parents. To facilitate the easy working of the genetic
operators on the design variables x, these are often coded into binary strings.
Once these variables have undergone genetic operations, the new values of
the variables can be computed by decoding the binary strings. Using the
decoded value of the variables, the fitness of the each individual in the new
population is computed. This completes one generation (iteration) of the GA.
The working principle of a GA is depicted through a flow chart (Figure 5.2).

Begin

Initialize population

Yes

No

@ Fitness

Reproduction

Increment generation |

h

Crossover

Mutation

FIGURE 5.2
Working principle of a genetic algorithm.

© 2015by Taylor & FrancisGroup,LLC



142 Optimization: Algorithms and Applications

Let us take the solar energy test problem (see Problem 8 in Chapter 1) in
which the following cost function (U) is to be minimized and the variable to
be evaluated is temperature T, which is restricted between 40°C and 90°C.

_204,165.5 + 10,400
330-2T T-20

Each step of the GA will be explained for the solar energy test problem.

5.2.1 Initialize Population

The variable T has to be restricted within [40, 90]. Since the variable T has to
be coded into a binary string, we have to first decide on the number of bits in
the string (also called as the string length). Because each bit can take a value
of 0 or 1, for a 5-bit string, the minimum value will be 00000 and maximum
value will be 11111. This corresponds to a decimal value of 0 and 32 (2°). If
this is linearly mapped into the search space, the variable T will have an
accuracy of

90-40 _ 1.5625°C

2%

Because we require a finer value of the variable T as 0.001 degrees, the
required string length will be 15. The initial population of variables (in
binary form) will be generated randomly. A uniform random number gen-
erator can be used that generates a random number between 0 and 1. If the
random number values are less than 0.5 we take the bit value as 0; else it is
taken as 1. To generate a string length of 15, we have to generate the same
quantity of random numbers. The following random numbers are generated
using the rand command in MATLAB®. The corresponding bit string is men-
tioned in the second row.

0.81 0.90 0.13 0.910.63 0.090.28 0.540.96 0.150.350.470.740.19 0.8
1 1 0 1 1 0 0 1 1 0 0 0 1 0 1

Therefore, the first individual in the population will be 110110011000101.
Repeat the step for the number of individuals in the population. For a popu-
lation size of 10, the following strings are randomly generated:

110110011000101
100001010111010
000110101110101
100000110011101
000011100100111
100100101011000
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010110100110001
100110101110011
111100100011010
001111100111001

In the next step, we decode these strings and compute their fitness.

5.2.2 Fitness Evaluation

The binary string (genotype) has to be decoded to its real value (phenotype)
using the equation

T max — Linin YDV (5,
Ti = ’Timin + ( imax [Tmm) (Sl) (51)
2'-1
where T}, and T; ., are the lower and upper bounds of the variable T, DV(s;)

is the decoded value of the string s;, and ; is the string length used to code
the ith parameter. The binary string 110110011000101 can be decoded as

1 1 0 1 1 0 0 1 1 0 0 0 1 0 1
14 213 211 210 27 26 22 20

Assuming the leftmost bit as the most significant bit, the real value of the
string is

214 4 213 4 D11 4 210 4 97 4 26 4 22 4 20 = 27845

The value of the variable for this string will be
. in (Timax _ ’I;imin)DV(si) =40+ (90 - %9)27/845 = 82.4894
(2"-1) 27 -1

To get fitness value of this string, simply compute the objective function
value corresponding to T; = 82.4894. That is,

_ 2041655 10,400

- =1403.6
330-2T,  T,-20

fi
Table 5.1 summarizes the decoded and fitness value of all 10 strings.
5.2.3 Reproduction

In reproduction, good and bad chromosomes (strings) are identified based
on their fitness value. More copies of good chromosomes are made and bad
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TABLE 5.1

Fitness Evaluation for Different Strings

Name String Decoded Value Fitness f;
S1 110110011000101 82.4894 1403.6
S2 100001010111010 66.0659 1257.6
S3 000110101110101 45.2568 1264.3
S4 100000110011101 65.6310 1255.2
S5 000011100100111 42.7940 1291.6
S6 100100101011000 68.6508 1273.3
S7 010110100110001 57.6534 1227.2
S8 100110101110011 70.2545 1284.4
S9 111100100011010 87.3067 1468.4
S10 001111100111001 52.1967 1228.0

ones are eliminated. This can be achieved using Roulette wheel or tournament
selection. In the first approach, roulette wheel slots are sized in proportion to
the fitness value of each string. The wheel is spun and the string to which it
is pointed is picked up. This is repeated until all the population is filled up.
The roulette wheel selection procedure is suited for objective functions of
the maximizing type. Because in the test problem the objective function is to
be minimized, we have to suitably convert the fitness values so that roulette
wheel selection procedure can be used. This is a two-step procedure.

In the first step, identify whether there are any negative values in the fit-
ness value. If the answer is yes, identify the minimum value and scale up the
remaining fitness values by that number. For example, if the fitness values
are -5, -1, 2, and 7, then the fitness values after scaling will be 0, 4, 7, and 12.

In the second step, convert the fitness values f; into F; using the equation

F=!
1+ f;

(.2)

The fitness values 0, 4, 7, and 12 now become 1, 0.2, 0.1429, 0.0833.

The fitness values for the test problem do not have any negative values. So,
we can ignore the first step and compute the fitness F; and some other terms
as given in Table 5.2.

Let us make a pie chart with the data corresponding to last column of
Table 5.2. The probability of picking strings 7 and 10 (denoted by S-7 and
S-10) for the next generation is highest (11%). The next step in the selection
process is to make slots (see Figures 5.3 and 5.4) of the roulette wheel using
the cumulative values of the data corresponding to last column of the table.
Generate 10 random numbers (corresponding to the population size) between

© 2015by Taylor & FrancisGroup,LLC



Guided Random Search Methods 145

TABLE 5.2
Modified Fitness Evaluation for Different Strings
F,

o 1
String Fitness f; 1+ f; ZF"
110110011000101 1403.6 0.00071195 0.0924
100001010111010 1257.6 0.00079453 0.1031
000110101110101 1264.3 0.00079033 0.1026
100000110011101 1255.2 0.00079605 0.1033
000011100100111 1291.6 0.00077363 0.1004
100100101011000 1273.3 0.00078474 0.1019
010110100110001 1227.2 0.00081420 0.1057
100110101110011 1284.4 0.00077797 0.1010
111100100011010 1468.4 0.00068055 0.0883
001111100111001 1228.0 0.00081367 0.1056

ZF,- =0.0077

S-10
11%
S-9
9%
S-8
10%
S-7
11%
S-6
10%

FIGURE 5.3
Pie chart showing probability of a string to be picked up during reproduction.

0 and 1, and select corresponding strings where these random numbers lie in
the slots. Thus, two copies each of strings S-2, S-7, and S-8, and one copy each
of strings 5-4, S-5, S-6, and S-10 are made in the reproduction process. These
strings will participate in the crossover and mutation operations.

The convergence rate of GA is determined largely by the selection pressure
(degree to which better individuals are favored), with larger selection pres-
sure resulting in better convergence. However, if the selection pressure is too
high, there are increased chances of GA prematurely converging to a subop-
timal solution. Roulette wheel selection methodology is known for providing
high selection pressure and this often results in premature convergence. An
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S-2 |S-3 S5|S-6|S7]|S-8]S9|S-10

FIGURE 5.4
Slots of roulette wheel.

alternative method is the fournament selection, in which a number of individu-
als (say, 2) are chosen randomly from the population and the best individual
(in terms of fitness value) from the group is selected as a parent. The process is
repeated once for every individual in the new population. This methodology
ensures that the best string is always retained and the worst string always gets
eliminated from the selection process. It is important to note that whereas rou-
lette wheel selection is used for maximization type objective functions, tour-
nament selection is used for minimization type objective functions. Because
the test problem’s objective function is of the minimization type, we had to
modify the function suitably for the roulette wheel selection methodology.
The modification of the function is not required in the tournament selection
methodology because the objective function is already of minimization type.

In the tournament selection methodology, we begin with the first indi-
vidual of the population. Then any other individual from the population is
selected randomly. The fitness values of the two individuals are then com-
pared. The individual with lower fitness value is declared the “winner.” The

TABLE 5.3

Tournament Selection

String Competitor Fitness Comparison Winner
110110011000101 (S-1) S-8 1403.6 < 1284.4 (No) S-8
100001010111010 (S-2) S-4 1257.6 < 1255.2 (No) S-4
000110101110101 (S-3) S-2 1264.3 < 1257.6 (No) S-2
100000110011101 (S-4) S9 1255.2 < 1468.4 (Yes) S-4
000011100100111 (S-5) S-10 1291.6 < 1228.0 (No) S-10
100100101011000 (S-6) S-7 1273.3 < 1227.2 (No) S-7
010110100110001 (S-7) S-8 1227.2 < 1284.4 (Yes) S-7
100110101110011 (S-8) S-1 1284.4 < 1403.6 (Yes) S-8
111100100011010 (S-9) S-4 1468.4 < 1255.2 (No) S-4
001111100111001 (S-10) S-2 1228.0 < 1257.6 (Yes) S-10
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process is repeated for all individuals in the population. All the winners are
selected for the next step of the GA (crossover and mutation). Table 5.3 illus-
trates the tournament selection methodology for the test problem.

5.2.4 Crossover and Mutation

In the reproduction step of the GA, we have merely copied the strings that
will participate in the crossover and mutation operation. The strings were
not altered in the reproduction step. In the crossover operation, two par-
ents are taken randomly from the mating pool (previous step of GA using
roulette wheel or tournament selection) and bits are exchanged between the
parents to generate new children (strings). The idea behind the crossover
operation is that good parents will mate to form better offspring. Let us take
strings S-2 and S-4, which are randomly selected as parents from the mating
pool (both of these strings are present in the selection procedure specified
by roulette wheel and tournament selection). The next step is to generate the
crossover site (position) randomly along the string length. Let the ninth posi-
tion (from the left side or most significant bit side) is the crossover site. Then
strings S-2 and S-4 after mating become

Parent S-2 100001010 111010 100001010 011101
Parent S-4 100000110 011101 100000110 111010

In this operation we have assumed a single crossover site. It is observed
in nature that crossover can occur at one or more sites also. The number
of crossovers follows a Poisson distribution (Hartl 1991) with mean as 2.
Mutation is used to keep diversity in the population. The mutation operator
changes the bit 1 to 0 and vice versa with a small probability.

Let us use the crossover (single-point) and mutation operation (with a
probability of 0.02) for the test problem in which the mating pool is taken
from tournament selection. The new population is given in Table 5.4.

This completes one generation (iteration) of the GA. The fitness of the new
population is then computed and the cycle (reproduction, crossover, and
mutation) is repeated. It is possible in GA that the objective function need
not improve in a few successive generations.

The mathematical explanation of the GA is given as the Schema theorem

M(H,t-f-l)ZT’ﬂ(H,t)'f(;_I)[l—pc é;>(_P1~1)—0(H);7r11} (5.3)

where m(H, t) represents m examples of a particular schema H at time ¢.
f(H) is the average fitness of the strings represented by the schema H; f is
the average fitness of the entire population; p. and p,,, are the probabilities
of occurrence of crossover and mutation; 5(H) is the defining length of the
schema H, which is the distance between the first and last specific string

© 2015by Taylor & FrancisGroup,LLC



148 Optimization: Algorithms and Applications

TABLE 5.4
New Population
Mating Pool Crossover Site Children Mutation  New Population
100000110011101 (S-4) 9 100000110111010 No 100000110111010
100001010111010 (S-2) 100001010011101 No 100001010011101
010110100110001 (S-7) 6 010110100111001 No 010110100111001
001111100111001 (S-10) 001111100110001 No 001111100110001
100001010111010 (S-2) 1 100001010110001 Yes 101001010110001
010110100110001 (S-7) 010110100111010 No 010110100111010
100000110011101 (S-4) 5 100000101110011 No 100000101110011
100110101110011 (S-8) 100110110011101 Yes 100110110010101
100110101110011 (S-8) 13 100110101110001 No 100110101110001
001111100111001 (S-10) 001111100111011 No 001111100111011

TABLE 5.5

Different Optimization Runs with GA

No. of Generations T u

505 55.95 1225.58

501 53.99 1225.55

1029 55.08 1225.166

751 55.08 1225.166

position; o(H) is the order of a schema defined by the number of fixed posi-
tions in a template; and ! is the length of the string. The schema theorem
states that the short, low-order, above average schemata receives increasing
trials in subsequent generations.

The MATLAB code prob.m is the main program of the genetic algorithm.
Its subroutines are given in in.m, roulette.m, tournament.m, and func.m. On
executing the genetic algorithm code for the test problem, the output is dis-
played in Table 5.5. It is to be noted that each of the rows in the table cor-
responds to a separate optimization run. From Table 5.5 it is observed that
minima are reached in most of the runs. However, the number of generations
varies in each run. This is expected because each run of the genetic algo-
rithm starts with a random set of the population. See Figure 5.5, which plots
the minimum of the objective function achieved until that generation. The
step region in the plot indicates that there is no reduction in the value of the
objective function for a certain number of generations until in a particular
generation, where there is a reduction in the value of the objective function.

5.2.5 Multimodal Test Functions

The main advantage of GA over gradient-based methods is that it does not
get stuck at local optima. Let us take some multimodal test functions such
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FIGURE 5.5
Variation of objective function value with increase in number of generations.
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FIGURE 5.6
Rastrigin’s function.

as Rastrigin and Schwefel’s function to demonstrate that GA can locate the
global minimum for these functions.
The two-variable Rastrigin’s function (see Figure 5.6) is given by

f(x)=20+x; —10cos(2mx;) + x5 — 10 cos(27x,)

—5.12<x,,x,<5.12

The function has a number of local optima and the global minimum value
of the function is f(x*) = 0 and occurs at x* = (0, 0). The function can be plotted
in MATLAB using the following commands.
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.1:5.12);

Z = 20 + (X.72-10*cos (2*pi.*X) + Y.*2-10*cos (2*pi.*Y));

surfc(X,Y, 2)

-5.12:

.1:5.12,

meshgrid(-5.12:

[X,Y]

shading interp

The input files for GA can be modified for the two-variable function as

File name func.m

o
]

Enter the function to be optimized

o
]

]

)

func (x)
(x(1)*x(1)-10*cos (2*pi*x (1) )+ x(2)*x(2) -

10*cos (2*pi*x(2))) ;

function [y,constr]

y = 20 +

10;% This is used with constraints.

constr (1)

define constr()with

For unconstrained problems,

any positive value

)
]

o°

File name in.m

o
]

Input parameters for Genetic algorithm

o
]

used with roulette wheel
number of variables

o
]

'min';

problem

o
]

maximum number of generations

population size

o
]

% variable bound

[-5.12 5.12];
[-5.12 5.12];

number of bits

n of bits(2)

20;
.9;

0

multi crossover

cross_prob

crossover probability

o
%
0;% use multi-crossover

mut p;ob

mutation probability
use roulette wheel
function tolerance

o
]

= 0.1;
tourni flag = 0;

o
]

epsiloH = le-7;
flag = 0;

flagl
stall

o
]

stall generations flag
scalin flag

o
]

o
]

0;
gen

stall generations for termination

for constraint handling

o
]

= 500;

0;

o
]

n of c

The above file uses a roulette wheel as the selection methodology. To

change it to tournament selection simply change
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Both selection criteria are able to locate the global minimum solution and
the convergence to the optimum value by two selection methodologies given
in Figures 5.7 and 5.8 respectively.

The two-variable Schwefel’s function (see Figure 5.9) is given by

f(x)=—x;sin ‘xl‘ — X, sin ‘xz‘

~500< x,, x, <500

16

14
12
10

N

0 100 200 300 400 500 600 700
Generation number

FIGURE 5.7
Convergence of genetic algorithm for Rastrigin function with roulette wheel selection.

fx)
S I S T~ N RN

i |
0 . . . .
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Generation number

FIGURE 5.8
Convergence of genetic algorithm for Rastrigin function with tournament selection.
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FIGURE 5.9
Schwefel’s function.
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FIGURE 5.10
Convergence of genetic algorithm for Schwefel’s function.
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The function has a number of local optima and the global minimum value

of the function is f(x*) = —837.9658 and occurs at x*

(420.9867, 420.9867).

The input files for GA can be modified for the two-variable function as

File name func.m

o
]

Enter the function to be optimized

o
]

]

)

func (x)

function [y,constr]

-x(2)*sin(sqgrt (abs (x(2))));

y = -x(1)*sin(sqgrt (abs (x(1))))

constr (1)

10;

File name in.m

o
s

Input parameters for Genetic algorithm

o
s

o
s

used with roulette wheel
number of variables

o
s

'min';

2;

problem
n of v

o
s

n_of

maximum number of generations
population size

o
s

10000;
80;

:)

:)

n of bits(1)

g
p

range (1,

n_of

o
s

variable bound

[-500 500]; %

[-500 500];

range (2,

number of bits

= 20; %
20;
.9;

n of_bits(2)

0

cross_prob

crossover probability
use multi-crossover
mutation probability
use roulette wheel
function tolerance

o
s

multi crossover
mut prob

[
o

= 0.1;

o
s

epsiloH = le-7;

flag = 0;
flagl

tourni flag = 1;
stall

o
s

stall generations flag
scalin flag

o
s

o
s

0;
gen

stall generations for termination

for constraint handling

o
s

= 500;

0;

o
s

n of c

The GA code is able to achieve the global minimum and the convergence

history is shown in Figure 5.10.
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5.3 Simulated Annealing

Simulated annealing (SA) is an optimization technique that has derived its
name from the process of annealing of solids where the solid is heated and
then allowed to cool slowly until its molecules reach the minimum energy
state. The solid in this state will be free from defects. In a similar manner,
the optimization problem is transformed into an “ordered state” or a desired
optimized state (solution). In the high-energy state, the molecules are free
to move and their freedom gets restricted as the temperature is reduced
(cooled). In a similar manner, SA methodology allows “hill climbing” when
the temperature is high. That is, those points that are in the near vicinity
of the search point, but have a higher objective function value can still be
selected with certain probability. This allows the algorithm to escape from
local optima. Thus, simulation methodology is a powerful technique in
locating the global optimum solution.
The algorithm starts by picking any random value of the variable x; using
the equation
X = Ximin + (¥imax — Ximin)¥i (64

i imin

where x; ;. and x; . .. are the bounds of the variable x; and u, is random num-

ber generated between 0 and 1 (uniform distribution). The energy (E,) of
this variable is given by its objective function value. That is,

Eqq = f(x) (5.5)

The next step in the algorithm is to perturb x; in its neighborhood. The
perturbation Ax; can be computed as

Ax; = exu,; (5.6)

where ¢ is a small number fixed at the start of the simulation. The next search
point is therefore given by

Xig =X+ AX; (5.7)

In case the variables x;,; exceeds their bounds they are artificially brought
back into the feasible design space using the equation

Xing=X + (xi,max - xi,min)ui (58)

i,min
The energy state for the new point is given by

Enew =f(xi+1) (59)
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If the new energy state E ., is lower than E 4, the objective function has

new

improved and we replace the value of E 4 with E_,. In case E,., is higher
than E_, the following condition is checked
[_Enew_Eold ]
et sy (5.10)

If this condition is satisfied we allow for the “hill climbing” and replace
E g with E .. If this condition is not satisfied previous value of x is restored.
That is,

X = X; — Ax; G.11)

The iterations are repeated until there is no improvement in the objective
function value for a fixed number of moves. The steps of simulation algo-
rithm can thus be summarized in Table 5.6 and the MATLAB code simann.m
is given subsequently.

The two-variable Rastrigin’s function

f(x)=20+x7 —10cos(2mx,) + x5 — 10cos(2mx,)
512<x,, x,<5.12

is optimized and it does not converge to the global minimum of f(x*) = 0
at x* = (0, 0). The convergence history is given in Figure 5.11. By modifying
the subroutine func.m other functions such as Schwefel’s function and test

TABLE 5.6
Algorithm for Simulated Annealing

Step 1: Initialize & and variable bounds x; .,;, and x,
Step 2: Compute starting value of the variables as

imax

X = X min + (X max — Ximin) Wi

Step 3: Compute E 4 = f(x;)
Step 4: Compute Ax;,, = exu; and x,,, = x; + Ax;
If x;,, exceeds bounds then x;,; = X; i + (X; max = X min) ¥
Step 5: Compute E,,, = f(x;,1)
Step 6: If E,,, < Eiq
then E;g = E o\
(7Enew’Eold ]
elseifet M4 >y
then E g = E o
else x;,; = x;, — Ax;
Step 7: Go to Step 4 until termination criterion (function not improving
for certain number of iterations) is satisfied.
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FIGURE 5.11

Convergence of simulated annealing for Rastrigin function.

problem on spring system (mentioned in Chapter 3) can also be optimized.
See Figures 5.12 and 5.13, where the convergence history of these functions
is shown. In all the plots, observe the hill-climbing region shown by the
oscillatory nature of the curve. Because the algorithm starts from a random
point, the convergence history will vary in each simulation run for each of

the functions. The performance of the algorithm will also vary by choosing
a different ¢ for a given function.
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FIGURE 5.12

Convergence of simulated annealing for Schwefel’s function.
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FIGURE 5.13
Convergence of simulated annealing for the test problem on the spring system (Chapter 3).

5.4 Particle Swarm Optimization

In the particle swarm optimization (PSO) technique, a number of search
points are simultaneously explored in the iteration, similar to a search car-
ried out by GA. The PSO technique is inspired by the collective wisdom of
a group of individuals such as a flock of birds, animals moving in herds, or
schools of fish moving together. The PSO algorithm keeps track of the best
position of the individual as well as that of the population in terms of the
objective function. The best objective function of the individual and that of
the group is denoted by pbest and gbest respectively. Each individual in the
group moves with a velocity that is a function of pbest, gbest and its initial
velocity. The new position of the individual is updated based on its initial
position and the velocity. The objective function value is again computed
for the new positions and the PSO steps are repeated. Now, each step of the
algorithm is described.
The initial position of the kth individual in the population is given by
Xi = Ximin + () max — Ximin) (5.12)

i,min imax

where x; ., and x; ..., are the bounds of the variable x; and u; is the random

number generated between 0 and 1 (uniform distribution). Here i is the itera-
tion number. Compute the fitness of the kth individual as

Pix = flx;) (5.13)
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Since this is the initialization step, the best fitness of each individual is p;
itself. That is,

pbest;; = pix (5.14)
The global best fitness is computed as
gbest; = minimum(pbest, ,) (5.15)

The location of pbest; and gbest is given by p.; and g,,. Starting with an
initial velocity of v;,, the velocity of the individual is updated using the
equation

Vit = W10 + Gr(Paic — X 0U; + Do(gi — X U, (5.16)

where w;, ¢,, and ¢, are the tuning factors of the algorithm. The position of
each individual can be updated as

Xigph = Xip + Vi k (6.17)

In case the variables x;,; exceeds their bounds they are artificially brought
back into the feasible design space using the equation

xi+1 = xi,min + (xi,max - xi,min)ui (518)

Based on the new position, the fitness of the kth individual is computed as
Pirk = X0 (5.19)

If this fitness is lower than pbest, ;, then replace pbest;  with p;,; ,. Compute
the global best fitness as

gbest;,; = minimum(pbest,,, ) (5.20)

The steps are repeated for a finite number of iterations. The algorithm is
given in Table 5.7 and the MATLAB code pso.m is given subsequently.
The two-variable Schwefel’s function (see Figure 5.9)

f@) ==xysin | - sin
-500 < x;, x, <500
is optimized and it converges to the global minimum of is f(x*) = —837.9658

and occurs at x* = (420.9867, 420.9867). The convergence history of the PSO
algorithm for Schwefel’s function is shown in Figure 5.14.
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TABLE 5.7

Algorithm for Particle Swarm Optimization

Step 1: Initialize ,,,,, W, §;, §y, 1 (population size), x; i, and x; ...
Step 2: Initialize the starting position and velocities of the variables as
Xik = Ximin + (Ximax = Ximin) i k=1--n
v, =0
Step 3: Compute p;, = flx;;) k=1--n
Step 4: Compute pbest;; = p;, and gbest; = minimum(pbest;,)
The location of pbest;, and gbest is given by p,; and g;,.
Step 5: Update velocity
Vg = W10k + Gr(Pix — X3t + Po(gi — X, ),
Step 6: Update position x;,;; = x;; + 0,1,
Step 7: Update fitness p;, 1, = f(x;,14)
Step 8: If py., < pbest;;
then pbest,i = piax
Step 9: Update gbest;,; = minimum(pbest,,, ,)
Step 10: If i < i,,,,, then increment i and go to Step 5, else stop.

Initialization . Iteration: 20

Iteration: 50 IR Iteration: 100

‘ Global minimum 200

% S00-500 x —5007-500

FIGURE 5.14
Convergence of particle swarm optimization for Schwefel’s function.
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5.5 Other Methods

In addition to the three methods (GA, SA, and PSO) that were discussed in
the previous sections, there are numerous other optimization methods that
have mimicked natural processes or some other physical analogies. Some of
these methods are the bees algorithm, differential algorithm, evolutionary
programming, tabu search, ant colony optimization (ACO), and so forth. Of
these, ACO and tabu search are widely used for solving combinatorial prob-
lems (such as the traveling salesman problem or the job scheduling problem).
As the name suggests, ACO mimics the behavior of ants in locating the mini-
mum of a function. It may be noted that in a complex combinatorial problem,
searching all the combinations is computationally expensive. Both ACO and
tabu search provide a heuristic approach for such problems. These two tech-
niques are briefly explained in this section.

5.5.1 Ant Colony Optimization

While on lookout for food, ants deposit a substance called a pheromone on the
path. Other ants follow this favorable path to reach the food. The ant colony opti-
mization (ACO) technique mimics the behavior of ants in solving the optimi-
zation problems. The ACO technique was proposed in the early 1990s (Dorigo
1992) and since then has been applied to solve a number of problems such as

Protein folding problem (Shmygelska and Hoos 2005)
¢ Traveling salesman problem (Dorigo et al. 1996)
Project scheduling (Merkle et al. 2002)

Vehicle routing (Reimann et al. 2004)

In the ACO technique, the optimization problem is defined in terms of a
number of layers and nodes. Each layer corresponds to the design variable
and each node corresponds to the discrete values of the design variables. The
ants have to pass through different “best” nodes to reach the destination,
which is the minimum of the function. Let there be N ants in the colony. If
the kth ant is at ith node, then the probability of choosing jth node is given by

WY

j (5.21)
Z jgNIKk)Tij

where N indicates the set of neighborhood nodes of ant k at node i. Here T
represents the pheromone trail and is given by the expression

p

T =1; + At (5.22)
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The pheromone content also evaporates according to the relation
=1 -pry; (5.23)

where p is the evaporation rate. The typical value of p is 0.5. The pheromone
content is updated using the relation

N
1, =(1-p); +2Ar§;f> (5.24)
k=1
where the quantity Arﬁ»f) is given by
ATE_]_k) — q)fbest (525)
f worst

where f,., and £, are the best and worst values of the objective function for
the paths taken by the ants and ¢ is a scaling parameter. Let us explain the
procedure of ACO to minimize the function

f=2(x-3)+¥*  03<x<06

The problem has only one layer because there is there is only one design
variable for the problem. Let there be seven nodes of this problem. Thus,

xp; =030
X, =035
Xy = 040
Xy =045
x5 = 0.50
Xy =055
Xy = 0.60

Let us take the number of ants in the colony to be 5. To begin with, there
is an equal probability of selection of any of the nodes. Using roulette
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wheel selection (as mentioned in Section 5.2), the following five nodes are
selected:

xy, =045
X6 =0.55
x1, = 0.35
Xy, = 0.60
xy; = 0.30

The corresponding function values are

fley) = —4.6517
flxie) = —4.5093
flayy) = —4.8109
flxyy) = 44310
flry) = —4.8990
The best (fifth ant) and worst values of the objective function are
Foest = fy)) = —4.8990

fworst :f(x17) =-4.4310

Taking ¢ = 5, the pheromone information is updated as

Agths) _ Ofvess _ 5X(=4899) _ o o0

fWOl’Sf _4 43 1

Now,
=(1-p); Zm<k>—(1 0.5)x1+5528=6.028 (for j=1)

The probability of selecting this node in the next iteration is

6.028

= 0.6677
Pui=y9028
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and the probability of selecting other nodes is

05
=99 00554
Pyi= 9008

Again using the roulette wheel selection, the following nodes are selected:
x1,(3 copies)
x15(1 copy)

x15(1 copy)

The iterations are repeated until all the ants follow the best path. The mini-
mum value of the objective function is —4.899 and occurs at x* = 0.3.

5.5.2 Tabu Search

The tabu search is a heuristic technique in which an approximate solution
is used to tackle complex combinatorial problems such as job scheduling
and traveling salesman problems. The method (Glover 1986) allows nonim-
proving moves whenever a local optimum is reached. However, the method
prevents visiting earlier solutions by keeping a list of the search history. The
list is called the tabu (or forbidden) list. To avoid stagnation of search pro-
cess due to tabu, it is mandatory to modify tabu lists frequently. One such
example is to allow a tabu move when the objective function value improves
from the best value. Such moves are called as aspiration criteria. The follow-
ing notation is used (Gendreau and Potvin 2010) in the algorithm to follow
(Table 5.8).

TABLE 5.8

Algorithm for Tabu Search
Step 1: Start with an initial set S,,.

=10
§*=S5,
T=0
Step 2: Select S’ € N(S) and find f(S’).
If f(S) < f*
F=AS)
S*¥=8
Record current move in T.
Step 3: Go to Step 2 if termination criteria are not satisfied, else stop.
(Termination criteria are set if the objective function does not
show improvement for some fixed number of iterations.)
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S current solution

S* best solution

f* best value of the objective function
N(S) neighborhood of S

N(S) admissible subset

T tabu list

Chapter Highlights

* GA and PSO work with a population of points in a search space
whereas SA propagates through iterations with a single search point.

¢ GA mimics the genetic process in which hereditary characteristics
are transmitted from a parent to an offspring.

¢ GA variables are coded into binary strings.

¢ In the reproduction step, the best individuals in the population are
selected for mating.

¢ The diversity in the population is created using crossover and muta-
tion operations.

¢ The mutation operator changes the bit 1 to 0 and vice versa with a
small probability.

® SA is an optimization technique that has derived its name from the
process of annealing of solids, in which the solid is heated and then
allowed to cool slowly until its molecules reach a minimum energy
state.

¢ SA allows points with higher objective functions to be selected with
certain probability. It is often called a “hill-climbing” algorithm.

e The PSO technique is inspired by the collective wisdom of a group
of individuals such as a flock of birds or animals moving in herds or
schools of fish moving together.

¢ The PSO algorithm keeps track of the best position of the individual
as well as that of the population in terms of the objective function.

¢ In the ACO technique, the optimization problem is defined in terms
of a number of layers and nodes. Each layer corresponds to the
design variable and each node corresponds to the discrete values of
the design variables. The ants have to pass through different “best”
nodes to reach the destination, which is the minimum of the function.

¢ The tabu search method allows nonimproving moves whenever a
local optimum is reached. However, the method prevents visiting
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earlier solutions by keeping a list of the search history. The list called
as the tabu (or forbidden) list.

¢ To avoid stagnation of a search process due to tabu, it is mandatory
to modify tabu lists frequently. One such example is to allow a tabu
move when the objective function value improves from the best
value. Such moves are called aspiration criteria.

Formulae Chart

Decoding of string from binary to real value:

— (ximax - ximin)DV(si)
- 2" -1

Schema theorem:

8(H) _
“1-1

m(H, t+1) 2 m(H, t)-f(;_])[l—p o(H)pm}

Velocity update in PSO:
Uik = W10 + Gr(Poe — X,08; + P83 — X, 1
ACO:

w__ Y

ij ~
T.
zjgN(k) Y

i

p

N
— (k)
Ti=(1-p)t; + Zmif
k=1

AI({() — q)fbest
1 f
worst
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Problems

1. What is the minimum string length required to code the variable
range (-3, 5) with an accuracy of 0.0001?

2. An optimization problem has three design variables that are to be
coded in binary strings. The range of variables is (100, 50), (0, 1), and
(3, 7) and the accuracy required is 0.01, 0.00001, and 0.001 respec-
tively. Compute the minimum length of the string required.

3. By modifying the input (tuning) parameters in GA (population size,
crossover, and mutation probabilities), SA (), and PSO (population
size, wy, §;, d,), rerun the codes for the test problem on spring system
(mentioned in Chapter 3), Rastragin and Schwefel’s functions.

4. In a given generation of GA, the following fitness values are obtained
for ten strings (S-1 to S-10) for a maximization problem. Find the
number of copies that will be generated for each string using
Roulette wheel selection.

String Fitness
S-1 25
S-2 16
S-3 74
S-4 8
S-5 99
S-6 45
S-7 12
S-8 65
S9 22
S-10 19

5. If instead, tournament selection is used for reproduction, find
strings (see previous problem) that get selected in the mating pool.
Compare the results with those obtained from the roulette wheel
selection.

6. Minimize the two variable Griewangk’s function

X7 +x3

4000

f(x)=

X
—Ccosx COSTZ+1
2

—600 < x,, x, <600

using GA, SA, and PSO techniques.
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7. Minimize the two-variable Ackley’s function

1
*(’flz +X2) l(cos X1+C0sXp) 1
2 —e 2

flx)=—ae
—32.768 <x,, x, < 32.768

+a+e

using GA, SA, and PSO techniques. Take a =20, b = 0.2, and c = 2x.
8. Minimize the function
2 2
f(x):(xf +x, —11) +(x§ +x, —7)
-5<x,x,<5

using GA, SA, and PSO techniques.
9. Minimize the function

f(x)= ere X, +x,—3— sin(l%(x1 + xz))

using GA, SA, and PSO techniques.
10. Optimize the minmax function
Minimize F(x)

where

F(x) = max{f,(x)}
filx)=x7 +x;
L0 =Q2-x)+2-x)

i) =267

-50<x,, x, <50

using GA, SA, and PSO techniques.
11. Optimize the minmax function

4

min.max {[x, +2x, ~7|, [2x,+x, -5}

-50<x,, x, <50

using GA, SA, and PSO techniques.
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12. Minimize the Eggcrate function

f(x)=x7+x; +25(sin2 x, +sin® xz)

-5<x;,x,<5

using GA, SA, and PSO techniques.
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Constrained Optimization

6.1 Introduction

Invariably all optimization problems carry constraints, and examples can be
given from any area one can think of. The supply of a product is constrained
by the capacity of a machine. The trajectory of a rocket is constrained by the
final target as well as the maximum aerodynamic load it can carry. The range
of an aircraft is constrained by its payload, fuel capacity, and its aerodynamic
characteristics. So how does a constrained optimization problem differ from
an unconstrained problem? In constrained optimization problems, the feasi-
ble region gets restricted because of the presence of constraints. This is more
challenging because for a multivariable problem with several nonlinear con-
straints, arriving at any feasible point itself is a daunting task.
The constrained optimization problem can be mathematically stated as

Minimize
ftx) ©1)
subject to
g8x)<0 i=12..,m<n 6.2
hx)=0 j=12..,r<n 6.3)
X <x<x

u

where x is a vector of n design variables given by

169
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The functions f, g, and h; are all differentiable. The design variables are
bounded by x; and x,. The constraints g; are called as inequality constraints
and h; are called equality constraints.

Consider the following constrained optimization problem.

Minimize
(4 =22+ (x, - 37
subject to
X 23

If we apply the first-order optimality condition on the objective function,
the function minimum is obtained at (2, 3). However, in the presence of a
constraint, the minimum occurs at (3, 3). See Figure 6.1, where the function
contours are plotted along with the constraint. Note that the gradient of the
function (Vf) and the gradient of the constraint (Vg) are parallel to each other
at the optimum point. At other points on the constraint (say, point A), the
gradients are not parallel to each other. More of the optimality conditions
for the constrained optimization problems are discussed in the next section.

The road map of this chapter is shown in Figure 6.2. After a discussion on
optimality conditions, different solution techniques such as penalty func-
tion, augmented Lagrangian, sequential quadratic programming (SQP), and
method of feasible directions are discussed. In the penalty function method,

: @Vf \

\%
O x/%
6‘
\d G|
al 45
0
x&zo—
i) ) o5
-2 —1 0 1 2 3 4 5
X1

FIGURE 6.1
Constrained optimization problem.
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[ Constrained optimization

1

‘ Optimality conditions ]

]

Solution techniques
* Penalty function method
* Augmented Lagrangian method
* Sequential quadratic programming
*  Method of feasible directions

{

Application to structural design

FIGURE 6.2
Road map of Chapter 6.

a constrained optimization problem is transformed into an unconstrained
problem by penalizing the objective function for any violation of the con-
straints. The augmented Lagrangian method is a blend of both penalty
function and Lagrangian multipliers methods. In the SQP method, the qua-
dratic subproblem is solved in every iteration where the objective function
is approximated by a quadratic function and the constraints are linearized.
Some optimization problems require constraints to be satisfied in every iter-
ation to ensure the meaningful value of the objective function. The method
of feasible directions ensures meeting the constraints in every iteration.

6.2 Optimality Conditions

Let us define the Lagrange function for the constrained optimization prob-
lem with the equality and inequality constraints

umhm:ﬂ@+§)WNﬂ+§}gﬁj 6.4)
j=1 i=1

The optimality conditions are given by

V,L=0
V,L=0
VL=0
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The first optimality condition results in the equation
V.L=Vf(x)+ 2x Vhi(x)+ Zungi(x) =0 (6.5)
j=1 i=1

If a particular inequality constraint is inactive (g,(x) < 0), corresponding
,; = 0. This condition can also be written as

“Vf()= 1 hi(0)+ Y 1Vgi(x) (6.6)

-1

That is, negative of the gradient of the objective function can be expressed
as a linear combination of the gradient of the constraints.
For any feasible point x, the set of active inequality constraints is denoted

by
Alx) = {i|g(x) = 0}

The second and third optimality conditions result in the constraints them-
selves. The multipliers A; and ; are called as Lagrange multipliers and these
must be >0 at the optimum point. The optimality conditions of the con-
strained optimization problem are referred to as Karush—Kuhn—Tucker (KKT)
conditions. These conditions are valid if x is a regular point. A point is regular
if the gradient of active inequality and all equality constraints are linearly
independent. It is important to note that KKT conditions are necessary but
not sufficient for optimality. That is to say, there may be other local optima
where KKT conditions are satisfied. The sufficient condition for f(x) to be
minimum is that V2L must be positive definite.

Let us take the example mentioned in the previous section and write the
Lagrangian as

Llx, ) = (e = 2P + (xp = 3) + p(=x, + 3)
The KKT conditions are given by the equations

26, -2)—p=0
2(x,-3)=0

-x;+3=0
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Solving these equations gives the solution as x; = 3 and x, = 3, which is the
optimum point with p = 2. The minimum value of the function is 1.

The Lagrange multipliers provide information on the sensitivity of the
objective function with respect to sensitivity of the right-hand side of the
constraint equation (say, b). Then,

Af = pAb = 2Ab

Therefore,

f=1+2Ab

If the right-hand side of the constraint is changed by +1 unit, then a new
value of the function minimum is 3 (approximately).

Example 6.1

Consider the optimization problem.
Minimize
fx) = (x; = 12 + (x, - 5)?
subject to
g1(x)=—x] +x,-4<0
() =—(x; -2 +x,-3<0

Plot the function contours along with constraints. Check whether KKT
conditions are satisfied at point A (0.75, 4.5625).

The function contours are given in Figure 6.3 along with the con-
straints. The gradient of the function and the constraints are given by

V()= 20,-1 | | 2075-1) | [ —o05
T 2(x,-5) | | 2(45625-5) | | -0.875

_ —23(1 _ —15

Vgl(x)_|: 1 :|—|: 1 }

Vg, ()= {_2("1_2)} - {zﬂ
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FIGURE 6.3
Function contours with the constraints for the test problem.

Let us check for the optimality condition

=Vf(x) = 1 Vg1(¥) + 1,Veg(x)

for some p, and p, which are >0.
It can be shown that at point A

05 | _04218| 715 | +04531] 22
0.875 1 1

Thus, for positive value of multipliers (p, = 0.4218 and p, = 0.4513), the
negative of the gradient of the objective function can be expressed as a
linear combination of the gradient of the constraints. KKT conditions are
satisfied at point A. Thus, point A is a candidate for the minimum of the
function. Let us check the second-order condition as

V2 = 2-2(u +u,) 0 _1025 0
0 2 0 2

As this matrix is positive definite, the minimum of the function occurs
at point A.
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6.3 Solution Techniques

For a simple optimization problem (say, with two variables) with one equal-
ity constraint, the simplest approach would be to use a variable substitution
method. In this method, one variable is written in the form of another variable
using the equality constraint. Then it is substituted in the objective function
to make it an unconstrained optimization problem that is easier to solve. For
instance, consider the optimization problem

Minimize
(g = 2P + (x, = 3
subject to
X +x,=4

Substituting x, = 4 + x; in the objective function, we can rewrite the opti-
mization problem as

Minimize
(r1 =27+ (x + 12

Using the first-order condition, it is easy to show that minimum of this
function occurs at (1/2, 9/2). The main disadvantage of this method is that it
is difficult to implement when there is a large number of variables and con-
straints are nonlinear.

Another way of converting a constrained optimization problem to an
unconstrained problem is to penalize the objective function when con-
straints are violated. Such methods are termed are termed penalty function
methods and are very easy to implement. Once the unconstrained problem
is formed using the penalty functions, it can be solved using both gradi-
ent- and non—gradient-based methods described in previous chapters. The
method, however, has one serious drawback. The original objective function
gets distorted when modified with the penalty terms. The modified function
may not be differentiable at all points. Non—gradient-based solution tech-
niques for unconstrained problems (converted by penalty functions) are sug-
gested for such cases.

The Lagrange function and multipliers were discussed in the previ-
ous section. In the augmented Lagrange multiplier (ALM) method, both
the Lagrange multiplier and the penalty function methods are combined.
Lagrange multipliers are updated on each iteration. One significant advan-
tage of this method is that it provides an optimal value of the multipliers in
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addition to the solution of the optimization problem. This helps in generat-
ing a quick solution for the same optimization problem whose right-hand
sides of the constraint equations are changed.

The most popular method to date is sequential quadratic programming
(SQP) method for handling nonlinear objective function and constraints. In
this method the objective function is approximated by a quadratic function
and constraints are approximated by linear functions. The quadratic sub-
problem is then solved at each iteration. Hence, the method derives the name
SQP.

In some optimization problems, the meaningful value of an objective func-
tion can be generated only if constraints are satisfied. The method of feasible
directions ensures that design variables are always in the feasible region.
Zoutendijk’s method of feasible directions and Rosen’s gradient projection
method are discussed in this chapter.

6.3.1 Penalty Function Method

The motivation of the penalty function method is to solve the constrained
optimization problem using algorithms for unconstrained problems. As the
name suggests, the algorithm penalizes the objective function in case con-
straints are violated. The modified objective function with penalty terms is
written as

m

F@)=f+n Y @+n Y (g) ©7)
j=1

i=1

where 7, (>0) is a penalty parameter and the function

(8/x)) = max[0, g(x)] 6.8)

In case constraints are satisfied (g;(x) < 0), (g;(x)) will be zero and there
will be no penalty on the objective function. In case constraints are violated
(gi(®) 2 0), (g,(x)) will be a positive value resulting in a penalty on the objective
function. The penalty will be higher for higher infeasibility of the constraints.
The function F(x) can be optimized using the algorithms for unconstrained
problems. The penalty function method of this form is called the exterior
penalty function methods.

The parameter 7, has to be appropriately selected by the algorithm. If 7,
is selected as a small value (say, 1), constraints may not be fully satisfied at
the termination of the algorithm. If r; is selected as a large value, there is a
danger of ill-conditioning the objective function (see Figure 6.4). The correct
approach would be to start the algorithm with a small 7, and increase it to
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30 T T T
Optimization problem —f
251" f@) =2x, - = == 1)
- gx)=3-x%<0 || k=2
20} Modified objective function | [ """ =3
o F(x) = f(x) + rig(w))?
’Q N , (__
T 150~ Infeasible region

FIGURE 6.4
Exterior penalty function method.

a larger value for the purpose of tightening the constraints. The following
strategy is suggested to take appropriate value of r, during an iteration:

= 1, 1
7 max[ [<g,-(x)> hj(x)]] 6.9)

Let us use the Davidon- Fletcher—Powell (DFP) method to solve the uncon-
strained problem. To account for varying penalty terms in each iteration, the
MATLAB® code DFP.m is modified and reproduced at the end of the book.

On executing the MATLAB code DFP.m for the optimization problem

Minimize
f) = (x; = 1 + (x, — 5)
subject to
g1(x)=—x{ +x,-4<0
@) =—(x; -2 +x,-3<0
with a starting value of x of (-1, 1), following output is displayed. Note

from the output that penalty parameter becomes larger as constraints are
tightened.
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Initial function value = 20.0000
No. x-vector £ (x) | constr| Penalty param.
1 0.812 4.624 0.2219 11.70470 1
2 0.751 4.643 0.2501 0.21589 5
3 0.739 4.602 0.2544 0.11436 9
4 0.742 4.572 0.2574 0.05665 18
5 0.745 4.562 0.2589 0.02322 43
6 0.751 4.562 0.2540 0.01459 69
7 0.750 4.562 0.2543 0.00180 555
8 0.750 4.562 0.2542 0.00109 915
9 0.750 4.562 0.2541 0.00092 1082
10 0.750 4.562 0.2540 0.00052 1913
11 0.750 4.562 0.2540 0.00021 4720
12 0.750 4.562 0.2540 0.00018 5495
13 0.750 4.562 0.2542 0.00015 6526
14 0.750 4.563 0.2539 0.00056 1801
15 0.750 4.563 0.2541 0.00029 3435
16 0.750 4.562 0.2539 0.00030 3309
17 0.750 4.562 0.2539 0.00007 14692
18 0.750 4.562 0.2539 0.00006 15596
19 0.750 4.562 0.2539 0.00001 70933

The main advantages of the penalty function method are

e It can be started from an infeasible point.

¢ Unconstrained optimization methods can be directly used.
The main disadvantages of the penalty function method are

* The function becomes ill-conditioned as the value of the penalty
terms is increased. Owing to abrupt changes in the function value,
the gradient value may become large and the algorithm may show
divergence.

* As this method does not satisfy the constraints exactly, it is not suit-
able for optimization problems where feasibility must be ensured in
all iterations.

So far we have discussed the exterior penalty function method, which can
be started even from an infeasible point. Some problems require feasibility
to be maintained in all the iterations. In the interior penalty function method,
a feasible point is first selected. The objective function is modified in such
a way that it does not leave the feasible boundary. They are therefore fre-
quently referred to as barrier function methods. The modified objective func-
tion in the interior penalty function approach would be
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FIGURE 6.5
Interior penalty function method.
m 1
F)=f(0)=n Y (6.10)
=38 i(%)

See Figure 6.5, where we observe that modified function remains feasible

for different values of r;.

Example 6.2

A welded beam (Ragsdell and Philips 1976) has to be designed at mini-
mum cost whose constraints are shear stress in weld (t), bending stress
in the beam (o), buckling load on the bar (P), and deflection of the beam (§).
The design variables (see Figure 6.6) are

The optimization problem is

Minimize

S~

F(x)=1.10471x7x, +0.04811x,x, (14 + x,)
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FIGURE 6.6
Welded beam.

subject to

gl(x) = T(x) ~ Trax < 0

gz(x) = G('x) ~ Omax s 0

g3(x) =x;, —x,<0

£4(x)=0.10471x7 +0.04811x,x,(14+x,) - 5<0
g5(x) =0.125-x,<0
86(0) = 8(x) = 8,,, <0
g x)=P-P(x)<0
01<x,x,<20
0.1<x,,x;<10.0

where

x
T(x) = \/ T2 +211" 2 4177
2R
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6PL
(x)=—
Xy4X3

4pr?

d(x)= 3
Ex,x;

, (x)_4.013«/EGx§xf;/36 (1 X EJ
= (arae

I? 2L

P=60001b, L =14 in,, E = 30 x 10° psi, G = 12 x 10° psi, ,,, = 13,600 psi,
Grna = 30,000 psi, 8., = 0.25 in.

To give equal weightage to all the constraints, the first step is to nor-
malize all the constraints. For example, the constraint

T(X) = Ty <0
can be normalized as

1) 1<
T

max

The penalty function method is used and the unconstrained optimi-
zation technique used is particle swarm optimization (PSO). The PSO
code along with cost and constraint functions is given at the end of the
book. On executing the code, the optimum value of objective function
obtained is 2.381 and the corresponding variables are

*1 h 0.244
X _| 1|2 ]6212
X, t 8.299
X, b 0.244
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The termination criterion for the algorithm is the point at which the
maximum number of iterations are completed. The output is reproduced

below.

No x-vector f (x)
1 0.379 4.305 9.021 0.427 4.081
2 0.319 4.211 9.862 0.363 3.611
3 0.291 4.149 9.603 0.317 3.050
4 0.177 3.941 3.820 0.171 3.050
5 0.107 3.814 6.680 1.358 3.050
6 1.674 3.800 1.484 0.920 3.050
7 1.658 3.787 5.360 0.479 3.050
8 1.532 3.804 9.572 1.449 3.050
9 0.293 4.130 7.868 1.764 3.050
10 0.781 4.472 8.763 1.174 3.050
11 0.976 4.771 9.202 1.250 3.050
12 1.214 4.987 2.249 0.375 3.050
13 0.301 5.758 7.995 0.307 2.909
2993 0.244 6.212 8.299 0.244 2.381
2994 0.244 6.212 8.299 0.244 2.381
2995 0.244 6.212 8.299 0.244 2.381
2996 0.244 6.212 8.299 0.244 2.381
2997 0.244 6.212 8.299 0.244 2.381
2998 0.244 6.212 8.299 0.244 2.381
2999 0.244 6.212 8.299 0.244 2.381
3000 0.244 6.212 8.299 0.244 2.381
]

6.4 Augmented Lagrange Multiplier Method

As the name suggests, the augmented Lagrange multipliers (ALM) method
combines both Lagrange multipliers and penalty function methods. For an
optimization problem with both equality and inequality constraints, the
augmented Lagrangian function is given by

A(x, B 1) = f(x)+ Zx () + Zﬁlai +1, Zh/?(x) +7, Zoa% 6.11)
j=1 i=1 j=1 i=1

where A; and p; are the Lagrange multipliers, , is a penalty parameter fixed
at the start of the iteration and
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k

o, = max{g,-(x), ;E’} (6.12)

The Lagrange multipliers are updated in each iteration (k) using the
expressions

Mkn) — Mk) + 2rkhj(x) (6‘13)

B =B 4+ 27 max { gi(x), ;B L } 6.14)
T

k
The augmented Lagrange function can be minimized using algorithms

for unconstrained optimization. Here the DFP method is used for uncon-
strained minimization. Consider again the optimization problem

Minimize
fl) = (x; = 12 + (x, - 5
subject to

g1 (x)=—x{ +x,-4<0

@) =—(; -2 +x,-3<0

The MATLAB code ALM.m solves the constrained optimization problem
using the ALM method with starting point as (0, 1). On executing the code the
following output is displayed on the command window.

Initial function value = 17.0000
No. x-vector rk f (x) | Cons. |
1 0.887 4.547 1.000 0.218 0.308
2 0.887 4.547 1.000 0.249 0.146
3 0.685 4.613 1.000 0.254 0.022
4 0.739 4.569 1.000 0.220 0.059
5 0.751 4.594 1.000 0.240 0.029
6 0.757 4.576 1.000 0.253 0.013
7 0.756 4.562 1.000 0.265 0.000
8 0.752 4.551 1.000 0.252 0.012
9 0.746 4.568 1.000 0.252 0.018
10 0.743 4.569 1.000 0.254 0.003
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11 0.748 4.564 1.000 0.253 0.003
12 0.750 4.563 1.000 0.253 0.002
13 0.750 4.563 1.000 0.254 0.001
14 0.750 4.563 1.000 0.254 0.000
15 0.750 4.561 1.000 0.252 0.002
16 0.750 4.563 1.000 0.253 0.002

KKT conditions are satisfied

Lagrange multipliers
0 0.4201 0.4500

Since there are no equality constraints, the first Lagrange multiplier is zero.
The other two positive multipliers correspond to the inequality constraints.
Since the multipliers are positive, both inequality constraints are active.

6.5 Sequential Quadratic Programming

We discussed in the earlier section that for a constrained optimization
problem

Minimize
f)
subject to
h(x)=0
the corresponding Lagrangian function would be
L(x, &) = f(x) + Ah(x) (6.15)
and the first-order optimality condition would be
V,.L(x,») =0 (6.16)

The variables x and X are updated using the equation
xk+1 xk Ax
= + 6.17
|:7Lk+1 xk A)\, ( )
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where [ i;i } can be obtained by solving the linear system of equations

VL Vh||M|_ |VL
{Vh OHAJ_ {Vh} €18

This is equivalent to solving a quadratic problem with linear constraints.
Thus a nonlinear optimization problem with both equality and inequality
constraints can be written as a quadratic problem.

Minimize
Q=M"Vf(x) +%AxTV2LAx (6.19)

subject to
hi(x) + Vh{(x)"Ax =0 (6.20)
gi(x) + Vg;(x)TAx =0 6.21)

The SQP method approximates the objective function to a quadratic form
and linearizes the constraints in each iteration. The quadratic programming
problem is then solved to get Ax. The value of x is updated with Ax. Again
the objective function is approximated with a quadratic function and con-
straints are linearized with new value of x. The iterations are repeated until
there is no further improvement in the objective function.

Trust region approach is a useful technique for solving quadratic prob-
lems. In this approach, a region around x has to be evaluated (Ax) where a
quadratic approximation of the function holds. The region is adjusted so that
flx + Ax) < f(x). Refer to Byrd et al. (1988, 2000) and Moré and Sorensen (1983)
for more details.

The Lagrangian function is often replaced by an augmented Lagrangian
function in the SQP method. Let us show the steps of SQP for the constrained
optimization problem

Minimize

f) = (e = 17 + (x, - 27
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subject to
hy(x) =2x; —x,=0
g1(x) =x,<5

from a starting point (10, -5).
Iteration 1

_ . _| 18 |. 1 2. {1 gy |12 4
f(x)=130; Vf(x)—{ 14}, Vh-{ 1}, Vg_M, VL_LL 4}

The quadratic problem is

Minimize

subject to
25+[2 -1]JAx=0
5+[1 0]JAx=0

The solution of the quadratic problem is

A= | 75
10
Now x is updated as

e FI ErIE

Iteration 2
F(x)=11.25; Vf(x)= {ﬂ Vh= {2}; Vg = [é} VL = {10 ‘4}

-1 -4 4
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The quadratic problem is

Minimize

subject to
0+[2 -1]Ax=0
25+[1 0Ax=0

The solution of the quadratic problem is

A= | 7LD
-3.0
Now x is updated as

coxosee 2]+ [2]-[1]

Iteration 3
_n- _107. 127, 117, 20 |10 -4
f(x)=0; Vf(x)= {O} ; Vh= [_J ; Vg= {0} ; VL= {_4 . }

Thus minimum of the function is at ﬂ The value of multiplier is zero for

the inequality constraint. That is, the inequality constraint is inactive at the
optimum point. The MATLAB code sqp.m solves the constrained optimiza-
tion problem using SQP method.

Example 6.3

Solve the welded beam constrained optimization problem using the SQP
method with an initial guess of (04, 6.0, 8.0, 0.5). Which constraints are
active at the optimum point?

© 2015by Taylor & FrancisGroup,LLC



188 Optimization: Algorithms and Applications

On executing the SQP code, the following output is displayed on the
command screen.

No. x-vector £ (x) |cons. |
1.0000 0.1250 10.0000 7.3810 0.1250 1.2379 7.2894
2.0000 0.1562 9.4551 8.6532 0.1562 1.7806 2.7531
3.0000 0.1920 7.1120 9.2150 0.1920 2.0868 0.9222
4.0000 0.2215 5.7879 9.4825 0.2215 2.3129 0.2302
5.0000 0.2352 5.5031 9.4865 0.2352 2.4297 0.0259
6.0000 0.2377 5.5289 9.3717 0.2377 2.4386 0.0006
7.0000 0.2385 5.6017 9.2434 0.2385 2.4308 0.0002
8.0000 0.2392 5.6751 9.1197 0.2392 2.4234 0.0002
9.0000 0.2399 5.7473 9.0011 0.2399 2.4166 0.0002
10.0000 0.2405 5.8180 8.8876 0.2405 2.4102 0.0002
11.0000 0.2412 5.8871 8.7793 0.2412 2.4044 0.0002
12.0000 0.2418 5.9543 8.6761 0.2418 2.3991 0.0001
13.0000 0.2425 6.0194 8.5781 0.2425 2.3942 0.0001
14.0000 0.2431 6.0822 8.4853 0.2431 2.3897 0.0001
15.0000 0.2436 6.1426 8.3977 0.2436 2.3856 0.0001
16.0000 0.2442 6.2004 8.3151 0.2442 2.3819 0.0001
17.0000 0.2444 6.2175 8.2914 0.2444 2.3809 0.0000
18.0000 0.2444 6.2175 8.2915 0.2444 2.3810 0.0000
19.0000 0.2444 6.2175 8.2915 0.2444 2.3810 0.0000

The minimum function value is 2.3810 and occurs at

X 0.2444
X | _|6.2175
x5 8.2915
X, 0.2444

On typing BETA at the command prompt, the following values are
displayed.

1.4584 0.9876 0.0000 0 0 0 22.0248 0
0 0 0 0 0 00

The positive value of multipliers for the first, second, and seventh con-
straints indicate that these are active constraints at the optimum point.

Example 6.4

A cylindrical pressure vessel capped at both ends by hemispherical
heads is to be designed for minimum cost (Sandgren 1990) whose design
variables are the thickness of the shell (x,), thickness of the head (x,),
inner radius (x3), and length of the cylindrical section of the vessel (x,).
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The optimization problem is

Minimize
f(x)=0.6224x,x3x, +1.7781x,x3 +3.1661x7x, +19.84x; x;
subject to
g1(x) = —x; + 0.0193x, < 0
2o(x) = —x, + 0.00954x, < 0
R TR S <
g3(x)=—mx3x, — 3 mx; +1,296,000<0
g4(x)=x,-240<0
where
0<xy,x,<10, 10 < x5, x, <200

Solve the constrained optimization problem using the SQP method
with an initial guess of (4, 4, 100, 100).

On executing the SQP code, the function minimum obtained is
5885.3407 and occurs at (0.7782, 0.3848, 40.3196, 200). The convergence
history is shown in the following table.

No. x-vector £ (x) |cons. |
1.0000e+000 1.2397e+000 6.1277e-001 6.4231e+001 2.0000e+002 1.7338e+004 7.2861le-012
2.0000e+000 8.8933e-001 4.3960e-001 4.6079e+001 2.0000e+002 7.9846e+003 3.1070e-012
3.0000e+000 7.8712e-001 3.8908e-001 4.0784e+001 2.0000e+002 6.0404e+003 0
4.0000e+000 7.7823e-001 3.8468e-001 4.0323e+001 2.0000e+002 5.8865e+003 0
5.0000e+000 7.7817e-001 3.8465e-001 4.0320e+001 2.0000e+002 5.8853e+003 0
6.0000e+000 7.7817e-001 3.8465e-001 4.0320e+001 2.0000e+002 5.8853e+003 5.5511e-017
7.0000e+000 7.7817e-001 3.8465¢-001 4.0320e+001 2.0000e+002 5.8853e+003 0
8.0000e+000 7.7817e-001 3.8465e-001 4.0320e+001 2.0000e+002 5.8853e+003 5.5511e-017
9.0000e+000 7.7817e-001 3.8465e-001 4.0320e+001 2.0000e+002 5.8853e+003 6.9849e-010
Example 6.5

The optimized production rate (Thygeson and Grossmann 1970) of a
through-circulation system for drying catalyst pellets depends on the
fluid velocity (x;) and bed depth (x,).

The optimization problem is

Minimize
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subject to

£1(x)=(3000+ x,)x7x, -1.2x10° <0

L(x)= exp(0.184x§]'3x2)— 41<0

where
0<x, <40,000, 0<x,<1
Solve the constrained optimization problem using the PSO method.

On executing the PSO code, the function minimum obtained is
-153.716 and occurs at (31,766, 0.342). The convergence history is shown

in the following table.

No. x-vector £ (x)

1 31475.978 0.340 -151.749
2 31532.201 0.341 -152.112
3 32464.351 0.321 -152.958
4 37080.697 0.262 -152.958
5 38808.857 0.240 -152.958
6 39261.784 0.234 -152.958
7 33844.159 0.303 -152.958
8 27509.668 0.384 -152.958
9 26009.433 0.404 -152.958
992 31766.001 0.342 -153.716
993 31766.001 0.342 -153.716
994 31766.001 0.342 -153.716
995 31766.001 0.342 -153.716
996 31766.001 0.342 -153.716
997 31766.001 0.342 -153.716
998 31766.001 0.342 -153.716
999 31766.001 0.342 -153.716
1000 31766.001 0.342 -153.716

I

6.6 Method of Feasible Directions

Some optimization problems require constraints to be satisfied in every itera-
tion. For example, consider the shape optimization problem of a body whose
drag is to be minimized. The drag force is computed using computational
fluid dynamics (CFD) analysis for a given shape of the body. It is obvious
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that CFD analysis will provide reliable results if only there is a meaningful
shape of the body. This can be achieved by not only giving a proper defini-
tion of the constraints, but also satisfying them at each iteration. Consider a
constrained optimization problem

Minimize

f)
subject to
gx)<0 i=12..,m
A direction S is feasible at point x if

S$™Vgi(x) <0 (6.22)

If the objective function also has to be reduced, then the following inequal-
ity must also be satisfied:

S™Vf(x) <0 (6.23)
Zoutendijk’s method of feasible directions and Rosen’s gradient projection

method are two popular methods of feasible directions that are explained in
this section.

6.6.1 Zoutendijk’s Method

The method starts with a feasible point x. That is, g;(x) < 0 are satisfied. Set the
search direction as the steepest descent direction. That is,

5= ~Vfx)

If at least one of the constraint is active g;(x) = 0, then the following optimi-
zation subproblem is to be solved with respect to S.

Minimize
B (6.24)
subject to

ST™Vg,(x) + p <0 (6.25)
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STVf(x) + p< 0 (6.26)
1<s,<1 k=1,2..,n 6.27)

where 1 denotes number of variables and s, are the components of the search
direction. A line search algorithm can be used to determine the next point
X as

xX=x+0S
such that

flx + aS) = f(x)

gilx+aS)<0

In case constraints are not met with x, the optimization subproblem has to
be solved again with ¥ to obtain new S. The algorithm is terminated if any of
the following criteria are met:

* The objective function value does not show improvement over suc-
cessive iterations.

¢ Design variables do not change over successive iterations.
e pis close to zero.

6.6.2 Rosen’s Gradient Projection Method

In this method, the search direction (negative of the gradient of the objective
function) is projected into the subspace tangent of the active constraints. This
condition of projection is sufficient for linear constraints. However, if the
constraints are nonlinear, the projected search direction moves away from
the search boundary (see Figure 6.7). A restoration move is carried out in
case nonlinear constraints are present.

Let the matrix N denote gradient of active constraints. That is,

N =[Vg,, Vg5, Vg, (6.28)

The projected matrix is given by

P =1- N(N'N)NT 6.29)
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Restoration

Projection
move

FIGURE 6.7
Rosen’s gradient projection method with restoration move.

The search direction is given by
S =-PVf(x) (6.30)

The restoration move is given by
—-N(NTN)-'gi(x) (6.31)

Combining the projection and restoration move, the design variable can
be updated as

¥=x+0S-N(N'N)"g,(x) (6.32)
where
—-_ M (6.33)
STVf(x)

and vy specifies the desired reduction in the objective function (Haug and
Arora 1979).

Example 6.6

Show all the important variables in the first iteration of the Rosen’s gra-
dient projection method for the following optimization problem from a
starting value of (2, 1).

Minimize

fo) = (1 =17 + (x, - 2
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subject to
g1(x) =2x; —x,<0
) =x,<5
Atx=(2,1)
fx) =2

_ 2(x; - 1) 1 2
Vf(x)_{z(xz—z)l_{—z}

The constraint g(x) is also violated. Therefore,

The projection matrix is given by
P=I_N(NTN)71NT=1 1 2
5(2 4
Therefore, the search direction is given by
_ _|1
S=-PVf(x)= {2}

Taking y =0.1,

_ W™ g4
S'Vf(x)

The value of x can now be updated as

x=x+0S-N(N'N)"g,(x)= |:§}+0.1|:;:|_ {—1(526] _ {(1).:]
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Atx = (09, 1.8)

f(x) = 0.05

Both the constraints are also feasible at this point.

6.7 Application to Structural Design

A structure is to be designed that has members with square cross sections
(Figure 6.8). The design variables are the cross-sectional sizes of the columns
(x;) and beam (x,). The objective function is to minimize the volume of the
structure. The stresses are to be restricted at three critical sections: top of
the column and end and midspan of the beam. The optimization problem
(Horowitz et al. 2008) is stated as

Minimize
V =20lx; +Ix;
subject to
(x) < LZ + szl —-0,<0
S et rdont OV
xi(x, +6al) gl
()<—F—F2—-1T _5,<0
£ x5 (6xj1 + 40cx§) 200 °
al
1
FIGURE 6.8

Structural frame.
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x1x, +ocl(3x;1 +6ax§)il_
36:2’(6941 +40cx§) 20

g3(x) < 6, <0

0<xy,x,<40
where

q =15 kgf/cm
I'=550 cm

6, = 6, = 6; = 103 kgf/cm?

The constrained optimization problem has two optima. It is desired to
achieve a global optima for this problem. We use stochastic algorithm PSO
for this purpose. On executing MATLAB code pso.m the following output is
obtained.

No. x1 x2 f (x)

1 10.881 31.486 597348.396
2 18.732 31.907 597348.396
3 25.175 32.252 597348.396
4 22.256 32.096 597348.396
5 11.958 31.131 595963.381

.294 31.083 569385.788

96 9

97 9.294 31.083 569385.788
98 9.294 31.083 569385.788
99 9.294 31.083 569385.788
100 9.294 31.083 569385.788

The global optimum value of the design variable is (x,, x,) = (9.294, 31.083)
and optimum value of the objective function is 569,385 cm?.

Chapter Highlights

* A pointis regular if the gradient of active inequality and all equality
constraints are linearly independent.
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¢ The optimality conditions for constrained optimization problems
are frequently referred to as Karush—Kuhn—Tucker (KKT) conditions.
KKT conditions are necessary but not sufficient for optimality.

e The Lagrange multiplier provides information on the sensitivity of
the objective function with respect to the sensitivity of the right-
hand side of the constraint equation.

¢ A constrained optimization problem can be converted to an uncon-
strained problem by penalizing the objective function when con-
straints are violated. Such methods are termed penalty function
methods and are very easy to implement.

e The motivation of using the penalty function method is to solve
the constrained optimization problem using algorithms for uncon-
strained problems.

¢ The augmented Lagrange multiplier (ALM) method combines both
Lagrange multiplier and penalty function methods.

¢ The sequential quadratic programming (SQP) method approximates
the objective function to a quadratic form and linearizes the con-
straints in each iteration.

* The method of feasible directions ensures meeting the constraints
in every iteration.

¢ In Rosen’s gradient projection method, the search direction (nega-
tive of the gradient of the objective function) is projected into the
subspace tangent of the active constraints.

Formulae Chart
Lagrange function:

r m

LG, )= f)+ Y b0+ igi(x)

j=1 i=1

Optimality condition:

~Vf(x)= Zk Vh(x)+ ZMng i(%)
j=1 i=1
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Penalty function:

f@)= f@)+r Y B @+5 Y (g
j=1

i=1

(8x)) = max[0, g(x)]

Augmented Lagrangian function:

A(x, B, 1) = f(x)+2x (x)+2[30c +rk2h (x)+rk20c :(x))

= max[0, g,(x)]
o, = max {g,-(x), ;Ek’ }
Quadratic problem:
Minimize
Q=A"Vf(x)+ %AxTVZLAx
subject to

hi(x) + Vh{(x)"Ax =0
gi(®) + Vg,(x)"Ax =0

Rosen’s gradient projection method:

P =1- N(N'N)NT

¥x=x+0S-N(N'N)"g,(x)

_Yf®)
S'Vf(x)
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—
Problems
1. For the following optimization problem
Minimize
flx) =2x; + x,

subject to

1+x7—x,<0

check whether the following points are feasible
i. (0,0
ii. (1,2)
iii. (2, 1)
iv. (1, 3)
2. For the following optimization problem
Minimize
f)=(x=3)" +(x, - 4) +2
subject to
1+x7—x,<0
check which of the constraints are active at the following points
i (2,-1)
ii. (1,2
iii. (1, 1)
iv. (13/5,1/5)

3. Solve the following optimization problem using the variable-elimination
method.

Minimize
Sx) = By — 22,2 + (1 + 22
subject to

X, +x,=7
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4. Write the Lagrangian for the problem
Minimize

flx) = Bx; — 2x,)2 + (x; + 2

subject to

X, +%x,=7

and then write down the optimality conditions. Find the optimal
value of x; and x,. Also compute the value of multiplier and com-
ment whether the constraint is active at the optimal point. What is
the approximate change in the optimal value of f(x) if the right-hand
side of the constraint equation is changed to 6 from 7.

5. Solve the following optimization problem

Minimize
5%, «x
(x)= 20 +22
/ X3 x%
subject to
X%, —2=0
X +x,21

using the SQP method with an initial guess of (1, 1). Define the qua-
dratic sub-problem at each step.

6. Solve the previous optimization problem using the PSO method.
Compare the results obtained from the SQP method.

7. The welded beam constrained optimization problem was solved
using PSO and SQP methods in this chapter. For the SQP method,
the initial guess for the design variables was taken as (0.4, 6.0, 8.0,
0.5), which was close to the optimum point. Using different initial
guesses for the design variables, execute the SQP code and observe
the sensitivity of the convergence.

8. Solve the pressure vessel problem using the PSO method and Rosen’s
gradient projection method.

9. Solve the through-circulation dryer problem using the SQP method
with different initial guesses of the design variables.
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10. Solve the spring design problem (Rao 2009), which minimizes the
weight of a spring subject to constraints on deflection, shear stress,
and frequency. The design variables are the mean coil diameter (x;),
the wire diameter (x,), and the number of active coils (x;).

Minimize
f(x) = (23 +2)x,x7
subject to
x3x
x)=1-——"223 <
$0= 1 sy
()= 4x5 — x,X, [
212,566 (0 —xt) 5108 T
o= 1- 10455
XpX3
X+ X,
ST P
35(x) 15
where

0.05<x,<2,025<x,<1.3 2<x,<15
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7

Multiobjective Optimization

7.1 Introduction

In previous chapters, optimization problems with a single objective function
were discussed and these problems were with or without constraints. Typical
single-variable objective functions are cost minimization, efficiency maximiza-
tion, weight minimization, and so on. The solution to single-variable optimiza-
tion problems results in a single point in the design space and the corresponding
objective function value at that point gives the minimum value of the function.

In the multiobjective optimization problem, two or more objective func-
tions are to be simultaneously optimized. For example, the criteria in manu-
facturing a product could be cost minimization and efficiency maximization.
The general form of a multiobjective optimization problem can be mathe-
matically stated as

Minimize
fie) k=12..,K (7.1)

subject to
g0 i=12..,m<n (7.2)
h]-(x):O ji=L2,..,r<n (7.3)
x<x<x, (74)

203
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The solution to a multiobjective problem results in a number of points
in the objective function space referred to as Pareto optimal solutions. For a
multiobjective problem with two objective functions (the first function is
efficiency maximization and the second function is cost minimization), a
typical Pareto optimal front is shown in Figure 7.1. The first objective ( f;)
function “efficiency” is along the x-axis of this figure and the y-axis contains
the second objective ( f,) function “cost.” The Pareto optimal front is obtained
using the principle of domination. In this concept, each solution is compared
to check whether it dominates another solution or not.

A solution x? is said to dominate another solution x? if the following condi-
tions are satisfied

* The solution x! is no worse than x? in all objectives.
* The solution x! is better than x? in at least one objective.

Consider points A and C for domination. Clearly, point C dominates point
A in both the objective functions. However, point C is itself dominated by
at least one of the points in the Pareto optimal front. The points along the
Pareto optimal front are referred to as nondominated solutions. In Figure 7.1,
the Pareto optimal front is convex. However, this front can be concave, par-
tially convex/concave or discontinuous. The trade-off between the objective
functions defines the shape of the Pareto front.

In this chapter, we discuss the methods for obtaining the nondominated
solutions for a multiobjective optimization problem. These methods will be
applied on some well-known test functions. The road map of this chapter
is shown in Figure 7.2. The weighted sum approach, e-constraint method,
goal programming, and utility function method are explained as the tech-
niques for solving multiobjective problems. In the weighted sum approach,

£

Pareto optimal front

Nondominated solutions

> fi

FIGURE 7.1
Pareto optimal front.
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[ Multiobjective optimization ]

l

[ Weighted sum approach ]

|

[ e-Constraints method ]

Il

[ Goal programming ]

[

[ Utility function method ]

l

[ Application ]

FIGURE 7.2
Road map of Chapter 7.

different objectives are combined into a single objective function using dif-
ferent weights. This method is simple and easy to implement. However, it
can locate one Pareto point in one optimization run using the gradient-based
method. The particle swarm optimization (PSO) technique, which works
with a number of solution points, can locate the Pareto front on one single
run. In the e-constraint method, one objective function is minimized and
remaining objective functions are transformed into constraints which are
to be specified by the user. The transformed problem is then solved using
the gradient-based method. The method can locate the Pareto fronts of the
nonconvex problems. In goal programming, a target is set for each of the
objective functions and the optimizer aims to minimize the deviations from
the set goals. In the utility function method, all the objectives are combined
into a single function which is then solved along with the constraints. In
the last section, shape optimization of a reentry body is carried out that has
two conflicting objectives: weight minimization and stability maximization,
along with constraints.

7.2 Weighted Sum Approach

The simplest approach to solve a multiobjective optimization problem is to
combine all the objective functions into a single objective function, which
then can be solved using any of the methods described in previous chap-
ters. Different objective functions can be combined into a single objective
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function using user-supplied weights and the optimization problem can
be stated as

Minimize
K
Y wfiw) k=12..,K 75)
k=1
subject to
gx)<0 i=12..,m<n (7.6)
hx)=0 j=1,2,..,r<n (7.7)
x<x<x, (7.8)

where w; is a nonnegative weight of the kth objective function such that

) w,=1 (79)

The value of weight to be selected for an objective function depends on the
relative importance of that objective function over the other objective func-
tions. For example, in the cost-efficiency multiobjective problem discussed
in the previous section, a weight of 0.2 for the objective function “cost” and a
weight of 0.8 for the other objective function efficiency will result in an opti-
mized solution given by a single point. To obtain the Pareto optimal front,
the procedure has to be repeated with different weights.

Consider the following multiobjective optimization problem whose Pareto
optimal front is to be obtained.

Minimize
1
fitw) =[x +3)
Minimize

fuw) = [ =17 + (1, - 3]
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Using the weighted sum approach, two objective functions can be com-
bined to form a single objective function as given below

Minimize
1 1
F(x)= S (xf + x§)+5w2 [(x1 —1)* +(x, —3)2]

The above function is optimized by varying the weight w, from 0 to 1 in
steps of 0.01. The other weight w, is selected using the following equality,

w,=1-w, (710)

For each value of [w;, w,], the above function will be optimized to obtain
the optimal solution. Thus, different values of [w,, w,] will result in a number
of optimal solutions that result in the Pareto optimal front. Let us use the
sequential quadratic programming (SQP) method, as discussed in the previ-
ous chapter, to solve the multi-objective problem. The MATLAB® code sqp.m
is modified so that in a single execution, the Pareto optimal front can be
obtained. Only the modified main program and functions are listed under
the heading of this chapter in Appendix B. Other routines remain the same
as previous chapters. On executing the code, the Pareto optimal front is
obtained and is shown in Figure 7.3. The shape of the Pareto front is convex.
The tangent line at point A represents the equal-cost line for the function F(x)
and its slope depends on the choice of weights w, and w,.

Objective space

Pareto front

FIGURE 7.3
Pareto front.
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Let us check the performance of the weighted sum method for multiobjec-
tive problems that have a nonconvex Pareto front. Consider the following
multiobjective optimization problem:

Minimize
filx) = x,
Minimize
f(x)=1+x; —x, —0.1sin(3nx,)
subject to

On executing the modified SQP code for these functions, an incomplete
Pareto front is generated and is shown in Figure 74. The weighted sum
approach, though simple to implement, has difficulty in locating the Pareto
front of the nonconvex type. Another disadvantage of the weighted sum
approach is that even if weights are uniformly distributed, it may not result
in uniform distribution of Pareto optimal solutions (see Figure 74). The
advantages and disadvantages of this method are

Advantages

¢ Itis simple and easy to use.

¢ It ensures a solution for convex problems.

09}
0.8}
0.7}
0.6}

0.4}
0.3} *
02f
01f

h

FIGURE 7.4
Incomplete Pareto front.
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Disadvantages

¢ The computational burden is higher.
¢ Different weights may lead to the same solution.
¢ A solution is not obtained for nonconvex problems.

¢ All problems have to be converted to the same type (min or max type).

An interesting alternative is to use evolutionary algorithms (such as
genetic algorithm or PSO) to locate the Pareto optimal front because it works
simultaneously on a number of points. In one such strategy using the PSO
technique (Parsopoulos and Vrahatis 2002), the weights are updated on each
iteration using the equation

. ( 2mt j
sin| ——
F

where ¢ is the iteration index and F is the weights’ change frequency. The
dynamic change of weights during the iterations forces the PSO algorithm to
keep the solutions on the Pareto front. The PSO algorithm given in Chapter 5
is modified with the dynamic weight strategy and the revised MATLAB code
is given in pso.m. On executing the code for the multiobjective problem, the
Pareto optimal front is obtained and is shown in Figure 7.5. It is important to
note that the modified PSO algorithm is able to locate the nonconvex Pareto
front where weigthed sum approach failed to achieve the full Pareto front.

w, ()=

091 & »
0.81

’ »
07f ‘W
0.6F \
041 -

03f \
0.2
0.1f

h

FIGURE 7.5
Nonconvex Pareto front generated with particle swarm optimization.
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FIGURE 7.6

Pareto front for the test problem.

Example 7.1

Consider the multiobjective optimization problem:

Minimize
fx)=x+x
Minimize
fo(x)=2x; -3x,
subject to

0<x,<1, -2<x,<2

Modify the PSO code for these functions and obtain the Pareto opti-
mal front.

The tuning parameters for PSO algorithm are changed to different val-
ues. On executing the code with one such change in tuned parameters,
the Pareto optimal front is obtained and given in Figure 7.6.

7.3 e-Constraints Method

In this method, the decision-maker chooses one objective out of K objectives
that needs to be minimized and the remaining objectives are put as con-
straints to some target values (which are to be defined by the decision-maker).
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If we select f;(x) as the objective function that needs to be minimized, then
the e-constraint problem is

Minimize
f3(x) (711)

subject to

fix)<g,  k=1..K, k=#3 (712)

For a simple multiobjective problem with two objectives, the concept of this
method is explained through Figure 7.7. Using different values of g, Pareto opti-
mal solutions can be obtained. The method can also provide solutions for mul-
tiobjective problems with nonconvex Pareto fronts. The disadvantage of this
method is that prior information on ¢ is required to obtain a proper solution.

Let us solve the following problem using this method.

Minimize
filx) =x,
Minimize
f(x)=1+x; —x, —0.1sin(3mx;,)

subject to

O0<x <1, 2<x,52

Ja
Pareto point
Pareto front
- (to be determined)
A
filx) <e
FIGURE 7.7

Concept of e-constraints method.
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FIGURE 7.8
Nonconvex Pareto front generated using e-constraints method.

The second objective function f,(x) is used as an objective function and the
first objective function f;(x) is put as a constraint:

fitx)se

The optimization problem is solved for different € using the SQP method.
The ¢ is varied from 0.01 to 0.99, resulting each time in an optimization prob-
lem with different constraints. The solution of each of these problems results
in a single Pareto point. The SQP code, mentioned in Chapter 6, is suitably
modified and the Pareto front obtained is shown in Figure 7.8.

7.4 Goal Programming

In goal programing, a target or goal is set for each objective function. Then
the optimization problem is to minimize the deviation from the set targets.
For example, if the functions f,(x) are to be minimized and we set a goal for
this function as 7, then the optimization problem becomes

Minimize

K
Zwl,kpk twy e k=1,2,...,K (713)

k=1
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subject to
[il) +pi—me =7 (714)
Pr 120 (715)

where w, , and w, , are the weights of the kth goal and p, and 7, are the under-
achievement and overachievement for the kth goal. The main advantage of
goal programming is that multiobjectives are transformed into the con-
straints of a single-objective optimization problem.

Let us consider the following multiobjective optimization problem.

Minimize

fi(x)=xi +x,
Minimize

fo(x)= X - X
subject to

Assuming goals for the two objective functions as 1 and 2, the goal pro-
gramming problem can be written as

Minimize
f1(¥) = wpy + WP, + Wy + Wty
subject to

X +x,+p—n—1=0

X=X, +p,—1n,—2=0

where the design variables for this problem are x,, x,, p;, p,, #1;, and n,. For
the user-supplied value of the weight variables, the optimization problem
is solved. The optimal value of the design variables is substituted in the
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original multiobjective problem to obtain the values of f; and f,. The Pareto
front can be obtained by repeating the procedure with different weights.

In the lexicographic goal programming method, different objectives of the multi-
objective problem are to be ranked in the order of importance or priority. The
most important objective is selected first and it is solved to obtain x* The next
objective function in the order of priority is then selected and solved with the
additional constraint being the value of the objective function obtained from
the first step. The process is repeated until all the objectives are covered. Let
fi(x) be the most important objective function selected by the designer; then
the first step is to solve the optimization problem:

Minimize
fi®)
subject to
gx)<0 i=12..,m

The optimal solution for this problem is denoted by x*. In the next step of
lexicographic goal programming, the second most important objective func-
tion f,(x) is selected for optimization and the problem can be stated as

Minimize
fox)
subject to
gx)<0 i=12..,m
fi) = f1(x")
The process is repeated until all the objectives are covered and let the opti-
mum solution obtained for the multiobjective problem be denoted by x* It is

important to note that if the priorities of the objective functions are changed,
the optimal solution obtained will be a different x*.

7.5 Utility Function Method

In this method a utility function U is defined that combines all the objective
functions of the multiobjective optimization problem. The utility function
then becomes the objective function of the optimization problem that can
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be solved along with the constraints. Mathematically, the utility function
method can be described as

Minimize
U(fx) k=1,2..,K (7.16)
subject to
<0 i=12..,m<n (717)
hx)=0 j=1,2,..,r<n (718)
1

7.6 Application

Reentry bodies enter the Earth’s atmosphere with high velocities. The large
kinetic energy possessed by these bodies has to be dissipated by appropri-
ately designing the shape of these bodies. The shape design of the reentry
body is a typical multiobjective optimization problem with conflicting objec-
tives (Adimurthy et al. 2012; Arora and Pradeep 2003). The weight of the reen-
try body is to be minimized and its stability is to be maximized. The weight
minimization is the same as minimizing the surface area of the reentry body.
The stability of the body is dictated by its location of center of pressure and is
denoted by X.. An aerodynamic body is more stable if its X, is located as aft
as possible. Thus, for aerodynamic stability X, is to be maximized.

The shape of a reentry body is typically a spherical nose-cone-flare type
(Figure 79). The design parameters for the multiobjective optimization are the

Spherical nose /R
I ll
Conical body
03
- -
Fl
are 0, L

FIGURE 7.9
Design variables of the reentry body.
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nose radius (R,), first conical flare angle (6,), and its length (/;) and second con-
ical flare angle (8,) and its length (I,). During the launch phase of the reentry
body, it has to be accommodated inside the payload fairing of the rocket. So
there are restrictions on the dimensions of the nose radius and flare lengths.
In addition, to avoid flow separation, variable 6, is linked to 6,. Further, elec-
tronic packages and other equipment have to be housed inside the reentry
body, leading to volume (V) constraint in the optimization problem.
The constraints of the problem are

V21
04<R,<06
22 <0, <27

0, +5<6,<6,+10
04<1,<08
04<1,<0.8

The surface area and volume are computed using the expressions
A=271R}(1-sin0,)+ (R, + R\ (R, —R,)* +1}

+7(R, +Ry)\(Rg —R,)* +15 + 1R

7R, (1-sin®,)
6

1% (3R12+R12(1—sinel)2)+%ﬂ:ll (R?+R2+RR,)

+ %nlz (R2+R2+R,R,)
where

R, =R, cos 6,

R, =R, cos 0, + [, tan 6,
Rz;=R,+I,tan 6,

The other objective function X, is computed using the expression

© 2015by Taylor & FrancisGroup,LLC



Multiobjective Optimization 217

where C, and C are pitching moment coefficient and the normal force coef-
ficient respectively. The value of X, is computed for a unit reference length.
The value of aerodynamic coefficients can be computed using the flow field
analysis for different geometrical shapes. As an alternate, one can build
a response surface for C,, and C, as a function of input parameters R,, 0;,
I, 8, and I,. The responses are generated using modified Newtonian flow
(Chernyi 1961), which is valid for hypersonic (Mach>5) flows. The analysis
is valid for a small angle of attack. The response matrix is generated for an
angle of attack of 5 degrees and is shown in Table 71.

The response surface model is then generated with MATLAB using the
regstats function. For example,

>> regstats(cm,inputparam,’purequadratic’)
>> beta
will generate the polynomial coefficients (beta) of the respective input

parameters. The response surface of the aerodynamic coefficients is thus
given as

TABLE 7.1

Response Surface Matrix

Input Parameters Responses

R,m 0,degrees  0,degrees IL,m I,m Cn C,
0.5 20 25 0.65 0.65 0.07954 0.12198
0.5 20 25 1.00 0.65 0.12409 0.15979
0.5 20 25 0.20 0.65 0.03992 0.08037
0.5 20 25 0.65 1.00 0.13359 0.16864
0.5 20 25 0.65 0.20 0.03420 0.072529
0.2 20 25 0.65 0.65 0.03848 0.06818
0.2 20 25 1.00 0.65 0.06647 0.09546
0.2 20 25 0.20 0.65 0.01552 0.03951
0.2 20 25 0.65 1.00 0.07245 0.10236
1.0 20 25 0.65 0.65 0.01974 0.23620
1.0 20 25 1.00 0.65 0.27559 0.29093
1.0 20 25 0.20 0.65 0.12147 0.17304
1.0 20 25 0.65 1.00 0.29286 0.30292
1.0 20 25 0.65 0.20 0.10818 0.16111
0.5 15 20 0.65 0.65 0.05917 0.09790
1.2 15 25 0.20 0.65 0.12767 0.17713
0.2 15 20 1.00 0.65 0.04339 0.06695
0.5 25 35 0.65 0.65 0.11970 0.15591
0.5 25 30 0.65 1.00 0.17626 0.20450
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Con =Bo +B1R, + P01 +Bsly + P10, +Bsly +BeRy + P07 + Byl +Bo03 +Pyola
Co =By +ByR, + B0, +Bsly + B0, + Byl + By R: + B, 07 +Bsli +Bo6 +Byola

where the polynomial coefficients are given by

By _ - By _ -
B, —0.2785277 B, -0.3142861
5 0.07575931 5, 0.15013042

g 0.00138183 2 —0.0039655
Bs 0.00582562 By 0.01401952
B, 0.08788085 By 0.10363958
Bs | =10.07978807 | and | Bs | = | 0.10800186
B, 0.10309911 By 0.04790623
B, 0.00009141 B, 0.00018685
B —0.0000837 B, -0.0002199

s 0.02437810 s -0.0004853
B 0.05287244 By 0.01629809
_BlO_ B ) _B]O’_ B i

Theresponse surface modelis validated by using some arbitrary values of input
parameters, but within their constraint bounds and generating the responses
for these parameters. The accuracy of responses is checked by comparing them
with those generated by flow field analysis for the same input parameters. The
accuracy of the response surface model is within 5% of those generated by the
flow field analysis. Let us summarize the multiobjective problem:

Minimize
A=2nR>(1-sin0,)+7(R, +R,)\(R, —R,)* +Z + (R, + Ry)\/(R; — R, )* +15 + 1R
Maximize
Xep
subject to
Va1
04<R,<0.6
22 <0, <27
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0,+5<6,<06,+10
04<1,<08
04<1,<0.8

The multiobjective optimization problem is solved using the e-constraints
method. The objective function X, is taken as the function to be optimized
and the other objective function A becomes a constraint. Since X, is to be
maximized, it is put as —ch in the SQP method which is written for minimi-
zation of a function. The area is varied from 6.4 m? to 16.3 m?. This is put as
a constraint in the optimization problem:

A<e

where ¢ is varied from 6.4 to 16.3 in steps of 0.2 resulting in different con-
straint optimization problems. Each of these problems is then solved using
the SQP method. The MATLAB code for the objective functions is given in
func.m and funcl.m. On executing the MATLAB code sgp.m the Pareto front
is obtained and is given in Figure 710. The shape of the reentry body for
the extreme cases of Pareto front is also shown in this figure. For achieving
higher stability, the flare lengths are higher and for achieving lower surface
area, flare lengths are smaller. Along the Pareto front, the maximum X, that
can be obtained is 0.87 where A is 16.3 m. For area of 6.4 m?, the X, achieved
will be 0.58.

18 T T T T T T
14
< 12

~—

10} . * Pareto front
¥
ot
o
8t <] O
-
-
-t
*
-

055 06 065 07 075 08 085 09 095

FIGURE 7.10
Pareto front of reentry test body.
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Chapter Highlights

¢ In the multiobjective optimization problem, two or more objective
functions are to be simultaneously optimized.

* The solution to a multiobjective problem results in a number of
points in the objective function space referred to as Pareto optimal
solutions.

¢ The Pareto front can be concave, partially convex/concave or
discontinuous.

* The points along the Pareto optimal front are referred to as non-
dominated solutions.

¢ Inthe weighted-sum approach, different objective functions are com-
bined into a single objective function using user-supplied weights.

* The weighted sum approach, though simple to implement, has dif-
ficulty in locating the Pareto front of the nonconvex type.

¢ In the e-constraint method, the decision-maker chooses one objec-
tive out of K objectives that needs to be minimized and the remain-
ing objectives are put as constraints to some target values.

e Evolutionary algorithms (such as genetic algorithm or particle
swarm optimization) are often used to locate the Pareto optimal
front since they work simultaneously on a number of points.

¢ Ingoal programing, a target or goal is set for each objective function.
Then the optimization problem is to minimize the deviation from
the set targets.

.|
Formulae Chart

Multiobjective problem:

Minimize/maximize
filx) k=1,2..,K

Weighted sum approach:
Minimize

K
Zwkfk(x) k=1,2,.., K
k=1
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K
2 wk = 1
k=1
Goal programming:
Minimize
f3()
subject to

fk(x)Sﬁk k=1...K, k¢3

Goal programming:

Minimize

K
Zwl,kpk +wy k=1,2,..,K
k=1
subject to
fk(x) +pk_ leZ‘Ck
Utility function method:
Minimize

U( fi(x)

Problems
1. Find the convex Pareto front for the multiobjective optimization
problem (Parsopoulos and Vrahatis 2002):
Minimize f; = x?
Minimize f,=(x -2y
where x e[ -10°,10° |

2. Find the concave Pareto front for the multiobjective optimization
problem (Zitzler et al. 2000).

Minimize f,=x,
2
Minimize f, = g[l_(flJ J
8
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n

where ¢ = 1+L1 E x; and x; €[0,1]. Take n = 30.
n_
i=2

. Find the convex Pareto front for the multiobjective optimization

problem (Zitzler et al. 2000).

Minimize f;=x,

inimize = - L
M f 3[1 \/;]

n

where g=1+ ll E x; and x; €[0,1]. Take n = 30.
n —
i=2

. Find the convex/concave Pareto front for the multiobjective optimi-

zation problem (Zitzler et al. 2000).
Minimize f;=x

inimiz AN
Minimize - f g[l [gJ g]

where ¢ = 1+%2x, and x; €[0,1]. Take n = 30.
=2

. Find the concave Pareto front for the multiobjective optimization

problem (Deb 2002):
& 2
Minimize f=1- exp(—Z(xi - 1/\/;) ]
i=1

1n

Minimize f, = 1—exp[—2(xi + 1/\/;)2J

i=1

where x €[-4,4]. Take n = 2.

. Find the convex Pareto front for the constrained multiobjective opti-

mization problem (Binh and Korn 1997):
Minimize  f, = 4x] +4x;
Minimize f, = (x; — 572+ (x, — 5)
subjectto  (x,—5)"+x; <25

(e =8P+ (x, + 372277
where x, €[0,5], x, €[0,3].
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Geometric Programming

8.1 Introduction

Geometric programming can be applied to optimization problems in which
the objective function and constraints have a special structure. The conven-
tional format of the objective function and constraints can be converted into the
format required for geometric programming. Once the problem is written in
the required format, it is much easier to solve the optimization problem using
geometric programming than using nonlinear programming (NLP) methods
described in previous chapters. The geometric programming technique pro-
posed by Zener, Duffin, and Peterson can solve large-scale optimization prob-
lems with high reliability and efficiency. Geometric programming is applied to
various disciplines such as inventory model (Abuo-El-Ata et al. 2003), structural
optimization (Hajela 1986), communication systems (Chiang 2005), very-large-
scale integration (VLSI) design (Chu and Wong 2001), and so on.

In geometric programming, the objective function is written in posynomial
form:

flx)=cx{"x2x3 ... x 8.1
where c is a positive constant, the exponents g4, are real numbers, and x; are

the design variables that can take positive values. It is important to note that
in polynomials, ¢ can take both positive and negative values. For example,

f(x)=5x7 —2x5 - 3x,%,
is a polynomial, while
f(x)=2x] +5x5 +4x7%"
is a posynomial.
If the objective function is obtained in polynomial form, then it has to be
transformed into a posynomial before geometric programming techniques

can be used. For example, the maximization function f(x)=xjx, can be

223
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[ Geometric programming ]

|

[ Unconstrained problems ]

]

[ Dual problem ]

l

[ Constrained optimization ]

|

[ Application ]

FIGURE 8.1
Road map of Chapter 8.

transformed into a posynomial form minimization function f(x)=x;’x;".
It is very interesting to note that in geometric programming, the objective
function is evaluated first and then optimal design variables are obtained.
That is, the optimized value of the objective function can be obtained with-
out knowing the optimal value of design variables. Thus, the solution to
geometric programming problems does not depend on the initial guess. In
this chapter, both unconstrained and constrained optimization problems are
solved using geometric programming. The chapter concludes with a practi-
cal application of geometric programming. The road map for this chapter is
given in Figure 8.1.

8.2 Unconstrained Problem

Consider minimization of the function

N n

fo-Yum-Y [T+ 62
j=1

j=1 i=1

where x;, ¢; > 0. The minimum or maximum of the function can be obtained
using the first-order condition

o _
S =0 (83)

1
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The solution of this equation leads to the orthogonality condition

Y wja; =0 (84)

and the normality condition
wi =1 (8.5)

where

(8.6)

The procedure for obtaining the optimal value of the objective function is
to write the function as

< | uy u; u, "
f —[*} {* S 8.7)
w; w, w,

where the values wf are obtained by solving the orthogonality and normal
equations.

The quantity N — (n + 1) is called as the degree of difficulty in geometric pro-
gramming, where n is the number of design variables and N is the number
of posynomial terms in the objective function. If the degree of difficulty is
zero, then the problem has a unique solution. If the degree of difficulty is
positive (number of equations obtained through orthogonality and normal-
ity condition being less than the number of variables), some variables have to
be expressed in terms of other variables to obtain the solution. In geometric
programming, we do not have the negative degree of difficulty.

Using f* and U;F, optimal values of the design variables can be evaluated
using the expression

Ul =w; f*=c jH(x;*)”ff 8.8)
i=1
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For a zero degree of difficulty problem, the above equation can be reduced
to a set of simultaneous equations, which are easier to solve. This can be
done by taking logarithms on both the sides, that is,

* %
w * * *
17f=alj]nx1+azj]nx2+...+a,,/-h1x,1 8.9

Cj

and then letting

k=Inx' (8.10)

The design variables can be obtained as

8.11)

The main advantage of using log summation terms is that the transformed
function becomes a convex one.

The above procedure is explained by following examples that are of zero
degree of difficulty.

Example 8.1
Solve the optimization problem using geometric programming:
Minimize
F(x) = 3271257 + 4x2 2,057 + 5y 0025 + 6%,

The degree of difficulty of this problemis 4 — (3 + 1) = 0. Also given are

Ay Gy My gy 1 2 10 o 3
a —

21 Ay fpz lyy _ 3 1 40 and c, _ 4
Q31 Qg O3z O3y 0-2-11 s 5
Ay Qg g3 Oy 11 11 4 6

Writing the normality and orthogonality conditions in matrix form

-1 2 10|l ™ 0
-3 1 40| w|_|O
0-2-11|| w, 0
11 11 || g, 1
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Solving the above equation gives

wi| {7/20
w,| |1/20
w,| | 1/4
w,| [7/20

Substituting these values in the following equation gives the optimal
value of the objective function.

wy Wy w3 wy
el 3R [ 8] 2382451
w, w, W, w, 256

The next step is to obtain the value of the design variables. The follow-
ing equations are solved simultaneously to obtain k;.

151% -~
n 20
3
1
15.1%x —
-1 -3 0 k, In 20
2 12| |2 4
1 4 -1 2 - 1
15.1x
0 0 1 3 In 4
5
15.1><l
n 20
L 6 _

These values of k; are substituted in the equation x; =e" to obtain the
design variables as

! 0.4201
X |=| 11407

. 0.8995
X3

Example 8.2

The treatment of waste is accomplished by chemicals and dilation to
meet effluent requirements (Stoecker 1971). The total cost is the sum of
the treatment plant, pumping power requirements, and piping costs.
This cost is given by the equation
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972,000 432

D’ Q

where C is in dollars, D is in inches, and Q is in cubic feet per second.
Find the minimum cost and best values of D and Q by geometric

programming.

The degree of difficulty of this problem is 3 — (2 + 1) = 0. Also given are

1 4y A3

1-5 0
y Ay 4y |=| 0 2 -1
a3 4z As3 111

€1 150
and | ¢, |=| 972,000
¢ 432

Writing the normality and orthogonality conditions in matrix form

1-5 0
0 2 -1
1 1 1

Solving the above equation gives

wy
wy

Wy

w4 0
w, |=| 0
W, 1

5/8
1/8
1/4

Substituting these values in the following expression gives the opti-

mal value of the objective function.

wy wy w3
=) (T () e
wy w, ws

The next step is to obtain the value of the design variables. The follow-
ing equations are solved simultaneously to obtain k;.

1 0 k,
-5 2 3 =
0 -1 2
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This values of k; are substituted in the equation x| =" to obtain the

design variables as
D* |_| 6
Q" 1.2

8.3 Dual Problem

Similar to linear programming, there is a dual problem in geometric pro-
gramming. The minimization problem discussed in the previous section in
this chapter is referred to as the primal problem. The corresponding maximum
of the primal problem is referred to as the dual problem. The dual problem
structure is helpful in solving geometric programming problems that have a
degree of difficulty greater than zero. In the primal problem, the minimiza-
tion of the function

i1

f@=3 cjﬁxf” (812)
=1

is replaced by maximization of the function

N w;
Fao) =T [;f] (813)
s

in the dual problem. Because it is easy to solve an objective function that has
summation terms rather than product terms, the logarithm is taken on both
sides of Equation 8.13.

In F(w) ==Y, m(?} (8.14)
=1 !

This function is maximized subject to normality and orthogonality con-
ditions, mentioned in the previous section. It is significant to note that the
solution obtained from the dual problem (maximization) is the same as the
solution of the primal problem (minimization).
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Example 8.3

Solve the optimization problem:
Minimize
F(x)=x] +2x5 + 3272 +2x,x,

The degree of difficulty of this problem is 4 — (2 + 1) = 1. Writing the
minimization problem in dual form as

oo ) (2 o) (&)

subject to orthogonality and normality conditions

Maximize

wl O
20-11 w, 0
02-11 I e e
11 11 3

w, 1

In the above matrix notation, four unknowns are to be determined
from three equations. One can write the three variables in the form of a
fourth variable as

w, = 1—iw4
w, = 1—2@04
1
Wy 25

Substituting these values in the dual objective function and taking the
logarithm on both sides:

lnF(w4):—[(1_2w4)hq(l_2w4)+(1_2w4j1n(1_2w4j+11nl+w41nw4}

4 4 4 8 3 6 4
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Differentiating the above equation with respect to w;:
1 2
Inw, —lnz—E[ln(1—2w4) ~In32]=0

Solving the above equation gives w, = 0.20711. Substituting the value
of w, gives

1-2w,
4

w, =w, = =0.146445

This optimum value of the objective function can now be obtained as

wy Wy w3 Wy
) G G R e
w, w, W Wy

The next step is to determine the design variables x; and x,. Now,

U =w, f*=0.146445x7.6119 = x7

U, =w, f*=0.146445x7.6119 = 2x;
This gives

x; =1.0558

X =0.7466

8.4 Constrained Optimization

In the constrained optimization problems, both the objective function and

the constraints are given as posynomials. Consider minimization of the
function

n

f@=g®=> ]+ (8.15)

j=1 i=1
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subject to k constraints
N n
gi(x)= [ckj X J <1 (8.16)
211

where x;, ¢, ¢;>0. This the primal problem in standard form and its dual
(maximization function) is given by

m N N “u
F(w)= HH [;kf Zw,d (817)

subject to orthogonality and normality conditions

m N
Zzak,.jwk, =0 (8.18)

k=0 j=1

N
Zwk/ =0, k=0 (8.19)
j=1

The problem is then solved in a manner similar to the unconstrained opti-
mization problem. If the right-hand side of the constraints are given as posy-
nomials such as

8x) < v(x) (8.20)

the same can be transformed into the standard form as

&) o4 (8.21)
(x)

Example 8.4

Solve the optimization problem:
Minimize

F(x)= go(x) =30x7"25"x5" +30x,%,
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subject to

g1(x)=0.5x,x5 +0.25x,x, <1

The degree of difficulty of this problem is 3 — (2 + 1) = 0. Writing the
minimization problem in dual form as

Maximize

30 )" (30 )\*(05)"(025)" -
pr=(2) (2] (2] (22 v
Wy Wy wWs Wy

subject to orthogonality and normality conditions

1011 || % 0

1101 || @ |_|oO

1110 || w, 0

1100 ]| o, 1

Solving the above equation gives

-1
-1011 || ™ -1011 0 2/3
1101 ||w|_|-1101||0]|_|1/3
-1110 Wy -1110 0 1/3
1100 w, 1100 1 1/3

This optimum value of the objective function can now be obtained as

30" (30)”(05)"(025)" oo
pres@=( D) (2] (2] (%2) wrwgr =
1 2 3 4

The next step is to determine the design variables x, and x,. Now,

Uy =w, f*=30=30x;"x;"x3"

U5 =w, f*=15=30x,x,

This gives

x =2
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Example 8.5
Solve the optimization problem (Dembo 1976):

Minimize
f(x)= go(x) = xx, +x7'x5"
subject to

g1(x)=0.25x"% +x, <1

The degree of difficulty of this problem is 4 — (2 + 1) = 1. Writing the
minimization problem in dual form as
Maximize

~ i wy i w, 025 w3 i Wy i
f(w)—[wl] (wz} [ Wy J [WJ (w2t 10s)

subject to orthogonality and normality conditions

1-1050 o 0
e wy, | |0
1-1 01 w. 71 o
1 10 0 s

w, 1

In the above matrix notation, four unknowns are to be determined
from three equations. One can write the three variables in the form of a
fourth variable as

w, = 1-w,
2

w2=1+w4
2
Wy = 2w,
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Substituting these values in the dual function

lowy Ttwy ws ws
2 2 2 2 (025 1 e
= — 2w, +w, )
fw) [1—w4j (1+w4] (2104) (w4J 2w, )

Taking the logarithm on both sides of the above equation and then dif-
ferentiating it with respect to w, and equating it to zero one gets w, = 0.

Therefore,
w, = 1-w, zl
2 2
_1+w, _l
o2 2

wy;=2w,=0

This optimum value of the objective function can now be obtained as

s (1) 1)%(025)"( 1\ wry _
f _f(W)_(le (wzj (ws] [WJ (805 20a) =2

Now,

Uf:wlf*=1=x1x2

Uy =w,f*=1=x7'x;'

The above equation is satisfied for a number of combinations of x, and x,.

8.5 Application

A two-bar structure (Figure 8.2) is to be designed so as to minimize its weight
(Dey and Roy 2013) while tolerating certain maximum tensile and compres-
sive stresses. The optimization problem is written as

Minimize

W = A9 + A7)
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FIGURE 8.2
Two-bar truss.

subject to

[2 2
Pyxz+(-ys5) <

- Gt max
1A,

Px3+y5 _

- GC max
A,

0.5<yz<15
A, A,20
where

Load =P=10°N

Density = p =77 kN/m3

Length=1=2m

Width=x;=1m

Maximum tensile stress = o, ,,,, = 150 Mpa

Maximum compressive stress = ¢, .., = 100 Mpa

The design variables are A, A,, and y3.

The nonlinear optimization problem can be transformed into geometric
programming problem with the following substitutions:

X, =4

X,=A,
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,/1+(2—y3)2 <x,
J1+ys <x,

X5 =Yg

xg = 1+ 4x5x;

The geometric programming problem becomes

Minimize
W = 77(x,%5 + X,X,)

subject to

L

—xx; <1

354

1 4

—x,x, <1

2 442

X +xxi <1
-2,.-1 2.2, -1
Sxzxg +x3°x5x, <1

1 4
—x: <1
2%

2
—x: <1
35

-1 —2 -1 _
Xy +4x3°x5x, =1

The degree of difficulty is 12 — (6 + 1) = 5. The problem can be converted
into a dual problem and then solved. The solution is given by

x; =0.52068
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x, =0.640312

x; = 1.56205

x; =1.280625

x5 =0.8
x; =2.31147
W = 125.7667

Chapter Highlights

¢ In geometric programming, the objective function and constraints
are written in posynomial form.

* In geometric programming, the objective function is determined
first and then design variables are evaluated. The initial guess of the
variables has no role in geometric programming,.

* The degree of difficulty refers to the number of unknowns minus
the number of equations (orthogonality and normal conditions).

® The dual problem structure is helpful in solving geometric pro-
gramming problems that have a degree of difficulty greater than
zero.

* The solution obtained from the dual problem (maximization) is the
same as the solution of the primal problem (minimization).

Formulae Chart

Posynomial:

y

flx)=cx{'x2x5? ... x,,
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Unconstrained minimization:
Minimize
N N n
a;
0-3uw=¥ o T[
j=1 j=1

i=1

Normality and orthogonality conditions:

Optimal function value:

wi w5 wy
* *
pojun| | u
* *
wl wz wn
where
*
Wt = uj(x )
i f*

Dual problem (unconstrained):

oIl
N

Dual problem (constrained):

Wiy

m N N
roo=T1TT| & S

k=0 =1\ 8o
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Problems
1. Minimize (Ojha and Biswal 2010)

-3,.2,-1
10x"x505 " +40x,x, +40x,x,x4
subject to
2.2 -5..-1
2x,°%, +x,7x5 <1
Xy, Xy, X320
2. Minimize (Ojha and Biswal 2010)
—4,..-1 -1 -2..-3,-2
X1 Xy X3Xy +3x7°x57x;5
subject to
3 -1,.-1
2x7x,+x7 x5 <3
-1,.-1..-2 2
X5 X5 X, +3x7x,x, <1
X1, Xp, X3, X4, 20

3. Minimize (Rao 2009)

subject to
—4x] +4x, <1
X +x,21

X1, %, 20

4. In a certain reservoir pump installation (Rao 2009), the first cost of
the pipe is given by (100D + 50D?), where D is the diameter of the pipe
in centimeters. The cost of the reservoir decreases with an increase
in the quantity of fluid handled and is given by 20/Q, where Q is the
rate at which the fluid is handled (m3/s). The pumping cost is given
by (300Q?/D%). Find the optimal size of the pipe and the amount of
fluid handled for minimum overall cost.
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5. A hydraulic power system (Stoecker 1971) must provide 300 W of
power, where the power is the product of volume flow rate Q m3/s
and the pressure build up Ap Pa. The cost of the hydraulic pump is a
function of both the flow rate and pressure buildup.

Cost = 1200Q%*,/10+ (Ap x 10™*) dollars

Convert to a single-variable unconstrained problem and use geo-
metric programming to determine the minimum cost of the pump
and the optimum values of Q and Ap.

6. A newly harvested grain system (Stoecker 1971) has a high moisture
content and must be dried to prevent spoilage. The drying can be
achieved by blowing it with air. The seasonal operating cost in dol-
lars per square meter of the grain bed for such a dryer consists of the
cost of heating of the air.

Heating cost = 0.002QAt

and

Blower cost = 2.6 x 10903

where Q is air quantity delivered through the bed, m3/m? of bed
area and At is the rise in temperature through heater in °C. The val-
ues of Q and At also influence the time required for adequate drying
of the grain according to the equation

80x10°
Q*At

Drying time = days

Using the geometric programming method, compute the mini-
mum operating cost and optimum values of Q and At that will
achieve adequate drying in 60 days.

7. The torque T (Nm) developed by an internal combustion engine is
represented by

T =23.60% - 3.170

where o is the rotational speed in rad/s. Determine the maximum
power of this engine and the o at which this occurs (Stoecker 1971).
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9

Multidisciplinary Design Optimization

9.1 Introduction

In Chapter 7 on multiobjective optimization, a number of objective functions
were simultaneously handled along with constraints for a given discipline.
In multidisciplinary design optimization (MDQO), two or more disciplines
are simultaneously optimized. For example, in rocket design, the disciplines
could be structures, aerodynamics, propulsion, control, and mission. Each
of these disciplines can have separate optimal requirements. For example,
the propulsion discipline can have a constraint on chamber pressure, the
structural discipline can have constraints on stresses on the members, and
the mission can have trajectory constraints such as on dynamic pressure and
heat loads. Further, in MDO there are interactions among the disciplines. For
example, the variable dynamic pressure in the trajectory discipline has an
effect on load computation in the structural discipline. The idea of MDO is
to optimize the design in a global sense. This has the following advantages:

* The time required in the design cycle can be significantly reduced.
For example, a given aerodynamic shape will give a certain higher
load distribution of certain structural members that may require
reworking of these members, which in turn can change the aerody-
namic shape. The cycle is iterative and time consuming if the indi-
vidual disciplines are optimized sequentially. In addition, sequential
optimization of disciplines may lead to a suboptimal solution for
the whole system. For example, lift distribution along the wing span
changes if the aerodynamic and structure disciplines are optimized
together instead of considering the aerodynamic discipline alone
(Figure 9.1).

* Disciplines with conflicting objectives can be resolved. For exam-
ple, to minimize wave drag on a supersonic aircraft, optimizing
the aerodynamics discipline alone will result in thin wings. This,
on the other hand, could result in aero-elastic problems (structure
discipline).

243
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Optimization with aerodynamics
and structure discipline

—

Optimization with
Lift aerodynamics discipline
alone

Wing

FIGURE 9.1
Optimization of a single versus two disciplines.

Here one may argue that when optimizing even a single discipline is highly
time consuming, how can so many disciplines be optimized together? For
example, the aerodynamic discipline has to generate lift and drag coefficients
for a number of configurations through computational fluid dynamics (CFD)
that requires a large computational time. Similarly, the structural discipline
has to make finite element models and compute stresses on different mem-
bers, which again are computationally intensive. In MDO, this problem can
be alleviated by considering simplified mathematical models for each disci-
pline. One such technique is response surface methodology (RSM). In RSM,
one generates a response surface to variation in design variables by carrying
out a limited number of tests. For example, aerodynamic response surface
models can be generated with a limited number of CFD or wind tunnel tests
carried out at certain Mach numbers and certain angles of attack only. The
response surface model can then generate aerodynamic coefficients at any
Mach number and angle of attack.

MDO is often used for aerospace problems (Balesdent et al. 2010;
Manokaran et al. 2009; Xiaoqian et al. 2006; Yushin et al. 2006) as they are
highly complex in nature owing to the presence of a large number of con-
straints in various disciplines, and even if optimization results in increas-
ing only a few kilograms of payload, revenue can be increased by a few
thousand dollars. However, MDO can also be applied to other areas (Geyer
2009; He and McPhee 2005) such as automobiles, where one can simultane-
ously optimize different disciplines such as body, engine, hydraulics, and
so on. The road map of this chapter is shown in Figure 9.2. Through MDO
architecture, the MDO problem is transformed into a series of optimization
problems. A number of such architectures are discussed in this section
along with their advantages and disadvantages. A very brief introduc-
tion is given about MDO framework that provides a platform for compar-
ing different architectures. As MDO requires working with a number of
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MDO architecture
e MDF
IDF
« SAND
« CO
< CSSO
« BLISS

[

[ MDO framework ]

|

[ Response surface methodology ]

FIGURE 9.2
Road map of Chapter 9.

disciplines simultaneously, simplified but accurate models are required for
each discipline. This is done through response surface methodology, which
is explained in the last section.

9.2 MDO Architecture

Through MDO architecture, the multidisciplinary problem is transformed
into a series of standard optimization problems that can be solved through
either a gradient-based solver (Fletcher 1981) such as sequential quadratic
programming (SQP) or through a non—gradient-based solver such as genetic
algorithm (GA; Goldberg 1989) or particle swarm optimization (PSO). In
the literature, different architectures are reported that transform the prob-
lems differently. It is quite obvious that each MDO architecture has certain
advantages and disadvantages. The efficiency of different architectures can
be measured in terms of number of disciplines or number of global/local
variables. Some well-known MDO architectures are multidisciplinary fea-
sible (MDF), individual discipline feasible (IDF), simultaneous analysis and
design (SAND), collaborative optimization (CO), current subspace optimi-
zation (CSSO), and bilevel integrated system synthesis (BLISS). Excellent
details of these architectures are mentioned in Martins and Lambe (2013)
and Tedford and Martins (2006). Important highlights of these architectures
are presented in this section. Let us define an MDO problem with two dis-
ciplines with x; as the local variables, z; as the global variables, and y; as the
coupling variables. See Figure 9.3 for more clarity. Each discipline solves the
governing equations and provides feasible states and outputs in the form
of coupling variables to the other discipline. The variables that belong to
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Aerodynamics |
(Discipline 1)

V2
)1

Vehicle dynamics
(Discipline 2)

l Y1 )2

A 4

FIGURE 9.3
Multidisciplinary design analysis (MDA).

a single discipline are called local variables. The variables that affect more
than one discipline are called global variables.

For example, discipline 1 could be aerodynamics, which feeds aerody-
namic forces to discipline 2, where vehicle dynamics is simulated. Altitude
and velocity information from discipline 2 is then fed to discipline 1 for
computing aerodynamic forces. Here, angle of attack and bank angle are the
global variables. The set of discipline analyses is repeated until a change in
values of coupling variables becomes negligible. Mathematically, this can be
stated as

yit =y ©.1)

where Vi represents the value of ith discipline coupling variables after n
iterations. The optimization problem can be stated as

Minimize
flz, %) 9.2)

subject to
gz, x)<0 j=12.. m<n ©.3)
h(z,x)=0 k=1,2,..,r<n 94)
yit -y =0 9.5)
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9.2.1 Multidisciplinary Design Feasible

In this architecture, the design variables are iterated until coupling variables
become consistent. The objective function and constraints are then computed
and supplied to the optimizer (Figure 94). The procedure is said to converge
if the coupling variables remain constant over successive iterations.

The main advantage of MDF is that it ensures feasible solution at each iter-
ative step. By this we mean that constraints are satisfied with every iteration,
but the optimum solution is not yet reached. The disadvantage of MDF is
that it cannot be parallelized and computation of gradients for the coupled
system is difficult. The MDF problem can be mathematically stated as

Minimize
flz, %, y(x, 2)) ©.6)

subject to
8z x, yx, 2) <0 9.7)

yit -yl =0 ©.8)

Optimizer
e.g., SQP)

(

Aerodynamics
(Discipline 1)

A

A

Structure
(Discipline 2)

A

A

Control system
(Discipline 3)

FIGURE 9.4
Multidisciplinary feasible (MDF) analysis.
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9.2.2 Individual Discipline Feasible

In IDF architecture, discipline feasibility is ensured whereas a multidisci-
plinary feasible solution may not be present. The advantage of the IDF is
that different disciplines can be evaluated in parallel. Further discipline
computations are fewer as compared to MDF, and this can be a significant
advantage because discipline evaluations are often time consuming. In IDF
architecture, coupling variables are handled by the optimizer (Figure 9.5),
which in turn provides design and coupling variables to different disci-
plines. This architecture is recommended for those MDO problems that have
a small number of coupling variables.
The IDF problem can be mathematically stated as

Minimize
flz, %, y) ©9)
with respect to z, x, y'
subject to
ez x yx, v, 2)<0 (9.10)
yi—y(x,y',2)=0 9.11)

where y* are the estimates of coupling variables by the optimizer, y; are the
coupling variable output of the discipline 7, and y! are the estimates of the
nonlocal coupling variables. The last constraint ensures that at the optimum,
the coupling variables computed by the discipline and the optimizer are
matched.

Optimizer
fay (e.g. SQP)
% 9%z
v v
Aerodynamics Structure
(Discipline 1) (Discipline 2)
[ |

FIGURE 9.5
Individual discipline feasible (IDF) architecture.
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9.2.3 Simultaneous Analysis and Design

In SAND architecture, the optimizer is given freedom to design (optimize)

the system and solve the governing equations simultaneously. The residuals

obtained from the discipline analyses are treated as equality constraints in

the optimization problem. As compared to MDF and IDE, SAND architecture

(Figure 9.6) does not maintain even discipline feasibility at different iterations.
The SAND problem can be mathematically stated as

Minimize
fz, %, y(x, z, w) 012
with respect to z, x, u
subject to
gz x y(x, u,2) <0 (9.13)
R(z, x, y(x, z, u), u) <0 (9.14)

where u is the state variable of the discipline and R represents the residuals
of the discipline equations.

Example 9.1
Consider the MDO problem with two disciplines.

Minimize
X7+, +yy e
Optimizer R
(e.g., SQP)
Z, %, U
Z, X9, U
v 2
Aerodynamics
)1 (Discipline 1)
v
B Structure
(Discipline 2)
FIGURE 9.6

Simultaneous analysis and design (SAND) architecture.
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with respect to x;, x,, z;
subject to

1-v,/316<0
Y,/24-1<0
0<x,<10
0<x,<10
-10<z,<10
Discipline 1
Y =z]2+x]+x2—0.2y2

Discipline 2
Y= \/yj +Z;+ X,

Solve the MDO problem (Tedford and Martins 2010) using SAND
architecture.

The MDO problem is solved using the SQP method. The MATLAB®
codes from Chapter 6 are suitably modified to solve this problem. The
starting value of the design variables is taken as (xy, x5, z;, y1, ) = (1, 2,
5,1, 0). The design variables y,, y, are to be matched with the discipline
outputs. The optimizer carries out this task by defining two additional
equality constraints. On executing the sqp.m code, the following output
is obtained.

No. x-vector £ (x) | Cons. |

1.0000 13.0989 0.000 5.3084 36.3832 24.0000 207.9656 12.6601
2.0000 0.0000 O 4.6986 19.8331 9.3585 19.8332 0.4254
3.0000 0.0000 O 3.7071 11.3189 7.2047 11.3197 0.9920
4.0000 0.0000 0.00003.2572 9.1468 6.2987 9.1487 0.2032
5.0000 0.0000 0.00002.8631 6.9373 5.5221 6.9413 0.1573

6.0000 0.0000 0.00002.5514 5.4328 4.8997 5.4403 0.0987
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7.0000 0.0000 0.0000 2.2985 4.3400 4.3949 4.3523 0.0653
8.0000 0.0000 0.0000 2.0899 3.5283 3.9783 3.5471 0.0447
9.0000 0.0000 0.0000 1.9809 3.1600 3.7613 3.1833 0.0122
10.0000 0.0000 0.0000 1.9776 3.1600 3.7553 3.1834 0.0000
11.0000 0.0000 0.0000 1.9776 3.1600 3.7553 3.1834 0.0000

12.0000 0.0000 0.0000 1.9776 3.1600 3.7553 3.1834 0.0000

The optimal values of the design variables are (xf,x; ,zf)z (0,0,1.9776).
The converged values of the coupling variables are (y,, y,) = (3.16, 3.7553). The
minimum value of the objective function is 3.1834.

9.2.4 Collaborative Optimization

In CO architecture, optimization is carried out at discipline and system lev-
els. Thus, discipline feasibility is guaranteed throughout the optimization
process. The MDO problem is decomposed into a number of subproblems
corresponding to each discipline (Figure 9.7). The discipline optimization is
carried out in a conventional way in which local constraints to that discipline
are satisfied. The system level is optimized with respect to global, coupling,
and local variables. The constraints at the system level consist of global con-
straints as well as compatibility constraints of the discipline. The discipline

System optimizer

(e.g., SQP)
A
Ju 2
z% x% y* z% X% y*
A 4 A 4
Discipline optimizer Discipline optimizer
— > p P p. P €
(e.g., genetic algorithm) (e.g., particle swarm optimization)
)1 Z, %, )2 Z, %, Y1 Y2
A\ 4
Aerodynamics Structure
e (Discipline 1) (Discipline 2) |

FIGURE 9.7
Collaborative optimization (CO) architecture.
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optimizer, on the other hand, reduces the discrepancy between the system
level variables and the discipline variables. One significant advantage of CO
architecture is that each discipline can be optimized in parallel. Further,
different optimization techniques (gradient- or non—-gradient-based) can be
used by different disciplines. The disadvantage of CO architecture is that the
dimensionality of the system-level optimization problem increases signifi-
cantly with increase in coupling variables.
The CO architecture at system level can be mathematically stated as

Minimize
fz Y, o) 9.15)
with respect to z, y, x
subject to
] zi/Z*/ xobj'x:bi’yi/ y*)= O (916)

where x,; is the local variable affecting the objective function.

9.2.5 Concurrent Subspace Optimization

So far in MDO architecture, we have assumed discipline computations are
easy to evaluate. This is far from true. As explained in the introduction, aero-
dynamic analysis through CFD and structural analysis through the finite-
element method are time consuming. In this particular architecture, the
problem of extensive computing is alleviated by making simplified math-
ematical models for each discipline. One such technique is RSM. In RSM, one
generates a response surface to variation in design variables by carrying out
a limited number of tests.

In CSSO architecture, RSM is used to provide information for the disci-
pline subspace optimization. The response surface is constructed by carry-
ing out a discipline analysis at a few design points. Thus, response surfaces
provides state variables of each discipline for the given design variables. The
CSSO architecture is depicted in Figure 9.8.

9.2.6 Bilevel Integrated System Synthesis

BLISS architecture is designed to suit a parallel computing environment. It
is a bilevel architecture where each discipline optimization is fully auton-
omous and coordination is done at the system level to ensure multidisci-
plinary feasibility. In this architecture, discipline response levels are used
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MDA
Aerodynamics
(Discipline 1)
P System optimizer
r2 (e.g, SQP)
Vgl X

Vehicle dynamics
(Discipline 2)

A4

Generation of response surface
Aerodynamics: Using synthesized CFD
and wind tunnel data
Structure: Using FEM and testing

Subspace optimizations} Y MDA

Optimizer Optimizer Aerf)dyn?mics

(e.g., PSO) (e.g, GA) (Discipline 1)
X 7y s
v v > n

Aerodynamics Structure
(Discipline 1) (Discipline 2) » Vehicle dynamics
(Discipline 2)

FIGURE 9.8
Current subspace optimization (CSSO) architecture.

by the system optimizer (Figure 9.9). A major difference between BLISS and
CSSO is that subspace optimization is not carried out in BLISS.

9.3 MDO Framework

Different MDO architectures were presented in the previous section. One
question that arises here is, how do we know which architecture is more effi-
cient? To answer this, one needs a platform in which different MDO archi-
tectures can be compared. The MDO framework provides this platform. The
MDO problem is first input in standard form. The user then has to select the
architecture through which the problem needs to be solved. The framework
then casts the MDO problem into the specified architecture form, which is
then solved to get the solution.
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Generation of response surface using design of experiments
Aerodynamics: Using synthesized CFD and wind tunnel data
Structure: Using FEM and testing

A

Convergence
check

System optimization

System optimizer

(e.g., SQP)

Use response surface
of respective
discipline

FIGURE 9.9
Bilevel integrated system synthesis (BLISS) architecture.

The standard MDO form is to define the objective function, constraints,
design variables, coupled variables, state variables, and analysis functions.
The following are some typical requirements of an ideal framework.

¢ It should be able to handle large problems.

* A majority of operations should be handled by the graphical user
interface (GUI).

e It should support a collaborative design.

¢ It should support different optimizers on different disciplines.

e It should provide debugging support.

¢ It should offer feasibility of parallel processing.

¢ Data exchange between different modules should be possible.

* Visualization of intermediate and final results should be possible.

9.4 Response Surface Methodology

The motivation behind the use of RSM is that expensive computational
procedures such as finite element methods, CFD, or experimentation are
minimized. RSM is an empirical model building technique in which the
objective is to generate one or more outputs (responses) from a system that
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has several input parameters (Cornell and Khuri 1996). The empirical model
is built using simulations and experiments in which the output is computed
or measured by changing the inputs, which are also known. For example, lift
coefficient (C;) for a wing varies with angle of attack (o) and Mach number
(M). Here, response surface of parameter lift coefficient can be generated as
a function of angle of attack and Mach number. That is,

Cy = fla, M) 9.17)

A typical response surface plot is shown in Figure 9.10. One should have
some idea of the relationship between the responses and input parameters.
Typically, one can use the first- or second-order polynomial approximation
between the output and input variables. For example, for a single input x, the
estimated output ¥ is given by the relationship

¥ =a,+a,x+ax’ (9.18)

The aim is to estimate the coefficients a,, 4,, and a, so that output i can be
estimated for any given x. These coefficients can be estimated by minimizing
the function

N

(-vy) 9.19)

-

where y is the actual measurement made through experiments or through
high-fidelity simulations such as CFD and finite element analysis. These

Lift coefficient

Angle of attack (deg) Lo Mach number

FIGURE 9.10
Response surface of lift coefficient as a function of a and M.
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measurements are made for N cases. A question that needs to be asked here
is, at what values of x should the experiments be performed? The answer to
this is given by design of experiments (DoE). The accuracy and computa-
tional cost of constructing the response surface is given by DoE (Anderson
and McLean 1974).

A number of design models are available that can capture the interactions
among variables, with each having an advantage in either having a lower
number of points or having higher accuracy. In one such model, called full
factorial design, 3" points are selected at which experiments need to be car-
ried out. For a two-variable problem, nine experimental points are required
(Figure 9.11). In this figure, the subscripts [ and u stand for lower and upper
bound of the input variable.

Let us assume the input variable angle of attack (o) varies from 1 to 10
degrees and Mach number (M) varies from 0.3 to 2.0. Then the design matrix
at which experiments need to be carried out is given in Table 9.1.

Xou e
Xy [ ] [ ] 4
Xai .
*u 1u
*1
FIGURE 9.11
Full factorial design.

TABLE 9.1
Design Matrix
Experiment
Number o M
1 1 0.3
2 1 1.15
3 1 2.0
4 5.5 0.3
5 5.5 1.15
6 5.5 2.0
7 10 0.3
8 10 1.15
9 10 2.0
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X2u

X1
X1/ Xlu

FIGURE 9.12
Central composite design.

In a central composite design, the corner points are augmented with cen-
tral and axial points (Figure 9.12). This design is preferred for a second-order
model. For more such design models refer to Cornell and Khuri (1996).

Chapter Highlights

¢ In multidisciplinary design optimization, two or more disciplines
are simultaneously optimized with interaction among them.

* The main advantage of MDO is that the time required in the design
cycle can be significantly reduced. In addition, disciplines with con-
flicting objectives can be resolved.

e Through MDO architecture, the multidisciplinary problem is trans-
formed into a series of standard optimization problems that can
be solved through either a gradient-based solver such as SQP or
through a non-gradient-based solver such as GA or PSO.

¢ The main advantage of MDF architecture is that it ensures a feasible
solution at each iterative step.

¢ The main advantage of the IDF is that different disciplines can be
evaluated in parallel.

¢ In CO architecture, optimization is carried out at a discipline and
system level. Thus, discipline feasibility is guaranteed throughout
the optimization process. The MDO problem is decomposed into a
number of subproblems corresponding to each discipline.

e BLISS architecture is designed to suit a parallel computing environ-
ment. It is a bilevel architecture in which each discipline optimiza-
tion is fully autonomous and coordination is done at the system level
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to ensure multidisciplinary feasibility. In this architecture, disci-
pline response levels are used by the system optimizer.

® RSM is an empirical model building technique in which the objec-
tive is to generate one or more outputs (responses) from a system
that has several input parameters. The empirical model is built using
simulations and experiments in which the output is computed or
measured by changing the inputs, which are also known.

® The accuracy and computational cost of constructing the response
surface is given by design of experiments (DoE).

e Full factorial and central composite design are two such DoE
techniques.

Formulae Chart
Multidisciplinary analysis:
Minimize
subject to
gj(z,x) <0 j=12..,m<n

h(z,x)=0 k=1,2,...,r<n

yit -yl =0
Multidisciplinary feasible:
Minimize
fiz, %, y(x, 2))
subject to
8z %, y(x,2) <0
vt -y =0
IDF:
Minimize
fe, %, y)

© 2015by Taylor & FrancisGroup,LLC



Multidisciplinary Design Optimization 259

subject to
8(z x, y(x, y', 2) <0
yi-yi(x,y',2)=0
SAND:
Minimize
fiz, x, y(x, z, u))
subject to
8z x, ylx, z,u) <0
R(z, x, y(x, z, u), u) <0
CSSO:
Minimize
fz Y, xar)
subject to
J\z;, 2% xobj,x:bj,yi,y*) =0
O
Problems

1. A DoE has to be carried out for a process that has three inputs and
one output. The lower and upper bounds for the three inputs are
[0.5, 2.0], [5, 10], and [0.01, 0.1] respectively. How many experiments
are to be carried out using a full factorial design, and at what values
of input variables?

2. A DoE has to be carried out for a process that has two inputs and
one output. The lower and upper bounds for the two inputs are [0.5,
2.0] and [5, 10]. How many experiments are to be carried out using
central composite design, and at what values of input variables?

3. A linear model

~

Y=ay+a,x

is to be used for a system where the following measurements are
made.
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x y
01 03
05 0.4
1.0 0.7
20 12
3.0 20
5.0 3.0

Estimate the coefficients a, and 4, by minimizing the function

4. The response variable y in a chemical process is a function of four
variables: temperature (x,), pressure (x,), time (x;), and stoichiometric
ratio (x,). The lower and upper limits of input variables are [350, 450],
[5,10], [10, 40], and [0.1, 0.5]. A full factorial design is used to fit a first-
order model. The input variable combinations and corresponding
response values are given in Table 9.2.

Fit a first-order model for this problem.

TABLE 9.2

Responses for Different Inputs

Xq X2 X3 Xy Yy

-1 -1 -1 -1 47.5
1 -1 -1 -1 73.2
-1 1 -1 -1 59.4
1 1 -1 -1 75.1
-1 -1 1 -1 74.0
-1 1 1 -1 72.0
1 1 1 -1 73.2
-1 -1 -1 1 82.3
1 -1 -1 1 61.9
-1 1 -1 1 63.8
1 1 -1 1 70.5
-1 -1 1 1 83.2
1 -1 1 1 69.7
-1 1 1 1 80.5
1 1 1 1 81.7

© 2015by Taylor & FrancisGroup,LLC



Multidisciplinary Design Optimization 261

5. The speed reducer optimization problem is written in MDO form
(Tedford and Martins 2010) as

Minimize
Clylz% (szg +Gz, - C4)_ Gs (y§ +y§)y1 +Cs (y§ +y§)+c1 (xﬂ/§ + ngg)
with respect to x, x,, z, z,
subjectto  1-zx,/C,20
0.7<2z,<08
17 <z,<28
73<x,<83
73<x,<83
Discipline 1
Y1 =max(gy 8 83 &)
subjectto 1 -1y,/(Cgz) 20
1-4,/Cy20
where ¢1=Cy/212,
8,=Cn/zz;
83 =Cpzy
8:=Cps
Discipline 2
Y2 = max(gs s, §7)

subjectto  1-1,/(Cy) 20
1-4,Ci5C/x, 20

3 1/4
where 85 = (wal / lez)

86 = (1/C18C19 C%ox%/(zfi)"" Cx )1/3
87 =Cy
Discipline 3
Y3 = max(8s o §10)
subjectto 1 —1y;/(Cy) 20
1 - y3C0Cie/x, 20

1/4
where 8s = (C25x§ / lez)

© 2015by Taylor & FrancisGroup,LLC



262

Optimization: Algorithms and Applications

1/3
8o = (1/C26C19\/C§0x§/(z1225)+ Cy )

g10=Cs

The values of constants for this problem are

C 0.7854
C, 3.3333
G, 14.9334
C, 43.0934
Cs 1.5079
C, 7.477
c, 40
Cs 12
Cy 36
Co 27
Cy 397.5
Ci 5
Cus 26
Cuy 39
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15
1.9
1.93
1100
0.1
1.69 x 10°
745
29
55
1.1
1.93
850
1.575 x 108
5



10

Integer Programming

10.1 Introduction

In the previous chapters, decision variables in optimization problems were
considered to be continuous and they could take any fractional values such
as 10.5, 5.64, etc. Some optimization problems require design variables to
be integers. For example, the number of cars produced in a day, number of
maneuvers required by a spacecraft in an orbit, number of rivets required,
amount of manpower required, and so forth, all have to be integers. It does
not make much sense to get a solution such as 8.4 rivets for butting two
plates. It is important to note that rounding off the decision variable to the
nearest integer may not yield the optimum solution or may violate some of
the constraints. Therefore, it is desirable to give a special formulation to inte-
ger programming problems.

Integer programming can be of different types. An all-integer programming
problem contains design variables that can take integer values only. In mixed-
integer programming problems, some decision variables are of an integer type
and some can take fractional values or are of a continuous type. Optimization
problems in which design variables can take only discrete values are referred
to as discrete programming problems. For example, pipe sizes come in standard
sizes such as 0.5, 0.8, 1.0, 14, 1.8, . . . inch. If pipe size is a decision variable,
then it can take these discrete values only. There is also a special type of inte-
ger programming called a zero-one programming problem in which design
variables can take a value of 0 or 1. For example, suppose we want to set up
two plants from five candidate locations. If variable S; corresponds to the
setup of plant at ith location, then S; = 1, else it takes the value 0.

Cutting plane and branch-and-bound methods are two popular techniques
for solving integer programming problems. Gomory’s cutting plane method
is well suited for linear integer programming problems. The linear program-
ming problem is first solved using the simplex method. If integer solutions
are not obtained, additional constraints called “cuts” are added to the prob-
lem. The modified linear programming is then solved using the dual method.
The procedure is repeated until the integer solutions are obtained. In the
branch-and-bound method, the nonlinear integer optimization problem is

263
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Integer programming ]

1

Integer linear programming

» Gomory’s cutting plane method
* Balas’ method

Il

Integer nonlinear programming

* Branch-and-bound method

* Evolutionary method

FIGURE 10.1
Road map of Chapter 10.

first solved as a continuous variable problem. Then the method branches into
subproblems in which additional constraints are added to the problem to
get integer solutions. The subproblems are again solved as continuous vari-
able problems and the procedure is repeated until a feasible integer solution
is obtained. The Balas algorithm is popular in solving the zero-one integer
programming problems. This method selects few solutions from the pos-
sible 2" enumerated solutions, where 7 is the number of binary variables in
the problem. In this chapter, we also explore a particle swarm optimization
(PSO) method for solving integer programming problems. The road map of
this chapter is shown in Figure 10.1.

10.2 Integer Linear Programming

Consider the following integer programming problem.
Minimize
Sflx) = -3x; — 2x,
subject to
X, —X,<5
4x, + 7x, <50
Xy, %, 20

where x, and x, are integers.
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FIGURE 10.2
Continuous/integer variable solution.

Let us plot the objective function and the constraints (Figure 10.2) and
for the time being ignore the integer aspects of the problem. The minimum
8
11
which is shown by point A in Figure 10.2. Let us round off the values of
x, and x, to obtain an integer solution. The truncated point (8,3) becomes
an infeasible point where the constraint 4x, + 7x, < 50 is not satisfied. The
optimal point of this integral programming problem is B(7, 3) and the
value of the objective function at this point is —27. It is important to note
that rounded off values of the decision variables obtained by solving the
optimization problem as continuous variables may or may not lead to an

optimal solution.

of the optimization problem is —28% and occurs at x; = 7% and x, =2

10.2.1 Gomory’s Cutting Plane Method

To start with, the linear integer programming problem is solved using the
simplex method described in Chapter 4 by ignoring the integer requirement
of the variables. If the variables at the optimal solution happen to be inte-
gers, the algorithm is terminated. Otherwise, some additional constraints
are imposed on the problem. The modified problem is then solved to obtain
an integer solution (Gomory 1960).

Let us explain the procedure for this problem. The matrices A, b, and c are
modified as follows.

A= [1-11 0;
4 7 0 1];
b = [5;50];
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c = [-3;-2;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];

The MATLAB® code (simplex.m) is executed with these initializations and
the following output is obtained.

basic_set =

3 4
nonbasic_set =
1 2
Initial Table =
1 0 1 -1 5
0 1 4 7 50
Cost =
0 0 -3 -2 0

basic_set =

1 4
nonbasic_set =
2 3
Table =
1 0 -1 1 5
0 1 11 -4 30
Cost =
0 0 -5 3 15

basic_set =

1 2
nonbasic_set =
3 4
Table =
1 0 7/11 1/11 85/11
0 1 -4/11 1/11 30/11
Cost =
0 0 13/11 5/11 315/11
— — —SOLUTION-— — —
basic_set =
1 2
xb =
85/11
30/11
ZZ =
-315/11

The minimum of the optimization problem is —281 and occursat x; =7 %

8 . . .
and x, =2ﬁ. Because the decision variables are nonintegers, a Gomory
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constraint is to be added. This requires the addition of another slack variable,
xs. We have to select a variable from x, or x, that is to be made an integer. The
one with the largest fractional value is selected. As both x; and x, have the

same fractional value % , we select x; randomly as the variable that has to

be made an integer. The Gomory constraint is written as

7 1 8

ne Tt

X5 —

The Gomory constraint is written in the following manner. First, consider

the row corresponding to the variable that is to be made an integer. Because
it is x, for this problem, the final row from the simplex table is selected as

1 0 7/11 1/11 85/11

Take the negative for the nonbasic variables and add it to the new slack
variable x5, which then becomes the left-hand side of the Gomory constraint.
The right-hand side of the Gomory constraint is given by the negative of
the fractional value corresponding to (ﬁ) which is (_fl) When this con-
straint is added to the primal problem, it becomes infeasible because one of
b, is negative. The problem can be solved using the dual simplex method. The
MATLAB code (dual.m) is executed with following initialization.

A=[10 7/11 1/11 0;
01 -4/11 1/11 0;
00 -7/11 -1/11 11;
b = [85/11;30/11;-8/11];

¢ = [0;0;13/11;5/11;0];
basic _set = [1 2 5];
nonbasic_set = [3 4];
zz = -315/11;

On executing the code the following output is obtained.

basic_set =

1 2 5
nonbasic_set =

3 4
Initial Table =

1 0 0 7/11 1/11 85/11

0 1 0 -4/11 1/11 30/11

0 0 1 -7/11 -1/11 -8/11
Cost =

0 0 0 13/11 5/11 -315/11
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basic_set =

1 2 3
nonbasic_set =
4 5
Table =
1 0 0 0 1 7
0 1 0 1/7 -4/7 22/7
0 0 1 1/7 -11/7 8/7
Cost =
0 0 0 2/7 13/7 191/7

— — —FINAL SOLUTION— — —
basic_set =

1 2 3
xb =
7
22/7
8/7
zz = -191/7

The variable x, has taken an integer value (x;, = 7). The variables x, and x;
are still not integers. A Gomory constraint is to be added. This requires the
addition of another slack variable x,. Picking the row

0 1 0 1/7 -4/7  22/7

The Gomory constraint is given by

1 4
x6—;x3 +;X4 =——

The MATLAB code (dual.m) is again executed with following initialization.

A=[10001 0;
010 1/7-4/7 0;
001 1/7-11/7 0;

00 0-1/7 4/7 11;
b [7;22/7;8/7;-1/71;
c = [0;0;0;2/7;13/7;01;
basic set = [1 2 3 6];
nonbasic_set = [4 5];
zz = -191/7

On executing the code the following output is obtained.

basic_set =
1 2
nonbasic_set =
4 5
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Initial Table =

1 0 0 0 0 1 7

0 1 0 0 1/7 -4/7 22/7

0 0 1 0 1/7 -11/7 8/7

0 0 0 1 -1/7  4/7 -1/7
Cost =

0 0 0 0 2/7 13/7 -191/7
basic_set =

1 2 3 4
nonbasic_set =

5 6
Table =

1 0 0 0 1 0 7

0 1 0 0 0 1 3

0 0 1 0 -1 1 1

0 0 0 1 -4 -7 1
Cost =

0 0 0 0 3 2 27
— — —FINAL SOLUTION— — —
basic_set =

1 2 3 4
Xb =

7

3

1

1
zz =

-27

The minimum of the optimization problem is —27 and occurs at x; =7 and
x, = 3. Observe that other basic variables x; and x, have also achieved integer
values at the optimum point for an all-integer problem.

Consider the following mixed-integer programming problem.

Minimize
flx) = =3x; - 2x,
subject to
X, +Xx,56
5x; +2x,<20
Xy, %, 20

where x, is an integer.
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The first step is to solve the linear programming problem by neglecting the
integer constraint. The matrices A, b, and c are modified as below.

A=[1110;
520 1]1;
b = [6;20];

¢ = [-3;-2;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];

The MATLAB code (simplex.m) is executed with these initializations and
the following output is obtained.

basic_set =

3 4
nonbasic_set =
1 2
Initial Table =
1 0 1 1 6
0 1 5 2 20
Cost =
0 0 -3 -2 0

basic_set =

3 1
nonbasic_set =
2 4
Table =
1 0 3/5 -1/5 2
0 1 2/5 1/5 4
Cost =
0 0 -4/5 3/5 12

basic_set =

2 1
nonbasic_set =
3 4
Table =
1 0 5/3 -1/3 10/3
0 1 -2/3 1/3 8/3
Cost =
0 0 4/3 1/3 44/3
— — —SOLUTION— — —
basic_set =
2 1
xb =
10/3
8/3
zz =
-44/3
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10
Because the variable x, is noninteger (3) , we have to add the Gomory

constraint. The Gomory constraint is written as

5 1 1
x5—§x3+—x4 =——

3

The MATLAB code (dual.m) is executed with the following initialization.

A= [10-2/3 1/3 0;
01 5/3-1/3 0;
0 0-5/3 1/3 11;
b = [8/3;10/3;-1/3]1;
c = [0;0;4/3;1/3;0];

basic _set = [1 2 5];
nonbasic set = [3 4];
zz = -44/3

On executing the code the following output is obtained.

basic_set =

1 2 5
nonbasic_set =
3 4
Initial Table =
1 0 0 -2/3 1/3 8/3
0 1 0 5/3 -1/3 10/3
0 0 1 -5/3 1/3 -1/3
Cost =
0 0 0 4/3 1/3 -44/3
basic_set =
1 2 3
nonbasic_set =
4 5
Table =
1 0 0 1/5 -2/5 14/5
0 1 0 0 1 3
0 0 1 -1/5 -3/5 1/5
Cost =
0 0 0 3/5 4/5 72/5

— — —FINAL SOLUTION— — —
basic_set =

1 2 3
xb =

14/5

3

1/5
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-72/5

. o .72
The minimum of the optimization problem is 5 and occurs at x, =3 and

X =—.

5

10.2.2 Zero-One Problems

In these problems, the decision variables can only take the values 0 or 1. For
example, if a plantis to be located at a particular site, the variable takes a value
1, else it takes the value 0. If there are n integer variables to be evaluated, an
enumerated search would require 2" evaluations of the objective function
and constraints. For a problem with a few variables, an explicit enumerated
search should be good enough. However, for a problem with a large number
of variables, an enumerated search will be computationally expensive. For
example, for a 20-variable problem, the number of function (and constraints)
evaluations would be 1,048,576. Balas” method uses an implicit enumeration
(Balas 1965) technique to find the optimal solution.

The standard form of linear programming problem where Balas” method
can be applied is given by

Minimize
z=c"x (10.1)

subject to
Ax=b, x€{0,1} (10.2)
c20 (10.3)

Ay Op M

Ay Oy o
A =

a a a

and b, ¢, and x are column vectors given by
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b, G X1

b, G X
b = . 4 C = . 4 x = .

b c X

If some of the cost coefficients (x,) are negative, they can be put in the stan-
dard form by the substitution

x=1-y;, vy,€{0,1} (10.4)

For example, the following problem

Minimize
f®)=x-x,
subject to
—2x; = 3x,< -5
is written in standard form as
Minimize
f)=x+y,
subject to
—2x, + 3y, <2

x1,Y, €{0,1}

Let us explain Balas” method through an example. Consider the following
zero-one integer programming problem (Bricker 1999).

Minimize

flx) = 4x; + 8x, + 95 + 3, + 4x5 + 10x,
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subject to

4x, — 5x, — 3x5 — 2x4 — x5+ 8x, < -8

=5x; + 2x, + 9x5 + 8xy — 3x5 + 8x, <7

8x; 4+ 5xy —4x; + x5+ 6x,<6

xe{0,1}
Start with the solution
X1 =X =X3=X,=X5=Xc =0

This is an initial solution and no variable is fixed. Thus the solution vector
is a null set and is given by

S={}

On substituting these values of variables, second and third constraints are
satisfied, whereas the first constraint is infeasible. The violated constraint is
denoted as

V={1

To check the sensitivity of different variables on the feasibility of the first

constraint, we observe that if variables x; and x, become 1, they only increase

the infeasibility of the first constraint. These two variables are not helpful.
The helpful variables are therefore given by

H=12,3,4,5)

At the end of the first iteration we can write
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We must select a helpful variable for branching. The variable x, will reduce
infeasibility in the first constraint and therefore can be selected for branch-
ing. The solution vector is therefore written as

This means that variable x, is now fixed at 1. The first constraint is, how-
ever, still violated. That is,

Again, we observe that variables x;, x,, and x; are helpful. Therefore, at the
end of second iteration we can write

S2 = {2}
V,={1}
H,=1{3,4,5)

The variable x; will reduce more infeasibility in the constraints as com-
pared to the variables x; and x,. Therefore the variable x; is also fixed at 1.
Hence,

S;=12,5)

The first constraint is still violated. Therefore, at the end of third iteration,
we can write

S,=1{2,5)
V3 ={1}
H,={3,4}

Similarly, at the end of the fourth iteration, we can write

S,=12,5,4}
V4={}
H4:{}
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Thus, if the variables x,, x5, and x, are fixed at 1, no constraints are violated
and the value of the objective function is given by 15. Because a violated
constraint set is a null set, we backtrack and fix x, to zero. This is written as

Ss={2,5,4}

Therefore, at the end of the fifth iteration, we can write

S;:=1{2,5,4}
Vs = {1}
Hs= {3}

In the next iteration, x; is fixed at 0 and variable x, is removed from the
solution set. Therefore,

Se = {2/ 5}
Ve ={1)
H,= {3, 4}

Similarly, the last node is written as

57 = {i}
V;={1}
H,=1{3,4,5}

Thus the optimal value of variables, as obtained in the fourth iteration, is
given by

X=%=x=0 and x,=x,=x;=1
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FIGURE 10.3
Tree diagram for the test problem.

The optimal value of the objective function is 15. The different steps of the
Balas method can be understood with the tree diagram (Figure 10.3).

10.3 Integer Nonlinear Programming

The branch-and-bound method is one of the popular methods of solving both
integer linear and nonlinear programming. The technique was developed by
Land and Doig and can also be used for mixed-integer programming. We
will also explore the utility of the PSO technique in solving mixed-integer
nonlinear problems. The constrained mixed-integer optimization problem
can be mathematically stated as

Minimize
ftx) (10.5)

subject to
g <0 i=12..,m<n (10.6)
h(x)=0 j=12..,r<n (10.7)
x;=integers k=1,2,..,p<n (10.8)
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where there are n variables to be determined out of which p are integers and
the remaining variables are continuous.

10.3.1 Branch-and-Bound Method

In this method (Land and Doig 1960), the optimization problem is solved
with continuous variables, and the integer constraints are relaxed. If the
solution obtained is integers, the algorithm is terminated as it represents the
optimal solution of the integer problem. If one of the integer variables x;
is continuous, then one has to solve two additional subproblems with the
upper bound constraint

x; < [x] (10.9)
and lower bound constraint

x.2[x]+1 (10.10)

This process of the branching ensures that feasible integer solutions are
not eliminated. The branching problem is again solved (as continuous vari-
ables) with these additional constraints. The process is continued until an
integer solution is obtained. This solution corresponds to the upper bound
of the objective function for a minimization problem. During the course of
further branchings, if any of the branches have the value of the objective
function greater than this upper bound value then that node is terminated or
fathomed. If a lower value of the objective function is reached than the upper
bound value, then the upper bound value is updated. The method continues
to branch until all the nodes have been evaluated or fathomed. The lowest
value of the objective function corresponding to the integer feasible solution
gives the optimal value of the objective function.

Consider the following integer programming problem that is solved using
the branch-and-bound method.

Minimize
flx) = —4x, - 5x,
subject to
2x, +5x,<16
2x, —3x,<7
Xy, %, 20

where x, and x, are integers.
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As a first step, integer constraints are relaxed and the linear programming
problem is solved with continuous variables. The MATLAB code (simplex.m)

is executed with the initializations

A= [2 51 0;
2-3 0 1];
b = [16;7];

c = [-4;-5;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];

and following output is obtained:

basic_set =

3 4
nonbasic_set =
1 2
Initial Table =
1 0 2 5 16
0 1 2 -3 7
Cost =
0 0 -4 -5 0
basic_set =
2 4
nonbasic_set =
1 3
Table =
1 0 2/5 1/5 16/5
0 1 16/5 3/5 83/5
Cost =
0 0 -2 1 16
basic_set =
2 1
nonbasic_set =
3 4
Table =
1 0 1/8 -1/8 9/8
0 1 3/16 5/16 83/16
Cost =
0 0 11/8 5/8 211/8
— — —SOLUTION-— — —
basic_set =
2 1
xb =
9/8
83/16
zz =
-211/8
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FIGURE 10.4
Optimal noninteger solution.

The optimal value of the objective function is —26% and occurs at x; =5
and x, = 1% (Figure 10.4).

Because both variables are not integers, we branch and create two
subproblems:

16

NODE 1
Subproblem 1
Minimize flx) = —4x, - 5x,
subject to 2x, +5x,<16
2x, —3x,<7
X <5
Subproblem 2
Minimize flx) = —4x, - 5x,
subject to 2x, + 5x, < 16
2x, —3x,<7
X 26

The MATLAB code (subproblem1.m) is executed with the initializations

A = [2 510 0;
2-3 01 0;
1 0 0 0 1];
b = [16;7;5];

c = [-4;-5;0;0;0];
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basic_set = [3 4 5];
nonbasic_set = [1 2];

and the following output is obtained.

basic_set =

3 4 5
nonbasic_set =
1 2
Initial Table =
1 0 0 2 5
0 1 0 2 -3
0 0 1 1 0
Cost =
0 0 0 -4 -5
basic_set =
2 4 5
nonbasic_set =
1 3
Table =
1 0 0 2/5 1/5
0 1 0 16/5 3/5
0 0 1 1 0
Cost =
0 0 0 -2 1
basic_set =
2 4 1
nonbasic_set =
3 5
Table =
1 0 0 1/5 -2/5
0 1 0 3/5 -16/5
0 0 1 0 1
Cost =
0 0 0 1 2
— — —SOLUTION-— — —
basic_set =
2 4 1
Xb =
6/5
3/5
5
zz =
-26

281

16/5
83/5

16

6/5
3/5

26

The optimal value of the objective function is =26 and occurs at x; =5 and

X, = 1% (Figure 10.5). As x, has a noninteger value, we need to branch here
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FIGURE 10.5
Noninteger solution.

(node 2). In a similar way, subproblem 2 can be solved (node 3). The solution
to subproblem 2 results in an infeasible solution. No further branching is
therefore required from subproblem 2.

Two further nodes (4 and 5) are created from node 2. Two new subprob-
lems are

NODE 2
Subproblem 1
Minimize flx) = —4x, - 5x,
subject to 2x, + 5x, < 16
2x, —3x,<7
x,<1
Subproblem 2
Minimize flx) = —4x, - 5x,
subject to 2x, +5x,<16
2x, —3x,<7
X, 22
A=1[251 0 0;
2 -3010;
010 01];
b = [16;7;1];
c = [-4;-5;0;0;0];
basic_set = [3 4 5];
nonbasic_set = [1 2];
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and the following output is obtained.

basic
3 4 5
nonbasic _set =
1 2
Initial Table =
1 0 0 2 5 16
0 1 0 2 -3 7
0 0 1 0 1 1
Cost =
0 0 0 -4 -5 0

basic_set =

3 4 2
nonbasic _set =
1 5
Table =
1 0 0 2 -5 11
0 1 0 2 3 10
0 0 1 0 1 1
Cost =
0 0 0 -4 5 5
basic_set =
3 1 2
nonbasic _set =
4 5
Table =
1 0 0 -1 -8 1
0 1 0 1/2 3/2 5
0 0 1 0 1 1
Cost =
0 0 0 2 11 25
— — —SOLUTION-— — —
basic_set =
3 1 2
xb =
1
5
1
zzZ =
-25

The optimal value of the objective function is —25 and occurs at x; = 5 and
x, = 1 (Figure 10.6). Because this subproblem has an integer feasible solution,
we fathom the node here and do not branch from here. Similarly, the solution
of the second problem gives an objective function value of 22 and occurs
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FIGURE 10.6
Feasible integer solution (optimal).

FIGURE 10.7
Feasible integer solution.

at x; = 3 and x, = 2 (Figure 10.7). Because the value of objective function in
subproblem 2 is greater than the value of the objective function in subprob-
lem 1, we also fathom the node 5. The optimal value of the original integer
programming problem is therefore 25 and occurs at x; = 5 and x, = 1. The
tree diagram for this problem is shown in Figure 10.8.

10.3.2 Evolutionary Method

The particle swarm optimization (PSO) method can be successfully used to solve
integer programming problems. The method was elaborated in Chapter 5 and
it successfully solved nonlinear constraint optimization problems (Chapter 6)
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X = 5%, Xy = %,f: —25%

X =5%,= %,fz -26 Infeasible

%1 =3,%,=2,f=-22

FIGURE 10.8
Tree diagram for the test problem.

as well as multiobjective problems (Chapter 7). In this method, the velocity
of individual v, is updated using the equation

Vi = W10 + Or(Prik — X015 + Go(&i — X, JU; (10.17)
where w;, ¢,, and ¢, are the tuning factors of the algorithm. The position of
each individual is updated as

Xivik = Xig T Vi (10.12)

For integer variables in the problem, we can round off the variable to the
nearest integer (Laskari et al. 2002) as

Xi1x = round(x;,y ) (10.13)

The rest of the procedure remains same and is mentioned in Chapter 5.
The constrained welded beam optimization problem (see Chapter 6) is again
considered with a modification that some of the variables take integer values
only. The optimal solution obtained using the PSO method for different ver-
sions of this problem is mentioned in Table 10.1.

TABLE 10.1
Optimal Solution to Different Welded Beam Problems

Optimal Solution

Welded Integer Variable

Beam Constraint x5 Xy x5 xy f*
Problem 1 None 0.244 6.212 8.299 0.244 2.381
Problem 2 X3, Xy 0.681 2.794 5 1 5471
Problem 3 X5 0.263 5.869 8 0.263 2.461
Problem 4 Xy 0.645 3.734 4.099 1 5.211
Problem 5 X, 0.241 6 8.644 0.242 2.399
Problem 6 Xo, Xy 0.614 4 4.099 1 5213
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Chapter Highlights

¢ An all-integer programming problem contains design variables that
can take integer values only.

¢ In mixed-integer programming problems, some decision variables
are of the integer type and some can take fractional values or are of
the continuous type.

¢ Optimization problems in which design variables can take only dis-
crete values are referred to as discrete programming problems.

* There is also a special type of integer programming called a zero-
one programming problem in which design variables can take a
value of 0 or 1.

¢ In Gomory’s cutting plane method, the linear integer program-
ming problem is first solved using the simplex method by ignor-
ing the integer requirement of the variables. If the variables at the
optimal solution happen to be integers, the algorithm is termi-
nated. Otherwise, some additional constraints are imposed on the
problem.

e If there are n integer variables to be evaluated in a zero-one problem,
an enumerated search would require 2" evaluations of the objective
function and constraints. Balas’ method uses an implicit enumera-
tion technique to find the optimal solution.

¢ In the branch-and-bound method, the optimization problem is solved
with continuous variables, and the integer constraints are relaxed.
If the solution obtained is integers, the algorithm is terminated as it
represents the optimal solution of the integer problem. If one of the
integer variables is continuous, then one has to solve two additional
subproblems with additional constraints.

® The PSO method can be used to solve nonlinear mixed-integer pro-
gramming problems with minor modifications.

Formulae Chart

Standard form of linear integer programming where Balas’ method is
used:

Minimize

z=cTx
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subject to
Ax=Db
x € {0, 1}
c20
|
Problems

1. Solve the following integer programming problem using the graphi-
cal method.

Minimize f(x) = -3x; — 2x,
subjectto  2x; +x,<17
2x, + 3x,<40
3x; + 3x,<26
Xy, %, 20
where x, and x, are integers.

2. Solve the following integer programming problem using Gomory’s
cutting plane method.

Minimize f(x) = —x; + 2x,
subjectto  2x; +2x,<4
6x; +2x,<9
Xy, %, 20
where x, and x, are integers.

3. A small wooden furniture manufacturer has specialized in two
types of furniture: chairs and tables, both requiring two types of
raw material. Chairs require 6 and 7 units of the first and second
kind of raw material whereas tables require 14 and 7 units of the first
and second kind of raw material. In a day, the manufacturer has a
supply of 42 units and 35 units of two types of raw material. Profit
analysis indicates that every unit of chair contributes Rs. 100 and
every unit of table contributes Rs. 160. The manufacturer would like
to know the optimum number of chairs and tables to be produced
so as to maximize the profit (Shenoy et al. 1986). Formulate this as an
integer-programming problem and solve it.

4. Solve the following zero-one programming problem (Shenoy et al.
1986) using Balas” method.
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Minimize  16x; + 15x, + 17x; + 15x, + 40x5 + 12x, + 13x, 4+ 9xg +
12x,

subjectto  13x; + 50x, + 7x; + 6x, + 36x5 + 6x¢ + 46x, + 38x5 +
18x, < 50

3x; + 8x, + 6x5 + 2x, + 34x5 + 6x + 4x; + 7xg + 3%y <
20

xe {0, 1}

5. Solve the following integer programming problem using Gomory’s
cutting plane method.

Minimize  f(x) = -3x; — 5x,
subjectto  2x; +5x,<15
2x; - 2x,<5
Xy, %, 20
where x, and x, are integers.

6. Solve the following integer programming problem using Gomory’s
cutting plane method.

Minimize fx) = —4x, - 7x,
subjectto  x; +x,<6
5x, + 9x, < 50
Xy, %, 20
where x, and x, are integers.

7. Solve the following integer programming problem using Gomory’s
cutting plane method

Maximize f(x) = 3x; + 2x,
subjectto  2x; +x,<5
2x, —7x,<4
Xy, %, 20
where x, and x, are integers.

8. Solve the following integer programming problem using the branch-
and-bound method.

Maximize f(x) = x; + 2x,

subjectto  2x;+x,<4
3x; +4x,<5
Xy, %, 20

where x, and x, are integers.
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Dynamic Programming

11.1 Introduction

Dynamic programming is an optimization technique in which a complex opti-
mization problem is divided into a number of stages (or subproblems) in which
a policy decision has to be taken at each stage. The stages are solved sequen-
tially, one by one. The stages generally represent a time-varying phenomenon
such as the amount of inventory in a store. Dynamic programming thus refers
to planning of a time-varying system. The series of interrelated decisions taken
at each stage is done using the state information associated with that stage and
has to be suitably linked with the next stage. The dimensionality of the prob-
lem increases with an increase in the number of states. The series of best policy
decisions taken at each stage is referred to as the optimal policy of the optimi-
zation problem. The principle of optimality in dynamic programming states that
the optimal decision at a given stage is independent of the optimal decisions
taken in the previous stages. Typically in dynamic programming, the optimal
decision pertaining to the last stage is taken first and then moved backward to
the next stage and the process is continued until the first stage is reached. The
technique of dynamic programming was developed by Richard Bellman in the
1950s. The method is used to solve a number of problems in different areas
(Edwin and Gruber 1971; George 1963; Leondes and Smith 1970). The method,
though easy to implement, has a serious drawback: the complexity of the prob-
lem increases with an increase in the number of variables. This is frequently
referred to as the curse of dimensionality in dynamic programming. This chapter
discusses aspects of deterministic and probabilistic dynamic programming,

11.2 Deterministic Dynamic Programming

In dynamic programming, when the current policy decision and the state
completely determine the state of the next stage, it is called deterministic
dynamic programming. Let the state at stage 1 be denoted by s,. The policy

289
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decision x,, transforms this state to s,,; at the next stage n + 1. The function
fi r:l(snﬂ) is the optimal value of the objective function to which the contri-
bution made by x, decision is to be added (Figure 11.1). This provides the
contribution of n stages and is given by f, (s,, x,). This function is optimized
with respect to x, to give ¥ (s,) = fu(5,, X3). The procedure is repeated by
moving back one stage.

Let us take an example to explain the concept of dynamic programming.
A person in a remote place A has to reach city I to withdraw money from an
ATM. Though he has the option to select different paths to reach his goal, he
is interested in finding the path that has a minimum distance to be covered.
The intermediate villages where he can change his path are given by B, C,
D, E, F G, and H. The distance between the villages is given in Figure 11.2.

Before using dynamic programming, let us select the path that results in
the minimum distance from one city to another. From village A, the mini-
mum distance is 3 to village C. From village C, the minimum distance is 6 to
village F. In this way the total distance traveled is 16 and the path is

A-C->F-G-I

Stage n Stagen + 1
Xn
Sn > Sn+1
fn(Sn’ xn) fn*+1(sn+1)

FIGURE 11.1
Structure of deterministic dynamic programming.

FIGURE 11.2
Distance (not to scale) between the villages.
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For an n stage problem in dynamic programming, the current stage is des-
ignated as n and the current state is s,. The policy decision variable is given
by x, and the optimal policy is given by the recursive relationship

f:(sn) = min{csxn + r::l(xn)} (111)
where ¢, is the cost for stage n and fra(x,) is the cost for stages 7 + 1 and
higher. Equation 11.1 is minimized with respect to x,. This is a four-stage
problem and we start from the last stage (1 = 4), as shown in Figure 11.3.

At this stage, a person can be either at G or H. If he is at G, the shortest
distance (in fact, it is the only path) to reach the destination (I) is 5. Similarly,
if he is at H, the shortest distance to reach the destination is 4. The results of
stage 4 are summarized in Table 11.1.

Let’s go back one stage (1 = 3). At stage 3, a person can be either at E or F.
If he is at E, he has two paths, to go either to G or H, and the distance to be
covered is 3 and 5 respectively. The additional distance from G (or H) to I,
which is computed in the last stage, is to be added at this stage. The distance
covered for the route E-G-I is 8 and for E-H-I it is 9 (Figure 11.4). Similarly,
one can compute distance for the path F-G-I and F-H-I. The results of stage
3 are given in Table 11.2.

Let’s go back one more stage (1 = 2). At stage 2, a person can be at B, C, or D.
From here, his immediate destination can be E or F. The minimum distance
from E and F to the destination was already computed in Table 11.1. The
results for stage 2 are mentioned in Table 11.3.

In a similar manner results for stage 1 are summarized in Table 11.4.

n=4
5
4
FIGURE 11.3
Stage 4.
TABLE 11.1
Stage 4
s fi(s) X
G 5 I
H 4 I
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5
4
FIGURE 11.4
Stage 3.
TABLE 11.2
Stage 3
fils,x5) =g + i (x,)
s G H £ s x;
E 8 9 8 G
F 7 7 7 G, H
TABLE 11.3
Stage 2
fals,x,)= Csx, +f3*(x3)
s E F JAC) X
B 12 12 12 E, F
C 15 13 13 F
D 11 11 11 E,F
TABLE 11.4
Stage 1
fl(slxl) = Csxl +f2*(x2)
s B C D fis) xy
A 17 16 15 15 D

Thus the minimum distance from A to destination I is 15. There are three
optimal paths for this problem:

A—-D—-E—>G->I
A—-D—-F->G->I
A—-D—->F—->H->I
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Example 11.1

Solve the following linear programming problem (LPP) using dynamic

programming.
Maximize z=2x; + 3x,
subject to x<3

2x,<11
2x, + 3x,<12
x,20,x,20

This is a two-stage problem because it contains two interacting vari-
ables. The states in the problem are the right-hand side of the inequality
constraints. For the first stage, the resources available for the first activity
(x,) are

s;=1{3,11,12}

When x;, is allocated, the remaining resources for the next state (Figure
11.5) will be

s, = {3 —x,, 11, 12 — 2x,}

The stage 2 problem can be written

Maximize z=3x,
subject to 2x,<11
3x,<12

Thus maximum allocation of x, is limited by

. {11 12—2x1}
mmy—, ———
2 3

Stage 1 Stage 2
51 =13,11,12} >s2={3—x1,11, 12 - 2x,}
Sfi(sy, %9) f;(sz)

FIGURE 11.5
Two-stage problem.
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Clearly, the minimum of the two terms is

12-2x,

5020
Thus,
fz*(sz) =3 mm{ﬂl 12-2x, } =12-2x,
2 3
Therefore,
f(s)= {2xl +3 min{lzl, 12‘32"}}: 2%, +12-2x, =12

Thus, the maximum value of the function is 12 and occurs at x; = 0.
Substituting the value of x; in one of the constraint equations gives x; = 4.

11.3 Probabilistic Dynamic Programming

In deterministic dynamic programming, the state and decisions of the pres-
ent stage completely determine the state of the next stage. In probabilistic
dynamic programming, the state of the next stage is determined with some
probability distribution. Let us take the following example, which is solved
using the concept of probabilistic dynamic programming.

A milk vendor purchases six cases of milk from a dairy farm for Rs. 900
per case. He has three booths where he can sell the milk at Rs. 2000 per case.
Any unsold milk of the day can be returned back to the dairy farm at a rate
of Rs. 500 per case. The demand at the three booths has certain probabilities
and is given in Table 11.5.

Find the optimal policy in allocating six cases of milk to different booths
so as to maximize the profit.

To maximize profits, we need to maximize the revenue as cost is fixed.
Like previous problems, the first step in the dynamic programming is to
identify the stages, states, and decision policies. In this problem, number of
stages refers to the number of booths. Thus, it is a three-stage problem. The
state at each stage is the number of milk cases available for allocation and let
it be denoted by s, for the ith stage. Let the decision policy of allocating num-
ber of cases of milk to a particular booth be denoted by x;. Let r,(x;) represent
the revenue earned by allocating x; cases to ith store and fi(s,) represent the
maximum expected revenue earned by assigning x; cases to the ith store. As
with the earlier problems, we will start with the last stage. Before that, let
us compute the elements of the revenue table r,(x;) for 0 < x; < 3 as maximum
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TABLE 11.5
Demands from Different Booths
Demand (in Number of Cases) Probability

Booth 1 1 0.5
2 0.4
3 0.1

Booth 2 1 0.5
2 0.3
3 0.2

Booth 3 1 0.6
2 0.2
3 0.2

demand at any store is 3. Let us illustrate this by taking a case for booth 1
where two cases of milk are to be allocated. This is denoted by r,(2).

r,(2) = 0.5 x 2500 + 0.4 x 4000 + 0.1 x 4000 = 3250

In a similar manner, other elements of r(x,) can be constructed and are
given in Table 11.6.

The state and decision policies for different stages are summarized in
Tables 11.7 through 11.9.

TABLE 11.6

Revenue Earned by Allocating Resources

x; ri(x) 1,(x,) 75(x3)

0 0 0 0

1 2000 2000 2000

2 3250 3250 3500

3 3900 4050 3900
TABLE 11.7
Stage 3

15(x5)

S3 0 1 2 3 £ (s3) x;
0 0 - - - 0 0
1 0 2000 - - 2000 1
2 0 2000 3500 - 3500 2
3 0 2000 3500 3900 3900 3
4 0 2000 3500 3900 3900 3
5 0 2000 3500 3900 3900 3
6 0 2000 3500 3900 3900 3
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The optimal policy is to allocate three cases of milk to booth 1, one case of

Optimization: Algorithms and Applications

TABLE 11.8
Stage 2

(%) + fi(s, — x,)
S, 0 1 2 3 £ (s,) x5
0 0 - - - 0 0
1 2000 2000 - - 2000 0,1
2 3500 4000 3250 - 4000 1
3 3900 5500 5250 4050 5500 1
4 3900 5900 6750 6050 6750 2
5 3900 5900 7150 7550 7550 3
6 3900 5900 7150 7950 7950 3
TABLE 11.9
Stage 1

() + fols; — xp)
s, 0 1 2 3 £ Gsy) x5
6 7950 9550 10,000 9400 10,000 3

milk to booth 2, and two cases of milk to booth 3.

Chapter Highlights

Dynamic programming refers to planning of time-varying systems.
In dynamic programming, a complex optimization problem is divided
into a number of stages (or subproblems) in which a policy decision
has to be taken at each stage.

The series of interrelated decisions taken at each stage is done using
the state information associated with that stage and has to be suit-
ably linked with the next stage.

The principle of optimality in dynamic programming states that the
optimal decision at a given stage is independent of the optimal deci-
sions taken in the previous stages.

In dynamic programming, when the current policy decision and the
state completely determine the state of the next stage, it is called deter-
ministic dynamic programming.
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Formula Chart

Recursive relationship:

frs)=min{e,, + £a00,)]

Problems

1. Solve the following LPP using dynamic programming.
i. Minimize z =3x; — 2x,
subject to X+ 2x,<10
2x, —x,<5
—4x, +3x,25
Xy, %, 20
ii. Maximize z =2x, +5x,
subject to 3x; +x, <11
X, —%,<6
2%, +x,<10
Xy, %, 20
iii. Maximize z =4x, + bx,
subject to 2x; + x, <20
-3x; +2x,<25
—x; +x, <30
Xy, %, 20
2. Solve the following integer programming problem using dynamic
programming.
Minimize  f(x) = -3x; — 2x,
subjectto  2x; +x,<17
2x; + 3x, <40
3x; +3x,<26
X1, %,20
where x, and x, are integers.

3. Find the optimal policy of the stagecoach problem (Figure 11.6) to
minimize the distance from A to L
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FIGURE 11.6
Stagecoach problem.

4. A system consists of three components (R;, R,, and R;) arranged in
series. The reliability of the system is given by

R=R,R,R,

The reliability of each component can be increased by arranging (in
parallel) itself to a similar component. If ; is the reliability of each
component, then reliability of the subsystem in parallel is given by

Ri=1-(1-n)"

where 7; is the number of components arranged in parallel. The
costs of various components along with their reliabilities are given
in Table 11.10.

Maximize the reliability of the system if an amount of $700 is
available for investment.

TABLE 11.10

Cost and Reliability of Various Components

Component Cost ($)  Reliability of Each Component

1 100 0.93
2 150 0.96
3 190 0.98
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Appendix A: Introduction to MATLAB®

A.1 Introduction

MATLAB is a software package of The MathWorks Inc., for technical comput-
ing that does both computing and visualization with ease. It has a number of
built-in functions that can be used by an individual’s application. The acro-
nym MATLAB stands for MATrix LABoratory. Matrices are the basic build-
ing blocks of MATLAB. Though MATLAB is primarily used for numerical
computations, it also supports symbolic computations. The main advantage
of MATLARB is the ease with which one can translate the idea into an appli-
cation. MATLAB runs on almost all computer platforms, whether Microsoft
Windows, Apple Macintosh or Unix. On Microsoft Windows, MATLAB can
be started by double clicking the MATLAB shortcut icon. See Figure A.1 for
a typical desktop of MATLAB.

Observe that the desktop has four windows: current folder, command
window, workspace, and command history. The command prompt is shown
by >>. All commands are to be typed here. The command history windows
keep a record of the previously typed commands across multiple sessions.
The previously typed command in this window can be double-clicked so
that it can be executed again. All files listed in the left window correspond
to the current folder directory. The file can be opened for editing by simply
double-clicking on it. The type and size of the variables are shown in the
workspace window (empty in this figure). There is a provision to select the
variables and plot them.

A.2 Matrices and Arrays

Type the matrix A in the command prompt
>> A = [123; 4 -1 -2; 56 7]

Then press enter. The following output is displayed in the command
window.

309
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A =
1 2 3
4 -1 -2
5 6 7

Observe that a declaration of dimensions of A is not required. Let us learn
few more commands.

>> sum(A)
ans =
10 7 8

The sum function adds the elements of each column. To get sum of each
row

>> sum(A')
ans =
6 1 18

where A' is the transpose of the matrix A. The diagonal elements can be
obtained using the diag function.

>> diag(A)
ans =
1
-1
7

Simultaneous use of functions in a single command is also permissible.
For example,

>> sum(diag(d))

ans =
7

Suppose we want to assign the element —2 in matrix A to a variable x. The
element -2 is in second row and third column of A. Then

>> x = A(2,3)

-2
Consider the colon operator
>> x = 1:2:10
The output is a row vector containing numbers from 1 to 10 in steps of 2:

ans =
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To get all rows (or columns) of a matrix, a colon operator can be used. For
example, to get second column of A,

>> A(:,2)
ans =
2
-1
6
To get third row of A
>> A(3,:)
ans =
5 6 7
——

A.3 Expressions

MATLAB does not require variable type declarations. For example,

drag coefficient = 0.6

The variables are case sensitive; that is, the variable LIFT is different from
lift.

MATLAB uses conventional decimal notation. Scientific notation uses the
letter e to specify a power-of-ten scale factor. Imaginary numbers use either
i orjas a suffix. Some examples are

6 -999 0.0005 109.1237 1.60210e-20 9.123e23 7i
-6.287 de6i

MATLAB uses the following operators and the precedence follows stan-
dard mathematical rules.

+ Addition
— Subtraction

*

Multiplication
Division

Left division

>

Power

() Specify evaluation order
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The relational operators >, <, >=, <= consider only the real part for the pur-
pose of comparison while the operator = = considers both real and imagi-
nary parts.

Some elementary functions in MATLAB are

Trigonometric
sin Sine
sind Sine of argument in degrees
sinh Hyperbolic sine
asin Inverse sine
asind Inverse sine, result in degrees
asinh Inverse hyperbolic sine
cos Cosine
cosd Cosine of argument in degrees
cosh Hyperbolic cosine
acos Inverse cosine
acosd Inverse cosine, result in degrees
acosh Inverse hyperbolic cosine
tan Tangent
tand Tangent of argument in degrees
tanh Hyperbolic tangent
atan Inverse tangent
atan2 Four-quadrant inverse tangent
atanh Inverse hyperbolic tangent
sec Secant
secd Secant of argument in degrees
sech Hyperbolic secant
asec Inverse secant
asecd Inverse secant, result in degrees
asech Inverse hyperbolic secant
csc Cosecant
cscd Cosecant of argument in degrees
csch Hyperbolic cosecant
acsc Inverse cosecant
acscd Inverse cosecant, result in degrees
acsch Inverse hyperbolic cosecant
cot Cotangent
cotd Cotangent of argument in degrees
coth Hyperbolic cotangent
acot Inverse cotangent
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acotd
acoth
hypot
Exponential
exp
expml
log
loglp
log10
log?2
pow2
sqrt
nthroot
Complex
abs
angle
complex
conj
imag
real
isreal

Appendix A

Inverse cotangent, result in degrees
Inverse hyperbolic cotangent
Square root of sum of squares

Exponential
Compute exp(x) — 1 accurately
Natural logarithm

Compute log(1 + x) accurately

Common (base 10) logarithm

Base 2 logarithm and dissect floating point number
Base 2 power and scale floating point number
Square root

Real nth root of real numbers

Absolute value

Phase angle

Construct complex data from real and imaginary parts
Complex conjugate

Complex imaginary part

Complex real part

True for real array

Rounding and Remainder

fix
floor
ceil
round
mod
rem
sign

Round toward zero

Round toward minus infinity

Round toward plus infinity

Round toward nearest integer

Modulus (signed remainder after division)
Remainder after division

Signum

MATLARB also provides values of useful constants.

pi

i

j

eps
realmin
realmax
Inf
NaN

3.14159265....

Imaginary unit

Same as i

Floating-point relative precision
Smallest floating-point number
Largest floating-point number
Infinity

Not-a-number
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A.4 Matrix Operations

Examples of zeros, ones, and rand functions are given below.

>> Y = zeros(3,2)

Y =
0 0
0 0
0 0
>> X = ones(2,3)
X =
1 1 1
1 1 1
>> Z = rand(2)
7 =
0.1656 0.2630
0.6020 0.6541

The rand function generates a uniformly generated random number
between 0 and 1.

The matrix A can be saved in the same directory, for a later use, by the
command:

>> save -ascii aa X

Sometimes it is necessary to clear all variables and functions from the
command window. This is done with the command

>> clear all

Now if A is punched in the command prompt it results in an error.
>> A

??? Undefined function or variable ‘A",

To get back the saved value of matrix A, use the load command

>> A=load('aa')

A =
1 2 3
4 -1 -2
5 6 7

To know about a function name, use help from the menu or simply type
help functionnane in the command. For example,

>> help clc
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CLC Clear command window.
CLC clears the command window and homes the cursor.

If one is not able to recollect the function name, use the lookfor command.
For example, to get the name of absolute function:

>> lookfor absolute

abs Absolute value

genelowvalfilter Filters genes with low absolute expression levels
imabsdiff Absolute difference of two images

meanabs Mean of absolute elements of a matrix or matrices
sumabs Sum of absolute elements of a matrix or matrices
mae Mean absolute error performance function

sae Sum absolute error performance function

dmae Mean absolute error performance derivative function
circlepick Pick bad triangles using an absolute tolerance

mad Mean/median absolute deviation

The concatenation of the matrices is shown with the following example.

s> A= [123; 4 -1-2; 56 7]
A =
1 2 3
4 -1 -2
5 6 7
>> B = [8;9;10]
B =
8
9
10
>> Z = [A B]
7 =
1 2 3 8
4 -1 -2 9
5 6 7 10

Suppose we want to delete the second column of the Z matrix. This can be
done by

>> Z(:,2)=1[]

7 =
1 3 8
4 -2 9
5 7 10
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The inverse of the square matrix can be computed by

>> inv(Z)

ans =
-0.3517 0.1102 0.1822
0.0212 -0.1271 0.0975
0.1610 0.0339 -0.0593

The eigenvalues of the square matrix are computed by

>> eig(2)

ans =
17.1878
-2.3534
-5.8344

Some of the array operators are

+ Addition

— Subtraction

* Element-by-element multiplication

./ Element-by-element division

\ Element-by-element left division

A Element-by-element power
Unconjugated array transpose

For example,

>> U = [1 2 3]

U =

1 2 3
>> V = [-1 -2 -3]
vV =

-1 -2 -3
>> U.*V
ans =

-1 -4 -9

317

The display of numbers is controlled by the format command. Typical

commands are

format short
format long

The previous command can be brought back into the command prompt

using the key 1.
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A.5 Plotting

If x and y are two vectors then plot(x, y) makes a graph. For example, con-
sider the following example.

>> x = 0:0.01:2%pi;

>> y = cos(x);

>> yl = sin(x);

>> plot(x,y,'--',x,y1l,'r:")

>> xlabel ('0 \leq x \leq 2\pi'")

>> ylabel ('Sine and Cosine functions')
>> legend('cos(x)', 'sin(x)"'")

>> title('Multiple Plots')

Figure A.2 is displayed on the desktop and can be edited using the figure
menu.

The following example demonstrates how to make a contour plot (Figure
A3).

>> [X,Y] = meshgrid(-2:.01:2,-2:.01:3);
>> Z = X.M2+4Y.72;

>> v=[1;2;3;4;5;6;7;8;9;10;11;12];

>> [c,h] = contour(X,Y,Z,v); clabel(c,h);
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FIGURE A.2
Multiple plots.
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Contour plot.

A.6 Programming

The if-else statement can be demonstrated through the following example.

>> for i = 1:6

x = rand (1) ;

if x<0.5

disp('x is less than 0.5')
else

disp('x is greater than 0.5')
end

end

Note that the first end is the end of the if statement and the second end
is the end of the for loop. Note that when a semicolon is put at the end of
a statement, it suppresses printing of the variable. The following output is
displayed by running the above code.

x is greater than 0.5
is greater than 0.5
is less than 0.5
is greater than 0.5
is greater than 0.5
is less than 0.5

L I
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A break statement is used for an early exit from a for or while loop.

Instead of running all the commands in the command window, one can
create a script file with extension.m. For example, type edit test.m on the
command prompt, resulting in opening of an empty file. Type the following
contents into that file.

for 1 = 1:10

x = rand (1) ;

if x<0.5

disp('x is less than 0.5')
else

disp('x is greater than 0.5')
end

end

and save it. Then execute the script file by typing test in the command prompt.
The script can also be executed by clicking on P in the editor window.

Functions are also script files with extension.m, but they accept input
arguments and return output arguments. The function name and file name
should be the same. For example, a function springsystem.m takes the input
x and y and returns an output z.

function z = springsystem(x,y)

It is important to note that a function without the arguments cannot be
executed. For example, simply typing springsystem at the command prompt
will result in an error. The input/output arguments can have different names
while calling the function. For example,

k = springsystem(a,b)

is perfectly fine.
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Appendix B: MATLAB® Code

Chapter 1

Code Name Details

graph_exampl2.m  Solves Example 1.2 using the graphical method
graph_exampl4.m  Solves Example 1.4 using the graphical method

convexity.m Plots some convex functions
derivative.m Computes and plots first and second derivatives of a function
grad.m Plots the gradient vector

positive_definitem  Checks whether the square matrix is positive definite
quadr.m Linear and quadratic approximations of a function

quadr_exampl2.m Linear and quadratic approximations of a function given in Example 1.2

o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°

MATLAB code graph exampl2.m

o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°

x1 -> radius of can

X2 -> height of can

area -> area of can

pi -> MATLAB variable

X,y,z -> array of design points

vv -> user identified contour wvalues

cons_x2-> value of x2 when constraint is active
contour -> MATLAB function to generate contours
xlabel, ylabel, legend, hold on -> MATLAB functions

o o° o° o° o o° o° o o° o° o° o o° o

for x1 = 1:100
for x2 = 1:200
area = 2*pi*x1*x2 + 2*pi*xl*xl;

x(x1,x2) = x1;
y(xl,x2) = x2;
z (x1,x2) = area;
end
end
vv = [15000;26436;50000;70000;200000] ;
[c, h] = contour(x,y,z,vv); clabel(c, h);
hold on

© 2015by Taylor & FrancisGroup,LLC

321



Appendix B
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= 10:100

for x1

cons x2

330000/ (pi*x1*x1) ;

plot (x1,cons x2,'*"')

hold on

end

mm')

xlabel('x 1,

ylabel('x 2,

mm')
legend('Objective Function', 'Constraint')

MATLAB code graph exampl4.m

)
]

L -> length of rod

o o°

rho -> density of rod material

o
]

-> diameter of rod
-> mass of rod

d
m

I

o°

o
]

-> moment of inertia
k -> mass per unit length

fl -> frequency

o
]

o°

legend -> MATLAB function

xlabel, ylabel,

plot,

o o

4

7800;
2ell;

rho
E

0.0:0.001:0.05
(pi/4) *d*d*L*rho;

k = mass/L;

for d
mass

I = (pi/64)*d™4;

(1/(2*pi) ) *(3.5156/ (L*L) ) *sqgrt ((E*I) /k) ;

plot (d,mass, '+")

fl

hold on
plot(d,f1,'*")

hold on
end

m')
ylabel ('objective function

xlabel('d,

constraint (Hz) ')

(kg) ,
legend('Objective Function', 'Constraint')

MATLAB code convexity.m

o
]

X -> independent variable
y -> dependent variable

o o

o°
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o° o

x = meshgrid(-2:0.01:2);
y = x.72;

subplot(2,2,1), plot(x,y)
xlabel ('x")

ylabel('y")

hold on

y = exp(x);
subplot(2,2,2), plot(x,y)
xlabel ('x")

ylabel('y"')

hold on

y = exp(y);
subplot(2,2,3), plot(x,y)
xlabel ('x")

ylabel('y")

hold on

y = exp(x.72);
subplot(2,2,4), plot(x,y)
xlabel ('x")

ylabel('y")

hold on

% delx -> delta-x
% fx -> f(x)
% deriv -> derivative of the function at xd

% sderiv -> second derivative of the function at xdd

% signchange -> change of derivative sign

% locatepoints -> point at which derivative changes sign
% plot, subplot, xlabel, ylabel, hold -> MATLAB functions

delx = 0.01;

x=0.1:delx:1.0;

fx = @(x)2*sin (5%x)+3*x."3-2%x.%2+43*x-5;
subplot (311), plot(x,fx(x), 'LineWidth',2)
hold on

ylabel ('£(x) ")

grid on
for i = 2:length(x)-1
xd(i-1) = x(1i);
deriv(i-1) = (fx(x(i+1))-fx(x(i-1)))/(2*delx);
end

subplot (312), plot(xd,deriv, 'LineWidth',2)
grid on
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hold on

ylabel ("£'' (x) ")

signchange = deriv(l:length(deriv)-1).* deriv(2:length(deriv)) ;
locatepoints = xd(find (signchange<0)

subplot (311), plot (locatepoints, fx(locatepoints), 'r*"')

subplot (312), plot (xd(find(signchange<0)),deriv(find(signchange<0)), 'r*")
for ii = 2:length(xd)-1
xdd (ii-1) = xd(ii);
sderiv(ii-1) = (fx(xd(ii+l))+fx(xd(ii-1))-2*fx(xd(ii)))/
(delx*delx) ;
end
subplot (313), plot(xdd, sderiv, 'LineWidth',2)
grid on
hold on
subplot (313), plot(xdd(find(signchange<0)),sderiv(find(signchange<0)),'r*")
xlabel ('x")
ylabel ("£''''"(x) ")

o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°

MATLAB code grad.m

o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°

x1 -> radius of can

X2 -> height of can

area -> area of can

pi -> MATLAB variable

X,y,2 -> array of design points

vv -> user identified contour values

xit, x2t -> identified point at which gradient required
contour -> MATLAB function to generate contours

xlabel, ylabel, legend, plot, hold on -> MATLAB functions

o° o o° o° o o o° o° o o° o° o o o

clear all
clc
for x1 = 1:100
for x2 = 1:100

area = 2*pi*x1*x2 + 2*pi*x1*xl;
x(x1,x2) = x1;
v(x1l,x2) = x2;
z(x1,x2) = area;
end
end
vv = [5000,15000,30000,50000,70000,90000] ;
[c, h] = contour(x,y,z,vv); clabel(c, h);
hold on
xlt = 25;

x2t = 70.493;
slope = (x2t+2*x1t)/x1t;
i=1;
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-10:10

for delxl

-slope*delxl;
= xlt+delxl;

delx2

x11 (1)

= x2t+delx2;

x22 (1)
i

i+1;

end
plot (x11,x22, 'r--")

-10:10

for delxl

(1/slope) *delxl;
= xlt+delxl;

delx2

x11 (1)

= x2t+delx2;

x22 (1)
i

i+1;

end
plot (x11,x22, 'b+")

mm')

xlabel ('x 1,

ylabel('x 2,

mm')
legend ('Objective Function', 'Tangent', 'Gradient')

MATLAB code positive definite.m

o
]

-> hessian matrix

H
eig,

o
]

fprintf -> MATLAB function

o
]

eigenvalues -> of the hessian matrix

o o

0 2 3];
eigenvalues = eig(H);

eigenvalues

=0

if eigenvalues >

fprintf ('The matrix is positive definite\n')

else

fprintf ('The matrix is not positive definite\n')

end
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X -> independent variable and symbolic variable (later)

y -> exp(-x)

syms -> symbolic object (MATLAB function)

taylor -> MATLAB function

subs -> symbolic substitution (MATLAB function)

xlabel, ylabel, legend, plot, hold on -> MATLAB functions

o° o o° o° o o° o° o° o° o o°

o]

= -2:0.01:2;

y = exp(-x);

plot (x,vy)

hold on

% Linear approximation
syms X

f = taylor(exp(-x),2);
X = -2:0.01:2;

z = subs(f);
plot(x,z,'r--")

% Quadratic approximation

syms x
f = taylor(exp(-x),3);
X = -2:0.01:2;

z = subs(f);

plot(x,z,'g--")
legend('exp(-x) ', 'linear', 'quadratic')
xlabel ('x")

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

=
i
]
=
e

B code quadr exampl2.m
%

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

X1 -> radius of can

X2 -> height of can

area -> area of can

pi -> MATLAB variable

X,y,z -> array of design points

vv -> user identified contour values

xit, x2t -> identified point at which gradient required
contour -> MATLAB function to generate contours

syms -> symbolic object (MATLAB function)

subs -> symbolic substitution (MATLAB function)
gradient -> analytical value

hessian -> analytical value

xlabel, ylabel, legend, plot, hold on -> MATLAB functions

o° o o° o° o o° o° A° o o o° o° A° o° o° o° o° o
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clear all
clc
for x1 = 1:200
for x2 = 1:200

area = 2*pi*x1*x2 + 2*pi*xl*xl;
x(x1,x2) = x1;
y(xl,x2) = x2;
z(x1,x2) = area;
end
end
vv = [15000;50000;60000;70000;80000;90000;150000;200000] ;
[c, h] = contour(x,y,z,vv); clabel(c, h);
hold on

syms X1lp X2p
gradient = [2*pi*x2p+4*pi*xlp;2*pi*xlp];
hessian = [4*pi 2*pi; 2*pi 0];
% Linear approximation
Xlp = 60;
X2p = 72.629;
gf = subs(gradient) ;
for delxl = 1:60
for delx2 = 1:60
x1l = xlp + delxl;
X2 = x2p + delx2;
area = 2*pi*xlp*x2p + 2*pi*xlp*xlp + gf’*[delxl;delx2]
+ 0.5*% [delxl delx2] * (hessian* [delxl;delx2]) ;
[x1 x2 areal]
xx (delxl,delx2) = x1;
yy (delxl,delx2) = x2;
zz (delxl,delx2) = area;
end
end
vvl = [50000;60000;70000;80000;90000];
[c, h] = contour (xx,yy,zz,vvl, 'rd', 'LineWidth', 3);
xlabel('x 1, mm')
ylabel('x 2, mm')
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Chapter 2

Details

Code Name

Exhaustive search to locate the minimum of the test problem

exhaustive.m

Bisection method

bisection.m

Objective function to be coded here

func.m

Newton-Raphson method

newtonraphson.m

Secant method

secant.m

Cubic polynomial fit

cubic.m

Golden section method

golden.m

MATLAB code exhaustive.m

o
s

delta -> step size for search
T -> independent variable,

o
s
o

s

temperature

oe

-> cost function

U

oe

-> vector of cost function evaluated at

uvec

o
s

different temperatures
-> minimum of cost function

-> MATLAB function

oe

minu
min

o
s

o° oe

clear all

clc

uvec=1[];
delta

0.01;

40:delta:90

for T

+ 10400/ (T-20) ;

204165.5/(330-2*T)

U =

[uvec U] ;

plot (T, U)

hold on

uvec

end
xlabel ('T') ;ylabel ('U') ;

= min (uvec) ;

[minu, 1]

', minu)
',40+(1i-1) *delta)

$6.2f\n
$6.2f\n

fprintf ('Minimum Cost

fprintf ('occurs at T =

MATLAB code bisection.m

o
s

a -> lower bound of the design variable
b -> upper bound of the design variable

o oe

oe
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alpha -> midpoint of a and b

delx -> ?x for central difference method

derivative -> derivative using central difference method
derivative_alpha -> derivative at x = alpha

abs -> absolute of a number, MATLAB function

o® o o° o° o o

clear all

clc
a = 40;
b = 90;

epsilon = 0.01;
delx = 0.01;
( 1

fprintf a b \n')
fprintf ('--------------—----—----- \n')
for i= 1:100

fprintf (' %7.3£ %$8.3f \n',a,b)

alpha = (a+b)/2;

derivative = (func(a+delx) - func(a-delx) )/ (2*delx);
derivative alpha = (func(alpha+delx)- func(alpha-delx))/

(2*delx) ;

if (derivative*derivative alpha) < 0

b = alpha;
else

a = alpha;
end

if abs(a-b) < epsilon

break;
end
end
fprintf ('-------------------—-~---- \n')
fprintf ('x* = %7.3f Minimum = %$8.3f\n',a, func(a))
fprintf ('Number of function calls = %$3d\n',4*1i)

o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°

MATLAB code func.m

o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°

x -> input variable to the function
fx -> output from the function

o o o° o° o o° o

function fx = func
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x -> initial guess of design variable

delx -> ?x for central difference method

derivative -> derivative using central difference method
sec_derivative -> second derivative

epsilon -> constant used to terminate the program

xprev -> value of x stored from previous iteration

o° o° o° o® o° o° o° o° o° o° o°

clear all

clc

X = 45;

delx = 0.01;
epsilon = 0.01;

fprintf (! x f(x) Deriv. Second deriv.\n')

fprintf ("----m e \n')

for i = 1:100

derivative = (func(x+delx) - func(x-delx))/ (2*delx) ;

sec_derivative =(func(x+delx)+func(x-delx)-2*func(x))/
(delx*delx) ;

fprintf ('%$8.3f %8.3f %8.3f %8.3f\n',x, func(x),derivative,
sec_derivative)
Xprev = X;
x = x- derivative/sec derivative;
if abs(x-xprev) < epsilon
break;

a -> lower bound of the design variable

b -> upper bound of the design variable

alpha -> midpoint of a and b

delx -> ?x for central difference method

derivative -> derivative using central difference method
derivative alpha -> derivative at x = alpha

abs -> absolute of a number, MATLAB function

flag -> set the flag when minimum is bracketed

o° o° o° o° o° o° o° o° o° o° o° o o

clear all
clc
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a = 40;
b = 90;
epsilon = 0.001;
delx = 0.01;
flag = 0;
fprintf (' Alpha Deriv. \n')
fprintf ('-------------------—----- \n')
for i = 1:100
alpha = (a+b)/2;
derivative = (func(a+delx) - func(a-delx))/ (2*delx) ;
derivative alpha = (func(alpha+delx)-func(alpha-delx))/
(2*delx) ;
if (derivative*derivative alpha) < 0
b = alpha;
flag = 1;
else
a = alpha;
end
if flag == 1
break;
end
end
for j = 1:100
fprintf (' %7.3f %$8.3f \n',alpha,derivative alpha)
derivative _a = (func(a+delx) - func(a-delx))/(2*delx);
derivative b = (func(b+delx) - func(b-delx))/(2*delx);
alpha = b - derivative b*(b-a)/(derivative b-derivative_ a);
derivative alpha = (func(alpha+delx) - func(alpha-delx))/
(2*delx) ;
if derivative alpha > 0
b = alpha;
else
a = alpha;
end
if abs(derivative alpha) < epsilon
break;
end

fprintf ('-------------------—--~---- \n'
fprintf ('x* = %7.3f Minimum = %8.3f\n',alpha, func(alpha))
fprintf ('Number of function calls = $3d\n',4*1i+6%73)

® —
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MATLAB code cubic.m

o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
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o\
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o\
o\°
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o\°
o\°
o\
o\°
o\°

a -> lower bound of the design variable
b -> upper bound of the design variable
alpha -> midpoint of a and b

delx -> ?x for central difference method

Appendix B

derivative -> derivative using central difference method
derivative alpha -> derivative at x = alpha

abs -> absolute
flag -> set the
derivative_a ->

of a number,

MATLAB function

flag when minimum is bracketed
derivative at point a

o o° o° o° o° o° o° o° o° o° o° o° o° o° o°

a = 40;
b = 90;

epsilon= 0.001;
fprintf (' a b

fprintf('------------"----"-----

for i = 1:100
alpha = (a+b)/2;
derivative = (func(a+delx) -

derivative_b -> derivative at b

func (a-delx)) / (2*delx) ;

derivative_ alpha = (func(alpha+delx)-func(alpha-delx))/

(2*delx) ;

if (derivative*derivative alpha) < 0

b = alpha;
flag = 1;
else
a = alpha;
end
if flag == 1
break;
end
end
for j = 1:100
fprintf (' %7.3f
derivative a = (func(a+delx)
derivative b = (func(b+delx)
z = 3*(func(a)-func(b))/ (b-a)
w = ((b-a)/abs(b-a))*sqrt(z*z

%8.3f \n',a,b)

- func(a-delx))/ (2*delx) ;

- func(b-delx))/ (2*delx) ;

+ derivative a + derivative b;
-derivative_a*derivative_b) ;

mew = (derivative b+w-z)/(derivative b-derivative a+2*w) ;

if mew <= 1

x opt = b - mew*(b-a);
else

X opt = a;
end
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alphal = (func(x opt+delx) - func(x opt-delx) )/ (2*delx);
if abs(alphal) < epsilon
break;
else
if (derivative_a*alphal) < 0
b = x opt;
else
a = x opt;
end
end
end
fprintf ('-------------------—-~---- \n')
fprintf ('x* = %7.3f Minimum = $8.3f\n',x opt, func
(x_opt))
fprintf ('Number of function calls = $3d\n',4*1+8%73)

29922999999900095990009599900999909995999000
% MATLAB code golden.m
coc000000800000 o

% a -> lower bound of the design variable

% b -> upper bound of the design variable

% alpha -> midpoint of a and b

% falphal -> function value at x = alphal

% falpha2 -> function value at x = alpha2

% epsilon -> constant used to terminate the algorithm
% abs -> absolute of a number, MATLAB function

% tau -> 2-golden number

clear all

clc
a = 40;
b = 90;

epsilon = 0.00001;
tau = 0.381967;
alphal = a*(l-tau) + b*tau;
alpha2 = a*tau + b*(l-tau);
falphal = func(alphal) ;
falpha2 = func(alpha2) ;

1

fprintf ( a b \n')
fprintf ('-----------mmmeeo - \n')
for 1 = 1:100
fprintf (' %7.3f %$8.3f \n',a,b)
if falphal > falpha2
a = alphal;

alphal = alpha2;

falphal = falpha2;

alpha2 = tau*a + (1l-tau)*b;

falpha2 = func(alpha2) ;
else

b = alpha2;

© 2015by Taylor & FrancisGroup,LLC



Appendix B

334

= alphal;

alpha2

= falphal;

falpha2
alphal

tau*b + (1l-tau) *a;
func (alphal) ;

falphal

end
if abs (func(alphal) -func (alpha2))

< epsilon

break;

end
end

fprintf('-------------------------\n')

%8.3f\n',alphal, func (alphal))

Minimum

fprintf ('Number of function calls =

o
<

%7.3f

fprintf ('x*

%$3d\n',2+1)

oe
oe
oe

oe
oe

o
o

o
o

o
o
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o
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o
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o
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o
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o
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o
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o
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o
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o
o

o
o

oe

MATLAB code func.m

3
g

o
o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
oe

oe
oe

o
o

oe

objective function to be coded here

different test functions

3
g

o° o

= func (x)
fx = 204165.5/(330-2%*x)
fx = 3*x™M4+(x-1)"2;

function fx

+ 10400/ (x-20) ;

oe

-4*x*gin (x) ;
fx = 2% (x-3)"2+exp (0.5*x*x) ;

fx = 3% (x)"2+12/(x"3)-5;

fx

oe

oe

2*x*x+16/%X;

fx

oe o

o
o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

oe
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Chapter 3
Code Name Details
golden_functl.m Golden section method for a multivariable function
func_multivar.m Objective function to be coded here
rosenbrock.m Plot of Rosenbrock function
springsystem.m Finds minimum of the spring system problem
steep_des.m Steepest descent method
grad_vec.m Gradient vector computation
contour_testproblem.m  Plots contour of the test problem function
newton.m Newton’s method
hessian.m Computes Hessian matrix
modified_newton.m Modified Newton’s method

levenbergmarquardt.m  Levenberg-Marquardt’'s method

conjugate.m Conjugate gradient method

DFP.m Davidon-Fletcher-Powell (DFP) method

BFGS.m Broyden—Fletcher-Goldfarb-Shanno (BFGS) method
powell.m Powell’s conjugate direction method

neldermead.m Nelder-Mead algorithm

\Robotics\ Directory containing codes for problems in robotics

o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o°

MATLAB code golden functl.m

o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o°

a -> lower bound of the design variable

b -> upper bound of the design variable

falphal -> function value at x = alphal

falpha2 -> function value at x = alpha2

epsilon -> constant used to terminate the algorithm

abs -> absolute of a number, MATLAB function

tau -> 2-golden number

func multivar -> returns the value of a multivariable
function

o o o° o° o o° o° o° o o° o° o o o

function [alphal, falphal]l = golden functl (x,search)
a = -5;

b = 5;
tau = 0.381967;
epsilon = le-5;

alphal = a*(l-tau) + b*tau;
alpha2 = a*tau + b*(1l-tau);
falphal = func multivar (x+alphal*search) ;
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func multivar (x+alpha2*search) ;

falpha2
for i

1:1000

if falphal > falpha2

alphal;

a
alphal

alpha2;

= falpha2;

falphal
alpha2

(1-tau) *b;
func multivar (x+alpha2*search) ;

tau*a +

falpha2

else

alpha2;

b

= alphal;

alpha2

= falphal;

falpha2
alphal

(1-tau) *a;
func multivar (x+alphal*search) ;

tau*b +

falphal

end

func multivgr(x+alpha2*search))

if abs(func multivar (x+alphal*search) -

< epsilon

breaE;
end

end

o°

MATLAB code func multivar.m

)
o

)
s

= func multivar (x)

function fx

(1-x(1))"2;

100* (x(2)-x(1)%2)%2 +

fx

MATLAB code rosenbrock.m

o
°

plots the Rosenbrock’s function

o° o° o°

clear all

9]
—
O

.03:2);

.03:2,-2:

= meshgrid(-2:

[x1,x2]

A2

24 (1-x1)

100* (x2-x1.72)
surf (x1,x2,2z)

Z

shading interp

view

(170,20)

xlabel ('x1"')
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ylabel ('x2"')

zlabel ('f (x1,x2)")

MATLAB code springsystem.m

o
]

o
]

clear all

inf;

zprev

:0.01:1

-1

for x

i+1

I

for y = -1

i

1

0.01:

j+1
Z = 100* (sqrt (x™2+ (y+1)*2)-1)"2 + 90* (sqrt (x"2+ (y-

7

- (20*x+40*y)

1)%2)-1)"2

if z < zprev

ybest =y

end
end

end

', zprev)

$7.4f\n
%$10.4f %10.4f\n',xbest, ybest)

fprintf ('Minimum Potential

fprintf ('occurs at x1,x2

)
]

MATLAB code steep des.m

)
]
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falpha prev -> function value at first/previous iteration
deriv -> gradient vector

o
]

o
]

(set to negative of gradient)

-> gearch direction

search

o o

clear all

clc

_ 2;
[-3 2];

n of var
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epsilonl = le-6;

epsilon2 = le-6;

delx = le-3;

falpha prev = func multivar (x);

fprintf ('Initial function value = %7.4f\n ', falpha prev)

fprintf (' No. x-vector f(x) Deriv \n')

fprintf (' \n')

for i = 1:3000

deriv = grad vec(x,delx,n of var);

search = -deriv;

[alpha, falphal] = golden functl (x,search) ;

if abs(falpha-falpha prev)<epsilonl || norm(deriv)<epsilon2
break;

end

falpha prev = falpha;

X = X + alpha*search;

fprintf ('%3d %8.3f %8.3f % 8.3f %8.3f
\n',i,x,falpha,norm(deriv))

end

fprintf (' \n')
%

5555555555555 5%5%%5%55%5%5%%5%5%5%5%5%5%%5%5%%%%%
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]
=
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B code grad vec.m

o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°

compute gradient vector using central difference method
xvec, xvecl -> vector of design variables

o o o° o° o o° o° o°

deriv (i) -> derivative w.r.t. ith wvariable
function deriv = grad vec(x,delx,n of var)
Xvec = X;
xvecl = Xx;
for i = 1:length(x)
Xvec = X;
xvecl = Xx;
xvec (i) = x(1i) + delx;
xvecl (i) = x(i) - delx;
deriv (i) = (func multivar (xvec) - func multivar (xvecl))/
(2*delx) ;
end

© 2015by Taylor & FrancisGroup,LLC



339

MATLAB code contour testproblem.m
plots contour of the test problem

)
o
)
o
)
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le-7;

2;
le-3;

[-3 2];

epsilonl = le-7;
epsilon2

delx

clc
n of var

X
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f prev = func multivar(x);
fprintf ('Initial function value = %7.4f\n',f_prev)
fprintf ('No. x-vector f(x) Deriv \n')
fprintf (' \n')
for i = 1:50
f prev = func multivar(x);
deriv = grad vec(x,delx,n of var);
sec_deriv = hessian(x,delx,n of var);
x = (x' - inv(sec_deriv) *deriv')';
f = func multivar(x);
if abs(f-f prev)<epsilonl || norm(deriv)<epsilon2
break;
end

fprintf ('%$3d %8.3f %8.3f &% 8.3f %8.3f
\n',i,x,f,norm(deriv))

end
fprintf ('%$3d %8.3f %8.3f % 8.3f %8.3f \n',i,x,f,norm(deriv))
fprintf (! \n")

o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°

MATLAB code hessian.m
%

©00000000000000000
6600600000606 06060060°0

o\°
o\
o\
o\°

compute hessian matrix

sec_deriv -> second derivative matrix
func_multivar() -> multivariable function
temp -> temporary variable

Note that n_of var = length(x)

o o° o° o° o o° o° o o° o

function sec_deriv = hessian(x,delx,n_of var)
for i = 1:length(x)
for j = 1l:length(x)

if 1 == 3
temp = x;
temp (i) = x(i) + delx;
terml = func_multivar (temp) ;
temp (i) = x(i) - delx;
term2 = func_multivar (temp) ;
term3 = func multivar(x);
sec_deriv(i,j) = (terml-2*term3+term2)/(delx™2);
else
temp = x;
temp (i) = x(i) + delx;
temp(j) = x(j) + delx;
terml = func multivar (temp) ;
temp = x;
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temp (i) = x(i) + delx;

temp(j) = x(j) - delx;

term2 = func multivar (temp) ;

temp = x;

temp (i) = x(i) - delx;

temp(j) = x(j) + delx;

term3 = func_multivar (temp) ;

temp = x;

temp (i) = x(i) - delx;

temp(j) = x(j) - delx;

term4 = func multivar (temp) ;

sec_deriv(i,j) = (terml-term2-term3+termd) / (4*delx”™2) ;
end

end

MATLAB code modified newton.m

n_of_var -> number of design variables
x = [-3 2] -> starting value of x
epsilonl, epsilon2 -> constant used for terminating
the algorithm
delx -> required for gradient computation
falpha prev -> function value at first/previous iteration
deriv -> gradient vector
sec_deriv -> hessian matrix
search -> search direction (vector)
clear all

o o° o° o° o° o° o° o° o° o° o° o o

clc
n of var = 2;
x = [-3 2];

epsilonl = le-7;
epsilon2 = le-7;
delx = le-3;

f prev = func multivar(x);

fprintf ('Initial function value = %7.4f\n ', £ prev)
fprintf ('No. x-vector f(x) Deriv \n')
fprintf (' \n')

for i = 1:20
falpha prev = func multivar (x);

deriv = grad vec(x,delx,n of var);
sec_deriv = hessian(x,delx,n of var);
search = -inv(sec_deriv) *deriv';

[alpha, falpha] = golden functl(x,search');
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if abs(falpha-falpha prev)<epsilonl ||
norm(deriv) <epsilon2
break;
end
falpha prev = falpha;
X = X + alpha*search';
f = func multivar(x);
fprintf ('%$3d %8.3f %8.3f % 8.3f %8.3f
\n',i,x,falpha,norm(deriv))
end
fprintf ('%$3d %8.3f %8.3f % 8.3f %8.3f
\n',i,x,falpha,norm(deriv))
fprintf (' \n')

o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°

MATLAB code levenbergmarquardt.m

o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°

n_of_var -> number of design variables

x = [-3 2] -> starting value of x

lambda -> initially set to a large value

epsilonl, epsilon2 -> constant used for terminating
the algorithm

delx -> required for gradient computation

f prev -> function value at first/previous iteration

deriv -> gradient vector

sec_deriv -> hessian matrix

search -> search direction (vector)

o° o° o° o° o° o° o° o° o° o° o o° o° o° o°

clear all

clc
n of var = 2;
x = [-3 2];

lambda = 1e3;
epsilonl = le-7;
epsilon2 = le-7;
delx = le-3;

f prev = func multivar(x);
fprintf ('Initial function value = %7.4f\n ', £ prev)
fprintf (' No. x-vector f(x) Deriv \n')
fprintf (! \n")
for i = 1:100

f prev = func multivar(x);

deriv = grad vec(x,delx,n of var);

sec_deriv = hessian(x,delx,n of var);

search = -inv(sec_deriv+lambda*eye (length(x)) ) *deriv';

X = X + search';
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f = func multivar(x);

if £ < £ prev
lambda = lambda/2;

else
lambda = 2*lambda;

end

if abs(f-f prev)<epsilonl || norm(deriv)<epsilon2
break;

end

fprintf ('%$3d %8.3f %8.3f % 8.3f %8.3f

\n',i,x,f,norm(deriv))

n_of_var -> number of design variables
x = [-3 2] -> starting value of x
epsilonl, epsilon2 -> constant used for terminating
the algorithm
delx -> required for gradient computation
falpha prev -> function value at first/previous iteration
deriv -> gradient vector
search -> search direction (vector)

o o° o° o® o° o° o° o° o° o° o° o o

clear all

clc
n of var = 2;
x = [-3 2];

epsilonl = le-7;

epsilon2 = le-7;

delx = le-3;

falpha prev = func multivar (x);

fprintf ('Initial function value = %7.4f\n ', falpha prev)
fprintf ('No. x-vector f(x) Deriv \n')
fprintf (! \n")
for i = 1:300

if i==

deriv_prev = grad vec(x,delx,n of var);

search_prev = -deriv_prev;

[alpha, falphal = golden functl (x,search prev) ;
if norm(deriv_prev)<epsilon2
break;
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end
X = X + alpha*search prev;
falpha prev = func multivar (x);
else
deriv = grad vec(x,delx,n of var);
search = -deriv +
((norm(deriv)A2)/(norm(deriv_prev)AZ))*search_prev;
[alpha, falphal] = golden functl (x,search) ;
if abs(falpha-falpha prev)<epsilonl ||
norm(deriv) <epsilon2
break;
end
deriv_prev = deriv;
search prev = search;
X = X + alpha*search;
falpha prev = func multivar (x);
end
fprintf ('%$3d %8.3f %8.3f % 8.3f %8.3f
\n',1i,x,falpha,norm(deriv_prev))
end
fprintf ('%$3d %8.3f %8.3f &% 8.3f %8.3f
\n',i,x,falpha,norm(deriv))
fprintf (' \n')

MATLAB code DFP.m

o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°

n of var -> number of design variables

x = [-1.5 1.5] -> starting value of x

epsilonl, epsilon2 -> constant used for terminating
the algorithm

delx -> required for gradient computation

falpha prev -> function value at first/previous iteration

deriv -> gradient vector

deltag -> difference in gradient vector (over previous

iteration)

A -> approximation of inverse of the hessian matrix

search -> search direction

o° o o° o° o o o° o o o° o° o

o° o° o

clear all

clc
n of var = 2;
x = [-3 2];

A = eye(length(x));

epsilonl = le-7;

epsilon2 = le-7;

delx = le-3;

falpha prev = func multivar (x);
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fprintf ('Initial function value = %7.4f\n ', falpha prev)
fprintf (' No. x-vector f(x) Deriv \n')
fprintf (' \n')
for i = 1:100

if i==

deriv_prev = grad vec(x,delx,n of var);

search = -deriv_prev;

[alpha, falphal] = golden functl (x,search) ;
if abs(falpha-falpha prev)<epsilonl
break;

end

falpha prev = falpha;

X = X + alpha*search;

fprintf ('%$3d %8.3f %8.3f % 8.3f %8.3f \n',i,x,falpha

prev,norm(deriv_prev))

else
deltax = (alpha*search);
if i>2
deltax = deltax';
end
deriv = grad vec(x,delx,n of var);

deltag = deriv-deriv_ prev;

terml = (deltax'*deltax)/(deltax*deltag') ;

term2 = (A*deltag'*deltag*A)/(deltag*A*deltag') ;
A = A + terml - term2;

search = -A*deriv';

[alpha, falphal] = golden functl(x,search’);

fprintf ('%$3d %8.3f %8.3f % 8.3f %8.3f \n',i,x+alpha

*search', falpha,norm(deriv))
if abs(falpha-falpha prev)<epsilonl ||
norm(deriv) <epsilon2

break;
end
falpha prev = falpha;
deriv_prev = deriv;
X = xX+alpha*search';

end

end

fprintf (' \n')

MATLAB code BFGS.m

o\°
o\
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\
o\°
o\°

n_of_var -> number of design variables

o° o° o° o° o o° o

x = [-1.5 1.5] -> starting value of x
epsilonl, epsilon2 -> constant used for terminating the
algorithm
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o°

delx -> required for gradient computation

falpha prev -> function value at first/previous iteration

deriv -> gradient vector

deltag -> difference in gradient vector (over previous
iteration)

A -> approximation of the hessian matrix

search -> search direction

o® o o° o° o o

o°

clear all

clc
n of var = 2;
x = [-3 2];

delx = 0.001;

A = eye(length(x));

epsilonl = le-6;

epsilon2 = le-6;

delx = le-3;

falpha prev = func multivar (x);

fprintf ('Initial function value = %7.4f\n ', falpha prev)
fprintf (' No. x-vector f(x) Deriv \n')
fprintf (' \n')
for i = 1:50

if i==

deriv_prev = grad vec(x,delx,n of var);

search = -deriv_prev;

[alpha, falphal = golden functl (x,search) ;
if abs(falpha-falpha prev)<0.001
break;
end
falpha prev = falpha;
X = X + alpha*search;
fprintf ('%$3d %8.3f %8.3f % 8.3f %8.3f \n',i,x,falpha
prev,norm(deriv_prev))
else
deltax = (alpha*search);
if i>2
deltax = deltax';
search = search';
end
deriv = grad vec(x,delx,n of var);
deltag = deriv-deriv_ prev;
terml = (deltag'*deltag)/ (deltag*deltax') ;

term2 = (deriv prev'*deriv_prev)/(deriv prev*search');
A = A + terml + term2;
search = -inv (A) *deriv';

[alpha, falpha] = golden functl(x,search');
fprintf('%$3d %8.3f %8.3f % 8.3f %8.3f \n',i,x+alpha*search',
falpha,norm(deriv))
if abs(falpha-falpha prev)<epsilonl ||
norm(deriv) <epsilon2
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break;
end
falpha prev = falpha;
deriv_prev = deriv;
X = xX+alpha*search';
end
end
fprintf (' \n')

MATLAB code powell.m

©000000000000000000000000000000000000009
6000000000000 000000000000000000006060600600

o\°

n_of_var -> number of design variables

x = [-3 2] -> starting value of x

epsilon -> constant used for terminating the algorithm
term -> linearly independent search directions

falpha prev -> function value at first/previous iteration
search -> search direction

o o° o° o° o o° o° o o o

clear all
clc
n of var = 2;
x = [-3 2];
epsilon = le-6;
falpha prev = func multivar (x);
fprintf ('Initial function value = %7.4f\n ', falpha prev)
fprintf (' No. x-vector f (x) \n')
fprintf (' \n')
for i = 1:n_of var
for j = 1:n_of var+l
if (i==3)
term(i,j)=1;
else
term(i,j) = 0;
end

end
end
for i = 1: n of var
search{i} = (term(:,1i))"';
[alpha, falphal = golden functl (x,search{i});
X = X + alpha*search{i};
end
search{i+1} = (term(:,i+1))"';
for k = 1:200
xini = x;
i=1;
while i<n of var+l
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[alpha, falphal = golden functl (x,search{i});

x = x + alpha*search{i};

i = i+1;
end

if abs(falpha-falpha prev) < epsilon

break;

end
search{i} = (x-xini);
[alpha, falphal = golden functl (x,search{i});
X = X + alpha*search{i};

temp = search;

for i = 1:n_of var
search{i} = temp{i+1};
end

falpha prev = falpha;
fprintf ('%3d %8.3f %8.3f % 8.3f \n',6k,x,falpha)

end
fprintf (! \n")

o o° o° o° o° o° o° o° o° o° o° A° O° o° o° o° o° o o° o° o° o°

MATLAB code neldermead.m

©00000000000000000000000000000000000000
6000000000000 0000000000000000000000600C00

o\°

n_of_var -> number of design variables

1b, ub -> lower/upper bound of variable

(optional for generating initial feasible points randomly)

ybest -> best value of the objective function in the iteration

ysecondbest -> second best value of the objective function

yworst -> worst value of the objective function in the
iteration

xworst -> corresponding value of the variable for yworst

xc -> centroid of the polygon

fcentroid -> function value at xc

deviation -> sum square deviation of function values from

centroid

xr => reflected point

freflec => function value at reflected point

xe => expanded point

fexp => function value at expanded point

xcont => contracted point

fcont => function value at contracted point

clear all

clc

n of var = 2;
epsilon = le-4;

alpha = 1;
gamma = 2;

©

2015by Taylor & FrancisGroup,LLC



Appendix B

rho = -0.5;

1b = [-1 -1];

ub = [1 1];

fprintf Iteration Deviation

( 1
fprintf ('
for JJ = 1:50
for i = 1l:length(lb)

for j = 1:n_of var+l

a(i,j) = 1b(i) + (ub(i)-1b(i))*rand;

end
end
if JJ~=1
a = x';
end
for i = 1:n_of var+l
for j = 1:n_of var
x(i,3) = a(j,1);
end
fval (i) = func multivar (x(i,
end
[yworst,I] = max(fval);
[ybest,II] = min(fval);
% compute centroid
for i = 1l:1length(lb)

$))

sum(i) = 0;
for j = 1:n_of var+l
if (§3 ~= I)
sum(i) = sum(i) + a(i,j);
else
xworst (:,1i) = a(i,j);
end
end
end
xc = sum./n_of_var;
fcentroid = func _multivar (xc) ;
suml = 0;
for i = 1:n_of var+l
suml = suml + (fcentroid-fval(i))*2;
end

deviation = sqgrt(suml/(n_of var+l));

if deviation < epsilon
break;

end
fval(I) = [1;
[ysecondworst, Isw] = max(fval) ;
Xr = xCc + alpha* (xc-xworst) ;
freflec = func _multivar (xr);
if freflec < ybest

$expansion

© 2015by Taylor & FrancisGroup,LLC

349



Appendix B

350

Xe = XC + gamma* (xc-xworst) ;
fexp = func multivar (xe) ;

if fexp < freflec

else

end

else

if freflec < ysecondworst

XT;

x (I,

else

XCc + rho* (xc-xworst) ;
func multivar (xcont) ;

xcont
fcont

if fcont < yworst

xcont ;

end
end

end

\n',JJ,deviation, ybest)

fprintf ('%3d %15.4f %15.3f

end

\n')

fprintf ('

Xc

o°

MATLAB code robotics nominal traj.m

o
]

Generates nominal trajectory for the robotics arm problem

clear all

clc

)
o
)

o

generate 100 points in t

o
]

.063:pi

-pi:
px = 30*cos(t);

100*sin(t) ;

py =
pz

10*t + 66.04;
plot3 (px,py,pz, 'b-', 'LineWidth', 3)

xlabel ('px')
ylabel ('py')

zlabel ('pz')

© 2015by Taylor & FrancisGroup,LLC



Appendix B 351

R R R Rt e e et Rt L R e R L Rt Rt
% MATLAB code robotics_optimized traj.m
R R R R Rt e e et Rt R R R e L R Rt
%

% Generates optimized trajectory for the robotics arm problem
function [] = generate optimized traj (x)
dl = 66.04;

d3 = 14.91;

d4 = 43.31;

az2 = 43.18;

a3 = 2.03;

for i = 1:100

t = -pi + (i-1)*0.063;

thetal = x(1);

theta2 = x(1i+100) ;

theta3 = x(1i+200) ;

cl = cos(thetal);

c2 = cos (theta2);

sl = sin(thetal) ;

s2 = sin(theta2) ;

c23 = cos(theta2+theta3);

s23 = sin(theta2+thetal’) ;

f1(i) = cl*(a2*c2 + a3*c23 - d4*s23) - d3*sl;
f2(i) = sl*(a2*c2 + a3*c23 - d4*s23) + d3*cl;
f3(i) = dl - a2*s2 - al3*s23 -d4*c23;

end

plot3 (f1,£2,£3,'r*")

|
Chapter 4
Code Name Details
simplex.m Simplex method
initial_cost.m Computes cost coefficients for the nonbasic variables
phasel.m Phase I of the simplex method
remove_variable.m Removes user specified column from the nonbasic set

phasel_without_initialization.m  Phase I of the simplex method without initializing A
matrix and b vector.

dual.m Dual simplex method
interior.m Affine scaling method
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MATLAB code

0}
P

3
Le]

Pt

[0}

»
oo 3

o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°

The matrix A and b corresponds to equation Ax=b

c -> vector of cost coefficients

basic_set -> set of basic variables

nonbasic_set -> setof nonbasic variables

B -> matrix containing basic variable columns of A

N -> matrix containing nonbasic variable columns of A
xb -> basic variables

y -> simplex multipliers

cb -> cost coefficients of basic variables

cn -> cost coefficients of nonbasic variables

o o o° o° o oP° o o° o° o° o° o o° o° o°

clear all

clc

format rational

format compact

A= [31100;
1201 0;
100 0 11;

b = [10;8;3];

c = [-6;-7;0;0;0];

basic_set = [3 4 5];

nonbasic_set = [1 2];

for i = 1l:length(basic_set)
B(:,1) = A(:,basic_set(i));
cb(i) = c(basic_set(i));

end

for i = 1l:length(nonbasic_set)
N(:,i) = A(:,nonbasic_set(i));
cn (i) = c(nonbasic_set(i));

end

cn_cap = cn;

cb ini = cb;

b cap = b;

zzl = 0;

fprintf ('\n \n')

basic_set

nonbasic_set

Initial Table = [B N b cap]
Cost =[cb cn cap -zzl]

for i = 1:3

[minvalue entering basic_variable] = min(cn_cap) ;
entering column = inv(B)*A(:,nonbasic_set (entering basic
variable)) ;
ratios = b_cap'./entering column';
[min_ratio leaving_basic_variable] = min(ratios);

while min ratio<O
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ratios(leaving basic_variable) = inf;
[min_ratio leaving_basic_variable] = min(ratios);
end
temp basic_set = basic_set;
temp nonbasic_set = nonbasic_set;
temp cb = cb;
temp_cn = cn;
basic_set (leaving basic variable) = temp nonbasic
set (entering basic variable) ;
nonbasic_set (entering basic variable) = temp basic_
set (leaving basic_variable) ;
cb(leaving basic variable) = temp cn(entering basic_variable) ;
cn(entering basic variable) = temp cb(leaving basic_variable) ;
aa (nonbasic_set) = cn;
cn = aa(sort (nonbasic_set));
nonbasic_set = sort (nonbasic_set) ;
for ii = 1:length(basic_set)
B(:,1i) = A(:,basic_set(ii));
end
for ii = 1l:length(nonbasic_set)
N(:,ii) = A(:,nonbasic_set (ii)) ;
end
xb = inv(B) *b;
y = cb*inv(B) ;
cn_cap = cn-y*N;
b cap = xb;
zzZ = zzl+cb*xb;
fprintf ('\n \n')
basic_set
nonbasic_set
Table = [eye(length(B)) inv(B)*N b cap]

Cost = [cb_ini cn cap -zz]
if cn_cap >= 0
break;

end

end

fprintf ('\n ------ SOLUTION------ \n')
basic_set
xb

ZZ

%

A A A i A A A A A A A R A A A A A R A A A R A A A A A A R A A A AR A A A A R AR A A R L
TR TR E I IIAIRLIILLIILINSNINSY
% MATLAB code initial_cost.m

TR IRT IR E I LIILIINLIILNINSNINSY
%
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2 -4 -1;

3 4 0];
B = [010;00 1;1 0 0];
y = cb*inv (B

Q

a}

Q

Q
e}

I

Q

g

o\ok<v
MEN
z

The matrix A and b corresponds to Ax=Db

c -> vector of cost coefficients

basic_set -> set of basic variables

nonbasic_set -> setof nonbasic variables

B -> matrix containing basic variable columns of A

xb -> basic variables

y -> simplex multipliers

cb -> cost coefficients of basic variables

cn -> cost coefficients of nonbasic variables

o° o° o° o® o° o° o° o° o° o° o° o° o° o° o

clear all
clc
format rational
format compact
A [3 2 0010;
2-4-1 0 0 1;
34 010 0];
b [10;3;16];
c [-5;2;1;0;0;0];
basic_set = [5 6 4];
nonbasic_set = [1 2 3];
for i = 1:1length(basic_set)
B(:,1) = A(:,basic_set(i));
cb(i) = c(basic_set(i));

end

for i = 1:length(nonbasic_set)
N(:,i) = A(:,nonbasic_set(i));
cn(i) = c(nonbasic_set(i));

end

cn_cap = cn;

cb _ini = cb;

b cap = b;

zz1l = 91/8;

fprintf ('\n

basic_set

nonbasic_set

Initial Table = [B N b cap]

Cost = [cb cn_cap -zzl]
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for i = 1:1

[minvalue entering basic variable] = min(cn_cap) ;
entering column = inv(B)*A(:,nonbasic_set (entering basic_
variable)) ;
ratios = b_cap'./entering column';
[min_ratio leaving_basic_variable] = min(ratios);
while min ratio<O
ratios(leaving basic_variable) = inf;
[min_ratio leaving_basic_variable] = min(ratios);

end
temp basic_set = basic_set;
temp nonbasic_set = nonbasic_set;
temp cb = cb;
temp_cn = cn;
basic_set (leaving basic variable) = temp nonbasic

set (entering basic variable) ;
nonbasic_set (entering basic variable) = temp basic_

set (leaving basic_variable) ;
cb(leaving basic variable) = temp cn(entering basic_variable) ;
cn(entering basic variable) = temp cb(leaving basic_variable) ;
aa (nonbasic_set) = cn;
cn = aa(sort (nonbasic_set));
nonbasic_set = sort (nonbasic_set) ;
for ii = 1:length(basic_set)

B(:,1i) = A(:,basic_set(ii));
end
for ii = 1l:length(nonbasic_set)
N(:,ii) = A(:,nonbasic_set (ii));

end
xb = inv(B) *b;
y = cb*inv(B) ;
cn_cap = cn-y*N;
b cap = xb;
zzZ = zzl+cb*xb;
fprintf ('\n \n')
basic_set
nonbasic_set
Table = [eye(length(B)) inv(B)*N b cap]
Cost = [cb_ini cn cap -zz]

=
i
H
=
>
W
Q
(e}
Q
)
[n]
o
3
e}
<
lm
<
o
[a}
B
1)
o
et
)
oo 3

This program removes user specified column from
the nonbasic set
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remove_column = 3;

nonbasic_set (remove column) = [];

N(:,remove column) = [];

cn(remove column) = [];

cn_cap = cn-y*N;

fprintf ('\n ----Table after removing artificial
variable------ \n")

basic_set

nonbasic_set

Initial Table = [eye(length(B)) inv(B)*N b capl

Cost = [cb ini cn cap -zz]

0800508008095 08008090500808908508089085080800850808998505080
R R R R e R R R S R E e T R E R T TR R R L
0800890808908 008080080080800890850800890508908908508008908808
R R R T R e R R R R T E R T R R T T )
0800890808008 002080089080800890850800890008008908508008908508
R R e R T e R R et E R T R R e T )

The matrix A and b corresponds to equation Ax=Db

c -> vector of cost coefficients

basic_set -> set of basic variables

nonbasic_set -> set of nonbasic variables

B -> matrix containing basic variable columns of A

N -> matrix containing nonbasic variable columns of A
xb -> basic variables

y -> simplex multipliers

cb -> cost coefficients of basic variables

cn -> cost coefficients of nonbasic variables

o o° o° o° o o° o° o o° o° o o o° o

clear all

clc

format rational
format compact

A=1[-1 0100 0;
0-1 010 0y
-2-10 0 1 0;
-1-3 00 0 1];

b = [-3;-4;-25;-26];
c = [9; 8; 0; 0; 0;0];
basic_set = [3 4 5 6];

nonbasic_set = [1 2];

for i = 1:1length(basic_set)
B(:,1) = A(:,basic_set(i));
cb(i) = c(basic_set(i));

end

for i = 1:length(nonbasic_set)
N(:,i) = A(:,nonbasic_set(i));
cn(i) = c(nonbasic_set(i));

end

cn_cap = cn;

cb _ini = cb;
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b cap = b;

zz = 0;

fprintf ('\n \n')
basic_set

nonbasic_set

Initial Table = [B N b cap]

Cost = [cb cn_cap zz]
for i = 1:4
[minvalue leaving basic variable] = min(b_cap);
matl = inv (B) *N;
entering row = matl(leaving basic variable,:);
ratios = -1*(cn _cap'./entering row');
[min_ratio entering basic_variable] = min(ratios);
while min ratio<O
ratios (entering basic_variable) = inf;
[min_ratio entering basic_variable] = min(ratios);
end

temp basic_set = basic_set;
temp nonbasic_set = nonbasic_set;
temp cb = cb;
temp_cn = cn;
basic_set (leaving basic variable) = temp nonbasic
set (entering basic_variable) ;
nonbasic_set (entering basic variable) = temp basic_
set (leaving basic_variable) ;
cb(leaving basic variable) = temp cn(entering basic_
variable) ;
cn(entering basic variable) = temp cb(leaving basic_
variable) ;
aa (nonbasic_set) = cn;
cn = aa(sort (nonbasic_set));
nonbasic_set = sort(nonbasic_set) ;
for ii = 1l:length(basic_set)
B(:,1i) = A(:,basic_set(ii));
end
for ii = 1:length(nonbasic_set)
N(:,ii) = A(:,nonbasic_set(ii));
end
xb = inv(B) *b;
y = cb*inv(B) ;
cn_cap = cn-y*N;
b cap = xb;
zzZ = cb*xb;
fprintf ('\n \n')
basic_set
nonbasic_set
Table = [eye(length(B)) inv(B)*N b cap]

Cost = [cb_ini cn_cap -zzl]
if b_cap >= 0
break;
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Affine scaling method

fprintf ('\n ------FINAL SOLUTION------\n')
MATLAB code interior.m

basic set
clear all

358
end
end
xb
ZZ

o
]

1;

[3

Il
<

I

I
I

I
I

-vk(3) /hv(3)
inf

I
I

i
c’'*x
objective

length (hv)

I

gamma*min (var)

1
var (j)
var (j)
X + alpha*hx
objective

le-5;
else

I

c’*x

0.9;

tolerance

for i

inv (A'*dv™-2*A) *c

i3]

10

b-A*x
diag(vk)
-A*hx

if hv(j)<0
end
break

;8
71
0]

1

if abs(objective-obj prev)<tolerance

1 0]

12
= [10
[6
[0
obj_ prev
gamma
vk
av
hx
hv
for j
end
alpha
end
obj prev
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|
Chapter 5
Code Name Details
prob.m Genetic algorithm (GA; main program)
inm Inputs to GA
roulett.m Roulette wheel selection
tournament.m Tournament selection
func.m Test function to be included here (for GA)
simann.m Simulated annealing
funcl.m Objective function to be included here (for PSO and simulated
annealing)
pso.m Particle swarm optimization (PSO)
% File name prob.m
% Genetic algorithm - main program

o°

00000
56600

o°

o
<

o°
o°

©0000000000000000000
0600000000000 0006000

oe

©0000000000000000
0600600006006 0600600

o\

o\

clear all

clc

format long g;

% Read the input file

in;

% INITIALIZATION OF STRINGS
string = 0;

for i = 1:n of v
string = string+n of bits(i);
end
for j = 1:n of p
for i = 1l:string
r(j,i) = rand;
if r(j,i)< 0.5
r(j,i) = 0;
else
r(j,i) = 1;
end
end
end

% MAIN LOOP

for g = 1:n of g

% Decoded value of r (with left bit as MSB)
deci = cell(n_of v,1);

decoded = cell(n_of v,1);

duml = 1;
dummy = n_of bits(1);
for i = 1:n of v

deci{i} = bi2de(r(:,duml:dummy),'left-msb');
duml = duml+n_of bits(i);

while dummy<string

dummy = dummy+n of bits(i+1);

end
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% NORMALIZE TO THE VARIABLE RANGE

x1(:,1) = deci{i};

decoded{i} = range(i,1)+((range(i,2)-range(i,1))/(2"n of bits(i)-
1)) *x1(:,1);

xxx(:,1) = decoded{i};

end

% FUNCTION EVALUATION
for 1 = 1:n of p

[fitnessl (i), constraint (i, :)] = func(xxx(i,:));
end
fitness = fitnessl';

for hh = 1:1length(fitness)
if fitness(hh) < 0
flagl = 1;
end
end
if flagl ==
[factor,indices] = min(fitness) ;
fitnessl = -factor+fitness;
end
% CALLING ROULETTE WHEEL
if tourni flag ~=1
if problem == 'min'
fitness2 = 1./ (1l+fitnessl);
end
[best _fit(g),indi(g)] = max(fitness2);
best_var(g,:) = xxx(indi(g),:);
if problem == 'min'
best _fit(g) = fitness(indi(g));
end
% CUMULATIVE PROBABILITY
s = sum(fitness2) ;
cum_prob = fitness2/s;
roulett;
else
[best _fit(g),indi(g)] = min(fitness);
average fitness = mean(fitness);
best_var(g,:) = xxx(indi(g),:);
% CALLING TOURNAMENT SELECTION
tournament;

% IF THIS IS A CONSTRAINT PROBLEM THEN WE HAVE TO USE THIS
if n_of c>=0

best_fit(g) = min_fit;
best_var(g,:) = xxx(indi(g),:);
end

end
% CROSSOVER
for k = 1:2:n_of p
parentl = r new(round(random('unif',0.5,n_of p+0.5)),:);
parent2 = r new(round(random('unif',0.5,n_of p+0.5)),:);
if multi_crossover ==
cross_o_pos = round(random('unif',1.5,string+0.5-1));
childl(l:cross_o_pos) = parent2(l:cross_o_pos) ;
childl (cross_o_pos+l:string) = parentl(cross_o_pos+l:string) ;
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child2(1l:cross_o pos) = parentl(l:cross_o pos) ;
child2 (cross_o_pos+l:string) = parent2(cross_o_pos+l:string) ;
else

pois_ra = rand(1);

if (pois_ra<0.1353)no _of cross over = 0;

end

if (pois_ra>=0.1353 & pois ra<0.4059)no_of cross over = 1;
end

if (pois_ra>=0.4059 & pois ra<0.6865)no_of cross over = 2;
end

if (pois_ra>=0.6865 & poils ra<0.8769)no_of cross over = 3;
end

if (pois_ra>=0.8769)no_of cross_over = 3;

end

switch no_of cross _over

case 0

childl(l:string) = parentl(l:string);

child2 (l:string) = parent2(l:string);

case 1

cross_o_pos = round(random('unif',1.5,string+0.5-1));

childl(l:cross_o pos) = parent2(l:cross_o pos) ;

childl (cross_o_pos+l:string) = parentl(cross_o_pos+l:string) ;

child2(1l:cross_o pos) = parentl(l:cross_o pos) ;

child2 (cross_o_pos+l:string) = parent2(cross_o_pos+l:string) ;

case 2

cross_o_posl = round(random('unif',1.5,string+0.5-1));

cross_o_pos2 = round(random('unif',1.5,string+0.5-1));

while (cross_o pos2 == cross_o_posl)

cross_o_pos2 = round(random('unif',1.5,string+0.5-1));

end

cross_sor = [cross_o_posl cross_o_pos2];

cross_sort = sort(cross_sor) ;

childl(1l:cross_sort(1l)) = parentl(l:cross_sort(l));

childl (cross_sort (l)+l:cross_sort(2)) = parent2(cross_sort(l)+l:cross_
sort (2)) ;

childl (cross_sort (2)+1l:string) = parentl (cross_sort(2)+l:string);

child2(1l:cross_sort(1l)) = parent2(l:cross_sort(l));

child2 (cross_sort(l)+l:cross_sort(2)) = parentl(cross_sort(l)+l:cross_
sort (2)) ;

child2 (cross_sort (2)+1l:string) = parent2 (cross_sort(2)+l:string);

case 3

cross_o_posl = round(random('unif',1.5,string+0.5-1));

cross_o_pos2 = round(random('unif',1.5,string+0.5-1));

while (cross_o pos2 == cross_o_posl)

cross_o_pos2 = round(random('unif',1.5,string+0.5-1));

end

cross_o_pos3 = round(random('unif',1.5,string+0.5-1));

while (cross_o pos3 == cross_o posl & Cross_oO_pos3 == Cross_o_pos2)

cross_o_pos3 = round(random('unif',1.5,string+0.5-1));

end

cross_sor = [cross o posl cross_o_pos2 cross_o_pos3];

cross_sort = sort(cross_sor) ;

childl(1l:cross_sort(1l)) = parentl(l:cross_sort(l));

childl (cross_sort (l)+l:cross_sort(2)) = parent2(cross_sort(l)+l:cross_
sort (2)) ;
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childl (cross_sort(2)+l:cross_sort(3)) = parentl(cross_sort(2)+l:cross_
sort (3)) ;

childl (cross_sort (3)+1l:string) = parent2(cross_sort(3)+l:string);

child2(1l:cross_sort(1l)) = parent2(l:cross_sort(l));

child2 (cross_sort (l)+l:cross_sort(2)) = parentl(cross_sort(l)+l:cross_
sort (2)) ;

child2 (cross_sort(2)+l:cross_sort(3)) = parent2(cross_sort(2)+l:cross_
sort (3)) ;

child2 (cross_sort (3)+1l:string) = parentl(cross_sort(3)+l:string);

end

end

r(k,:) = childil;

r(k+1,:) = child2;

end

% MUTATION
for 1 = 1:n of p
pr m = random('unif',0,1);

for j = 1l:string

if pr_m<mut_prob

if r(i,j) == 0

r(i,j) = 1;

else

r(i,j) = 0;

end

end
end
end
[min best fit,ind] = min(best fit);
[g best_var(ind, :) min(best fit)];
if g >= 2

if abs(last_gen best-min(best fit))<epsilon
flag = flag+l;

else
flag = 0;

end
end
if flag>stall gen

break;
end
last_gen best = min(best fit);
fprintf ('%4i $9.4f %9.4f \n',g, best var(ind, :), min(best_ fit))
end % END OF MAIN LOOP
[min best fit,ind] = min(best fit);

best_var(ind, :)
min best fit

e R R R R e R R R e R L R Tt

% File name in.m

% Input parameters for Genetic algorithm

e R R R e R R e R R L R Tt

%

problem = 'min'; % If roulette wheel is used to minimize
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% number of variables

1;

n of v
n of

% maximum number of generations
population size

10000;
10;
)

n of bits (1)

g9
p

range (1

n_of

o
]

variable bound

o
]

= [40 90];

IR

% number of bits

15;
0.9;

multi crossover

cross_prob

crossover probability
use multi-crossover
mutation probability
use roulette wheel
function tolerance

o
]

o
]

=1

mut p;ob = 0.02

o
]

I

tourni flag = 0

o
]

I

epsiloH = le-7;

flag = 0

)
]

stall generations flag

scaling flag

)
]

)
]

flagl = 0;
stall

stall generations for termination

for constraint handling

)
]

500;

0;

)
]

gen

n of c

File name roulett.m

o°

Roulette wheel selection

o°

0

slot (1)
for ii

n of p+1

=2

I

cum_prob (ii-1)+slot (ii-1)

slot (ii)

end

COPY GENERATION

for kk

o
]

:n_ of p

=1

I

= rand

pr

n of p+1

1
(pr>slot (iii))

for iii

& (pr<slot(iii+l))

if

I

iii

st t c(kk)

ena

end

end

P

n of

1

for kkk

1)

r(st t c(kkk),:

)

r new (kkk,

end

o°

File name tournament.m
Tournament selection

o\°

o\°

Also modifies the function

o\°

in the presence of constraints

o\°
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infeasible flag = 1;
for i = 1:n of p

if constraint(i)>= 0
feas tag(i) = 1;

fit(i) = fitness(i);
else
feas tag(i) = 0;
fit (i) = -100000000000;
end
end
for i = 1:n of p
if (feas_tag(i) == 1)
infeasible flag = 0;
end
end
if (infeasible flag == 1)
fit (1) = 1000000000000;
end
max_ fit = max(fit);
for i = 1:n of p
if feas tag(i)== 0
for j = 1:n of ¢
if (constraint (i, j)<0)
fitness (i) = max fit+abs(constraint(i,j));
end
end

end
end
[min fit,indices] =
for i = 1:n of p

pr = round(random('unif',0.5,n of p+0.5));

while pr == 1

pr = round(random('unif',0.5,n of p+0.5));

end

if feas tag(i) =
if fitness (i
r new(i,:) =
else
r new(i,:) =
end

else
if feas_ tag(
r new(i,:) =
else
r new(i,:) =
end

min (fitness) ;

= feas tag(pr)

) <= fitness(pr)

r(i,:);

r(pr,:);

i
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File name func.m

o°

Enter the function to be optimized

o
]

func (x)

function [y, constr]

+ 10400/ (x-20) ;

y = 204165.5/(330-2%*x)

constr (1)

10;

File name simann.m

o°

Simulated annealing algorithm

o°

-> lower bound of variables
ub -> upper bound of variables

1b
x (1)

o o

o°

-> design variables

o°

-> random number from 0 to 1

rand

o
]

-> perturbation on design variables

-
J
Q —
“ —
3 ©
s}
H H
(0] ©
Q 0]
=
o o O

clc

format long
epsilon

0.002;

flag = 0;

[-5.12 -5.12];

1b
ub

[5.12 5.12];

1:1length(1b)

for i

(ub (i) -1b(i)) *rand;

+

end

funcl (x) ;

[E old, constr]

begtx

= X;

el
— o
O o
| o
M o
—
Il .
—
il
Q
]
|-
i8]
n Y
0 O
Q

flag+l;

flag

1:1length (x)

for i

= epsilon*x (i) *rand;

if rand_< 0.5

perturb x (i)
perturb x (i)

= -perturb x(i);

end_

end
X + perturb x;

1:Iength(x)

X =

for i

| x(i)>ub(i)

if x(1i)<1lb(1)

x (1)
end

(ub (i) -1b(i)) *rand;

+

1b (1)

end
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I

I

I

E new

I

I

funcl (x)
new;

if E new < E old

E new

bestx

E new

E
Ji

if flag > 1000

break
end

best obj
flag = 0

I

X - perturb x

E ola
end
b'd

E old

else
if exp(- (E new-E 0ld)/E old)> rand

if E new < best obj

366
[E_new, constr]
end
px(J)
py (3)
end
[J bestx best obj]
end

File name funcl.m

o°

o°

+ x(2)*x(2) -

funcl (x)

y = 20 + x(1)*x(1)-10*cos (2*pi*x (1))

7

10;

Enter the function to be optimized

10*cos (2*pi*x(2))

function [y, constr]
constr (1)

)
<
)

o

File name pso.m

o°

-> lower bound of variables
ub -> upper bound of variables
X -> position of individual
v -> velocity of individual

Particle Swarm Optimization algorithm
rand

1b

o°

-> fitness of individual

-> random number from 0 to 1
pbest -> best fitness achieved by individual

gbest -> best fitness of group

fitness
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o°

pop -> population size
phi 1, phi 2 -> tuning parameters
nmax -> maximum number of iterations

o° o

o°

clear all

clc
format long
pop = 20;

phi 1 = 1.05;
phi 2 = 1.1;
nmax = 100;
weight = linspace(1l,0.3,nmax) ;
1lb = [-500 -5001];
ub = [500 500];
for i = 1l:1length(lb)
for j = 1l:pop

x(1i,j) = 1b(i) + (ub(i)-1b(i)) *rand;
v(i,j) = 0;
end
end
for 1 = 1:pop
fitness (i) = funcl(x(:,1i));
pbest (i) = fitness(i);
px(i,:) = x(:,1);
end
[gbest, location] = min(fitness);

gx = x(:,location) ;
plot3(px(:,1),px(:,2), pbest, 'r*")
grid on
xlabel ('x1")
ylabel ('x2")
zlabel ('f(x) ")
for i = 1l:nmax
for j = 1l:pop
v(:,3) = weight (i)*v(:,3) + phi l*rand* (px(j,:)'-x(:,3)) +
phi 2*rand* (gx-x(:,3));
x(:,3) = x(:,3) + v(:,3
for k = 1l:length(x(:,3)
I
+

)
)

if x(k,j) < lb(k)
x(k,j) = 1b(k)

x(k,j) > ub(k)
(ub (k) -1b (k) ) *rand;
end
end
fitness(j) = funcl(x(:,3));
if fitness(j) < pbest(j)
pbest (j) = fitness(j);
px(3,:) = x(:,3);
end
end
[gbest, location] = min (pbest) ;
gx = x(:,location) ;
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[gx' gbest]
plot3(px(:,1) ,px(:,2) ,pbest, 'r*"')
grid on

xlabel ('x1'

ylabel ('x2"')

zlabel ('f(x) ')

axis([-500 500 -500 500 -1000 0])
pause (0.2)

R R e R E e e R e R LR e R e Tt
% File name funcl.m

% Enter the function to be optimized

e R e R E e R e PR e R LR e R e ]
%

function y = funcl (x)
vy = -x(1)*sin(sqgrt(abs(x(1))))

Appendix B

-x(2)*sin(sqgrt (abs (x(2))));

Chapter 6

Code Name

Details

DFP.m (main program)
grad_vec.m (function)
golden_functl.m (function)
funcl.m (function)
constr.m (function)

pso.m (main program)

funcl.m (function)

constr.m (function)

ALM.m (main program)
funcl.m (function)

sqp.m (main program)
func_val.m (function)
func_vall.m (function)
eqconstr_val.m (function)
ineqconstr_val.m (function)
grad_vec_f.m
grad_vec_eqcon.m (function)

grad_vec_ineqcon.m (function)

hessian.m (function)

Davidon-Fletcher-Powell (DFP) method (see Chapter 3)

Gradient vector computation (see Chapter 3)

Golden section method (see Chapter 3)

Computes value of objective function

Computes value of constraint function

Particle swarm optimization (PSO) method to solve welded
beam problem

Computes value of objective function

Computes value of constraint function

Augmented Lagrangian method

Computes value of augmented objective function

Sequential quadratic programming method

Computes augmented Lagrangian function

Computes function value

Computes equality constraints value

Computes inequality constraints value

Computes gradient vector of the objective function

Computes gradient vector for equality constraints

Computes gradient vector for inequality constraints

Computes Hessian matrix (see Chapter 3)
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MATLAB code funcl.m

o
]

y -> objective function
penalty -> penalty term

o o

o o

funcl (x,scale factor)
(x(2)-5)"2

function y

I

(x(1)-1)"2 +

y:
penalty = 0.0;

= constr (x) ;

[h,ql
for i

length (h)

=1

=0

if h(i)~

penalty + h(i)*2;

penalty

end

end

length(g)

=1

for i

if g(i)>0

penalty + g(i)*2;

penalty

end

i
o
]

o
]

y+penalty*scale factor

MATLAB code constr.m

o
)

define your constraints here

o o°

ts

in

ity constra

1
...-> equality constraints

-> inequa

constr (x)

[h,g]

function

_4;

= -x(1)%2 + x(2)

9

_3;

= -(x(1)-2)"2 + x(2)

g(2)

File name pso.m

oe

lgorithm

ion a

t

imiza

Welded beam problem

Particle Swarm Opt

-> lower bound of variables
ub -> upper bound of variables

1b

o° oe

oe

ividual
ividual
-> random number from 0 to 1

d
d

in

£

X -> position o
v -> velocity of

rand

o
s

iv

in

o
s

o
s
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fitness -> fitness of individual

pbest -> best fitness achieved by individual
gbest -> best fitness of group

nmax -> maximum number of iterations

o® o o o°

o°

clear all

clc
format long
pop = 200;

phi 1 = 1.05;
phi 2 = 1.1;
nmax = 3000;
scale factor = 10000000;
weight = linspace(1l,0.3,nmax) ;
fprintf (' \n')
lb = [0.1 0.1 0.1 0.1];
ub = [2 10 10 2];
for i = 1l:1length(lb)
for j = 1l:pop
x(1i,j) = 1b(i) + (ub(i)-1b(i)) *rand;
v(i,j) = 0;
end
end
for 1 = 1:pop
fitness (i) = funcl(x(:,1i),scale factor);
pbest (i) = fitness(i);
px(i,:) = x(:,1);
end
[gbest, location] = min(fitness);
gx = x(:,location) ;
for i = 1l:nmax
for j = 1l:pop
v(:,J) = weight (i) *v(:,J) + phi l*rand*(px(j,:)'-x(:,3J))
+ phi_2*rand* (gx-x(:,3));
x(:,3) = x(:,3) + v(:,3);
for k = 1:1length(x(:,3))
if x(k,j) < 1b(k) || x(k,3j) > ub(k)
x(k,j) = 1b(k) + (ub(k)-1b(k))*rand;
end
end
fitness(j) = funcl(x(:,]j),scale factor);
if fitness(j) < pbest(j)
pbest (j) = fitness(j);
px(3,:) = x(:,3);
end
end
[gbest, location] = min (pbest) ;
gx = x(:,location) ;

[gx' gbest];
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8.3f

\o

o

fprintf ('%3d %8.3f %8.3f %8.3f %8.3f

\n',i,gx,gbest)

end

\n')

fprintf ('

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

oe

MATLAB code funcl.m

3
g

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

oe

y -> objective function
penalty -> penalty term

oe o

oe o

funcl (x,scale factor)

function y

+ 0.04811*x(3)*x(4)*(14+x(2));

1.10471*x (1) *x (1) *x(2)

Yy =

= 0.0;
constr (x) ;

penalty
[h, gl

1:1length(h)

for i

if h(i)~=0

~2;

penalty + h(i)

penalty

end

end

1:length(g)

for i

if g(i)>0

penalty + g(i)*2;

penalty

end

end

y+penalty*scale factor;

>N o

o
o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

oe

MATLAB code constr.m

°
<

define your constraints here

o° o

-> inequality constraints
..-> equality constraints

oo

o o° o

constr (x)

[h,g]

function

6000;

load

length = 14;
modulusE

30e6;
12e6;

modulusG

13600;

sigmamax
delmax
tdash

tmax

30000;

0.25;
load/ (sgrt (2) *x (1) *x(2)) ;

((x(1)+x(3))/2)"2);

R = sqgrt(x(2)*x(2)/4 +
M = load* (length + x(2)/2);

(x(2)7%2/12 +((x(1)+x(3))/2)"2));

*

((x(1)*x(2) /sqrt (2))

J = 2%

M*R/J;
sgrt (tdash™2 + 2*tdash*tdashdash*x(2)/(2*R)

tdashdash

tx

+ tdashdash™2) ;
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sigmax = 6*load*length/ (x(4)*x(3)"2);

delx = 4*load*length”3/ (modulusE*x(4)*x(3)"3);

pcx = (4.013*sgrt (modulusE*modulusG*x(3) “2*x(4)"6/36)/(length®2)) *
(1- (x(3)/(2*length)) *sgrt (modulusE/ (4*modulusG))) ;

= tx/tmax -1;

= sigmax/sigmamax -1;

= x(1) - x(4);

= (.10471*x(1)*x (1) + 0.04811*x(3)*x(4)*(14+x(2)))/5 -1;

= 0.125 - x(1);

= delx/delmax -1;

= load/pcx -1;

=x(1)/2 -1;

= x(4)/2 -1;

I n
X
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o
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o°
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o
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o°
o°
o°
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o
o
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o
o
o°
o°
o°
o°
o°
o°
o
o
o
o
o
o
o
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°

MATLAB code ALM.m

o
o°
o°
o
o
o
o
o
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°

n_of var -> number of design variables
x = [0 1 1] -> starting value of x
epsilonl, epsilon2 -> constant used for terminating
the algorithm
delx -> required for gradient computation
falpha prev -> function value at first/previous iteration
deriv -> gradient vector
deltag -> difference in gradient vector (over previous iteration)
A -> approximation of inverse of the hessian matrix
search -> search direction
LAMBDA, BETA -> Lagrange Multipliers
RK -> penalty parameter

o o° o° o° o° o°® o° o° o° o° o°® o° o° o° o° o o°

clear all

clc

n of var = 2;
n_of eqcons =
n_of igcons =
scale_factor = 1;

global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE
LAMBDA = zeros(1l,n of eqgcons);

BETA = zeros(1l,n_of igcons);

x = [0 1 1]1;

RK = x(3);

A = eye(length(x));

epsilonl = le-6;

epsilon2 = le-6;

delx = le-3;

checkconstr = zeros(1l,n_of igcons) ;

falpha prev = funcl(x,scale factor);

1;
2;
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fprintf ('Initial function value = %7.4f\n ',6K FVALUE)
fprintf (' No. x-vector rk £(x) |cons.| \n')
fprintf (' \n')
for i = 1:30

if i==

deriv_prev = grad vec(x,delx,n of var,scale_ factor);

search = -deriv_prev;

[alpha, falphal = golden functl (x,search,scale_ factor);

if abs(falpha-falpha prev)<epsilonl

break;

end

falpha prev = falpha;
x = X + alpha*search;
yyy = funcl(x,scale_ factor);
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK* (max([ICONSTR; -BETA./(2*RK)]1));
checkconstrl = max([ICONSTR;checkconstr]) ;
fprintf ('%3d %8.3f %8.3f % 8.3f % 8.3f % 8.3f \n',1i,x,FVALUE,
norm ( [EQCONSTR checkconstrl]))

else
deltax = (alpha*search);
if i>2
deltax = deltax';
end

deriv = grad vec(x,delx,n of var,scale_ factor);
deltag = deriv-deriv_prev;

terml = (deltax'*deltax)/(deltax*deltag') ;

term2 = (A*deltag'*deltag*A)/(deltag*A*deltag’) ;

A = A + terml - term2;

search = -A*deriv';

[alpha, falphal = golden functl(x,search', scale factor);

checkconstrl = max([ICONSTR;checkconstr]) ;
fprintf ('%3d %8.3f %8.3f % 8.3f % 8.3f % 8.3f \n',i,x,FVALUE,
norm ( [EQCONSTR checkconstrl]))
if abs(falpha-falpha prev)<epsilonl || norm(deriv)<epsilon2
break;
end
falpha prev = falpha;
deriv_prev = deriv;
x = X+alpha*search';
yyy = funcl(x,scale factor);
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK* (max([ICONSTR; -BETA./(2*RK)]));
end
end
fprintf (° \n\n')
if LAMBDA>=0 & BETA>=0
fprintf ('KKT Conditions are satisfied \n\n')
end
fprintf ('Lagrange Multipliers: \n\n')
disp ([LAMBDA BETA])

o°

o°
o°

©00000000000000000000000000000000000000
0600000000000 0000000000000000000600060070
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o\°
o\
o\°
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o\°
o\
o\°
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o\
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o\
o\°
o\
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o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°

MATLAB code funcl.m

o° o° o° o
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\
o\°
o\°

function y = funcl (x,scale_factor)
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE
y = (x(1)-1)"2 + (x(2)-5)"2;

h(l) = 0.0;
g(l) = -x(1)"2 + x(2) -4;
g(2) = -(x(1)-2)"2 + x(2) -3;

EQCONSTR = h;

ICONSTR = g;

FVALUE = y;

Y = Yy + LAMBDA.*EQCONSTR + RK.*EQCONSTRAZ + sum (BETA. *
max ( [ICONSTR; -BETA./(2*RK)])) + sum(RK* (max ([ICONSTR;
-BETA./ (2*RK)1)) ."2);

o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\©
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°

MATLAB code sgp.m

o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\
o\°
o\
o\°
o\°

of _var -> number of design variables

= [-1.5 1.5] -> starting value of x

epsilonl -> constant used for terminating the algorithm
delx -> required for gradient computation

falpha prev -> function value at first/previous iteration
deriv -> gradient vector

quadprog -> MATLAB function to solve quadratic programming
LAMBDA -> Lagrange multipliers

n_
X

o o° o° o® o° o° o° o° o° o° o° o o

clear all

clc

warning off

n of var = 2;

n of eqcons = 1;

n of igcons = 1;

scale factor = 10;

global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE
LAMBDA = zeros(l,n _of egcons) ;
BETA = zeros(1l,n of igcons);

X = [10 -5];

RK = 1;

A = eye(length(X));

epsilonl = le-6;

delx = le-3;
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checkconstr = zeros(1l,n _of igcons);
fprintf (! No. x-vector £ (x) |cons.| \n')
fprintf (' \n')
checkconstr = zeros(1l,n of igcons);

for i = 1:3
deriv_f = grad vec f (X,delx,n of var,scale factor);
sec_deriv_f = hessian(X,delx);
deriv_eqcon = grad vec_eqcon(X,delx,n of egcons);
deriv_ineqgcon = grad_vec_inegcon (X,delx,n_of_igcons) ;
options = optimset ('Display', 'off');
x = quadprog(sec_deriv_ f,deriv_f,deriv_inegcon, -ineqgconstr
val (X) ,deriv_eqgcon, -eqgconstr val(X), []1, [],X,options) ;
fprev = func_val (X) ;
X = X+x';
yyy = func_val (X) ;
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK* (max ([ICONSTR; -BETA./(2*RK)]1));
fnew = func val(X);
checkconstrl = max([inegconstr val (X) ;checkconstr]) ;
disp([i X FVALUE norm([checkconstrl eqconstr val(X)1)]1);
if abs(fnew-fprev) < epsilonl
break

fprintf (! \n'")

o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\
o\°
o\
o\°
o\
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o\°
o\°
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o\°
o\°
o\°
o\
o\°
o\
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o\°
o\
o\°
o\
o\°
o\
o\°
o\°

MATLAB code func_val.m

©000000000000000000000
0000000000000 000000000

o\°

Q
o]
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s}
c
o

o° o o° o° o
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
\¢

es augmented Lagrangian function value

function y = func val (x)

global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE

y (x(1)-1)"2 + (x(2)-2)"2;

g = inegconstr val (x);

h = eqgconstr_val (x) ;

EQCONSTR = h;

ICONSTR = g;

FVALUE = y;

y = y + LAMBDA*EQCONSTR' + RK*EQCONSTR*EQCONSTR' + sum(BETA.*
max ( [ICONSTR; -BETA./(2*RK)])) + sum(RK* (max([ICONSTR;
-BETA./(2*RK)]1)) ."2);
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376

MATLAB code func vall.m

o
]

computes function value

o o

func vall (x)

function y

(x(2)-2)"2

(x(1)-1)"2 +

> oo

MATLAB code eqgconstr val.m

)
]

computes value of equality constraint

o o°

= eqconstr val (x)

function h

2*x (1) -x(2) ;

el

o°

MATLAB code ineqconstr val.m

o
]

computes value of inequality constraint

o o°

inegconstr val (x)

function g

x(1)-5

(1)

) o

MATLAB code grad vec f.m

o
]

function)

(obj.

computes gradient vector

o o

grad vec_ f(x,delx,n of var,scale factor)

function deriv

X;
1

xvecl
for i

length (x)

X;

xvecl

I

+ delx

= x(1i)

xvec (i)

I

delx

= x (i)

xvecl (1)

7

- func vall (xvecl))/ (2*delx)

(func vall (xvec)

deriv (i)

end

o°
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o
]

constraint)

(eq.

computes gradient vector

o o

grad vec_egcon(x,delx,n of eqgcons)

function deriv

x;
1
1

xvecl
for j

lenggh(x)

n_of_ eqcons

for i

X;

xvecl

I

+ delx

= x(1)

xvec (i)

= x(1) delx;

eqgconstr val (xvec)

xvecl (1)

h

I

eqconst; val (xvecl)

I

- h1(§))/(2*delx)

hil

I

(h(3)

deriv(j,i)

end
end

o°

MATLAB code grad vec_ ineqgcon.m

o
]

constraint)

(ineq.

computes gradient vector

o o

grad_vec_inegcon(x,delx,n of igcons)

function deriv

X;
1
1

xvecl
for j

lenggh(x)

n_of_igcons

for i

X;

xvecl

I

+ delx

= x(1)

xvec (i)

I

delx

= x (i)

xvecl (1)

I

inegconstr val (xvecl)

inegconstr val (xvec)

g:

I

- gl(j))/(2*delx)

(g(3)

gl

I

deriv(j,1i)

end
end

o\°
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Chapter 7

Code Name

Details

sqp.m (main program)

func_val.m (function)
func_vall.m (function)
sqp.m (main program)

func_val.m (function)
func_vall.m (function)
ineqconstr_val.m
pso.m (main program)

funcl.m (function)
sqp-m (main program)
dynamics.m (function)

Sequential quadratic programming (SQP) method modified for
weighted sum approach

Computes augmented Lagrangian function value
Computes function value

SQP method modified for solving multiobjective problems using
e-constraint technique

Computes augmented Lagrangian function value

Computes function value

Computes inequality constraint value

Particle swarm optimization (PSO) method with dynamic
weights

Computes value of objective function

Main program for solving reentry problem

Computes area, volume, and Xep

n_of_ var -> number of design variables

X

[0.1 0.1] -> starting value of x
epsilonl -> constants used for terminating the algorithm
delx -> required for gradient computation
falpha prev -> function value at first/previous iteration
deriv -> gradient vector
quadprog -> MATLAB function to solve quadratic programming
% LAMBDA -> Lagrange multipliers
clear all
clc
warning off
n_of_ var
n_of egcons
n_of_igcons = 1;
scale_factor 1;
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1l W2
LAMBDA zeros (1,n_of eqgcons) ;
BETA zeros (1,n_of igcons) ;
X [0.1 0.1];
RK = 1;
A eye (length (X)) ;
epsilonl le-6;
delx le-3;
for kk 1:101
X [0.1 0.1];
W1 (kk-1) /100;
w2 1 - Wi;

2.

= 7

1;

© 2015by Taylor & FrancisGroup,LLC



Appendix B 379

checkconstr = zeros(1l,n_of igcons) ;

fprintf (! No. x-vector £(x) |cons.| \n')
fprintf (' \n')
checkconstr = zeros(1l,n_of igcons) ;

for i = 1:10

deriv_f = grad vec_ f (X,delx,n of var,scale factor);

sec_deriv_f = hessian(X,delx);

deriv_eqcon = grad vec_egcon(X,delx,n of eqgcons) ;

deriv_inegcon = grad vec_inegcon(X,delx,n of igcons) ;

options = optimset ('Display','off');

x = quadprog (sec_deriv f,deriv_f,deriv_inegcon, -ineqgconstr val (X),
deriv_eqgcon, -eqgconstr val(X), [], [1,X,options) ;

fprev = func_val (X) ;

X = X+x';

yyy = func_val (X) ;

LAMBDA = LAMBDA + 2*RK*EQCONSTR;

BETA = BETA + 2*RK* (max([ICONSTR; -BETA./(2*RK)]));

fnew = func val (X);

checkconstrl = max([inegconstr_val (X) ;checkconstr]) ;

disp([i X FVALUE norm( [checkconstrl egconstr val(X)])]);

if abs (fnew-fprev) < epsilonl

break
end
end
fprintf (! \n')
plot (0.5% (X (1)"2+X(2)%2) , 0.5%*((X(1)-1)"2 + (X(2)-3)%2),'r*")
hold on
end
xlabel ('f1') ;
ylabel ('f2') ;

MATLAB code func val.m

00000
66600

o°
o°
o°
o°
o°
o°
o°
o°
o°
\S
o°
o°
o°
o\°
o°
o\°
o°
o\°
o°
o\°
o°
o\°
o°
o°
o°
o°
o°
o°
o°
o\°
o°
o\°
o°

computes augmented Lagrangian function value

o° o o° o° o°
o\
o°

function y = func val (x)

global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1l W2

Yy = WL*0.5% (x (1) 2+x(2)72) + W2*0.5*% ((x(1)-1)"2 + (x(2)-3)"2);

g = ineqgconstr val (x);

h = egconstr_val (x) ;

EQCONSTR = h;

ICONSTR = g;

FVALUE = y;

y = y + LAMBDA*EQCONSTR' + RK*EQCONSTR*EQCONSTR' + sum(BETA.*
max ( [ICONSTR; -BETA./(2*RK)])) + sum(RK* (max([ICONSTR;
-BETA./ (2*RK) 1)) ."2);
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o°
o°
o°
o
o
o
o
o
o
o
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°

MATLAB code func_vall.m

computes function value

o® o o° o° o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o
o
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°

function y = func vall (x)
global W1 W2

y = W1*0.5% (x(1)*2+x(2)%2) + W2*0.5% ((x(1)-1)

9900000000000 000000000000000000000000000
6000000000000 0000060060000006006006000600600600070
990000000000 0000000000000000000000000000
6000000000000 00000600000006006006000600600600070

n_of_var -> number of design variables
x = [-1.5 1.5] -> starting value of x

delx -> required for gradient computation

deriv -> gradient vector

o° 0% o° o° o° o° o° o o° o° o° o°

LAMBDA -> Lagrange multipliers
clear all

clc

warning off
n_of var = 1;
n_of_eqgcons = 1;
n_of_igcons = 5
scale_factor = 1;

7

Appendix B

MATLAB code sgp.m modified for eps-constraints method

epsilonl -> constants used for terminating the algorithm
falpha prev -> function value at first/previous iteration

quadprog -> MATLAB function to solve quadratic programming

global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1l W2

LAMBDA = zeros(1l,n_of egcons);
BETA = zeros(1l,n_of_ igcons) ;
X = [11];
RK = 1;
A = eye(length (X)) ;
epsilonl = le-6;
delx = le-3;
for kk = 1:100
Wl (kk-1)/100;
W2 =1 - W1;
checkconstr = zeros(1l,n_of_igcons) ;
fprintf (' No. x-vector
fprintf ('

checkconstr = zeros(1l,n_of_igcons) ;
for 1 = 1:10

deriv_f = grad_vec_f(X,delx,n_of_var,scale_factor);

sec_deriv_f = hessian(X,delx);

deriv_egcon = grad_vec_eqgcon(X,delx,n of egcons) ;
deriv_inegcon = grad_vec_ineqcon(X,delx,n_of_igcons) ;

options = optimset ('Display','off');

X = quadprog(sec_deriv_f,deriv_f,deriv_ineqgcon, -inegconstr_val (X),
deriv_egcon, -eqgconstr_val(X), [], [1,X,options) ;

fprev = func_val (X) ;
X = X+x';
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\n')

-BETA./(2*RK)1)) ;

max ( [inegconstr wval (X) ;checkconstr]) ;
< epsilonl

(14X (2) "2-X(1)-0.1*sin (3*pi*X(1))), 'r*")

LAMBDA + 2*RK*EQCONSTR;

BETA = BETA + 2*RK* (max([ICONSTR;

func val (X) ;

func val (X) ;

break

disp([i X FVALUE norm( [checkconstrl egconstr val(X)])]);

if abs (fnew-fprev)

Appendix B
checkconstrl
fprintf (!
plot (X (1),
hold on

end

xlabel ('f1'")
ylabel ('f2")

Yyy
LAMBDA
fnew
end
end

oe
oe
oe

oe
oe

oe
oe

oe
oe

oe
oe

oe
oe

oe
oe

o
o

o
o

oe
oe

o
o

o
o

o
o

oe

o
o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

oe

MATLAB code func val.m

3
g

o
o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
oo

oe

+ sum(BETA. *
-BETA./

+ RK*EQCONSTR*EQCONSTR'
+ sum(RK* (max ( [ICONSTR ;

-BETA./(2*RK)]))

func_val (x)

eqconstr_vgl(x);
h;
gi
Yi

y + LAMBDA*EQCONSTR'

max ( [ICONSTR ;

computes augmented Lagrangian function value
inegconstr val (x) ;

global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1l W2

y = (1+x(2)%2-x(1)-0.1*sin(3*pi*x(1)));

function y
EQCONSTR
ICONSTR
FVALUE

g =
h
Y

o
o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

oe

ineqgconstr val (x)

= x(1)-1;
= x(1)- W1;

computes value of inequality constraint
= x(2)-2;

MATLAB code ineqconstr val.m
function g

global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1 W2
g (1)
g(3)

(5)
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SRR A AR R R R AR R R R R AR AR R A AR R R R R R AR R R R A AR R R R AR AL

% File name pso.m

% Particle Swarm Optimization algorithm with dynamic weights

% 1lb -> lower bound of variables
% ub -> upper bound of variables
% X -> position of individual
% v -> velocity of individual

% rand -> random number
% fitness -> fitness of
% pbest -> best fitness
% gbest -> best fitness

from 0 to 1

individual

achieved by individual
of group

clear all
clc

format long
global W1l W2
pop = 200;
phi 1 = 0.5;
phi 2 = 0.5;
nmax = 120;

weight = linspace(1l,0.4,nmax) ;
1b = [0 -2];

ub = [1 2];

Wl = 0;

W2 = 1;

for i = 1l:1length(lb)

for j = 1l:pop

x(1,j3) = 1b(i) + (ub(i)-1b(i)) *rand;
v(i,j) = 0;
end
end
for 1 = 1:pop
fitness (i) = funcl(x(:,1i));
pbest (i) = fitness(i);
px(i,:) = x(:,1);
end
[gbest, location] = min(fitness);
gx = x(:,location) ;
for i = 1l:nmax
Wl = abs(sin(2*pi*i/150)) ;
W2 = 1-W1;

for j = 1l:pop

v(:,J) = weight (i)*v(:,]) + phi l*rand* (px(j,:)'-x(:,3))

phi 2*rand* (gx-x(:,3));

x(:,3) = x(:,3) + v(:,3);
for k = 1:length(x(:,3))
if x(k,§) < 1b(k) || x(k,3) > ub(k)
x(k,j) = 1b(k) + (ub(k)-1b(k))*rand;

© 2015by Taylor & FrancisGroup,LLC
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end

end

,3))

funcl (x(:

fitness(j)

< pbest (j)

if fitness(j)

pbest ()

fitness(j);

:)

px (3,
end

= x(1,3);

F1(3)

(1+x(2,3)"2-x(1,3)-0.1*sin(3*pi*x(1,3)));

F2(3)

end

= min (pbest) ;

location]

[gbest,

,location) ;

gbest] ;
plot (F1,F2, 'r*"')

gx = x(:
pause (0.1)

[gx!

end

o°

File name funcl.m

o°

Enter the function to be optimized

o
]

funcl (x)

function [y]

global W1l W2
y = Wl*x (1) + W2*(l+x(2)A2—x(1)—O.l*sin(3*pi*x(1)));

MATLAB code sgp.m

o
]

-> starting value of x

[-1.5 1.5]
epsilonl -> constant used for terminating the algorithm

delx -> required for gradient computation

n of var -> number of design variables

X

o° o° o

o°

o
]

falpha prev -> function value at first/previous iteration
deriv -> gradient vector

o
]

o
]

quadprog -> MATLAB function to solve quadratic programming

LAMBDA -> Lagrange multipliers

clear all

clc

o
]

o
]

warning off
n of var

= 5;

1;

n of eqgcons

n of igcons

12;

scalg factor

= 1;
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global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1 W2
LAMBDA = zeros(l,n _of egcons) ;

BETA = zeros(1l,n of igcons);

X = [0.5 25 31 0.5 0.5];

RK = 1;

A = eye(length(X));

epsilonl = le-2;

delx = le-3;

for kk = 640:20:1630

Wl = (kk-1)/100;
checkconstr = zeros(1l,n of igcons);
fprintf (! No. x-vector £ (x) |cons.| \n')
fprintf (! \n'")
checkconstr = zeros(1l,n of igcons);

for i = 1:30

deriv_f = grad vec f (X,delx,n of var,scale factor);
sec_deriv_f = hessian(X,delx);

deriv_eqcon = grad vec_eqcon(X,delx,n of egcons) ;

deriv_ineqgcon = grad_vec_inegcon (X,delx,n_of_igcons) ;
options = optimset ('Display', 'off');
x = quadprog(sec_deriv f,deriv_f,deriv_inegcon, -ineqgconstr

val (X) ,deriv_eqgcon, -eqgconstr val(X), []1, [],X,options) ;
fprev = func_val (X) ;
X = X+x';
yyy = func_val (X) ;
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK* (max([ICONSTR; -BETA./(2*RK)]));
fnew = func val(X);
checkconstrl = max([inegconstr val (X) ;checkconstr]) ;
disp([i X FVALUE norm([checkconstrl eqconstr val(X)1)]1);
if abs(fnew-fprev) < epsilonl
break
end
end
fprintf (' \n')
[ xcp, area, volume] = dynamics (X) ;
plot (xcp, area, 'k*', 'LineWidth',1.5)
hold on
end
xlabel ('X {cp}")

=
—
Q
o
®
—
b

o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
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betal
0.

O O O O O o o o

cm =

beta2
-0.

Xcp =
rl =
r2 =
r3 =

cap =

385

= [0.075759311956522

001381832173914

.005825624927536
.087880851017943
.079788071083505
.103099119565217
.000091411652174
.000083773739130
.024378102714516
.052872440763746] ;

-0.278527718840579+betal'* [X (1) ;X (2) ;X(3);X(4);X(5);
X(1)%2;X(2)%2;X(3)%2;X(4)"2;X(5)"2];
= [0.150130422826087

003965447971014

.014019523043478
.103639584627328
.108001867667355
.047906228260870
.000186851275362
.000219940956522
.000485274327121
.016298096388315] ;

-0.314286112399353+beta2’ * [X (1) ;X (2) ;X (3) ;X (4) ;X(5);
X(1)7%2;X(2)%2;X(3)%2;X(4)"2;X(5)"2];

cm/cn;

X (1) *cos (deg2rad (X(2))) ;

X (1) *cos (deg2rad (X(2))) + X(4)*tan(deg2rad(X(2)));
r2 + X(5)*tan(deg2rad(X(3)));

area = 2*pi*X(1)*X(1l)*(1l-sin(deg2rad(X(2)))) +

pi* (r1+r2) *sqrt ((r2-rl)*2 + X(4)"2) +

pi* (r3+r2) *sqrt ((r3-r2)*2 + X(5)"2) + pi*r3”2;
(pi*rl* (1-sin(deg2rad(X(2))))/6) * (3*rl*rl +
(r1* (1-sin(deg2rad(X(2))))*2));

volume = cap + 0.3333*pi*X(4)*(r2"2 + r1™2 + r2*rl) +
0.3333*pi*X(5)* (r3™2 + r2"2 + r2*r3);

Chapter 9

Code Name

Details

sqp.m (main program)

disciplinel.m (function)

Sequential quadratic programming (SQP) method (for
multidisciplinary design optimization [MDO] application)
Output from first discipline
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discipline2.m (function) Output from first discipline

eqeonstr_val.m (function) Computes equality constraints value
ineqconstr_val.m (function) Computes inequality constraints value
func_vall.m (function) Computes function value

func_val.m (function) Computes augmented Lagrangian function
grad_vec_eqcon.m (function) Computes gradient vector for equality constraints

grad_vec_ineqcon.m (function) =~ Computes gradient vector for inequality constraints
hessian.m (function) Computes Hessian matrix (see Chapter 3)

o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°

MATLAB code sgp.m

o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°

n_of var -> number of design variables

x = [-1.5 1.5] -> starting value of x

epsilonl -> constant used for terminating the algorithm
delx -> required for gradient computation

falpha prev -> function value at first/previous iteration
deriv -> gradient vector

quadprog -> MATLAB function to solve quadratic programming
LAMBDA -> Lagrange multipliers

clear all

clc

warning off

n of var = 5;

n_of eqgcons = 2;

n_of igcons 4;

scale_factor = 10;

global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE

LAMBDA = zeros(1l,n of eqgcons);

BETA = zeros(1l,n_of igcons);

X =[12510];

RK = ;

A = eye(length(X));

epsilonl = le-6;

delx = le-3;

checkconstr = zeros(1l,n_of_ igcons) ;

fprintf (! No. x-vector £ (x) |cons.| \n')
fprintf (' \n')
checkconstr = zeros(1l,n_of igcons) ;

for i = 1:30

deriv_f = grad vec_ f (X,delx,n_of var,scale factor);
sec_deriv_f = hessian(X,delx);

deriv_eqcon = grad_vec_egcon(X,delx,n of eqgcons) ;
deriv_inegcon = grad vec_inegcon(X,delx,n of igcons) ;
options = optimset ('Display','off');

x = quadprog(sec_deriv_f,deriv_f,deriv_inegcon, -inegconstr val (X),

o° o° o° o° o° o o° o° d° o° o° o°

=

deriv_eqcon, -eqgconstr val(X), [1, [1,X,options) ;
fprev = func_val (X) ;
X = X+x';

yyy = func_val (X) ;
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK* (max([ICONSTR; -BETA./(2*RK)]1));
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func val (X) ;

fnew

checkconstr]) ;

disp([i X FVALUE norm( [checkconstrl egconstr val(X)])]);

7

checkconstrl

max ( [inegconstr val (X)

< epsilonl

if abs (fnew-fprev)

break

end
end

\n')

fprintf (!

°
3

l1.m

ine

1

iscip

MATLAB code d

o
s

-

o° o° o°

inel (x)
vl = x(1)+x(2)+x(3)"2-0.2*x(5)

1

iscip

=d

function yl

7

oe

2.m

ine

1

iscip

MATLAB code d

o
s

-

o° o° o°

2 (x)

ine
x(3)+x(2) +sqgrt(x(4)) ;

1

iscip

=d

function y2

y2

oe

MATLAB code egconstr val.m

o
]

computes value of equality constraint

function h

o
<

egconstr val (x)

1

1
= yl-x(4);
= y2-x(5);

1

1(x)
2 (x)

ine

iscip

d
d

vl

1

ipline

iscip

v2

h(1)

h(2)

tr val.m

inegcons

MATLAB code

)
]

1ty constraint

inequal
tr val (x)

computes value of

)
]

inegcons

function g
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388

I

yl = disciplinel (x)

discipline2 (x) ;

v2

7

= 1-y1/3.16
y2/24-1

g (1)

7

g(2)

MATLAB code func vall.m

o
]

computes function value

o o

func vall (x)

function y

+exp (-x(5)) ;

+ x(4)

x(1)%2 + x(2)

MATLAB code func val.m

o
]

computes augmented Lagrangian function value

o
]

func_val (x)

global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE

v = x(1)%2 + x(2) + x(4) +exp(-x(5))

function y

I

I

X.I
— X
a(
>
| ©
HoP>
s
w Y
g D
0w
O g
o' 0
0 0
a o
0
I
oo

- h;
g;

EQCONSTR

ICONSTR
FVALUE

=Y

+ sum (BETA. *

+ RK*EQCONSTR*EQCONSTR'
+ sum (RK* (max ( [ICONSTR

-BETA./(2*RK) 1))

y = y + LAMBDA*EQCONSTR'
-BETA./(2*RK) 1)) ."2);

I

7

max ( [ICONSTR

o
]

grad vec_egcon(x,delx,n of eqgcons)

function deriv

x;
1
1

xvecl
for j

lenggh(x)

n_of_ eqcons

for i

X;

xvecl

I

+ delx

= x(1)

xvec (i)

7

delx

= x (i)

xvecl (1)

7

eqconst; val (xvecl)

eqconstr val (xvec)

h =

7

hl

© 2015by Taylor & FrancisGroup,LLC



Appendix B

deriv(j,i) = (h(§) - h1(§))/(2*delx);

389

function deriv = grad vec ineqcon(x,delx,n of igcons)
Xvec = X;
xvecl = Xx;
for j = 1:n_of_igcons
for i = 1:length(x)
Xvec = X;
xvecl = Xx;
xvec (i) = x(i) + delx;
xvecl (i) = x(i) - delx;
g = inegconstr_val (xvec) ;
gl = inegconstr val (xvecl) ;
deriv(j,i) = (g(j) - g1l(j))/(2*delx);
end
end
s TTTTTTTTLSSSLS%%Y
]
Chapter 10
Code Name Details

Gomory’s Method (All-Integer Problem)

simplex.m

dual_stepl.m
dual_step2.m

Simplex method for solving linear programming
problem (LPP)

Solves step 1 of problem
Solves step 2 of problem

Gomory’s Method (Mixed-Integer Problem)

simplex.m
dual_step.m

Branch and Bound Method
simplex.m
subprobleml.m
subproblem2.m
node2_subprobleml.m
node2_subproblem2.m

© 2015by Taylor & FrancisGroup,LLC

Simplex method for solving LPP
Dual simplex method

Simplex method for solving LPP

Simplex method for subproblem 1

Simplex method for subproblem 2

Simplex method for subproblem 1 (Node 2)
Simplex method for subproblem 2 (Node 2)
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Particle Swarm Optimization

pso.m Main program
funcl.m Objective function
constr.m Constraints

Appendix B

¢ -> vector of cost coefficients
basic _set -> set of basic variables
nonbasic_set -> setof nonbasic variables

xb -> basic variables

y -> simplex multipliers

cb -> cost coefficients of basic variables
cn -> cost coefficients of nonbasic variables

o0 o o° o° o o o° o o o° o o o o° o o?

clear all

clc

format rational
format compact

A= [1-11 0;
4 70 11;
b = [5;50];

c = [-3;-2;0;0];

basic_set = [3 4];

nonbasic _set = [1 2];

for i = 1l:length(basic_set)
B(:,1) = A(:,basic_set(i));

cb(i) = c(basic_set(i));

end

for i = 1l:length(nonbasic_ set)
N(:,i) = A(:,nonbasic _set(i));
cn(i) = c(nonbasic _set(i));

end

cn cap = cn;

cb_ini = cb;

b cap = b;

zz1l = 0

© 2015by Taylor & FrancisGroup,LLC

The matrix A and b corresponds to equation Ax=b

B -> matrix containing basic variable columns of A
N -> matrix containing nonbasic variable columns of A
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(Solves step 1 of the problem)

Gomory’s method (All-integer problem)

MATLAB code dual stepl.m

o
]

o
]

=b

The matrix A and b corresponds to equation Ax

o°

-> vector of cost coefficients

c
basic set

o
]

-> get of basic variables

o
]

nonbasic set

-> get of nonbasic variables

B -> matrix containing basic variable columns of A

o
]

o
]

N -> matrix containing nonbasic variable columns of A

)
]

-> basic variables
y -> simplex multipliers

xb

)
]

)
]

-> cost coefficients of basic variables
-> cost coefficients of nonbasic variables

cb
cn

)
]

o o

clear all
format rational
format compact

clc

[1 0 7/11 1/11 0;

A =

0;

0 1-4/11 1/11

0 0-7/11-1/11 11;
[85/11;30/11;-8/11];

[0;0;13/11;

basic set

b
c

5/11;0];

[1 2 5];

nonbasic set

[3 4];

a e
DD~
0 O -H
n n~—

(]
VU O
A od W
nw |
@ © O
Q Q-
2T
o e ©
D~ Q
Q&
g 0
o Il
— Il
o~

<A
I e ~

~ Q
-~ MmO
H
o}

[

,nonbasic_set (i));

c (nonbasic set (i));

= A(:

1l:length (nonbasic set)

., 1)

for i
N (
cn (i)

end
end

cn;
= cb;

cb ini

cn_cap

b Eap

ZZ

b;

-315/11;
Rest of the code remains same as in dual.m

(Chapter 4)

o
]

(Solves step 2 of the problem)

Gomory’s method (All-integer problem)

MATLAB code dual step2.m

o
]

o
]

=b

The matrix A and b corresponds to equation Ax

o°

-> vector of cost coefficients

c
basic set

o
]

-> get of basic variables

o
]

nonbasic set

-> get of nonbasic variables

o
]
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B -> matrix containing basic variable columns of A

N -> matrix containing nonbasic variable columns of A
Xb -> basic variables

y -> simplex multipliers

cb -> cost coefficients of basic variables

cn -> cost coefficients of nonbasic variables

o° o° o° o° o° o° o°

clear all

clc

format rational

format compact

A =[100 0 1 0;
010 1/7 -4/7 0;
001 1/7-11/7 0;
00 0-1/7 4/7 11;

b = [7;22/7;8/7;-1/71;

c = [0;0;0;2/7;13/7;01;

basic set = [1 2 3 6];

nonbasic_set = [4 5];

for i = 1l:length(basic_set)
B(:,1) = A(:,basic_set(i));

cb(i) = c(basic_set(i));

end

for i = 1l:length(nonbasic_set)
N(:,i) = A(:,nonbasic_set(i));
cn (i) = c(nonbasic_set(i));

end

cn_cap = cn;

cb ini = cb;

b cap = b;

zz = -191/7;

Rest of the code remains same as in dual.m (Chapter 4)

s

%

s

%

s

%

s

%

% The matrix A and b corresponds to equation Ax=b
% ¢ -> vector of cost coefficients

% basic_set -> set of basic variables

% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A

% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables

% y -> simplex multipliers

% cb -> cost coefficients of basic variables

% cn -> cost coefficients of nonbasic variables

°
%
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clear all

clc

format rational
format compact
A= [1110;

52 0 11;
b = [6;20];
c = [-3;-2;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];
for i = 1l:length(basic_set)
B(:,1) = A(:,basic_set(i));
cb(i) = c(basic_set(i));
end
for i = 1l:length(nonbasic_set)
N(:,i) = A(:,nonbasic_set(i));
cn (i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb ini = cb;
b cap = b;
zzl = 0;

MATLAB code dual step.m
Gomory’s method

(
%

o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\°
o\°

c -> vector of cost coefficients

xb -> basic variables
y -> simplex multipliers

o o° o° o° o o° o° o o° o o o o° oP° o?

clear all

clc

format rational
format compact

A=1[10-2/3 1/3 0;
01 5/3 -1/3 0;
00 -5/3 1/3 1];

b = [8/3;10/3;-1/31;

c = [0;0;4/3; 1/3;0];

basic_set = [1 2 5];

© 2015by Taylor & FrancisGroup,LLC

Mixed-integer problem

©000000000000000000000000000900000
TC000000000600000060060060060606060606060600°0C

The matrix A and b corresponds to equation Ax=Db

basic_set -> set of basic variables

nonbasic_set -> set of nonbasic variables

B -> matrix containing basic variable columns of A

N -> matrix containing nonbasic variable columns of A

cb -> cost coefficients of basic variables
cn -> cost coefficients of nonbasic variables

393
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nonbasic_set = [3 4];

for i = 1:length(basic_set)
B(:,1) = A(:,basic_set(i));
cb(i) = c(basic_set(i));

end

for i = 1l:length(nonbasic_set)
N(:,i) = A(:,nonbasic_set(i));
cn (i) = c(nonbasic_set(i));

end

cn_cap = cn;

cb ini = cb;

b cap = b;

z7Z =-44/3;

MATLAB code sim

The matrix A and b corresponds to equation Ax=Db

c -> vector of cost coefficients

basic_set -> set of basic variables

nonbasic_set -> setof nonbasic variables

B -> matrix containing basic variable columns of A

N -> matrix containing nonbasic variable columns of A
xb -> basic variables

y -> simplex multipliers

cb -> cost coefficients of basic variables

cn -> cost coefficients of nonbasic variables

o o° o° o® o o° o° o o° o o o o° o° o o

clear all

clc

format rational
format compact

A= [2 510;
2 -3 0 11;
b = [16;7];

c = [-4;-5;0;0];
basic_set = [3 4];

nonbasic_set = [1 2];

for i = 1:1length(basic_set)
B(:,1) = A(:,basic_set(i));
cb(i) = c(basic_set(i));

end

for i = 1:length(nonbasic_set)
N(:,i) = A(:,nonbasic_set(i));
cn (i) = c(nonbasic_set(i));

end
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cn;
= cb;

cb_ini

cn_cap

Rest of the code remains same as in simplex.m (Chapter 4)

o
]

MATLAB code subprobleml.m
Subproblem-1

o
]

o
]

=b

The matrix A and b corresponds to equation Ax

o o

-> vector of cost coefficients

basic set

[¢]

o°

-> get of basic variables

o°

nonbasic set

-> setof nonbasic variables
B -> matrix containing basic variable columns of A

o°

o°

N -> matrix containing nonbasic variable columns of A

o
]

-> basic variables
y -> simplex multipliers

xb

o
]

o
]

-> cost coefficients of basic variables
-> cost coefficients of nonbasic variables

cb
cn

o
]

o o

clear all
format rational
format compact

clc

[2 51 0 0;

A =

1 000 11;

2-3 01 0;
[16;7;5];

b
c

[-4;-5;0;0;01;

basic set

[3 4 5];

nonbasic set

[1 21;

a e
DD~
0 O -H
n n~—

(]
VUV O
A od W
nw |
@ © O
Q Q-
T
g e ©
D~ Q
Q&
= 0
(O
— Il
o~

N,
1 e ~—

~ Q
-~ M 0
H
o}

[

,nonbasic_set (i));

c (nonbasic set (i));

= A(:

1l:length (nonbasic set)

:, 1)

for i
N (
cn (i)

end
end

cn;
= cb;

b cap = b;

zz1

cb ini

cn_cap

I

Rest of the code remains same as in simplex.m (Chapter 4)

= 0;

o
]
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396

MATLAB code subproblem2.m
Subproblem-2

o
]

o
]

=b

The matrix A and b corresponds to equation Ax

o o

-> vector of cost coefficients

c
basic set

o
]

-> get of basic variables

o
]

nonbasic set

-> setof nonbasic variables
B -> matrix containing basic variable columns of A

o
]

)
]

N -> matrix containing nonbasic variable columns of A

)
]

-> basic variables
y -> simplex multipliers

xb

)
]

)
]

-> cost coefficients of basic variables
-> cost coefficients of nonbasic variables

cb
cn

)
]

o o

5 10 0;
-3 01 0;
0 0 0 171;

2
[16;7;-61;

-1

format rational
[2

clear all
clc
format compact

b
c

[-4;-5;0;0;01;

basic set

[3 4 5];

nonbasic set

[1 21;

. o e~
— I
e~ 0 O -H
—~— ~ 0w~
DD~ NS
0 O A VU O
W W= A0
(] 0 n
VUL O @ © O
A od W Q 9
0w | o g w
@ © O OO0 ®
Q Q- ISEESEEe]
= " nm — g
o . © o 0
D~ Q D~ g
o< = o g
q 9} o o]
o o
— [ — [
N N
<~ A <~ A
T T
—~ Q ~ q
- M O H & 0
H T N
o} o O
W 0w

end

cn;
= cb;

b cap = b;

zz1

cb ini

cn_cap

I

Rest of the code remains same as in simplex.m (Chapter 4)

= 0;

o
]

MATLAB code node2 subprobleml.m
(Node-2)

o
]

Subproblem-1

o
]

=b

The matrix A and b corresponds to equation Ax

o o

-> vector of cost coefficients

[¢]

o
]

© 2015by Taylor & FrancisGroup,LLC



Appendix B 397

basic_set -> set of basic variables

nonbasic_set -> setof nonbasic variables

B -> matrix containing basic variable columns of A

N -> matrix containing nonbasic variable columns of A
xb -> basic variables

y -> simplex multipliers

cb -> cost coefficients of basic variables

cn -> cost coefficients of nonbasic variables

o o° o° o° o o° o° o o°

clear all
clc
format rational
format compact
A =[2 5 10 0;
2 -3 01 0;
0 1 00 11;
b = [16;7;1];
c = [-4;-5;0;0;0];
basic_set = [3 4 5];

nonbasic_set = [1 2];

for i = 1l:length(basic_set)
B(:,1) = A(:,basic_set(i));
cb(i) = c(basic_set(i));

end

for i = 1l:length(nonbasic_set)
N(:,i) = A(:,nonbasic_set(i));
cn (i) = c(nonbasic_set(i));

end

cn_cap = cn;

cb ini = cb;

b cap = b;

zzl = 0;

m-2 (Node-2)

The matrix A and b corresponds to equation Ax=b

c -> vector of cost coefficients

basic_set -> set of basic variables

nonbasic_set -> setof nonbasic variables

B -> matrix containing basic variable columns of A

N -> matrix containing nonbasic variable columns of A
xb -> basic variables

y -> simplex multipliers

cb -> cost coefficients of basic variables
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cn -> cost coefficients of nonbasic variables

o° o

clear all
clc
format rational
format compact
A =[2 5 10 0;
2 -3 01 0;
0 -1 0 0 171;
b = [16;7;-2];
c = [-4;-5;0;0;0];
basic_set = [3 4 5];

nonbasic_set = [1 2];
for i = 1l:length(basic_set)
B(:,1) = A(:,basic_set(i));
cb (i) = c(basic_set(i));
end
for i = 1l:length(nonbasic_set)
N(:,i) = A(:,nonbasic_set(i));
cn (i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb ini = cb;
b cap = b;
zzl = 0;
% Rest of the code remains same as in simplex.m
SRR A AR R R R R R AR R R R R R AR AR R R R A AR R A R AR AR R R R AR AL R R AL L

o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°
o°

File name pso.m

Welded beam problem
60000000000000800000000008008008008000000000000900000
R R R R e R e e SR e e R R R R T

1b -> lower bound of variables

ub -> upper bound of variables

X -> position of individual

v -> velocity of individual

rand -> random number from 0 to 1

fitness -> fitness of individual

pbest -> best fitness achieved by individual
gbest -> best fitness of group

o° o° o° o° o° o o° o° A° o° I° o° o° o°

clear all

clc
format long
pop = 50;

phi 1 = 1.05;
phi 2 = 1.1;
nmax = 1000;
scale factor = 10000000;

weight = linspace(1,0.3,nmax) ;
fprintf (!
lb = [0.1 0.1 0.1 0.11;
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ub = [2 10 10 2];
for i = 1:1length(1lb)
for j = 1l:pop

x(i,j) = 1b(i) + (ub(i)-1b(i))*rand;
v(i,j) = 0;
end
end
for i = 1l:pop
fitness (i) = funcl(x(:,1),scale_factor);
pbest (1) = fitness(i);
px(i,:) = x(:,1);
end
[gbest, location] = min(fitness) ;
gx = x(:,location);
for i = 1l:nmax
for j = 1l:pop
v(:,3) = weight (i)*v(:,j) + phi_ l1*rand* (px(j,:)'-x(:,3)) +
phi 2*rand* (gx-x(:,3));
x(:,3) = x(:,3) + v(:,3);
for k = 1:length(x(:,3))
if x(k,3) < 1b(k) || x(k,3) > ub(k)
x(k,j) = 1lb(k) + (ub(k)-1b(k))*rand;
end
end
x(2,:) = round(x(2,:));
x(4,:) = round(x(4,:));
fitness(j) = funcl(x(:,j),scale_factor);
if fitness(j) < pbest(j)
pbest(j) = fitness(j);
x(3,:) = x(:,3);
end
end

[gbest, location] = min(pbest) ;
gx = x(:,location) ;

[gx' gbest];

fprintf ('%3d %8.3f %8.3f %8.3f %8.3f % 8.3f \n',1i,9x,gbest)
end
fprintf (' \n')
©9000900000900000000000000090000000000009000009000000
R R R R R R R R R R R PR R R R R R T
e R R R e R R R e R E L R Tt
% File name funcl.m
% Objective function for welded beam problem
e R R R e R R e R R L R Tt
function y = funcl(x,scale_ factor)
y = 1.10471*x (1) *x (1) *x(2) + 0.04811*x(3)*x(4)*(14+x(2)) ;
Sy = (x(1)-1)"2 + (x(2)-5)"2;

penalty = 0.0;
[h,g] = constr(x);
for i = 1:1length(h)
if h(i)~=0
penalty = penalty + h(i)”*2;
end
end
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for i = 1:1length(g)
if g(i)>0
penalty = penalty + g(i)*2;
end

% File name constr.m

% Constraint function for welded beam problem
function [h,g] = constr(x)

h(1) = 0;

$ g(l) = -x(1)"2 + x(2) -4;

$ g(2) = -(x(1)-2)"2 + x(2) -3;

load = 6000;

length = 14;

modulusE = 30e6;

modulusG = 12e6;

tmax = 13600;

sigmamax = 30000;

delmax = 0.25;

tdash = load/ ( sqrt( ) *x (1) *x ( ))~

R = sqgrt(x(2)*x(2)/4 + ((x(1 y/2) %

M = load*(length + x(2)/2);

J = 2% ((x(1)*x(2)/sqart(2)) *(x(2)72/12 + ((x(1)+x(3))/2)

tdashdash = M*R/J,

tx = sqrt(tdash®2 + 2*tdash*tdashdash*x(2)/(2*R)+tdashdash”2) ;

sigmax = 6*load*length/ (x(4)*x(3)"2);

delx = 4*load*length”3/ (modulusE*x(4)*x(3)"3);

pcx = (4.013*sgrt (modulusE*modulusG*x(3) *2*x(4)"6/36)/(length™2)) *
(1- (x(3)/(2*length))*sgrt (modulusE/ (4*modulusG))) ;

g(l) = tx/tmax -1;

g(2) = sigmax/sigmamax -1;
g(3) = x(1) - x(4);

g(4) = (.10471*x(1)*x(1) + 0.04811*x(3)*x(4)*(14+x(2)))/5 -1;
g(5) = 0.125 - x(1);

g(6) = delx/delmax -1;
g(7) = load/pcx -1;

g(8) = x(1)/2 -1;

g(9) = x(4)/2 -1;

g(10) = -x(1) + 0.1;

g(1l1) = —x(4) + 0.1;

g(12) = 2)/10 -1;

g(13) = x(3)/10 -1;

g(14) = -x(2) + 0.1;

g(15) = -x(3) + 0.1;

© 2015by Taylor & FrancisGroup,LLC



Appendix C: Solutions to Chapter Problems

Chapter 1

1. Let x = number of times fare is reduced by Rs. 300
Revenue = R = price x quantity = (15,000 — 300x) x (130 + 4x)
dR
F imization, —— =0
or maximization, "
S x=875

d’R

x2

Now, =-2400

.. R has a local maximum at x = 8.75
Best fare = (15,000 — 300x) = Rs. 12,375
Number of passengers = (130 + 4x) = 165

Revenue = Rs. 2,041,875

2. Let x = number of additional trees that need to be planted

Yield =y = (50 + x) x (300 — 3x)

For maximization, d—y =0
dx

2
Now, % =-6
X
.. R has a local maximum at x = 25

401
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3. Let r = the radius of the circle; w and / are the width and height of
the rectangle to be inscribed in the circle (see Figure C.1).

ROEC
=l S
2 2
w=~/4r* —h* (Constraint)
A =wh (Objective function to be maximized)
A=A -1 h

Plotting (h, A) gives (see Figure C.2) optimal value of A as 50 cm? at
h =707 cm.

FIGURE C.1
Rectangle inscribed in a circle.

50

481

461

42r

401

38

FIGURE C.2
hvs. A.
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It is easy to show analytically (dA: 0) that maximum area is
. h
given by 2r2when w =h= V2.
4. The fence needs to cover only three sides of the field because the
river is flowing on one side. Thus the optimization problem can be

stated as
Maximize
Xy
subject to
2x +y =300

where x and y are two adjacent sides of the rectangle.

5. Minimize

iixi]‘yij (i#])

=1 j=1

subject to

1

-

where x; is an integer that takes a value 0 or 1.
6. Minimize
(rrR) + rs(W - R)
7. Minimize
@5 -m—-c?+ (55 -2m—c)*+ (70 — 3m — ¢)> + (85 — 4m — ¢)*> + (105 — 5m — ¢)?

m*=15 c*=27

_204,165.5 _ 10,400

8. U= +
330-2T T-20

40<T<90
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0.

10.

11.

Appendix C

o, A 12x5 - 8x122 5 240X :
x - —
Vf= 2 2x2 4322 vifo (fo + 3x§) (29(12 + 3x§)
- 6x - 24 x 12x7 —18x3
S+ 02 5. 2And 1~ 185,
2x; +3%; (fo + 3x§) (fo + 3x§)

Let x, y, and z denote the quantity of product A, B, and C respec-
tively. The optimization problem can be stated as

Maximize
Sx +7y +4z
subject to
12x + 25y + 7z < 28,000
11x + 6y + 20z < 35,000
15x + 6y + 5z < 32,000
Let

x;; = number of units transported from factory P to warehouse A
x1, = number of units transported from factory P to warehouse B

X,3 = number of units transported from factory P to warehouse C

x14 = number of units transported from factory P to warehouse D
X;5 = number of units transported from factory P to warehouse E

X,; = number of units transported from factory Q to warehouse A
X,, = number of units transported from factory Q to warehouse B
X,3 = number of units transported from factory Q to warehouse C
X,4 = number of units transported from factory Q to warehouse D
X,5 = number of units transported from factory Q to warehouse E
X3 = number of units transported from factory R to warehouse A
X3, = number of units transported from factory R to warehouse B

X33 = number of units transported from factory R to warehouse C
X3, = number of units transported from factory R to warehouse D

X35 = number of units transported from factory R to warehouse E

© 2015by Taylor & FrancisGroup,LLC




Appendix C 405

Minimize

3x31 4 7xq5 + 4X15 + 6X14 + 5Xq5 4 DXy + 4Xyy + 2X55 + 5Xyy + Xp5 + 6X5;
+ 3x5, + 2X55 + 2x5, + 455

subject to
X1+ Xpp + Xp3 + Xy + X5 <150
X1 + Xpp + Xog + Xy + Xp5 < 110
Xg1 + Xgp + Xg5 4 X34 + X35 <90
Xq1 + X1 + X5 250
X5 + Xpp + X5, 2 100
X3 + Xp5 + X533 270
Xpg+ Xoy + X3, 270

X5 + Xp5 + X35 2 60

12. The minimum value is —13.128 and occurs at x = —0.47.

The maximum value (see Figure C.3) is 1.128 and occurs at x =-3.53.

FIGURE C.3
Plot of the function.
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13. Let x;; = barrels of gasoline of type i used to make fuel of type j
F, = barrels of fuel of type j

Profit = Revenue — Cost
The objective function and constraints can be written as

Minimize

90F, + 100F, —60(x;; + X;5) — 65(xp; + Xpy)
—70(x3; + x3,) — 80(xy; + Xy5)

subject to

75xy; + 85x5; + 90x5, + 95x,4 — 80F; 20

75x15 + 85x,, + 90x5, + 95x,, — 90F, 20
F, + F, 26000
0 < (xqq + x3,) <3000
0 < (x5, + xp,) <4000
0 < (xg + x3,) <5000

0 < (x4 + x4) <4000

14. Functions at plots (a) and (d) are convex (see Figure C.4).
15. The Taylor series of a function f(x) at x = a is given by

f(a)+f’(a)(x—a)+%(x—a)2 +oe
The Taylor series for the function In(x — 1) at x = 3 is given by

ln2+%(x—3)—%(x—3)2
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50 0
45 10
40
35 -20
30 -30
25
20 —40
15 -50
10 o
: _
0% =3 2 1 0 1 2 3 4 %3355 2-15-1=050 05 1
(a) (b)
600 6.5
: 6
400
55
200 : 5
o 1 45
-~ )
~200 : 35
3
~400
25
~600

2
-1.6-15-14-13-12-11 -1 -09-08 -5 -4-3-2-10 1 2 3 4 5
(c) (d)

FIGURE C.4
Plot of four different functions.

16. The linear approximation of a function is given by the first two terms
of the Taylor series. The linear expansion for the function (1 + x)* +
(1 -2x)%0 at x =1 is given by

L) = (1 + 25 + (120 + 50 x 2#9)(x — 1)

17. The Taylor series for the function e* at x = 3 is given by
e et
e’ +e’(x—3)+—(x—3)° +—(x-3)°
2 6
18. The Taylor series for the function e«s~ at x = n is given by
1.1 2

“+—(x—T
e 2e( )
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19. The quadratic approximation of a function is given by the first three
terms of the Taylor series. The quadratic expansion for the function
In(1 + sin x) at x = 0 is given by

2

Qu)=x-7,

20. The gradient of the function is given by

2X,X, — XoX3
— | 42 2
VF =1 x1 +2x,05 — x,X3

X3 = 2X,X,X5

The gradient at (1, 1, -1) is given by

1
Vf =| -2
3

Now

1/4/14
Vi u=[1 -2 3]| 2,12 |=6/"14

3/414

21. Both functions are convex (see Figure C.5).
22.

i. The maximum value is 19,575/17 and occurs at x = 99/17 and
x = 48/17 (see Figure C.6).

ii. The maximum value is 120 and occurs at x = 0 and x = 30 (see
Figure C.7).

23. The Jacobian is given by
1 4x, 9x,

J=1| 2xx,x3 XX 2030, X7

3x,—2x;  3x;+4x;  2x,+4x,
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90 3
80

2 2.5
60 2
50

20 15
30 1
20

1 0.5
03— 1T 0 1 2 3 % =2 1T o0 1 32 3
(a) (b)

FIGURE C.5
Plot of two different functions.

Maximize 125*x + 150*y

FIGURE C.6
Linear programming problem.

Maximize 3*x + 4*y

FIGURE C.7
Linear programming problem.
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Chapter 2

1. [[L)J =1.71 occurs at o* = 20 degrees

2.

i. The minimum value of function is -3.517 and occurs at x* =
—1.386. The numbers of function evaluations are 16, 20, 40, and 58
by the golden section, cubic polynomial fit, bisection, and secant
method respectively.

ii. The minimum value of function is 4.369 and occurs at x* = 0.45.
The numbers of function evaluations are 15, 16, 36, and 44 by the
golden section, cubic polynomial fit, bisection, and secant method
respectively.

iii. The minimum value of function is 0.691 and occurs at x* = 1.087.
The numbers of function evaluations are 15, 40, 32, and 128 by the
golden section, cubic polynomial fit, bisection, and secant method
respectively.

iv. Minimum value of function is 11.052 and occurs at x* = 1.356.
The number of function evaluations is 16 by the golden sec-
tion method. Other methods did not converge as the function is
highly skewed.

3. The maximum value of function is 0.202 and occurs at x* = 3.
4. The maximum value of function is 28.209 and occurs at x* = 3.577.

5. The maximum value of function is 0.693 and occurs at x* = 0.0. The
minimum value of function is 0.526 and occurs at x* = 1.19.

6. Let x and y be the length and depth of the beam and D be the diam-
eter of the log. Then,

X2 +y2=D?
P=1-x
Let S denote the strength of the beam. Then,
S =kxy?

where k is a constant.

Now,

S=kx(1 - x?)

© 2015by Taylor & FrancisGroup,LLC



Appendix C 411

For maximum,

Therefore,

x=05774m and y=0.8165m

7. Total cost

C:6(300+xj+7><600
x 3 X

For maximum,

dcC
dx

Therefore,
x=54.77 km/h

8. Total time

7—x+\/25+x2

t=

6 2
For minimum,
dr_
dx
Therefore,
x =177 km

9. (T)min = 41,375 N occurs at v* = 149 m/s
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10. The global minimum value of function is —6.097 and occurs at x* =
-1.18. The local minimum value of function is —-5.01 and occurs at
x* = 0.43. The regions ABC and CDE are convex. The region BCD is
concave (see Figure C.8).

11. f'(x) =0
L 2x P10
P2 P2
Therefore,
k
X=—
2p,
Hence,
k2
(x)= =40.5
/ 4pip,

12. The minimum value of function is —4.899 and occurs at x* = 0.3.
13. r* =40.7 mm and h* = 57.6 mm.
14. a* = 2.24 (see Figure C.9).

15

101

FIGURE C.8
Multimodal function.
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28.4
28.35F i
283} - i
28.25F - . R

282} - W 1

"Icl..--"
1

28'152 2.05 2.1 215 22 225 23 235 24 245 25
a

FIGURE C.9
Solution to bacteria problem.

Chapter 3
1. The gradient of the function is given by

Vf:[2x1+3x2}

3x, +4x,

Therefore, search direction for the steepest descent method at (1, 2)
is given by

2. x*=(0,0) with f(x*) =0
3. All the methods converge to the point x* = (3, 2) with f(x*) = 0. The
convergence history of different methods is given below:
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i. Steepest descent method

Initial function value 32.0000

No. x-vector f (x) Deriv
1 2.777 1.706 4.239 46.648
2 -3.827 -2.255 4.894 23.591
3 -3.417 -2.938 8.305 63.644
4 3.276 1.088 7.130 31.920
5 2.843 1.804 2.045 10.994
6 3.036 1.921 0.095 16.863
7 2.993 1.992 0.004 2.150
8 3.001 1.997 0.000 0.792
9 3.000 2.000 0.000 0.089
10 3.000 2.000 0.000 0.018
11 3.000 1.999 0.000 0.007
12 3.000 1.999 0.000 0.032
13 3.000 2.000 0.000 0.024
14 3.000 2.000 0.000 0.010
15 3.000 1.999 0.000 0.005
16 3.000 1.999 0.000 0.017
17 3.000 2.000 0.000 0.029
18 3.000 2.000 0.000 0.013
19 3.000 1.999 0.000 0.007
20 3.000 2.000 0.000 0.022
21 3.000 2.000 0.000 0.012
22 3.000 1.999 0.000 0.007
23 3.000 2.000 0.000 0.019
24 3.000 2.000 0.000 0.011
25 3.000 1.999 0.000 0.007
26 3.000 2.000 0.000 0.018
27 3.000 2.000 0.000 0.011
28 3.000 1.999 0.000 0.006
29 3.000 2.000 0.000 0.017
30 3.000 2.000 0.000 0.010
31 3.000 1.999 0.000 0.006
32 3.000 2.000 0.000 0.017
33 3.000 2.000 0.000 0.010
34 3.000 1.999 0.000 0.006
35 3.000 2.000 0.000 0.016
36 3.000 2.000 0.000 0.010
37 3.000 1.999 0.000 0.006
38 3.000 2.000 0.000 0.016
39 3.000 2.000 0.000 0.009
40 3.000 1.999 0.000 0.006
41 3.000 2.000 0.000 0.015
42 3.000 2.000 0.000 0.009
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ii. Newton’s method

Initial function value 32.0000

No. x-vector f (x) Deriv
1 4.426 2.016 114.754 46.648
2 3.508 1.780 9.631 193.672
3 3.095 1.967 0.298 42.834
4 3.004 1.998 0.001 6.720
5 3.000 2.000 0.000 0.292
6 3.000 2.000 0.000 0.001

iii. Modified Newton’s method

Initial function value 32.0000

No. x-vector f (x) Deriv
1 2.991 2.598 7.814 46.648
2 2.951 2.035 0.076 31.917
3 2.999 2.001 0.000 2.892
4 3.000 2.000 0.000 0.035
5 3.000 2.000 0.000 0.006
6 3.000 2.000 0.000 0.001

iv. Levenberg-Marquardt method

Initial function value 32.0000

No. x-vector f (x) Deriv
1 2.024 2.963 29.980 46.648
2 2.074 2.898 26.507 44 .421
3 2.172 2.794 21.043 40.863
4 2.353 2.646 13.471 35.851
5 2.615 2.457 5.628 29.097
6 2.844 2.259 1.324 19.368
7 2.952 2.107 0.184 9.124
8 2.989 2.028 0.012 3.221
9 2.998 2.004 0.000 0.797
10 3.000 2.000 0.000 0.113
11 3.000 2.000 0.000 0.008
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v. Conjugate gradient method

Initial function value 32.0000

No. x-vector f (x) Deriv
1 2.777 1.706 4.239 46.648
2 3.076 1.727 0.920 23.591
3 3.110 1.886 0.425 6.141
4 3.029 2.027 0.060 6.459
5 2.993 2.031 0.014 3.124
6 2.987 2.019 0.008 0.955
7 2.994 1.998 0.001 0.719
8 3.000 1.996 0.000 0.484
9 3.001 1.997 0.000 0.139
10 3.001 1.999 0.000 0.084
11 3.000 2.000 0.000 0.070

vi. DFP method

Initial function value 32.0000

No. x-vector f (x) Deriv
1 2.777 1.706 4.239 46.648
2 3.076 1.727 0.920 23.591
3 2.997 1.999 0.000 6.142
4 3.000 2.000 0.000 0.229
5 3.000 2.000 0.000 0.019
6 3.000 2.000 0.000 0.004
7 3.000 2.000 0.000 0.001

vii. BFGS method

Initial function value .0000

No. x-vector f (x) Deriv
1 2.777 1.706 4.239 46.648
2 3.076 1.727 0.920 23.591
3 2.997 2.000 0.000 6.141
4 3.000 2.000 0.000 0.234
5 3.000 2.000 0.000 0.020
6 3.000 2.000 0.000 0.004
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viii. Powell method

Initial function value 32.0000
No. x-vector f (x)
1 3.000 2.003 0.000
2 3.000 2.001 0.000
3 3.000 2.001 0.000
4 3.000 2.001 0.000
5 3.000 2.000 0.000
ix. Nelder-Meads method

Iteration Deviation f(x)

1 87.9962 58.789
2 29.8163 21.131
3 32.1499 10.859
4 13.5635 10.859
5 4.5179 6.998
6 5.4792 2.191
7 3.5857 0.483
8 1.3618 0.483
9 1.1302 0.483
10 0.3982 0.483
11 0.3662 0.116
12 0.2224 0.116
13 0.0865 0.072
14 0.0644 0.006
15 0.0417 0.006
16 0.0084 0.006
17 0.0089 0.002
18 0.0029 0.002
19 0.0023 0.001
20 0.0013 0.001
21 0.0011 0.000
22 0.0005 0.000
23 0.0002 0.000
24 0.0002 0.000

2.9994 1.9987
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4. The metric [A] approaches the inverse of the Hessian matrix in the

DFP method.
Initial function value = 9.0000
No. X-vector f (x) Deriv
1 0.545 -0.183 0.165 13.928
2 0.001 -0.000 0.000 0.575
3 -0.000 0.000 0.000 0.001
4 0.000 -0.000 0.000 0.000

0.909090909189563 -0.272727272447249
-0.272727272447250 0.181818182613013

>> inv(hessian(x,delx,n of var))
ans =

0.909090909090909 -0.272727272727273
-0.272727272727273 0.181818181818182

5. The metric [A] approaches to the Hessian matrix in the BFGS method.

Initial function value = 67.0000

No. x-vector f (x) Deriv
1 0.818 -0.273 0.372 38.275
2 0.001 -0.000 0.000 0.862
3 -0.000 0.000 0.000 0.001

1.999999985050531 2.999999955266635
2.999999955266635 9.999999866143737

>> hessian(x,delx,n of var)
ans =

2.000000000000000 3.000000000000000
3.000000000000000 10.000000000000002
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6. x* = (~0.656, —0.656) with f(x*) = —2.661

Initial function value = 4.3891

419

No. x-vector f (x) Deriv
1 0.098 0.184 -2.422 21.090
2 -0.764 -0.539 -2.601 0.987
3 -0.665 -0.599 -2.641 0.763
4 -0.655 -0.656 -2.661 0.845
5 -0.655 -0.656 -2.661 0.014
6 -0.656 -0.656 -2.661 0.010
7 -0.656 -0.656 -2.661 0.002

7. x* = (1,0, 0) with f(x*) = 0

8. Both the complex variable formula and the central difference for-

mula give the same results.

9. The value of the analytical derivative at x = 0.1 is 10.995004165278026.
The value of the derivative at x = 0.1 using the central difference
formula is 10.995337352778689. The value of the derivative at x = 0.1
using the complex variable formula is 10.995004165278024.

10.
x; flx) S; o* fla*)
1) 106 2, 4) 0431928 283361
0,0) 170 1,2 1.41453 43.9167
3,2) 0 1,1)  —0.00366 0.00099
11. x* = (0, 0) with flx*) =0
12.
-0
X, = P
v
—w
X, = Pz
w
Since the second derivative is negative {_pz} , it corresponds
to the maximum of the function (+x)
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13. x* = (0.02, 1.6) with f(x*) = —25.632

Initial function value = 0.0000

Appendix C

No. x-vector f(x) Deriv
1 0.122 1.530 -24.751 32.102
2 0.020 1.593 -25.631 16.299
3 0.020 1.599 -25.632 0.167
4 0.020 1.599 -25.632 0.030
5 0.020 1.600 -25.632 0.022
6 0.020 1.600 -25.632 0.016
7 0.020 1.600 -25.632 0.011
8 0.020 1.600 -25.632 0.002
——
Chapter 4
1. Maximize
z=5x+7y
subject to
2x + 3y <42
3x +4y <48
xy=0

The solutionis x =0,y =12,z =84

2.
i. The solutionisx; =0,x,=5,z=-10
ii. The solutionis x; =0, x, =10,z =50

iii. The solution is x1:§, X, =Q, z:@
7 7 7
iv. The soluti 'x——x—éz—l
iv. esolutionis =7 % = - 5
Xy 2/3
3. | x |=| =2 | (Infeasible)
X, 5/3
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x| [11/4
x, |=| 9/8 | (Feasible)
X, | 5/8
X1 i 2
x; |=| 3/5 | (Feasible)
x| |2/5
X, -3
x; | =] 11/5 | (Infeasible)
X, -1/5
4.k=2
5,
i.
o .
X
1 2 3 1 0 0 3 5 xz
A=|=2 1 =4 0 -1 ce=| 1 ib=|5 k=™
3 5 0 0 1 0 7 5
0 e,
_O_ S5
ii.
__2_ x{
3 *2
3 2 3 3 -1 0 0 4 5 ¥,
4 31 10 1 0| 2]
1 2 1 -1 0 0 1 0 8
1 0 0 0 0 0 0 5 1
0 %
L 0] s,
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6.
-1
X3 1 0 0 7 7
x;=|x, |=Bb=|0 1 0 8|1=1|8
X 0 0 1 5 5
7. The solution is x; =0, x, =5,z =-10
basic_set =
3 4 5
nonbasic_set =
1 2
Initial Table =
1 0 0 1 2 10
0 1 0 2 -1 5
0 0 1 4 -3 5
Cost =
0 0 0 3 -2 0
basic_set =
2 4 5
nonbasic_set =
1 3
Table =
1 0 0 1/2 1/2 5
0 1 0 5/2 1/2 10
0 0 1 11/2 3/2 20
Cost =
0 0 0 4 1 10
—————— SOLUTION------
basic_set =
2 4 5
Xxb =
5
10
20
zz =
-10

8. Because the cost coefficients of the nonbasic variables are not zeros,
the LPP has a unique solution.

basic_set =

3 4 5
nonbasic_set =
1 2
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Initial Table =

1 0 0 2 -4 2
0 1 0 -1 1 3
0 0 1 1 0 4
Cost =
0 0 0 1 -2 0
basic_set =
3 2 5
nonbasic_set =
1 4
Table =
1 0 0 -2 4 14
0 1 0 -1 1 3
0 0 1 1 0 4
Cost =
0 0 0 -1 2 6
basic_set =
3 2 1
nonbasic_set =
4 5
Table =
1 0 0 4 2 22
0 1 0 1 1 7
0 0 1 0 1 4
Cost =
0 0 0 2 1 10
—————— SOLUTION------
basic_set =
3 2 1
Xb =
22
7
4
zz =
-10
9.%,=0,x,=0,x;=2
10. The dual is
Minimize
zZ=17x; + 6x,
subject to
x, 24
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X, 25
2x,+x,223
X, +3x,224

Xy, %, 20

The optimal solution for the dual problem is 93 at x; =9, x, = 5.
The optimal solution for the primal problem is 93 at y; = 0, y, = 0,
Y3=3 =1
11. x, = 0.505, x, = 0.745, z = 1.25

Chapter 5

1. String length = 17.
2. String length for each variable as 14, 17, and 12.

3. Rerun the codes by modifying the input parameters mentioned in
the file in.m.

4. Roulette wheel slots can be constructed for each of the strings. For
example, the first string will have slots from 0 to 0.065 (25/385). Other
slots are made in a similar way. Ten uniformly distributed random
numbers are generated between 0 and 1. The corresponding strings
pointed out by the random numbers are then selected. The strings
selected are S5-1 (one copy), S-3 (two copies), S-4 (one copy), S-5 (two
copies), S-6 (one copy), S-8 (two copies), and S-9 (one copy). No copies
of the strings S-2, S-7, and 5-10 are made (see Figure C.10).

5. A tour size of two is selected. Each string has to be paired randomly
with any other string in the group using random number genera-
tion. The winner is decided by comparing the fitness values of the
strings (see Table C.1).

A

N O D O S Y

S-15-2}  S-3  |S-4 S-5 S-6 [S-7] S-8

o
=
S

FIGURE C.10
Roulette wheel slots.
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TABLE C.1

Tournament Selection

String Competitor Winner
S-1 S-5 S-5
S-2 S-10 S-10
S-3 S-10 S-3
S-4 S-2 S-2
S-5 S-10 S-5
S-6 S-5 S-5
S-7 S-8 S-8
S-8 S-1 S-8
S-9 S-4 S-9
S-10 S-9 S-9

6. Global minimum at x* = (0, 0) with f(x*) =0
7. Global minimum at x* = (0, 0) with f(x*) =0

8. The Himmelblau function has four distinct minima (see Figure C.11)
as given below:

x=3x=2fx)=0
X, = 3.584, x, = —1.848, f(x*) = 0
X, =-3.779, x, = -3.283, f(x*) = 0

x, = —2.805, x, = 3131, f(x*) = 0

10004

x -5 -5

FIGURE C.11
Himmelblau function.
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9. Global minimum x* = (-0.656, —0.656) with f(x*) = —2.661
10. Global minimum x* = (1.139, 0.8996) with f(x*) = 1.9522
11. Global minimum x* = (1, 3) with f(x*) =0
12. Global minimum x* = (0, 0) with f(x*) =0

Chapter 6
1.
i. Infeasible
ii. Feasible
iii. Infeasible
iv. Feasible
2. Only ii is active.
3. Substitute the value of x, = 7 — x; in the objective function

flx) = 5xy = 147 + (x, + 27

. . - . 4
Taking the first derivative as zero gives, x; = 34

13
Therefore, x, = % and f(x*)= zli;

4. Writing the Lagrangian as
Lx,\) = Bx; — 2x)* + (1 + 22 + Mx; + x, = 7)
The KKT conditions are given by the equations

20x; = 12x,+ A +4 =0
—12x, + 8x, + A =0
X +x,-7=0
Solving these equations gives the solution as x; = 34/13 and

x, = 57/13, which is the optimum point with A = —48/13. The mini-
mum value of the function is 288/13. Also,

VZL — 20 —12 > 0
-12 8
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The Lagrange multipliers provide information on the sensitivity
of objective function with respect to the right-hand side of the con-
straint equation (say, b). Then,

48
Af =uAb=— 2 Ab
f =L 13

Therefore,

288 48

Y
f=45 13

If the right-hand side of the constraint is changed by 1 unit, then
the new value of the function minimum is 18.461 (approximately).
The true minimum of the problem with the revised constraint is
18.615.

Iteration 1

_6; |3 w1 wor| 1],
f(x)=6; Vf(x)_{_J,Vh_L}, vg_{_l},

The quadratic problem is

Minimize

O=M" 3 " 1 AxT 8§ 7 Ax
4| 2 -7 12
subject to

~1+[1 1]Ax=0

“1+[-1 -1]Ax=0
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The solution of the quadratic problem is
Ay = | 03529
0.6471
Now x is updated as
x—x+Av=| 1]4]03529 | _| 13529
1 0.6471 1.6471

Iteration 2

1.7056 1.64712 1
= 5.007; Vf(x)= ; Vh= ;vg=| 1|
) ) {—1.9473} { 1.3529 } g { }

V2| 83751 27195
2.7195  6.6889

The quadratic problem is

Minimize

Q=T 1.7056 +1AxT 83751 2.7195 Ax
-1.9473 | 2 27195 6.6889

subject to

0.2284+[1.64712 1.3529] Ax =0
2+[-1 -1JAx=0

The solution of the quadratic problem is

Ap o | 04279
0.3521
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Now x is updated as

pe oyt Are | 13529 |, | —04279 | _| 0.9251
16471 | | 03521 1.9991

In a similar manner, other iterations can be written. The values at

the termination of the algorithm |x = LOS71 | ore
1.9284

—-0.8643 1.9284 -1
=4.4819; V = ; Vh= ; Vo=
&) fx) { —0.4648 } { 1.0371 } g { -1 }

v = | 174375 1.0098
1.0098  3.5976

6. Identical results are obtained.

7. The number of iterations will vary with different start values of the
design variables.

8. Identical results are obtained.

9. Copy the SQP folder (of some other problem) to the working direc-
tory and make changes in function and constraint subroutines as
follows.

function y = func val (x)
vy = 0.0064*x(1)*(exp(-0.184*x(1)70.3*x(2))-1);

function y = func vall (x)
vy = 0.0064*x(1)*(exp(-0.184*x(1)70.3*x(2))-1);

function h = egconstr_val (x)

h(1) = 0;

function g = inegconstr_ val (x)

g(1l) = ((30004x(1))*x(1)"2*x(2))/1.2e13 -1;
g(2) = ( exp(0.184*x(1)"0.3*x(2)) )/4.1 -1;

© 2015by Taylor & FrancisGroup,LLC



430

o o o°

n of var = 2;
n of eqcons = 1;
n of igcons = 2;

X = [30000 0.5];

MATLAB code sgp.m

o\°
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Appendix C

Execute the SQP code with these modifications and the converged
solution is obtained in five iterations.

No. x-vector £ (x) |cons. |

1 30402.6828 0.384516 -153.906889 0.166892524091
2 31592.6073 0.344868 -153.329290 0.00924809461
3 31764.8743 0.342079 -153.711944 0.00001910009
4 31765.5812 0.342072 -153.714422 0.00000000010
5 31765.5812 0.342072 -153.714422 0.00000000000

10. x* = (0.05179, 0.3591, 11.1527) with f(x*) = 0.01267

Chapter 7

1. The Pareto front is given in Figure C.12.

2. The Pareto front is given in Figure C.13.

FIGURE C.12
Pareto front.
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. r
*x
*e
L™
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01 02 03 04 05 A 06 07 08 09 1
1

FIGURE C.13
Pareto front.

3. The Pareto front is given in Figure C.14.
4. The Pareto front is given in Figure C.15.
5. The Pareto front is given in Figure C.16.
6. The Pareto front is given in Figure C.17.

0.9
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06}

@ 05f

041
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02}
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2
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0

0 01 02 03 04 05 06 07 08 09
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FIGURE C.14
Pareto front.
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09t ]

0.7 E

0.6 ]

FIGURE C.15
Pareto front.
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FIGURE C.16
Pareto front.
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FIGURE C.17
Pareto front.

Chapter 8

1. x* = (1.305470, 1.390561, 0.4892672) with f(x*) = 125.9045

. x* = (0.3205667, 1481980, 1.064722, 1.719745) with f(x*) = 4747193
. x* = (0.5, 0.5) with f(x*) = 0.5

. D*=0.922 cm, Q* = 0.281 m3/s

. Ap* =400,000 Pa, Q* = 7.5 x 10* m3/s, C* = $477.19

. A* =2.28°C, Q* = 764.72 m3/m?, C* = 1.163 ($/m?)

7. o =469 rad/s, T* = 262 Nm

N Ul B~ W DN

L]
Chapter 9
1. Full factorial design

0.5 5 0.01
0.5 7.5 0.01
0.5 10 0.01
1.25 5 0.01
1.25 7.5 0.01
1.25 10 0.01
2 5 0.01
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2 7.5
2 10
0.5 5
0.5 7.5
0.5 10
1.25 5
1.25 7.5
1.25 10
2 5

2 7.5
2 10
0.5 5
0.5 7.5
0.5 10
1.25 5
1.25 7.5
1.25 10
2 5

2 7.5
2 10

2. Central composite design

0.5 5

0.5 10

2 5

2 10
0.293 7.5
2.828 7.5
1.25 7.07
1.25 14.14
1.25 7.5

3. ay=0.16, 3, = 0.572

4.y =49.2682 + 0.02x, + 0.2745x, + 0.3084x, + 14.3068x,

o

O O O O OO OO0 O0OO0O0OO0OOOoOOoOOoOOoOo

.01

.01

.055
.055
.055
.055
.055
.055
.055
.055
.055

=

PR R RRERRBR

Appendix C

5. (zl* 2y, X, X ):(0.7, 17, 7.3, 7.71532). The value of objective func-

tion is 2994.355.

Chapter 10

1. x* = (7, 1) with f(x*) = -23
2. x* = (1, 0) with f(x*) = -1
3. Let x; and x, be the number of chairs and tables to be produced. The

integer programming problem is
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Maximize

f(x) = 100x, + 160x,

subject to
6x; + 14x, <42
7x,+7x,<35

X1, %, 20

where x; and x, are integers.
The optimal solution is x* = (5, 0) with f(x*) = 500.
.x*=(1,0,1,1,0,1,0,0, 1) with f{x*) =72
= (2, 2) with f(x*) = -16
= (1, 5) with f(x*) = -39
= (0, 5) with f(x*) = 10
=(0, 1) with f(x*) =2

P N S G

Chapter 11

1.
= (0, 5) with f(x*) = -10

1 52

262
ii. x*=|—, — |with
i, x [5 SJWI flx*)= =

. (15 110
X
(7 7

] ith f(x*)=—+
= (8, 0) with f(x*) = 24
3. The optimal path is ADFGI and the minimum distance is 19.

4. Two numbers of component 1, two numbers of component 2, and
one number of component 3, with the probability of the system =
0.9736.
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A

Aerodynamic response surface models,
244
Aerospace applications
weight minimization for, 3
Affine scaling method, for LPP, 125-126,
127f
All-integer programming problem, 263;
see also Integer programming
problem
Angle of attack (o), 244, 246, 255, 255f,
256
Annealing, 140, 154; see also Simulated
annealing (SA)
Ant colony optimization (ACO)
technique, 2, 160-163
applications, 160
background, 160
formula, 165
Array operators, MATLAB®, 317
Arrays, MATLAB®, 309-312
Aspiration criteria, 163
Augmented Lagrange multipliers
(ALM) method
for constrained optimization
problem, 175-176, 182-184
formula, 198
MATLAB® code, 183-184, 372-374

B

Backward difference formula, 17-18,
28

Backward difference method, 17

Balas’ method, 264, 272-274, 286287

Bank angle, 246

Barrier function methods, for LPP, 125
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Basic feasible solution
for LPP, 103
Basic solution, for LPP, 103-105
feasible, 103
optimal, 103
Bellman, Richard, 2, 289
BFGS method, see Broyden—Fletcher—
Goldfarb-Shanno method
Bilevel integrated system synthesis
(BLISS) architecture, of MDO,
252-253, 254f
Bisection method
algorithm for, 39t
comparison with other methods,
49-51, 50f, 51t
for 1-D optimization problem, 38—40,
39f-40f
MATLAB® code, 39, 328-329
Boyle’s law, 5
Branch-and-bound method
MATLAB® code, 279281, 282-283,
394-398
for nonlinear integer programming
problems, 263-264, 278-284,
280f, 282f, 284f
Broyden—Fletcher—Goldfarb—Shanno
(BFGS) method
algorithm for, 73t
MATLAB® code, 72-73, 345-347
performance comparison with other
methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t
search direction in (formula), 87
for unconstrained optimization
problems, 55, 72-73, 73t
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C

Calculus
history, 1
Calculus of variations, 1
history, 1
Cantilever rod (example), 10-11, 11f
Cauchy, Augustin-Louis, 1
Central difference formula, 18, 28
for second derivative, 28
Central difference method, 17
CFD analysis, see Computational fluid
dynamics (CFD) analysis
Collaborative optimization (CO)
architecture, of MDO, 251-252,
251f
advantage, 252
disadvantage, 252
Command window, MATLAB®, 309, 311f
Computational fluid dynamics (CFD)
analysis, 190191, 244, 254, 255
Computers
development of, 2
Concave function, 15, 16f
Concurrent subspace optimization
(CSSO) architecture, of MDO,
252, 253f
formula, 259
Conjugate directions, 68, 68f
Conjugate gradient method
algorithm for, 69t
MATLAB® code, 69-70, 342-343
performance comparison with other
methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t
search direction in (formula), 87
for unconstrained optimization
problems, 6870, 68f, 69t, 70f
vs. steepest descent method, 69-70,
70f
Constrained optimization, 2
Constrained optimization problem,
169-196
application to structural design,
195-196, 195f
geometric programming, 231-235
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optimality conditions, 171-174
example, 173-174, 174f
Karush-Kuhn-Tucker (KKT)

conditions, 172-173
Lagrange function, 171, 172
Lagrange multipliers, 172, 173
regular point, 172

overview, 169-171, 170f, 171f

solution techniques, 175-176
augmented Lagrange multipliers

(ALM) method, 175-176,

182-184
feasible directions, method of, 176,

190-195
penalty function method, 175,

176182, 177f, 179f
Rosen’s gradient projection

method, 176, 192-195, 193f
sequential quadratic
programming, 176, 184-190
variable substitution method, 175
Zoutendijk’s method, 176, 191-192
vs. unconstrained problem, 169
Constraints, 4-5

equality, 4-5, 170

inequality, 4, 5, 170
Continuous data, 5
Contour plot, MATLAB®, 318f
Contraction operation, simplex, 75-76
Convergence method

linear, 62

quadratic, 62

superlinear, 62

Convex function, 13-14, 14f, 16f
examples, 14, 15f
Convexity, 13-16, 14f-16f
MATLAB® code, 13, 322-323
Convex set, 13-14, 14f
Crossover operation, in GA, 147-148, 148t
CSSO (concurrent subspace
optimization) architecture, of

MDO, 252, 253f

formula, 259

Cubic polynomial fit

algorithm for, 45t

comparison with other methods,

49-51, 50f, 51t

for 1-D optimization problem, 44-45

MATLAB® code, 45, 332-333
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Curse of dimensionality, in dynamic
programming, 289

Cylindrical can manufacturing
(example), 8-9, 8f

D

Dantzig, George, 2
Darwin’ survival of the fittest principle,
140
Davidon-Fletcher-Powell (DFP) method
algorithm for, 71t
MATLAB® code, 71-72, 177, 344-345
performance comparison with other
methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s function, 79t
for Wood’s function, 83t
search direction in (formula), 87
for unconstrained optimization
problems, 55, 70-72
Decision variables, 3—4
de Fermat, Pierre, 1
Degeneracy
simplex method for LPP, 114-116
Degree of difficulty, in geometric
programming, 225-226
Demand-supply problem, 5-6
Dependent variable, 6
Derivative(s)
concept of, 16-17, 17f
directional, 16-22, 171, 18f
of function, 18-19, 18f
inflection point (saddle point), 19, 19f
MATLAB® code, 18, 323-324
Design of experiments (DoE), 256
Design variables, 3-4, 5
for optimization problem, 3-4, 4t
Deterministic dynamic programming,
289-294
concept of, 290291, 290f
example, 293294
stage 1, 291, 292t
stage 2, 291, 292t
stage 3, 291, 292f, 292t
stage 4, 291, 291f, 291t
structure of, 290f
Dichotomous search method
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for 1-D optimization problem, 38,
47-48, 48f
Diet problem, 1
example, 6-8, 7t
Differential equation, 6
solution for, 6
Directional derivative, 16-22, 17f, 18f
Direct search methods, 35, 38
1-D optimization problem
dichotomous search, 47-48, 48f
Fibonacci method, 47, 49
golden section method, 46-47, 47t
interval halving method, 47, 48,
49f
for unconstrained optimization
problems
Nelder-Mead algorithm, 55,
75-78, 75f, 76f, 77t
Powell method, 55, 74, 74t
Discrete data, 5
Discrete programming problems, 263;
see also Integer programming
problem
Domination, principle of, 204
Dual problem
geometric programming for, 229-231,
239
Dual simplex method, for LPP, 121-124
algorithm for, 123t
MATLAB® code, 121, 122, 356358
primal to dual conversion,
transformation rules, 121-122,
122t
Dynamic programming, 289-296
curse of dimensionality in, 289
deterministic, 289-294
limitations, 289
for LPP (example), 293-294, 293f
overview, 289
principle of optimality in, 289
probabilistic, 294-296, 295t-296t
stages, 289
Dynamic programming problems
history, 2

E

e-constraints method
concept of, 211, 211f
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for multiobjective optimization
problem, 210-212, 211f-212f
nonconvex Pareto front, 211-212,
212f
Elementary functions, in MATLAB®,
313-314
End-effector, 83
Equality constraints, 4-5, 170
Euclid, 1
Euler, Leonhard, 1
Evolutionary methods, 139
genetic algorithms, 140-142; see also
Genetic algorithms (GAs)
crossover and mutation, 147-148,
148t
fitness evaluation, 143, 144t
initialize population, 142-143
multimodal test functions,
148-153, 1491, 151f, 152f
reproduction, 143-147, 145f, 145t
working principle, 141-142, 141f
for nonlinear integer programming
problems, 284285, 285f, 285t
PSO method, 284-285
particle swarm optimization,
157-158, 159f, 159t
Expansion operation, simplex, 76, 76f
Expressions, MATLAB®, 312-314
Exterior penalty function method,
176-177, 177f

F

Feasible directions, method of, 176,
190-195
Rosen’s gradient projection method,
176, 192-195, 193f
Zoutendijk’s method, 176, 191-192
Feasible point, 5
Feasible solutions
for LPP, 103
Fibonacci method
for 1-D optimization problem, 38,
47,49
Finite element analysis, 254, 255
Fitness evaluation, in GA, 143, 144t
modified, 145t
Fletcher—Reeves conjugate gradient
method
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algorithm for, 69t
MATLAB® code, 69-70, 343-344
performance comparison with other
methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t
for unconstrained optimization
problems, 68-70, 69t, 70f
vs. steepest descent method, 69-70, 70f
Forward difference formula, 17, 28
Forward difference method, 17
Free (unrestricted) variable, 100
Full factorial design, 256, 256f
Function(s), 3; see also specific types
derivative of, 18-19, 18f
linear approximation, 23-25, 23f
objective, 3
quadratic approximation, 23-25, 23f,
24f

G

Gauss, Carl Friedrich, 1
General solution, 6
Genetic algorithms (GAs), 2, 140-142, 245
crossover and mutation, 147-148, 148t
fitness evaluation, 143, 144t
modified, 145t
initialize population, 142-143
MATLAB® code, 142, 148
multimodal test functions, 148-153,
1491, 151f, 152f
Rastrigin’s function, 149-151, 149f,
151f
Schwefel’s function, 149, 151-153,
152f
reproduction, 143-147
pie chart, 145-146, 146f
Roulette wheel selection, 145-146,
146f
selection pressure, 145
tournament selection, 145, 146147,
146t
schema theorem, 147-148
selection pressure, 145
vs. gradient-based methods, 148-153
working principle, 141-142, 141f
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Geometric programming, 223-238
application (two-bar truss), 223,
235-238, 236f
constrained optimization, 231-235
degree of difficulty in, 225-226
dual problem, 229-231
objective function (posynomial
form), 223-224
overview, 223-224, 224f
unconstrained problem, 224-229
Global optimum solutions, for
nonconvex function, 13, 14f
Global variables
MDO, 246
Goal programming method
advantages, 213
lexicographic, 214
for multiobjective optimization
problem, 212-214
formula, 221
Pareto front, 214
Golden section method
advantages, 46
algorithm for, 47t
comparison with other methods,
49-51, 50f, 51t
for 1-D optimization problem,
46-47
MATLAB® code, 46, 58, 333-334
Gomory, Ralph, 2
Gomory constraint, 267, 268, 271
Gomory’s cutting plane method
for linear integer programming
problems, 263, 265-272
MATLAB® code, 266, 267-272,
390-394
Gradient-based algorithms, 14
Gradient-based 1-D optimization
algorithms, 35, 38
bisection method, 38—40, 39f-40f, 39t
cubic polynomial fit, 44-45, 45t
Newton-Raphson method, 40-42,
411, 42t
secant method, 42-43, 43f, 44t
Gradient-based search methods, 139
for unconstrained optimization
problems, 55, 60—-62
BFGS method, 55, 72-73, 73t
DFP method, 55, 70-72, 71t
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Fletcher—Reeves conjugate
gradient method, 6870, 68f,
69t, 70f

Levenberg-Marquardt method,
55, 66—67, 67t

modified Newton’s method, 66,
66t

Newton’s method, 55, 63-65, 65t

steepest descent method, 62-63, 63t

vs. GA, 149-153
Gradient(s)

of function, 1, 16-22

MATLAB® code, 20, 95, 324-325
Gradient vector, 16-22

for objective function, 20-21, 20f
Graphical method, 11-13, 12f, 13f

LPP solution with, 95-98

feasible region, 95, 96f

infeasible solution, 98

infinite solutions, 96-97, 97f

unbounded solution, 97-98, 98f

MATLAB® code, 12, 95, 321-322
Guided random search methods, 139-164
ant colony optimization, 160-163
evolutionary methods, 139
genetic algorithms, 140-142; see also
Genetic algorithms (GAs)

crossover and mutation, 147-148,
148t

fitness evaluation, 143, 144t

initialize population, 142-143

multimodal test functions,
148-153, 1491, 151f, 152f

reproduction, 143-147, 145f, 145t
working principle, 141-142, 141f
overview, 139-140, 140f
particle swarm optimization,
157-158, 159f, 159t
simulated annealing, 154-156, 155t,
156f-157f
tabu search, 163-164, 163t

H

Hancock, Harris, 2

Hessian matrix (H), 16-22, 55, 63—64, 68
example, 22
inverse of, 70-71
MATLAB® code, 21, 64, 340-341
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positive definite, 21
for three-variable function, 29
Historical review, 1-2

I

Independent variable, 6
Individual discipline feasible (IDF)
architecture, of MDO, 248, 248f
advantage, 248
formula, 248-249
Inequality constraints, 4, 5, 170
Infeasible solution
for LPP, 98
Infinite solutions
for LPP, 96-97, 97f
Inflection point, 19, 19f
Initialize population, in GA, 142-143
Integer programming problem, 263-285
Balas algorithm, 264, 272-274
development of, 2
linear, 264-265, 265f
Gomory’s cutting plane method,
265-272
zero-one problems, 272-277, 277t
nonlinear, 277-278
branch-and-bound method,
278-284, 280f, 282f, 284f
evolutionary method, 284-285,
285f, 285t
overview, 263-264, 264f
Interior penalty function method,
178-179, 179f
Interior-point methods, for LPP,
125-126, 1251, 126t
affine scaling methods, 125-126, 127f
algorithm for, 126t
barrier function methods, 125
MATLAB® code, 125, 358
potential-reduction methods, 125
Interval halving method
for 1-D optimization problem, 38, 47,
48, 49f

J

Jacobian (J) function, 20-21
with three variables, 28
Job scheduling problem, 163
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172-173
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L

Lagrange, Joseph-Louis, 1
Lagrange function
for constrained optimization
problem, 171, 172
formula, 197
Lagrange multipliers, 172, 173,
182-183; see also Augmented
Lagrange multipliers (ALM)
method
Least squares method
history, 1
Legendre, Adrien-Marie, 1
Leibniz, Gottfried Wilhelm, 1
Levenberg-Marquardt method
algorithm for, 67t
MATLAB® code, 67, 342-343
performance comparison with other
methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t
search direction in (formula), 87
for unconstrained optimization
problems, 55, 6667
Lexicographic goal programming
method, 214
Linear approximation, 23-25, 23f, 24f
example, 24-25
Linear convergence method, 62
Linear function
properties, 93
Linear integer programming problems,
264-265, 265f
formula, 286-287
Gomory’s cutting plane method,
265-272
zero-one problems, 272-277, 277f
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Linear programming (LP) model
history, 2
Linear programming problem (LPP), 5,
93-131
applications, 93
basic feasible solution, 103
basic solution, 103-105
defined, 93
dynamic programming for
(example), 293294, 293f
feasible region for, 95, 96f
feasible solution, 103
graphical method, 95-98, 96{-98f
infeasible solution for, 98
infinite solutions for, 96-97, 97f
interior-point method, 125-126, 125f,
126t, 127
optimal basic solution, 103
overview, 93-94, 94f
portfolio optimization, 127-131, 127t
primal to dual conversion,
transformation rules, 121-122,
122t
simplex method, 105-120
algorithm for, 109t
degeneracy, 114-116
dual, 121-124, 122t, 123t
feasible region, 111-112, 111f
multiple solutions, 112-114, 114f
two-phase method, 116-120
in standard form, 98-103
formula, 133
unbounded solution for, 97-98, 98f
Local minimum functions
saddle point and, 19, 19f

Local optimum solutions, for nonconvex

function, 13, 14f
Local variables
MDO, 246
LPP, see Linear programming problem
(LPP)

M

Machine allocation problem, 1
Mach number (M), 244, 255, 255f, 256
Mathematical models, 5

The MathWorks Inc., 309

MATLAB®, 12, 309-320
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advantage, 309

array operators, 317

arrays, 309-312

command window, 309, 311f
elementary functions in, 313-314
expressions, 312-314

matrices, 309-312

matrix operations, 315-317

on Microsoft Windows, 309, 311f
operators, 312-313

overview, 309

plotting, 318, 318f{-319f
programming, 319-320

MATLAB® code, 12, 18, 20, 321-400

ALM method (ALM.m), 183184,
372-374

BFGS method (BFGS.m), 72-73, 345-347

bisection method (bisection.m), 39,
328-329

branch-and-bound method, 279-281,
282-283, 394-398

convexity (convexity.m), 13, 322-323

cubic polynomial fit (cubic.m), 45,
332-333

derivative (derivative.m), 18, 323-324

DFP method (DFP.m), 71-72, 177,
344-345

dual simplex method, 121, 122, 356-358

exhaustive.m, 37, 328

Fletcher—Reeves conjugate gradient
method (conjugate.n), 69-70,
343-344

GA, 142, 148, 359-365

golden section method (golden.m), 46,
58, 333-334, 335-336

Gomory’s cutting plane method, 266,
267-272, 390-394

gradient (grad.m), 20, 324-325

graphical method (graph_exampl2.m),
12, 95, 321-322

Hessian matrix (hessian.m), 64, 340-341

interior-point method (interior.m),
125,358

Levenberg-Marquardt method
(levenbergmarquardt.m), 67,
342-343

modified Newton’s method
(modified_newton.m), 66,
341-342
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MuPad, 95, 96
Nelder-Mead algorithm
(neldermead.m), 7678, 348-350
Newton—-Raphson method
(newtonraphson.m), 41, 330
Newton'’s method (newton.m), 64—65,
339-340
positive definite matrix (positive_
definite.m), 21, 325
Powell method (powell.m), 74, 347-348
PSO method (pso.m), 196, 209, 366—
368, 369-371, 382-383, 398—400
quadratic approximation (quadr.m),
23, 326-327
Rastrigin’s function, 149-150
robotics_nominal_traj.m, 84-85,
350-351
Rosenbrock function (rosenbrock.m),
59, 336-337
secant method (secant.m), 43, 330-331
simplex method for LPP (simplex.m),
109, 112113, 118-120, 122, 124,
352-356
simulated annealing (simann.m), 155,
365-366
spring system (springsystem.n), 60, 337
SQP method (sgp.m), 187, 207, 250-251,
374-376, 378-380, 383-384,
386-389
steepest descent method (steep_
des.m), 62, 63, 337-338
Matrices, MATLAB®, 309-312
MATrix LABoratory, see MATLAB®
Matrix operations, MATLAB®, 315-317
Microsoft Windows, MATLAB® on, 309,
311f
Mixed-integer programming
problem, 263; see also Integer
programming problem
Modeling, of optimization problem,
5-11
cantilever rod (example), 1011, 11f
cylindrical can manufacturing
(example), 8-9, 8f
diet problem (example), 6-8, 7t
reentry capsule (example), 9-10, 9f
Modified Newton’s method
algorithm for, 66t
MATLAB® code, 66, 341-342
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performance comparison with other
methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t
for unconstrained optimization
problems, 66
Monotonic function, 35, 36f
Multidisciplinary design analysis
(MDA), MDO, 245-246, 246f
formula, 258
Multidisciplinary design feasible (MDEF)
architecture, of MDO, 247, 247f
advantage, 247
disadvantage, 247
formula, 258
Multidisciplinary design optimization
(MDO), 243-257
advantages, 243-244
for aerospace problems, 244
architecture, 245-246
BLISS architecture, 252-253, 254f
CO architecture, 251-252, 251f
CSSO architecture, 252, 253f
example, 249-251
IDF architecture, 248, 248f
MDF analysis, 247, 247f
multidisciplinary design analysis
(MDA), 245-246, 246f
SAND architecture, 249, 249f
framework, 253-254
global variables, 246
local variables, 246
overview, 243-245, 245f
response surface methodology, 244,
254-257, 255f-257f, 256t
single vs. two disciplines, 243, 244f
Multimodal functions, 14
Multimodal test functions, GA, 148-153
Rastrigin’s function, 149-151, 149f,
151f
Schwefel’s function, 149, 151-153, 152f
Multiobjective optimization problem,
203-219
application (reentry bodies), 215-219,
215f, 217t, 219f
e-constraints method, 210-212,
211£-212f
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formula, 220
goal programming, 212-214
nondominated solutions, 204
objective functions, 204
overview, 203-205, 205f
Pareto optimal front, 204-205, 204f
principle of domination and, 204
utility function method, 214-215
weighted sum approach, 205-210,
207f-210f
Multiple plots, MATLAB®, 318f
Multiple solutions
for LPP, 112-114, 114f
Multivariable function
unidirectional search for, 58t
MuPad, 95, 96
Mutation operation, in GA, 147-148, 148t

N

Natural selection, 140
Nelder-Mead algorithm
MATLAB® code, 76-78, 348-350
for unconstrained optimization
problems, 55, 75-78, 77t
Newton, Isaac, 1, 40
Newton—-Raphson method
algorithm for, 42t
comparison with other methods,
49-51, 50f, 51t
disadvantages, 42
for 1-D optimization problem, 40-42,
41f, 45
formula, 52
MATLAB® code, 41, 330
Newton’s law of cooling, 6
Newton’s method, 23, 68
algorithm for, 65t
MATLAB® code, 64-65, 339-340
modified, 66, 66t
performance comparison with other
methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s function, 79t
for Wood’s function, 83t
search direction in (formula), 86
for unconstrained optimization
problems, 55, 63-65
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Nonconvex function, 14, 15f
local and global optima for, 14, 15f
Nonconvex set, 13, 14f
Nondominated solutions
for multiobjective optimization
problem, 204; see also
Multiobjective optimization
problem
e-constraints method, 210-212,
211£-212f
goal programming, 212-214
utility function method, 214-215
weighted sum approach, 205-210,
207f-210f
Non-gradient-based 1-D optimization
algorithms, 35, 38
Non-gradient-based search methods;
see also Direct search methods
for unconstrained optimization
problems, 55, 60
Nonlinear function
contours of, 81f
performance comparison of different
methods for, 82t
unconstrained optimization
problems, 81-82
Nonlinear integer programming
problems, 277-278
branch-and-bound method, 278-284,
280f, 282f, 284f
evolutionary method, 284-285, 285f,
285t

o

Objective function, 3
geometric programming
(posynomial form), 223224
multiobjective optimization
problem
cost minimization, 204
efficiency maximization, 204
for optimization problems, 3—4, 4t
quadratic approximation of, 23, 24f
tangent and gradient for, 20-21, 20f
variables in, 3—4, 4t
Observations, defined, 5
One-dimensional (1-D) optimization
algorithms, 35-51
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monotonic function, 35, 36f
non-gradient-based, 35, 38
overview, 6f, 35-36
solution techniques, 38
bisection method, 38—40, 39f—40f, 39t
comparison of, 49-51, 50f, 51t
cubic polynomial fit, 44—45, 45t
dichotomous search method, 38,
47-48, 48f
direct search methods, 35, 38
Fibonacci method, 38, 47, 49
golden section method, 46-47, 47t
interval halving method, 38, 47,
48, 49f
Newton-Raphson method, 40-42,
411, 42t
other methods, 47-49
secant method, 42-43, 43f, 44t
test problem (solar energy), 37, 37f
unimodal function, 35, 36f
One-dimensional (1-D) optimization
problem, 58
defined, 35
solution techniques, see One-
dimensional (1-D) optimization
algorithms
Operators, MATLAB®, 312-313
Optimal basic solution
for LPP, 103
Optimality, principle of, 289
Optimality conditions, for constrained
optimization problem, 171-174
example, 173-174, 174f
formula, 197
Karush-Kuhn-Tucker (KKT)
conditions, 172-173
Lagrange function, 171, 172
Lagrange multipliers, 172, 173
regular point, 172
Optimization
first textbook on, 2
historical overview, 1-2
meaning of, 1
role of, 2
Optimization methods/techniques
applications of, 2
development of, 2
Optimization problem
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constrained, see Constrained
optimization problem

constraints, 4-5

convexity, 13-16, 14f-16f

1-D, 35; see also One-dimensional
(1-D) optimization algorithms

described, 3-5

design variable for, 34, 4t

diet, 1

directional derivative, 1622, 17f, 18f

function, 3

gradient vector, 16-22

graphical method, 11-13, 12f, 13f

Hessian matrix, 16-22

historical overview, 1-2

linear and quadratic approximations,
23-25, 23f, 24f

LPP, 5

machine allocation, 1

modeling of, 5-11

multiobjective, see Multiobjective
optimization problem

objective function, 34, 4t

performance index, 3

present-day, 2

unconstrained, see Unconstrained
optimization problem

P

Pareto optimal front
multiobjective optimization problem,
204-205, 204f
e-constraints method, 211-212, 212f
goal programming method, 214
of reentry test body, 219, 219f
weighted sum approach, 206-210,
207f-210f
Particle swarm optimization, 2
Particle swarm optimization (PSO)
technique, 157-158, 205, 245
algorithm for, 159t
convergence, for Schwefel’s function,
158, 159f
formula, 165
MATLAB® code, 196, 209, 366—368,
369-371, 382-383, 398-400
nonconvex Pareto front generated
with, 209, 209f
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for nonlinear integer programming
problems, 284-285
Penalty function method, for
constrained optimization
problem, 175, 176-182
advantages, 178
disadvantages, 178
exterior, 176-177, 177f
formula, 198
interior, 178-179, 179f
welded beam (example), 179-182, 180f
Performance index, 3
Pheromone, 160, 161
Pie chart, reproduction in GA, 145-146,
146f
Plotting, MATLAB®, 318
contour plot, 318f
multiple plots, 318f
Poisson distribution, 147
Polynomial-time algorithm
(Karmarkar), 125
Portfolio optimization problem, 93,
127-131, 127t
Positive definite Hessian matrix (H), 21
MATLAB® code, 21, 325
Posynomials, in geometric
programming techniques,
223-224, 225,231, 232,238
Potential-reduction methods, for LPP, 125
Powell method, 84
algorithm for, 74t
MATLAB® code, 74, 347-348
performance comparison with other
methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t
for unconstrained optimization
problems, 55, 74, 74t
Primal problem, 229
Principle of optimality, in dynamic
programming, 289
Probabilistic dynamic programming,
294-296, 295t-296t
stage 1, 296t
stage 2, 296t
stage 3, 295t
Programming, MATLAB®, 319-320
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Q

Quadratic approximation, 23-25, 23f, 29
example, 24-25
MATLAB® code, 23, 326-327
of objective function, 23, 24f
Quadratic convergence method, 62
Quadpratic function
contours of, 80f
performance comparison of different
methods for, 81t
unconstrained optimization
problems, 79-81
Quadratic problem; see also Sequential
quadratic programming (SQP)
method
formula, 198
Quasi-Newton method, 71; see also
Davidon-Fletcher-Powell
(DFP) method

R

Raphson, Joseph, 40
Rastrigin’s function
in GA, 149-151, 149f, 151f
MATLAB® code, 149-150
SA convergence for, 155-156, 156f
Ratio test, 108
Reentry bodies, multiobjective
optimization problem
application, 215219
design variables, 215-216, 215f
MATLAB code, 219
Pareto front of, 219, 219f
response surface matrix, 217-218, 217t
Reentry capsule (example), 9-10, 9f
Reflection operation, simplex, 75-76, 75f
Reproduction, in GA, 143-147, 145f, 145t
pie chart, 145-146, 146f
Roulette wheel selection method,
145-146, 146f
selection pressure, 145
tournament selection method, 145,
146-147, 146t
Response surface methodology (RSM),
244,252, 254-257
central composite design, 257, 257t
design matrix, 256t
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full factorial design, 256, 256f
of lift coefficient, 255, 255f
Response surface model, 217-218
Robotics
MATLAB® code, 84-85, 350-351
unconstrained optimization
problem application to, 83-85,
85f
Rosenbrock function, 59f
contours of, 78, 79f
MATLAB® code, 59, 336-337
performance comparison of different
methods for, 78, 79t
steepest descent method on, 80f
unconstrained optimization
problems, 78, 79f, 79t
unidirectional search on, 58-59, 58t
Rosen’s gradient projection method, 176,
192-195
example, 193-195
formula, 198
with restoration move, 193f
Roulette wheel selection method, in GA,
145-146, 146f

S

Saddle point, 19, 19f
surface-contour plot of function
with, 57, 58f
SAND (simultaneous analysis and
design) architecture, of MDO,
249, 249f
formula, 259
Schema theorem, in GA, 147-148
formula, 165
Schwefel’s function
in GA, 149, 151-153, 152f
PSO convergence for, 158, 159f
SA convergence for, 156f
Secant method
algorithm for, 44t
comparison with other methods,
49-51, 50f, 51t
for 1-D optimization problem, 42-43,
43f
formula, 52
MATLAB® code, 43, 330-331
Selection pressure, in GA, 145
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Sequential quadratic programming (SQP)
method, 176, 184-190, 207, 245
example
cylindrical pressure vessel,
188-189
optimized production rate,
189-190
welded beam, 187-188
MATLAB® code, 187, 207, 250-251,
374-376, 378-380, 383-384,
386-389
trust region approach, 185
Simplex
defined, 75
operations to move
contraction, 75-76
expansion, 76, 76f
reflection, 75-76, 75f
Simplex method, for LPP, 105-120
algorithm for, 109t
degeneracy, 114-116
dual, 121-124, 122t, 123t
feasible region, 111-112, 111f
MATLAB® code, 109, 112-113,
118-120, 122, 124, 352-356
multiple solutions, 112-114, 114f
two-phase method, 116-120
Simulated annealing (SA), 154-156
algorithm for, 155t
convergence of
for Rastrigin function, 155-156,
156f
for Schwefel’s function, 156f
for spring system test problem,
157f
MATLAB® code, 155, 365-366
Simultaneous analysis and design
(SAND) architecture, of MDO,
249, 249f
formula, 259
Slack variable, 100
Solar energy problem, 37; see also One-
dimensional (1-D) optimization
algorithms
cost function for, 37, 37f
MATLAB® code, 37
solution techniques, 38
bisection method, 38-40, 39f-40f,
39t
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comparison of, 49-51, 50f, 51t
cubic polynomial fit, 44—45, 45t
dichotomous search method, 38,
47-48, 48f
Fibonacci method, 38, 47, 49
golden section method, 46-47, 47t
interval halving method, 38, 47,
48, 49f
Newton—-Raphson method, 40-42,
411, 42t
other methods, 47-49
secant method, 42-43, 43f, 44t
Spring system, 59-60, 60f; see also
Unconstrained optimization
problem
additional test functions
nonlinear function, 81-82, 81f, 82t
quadratic function, 79-81, 80f,
81t
Rosenbrock function, 78, 79f, 79t
Wood'’s function, 82-83, 82f, 83t
MATLAB® code, 60, 337
SA convergence for test problem of,
157f
solution techniques, 60—62
BFGS method, 72-73, 73t
criteria for, 61-62
DFP method, 70-72, 71t
Fletcher—Reeves conjugate
gradient method, 6870, 68f,
69t, 70f
gradient-based search methods,
55, 60—62
Levenberg-Marquardt method,
66—67, 67t
modified Newton’s method, 66,
66t
Nelder-Mead algorithm, 75-78,
75f, 76f, 77t
Newton’s method, 63-65, 65t
non-gradient-based search
methods, 55, 60
Powell method, 74, 74t
steepest descent method, 62-63,
63t
test problem, 59-60
Standard form, of LPP, 98-103
Steepest descent direction, 62
Steepest descent method, 68, 78
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advantage of, 66
algorithm for, 63t
behavior on Rosenbrock function, 80f
history, 1

MATLAB® code, 62, 63, 337-338
performance comparison with other
methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t
search direction in (formula), 86
for unconstrained optimization
problems, 62-63, 64f
vs. conjugate gradient method, 69-70,
70f
Structural design
constrained optimization problem
application to, 195-196, 195
Superlinear convergence method, 62
Surface-contour plot of function, 57, 57f
with saddle point, 57, 58f
Surplus variable, 100
Survival of the fittest principle
(Darwin), 140

T

Tabu search, 163-164

algorithm for, 163t
Taylor series approximation, 23
Taylor’s series, 17, 41
Tournament selection method, in GA,

145, 146147, 146t

Traveling salesman problem, 163
Trust region approach, 185
Tucker, Albert, 2
Two-phase method

for LPP, 116-120

U

Unbounded solution
for LPP, 97-98, 98f
Unconstrained optimization problem, 1,
5, 55-85
additional test functions
nonlinear function, 81-82, 81f, 82t
quadratic function, 79-81, 80f, 81t
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Rosenbrock function, 78, 79f, 79t
Wood'’s function, 82-83, 82f, 83t
application to robotics, 83-85, 85f
geometric programming, 224-229,
239
overview, 55-57, 56f
solution techniques, 60—-62
BFGS method, 72-73, 73t
criteria for, 61-62
DFP method, 70-72, 71t
Fletcher—Reeves conjugate
gradient method, 68-70, 68f,
69t, 70f
gradient-based search methods,
55, 60—62
Levenberg-Marquardt method,
66—67, 67t
modified Newton’s method, 66,
66t
Nelder-Mead algorithm, 75-78,
75f, 76f, 77t
Newton’s method, 63—-65, 65t
non-gradient-based search
methods, 55, 60
Powell method, 74, 74t
steepest descent method, 62-63,
63t
surface-contour plot of function, 57,
57f
with saddle point, 57, 58f
test problem, 59-60
unidirectional search, 57-59
vs. constrained problem, 169
Unidirectional search, 57-59
formula, 86
for multivariable function, 58t
on Rosenbrock function, 58-59, 58t,
59f
Unimodal function, 35, 36f
Unrestricted (free) variable, 100
Utility function method
formula, 221
for multiobjective optimization
problem, 214-215
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A"

Variable metric method, 70-71; see also
Davidon-Fletcher-Powell
(DFP) method
Variable(s); see also specific types
decision, 3—4
dependent, 6
design, 3-4
independent, 6
in objective function, 3-4

W

Weighted sum approach
for multiobjective optimization
problem, 205-210, 207f-210f
advantages, 208
disadvantages, 209
example, 210
formula, 220-221
incomplete Pareto front, 208, 208f
nonconvex Pareto front generated
with PSO, 209, 209f
Pareto optimal front, 206-207, 207f
Weight minimization
for aerospace applications, 3
Wood’s function
contours of, 82f
performance comparison of different
methods for, 83t
unconstrained optimization
problems, 82-83

z

Zenedorous, 1

Zero-one programming problem, 263,
272-277,277f

Zoutendijk’s method, 176, 191-192
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