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Preface

One of the authors’ main motivation for writing this book has been to provide stu-
dents and faculty with a more economical option for selecting a textbook on intro-
duction to ODE. This book is a primer for the theory and applications of Ordinary
Differential Equations. It is aimed at students of Mathematics, Physics, Engineer-
ing, Statistics, Information Science, etc. with sufficient knowledge of Calculus and a
minimal knowledge of Linear Algebra.

The first chapter starts with the simplest first order linear differential equations
and builds on it to lead to the more general equations. The concepts of initial values
and existence and uniqueness of solutions are introduced early in this chapter. Am-
ple examples, using simple integration, are given to motivate and demonstrate these
concepts. Almost all of the assertions are proved in elementary and simple terms.

The important concepts of the Cauchy Problem and Existence and Uniqueness
of solutions are introduced in detail and demonstrated by many examples. Proofs are
given in an Appendix. There is also a rigorous treatment of some qualitative behavior
of solutions. This chapter is important from a pedagogical point of view because it in-
troduces students to rigor and understanding of important concepts at an early stage.

There is also a chapter on nonlinear first order equations, where students learn
how to explicitly solve certain types of equations such as separable, homogeneous,
exact, Bernoulli and Clairaut equations.

Further chapters are devoted to linear higher order equations and systems, with
several applications to mechanics and electrical circuit theory. Also included is an
elementary but rigorous introduction to the theory of oscillation.

There is a chapter on phase plane analysis dealing with finding periodic solutions,
solutions of simple boundary value problems, homoclinic and heteroclinic trajecto-
ries. There is also a section discussing a Lotka—Volterra system arising in population
dynamics.

Subsequently, the book deals with the Sturm Liouville eigenvalues, Laplace trans-
form and finding series solutions, including fairly detailed treatment of Bessel func-
tions, which are important in Engineering.

Although this book is mainly addressed at undergraduate students, there are some
more advanced topics such as stability theory and existence of solutions to Boundary
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Value problems, which might be useful for the more motivated undergraduates or
even beginning graduate students.

A chapter on numerical methods is included as an Appendix, where the impor-
tance of computer technology is pointed out. Otherwise, we do not encourage the use
of computer technology at this level. Besides, we believe that, at this stage, students
should practice their previous knowledge of Algebra and Calculus instead of relying
on technology; thus sharpening their mathematical skills in general.

Each chapter ends with a set of exercises, which are meant to test the students’
understanding of the concepts covered.

Solutions to selected exercises are included at the end of the book.

We wish to acknowledge with gratitude the help of Dung Le, Rahbar Maghsoudi,
and Vittorio Coti Zelati, especially with technical issues.

San Antonio and Trieste Shair Ahmad
December 2013 Antonio Ambrosetti



Notation

The following are some notations that are used in the book.

N denotes the set of natural numbers 0,1,2. ..

Z denotes the set of integer numbers 0, =1, +2. ..

R denotes the set of real numbers.

C denotes the set of complex numbers.

If a,b € R, [a,b] denotes the closed interval {a < ¢t < b}; (a,b), or la,b|,
denotes the open interval {a < t < b}. Moreover (a, b], or ]a, b], denotes the
interval {a <t < b}, while [a, b), or [a, b[, denotes the interval {a <t < b}.

If x,y € R", (x | y) = Y_ x;y; denotes the euclidean scalar product of the vec-
tors x, y, with components x;, y;, i = 1,...,n. In some case we will also use
x -y or (x,y) instead of (x | y). The corresponding euclidean norm is denoted

by |x| = V(x| x) = \/Z x?.If n = 1 then |x| is the usual absolute value.

‘g;,{ = f® denotes the k-th derivative of f(¢).

g){l = dy; f = fx,; denotes the partial derivative of f(xi,...,x,) with respect
to Xx;.

IfQ C R”?, C(2,R), or simply C(£2), is the class of continuous real valued func-
tions f : 2 — R defined on 2. C(€2, R™) is the class of continuous functions f
defined on © with values in R™.

If @ C R” is an open set, CX(2, R), or simply C¥ (), is the class of real valued
functions f : Q + R which are k times continuously differentiable. C (2, R™)
is the class of functions f : Q +— R™, each component of which is k times con-
tinuously differentiable. Functions that are differentiable infinitely many times are
often called regular.

W(f1,-.., fa)@) = W(f1(t),..., fu(t)) = W(t) represents the Wronskian of
the functions f1,..., fu.

Jm = Bessel function of order m.



Notation

f * g = convolution of the functions f and g.

48(t) = the Dirac delta function.

Det(A) = determinant of the matrix A.

Ay = Minor of the element ay;, Cy; = cofactor of the element ay;.
E{f(t)}(s) = F(s) = the Laplace transform of the function f.

VV(x) = (Vx, (x),..., Vx,(x)), x € R”, denotes the gradient of the real valued
function V.

(VV(x) | f(x)) =37 Vx, (x) fx; (x) = scalar product of VV(x) and f (x).
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1

First order linear differential equations

1.1 Introduction

A differential equation is an equation involving an unknown function and its deriva-
tives. By a solution of a differential equation we mean a function that is differentiable
and satisfies the equation on some interval. For example, x’ — x = 0 is a differential
equation involving an unknown function x and its first derivative with respect to an
independent variable that we may call ¢, s, etc. We notice that (¢!)' —e’ = e’ —e’ =0
for all ¢ in the interval / = (—o0, 00). Therefore, x(¢) = e’ is a solution of the dif-
ferential equation on the interval .

A differential equation involving ordinary derivatives is called an ordinary dif-
ferential equation and one involving partial derivatives is called a partial differential
equation. For example, x” —t2x’ 4+ 2x = 0is an ordinary differential equation, while

gi'; + gig = 0 is a partial differential equation. In this book, we deal with ordinary

differential equations.

By the order of a differential equation we mean the order of the highest derivative
appearing in the equation. For example, x”” 4+ 2x” — 3x’ + 2x = 0 is a third order
differential equation while x” 4+ x = 0 is second order.

Differential equations play a central and important role not only in mathematics
but also in almost all areas of science and engineering, economics, and social sci-
ences. A differential equation may describe the flow of current in a conductor, or the
motion of a missile, the behavior of a mixture, the spread of diseases, or the growth
rate of the population of some species, etc. Often, we will have x(¢) describing a
physical quantity, depending on time z, whose rate of change x’(¢) is given by the
function f(z, x(¢)) depending on time ¢ and x ().

In the sequel we will discuss differential equations on a broader basis, including
higher order equations and/or systems. In this first chapter, however, we start with
the simplest, but very important, class of differential equations, namely first order
linear equations.

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
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2 1 First order linear differential equations

1.2 A simple case

Let us begin with the very specific and simple equation
x' = kx, k e R. (1.1)

We will demonstrate a precise method for solving such equations below. But first
we use our intuition and familiarity with the derivative of the exponential function to
solve the simple equation (1.1).

Let us first take k = 1. We seek a function whose derivative is equal to itself:
x" = x. One such function is x () = 0. We also know that the exponential function
x = e’ has this feature. Actually, for every constant ¢, the function x = ce’ is a
solution of x’ = x. This leads us to the slightly more general case x’ = kx, which
has x = ce¥! asa solution, for any constant c¢. Furthermore, as we will see below,
these are the only types of solutions that this differential equation can have.

We now illustrate a general procedure that will be used later to solve the most
general first order linear differential equations. First suppose that x(¢) satisfies the
equation

x'(t) = kx(1).

' we

Multiplying both sides of the equivalent equation x’(f) — kx(t) = 0 by e™*
have

xX'(1)e ¥ —kx(t)e ¥ = 0.

We note that the left-hand side is the derivative of (x(r)e ). Hence we have
(x()e™**)’ = 0. Integrating, we obtain x(r)e %’ = ¢, V¢ € R, where c is a con-
stant. Hence x (1) = ce¥?.

On the other hand, by substituting any function of the form x (t) = ce*? into the
equation (1.1), we see that x (¢) is a solution of (1.1). Therefore, x(¢) is a solution of
(1.1) if and only if x(r) = ce*? for some constant ¢. We say that x(r) = cek? is
the general solution of (1.1), that is, it represents the family of all solutions of this
equation.

Example 1.2.1. Consider the problem of finding x (¢) such that
x'=2x, x(0)=1. (1.2)

This is called an initial value problem. 1t is asking for a function x(¢) that satisfies
the differential equation and x(0) = 1. We have shown above that x(¢) = ce?’ is
the general solution. So, the desired solution, if it exists, must be of the form ce?t,
Substituting ¢ = 0 in the equation x(¢) = ce?’, we obtain 1 = ce® or ¢ = 1. There-
fore, x(t) = e?! is a solution to the initial value problem (1.2). Since every solution
to the initial value problem (1.2) is of the form x(t) = ce?* and since by substituting
the initial values in this general solution we obtain only one constant that satisfies the
initial value problem, we conclude that the solution to the initial value problem (1.2)

exists and it is unique. [
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1.3 Some examples arising in applications

In spite of its simplicity, equation (1.1) arises in many fields of applied sciences.
Below we discuss a couple of them.

1.3.1 Population dynamics

Let:

¢ ¢ denote the time;

¢ x(¢) denote the number of individuals of a population at time ¢;
* b denote the birth rate of the population;

¢ d the death rate of the population.

The simplest model of population growth, due to Malthus' in the discrete version,
assumes that b and d are constant and that the increment of the population x(n +
1) — x(n) between t = n and ¢t = n + 1 is equal to the number of new-born indi-
viduals b - x(n) minus the number of deaths d - x(n), namely x(n 4+ 1) — x(n) =
bx(n)—dx(n) = (b—d)x(n). Introducing the number k = b —d as the unit growth
rate, that is the growth rate per unit time, we find the recursive equation

x(n+1)—x(n) =kx(n), n=0,12,.. (1.3)

which allows us to find x (n) for any positive integer n. To pass to continuous time
variables, we take an infinitesimal change of time Az. Then the change of population
x(t + At) — x(t) between ¢ and ¢t 4+ At is given by the unit growth rate k, times
the population size x (¢), times the interval of time A¢. Thus equation (1.3) becomes
x(t + At) — x(t) = kx(¢t)At. Dividing by At we get

x(t + At) —x(t)

A = kx(1).

The left-hand side is the incremental ratio of x(¢). Letting At — 0, we find
x'(t) = kx(1), k=b-—d,

a first order linear differential equation like (1.1), whose solutions are x (1) = ceX.
If x(0) = xo > 0, then ¢ = xo > 0 and x(¢) = x¢eX’. If the birth rate b is equal to
the death rate d, then k = b —d = 0 and x(¢) = x¢e® = x¢ forall ¢ > 0, as one
would expect. If b > d thenk = b —d > 0 and x (1) = x¢eX’ grows exponentially
and approaches +o00 as ¢ — +o00. On the other hand, if k < 0 then x(¢) decays
exponentially to 0 as ¢ — +o0 and the population goes to extinction. See Figure 1.1.

This model is rather rough in the sense that it does not take into account the fact
that b, d, and hence the growth rate k, might depend on the population size. In Sec-
tion 3.1.1 of Chapter 3, we will discuss a more realistic model of population growth,

! Thomas R. Malthus (1766—1834).
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Fig. 1.1. Solutions of (1.3), with & > 0 (upper curve) and k < O (lower curve) and k = 0
(dotted curve)

which gives rise to the so called “logistic equation” having the form x’ = x(a — fx),
a, B positive constants.

1.3.2 An RC electric circuit

Let us consider an RC circuit with resistance R and capacity C with no external
current or voltage source.

If we denote by x () the capacitor voltage (x(¢) = V/(¢) in Figure 1.2 and by 1(¢)
the current circulating in the circuit, then, according to the Kirkhoff’s law, we have

R-I(t) +x()=0.

Moreover, the constitutive law of capacitor yields

‘ dx(t)

m=c-"

Substituting /(¢) in the first equation, we obtain the first order differential equation

RC -x'(t) + x(1) = 0,

o
g c -V

¥

Fig. 1.2. An RC circuit
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namely o
, x(t
t =0,
XM+ 5o
which is of the form (1.1) with k = —1/RC. Also here we can look for a solution

x (¢) satisfying the initial condition x(0) = x¢, which means that the initial voltage
is xo. The solution is given by

x(t) = xoe 1/RC.

We can see that the capacitor voltage x (1) = V/(¢) decays exponentially to O as
t — +o00, in accordance with the experience. The number ¢ = RC is usually called
the RC time constant and is the time after which the voltage x(¢) = V/(¢) decays to
V(r) = xoe~!. Moreover we can say that the bigger 7 is, the slower the decay. As
for the intensity of current /(¢), one finds

— X0 _ R X0
[t —C /[ _—C t/ C _ —I/RC.
() X() Ce = — e

Other equations arising in the electric circuit theory will be discussed in Example
1.4.3 below, in Example 5.5.5 of Chapter 5 and in Section 11.6 of Chapter 11.

1.4 The general case

Now, we solve the general first order linear differential equation
X'+ p(H)x = q(t) (1.4)

where p(t), q(¢) are continuous functions on an interval / € R.

If ¢(¢) = 0 the linear differential equation (1.4) is called homogeneous, otherwise
it is called nonhomogeneous or inhomogeneous.

Motivated by the above discussion, we try to find a differentiable function p(¢),
u(t) > 0fort € I, such that

u(®)x'(t) + (@) p()x () = (u(t)x(1))'.

Such a function p(¢) is called an integrating factor of the equation (1.4). It has the
property that if we multiply (1.4) by w(¢), it renders the left side of the equation to
be equal to (u(2)x(¢))’, which can be easily integrated.

Although based on the discussion in the preceding section, one might guess such
an integrating factor, we prefer giving a precise method for finding it.

Let x(¢) be a solution of (1.4). Multiplying the equation by 1(¢) we have

ux' + upx = pgq.
Now we wish to find u such that

px' 4+ ppx = (u()x(@)).
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Expanding the right-hand side, we have
p(@)x'(t) + (@) p()x (1) = p(6)x'(t) + ' ()x(1).
Canceling i (t)x’(¢z) from both sides, we obtain
p(@)p(0)x(t) = W' (6)x(t).

Assuming that x (¢) # 0 and dividing both sides by x(¢), we find

dp
t ) = .
pp®) =
Since u(t) > 0 we infer
"
= p(t)dt.
wey P
du

Then, taking the indefinite integrals we obtain |

that u(¢) > 0) that In(u(2)) = [ p(r)dt.
Thus

= [ p(t)dt and we find (recall
() /2®

w(t) = PO, P(r) = / p(t)dr.

In order to obtain the general solution of (1.4), we take the indefinite integral of both
sides of

(m()x (@) = u()q(t) (1.5)

obtaining

pxo) = e+ [ pogwar
where ¢ is a constant. Substituting /(1) = e ®, we have

x(t) = e PO [c+/e”’)q(z)dz], P(t) = /p(l)dl. (1.6)

We have seen that if x (¢) solves (1.4), then there exists ¢ € R such that x(¢) has the
form (1.6). Moreover, it is easy to check that for all ¢ € R, x(¢) given above solves
(1.4). This is why x(¢) in (1.6) is called the general solution of (1.4).

Now, suppose we are interested in solving the initial value problem

x4+ p(t)x = q(1), x(to) = Xo.

Then we can substitute t = #y, X = X¢ in the general solution and solve for the
constant c. Another way is to take the definite integral of (1.5) from ¢y to ¢ instead of
the indefinite integral. Doing so, we have

t

()% (0) — p(to)x (to) = / w(s)q(s)ds.

o
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We can also choose P () = ftto p(s)ds and then
() = elio PO,

Hence p(z9) = 1 and
ot d t S d
x(t) = ¢ Jio P |:xo +/ elio P® Sq(S)dS] (1.7)
to

Remark 1.4.1. We prefer not to have to memorize (1.7) but rather go through this
simple procedure each time, starting with integrating factors. ]

As a special case of (1.6), when g = 0, the general solution of the homogeneous
equation

X'+ pH)x=0 (1.8)
is

x(t)=ce PO P@) :fp(t)dt, rel.

For ¢ = 0 we obtain the trivial solution x(t) = 0.

If we are searching for a solution satisfying the initial condition x (z9) = xg, then
we can solve xo = x(fo) = c e~ P If we take P(r) = f:o p(s)ds, then P(ty) =
0 and we find ¢ = x¢. Thus

x(t) = xo o~ Jio PE)ds

is the solution of x” + p(¢#)x = 0 such that x(t9) = xo, and it is unique. As a
consequence, if ¢ is any number in / and x (¢p) = xo, then

1. x(¢) =0,Vt el,if and only if xo = 0;
2. x(t) > 0,Vt e I,if and only if xo > 0;
3. x(t) <0,Vt el,if and only if xo < 0.

In other words, if x(¢) is a solution of (1.8), then it is either identically zero, or it
is always positive or it is always negative. In particular, if x (¢) vanishes somewhere
in 7, then it has to be the trivial solution x(¢) = 0, forallt € I.

The above arguments lead to the following existence and uniqueness result for
(1.4), namely for x’ + p(t)x = q(¢).



8 1 First order linear differential equations

Theorem 1.4.2. Let p(t), q(t) be continuous in I < R. Then
1. The general solution of (1.4) is given, forallt € I, by

x(1) = e PO |:c+/ep(’)q(t)dt] P(r) = /p(t)dt,

¢ a constant.

2. There is exactly one solution x(t) satisfying the initial value x(ty) = x¢ for any
numbers ty € I and xy € R. Precisely,

. o
x(t) = e_/fto ps)ds |:x0 + / el p(s)dsq(s)dsi| , tel. (1.9)
to

This theorem can also be deduced from general existence and uniqueness results
stated in Chapter 2, Section 2.2.2.

We end this section by demonstrating, through examples, how to solve linear equa-
tions.

Example 1.4.3. Find the solution of
x'(t) + kx() = h, x(0) = xq, (1.10)

where £, k are constant. Equation (1.10) arises in the RC circuit when there is a gen-
erator of constant voltage h = V}, see Figure 1.3.
Here p(t) = k and hence an integrating factor is eX?. Multiplying the equation
by ¥ yields
Ky’ + keX x (1) = he,

or
jt (x(t)ekt> = hek?.

Integrating, we find
kt h kt
x(t)e" = X e +¢

[+

Vo C_) C—=VI(t)

Fig. 1.3. RC circuit with a generator of voltage
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where c¢ is an arbitrary constant. Thus the general solution is

h
—kt

x(t) =ce + .
() X
To find a solution that satisfies the initial condition x(0) = xo we might simply
substitute # = 0 in the preceding equation, finding

+ h d h h
Xg=c and hence ¢ =x9— , .
0 k Tk
Hence the unique solution of (1.10) is
h\ _& h
t) = - . 1.11
x(2) (Xo k) e+ K (1.11)

Alternatively, we can use (1.9) yielding

t
x(1) = ek [xo +/ ekshds]
0
h

_ 1 hY _
- kt[x”h'k'(ekt_l)]:(x"_k)e Yy
as before.

Notice that, as t — +o00, x(t) — Z from below if x¢ < Z (see Fig. 1.4a) and

from above if xo > ]hc (see Fig. 1.4b).
The solution (1.11) implies that in this case the capacitor voltage x () = V(¢) does
not decay to 0 but tends, as t — +00, to the constant voltage h/k = Vy/RC. m

Example 1.4.4. Find the general solution of
x'(t) + dtx(t) = 8t

and the solution such that x(0) = 1.

h/k

h/k

(@ (b)
h

Fig. 1.4. Solutions of (1.10). (a) x¢ < Z; (b) xg > 1
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X

Fig. 1.5. Graphs of x = 2 + ce™2t?

(a) Here p(t) = 4t and hence we can take P(¢) = 2¢2. We start by multiplying
the equation by the integrating factor 2’ 2, which results in the equation

27X + 4te2’2x(t) — 8re?t”,
which is the same as
jt (x (t)eztz) — §re?”.
Integrating both sides, we obtain
x(1)e?” =2¢*° ¢
where c is an arbitrary constant. Therefore, the general solution is

x(t) =2+ ce 2,

(b) If we require that x (0) = 1, then the constant ¢ is uniquely determined by the
equation 1 =2+ ¢ e™20 =2 4 ¢, thatis ¢ = —1 and hence

x(1) =2—e 2",

Alternatively, we can use the general formula (1.9) finding

t ) /
x(t) = e~*fosds |:1 +/ e*fo SdsSosds] =2 |:1 —1—/ 8525’ ds]
0 0

= e_Zt2 [1 + (2€2t2 — 2)] = e_2t2 [2€2t2 — 1] =2- e_2t2.
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We make a couple of interesting observations concerning this equation.

1. We note that for ¢ = 0, we obtain the constant solution x = 2. Furthermore, this
solution divides all the other solutions into two groups: those that approach it from
the top and those that approach it from the bottom, as ¢ — Fo00. See Figure 1.5.

2. We could have found the constant solution x(¢) = 2 without even solving the
equation, by simply noting that if x(¢) is a constant, then x’(z) = 0 and therefore
x'(t) + 4tx(¢t) = 8¢ implies x(¢) = 2 for all 7.

Example 1.4.5. Find the general solution of

1
22X +(1+0)x = t et >0, (1.12)

The first thing we notice is that the above equation is not in the form of equation (1.4)
for which we found the integrating factor w. To apply our method, we must put it in
the proper form. So, we divide both sides of the equation by 12 # 0, which yields
(1+1) 1
x + o X= eVt s, (1.13)
We know that an integrating factor p can be determined as

1412

w=efD  where P'(1)= 2

To find P (¢) we evaluate the indefinite integral

1+1¢ 1 1 1
/(+)dt=/ 4 Vdt=—' +mit+e.  t>o0.
12 2t t

Taking ¢ = 0 we find that an integrating factor is given by

—1/t+Int -1/t _In

et = eVt

n(t) =e =e
Multiplying (1.13) by this integrating factor, we obtain the equation

1 1
el/t —

—1/t N/ __ -1/t
(te 'x)y =te -3 2

Integrating both sides, we get
1
te Vix(r) = -, +ec.

The general solution is

_el/t cel/t el/t 1
t) = = — , t > 0. 1.14
="+ = (c t) (1.14)

It is clear that all the solutions tend to 0 as t tends to +00. On the other hand, it is
easy to verify that for any constant ¢, x(¢) given by (1.14) satisfies equation (1.13).
This means that x(¢) given by (1.14) is a solution of (1.13), and hence of (1.12), if
and only if x(¢) is of the form (1.14), that is the general solution of (1.12). [
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If we want to solve the equation x’ + (lgt)x = z13 e/t fort # 0 we should
distinguish the two cases t > 0 and ¢ < O separately. As an exercise, the reader might
repeat the calculations for ¢ < 0.

Example 1.4.6. Solve the following initial value problem and show that the solution
is defined for ¢ > 0 and is unique:

1
tle + (1 +l)x = p g} R x(]) = 0. (115)

We have shown that the general solution of (1.12) for ¢ > 0is x(¢) given by (1.14),
where c is a constant.

Now in order to solve the initial value problem, since all solutions are included
in (1.14), we simply substitute the initial values into the equation (1.14), obtaining
0 = —e + ce, and hence ¢ = 1. Therefore,

e et et 1
x(t) = + = 1-— .
® 12 t t ( t )
The uniqueness follows from the fact that there is only one value of ¢ for which x (¢)
obtained from the general solution (1.14) satisfies the initial value x (1) = 0.

The reader can check, as an exercise, that the same result holds if we use the gen-
eral formula (1.9). u

1
Fig. 16.x() = ¢/ (1-1),1>0
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1.5 Exercises

1
2
3
4.
5
6

10.

11.
12.
13.
14.
15.
16.

17.

18.

. Find the equation whose general solution is x = ¢ e™>’.
. Solve x” 4+ (In3)x = 0.
. Solve x' + 4x = 4.
Find all the solutions to the initial value problem x’ 4 2t3tT§i:g+5 x =0,x(0) =0.
. Solve x’ = —2x + 3 and find the solution satisfying x (1) = 5.
. Find k such that there exists a solution of x’ = kx such that x(0) = 1 and
x(1) =2.

Explain why the solution to the problem
1
x" —2(cost)x = cost, x(0) = 5

must oscillate, i.e. it must have arbitrarily large zeros.

In each of the following, find the maximum interval of existence of the solution,
guaranteed ny the existence theorem

(a) x' + t2_1x=0, x(=2) =1,

1
(b) x’ + (sect)x = Y x(3) =1
. Solve tx’ + x = 2¢2.
Show that there is an infinite family of solutions to the problem
t2x' —2tx =1, x(0) =0,
all of which exist everywhere on (—oo, c0). Does this violate the uniqueness
property of such equations?
Solve x” = 2¢x and find the solution satisfying x (0) = 4.
Solve x’ = —t2x.
Solve x" + ax = bt.
Solve: (a) x’ = x + 2t, (b) x’ —2x = 3¢, (¢) x’ + 3x = —2¢.
Find the solution of x’ 4+ ax = bt satisfying x (fy) = xo.

Solve the initial value problems (a) x’ — x = ;t, x(0) = 1, (b) x' + x = 4,
x(1) =0, (c) x" —2x = 21, x(0) = 3.

Given h,k € R, k > 0, find the limits as ¢ — +oo of the solutions of x’ +
kx = h.

Consider x’ + kx = 1, where k is a constant.

(a) For what value of k will all solutions tend to 2 as t — +00?

(b) Is there any value of k for which there exists a non-constant solution x (¢)
such that x(¢) - —3 as t — +00? Explain.
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19.
20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

1 First order linear differential equations

Find the limits as ¢ — 00 of the solution of x’ = 1-:# x,x(0) = 1.

Consider x’ + kx = h, with k # 0. Find conditions on the constants 4, k such
that

(a) all solutions tend to 0 as ¢ tends to + infinity,

(b) it will have only one solution bounded on (0, 4+00),

(c) all solutions are asymptotic to the line x = 3.

Show that for any differentiable function f(¢), ¢ € R, all solutions of x’ + x =
f(t) + f/(¢) tend to f(¢) as ¢ tends to +oo.

Find a continuous function ¢(¢), t € R, such that all solutions of x’ + x = ¢(¢)
(a) approach the line x = 7t —5ast — 400,
(b) approach the curve x = t?> —2¢ 4+ 5ast — +00.

Show that if p is differentiable and such that lim;_, y o p(¢f) = 400, then all the
solutions of x” + p’(¢)x = 0 tend to zero as t — +o0.

If k # 0, show that the constant solution x(¢) = — k12 is the only solution of
x" —k2x = 1 such that the lim;_, 4 o, x(¢) is finite.

Let k # 0 and let g(¢) be continuous and such that lim;— o ¢(f) = 0, and
f0+°° e_kzsq(s)ds = 0. Show that the solution x(¢) of the ivp problem

x' —k%x = q(t), x(0) = xo,

tends to 0 as t — 4-o0 if and only if xo = 0.

Show that the solution of x’ = k2x, x(ty) = Xo, is increasing if xo > 0 and
decreasing if xo < 0.

Show that the solution of x’ = kx, x(ty) = xo is increasing if kxo > 0 and
decreasing if kxo < 0.

Find the locus of minima of the solutions of x’ 4+ 2x = 6.

Find the locus of maxima and minima of the solutions of x’ + x = at, a # 0.
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Theory of first order differential equations

Before discussing methods of solving more general classes of differential equations,
it is convenient to present a theoretical overview of first order equations and their
solutions, which will set a rigorous layout for the rest of the book.

2.1 Differential equations and their solutions

In Chapter 1 we introduced the notion of a differential equation and the meaning of
the solution of such an equation. This will now be explained in more detail and in
greater generality in the present section.

Consider the first order differential equation
x'= f(t.x) 2.1)

where f(z, x) is continuous, (¢, x) € Q, Q C R2.
A solution of (2.1) is a differentiable real valued function x(t) defined on an in-
terval / C R such that

xX'(t) = f(t,x(t)), for (t,x(t)) € Q. (2.2)

An equation in this form is said to be in normal form, to distinguish it from more
general differential equations that will be introduced later on.

One of the simplest examples of a first order differential equation is x" = h(r),
where A is continuous on an interval / C R. If H(¢) is an antiderivative so that
H'(t) = h(t), then all the the solutions are given by x(¢) = H(t) + ¢, ¢ a real
constant.

We have seen in Chapter 1 that all solutions of the linear equation x’ + p(t)x =
q(t) form a family of functions depending on a constant. We will show in the sequel
that this is a general fact: solutions of X’ = f(t, x) form a one parameter family of

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT - La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_2, © Springer International Publishing Switzerland 2014
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functions, although, as we will see, in the nonlinear case there could be some isolated
cases of solutions that are not included in such a family.

1. The reader should recall that a solution of (2.2) is a function, in contrast to the
algebraic equations, whose solutions are real (or complex) numbers. Moreover,
it is important to note that (2.2) is an identity; it holds for all 7 in the domain of
x(1).

2. The domain of definition of a solution of (2.2) is a priori unknown and may depend
on several facts. It could happen that, even if f (¢, x) makes sense for all real ¢, x,
the solutions may be defined only for ¢ in a proper subset of R, see Example 2.2.2
below.

From a geometrical point of view, a solution of (2.1) is a curve x = x(¢), con-
tained in the set €2, such that the tangent at each point (¢*, x(¢*)) on the curve has
slope equal to f(¢*, x(¢*)) and hence its equation is

x = f*, x@*)@E —t*) + x(t").

For example, consider the curve x = ¢’ in the plane (¢, x), which is a solution of
x" = x. A generic point P* on this curve has co-ordinates P* = (t*, e’ ). The

tangent to x = e’ at P* has equation
x=e (1—t*)+e .

Remark 2.1.1. We have used ¢ as the independent variable and x as the dependent
one. But any other choice makes sense. For example, we could just as well name the
dependent variable y and the independent variable x. With this notation, a first order

7

Fig. 2.1. Tangents to x = e’
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differential equation would have the form

, d
o= =)
X

a solution of which would be a differentiable function y(x) such that y’(x) =
f(x,y(x)) for all x where y(x) is defined. In any case, the equation will make it
clear which one is the independent or dependent variable. L]

Dealing with a first order equation, one can distinguish between:

e linear and nonlinear equations, according to whether f(z, x) is linear with respect
to X or not;

* autonomous and non-autonomous equations according to whether f is indepen-
dent of ¢ or not.

For example, x’ = kx + c is linear and autonomous, x’ = x2 4+ kx + c is nonlin-
ear and autonomous; while x’ = e’x + sint — 4 is linear and non-autonomous, and
x' = tx? — tx + 3 is nonlinear and non-autonomous.

Notice that, even if f is independent of ¢, the domain €2 has to be considered as
an appropriate subset of R2. For example, in the equation x’ = /x, f(x) = /x
is defined for x > 0 and hence Q2 = R x {x > 0}. Similarly, in the equation
x = 1-x2, fx) = V1 — x2 is defined for —1 < x < 1 and hence  is the
horizontal strip R x {—1 < x < 1}.

More generally, let F (¢, x, p) be a real function of 3 real variables, defined on a
set R C R3. Consider the first order differential equation

F(,x,x)=0,

whose solution is a differentiable real valued function x(¢) defined on an interval
I C R such that
F(t,x(®),x'(t)) =0, Vtel. (2.3)

If F(¢t,x, p) is of the form F(¢t,x,p) = p — f(t,x), we can write the equation
F(z,x,x") = 0in normal form x" = f(¢, x).

Even more generally, we may consider systems of n first order equa-
tions and n unknowns. We may also consider more general scalar equations
F(t,x,x",x",...,x™) = 0 of order n.

In this chapter we deal with first order equations. Higher order equations and sys-
tems will be discussed starting with Chapter 4.
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2.2 The Cauchy problem: Existence and uniqueness

The problem of solving an equation in normal form x" = f(¢, x) coupled with the
initial condition x (¢y) = xo,

x(fo) = Xo

{x' = f(t.x)

is called a Cauchy' problem or an initial value problem, ivp in short.

In this section we discuss some theoretical aspects of existence and uniqueness
theorems for the Cauchy problems. The proofs are given in the Appendix 2.5 at the
end of the chapter.

Existence and uniqueness of solutions is important not only from a theoretical
point of view but also in applications. For example, in using a numerical method or
some software such as Math Lab to find a solution, it is important to know whether
or not such a solution exists in the first place. And if it does exist, is there more than
one solution?

2.2.1 Local existence and uniqueness

Theorem 2.2.1 (Local existence and uniqueness). Suppose that [ is continuous
in @ C R? and has continuous partial derivative fy with respect to x. Let (ty, xo)
be a given point in the interior of 2. Then there exists a closed interval I containing
to in its interior such that the Cauchy problem

{xl = /t.x) (2.4)

x(to) = xo
has a unique solution, defined in I.

We will see that this is a particular case of a more general result, see Theorem 2.4.4
below.

We are going to outline the proof of the existence part by using a method intro-
duced by Picard,”> which is based on an approximation scheme.

We define a sequence of approximate solutions by setting

t
xo(t) = X0, Xg4+1(t) = X0 +/ f(s, xx(s))ds, k=12,....
to

One shows that, under the given assumptions, there exists § > 0 such that x (¢) con-
verges to some function x(¢), uniformly in [ty — &, fp + §]. Passing to the limit one
finds that x satisfies

x(t) = xo +/ f(s,x(s))ds.

! Augustin-Louis Cauchy (1789—1857).
2 Charles Emile Picard (1856-1941).
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Then x(¢) is differentiable and, using the Fundamental Theorem of Calculus, we get
x'(t) = f(t,x(t)),forallt € [tg—S§, to+§]. Itis also clear that x (fg) = x¢ and hence
x(¢) is a solution of (2.4), defined in [t — &, 9 + §]. For details see the Appendix.

Let us show what happens in the particular case f(¢,x) = x,t = 0and xo = 1.
The sequence is constructed as follows:

Xo(t) = 1,

t t
xl(t)=1+/x0(s)ds=l+/ ds =1+t,
0 0

t t
1
xz(t)zl—}—/ xl(s)ds=l+/ (1+s)ds=l+t+2t2,
0 0

1

3
3!t ’

t t 1 1
xs(t)=1+/ X2(S)dS=1+/(1+s+252)ds:1+t+212+
0 0

t
xe(t) =1 +/ Xe—1(s)ds = 1+1+ L ot Lk

The sequence xg () converges uniformly to x(t) = ) kl! tk = e’, which is the
solution to x’ = x, x(0) = 1.

It is important to note that Theorem 2.2.1 is local, because it ensures that the so-
lution exists (and is unique) in a suitable interval around #y. The following example
shows that the solution may not be defined on all of R even if the equation makes
sense everywhere.

Example 2.2.2. Consider the ivp

X =x2
{x(to) =a#0. 25
Let us first solve the equation x’ = x2. This is a so-called “separable equation”
and will be discussed in Section 3.1 of Chapter 3. Here, instead of using the general
method, we will find the solutions by a direct argument which uses some intuition.

We have to find functions x (¢) whose derivatives are equal to x2(¢). One choice
could be x(¢) = —}, because x’ = tlz which equals x2 = tlz. More generally,
consider the functions

1
o(t,c) =— , c eR.
t—c

Since

d
L= =9,

1
(t—c)
it follows that, for all real constants c, the functions ¢ (¢, ¢) solve x" = x2,
To find the solution x,(¢) of the Cauchy problem (2.5) we impose the requirement
that ¢ (tg, ¢c) = a, that is
1 1

1
a=— = & c=1ty+ .
fo— ¢ c—1y a
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X

Fig. 2.2. Solutions of x’ = xZ, x(0) =a > 0

Letc, = tp + ; Recall that the solution of a differential equation is differentiable

1

and hence continuous. Thus we cannot take both branches of the hyperbola — ey

If the initial value a > 0, then we have to choose

1
xa(t)=—t oo <ca
— Ca

and if @ < 0, then we have to choose

1
Xq(t) = — , > cq.
1 —cCq
Notice that x () = 0 solves the equation but not the initial condition x (zg) = a # 0.
|

In the preceding example, the function f(x) = x? is defined for all x and hence
Q = R2, while the solution is defined only in a neighborhood of #y. This is one of
the peculiarities of nonlinearity, compared with linear.

Definition 2.2.3. We say that J C R is the maximal interval of definition of the so-
lution x(¢) of the Cauchy problem (2.4) if any interval / where x(¢) is defined is
contained in J, and x(¢) cannot be extended in an interval greater than J.

For example, the maximal interval of definition of the solution of x’ = x2, x(ty) =
a > 0, discussed in the preceding Example 2.2.2, is (—00, ¢4), with ¢, = t9 + [11 .

Lemma 2.2.4. Let x¢(t) be a solution of x' = f(t, x). Suppose, for simplicity, that
the set Q where f is defined is all of R?. If J, the maximal interval of definition of a
solution xo(t), is not all of R, then it cannot be closed.
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Proof. By contradiction, let J/ = [, B] or J = (—o0, ] or J = [o, +00). We deal
with the first case, the other ones are similar.
Consider the new Cauchy problem

x'=ft,x),  x(B)=xo(B)

in which the initial condition is prescribed at the point 8 and equals the value that
Xo(t) assumes at such a point. According to the local existence and uniqueness The-
orem 2.2.1, the new ivp has a unique solution x;(¢) defined in an interval [8, § + §]
for some 6§ > 0. Consider the function obtained by gluing together x¢ and x1, that is

{xO(t) if o <t <P
x(t) =
x1(t)ifg<t<pB+54.

Since x¢(8) = x1(B), the function x (¢) is continuous. Let us show that it is differ-
entiable. This is clear for all # # 8. At¢ = § we consider the left and right limits of
the difference quotients

. x(B+h)—x(B) . x(B+h)—x(B)
m 1 , m .

li

1
! h—0+ h

h—0—

For h <0, we have x(B + h) = xo(8 + h) and hence

i YBTD—x@B) _ L Xo(B 4 h) —xo(B) — X(B) = f(B.x0(B)).

h—0— h h—0— h

Similarly, for 4 > 0 we find

i YE+D=xB) L xi(B ) —xa(B) X (B) = f(B.x1(B)).

h—0+ h h—0+ h

X(B)

Fig. 2.3. Gluing x¢(¢) and x1 (¢)
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Since xo(B8) = x1(B), it follows that

1 =1
h—1>0— h h—l>0+ h

. x(B+h)—x(B) _ .. x(B+h)—x(B)
m m ,
and this means that x (¢) is differentiable at t = §.

We have found a solution of x" = f(z, x) defined in [«, B + §] in contradiction
with the fact that J = [«, 8] is the maximal interval. The argument for the left end
point « is the same. L]

Proposition 2.2.5. Let f(t,x) satisfy the assumptions of the local existence and
uniqueness theorem, with Q@ = R2. If x(t) is a solution of x' = f(t,x) which is
monotone and bounded, then its maximal interval of definition J is all of R.

Proof. By contradiction, suppose that J is strictly contained in R. For example, let us
assume that J is bounded (the other cases are treated in a similar way). Let us show
that J is closed. Let B < 400 be the right extreme of J. Since x(z) is monotone
and bounded, the limit lim,_, g_ x (¢) exists and is finite. Thus x () is defined also at
t = B and hence J contains 8. Same argument for the left extreme o« > —oo0. We
have shown that J is closed and this is in contradiction with the preceding Lemma. =

Concerning the fact that the solution of the ivp (2.4) is unique, we have required
that f be differentiable with respect to x. The following example shows that if this
condition is violated, the solution may not be unique.

Example 2.2.6. Consider the Cauchy problem

X' =2x
{x(O) — 0. (26)

This is also a separable equation discussed in Section 3.1 of Chapter 3. One solution
is given by x(¢) = 0. Another solution is given by

x(t)=1t> t>0,

because jt (12) = 21 = 2/t2 = 2|t| = 2t fort > 0. Note that for < 0 one has
|t| = —¢ and hence x = 2 is not a solution for ¢ < 0.

We have found two solutions that solve the ivp (2.6). Furthermore, one can verify
that, for any a > 0, all the functions

Xa(t) = 0, forO0<t <a

T (x —a)?, fort >a
are solutions. So, (2.6) has infinitely many solutions. See Figure 2.4. Notice that
2\/ |x| is not differentiable at x = 0.
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Fig. 2.4. Solutions of x" = /x

On the other hand, the ivp x’ = 24/x, x(0) = a, has a unique solution provided
a > 0. Actually, f(x) = 2./x is differentiable in the open half plane x > 0 and
Theorem 2.2.1 applies. One can check that the function x*(r) = (¢ + Ja)z solves
the ivp, is defined for all 7 and is the unique solution. [

Remark 2.2.7. An important consequence of the uniqueness result stated in Theo-
rem 2.2.1 is that two solutions of x’ = f(¢,x) cannot cross each other. In other
words, if v(¢) and z(¢) are two solutions of x’ = f(, x) defined on a certain interval
[a, b] and if there exists t* € [a, b] such that v(t*) = z(¢t*), then v(t) = z(¢) for all
t € [a, b]. The reason is that both v and z satisfy the same ivp

x' o= ftx)
x(@*) =v(t*) = z(t*).
So, by uniqueness one must have x(¢) = z(¢) on [a, b]. ]

We will see later on that we can also use the uniqueness result to deduce geometric
properties of the solution of an ivp. See e.g. Proposition 2.3.3 below.

The following theorem, due to G. Peano® shows that the existence part (but not
the uniqueness) of Theorem 2.2.1 requires only continuity of the function f. The
proof of this theorem requires some more advanced topics, in particular the Ascoli*
compactness theorem,’ and is omitted.

3 Giuseppe Peano (1858-1932).
# Guido Ascoli (1887-1957).
3 A statement of the Ascoli Theorem is reported in Chapter 13.
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Theorem 2.2.8 (Local existence). Suppose that f is continuous in Q@ C R? and let
(to, x0) be a point in the interior of Q. Then the Cauchy problem

{x’ = f(t,x)

x(to) = xo
has at least one solution defined in a neighborhood of ty.

For example, this result applies to the Cauchy problem x’ = 2/x, x(0) = 0,
discussed earlier, and guarantees that it has at least one solution.

Remark 2.2.9. If the equation is F (¢, x, x") = 0, we first try to put it in normal form
and then use the existence and uniqueness results sated above. L]

2.2.2 Global existence and uniqueness

As mentioned before, Theorem 2.2.1 is local. The next global result holds, provided
the set 2 is a strip and f is bounded w.r.t. x.

Theorem 2.2.10 (Global Existence and Uniqueness). Let 2 be the strip Q =
[a,b] x R and let (ty, x9) be a given point in the interior of 2. Suppose that f
is continuous in 2 and has continuous partial derivative with respect to x and that
the partial derivative fy(t, x) is bounded in the strip. Then the Cauchy problem

{X' = f(t.x)

x(to) = xo
has a unique solution defined for all t € [a, b].

Corollary 2.2.11. If @ = R?, Q = [a, +00) xR, or @ = (—o0, b] xR, and f(t,x)
is bounded in 2, then the solution is defined respectively on all of R, on [a, 4+00),
or on (—oo, b].

Theorem 2.2.10 and Corollary 2.2.11 are particular cases of the more general The-
orem 2.4.5 in the next section.

The new feature of the preceding results is that now the solution is defined on the
whole interval [a, b].

Remark 2.2.12. Example 2.2.2 shows that the condition that fy is bounded in the strip
cannot be removed. n

Example 2.2.13. Let p, g € C([a, b]) and consider the linear equation x” + p(¢)x =
q(t) discussed in Chapter 1. In this case, f(t,x) = —p(t)x + q(¢) and f+(t,x) =
—p(t), which is bounded in [, b] and hence Theorem 2.2.10 applies. This provides
an alternate proof of the existence and uniqueness result stated in Theorem 1.4.2 in
Chapter 1. Note that the solutions of x’ + p(t)x = ¢(¢) are defined on the whole
interval [a, b]. Moreover, Corollary 2.2.11 implies that, if p, g € C(R) the solutions
are defined on all of R. ]
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2.3 Qualitative properties of solutions

In this section we study some qualitative property of solutions, using the (existence
and) uniqueness result stated before.
In the sequel it is understood that the assumptions of this theorem are satisfied.
We start with simple symmetry results.

Lemma 2.3.1. Let f(x) be odd and let x(t) be a solution of X' = f(x). Then —x(t)
is also a solution.

Proof. Setting z(t) = —x(¢t) we find z/ = —x’ = —f(x) = —f(—=z). Since f is
odd then — f(—z) = f(z) and 2’ = f(2). ]

Lemma 2.3.2. Let f(x) be even and let xo(t) be a solution of x' = f(x) such that
x(0) = 0. Then x¢(t) is an odd function.

Proof. Setting z(t) = —xo(—t) we find z'(t) = x3(—t) = f(xo(—1)) = f(-2).
Since f is even then f(—z) = f(z) and z/ = f(z). Moreover, z(0) = x¢(0) = 0.
Thus, by uniqueness, z(¢) = xo(t), namely x¢(t) = —xo(—1). m

Proposition 2.3.3. Suppose that f(t, x) is odd with respect to t, that is f(—t,x) =
— f(t, x). Then the solutions of x' = f(t, x) are even functions.

Proof. Let x(t) be any solution of x" = f(¢, x). Setting z(t) = x(—t) one has

Z'(1) = —x'(=1) = = f(=t,x(=1)) = = f(~1,z(1)).

Since,by assumption, f(—t,z) = — f(¢, z), we deduce

' = f(,z).

Thus x(¢) and z (¢) satisfy the same equation. Moreover x, z satisfy the same initial
condition at ¢ = 0 because one has z(0) = x(0). Since f is continuously differ-
entiable, the uniqueness statement in Theorem 2.4.4 applies and hence x (t) = z (),
namely x(¢) = x(—t), proving that x(¢) is an even function, as required. m

The next result is a comparison theorem.

Theorem 2.3.4. Let x,(t), yp(t) be solutions of the Cauchy problems

{x’ = f(t,x) {y’ =g(t,y)
x(to) =a y(to) =b

defined in a common interval [ty, B). If a < b and f(t,x) < g(t,x), then x4(t) <
vp(t) forallt € [ty, B).
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Proof. We argue by contradiction. Suppose that the set

S ={t €[to,B) : xa(t) = yp(1)}

is not empty. Let o be its infimum, namely its greatest lower bound. Since x,(¢p) =
a < b = yp(tp), by the Sign Permanence Theorem of continuous functions, there
exists € > 0 such that x, (1) < y,(¢) forall ¢ € [tg,?9 + €) and thus ¢ > ty + € > 1.
Moreover, since o is the infimum of the set § then there exists a sequence z; > o with
tj — o and such that x,(¢;) > yp(¢;). Passing to the limit one finds x,(0) > yp(0).
But x,(0) cannot be strictly greater than y; (o) because, otherwise, using again the
Sign Permanence Theorem, we would have x,(f) > yp(¢) in a left neighborhood
of o and this is in contradiction with the fact that 0 = inf S..

Recall that x, (0 + 1) < yp(o+h) for h < 0 small, because 6 = inf S. Then, tak-
ing into account that x,(0) = yp(0) and that 1 < 0 we deduce that the incremental
ratios satisfy

Xq(0 + h) — x4(0) - Vo(0 +h) — yp(0)

L I , Yh <0, small.

Passing to the limit as 7 — 0, & < 0, we infer that x/,(¢) > y’(c). But this is
impossible, since, by assumption,

xq(0) = f(0.xa(0)) < g(0,ys(0)) = y'(0).

We have proved that S is empty and therefore that x,(t) < yp(¢) forallt € [ty, §). m

The next examples show how we might apply the comparison theorem.

Example 2.3.5. (i) Let x, (¢) be a positive solution of x’ = f(x) such that x(¢y) = a.
Suppose that f(x) < —kx for some k > 0, and that x,(¢) is defined on an interval
[to + 00). Then x,(¢) decays exponentially to 0 as ¢t — +oc. To see this, let y;(¢)
be the solution of y/ = —ky, y(fo) = b > max{a, 0}, namely y, () = be %10,
Then applying the previous Proposition with g(y) = —ky, it follows that 0 < x(¢) <
he*(t=10) and the result follows.

(ii) Let y(¢) be the solution of

{y’ =g(t.y)
y(to) =b

and suppose it is defined on [ty + o0). If g(¢,y) > k > 0 and b > 0, then
lim;, 400 yp(t) = +o00. Applying the Proposition with f(t,x) = k and a = 0,
we infer yp () > k(¢ — tg), from which the claim follows at once. [
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2.4 Improving the existence and uniqueness results

The assumptions in the preceding theorems can be weakened, which means that the
results can be extended to include a larger class of functions. We indicate below the
main extension of this kind.

Definition 2.4.1. The function f(¢, x) definedinaset Q C R2, is locally lipschitzian®
(or simply lipschitzian) at a point (¢9, xg) € 2 with respect to x, if there exists a
neighborhood U C Q of (9, xo) and a number L > 0 such that

| f(t,x)— f(t,z)] < L|x —z|, VY (t,x), (t,z) e U.
We say that f is globally lipschitzian on €2 if there exists L > 0, such that

|f(t.x) = ft.2)| = Llx —z|. YV (t.x), (1.2) € Q.

From the definition it immediately follows that any locally lipschitzian function
is continuous at (g, xo). Moreover, one has:

Lemma 2.4.2. Let f(t,x) be continuously differentiable with respect to x in Q. If
there exists € > 0 such that f(t,x) is bounded in U = {|t—tg| < €} x{|x—x¢| < €},
then f is lipschitzian on U.

Proof. Applying the Mean Value Theorem to the function f(z, x) we infer that

ft.x) = ft.2) = fx(t.6)(x — 2),

where x < £ < z. Since L = sup{| fx(t,&)| : (¢,&) € U} is finite by assumption, it
follows that

| f(t,x)— f(t,z)| < L|x —z|, vV (t,x), (t,z) € U,

proving the lemma. m

Example 2.4.3. (i) The function f(x) = |x| is globally lipschitzian with constant
L = 1, but is not differentiable at x = 0. Actually, | f(x) — f(2)| = ||x| —|z|| <
|x — z| for all x, z € R. Moreover, since

x| = —xifx <0
- xifx >0

then the left derivative of f at x = 0 is —1, while the right derivative is 4+1. Thus f
is not differentiable at t = 0.

(i) The function f(x) = x?2 is locally lipschitzian at any point but not globally
lipschitzian on R. To prove this claim we first notice that f(x) is differentiable with

© from Rudolph Lipschitz (1832-1903).
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derivative f’(x) = 2x, which is bounded on every bounded subset of R. Then, ac-
cording to the previous lemma, f is locally lipschitzian at any point. If f were glob-
ally lipschitzian on R, then there would exist L > 0 such that |x? — z?| < L|x — z|
for all x, y € R. Since |x% — z2| = |x + z| - |x — z| it follows that |x + z| < L for
all x, z € R, which is obviously false.

(iii) The function f(x) = \/ |x| is not lipschitzian at x = 0. Otherwise, there

would exist € > 0 and L > 0 such that )\/|x| - \/|z| ‘ < L|x —z| forall x,z €

(—e¢, €). In particular, taking z = 0, we get \/|x| < L|x| for all x € (—e, €), which
is obviously false. L]

Using the previous definition, one can prove the following local and global exis-
tence result which holds for equations in normal form and extend the existence and
uniqueness Theorems 2.2.1 and 2.2.10 as well as Corollary 2.2.11.

Theorem 2.4.4. Let (ty, xo) be a given point in the interior of Q. If f is locally
lipschitzian with respect to x at (ty, Xo), then the Cauchy problem

{X' = f(t.x)

x(to) = xo
has a unique solution defined in a suitable neighborhood of ty.

In Example 2.2.6 we have shown that the ivp x’ = 2\/|x|, x(0) = 0, has infinitely
many solutions. Notice that the function f(x) = 2\/ |x| is not lipschitzian at x = 0
(see Example 2.4.3(iii) above). This shows that the preceding result is sharp, in the
sense that we cannot guarantee uniqueness of the Cauchy problem (2.4) if f is not
lipschitzian at (z, xo).

Theorem 2.4.5. Suppose that Q = [a,b] X R (resp. 2 = R xR), and f is globally
lipschitzian in Q. Let (ty, Xo) € 2 be given. Then the Cauchy problem

{x’ = f(t.x)

x(t0) = xo
has a unique solution defined on all of [a, b] (resp. on all of R).
The proofs are given in the Appendix below.

Example 2.4.6. Since |x| is globally lipschitzian, the Cauchy problem x’ =
|x], x(0) = xo has a unique solution x(¢), defined for ¢ € R. Precisely, if xo = 0
then x(¢) = 0. The other solutions x(¢) never vanish. If xo > 0, then x(¢) > 0 and
the equation becomes x’ = x, and hence x(t) = xpe’. If xo < 0 then x(¢) < 0,
the equation is x’ = —x and x(¢) = xge™". In any case x(¢) is increasing provided
X0 7& 0. |
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2.5 Appendix: Proof of existence and uniqueness theorems

2.5.1 Proof of Theorem 2.4.5
Let us first prove Theorem 2.4.5 dealing with uniqueness and global existence of the

Cauchy problem
x, = f(t7 x) (2 7)
x(f0) = xo '

where f(¢,x) is defined in the strip S = {(t,x) € R2 : a <t < b}, (tp,y9) € S

and f is continuous and globally lipschitzian in S. Let us recall that this means that
there exists L > 0 such that

|f(t,x)—f(l,y)|§L|x—y|, V(I,X),(l,y)ES. (28)

The strategy is to find a sequence of functions that converges to the solution of (2.7).
For this, it is convenient to transform the ivp (2.7) into an equivalent integral equation.

Lemma 2.5.1. x(¢) is a solution of (2.7) if and only if x(t) satisfies
t
x(t) = xg +/ f(s,x(s))ds, Vtela,b]. 2.9)
to

Proof. Let x(t) be a solution of (2.7). This means that x’(¢) = f(z, x(¢)) and hence
integrating from 7, to ¢ we find

/tx'(t)dt = /t f(s,x(s))ds, Vté€la,b].

0

Since x(ty) = x¢ the first integral is equal to x(¢) — x(¢9) = x(¢) — xo and thus,
V t € [a, b] one has

x(t) —x9 = /t f(s,x(s))ds = x(t) = xp +/ f(s,x(s))ds,

namely x (¢) satisfies (2.9).
Conversely, let x (¢) satisfy (2.9). If for ¢ € [a, b] we set

t
#0)= [ fGs.xs)ds
to
by the fundamental theorem of calculus ¢ is continuous, differentiable and

P'(t) = f(t.x(1)).
Thus x(¢) = x¢ + ¢(¢) is differentiable in [a, b] and

X@)y=¢'(t) = ft.x),  Vi€lab]
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Moreover,

x(t0) = xo + [ " F(s.x(s))ds = xo

and hence x(¢) satisfies the ivp (2.7), completing the proof of the lemma.

Define by recurrence a sequence of functions such that for all ¢ € [a, b] and all

integers k = 0,1,2, ...
xo(t) = xo

t
x1(t) = xo +/ f(s,x0)ds

t
X2(t) = xo +/ f(s,x1(s))ds

X1 (1) = xo + / (5. 0 (5))ds.

to

Lemma 2.5.2. The sequence xi(t) is uniformly convergent in |a, b].
Proof. Let us start by showing by induction that forall k = 1,2, ..

M |l —l0|kLk

I l , Vtela,b]

Xk (1) — X1 ()] <

where M = max{| f(¢, xo)| : t € [a, b]}.
For k = 1 we have, using the assumption that f is lipschitzian,

|xX2(t) —x1(0)| =

/ (f(s.x1(5) — f(5. x0))ds
< / £ (s.x1(5)) — f(s. x0)|ds

t
< L/ |x1(s) — xolds.
to
On the other hand,

|x1(s) — x0| = ‘[ f(r,xo)dr

and thus

! ML
|x2(2) — x1(2)| < ML/ |s —tolds = 5 |t — o], Vtela,b],
to

which proves (2.10) for k = 1.

S
5/ | f(r,xo)|ldr < M -|s —to|
to

(2.10)
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By induction, we assume that (2.10) holds for k¥ — 1. Repeating the previous ar-
guments, we find

t
90) =31 O] = [ 1651 6) = F6.vem25)lds
to
t
<L i) = valds. Vicladl
fo
Using the induction hypothesis we find

M Lk—l t o1
@ = sl <L ([ sl as

M LY Jr—itff M |t —1o]FLF

< , Ytela,b].
S L=k Lk la.b]
Therefore (2.10) holds for all natural numbers k.
Since (2.10) holds for all ¢ € [a, b], then
M (b—a)kL*

max [xgy1(f) — xx(?)] < (2.11)

tefa,b] - L k!
The sequence ok
b— L
( ]j') -0 (k = +00)
because the series .
IO ol
k!

is convergent to e£(®=* Thus (2.11) implies that the sequence x (¢) is uniformly
convergent on [a, b], as required. L]

Proof of Theorem 2.4.5. By Lemma 2.5.2, the sequence xi(t) — x(t), uniformly
in [a, b]. Then f(s, xx(s)) — f(s,x(s)), uniformly in [a, b] and we can pass to the
limit under the integral in

Xp+1(t) = xo +/ f(s, xr(s))ds

yielding .
x(t) = xo + / f(s,x(s))ds.
to
According to Lemma 2.5.1 it follows that x (¢) is a solution of the ivp (2.7).

It remains to prove the uniqueness. We will first consider an interval |t — ty| < §
where § is such that L§ < 1 (hereafter it is also understood that ¢ € [a, b]) and show
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that two solutions x(¢), y(¢) of (2.7) coincide therein. One has

x(t) = y(@) =/l (f(s.x(5)) = f(s.y(s))ds

and hence

t
< L[t —to| max [x(t)—y()|<LS max [x()—y()l
[t—tg|<é [t—tg|<$

() — y(0)] < / f(5.x() — f(5. y(s)lds < L / x(s) — y(s)|ds

Taking the maximum of the left-hand side on |t — ty| < § we find

max |x(¢) — y(¢)| < 8L max |x(t) — y(1)|.
[t—t0l<8 [t—t0l<8
Letting A = max—s,1<s [x(t) — y(¢)| > 0, we divide by A4 finding 1 < L§, a
contradiction because we have chosen § such that L§ < 1. Thus

max [x(7) —y(1)] =0,
[t—to|<é

which implies that x (t) = y(¢) on the interval |t —#¢| < §. In particular, x (o £ ) =
y(to = 8). We can now repeat the procedure in the interval [ty + §,%9 + 28] and
[to — 28,19 — §]. Then we find that x(t) = y(¢) forall ¢ € [ty — 25,1 + 25]. After a
finite number of times we find that x(¢) = y(¢) for all t € [a, b]. This completes the
proof. n

2.5.2 Proof of Theorem 2.4.4

Here we will prove Theorem 2.4.4 on the local existence and uniqueness result for
the ivp (2.7), where it is assumed that £ (¢, x) is defined in  C R? and is locally lip-
schitzian near (¢, xo). Let us recall that this means that there exists a neighborhood
U C Q of (ty, x¢) and a number L > 0 such that

|f([vx)_f(tsy)|§L|x_y|v V(t,x),(t,y)eU. (212)

Without loss of generality we can take U = U, as the (closed) square {(¢,x) € Q :
|t —to] < r, |x —x0| < r}, for some r > 0. We will deduce Theorem 2.4.4 from
Theorem 2.4.5 proved in the preceding section. To this end, let us consider the strip

S, i={(t,x) eR?: |t —to] <r}
and extend f to the function f* : S, > R defined by setting
ft,xo—r) if (t,x) € S, andx < xo—r

fre,x) =13 f@t,x) if (¢,x) € U,
ft,xo+r)if(t,x) € Sy and x > xo + r.
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Itis easy to check that f* is globally lipschitzian on S, . For example, if x, y are such
that xo —r < x < Xxo +r < y,then f*(t,x) = f(t,x), f*(t,y) = f(t,xo + 1)
and one has

|2t x) = f*e.nl=1ft.x)— f(t.xo+71)| < LIx —xo—r| < L|x — y|.

Since f* is globally lipschitzian on S;, the global Theorem 2.4.5 yields a solution
x(t), defined on [ty — r, 9 + r], of the ivp

{ x'= f*(t.x)

x(t9) = Xxo.

The range of the function x (z) could be outside [xo — 7, xg + r], where f* # f.To
overcome this problem we use the fact that x (¢) is continuous and x(¢9) = x¢. Then
there exists § > 0 such that

tefto—8.10+8 = |x(t)—xo| <r

Therefore, for t € [ty — &, 79 + 8] one has that f*(¢, x(¢)) = f(¢,x(¢)) and hence
x (1), restricted to such an interval, solves the ivp (2.7). [

2.6 Exercises

1. Check that the local existence and uniqueness theorem applies to the ivp x’ =
t +x2,x(0) = 0.

2. Show that the function f(x) = |x|? is not lipschitzian at x = 0if 0 < p < 1.

3. Find a such that the existence and uniqueness theorem applies to the ivp x’ =
21113, x(0) = a.

4. Check that for all 9, a the existence and uniqueness theorem applies to the ivp
Inx’ = x2,x(ty) = a.

5. Transform the equation e*’ = xintoan equation in normal form and show that it
has a unique solution such that x(¢9) = a, for all ¢y and all a > 0.

6. Find an equation whose solution is the catenary x(¢) = cosht = ;(e’ +e).

7. Check that the functions x(¢) = 1 and

are solutions of the ivp x’ = V1 —x2, x(g) =1.

8. Find @ > 0 such that the Cauchy problem x’ = |x|'/4, x(0) = « has a unique
solution.
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10.

11.
12.
13.
14.

15.

16.
17.

18.

19.

20.
21.

22.
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Show that if p > 1 the solution of x’ = x?, x(0) = a > 0, is not defined for all
t > 0.

Show that if 0 < p < 1, the solution of x’ = |x|?, x(0) = a > 0, is defined for
allt > 0.

Show that the solutions of x” = sin x are defined on all ¢ € R.
Show that the solutions of x” = arctan x are defined on all ¢ € R.
Show that the solutions of x” = In(1 + x?) are defined on all ¢ € R.

Show that the ivp x’ = max{l, x}, x(0) = 1, has a unique solution defined for
all ¢ and find it.

Show that the ivp x’ = max{l, —x}, x(0) = —1, has a unique solution defined
for all # and find it.

Show that the solution of x” = t2x* + 1, x(0) = 0 is odd.

Show that, if f(x) > 0, resp. f(x) < 0, the solutions of x’ = f(x) cannot be
even.

Show that the solution x (¢) of the Cauchy problem x’ = 2 + sinx, x(0) = 0,
cannot vanish for ¢ > 0.

Let f(x) be continuously differentiable and such that f(0) = 0. Show that the
solutions of x’ = f(x)h(¢) cannot change sign.

Show that the solutions of x’ = sin(zx) are even.

Show that the solution x,4(¢) of X’ = 2t + g(x), x4(0) = a > 0 satisfies
Xq(t) >t +t?fort > 0, provided g(x) > 1.

Let x,(2) be the solution of x’ = —t + g(x), x4(0) = a, with0 < a < 2. If
Xq(2) is defined for all > 0 and g(x) < —x, show that the equation x,(¢) = 0
has at least one positive solution in (0, 2).
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First order nonlinear differential equations

The main focus of this chapter is on learning how to solve certain classes of nonlinear
differential equations of first order.

3.1 Separable equations

An equation of the form
x'=h(t)g(x) (3.D

is called a separable equation. Let us assume that s (¢) is continuous with i(t) # 0
and g(x) is continuously differentiable in the domain being considered, so that the
local existence and uniqueness Theorem 2.2.1 of Chapter 2 applies.

If x = k is any zero of g, g(k) = 0, then x(¢) = k is a constant solution of
(3.1). On the other hand, if x(¢) = k is a constant solution, then we would have
0= h(t)gk), t € R, and hence g(k) = 0 since h(t) # 0. Therefore, x(¢) = k is
a constant solution (or equilibrium solution) if and only if g(k) = 0. There are no
other constant solutions. All the non-constant solutions are separated by the straight
lines x = k. Hence if x(¢) is a non-constant solution then g(x(¢)) # 0 for any ¢, and
we can divide

x" = h(t)g(x)
by g(x) yielding

¥
gy = "0

We integrate both sides with respect to ¢ and obtain

O
/g(x(t))dt = /h(z)dr.

dx
/g(x) = /h(t)dt +c. (3.2)

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT - La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_3, © Springer International Publishing Switzerland 2014

Since x’ = ‘fi’t‘, we have
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We wish to point out that while it is very easy to express solutions of a separable
equation implicitly in terms of integrals, it may be difficult or even impossible to per-
form the actual integration in terms of simple and familiar functions. In such cases,
one can carry out a qualitative analysis to get some information about the behavior of
solutions, see for example Section 2.3 in the previous chapter. Otherwise, if needed,
one could use numerical methods or computer software to obtain approximate solu-
tions to a reasonable or needed degree of accuracy.

If we want to solve the initial value problem

x(to) = Xo

we simply substitute the initial value x (fg) = x¢ into (3.2) and solve for c. Note that
this equation has a unique solution, according to Theorem 2.2.1 of Chapter 2.

Essentially, the idea behind solving separable equations is to separate the variables
and then integrate.

Example 3.1.1. (i) Consider the equation x” = h(¢)x. We notice that this is a linear
homogeneous first order equation, and we learned in Chapter 1 how to solve such
equations. But this is also a separable equation and we can solve it by the method
described above. Separating the variables and then integrating, we obtain | dxx =
[ h(z)dt + ¢, whichyields In |x| = [ h(t)dt + c. Thus, letting ¢; = e, we obtain
the general solution

x(t) = ¢ e/ MO

in accordance with the result stated in Theorem 1.4.2 of Chapter 1.
12
(i) Solve x’' = .
1+ 3x2
There are no constant solutions. Separating the variables and integrating, we have

J(1 4 3x?)dx = [t*dt + ¢ and hence

s_ 10
X+ x° = 3 +c
which defines the solutions implicitly. Moreover, since the function ®(x) = x + x3
is increasing and its image is all of R, it has an (increasing) inverse ¢ defined on all
of R. Thus ®(x) = t; + ¢ yields x(1) = (p(t33 + ¢). Note that the solutions are
defined globally on R. The reader might check that this also follows from the Global
Existence Theorem 2.2.10 of Chapter 2.
(iii) Find the solution of the initial value problem x’ = 2¢x3, x(0) = 1.

The only constant solution is x = 0. Therefore if x (¢) is a solution such that x (0) =
1, then, by uniqueness, x (¢) cannot assume the value 0 anywhere. Since x(0) = 1 >
0, we infer that the solution is always positive. Using (3.2) we find

d
[ f:/tht—f-c.
X
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Sy 0 V2

. _ 1
Fig. 3.1. Plot of x = a2
Carrying out the integration it follows that
1 2
— =1 C.
2x2 +
.y . . 1
The initial condition x(0) = 1 yields ¢ = 5 and hence
1 1
- =t*—_.
2x2 2
Solving for x, and recalling that x > 0, we find
1
X = .
V1212
Notice that in the present case the maximal interval of definition is given by — jz <
< \}2' [ ]

3.1.1 The logistic equation

As a remarkable example of a separable equation, we consider a model, due to P.F.
Verhulst,! in which one assumes that the variation x’ of the number of individuals in
a population is proportional to x, but through a factor of (¢ — Bx). This leads to the
equation

x'(t) = x(t)(a — Bx(t)), o, B>0. (3.4)

! Pierre Francois Verhulst (1804—1849).
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Contrary to the Malthusian model discussed in the first chapter, here the constant
factor k is substituted by the function & — Bx. The fact that this function is decreas-
ing with respect to x may be explained by the observation that the bigger x is, the
more difficult it will be for an individual to find resources, such as food, space, etc.,
and hence the more difficult it will be to survive. This equation is called the logistic
equation.

Since in this model, x(¢) represents the population of some species, we are in-
terested in solutions x(#) such that x(¢) > 0. It is easy to see that x(¢) = 0 and
x(@) = g are the equilibrium solutions. Such solutions play an important role in an-
alyzing the trajectories of solutions in general. We now study solutions x (), where
x(t) > Oforall ¢ > 0.

By uniqueness, the other solutions cannot cross the trajectories (which are lines
in this case) defined by the two equilibrium solutions. Hence for any non-constant
solution x(¢), x(¢) # 0 and x(¢) # «/p for any ¢. Thus, the two lines x = 0 and
X = g divide the trajectories into two regions, those that lie above the line x = %
and those that lie between the lines x = 0 and x = ¢

In order to solve the logistic equation, we separate the variables and obtain

dx .
x(o — px)

assuming that x # 0 and x # g . The left side can be integrated by partial fractions
method. We search for constants A and B such that

1 A B

dt

x(—px x+oz—,3x

p

. Therefore, we have

o
LA e
o X a) a—PBx

1
andfind A = and B =4 =
o

which yields
1 1 1 X
In|x|— Inje—pBx|= In| |=t+c
o o a a-—PBx
from which we obtain N
= ke"
a— Bx
where k = e*¢. Solving for x, we obtain
ake®?
x(t) = .
® 1 + Bke*

This shows that all non-constant solutions approach the equilibrium solution x () =
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Fig. 3.2. Solutions of the logistic equation for x(0) > «/8 and x(0) < /B

% ast — 0o, some from above the line x = % and others from below (see Fig. 3.2).

The reader will notice that the behavior of x (¢) is totally different from the one found
in the Malthusian model.

3.2 Exact equations

Consider the equation

dy — M(x,y)

dx  N(x,y) (3-5)

over a domain 2 S R? where N(x, y) # 0. Notice that here we use y as the depen-
dent variable and x as the independent variable.
By an exchange of the variables, we can just as easily write
dx _ N(xy)

__ , 3.6
dy = M(x.y) -0

over a domain @ S R? where M(x,y) # 0. Here the roles of x and y are also
exchanged: x is now the dependent variable while y is the independent variable.
Consider the differential form of equation (3.5) stated as

M(x,y)dx + N(x,y)dy = 0. (3.7
Let us associate with (3.7) the differential form

w = M(x,y)dx + N(x,y)dy.
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We say that (3.7) is an exact equation if w is the exact differential of a function; that
is, there exists an antiderivative F'(x, y) such that d F = w, which means that

{Fx(x,y) = M(x,y)
Fy(x,y) = N(x,y)

and hence
M(x,y)dx + N(x,y)dy = dF(x,y) = Fx(x,y)dx + Fy(x, y)dy.

Proposition 3.2.1. Let M, N be continuous in Q@ C R? and suppose that N(x,y) #
0 in Q. Suppose that o = M(x, y)dx + N(x, y)dy is exact and let F(x, y) denote
an antiderivative of w. If y(x) is a solution of (3.5) then F(x, y(x)) = ¢, for some
¢ € R. Conversely, if y(x) is continuously differentiable and satisfies F(x, y(x)) =
¢, for some ¢ € R, then y(x) satisfies (3.5).

Proof. Let y(x) be a solution of (3.5) and set ¢(x) = F(x, y(x)). The function ¢
is differentiable and

¢'(x) = Fx(x,y(x)) + Fy(x, y(x))y'(x).

By assumption N # 0in 2 and y(x) satisfies (3.5). Hence from the preceding equa-
tion we infer

M(x, y(x))
"(x) = Fe(x,y(x)) — Fy(x, y(x )
@ (x) = Fx(x,y(x)) = Fy(x, y(x)) Nx. y(x)
Since dF = o, then Fx = M, F, = N. Substituting into the equation above we
find
’ M X, X
@ (x)=M(x,y(x))— N(x,y(x)) (x, » () =0, VxeR.
N(x, y(x))

Thus, ¢(x) = F(x,(y(x)) =c¢, c €R.
Conversely, let y(x) be continuously differentiable and satisfy F(x, y(x)) = ¢
for some ¢ € R. Differentiating F(x, y(x)) = ¢, we find

d
o FOy@) = B y(0) + B (. y(0)y'(x) = 0.

Since Fy = M and F, = N we deduce that M(x, y(x)) + N(x, y(x))y'(x) = 0.
Dividing by N(x, y(x)) # 0 we get

 M(xy(x)
NGy ()

and this means that y(x) is a solution of (3.5). n

y'(x) =
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Similarly, if M # 0 in €2, we have

Proposition 3.2.2. Let M, N be continuous in Q € R? and suppose that M(x, y) #
0 in Q. Suppose that o = M(x, y)dx + N(x, y)dy is exact and let F(x, y) denote
an antiderivative of w. If x(y) is a solution of (3.6), then F(x(y), y) = ¢, for some
¢ € R. Conversely, if x(y) is continuously differentiable and satisfies F(x(y),y) =
¢, for some ¢ € R, then x(y) satisfies (3.6).

We have seen that the solutions of the exact equation (3.7) are those defined by
F(x,y) = ¢, where F is an antiderivative of w. We will say that F'(x, y) = c is the
general solution of (3.7).

The constant ¢ depends on the initial conditions. If F(x,y) = c is the general
solution of (3.7), the solution curve passing through Py = (xo, yo) is given by
F(x,y) = F(xo. o).

The points (x*, y*) such that M(x*, y*) = N(x*, y*) = 0 are called singular
points of Mdx + Ndy = 0. At singular points (3.7) is neither equivalent to (3.5)
nor to (3.6). The set F(x,y) = F(x*, y*) can reduce to the singular point (x*, y*)
or might contain other points P # (x*, y*). In such a case Mdx + Ndy = 0
gives rise, in a neighborhood of P,to y = —M/N orto x’ = —N/M, or both,
and F = F(x*, y*) defines, locally near P, a solution of these equations. See e.g.
Examples 3.2.3-3.2.4 below.

The simplest case of exact equations is when M = M(x) and N = N(y). In this
case, one has M, = N, = 0. Notice that the corresponding equations

dy  M(x) dx _ N(y)

ix = Np) N gy T Ty MEO

are also separable equations. An antiderivative of o = Mdx + Ndy is given by

F(x,y) = /Ox M(s)ds + /Oy N(s)ds,

since Fx = M(x), F, = N(y) by the Fundamental Theorem of Calculus.
We now discuss some examples of exact equations, starting with the simple case
M = M(x), N = N(y).

Example 3.2.3. Consider the equation
(x + Ddx + (y + Ddy = 0.
An antiderivative of o = (x + 1)dx + (y + 1)dy is
F(x,y) = (x+ D>+ 1y + D>
Then the general solution is given by

x+ D>+ +1)? =k, k>o0.



42 3 First order nonlinear differential equations

If kK > 0 we can either solve this equation for y or for x. The reader could draw the
graph of these functions, checking the domain of definition, and so on. But it is clear
thatif k > 0

G+D2+O+D>=k

represents the equation of a family of circles centered at (—1, —1) with radius vk >
0.1f k = 0, then (x + 1)2 4 (y + 1)? = k reduces to the point x = y = —1, which
is the singular point of the equation. [

Example 3.2.4. Solve
xdx — (y* = 1)dy = 0.

Here M = x and N = —(y* — 1) and hence the equation is exact. There are two
singular points given by (0, -1).
An antiderivative of ® = Mdx — Ndy is

X y 1 1
F(X»y)=/ st—/ (s* —1)ds = x2—( y5_y)_
0 0 2 5

Thus the general solution is

1 1
Y my= 5t
or, equivalently,

2y° —10y = 5x% +c.

The behavior of the curves defined by this equation depends on the constant c. See
Exercise no. 25.

It is interesting to see what happens if ¢ = F(0, £1).

If x =0,y = 1 we find ¢c = —8. Notice that in any neighborhood of (0, 1) the
set 2y> — 10y = 5x2 — 8 cannot be put either in the form y = y(x) or x = x(y).
See Figure 3.3a.

If x =0,y = —1 we find ¢ = 8. From the graph of g(y) = 2y° — 10y it follows
that for all x the equation 2y> — 10y = 5x2 + 8 has a solution y > 1. Thus the set
2y> — 10y = 5x? + 8 contains, in addition to the singular point (0, —1), a branch
with y > 1 which is a solution of

See Figure 3.3b. L]

We have become familiar with the concept of an exact equation, but now we need
to know (1) how to recognize an exact equation, (2) knowing that it is exact, how do
we solve it? The following theorem and its proof provide the answers.
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Fig. 3.3. (a) Plot of 2y° — 10y = 5x2 — 8; (b) Plot of 2y° — 10y = 5x2 4+ 8, with y > 0

Theorem 3.2.5. Assume that M(x, y) and N(x, y) are continuous, with continuous
partial derivatives with respect to x and y, on Q = (a1, a2) X (B1, B2)-

(i) Ifo = M(x,y)dx + N(x,y)dy is exact, then My (x,y) = Nx(x,y).
(ii) If My (x,y) = Nx(x,y), thenw = M(x, y)dx + N(x, y)dy is exact.

Remark 3.2.6. The reader should be aware that in the previous theorem we assume
that M, N are defined in a rectangular region €2 only for simplicity. In general, one
could take any domain 2 C R? with the property that for any closed continuous
curve y contained in €2, the set enclosed by y is all contained in €2. For example, any
convex domain € satisfies this condition. On the contrary, R? \ {0} does not. ]
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Proof of Theorem 3.2.5. (i) First let us assume that w is exact. Then there exists a
differentiable function F(x, y) such that d F = w. This means that

{Fx(xvy) = M(x,y),
Fy(x,y) = N(x,y).
Therefore, we have
{ny(x,y) = My(x,y),
Fyx(x,y) = Nx(x,y).

Since the mixed second derivatives of F are equal, that is Fyy(x,y) = Fyx(x,y),
we deduce that My (x,y) = Nx(x, ).

We provide two methods for proving part (i i), which can also be used for solving
exact equations in general.

(ii-1) Now, we assume that M, (x,y) = Nx(x,y) and seek a function F(x, y)
such that Fy(x,y) = M(x,y) and Fy(x,y) = N(x,y). Let

F@yran@ny+mw

where A(y) is a differentiable function of y, to be determined. We note that F(x, y)
already satisfies half of the requirement, since Fy(x,y) = M(x, y) by the Funda-
mental Theorem of Calculus. We wish to show that there exists a function /2 (y) such
that F, (x,y) = N(x,y). But Fy(x,y) = N(x,y) if and only if

d d
3 F(x,y) = /M(x,y)dx +h'(y) = N(x,y) <
y dy

d
Ww=Nww—®/mew.

This means that if we choose h(y) to be any antiderivative of N(x,y) —
a‘{; J/ M(x,y)dx, then F(x,y) will be the desired antiderivative of @ and we are

done. But we can choose A (y) in this manner only if we can show that N(x, y) —
BE;/ J M(x, y)dx is a function of y only. Otherwise, we would have /'(y), a func-
tion of y, on the left side and a function of two variables x and y on the right side,
which does not make sense. In order to show the right side is a function of y only,
we will show that its derivative with respect to x is 0. To this end, since the function
J M(x, y)dx has continuous mixed partial derivatives, we have

d d d Jd 0
8thw—®/Mawwl=MM%w—MWwaww

a d a
= NG = [ MG = NG = M) =0,
0x dy dx
In the above proof, we could have just as easily chosen
F(x,y)= [N(x, »)dy + h(x).

and determined /(x) as we obtained % (y) above.
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Fig. 3.4. The path I"

(ii-2) Let (x9, ¥o), (x, y) be two arbitrary points in the rectangle 2. Consider the
path T = ([xo, x] X {yo}) U ({x} X [0, y]), which is contained in €2, see Figure 3.4,
and define F(x, y) by

x y
F(x,y)= / M(s, yo)ds + / N(x,s)ds, (3.8)
X0 Yo
which corresponds to integrating the differential form w along the path I". Let us show
that F' is an antiderivative of w, thatis, Fy = M, F,, = N. Using the Fundamental

Theorem of Calculus, we find

y

9
Fy(x,y) = M(x,yo) + / N(x,s)ds.
0x Yo

We may recall from Calculus, or show independently, by using the definition of the
derivative and the Mean Value Theorem, that
0

y Yy 9
N(x,s)ds =/ N(x,s)ds.
0x yo 0X

Yo

Since, by assumption, Ny = M,, we infer that

Fi.(x,y) = M(x, y9) + g My (x,s)ds
Yo
= M(x,yo) + M(x,y) — M(x,yo) = M(x,y).

To prove that F, = N, we notice that the first integral is a function of x only. So,

y
N(x,s)ds = N(x,y).
Y0

9
Fy = ay
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In the above discussion, we could have also taken the path I'; = ({x¢} X [y, y]) U

([x0, x] x {y}) yielding

F(x,y)= /x M(s,y)ds + /y N(xo, s)ds. n
x b

0 0

Example 3.2.7. Solve (2x + y)dx + (x + 2y)dy = 0.
The equation is exact because

I2x +y) | = a(x +2y)
dy - ax

Using (3.8), with xo = yo = 0, we have

x y
F(x,y) =/ 2sds —1—[ (x +2s)ds = x> + xy + y?.
0 0
Therefore the general solution is given by
x4+ xy+yP=c.

If ¢ > 0, this is a family of ellipses centered at the origin. To see this it is convenient
to make a change of coordinates by setting

X =u-+v
y=u-—v.

In the (1, v) plane, we have (u + v)? + (u? — v?) + (1 — v)? = ¢ or equivalently
u? +v2 + 2uv + u? — v2 + u? — 2uv + v? = ¢, whence 3u? + v? = c. Hence, if
¢ > 0,x2 4 xy + y? = ¢ is a family of ellipses centered at the origin as claimed,
see Figure 3.5.

Fig.3.5.x2 +xy +y2=¢c>0
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If ¢ = 0 the ellipse degenerates to the singular point (0, 0). If ¢ < 0 the equation
x2 4+ xy + y? = ¢ has no real solution. ]

Example 3.2.8. Solve
2xy dx + (x% + y*)dy = 0.

Here M(x,y) = 2xy and N(x,y) = x2 + y2. Since M}, = 2x = Ny, the equation
is exact. We give four solutions, using the four methods discussed above.

Method 1. Let
F(x,y)= /2xy dx + h(y) = xzy + h(y).

Then clearly, Fx = 2xy = M(x,y). We wish to determine A(y) so that F, =
x2 + y2 = N(x,y). Since F(x,y) = x2y + h(y), this is equivalent to having
x2+1'(y) = x?+ y?, which yields #'(y) = y* and hence i(y) = 3>+ k. There-
fore F(x,y) = x%y + é y3 and the solution to the given differential equation is

1
x2y+3y3=c.

Notice that in the equation h(y) = ; ¥3 + k, we took k = 0. Otherwise, we would
have F(x,y) = x2y + §y3 + k = c and ¢ — k would still be an arbitrary constant
that we could call some thing like /, and then we would have x2y + ; y3 = [, which
only changes the name c to /.

Method 2. Let
1
F(x,y) = /(x2 + y))dy + h(x) = x%y + 3y3 + h(x).

It is clear that F) = x? + y2 = N(x, y). We wish to determine /(x) so that Fy =
2xy = M(x,y). Since F(x,y) = x?y + ;y3 + h(x), this is the same as having
2xy + h'(x) = 2xy, which gives us 2(x) = k. As explained in Method 1, it is
convenient to take k and hence A (x) to be 0. Therefore, F(x,y) = x%y + ; y3 and
the general solution is

1
2 3
x =c.
y+ 37
Method 3. We now use the method where F(x, y) is given by

x y
F(x,y)=/ M(s,yo)ds + | N(x,s)ds.
X0 Yo

We notice that if we take yo = 0, then M(x, yo) = 0 for all x. Hence F(x, y) would
involve only one integral. Then since the first integral would be 0 anyway, we need
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not worry about xg. So, let yo = 0. Then

y y 1
F(x,y):/ N(x,s)ds:/ (% +sH)ds = x>y + 3y3
0 0
and the solutions of the differential equation are again given implicitly by

1
x2y+3y3=c.

Method 4. Taking the path ({0} x [0, y]) U ([0, x] x {y}), we have

X y 1
F(x,y)= [ 2syds —1—/ s2ds = x%*y + 3y3.
0 0

Thus the general solution is given, as before, by x?y + ; y3 =c.

Notice that (0, 0) is the singular point of the equation. Since x2y + ; y3 = yx?+
1y?) then x2y 4+ y* = 0 yields y = 0. Note also that, for all x, the function
d(y) = x%y + ; y3 is monotone and its range is R. As a consequence, the equation
x%y + ; y3 = ¢ has a positive solution y.(x) if ¢ > 0 and a negative solution if

¢ < 0. Such y, solve
dy

dx
for all ¢ # 0. ]

= —2xy/(x* + y?)

Example 3.2.9. Find the solution of (x2y + 1)dx + (;y + ;x3)dy = 0 passing
through («, 0).

First of all, let us point out that (¢, 0) is not a singular point, because M («,0) =
1 # 0. Since

0, , (11,
1: =
8y()cy—lr) x 8x(zy—l—3x :

the equation is exact.
Let us use Method 3, with xo = yg = 0. Then M(x,0) = 1 and

F( )—/xd+/yl+13d—+]2+13
x,y) = A s A ,5t 5 X s=x+,y e
and the general solution is given implicitly by

I, 13
X + + x'y=c.
4y 3 y

Substituting x = o and y = 0, we obtain ¢ = «. Therefore the solution to the initial
value problem is

I, 13
X + + X'y =aqa.
4y 3 y
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Alternate solution. It may be convenient to take x( and y as described by the initial
values. So, letting xo = o and yy = 0, we have

F( )/xd+/y1+l3d eyl
xX,y) = s s X s=x—o x’y =c.
=, , (2773 47 Tt
Substituting x = o and y = 0, we get ¢ = 0; so
L, 13

— =0

X Ot+4y +3x y
as before. L]
Example 3.2.10. Solve

2
1

yer dx 42y Inxdy =0, (x>0).

X

We note that in order to use Method 3 or 4, here we cannot take the fixed point (0, 0).
So, let us take the point (1, 1). Then since In 1 = 0, using Method 3, we easily obtain

X ,2 1
F(X,y)Z/1 y:_ ds =%+ 1Dnx, (x>0).

Thus the general solution is (y2 + 1)Inx = c. [

3.3 The integrating factor

In this section we learn how to deal with equation
M(x,y)dx + N(x,y)dy =0 (3.9

when it is not exact. It is possible that an equation of this type may not be exact but
it becomes exact after it is multiplied by some suitable function. For example, the
equation ydx —xdy = 0,x > 0, y > 0, is not exact. But after multiplying it by the
function y12 , the resulting equation ;dx - ;2 dy = 0 becomes exact.

A nonzero function w(x, y) is called an integrating factor of (3.9) if it has the
property that when (3.9) is multiplied by this function, it becomes an exact equation.

Integrating factors exist, in general, but determining them may be quite difficult.
Nevertheless, in some special cases finding an integrating factor can be fairly simple
and it may be worth a try. We also point out that, as the following example shows,
an integrating factor need not be unique.

Example 3.3.1. The reader should verify that for x, y > 0, all of the three functions
1 1 1

are integrating factors of y dx —x dy = 0. ]
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One of the cases where finding an integrating factor can be quite simple is when
the equation
M(x,y)dx + N(x,y)dy =0

has an integrating factor that is either a function of x only or a function of y only. Let
us assume that it has an integrating factor, which is a function of x only. Multiplying
the equation by u(x), we obtain

n(xX)M(x,y)dx + u(x)N(x,y)dy = 0.

In order for this equation to be exact, we must have (notice that du(x)/
dy = 0)
p(x)My(x,y) = W (x)N(x, y) + p(x)Nx(x, y).

If N(x, y) # 0, then we have

My (x, y) = Nx(x,y)

N w) (). (3.10)

W(x) =

Let
_ My (x,y) — Nx(x,y)

v =
N(x,y)
If W is a function of x only, then integrating ' (x) = W(x) - u(x), we obtain

L=e S \Il(x)dx_
If ¥ is not a function of x only, then we may try to find an integrating factor j(y)
which is a function of y only.

Multiplying the differential equation by p(y) and following the same procedure,
we obtain the equation

_ Nx(x,y) = My(x.y)

w(y) = M(x. y) w(y).

Let
— NX(xvy) _My(xvy)

v
M(x,y)
If W is a function of y only, then integrating u'(y) = ¥(y)u, we obtain

©= o/ Yy
Example 3.3.2. Find an integrating factor for the equation

xsin ydx 4+ (x + 1)cos ydy = 0.

Let us first check to see if we can find an integrating factor p(x). We can use (3.10)
to determine if such an integrating factor exists, but we recommend that students



3.3 The integrating factor 51

do not memorize this formula and instead go through the process each time. Thus,
multiplying by p(x), we have

p(x)xsin ydx + p(x)(x + 1)cos ydy =0,
p(x)xcos y = [ (x)(x + 1) + u(x)] cos y.

Dividing by cos y (assuming cos y # 0), we have

xp(x) = (x + Dp'(x) + p(x)

and hence

W =" = (1 - ) W), £,

x+1

Integrating,

W(x) = (1 - 1) p). A

we obtain
X

e
plx) = x4 12

(x # —1).

Multiplying the given equation x sin y dx + (x 4+ 1) cos y dy = 0 by this u(x) we

have
X b

e*x e
(x+1)251nydx+(x+1)cosydy:0, (x #-1)

which is now exact. Thus, we may use (3.8) either on the half space {x > —1} or on

{x < —1}. Since M(x,y) = . sin y, if we take xo = yo = 0, we see that
(x+ 1)
M (x, yo) = 0 for all x. This implies that f;o M(s, yo)ds = 0.
Consequently,

yooex J e
F(x,y) = cos sds = sin y.
(x. ) fo (x+1) 1) Y

Thus the general solution is

ex
sin y = ¢, x # —1).
(x+ 12 S0V (x #-1)
Notice that for ¢ = 0 the solutions are straight lines given by y = kn, k =

0,£1,£2,....
We could have found these constant solutions without solving the equation, sim-
ply by observing that
dy X sin y

dx (x4 1)cosy’
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For example, it is easy to see that y(x) = 7 is a solution since y’ = 0 and also

xsin 0 _o
(x+1)cos0

Example 3.3.3. The equation
(v +xy + y¥)dx + (x +2y)dy =0
is not exact because My, = 1+x +2y while N, = 1. Letus try to find an integrating

factor 1(x). We consider u(x)(y +xy + y2)dx + u(x)(x +2y)dy = 0 and equate
the partial derivatives. Then we have

pE)(L +x +2y) = 0 (x)(x +2y) + p(x)
and hence (x + 2y)u(x) = (x + 2y)u/(x). Therefore ' (x) = p(x) and so we can
take p(x) = e*. Now w = e*(y + xy + y2)dx + e*(x +2y)dy is exact. Here Q =
R? and we can use Method 3 to find an antiderivative. Since e*(y + xy 4+ y2) =0
for y = 0, one has

y
F(x,y)= / e*(x 4+ 28)ds = e*(xy + y?)
0
and hence the general solution is e* (xy + y?) = c. m

Example 3.3.4. Consider the equation ydx + (2x 4+ 3y)dy = 0. Since M, = 1 #
N, = 2 the equation is not exact. Here it is convenient to look for an integrating
factor of the type p(y). The equation w(y)ydx 4+ pn(y)(2x + 3y)dy = 0 is exact

provided du(y) du(y)
y l;y +up(y) =2uyy) = vy l;y = u(y)
y y

which yields i(y) = y. An antiderivative of y?dx + y(2x + 3y)dy = Ois
y
F(x,y)= / s(2x + 3s)ds = xy? + 3
0

and hence xy? + y3 = c is the general solution of our equation. If ¢ = 0 we find
y =0and y = —x.If ¢ > 0, then y?(x + y) = ¢ > 0 implies y > —x, while if
¢ < 0,then y2(x 4+ y) = ¢ < 0 implies y < —x. "

3.4 Homogeneous equations

The equation

x'= f(t,x)

is called homogeneous if f(z,x) can be expressed as a function of the variable 7,
t # 0. For example,
3, .3
, X +t
x' = ,t#£0,
tx2 7
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Fig. 3.6. Plot of xy2 + y3 = ¢

is homogeneous because if we divide the numerator and denominator by 73, we obtain

3
(i) +
/
x' = 12
(;)
and the right side is a function of the variable ); .

On the other hand,
x' = x2sint

is not homogeneous because it is impossible to express it as a function of .
So, a homogeneous equation has the form

x’:g(f). 3.11)

Equation (3.11) can be transformed into a separable equation by making the substi-
tution x (¢) = ¢z(¢). This follows since we would have x’ = z + 7z’ = g(z) and the
equation z + ¢z’ = g(z) can be written as

1
= (g)-2)
which is separable.
Example 3.4.1. Consider the equation

12 + x?2
x' = , tx # 0.
tx
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If we divide the numerator and denominator by t2 and then let x = ¢z, we obtain

, 1+ 22
1z’ 4+z = R
z
, 1+2z2 1+z2-22 1
tz = —Zz = =
z z z
and hence
, 1
zz' =
t
or equivalently
dt
zdz = .

Integrating, we get

2
yz2 =Inlt] +c,

22 =2(Int| + ¢).

Now, what remains is to express the answer in terms of the original variables ¢ and
x.Since x = zt,z = x/t and

(j)2:21n|z|+k k = 2¢,

which gives rise, for all ¢, to a solution of our equation in implicit form. In this case,
if we want to, we can find the solutions explicitly. [

Let us now consider the more general equation

, M%)

Y= ) (3.12)

where M, N are homogeneous functions of the same order k. Let us recall that M =
M(t, x) is a k-homogeneous function if

M(At, Ax) = AKM(z, x) (3.13)

for all A such that M (At, Ax) makes sense.
If both M and N are k-homogeneous, then we have

M(.t-x/t)y t*M1,x/t)  M(,x/1)
N(t.t-x/t)  t*N(1,x/t) N(l,x/t)’
If we define

M(1,x/t)
(:) = N(l,))cc/tt)
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we deduce that
, M(t,x) <x>
X = = s
Ne xS\

which shows that (3.12) is homogeneous.

It will be helpful to remember that if an equation is a quotient of two polynomials,
then it is homogeneous if and only if the sum of the exponents of the variables in
each term, which we call the total exponent, both in the numerator and denominator,
is the same. For example,

3x2 _ x5

’ X

X =
tx* 4 13x2

has two terms in the numerator and two in the denominator, all of total exponent 5.

Therefore it is homogeneous. On the other hand,

5

, 3x?—x

X =
tx* + 12x2

is a quotient of two polynomials, but three of the terms have total exponent equal to 5
and one has total exponent equal to 4; therefore it is not homogeneous.

The proof of this rule easily follows from dividing the numerator and denominator
by a certain power of ¢, as we did in Example 3.4.1.

Example 3.4.2. Solve

2 2
X +tx +t
.x/_— [2 ) Z;AO'

All the terms in the numerator and the denominator have the same total exponent
equal to 2. Therefore, it is homogenous.
Letting x = ¢z, one finds

1?2+ 1%z 412,
z+1tz = 2 =z"4+z+1,

and integrating, we have
arctanz = In|t| + ¢ = z = tan(In|z| + ¢).
In conclusion the solution is
x =tz =t tan(In |t]| + ¢),

which is defined for ¢ % 0 and In |t| + ¢ # Z + km, k integer. m
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3.5 Bernoulli equations
A generalization of the linear equation is the Bernoulli equation

x' 4 p(t)x = q(r)x*+! (3.14)

where p,q € C([a, b]) or p,q € C(R). Let us recall that, in general, k + 1 can be any
real number and the right-hand side makes sense for x > 0. Of course this restriction
on x is unnecessary if k + 1 is a positive integer. In any case, we are interested in
finding positive solutions of (3.14).

If k = 0,—1 orif g(t) = 0 the equation becomes linear. With the exception of
these three cases, the Bernoulli equation is nonlinear. Let us show that the change of
variable z = x_k, x > 0, transforms the Bernoulli equation into a linear equation.

We have z/ = —kx~%~1x". Since x’ = —p(t)x + q(t)x* 1, we get

2 = xRl (—p(t)x + q(t)xk+1) = kp()x~* — kq(0).

k

Since z = x™%, we have

' —kp(t)z = —kq(t),

which is a linear equation. If z > 0 is a solution of this equation, then x (1) = z~ /¥ ()
is a (positive) solution of (3.14).

Example 3.5.1. The equation
X —X =1x

is a Bernoulli equation with k = 1, p = —1, ¢ = ¢. One solution is x = 0. If x #
0, we set z = x~!. Then we have

4tz =—t
which is linear; and solving it, we have
z(t)y=ce P+ 1—1, ceR
and finally, if ce™ + 1 —1¢ # 0,

1
Cz(t)  ce 41—t

x(t) ceR. (3.15)

If we want to solve an initial value problem such as

x —x =1x2, x(0) =1,

we substitute the initial value into (3.15) and solve for c¢. One finds

1
ce®+1 c¢+1
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whence ¢ = 0. Thus the solution is x (¢) = 11 ,»restricted to ¢ < 1. The more general
case that x(0) = a > 0 is discussed in Exercise no. 31. [

Example 3.5.2. Solve x’ +2x = e’ /x, x(0) = 1. This is a Bernoulli equation with
p=2,qg=e"andk +1= ), namely k = — }. Setting z = /x, x > 0, we find

1
/ t
Z—I—Z—ze.

Solving this linear equation, we get

Notice that z > 0 implies c e~ + }‘et > (), that is

1
c > —4€2t. (3.16)

Substituting z = /x, namely x = z2, we find

1 \2
x(t) = (ce" + 46’) )

Inserting an initial condition such as x(0) = 1, we find 1 = (c + ‘1‘)2. Solving, we
have ¢ + }‘ = +1 and hence ¢ = i orc = —Z. Since (3.16), with ¢ = 0, implies

¢ > —,, we find that ¢ = }. Thus

3 1,\?
x(t) = (46_’ + 4et)

is the solution of our initial value problem. [

3.6 Appendix. Singular solutions and Clairaut equations

A solution x = y(¢) of a first order differential equation F (¢, x, x") = 0 is called a
singular solution if for each (¢, xo) with y(fg) = xo, there exists a solution V¥ () #
y(t) of F(t,x,x") = 0, passing through (9, xo), namely such that ¥ (z9) = xo. In
particular, y(¢) and ¥ (¢) have the same derivative at t = ty and thus they are tangent
at (o, xo). Since this holds for every point (¢9, xo) this means that x = y(¢) is the
envelope of a family of solutions of F(z,x,x’) = 0.

Recall that the envelope of a family of curves given implicitly by g(¢, x,c) = 0
is a curve of implicit equation 7(z, x) = 0 that can be found solving the system

gt,x,c) =0
ge(t,x,c) =0.
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When g(z, x,c¢) = x — h(t, ¢) the system becomes

x = h(t,c)
he(t,c) = 0.
This is an easy example.

Example 3.6.1. Find the envelope of the family of parabolas x = (¢ — c¢)?. The
preceding system becomes

x=(t—-c)?
{—Z(I—c) =0.

The second equation yields ¢ = ¢ and, substituting into the first equation, we find
x = 0, which is the envelope of the parabolas. L]

Letx = ¢(t,c¢), ¢ € R, be aone parameter family of solutions of F(¢, x, x’) = 0.
Differentiating the identity F(z, ¢ (¢, ¢), ¢'(t,c)) = 0 with respect to ¢, we find

Fx(t,9(t,0),¢'(t.0))0c¢(t.¢) + Fx (1, (. ¢), ¢'(t.¢))dc¢'(t, ) = 0.
If Fy(t,p(t,c),¢’(t,c)) # 0 and Fy(t,¢(t,¢c),¢'(t,c)) = 0, we infer that

dc¢(t,c) = 0. Therefore, the singular solution solves the differential system

F@t,x,x') =0
Fu(t,x,x')=0

and is such that Fy (¢, x, x") # 0.

Example 3.6.2. Find the singular solutions of x2(1 4+ x?) = 1. Here F(t,x,x’) =
x2(1 4+ x'?) — 1. Then F,» = 2x2x’ and the preceding system becomes

{x2(1 +x2) =1

2x2x" =0

whose solutions are x = =+1. Since for x = +1 one has F, = x = +1, thus the
singular solutions are x = %1.

Now, by substitution, we find that ¢ (z,¢) = + \/ 1 — (¢t — ¢)? is a one parameter
family of solutions of x2(1 + x"?) = 1. They are a family of circles g(¢,x,c) =
(t —)? + x2 = 1 centered at (¢, 0) with radius 1. Let us check that x = =+1 are the
envelope of ¢ (¢, c). We have to solve the system

x =¢(,c)
¢C(ls C) = 0
In this case we have ¢ (¢, c) = :I:\/l — (t — ¢)? and hence

4

l_
be(t,c) = :l:\/l—(t—c)z'
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AN
NSV

Fig. 3.7. Solutions of x2(1 4+ x'?) = 1

So ¢.(t,c) = 0 for ¢ = ¢. Substituting into x = ¢(t,c) + \/1 — (t — ¢)? we find
x = =1, which are exactly the singular solutions found before. L]

3.6.1 Clairaut equations

A typical equation where singular solutions can arise is the Clairaut equation which
is a differential equation of the form

x =tx'+gx) (3.17)

where, say, g € C(R). Let us note that (3.17) is not in normal form.
If we let x’ = ¢, for any ¢ € R, we find the family of straight lines

x(t) =ct + g(c), ceR
which clearly solve (3.17).

Remark 3.6.3. If g is defined in a subset of R, the solutions x = ct + g(c) make
sense only for ¢ in the domain of g. See, e.g. Exercises nos. 40 and 41 below. L]

A specific feature of the Clairaut equation is that it might have singular solutions.
According to the preceding discussion, we set F (¢, x,x") = tx’ + g(x’) — x and
solve the system

Fi,x,x") =0 tx'+g(x)=x=0
(t,x.%) _ £
Fo(t,x,x)=0 t+g'(x')=0.

Let us suppose that g € C!(R), and that g’ is invertible. Recall that a function ¢,
defined on a set R with range in a set S, is invertible if there exists a function i de-
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fined on S with range in R such that ¢ (r) = s if and only if r = ¥ (s). The function
¥, denoted by ¢!, is unique and satisfies ¢~ (¢(r)) = r forall r € R.
Setting 1 = (g’)™!, the second equation of the preceding system, that is g’(x") =
—t, yields
x' = h(-1).

Substituting in the first equation we find
x(1) = th(=t) + g(h(=1)).
Therefore, this is the singular solution we were looking for.

Example 3.6.4. The equation
x =tx 4+ x”? (3.18)

is a Clairaut equation with g(x’) = x'2. The function g’(x’) = 2x’ is obviously
invertible. Solving 2x" = —t we find x’ = —ét. Hence the singular solution is

t t 12 N1,
t)=1t-|— — = — — = —
o= () re(a) = () =
and turns out to be the envelope of the family of straight lines

x(t) = ct + c2, c €R.

Consider now the Cauchy problem

x =tx' + x?, x(a) = b. (3.19)
X
=ct+c2 = 2
X (€<0) X=ct+c“ (c>0)

Fig. 3.8. Solutions of x = ¢x’ 4+ x’2. The dotted curve is the singular solution x = —}tlz
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A straight line x = ¢t + ¢? solves (3.19) provided
b =ca+ c>.
The second order algebraic equation in ¢, ¢? + ac — b = 0, can be solved yielding

—a+ a2 +4b
2

and hence there is a solution whenever
a>+4b >0, = b>—,ad>.

This means that, unlike equations in normal form, (3.19) has a solution if and only if
the initial values belong to the set

{(t,x) e R? : x > —}‘tz},

above the singular solution y(¢) = —itz. Precisely, one has:

(i) Forall (a,b) such that b > —}‘az, the equation b = ca + ¢? has two solutions
and hence there are two straight lines of the family x = ct + ¢? that satisfy
(3.19).

(i) Ifb = —}a?, the equation b = ca + ¢? becomes ¢ + ac = —}a? and has
only one solution given by ¢ = —;a. Then there is only one solution among the
family ¢ (¢, ¢) that satisfies (3.19): that is x = —;at + iaz. This straight line

is tangent to x = y(¢) at (a,b) = (a, —iaz), due to the fact that the singular
solution is the envelope of the solution family x = ct + c2.

(iii) Forall (a, b) suchthatb < — iaz, the equation b = ca + ¢2 has no solution and
hence there is no straight line of the family x = ¢t + ¢? that satisfies (3.19). =

Remark 3.6.5. If g’ is not invertible, there could be no singular solution. For exam-

ple, the solutions of x = tx’ + x’ are the family of straight lines x = ct + ¢
passing through (—1,0) and the solution of the system F = 0, Fy» = 0, that is
x =tx'+x', 0 =1 + 1, reduces to the point (—1, 0). n

Remark 3.6.6. A solution of the family x = ¢t + g(c) solves the initial value problem
x =tx' + g(x'), x(a) = b,

whenever b = ac + g(c). If we assume that g is twice differentiable and g”’(p) # 0
(notice that this implies that g’ is invertible so that the previous discussion applies),
then g is either concave or convex and the equation g(¢) = b—ac, in the unknown c,
has two, one or no solution, see Figure 3.9, showing that what we saw in the Exam-
ple 3.6.4 is a general fact. [



62

3 First order nonlinear differential equations

Fig. 3.9. The equation g(¢) = b — ac witha > 0

Remark 3.6.7. The Clairaut equation is a particular case of the D’ Alambert-Lagrange
equation x = 1f(x’) + g(x’), f.g € C(I). See two examples in Exercises nos. 42
and 43 below. L]

3.7 Exercises

—_
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12.
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Solve x’ = atPx4, p,q # 0.
Solve x’ = 3t%x,t,x > 0.
Solve x’ = 413x*.

Solve x’ = —tx2.

Solve x’ = —t?x? such that x(1) = 2.

Solve x" = 5t.4/x, x > 0, x(0) = 1.

Solve x’ = 413/x, x > 0, x(0) = 1.

Solve and discuss uniqueness for the ivp x’ = 21 /x, x(a) = 0, x > 0.

Find p such that the solutions of x’ = —(p + 1)t?x? tend to 0 as t — +00.

Find the limit as t — +o0 of the solutions of x’ = —(p + 1)t?x? when p +
1<o0.
. Solve x’ = +/1 — x2 and find the singular solutions. Explain why uniqueness

does not hold.
Solve (2x2 + 1)dx = (y° — 1)dy.
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Solve (x + 3y)dx + (3x + y)dy = 0 and sketch a graph of the solutions.

Solve (x + y)dx + (x — y)dy = 0 and show that there are some solutions that
pass through the only singular point.

Solve (3x2 — y)dx + (4y> — x)dy = 0 and find the singular points.
Solve (y —x'/3)dx + (x 4+ y)dy = 0 and find its singular points.

Solve (ax? + by)dx + (bx + dy?)dy =0, p,q > 0 and
find its singular points.

Solve (e* — 3 y?)dx + (¢ — xy)dy = 0.
Solve (x + sin y)dx + x cos ydy = 0 and find its singular points.
Solve (x2 4 2xy — y?)dx + (x — y)?dy = 0.

Solve (x2 4+ 2xy 4+ 2y2)dx + (x? 4+ 4xy + 5y?)dy = 0. Show that there exists
a such that y = ax is a solution passing through the singular point (0, 0).

Find the number a such that (x? + y?)dx + (axy + y*)dy = 0 is exact and
then solve it.

Find the coefficients a;, b; such that (x> + a;xy + a>y?)dx + (x> + byxy +
byy?)dy = 0 is exact, and solve it.

Find a function A(y) such that (2x 4+ A(y))dx + 2xydy = 0 is exact and solve
it.

Find a function B(x) such that (x + y2)dx + B(x)ydy = 0 is exact and solve
it.

Find the solutions of xdx — (y* — 1)dy = 0 passing through the points (2, 0)
and (0, 0).

Show that for any f(y) # 0, g(»), there exists an integrating factor u = u(y)
for the equation f(y)dx + (xy + g(y))dy = 0.

Solve y2dx + (xy + 3y3)dy = 0.
Solve (1 + y?)dx + xydy = 0.
Solve x’ = (x + 2t)/t,t # 0.
Solve x’ = tx/(t? + x?).

Solve the Cauchy problem x” — x = tx2, x(0) = a > 0 and describe the solu-
tions relative to a.

Find the nontrivial solutions of x’" + 2¢x = —4tx3.
Find the nontrivial solutions of x’ — tx = x2.

Show that the circle x? 4 ¢2 = 1 is the singular solution of x> = x2 + (% — 1.
Solve x> = 4(1 — x) and show that x = 1 is the singular solution.

Find a singular solution of x"? — tx’ + x = 0.
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38.
39.
40.
41.
42.
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Solve the Clairaut equation x = ¢x’ — x'? and find the singular solution.
Solve the Clairaut equation x = tx’ + ¢ and find the singular solution.
Solve the Clairaut equation x = ¢x” — In x" and find the singular solution.
Solve the Clairaut equation x = 7x’ + xl, and find the singular solution.

Find «, B such that x(1) = at + B solves the D’ Alambert-Lagrange equation
x =th(x") + g(x’), where h, g € C(I)

(a) show that the equation x = (1 4+ x’) + x’ has no solution of the form x =
ot + B,
(b) solve the equation by setting x’ = z.
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Existence and uniqueness for systems and higher
order equations

In this chapter we extend (without proof) to systems and higher order equations, the
existence and uniqueness theorems stated in Chapter 2.
4.1 Systems of differential equations

If f1,..., fn are functions of the n + 1 variables (¢, xq, ..., x,), we consider the
system of differential equations in normal form

xp = filt,x1, ..., Xp)
= 4.1)
x}/‘l zfn(t,XI,...,Xn).
To write this system in a compact form, we introduce
X1 S, x)
I B2 . f2(t, x)
x=1| .| eR" f(t,x)= . e R”.
xn fn(t,x)

If (1,%) € € R"*! then f is a function from  to R”. With this notation, the
preceding system becomes

¥ = f(t,%)

which is formally like the first order equation x” = f(z, x).
For example, if n = 2, a2 x 2 system is

{Xi = fi(t, x1.x2)

xy = fo(t,x1,x2).

If f;,i = 1,2,...,n,donot depend on ¢, the system is autonomous. If f;,i =
1,2,...,n, are linear with respect to xy, ..., X, the system is linear.
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If n =2 and f1, f> are linear and depend only on x1, x5,

X} =anx1 +anxs
X5 = dazx1 + axnx;

is a 2 x 2 linear, autonomous system. To write this system in the vectorial form, it
suffices to introduce the matrix

a a
A= 11 12 )
dz1 dz2

With this notation the linear 2 x 2 system becomes

¥ =A%, = (xl) c R2,
X2

In general, a linear autonomous system has the form

X
v = AxX, X = eR"
Xn
where A is an n X n matrix.
X
Example 4.1.1. If X = (y) € R? and
z
1 23
A= 4 56
7 8 9
the system X’ = Ax becomes
xX'=x4+2y+3z
y' =4x + 5y + 6z m

z/ =7x + 8y + 9z.

Leta = (a1,...,a,) € R". Given (fo,) € 2, an initial value, or a Cauchy,
problem for the system X’ = f (¢, X) is
¥ o= f(.%)
_ 4.2
{x(to) =« “.2)
or, in terms of the components
x; = fi(t,X1,...,Xn) .
i=1,...,n.
{xi (o) = i

In general, one prescribes 7 initial values for an n x n first order system.



4.1 Systems of differential equations 67

For example, an initial value problem for a 2 x 2 system is
x; = filt.x1,x2)
xy = falt,x1,x2)
x1(to) = a1, x2(lo) = az.
4.1.1 Existence and uniqueness results for systems

Below we state the existence and uniqueness theorems for systems in normal form.

Theorem 4.1.2. (Local existence) Let @ € Rt [et f 1 Q — R” be continuous

and let (ty,a) = (to,o1,...,0,) be a given point in the interior of Q. Then the
initial value problem
¥oo=f(t%)
{)'c(to) oy 4.2)

has at least one solution defined in a suitable interval |t — to| < 8.

The function f is locally lipschitzian at (f9, ) € €2 with respect to X if there
exists a neighborhood U C Q of (#p, &) and a number L > 0 such that, denoting by
| - | the euclidean norm in R”, one has

/(.5 = f@.5)] < LI -2,
forevery (¢, X), (t,z) € U.If the preceding inequalities hold for all (¢, X), (t,2) € Q,
then f is said to be globally lipschitzian in 2, with respect to X.

Theorem 4.1.3 (Uniqueness). If f_ is continuous and locally lipschitzian with re-
spect to X, then (4.2) has a unique solution, defined in a suitable neighborhood of t.

Theorem 4.1.4 (Global existence). If Q = [a.b] x R" and f is continuous and
globally lipschitzian in 2 with respect to X, then the solution of (4.2) is defined on
all [a, b).

Proof. (Sketch) As in the proof of the existence and uniqueness theorem for a single
equation, see the Appendix 2.5 in Chapter 2, one checks that (4.2) is equivalent to
the system of integral equations

x; (1) =x,-(O)+/Otﬁ(t,xl(t),...,xn(t))dl, i=1,2,...,n

which can be written in compact form as

x(t) = %o +/0 F(t,x@t))dt

and is formally like the integral equation (2.9). Repeating the arguments carried in the
aforementioned Appendix, one proves the local and global existence and uniqueness
for (4.2). [
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4.2 Higher order equations

Ifn = 2and fi(t, x1, x2) = X2, the system X’ = f(t, X) becomes

X1 = X2
xy = fo(t, x1,x2).

Then x| = x} = fa(t, x1.x2) = fo(t, x1, x}) or, setting x; = x and f» = f,
x" = f(t,x,x")

which is a second order differential equation in normal form.
In general, consider the n x n system

Xy =x

xh =Xz
/

X,y = Xn
/

X, = falt,x1,...,xn).

ol I (I — el ) _ s : —
We find x| = x3, x{" = (x})’ = xj, etc. x;° = x,,. Hence, calling x = x; and

fn = f, we find the n-th order equation in normal form

™ — f(r.x.x (n=1)) w _ d*x 4.3)

x" = JX, XX , x = . .

dtk
To understand what the natural initial value problem is for an n-th order equation, we
simply go back to its equivalent system. We know that, given (fo, o1,...,a,) € Q
an initial value problem for an n x n system consists of requiring that x; (f9) = «;, for
i =1,2...,n. Since x; = x,x' = xp,...,x""D = Xp, an initial value problem
for the n-th order equation in normal form x® = ft, x,x' ..., x(”_l)) is

x™ = f,x,x, . x@D) 4.4)

x(to) = ay, x'(to) = az,..., X" to) = ap . ’

So, we prescribe at a certain ¢ = ¢ the value x (#9), together with its derivatives up to
order n—1, thatis x’(to), . . ., X"~V (to). For example, in an initial value problem for
a second order equation, we prescribe at t = ¢ the unknown x(¢) and its derivative
x'(t), that is

x" = ft,x,x)

x(to) =

x'(ty) = as.

Similar to the case for first order equations, one could consider n-th order equations
in the form F (¢, x,x’,..., x™) = 0, which is not the normal form; but for the sake
of simplicity we choose to work with the normal form. Some second order equations
such as F(¢, x, x’, x”) = 0 will be briefly discussed at the end of Chapter 5.
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4.2.1 Existence and uniqueness for n-th order equations

From the local existence result for systems stated before, we can deduce immediately
the following theorems for n-th order equations in normal form.

Theorem 4.2.1 (Local existence). Let f : Q +— R be continuous and let

(to,o1,...,0,) be a given point in the interior of 2. Then the initial value prob-
lem
x® = f,x,x!, . x®D) @)
x(fo) = a1, xX'(ty) = az,..., xX® V(1) = ay, ’

has at least one solution defined in a suitable interval |t — to| < 8.
Proof. Tt suffices to remark that if f is continuous, then

X2
X3

f.%) =
Xn

ft, x1,..., xn)

is also continuous. u

Theorem 4.2.2 (Uniqueness). If f : Q + R is continuous and locally lipschitzian

with respect to (X1, ..., Xy), then (4.4) has a unique solution, defined in a suitable
neighborhood of ty.

Proof. 1Itis evident that if f is locally lipschitzian with respect to (x1, ..., X,), then
f (¢, %) is also locally lipschitzian with respect to x. ]

For the same reason, the global existence result for systems implies

Theorem 4.2.3 (Global existence). If 2 = [a,b] x R" and f : Q — R is contin-
uous and globally lipschitzian in Q with respect to (X1, ..., X,) then the solution of
(4.4) is defined on all |a, b].

As for first order equations, the uniqueness result can be used to find some prop-
erties of the solutions. We illustrate this with two examples.

Example 4.2.4. Let f(x) be locally lipschitzian. Show that the solution of x” =
f(x), x(0) = 0, x’(0) = 0, is even. Setting z(t) = x(—t) we have z"(t) =
x"(—=t) = f(x(—t)) = f(z).Moreover, z(0) = x(0) = 0and z’(0) = —x’(0) = 0.
Then, by uniqueness, x(¢) = z (), that is x(¢) = x(—t). m

Example 4.2.5. Let f(x) be locally lipschitzian and let x (¢) be a solution of x” =
f(x), defined for all # € R, satisfying x(0) = x(T), x’(0) = x'(T). Then x(¢) is
periodic with period T'. Setting z(t) = x(t + T) one has z"’(¢t) = x"(t + T) =
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fx(+T)) = f(z(t)) forall t € R. Moreover, z(0) = x(T) = x(0) and z/(0) =
x'(T) = x’(0). Then, by uniqueness, x(t) = z(t), thatis x(¢) = x(¢ + T), for all
t € R, which means that x (¢) is 7 -periodic.

4.3 Exercises

solution, for all a, b € R.

. Show that the Cauchy problem x” = x|x|, x(0) = a, x'(0) = b, has a unique

Show that the Cauchy problem x” = max{0, x|x|}, x(0) = @, x'(0) = b, has a

unique solution, for all ¢, b € R.

Show that for p > 2 the Cauchy problem x” = |x|?, x(0) = a, x’(0) = b, has

a unique solution, for all a, b € R.
Let x, y be the unique solution of
x =y

yoo=—x

x(0) =0, y(0)=1.
Show that x, y verify x? + y2 = 1.
Do the same as in Problem 4 when x, y solve
x' =6y
vy  =-0x
x(0) =0, y(0) =1.
Prove that the solutions x, y of
x' = Hy(x,y)
y/ = _HX(X1 y)v

where H : R x R — R is smooth, satisfy H(x(t), y(t)) = c.

Find the second order equation a solution of which is x () = e’ + e™".

. Same for x = te’.

9. Let x be the solution of x”” + x = 0, x(0) = 0, x’(0) = 1. Prove that x = sin?.

10.

11.

12.

13.

Let x be the solution of x” 4+ 4x = 0, x(0) = 1,x'(0) = 0. Prove that x

cos 2t.

Let f(z,x) be T-periodic with respect to ¢ and let x(z) be a solution of x”

f(¢, x), defined for all € R, such that x(0) = x(T") and x'(0) = x'(T). Show

that x (¢) is T-periodic.
Let f : R > R be smooth and let x : R + R satisfy x"”
0, x”’(0) = 0. Show that x(¢) is even.

Show that if f(x) > 0 for all x € R, then the solutions of x"’
0, have an inflection point at t = 0.

f(x), x'(0) =
f(x), x"(0) =
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Second order equations

This chapter is devoted to second order equations and is organized as follows. First
we deal with general linear homogeneous equations, including linear independence of
solutions and the reduction of order. Then we discuss general linear nonhomogeneous
equations. Sections 5.5 and 5.6 deal with the constant coefficients case. Section 5.7
is devoted to the study of oscillation theory and the oscillatory behavior of solutions.
Finally, in the last section we deal with some nonlinear equations.

5.1 Linear homogeneous equations

The equation
ao()x" + a1 ()x" + az(t)x = g(1)

represents the most general second order linear differential equation. When g(¢) = 0
it is called homogeneous; otherwise it is called nonhomogeneous.

For simplicity and convenience, we will assume that ag(¢) # 0, so that we can
divide the equation by a¢(¢) and write the equation in the form

x" 4+ p(0)x" 4+ q@)x = f(1). (5.1)

The values of t where aq(¢) vanishes are called singular points. Notice that we have
used the term “singular point” also in the case of exact equations Mdx + Ndy = 0,
with a somewhat different meaning. Second order equations with singular points will
be discussed in Chapter 10 in connection with Bessel equations.

Before starting the theoretical study of linear second order equations, we discuss
an example which highlights the importance of these equations.

Example 5.1.1 (The harmonic oscillator). Consider a body P on the x axis at the
free end of an elastic spring which is attached at the origin O.

Assuming that P has unitary mass and that there is neither friction nor external
force acting on the body, Hooke’s law states that the force F acting on the body is
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P
o Y U U Uz "
ﬁ:—w%f}
Fig. 5.1

proportional, with a negative proportionality constant —w? < 0, to the distance x
of the body to O, that is F = —w?x. Notice that the minus sign is due to the fact
that the force is a restoring one, namely it brings back the body to the initial position,
acting oppositely to the motion of P.

Denoting by x (¢) such a distance, dependent on time ¢, and by x”(¢) its accelera-
tion, Newton’s second law, Force=Mass x Acceleration, yields x” = —w?x, or

x4+ w?x =0, (w #0).

This equation is of the type (5.1) with p = 0, ¢ = w?, f = 0 and is usually referred
to as the equation of the free harmonic oscillator. We will see that the solution is a
superposition of sine and cosine functions and hence the body P at the free end of
the spring oscillates and its motion is periodic, as expected.

We anticipate that a similar equation arises when we study the mathematical pen-
dulum (see Example 5.5.4).

If there is an external force f(¢) acting on the body, the equation becomes

X+ w?x = f(1)

which is a second order nonhomogeneous equation. In particular, we will study the
case in which f(¢) = sinw;¢ which yields

x" + w?x = sinw1.

The solutions of this equation depend on the relationship between @ and w; and give
rise to interesting phenomena, like resonance or beats. See Section 5.6.1.
In the presence of friction proportional to the velocity x’ of P, the equation be-
comes
x"(t) + kx'(t) + 0*x(t) = f(t)

which is of the type (5.1) with p = k and ¢ = w?. It is usually referred to as the
equation of the damped harmonic oscillator, the damping term being kx’. Among
other applications, equations of this type arise in the theory RLC electrical circuits
(see Example 5.5.5). [

Now we concentrate on the homogeneous case and state the existence and unique-
ness result for such equations. The following theorem follows directly from Theo-
rems 4.2.2 and 4.2.3 of Chapter 4.

Theorem 5.1.2 (Existence and Uniqueness). If p(t), ¢(t) are continuous on an in-
terval I C R, then for any number ty in I and any numbers « and B, there exists a
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unique solution x(t) of

X"+ p)x +q)x =0 (5.2)

satisfying the initial conditions x(ty) = «, x'(tg) = B. Furthermore, this solution
exists forallt in I.

Recall that a solution of (5.2) is a twice differentiable function x(¢) that satisfies
equation (5.2).

We note that if & and § are both 0 in the above theorem, then the solution x (¢)
guaranteed by the theorem must be the trivial solution, that is x (#) = 0. This follows
from the fact that the zero function is also a solution of (5.2) satisfying the same ini-
tial conditions as x (¢). Since there can be only one such solution, then we must have
x(t) = 0. We state this fact as

Corollary 5.1.3. If x(t) is any solution of (5.2) such that x(tg) = 0 = x'(t), then
x(t) =0.

Remark 5.1.4. Unlike the solutions of the first order linear homogeneous equations,
here nontrivial solutions may vanish; in fact, they may vanish infinitely many times,
as indicated by the examples below. So, it is no longer true that the solutions are ei-
ther always positive or always negative. However, what is true is that in view of the
above Corollary 5.1.3, the maximum and minimum points of the solutions cannot lie
on the t-axis; so they are either above or below the line ¢t = 0. L]

Example 5.1.5. The function x = ¢’ cannot be a solution of the differential equa-
tion (5.2). The reason is that x and its derivative x’ = t2e’ + 2te’ both vanish at
t = 0 and being a solution would contradict Corollary 5.1.3. [

We would like to point out that occasionally a second order equation, linear or
nonlinear, may be written as a first order equation, and then one can try and see if the
methods developed for first order equations can be applied to solve it. We illustrate
this in the following example.

Example 5.1.6. Consider the differential equation
xX"+x=0. (5.3)

This is a special case of the equation on the harmonic oscillator, discussed in Example
5.1.1.

In spite of its appearance, this equation is essentially a first order equation. To see
this, let z = x’ = ‘ﬂll)t‘ Then by using the Chain Rule,

y, _dx’ dz dzdx  dz
YT a Tar Taxdr T Cax
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Now we can write equation (5.3) as

=0
zdx+x

which is a first order separable equation and, by using the differential notation, it can
be written as

zdz +xdx =0.

. . g2 2 . .
Integrating, we obtain 22 + xz = ¢, which can be written as z2 + x2 = k;, where
k1 = 2c is anon-negative constant. If k; > 0, solving for z, we getz = + \/kl — x2.

Since z = x’, we have x’ = ‘fif = :I:\/kl — x2, where the variables can be sepa-

rated. In order to separate the variable, we assume that —Vki < x < /ky so that
ki1 — x2 > 0. Then, using the differential notation, we have

+
x  _ (5.4)

\/kl —X2
1

We recall from Calculus that the plus sign in the above equation leads to sin™ j;q =

t + ko, or j;q = sin(t + k»). If we let k, = 0 and /k; = ¢; we get the family of
solutions

X = cysin f.

If in equation (5.4) we choose the negative sign, the same steps carried out above
will lead to cos™! x2 =t + k3, and if we let k3 = 0 and ~/k» = c., we obtain
another family of solutions

X = cpCos L.

We will see later in Example 5.2.10 that the all the solutions of (5.3) are given by
X =cysint+cycost. [

Remark 5.1.7. In the above discussion, in order to separate the variables, we assumed
k1 — x? # 0, which was necessary so that we would be able to divide both sides by
\/kl — x2, thus obtaining the solution x = ki sin t. But now we see that x =
kysin t is defined for all real numbers ¢, including those where k; — x2 =0,
which can occur, for example, at t = ’; . Therefore, x = Vk sin ¢ satisfies the equa-
tion x” + x = 0 for all 7. This phenomenon is not all that uncommon in solving
differential equations, where one makes an assumption in order to carry out a certain
operation but later it turns out that the solution is valid even without the assumed
restriction. So, at the end of solving an equation, it is worthwhile to check to see if
the restrictions assumed to carry on the operations can be lifted. L]

Theorem 5.1.8. If x; and x, are any solutions of (5.2), then for any constants c;
and ca, the linear combination c1x1 + c2x5 is also a solution.
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Proof. Let x = c1x1 4 c2x5. Substituting x” and x” in equation (5.2) and regrouping
terms, we have

(c1x1 + c2x2)" + p()(c1x1 + c2x2)" + q(1)(c1x1 + c2x2) =
[e1x] 4+ p()erxy + c1g(O)x1] + [c2x) + p(t)cax) + c2q(1)x2] =
c1lxy + p)xy +q@)x1] + e2lxy + p()x; +q(t)x2] =0

because x; and x, are solutions and hence
x{ 4 p0)xy +q@)x1 = 0= x5 + p(t)x; + q(H)x2,

proving the theorem. [

Remark 5.1.9. The property that linear combinations of solutions is a solution is par-
ticular to linear homogeneous equations. This is an important property of such equa-
tions, often referred to as the Principle of Superposition. In particular, it is not true
for nonhomogeneous equations or nonlinear equations. For example, as can be easily
verified, x; = 1 and x, = €’ + 1 are both solutions of x” — 3x’ 4+ 2x = 2, but their
sum x; + x5 = 1 + (e’ + 1) is not a solution. m

5.2 Linear independence and the Wronskian

The goal of this section is to find the general solution of (5.2) which is, by definition,
a family x = ¢ (¢, ¢1, ¢2) depending on two real parameters ¢y, ¢ such that:

1. for all ¢q, ¢3, the function x = ¢ (¢, c1, ¢2) is a solution of (5.2);
2. if x(¢) is a solution of (5.2), there exist c1, ¢ such that x(¢) = ¢ (¢, cq, c2).

Remark 5.2.1. Similar to the case for linear first order equations, here also the general
solution includes all the solutions of (5.2). [

To find the general solution of (5.2) we first introduce the notion of linear inde-
pendence of functions.

Let f(¢) and g(¢) be two functions defined on an interval /. We say that f and g
are linearly independent on I if the only way we can have ¢y f(t) + c2g(¢) = 0 for
all 7 is to have ¢; and ¢, both equal to 0. That is, if ¢; and ¢, are constants such that
c1f(t)+crg() =0foralltin I, then ¢c; = 0 = c¢,. Functions that are not linearly
independent are said to be linearly dependent.

Remark 5.2.2. First we note that if there exist constants ¢; and ¢, such that ¢y f(¢) +
cg(t) =0forallzin /,and f and g are not identically zero, then if one of the con-
stants is zero, so is the other. Suppose ¢; = 0 and ¢, # 0. Then we have c,g(t) = 0
and this implies that g(¢) = 0 for all 7. Similarly, the case ¢, = 0 leads to ¢c; = 0.
Using the contrapositive of the statement defining linear independence, we see
that f and g are linearly dependent if and only if there exist nonzero constants ¢y
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and ¢, such that ¢y f(¢) + c2g(¢) = 0 for all ¢ in 1. Thus, for any two functions,
linear dependence means that one of them is a constant multiple of the other. But
such a simplification is not possible for more than two functions. Therefore, we ad-
vise students to learn how to use the above definition in order to be prepared to deal
with a higher number of functions later. [

Example 5.2.3. Let us prove that f(z) = sin ¢z and g(t) = cos ¢ are linearly in-
dependent. We start by assuming that ¢; and ¢, are constants such that ¢; sin ¢ +
cycos t = O for all ¢. Next, we show that ¢c; = ¢, = 0. There are several ways to
accomplish this. We explain three of them. Sometimes one of the methods is more
convenient than the others, depending on the problem.

First method. We substitute some number ¢ that will make one of the terms ¢ sin ¢
and ¢ cos x become 0. Let, for example, # = 0. Then ¢; sin 0 + ¢ cos 0 = 0 im-
plies that ¢, = 0. Next, we let x = ’2’ and obtain ¢; = 0.

Second method. We notice that if x = ¢y sin t 4+ ¢, cos ¢t = 0 for all ¢, then so is
x" = c¢ycos t —cysint = 0 forall z. So, we simply solve the system of equations

c18int +cycost =0
c1cost—cpsint =0

for c; and c;, using some method we have learned in Algebra. For example, multi-
plying the first equation by cos 7, the second one by —sin ¢ and adding, we obtain
c2(sin?t + cos?t) = 0. Since sin?t + cos>t = 1, we must have ¢, = 0. Now,
returning to the equation c; sin ¢ + ¢, cos ¢ = 0, we are left with ¢ sin ¢ = 0, which
implies that ¢; = 0 since sin ¢ cannot be O for all . We note that this method is not
applicable if the functions are not differentiable.

Third method. Once we obtained the system

c1sint 4+cpcost =0
ci1cost—cysint =0

above, we need not solve for ¢; and ¢, but simply determine whether the coefficient
determinant is zero or nonzero. Since the coefficient determinant

sin ¢t cost

. = —sin?t —cos?t = —1
cos t —sin t

is nonzero, we recall from Algebra or Linear Algebra that this system has a unique
solution in ¢; and c¢,. Since the pair ¢; = 0 and ¢, = 0 is a solution, then this is the
only solution and there cannot be any nonzero solutions ¢; and c¢5. [

Next, we will see that the coefficient determinant mentioned above plays an im-
portant role in the study of linear homogeneous equations.
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5.2.1 Wronskian

The Wronskian of two differentiable functions f(¢) and g(¢) is defined as

o Sol=rogo - o,

Note: Sometimes, instead of W( f, g)(¢), we may interchangeably use the notation
W(f(t), g(t)); and when there is no confusion about what the functions f and g are,
we may simply use the notation W(¢); in other words, W( f, g)(t) = W(f(t),g(t)) =
W(t).

Theorem 5.2.4 (Abel’s Theorem). If x| and x, are any solutions of
X"+ p®)x" +qt)x =0 (5.2)

on a given interval I where p(t) and q(t) are continuous, then the Wronskian of x,
and x; is given by
W(t) = ce~ /P

where ¢ is a constant.

Proof. Taking the derivative of W(r) = x1x5 — x{x, we obtain W'(t) = x1x/ —
x2x7.Since x| = —p(¢)x;—q(t)xq and x5 = —p(t)x,—q(t)x, fromequation (5.2),
by substituting, we obtain W’(t) = [—p(t)x5—q(t)x2]x1 —[—p({t)x]—q({t)x1]x2 =
—p()[x1x5 — x1x2] = —p(t)W(¢). Solving the first order linear equation W'(¢) =

—p(1)W(t) by the method of integrating factor, we obtain W(r) = ce™/P0dt g

Note: In the above proof, instead of obtaining W(¢) in terms of the antiderivative, we

could obtain it in terms of the definite integral W(¢) = ce™ o (t)dt, where 7 is any
point in the interior of the interval I . This should be clear, since in solving W’ (¢) =
—p(t)W(t), one could multiply both sides of the equation W'(t) + p(t)W(t) = 0
by the integrating factor |, zto p(t)dt instead of [ p(t)dt.

Corollary 5.2.5. The Wronskian of two solutions is either always zero or never zero.

Proof. Since for any solutions z; and zz, by Abel’s Theorem, W(zy,z3)(t) =
cel ~Pdt gpd o] Pt g never zero, then the only way that the Wronskian can
be zero at any point is to have ¢ = 0, in which case the Wronskian is equal to zero
for all £. L]

Example 5.2.6. The functions x; = e’ and x, = sinf cannot be solutions of the
differential equation (5.2) on I = (—m, 7r), given that p(¢) and ¢(¢) are continuous
on I. To see this, we examine their Wronskian W(sint, e’) = e’ sint — e’ cost. We
see that W(0) = —1 and W(7) = 0, contradicting Corollary 5.2.5. [
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Before establishing our next important theorem concerning Wronskian, let us re-
call some algebraic facts. Consider the system of equations

ax +by =0
cx +dy =0.

We can always obtain one solution, called the trivial solution, by letting x = y = 0.
But, does it have any other types of nontrivial solutions? The answer depends on the
determinant of the coefficients; namely the system has a unique solution if and only
if the coefficient determinant is nonzero, that is if and only if

a b
c d'¢0'

This means that if the coefficient determinant is nonzero, then x = y = 0 is the only
solution to the system; so it has no nontrivial solutions. Furthermore, since the condi-
tion on the coefficient determinant is both necessary and sufficient, it follows that the
system has a nontrivial solution in x and y if and only if the coefficient determinant
is zero.

The next theorem gives us a convenient criterion for determining if two solutions
are linearly dependent.

Theorem 5.2.7. Two solutions x1 and x, of (5.2) are linearly dependent if and only
if W(x1,x2)(t) =0 foralltinl.

Proof. Two solutions x; and x, are linearly dependent if and only if there exist
nonzero constants ¢; and ¢, such that c1x1(¢) 4+ c2x2(¢) = 0 for all tin 7. We note
that if such numbers c; and ¢ exist, then we also have ¢1x7 (¢) + c2x5(t) = 0 for all
t in I, since the derivative of the zero function is the zero function. Let #o be some
number in / and let us look at the system of two algebraic equations

c1x1(to) + c2x2(t9) = 0
clxi (l()) =+ sz/z(l()) =0.

As pointed out earlier, such a system will have a nontrivial solution in ¢; and c; if
and only if

x1(to) x2(to)
x1(t0) x5(t0)

But this determinant happens to be the Wronskian of x; and x; evaluated at #y. There-
fore, we can say that x; and x, are linearly dependent if and only W (x1, x2)(ty) = O.
Finally, since, by Abel’s theorem, the Wronskian of two solutions is either identically
zero or never zero, we can say that x; and x, are linearly dependent if and only if
Wi(x1,x2)(t) =0forallfin I. [



5.2 Linear independence and the Wronskian 79

Example 5.2.8. The above theorem is not valid for arbitrary functions that are not
solutions of the linear equation (5.2). Let x; and x; be defined as follows:

—3if —co<t <0
x1(0) = { o
t>if 0<t<oo
and x,(t) = 13 for —oo < t < oc. The functions x; and x, are linearly independent

on the interval (—oo, 00) and yet W(xy,x2)(¢) = O for all ¢. The student should
verify this. L]

If x1 and x; are linearly independent solutions of (5.2) then x; and x; are said to
form fundamental solutions of (5.2).

Theorem 5.2.9. The general solution of (5.2) is given by c1x1 + c2X2, provided x;
and x, are fundamental solutions.

Proof. According to Theorem 5.1.8, ¢1x1 4 c2x3 is a solution of (5.2). Next, if x(¢)
is any solution of (5.2), we have to show that there exist constants c; and ¢, such that
x(t) = c1x1(t) + cax2(t). Let 1o be any fixed number in / and consider the system

c1x1(to) + cax2(to) = x(to)

c1x1(to) + c2x5(t0) = x'(t0)
where ¢ and c; are the unknowns. This system has a unique solution c1, ¢» if and
only if the determinant of the coefficients is different from 0. This determinant is pre-
cisely the Wronskian W(x1, x,)(¢) which is not zero because x1, x, are fundamental
solutions. L]

Example 5.2.10. Show that x = ¢; sint + ¢ cost is the general solution of x” +
x = 0 and find a different fundamental set of solutions that can be used to obtain the
general solution.

As we saw in Example 5.1.6, x; = sinz and x, = cost are solutions. Since
W(sint,cost) = (sint)(—sint) — (cost)(cost) = —(sin®¢ 4+ cos?t) = —1 #£ 0, it
follows from Theorem 5.2.9 that they form a fundamental set of solutions and hence
X = c18int + ¢, cost is the general solution.

To answer the second part, any pair of solutions whose Wronskian is different
from zero would generate the same general solution. Thus, any pair of solutions that
are not constant multiples of each other would work. For example, if x; = 2sint
and x, = 3cost, then W(2sint,3cost) = (2sint)(—3sint) — (3cost)(2cost) =
—6(sin? x 4-cos? x) = —6 and hence they form a fundamental set of solutions. There-
fore, y = c1(2sint) 4 c2(3 cost) is the general solution. We note that if we replace
the constant 2¢; by another constant k and 3¢, by k», then the general solution
becomes x = kysint + ko cost. n
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5.3 Reduction of the order

Consider again the general linear homogeneous equation
X"+ p)x +q)x =0 (5.2)

where p(¢) and g(t) are continuous in the interval / C R. If x; is a solution, then
we know that any constant multiple x = cx; is also a solution. Can ¢ be replaced by
a variable function v(¢) such that x, = v(¢)x1(¢) is also a solution? The answer is
yes. As shown in the theorem below, substituting x; in the equation (5.2) reduces the
order of the differential equation and is hence called the Reduction of Order Method.

Theorem 5.3.1. If x1(¢) is a solution of (5.2) in I, x1(t) # O, then
o=/ p(@®)dt
Xt ()

is another solution. Furthermore, x1(t) and x,(t) form a fundamental set of solu-
tions.

xa(t) = x1(0) /

Proof. Substituting v(¢)x;(x) in equation (5.2), we have

(v"x1 + v'x] + vx] +v'x]) + p('x1 + vx)) + vgx; =
x10” 4+ 2x] + px)v' + v(x] + px] + gx1) = x1v”" + (2x] + px))v' =0

since x| + px} + qx1 = 0, as x; is a solution of (5.2). Now, if we let w = v/,
we obtain the first order differential equation x;w’ + (2x] + px)w =0 or w’' +

(23‘{ 2Inx+/[pdt _

ot p)w = 0. The integrating factor for this first order equation is e

xlzef pdr Therefore, assuming that x; # 0, we obtain

¢ ce~/ pdt
w = =
x12e/ pdt x?

Recall that v/ = w. Since we only need one function v(¢) so that vx; is a solution,
we can let ¢ = 1 and hence

el pdt o=/ pdt
w = 5 ,andxzlevlef , dt.
X1 X1

To see that x; and x, form a fundamental set of solutions, we note that according
to Theorem 5.2.9, x; and x; are fundamental solutions if W(x1, x) # 0 or equiva-
lently if they are linearly independent (see Theorem 5.2.7 ). Thus it suffices to show
that they are linearly independent; or, equivalently, that one of them is not a con-
stant multiple of the other. To verify the last statement, suppose that x, = cx;, c a

constant. Then
e_f pdt
X1 / dt = cx1
X

2
1
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-/ pdt
e
f ) dt =c.

X1

and hence

Now, taking the derivatives of both sides, we obtain

e_f pdt
=0
2
X1
which is a contradiction since e~/ 297 is nonzero. [

Example 5.3.2. Knowing that x; = ¢ is one solution, find the general solution of

" 1/ 1
xX"— x4+ ,x=0, t >0.
t £2

To find another linearly independent solution, using Theorem 5.3.1, we obtain

e_f_}dt
l‘/ dt =tInt.

2
The general solution is x = ¢t + ¢»f Int. ]

Equations like the one in the previous exercise are called Euler equations and will
be discussed in Subsection 5.5.1.

5.4 Linear nonhomogeneous equations

In this section we study the nonhomogeneous equation

x" 4+ p(0)x 4+ qt)x = f(1). (5.5)

First we state the existence and uniqueness of solutions, which follow immediately
from Theorems 4.2.2-4.2.3 of Chapter 4.

Theorem 5.4.1 (Existence and Uniqueness). Suppose that p, q, and f are contin-
uous functions on an interval I C R. Equation (5.5) has a unique solution x (t) such
that x(ty) = «, x'(tg) = B, where to is any number in I and o and B are any real
numbers. Furthermore, this solution is defined for all t, t in I.

Similar to the case for homogeneous equations, the general solution of (5.5) is
defined as the family of all solutions of such an equation.

The next theorem shows that in order to find the general solution of the nonho-
mogeneous equation, all we need is the general equation of the homogeneous equa-
tion and one solution of the nonhomogeneous equation. For the constant coefficient
case, we have already learned how to find the general solution of the homogeneous
equation. In the next section we will learn how to find a particular equation of the
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nonhomogeneous equation and thus get the general solution of the nonhomogeneous
equation.

Lemma 5.4.2. If x1 and x, are two solutions of the nonhomogeneous equation (5.5),
then x| — X3 is a solution of the corresponding homogeneous equation

x" + p)x' +q@)x = 0. (5.6)
Proof. The proof is straightforward . Since
x{ 4+ pO)xy +q@)x = f(t)
Xy + p(0)xy +q)x2 = f(1),
then by subtracting the second equation from the first, we obtain
(7 = x3) + PO = x3) +¢(1) (31 —x2) =0,

which proves the assertion. [

Theorem 5.4.3. If x = c1X1 + cax2 is the general solution of the homogeneous
equation (5.6) and x, is any solution of the nonhomogeneous equation (5.5), then
Z = c1X1 + C2X2 + Xp, ¢1, 2 € R, is the general solution of (5.5).

Proof. Let z be any solution of the nonhomogeneous equation (5.5). We want to
show that there exist constants k1 and k5 such that z = kjx; 4+ k»x, 4 x,. But since,
by Lemma 5.4.2, z — x,, is a solution of the homogeneous equation (5.2), there exist
constants kq and k» such that z — x, = k1x1 + kax, because x = c1x1 + c2x2 is
given to be the general solution of the homogeneous equation. Solving for z, we get
the desired result z = kyx1 + kax2 + Xp. n

Example 5.4.4. Consider the nonhomogeneous equation

1
x”—tx/—i— x=4¢, t>0.

In Example (5.2), we found the general solution of the corresponding homogeneous
equation to be x = ¢1f + ¢t Inz. We also see that x, = ¢ is a particular solution
of the given nonhomogeneous equation. Therefore,

x=cit+etlnt +13, >0
is its general solution. ]

So, it seems that solving the nonhomogeneous second order linear equation is
quite simple if we can find the general solution of the corresponding homogeneous
equation and a particular solution of the nonhomogeneous equation. But, except
by inspection whenever possible, we have not yet developed a method for finding a
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particular solution of the nonhomogeneous equation. Next, we discuss a method for

finding a particular solution of the nonhomogeneous equation.

5.4.1 Variation of parameters

As we saw in Section 5.3, given one solution x;, we were able to find a function
v(t) so that vx; was also a solution. Here, given a pair of fundamental solutions x;
and x; of the homogeneous equation (5.2), we try to find functions vy (¢) and v,(¢)
such that x = v1x7 + v2X5 is a solution of (5.5). To this end, let z = vix1 + v X5.
Calculating z’ and z”, we have z’ = vix] + vjx1 + v2x5 + v)x2. Now, since we
have two unknowns v and v,, we would like to also have two equations involving
these unknowns. Furthermore, we realize that substituting z in (5.5) will give us one
equation. So, at this point we make the decision to let one of the equations be

vixy + vhxa =0 (5.7)
which will also make it convenient and simpler to calculate z”. We have now reduced

7' to 2/ = v1x] + vox) from which we obtain z” = vix] + vix] + vix5 + v2x.
Substituting z in equation (5.5), we obtain

[V1X] + vix] 4+ v5x) + v2x3] + p)[vixy + vaxy] + () [vixs + vaxa] = f(7)
which, after regrouping terms, can be written as
vi[x} + p(O)x] +q(O)x1] + v2[x5 + p()vs + vaxa] + [vix] +vix5] = f(2).

Since x; and x, are solutions of the homogeneous equation (5.6) and hence satisfy
the equation, the preceding equation is reduced to

vix] + vpxy = f(0). (5.8)

Thus we have reduced the problem of finding v; and v, to solving the algebraic sys-
tem of equations (5.7)—(5.8)

/ i
{lel +vyx =0

vixg +px; = f(1)

for v} and v} and then integrating to obtain v; and v5. Solving for v} and v}, we have

0 xo x1 0
o — F@O) x5 —=xa2(0) f(2) o — xy SO xif(@)
Yowey T w) 27w T W)

where W(t) = W(x1, x2)(t). Therefore, the particular solution z of (5.5) is given by

s = xl(t)/ _XZW(’()t{(t)dz + x2(z)/ xlg/)(i;(t)dz. (5.9)
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We do not advise that one memorize these integrals for v; and v, but instead one
should start with the system of equations (5.7) and (5.8) and go through the proce-
dure outlined above.

Example 5.4.5. Consider the equation
x"—x=f(@) (5.10)

where f is a continuous function on an interval 1.
To find the general solution of the associated homogeneous equation x” —x = 0,

namely x” = x, we notice that x; = ¢’ and x, = e~ solve the equation. Since the

Wronskian of ef, e is

el e?
el —e~

W= =-2

t

they form a fundamental set of solutions. Thus the general solution of x”” — x = 0 is

x(t) = cre’ + e,

Finding a specific solution z () of (5.10) in the form z (¢) = vy (¢)e’ +v2(¢)e™ ! leads
to the system

vi()e' +vy(t)e™" =0

vi(t)e" —vy(t)e™ = f(t)

where the determinant of the coefficients is W = —2. Then
—e~ " f(1) - el f(1)
o =" =10, v =11 =1 s,
Integrating
ww =4 [0 no=-} [
and hence

z(t) = ée’/eftf(t) - éef’/e’f(t).

This formula gives the particular solution in an implicit way and it holds for any
function f(¢). [

Example 5.4.6. Find the general solution of

. 1 /4 g
X"+ x= , - <t< _.
cost 2 2
We have already seen in Example 5.2.10 that the general solution of the associated
homogeneous equation x” + x = 01is x(¢) = c;sint + ¢, cost. Moreover, the
Wronskian W(x1, x2) of x; = sint, x; = cost is equal to —1. To find a specific
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1

: 1 —
solution z of x” 4+ x = cost

we set z = v; sint + v, cost and solve the system

vi(t)sint + vi(t)cost = 0

i i
. 1 - <t<,
vy (t)cost — v5(t)sint = 2 2
cost

where the coefficient determinant is just the Wronskian W = —1. Then Cramer’s
rule yields

1 . 1 sint T T

v} (t) = cost =1, v5(t) = —sint =— , - <t< _.
cost cost cos ¢ 2 2

Integrating, we get

vl(t)=/dt=t+cl

and

cost cost 2

int d t
vz(t)z—/ st dt:/ cos = In(cost) + c2, —72r<t<n.

For convenience we can take ¢; = ¢, = 0 since we need only one function v; and
one function v,. Thus a specific solution is z(¢#) = ¢ sint + cos? - In(cos ¢). Finally,
the general solution is

. . b4 T

x(t) =cysint + cpcost +tsint + cost -In(cost), — 5 <t< . m
Remark 5.4.7. The method of Variation of Parameters has a drawback and that is that
the integration may be messy or even impossible to carry out in order to find the solu-
tion explicitly. But we can always find the solution implicitly as long as we can find
the general solution of the homogeneous equation. L]

5.5 Linear homogeneous equations with constant coefficients

A general second order homogeneous equation with constant coefficients has the
form
ax”" +bx' +cx =0, (5.11)

where a # 0. In searching for a solution, we recall that the exponential functions
have the property that their derivatives involve the same exponential functions. So,
we might try to find solutions of the form x = ™. We also see that if we substitute
this exponential function in the differential equation, every term on the left side will
have a constant times ¢’ and hence we can eliminate it by dividing both sides by it.
Now we end up with an algebraic quadratic equation that we can handle. To this end,
substituting y = e into the equation, we obtain

am?e™ + bme™ 4+ ce™ = 0.
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Dividing by e™?, we obtain the algebraic equation
am?*>+bm+c =0. (5.12)

This shows that if x = ™’ is a solution of (5.11), then m is a solution of (5.12).
Conversely, if m is solution of (5.12), then, by reversing the steps, it follows that ¢™?
is a solution of (5.11).

Equation (5.12) is called the characteristic or auxiliary equation corresponding
to equation (5.11). We have now reduced the problem of solving (5.11) to that of
solving the characteristic equation and then analyzing the corresponding solutions.
Solving (5.12), we have

—b + Vb2 — 4ac
m = .
2a

We have to consider three cases: (1) b2 — 4ac > 0, (2) b*> — 4ac = 0 and (3) b? —
4ac < 0.

(1) The case b%> — 4ac > 0 (real distinct roots). In this case the characteristic
equation has two distinct real roots

—b + v/b% — dac —b — v/b? — dac
mip = , My = .

2a 2a
The corresponding solutions of (5.11) are given by x; = ™!’ and x, = ¢™2!. We
claim that x; and x, are a fundamental set of solutions. To see this, we simply evalu-
ate their Wronskian. W(x1, x3)(t) = e mye™2! —m e™1te™M2! = Mt M2t (i —
my) # 0 since m; and m, are distinct roots. This means that the general solution of
(5.11) is given by

X = c1e™! 4 cpe™??,

Example 5.5.1. Solve the initial value problem
2x" 4+ x'—x =0, x(0) =1, x'(0) =2.
By substituting x = ™!, we obtain the characteristic equation
2m* +m—1=0.

Solving for m, we set 2m?> +m —1 = 0 = (2m — 1)(m + 1) and find the two
roots my; = —1, my = é Since the roots of the characteristic equation are real and

distinct, the general solution of the differential equation is x = cje™ ! + ce2’. In
order to get the solution to the initial value problem, we set x(0) = 1, x’(0) = 2
and solve for ¢ and ¢;. Solving,

ci1+c =1
—C1+é€2=2
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we obtain ¢; = —1 and ¢, = 2. Therefore,

x=—e"'+ 22!
is the desired solution. L]
(2) The case b? — 4ac = 0 (repeated roots). In this case, m = _Zba is a repeated
root of

ax" +bx'+cx =0

and we have only one solution x; = e~ 2a’. In order to find another linearly inde-
pendent solution, we either use the method of Reduction of Order directly or we use
Theorem 5.3.1. Using the theorem, we let p(¢) = b/a, x; = e_zba’, and obtain
another linearly independent solution

b b
by by

_b e a _b e a _b _b

X, =e 2a’/ , dr=e 2a’/ , dr =e 2a’/d;:te 2a!
(e=2at)2 et

. . . . . _b
taking the constant of integration to be zero. One can easily verify that x; = te™ 2a
_ by . .
and x, = e™ 24’ are linearly independent and hence form a fundamental set of solu-
. b _ by, .
tions. Therefore x = cite™ 2a’ + cpe™ 24’ is the general solution.

t

Example 5.5.2. Find the general solution of x” — 6x’ + 9x = 0. The corresponding
characteristic equation is m2—6m+9 = 0. We see that m2—6m+9 = (m —3)> = 0
has arepeated root m = 3. Therefore, x = e3 and e are two independent solutions
and hence the general solution is given by x = c;e3 + cyte™. ]

(3) The case b%> —4ac <0 (complex roots). We first recall a couple of simple facts
about complex numbers.

1. If o + i A is a root of the characteristic equation am? + bm + ¢ = 0, then so
is its conjugate ;t — i A.

2. A complex number can be equal to 0 only if its real and imaginary parts are
both 0, thatis u + iA = 0 implies u = A = 0.

When the discriminant b2 — 4ac is negative, the characteristic equation has two
complex conjugate roots

_—b= Vb2 —dac
N 2a '

m

But, for a complex number & + i A, what is ¢ +?1* and how do we extract real
solutions out of this? We proceed as follows. 4
First, we write, formally, the Taylor expansion for e’)‘, obtaining
0 212 393 494
in 7y ) i“A i°A i*A
et =>" R T N TR
PRI S R

=1+z/\—2!— 31 +4!+....
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Regrouping the real and imaginary terms in the above series, we obtain

Iy Sl i XZk Sl i A(Zk-‘rl)
=Y (-1 i3S (-1 .
¢ n;( ) (2k)!+’n§( 2k + 1)1

We recognize the first sum to be cos A and the second one to be sin A. Therefore,
it seems reasonable to define e*! as e*’ = cos A + i sin A, and consistent with the
exponential laws, e# T4 = eter = el (cos A + i sin A).

Next, given a complex valued solution, how do we extract a real solution? To see
this, let w(¢) + i A(z) be a given complex valued solution of

x" 4+ p()x" + q(t)x = 0.
Then, substituting, we have

(u() +ir@)” + p()(u(t) +ir(®) + q@)(u@) +ir(t)) = 0.

Now grouping the terms involving p and those involving A, we obtain

W+ pp +q@®p) +i(X" + p@)A +q@)A) = 0.

This implies that the real and complex parts must be 0, thatis 4" + p(H)p' +q () =
0=MA"+ p(t)V + q(t)A. Therefore, x; = u(t) and xo = A(¢) are real valued so-
lutions.

Returning to our differential equation ax” + bx’ 4+ cx = 0, where b —4ac < 0,
we see that if the characteristic equation has two complex valued roots, m = p £iA.
Then the corresponding real solutions of the differential equation ax” +bx"+cx = 0
will be given by x; = e’ cos At and x, = e¢#’ sin At. The fact that they are linearly
independent is obvious since they are not constant multiples of each other. Therefore
they form a fundamental set of solutions and the general solution is

x = cr1e™ cos At + cpet! sin At = e*! (¢ cos At + c¢; sin At).

Summarizing, the general solution of ax” + bx’ 4+ cx = 0 includes three types
of solutions, depending on whether the discriminant of the characteristic equation
am? 4+ bm + ¢ = 0 is positive, negative or zero.

Example 5.5.3. Solve the initial value problem
x"+2x" +2x =0, x(0) =3, x'(0)=7.

The roots of the characteristic equation m? + 2m + 2 = 0 are the complex numbers
m = —14+/—1 = —1=i.Therefore, x; = e cos ¢ and x, = e sin ¢ are the
corresponding linearly independent solutions and the general solution is

x(t) = e "(cysin t + c3cos t).

We point out that in this example, all solutions approach 0 as t — oo.
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Calculating the derivative of the general solution, we have
x'(t) = e "(cicost —cysint) —e '(cysint + ¢ cost).

Now, in order to find the solution satisfying the required initial values, we notice that
if we let = 0 in the general equation, we obtain x (0) = c;. Therefore, we have to
find ¢, = 3. To find ¢y, we set ¢ = 0 in the derivative x’ of the general solution and
obtain

X0)=c1—cr =17,

which gives us ¢c; = 7 + ¢ = 10. Therefore,
x =e ' (10sint + 3cost)
is the desired solution. n

Example 5.5.4. (The pendulum equation) Consider a point P of mass m suspended
from a pivot by a chord of fixed length L so that P moves along a circle of radius L
in a vertical plane passing through the pivot. On the point P acts the gravity force g
and there is no friction.

Referring to Figure 5.2, the tangential component of the force acting on P is
—mg sin @ (the minus sign takes into account that the angle 6 increases in the coun-
terclockwise sense), while the tangential component of the acceleration is L6”. Thus
Newton’s law yields mL60” = —mg sin 0, that is

L 0" +gsinf =0.

mgsin® " 0 3 mgcos 0

mg

Fig. 5.2. The pendulum
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Recall that the Taylor expansion of sin 6 is
inf =6 ! 63 ! 6°
sinf = ~ 3 +5! +....

Then, for small oscillations, we can approximate sin # by 6 and the solutions of the
pendulum equation are, up to a small error, those of

L0 +g06=0,

which is the equation of the harmonic oscillator with w? = i The characteristic

equation is L m? + g = 0, whose roots are =i \/ g/ L. Then the solutions are

0(t) = ¢y sin \/g/L t 4 c¢pcos \/g/L t,

which are periodic oscillations with period T = 27 \/ L/g. Notice that T depends
only on L, not on the initial position of P. This property is the so-called isochronism
of the pendulum. It is worth pointing out that isochronism is valid for the approxi-
mated equation, not for the true pendulum equation. L]

Example 5.5.5. (An RLC electrical circuit) In an RLC circuit with resistance R, in-
ductance L, capacitance C and with a source with constant voltage V/, the intensity
of the circulating current is governed by the second order equation

x"(t) + IZ x'(t) + LIC x(t) =0. (5.13)

Here, to keep notation uniform with that used before, we have denoted by x(¢) the
current intensity usually named 7(¢) or i (¢).

The reader will notice that (5.13) is also the equation of a damped harmonic os-
cillator, with k = R/L > 0,w = 1/+/LC > 0 and f = 0, see Example 5.1.1,
discussed in the first section. In such a case kx’ represented a friction force.
Equation (5.13) is of the form of the general linear equation with constant coefficients
(5.11), witha = 1,b = k and ¢ = w?. Setting k = 2y, the characteristic equation
associated to (5.13) is

m?* +2ym 4+ w* =0

VC L

Fig. 5.3. RLC circuit
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whose roots are
mip=—y+y? -

Recalling that both @ and y are positive, m » are real or complex conjugates de-
pending on whether y > w or y < w.

(1) Overdamped response. If y > w > 0, my, m, are real, distinct and negative
(because v/A2 — w2 < y), then the general solution of (5.13) is

x(t) = cre™? 4 cpe™2t,

Since m,m, < 0 these are decaying functions without oscillations, see Figure 5.4,
blue curve. Here and below, the constants cq, ¢, can be found if we impose initial
conditions.

(2) Critically damped response. If y = w,m; = m, = —y and the general solution
is
x(t) =cre " 4 cpte”V,

which implies fast decaying solutions without oscillations, see Figure 5.4, red curve.

(3) Underdamped response. If 0 < y < w, the roots of the characteristic equation
are complex conjugates, namely m;, = —y +i6, where 6 = \/a)2 — 2. Then the

Fig. 5.4. Overdamped (blue), critically damped (red) and underdamped (black) response
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general solution is
x(t) = e " (c1sinft + cocos Ot),

which implies decaying oscillations, see Figure 5.4, black curve. L]

Remark 5.5.6. (i) Equation (5.13) is independent of the constant voltage V.

(ii) The decay is due to the presence of k = R/L > 0. In other words, it is
the presence of the resistor R that, dissipating energy, induces a decay of the current
intensity. If there is no resistance, that is if R = 0, then we have an LC circuit. In
this case we have y = 0 and § = w. The solution becomes x(f) = c¢; sinwt +
¢, cos wt, which means that the current intensity is sinusoidal and oscillates with-
out any decay. ]

5.5.1 The Euler equation
An equation of the form
at’x" + btx' +cx =0, t >0,

is called a (homogeneous) Euler equation. Such an equation can be changed to one
with constant coefficients by making the substitutionz = e*, or equivalently s = In¢,
as follows.

s 1 1 dx ) e
We note that dt =1 T e For convenience, we let = x to distinguish it
e s
dx dx dx ds 1
from x’ = . Then, x’ = = = x . Therefore,
dt dt ds dt e’
1
tx' =e*x =%
eS
Now,
, dx' dx'ds d(x))ds eki—ekx 1 F—x
X = = = = = .
dt ds dt ds dt e2s es e2s
Therefore,
1?x" =¥ —x.

We see that making the substitutions for x” and x” will convert the given differential
equation to the linear equation with constant coefficients

a(¥ —x)+bx +cx =0,

or
aX+ b —-a)x+cx=0.

Example 5.5.7. Solve

202x" +tx' —3x =0, t>0.
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Using the substitutions above, we have
2 —X)+x—3x=2X—x—-3x=0.

The corresponding characteristic equation is 2m? — m — 3 = 0 and the roots are
m = —1, 3. Therefore, the general solution in terms of s is x(s) = c1e™ + cpe25.

Finally, substituting s = In¢, we have x(¢) = c; } + cot %. [
Example 5.5.8. Solve
2x +ix +x=0, t>0.
Making the substitution s = In ¢, we obtain
X+x=0

whose general solution is x(s) = ¢ sins + ¢z coss. Since s = In¢ we have x(¢) =
cysin(Int) + ¢ cos(Int). [

Nonhomogeneous Euler equations
at®>x" + btx’ 4+ cx = h(t) t>0,

can be handled in a similar way and are briefly discussed in Remark 5.6.6 in the next
section.

5.6 Linear nonhomogeneous equations — method of
undetermined coefficients

Consider the equation
ax”(t) + bx'(t) + cx(t) = f(1), (5.14)

where the coefficients a, b, ¢ are constants and a # 0. Let us consider a specific case
where a particular solution z(¢) of this nonhomogeneous equation can be found by
inspection. This may happen, e.g., if f(¢) is a polynomial of degree n, or an expo-
nential e*? , or a trigonometric function like sin A¢, cos A¢, or a linear combination of
these. In such cases, one can try to find z, by careful guessing, as a function of the
same type as f(¢). This is known as the method of undetermined coefficients.

Instead of carrying out a general discussion, we prefer to demonstrate this method
by considering appropriate examples.

We first consider the case in which f(¢) = P(t)e*!, where P is a polynomial. We
can try to find a solution of (5.14) by setting z = Q(¢)e*!, where Q is a polynomial
to be determined. Since z’ = Qe +1QeM andz” = Q”e* 4210 M +12 Qe
then z solves (5.14) provided

a(Q"e* +2200'eM + A20e*) + b(Q'eM + 10e*) + cQett = PeM.
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Canceling e** we find a(Q” + 210" + A2Q) + b(Q’ + AQ) + cQ = P or equiv-
alently, rearranging,

a(Q" +20Q") +bQ’ + (ar*> + b +¢c)Q = P.

This makes it clear that if aA2 +bA +c = 0, namely if A is a root of the characteristic
equation am? 4+ bm + ¢ = 0, the degree of Q will be greater than that of P. This is
referred to as the resonant case.

Example 5.6.1. (i) Find a particular solution of 2x” — x’ + 3x = 2¢. In this case
P(t) =2t and A = 0. Setting z(t) = At + B, we determine A, B such that z satis-
fies 2z” — z’ + 3z = 2t. Since 2z” — z’ + 3z = —A + 3(At + B) then z solves the
given equation whenever 34t + 3B — A = 2¢, namely 34 = 2and 3B — A = 0.
Thus we find A = § and B = g and hence z = Et + g.

(ii) Find a particular solution of x” + x = 3e*’. Here P = 3 and A = 2. Taking
z = Ae?! and substituting in the equation, we find 44e + Ae?' = 3e?!, and hence

5A = 3,namely A = }. Thus z = Je?'. "

Example 5.6.2. (i) Find a particular solution of x” — x’ = ¢ + 4. This is a reso-
nant case, because A = 0 is a root of the characteristic equation m>—m = 0.
Let us try to find a solution in the form z(¢) = ¢(At + B) = At?> + Bt. We find
z"—z' =2A—(2At+ B).Then z” —z = t + 4, provided —2At +2A— B =t + 4.
Solving, we get —24 = 1 and 2A — B = 4, yielding A = —;, B =24-4=-5
and hence z = — 1% — 51

(i) Find a particular solution of x” — x” = (¢ + 2)e’. This is also a resonant
case, because A = 1 is a root of the characteristic equation m> —m = 0. Setting
z = t(At + B)e! = (At? + Bt)e?, we find

7/ = (24t + B)e' + (At? + Bit)e' = [At? + (2A + B)t]e!
and

Z" = At + 24 + B)e' + [A1? + 24 + B)t]é’
= [At?> + (4A + B)t + 2A + B]e'.

Then z” — z/ = (¢ + 2)e’ yields
[At? + (4A+ B)t + 24+ B] — [At> + QA+ B)t] =t + 2,

whence
24t +2A+ B =t + 2.

Thus we find A = é and 24 + B = 2, whence B = 1. In conclusion, z = (; 2+
r)e'. m

We now consider the case in which f(¢t) = P(t)sinAt, or f(t) = P(t)cos At,
where P is a polynomial. We can try to find a particular solution of (5.14) by setting
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z = Q1(t)sin At + Q5 cos At, where Q1, Q> are polynomials to be determined. No-
tice that, in general, we cannot merely take z = Q sin Az, or Q cos A¢, because the
derivative of sin At is A cos A, and hence not a polynomial times sin A¢. The same
holds for cos A?.

Example 5.6.3. (i) Find a particular solution of x” 4+ x’ + x = 3sin2¢. Setting
z = Asin2t 4+ Bcos2t we find z/ = 24 cos 2t —2Bsin2¢ and z” = —4Asin2¢ —
4B cos2t. Then z” + z' + z = 3sin 2t yields

—4Asin2t —4Bcos2t +2Acos2t —2Bsin2t + Asin2t + B cos2t = 3sin2t.
Rearranging, we find
(—4A —2B 4 A)sin2t + (—4B +2A + B)cos 2t = 3sin2¢

which implies

—34—-2B =3,
2A-3B =0.
Solving, we find A = — 193 and B = — 163. Thus z = — 193 sin 2t — 163 cos 2t.

(ii) Find a particular solution of x” — x = tcost. If we set z = Q(¢)sint +
Q>(t)cost, with Q1 = At + By and Q, = Azt + B;, we find

7z = Q}sint + Qi cost + Q) cost — Qysint,
z” =2Q) cost — Qqsint —2Q) sint — Q5 cost.

Thus z” — z =t cos ¢t yields
2Q cost — Qqsint —2Q, sint — Qpcost — (Qq sint + Qpcost) =t cost.
Rearranging, we find
207 —20>]cost —[2Q1 +2Q5]sint =t cos?.
It follows that O, Q> satisfy the system

201202 =1,
20, +20, = 0.

Recalling that Q1 = Ayt + By, Q2 = Azt + B, we get

241 —2(Ast + By) = ¢,
2(A1t + By) +24, =0,

namely
—2A,t +2A1 — 2B, = t,
241t +2B; +24, =0.
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It follows that A, = —;, By = —A4, = ;, A1 = B, = 0. In conclusion, z =
;sint—;tcost. [

Next, we consider the resonant case, which arises if i A is a root of the characteris-
tic equation am? + bm + ¢ = 0. Once more we deal with a specific example. The
student can easily deduce the general procedure.

Example 5.6.4. Find a particular solution of x”” +x = ¢ cos¢. This is a resonant case.
Setting z = Qsint + Qycost, with Q; = t(A;t + B;) = A;jt> + Bit (i = 1,2)
and repeating the previous calculations we obtain

2" +z = Qfsint +20Q7 cost + Q5 cost —2Q% sint =t cost
which yields the system
0} 205 =0
201+ 05 =t

Since Q) =24, and Q] = 24;t + B; (i = 1,2) we find

241 —2(2A5t + By) =0,
2Q2A1t + By) + 245 = t.

The first equation yields A, = Oand A; = B,. The second, A} = i and B; = —A,.

Then A; = B, = i and By = A, = 0. In conclusion, z = itz sint + itcost. n

We finally mention that if f(r) = e% (Py(t)sin Bt + P(t)cosBt), a case
that includes all the previous ones, one can find a particular solution by setting
z = e*(Q1(t) sin Bt + Q1(¢) cos Bt), where Q1, Q- are polynomials to be deter-
mined. Now the resonant case is when o 4 i 8 is a root of the characteristic equation.
We do not give details because the calculations are pretty much the same as those
carried out in the preceding examples.

Remark 5.6.5. If f(t) = f1(t) + f2(¢), a particular solution can be z = z; + 25,
where z; solve ax” + bx' +cx = f;,i = 1,2. n

Remark 5.6.6. (Nonhomogeneous Euler equations) As for the homogeneous Euler
equation, the substitution ¢ = e’ transforms the nonhomogeneous Euler equation

at®>x" + btx’ 4+ cx = h(t), t >0,
into
d?x
a
ds?
which is a linear nonhomogeneous equation with constant coefficients and can be

handled either by the method of Variation of Parameters or using the method of Un-
determined Coefficients. L]

d
+h—a)®" +ex =h(e),
ds
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Example 5.6.7. Find a particular solution z(¢) of t2x” + tx’ —x =t —t,t > 0.
Setting 1 = e we get

2

d*x _ 25 K
2—x—€ —e .

ds

. 2 . .
Let us first find a solution of ‘jis;‘ — x = 2%, To this end, we let x; = Ae?S. Substi-

tuting, we obtain 44e?* — Ae** = ¢** and hence A — }, which yields x; = e,

Next, we find a solution of ‘éi;‘ — x = —e*. Now we are in the resonant case.
So, we let x, = Ase®. Substituting, we obtain Ase’ 4+ 24e* — Ase’ = —e®, which
implies that A = —; and x, = —éses.

Using Remark 5.6.5, it follows that a particular solution of ‘22; —x =e*—e%is
X1+ x2 = ;ezs — éses.

Substituting ¢ = e, namely s = In¢, we find that a particular solution of #2x” 4
ix'—x =t>—1,1t > 0,is givenby z(r) = 11> — lrInt. "

In the next subsection we discuss a remarkable example arising in applications.

5.6.1 The elastic spring

Let us consider the second order nonhomogeneous equation
" 2 :
x" 4+ w°x = sinwqt. (5.15)

As we saw in Example 5.1.1, this equation models the motion of a body attached to
a fixed point by an elastic spring, under the assumption that the body is subjected to
a sinusoidal external force f(¢) = sinw;t.

We have already seen that the general solution of the associated homogeneous
equation x” + w?x = 0 is

x(t) = ¢y sinwt + ¢ cos wt.

To find a solution of the nonhomogeneous equation it is convenient to distinguish the
cases whether w # w; or not.

(1) Case 1. Setting z(t) = asinwt, one finds z”/ = —aw? sinw;¢. Then
g 1
z" + w?z = sinw; ¢ yields

—oza)l2 sinw(f + w?asinwit = sinw 1.

Dividing through by sin w17, we get (0% — w?)a = 1. Since w? # w? we find o =
1/(w? — w?) and hence

1
z(t) = ) , sinwpt. (5.16)
w? — w;y
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x(t)

Fig. 5.5. Beats: solutions of (5.15) when w; ~ @

Thus the general solution of (5.15) is given by

x(t) = ¢y sinwt + ¢z coswt + ) , Sinwit.

w?* — i

The resulting wave is a superposition of two oscillations with frequency w; and w.
Particularly interesting is the case shown in Figure 5.5 in which the two frequencies
are very close. This phenomenon is called beat.

(2) Case ® = w1. This is the resonant case when the equation becomes
" 2 :
x" + w°x = sinwt. 5.17)

According to the calculations carried out in Example 5.6.4 (i), let us try to find
a particular solution z of the form z = f(asinwt + S coswt). We obtain z/ =
asinwt +atw cos wt + B cos wt—Ptw sinwt, and z” = 2aw cos wt —atw? sinwt —
2Bw sinwt — Btw? cos wt. Then

72" + w?z = 20w cos wt — atw? sinwt — 2Bw sinwt — Btw? cos wt
+ w?(at sinwt + Bt coswt) = 2aw cos wt — 2Pw sin wt.
From z” + w?z = sin wt, it follows that
20w cos wt — 2w sinwt = sin wt

which yields « = 0 and —28w = 1, thatis § = —1/2w and thus

1
z(t) = —_ tcoswt (5.18)
2w

is a particular solution of the nonhomogeneous equation.
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Fig. 5.6. Resonance: solution of (5.17) fort > 0

Therefore the general solution of (5.17) is given by
t
x(t) = ¢y sinwt + ¢ coswt — cos wt.
2w

The graph of the solutions is shown in Figure 5.6 and shows that the presence of
2w cos wt has the effect of producing oscillations of increasing amplitude.
Let us check this claim. To simplify the notation, we take c; = @ = l and ¢, = 0 so

t
that x(#) = sint — _ cost. The general case is quite similar and is left as an exercise.

If we let s, = 22nn we have sins, = 0 and coss, = 1 so that x(s,) = —nn

which tends to —oo. If we lett, = (2n+ 1), thensint, = 0 and cost, = —1 so that
b4

x(t,) = nw 4+ _ which tends to +oc0. This implies that liminf,;_, o x(#) = —o0

and lim sup;— 40 X(#) = 400. Moreover, by the Intermediate Value Theorem, be-
tween s, and t, there are zeros of x (¢).

5.7 Oscillatory behavior of solutions

Consider the second order linear homogeneous equation
x" () + p(t)x() = 0. (5.19)

For simplicity, we assume that p(¢) is continuous everywhere. Obviously, we can
restrict it only to the relevant interval, if we wish.

We say that a nontrivial solution x () of (5.19) is oscillatory (or it oscillates) if for
any number 7', x(¢) has infinitely many zeros in the interval (7, 00); or equivalently,
for any number 7, there exists a number £ > 7 such that x(§) = 0. We also call the
equation (5.19) oscillatory if it has an oscillatory solution.

We will see below that simple observations about the coefficient p(¢) can give
us very interesting and important information about the oscillatory behavior of the
solutions of (5.19).
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First let us consider the special case
x// + k2 ¥ =0

which is the well-known equation for harmonic oscillator. If k is a nonzero con-
stant, then the roots of the characteristic equation are given by m = +k i and hence
x1 = sink ¢ and x, = cosk ¢ are two linearly independent oscillatory solutions.

To start with, let us note that for k = 1, x; = sin ¢ is a solution of x”” +x = 0
and this solution has exactly one zero in the interval (0, 277), namely at ¢ = 7.

For k = 2, x, = sin 2¢ is a solution of x” + 4x = 0 and it has three zeros in the
interval (0, 27), one att = /2, one att = 7 and one at t = 37/2.

Based on the above observation, one would estimate that the larger the constant
k is, the faster the solutions oscillate. Actually, this happens to be a general fact that
was discovered by Jacques Charles Francois Sturm in 1836, and it has laid the foun-
dation for the theory of oscillation. We now state and prove two beautiful and simple
theorems due to Sturm.!

The first theorem below shows that the zeros of solutions are interlaced, that is,
between any two zeros of a given solution, there is a zero of any other linearly inde-
pendent solution. In the constant coefficient case, we see that this is true, since for
any k # 0, x; = sin k¢ and x, = cos k¢ have this property; then it can be verified
that all solutions have this property (see Example 5.7.5 below).

Theorem 5.7.1 (Sturm Separation Theorem). Let x1(¢) and x,(t) be two linearly
independent solutions of (5.19) and suppose a and b are two consecutive zeros of
x1(t), with a < b; that is x1(a) = x1(b) = 0 and x1(t) # 0 on (a,b). Then x,(t)
has exactly one zero in the interval (a, b).

Proof. Notice that x,(a) # 0 # x2(b), otherwise x; and x, would have a common
zero and hence their Wronskian would be 0 and they could not be linearly indepen-
dent.

Suppose, by way of contradiction, that x, () 7 0 on the open interval (a, b). Then
x2(t) # 0 on the closed interval [a, b]. Let

x1(1)
x2(t)

Then £ is differentiable on [a, b] and h(a) = h(b) = 0. Therefore by Rolle’s lemma,
there exists a number ¢, a < ¢ < b, such that #’(c) = 0. But 4’(¢) = 0 implies that

h(t) =

x2(c)xy(e) = x1(e)xz(c)
x3(c) -

This implies that x,(c)x] (c) —x1(c)x5(c) = 0, which in turn implies that the Wron-
skian of x;(¢) and x,(¢) vanishes at t = ¢, contradicting their linear independence.

0.

! Sturm, C.: Mémoire sur les équations différentielles linéaires du second order. J. Math. Pures
Appl. 1, 106-186 (1836).
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Fig. 5.7. The zeros of x1(¢) and x2 (¢)

This proves that x,(¢) vanishes in the interval (a, ). What remains to be shown is
that it cannot have more than one zero in this interval.

Suppose that there exist two numbers ?; and ¢, in the interval (@, b) such that
x2(t1) = x2(t2) = 0. Then by what we have just proved, there would exist a number
d between t; and t, such that x;(d) = 0, contradicting the fact that ¢ and b are
consecutive zeros of xq(¢). m

An immediate consequence of this theorem is

Corollary 5.7.2. If (5.19) has one oscillatory solution, then all of its solutions are
oscillatory.

Theorem 5.7.3 (Sturm Comparison Theorem). Consider the two equations

x" 4+ p(t)x =0, (5.20)
Y +4q)y =0. (5.21)

Suppose that x(t) is a nontrivial solution of (5.20) with consecutive zeros at x = a
and x = b. Assume further that p(t) and q(t) are continuous on [a, b] and p(t) <
q(t), with strict inequality holding at least at one point in the interval [a, b. If y(t)
is any nontrivial solution of (5.21) such that y(a) = 0, then there exists a number c,
a < c¢ < b, such that y(c) = 0.

Proof. Assume that the assertion of the theorem is false. First of all, we can assume,
without any loss of generality, that x(¢) > 0 on the interval (a, b), otherwise we
can replace x () by —x (¢) which is also a solution of the same equation and has the
same zeros as x(¢). Similarly we can assume that y(¢) > 0 on the interval (a, b).
Multiplying the first equation by y (), the second equation by x () and subtracting
the resulting second equation from the first equation, we obtain

yOx"(1) = x(@)y" (@) + (p(1) —q())x @)y (1) = 0.

’
Since yx” — xy” = (yx’ — xy') , if we integrate the above equation from a to b,
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we obtain

b
o' =2l = [ @@ = pe)xOyd.
a
Since x(a) = x(b) = y(a) = 0, the above equation can be written as

b
y(b)x'(b) =/ (q(t) — p()x(@)y@))dt. (5.22)

Since x(¢) > 0 to the left of b and x(b) = 0, we must have x’(b) < 0. Furthermore,
since y(¢) is continuous and y(¢) > O for ¢ to the left of b, we must have y(b) > 0.
Therefore, on the left-hand side of (5.22), we have y(b)x’(b) < 0.

Since, by assumption, ¢(f) — p(f) > 0 for some 7 in the interval [a, b] and ¢ (¢) —
p(t) is continuous, then it will stay positive on some subinterval of [a, b] containing
f.Since (q(t) — p(1))x()y() > 0in [a, b] and (q(¢) — p(t))x(t)y(¢) > 0 in some
subinterval of [a, b], it follows from the definition of the Riemann integral that

b
/ (1) — pO)x(O)y(1)d1 > 0.

We have shown that the right-hand side of (5.22) is positive and the left-hand side is
less than or equal to 0. This contradiction proves the theorem. [

Corollary 5.7.4. All solutions of (5.21) vanish between a and b.

Proof. Let z(t) be a given solution of (5.21). We have shown that x (¢) vanishes at a
and at some number ¢, a < ¢ < b. By the Sturm Separation Theorem, z (¢) has a zero
between a and ¢ and hence between a and b if z and x are linearly independent. If
they are linearly dependent, then they are constant multiples of each other and have
the same zeros. Since x(¢) has a zero in (a, b), then so does z. m

Example 5.7.5. Show that between any two zeros of cos ¢ there is a zero of 2 sin ¢ —
3cos t.

We recall that sin ¢ and cos ¢ are two linearly independent solutions of x” +x = 0.
In view of the Sturm Separation Theorem, it suffices to show that cos ¢ and (2 sin ¢ —
3 cos t) are linearly independent solutions. Evaluating their Wronskian, we have

W(cost,2sint —3cost) = 2sin®¢ + 2cos?t = 2.
Therefore the two functions are linearly independent. [

Example 5.7.6. x; = e’ and x, = (1% — 1)e?’
continuous function p(?).
This follows from the fact that ¢+ = =1 are two zeros of x, but x; has no zero

between 1 and —1, contradicting the Sturm Separation Theorem. L]

cannot be solutions of (5.19) for any
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Proposition 5.7.7. If lim;— o0 p(t) > 1, then x” + p(t)x = 0 is an oscillatory
equation.

Proof. Since lim;—, 1 p(t) > 1, we can choose a number 7" such that fort > T,
p(t) > 1. Comparing the solutions of x” + p(t)x = 0 with those of x” + x = 0,
it follows that for ¢ > T, every solution of x” + p(¢)x = 0 has a zero between any
two zeros of sin 7. The assertion follows from the fact that the zeros of sin ¢ are not
bounded above. [

Example 5.7.8. Show that

216 —2t* + 31— 1
” =0 5.23
A 643241 523)
is an oscillatory equation.
Dividing by #°, we see that

20—t 43 —1
lim =2
t—>oo (0 43241

Using the preceding Proposition, we infer that (5.23) is oscillatory. [
Theorem 5.7.3 is completed by the following proposition.

Proposition 5.7.9. If p(t) < 0, p(t) # 0, then no solution of (5.19) can have more
than one zero.

Proof. Suppose that (5.19) has a solution x; (¢) with two zeros ¢; and f,. Then con-
sider the equation y”+¢(¢)y = 0, where g(¢) = 0,sothat y” = 0. Since ¢(¢) > p(¢)
and ¢g(¢) # p(t), by the Sturm Comparison Theorem, every solution of y” = 0 has
a zero between t1 and t,. Integrating y” = 0, we see that its solutions are given by
y = at + b, a and b constants. Let y; (¢) be the solution of y” = 0 satisfying the ini-
tial condition yq(¢1) = x1(¢;) = O (this can be done either by invoking the existence
theorem or directly by choosing a and b so that aty + b = 0 ). Then by the Sturm
Comparison Theorem, y;(¢) must have a zero between ¢; and t,, which is impossible
since y1(t) = at + by, for some numbers a; and b,, and cannot have two zeros.
This contradiction proves the assertion. [

A careful examination of the above results shows that there is an obscure assump-
tion that the zeros of solutions of (5.19) are isolated, that is, in any finite interval
[, B], there can be only a finite number of them. If this were not the case, then we
would not be able to take two consecutive zeros, just as we cannot take two con-
secutive rational numbers. Recall that #; and 7, are two consecutive zeros of x (¢) if
x(t1) = x(t2) = 0and x(¢) # 0in (¢1, ;). How do we know that the interval (¢1, 75)
does not contain infinitely many zeros of x; () for any number ¢, > #,?

We now give a proof of the fact that zeros of solutions of (5.19) are isolated. The
proof can be easily followed by readers with adequate knowledge of introductory
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level Analysis. Those who do not have the proper background may skip the proof
and simply note and use this property of the zeros of solutions, when needed.

Definition 5.7.10. A number « is a limit point (or accumulation point) of a set S of
real numbers if every open interval containing o contains infinitely many points of
the set S.

The following theorem is a special case of a theorem due to Bernard Bolzano
and Karl Weierstrass, 1817. It can be found in almost all introductory level Analysis
books. We skip the proof of this theorem and ask interested readers to consult an
Analysis book.

Theorem 5.7.11 (Bolzano—Weierstrass). Every infinite bounded set of real numbers
has a limit point.

Theorem 5.7.12. Let y(t) be a nontrivial solution of (5.19) and let [a, b] be any
closed interval. Then y(t) has a finite number of zeros in [a, b].

Proof. Suppose that y () has infinitely many zeros in the interval [a, b]. Let S be
the set of zeros of y(¢) in [a, b]. Then by the Bolzano—Weierstrass Theorem, S has
a limit point 7, which, by the definition of limit points, cannot be outside the inter-
val [a, b]. By the definition of limit points, for every natural number k, the interval
(t—1/k,f+1/k) contains a point of S distinct from 7, denoted by f. It is then clear
that the sequence (#;) converges to 7 as k — oo.

By Rolle’s Lemma, in each interval (f — 1/k, 7 + 1/ k), there is a number s such
that y’(sx) = 0. This follows from the fact that the interval (f — 1/k,7 + 1/k) con-
tains infinitely many zeros of y; applying Rolle’s lemma to any two zeros of y in
this interval will give us a number s; where y’ vanishes. Again, it is clear that the
sequence (s ) converges to 7 as k — oo.

It follows from continuity of y(¢) and y’(¢) that y(tx) — y(7) and y’(sx) — y’(7).
Now, since for each k, y(tx) = y'(sx) = 0, it follows that y(7) = y’(f) = 0.

Since z(z) = 0 is also a solution of (5.19) satisfying the initial conditions z (f) =
Z/(tf) = 0, it follows from the uniqueness of solutions that y(z) = 0, contradicting
the assumption that y(¢) is nontrivial. L]

We wish to point out an important fact concerning the results in this section and
that is the fact that studying equations of the form (5.19) instead of

X"+ p)x +q®)x =0 (5.24)

is not a great disadvantage. This is because any equation of the form (5.24) can be
transformed into an equation of the form (5.19) by making the substitution

x(0) = y(yem2 /PO
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assuming that p’(¢) and ¢(¢) are continuous. Notice that x (¢) and y(¢) have the same
set of zeros. The proof is left as an exercise.

5.8 Some nonlinear second order equations

In this section we briefly deal with some special classes of nonlinear second order
equations that can be solved by a reduction of the order.

5.8.1 Equations of the type F(t,x’,x") =0

Consider the equation
F@t,x',x")=0 (5.25)

where the dependent variable x is missing.

We let z = x’ and get z/ = x”, and we find F(z, z, z’) = 0 which is a first order
equation. If z(¢) = ¢ (¢, ¢) is a family of solutions of this equation, then integrating
x' =z = ¢(t,c) we find

x(t) = /d)(t,c)dt +c

which is a solution of F(¢,x’,x”) = 0, forall ¢’ € R.

Example 5.8.1. Solve the initial value problem x” = 2¢x’, x(0) = 0,x'(0) = 1.
The equation x” = 2tx’ is of the form (5.25). Setting z = x’ we reduce the prob-
lem to the first order separable equation z’ = 2¢z. Then z(f) = ¢ e’ Fort = 0
from x’(0) = z(0) = 1 it follows that 1 = ¢. Since x’ = z we find x'(¢) = et
Integrating, we find x(¢) = 0’ e’ dt which takes into account the initial condition
x(0) =0. ]

5.8.2 Equations of the type F(x,x',x") =0

Consider the equation
F(x,x',x"y=0 (5.26)

where the independent variable 7 is missing.
As in Example 5.1.6, we let z = x’. But now we use the Chain Rule, obtaining

y, _dx' dz dzdx  dz (5.27)
YT a Tar Taxdr T Cax '

Substituting in Equation (5.26), we obtain the first order equation

dz
F(x,z,z )=0. (5.28)
dx
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Letz = ¢(x, ¢1) be a family of solutions of (5.28), depending on a constant ¢y . Then

from z = x’ we infer
dx
dr = o(x,c1)

which is a separable equation that can be integrated. Assuming that ¢ (x, c;) never
vanishes we obtain solutions of (5.26) in the form

dx r+ eR
= Ca, (&) .
¢ (x,c1)
An important class of equations that can be solved using the preceding method is
x"” = f(x). In this case we find the separable equation z l‘ffc = f(x) that can be in-

tegrated. Equations like x” = f(x) will be discussed more extensively in Chapter 8.

Example 5.8.2. Solve x” = 2xx’, x(0) = 0, x’(0) = 1. The equation x” = 2xx’

is of the form (5.26). We let z = x’ and then using the Chain Rule, we have x” =
z dz dx dz

dt = dy di = z dx’ Now we have reduced the problem to solving the first order
equation
dz )
z =2xz.
dx

One solution is z = 0, but it does not satisfy the initial condition z(0) = 1. Dividing
by z, we find Z}Zc = 2x, hence z(x) = x2 + ¢;. For x = 0 we have z(0) = 1 and
hence ¢; = 1. The problem becomes x’ = x? + 1 with x(0) = 0. Integrating we

find
[ x4
= ¢
x2 41 2

namely arctanx = ¢ + c,. The initial condition x(0) = 0 yields ¢; = 0. Thus
arctan x = ¢ and finally x(7) = tant, [t| < 7. ]

5.8.3 Equations of the form F(t,x,x’,x"”) = 0 with
F homogenous

Consider the equation
F(t,x,x',x")=0 (5.29)

where F is a homogeneous function of degree k with respect to x, x’, x”, namely
F(t,Ax,Ax",Ax") = AKF(t,x,x', x"), for all A € R for which A¥ makes sense.

The homogeneity of F suggests to try to find solutions such that x’ = xz. Setting
x'(t) = x(¢)z(¢t) wefind x” = zx’+xz' = xz2+xz" and hence F(t,x,x',x") =0
yields F(t, x,xz,xz? + xz') = 0. Using the homogeneity of F one finds

F(t,x,xz,xz2 + xz') = x*F(t,z,2% + 2),
yielding the first order equation

F(t,z,z>+z') =0.
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For example, if the given equation is x” = f(¢,x,x’) and f is homogeneous of
degree 1 with respect to x, x’, we find z2 + z' = f(t,z).

If ¢(t,c1), c1 € R, is a family of solutions of F(t,z,z? + z') = 0, then x'(¢) =
x(1)@ (2, c1) yields x (1) = ¢ e?@1) ¢, € R. To this two parameter family of solu-
tions we have to add the trivial solution x(¢) = 0.

If we want to solve the initial value problem

F(t,x,x',x") =0, x(to) = x0 #0, x'(t9) = x1,

then from x(¢) = x'(¢)z(¢t) we infer x; = x¢z (o) that is z(fyp) = x1/x¢. So we
have to solve the ivp F(t,z,2z%2 +z') = 0, z(ty) = x1/Xo.

Example 5.8.3. Solve
xx" —x?=2tx? =0, x(0)=1, x'(0)=0.

Here F(t,x,x’, x") = xx" — x> — 2tx? is homogeneous of degree 2. Setting x’ =
xz we find x” = xz2 + xz’. Hence

x(xz2 4+ xz2) —x2z2 = 2tx%2 =0
and canceling x2z2, we get x2z’ — 2tx? = 0, namely
x2(z' =2t) = 0.

Notice that in the present case, the trivial solution x (¢) = 0 does not satisfy the initial
condition x(0) = 1. The general integral of the first order equation z’ — 2t = 0 is
z = ¢(t,c;) = t? + ;. Fort = 0, one has z(0) = x’(0) = 0 and hence c; = 0.
Then z(¢) = t? and x’ = xz yields the separable equation

1.3
x'=1%x — x(t) =cre3’.

Using the initial condition x(0) = 1, we obtain ¢; = 1. Thus
x(t) = et
is the solution we were seeking. L]
For second order equations one can consider problems like
x" = f(t,x,x"), x(a)=«a, x(b)=084,

that are called boundary value problems because we require that the solution assumes
some given values for ¢ at the boundary of the interval [a, b].

One can also take the interval to be all the real line and seek for solutions that
have a prescribed limit as # — =o00. Problems of this kind related to the equation
x" = f(x) will be discussed in Chapters 8 and 13.
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5.9 Exercises

A. Linear independence and Wronskian

Al.
A2.

A3.

A4.

AS.

A6.

AT.

AS8.

AO9.

Al0.

All.

Show that x; = ¢3 — ¢? and ¢3 — 3t are linearly independent.

Consider the functions f(t) = sint and g(t) = t2.

a) Using the definition of linear independence, explain why they are linearly
independent.

b) Using a Wronskian argument, explain why they are linearly independent.

¢) Explain why they cannot be solutions of a differential equation x” +
p(t)x’ 4+ q(t)x = 0, where p and q are continuous functions.

Show that if x; and x; are linearly independent, then so are their linear com-
binations z; = 2x7 + 3x, and z, = 2x; — 3x5.

a) Prove that if the Wronskian of two differentiable functions f(¢) and g(¢),
not necessarily solutions of differential equations, is nonzero at one point
of an interval 7, then they are linearly independent.

b) Prove that if they are linearly dependent, then their Wronskian is identi-
cally equal to 0.

Show that x; = tan? and x, = sint are linearly independent on the interval
(0, 7).

Solve the initial value problem

Wt +1, f(1) =1, f(0)=1.

Show that if x1(¢) and x,(¢) are two linearly independent functions, and z (¢)
is a function such that z(¢) > 0 on /, then zx; and zx, are also linearly inde-
pendent on /.

Give an example to show that the following statement is false: if two func-
tions f1 and f, are linearly independent in an interval 7, then they are also
independent in any subinterval J of I.

Show that if x; and x, are linearly dependent on an interval /, then they are
linearly dependent in any subinterval J of .

Show that if two solutions of a second order homogeneous differential equa-
tion with continuous coefficients on / have a common zero then all their zeros
are in common.

Let x; and x; be two solutions of x” + 7 + ¢(t)x = 0, t > 0, where ¢(¢) is
a continuous function. Given that W(6) = 7, find W(7).

B. Homogeneous equations with constant coefficients

Solve each of the following:

B1.

2x" +x'—x=0.



B2.
B3.
B4.
BS.
B6.
B7.
BS.

BY.

B10.

B11.

B12.

B13.
B14.

B15.

B16.

B17.

B18.

B19.

B20.

B21.

B22.
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x" 4+2x"+2x =0.

x"+8x+16=0.

x4+ 2x"—15x =0, x(0) =1, x'(0) = 1.
x"=3x"4+2x =0, x(1) =0, x'(1) = 1.
4x" +2x" = —5x, x(0) =0, x'(0) = 1.
x"—6x"4+9x =0, x(0) =0, x'(0) = 1.

Show that for 8 > 0, x” + x’ — Bx = 0 will always have some solutions that
do not approach 0 as t — +o0.

For which values of 8 will all solutions of
xX"4+x —=Bx=0

goto 0 as ¢ goes to 0co?
Show that all the solutions of x” + 4x’ + kx = 0 goto 0 as t — +oo if and
only if £ > 0.

Show that the equation x” + bx’ + ¢cx = 0, x(0) = 0, has infinitely many
solutions and none of them, except the trivial solution, can have a maximum
or a minimum point on the t-axis.

Find a second order linear homogeneous equation whose corresponding char-
acteristic equation has m = 3 — 7i as one of its roots.

Show that any solution of x” + 5x’ 4+ 6x = 0 tends to zero as t — +o0.

Show that if p > 0 then any solution of x” 4+ px’ = 0 tends to a constant as
t — 400, while if p < 0 only one solution tends to a constant.

Find a such that the solution of x” 4+ x’ —2x = 0, x(0) = a, x’(0) = 1 tends
to zero as t — +00.

Show that all solutions of x” — 2x” 4+ 2x = 0 are bounded on (—o0, 0], and
unbounded on as [0, 00).

Find conditions on a, b such that the solutions of x”" — 2ax’ + bx = 0 are
oscillating functions.

Find A # 0 such that the boundary value problem x” + A2x = 0, x(0) =
x () = 0, has nontrivial solutions.

Find a # b such that the boundary value problem x” +x = 0, x(a) = x(b) =
0, has nontrivial solutions.

Show that the boundary value problem x” — x = 0, x(0) = x(1) = 0, has
only the trivial solution.

Show that the problem x” + x’ — 2x = 0, x(0) = 0, lim;— 400 x(¢) = 0 has
only the trivial solution x(¢) = 0.

Solve x” —2x" 4+ 5x = 0,x(0) = 1, x(w/4) = 0.
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B23. Find 6 such that x”” —2x’ + 5x = 0, x(0) = 0, x’(#) = 0, has only the trivial
solution.

B24. Solve x” 4+ 2x" = 0, x(0) = 0, lim;— 4o, x(¢) = a.

C. Nonhomogeneous equations with constant coefficients
Cl. Solve (i) x” —4x =t, and (i) x” — 4x = t%¢’.

C2. Solve (i) x” — x = €?! and (ii) x”" — x = te?’.

C3. Solve x” —x' =1t.

C4. Solve x"”" —3x" —x =% + 1.

C5. Solve (i) x” + x = sin2¢ and (ii) x” + x = ¢ sin 2¢.
C6. Solve x” 4+ x = —cos 3t.

C7. Solve x” 4+ x = sin2¢ — cos 3.

C8. Solve x” 4 2x = cos v/21.

C9. Solve x” 4+ 4x = sin2¢.

C10. Solve x” + x = asint + B cost.

C11. Solve x” + 9x = sint + sin 3z.

C12. Solve the boundary value problem x” — x = ¢, x(0) = x(1) = 0.

C13. Find k such that the solution of x” + 4x’ — x = k, x(0) = 0, x’(0) = 0 tends
to —oco as t — +o0.

C14. Show thatif A # 0 and A(¢) > O then any (possible) nontrivial solution of the
boundary value problem x” — A%2x = h(t), x(a) = x(b) = 0, has to change
sign in (a, b).

C15. Show that for all @ # 0 the boundary value problem x” — 2x = 2¢?, x(0) =
x(a) = 0, has a unique solution.

D. Miscellanea

DI1. Show that
, P+l
X =
t*+5
is an oscillatory equation.
D2. Which one of the following two equations has solutions that oscillate more
rapidly?
X+ V6435 +1x =0,

X"+ 23x = 0.

D3. Explain why no nontrivial solution of (5.19) can vanish at each of the numbers
0,1,1/2,1/3,...1/n....



D4.

Ds.

Dé6.

D7.

DS.

Do.

D10.

DI11.
D12.
D13.
D14.

D15.
Dl6.
D17.
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Consider the boundary value problem

x" = p)x =q(1). x(a)=x(b)=0.
Show that if p(¢) and ¢(¢) are continuous, with g (¢) > 0, on the interval [a, b],
then there is a unique solution of this boundary value problem.

Show that, assuming that p’(¢) and ¢(¢) are continuous, the substitution
x(1) = y(rye™2 /PO
transforms the equation
X"+ p)x" +qt)x =0

into the form (5.19).

Determine the oscillation of
xX'+x 4+x=0

in two ways.
(a) by transforming it to the form x” + p(¢t)x = 0,
(b) by solving the equation explicitly.

Determine the oscillation of

1
U =0.
X 4x+x

Letu” + p1(t)u = 0 and v” + po(r)v = 0, with v(¢) # 01in [a, b].
(a) Prove the Picone Identity
/ 2
(: w'v — uv’)) = (p2 — pu* + (u/ - v/z> .
b) Use this to prove the Sturm comparison theorem.
Let u” + p1(t)u = 0and v” + po(¢t)v = 0 with po(¢) > p1(¢) in (a,b).
Suppose that u(a) = v(a) = 0, u’(a) = v'(a) = a > 0. Show that there
exists € > 0 such that v(¢) > u(¢) in (a,a + €).
!
Solve the initial value problem x” = ); ,x(1)=0,x'(1) = 1.
Solve x” = 2x'(x — 1), x(0) = 0, x’(0) = 1.
Solve x” = 2x"3x.
Solve xx” —2x"? — x2 = 0.
Solve (a) xx"” —x"? +e*x? =0, x(0) = 1, x’(0) = —1, and (b) xx”" — x> +
e'x?2 =0,x(0) = -1, x'(0) = —1.
Solve the Euler equation #2x” —2x = 0, t > 0.
Solve t2x” + atx’ + x = 0,¢ > 0.
Solve t2x" —tx' =3x =0, x(1) =0, x’(1) = 1, > 0.
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D18. Solve the nonhomogeneous Euler equation ¢2x” + tx’ + x = ¢, t > 0.

D19. Solve 12x” + 3tx’ — 3x = 12, t>0.
D20. Show that a solution of x” — tx’ 4+ 3x = 0 is a polynomial P of degree 3.
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Higher order linear equations

6.1 Existence and uniqueness

Almost everything we learned in Chapter 5 about second order equations can be eas-
ily seen to be true for the corresponding higher order equations. Therefore, in order
to avoid unnecessary repetition, here, for the most part, we simply state the more
general results and give examples. In a few cases, when the generalizations are not
so obvious, we will provide the explanations and proofs.

First we state the existence and uniqueness theorem, which follows from Theo-
rems 4.2.2 and 4.2.3 in Chapter 4.

Theorem 6.1.1. Consider the equation

Po)x M) + pr(O)x" V(@) + ...+ pa()x(t) = f(2), (6.1)

where the coefficient functions p;(t), 0 <i < n, and f(t) are continuous on a given
interval I C R, with po(t) # 0. Then for any number ty in I, there exists a unique
solution x (t) of (6.1) satisfying the initial conditions

x(to) = a1, X (o) = oz, ..., x" V(tg) = ap,

where «j, 1 < i < n are any real numbers. Furthermore, this solution exists for all
tinl.

In equation (6.1), we normally take the leading coefficient py(¢) to be equal to
one, which is the same as dividing the equation by pg(¢). The above theorem treats
the most general linear nonhomogeneous equation. If we take f(¢) = 0, we have the
existence and uniqueness theorem for the most general linear homogeneous equation.

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT - La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_6, © Springer International Publishing Switzerland 2014
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6.2 Linear independence and Wronskian

Similar to the case for second order equations, functions fi, f2, ..., f, are said to be
linearly independent on an interval [ if for any n constants ¢y, ca, ..., ¢y, c1 f1(t) +
crfot) + ...+ cnfu(t) = 0,¢in I, implies thatc; = ¢ = ... = ¢4, = 0.

Functions that are not linearly independent are said to be linearly dependent, i.e. they
are linearly dependent if there exist constants ¢;, | < i < n, not all 0, such that
c1f1(t) + 2 fat) + ...+ cnfu(t) =0.

We recall that linear dependence had an easy and very useful characterization in
the second order case, that is two functions are linearly dependent if and only if one
of them is a constant multiple of the other. For higher order equations, an analogous
statement would be that n functions are linearly dependent if and only if any one of
them is a linear combination of the others, which is not as useful as in the second
order case. However, it is useful to know that if any subset of two or more of a given
set of n functions are linearly dependent, then all n of them are linearly dependent.
The converse is, of course, false.

Example 6.2.1. The functions f(¢) = sin#, f>(t) = cost, f3(t) = €', f4(1)

= +/2sint are linearly dependent since f; and f4 are linearly dependent. We note
that since (—+/2) -sint + (1) - +/2sin¢ = 0, we can write (—+/2) -sint 4 (0) -cos t +
(0) - ¢! 4+ (1) - +/2sint = 0, which satisfies the definition of linear dependence of
fl,fz,f3,f4withcl =—«/2,C‘2=0.C3 =0,c4 = 1. ]

We now extend the notion of the Wronskian to n functions and write

S1(0) L@) - fa(D)
Si@) L) - f1@)
WS, faseoos f)(0) = :
AP0 70 - AP
Theorem 6.2.2 (Abel’s Theorem). If x1, X2, ..., X, are solutions of
XM + pr@O)x"V@O) + .+ pa(Dx(t) =0 (6.2)
on some interval I, where the coefficients p;, 1 <i < n, are continuous, then

W(xl»XZ, e ,xn)([) = Ceffpl(t)dt'

As a consequence, W(x1,X3,...,Xy)(t) is either identically zero or it never van-
ishes.

We give the proof for n = 3. The proof for higher order equations is identical but
cumbersome.
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Proof. Using the formula for the derivative of a determinant and the fact that x}” =
—p1X] — pax] — pax;, i = 1,2,3, we have

X1 X2 X3 Xy Xy X4 X1 X2 X3 X1 X2 X3
W= g5 5 5= 5 ot st o o) =
X1 Xy X3 X Xy X3 X1 Xy X3 X Xy X3
X1 X2 X3
= X 4 5

1 i 1 U 1 !
—P1X] — p2Xy) — P3X1 —P1X, — P2Xy — P3X2 —P1X3 — P2X3 — P3X3

Now, if we multiply the first row in the last determinant by p3; and add it to the
third row and then multiply the second row by p, and add it to the third row, we
obtain

X1 X2 X3
W'i)=| x| x) xy | =—p1(O)W(t).
—Plxlf —Plxé' —Plxg
This shows that W’ + p(t)W = 0. Solving this linear first order equation for W,
the assertion of the theorem follows. L]

We now summarize some obvious generalizations of the second order equations.

1. Any linear combination x(¢) = c1x1(¢) + c2x2(¢) + ... 4+ ¢n X, (¢) of solutions
X1, X2, ...Xp of (6.1) is also a solution.

2. The Wronskian of solutions of (6.2) is either always zero or it is never zero in the
interval where the solutions are defined.

3. If the Wronskian of arbitrary functions fi, fa,..., f is different from zero at one
point of an interval where it is defined, then the functions are linearly independent
on that interval. The contrapositive statement would be that if they are linearly
dependent, then their Wronskian is identically equal to zero.

4. If xq,x3, ..., X, are solutions of (6.2), then they are linearly independent if and
only if their Wronskian is different from zero.

5. If x1, x2, ..., x, are solutions of (6.2), whose Wronskian is different from zero,
then they are a fundamental set of solutions, that is,

X =C1X1 +CaXp 4+ ...+ CpXp

is the general solution of (6.2).

6.3 Constant coefficients

Consider
H(x)=x" 4+a;x" V4 +a,x (6.3)

where a;, 1 < i < n, are constant real numbers. As in the case of second order
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equations, in order to solve

x® 4 a x4 4a,x=0 (6.4)

we substitute x = ™’

auxiliary) equation

in the equation, which gives rise to the characteristic (or

C(m):mn+a1mn_l++an =0. (65)

The biggest difference between the second order equations with constant coefficients
and the more general equations is that for the second order, we could always solve the
characteristic equation by the Quadratic Formula, whereas for the more general case
there is no method by which we can explicitly solve the above characteristic equation.
Nevertheless, reducing the original differential equation to an algebraic equation is
still simpler to deal with and has important theoretical implications.

The following is a summary of the extensions. We give proofs when the extensions
do not follow from arguments similar to those given in the second order case.

Theorem 6.3.1. (i) Let my,my,...,m, be the distinct roots of the characteristic
equation corresponding to (6.3), and let q; represent the multiplicity of m;. Then
tke™it is g solution fork = 1,...,q; — 1.

(ii) The solutions thkemit k =0,1,.. qi —1; 0 =1,2,...,r are linearly in-
dependent.

We prove this theorem for n = 3.

Suppose that the characteristic equation m3 4+ a1m? + a;m + a3z = 0 has distinct
roots my, mo, ms.

First of all, it is easy to check the fact that e™!?, ™2, ¢™3! are solutions of
the given differential equation. To show that they are linearly independent, we sup-
pose, by contradiction, that there exist constants ¢y, ¢z, ¢3, not all zero, such that
c1e™ 4 cre™2t 4 ¢3e™3! = (). Suppose, without loss of generality, ¢3 # 0. Then
multiplying both sides of the equation by e ™1, we obtain ¢; + coe™27mD! 4
c3em3~mt — (), Taking the derivative of both sides and multiplying by e™!?, we
get ca(my — my)e™2! + c3(ms — my)e™3" = 0. We multiply both sides by ™2,
obtaining cp(my — my) + c3(msz — ml)e(’"3_m2)’ = 0. Taking the derivative again
and multiplying both sides by e™2!, we have c¢3(m3z —m1)(m3z —m5)e™3! = 0. Since
my, my, ms are all distinct, i.e. not equal to each other, we must have c3 = 0, which
is a contradiction.

An alternate proof of linear independence consists of using Abel’s theorem. Let
W(r) be the Wronskian of e™17, ¢™2!  ¢™3! QOne has

emll‘ emzl‘ ei'n3l‘
mit mot m3st
W(t) = [mie™"" mpe™> msze™3|

m3e™! mle™2! mie™s!
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For t = 0 one has
1 1 1
W) = |m1 my msz|,

Multiplying the first row by —m; and adding it to the second row, and multiplying
the first row by —m% and adding it to the third row one obtains W(0) = (m3; —
my)(ms3 —my)(ma —my). Since m; # m; if i # j, then W(0) # 0 proving that
et M2t M3l gre linearly independent.

Next, suppose that one of the roots is a simple root and one of them is a double
root. Without loss of generality, assume that m2; is a simple root and m is a double
root. To show that the corresponding solutions e™1!, e™2! te™2! are linearly inde-
pendent, we show that their Wronskian at # = 0 is nonzero.

em]t emzt temzt
W(t) = |mie™" mae™’ et 4 tm,e™m2!
mie™t mie™2! 2mye™2! + tm3e™2!
and hence

1 1 0
W(O) = mp mp 1 =

2 2
mi m5 2mj

nop 1
my 271’12

nmi 1
m? 2m
1 2

2 2 2 2 2 2
=2m5 —m5 —2mmy + my] = m5 —2mymy + mi = (my —my)~ # 0.

Finally, suppose that the characteristic equation has one triple root m, i.e. (m —
m1)3 = 0 is the characteristic equation. Again, we show that the Wronskian of the
corresponding solutions e™?, te™! t2¢™! is nonzero at t = 0:

emt temt t2emt

W(t) = | me™ e + mte™ mt2e™ 4 2te™!
mZe™  mZte™ 4+ 2me™ m2t2e™ + dmte™ + 2™

’

0
1

N oo
Il
[\

1
WO)=|m
m?2 2m

Example 6.3.2. Given that 1, 2,54 6i, 54 6i are the roots of the characteristic equa-
tion, the general solution of the corresponding differential equation can be determined
tobe x = cre’ +cae?t +c3e> sin 6t +cae’ cos 6t +cste sin 6t +cgte cos6¢. m

Example 6.3.3. Find the general solution of the differential equation
x"+4x =0

which has application to the vibrating rod problem.
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In order to solve this equation, we need to find all the roots of the characteristic
equation m* + 4 = 0, which is equivalent to finding the fourth roots of the number
—4. For this we use de Moivre’s formula.

(—4)1/4 = «/2(—1)1/4 =2 [cos(mw + 2nm) + i sin(zw + 2n71)]1/4 =

n nw
\/2[005(2 + ;) —I—isin(z + ) )]

Lettingn = 0,1, 2,3, we obtain the roots m = 1 +i, -1 4+i, =1 —i, 1 —1.

Therefore, the general solution of the differential equation x"” + 4x = 0is x(¢) =

e'(cysint + cpcost) + e (c3sint + cqcost). "

6.4 Nonhomogeneous equations

The following theorem shows that, as with the second order equations, in order to
find the general solution of the nonhomogeneous equation (6.1), we need the general
solution of the homogeneous equation (6.2) and one solution of the nonhomogeneous
equation. The proof is similar to the case for the second order equations.

Theorem 6.4.1. If y = c1x1 4+ c2X3 + ... + cpXy is the general solution of the ho-
mogeneous equation (6.2) and x,, is any solution of the nonhomogeneous equation
(6.1), then x =y + x,, is the general solution of (6.1).

As in the second order case, we may use the method of Variation of Parameters or
Undetermined Coefficients to find a particular solution of the nonhomogeneous equa-
tion. These methods are straightforward generalizations of the second order equa-
tions.

Method of Variation of Parameters. In using the method of Variation of Parame-
ters, given that x;, x5, ..., x, are linearly independent solutions of (6.2), one finds
functions vy, v2, ..., v, such that x, = vix1 + v2X2 + ... + v, X, is a solution of
(6.1). This is accomplished by solving the system of equations Zizrl'_l v; yt.(l_l) =0

and v x"D oD 4 Y = £,

Now we give an illustrative example of each method.

Example 6.4.2. Use the method of Variation of Parameters to find the general solu-
tion of

X" —x" 4 x —x =é.

First we find the general solution of the homogeneous equation

x///_x//+xl_x:()'

In order to do so, we find the roots of the characteristic equation m3—m2+m—1=0.
This equation can be factored as (m— H(m2+1) =0, yielding the rootsm = 1,1, —i;
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which in turn gives us the general solution of the homogeneous equation to be y(¢) =
c1e’ + cysint + c3cost.

In order to find a particular solution of the nonhomogeneous equation, we set x, =
vie’ + vy sinf +v3 cos t and require that the functions vy, v,, v3 satisfy the following
equations:

e’ v} + (sint) vj + (cost) vy = 0,

e' v} + (cost) vy — (sint) vy = 0,

e’ v} — (sin7) vy — (cost) vy = €.
Solving for v}, v}, v}, we obtain vj = J, v, = —J(e'sint + e’ cost), vy =
—1(e' cost — e’ sint). Integrating, we have

1 11 1 1
vy = 2t, v =, |:2e’(sint —cost) + 2e’(sint + cost)] = _Ze’ sin ¢

171 1 1
vy =, [2et(sint + cost) — 2et(sint —cost)i| = —zet cos .

Consequently,
1 1 1 1 1 1
xp= te' — e'sin’t — _e'cos’t = _te' — e’ = _e'(t—1).
2 2 2 2 2 2

and the general solution of the given nonhomogeneous equation is x(f) = cie’ +
casint + czcost + el (1 —1). "

Method of Undetermined Coefficients. Recall that this method depends on making
a good guess and can be much simpler, when it works.

At first glance, it seems reasonable to try x, = ae’ and determine a so that x,
satisfies the equation x” — x” + x’ — x = e’. But when we substitute, we get 0
on the left side. This is because ae’ is a solution of the corresponding homogeneous
equation. So, we try x, = ate’. Then setting x, — x) + x,, — x,, = e’, we obtain

1.,
Jle.

2ae’ = e', which gives a = é Thus x, =
Remark 6.4.3. Notice that the answer we got by the second method is not the same as
the one we got by using the first method. This should not be surprising since we were
only asking for solutions without specifying any initial values. There are infinitely
many solutions of the nonhomogeneous equation because each initial value problem
has a unique solution.

Also, if we think about it, the solution we got by using the first method can be
reduced to the one we got by using the second method. This is because ée’ t—1) =
yte' — e’ and hence x(t) = cre’ + cpsint + czcost + Se'(t — 1) becomes
x(t) = (c1 — y)e' + casint + c3cost + Je'. Calling ¢} = ¢ — }, we find x(¢) =
ciet+czsint+c3cosl+;e’. n
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Example 6.4.4 (The Euler-Bernoulli beam equation). As an important problem
where higher order equations arise, we discuss the Euler—Bernoulli theory of the
(static) bending of an elastic uniform beam. According to this theory, the cross sec-
tions of the beam under deflection remain plane and normal to the deflected centroid
axis of the beam. Experience shows that this assumption is realistic at least for small
deflections. The internal forces acting on each cross section keep attached the two
parts in which the section divides the beam.

One finds that the deflection of the beam z = z(x) satisfies the 4th order equation

a (EI dzz) = f(0),

dx? dx?
where E is the elastic Young’s modulus of the beam, / is the second moment of area,
f(x) is the distributed load. Note that here x is the independent variable and z the
dependent one. If both £ and f(x) = y are constant, we find
d*z
EIl =.
dxt Y
The characteristic equation is m* = 0 whose root is m = 0, with multiplicity 4. Thus
the general solution is z(x) = ¢y 4+ c2x + c3x2 4+ c4x3 + zp where z,, (x) is a partic-
ular solution of the equation. It is easy to check that we can take z,(x) = , 4’;5 I x*.

Then
14 4

_ 2 3
z(x) =c1 + cax + c3x° + cqx” + SAE] x”.

6.1)

If we prescribe the deflection of the beam and its slope at the endpoint x = 0 to be
zero, we have to impose the conditions

z(0)=z'(0) =0

Fig. 6.1. The elastic beam
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which yield ¢; = ¢, = 0 and hence

4 4

_ 2 3
z(x) = c3x” + cax” + SAE] x*.

6.5 Exercises

AN U i

~

10.

11.

12.
13.
14.
15.

16.

17.

18.
19.
20.
21.

Find the general solution of 2x”" = 0.

Find the general solution of x”" — x" = 0.

Find the general solution of x”” + 5x” — 6x = 0.

Find the general solution of x”” — 4x” + x" — 4x = 0.
Find the general solution of x”’ — 3x” + 4x = 0.

Find the solution to the initial value problem x” + 4x" = 0, x(0) = 1, x’(0) =
—1,x"(0) = 2.

Find the solution of x"”

— x’ = 0 satisfying x(0) = 1 and lim;—, 400 x(¢) = 0.
Find the solution of x”" — 3x” = 0, x(0) = 0, x’(0) = 0, x”(0) = 1.
Solve the initial value problem

x" +x"=2x=0, x(0) =0, x'(0) =0, x"(0) =1.
Show that there exists a solution of x”” + ax” + bx" + ¢x = 0 such that
lim;— 400 X(t) = 0, provided ¢ > 0.

Show that for 0 < k < 2 the equation x”” — 3x’ + kx = 0 has a unique solution
such that x(0) = 1 and lim;— 4o, x = 0.

Find the general solution of x”” — 6x” + 5x = 0.
Find the solutions of x””” —x = 0, x(0) = 1, x’(0) = x”(0) = x"’(0) = 0.
Find the solutions of x””" — x” = 0, x(0) = 1, x”(0) = 0.

Find the solution x(¢) of x”” — 4x” + x = 0 such that lim;_, o x(¢) = 0 and
x(0) =0, x'(0) = 1.

Show that the only solution of x”” — 8x"" 4+ 23x” — 28x’ + 12x = 0, such that
lim;— 400 X(t) = 0, is the trivial solution x(¢) = 0.

Show that x”” + 2x” — 4x = 0 has one periodic solution such that x(0) =
1, x'(0) = 1.

Find the general solution of x® — x" = 0.

m_ ' _x = 0.

Find the general solution of x® + x
Show that x® + x = 0 has at least one solution such that lim;_, ; o0 x (f) = 0.

Find the general solution of x(® — x” = 0.
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22. Find the general solution of x(® — 64x = 0.

23. Find the general solution of x"” + 3x”" + 2x" = ¢’
(a) by the method of Variation of Parameters,
(b) by the method of Undetermined Coefficients.

24. Find the general solution of x”" + 4x’ = sec2¢.
25. Solve x"" —x" = 1.

26. Solve x"”" — x’ =t, x(0) = x’(0) = x”(0) = 0.
27. Solve x + x"" =t, x(0) = x’(0) = x”"(0) = 0.
28. Explain whether the functions

5, t, t2, t3, sint, 3 —t2, cost, e', e’

are linearly dependent or independent.

29. Explain why x(¢) = sin#> cannot be a solution of a fourth order linear homoge-
neous equation with continuous coefficients.

30. Evaluate W(z, t2, t3, sint, cost, t*, e, e7*, t* —12).

31. Consider x"”" — 3x"" 4+ 2x’ — 5x = 0. If x;, x3, x3, x4 are solutions and
W(x1, x2, x3, x4)(0) = 5, find W(xy, x2, x3, X4)(6).

32. Explain why ¢, sin ¢, ¢ cannot be solutions of a third order homogeneous equa-
tion with continuous coefficients.

33. Solve £3x” +412x" + 3tx’ +x =0, ¢ > 0.

34. Show that if xq (¢) satisfies the equation x” + py (£)x” + p2(£)x’ + p3(t)x = 0,
then the substitution x = vx reduces the order of the equation from 3 to 2.
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Systems of first order equations

7.1 Preliminaries: A brief review of linear algebra
In this preliminary section we recall some facts from Linear Algebra, mainly con-
cerning matrices and vectors. We limit ourselves to discuss only the topics that will

be used in this book. For more details and further developments we refer to any book
on Linear Algebra, such as the one by H. Anton and C. Rorres (see references).

7.1.1 Basic properties of matrices

A matrix (a;j),1 <i <n, 1 < j <m,is arectangular array displayed as

air diz 0 dim
dzy dzx -+ d2m
an1 An2 *** dnm

where the real number a;; (we consider here only matrices with real entries) is the
element belonging to the i ¢/ row and j ¢th column. Such a matrix is said to be n x m,
where 7 refers to the number of rows and m refers to the number of columns. Anrn x 1
matrix is called a column vector while a 1 x n matrix is called a row vector . We shall
be mostly interested in n x n matrices, called square matrices, and column vectors,
simply referred to as vectors.

We use capital letters to represent matrices and small letter with bars on top, such
as v, to represent vectors. When it is clear from the context, we will simply use O to
represent matrices all of whose elements are 0.

Addition and subtraction of square matrices are performed element-wise. For ex-

ample,
1 2 n -5 6\ (-4 8
-3 4 7 8) 7 \4 12)°
S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.

UNITEXT - La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_7, © Springer International Publishing Switzerland 2014
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If A = (a;;) and B = (b;;) are two n x n matrices, then their product is defined as
AB = C, where C = (c;;) is the matrix such that

Cij = Zaihbhj i.e. Cij = ailblj +a,~2b2j —+ ... —i—ainbnj.
h

For example

1 0 1 -1 0 1 0o -2 1
-2 1 3 -2 0 =3]=3 -6 -5
1 2 3 1 -2 0 -2 -6 =5

We note that the product of an n x n matrix and an n-dimensional vector is an n-
dimensional vector. For example

-1 21 1 6
0 1 3)(2)1=1|1
-1 0 3/ \3 8

It follows from the definition that multiplication of matrices is associative, that is
A(BC) = (AB)C.

However, unlike multiplication of numbers, multiplication of matrices is not commu-
tative, that is, AB is not necessarily equal to BA, as shown by the following simple
example.

b= )E )6 0)-GF)

For any natural number n, the n X n matrix

]n:[: ,
00 - 1

whose diagonal elements are 1 and the rest are 0, is called the identity matrix. It can
easily be checked that for any n x n matrix A, Al = IA = A.

7.1.2 Determinants

We define the determinants of square 7 X n matrices by induction as follows:

If n = 1, thatis A = (a) consists of one element, the determinant is defined as
det A =a.

Assuming to have defined the determinant of an (n — 1) x (n — 1) matrix, we define
det A of an n x n matrix A as follows:

1. Choose any entry ag; of A and consider the matrix Ag; obtained by eliminating
the row and the column to which ag; belongs (that is, the k-th row and /-th column).
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The determinant of Ay, called the minor of ag;, is defined by induction hypothesis
sinceitisn — 1 xn —1.

Setting Cx; = (—1)k ! der Ag; (C; is called the cofactor of ag;), we define

det A = Z agiCrr.

1<i<n

For example, if we choose the elements ay; along the second row, then det A =
a21C21 +a22C + a23Ca3 + ... + a2, Can.
Let us indicate the calculation for n = 2, 3. The determinant of a 2 x 2 matrix is

a a
det A= """ "2 = g1 a2 — arzan;,
dz1 dzz
because the cofactor of ay; is det(a,,) and the cofactor of a5, is — det(az1) = —as;.

The determinant of a 3 x 3 matrix 4 = (a;;), is

ailr diz dis
det A =|ax1 ax az3| =aCi +a2Ciz2 +a13Ci3
asp dsz dsz

dz1 dz2
asy asz

dz1 dzj3

dzz dz3 +agn
asy dass

=da1
daszy ass

—daiz

= a11(a22a33 — az3azz) — ai2(az1a33 — azzasy) + aiz(az1az2 — a»as).
Here we have chosen the first row. If we decide to use, say, the second column, then
det A = a12C12 + a22Cay + a3,Cs3y, ete.

We state the following important general rule without proof.

The sum of the products of the elements by their corresponding cofactors along any
row or column is the same.

Example 7.1.1. Let us evaluate the determinant

—_—00 =
—_ = O
NS

first along the second row and then along the third column.
Along the second row, we have:

01
1 2

—_— L) =

0
1
1

NN —

=_3‘
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Along the third column, we have:

1 01
312 =‘_? 1‘—2‘_} (1)‘+2‘; ?‘:4.
-1 1 2

In concrete examples, it is convenient to choose a row or a column involving zero
entries, whenever possible. For example, in order to evaluate

1 21
302
-1 1 4

it is convenient to choose either the second row or the second column since that will
involve only two nonzero terms to add, instead of three. Let us evaluate it along the
second column. Then

121
302 == 32N 5 242 —@-3)=-27.
a0 —1 473 2

For example, if A4 is a triangular matrix, namely if a;; = 0 for all j > i, then choos-
ing the first column we find

air diz 4aiz ... din dzp dz3 ... d2p
0 azx axys ... az 0 a ...oa
det A = 3 n =am 33 3n
0 0 0 ... aun 0 0 ... aun
To evaluate the last determinant again we choose its first column, yielding
dzp dz3 ... dz2p a33 dsz4 ... d3p
0 asz ... dszp | _ 0 dgq ... dap
=daz
0 0 ... aun 0 0 ...aun

Repeating the procedure we find
det A =aiaz...an,. (7.1)
We now recall some additional properties of determinants.
1. Multiplying a row or a column of a determinant by a constant k is the same as

multiplying the determinant by k.

2. Exchanging two rows (or columns) of a determinant changes the sign of the de-
terminant.

3. Multiplying a row (or column) by a constant and adding it to another row (or
column) does not change the value of the determinant.

4. det (AB) = det (A) - det (B).

5. If two rows (or columns) of a determinant are constant multiples of each other,
then the value of the determinant is zero.
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6. det A # 0 if and only if the rows (and columns) of A form a set of linearly
independent vectors.

For example,

1 2 3
1/3 2/3 1|=0
5 6 7

since the first row is 3 times the second row. Since the determinant is 0, item 6 implies
that the rows of the matrix are linearly dependent.

The preceding properties allow us to simplify the calculation in evaluating det A
by making all the elements of A, except one, of a certain row (or column) to be 0.
For example, let us evaluate

1 =2 1
1 2.
-5 1 -4

Suppose we decide to make the second two elements of the first column 0. We can
do this by adding —3 times the first row to the second and 5 times the first row to the
third, obtaining

1 -2 1
0 7 —12‘_
0 -9 1

7.1.3 Inverse of a matrix

We call a matrix B the inverse of a matrix A if AB = BA = [. The inverse, if it
exists, is unique. For AB = BA = I and AC = CA = I, would imply AB = AC
and hence B(AB) = B(AC) which can be regrouped as (BA)B = (BA)C. Since
BA = I by assumption, we have B = C.

Not all nonzero matrices have inverses. For example, let 4 = (} g) Suppose

C = (c;;) is a matrix such that AC = /. Then we would have

1 2 C11 C12_10
1 2 C21 022_01.

Multiplying the first row of A by the first column of C, we obtain c17 + 2¢2; = 1.
But multiplying the second row of A by the first column of C, we get c1; +2c¢21 = 0,
which is impossible. Therefore, A has no inverse.

When a matrix A has an inverse, it is called nonsingular, otherwise it is called
singular. The reader familiar with Linear Algebra my recall that
“A is singular if and only is its determinant is 0.”

The next question is: when a matrix does have an inverse, how do we find it? There
are several ways and short cuts to find the inverse of a matrix. Here we explain the
method of using cofactors. The inverse of a matrix (a;;), when it exists, is the matrix
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(cij), where
Cji

Cii = .
Y detA

For example, let us determine the inverse of
21 0
A=|10 3 0
1 0 1

In order to determine the determinant, we choose to use the cofactors along the last
column. Since two of the elements of this column are 0, we can ignore them and see
immediately that

_F 1

2 126

2
0
1

S W =
- O O

Since the determinant is nonzero, we know that A has an inverse.
We now list the cofactors:

30
0 1

0 3
Cu = 1 0o

) 120, C13=’

-

=3, Clzz—‘o 0'
Similarly, C; = —1, Cyp =2, Cy3 =1, C31 = 0, C3, = 0, C33 = 6. Now re-
calling that the ij-th element of A~! is C;; divided by the value of the determinant,
which is 6, we have

1/2 —1/6 0
At=| o0 1/3 0
-1/2  1/6 1

7.1.4 Eigenvalues and eigenvectors

If a real or complex number A and a nonzero vector v satisfy the equation
Ab = AD,

then A is called an eigenvalue of the n x n matrix A = (a;;), a;; € R, and v # 0is
called an eigenvector associated with A (or the corresponding eigenvector). We note
that the above equation can be written in the equivalent form

(A—AD)i = 0.

To find the eigenvalues of A we have to solve the equation det (A—AI) = 0. If this
equation has no solution, then Kramer’s rule implies that the equation (4 —A)v = 0
has only the trivial solution v = 0. The determinant of A — A/ is a polynomial of
degree n in A, called the characteristic polynomial and the equation det (A—AI) = 0
is called the characteristic equation or the auxiliary equation of A.

For example, if A is a triangular matrix, then (7.1) yields

det(A—Al) = (a1n — M)(azx — A) -+~ (@nn — A).
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Hence the eigenvalues of 4 are A; = a;;,i = 1,2,...,n.

An eigenvector associated with the eigenvalue A; is found by solving the system
A-M1 1 = 0. This system has nontrivial solutions if A ;j is a solution of det (A —
Al) =0.

Of course, if v is an eigenvector of A, then so is av for all @ € R, @ # 0. The
space £, = {x € R" : Ax = A;x} is called the eigenspace corresponding to A;.
Ifx,y € E;; thenax + By € E,, foralla, B € R, because

A(ax + By) = aAx + BAy = adjx + BAjy = Aj(ax + By).

Thus Ej; is a closed subspace of R". If 4; is a real number and k def dim(Ey;)
> 1 it means that there are k linearly independent real eigenvectors corresponding
to A;. The dim(E,;) is called the geometric multiplicity of A;. The algebraic mul-
tiplicity of A; is defined as the multiplicity of the root A = A; of the characteristic
polynomial. For example, the characteristic polynomial of the matrix

210
A=10 2 0
0 0 3

is (A —2)2(A — 3) and hence 2 is an eigenvalue of algebraic multiplicity 2, while 3
is an eigenvalue of algebraic multiplicity 1. To evaluate their geometric multiplicity,
we have to solve the system (4 — A)v = 0 namely

2—-A)vi+v2=0
(2—/\)1)2 =0
(3—)\)1)3 = 0.

If A = 2 we find v, = v3 = 0, while if A = 3 we find v;i = v, = 0. Thus the
corresponding eigenspaces are spanned by (1,0, 0) and (0,0, 1) respectively. As a
consequence, the geometric multiplicity of both the eigenvalues is 1. On the other
hand, if we consider the matrix

0 0
B = 2 0
0 3

S O N

the characteristic polynomial is still (A—2)?(1—3) and hence, as before, the algebraic
multiplicity of 2, 3 is 2 and 1, respectively. To evaluate their geometric multiplicity
we solve the system

(2—A)U1 =0
2—2)vy =0
(3 — A)vs = 0.

It follows that the eigenspace E, is 2-dimensional and spanned by (1,0,0) and
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(0,1, 0), while the eigenspace E3 is one-dimensional and spanned by (0, 0, 1). Thus
the geometric multiplicity of A = 2 is 2 and that of A = 3is 1.

It can be shown that, in general, the geometric multiplicity is less than or equal to
the algebraic multiplicity.

Let us point out that the eigenvalues of A might be complex numbers. However,
since the coefficients of the characteristic polynomial of A are real, if « 4+ i is an
eigenvalue of A soisa—if.If u+iv, withu, v € R”, is an eigenvector correspond-
ing to & + i, then it is easy to check that u — i v is an eigenvector corresponding to
A=a—if.

The following result will be used later.

Theorem 7.1.2. If vy, ...,V are eigenvectors of A corresponding to distinct real
eigenvalues, A1, ..., A;, then they are linearly independent.

Proof. The proof is based on the Induction Principle. For j = 1, it is trivially true.
Suppose it is true for j = k, k > 1, that is, any k vectors with distinct eigen-
values are linearly independent. We will now show that the statement is also true
for j = k + 1. Suppose not. Then there exist k + 1 linearly dependent eigenvec-

tors vy, . . . , Vg 41, with corresponding distinct eigenvalues A1, ..., Ax+1. Therefore,
there exist constants cy, . .., cx41, not all zero, such that
V1 + o2 + ...+ 41041 = 0. (7.2)

Multiplying this equation by A we obtain

ClAﬁ] +C2A62+"'+Ck+lAﬂk+l = (7 3)
C1A101 4 2A202 + ...+ Chp1Ak+1Vk+1 = 0. :

If we multiply equation (7.2) by A; and subtract it from the second equation in (7.3),
we obtain

(A2 —A)V2 + .o+ k1 (Mg — A1) Vg1 = 0.

But this is a linear combination of k eigenvectors vy, . .., Ux4+; With distinct eigen-
values A, ..., Ag4+1. Therefore, by induction hypothesis, we must have ¢, = ... =
ck+1 = 0. This changes (7.2) to ¢;v; = 0, which implies that ¢; = 0 (recall that an
eigenvector is nonzero by definition). This contradiction completes the proof. ]

7.1.5 The Jordan normal form

If A is a nonsingular matrix, there exist two nonsingular matrices J and B such that
A = B71JB, or equivalently BA = JB. J is called the Jordan normal form (or
simply Jordan matrix) of A. The Jordan matrix J is triangular (but not necessarily
diagonal).
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If A* is a real eigenvalue of A the Jordan block relative to A* is the p x p matrix

A1 o ... 0

o . - 0
J =

: .. 1

o ... ... 0 A*

where all the entries are zero, except the entries a,, 41 above the diagonal ap, m
which are 1. Its characteristic polynomial is (A—A*)? and hence J has a unique eigen-
value A* with algebraic multiplicity p. Moreover, solving the system (J —A*I)v =
0 we find that the corresponding eigenspace is one-dimensional and spanned by
(1,0,...,0) so that the geometric multiplicity of A* (with respect to J) is 1.

If the eigenvalues of A are real, it is possible to show that the Jordan normal form
associated with A is the n x n matrix

J1 0
J = .
0 Iy
where the sub-matrices Jq, ..., J, are Jordan blocks relative to the eigenvalues.

As we will see later on, Jordan matrices are useful when we deal with linear sys-
tems x’ = A(x).

Let us show what happens if n = 2, which is the case we will deal with in the
sequel. Let A be a 2 x 2 matrix with eigenvalues A1, A,. Then the Jordan matrix is
as follows.

1. If Ay, A, are real and distinct, then their algebraic and geometric multiplicity is 1

and hence
Ay O
J = ( 0 A ) . dn
2. If A1 = A, is real, then its algebraic multiplicity is 2. Either its geometric multi-
plicity is also 2, a case where
Ar 0
J = ( 0 A ), J2.1)
or its geometric multiplicity is 1, a case where
A1
J = ( 0 A ) J2.2)

Furthermore, if the eigenvalues are complex conjugate, A1, = « £ if3, then one

can show that
J = ( g _aﬁ ) J3)
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Moreover, let 7 # 0 be an eigenvector of A corresponding to the eigenvalue A,
namely such that A = A®. Using the Jordan normal form, we find B~'JBv = A
whence JBU = ABv. In other words,

v is an eigenvector of A if and only if Bv is an eigenvector of J.

7.2 First order systems

Consider the system of first order differential equations
xl{:ﬁ(t’xlaxz»'-‘»xn)’ i:1’2""’n‘ (74)

By a solution of such a system we mean n functions y;(¢), y2(¢), ..., y,(¢) such that
yi(t) = fit.,y1(2), y2(t)....,ya(t)), i = 1,2,...,n. The corresponding initial
value problem can be expressed as

xl{ = ﬁ(tvxlv-XZa"-?xn)’ xi(IO) = Xio, l = 1,2,...,”1.

where f¢ is some point in the domain being considered.

Systems of differential equations arise in many areas such as Chemistry, Biology,
Physics and Engineering. Examples arising in Population Dynamics are discussed in
Chapter 8. In what follows we will study some important systems that are significant
both theoretically and practically and we will develop methods of solving certain
types of systems.

However, some systems can be solved by simply rewriting them and then using
known methods to deal with them. We start with a couple of such systems.

Example 7.2.1. Solve the system

I

x' =3x+y
y' = -2x.

Taking the derivative of the first equation, we have x” — 3x’ — y’ = 0 and then
substituting —2x for y’, we obtain

x" =3x"+2x =0.

The characteristic equation m? — 3m + 2 = 0 has roots m = 1, 2 and hence the
general solution for x is x = cje’ + cye?!. Therefore, y = x' — 3x = cie’ +
200e%" — 3(cre’ + cre?’) = —2c1e' + —ce? . Thus x = cie’ + cpe? and y =
—2c1e! + —ce?! solve the given system. "

Example 7.2.2. Solve the initial value problem

xX'=y, x(0)=1
y' = x2, y(0) = 2.
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We note that x”” = y’ = x2. We recall that we can solve the equation x” = x?2 by
letting v = x’; and using the Chain Rule to get x” = v Z;’C , which results is a first

order equation v Z; = x2 . Solving this first order equation for v and then integrating

v, and determining the constants from the initial values, we obtain

-2
x(t):(}l\/itjtl) . .

As we have seen in Chapter 4, any system of the form
X = X1, X] = X2, X = X3, ...y Xp_q = Xn, Xy = f(,X1,X2,...,Xn)
can be written as a single equation x® = ft,x,x',... ,x(”_l)). Conversely, any
equation of the form x™ = f(t,x,x’,...,x® V) can be written as a system of
first order equations as follows: Let x = x;. Then we can write the system as x’l =
Xo, Xh = X3, o, Xo =X, X = L2, X XY = (X1, %0, ..., Xn).

Example 7.2.3. Write the following initial value problem as a system.

X 2" — ()Y +x=1241, x(0)=0,x'(0)=1, x"(0) = 1.

Let x = x1, X’ = X2, x” = x3. Then we have the system

X1 = X2
Xy = X3
Xy =-2x3+x3—x;+12+1

subject to the initial conditions x1(0) = 0, x2(0) = 1, x3(0) = 1. n

We have already seen that single higher order equations can be written as first
order systems, also higher order systems generally may be written as first order sys-
tems. But the resulting system is normally more complicated. We demonstrate this
in the following example.

Example 7.2.4. Write the system

x/// —‘f_ x/ — t
y// _ y2 =1
as a first order system.

Letx = x1,x] = x2,x, = x3,and y = y;1, y] = y». Then we can write the
system

A
X1 = X2,
/
X, = X3,
X5+ xp =t
;o
Y1 =DY2,

vy —yi=1. n
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7.3 Linear first order systems

The following is the general form of a first order linear system:

xp =an(®)xi1(t) +ap®)x2(t) + ... +an()x,(t) + f1(t)

: (7.5)
Xy = am (O)X1(1) + an2(O)x2(0) + ... 4 ann (Oxn (@) + fn(0).

The functions f;(¢), 1 < i < n, are called the forcing functions. When there are
no forcing functions in the system, i.e. f;(t) = 0, 1 < i < n, the system is called
homogeneous, otherwise it is called nonhomogeneous.

The next theorem and some of the concepts developed here are fairly similar to
the high order linear homogeneous differential equations.

Theorem 7.3.1. Suppose that a;j, | < i,j < n,and f;,1 < i < n, are contin-
uous in an interval 1. If tg € I, then for any numbers X190, X209, .. . , Xno, there is
exactly one solution x1, X3, ..., X, of (1.4) satisfying the initial condition x1(ty) =
X10, X2(t9) = X20,...,Xn(to) = Xno. Furthermore, this solution is defined every-
where in I.

Proof. It follows immediately from Theorems 4.2.2 and 4.2.3 of Chapter 4. [

For convenience and efficiency, we write the system (7.5) in terms of matrices and
vectors. In particular we let

an(t) an@) - a() x1(1) S1(0)

ax (t) ax() - au(t) _ x2(7) Sf2(1)
A(t) = : : : . X(1) = : ’ = :

ani1(t) anp2(t) -+ apn(t) Xn (1) Ju(t)

Then the system (7.5) can be written in the equivalent form
(0 =AOX0) + f@0) (7.6)
with the corresponding homogeneous system
X'(t) = A()x(@). (7.7)
Example 7.3.2. The system

xX1(1) = 2tx1(t) — e’ x2(1) + 2tx3(t) + sin(7)
x5(1) = x1(t) — 3x2(1) + 5¢%x2(1) + cos(r)
x4(t) = 4x1(t) — S5tx2(t) + 53x3(1) + €'
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can be written as

x1() 2t —e' 2t x1(1) sin ¢
@) =11 -3 52| [x20) |+ |cost]. ]
x4(1) 4 =5t 5t3) \x3(1) et

Theorem 7.3.1 of Chapter 4 can be stated in matrix form as:

Theorem 7.3.3. If A(t) and f (t) are continuous in an interval I, then there exists
exactly one solution x(t) of (7.6) satisfying the initial condition X (ty) = Xo, where

X10
Xo =
Xno

is any vector with n components, consisting of arbitrary real numbers. Furthermore,
Xx(t) is defined everywhere in 1.

Theorem 7.3.4. If X1, X2, ..., X, are solutions of (7.7), then any linear combination
Cc1X1 + c2X2 + ... + cpXy of these solutions is also a solution of (7.7).

Proof. It suffices to prove it for n = 2; the general case will then easily follow from
the Principle of Mathematical Induction. Let X, X, be two solutions of (7.7). Then
(c1X1 + c2X2) = c1X] + 2%, = c1(A()X1) + c2(A(t)X2) = A(t)(c1X1 + c2X2).

This shows that c; X1 + ¢2X> is a solution of (7.7). [
Definition 7.3.5. Vectors X1, Xz, ..., X, are said to be linearly independent if for any
constants ¢y, €2, ...,Cp, C1X] + C2X2 + ... + X, = Oimpliesc; = ¢, = ... =
cp =0.

If they are not linearly independent, then they are called linearly dependent.

Example 7.3.6. Check the vectors
1
x1=10], X2=11]1, xX3=11
1

for linear independence.
The idea is similar to what we did in the case of a single higher order equation.
We indicate two ways to solve this problem.

1. ¢1%1 + caXs + c3%2 = 0is equivalent to the system

Cl+2C2+4C3=0
cy+c3=0
c1+ ¢+ 3c3 =0.
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We solve the system for ¢y, ¢, c3 by subtracting the last equation from the first and

obtain ¢, + ¢3 = 0, which is the same as the second equation and has infinitely
many solutions. For each such pair of solutions, we can solve for ¢;. For example, let
¢z = 1. Then, c3 = —1. Substituting these values of ¢, and c3 in the first equation,

we have c; +2 —4 = 0, or ¢; = 2. Therefore, 2x; + X, — X3 = 0. This shows that
X1, X, X3 are linearly dependent.

2. Instead of solving for ¢y, ¢z, c3 in the above system, we simply evaluate the
determinant of their coefficients

—_—O =
—_—— N
W =

Multiplying the first row by —1 and adding it to the last row we get

1 2 4
0 1 I =-1+1=0.
0 -1 -1

Therefore the above system has nontrivial solutions in ¢1, ¢z, ¢3, which implies that
the vectors X1, X», X3 are linearly dependent. [

7.3.1 Wronskian and linear independence
Consider the linear homogeneous scalar differential equation
X" () +a ()x"(t) +asx(t) = 0.

We defined the Wronskian of solutions x, y, z of this equation as
X

Wx,y,z)y=|x" y =z
x//

We also explained above how we can write the scalar differential equation x"’(¢) +
ay(t)x"(t)+aszx = Oasthesystemx; = x, x| = x2,x5 = x3.y"”(t)+ai(t)y” (t)+
azy = 0 can be written as the system y; = y, ¥ = ¥z, y5 = y3. Similarly, if y and
z are solutions, we let y; = y, | = y2, ¥, = yzand zy = z, z{| = 25, 2} = z3.
This suggests that the definition of Wronskian may be extended to three vector func-
tions as follows:

X1 V1 21
W(X,y,2)=|x2 y2 22
X3 Y3 Z3
where
X1 »1 Z1
X = XZ,)_JZ yz,fz V)

X3 Y3 Z3
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So, we extend the definition of Wronskian to vector functions and define the Wron-
skian of n vector functions

x11(t) x12(1) X1 (1)
) x21() | x22(7) ) Xon (1)
xX1(1) = . L Xy = : S : (7.8)
xnl.(l) anI(t) -xnn(t)
as
x11 (@) x12(t) -+ x1a(2)
o _ x21(t)  x22(t) -+ X2 (1)
W(xl,x2»"' sxn)(t) = : : : (79)
Xn1(t)  Xp2(t) o+ Xpu()

in which the i-th column is the vector x; (¢).

Theorem 7.3.7. Vector functions x1(t), X2(t),- - , X, (t) are linearly independent if
their Wronskian is nonzero at some point t.

Proof. Suppose c1X1(t) + caX2(t) + ...+ cpXn(t) = 0, where X;, 1 <i <n,are
denoted as in (7.8). Then, at ¢, this is equivalent to the system

c1x11(fo) + c2x12(f0) + ... + cpx1n(fo) =0
C1X21(10) + 62X22(I0) + ...+ CnX2n(lo) =0

c1xn1(fo) + c2xn2(to) + ... + cuXun(to) = 0.

This algebraic system of equations has no nontrivial solutionin ¢y, ¢z, ...,c, if the
coefficient determinant is nonzero. But the coefficient determinant is precisely the
Wronskian of X1, X3,..., X, att = to. Therefore,c;y = ¢ = ... = ¢, = 0 and
the proof is complete. L]
Theorem 7.3.8. Suppose that X1, X2, ..., X, are solutions of

X' = A@)x

where A(t) is an n X n matrix, continuous on an interval I. Then their Wronskian
W(t) is given by

W) = W(lo)ef,ro(an(s)+a22(s)+...+ann(s))ds
where ayy, Az, ...any, are the diagonal elements of A(t).

Proof. We give the proof for n = 2. The proof for the general case follows exactly
the same way, but the notations become cumbersome. Suppose that

ailz diz = X11 = X12
A(Z) = , X1 = , Xop = .
asi asz X21 X22
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The Wronskian of X1, X is given by

x11(t)  x12(2)

W) = .
x21(f)  x22(2)
Then
/ X1 (1) xp@O)] | xn@) xi2()
w (Z) = / ’ :

X21(t)  x22(2) X5,()  x5,(2)
Since X] = A(?)x, it follows that x|, = anX11 + X21412, X5 = d21X11 +
anyXx»1, x/12 = a11X12 + aizxxs3, xéz = ay1X12 + azxz;. Making these sub-

stitutions in the above equation for W'(t), we obtain

aiiXil +apXx21 ainXiz +dizxz

W'(@t) =
X21 X22

X11 X12
az1x11 + axX21 az1X12 + azXx22

Now, we multiply the second row of the first determinant by —a, and add it to the
first row. We also multiply the first row of the second determinant by —a»; and add
it to the second row. Then we obtain

aiiXil diiXi2 X11 X12
W/(l)= =apW 4+ apW = (a11 + ax)W.
X21 X22 az2X21 A22X22
Integrating W’ = (a11 + a22)W from tg to ¢ proves the theorem. n

Corollary 7.3.9. The Wronskian of n solutions of (7.7) is either always zero or never
zero.

The sum of the diagonal elements of a matrix is called the trace of the matrix and
denoted by 7r(A). With this notation we can write

Wit) = Witg)elio 7AGNds,
Example 7.3.10. Consider the scalar differential equation
x® +a;()x" Y 4+ +a,()x =0.

Recall that if x1,x2,...,x, are solutions of this differential equation, then their

Wronskian is given by W(t) = ce/ ~a1)ds orin terms of definite integral, W(t) =
t

W(to)ef 10 =14 Aq indicated above, we can convert this equation to a system by

letting x; = X, X] = X2, ...,X,_; = Xp, X}, = —A1Xp — A2Xp—1 — ... — dpX].
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This system can be written in matrix form as

» 0 1 0 0 0 N
1 0 0 1 0 0 !

Xy ) X2

v 0 0 0 0o - 1 .
n —dp —Op—1 —p—p dp—3 -+ —di "

As we can see, the trace of the matrix is —a;(¢). So, applying Theorem 7.3.8, we
obtain

W(t) = W(to)effto —a1(s)ds
which agrees with what we found by the method of scalar equations. L]

Theorem 7.3.11. Let X1, X2, ..., X, be linearly independent solutions of (7.7), on
an interval I where A(t) is continuous. Then the general solution of (7.7) is given
by )_C(Z) =C1X1 + X+ ...+ cuXy, c;i € R

Proof. By Theorem 7.3.4 we know that x = ) ¢; x; is a solution of (7.7). We have
to show that given any solution y of (7.7), there then exist constants ¢y, ¢z, ..., Cp
such that y = c¢1x1 + E + ¢, x,,. For this, let

x1i () y1(t)

x2i(t) | ) y2(t)
. , i=12,...,n, and y(t) = .

X (1) = : :
i (1) V()

and let 7o be any number in /. Then c1X1(fg) + c2X2(to) + ... + cnXn(to) = y(to)
is equivalent to the system

c1x11(t0) + cax12(t0) + - . . + cux1n(to) = y1(to)
c1x21(t0) + c2x22(t0) + - . . + cuX2n(to) = ya(to)

c1Xn1(t0) + c2Xn2(t0) + - .. + CnXun(to) = yu(to).

This system will have a unique solutionincy, ¢, . .., ¢y if the coefficient determinant
x11(to) x12(t0) -+ X1a(to)
x21(to) x22(t0) -+ X2a(to)
Xn1(to) Xn2(to) -+ Xnn(to)

is nonzero. But this determinant is precisely the Wronskian of x;, X, ..., X,, which

is nonzero by assumption. Now it follows from the uniqueness theorem that ¢ X1 (¢)+
Cc2X(t) + ...+ cpxy(t) = y(t) forall ¢ in I. [
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7.4 Constant systems — eigenvalues and eigenvectors

In this section we consider the homogeneous system
X' = Ax (7.10)

where A = (a;;) is a constant matrix, that is the entries a;; , 1 < i,j < n, are
constants, and it is nonsingular. We recall that in the case of homogeneous scalar
equations with constant coefficients, we were able to find the general solution by
substituting ¢™? for the dependent variable. This suggests that we try substituting
% = e*7 in (7.10). Doing so, we obtain ¥’ = Ae*§ = Ae*' ¥, which gives rise to
the equation Av = Av. The last equation may be written as

(A=A =0 (7.11)

where [ is the 7 x n identity matrix and 0 € R” is the zero vector. It is now clear that
% = e*7 will be a solution of (7.10) if A and © satisfy equation (7.11). Using the
notation introduced in Section 7.1, this means that A is an eigenvalue of the matrix A
and ¥ # 0 is an eigenvector associated with A. We have also seen that we must have
that A is a solution of the characteristic polynomial

det(A— M) =0. (7.12)

Example 7.4.1. Let

1 -3 0
A=]10 2 0
1 1 3

(a) Find the characteristic equation of A.

(b) Find the eigenvalues and the corresponding eigenvectors of A.
(c) Find the solutions of X" = AX corresponding to each eigenvalue.
(d) Show that the solutions in (c) are linearly independent.

(e) Find solution y(¢) satisfying the initial condition

1
y(0)=10
1

Solution. (a)

-1 =3 0
det(A—=A)=| 0 2=2 0 |=(1=M)2=1)E—=21).
11 3-2x

Therefore, the characteristic equation is (1 —A1)(2 —1)(3 — A1) = 0.

(b) The eigenvalues of A are A; = 1, A, = 2, A3 = 3. To find an eigenvector v,
corresponding to A; = 1, we substitute A; = 1in (7.11) and solve for v = v;. If the
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components of vy are x, y, z, then

0 -3 0 X 0
(A—ADHvy =10 1 0 y]=10
1 1 2 z 0
Weobtainy=Oandz=—;x.Thus,
X
V] = 0
1

We can take x to be any nonzero number. So, let x = 1. As mentioned before, any

av, o € R, o # 0, is also an eigenvector. Hence, taking « = —2 we have
-2
=10

Similarly, substituting A = 2 and A = 3 in (7.11) and solving for v, and v3, respec-
tively, we obtain
3 0
nh=|—-1], 5=1{0
-2 1

Once more, we point out that there are many ways, in fact infinitely many ways, to
choose an eigenvector. We should try to choose options that seem convenient.

(c) The corresponding solutions are

-2 3 0
X1 = el = |—1]e*, x3=10 e,
1 -2 1

(d) In order to show that these solutions are linearly independent, we show that
their Wronskian
—2¢8 3¢ 0
W)=\ 0 —e?! 0
et —De2t 3t

is nonzero. Expanding the determinant above along the third column, we see that
W(t) = e3" - (2e3) = 2e%, which is never zero for any ¢.

We point out that in general we only need to show that the Wronskian is nonzero
at some convenient point. It will then follow from Corollary 7.3.9 that it is always
nonzero.

(e) By part (d), y(t) = ¢1X1(t) +c2Xx2(t) + c3Xx3(¢) is the general solution. There-
fore, there exist constants ¢, ¢, c3 such that ¢;x1(0) + c2x2(0) + c3x3(0) satisfies
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the given initial condition. We find these constants by solving the system

-2 3 0 1
alol+eal=1]+cslo]=10
1 -2 1 1

which is equivalent to the system
—2¢1 4+ 3¢, =1
—Cy = 0
C1 —26‘2+C3 =1.

We see that ¢; = —;, =0, c3= ; Therefore, the desired solution is
| -2 3 0 et 0 el
N 3t _ _
2e 01+ 2e 0] = 0 + 0 = 0 . [ ]
1 3,3 1 3,3
1 1 —e ye! —e + e

We first deal with the case that the eigenvalues of A are real and distinct.

Theorem 7.4.2. If vy, ..., 0, € R" are n eigenvectors of the n X n matrix A and the
corresponding eigenvalues A1, . .., Ay are real and distinct, then X(t) = ¢101eM +
<. 4 caUnetn?t is the general solution of (7.10).

Proof. Toany A; € Rand v; € R",i = 1,...,n, we can associate a function
x;(t) = B;e*i’ which is a solution of x’ = Ax. According to Theorem 7.3.11, x(r)
is the general solution provided x; are linearly independent. Since x;(0) = v;, then
their Wronskian at # = 0 is the determinant of the matrix whose columns are the vec-
tors vq, ..., Uy. Thus x; are linearly independent if and only if v; are so. On the other
hand, by Theorem 7.1.2 proved in Section 7.1, x; are linearly independent provided
Al,..., Ay are distinct. This completes the proof. n

Notice that part (d) of Example 7.4.1 is an immediate consequence of this Theo-
rem.

In Theorem 7.4.2 it was shown that if the eigenvalues of A are distinct (hence
simple), then the n corresponding eigenvectors are linearly independent. It follows
from the proof of this theorem that any k distinct eigenvalues, 1 < k < n, give rise
to k linearly independent eigenvectors. The situation for repeated eigenvalues is not
so simple. For example, a double root may or may not yield two linearly independent
eigenvectors. In other words, if A has some repeated roots, it may or may not have n
linearly independent eigenvectors. One class of matrices that have the property that
to each eigenvalue that is repeated k times, there correspond k linearly independent
eigenvectors, is the class of symmetric matrices. We give below some examples that
illustrate both possibilities. The student can easily understand how to handle other
similar cases.
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Example 7.4.3. Find the general solution of x’ = Ax, where

100
A=]10-10
00 -1

The eigenvalues of A are A = 1 and A = —1 (double). Moreover,

1 0 0
V1 = 0 s Vpy = 1 s V3 = 0 s
0 0 1

are 3 linearly independent eigenvectors.

Then x; = vie!, x5 = vae™ and x3 = vie™ solve x' = Ax and are linearly
independent because x;(0) = v;, i = 1,2,3, are so. Thus the general solution is
x = civie’ + covae™t + c3vzet.

As an exercise, the student can find the same result noticing that the components
X1, X2, x3 of x satisfy the uncoupled system

t

X = X1,

!
x2 = —X2, ]
X5 = —X3.

Example 7.4.4. Find the general solution of x’ = Ax, where

300
A=|0 30
112
Since
3-2 0 0
det(A—A)=| 0 3—1 0 |=B-1%2-21),
1 1 2-21

the eigenvalues of A are A = 3 (double) and A = 2.
It is easy to check that A has 3 eigenvectors given by

1 0 0
V] = 0 s Uy = 1 s V3 = 0 s
1 1 1

which are linearly independent because

=1

—_—O =
—_— O
— o O

Then x; = vie, x, = v2e3 and x3 = v3e? solve x’ = Ax and are linearly

independent because x; (0) = v;, i = 1,2, 3, are so.
Thus the general solution is x = cjv e + cave3" + c3v3e?’. n
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Example 7.4.5. Find the general solution of x’ = Ax where

A a
(0 7)
with A,a # 0. Now, A is a double eigenvalue but the eigenspace corresponding to A
is one-dimensional and spanned by v; = g(l) , which yields x; = (é) e*M but it is
not obvious how to find a second linear independent solution.
Let us take x, = vlteM + #e* and determine # such that X1, X are linearly
independent and x), = Ax,. As before, from x1(0) = vy, x2(0) = u, it follows that

for x1, x, to be linearly independent it suffices that vy, u are so.
On the other hand, the equation x, = Ax; is equivalent to

AteMuy + e’”vl + AeMi = A(te’”vl + e)”ﬁ) = Av; te* + Aii ™.
Since Av; = Avy, we have
)tte’”vl + e)”vl + AeMi = Avg teM + Aii e,
Canceling Ate* vy, we obtain e*v; 4+ Aerii = Aii e* and hence
vy + Au = An.

This can be written as
(A—=Au = v,

(60)(1)=(s) {020

Thus u = (1(/)41 ), which is obviously linearly independent from v;. In conclusion

namely

the general solution of x’ = Ax is

X = C1X] + Caxs = 11 + 2 [vlte“ + ue“]

1 At /U] 0 At
(0)[C1€ + cate + 1/a e,

that is,
X1 = c1eM + cote,
C2
Xy = -~ eM,
a

The reader will recognize that the preceding procedure is similar to that carried out
for the scalar second order equation x” — 2Ax’ 4+ A%2x = 0 whose characteristic
equation has the double root m = A. ]
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Our last example deals with the case in which A has complex eigenvalues.

Example 7.4.6. Find the general solution of X’ = Ax, where

(1Y)

The characteristic equation is given by

det(A— 1) = 1__1)‘lfk‘=A2—2A+1+4:12—2x+5:o.

Solving the quadratic equation A2 — 21 + 5 = 0, we find the eigenvalues to be
AM=1+2iand A, =1—2i.Let

()

In order to find the eigenvector v corresponding to 1 + 2i, we set Av = (1 + 2i)v,
which is equivalent to the system

x+4y =1+ 2i)x,

—x+y=(1+2i)y.
Simplifying the equations in this system, we obtain 2y = ix and —x = 2iy. We note
that if we multiply the first equation by 7, we get the second equation. Therefore, we
actually have only one equation and two unknowns. This means that we can assign

an arbitrary value to one of the unknowns and then solve for the other. To this end,
let x = 2. Then y = i. This means that the solution corresponding to the eigenvalue

1+2iis
5= (12) o420

Now, using Euler’s formula (2D — ol 00527 + fe! sin 2t, we extract real solu-
tions:

& = 20 2\ _ (2(e'cos2t +ie'sin2t))  [2e' cos2t +i(2e' sin2t)
a i) \i(e'cos2t +ie'sin2t) ) — \ —e’sin2t +i(e’ cos2t)
_ (2é" cos 2t n 2e’ sin 2t
~ \—efsin2¢ e'cos2t |-
Now we can take the two real solutions to be
P 2e' cos 2t P 2e! sin2t
V= \—etsin2t ) "2 = \efcos2t |-
Evaluating their Wronskian, we see that

2e' cos 2t 2e! sin 2t

W) = —e!sin2t e! cos 2t

=2e% £0.

Therefore, X1 and X, are linearly independent and X = c¢;X; + c¢»X; is the general
solution. [
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7.5 Nonhomogeneous systems

Consider the nonhomogeneous system

¥ =A0)x + f () (7.13)
where the coefficient matrix A(r) and the forcing function f(r) are continuous in
an interval /. Let X4, ..., X, be a fundamental set of solutions of the homogeneous
equation

x'=A@)x (7.14)

and let x,, be a particular solution of (7.13). If y is any solution of (7.13), then, as in
the scalar case, it is easy to see that y — X, is a solution of the homogeneous equation
(7.14). Therefore, there exist constants ¢y, ...,c, suchthat y — X, = c1X1 + ... +
¢nXp;and hence y = X, + ¢1X1 + ... + ¢, X,. We state this as

Theorem 7.5.1. If X1, ..., X, is a fundamental set of solutions of (1.14) and X, is
any particular solution of (7.13), then y = X, + c1X1 + ... + ¢y Xy is the general
solution of (7.13).

Once again it is important to find a particular solution of the nonhomogeneous
equation. This may be accomplished by the Method of Undetermined Coefficients,
which is pretty much a selective guessing scheme.

Method of undetermined coefficients. This method involves making a calculated
guess for each situation. It may be used when the functions involved are familiar func-
tions whose derivatives share some similarity with them. For example, the derivative
of a polynomial is a polynomial with one degree less. Other such functions are sin ¢,
cos t, and exponential functions.

Example 7.5.2. Find the general solution of the system
o (XY _ (1 1\ ([x 2t —2
o= ()= (5 5 6) ()
Here it seems reasonable to try
oo (art b
P \et+d

and determine the constants a, b, ¢, d. Substituting X, in the above system, we ob-
tain the algebraic system

a=(at+b)+ (ct+d)+2t-2
¢ =-3(at +b) + 5(ct +d)— 4t

which reduces to the system

(a+c+2t+b+d—-2—-a)=0
Ba—5c+4)t+(c+3b—-5d)=0.
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In each of the above equations, we must have the coefficients of ¢ and the constants
equal to zero. Setting these equal to zero, we obtain the algebraic system

a+c+2=0
3a—5+4=0
b+d—-2—-—a=0
¢c+3b—-5d =0.
Solving the first two equations, we find a = — Z ,C = —i. Substituting these values

of a and c in the third and fourth equations, we find b = 136 and d = 116. Therefore,

-7 3
- < i 16>
X, =
p
-1 1
al ™t 16
is a particular solution of the nonhomogeneous equation.

Now, we need the general solution of the corresponding homogeneous equation
X' = Ax. Weseethat A = 2 and A = 4 are the roots of the characteristic polynomial

‘l—k 1

— 12 _ —
5 5_1‘—* 61 +8 = 0.

The corresponding eigenvectors may be taken as
- 1 - 1
t=1) U2 = 3/
The general solution of the nonhomogeneous system is then
7 3
¢ (ezz) +c (e4t)+ <_4t+ 16> _ (CleZt + et — Zt"' 136>
1 2t 2 4t - .
e 3e 1 1 2t 4 _ 1 1
— 40t 16 cre”t +3cpe™ — 1+ ¢
Variation of parameters. First of all, let us note that if X1, ..., X, are vectors that
satisfy the system ¥’ = A(z)X , these equations can be compactly expressed as

X' =A0)X,

where X, resp. X', is the matrix whose columns consist of the vectors X;, resp. X/,
i=1,...,n.

Let A(f) be a 2 x 2 matrix and let

be solutions of the system X’ = A(¢)x. Then

¥ = xll — air a2 X1 )712 y/l _ ailr aip Y1
x5 az; az ) \xz2)’ V5 az1 ax ) \y2
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which is equivalent to

X] = anxi +ainx;
X5 = az1X1 + aznxz
Y1 =auyr+any:
yé =daz1y1 +azy».

It is easy to see that this system can be expressed in terms of matrices as X' = AX,

that is ) )
X1 Y1) _ (4 diz X1 N
X/z yé daz1 dz2 X2 Y2
Let Xy, ..., X, be linearly independent solutions of

X' = Ax.

We now describe a method for finding a particular solution of the nonhomogeneous
system

¥ =Ax + f.
Since for any constants ¢i,...,¢s, X = €1X1 + ... + cpX, is a solution of this
system, we are motivated, as in the scalar case, to try to find variable functions
Uuy(t),...,up(t) such that y = u1x1 + ... + u, X, is a solution of the nonhomoge-

neous system. To this end, we first write
y=Xu

where u is the vector whose j-th componentis u;, 1 < j < n, and X is the matrix
described above, that is, its columns consist of the vectors X;, 1 <i < n. Substitut-
ing Xu in the nonhomogeneous system, we obtain

Xi' + X't = AXii+ f.
Since, as explained above, X’ = AX, the above equation is reduced to
Xi' = f. (7.15)
Since the columns of X are linearly independent, X ~! exists. Multiplying both sides
by X!, we have )
W=X1f. (7.16)

Integrating both sides and taking the constant of integration to be zero, we obtain

0= /X_l(t)f(t)dt (7.17)

and hence

j=Xii = X/X_l(t)f(t)dt. (7.18)
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Example 7.4.1 revisited. Let us try to solve

()= 96)- )

by the method of Variation of Parameters. Recall that the general solution of the
corresponding homogeneous system is

€2t e4t
€1 (eZt +c 304t |

We let
v o2t o4t
- eZt 3e4l .
Then s .
4t 4t -2t —2t
-1 = 18_6t (3e —e ) _ ( e —,e )
= 2t 2 | = 1,—4t 1,—4r |-
2 —e e —5€ 5€
Therefore,

1z ;e_Z’ —;e_Zt 2t =2 S5te™2t — 3e72
X71f = - .
_ée—4t ;e—4t —41 —316'_4t +e—4t

Using (7.17),

_ / <5te_2t — 372 ) 5 (—gte_” + ie‘”)
u = = .
ag—4t —at 3. -4t 1 —4t
3te +e Wte 16€
2t 4t 5,,—2t | 1,-2¢ 7 3

_ (e e ) (—zte + 4€ ) . (—41 + 16)
=\ J2r 7,4t 3.—4t 1 —4r | — 1 1]

et 3e Wle — 16€ —40+ 1

Remark 7.5.3. First of all, in order to find u it is not necessary to calculate the inverse
of the matrix X. One can simply solve the system (7.10) for #’ and then integrate. In
the above example, we would have the system

(e e\, -
Xu = o2t 3p4t u=f

which is equivalent to the system

Therefore,

F=X

|

el +e*ul, =2t -2
e?'uly + 3eMuly, = —41.

Secondly, finding the inverse of a 2 x 2 matrix, when it exists, is trivial. Here is the

formula: .
a b\' 1 d —b
¢c d) Tad—bd\— a )" .
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7.6 Exercises

These exercises are divided in 4 parts. The first 3 deal with linear systems with con-
stant coefficients: A) when the matrix A4 is a 2 x 2 Jordan matrix J; B) when A4 is a
general 2 x 2 constant matrix; C) when A is a 3 x 3 constant matrix. The last set of
exercises D) deals with general linear and/or nonlinear first order systems.

Al. Solvex’:]xwhereJ:(é _2)

A2. Solve x’ = Jx where J = ( ‘O‘ 2 ) with a # 0.

A3. Solvex’:wahereJ:(g cll),witha;éo.

1 3

(3)=7(3) 7=(42)

A6. Solve x’ = Jx, where J = ( _13 ? )

Ad. Solvex' =Jx, J= (3 _1).

AS5. Solve

A7. Solve the Cauchy problem

x’:(_(l)(l))x, x(O):(_i).

AS8. Solve the Cauchy problem

x/=(_gg)x, x(O):(?)).

A9. Solve
x'= y, x(0)=0
y'= —x, y(0)=1
A10. Solve
x'= 3x 4+t
y = —y+2t
Al1l. Solve

x'= x+1?
y = y+1.
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Al12. Solve

B1. Show that the matrix
4- (@ b
“\e d

has 0 as an eigenvalue if and only if A4 is singular.

B2. Show that the symmetric matrix

has two distinct real eigenvalues if b # 0.

B3. Find the eigenvalues and the corresponding eigenvectors of the matrix

-1 0
=)
and write the general solution of the system X’ = Ax.

B4. Find the general solution of the system

x' =2x + 6y
vy =x+3y.

BS5. Find the general solution of

x'=2x+6y+ef
y =x+3y—e.

B6. Solve the initial value problem
X"\ 1 2\ (x x(0)\ (2
y) N0 3)\y) O] 3)°

X' =x4+2y+2t
y' =3y + 12

x' X 3 —1
(v)=(3) +=(0%)
!
B9. Solve(x,)zA(x)whereAz(] O).
y y 4 —1

B10. Solve

B7. Solve

B8. Solve

151
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B11. Solve
x'=x+3y
y=x-y.

B12. Solve the Cauchy problem
{x’=x+y, x(0) =1
y=x-y, y0)=0.

B13. Solve the Cauchy problem
{x’=x+y, x(0) = —1
yV=-y. y0)=2

B14. Solve
x'=x+3y +2t
y =x—y+t>.
B15. Solve
X' =x+2y+eé
y =x-2y—e'.

Cl. Let A, B be similar n x n matrices. Show that det A = det B and that they
have the same eigenvalues.

C2. Solve

Il
b
N =
b N
I
|
DN =

1 00
C3. Solvex’ = Ax,whereA=| 0 2 1
1 0 3

C4. Find x solving the Cauchy problem

1 0
=10 -1
0 O

x, x(0)=

~ O =
o

1
C5. Solve x’ = Ax,where A= 0
1 01

C6. Recall that the characteristic equation of the differential equation

\S ]

0
1

x"=2x"+3x"+x=0

is m3 — 2m? 4 3m + 1 = 0. Change the differential equation to a system and
then show that its characteristic equation as a system remains the same.
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C7. Solve the Cauchy problem

x' =x+z x(0)=0
yo=-y+z y(0)=1

z' y—2z z(0)=0.

C8. Find a € R such that the system

a 0 0
X/ = AX, A= bl b2 0
by bs bg

has a nontrivial solution x (¢) satisfying |x(¢)| — O ast — +oo forall b; € R.
9. If

find a nontrivial solution of x" = Ax such that lim;_, 4, |x(z)| = 0.

C10. Find a such that all the solutions of

X} a—2 1 0 X1
xy | = -1 a-2 0 X2
x5 0 0 —a X3

satisfy lim; 1 o |X; (¢)| = 0,i = 1,2, 3.

D1. Solve
x'+ty = -1,
y+x =
D2. Solve
x'+y = 3t
y—tx' = 0
D3. Solve
X' —ty = 1,
y —tx' =
D4. Solve
2x'—y = 1,
y—=2x =0
D5. Solve
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D6. Solve
tx' +y' = 1,
y+x+e¥ = 1.
D7. Solve
xx'+y = 2t
y 4+2x% = 1.
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Qualitative analysis of 2 x 2 systems and
nonlinear second order equations

In this chapter we study

1. Planar hamiltonian systems;
2. Lotka—Vilterra prey-predator systems;
3. Second order equations of the form x” = f(x).

We investigate the existence of periodic solutions, called closed trajectories, and non-

periodic solutions, called open trajectories such as homoclinic and heteroclinic so-

lutions, and so on. Our approach is based on phase plane analysis and geometric

considerations and leads to information about the qualitative behavior of solutions

without explicitly solving the equations. The common feature of the problems we

address is the fact that there exists a quantity that is conserved along the solutions.
First of all let us state an important property of autonomous systems.

Lemma 8.0.1. If x(¢) is a solution of the autonomous system

x'= f(x),
then x(t + h) is also a solution, ¥V h € R.

Proof.  Setting x5 (t) := x(t 4+ h), one has x),(t) = x'(t + h) = f(x(t + h)) =
f (x5(t)), which means that xj, solves x’ = f(x). "

In general, the preceding property does not hold for non-autonomous systems. For
example, in the case of a single equation such as x’ = 2¢x, we have that x (¢) = ¢’ % is
a solution, but x5 (t) = x(t + h) = e@+M? is not a solution for any i # 0. Actually
X} (1) = 2(1 4+ h)e®tW? = 21e@+W* L pet+* = 21, (1) 4 haxy (7).

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT - La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_8, © Springer International Publishing Switzerland 2014
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8.1 Planar hamiltonian systems

In this section we deal with an important class of autonomous systems

X = Hy(x.)
{y' = —H.(x.y) (HS)

where H(x, y) is a twice differentiable function defined at (x, y) € R2. The function
H is called hamiltonian and the system is called a hamiltonian system. Hamiltonian
systems are conservative because there is a quantity that is conserved along its solu-
tions.

In the sequel we will always assume that solutions x(¢), y(¢) of (HS) are defined
forall € R.

Lemma 8.1.1. If x(¢), y(t) is a solution of (HS), then there exists ¢ € R such that
H(x(1), y()) =c.

Proof. Taking the derivative one finds

d
gy HE 0. 3@0) = Hy(x(8), y(0)x"(t) + Hy (x (1), y(1))y'(2).
Since x'(¢) = Hyx(x (), y(¢)) and y'(t) = —H, (x(¢), y(t)), we have

Hy(x(2), y () Hx (x (1), (1)) = Hy(x(2), y (1)) Hx (x (¢), y (1)) = 0.

Therefore H(x(t), y(t)) is constant. m

Consider the set in the plane defined by
Ae ={(x,y) e R?: H(x,y) = c}.

From the preceding Lemma it follows that any solution x(¢), y(¢) of (H S) satisfies
H(x(t),y(t)) = c for some constant ¢ and thus (x(¢), y(¢)) € A for all ¢. Let
x(t), y(¢) be the (unique) solution of (H.S) satisfying the initial condition x (ty) =
X0, ¥(to) = yo. If (xg, yo) belongs to A, for some ¢, then ¢ = ¢y = H(xg, yo)
and (x (), y(¢)) belongs to A, for all ¢. Recall that, since the system (HS) is au-
tonomous, if x(¢), y(¢) is a solution, then so is x(¢ + h), y(t + h), for all h € R.
Therefore, given (xg, yo) € A, We can shift the time 7 and assume without loss
of generality that 7y = 0, namely that x(0) = xg, y(0) = yo. In other words,
any (nonempty) curve A, singles out a unique solution of (HS), the one such that
x(0) = xo, y(0) = yo, with (xo, yo) € Ac.

Remark 8.1.2. If Hy(x, y) and Hy(x, y) do not vanish simultaneously for (x, y) €
A, then H(x,y) = cis aregular curve. A proof of this claim is carried out in a par-
ticular case in Lemma 8.3.3 in Section 8.3. Notice that the points (x*, y*) € R? such
that Hy(x*, y*) = Hy(x*, »*) = 0 are precisely the equilibria of the hamiltonian
system (H S). [
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Example 8.1.3. If H(x,y) = Ax2 + Bxy + Cy?, the only equilibrium is (0, 0). If
¢ # 0, the curve A, is a conic. Precisely:

1. If B2 —4AC < 0and ¢ > 0, then A, is an ellipse;
2. If B=0,4=C and c > 0, then A, is a circle;
3. If B2 —4AC > 0 (and ¢ # 0), then A, is a hyperbola.

In any case A is a regular curve. If ¢ = 0 or B2 = 4AC the conic is degenerate and
can be a pair of straight lines or it reduces to a point.

Let x. (), y.(t) be the solution of (H S) such that H(x(t), y(t)) = c.Set P.(t) =
(xc (1), ye(2))-

In the sequel we are interested on the existence of periodic solutions of (H S).

Lemma 8.1.4. If there exists T > 0 such that P.(T) = P.(0), then x.(t), y.(t) is a
T -periodic solution,

Proof. By assumption, there exists 7 > 0 such that P.(T) = P.(0), namely
Xe(T) = x.(0) and y.(T) = y.(0). We now argue as in Example 4.2.5 in Chapter 4.
Setting X.(t) = x.(t + T), yc(t) = y.(t + T) we see that

Ye(t) =xct+T)=Hy(xe(t + T),yc(t +T)) = Hy(Xc (1), Je (1)),
)7(/;(1) = yé(t + T) = _Hx(xc(t + T)»yc(t + T)) = _Hx(;fc(t)vyc(t))

Moreover, X.(0) = x.(T) = x(.0) and y.(0) = y.(T) = y.(0). By uniqueness,
it follows that X.(t) = x.(t) and y.(t) = y.(¢) for all ¢, that is x.(t + T) =
Xc(t), ye(t +T) = yc(t). This means that (x.(t), y.(t)) is a T-periodic solution. m

We conclude this section stating, without proof, the following result.

Theorem 8.1.5. Suppose that A, # @ is a compact curve that does not contain
equilibria of (HS). Then (x.(t), y.(t)) is a periodic solution of (HS).

Example 8.1.6. Show that the solution of the ivp

x' =2x+3y, x(0)=0
y'==3x-2y,y0) =1

is periodic.

Here Hy = 2x + 3y and H, = 3x + 2y. We note that H, = 2x + 3y implies
that H = 2xy + g y2 + h(x), where we take /(x) as the constant of integration with
respect to y. Therefore, Hy = 2y + h'(x) = 3x + 2y yielding h = §x2 and hence
H(x,y) =2xy + 3y* + Jx%

The curve A, has equation gxz + 2xy + ; y? = c. Using the initial values, we
find ¢ = 3. The curve defined by ;x? + 2xy + 5y? = 3, or 3y? + 4xy + 3x? =
3, is an ellipse that does not contain the equilibrium (0, 0), see Figure 8.1. Hence the
solution of the ivp is periodic. ]
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Fig. 8.1. 3% + 4xy +3x2 =3

Remark 8.1.7. The next examples show that the assumptions that A, is compact and
does not contains equilibria cannot be eliminated.

(1) If A, is unbounded the solution (x.(?), y.(¢)) cannot be periodic because x.(¢)
and/or y,(t) are unbounded.

(ii) Consider H(x, y) = éyz — ;xz + ix“, which corresponds to the system

x' =y,
y =x—x3

For ¢ = 0, the curve Ag = {H(x, y) = 0} is compact but contains the singular point
(0,0). In Subsection 8.4.1 we will see that the corresponding solution x¢(¢), yo(?)
satisfies lim;_, + o Xo(#) = 0 and hence is not periodic. [

8.2 A prey-predator system

In this section we will study a system arising in population dynamics in the presence
of prey (e.g. sheep) and predators (e.g. wolves).

Let x(¢) > 0 denote the number of prey at time ¢ and y(¢#) > 0 the number of
predators at time ¢. It is assumed that prey has an unlimited food supply (e.g. grass)
while wolves may feed on sheep, for example. The change of the number of prey and
predators is modeled by the so called Lotka—Volterra' system

[ —_
{x =ax —bxy (V)

y = —cy +dxy

where a, b, ¢, d are strictly positive constants which depend on the skills of the prey

I Alfred J. Lotka (1880-1949); Vito Volterra (1860-1940).
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and predators, the environment and the challenges for predators to kill their prey, and
so on. The meaning of this model is, roughly, the following. In the absence of preda-
tors, the prey is assumed to follow the Malthusian model x’ = ax with @ > 0 and
hence it grows exponentially (recall that we are supposing that prey has an unlimited
food supply). The presence of predators reduces the increasing rate of prey by a fac-
tor of —bxy (say, the number of encounters between the sheep and the wolves). In
other words, the larger the population of the predators, the smaller the growth rate of

the prey.
The second equation models the growth rate of the predators. In the absence of
prey, the predators also follow a Malthusian model y’ = —cy, but with a negative

coefficient and they will eventually go to extinction due to lack of sufficient food
supply. The presence of prey modifies the growth rate of the predators by a factor
of dxy: the larger the number of prey, the greater the food supply for predators and
hence the bigger their growth rate.

Heuristically we can guess that the number of predators and prey oscillate. Nei-
ther of the two can increase beyond a certain threshold. For example, wolves cannot
increase after a threshold because when they become too many, they have to compete
harder for their food supply. But the sheep population cannot decrease too much, be-
cause the smaller their population, the smaller the survival rate of the wolf population;
and consequently the prey can prosper.

We want to prove this claim rigorously, by studying the behavior over time of the
number of prey and predators. Roughly, we try to find a constant of motion and use
it to deduce the properties of the solutions of (L V).

First of all let us find the equilibria of the system. Putting x’ = y’ = 0 it follows
that

ax—bxy =0
—cy +dxy =0.

Solving this system, we see that the solutions are either the trivial solution x = y =
Oorx =c/d,y =a/b.

These equilibria correspond to two constant solutions: x(¢) = y(¢f) = 0 and
x(t) = §. y(t) =} (recall thata, b, ¢, d are strictly positive). In other words, if the
initial number of prey is x(0) = § and the initial number of predators is y(0) = 7,
then their numbers remain the same for all £ > 0.

Next, let us show that (L V') possesses a one parameter family of positive periodic
solutions. Following what we did earlier, it would be useful to find the counterpart
of the energy constant, looking for a function H(x, y) such that H(x(¢), y(¢)) = k,
for some k € R.

Let us check that such a function is given by

H(x,y)=dx+by—clnx—alny, x>0,y>0.

To this end, take the derivative of H(x(¢), y(¢)) (for brevity we understand the de-
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pendence on ¢ without indicating it each time)

d ’ r 4 / a /
dtH(x,y)szx + H,y —(d—x)x +(b—y)y.

Substituting x’ = ax — bxy, y' = —cy + dxy, we deduce

d c a
H(x,y) = (d — ) (ax —bxy) + (b — ) (—cy + dxy)
dt X y
=(adx—ac—bdxy+bcy)+ (=bcy+ac+bdxy—adx)=0,
proving that H(x, y) = k, for some k € R, along the solutions of (L V).
As before, the solutions of (L V') are defined implicitly by

H(x,y)=dx+by—clnx—alny =%k, x>0,y>0,

provided, of course, that the set { H(x, y) = k} is not empty. Set

K=H(2,Z) =c+a—cln(2)—aln(2).

It is possible to show that the set { H(x, y) = k} is not empty and defines a compact
curve, surrounding the equilibrium (¢/d, a/b) if and only if k > «.

To give a sketch of the proof of this claim, we need the theory of functions of two
variables. The reader who is not interested in the proof, or does not have sufficient
background to understand it, may skip the details given in small letters below.

Let us study the surface z = H(x, y), x > 0, y > 0. The stationary points are the solutions
of Hy = 0, Hy = 0. Since
¢ a
Hx(x,y)=d - , Hy(x,y)=b—
X y

we find ,
di-“=0, »-" =0
y

Then the only stationary point is the equilibrium (fi , Z ) The Hessian matrix H”' of H is given

by
g — ((Hxx Hxy) _ cx720
Hyx Hyy 0 ay=2 )"
Then, for all x > 0, y > 0, the eigenvalues of H” (x, y) are both positive and this implies that

z = H(x, y) is a strictly convex surface. In particular, (2 , Z) is the unique global minimum

of H. Letting
K=H(;,Z) =c+a—cln(2)—aln((bl)

it follows that: (i) fork < «k theset{H(x, y) = k}isempty; (ii) fork = x theset{H(x,y) =
k} reduces to the equilibrium point; (iii) for all k& > « the equation H(x,y) = k is a level
curve of the surface z = H(x, y) and hence it defines a compact curve. This latter statement
is also a consequence of the fact that H(x,y) — 4o0as x — 01 or y — 01 as well as
X — +o00asy — 4oo.
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©

Fig. 8.2. The curves H(x,y) =k, k >«

Since, for all k > «, the curve { H(x, y) = k} is compact and does not contain the
equilibria of (L"), one shows as in Theorem 8.1.5 that it carries a periodic solution
of (LV).

If x(¢), y(¢) is a T-periodic solution of (L V), an important quantity is their mean

value 1 T 1 T
= t)dt, = t)dt.
vim o [Crwan = [

The following result shows that, in the mean, the number of prey and predators equal
the equilibria.

Theorem 8.2.1. One has

y= 8.1)

Proof. From the first equation we infer (recall that x (z) > 0)
T T
t)dt
/ ¥(ndr _ / (a —by(t))dt.
o x(0 0
Since x(T) = x(0), then

T 7
/0 x;t(i;it =Inx(T) —Inx(0) = 0.

It follows
T T aT
aT —b/ yt)ydt =0 — / y(@)dt = b
0 0

whence y = 7. Inasimilar way, using the second equation one proves that x = ;. m
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Let us consider the specific case in whicha = 2,b = 1,¢ = 3,d = 1. The
equilibrium is the point P = (3, 2) and the system becomes

x'=2x—xy
y' = =3y + xy.

Moreover
H(x,y)=x+y—3Inx—2Iny,

andk =5—3In3—-2In2=5—-1n9/4 > 0.
From the preceding equations it follows that we can distinguish 4 regions, see
Figure 8.3.

St ={x <3,y <2} where x’ > 0,y <O0;
ST+ ={x >3,y <2} where x’ >0,y > 0;
S+ ={x >3,y >2} wherex’ <0,y > 0;
ST ={x <3,y >2}where x’ <0,y <0.

Let us take the initial values to be Q = (2, 1). Letting k* = H(2,1) = 3 —31n2,
the equation H(x,y) = k* defines a closed curve y* which carries a solution
x*(t), y*(t) of the system, such that x*(0) = 2, y*(0) = 1.

Referring to Figure 8.3, we fix the points A, B, C, D on y*. Let x,,, Xx3s be such
that B = (xar,2), D = (xm,2) € y* and let yy,, yar be suchthat A = (3, y),C =
(3, ym) € y*. To find x,,, xp it suffices to solve the equation H(x,2) =3 —31In2,
that is

xX+2—-3Inx—-2In2=3-3In2 — x-—-3lnx=1-1In2.

Fig. 8.3. The curve y*
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Similarly, y,,, yam are the solutions of H(3, y) = 3 — 31In 2, namely
34 y—-3In3-2lny=3-3In2 =— y—-2Iny=3In3-3In2.

The curve y* is contained in the rectangle [X;,, xar] X [V, yar] (the dotted box in Fig-
ure 8.3) and x*(¢), y*(¢) are oscillating functions with minimal amplitudes X, Vs,
respectively, and maximal amplitudes xpz, ypr, respectively. Notice that x,,, > 0 as
well as y,, > 0.

In our model, the initial value Q = (2, 1) belongs to S*~ where x*(¢) increases
while y*(¢) decreases. The point (x*(¢), y*(z)) “moves” on y* and at a certain time
t; itreaches A, where one has x*(#;) = 3 and y*(t;) = y,. At this time, the number
of prey is enough to let the predators increase. Actually, for # > #; one enters into the
region ST where both x*(¢) and y*(¢) increase, even if with different slopes. At
some ¢ = t, the point on y* reaches B: the number of prey achieves its maximum
xps while y*(z2) = 2. Now the number of wolves is sufficiently large to cause the
sheep population to decrease: for ¢ > fp, x*(t) decreases while y*(¢) increases until
the point on y* reaches C at a time 3 such that x*(¢#3) = 3 and y*(t3) = yp. But
the number of predators cannot increase without any limit because their big numbers
would reduce the population of the prey and thus cause a shortage of food supply.
As a consequence, the number of predators decays. For a while, prey still decreases,
but at a lower rate. At t = t4 where x*(t4) = X, y*(t4) = 2, the point on y* is
D = (x;,,2) and the wolves are so few that the sheep population starts increasing
until (x*(¢), y*(¢)) once again reaches the starting initial value Q = (2, 1).

8.2.1 The case of fishing

The original research of Volterra was carried out in order to understand why, after
the end of the first world war, in the Adriatic sea the number of small fish, like sar-
dines (the prey) increased while the number of big fish (the predators) decreased. The
explanation was that the phenomenon was due to the fact that after the war there was
increased fishing activity. Roughly, fishing kills some prey and some predators and
this modifies the model as follows

x'=ax —bxy —ex = (a—€)x —bxy
Yy =—cy+dxy—ey =—(c+e¢€)y+dxy.

The new equilibrium is

c+e c a—e€ a
T g T4 YT b T
and, according to (8.1), the number of sardines and predators are, in the mean,
c a
x€>x:d, y5<y:b.

So, according to the Lotka—Volterra model, a small increment of fishing causes, in
the mean, a growth of the sardines and a smaller number of predators.
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8.3 Phase plane analysis

In this section we study the nonlinear system

x'=y
{y’ = /@) (82

where f € C°°(R). In the sequel it will be always understood that the solutions of
(8.2) are defined for all € R.

The plane (x, y) is called phase plane and the study of the system (8.2) is called
phase plane analysis.

System (8.2) is a hamiltonian system with hamiltonian (called here E) given by

E(y) = 3~ Fo),

where F is such that F/(x) = f(x). Actually, E, = y and Ex = — f(x). Note that,
in this case, the equilibria of the hamiltonian system are the points (xg, 0) € R? such
that f(x¢) = 0, that correspond to the constant solutions x(¢) = xg, y(t) = 0 of
(8.2).
The hamiltonian E is the sum of the kinetic energy é y2 =
energy —F(x) and is therefore the total energy of the system.
From Lemma 8.1.1 proved in Section 8.1 it follows:

1 x> and the potential

Lemma 8.3.1. If (x(¢), y(»)) is a solution of (8.2), then E(x(t), y(t)) is constant.

Forc e R, let

Ac :={(x,y) e R?: E(x,y) = ¢} = {(x,y) e R?: ;yz—F(x) = c}.

Remark 8.3.2. The following properties hold:

(1) Ac is symmetric with respect to y: (x, y) € A, if and only if (x,—y) € A..
(i1) A point (x, 0) belongs to A, if and only if F(x) = —c.

(iii) A point (0, y) belongs to A if and only if ¢ > 0. In this case one has y = v/2c.
(iv) If a point (xg, yo) € A¢, then ¢ = ;yg — F(xp).

The proof is left to the reader as an easy exercise. L]

Lemma 8.3.3. If A, does not contain any equilibria of (8.2), then it is a regular
curve in the phase plane, in the sense that in a neighborhood of each point (xg, yo) €
A, A is either a differentiable curve of equation y = ¢(x) or x = ().

Proof. (Sketch) One has ¢ = ¢y = é y& — F(x0) and hence E(x,y) = co yields
y2 = 2F(x) + 2co. Since (xg, yo) is not singular, then either yo # 0 or yo = 0
and f(x¢) # 0. In the former case there exists a neighborhood U of x¢ such that
2F(x) +2co > Oforall x € U and thus y = :I:\/2F(x) + 2¢g, x € U, where the
sign =+ is the same as the sign of y¢. This shows that in U the set A, is a curve of

equation y = ¢(x).
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If yo = 0, then y2 = 2(F(x) — F(xo)), namely F(x) = ;yz + F(xp) Since
(x0,0) is not singular, then F'(xo) = f(xo) # 0. By continuity we infer that
F'(x) # 0in aneighborhood V of x¢. Then F is invertible in V with inverse ®, and
this yields x = CID(;y2 + F(x¢)).Hencein V A, is acurve of equation x = ¢ (y). m

If E(x,y) = x> —y%?andc = 0, Ag = {x? — y? = 0} is the pair of straight
lines x + y = 0 and x — y = 0 and cannot be represented by any cartesian curve
in any neighborhood of (0, 0), which is the equilibrium of the corresponding system
x' = =2y, y’ = —2x. This shows that the preceding Lemma can be false if A,

contains an equilibrium.

8.4 On the equation x” = f(x)

In this section we deal with the second order equations of the form x” = f(x). The
importance of this class of differential equations is linked e.g. to the Newton Law.
Actually, x”(¢) is the acceleration of a body with unit mass of position x(¢) at time
t and f(x) is the force acting on the body, depending on its position.

Here we focus on periodic, homoclinic and heteroclinic solutions, see definitions
later on. Boundary value problems such as x”" = f(x),x(a) = x(b) = 0, will be
discussed in Section 13.1 of Chapter 13.

Let us start by proving

Lemma 8.4.1. The second order equation

x" = f(x) (8.3)
is equivalent to the system
{xl iy (8.4)
y' = fx). '

Moreover, the initial conditions x(0) = x¢, y(0) = yq for (8.4) correspond to the
initial conditions x(0) = xq, x'(0) = yq for (8.3).

Proof.  Suppose that x, y is a solution of (8.4), with x(0) = xg, y(0) = yo. Then
x" = y implies x” = y’ = f(x) and x(0) = xo, y(0) = yo imply x(0) = xo,
x"(0) = y(0) = yo. This shows that (8.4) implies (8.3).

Now, suppose that x” = f(x). Thenif we let x’ = y, we obtain y’ = x” = f(x)
and hence the system (8.4). Furthermore, the initial conditions x (0) = x¢, x'(0) =
yo imply x(0) = xo, y(0) = x"(0) = yo. u

As a consequence of the preceding Lemma we can apply to x” = f(x) all the
results of the preceding section. In particular:

1. The total energy |
E(x.y) =, = F(x), y=x
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c>0 y
c=0
-1<c<0

Fig. 8.4.2y2 —2x%2 + x* =¢

is constant along the solutions of x” = f(x). We let x.(¢) denote the solution of
x" = f(x) with energy ¢, carried by E = c.

2. If E = ¢ is a closed curve which does not contain any zero of f, then it carries
a periodic solution of x” = f(x). Notice that the zeros of f are the equilibria of
the system (8.4).

In the sequel we will discuss two specific examples that show the typical features
of the arguments.

8.4.1 A first example: The equation x” = x — x3

Consider the equation

x"=x—x3. (8.5)

Here f(x) = x — x> and hence there are 3 equilibria: 0, 4-1. The conservation of the
energy becomes

E(x,y)=2y*-2x>+x*=¢, y=x" (8.6)
Notice that E(x, y) = c is symmetric with respect to x and y. Writing (8.6) as

c+2x%2 — x4
o
Y 2

it follows that (see Fig. 8.4):

() E,y) =2y? = cyields y = :I:\/c/2. Hence ¢ > 0. Moreover, if ¢ = 0,
then y = 0.
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(i) If y = 0, then E(x,0) = ¢ becomes x* — 2x2? = c. Plotting the graph of the
function 2x2 — x* we see that 2x2 — x* < land 2x2 — x* = 1 for x = +1.
Then it follows that ¢ > x* — 2x2 > —1. Moreover, for ¢ = —1, E(x,0) = 1
provided x = +£1.

(iii) Forallc > 0, E(x, y) = c is a closed curve that crosses both x = 0and y = 0.
(iv) Forall -1 < ¢ < 0, E(x, y) = c is the union of two closed curves that do not

cross x = 0.

(1) Periodic solutions. If ¢ > —1, ¢ # 0, then according to (iii—iv) the curve
E(x,y) = cisclosed and then x.(¢) is periodic. We have proved

Theorem 8.4.2. If ¢ > —1, ¢ # 0, the equation x" = x — x> has a periodic solution
xc(t) such that E(x.(t), x.(¢)) = c.

(2) Homoclinic solutions.

Definition 8.4.3. We say x(¢) is a homoclinic to x¢ (relative to the equation x” =
f(x)), if x(¢) is a solution such that lim;_, + o, X () = X.

We are going to show that x” = x — x3 has homoclinics to 0.
Let ¢ = 0 and let xo+ (t) > 0 be the solution of (8.5) carried by the branch of

E(x,y)=2y2—2x>+x*=0, y=x'

contained in the half plane x > 0. This curve crosses the x axis at x = V2 and,
without loss of generality, we can assume that x('f (0) = +/2 (and (x(‘)" ) (0) = 0.).
Recall that x” = x — x3 is equivalent to the system

x'=y
y’:x—x3

whose solution is denoted by xg’ (1), yg' (t) and satisfies E(x(',F (1), ya' (1)) = 0. For
all t < 0, the point (x(‘)" (1), y(')1r (t)) remains in the first quadrant. Then y; (t) > 0 for
t < 0 and hence gz x{f(t) = yJ(t) > 0. Similarly, jt xg'(t) = yg'(t) < Oforz > 0.

As a consequence, x(')|r () is decreasing for ¢t > 0 and hence converges to a limit
Last - 4ooand L < x(‘,"(O) = /2. Moreover, yg'(t) = ;t x(',"(t) — 0. From the
conservation of energy we deduce

E(xq (1), 5 (1)) = 2(yg (1)* = 2(xq (1)* + (x5 (1))* = 0.
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Passing to the limit as ¢ — +oo we infer that 0 — 2L2 + L* = 0, that is L* = 2L2.
Since L < +/2, it follows that L = 0, namely

li S =o.
A0 ()
Similarly, as # — —oo, one has
: +07) —
tl&r_noo Xq (1) = 0.
Moreover, E(x,y) = 0 is symmetric with respect to x and y and hence x; () =
—x{f (¢) is the solution carried by the branch contained in the half plane x < 0. We

have proved:

Theorem 8.4.4. Equation x” = x — x3 possesses one positive and one negative
symmetric homoclinic to 0.

Notice that xa—L (t + h) are also homoclinics to 0, for all # € R. Actually, according to
Lemma 8.0.1, x (¢ + h) is a solution of x” = x —x3 and lim;_, 4 o0 x5 (t + 1) = 0.

Remark 8.4.5. In general, if x” = f(x) has a homoclinic to xg, then x¢ is an equi-

librium. L]
8.4.2 A second example: The equation x” = —x + x3
Consider the equation
X" =—x+ x3. (8.7)
X
t
(0}

Fig. 8.5. Homoclinic solutions of x” = x — x3
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As before, there are 3 equilibria 0, =-1. The equation E(x, y) = ¢ becomes
22422 —x*=¢, y=x

The corresponding curves, which are symmetric with respect to x and y, are plotted
in Figure 8.6. If 0 < ¢ < 1, then E(x,y) = c is a closed curve surrounding the
origin and hence the corresponding solution is periodic.

The curve E(x,y) = c passes through (%1, 0) provided ¢ = 1. This gives rise
to a new type of solutions, as we are going to see. Let A C {E(x,y) = 1} be the
arc contained in the upper half plane y > 0, joining the points (—1,0) and (1, 0).
The corresponding solution X () is strictly increasing, because y > 0. Repeating the
arguments carried out in the homoclinic case, one shows that

lim X(t) = —1, lim X(t) = 1.
t—>—00 t—>+o00

Of course, for all 1 € R, any X(¢ + &) as well as —=X(¢ + h) is also a solution of
x" = —x + x3 with the property that they tend to different limits as t — —oo and
t — +o0. These solutions that join two different equilibria are called heteroclinics.

We can state

Theorem 8.4.6. The equation x" = —x +x3 possesses infinitely many heteroclinics.

Fig. 8.6. 2y2 4+ 2x2 —x* = c: ¢ = 1 (red); 0 < ¢ < 1 (black); ¢ > 1 (blue)
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Fig. 8.7. Symmetric heteroclinics of x” = —x + x3

8.5 Exercises

1. Find the equilibrium of

xX'=x+1
y =x+3y—1.

. Find a, b such that the equilibrium of
{x’ =x+3y+a

y=x—-y+b
is (1,2).
. Find &, B such that
X' =ax+y
y'=-2x+By

is hamiltonian.

. Discuss the family of conics x? + Bxy + y2 = ¢ in dependence on B, c.

5. Discuss the family of conics Ax? — xy + y2 = ¢ in dependence on 4, c.

6. Find C such that the system

x' =x+y
y =-2Cx—y
has no periodic solution but the equilibrium x(¢) = y(¢) = 0.

. Show that if AC < 0 then all the solutions of the system

x' =Bx+Cy
y' = —Ax — By

are not periodic.



10.

11.

12.

13.

14.

15.

16.

8.5 Exercises

. Find B such that the system

x' = Bx + 3y
y' =—-3x—By

has periodic solutions.

Show that the solution of the system
/

X' =x+Yy
yo=—x-y
x(0) =1
y(0) =0

is periodic.

Show that the solution of the system

x' =x-—6y
yo==2x-y
x(0) =1
y(©0)=0

is unbounded.
Draw the phase plane portrait of the pendulum equation
Lx" + gsinx =0

and discuss the behavior of the solutions.

Find the equilibria of the Lotka—Volterra system
x' =x-—-xy
y'=-y+xy.

Find the nontrivial equilibrium (x, y¢) of
x'=2x—"Txy —ex
y'=—y+dxy—ey.

Prove that there exists a periodic solution of the system
x' =2x —2xy
Yy ==y +xy

such that x + 2y — 4 = In(xy?).

Prove that there exists a periodic solution of the system
x' =x—4xy
y'==2y+uxy

such that x + 4y — 4 = In(x?2y).

Let x(¢), y(t) be a T-periodic solution of the Lotka—Volterra system

{x’ =x3-y)
y' =y =95).

Show that ;. fOT x(t)dt = 5and }. fOT y(t)dt = 3.
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17.
18.

19.
20.
21.

22.

23.
24.
25.

26.

27.
28.

29.
30.
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Show that U(t) = +/2/ cosh is a homoclinic of the equation x” = x — x3.

Let xo() be a homoclinic of x” = x — x3. Show that x{’(t) — 0 as 1 — %o0.
Extend the result to any derivative of x(¢).
Prove the preceding result for the heteroclinics of x” = —x + x3.

Show that the solution of x” = —x + x3, x(0) = 0, x'(0) = ; is periodic.

Discuss the behavior of the solution of x” = —x + x3 such that x(0) =
1,x'(0) = 0.
Discuss the behavior of the solutions x” = —x + x3 such that x(0) =
0,x'(0) = 1.

Show that the solution of x”” = x —x3 such that x(0) = 1, x’(0) = 1 is periodic.
Show that the solution of x” = x —x3 such that x (0) = 2, x’(0) = 0 is periodic.

Show that the solution of x” = x — x3 such that x(0) = 1/+/2,x'(0) = 0 is
periodic.

Show that for all @ # 0 the solution of x” + x + 8x” = 0, x(0) = 0, x'(0) = a
is periodic.

Discuss the behavior of the solution of x” + x + éxz =0,x(0)=1,x'(0) = 0.

Show that the solution of x” —x 4+ 3x% = 0, x(0) = ;, x’(0) = 0 is homoclinic
tox =0.

Show that the solution of x” — x + 3x% = 0, x(0) = i, x"(0) = 0 is periodic.
Discuss the behavior of the solution of x” — x 4+ 3x2 = 0, x(0) = 0, x’(0) = 1.
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Sturm Liouville eigenvalue theory

In this chapter we deal with Dirichlet boundary value problems as

x"(@)+ A@)x'(t) + B(t)x(t) + AC(t)x(t) =0
x(a) =0
x(b)=0

where a < b, A is a real parameter and 4, B, C are continuous functions in [a, b].

A(s)ds

Multiplying the equation by the integrating factor p(t) = elo one finds

pO)X"(t) + p()AD)X'(t) + p(t)B(t)x(t) + Ap(t)C(t)x(t) = 0.
Since p’ = Ap, then
[px'] = Apx’ + px” = Apx" + p(—Ax' — Bx —ACx) = —pBx — ApCx.

Hence, setting

r(@) =pOB),  q@) = pOCQ),

the equation becomes
d dx
dt [p(t) dt:| +r@)x(t) + Aq(t)x() = 0.

From now on we will consider this equation where p(¢) > 0 and it is continuously
differentiable. We will also assume that ¢(¢) # 0. Moreover, in the above equation,
there are two terms involving x. We simplify the equation by letting r(¢) = 0. This
is equivalent to letting B(t) = 0.

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
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9.1 Eigenvalues and eigenfunctions

One of the solutions of

{ (px/)/'i'qu :0 il’l [a,b], (91)

x(a) =x(b)=0
is obviously the trivial solution x(¢) = 0.

Definition 9.1.1. We say that A is an eigenvalue of the system (9.1) if it has a non-
trivial solution, called an eigenfunction, corresponding to A.

Remark 9.1.2. If ¢(t) is an eigenfunction corresponding to an eigenvalue A, so is
co(t) forall ¢ # 0. L]

Theorem 9.1.3. If q(t) > O, then the eigenvalues of (9.1) are strictly positive.

Proof. Let A be an eigenvalue of (9.1). Multiplying the equation by x(¢) and inte-
grating on [a, b] we find

b b
/ (pOx@®)) x@)dt + A/ q(t)x?(t)dt = 0. 9.2)
Integrating by parts, the first integral becomes
b b
/ (p()x' (@) x(t)dt = (p(b)x'(0))x(b) — (p(a)x'(a))x(a) —/ p(OX'(0)x'(t)dt.

Since x(a) = x(b) = 0 we infer

b b
/ (p()x(0))x(1)dt = — / p()x(0)2dt.

Since p(t) > 0 and x(¢) # 0, this integral is strictly negative. From (9.2) it follows

that A fab q(t)x2%(t)dt > 0. Taking again into account that ¢(¢) > 0 and x(z) # Ot
follows that A > 0. L]

Theorem 9.1.4. Let Ay # Ay be two different eigenvalues of (9.1) and denote by
©1(t), @2(t) their corresponding eigenfunctions. Then

b
f (Oer ()ga(0)d1 = 0.

Proof. Multiplying (p¢})’ + A1g¢1 = 0 by ¢, and integrating by parts from a to
b, we obtain

b b
/ poiohdt = / Ao (ea(D)g ().
a a
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Similarly, multiplying (p¢5)" + A2g@> = 0 by ¢; and integrating by parts from a to
b, we obtain

b b
/ poiohdt = / Aapr (Vg2 (D)q (1)1
a a

Therefore,

b b
[ Mwl(t)wz(t)qa)dt=[ A201(Dp2(1)gq (1)d1
which implies

b
/ o1 (Dp2(g ()t = 0

if we assume that A1 # A,. n

Corollary 9.1.5. Eigenfunctions corresponding to different eigenvalues are linearly
independent.

Proof. If ¢, = gy for some real number o # 0 we would have

b b
/ q@)p1()p2(1)dt = oe/ q()@i(t)dt =0,

a

a contradiction. n

9.2 Existence and properties of eigenvalues

Consider the case in which p = ¢ = 1. The equation becomes x” + Ax = 0,
whose general solution is x (1) = ¢; sin v/A ¢ + ¢ cos +/A ¢. Imposing the boundary
condition x(a) = x(b) = 0 we find the algebraic system in the unknowns cy, ¢,

crsinvAa+ cacosvVia =0
c1sinvVAb + cycos VAb = 0.

The system has the trivial solution ¢; = ¢, = 0. According to Kramer’s rule, the
system has a nontrivial solution if and only if the determinant of the system is zero,
that is

sinvAa cosvAa

sin /A b cos /A b = sinvAacos VAb —cos vVAasinVAb

=sinvVA(a—b) =0

2
whence x/)t(a—b) =kn,k =1,2,... Then for any A\ = (bkfa> Jk=1,2,...,
the problem has nontrivial solutions and hence A are the eigenvalues we were look-
ing for.
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Example 9.2.1. The eigenvalues of

xX"+Ax=0
x(0)=x(r)=0

are A\, = k%, k =1,2,---. The general solution is xx(#) = cysinkt + ¢y coskt.
The condition xz (0) = 0 yields ¢c; = 0 and hence the eigenfunctions are ¢y () =
Csinkt, C # 0 a constant. ]

It is possible to extend the previous result to the general equation (9.1) yielding

Theorem 9.2.2. Suppose that q(t) > 0. Then there exist infinitely many positive
eigenvalues Ay of (9.1) such that 0 < A1 < Ay < -+ < Ap < Agyq < ---. More-
over, A — +o00.

Proof. (Sketch) We outline the proof in the general case. Let x, 4 (¢) be the solution
of the initial value problem

(p)x'(1)) + Ag(t)x (1) =0
x(a) =0

x'(a) = p.

If p # 0, then x,, 5 (¢) # 0. Thus if x, 5 () has a zero at t = b, then x, 4 (¢) is an
eigenfunction.

Notice that the solution is oscillatory. Denoting by ax (p, A) the k-th zero of x,, 5,
let us solve the equation ax (p, A) = b. It is possible to show that, for each fixed p,
the function of A o (p, A) is continuous and increasing (see the graph plotted in the
next figure). Thus for each k = 1,2, ..., the equation o (p, A) = b has a solution
giving rise to an eigenvalue Ax. Moreover, one proves that a1 (p, A) > az(p,A) >
...>0og(p,A) > ... and this implies that A1 < A, < ---. m

We will always assume that ¢ () > 0 and denote by A [¢] the eigenvalues of (9.1)
and by ¢ (¢) a corresponding eigenfunction.

The smallest eigenvalue A1[g] (also called the first or the principal eigenvalue)
has a “variational characterization” that we are going to outline.

Multiplying (p¢})’ + A1[g]lger = 0 by ¢1 and integrating by parts, one finds

b b
- [ e+ ailal [ agiod = o
a a
It follows (recall that we are assuming ¢ (¢) > 0)

12 p()gP(t)dt
12 g2 (n)dt

Let € denote the class of functions ¢ € C'(a, b) such that ¢(a) = ¢(b) = 0.

gl =
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A
Fig. 9.1. Plot of aj (p, A) with p > 0
Theorem 9.2.3. One has
b 22
Ailgl = f“bp([)(p (t)dt, Vo et (9.3)
J2 a()¢?(1)dt
Moreover, .
2
A1[g] = min |:f“bp(t)¢ (t)d1 1P € '€:| .
J2 a®$2(t)dt

The proof requires advanced topics and is omitted.
The inequality in the preceding Theorem is known as the Poincaré inequality. The
quotient

_ I ()¢
J7 ag> )

on the right-hand side is usually called the Rayleigh Quotient.

R()

Example 9.2.4.If p = ¢ = 1,a = 0,b = 7, the problem becomes x” + Ax = 0,
x(0) = x(m) = 0 whose eigenvalues are Ay = k2,k = 1,2,..., see Example 9.2.1.
Thus one has

/ﬂ P> (1)dr < /ﬂ ¢ (t)dt, Vg ete. n
0 0

Theorem 9.2.5. Let Ai[q;], i = 1,2, be the eigenvalues of (p(t)x’) + Aqi (t)x = 0,
x(a) = x(b) = 0. If q1(t) < q2(¢) for all t € [a.b], then Ai[q1] = Aklqz] for all
k=12,....
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Proof. We prove the result for k = 1, using its variational characterization stated in
the preceding theorem. Since 0 < ¢1(t) < ¢»(¢) on [a, b], then for all ¢ € € one has

2 d b 2 d
Ri(@) = J2 g2 (0)d1 . f,z PO _
[ ae2de [ x(0¢2(0)dt

Since this inequality holds for all ¢ € €, the same holds for the minima of both sides,
minima that are achieved, according to Theorem 9.2.3. Then we get

A = min R > min R =1 ,
1lq1] min 1(9) = min 2(¢) = Ailg2]
completing the proof. [

Corollary 9.2.6. If 0 <m < q(t) < M on [a, D], then

2 2

b4 < lq] < T
Mpb—a)? ="M= — a2
2
Proof. One has A{[M] < A1[q] < A1[m]. Since A;[m] = d and A [M] =
m(b —a)?
2
M _a)z,the result follows. [

Example 9.2.7. Let us show that the boundary value problem

X"+ Ax—x3) =0
x(0)=x(mr) =0

has only the trivial solution if 0 < A < 1. Multiplying the equation by x(¢), we get
xx” = —A(x? — x*) and hence

/xx”dt A/ (x%2 — x*)dt.
0

Integrating by parts the left integral and taking into account the boundary conditions
x(0) = x(;r) = 0 we infer

§ " _ g 2
/(; x()x"(t)dt = /0 x"“(t)dt
and thus
T o _ ) _ 4 )
/0 x“(t)dt _A/O (x“(t) — x*(¢))dt 51/0 x“(t)dt.

If, by contradiction, there is A, with 0 < A < 1, such that the boundary value problem
has a solution x(¢) # 0, then

/On x?(t)dt < /On x2(t)dt.
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But the Poincaré inequality, in particular Example 9.2.4, yields fon x2(t)dt <
f]t 2 . .
o X'“(t)dt, a contradiction. m

Finally, we state, without proof, a property concerning the zeros of eigenvalues,
that can be proved as an exercise in the specific case when p = g = 1.

Theorem 9.2.8. Any eigenfunction @y (t) of (9.1) has exactly k — 1 zeros in the open
interval (a,b). In particular, ¢1 does not change sign in (a, b).

Remark 9.2.9. In this chapter we have considered only the Dirichlet boundary con-
ditions x(a) = x(b) = 0. It is worth mentioning that one could also consider the
Neumann boundary conditions x'(a) = x'(b) = 0, or else general mixed boundary

conditions
arx(a) + Bi1x'(a) =0
{azX(b) + B2x'(b) =0

(&)

is nonsingular, namely its determinant is different from zero. These cases require
some changes. Some of them are proposed as exercises. [

where the matrix

9.3 An application to the heat equation

The heat equation
Ju . 9%u ©.4)
a x2 ’
is a partial differential equation that describes the variation of the temperature u (¢, x)
at time ¢ > 0 and at a given point x of a rod of length £ = , that is for x € [0, 7].
Notice that here x is an independent variable, in contrast with the notation used be-
fore.
Given

f(x) =" fisinkx,

k=1

we look for u satisfying the initial condition
u(0,x) = f(x),  xel0,x], 9.5)

that prescribes the temperature at ¢t = 0. Moreover, we require that the temperature
is zero at the extrema of the rod, that is

u(t,0) =u(t,7) =0, Vi>0. (9.6)

Let us point out that u is not identically zero provided f is not, which we assume
throughout in the sequel.
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Let us look for a solution of (9.4) by separation of the variables, namely seek-
ing u(t, x) as a product of a function of ¢ and a function of x, that is in the form

u(t,x) = ¢(t)y¥(x). Since
2

u , °u ”
o = POV, L =gy ()

one finds

P'(OY(x) = ()Y (x). 9.7

This equation holds for every ¢ > 0 and all x € [0, x]. If x¢ is such that ¥ (x¢) # 0
then, setting

V' (xo)
A=— ,
¥ (xo)
we find
P'(1) +Ap(t) =0,  Vi=0. (9.8)

Similarly, if #¢ is such that ¢ (zo) # 0, then from (9.8) it follows that

__¢' )
#(t0)
and hence (9.7) implies
¥ (x) + A (x) =0, Vx €0, n]. 9.9

Conversely, if ¢(z), ¥ (x) satisfy (9.8) and (9.9) for the same constant A, then
¢ ()W (x) verifies (9.7) (recall that u(¢, x) = ¢(¢)¥(x) is not identically constant).
Moreover, u(z, x) is not identically zero whenever both ¢ (¢) £ 0 and ¥ (x) # 0.

Next, the boundary condition (9.6) yields ¥ (0) = ¥ () = 0. To have a nontriv-
ial solution of (9.9) with these boundary conditions, A has to be an eigenvalue of the
problem ¥ + Ay = 0, ¥(0) = ¥ (xr) = 0, namely A, = k2, withk = 1,2,....
Thus nontrivial solutions 1 have the form v (x) = Ag sin(kx), Ay constants and k
any positive integer.

For A = k2 > 0 the equation ¢’ +k2¢ = 0vyields ¢(t) = Bre %!, By constants,
and thus, setting Cy = Ay By, we find that any

up(t,x) = Cke_kzt sin(kx), k=1,2,...

is a solution of the heat equation (9.4) satisfying the boundary conditions (9.6). Of
course, any sum of these uy is a solution and so is also the infinite series

o0 o0
u(t,x) = Z Ce H! sin(\/kkx) = Z Cke_kzt sin(kx),
k=1 k=1

provided the series is uniformly convergent, so that it can be derived term by term.
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Finally, we can find the constants C, using the initial condition (0, x) = f(x),
that is

Cisin(kx) = f(x) = Z Jr sin(kx)

1 k=1

WK

k

which implies that Cy = f.
In conclusion, a solution of (9.4) satisfying (9.5) and (9.6) is given by

u(t,x) = Z fi e sin(kx).
k=1

Example 9.3.1. If f(x) = sinx + sin2x, one hasthat f; = f, =1, f; = 0forall
i # 1,2 and hence the series reduces to a finite sum, namely

u(t,x) = e’ sinx 4+ e * sin 2x. n
We complete this section by proving the following uniqueness result.

Theorem 9.3.2. The solution of (9.4) is uniquely determined by the boundary con-
ditions (9.5) and the initial condition (9.6).

Proof. If u, v are two solutions of the preceding problem, then z = u — v satisfies
the heat equation

0z 02z
a  ox2
and the conditions
{Z(O,x):O, Vxe€l0,r]
z(t,0) =z(t,mr) =0, Vr=>0.

The theorem follows if we show that z (¢, x) = 0. Let us set

1(t) =/ z2(t, x)dx.
0
We have

T

I'(t) = 2/071 z(t, x)z (¢, x)dx = 2/0 Z(t, X)Zxx (2, X)dx.

Integrating by parts and taking into account the boundary conditions z(¢,0) =
z(t, ) = 0, we find

I'(t) = -2 /: z2(t, x)dx.

If, by contradiction, z # 0 we have I(¢) > 0 and I’(t) < 0 which implies
0 < I(t) < 1(0). Since z(0, x) = 0 for all x € [0, ], then

1(0) = /Oﬂ z2(0,x)dx =0

and we get a contradiction. ]
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9.4 Exercises

hn B~ W N =

10.
11.
12.

13.

14.
15.
16.

. If ¢ > 0, find the eigenvalues of x” + Aax = 0, x(0) = x(b) = 0.

. If B > 0, find the eigenvalues of x” + Ax = 0, x(0) = x(b) = 0.

. Estimate the eigenvalues of x” + A(1 4+ ¢)x = 0, x(0) = x(1) = 0.

. Estimate the first eigenvalue of x” + Aefx = 0, x(0) = x(2) = 0.

. Show that the first eigenvalue A; of (#2x’) + Ax = 0, x(0) = x(7) = 0 is

smaller or equal to 2.

.If0 < a < p(t) < B in [a,b], estimate the first eigenvalue A of (p(¢)x’)" +

Ax =0,x(a) =x(b) =0.

Estimate the first eigenvalue A; of (p(¢)x’) + Ag(t)x = 0, x(a) = x(b) = 0,
under the assumption that 0 < & < p(¢) < fand0 <m < g(t) < M in [a, b].

. Let Aq[g], resp. g [¢], be the first eigenvalue of (p(¢)x’)’ + Ag(t)x = 0, resp.

(p()x")" + Aq(t)x = 0, with the boundary conditions x(a) = x(b) = 0. If
p(t) <p(t) forallt € [a, b], show that A1[g] < A1[q].

. Show that the eigenvalues of x” + Ax = 0, x’(a) = x'(b) = 0 cannot be strictly

negative.

Find the eigenvalues of x” + Ax = 0, x’(0) = x'(7) = 0.

Find the eigenvalues of x” + Ax = 0, x(0) = x'(%) = 0.

Let x(¢) be a solution of the nonhomogeneous problem x” + Arq(t)x = h(t),
x(a) = x(b) = 0, where A = Ag[q] is the n-th eigenvalue with corresponding
eigenfunction ¢y . Prove that fab h(®)er(t)dt = 0.

Setting L(u) = (p(t)u’) + r(t)u, show that L(u)v — L(v)u = (puv’ —
vu’))’. Deduce that if u(a) = v(a) = u(b) = v(b) = 0, then fab L(u)vdt =
J? L(wyud.

Solve uy = Uy, u(0,x) = o sinx, u(t,0) = u(t,w) = 0.

Solve u; = c?uy, with the boundary condition u(¢,0) = u(t, 7) = 0.

Solve u; = uyy, with the boundary condition u(z,0) = u(t, L) = 0.
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Solutions by infinite series and Bessel functions

10.1 Solving second order equations by series

It should be clear by now that the methods for solving differential equations thus far
have been limited and applicable only to certain types of equations.

In this chapter we discuss methods of finding solutions of linear differential equa-
tions by using power series. The basic idea is to substitute, formally, an infinite power
series x (1) = " axt* into the equation and use the fact that 3" brt% = 3" ¢t if
and only if by = ¢ for all k € N. In this way, one tries to find a recursive formula
that allows us to determine the coefficients of the desired series. One assumes that
the series is absolutely convergent, that is analytic, in some interval I so that it can
be differentiated term by term. After determining the coefficients of the power series,
one tries to find its radius of convergence by some method such as the ratio test.

10.2 Brief review of power series

Recall the following properties of power series.
1. Shifting indices: one can easily verify that

n+1

n n—2
Zakl‘k = Zakfltk_l = Zak+2tk+2-
3 4 1

Such shifting of indices is important in calculating series solutions. It is easy to
remember that in order to increase (or decrease) the indices in the summation by
m, we must decrease (or increase) the limits of summation by m.

2. With each power series

> ar(t —10) (10.1)
k=0
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is associated a radius of convergence R, R > 0, with the following properties:

(a) R > 0 and the power series (10.1) is absolutely convergent if |t — fo| < R
and it is divergent if |t — #9| > R. For |t — tp] = R, it can go either way
depending on the particular power series. In this case we say that the interval
of convergence is |t —ty| < R.

(b) R = 0 and the power series converges only for ¢ = 1.

(¢) R = oo and the power series converges for all ¢, with the interval of conver-
gence (—o00, 00).
3. If a power series is absolutely convergent, then it is convergent. The converse is
false.

4. When a function f(z) has a power series representation at t = f(, with a posi-
tive radius of convergence, then f(¢) is said to be analytic at 1 = #y. In such a
case, the series can be differentiated term by term infinitely many times, with the
derivatives having the same radius of convergence.

5. An analytic function has a unique power series representation, within its radius of
convergence, which is given by the Taylor series

X r(k)
ro=3" "a-wr
k=0 ’

For example, in order to show that

1

o0
L =Y =147+
0

is valid for —1 < ¢ < 1, instead of using the Taylor expansion, we simply use long
division and, dividing 1 by 1 — 7, obtain

1 A,
1_t=2:t.
k=0

In order to find its interval of convergence, we use the ratio test. Thus we have

tk+1

lim = |t].
Jm |t

This shows that the radius of convergence is R = 1 and hence
1 o0
k
= t

for —1 < ¢ < 1. Furthermore, this representation, in terms of powers of ¢, is unique.
So, if we use the Taylor expansion for f(¢) = 1/(1 —t) around ¢t = 0, we will get
the same series. Lastly, we note that for # > 1, the above series representation does
not hold. But we can find its Taylor expansion around ¢ = 3, for example.
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10.3 Series solutions around ordinary points
Consider the differential equation
ao)x™® + a1(O)x" ™V + . 4+ a,()x(1) =0

where the functions a;(¢), i = 1,...,n, are analytic at ¢ = f¢, with convergent
power series in an interval R —fg <t < to + R. If a(ty) # 0, then fg is called an
ordinary point. If a(ty) = 0, then it is called a singular point. At an ordinary point
t = to, the above differential equation has a unique power series solution at ¢t = #,
for any initial value problem x(f9) = ag, ...,x" V(o) = a,_;. The radius of
convergence of the solution is the smallest of the radii of convergence of the power
series of the coefficients a;, 0 < i < n.

Singular points are more of a problem. At such points there may not exist analytic
solutions. Special cases of such points will be discussed later.

The examples below demonstrate the general procedure for determining series
solutions at ordinary points.

Example 10.3.1. We know that the general solution of x’ = x is x(¢) = ce’. Let us
find this by using infinite power series. Setting

x() =Y apt* =ag+art +axt® + .. +apt* + ...
k>0
we find

xX'(t) = Zkaktk_l =ay 4+ 2axt +...+kapt* '+ ...
k>1

The equation x” — x = 0 yields

Zkaklk_l — Zaklk =0.

k>1 k>0

Our goal now is to make the powers of ¢ the same in both summations so that we can
factor it out and set the coefficients equal to 0. We can accomplish this in more than
one way. But let us increase the power of ¢ in the first sum by 1, which means that
we have to shift down the starting point by 1. Then we obtain

>k + Dagat® = apt® =D [k + Daggr — aglt* = 0.

k>0 k>0 k>0

Now setting the coefficients equal to 0, we have (k + 1)ag41 —ax = 0, which gives
us the recursive formula

= k=0,1,....
Ak+1 k—i—lak’ , 1,
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Thus
ay = do, az = 2611 = 2610,
1 11 1 1 1
az = 3a2= 32ao= 3!a0, ag = 4a3= 4!a0,... .
It is now clear that in general we have
akzak—l _ dp—2 — = ao :ao_
k k(k—1) k(k—1)---2 k!

Therefore the general solution to the given differential equation is
1
_ k
x(t) = aOkX: k!t .
=0

We note that the above sum is the Taylor expansion for e’; therefore the general
solution is x () = age’, where ag is an arbitrary constant. L]

Example 10.3.2. Let us use power series to solve the initial value problem
x" = x, x(0) =0, x'(0) = c.

We set x = Zkzo aktk =ag+ayt +axy®>+ ...+ aktk + .... The condition
x(0) = 0 implies that ag = 0.

We may use a slightly different procedure to find the recursive formula, as follows.

We find

x = Z:kaktk*1 =ay +2axt +3ast® + ...+ kapgt*V + ..
k>1

X =" k(k = Dagt*

k>2
=2a,+2-3ast +3-4as®+ ... +k(k—Dapt* 2+ ... .

Then x” = x, x(0) = 0, yields ap = 0 and

D ke = Dagt* 2 =" art,

k>2 k>1
that is
2a; +2-3ast +3-4agt® + ...+ k(k — Dagt*2 + ...
=ait +a® +ast> + ... +apt* + ... .
This equality implies

2a, =0, 2-3a3=ay, 3-4a4s=as, ..., k(k —1)ap = ax_»
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that is
ai a ar ai
= 0, = = s = = 0’ = s = 0’
=T B= ) 3T 3 M T 34T I5T 5 b6
In general, a; = 0 if k is even, while if k is odd
ar = ag—2 Ak—4 _..._n
k k(tk—1) kk—1(k—-2)(k—-23) k!

Thus, setting ¢ = a1, we find

31
x(t)=c (1+t+3!+5!+...).

The series is absolutely convergent on all R. This can be verified by using the ratio
test since

t"+1 n!

A
It is easy to check that

3
1+t+3!+5!+...=1+s1nht.

In other words, x(¢) = ¢ (1 + sinh t), which can also be found by using the methods
discussed in Chapter 5. L]

Example 10.3.3. Find x(1) = Y po, art* that solves x” = r2x. Since x”(t) =
352, k(k — 1)agt*=2, the equation x” — t2x = 0 yields

o0 o0
D kk = Dagt* 2 =3 " apt*t? = 0.
k=0

k=2

Once gain, our goal is to combine the two series into one series, factor out the powers
of ¢, and then set the coefficients equal to zero, which will give us the desired recur-
sive formula. To this end, let us increase the power of ¢ in the first sum by 2, which
requires that we decrease the lower limit by 2, and also shift down the power of ¢ in
the second series by 2, obtaining

o0 o0
Dk + 2k + Dagyat* = arpt* = 0.
k=0 k=2

Now, everything is fine except that one of the sums starts at k = 0 and the other at
k = 2, which means we still cannot combine the two sums. But this problem is easy
to resolve by simply writing the first two terms of the first series separately. Thus we



188 10 Solutions by infinite series and Bessel functions

have

o0 o0
2-1-ay+3-2 a3t + Y _(k +2)(k + Daggot* =) arot* =
k=2 k=2

o0
2a; + 6ast + Y [(k +2)(k + Dagy2 — ax—a] 1.
k=2

Now we set the coefficients equal to 0, obtaining a, = a3 = 0 and
(k +2)(k + Dagys — ar—» = 0, which gives us the recursive formula

Ag—2
= k=23
2= L)k + 1)

which can also be written as

ag
_ . k>o.
etd = LAk +3) =

Now we can compute as many terms of the series solution as we wish, which with
the aid of computer technology, gives us the approximate solution to any initial value
problem to a desired degree of accuracy. So, our big task in solving differential equa-
tions by series is finding the recursive formula. However, it is instructive to continue
analyzing and simplifying this problem further.

Recall from above that our recursive formula is complemented by a, = a3 = 0,
while ag, a; remain undetermined. Notice that if k = 0, 1, 2, 3, we find

ao ao
ada = =
YT 44-1) 43
aq aq
ads = =
>T565-1) 5.4
a»
= = O
9= 6(6-1)
as
= =0.
=0
This suggests to distinguish four cases:
1. If kK = 4n, then
4 - _ Ad4n
4n+4 4(n+1) (4n+4)-(4n +4—1)
a4(n—1)

4n+1)-[dn+1)—1]-4n-(4n—1)

ap
dn+1)-[4(n+1)—1]---4-3"
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2.If k = 4n + 1, then

Aananysr = A4n+1
[4(n+1)+1]-4(n+1)
_ A4(n—1)+1
A+ D14+ 1) -4 —1) - [4(n —1) —1]

B+ D+ 154

3.If k = 4n + 2, then

a _ A4n+2
DT T U+ 1) +2] - [An 4+ 1) + 1]

an _
B+ 1) +2 [+ D1

4. If k = 4n + 3, then

4 _ Aap+3
YD T 4+ 1) 3] [4n 4+ 1) + 2]

S Be+ D43 Be+D)+2] =0

In conclusion, the solution depends on the two constants ag, @; and has the form

t4n
x(1) =610n2>(:)4(n+1)_[4(n+1)_1]...4.3

t4n+1

+a1n§[4(n+1)+1]-4(n+1)---5-4
O U T PO L
- do 4.378.7.4.37 )TN 5.479.8.5.4 " "

which is the general solution of x” = ¢2x. If we were interested, for example, in a
solution x (¢) satisfying the initial conditions x(0) = 1, x’(0) = 0, then in the last
equation we would simply leta; = Oand ag = 1. L]

In general, one has to be careful not to generalize too quickly based only on a few
terms. In the preceding example if one evaluates only the first 3 terms, one might be
tempted to think that all the coefficients a;, as, etc. are zero, which, of course, would
be false.
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10.4 The Frobenius method

In this and the next section we deal with the second order differential equation
po)x" + p1(t)x" + pa(t)x =0

when ¢ = 0 is a singular point, i.e. pg(0) = 0, such that

pit) 5 p2(1)
,
po(t) po(t)
are analytic at # = 0. In such a case t = 0 is called a regular singular point.
We will shortly discuss a general method, due to F.G. Frobenius,' to solve by se-

ries these classes of second order equations. Precisely, we are going to show that one
can find a solution by substituting

00 00
" Zaktk — Zaktk+r
k=0 k=0

for some number r.
To be specific, let us consider the equation

12x" +tP(t)x' + Q(t)x =0 (10.2)

under the assumption that P, Q are polynomial. Clearly ¢ = 0 is a regular singular
point. If we look for solutions of the form x (1) = "> ;g art® = 3 g art*™,
with r > 0, we have:

tx’ IZ(k + Pat* Tl = Z(k + r)agt*t

k>0 k>0
Px" =12 (k4 )k 41— Dagt™7 =) k4 )k 4= Dage**
k>0 k>0

Thus, the equation becomes
Dk )k +r = Dagr** 4 P(0) Yk + naet™T + Q) Y art* T =0,
k>0 k>0 k>0
whence
D [k + 1)k +r = Dagt*™* " + P(t)(k + r)agt*™ " + Q(O)art* 7] = 0.
k>0

or
Dok + )k +r =1+ PO)(k +r)+ Q)] agt** =0,
k>0

! Ferdinand Georg Frobenius (1849-1917).
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namely

[r(r—1) 4+ P(@)r + Q)] aot”

+ 30k + )k + 1 = 1) + POk + 1) + Q@) gt = 0.
k>1

To simplify calculations, let us consider the more specific case in which P(t) = pg
and Q(t) = qo + g1t. It follows

[r(r = 1) + por + (qo + q1t)] aot” +

+ Y [tk +r)k +r—=1) + polk +r) + (g0 + q11)] art**"
k>1

=[r(r — 1) + por + qol aot” + qlaotrﬂ +

+ Y [k +r)k +r—=1) + polk +r) + o] axt™*" + qragt* "+ = 0.
k>1

If we introduce the second order polynomial
F(r) =r(r—1) 4+ rpo + 4qo.
the preceding equation can be written as

F(r)aot™ + qraot™ ™ + F(r + Dayt™ ! + qra 1”2
+F(r +2axt" ™ + graxt™ 3 + ... =0.

All the coefficients of the power " ¥ have to be zero and hence we deduce

F(r)ao =0
F(r+1a; +qiap =0
F(r+2)as +q¢gra; =0

and, in general,
F(r)ap =0, F(r+k)ax+qar—1 =0, k=12,....

If F(r) # 0 we find that ag = 0. Moreover, if F(r + 1) # Othen F(r 4+ 1)a; =0
yields a; = 0 and so on: if F(r + k) # 0 for all k > 0 then all the a are 0 and the
procedure gives the trivial solution.

The equation F(r) = 0 is called the indicial equation and is a second order alge-
braic equation. Its roots are called the characteristic exponents of (10.2).
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Let r; be a root of F(r) = 0. Now, if we put r = r; in the preceding recursive
formulae, a¢ remains undetermined, while
ar F(ri +1) = —q1ao
a; F(r1 +2) = —q1a1

ag F(r1 +k) = —q1aj—1.

Then for all k& > 1 such that F(r; + k) # 0, these equations allow us to find ax
while if F(r; + k) = 0 for some k, the corresponding a; remains undetermined. It
can be shown that the corresponding series converges uniformly on R. So, the formal
procedure is consistent and

x(@) =1 agt*

k>0

is a solution of (10.2). For example, if F(r; + k) # 0 for all k > 1, one finds

ag

ay = —

1 q1 F(ri +1)
a = —q al = q2 Clo

2 YFri+2)  TVFr + DF(r +2)
a = —q a2 = —q3 aO

’ YF(ri +3) YF(r1 + 1) F(ry + 2)F(r +3)

— (=YK do

W= DN D F(r 4 2) e Fr 4 k)

and the solution x (¢) will depend on the constant ay.

Finding a second solution y(#), linearly independent of the preceding one, requires
some caution. Referring e.g. to the book by E.L. Ince (see Bibliography) for a com-
plete discussion, we limit ourselves to simply stating that if 1, r, are the roots of the
indicial equation, one should distinguish among 3 cases:

L. If ry # r3 and they do not differ by an integer, then y (1) = 12 3 ;- byt*, where
by, satisfies the recursive formula by F(ry + k) = —q1bp—1.

2. If ry # ry and they differ by an integer, then y (1) = cx(t)Int +1"2 3 bit*,
where the constant ¢ can be zero.

3. If ry = rp, then y(t) = x(¢) Int 4+ ¢"1 Zkzo apt*.
Example 10.4.1. Consider the equation #2x” + 2tx’ — £({ + 1)x = O with £ > 0,
that arises in solving the 3D Laplace equation in spherical coordinates. This is a Euler

equation. Here we use the Frobenius method to find solutions. The given equation is
of the form (10.2) with pg = 2, g9 = —€(€ + 1) and ¢; = 0. Then we have

ar F(ri +k) =0, k=1,2,....
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The indicial equationis F(r) = r(r—1)+2r—£({+1) = 0, thatis r?+r—L({+1) =
0, whose roots are r{ = £, r; = —(£ + 1). Taking r = £ one finds

FU+k)=(C+k)C+k—1)+2(C+k)—eL+1)
=k(@+3k+1)>0, Vk=12,....

Thus a; = 0 for all k > 1. Taking for example ayg = 1, a solution is given by
x(¢) = t*. Even if the two roots may differ by an integer, in this specific case a
second linearly independent solution can be found in the form y(z) = t~¢+V TItis
easy to check that the two functions ¢ and r~“*+1) are linearly independent and so
the general solution is x (¢) = ¢y + ¢t~ ¢+, "

Example 10.4.2. Find a solution of t2x” + tx’ 4+ (t — 1)x = 0. Here py = 1, qo =
—1 and ¢; = 1. Thus the indicial equation is

Fry=r(r—D)+r—1=r>-1

whose roots are 1. Taking r = 1 we find F(k +1) = (k + )2 — 1 = k(k + 2)
which vanishes if and only if k¥ = 0. Thus fork = 1,2... we find

ao
= (=¥ .
=00 e ket 2)

Hence a solution is

PRI

x(t) = aot - ) (=1) ,

by 3:8---k(k+2)

which depends upon a constant ag. [

10.5 The Bessel equations

In this Section we consider the Bessel? equations, namely
t2x" 4+ tx' + (12 —m?*)x = 0. (10.3)

The number m is called the order of the Bessel equation and could be an integer or a
rational number.

Bessel equations arise in applications when solving the Laplace equation or the
wave equation, in 3-dimensional space, using the method of separation of variables.
For completeness, we briefly outline how it works in the case of the Laplace equation.

The 3-D Laplace equation uxx + uyy + uzz; = 0in cylindrical coordinates x = rsin¢, y =
r cos ¢, z can be written as

1 1
r (rur)r + 2 Upgp +uzz; =0.

2 Friedrich Wilhelm Bessel (1784—1846).
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Looking for solutions in the form u(r, ¢,z) = R(r)®(¢)Z(z) one checks that the equation
becomes

1 1 1
rR(rRr)r + r2q>q)¢¢ + ZZZZ =0.

The only term containing z is é Z 7z, which therefore has to be constant, say k2. Then é Ly, =
k2, namely Z;, = k2Z, which yields

©¢¢+k2=0

1 1
rR (rRr)r + r2d

and, multiplying by r2, we obtain
r(rR) +1(I> +k%2r2=0
g URHr + o0 =0

The only term containing ¢ is é @44 and hence it has to be constant, say é) ®yp = A, namely
®ypp = AD. Since we expect that @ is periodic with respect to ¢, we take 4 = —m? so that
we get Dy +m?2® = 0, the equation of a harmonic oscillator. Then we can write the equation
for R(r) as

r(rRy)r + (K2r? —=m>)R =0
that is
r2Rrr +rR, + (kzr2 — mz)R =0.
Finally, setting t = kr and x(¢) = R(r/k), we find x’(t) = k"1 R, x"(t) = k"2 R,,. Thus
"Ry = krx' = tx',r?Ryr = r?k?x” = t2x" whence
2x"(t) + tx' (1) + (12 —=m?)x (1) = 0,

which is the Bessel equation of order m.

Now, let us solve the Bessel equations. Even if + = 0 is a regular singular point,
we do not follow the general Frobenius method, but we prefer to handle (10.3) in a
simpler way by using the series Y r o @ «t¥. Though in general this method gives rise
to the trivial solution (i.e. ax = 0 for all k), it works in the case of Bessel equations.

Setting x = ) art®, we find

tx' = Zkak[k =ayt +2612l2 + 3a3t3 +...+kaktk + ...
k>1

2x" =Y "k(k — Dagt*
k>2

=2a5t> +3-2a31> +4-3t* + ..+ k(k — Dagt® + ... .
Then x solves the Bessel equation (10.3) provided

Zk(k — l)aktk + Zkaklk + (l2 — mz) Zaklk =0.

k>2 k>1 k>0
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We can write this equality in the form

> k(e — Dagt® + ) kapt* —m? Y apt* + " a2 = 0. (10.4)

k>2 k>1 k>0 k>0

In the sequel we will carry out a detailed discussion in the cases m = 0, 1. The
other cases will be sketched only.

10.5.1 The Bessel equation of order 0

When m = 0 we have

2x" +tx' +12x =0 (10.5)
which is the Bessel equation of order 0. If m = 0 the preceding equality (10.4) be-
comes

Y ke —Dagt* + Y kagt* + ) et = 0.
k>2 k>1 k>0
Since
Zkaktk =at + Zkaktk
k>1 k>2
and
Zaktk+2 _ Zak—ztk»
k>0 k>2
we infer

Zk(k — 1)aktk + Zkaktk + Zak_ztk +ait =0.

k>2 k>2 k>2
Simplifying, we have
Zkzaklk + Zak_zlk +ait =0.
k>2 k>2

Then a; = 0 and, for k > 2,

ay_

kzak+ak_2=0 = ap = — k 2,

k2
In other words,
ar =0 ifkisodd,
while, for k even, we find
Qo 4z do
az——zz, a4—42—22.42,....

In general we have, for k even,
ao

_ k/2
ar =D o e
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Then a first family of solutions of the Bessel equation with m = 0 is given by

t? t 1o
x(l)=ao(1— 2t T 22_42'62+---),

where the series turns out to be uniformly convergent on all R.
If we set
12 t# 16

Jot) =1- 2T m 2T 2.2

e 21 [\ 1 £\®
_2(2) T (2) Ty (2) T

3 (—l)k ¢ 2k
__ZE:(kDZ (2)

k>0

we have that all the functions x(¢) = c¢Jy(¢) solve the Bessel equation of order 0.
The function Jj is analytic, even and J(0) = 1. Moreover, it is possible to show
that Jy has the following properties (as for the first two, see also Theorem 10.5.4):

1. it has infinitely many zeros;
2. itdecays to zero at infinity;
3. it is integrable on all R and f0+°° Jo(t)dt = 1.

The graph of Jy(¢) is shown in Figure 10.1. The function Jj is called the Bessel func-
tion of order O, of first type, to distinguish it from another solution that we are going
to find.

To find a second solution Yy(z) of (10.3) linearly independent of Jy we can use
the method of reduction of order discussed in Chapter 5, Section 5.3. We let Yy (¢) =
v(t)Jo(t). Then Yy = v'Jo +vJjand Yy = v"Jo + 20" J§+ vJ{. Substituting into

Fig. 10.1. Graph of Jy(t)
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(10.3) we find
12" Jo + 20" Jo + vJJ) + (v Jo + vJ}) + t*vJp = 0.

Rearranging,
V(2 I Iy 4+ t20o) + tDo(tv” + ') = 0.

Since Jy solves (10.3) it follows that
tJo(tv” +v") = 0.

Solving tv” 4+ v’ = 0 we find either v = const. or, setting z = v/, tz/ = —z which
is separable. Integrating we find z = : and hence v = In¢, ¢ > 0. Then we have
found

Yo(¢) = Int - Jo(2), t>0.

Similar to Jy, Yy also has infinitely many zeros (the same as Jy), but unlike Jy, Yy
has a singularity at # = 0. It is named a Bessel function of order 0 of the second kind.
The graph of Yy is shown below in Figure 10.2.

Since Jy and Y are linearly independent, the general solution of the Bessel equa-
tion of order 0 is given by

x(t) = Clj()(l) + CzYo(l) = ClJo(f) +cyInt - Jo(l).

Example 10.5.1. Find a solution of t2x” 4 tx’ 4+ t?>x = 0 such that x (0) = 2.

In the preceding formula of the general solution of the Bessel equation of order
0, the function Yy () — —oo as ¢ — 0+. Then the condition x(0) = 2 implies that
¢y = 0. Moreover, since Jo(0) = 1, then ¢; = 2. Thus x(¢) = 2Jy(¢). [

Fig. 10.2. Graph of Yy (t)
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10.5.2 The Bessel equation of order 1

When m = 1 we have the Bessel equation of order 1, namely
2x" +1x' + (1> = 1)x = 0. (10.6)

As before, we first look for solutions of the form x(¢) = ) art®. Now the general
equality (10.4) becomes

> ke = Dagt* + ) kagt* =Y apt* + > " apt* =0

k>2 k>1 k>0 k>0

If in all the infinite sums we take k > 2 we find

Z [k(k - l)aktk + kaktk —aktk + ak_ztk] +ait —ag—ait =0.
k>2

Simplifying, we have

Z [kzak —ag + ak_z] lk —ap=0.
k>2

Then a¢ = 0 and ay, satisfy the recurrence formula

kzak—ak +ar_,=0—= akz—kazk_zl, k>2.
Thus if k is even we find
ao an
= — :O, = — ZO, =0
an 3 ag 3.5 aj

If k is odd, the coefficients can be found in terms of a;. Actually one has

ai as ai ai
a5 = = =

3= 24 T 8.24  3.82777

In general, for k > 3 odd we find

k—1 aq
a=(=1) > 3.82...8k—3"

The constant a1 is equal to x’(0). In conclusion,

3 4 3
) = r— - ..,
x() “1( g Va2 3.8 7 )

the series being uniformly convergent on all R.
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A AN
h=,-, (2) *on (2) +
B (_1)k P 2k+1

_kg(:)k!(k+ 1! (2)

and ¢ = 2ay, we can say that x(¢) = c¢J;(¢) solve (10.5). Notice that J; is an odd
function with J;(0) = 0, J{(0) = 1. It has infinitely many zeros and decays to zero
at infinity, like Jy. It is named Bessel function of order 1, of the first kind. The graph
of Jj is reported in Figure 10.3.

An interesting fact is that between two consecutive zeros of Jy there is a zero of
J1, see Figure 10.4.

If we set

J,0

Fig. 10.3. Plot of J;

Fig. 10.4. Jg (red) vs. J1 (black)
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Fig. 10.5. Graph of Y1 (¢)

This property and the oscillatory character of Jy, J; hold in general for all J,, and
will be proved in the next section, see Theorems 10.5.3 and 10.5.4.
As before, a solution of the Bessel equation of order 1, linearly independent of J;,
is given by
Yi(¢t) =Int - J1(2), t >0,

which is called Bessel function of order 1, of the second kind, see Figure 10.5.
As Yy, also Y7 has infinitely many zeros and possesses a singularity at r = 0.
It follows that the general solution is

c1J1(t) + caY1(2).

Example 10.5.2. Find a solution of 2x” + tx’ + (t2 — 1)x = 0 such that x(0) = 0,
x’(0) = 2. Since x(0) = 0, then ¢, = 0 because Y;(t) — —oo as t — 0+. Thus
x(t) = c1J1(t). From x’(0) = ¢;J'(0), and J{(0) = 1, it follows that ¢; = 2 and
the solution of the initial value problem is x(¢) = 2J1(¢). m

10.5.3 Bessel equations of order m

If m is an integer, the Bessel functions of order m, of first kind can be defined as

(_1)k ¢ 2k+m
Im(t) = Z kl(k 4+ m)! (2) ‘

The functions J,, are solutions of the Bessel equation of order m. If m is an even
integer, then J, (¢) is an even function, while if m is odd, then J,, (¢) is an odd func-
tion.

Although for negative m the Bessel equation remains unaffected, it is customary
to set

Jom(@) = (=1)" I (1).
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Fig. 10.6. Plots of Jy (black), Jy (blue), J> (red) and J3 (green)

It would be possible to define Bessel functions for any real number m. The expression
of J,,(¢) is formally equal to the preceding one, giving an appropriate definition of
(m + k)!, which can be done by means of the Gamma function I". But this is beyond
the scope of this book.

10.5.4 Some properties of the Bessel functions
One can check that the following recurrence formula holds
2m
Jmr1(t) = p I (t) — Tm—1(2).

For example, 5
Ja(t) = ; J1(t) — Jo(2).

The function J,,(¢) is analytic and has infinitely many zeros. Furthermore, J,, (0) =
0 for all m # 0 and J,,(0) = 0 for all m # 1.
Moreover, the following identity holds

d m _m
g & Im @) = 10T (1) (10.7)

As an exercise, let us prove (10.7) for m = 1. We know that

Ly CDF ()
Ji(t) = IZ(:) Kk + 1) (2)
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so that . okt
S
O =2 e ()

Recall that the above series is uniformly convergent and hence the derivative of ¢ J; (¢)
equals the series obtained differentiating each term. Thus, taking the derivative one
finds

N 1)t d [1\2k+2
tJ1()) = Z k!(k + 1) 2 dt (2)
t 2k+1
_ Z k'(k + 1y @ +2)- (2)
) (_1)k ¢ 2k+1
- kz ki + 26D (2)

( l)k 2k+1
Zk'k' (2) '

k 2k+1
00 =% i ()

k>0

Since

the conclusion follows.

Another useful relationship is

d (In@®)\ _ Jmer(0)
s ( ) = . (10.8)

m m
One can use (10.7) and (10.8) to prove

Theorem 10.5.3. Between two consecutive, positive (or negative), zeros of Ju,(t)
there is one and only one zero of Jy41(t). (see Fig. 10.6).

Proof. Let a1 < oy be two consecutive, positive, zeros of J,,. Clearly, they are

also consecutive zeros of J’” (’). The Rolle theorem applied to J;”,S’) on the interval

[a1, oz] implies that there exists B €]oy, a2 [ such that the function (J’" (’)) vanishes

at 8. By (10.8), B is a zero of Jy,41.

Similarly, let 8; < B, be two consecutive, positive, zeros of J,;,41. Applying the
Rolle theorem to t"™*1.J,,.1(¢) on the interval [8;, B>], we find @ € (B1, B2) such
that (1™ *1J,,41(t))’ vanishes at o. Using (10.7) we deduce that o™ 1 J,,, (o) = 0,
namely that « is a zero of J,,,. L]
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Fig. 10.7. Plots of Y (black), Y7 (blue), Y> (red) and Y3 (green)

Similar results can be given for the Bessel functions of second kind. For example,
one has

Yins1(t) = 2;’" Yoo (6) = Y1 (£),  Yom(£) = (=1)" Y (1),
jt (t"Ym (1)) = 1" Ym—1(1), d (Y’”(t)) _ _Ym+1([)'

dt tm m

Each Y, (¢) is singular at # = 0 and has infinitely many zeros that alternate between
each other. See Figure 10.7.
As a further application, let us look for A > 0 such that the problem

s J(s) +Ay(s) =0, y©0)=0, y1)=0 (10.9)

d?y
ds ds?’
First of all, let us show that the change of variable t = 24/As and y(s) = tx(t)
transforms the equation into a Bessel equation of order 1. Actually, one has

has a nontrivial solution. Here y = and j =

. dy _d(x(t) dt . \/A
y= ds dt ds (x(t) tix (I)) K

A k) +1x'(0) = 22 (x(t) +x’(t))

t

and

2

s6 =" (vo+ D).

t
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Recalling that 41s = t2, we find

2 4)2 ' ,

Thus sy (s) + Ay(s) = 0 becomes

xX'(t)  x()
t ot

At (x”(t) + ) ) + Atx(t) = 0.

Dividing by A > 0 we get

tx" (1) + x'(t) — x?) +1x(t) =0

or
2x"(t) +tx't) + (1> = Dx(t) =0

which is the Bessel equation of order 1. A family of solutions is x(¢) = ¢J1(t), c a

constant, whence

y(s) = 2¢+/As J1(2x//\s).

For s = 0 we have y(0) = 0. Moreover
A
y(s) =c (2://S J1(2VAs) + A J{(Zx/)ks)) .

Recall that by (10.7), one has J{(¢) = Jo(t) — } J1(7) and hence for t = 2+/As

A
v J1(2VAs) + A J[(2VAs) = Jo(2v/As).
2.4/s
Then y(s) = cA Jo(2+/As) and the condition y(1) = 0 yields Jo(2+/A) = 0.
In conclusion, if 0 < @] < ap < ---a, < --- denote the zeros of Jy, then for

each A, = (“2” )2, the problem (10.9) has nontrivial solutions given by y,(s) =
20/ A S J1 2/ AnS).

In Chapter 12, Section 12.6, we will prove that J,, has the flowing asymptotic
behavior

1 1
Jm(t) = cm \/l \/

where ¢, U, are constants, ¢ > 0 and lim;_, 4 o0 ¢, (£) = 0. It follows:

sin(t + Om) + / dm (1),

Theorem 10.5.4. J,,, decays to zero at infinity, changing sign infinitely many times.
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10.6 Exercises

O 0 N N U A~ WD =

10.

11.

12.
13.
14.
15.

16.

17.

18.
19.

20.

21.

. Find x(t) = Y axt* such that tx” = x.

. Find x(1) = Y .o axt* such that 1x” = x'.

. Find x(#) = } x50 art* such that x” = tx + 1 and x(0) = 0, x'(0) = 1.
. Solve x”" +tx’ + x = 0, x(0) = 1, x'(0) = 0.

. Using the Frobenius method, solve 4¢2x” + 4tx’ —x = 0,1 > 0.

. Using the Frobenius method, solve t2x” + 3tx’ = 0, ¢ > 0.

. Using the Frobenius method, solve t2x” — 3tx’ 4+ (4 —t)x = 0.

. Using the Frobenius method, solve t2x” + tx’ + (t — 1)x = 0.

. Find the solution x, of the Bessel equation #?x” + tx’ 4+ t2x = 0 such that

xq(0) = a.

Find the solution x, of the Bessel equation #2x” +tx’ + (1> — 1)x = 0 such that
x,(0) = a.

Find the positive integers m such that 2x” +x’+(t2—m?)x = 0 has a nontrivial
solution such that x (0) = 0.

Prove that (t2J5(2))’ = t2J1(¢).

Show that t = 0 is a maximum of Jy(¢).

Let « be a positive zero of Jo(¢). Show that if J;(a) > 0 then Jj(or) < 0.
Setting Z(t) = Jo(t) — tJ1(¢), show that if « is a zero of Jy(¢) then Z'(a) =
Jo(e).

Using the power expansions of Jy, Jy, J2, prove that J>(t) = 3]1 (t) — Jo(2).

Prove that J,,, (1) = Jpu—1(t) — n;Jm (), m an integer.

Prove if o1 is the first positive zero of Jy(¢), then J (1) > 0 and J5(oe;) > 0.

Let o1 denote the first positive zero of Jy. Show that the only solution of #2x” +
tx' + (t? — 1)x = 0 such that x (0) = x(a;) = 0is x(¢) = 0.
Find A > 0 such that the problem
d?y
s
ds?

has a nontrivial solution.

+ Ay(s) =0, y(0)=0, y(l)=0,

Find the positive integer A such that 12x” + tx’ + t?>x = Ax has a nontrivial
solution satisfying x(0) = 0, x'(0) = 1.
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Laplace transform

In this chapter we will discuss the Laplace transform (L-transform, in short) which
is very useful in solving linear differential equations by converting them into alge-
braic problems. The Laplace transform has applications in many areas of science
and engineering. We will keep the exposition at a level as elementary as possible. In
particular, we will provide proofs only for the simpler cases.

11.1 Definition and preliminary examples

Given a real valued function f(¢) defined on [0, +00), the L-transform of f, denoted
by £{f(¢)}(s), or F(s), is the function of s defined by

+o00
LN = [ e f,
0
provided the integral makes sense, that is

lim e s f(t)dt

r—>+oo Jo
exists and is finite. The set of s € R where this is true is called the region (or domain)
of convergence of £{ f(¢)}(s). Often we will write £{ f(¢)} or simply £{ f } instead
of L{f(1)}(s).

We notice that one could define the L-transform of a complex valued function of
the complex variable s = o + iw. But for our purposes it is sufficient to limit our
study to the real case.

The L-transform is well defined for a broad class of functions. Recall that f has
a jump discontinuity at # = a if both one-sided limits

lim f(r),  lim f(0)

t—at

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT - La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_11, © Springer International Publishing Switzerland 2014
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exist but are not equal to each other. For example, the function

0, ift <0
f(t)_{tJrl,iftzO

has a jump discontinuity at # = 0 because lim;—o— f(#) = 0 while lim,_,o+ f(t) =
lim,_, o+ (* + 1) = 1. On the other hand, the function

()= [0 ifr=0
FO=\ it >0

has a discontinuity at # = O which is not a jump discontinuity.

We say that f is piecewise continuous on its domain D if there exists a numerable
set & such that f is continuous on D \ & and has a jump discontinuity at each point
of 8. If & is empty, then f is just continuous. For example, the preceding function
[ is piecewise continuous, while g is not.

A function f(¢) is said to be of exponential order if there exist constants M and «
such that

|f@O)] < Me™. (11.1)

For example, any bounded piecewise continuous function, any polynomial P(t) =
ap+ait+...4+a,t",in general any function such that f(¢) = O(t") as |t| - 400
(i.e. for some number A4, | f(¢)| < Az™ for t large enough), all satisfy (11.1) fors > 0
(hence £{ f'}(s) exists for s > 0). However, f(¢) = e’ does not satisfy (11.1): since
e’ < M, is obviously false.

Theorem 11.1.1. Suppose that f is piecewise continuous on R™ and satisfies (11.1).
Then £{ f }(s) exists for s > a.

Proof. One has
e ()| dt < e Me* = Me@™",

We recall from Calculus that if [;° | f(1)|d¢ exists, then [;° f(r)dt also exists.
Therefore e ™! f(¢) is integrable on R*. Moreover

+o00
/ e f(t)dt
0

exists and is finite, provided s > «, which means that £{ f }(s) exists forall s > «. =

In the sequel, even if not explicitly stated, it will be assumed that the functions we
treat satisfy (11.1).
Next we consider some examples of L-transform.

Example 11.1.2. Consider f(¢) = %' which obviously satisfies (11.1) . Moreover

one has s
r r .
/ e~ e d1 :f cerg = ]
0 0

a—s o—s
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For s > « one has that ¢©@™)" — 0 as r — 400 and hence

,
1
£{e*} = lim eIy = , s> (11.2)
r—>+o0 /o s—a
In particular, if @ = 0 then f () = ¢® =1 and
1
Ly= . s>0. (11.3)

Example 11.1.3. Consider the Heaviside function (or step function)

0,if 1 <0
H(Z):{l,iftzo

and let, fora > 0,
0,ift <a
Ha(t) := H(t —a) = { 1,if7 > a.
Notice that H, is bounded and piecewise continuous, with § = {a} and hence The-
orem 11.1.1 applies with @ = 0. Taking into account the definition of H,, we get for
s>0

r r e=sT e s
/ e ST H,(t)dt 2/ e Stdr = — +
0 a S S
Thus N
o0 —Sr —as —as
/ e *'dt = lim (—e + ¢ ) =
a r—>+o00 N N N
Hence
e—as
L{H,} = , s > 0. (11.4)
)

Of course, ifa = Othen H(¢) = 1 forallz > 0and we find that £{H }(s) = £{1} =
1/s, in agreement with (11.3). L]

Example 11.1.4. Consider the characteristic function

0,ift <a
Xap)@) =19 Lifa<t<b
0,ifr > b

over [a, b],0 < a < b. Wenote that y[, 5] is bounded and piecewise continuous, with
& = {a, b} and hence it possesses the L-transform defined for all s > 0. Performing
calculations as in the previous example, we find that, for r > b,

r b e—bs e s
/ e fa,p)()dt = / e Sldt = — +
0 a

N N
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and hence
e 45 _ e—bs
LN ap]} = S . s > 0. (11.5)
In particular, if @ = 0 we find
| —ebs
L{x10,01} = P s> 0. "

It is worth pointing out that from the definition it immediately follows that if f, g
are piecewise continuous, satisfy (11.1) and differ on a numerable set, then

L{f}(s) = £{g}(s) (11.6)

for all s on their common region of convergence.

11.2 Properties of the Laplace transform

The following Proposition shows that the Laplace transform is a linear operator.
Proposition 11.2.1. £ is linear, that is

Llaf (1) + bg(t)}(s) = aL{f}(s) + bE{g}(s),
for each s such that the right-hand side makes sense.

Proof. 1t follows immediately from the linearity of the integrals that:
+o00
£laf @) +bg0) = [ e laf0) + bglar
0

+00 +o00
= a/ e f(t)dt + b/ e Slg(t)dt
0 0
=af{f}+bL{g}. "
For example,

ﬂk}:f{k-l}:ki{l}:k-i:ls‘, s> 0.

As another example, let us note that yp,.5]() = Hy(t) — Hp(t). Thus, using (11.4),

—as e—bs e

e
LA ap)) = L{HL) — L{Hp) = L _
according to (11.5).

The L-transform has a smoothing effect.
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Theorem 11.2.2. Suppose that f satisfies (11.1). In its region of convergence,
F(s) = E{f} is differentiable infinitely many times at each point. Precisely, one
has

F®(s) = (=1)"£4e" f(1)}(s)
foranyn =1,2,....
The following result is important for applications in differential equations.

Theorem 11.2.3. Suppose that f is differentiable for t > 0 and satisfies (11.1). If
E{f'} exists then

LLfHs) = sLLf}(s) — £(0).

Proof. By definition
+o0

21 = /0 e f (1),

Integrating by parts we find

r

/ L0t = e )~ (O + s / e .
0 0

If we pass to the limit as r — o0, (11.1) implies that e™*" f(r) — 0. Then it
follows that £{ f”} is equal to s&£{ f'} — f(0). n

Now, it follows that

L") = sZ{f"} = £1(0)
= s[sZ{f} = f(O] = f(0)
= s2L{f} = sf(0) = £'(0).

provided £{ '} and £{ f"} exist.

By using Mathematical Induction one can find the L-transform of £, see (P4)
below.

Below we collect some properties of the L-transform. The domains of convergence
can be determined in each case:

(P1) £{e™ f(1)} = L{f}(s —a):

(P2) é(i{e_ﬁt —e ) = (s +O;)_(Sﬁ+ ﬂ);

g £
(P3) i{/o _f(r)dr} = {sf};

(P4) L{f ™y =5"2{f}—s""1f(0) —s"2f/(0) — ... — £ (0);
(P5) £{t"f(@®)} = (1" j:n £{f} (see Theorem 11.2.2).
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Properties (P1 — 5) can be used to find other L-transforms. For example if
f() =1, (P5) yields

dar an (1 !
LM = ()" B = )" (S) — s,’fﬂ. (11.7)

Let us use (P4) to find F(s) = L{sinwt}. Recall that since f(¢) := sinwt is
smooth and bounded, then F(s) exists for all s > 0. One has that f'(¢) = —w cos ¢
and f"(t) = —w?sint, thatis f” = —w?f. Moreover, f(0) = sin0 = 0 and
f/(0) = wcos 0 = w. Now we take the L-transform yielding

L")} = —0*L{f} = —0*F(s).
Property (P 4) implies

L{f"(1)} = S2F(s) —sf(0) — f/(0) = s F(s) — .
Then it follows that
S’F(s) —w = —0’F(s) = (s>+0?)F()=o.

Hence, F(s) = /(s> + w?), that is
)

L{sinwt} = 4w

(11.8)
For the reader’s convenience, let us find the L-transform of sin w? directly, using
the definition. First, integrating by parts, we evaluate

r r
. coswr _ 1 K} _
f e Slsinwt dt = — e+ — / et coswt dt.
0 w (0] w Jo

Another integration by parts yields
r : r
sinwr s )
/ ecoswt dt = e + / e'sinwt dt.
0 w @ Jo

Passing to the limit as r — 400 in the previous two equations we find

+o00 1 s +o00
/ e lsinot dt = — / e " coswt dt (11.9)
0 w  wJo

and
+o00 s +o00
[ e coswt dt = / e Stsinwt dt.
0 w Jo

Substituting the latter integral in (11.9) we get

+o00 1 S2 +o00
[ e Stsinwt dt = — / e sinwt dt.
0 o  w?)

82 +oo 1
(1 + 2)/ e 'sinwt dt =
w 0 w

Thus
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that is

2 2 +o00
o+ e . 1
) / e Ssinwt dt =
w 0 w

and finally

w? ®

+o00 1
Eisinwt} = / e Sltsinwt dt = - =
{ } 0 o w?2+s?2 w2452

according to (11.8).

Similarly, with minor changes one finds

Li{coswt} = .
{ } w? + 52

213

(11.10)

As a further application, let us consider the Bessel function of order 0, Jo(¢), which

satisfies

tJy () + J5(t) + tJo(z) =0, Jo(0) =1, J'(0) = 0.

(11.11)

For the properties of Jo(¢) we refer to Section 10.5.1 of the previous chapter. In par-
ticular, Jo(¢) is smooth and bounded and hence its L-transform X (s) := £{Jo(¢)}(s)

exists for all s > 0. Moreover, since Jy(¢) is integrable on [0, +00) and

+00
/ Jotydt = Io(0) = 1,
0
then

X(s) = /0+OO e Jo(t)dt,

which is a priori defined for s > 0, can be extended to s = 0 and one has

X(0) = /O = Jo(t)dt = 1.

We want to show that

2hwy=

We start taking the L-transform of (11.11):
LIy (1) + J§(t) + tJo()} = 0.
Using the linearity of &£ we infer

LIy (1)} + LI} + L{tJo} = 0.

(11.12)

(11.13)
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Then (P4) — (P5) yield

L{Jg (1)} = —(s>X(5) — Jo(0)s — J5(0))’
= —(s2X(s) —5) = —25X(s) — s2X'(s) + 1,
L{Jp (1)} = sX(s) = Jo(0) = sX(s) — 1,
Lo} = —X'(s).

Substituting into (11.13) we find
—25X(s) —s?°X'(s) + 1 +sX(s) —1—X'(s) =0,

or
(1 +s2)X'(s) + sX(s) = 0.

This is a separable equation. One finds

X'(s) s
X(s) 1452
Integrating we have
In X(s)l =— : In(1 + s?).
| X(0)] 2

Taking into account that X(0) = 1 we get

In|X(s)| = In(1 + s)~2

whence
X =+ = !
V1+ 52
proving (11.12). Notice that in this case it would be more complicated to evaluate
E{Jo} directly.

The following table summarizes the L-transforms for some of the functions that
we have discussed. The domain of convergence can be determined in each case.

f@) F(s) = £{f} f@) F(s) = £{f}
1 ! t !
s 52
n! 1
t
o sntl e s—a
. 0] K
sin wt 2 4+ w2 cos wt 2 4 2
sinh wt @ cosh wt s

§2 — @2 §2 — @2
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f(@) F(s) = £{f} f@) F(s) = £{f}
e~ sinwt @ e % cos wt Sta
(s +a)?+ w? (s +a)?+ w?
—as —as __ ,—bs
Ha(0) ‘ Kia ) ©) ¢
s
! F(s) 1
| s S o

11.3 Inverse Laplace transform

We start with an example dealing with the RC circuits discussed in Section 1.3.2.

Example 11.3.1. We have seen that an RC electric circuit gives rise to a first order
differential equation as RCx’ + x = 0, x(0) = xo. We will use this example to
motivate the introduction of the inverse L-transform.
To keep the notation consistent with that used in this chapter, here we write the
ivp as
x'(t) +x(@) =0, x(0) = xq,

where we take RC = 1 in order to simplify notation. Let us assume for the moment
that x (¢) satisfies (11.1). We will see later that this is indeed the case. Taking the L-
transform of both sides, and recalling the linearity of &£, we find

L{x' + x} = £{x} + £{x} = 0.
Using property (P5), and recalling that x (0) = x¢, we infer
sX(s) — xo + X(s) =0, X(s) := L{x}.
Then

X0

X(s) = I+

and x (¢) is the function such that its L-transform is X (s). We will say that x (¢) is the
inverse L-transform of X (s). In this specific case, it is easy to find x(¢). Actually, in
Example 11.1.2 we have shown that £{e*'} = 1/(s — ). If we take « = —1 we find

X0

L{xoe™"} = xoL{e”'} = s+ 1

and hence x () = xpe?, in accordance with what we have found in Section 1.3.2.
Notice that, a posteriori, x(t) satisfies (11.1) and hence the preceding procedure is
correct. u
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In the rest of this section we will discuss the inverse L-transform. Let us begin by
stating a preliminary result on the injectivity of the L-transform, which is nothing but
the converse of (11.6).

Proposition 11.3.2. Let f, g be piecewise continuous on [0, +00) and satisfy (11.1).
If £{f} = £{g} on their common region of convergence, then f(t) = g(t), for all
t > 0, up to a numerable set of points. If f, g are continuous, then f(t) = g(t) for
allt > 0.

Definition 11.3.3. Let F(s) be given. If there exists a function f'(¢) such that £{ 1 }(s)
exists and £{ f }(s) = F(s), we say that F has an inverse L-transform given by f(¢).
In this case we write f(t) = £~ HF(s)}(t).

In other words, the idea of the inverse of L-transform is nothing new:

E{f()}(s) = F(s) if and only if f(t) = £ {F}(s) (assuming that the in-

verse exists). For example, for f(t) = ¢, £{t} = Slz implies the equivalent rela-

tion t = éli_l{sl2 }. Often we will write £~{F(s)} or simply £~ '{F} instead of
LTHF()}(0).

Proposition 11.3.2 shows that if f(¢) is piecewise continuous on ¢ > 0 and sat-
isfies (11.1), then it is uniquely determined by F'(s), up to the numerable set §, and
hence the preceding definition makes sense.

For example, (11.4) yields £{H,} = ¢~%%/s and hence

£ {e_:s} — H,(1). (11.14)

The following proposition says that £~ is linear like £.

Proposition 11.3.4. Suppose that F (s), G(s) have inverse L-transforms. Then for all
a,b e R, aF(s)+ bG(s) has inverse L-transform and

EYaF(s) +bG(s)) = al H{F(s)} + bE HG(s)).

Proof. Let f(t) = £ Y{F(s)}and g(t) = £7{G(s)}. Then F(s) = £{f(t)} and
G(s) = £{g(t)}. Moreover, using the linearity of £, it follows that

Llaf (@) +bgt)} = aL{f(1)} + bL{g()} = aF(s) + bG(s).
Taking the inverse L-transform of both sides we infer that
£7HaF(s) +bG(s)y = af(t) + bg(t) = aL™H{F(5)} + bLH{G(s)},

as required. L]
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Example 11.3.5. Using the linearity property and our familiarity with the Laplace
transforms of sin# and cos ¢, we have

x_1{2s—7}=2$_1{ s }_7i_1{ V3 }
52 +3 2+ (3 V3 2+ (V3)

7
=2cos V31— sin v/31. [
V3

Example 11.3.6. Using partial fractions, we see that

_1{ 1 }:;@‘1{ 2 }:
(s+1D@2s+3) s+1 2543

£ ! -t ! =t — (3Dt n
s+1 s+3/2

In general, if .

ki
R =
(S) XI:S—A,'
then
m
LR} =) kiehit. (11.15)
1
For example, if
1 1 1 1
R == = —
9= s = p Lo 5]
we have k; = ! Lky = — ! ,A1 =« and A, = B. Thus we find
a—p a—p
ot Bt Bt _ Lat
x—l{ ! }: e e e (11.16)
(s —a)(s—B) a—p a—-p p—c
Similarly, if
s 1 o B
R(s)_(s—a)(s—ﬂ)_oe—ﬁ[s—oe_s—ﬂ}
we have k; = ¢ Ly = — B ,A1 = a and A, = B and we find
a—p a—p

-1 s o a u B ﬁ,_ﬂeﬂt—ae‘“
{(s—oe)(s—ﬂ)}_a—ﬂe a_ﬂe = B_g (11.17)
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Now, let us state without proof a result on the inverse L-transform of rational
functions.

Theorem 11.3.7. Let P(s), Q(s) be two polynomials with degree n < m, respec-

tively. If Q has m simple roots Ay, ..., Ay, then
1 [P() 2 P(A) Iy
£ 1{ } = erit. (11.18)
0(s) Z:QQJ

As a simple exercise, the student can establish (11.16) and (11.17) using the preced-
ing theorem.

The counterpart of properties (P1) and (P3) can be found immediately. Below
we set F(s) = £{f}.
From (P1) and (P3) it follows that
(P1) £ YF(s —a)} = e* f(1), s> o
F t
(P3) £~ { (s)} - / f(r)dr.
s 0
One can also show that
(P1") £7He ™ F(s)} = Ho(1) f(1 — ).

The following list of inverse L-transforms can be deduced from the table of L-
transforms.

F(s) £HF} F(s) £YF}
1 1
1 t
s 52
n! 1
t
sntl o s—a e
K
@ sin wt cos wt
52 + w? 52 + w?
K
) @ ) sinh wt ) ) cosh wt
s?—w s?—w
0] —at Ss+a —at
5+ a)? + 02 e ¥ ginwt 5 +a)? + w? e % coswt
e s e s _ e—bs
s H, (1) s Xlap1 ()
F(s) 1
Jo f(D)dt Jo(?)
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11.3.1 Convolution

Let f(¢), g(¢) be two piecewise continuous functions on ¢ > 0.

Definition 11.3.8. The convolution of f(t) and g(t), denoted by f * g, is the function
defined by setting

t

(f *9)(0) = /0 £t — 0)g(6)d8.

The reader should exercise caution when dealing with convolution. For example, in
general, 1 xg # g. This is the case for g(¢) = sint, because 1 xsint = fot sin0d6 =
1 —cost.

The following proposition is important in the sequel because it allows us to eval-
uate the inverse L-transform of a product.

Proposition 11.3.9. Let f, g be piecewise continuous of exponential order, which
means that they satisfy (11.1). Setting F(s) = £{f} and G(s) = L£{g}, one has

L{f * g} = F(s)-G(s) (11.19)

and hence

LTHF()G(s)} = (f * g)(1). (11.20)

As an application let us evaluate the inverse L-transform of

Using (11.20) with F(s) = 1/(s 4+ 1) and G(s) = (¢ — e~?%) /s, one finds

£7Ho ()} = (f x2)(0)
where (see (11.2))

(1 .
f(r)=x1{s+1}=e

and (see (11.5))
—as __ ,—bs
g(t) =27 {e e } = Hias1(0)

and hence

-1 e s _ e*bs .
LN sy (T F Hab©): (11.21)

Proposition 11.3.9 can also be used to solve integral equations as

x(1) = k(1) + /0 £t —0)x(0)dO = k(t) + (f * x)(¢). (11.22)
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It suffices to take the L-transform yielding (with obvious meaning of notation) X (s) =
ELk}(s) + L{Sf *x}(s) = K(s) + F(s) - X(s). If we know K and F, solving with
respect to X we find x(t) = £~ 1{X}.

Example 11.3.10. Solve
t
x(t) = e +/ e x(0)do = e + €' x x(1).
0

_ 1 1 1 _ 1
Onehas X = ° |, + .~ , -Xandhence (1— _ )X = |,

xzii_l{siz}:ezz. "

namely X = 12.Then

11.4 Laplace transform and differential equations

The Laplace transform is useful in solving linear differential equations. Let us start
with a general linear second order equation with constant coefficients

x" (1) +ax'(t) + bx(t) = g(1), x(0) = xo, x'(0) = xy.

Let us assume that the L-transform of G(s) = £{g(¢)}(s) exists for s > 0.
If we take the L-transform of both sides and use (P4) we find

§2X(s) — sx0 — x1 + a(sX(s) — x0) + bX(s) = G(s)

where X(s) = £{x(¢)}(s). As for X(s), we proceed formally, assuming that it makes
sense for s > 0. At the end we shall verify that this is indeed the case.
Solving for X(s), we get

sx9 + x1 + axo + G(s)

X =
) s24as+b

Notice that x (t) = £~ '{X}. Thus, taking the inverse L-transform, we find

(1) = &1 {sxo +x1 +axg + G(s)}

s24+as+b

which can be found explicitly using the properties of the inverse L-transform.
Let us illustrate the procedure with an example.

Example 11.4.1. Consider the problem
x"(t) + x(t) = g(1), x(0)=0, x'(0)=k

and assume that the inverse L-transform G(s) of g(¢) exists for s > 0. Then
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so that X (s) has an inverse L-transform and

o] Kk [ GG
X)) =< {s2+1}+°jﬁ {s2+1}'

G(s)
52 + 1}'

Using (11.8)
x(t) = ksint + £1 {

From (11.20), with F(s) = 1/(s? + 1), we deduce

t

x(t) = ksint +sint * g(t) = k sint +/ sin(t — 0)g(0)do,
0

which is the solution of our ivp for any L-transformable g(¢). L]

The preceding discussion highlights the procedure one follows in the general case
of
x® 4 ax®D 4+ apx + anx = g(1)

together with initial conditions
x(0) = xo, X' (0) = x1,...,.x"D(0) = x,_;.
One takes the L-transform of the equation and uses (P4) yielding
S"X(s) — 5" xg — 5" 2x1 — . —Xpo1 F ...+ an X(s) = G(s).

This allows us to find

P(s)X(s) = Q(s) = G(s)

where
PG)=s"4+a1s" '+ ... +anos®>+an_15+ay

and
0(s) = "o+ 5" 2x ..+ an—2(sxo + x1) + an—1xo-

Then X(s) = (G(s) + Q(s))/ P(s) has an inverse L-transform x (¢) which solves the
ivp.

Other equations that can be solved by means of the L-transform are linear equa-
tions with coefficients depending on time. Once again, we discuss some specific ex-
amples.

Consider the ivp

x"4+tx =0, x(0) =0, x'(0) = b.
Taking the L-transform and using (P4) we get

$2X(s)— b+ £{tx (1)} = 0.
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From (P5) we infer that £{tx ()} = —X’(s) and hence we deduce s2X(s) — b —
X’(s) = 0 that is
X'(s) — 52 X(s) = —b.

This is a linear first order equation that can be solved by the integrating factor method.
Once X(s) is found, the solution we are looking for is given by x(¢) = £~ 1{X(s)}.
As a further example let us consider the system

X' =x+y
y=x-y

with the initial conditions x(0) = 1 and y(0) = 0. Taking the L-transform and
setting X(s) = L{x}, Y(s) = £{y} we deduce

{éfi{x’} =sX(s)—1=X(s) + Y(s)
L't =sY(s) = X(s) —Y(s)

whence

s—DX@s)—Y(s) =1
—X(s)+ (s + DY(s) =0.

Finding X(s) = (s + 1)Y(s) from the second equation and substituting into the first
one we find
(s—Ds+ DY) —Y(s) =1

and hence

1
Y(s) = .
®=5_,

Taking the inverse L-transform, see the table, we find

_ 1 |
yi)=4&£ l{sz_z}:\/zsmh\/Zt.

Moreover, L1 {
s )
(s) = (s + DY(s) 2 2= g2 2T o,

and thus we get

1
x(t) = cosh /21 + sinh V21 .
2 V2

11.5 Generalized solutions

The L-transform allows us to handle linear differential equations with a forcing term
which may be discontinuous.
As an example, let us consider the first order equation

xX'(t) + x(t) = xp0.5)(2), x(0) =0, (b >0), (11.23)
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where x[o 5] is the step function introduced in Example 11.1.4. This problem models
the voltage of an RC circuit when an initial step impulse is given at the capacitor.
Taking the L-transform of both sides, we find

e—bs

1—
Lx} + L{x} = LX) = s
Using property (P4) with n = 1 and setting X (s) = £{x} we infer

e*bs

sX(s) + X(s) = ! _s

Solving for X(s), we get

Let us evaluate the inverse L-transform on the right-hand side. We use (11.21)
with a = 0, obtaining

27! 1—e™ =e! % (1) —/te—’“’ (0)d6
s(s+l) = X[0,b] - o X[0,b] .

To evaluate the integral, we distinguish between 0 < ¢ < b and ¢ > b. In the former
case,0 < 0 <t < b and we find

t t
/ e y10.5(0)dO = / e =1-¢" (0<t<bh).
0 0
Fort > b we have
! 0 b 0 ! 0
| e ron @0 = [ an®as + [ pom@s
0 0
b
— / e—t+0d0 — e—t+b _ e—t‘
0
We have shown that
= 1 —ebs _ 1—e™, ifO<t<b
s(s+1) e tth _ ot ifr > b.
Therefore, x (1) = £~ 1{X(s)} exists and is given by

1—e™, if0<t<b
x(t) =

e ttb o7t ift > b,

Let us check this result working directly on the equation. For 0 < ¢ < b one has
Xi0,1(t) = 1 and the ivp becomes x" + x = 1, x(0) = 0. Solving this, we find
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x(t)=1—e",0<t <bandx(b) =1 —e P Fort > b one has yp(t) =0
and hence we are lead to solve the ivp

X +x=0, xb)=1—e?, @t >b)

which can be solved easily: the general solution of x’ + x = 01is x(¢) = ce™". To
find ¢ we impose the initial condition x (b) = 1 —e~? yielding ce™ =1 — e~ and
thus ¢ = (1 —e~?)/e™® = ¢ — 1. In conclusion,

© 1—e?, if0<t<b
x() =
e t(e? —1),ift > b

as before.

The solution is increasing for 0 < ¢ < b and then decays to O for t > b. See
Figure 11.1. It is worth pointing out that x (¢) here is continuous (it suffices to check
this at 1 = b) but is not differentiable at ¢ = b because the left derivative at t = b
is e~? while the right derivative at the same point is e — 1. In this case x(¢) is
a “generalized” solution of our equation, in the sense that it solves the differential
equation for all # > 0, except at ¢t = b. This could have been expected because the
right-hand side of the equation has a discontinuity at ¢t = b.

More generally, consider the differential equation

x® fa x4 apx 4 anx = g(1)

where g is continuous with possibly the exception of a finite number of points § =
{ay,...,an}. We say that a continuous x (¢) is a generalized solution of the equation
if it is continuously differentiable on R \ § and satisfies the equation forall 1 € R\ §.
We could consider more general classes of generalized solutions, but this is out of
the scope of this book.

Fig. 11.1. Graph of x(t) = e™" * x[ ] (1)
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11.6 Appendix: The Dirac delta

A rigorous testament of the Dirac! delta would require more advanced topics such as
the Theory of Distribution and cannot be carried out here. However, its importance
in applications makes it worthwhile to give at least a heuristic sketch of this topic.
The reader should be aware that the exposition below is only an outline, not a very
rigorous and complete, treatment of the Dirac delta.

Let us define a sequence of functions f, : R — R by setting

n,if |z] <

fn(t) = 1
0, if |¢| >

2n

For every fixed t # 0 we have that f,(t) — 0asn — 4o0. Of course, this is not
true for ¢t = 0. Indeed, since f,,(0) = n we have that f,,(0) — +ocoasn — +00. So,
if we denote by §(¢) the pointwise limit of f, (), this §(¢), called the Dirac delta or
8-function, is not a function as we are used to dealing with, but rather a “generalized”
function or distribution.

Notice that

400 21n
fn(t)dtzf "ndi=1,  VneN.

2n

If we “pass to the limit” under the integral, in an appropriate “generalized” sense, we
find

+o0
/ s(t)dt = 1. (11.24)
—00
Another important characteristic property of § is that
+o0
/ 8()p()dt = ¢(0) (11.25)
—00

for any smooth function ¢ : R — R.
In order to show that § has the L-transform and to find it, we evaluate

+o0
/ e *18(t)dt.
0

Since §(¢) = 0 for all ¢ < 0, and using (11.25) with ¢ (¢) = e~%*, we infer

+o0 +oo
/ e S18(t)dt = / §(t)e Stdt = e® = 1.
0 —

[e.]

1 Paul Dirac (1902-1984).
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Hence we can say that § has an L-transform given by
{8} = 1. (11.26)

More generally, we can consider a shifted delta function by considering 5(t — a)
which has the following properties

8(t—a)=0 Vt#a (11.27)
+o0
/ §(t —a)dt = 1 (11.28)
+o0
[ 8(t —a)p(t)dt = ¢(a) (11.29)

for all smooth functions ¢.
It is interesting to evaluate the convolution of §(¢ —a) with a piecewise continuous
function g(¢). One has

8(t—a)*gt) = /Ot 80 —a)g(t—0)do.

Leta > 0. Since 6(6 —a) = 0forf <t < a, we get

/t (0 —a)g(t — 6)do = 0.
0

On the other hand, for r > a we can use (11.29) to infer

(o]

/t 80 —a)gt—0)do = /+OO 30 —a)g(t —0)do = g(t —a).
0 —_

In conclusion, we can say that

0 if0<t<a
gt—a)ift >a

/t 80 —a)g(t — 0)do = {
0

that is
8(t —a)*xgt) = Hy(t)g(t — a). (11.30)

Next let us find the L-transform of §(t — a), a > 0. We argue as before and use
(11.29) to yield

+o0 +o0
/ e ¥18(t —a)dt = f 8t —a)eS'dt =e™ %
0 J—

[e.]

hence we can say that
E{5(t —a)} = e, (11.31)

We now want to show that the shifted Heaviside function H, (¢) has the “derivative
in a generalized sense” given by §(¢ — a). To have a heuristic idea of this fact, one
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first observes that

t
/ 8(t —a)dt =0, Vit <a,
0

while for ¢ > a, (11.28) yields

t +o00
/ 8(t—a)dt=/ 8t —a)dt =1, Vt>a.
0 -

e ¢]

In other words,

l1ift >a

/18(z—a)dt - {Oi“ <% HL(0).
0

So H,(t) is a kind of antiderivative of §(f —a) and this gives rise, in a “generalized”
sense, to H,(t) = §(t —a).

It is worth pointing out that this agrees with the result we find by taking the L-
transform. Actually, we know that

—as

L{H, (1)} = es

Then
L{H, (1)} = s&{Ha(1)} = e

which is exactly the L-transform of §(t — a).
As for the inverse L-transforms, (11.31) implies

£ He ) = §(t —a).

In Physics, k§(t — a) corresponds to a sudden force impulse of intensity k acting
at the unique instant t+ = a. To illustrate its applications to differential equations, we
will solve a couple of problems.

Example 11.6.1. For a > 0 solve the problem (arising in an RC circuit)
x'+x=ké(t —a), x(0) =0, t>0.
Taking the L-transform we find
sX(s) + X(s) = ke™ ™.,
Hence

ke—as

X(s) = .
)= L1
Then, using the convolution property (11.20) of the inverse L-transform, we infer

X(t) = LX) = ke ey 27! {s 1

+1} =k8(t —a)xe .
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Then, by (11.30),

0 ifo<t<a
x(t) = kHa(t)e 9 =
ke~ =9 ift > q.

This function solves our problem in a “generalized” sense (slightly different from the
one introduced before). It has a jump discontinuity at# = a. Moreover, for0 < ¢ < a,
x(¢) = 0 and hence it solves x’ + x = 0, x(0) = 0, while for r > a, x(¢) solves
x" + x = 0 with initial condition x(a) = k, see Figure 11.2a. If a = 0 we find
x(t) = ke~ which solves x’ + x = 0 with initial condition x(0) = k, see Fig-
ure 11.2b. L]

L@k

YY) S
-

(@)

(b)

Fig. 11.2. (a) Solution of x” + x = k§(t — a), x(0) = 0, k > 0, a > 0; (b) Solution of x’ +
X = k8(t), x(0) = 0,k > 0
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In applications to an RC circuit, there is no circulating current in the circuit for¢ <
a because the capacitor is decharged, corresponding to the initial condition x (0) = 0.
For ¢t > a, the sudden instantaneous impulse of intensity k generates a current as if
the initial capacitor voltage is k. For t > a the RC circuit works as usual and the
voltage decays exponentially to zero as t — +o0.

Example 11.6.2. For a > 0 let us consider the problem
x"(@) +x(@t) = ké(t —a), x(0)=0, x’'(0)=0, t>0

which models a harmonic oscillator with the forcing term k§(t — a).
As before, we take the L-transform and find

$2X(s) + X(s) = ke 5.
Then P
e
X =
) s2+1
and hence (11.20) yields
1
_ p—1 =1y ,— -1
x=L X} =kZ e }x &L {52+1

0 if0<t<a
ksin(t —a) ift > a.

} = ké(t —a) * sint
= kH,(t)sin(t —a) = {

In other words, if @ > 0 the solution is O until # = a. After this time the impulse
k& (t —a) yields the (nontrivial) solution of the equation x” +x = 0 satisfying the ini-
tial conditions x(a) = 0, x’(a) = k. Moreover, notice that x (t) = kH,(¢) sin(t —a)

RN /7N
0 a \\/ t

Fig. 11.3. Graph of x(t) = kH,(¢t) sin(t — a) witha > 0
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is not differentiable at t = a and hence the name “solution” has once again to be un-
derstood in a “generalized” sense. If @ = 0 we find merely x(¢) = ksinz, ¢ > 0,
which solves x” + x = 0 with the new initial conditions x(0) = 0,x’(0) = k. =

11.7 Exercises

1. Find the L-transform of sinh wf = } (¢’ —e™®") and coshwt = ] (e®' +e~*").
Find the L-transform of ¢ sinwt and ¢ cos wt.
Find the L-transform of ¢ sinh w¢ and ¢ cosh wt.

Find the L-transform of e*’ sin w¢ and e®* cos wt.

A

Find £{f} where f(t) = 1,if0 <t <1, f(t) =2,if3 <t <4and f(t) =0
otherwise.

6. Find the L-transform of ¢ * e’.
7. Find the L-transform of 12 x ¢%¢,

8. Let f be a piecewise continuous 7 -periodic function. Show that £{ f} exists

and | .
FO=£1= e [ et

9. Find the L-transform of the 2-periodic square wave function
f@ =1, ifo<t<l1, f@)=0, ifl <t <2,
and f(t +2) = f(¢) forall t > 2.
10. Find the L-transform of the saw-footh T-periodic function
f@)=t, ifo<t<T, f@+T)=f@),Vt>T

11. Let F(s) = £{f}(s) be defined for s > 0. Suppose that | f(t)| < C forall t >
0. Show that lims_, 5, F(s) = 0.

12. Let F(s) = £{f}(s) be defined for s > 0. Suppose that f(z) > C > 0 for all
t > 0. Show that limg—,o+ F(s) = +o00.

13. Find the inverse L-transform of 2 , and .* .
s<—4 s<—4
s—1

and s2—2s+2°

. . 1
14. Find the inverse L-transform of , . “

: —1 1
15. Find £ {S2_3S+2}.

16. Find £ { 52 }

s3—s



17.

18.

19.

20.

21.
22.
23.

24.
25.
26.
27.
28.

29.
30.
31.
32.

33.

34.
35.
36.
37.
38.
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Find 271 { L 1.

Find £ {**£1],

s2+s

Let F(s) = £{f}. Show that if f(t) > 0 then F is decreasing and concave
upward.

Prove property (P3) of the L-transform: if g(¢) = foz f(r)dt then £{g}(s) =
E{f}()
A

Use (P3) to show that £{t} = s72
Use (P4) to find the L-transform of e*’.

Let Jo(¢) be the Bessel function of order O satisfying 1x” + x’ 4+ tx = 0, such
that Jo(0) = 1. Find X (s) = £{Jo} such that X (0) = 1.

Solve x’ + x = ef, x(0) = 0 using the L-transform.

Solve x” + x = t, x(0) = —1 using the L-transform.

Solve x” —2x" + x = 0, x(0) = x’(0) = 1 using the L-transform.
Solve x” — 4x’ + 3x = 1, x(0) = x’(0) = 0 using the L-transform.

Solve x”" + x” = 0, x(0) = 0,x’(0) = 1,x”(0) = x/(0) = O using the
L-transform.

Find the “generalized solution” of x" — x = H,(t), x(0) = 0.
Find the “generalized solution” of x" + x = H,(t), x(0) = 0.
Find the “generalized solution” of x" — x = k§, x(0) = a, t>0.

Find the “generalized solution” of x” + x = g(¢), x(0) = x’(0) = 0, where g
is any piecewise continuous function with L-transform G (s) defined for s > 0.
In particular, solve in the case that g(¢) = x[o,17(?)-

Find the “generalized solution” of x” = §(t — a), x(0) = 1, x’(0) = 0, where
a> 0.

Solve x(t) = 1 + e * x(t).

Solve x(¢) = t3 + sint * x.

Solve x’ —k * x = 1, x(0) = 0, k > 0 a constant.
Solve x’ + (k%) x x = 1, x(0) = 1,k # 0.

Solve the system

X' =2x+y, x(0)=0
yi=—x-4y, y0)=1
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39. Solve the system
X' =—=x+4+y, x(0)=1
y=x+y.  y0)=0.

40. Solve the system
{x’ =x+y, x(00=0
y==y+46 y0)=0.
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Stability theory

In this chapter we present an introduction to the theory of stability. Since this is a very
broad area which includes not only many topics but also various notions of stability,
we mainly focus on Liapunov stability of equilibrium points and leave out topics
such as the Poincaré—Bendixon theory, stability of periodic solutions, limit cycles,
etc. Some of the proofs are omitted or carried out in special simple cases. For a more
complete treatment the reader may consult sources such as the books by J. La Salle &
S. Lefschetz, or by H. Amann, see Bibliography.

12.1 Definition of stability

Given x = (X1.X2,....%,) € R". f = (f1,..., fu) € CYR",R") and p =
(p1,--.,pn) € R” (in this chapter we display the components of vectors horizon-
tally instead of vertically, as was done earlier), let x (¢, p) be the (unique) solution of
the system

X'=f®, x(0)=p (12.1)

or equivalently

Xl{ :fi(x,...’xn) o
{xi(0)=p,~. ' (i=12,...,n).

We will suppose that the solution x (¢, p) is defined for all # > 0 and for all p € R”.
It is possible to show that the solution x (¢, p) depends continuously on the initial
condition p:

Theorem 12.1.1. Suppose that f is continuously differentiable on R". Given p €
R”, for each € > 0 and T > O there exists r > 0 such that |x(t, p) — x(t,q)| < ¢,
forallt € [0,T]and all |p —q| <.

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT - La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_12, © Springer International Publishing Switzerland 2014
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In other words, for ¢ close to p, x(t, q) remains close to x(t, p) in any finite in-
terval, that is, solutions that are close to each other initially remain close to each
other for some finite time. However, stability deals with the behavior of x (¢, p) for
all ¢+ > 0, that is, if they are initially close to each other then they remain close to
each other for all time t > 0.

Notation. 7, (y) = {x € R” : |x — y| < r} denotes the ball of radius r > 0 centered
at y € R”. Recall that |x| is the euclidean norm in R”, namely |x|?> = (x | x) =

> X2

Definition 12.1.2. Let x* € R” be such that f(x*) = 0 so that x* is an equilibrium
point of (12.1):

1. x™ is stable if for every r > 0O there exists a neighborhood U of x* such that p €
U= x(,p)eT,(x*)forall > 0.

2. x* is asymptotically stable if there is a neighborhood U’ of x* such that
lim, 400 X (¢, p) = x* forall p € U'.

3. x* is unstable if it is not stable.

Of course, asymptotic stability implies stability. But there could be stable equilib-

ria which are not asymptotically stable such as a Poincaré “center” — an equilibrium
point surrounded by circular trajectories.

12.2 Liapunov direct method

At the beginning of the 1900’s, the Russian mathematician Aleksandr Liapunov de-
veloped what is called the Liapunov Direct Method for determining the stability of
an equilibrium point. We will describe this method and illustrate its applications.

Definition 12.2.1. Let x* € R” be an equilibrium point of (12.1). Let 2 € R” be an
open set containing x*. A real valued function V € C!(,R) is called a Liapunov
function for (12.1) if

V1) V(x) > V(x*)forall x € Q, x # x*.

V2) Vx) ™ (vV(x) | f(x)) <0, forall x € Q.

Recall that (x | y) denotes the euclidean scalar product of the vectors x, y, see Nota-
tions. Moreover, VV = (Vx,,--- , Vy, ) denotes the gradient of V' and the subscripts
denote partial derivatives.

Note that, since x’(t) = f(x(¢)), we have that

V(x(1) = Vi, (R(0) A(Z(0)) + Vay (R(0)) f2(Z (D)) - .. + Vi, (R(D)) fu(3(1))
= Vi, (R(0))x] (1) + Vi, RO X5(0) + ... + Vi, (R(0))x;, (1)

d
= (VVEO) [X'0) = | V@)
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In other words, V (x(t)) = dVElxt(t)) is nothing but the derivative of V' along the
trajectories x(¢). Therefore (V2) implies that V(x(¢)) is non-increasing along the
trajectories x(¢).

Theorem 12.2.2 (Liapunov stabilty theorem).

1) If (12.1) has a Liapunoy function, then x* is stable.
(ii) Ifin (V'2) one has that V (x) < 0, for all x # 0, then x* is asymptotically stable.

Proof. We will prove only the statement (i ). By the change of variable y = x — x*,
the autonomous system x’ = f(x) becomes y' = f(y + x*) which has y = 0 as
equilibrium. Thus, without loss of generality, we can assume that x* = 0. Moreover,
still up to a translation, we can assume without loss of generality that V(x*) = 0.
Finally, for simplicity, we will assume that 2 = R”. The general case requires only
minor changes. Set

ep(t) = V(x(t, p)).

The function ¢, (¢) is defined for all # > 0 and all p € R". Moreover ¢, () is differ-
entiable and one has

(/)1,;([) = Vxlxll +e 4+ VxV:x; = (VV(x(t, p) | x/(ﬂp)) = V(x(t,p)).

By (V2) it follows that ¢, (¢) < 0 for all # > 0. Hence ¢, (?) is non-increasing and
thus

0= V(x(t,p)) = V(x(,p)) =V(p), vVi=0. (122)

Given any ball 7, centered at x = 0 with radius r > 0, let S, denote its boundary.
From (V1) it follows that

m=m(r) =min{V(x):y € S,} > 0.

LetU = {p € T, V(p) < m}. From (V1) one has that U is a neighborhood of
x = 0. Moreover, by (12.2) it follows that V(x(¢, p)) < m for all t > 0 and all
p € U. Since m is the minimum of V in S, the solution x (¢, p) has to remain in 7,
provided p € U, namely p € U = x(¢, p) € T, and this proves that x = 0 is
stable. [

Roughly, the Liapunov function V is a kind of potential well with the property
that the solution with initial value p in the well remain confined therein for all # > 0.

Remark 12.2.3.I1f V. = 0 for all ¢ > 0, then V(x(¢, p)) is constant, namely
V(x(, p)) = V(x(0,p)) = V(p) for all t > 0. Then x(z, p) cannot tend to x*
as t — +00. As a consequence, x* is stable but not asymptotically stable. L]
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Example 12.2.4. As a first application we want to study the stability of the nontrivial
equilibrium x* = 7, y* = ¢ of the Lotka—Volterra system

x' =ax —bxy
y' =—cy +dxy.

Recall (see Section 8.2) that letting H(x,y) = dx+by—clnx—alny,x >0, y >
0, one has that H is constant along the solutions of the system. Let us take V = H.
Then V = H = 0 and hence (V2) holds with equality. Moreover we know that H
has a strict local minimum at (x*, y*) and thus (V1) is satisfied. It follows that H is
a Liapunov function and one deduces that (x*, y*) is stable (but not asymptotically
stable, see Remark 12.2.3). We will see later on that the trivial equilibrium (0, 0) is
unstable. L]

Theorem 12.2.2 is countered with the following instability result
Theorem 12.2.5. Suppose that there exists a scalar function W € C 1(Q,R) such
that W(x*) = 0 and that W (x) := (VW(x) | f(x)) is either positive or negative

for all x # x*. Moreover, we assume that there exists a sequence xy € 2, with
Xr — x* such that W(x)W (x) > 0. Then x* is unstable.

12.3 Stability of linear systems and n-th order linear equations

In this section we will apply the previous theorems to study the stability of the linear
system
x' = Ax, x = (x1,...,xn) € R".

We start with linear 2 x 2 autonomous systems. Recall that these systems have been
discussed in Chapter 7, but here they are studied from the point of view of stability.

12.3.1 Stability of 2 x 2 systems

Changing notation, we call (x, y) € R? the variable and write the system in the form

-
{X - allx + alzy (123)

v = anx +axny

where the coefficients a;; are real numbers. Letting ¥ = (x, y) and

ap a
A = (911 d2
dazy azz
the system can be written as u’” = Au. If A is nonsingular, which we always assume,

the only equilibrium is (x, y) = (0, 0). We are going to study the qualitative proper-
ties of the solutions of (12.3), in particular their asymptotic behavior, as t — +o00.
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Referring to Chapter 7 for some more details, let us recall that the Jordan normal
form of a nonsingular matrix A is a nonsingular matrix J with the property that there
exists an invertible matrix B such that BA = JB. The Jordan matrix J exists and
has the same eigenvalues A, A, as A. Moreover, if A1, A, are real numbers, then

M#EI = J:():)l fz). an
If A; = A, then either
J = ( Aol fl ) J2.1)
or
= ( )t)‘ All ) J2.2)
If the eigenvalues are complex, A = « + i, then
J= ( g _a’g ) (J3)

Lemma 12.3.1. The change of variable z = B~'u transforms the solutions u(t) of
u' = Au into the solutions z(t) of z’ = Jz. Therefore, (0,0) is stable or unstable
relative to u' = Au if and only if it is the same relative to y' = J z.

Proof. The first part of the lemma has been proved in Chapter 7 (with slightly dif-
ferent notation): from z/ = B~'w’ = B~ 'Au = JBu it follows that z/ = Jz.If
we set z = (21, z») this shows that the change of variable B! transforms a solu-
tion curve u(t) = (x(¢), y(¢t)) of u’ = Au in the plane (x, y) into a solution curve
z(t) = (z1(t), z2(t)) of z/ = J z in the plane (z, z,). Thus the qualitative properties
of (x(t), y(t)) are the same as those of (z1(¢), z2(¢)). In particular, (x(¢), y(¢)) —
(0,0) as t — +oo if and only if (z1(¢), z2(¢)) does the same, and hence the point
(0,0) is stable or unstable relative to u’ = Au if and only if it is the same relative
toz’ = Jz. ]

By the lemma, it suffices to study the system
u' = Ju.

Consider first the case when the eigenvalues are real and distinct. According to (J1)
the system u’ = Ju becomes
x'=Aix
{ y'= A2y
which is decoupled. Its solutions are given by x(¢) = cie*!? and y(t) = cre??’,
where ¢; = x(0), c; = y(0) € R.If A; < 0, resp. A, < 0, then x(z) — 0, resp.
y(t) — 0, as t — +o00. Therefore,
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if both the eigenvalues are real and negative, the equilibrium (0, 0) is asymp-
totically stable, whilst if one of the eigenvalues is positive, (0, 0) is unstable.

We can write the solutions in the form y = y(x). Precisely, if c; = 0 then x(z) = 0.
If ¢; # 0 we solve x () = c1et? for ¢, obtaining

1

1 X x [M
t = In =1In
A1 C1 C1
Substituting into y(z) we get
x :1\2 Py
X 1 X 1 c >
y() =C26/12t =cyexp|Azln =cyexp|In — %X’ll
2 1 c

A2
where ¢} = cl’\ ', The behavior of these functions depends on the sign of the eigen-
values and on their ratio. If A; < A, < 0, then the exponent of x is positive and
greater that 1, see Figure 12.1a. If A, < A; < 0, then the exponent of x is posi-
tive and smaller than 1. In any case the origin is asymptotically stable and is called a
stable node, see Figure 12.1b.
If A1-A, > 0, we have an unstable node. The graphs are plotted in Figures 12.2a—
12.2b.
If A1 - A, < 0, the functions y(x) are hyperbolas. The origin is unstable and is
called a saddle, see Figure 12.3
We now consider the case when A; = A, := A and is real. If (J2.1) holds, then
the system becomes
x'= Ax
{ y = Ay.
Thus x(1) = cie??, y(t) = cpe* and (0, 0) is asymptotically stable provided A < 0,

otherwise (0, 0) is unstable. It is still called a stable or unstable node. Here y(x) =
cx, with ¢ = ¢, /¢y, see Figures 12.4a—12.4b.

A\ VY4

(@) (b)
Fig. 12.1. Stable node. (a) A1 < A2 <0;(b) A2 <A1 <0
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(a) (b)
Fig. 12.2. Unstable node. (a) 0 < A1 < A2;(b) 0 < Ap < Ag

-

(1.
-

Fig. 12.3. Saddle, with A; <0 < A3

(a) (b)

Fig. 12.4. Case (J2.1). (a) Stable node, with A; = A, < O0; (b) unstable node, with
)Ll = /\2 >0
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If (J2.2) holds, then the system becomes

X' =Ax+y
y' = Ay.

The solution of the second equation is y(f) = ce*!. Substituting into the first one,

we find x’ = Ax 4 c,e** which is a linear first order non-autonomous equation. The

solution is x (f) = (c1 + cat)e**. Once again, if A < 0 we have asymptotic stability.

Otherwise, if A > 0 we have instability. The origin is still a node.
If c; = 0 we find y(¢) = 0. If ¢, # 0, we have

1
e’lt:y = = ln(y).
(&) A (&)

Thus from x = (¢1 + ¢»t)e* we infer
1
x = [cl +cs ln(y)} y’ (c2 # 0).
A Cy (6]

The graphs are shown in Figures 12.5a—12.5b.
We finally consider the case in which the eigenvalues are complex. From (J3) it
follows that the system becomes

x' =ax— By
y' = Bx +ay.

Using polar coordinates, x(¢) = r(¢) sin0(t), y(¢) = r(t) cos 8(¢), we find
x'=r'sinf +r6'cosf, y =r'cosh—r6 sind
whence

r'sinf + rf’ cos @ = a(rsin6) — B(r cos )
r'cos@ —rf'sinf = B(rsinf) + a(r cos ).

(a) (b)

Fig. 12.5. Case (J2.2). (a) Stable node, with A; = A, < 0; (b) unstable node, with
AM=A2>0
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(a) (b)

Fig. 12.6. Case (J3), with o # 0. (a) @ < 0: stable focus; (b) @ > 0: unstable focus

Adding the first equation multiplied by sin 6 to the second equation multiplied by
cosf we get r’ = ar. Similarly, subtracting the first equation multiplied by cos

from the second equation multiplied by sin 6 we get #’ = —p. In other words, the
system in the unknowns r, 6 is simply

r'=ar

0 =-p
whose solutions are r(f) = c1e*’, 6(t) = —pt + c5. Thus

x(t) = cre¥ sin(—pt + ¢2), y(t) = c1e¥ (cos(—=Bt + ¢3)).
Thus stability depends only on «. Precisely, one has:

ifA2 =a xif and a < 0, then the origin is asymptotically stable, whilst if
o > 0, the origin is unstable.

If @ # 0, the equilibrium is called a focus, see Figures 12.6a—12.6b. The curves are
spirals.

If A1, = o £if and @ = 0 we find that r(¢) is a constant. Thus the solution
curves are circles r = ¢ > 0, namely x2 4+ y? = c, centered at the origin, see
Figure 12.7. Hence

ifA2 =axif and a = O, the origin is stable, but not asymptotically stable.

The equilibrium is called a center.

Remark 12.3.2. To complete the discussion, consider the case in which one eigen-

value of A is zero. If A = 3 8 the system is
x'=Ax
y'=20

whose solutions are x(f) = c1e*", y(t) = ¢, which, in the plane (x, y), are straight

At

lines parallel to the x axis. If A= (g 2), we find x(¢) = ¢1, y(t) = c e, namely a
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xZ+y2=c>0

-
.

Fig. 12.7. Center: case (J3) witha = 0

family of straight lines parallel to the y axis. Finally, if A = (8 g) the system is
x" = by
y'=0

whence y(t) = ¢, and x(t) = c1 + cbt which are still a family of straight lines
parallel to the x axis. In any case, we have instability. ]

The following table summarizes the nature of the equilibrium (0, 0) when A is
nonsingular.

Eigenvalues Equilibrium

AMa2€eR, 41,42 <0 asymptotically stable node

AM2€eR, 41,42 >0 unstable node
AM2€eR, A1, <0 unstable saddle
Ma=axif,a<0 asymptotically stable focus
Ma=axif,a>0 unstable focus

A2 = £if, stable center

12.3.2 Stability of n x n linear systems

Extending the previous results, we state the following theorem dealing with the linear
autonomous n X n system x’ = Ax, where x = (xq,...,x,) € R”.
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Theorem 12.3.3. Suppose that A is a constant n X n nonsingular matrix.

(i) If all the eigenvalues of A have negative real part, then x* = 0 is asymptotically
stable. More precisely, for all p € R" one has that x(t, p) - 0ast — +o0.

(ii) If one eigenvalue of A has positive real part, then x* = 0 is unstable.
g p p

In the above statement, if an eigenvalue is real, its real part is the eigenvalue itself.
In the case that

At 0 - 0
a—] 0 2

oo 0

0 ... 0 Ay

where the eigenvalues A; are real (notice that we do not require that A; # A; for
i # j), the systems x" = Ax splits into n independent equations x; = A1x;. These
equations yield x; (1) = ¢;e*i*. This immediately implies the asymptotic stability of
0 provided all A; < 0. Moreover, if one of the A; is positive, then x; () = cieM!
does not tend to 0 as t — +o0 and we have instability.

If A is not diagonal, the proof of (i) is based on finding a Liapunov function for
x' = Ax and on applying the Liapunov Stability Theorem 12.2.2. To avoid cum-
bersome calculations, we carry out the details in two specific examples in 3D. The
general case follows from similar arguments.

Letx = (x,y,2) € R3, and consider the following two cases:

A1 0
I.A=|1 0 A 0 |;

0 0 vy

a B O
2.A=|-B8 «a O

0 0 vy

We claim that V(x) = ;(x2 + y2 4 z?) is a Liapunov function.
Clearly, V(x) > 0 for all x # (0,0, 0) and hence (V1) holds. As for (V2), we
consider separately the two cases.

1. Since Ax = (Ax + y, Ay, yz) one infers
V = (VV | Ax) = A[x% + xy + y?] + yz2.

Notice that
2 2 2

X 3x X 2 3x
x24xy+y?= 4+xy—|—y2+ A =(2+y) +, >0 V) #(0.0).

Thus, if A,y < 0 it follows that V < 0 for all (x, y,z) # (0,0,0) and hence (V2)
holds (with strict inequality).
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2. Here the eigenvalues of A are « + i and y € R. We have that Ax = (ax +
By,—Bx + ay, yz) and hence

V= (VV | Ax) = ot[x2 + y2] + yzz.

Thus (V2) holds (with strict inequality) provided « and y are both negative.

In each of the above cases, we can apply (i) of the Liapunov Stability Theo-
rem 12.2.2 to infer that x* = (0, 0, 0) is asymptotically stable provided all the eigen-
values of A have negative real parts.

12.3.3 Stability of n-th order linear equations

Recall that the linear n-th order equation in the real variable x

e T ™ aex =0 (12.4)
din din—1 dt
is equivalent to the system
X] =x2
X = X3 (12.5)
X, = —Qp—1Xp — -+ — a1X2 + AoX1.

The stability of the trivial solution of (12.4) is the same as the stability of the point
with coordinates x; = x, = -+ = x, = 0 for the equivalent system (12.5). In
particular, the asymptotic stability of x = 0 means that for all p € R near x = 0 one
has

dx(t, 4ar1 t,
lim x(z,p) = lim XOP) oy x(t,p) _
t—>+o00

0.
t—+oo dt t—+oo  dtn—1

One can check that the roots of the characteristic equation
A ap g A @i d+ag=0

of (12.4) coincide with the eigenvalues of the system (12.5). Let us show this claim
in the case of the second order equation x” 4+ ax’ 4+ bx = 0, equivalent to the system

x| = X2
xh = —ax, — bxy.
The eigenvalues are the solutions of

‘—/\ 1

2 _
b —a—2 ‘—)L +al+b=0,

which is the same as the characteristic equation of x” + ax’ + bx = 0.
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Using the preceding remark about the roots of the characteristic equation, we can
use Theorem 12.3.3 to infer

Theorem 12.3.4. The trivial solution x = 0 is asymptotically stable if all the roots
of the characteristic equation have negative real parts, while it is unstable if at least
one root of the characteristic equation a has positive real part.

On the other hand, we might also work directly on the equation. Actually, the gen-
eral solution of (12.4) is the superposition of terms 1 e*! or 1 e® (sin B + cos Bt),
where A or @ &= i § are roots of the characteristic equation. These terms, together with
their derivatives, tend to zero as t — +oo if and only if A < 0, or & < 0.

12.4 Hamiltonian systems

Let H : R” x R” — R be continuously differentiable and consider the hamiltonian
system
X =—Hy (X1,.... X0, Y1,..,Yn) .
! 1 = 1, 27 ceem,
{y{ = Hy(X1,....Xn. Y152 Yn)

or, in a compact form

x'=-=Vy,H(x,y)
’ HS
{y’ = ViH(xY) (H5)
where Vi H = (Hy,,--+ ,Hy,)and V, H = (H,,,--- , Hy,).

Planar hamiltonian systems have been discussed in Section 1 of Chapter 8. The
following Lemma is the counterpart of Lemma 8.1.1 therein.

Lemma 12.4.1. If (x(t), y(t)) is a solution of (HS), then H(x(t), y(t)) is constant.
Proof. One has

d
o HEW.0(0) = (VeH() | X) + (Y H®) | V)
where (o) = (x(¢), y(¢)). Since (x(t), y(¢)) satisfies (HS) it follows

d
g 2@ =—(VxH(®) [ VyH(9)) + (VyH(e) | VxH(e)) =0

and thus H(x(t), y(t)) is constant. [

Theorem 12.4.2. Let H(0,0) = 0 and suppose that (0, 0) is a local strict minimum
of H, namely that there exists a neighborhood Q@ C R"™ x R" of (0,0) such that
H(x,y) > 0 forall (x,y) € @, (x,y) # (0,0). Then (0,0) is stable (but not
asymptotically stable).

Proof. We claim that the restriction of H to €2 is a Liapunov function for (H S). First
of all, by assumption, (V'1) holds. Moreover, Lemma 12.4.1 implies that H = 0 and
hence (V'2) holds. From Theorem 12.2.2 it follows that (0, 0) is stable. More pre-
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(;

Fig. 12.8. Typical phase plane portrait of a hamiltonian system in 2D

cisely, since H = 0 then, according to Remark 12.2.3, (0, 0) is stable but not asymp-
totically stable. If n = 1 the equilibrium is like a stable center for linear systems.
See Figure 12.8. ]

Remark 12.4.3. To show the stability of the nontrivial equilibrium of the Lotka—
Volterra system (see Example 12.2.4), we could also use the preceding theorem. =

If
1
Hxy) = P+ F(x),  FeC!(R"R)

the hamiltonian system (H.S) becomes

X, = —y
12.6
{y; = Fi(x) (120

which is equivalent to the second order gradient system
x" + VF(x) =0, (12.7)

namely
X/ + Fy(x1,...,x,) =0, i=1,...,n.

Let us point out that an equilibrium x* of a system such as (12.7) corresponds to
the equilibrium (x*, 0) of the equivalent first order system (12.6). Stability of x* for
(12.7) has to be understood as the stability of (x*,0) for (12.6). For example, the
asymptotic stability of x* means that x(¢, p) — x* and x'(¢, p) — 0 ast — +o0,
for all p close to x*.
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The following theorem is known as the Dirichlet-Lagrange stability criterion.

Theorem 12.4.4. Let F(x*) = 0 and suppose that x* is a local strict minimum of
F. Then the equilibrium x* is stable with respect to (12.7).

Proof. Ttsuffices to remark that H(x, y) = ; |y|? + F(x) has a strict local minimum
at (x*, 0) and apply Theorem 12.4.2. "

12.5 Stability of equilibria via linearization

Given a system x’ = f(x) with equilibrium x* = 0, its linearization at x* = 0 is
the linear system x’ = Ax, where 4 = V £ (0).

Developing f in Taylor’s expansion we find f(x) = Ax + o(|x|). Then the lin-
earized system is x’ = Ax. We have seen that a sufficient condition for the asymp-
totic stability of x = 0 for x’ = Ax is that all the real parts of the eigenvalues of A
be negative, whilst if at least one eigenvalue is positive, or has positive real part, then
x* = 0 is unstable. This result is extended to the nonlinear case in the next theorem,
whose proof is omitted.

Theorem 12.5.1. Suppose that all the eigenvalues of V f (0) have negative real parts.
Then the equilibrium x* = 0 is asymptotically stable with respect to the system
x' =V f(0)x + o(|x]).

If at least one eigenvalue of V f(0) has positive real part, then the equilibrium
x* = 0 is unstable.

Example 12.5.2. Consider the Van der Pol system

x'=—y
Y =x=2u(x>—1)y

with || < 1. Here the eigenvalues of
0 —1
A_Vf(O,O)—(1 2#)

are Ay = o+ /2 —1, Ay = p— /u2 —1.1f 0 < p < 1, both the eigenvalues
have positive real part and the equilibrium (0, 0) is unstable. On the other hand, if
—1 < pu < 0, both the eigenvalues have negative real part and the equilibrium (0, 0)
is asymptotically stable. L]

Example 12.5.3. We have seen in Example 12.2.4 that the nontrivial equilibrium of
a Lotka—Volterra system

x' =ax —bxy

y'=—cy+dxy
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is stable. On the contrary, let us show that (0, 0) is unstable. Here

[ Ailx,y)\ [ ax —bxy
f(x’y)_(f;(x,y))_(—cy+dxy)'

Thus
Vix.y) = (a ;yby —c_—li)-xdx)
and hence 0
A=Vf(0,0) = (g _c)
whose eigenvalues are a > 0, —c < 0. It follows that (0, 0) is unstable. ]

Consider the one-dimensional case of a single equation x’ = f(x), where f is
continuously differentiable and f(0) = 0. The linearized equation is x’ = f/(0)x
for which the stability of x = 0 is determined by the sign of f”/(0). Then the previous
theorem yields that the equilibrium x = 0 is asymptotically stable if f’(0) < 0 and
unstable if f7(0) > 0.

Example 12.5.4. If f(x) = Ax — x3, x = 0 is an equilibrium of x’ = f(x). Since
f7(0) = A, it is asymptotically stable if A < 0 and unstable if A > 0. When A be-
comes positive there is a change of stability and a pair of nontrivial equilibria branch
off from A = 0. These new equilibria are x; = £+/A. Since f’(x;) = A — 3xi =
—2A < 0 for A > 0, it follows that x, are asymptotically stable. This phenomenon is
called a pitchfork bifurcation. See Figure 12.9.

The same bifurcation arises in the case of x = Ax + x3. Here the nontrivial equi-
libria +x); = £ \/ (—A), A < 0, are unstable and the branch is downward directed. m

stable __—
¥
| .4
[ ]
i
¥ stable unstable A

N

|
v
’

Fig. 12.9. Pitchfork bifurcation for x’ = Ax — x3
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The following example shows that if the matrix V f(0) has a pair of conjugate
eigenvalues with zero real parts, the stability of x* = 0 cannot be deduced by the
previous theorems, but depends on the higher order term in the Taylor’s expansion

of f(x).

Example 12.5.5. Consider the system

{X/ BEAREIRE (12.8)

y'=—x+ey(x*+y?)
whose linear part has eigenvalues +i. Letting V(x, y) = x2 + y2, let us evaluate
V =2(xx"+ yy).

Multiplying the first equation by x and the second by y and summing up, we get
xx/ + yy/ — €(X2 + y2)2.
Therefore
V = 2e(x? + y?)2,

whose sign depends on €. The equilibrium (0, 0) is asymptotically stable if € < 0,
whilst it is unstable if € > 0. If ¢ = 0, then V = 0 and hence we have stability. As
an exercise, the reader can transform (12.8) using polar coordinates x = psinf,y =
pcos 0, and show that for € # 0 the trajectories are spirals, with a behavior like the
one plotted in Figures 12.6a—12.6b. ]

12.5.1 Stable and unstable manifolds

The results below describe the behavior of the solutions near an unstable equilibrium
in more detail.

Consider the linear system x’ = Ax. The equilibrium x* = 0 is called hyperbolic
if the matrix A has no eigenvalues with zero real part.

Theorem 12.5.6. Suppose that x* = 0 is a hyperbolic equilibrium: A has k eigen-
values A1, ..., Ay with negative real parts and n — k eigenvalues Ay 41, ..., A, with
positive real parts. Let e;, i = 1,--- ,n, denote an orthogonal system of eigenvalues
corresponding to A; and let

L® =L =span{ey,--- ,ex}y, L" =LY, =span{egi1.--+ .en}.

Then:

(1) L% and L" are invariant, that is if p € L®, resp. p € L%, then x(t, p) € L*,
resp. x(t, p) € L%, forall t.

(i1)) p € L® ifand only if lim;_, ;o0 x(2, p) = 0.

(iii) p € LY ifand only if lim;_,_o, x(¢, p) = 0.
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Fig. 12.10. Phase plane portrait of x’ = Ax, x = (x, y), with 4 = diag{A1, A2}, A1 <0<,

Proof. We prove the theorem in the simple case in which A = diag{Ay,---,A,},
where Ay < -+ < A < 0 < Agyqr < --- < A,. The system x’ = Ax is
decoupled into n independent equations x; = A;x;. If p = (p1,--+, pn), one
finds that x(¢, p) = (preM’,---, ppe??). Then lim,_ 400 x(t, p) = 0 if and
only if px4+1 = --- = p, = 0. This implies that L® = span{e;,--- ,er}. Sim-
ilarly, limy;,_oo x(¢, p) = 0 if and only if p; = --- = pr = 0 and hence
LY = spani{eg41,-+- ,en}- n

If n =2 and A = diag{A, A, } we find the saddle plotted in Figure 12.10
The previous result can be extended to the nonlinear system x’ = V f(0)x +

o(|x).

Theorem 12.5.7. Let f be smooth and suppose that the matrix A = V f(0) has k
eigenvalues with negative and n — k eigenvalues with positive real parts. Then there
are smooth surfaces M* = M} and M* = M)’ ,, of dimension k and n —k re-
spectively, with M* U M¥ = {0}, defined in a neighborhood of x* = 0, which are
tangent to L*, resp. L, such that:

(1) M? and M" are invariant, that is, if p € M?, resp. p € MY, then x(t, p) €
M, resp. x(t, p) € MY, forallt.

(i) p € M ifand only if lim;_, 1o x(t, p) = O.

(iii)) p € M™ ifand only if lim;_,_, x(t, p) = 0.

The surface M* is called the stable manifold of the system, whilst M" is called the
unstable manifold, see Figure 12.11.If f(x) = Ax the stable and unstable manifolds
are the linear spaces L®, L*. If all the eigenvalues have negative, resp. positive, real
parts then M¥ = @, resp. M* = @.
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Aol
e s
S u \ M

Fig. 12.11. Stable and unstable manifolds

Remark 12.5.8. If M*, M'* are defined globally on R”, it is possible to prove that if
p € R"\ M?, then x(¢, p) approaches M* asymptotically as t — +o0. L]

12.6 An asymptotic result

Consider the second order linear non-autonomous equation
X"+ (14 Q@) x=0. (12.9)

If Q = 0 the solutions are periodic and given by x(¢) = c¢sin(z + V). We want
to study the “stability” of these periodic solutions, looking for conditions on Q such
that they will make the solutions of (12.9) tend asymptotically to x (¢) = ¢ sin(¢ +9).

Theorem 12.6.1. Suppose that

+o0
/ |Qt)]dt < 400, (12.10)

for some a € R. Then there exist constants ¢ > 0 and ¥ such that any solution of
(12.9) has the form
x() =csin(t +9) + ¢(¢)

with limy_ o0 ¢ (t) = 0.
Proof. The equation x” + (1 + Q(t))x = 0 is equivalent to the first order system

x =y, y ==+ Q())x. (12.11)
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Let us use polar coordinates, namely x(¢) = r(t)sin0(t), y(t) = r(t)cos8(t),
r > 0. Notice that if r(7) = 0 for some 7, then one has x(r) = 0 and y(tr) = 0. By
uniqueness, x (1) = y(¢) = 0 for all ¢, for which the theorem is obviously true. Thus
in the sequel we can assume that r(z) > 0 for all ¢.
One has

x'=r'sin@ + r’ cos 6, y' =r'cosf —rb sinb.

Then (12.11) is transformed into
r’ sinf + rf’ cos 6 = rcos 6, r'cos —rf'sinf = —(1 + Q)rsinb.

Multiplying the first equation by sin 8 and the second one by cos 6 and summing up,
we find

' =rsinfcosd —(1+ Q)rsinfcosf = —Qrsinb cosb.

Multiplying the first equation by cos 6 and the second one by sin 6 and subtracting,
we find
r0’ =rcos?0 + (1 + Q)rsin?6 = (1 + Qsin6)r.

Thus (12.11) becomes

r' = —Qrsinfcosb, (12.12)
6 =1+ Qsin?4. (12.13)

Equation (12.13) is independent of r and can be integrated, yielding
t
0(t)—0(a) =t —a+ G(t), where G(t) = / Q(s) sin? O(s)ds.
a

Next, let us set

1 t
F@t) = ~ / QO (s)sin26(s)ds.
a
From (12.12) it follows (recall that r(z) > 0 for all ¢)
rt) _

n ra) = —; /at O(s)sin26(s)ds = F(1).
Then we find
r@t) =r@ef®, 0@)=0@)+1t—a+ G@).

Finally, setting g(t) = 0(a) —a + G(¢) we find 8(t) = ¢t + g(z). In conclusion we
have
x(t) = r(t)sin(t + g(2)).

Using the assumption (12.10) on Q it follows that F' and G converge as ¢ —
+o00. Thus r(t), g(t) have finite limits. Let ¢ = lim; 4o r(f) > 0 and ¥ =
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lim;_, o (). If we write the solution x(¢) as
x(t) =csin(t + 0) + r(t) sin(t + g(t)) — ¢ sin(t + ¥)

and set ¢ (¢) = r(t)sin(t + g(t)) — csin(t 4+ ), we infer that x = ¢ sin(t + ) +
¢(t). Since r(t) — c and g(t) — ¥ ast — 400, it is easy to check that ¢(t) — 0
as t — +o00. The proof is completed. [

In the (x, y) plane the solutions are trajectories that tend asymptotically to a “limit
cycle”, a circle of radius r = c.

Example 12.6.2. Let Q(t) ~ t™* ast — +o0.If @ > 1 then Q satisfies (12.10) and
Theorem 12.6.1 applies. ]

We will use Theorem 12.6.1 to establish the asymptotic behavior of the Bessel func-
tion J,, (¢), as anticipated in Chapter 10.

Theorem 12.6.3. There exist constants ¢y, Oy Such that

1

Jm(t) = cm ! \/

At

where t > 0 and lim;_, 4 5o ¢pt) = 0.

sin(t + O) + ; dm (1),

Proof. Setting y = t'/2x, ¢ > 0, one finds y” = —it_3/2x +t7V2x 4 12y,
Hence y” = 73/2 [—}‘x + tx’ + 12x"]. If x is a solution of the Bessel equation
12x" 4+ tx’ + (t? — m?)x = 0 it follows that

1 y 1
n_ ,—3/2 2 2 2 2
y o=t x[—4—t +m}—[2[—4—t +m]——Qm(t)y—y

where
1 2

Ony="*""

In other words, the Bessel equation is transformed into y” + (1 + Qn,(¢))y = 0.
Since Q,,(t) ~ t72 ast — 400, then the summability assumption (12.10) is sat-
isfied. From Theorem 12.6.1 one infers that y = ¢, sin(t + 9,,) + ¢m(2), with
1imy 4 00 @m(f) = 0. Since x = 1~1/2y, the result follows. m



254 12 Stability theory

12.7 Exercises

1. Show that (0, 0) is asymptotically stable for the linear system
xX'==-2x+y
vy =Tx—4y.

2. Show that (0, 0) is asymptotically stable for the linear system
X' =—-x-y
y =4x —y.

3. Show that (0, 0) is stable for the linear system

{x/z xX—y
/

y'=3x—y.
4. Study the stability of (0, 0) for the system
x'==2ax—y
{ y =9 +a*)x
depending on the parameter a.
5. Show that (0, 0) is unstable for the system
{x’ = —x + 4y
y' = x—5y
and find the stable and unstable manifold.
6. Study the stability of the trivial solution of the equation x” 4+ 2x’ — x = 0.
7. Study the stability of the trivial solution of the equation x” + 2x’ + x = 0.

8. Study the stability of the trivial solution of the equation x” + 2hx’ + k?x = 0,
h,k #0.

9. Show that the equilibrium of the system

xi = —2X1 + x2 + x3
X5 = —2Xx2 + X3
x5 =X —2x3
is asymptotically stable.
10. Study the stability of the equilibrium of the system

X} = ax; + 5x3
[

Xy = —Xp —2Xx3
/

x5 = —3x3

depending on a # 0.
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Show that the equilibrium of the system

X] = X1+ x2+x3
/

Xy = X1 —2X3 — X3
/

X3 = X2 — X3

is unstable.

Find a such that the equilibrium of the system
x| =ax;
xh =axz + x3
Xy = X2 + axs

is asymptotically stable.

Study the stability of the equilibrium of the system

X; = X2+ X4

X, = X1 — X2+ X3
X3 = X2 + X3

/

X4 = X1 — X4.

Consider the third order equation x” + ax” + bx’ + ¢x = 0 and prove that the
roots of the characteristic equation A3 + aA? + bA + ¢ = 0 coincide with the
eigenvalues of the equivalent first order system

X1 = X2

!/

Xy = X3

!/
x5 = —ax3 — bxy —cxy.

Study the stability of the trivial solution x = 0 for the equations x"”" + x = 0
and x”" —x = 0.

Study the stability of the trivial solution of x”” 4+ 5x” + 9x’ 4+ 5x = 0.
Prove that the trivial solution of x"”” + x””" — x’ — x = 0 is unstable.
Prove that x = 0 is stable for x4+ 8x” 4+ 23x"” +28x" + 12 = 0.
Prove that the equilibrium of the system

x"= x'=2y

y/l — 3xl + zy/
is unstable.

Show that the equilibrium of the system

x" =2y = x+ax+ 3y
y' +2x'=y+3x+ay

is unstable provided a < 3.

Show that x = Ax — x> has a pitchfork bifurcation.
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22
23

24.

25.

26.

27.

28.

29.

30.
31.

32.

. Show that x’ = Ax — x3 — x° has a pitchfork bifurcation.
. Show that x’ = Ax —x3—x2k*1 has a pitchfork bifurcation provided that k > 1.
Show that (0, 0, 0) is unstable for the linear system
X; = —x1
X5 = —2x,
X5 = X3

and find the stable and unstable manifold.
Determine the stability of (0, 0) of

X =—x+y+)?
y =2y —x2.

Show that V(x,y) = ‘1‘()64 + y*) is a Liapunov function for the system,
x' = _x3
{y/ — _y3

and deduce the stability of (0, 0).

Show that V(x,y) = ;(x2 + y?) is a Liapunov function for the system,
x'=—-y—x3
y/ =y — y3

and deduce the stability of (0, 0).

Show that (0, 0) is unstable for
x'=—y+x3
y/ = —x+ y3.
Consider the system
x'=y

Y == +a) -y

where a > 0. Show that (0, 0) is asymptotically stable.
For the same system, show that (—a, 0) is unstable.
Study the stability of the equilibrium of gradient system
x" +4x(x24+y2) =0
Y4y +y?) =0.
Study the stability of the equilibrium of the equation x” + f(x') + g(x) = 0

under the assumption that f(0) = g(0) = 0 and yf(y) > 0 and xg(x) > O for
all x # 0.
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Study the stability of the equilibrium of gradient system

X" +2x=1) +2xy2 =0
" +2x2y =0.

Dexcribe the asymptotic behaviior, as, 1 — 400, of the solutions of x” + x +
X

=0.
t2

Show that there exist solutions x(z) of x” + x + e 'x = 0 such that
limy o0 x(£) = 0.
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Boundary value problems

In this chapter we discuss boundary value problems for second order nonlinear equa-
tions. The linear case has been discussed in Chapter 9.
We first deal with autonomous and then with the non-autonomous equations.

13.1 Boundary value problems for autonomous equations

In this first section we consider the autonomous nonlinear boundary value problem

x" = f(x)
{ X(0) = x(b) = 0 3.1y

by using the phase plane analysis. We assume the student is familiar with this topic
discussed in Section 8.3 of Chapter 8.

Consider the phase plane (x, y), y = x/, and the curve A, of the equation ; y2 —
F(x) = ¢, where F(x) = fox f(s)ds. We will assume that A, # @ and does
not contain any singular points. Thus A is a regular curve that carries a solution of
x" = f(x) with energy c. Furthermore, suppose that A is a closed curve and let A,
be the arc of A, contained in the half plane x > 0, with endpoints (0, Y), (0, —Y,),
for some Y, > 0O (recall that A, is symmetric with respect to y), see Figurel3.1a.
Without loss of generality, we can assume that the solution x.(¢), with energy c, is
such that x.(0) = 0 and y.(0) = Y,.

Let x = X, > 0 be such that (X,, 0) is the point where A, crosses the x axis
and let z, > 0 be such that x.(t,) = X, and y.(¢;,) = 0, see Figure 13.1a. To eval-
uate 7. we use the energy relationship é y2 — F(x) = c which yields F(x) > ¢

and y = y(x) = :l:\/ZF(x)+2c. Since y(x) > 0 for 0 < x < X, we get
y = +/2F(x) + 2c.

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT - La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_13, © Springer International Publishing Switzerland 2014
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(a) (b)
Fig. 13.1. (a) The arc A; (b) the solution x.(¢), 0 <t < 2¢,

. dx dx
From x’ = y it follows that d¢t = , = . Moreover, as t ranges from 0 to .,
X

x ranges from O to X.. Therefore,

t X
c cd
rc=/ dt=[ "=
0 0 y

Xe dx 1 Xe dx
= . 13.2
0 \/ZF(x)—}—ZC V2 Jo \/F(x)+c (132

Lemma 13.1.1. If X, is not a singular point, then t, < +00.
Proof. Since F(X,) + ¢ = 0, its Taylor expansion is
F(x)4+c=F(X)(x — X)) +o(|x = Xc]) = f(Xe)(x — X¢) +o(|]x — Xc|).

Thus
VFEx) + ¢ =V f(Xe) - Vx = Xe + o(|x — Xc|V2).

By assumption, X, is not a singular point and hence f(X.) # 0. Therefore, (F(x) +
¢)~'/2 is integrable in the interval [0, X.], namely fOX" (F(x) +¢)~Y2dx is finite. m

The reader should notice the difference with the homoclinic and heteroclinic case,
discussed in Chapter 8, where we have shown that if X, is a singular point, then
to = +o00.

Let 7, be the time needed by the point (x.(¢), y.(t)) € A, to go from (X,,0) to
(0,—Y,). By symmetry, one has that 7, = #.. Let us check this fact. As before,
T = Orc dt.Butnow y = —\/ZF(x) + 2¢. Moreover, as t ranges from 0 to 7., x
ranges downwards from X, to 0. Therefore,

/"' . /0 dx 1 [° dx
T, = = =
o e ¥ V2 Jx —/F(x)+2
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1 Xe dx _
V2Jo JF(x)+e
The function x.(¢) has the following properties:
1. x.(0) =0, x.(0) =Y, > 0;
2. xe(te) = Xe, x.(tc) =0;
3. xc(2t;) =0, x.(2t;) = =Y. < 0.
It follows that if ¢ is such that 2¢, = b, the corresponding x.(¢) solves the boundary

value problem (13.1), is positive and its maximum is X, achieved at t = f, =
See Figure 13.1b.

2-

Theorem 13.1.2. Let ¢ be such that A. # @ is a closed curve that does not contain
any singular points. If ¢ satisfies

X,
b=2 dx (13.3)
0 \/F(x) +c

then the function x.(t) is a solution of the boundary value problem (13.1) such that
Xc(t) > O0foralla <t <b.

Proof. We have seen that a solution x.(¢) corresponds to a ¢ such that b = 2¢,.
Since t, is given by (13.2), we obtain (13.3), proving the theorem. L]

Remark 13.1.3. (i) More generally, if the equation b = 2k, has a solution ¢ = ¢y,
k =1,2,..., wefind asolution x,, () that changes sign k—1 times. Note that, in any
case, xé,k (0)(= Y, ) > 0. For example, if k = 2, the solution x, (¢), corresponding

Fig. 13.2. Solutions of ®(c) = f/z
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to the closed curve A,, is positive for 0 < ¢ < 2t.,, negative for 27., <t < 41,
and such that x,, (0) > 0.
(ii) By a similar argument, one can show that the boundary value problem

x" = f(x)
x(a@)=x(b)=0
has a solution that changes sign k — 1 times in (a, b) provided the equation
Xc d
b—a=+2k ~
0 \/ F(x)+c¢
has a solution ¢ = cy. [

13.1.1 Examples

Below we demonstrate a couple specific examples that show how to solve equation
(13.3) in order to find solutions of the boundary value problems.

Proposition 13.1.4. The problem

" 3 _
{x +4x3=0 (13.4)

x(0)=x(b)=0
has infinitely many solutions.

Proof. Inthis case A, has equation ;yz +x* = c.Forallc > 0, A, is nonempty and
is a closed curve that does not contain the (unique) singular point (0, 0). By Theorem
13.1.2 and Remark 13.1.3, if the equation

has a solution ¢ = c, then (13.4) has a solution that changes sign k — 1 times in
(a,b). Setting

X¢ d
®(c) = *
o ~ec—x?

b
J2k°

positive solution of x* =c, thatis X, = ¢4 Thus

the preceding equation becomes ®(c) = Notice that in this case X, is the

1/4
dx

CD(C):/o Ve — x4

Notice that ¢ — x* > 0for0 < x < X, = cl/4, Moreover, according to (13.2) and
Lemma 13.1.1, the integral is finite. Let us study the function ®(c).
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The change of variable x = c!/*z yields dx = ¢'/#dz and hence, for ¢ > 0 one
finds . .
P(c) = ¢tz c‘”“/ dx
0o Ve —cz 0o V1—z4

Thus ®(c) is positive, decreasing and satisfies lim,_,q+ ®(c) = +oo and
lim;—; 400 ®(c) = 0. It follows that forevery k = 1,2, ..., the equation ®(c) = kf/z
has a solution c; > 0 that gives rise to a solution of (13.4). n

Proposition 13.1.5. If k is an integer such that 1 < k? < A < (k + 1)?, then the
problem

{ x4+ Ax—x3)=0 (13.5)

x(0) =x(r)=0

has k pairs of nontrivial solutions £x;(t), 1 < j < k, with j — 1 zeros in the open
interval (0, 7). If A < 1, there is only the trivial solution.

Proof. Here the curve A, is defined by the equation y? + A(Jx% — }x*) = c,
that is y2 + A(x2 — ;x“) = 2¢.For 0 < 2¢ < A the curve A, is not empty, closed,
symmetric with respect to x and y, and does not contain the singular points (0, 0)
and (£1,0). According to Theorem 13.1.2, setting X, = £ > 0, we have to solve
the equation

3
T = Zk/ dx .
0 \/ZC—A(XZ— ;x“)

The change of variable x = &z yields
1
T = Zk/ sdz .
0 \/20 — A(E222 — ;5424)
Since £ satisfies 2c = A(§% — 1£*), we have
1
d

T = Zk/ sdz
0 JAE - 1EH - A2 - Jeizh)

and, factoring £ > 0 in the denominator and then canceling it, we obtain

2k ! dz
T = /i ) ) .
0 \/1_252_224_25224
Let us study the behavior of the function W(§), defined for £ > 0, by setting

def 2 dz

1
v /0 P (13.6)
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If £ = 0, one has

¥(0) = 2 /1 dz =
Vido Vi—z2 VA
Since

1 1 —& + £z4

0
85 \/1_;52_22_'_;&.224 N 2(1—5&2—224_;&224)3/2 =
o £(1—z%)
2 (1 _ ;52 _z2 4 ;5224)3/2’
then differentiating the quantity under the integral (13.6), we obtain

1 /1 E(1 —z%dz

= > 0.
VA Jo (1= 1g2 =22 4 Lg2z4)32

W' (£)
Moreover,

1 1
limg_)l_ = =

\/1—;52—22+;“§224 \/;—22+;z4

B 1 V22
_\/2~/1—222+z4_\/(1—22)2_1—22'

2

ik
IR

Fig. 13.3. Solutions of W(§) = 7, with 1 <k? < A < (k + 1)?
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Thus

2J2/1 dz
Vi Jo 1-22

The graph of W(§) is shown in Figure 13.3.
Recall that we have to solve 7 = kW (§), namely W(§) = 7. From the graph of
W (£) it follows that the equation W(§) = 7 has a solution if and only if 7 > j/tx’

namely whenever A > k2. Precisely, if 1| < k? < A < (k + 1)? the equation
W(&) = 7 has k solutions &1, - - - £ and hence (13.5) has k nontrivial solutions x; (),
1 < j < k.Notice that Theorem 13.1.2, resp. Remark 13.1.3, imply that x;(¢) > O in
(a,b), resp. x;j has j — 1 zeros in (0, 7r) and xj’- (0) > 0. Notice also that the solutions
of (13.5) arise in pairs because if x(z) is a solution, so is —x(¢). Finally, if A < 1
then 3 < 7 forall k = 1,2... and hence the equation W(§) = ¥ has no solution.
Thus, in this case, problem (13.5) has only the trivial solution. u

Remark 13.1.6. The fact that (13.5) has only the trivial solution for A < 1 could also
be proved using the Poincaré inequality as in Example 9.2.7. The reader could carry
out the details as an exercise. ]

13.2 The Green function

To solve boundary value problems with a time dependent nonlinearity, it is useful to
introduce the Green function. This is what we are going to do in this section.
Let p, g be functions satisfying:

1. p(t) > 0 and is continuously differentiable on the interval [a, b];
2. r(t) > 0 and is continuous on the interval [a, b].

These assumptions will be assumed throughout the rest of this chapter.
Define the differential operator L by setting

ef d d
L[x] aef dt (p(t) d);) —r(t)x.

The operator L is linear, that is
Llcix 4+ c2y] = c1L[x] + c2L[y].

The reader will notice that L is the differential operator used in Chapter 9 withg = 1
and —rx instead of rx (the choice of —r is made for convenience, only: recall that
no assumption on the sign of 7 was made there). In particular, from Theorem 9.2.2
of Chapter 9 (with g(z) = 1) it follows that the eigenvalue problem

Lix]+Ax =0, t€]a,b]
{ x(a)=x()=0

has a sequence A;, with0 < Ay < A, < ..., of eigenvalues.
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Let ¢, ¥ be the solutions of the Cauchy problems

{Lm:o, t €[a,b] {L[l/f]:o, t € [a,b]
pla) =0, ¢'(a) =a #0 v(b) =0, ¥'(b) =B #0.

Notice that ¥ (a) # 0, otherwise ¥ would satisfy L[y] = 0 and ¥ (a) = ¥ (b) =0
and this means that v is an eigenfunction of L with eigenvalue A = 0, which is
not possible. Of course, for the same reason we also have ¢(b) # 0. Consider their
Wronskian W(t) = @(1)y'(t) — ¢'(t)¥(¢) and recall that, by the Abel theorem,
W(t) = const, say W(t) = —C.

From the definition of ¢, ¥ it follows that

—C = W(a) = —¢'(@)y(a) = W(b) = p(b)y'(b) # 0.

In other words, ¢ and i are linearly independent.
The Green function of L (with boundary conditions x(a) = x(b) = 0) is the
function G (¢, s) defined on the square Q = [a, b] X [a, b] by setting

(r)C ()Y (s), ifrela,s]

G(t,s) =

2()C e(s)w(), iftels,b].

The function G is continuous on Q and

PV o e = POVO)

Cl-9=" e = e

=0. (13.7)

Moreover, G is differentiable at (z,5) € Q, s # t. In addition, for each s, setting
G,(s7,t) = lim;_5— th(t,s) and G,(sT,1) = lim,_ 4+ ;tG(t,s), it is easy to
check that G,(s™, 1) — G;(s*,t) = Cp(s).

Example 13.2.1. Let us calculate the Green function of L[x] = x”" — x in the inter-
val [0, 1]. Here p = r = 1 and [a, b] = [0, 1]. The general solution of x"” —x = 0
isx = cre’ + et I x(0) = ¢y + ¢, = 0and x’(0) = ¢; —cp = 1, we find

c1 = }.co=—)andwecantake p = }(e'—e™") = sinhz.If x(1) = cre+2 =0
and x'(1) = cie — Cez = —1,wefind c; = —zle,cz = 7 and we can take Y =
—[e —%e] = [ —ee'] = =1 [e"1 —e D] = —sinh(r —1). Clearly

@,y are hnearly mdep ndent and

1 e
C=1/f(0)=28—2= <0
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and hence
-sinh? - sinh(s — 1), if¢ € [0, s]
Git,s)=4¢~
) ¢ . sinhs -sinh(r — 1), ifz € [s,1]
ez —1
is the Green function we are looking for. [

The Green function of L can be used to transform a boundary value problem into an
integral equation.

Theorem 13.2.2. For any continuous function h(t), the nonhomogeneous problem

{ Lix]+h(®) =0, 1¢€][a,b] (13.8)

x(a) =x(b)=0
has a unique solution given by the function
b
x(t) = / G(t,s)h(s)ds.
a
Proof. To simplify the notation, we take p = 1. Using (13.7), we find x(a) =
fab G(a,s)h(s)ds = 0 and x(b) = fab G(b,s)h(s)ds = 0, so that x satisfies the

desired boundary conditions. Furthermore, splitting the integral || ab ds into | at ds +
ftb ds, one has

t b
x(t):/ G(Z,s)h(s)ds—i—/; G(t,s)h(s)ds.

Since for a < s < t one has that G(¢,s) = é((p(S)lﬂ(t)), while for t < s < b one
has that G (¢, s) = é (p()Y¥(s)), it follows that

t b
x(t) = w(t)/ ¢()h(s) ds + <p(t)/ v ($)h(s) ds.
a C P C
Then x(¢) is differentiable and, using the fundamental theorem of Calculus, we get
L o(s)h(s 1
vo=vo [ PN+ Leovonn

b
o [PYORE)
w0 [V as = Lyopwno

t b
0 / YO 4 g / VOR) 4,
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Therefore x’ is also differentiable and one has

@(s)h(s)

o=y [P0

1
ds + Ly OpOh0)
b
s [V Vas- Lo owonn
t b
“vo [ P gy [ YOO,
+ o (000 — ¢ Y ) b,

Notice that ¢’ () (¢) — ¥/ (¢)e(t) = W(t) = —C. Thus
Lix] = x"(t) —rx = w”(z)/at ‘p(sgl(s)ds + gD”(t)/tb w(séh(s) ds —h(t) — rx.
Since L[g] = ¢” —r¢ = 0 and L[] = ¥" — ryy = 0, we find
Lix] = I’I//(l‘)/at “’(S)Ch(s)ds +ro(t) /tb 1/’(Séh(s)als —h—rx
. { ) [ so(s)ch(s) a5+ pl0) ftb w(séh(s) ds} s

t b
=r[ / VOVORO) / YOV ds}_ -

b
= r/ G(t,s)h(s)yds—h—rx =rx—h—rx = —h.
a

This proves the existence of a solution of (13.8). To prove the uniqueness, let x1, x5
be two solutions of (13.8). Then, setting z = x1—x3,0onehas L[z] = L[x1]—L[xz2] =
0 and z(a) = z(b) = 0. Since A = 0 is not an eigenvalue of L with zero boundary
conditions, it follows that z(t) = 0, that is x1(t) = x,(¢) forall ¢ € [a, b]. m

Corollary 13.2.3. If f(t, x) is continuous, then

b
x(1) =/ G(t,s) f(s,x(s))ds

is a solution of L[x] + f(t,x) =0, x(a) = x(b) = 0.
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13.3 Sub- and supersolutions

In this section we study the nonlinear boundary value problem

—x"= f(t,x), te€]a,b]
{ x(a) = x(b) = 0 (13.9)
where f'(¢, x) is a continuous real valued function defined on [a, b] x R. Notice that
the equation can also be written as x” + f (¢, x) = 0, in which the differential opera-
tor x” has the form L[x] introduced in the previous section, with p = 1 and r = 0.1In
particular, according to Corollary 13.2.3, to find a solution of the preceding problem
it suffices to find x(¢) solving the integral equation

b
x(t) =f G(t,s) f(s,x(s))ds

where G is the Green function of x” with boundary conditions x(a) = x(b) = 0.
Definition 13.3.1. A function v € C?([a, b]) is a subsolution of (13.9) if

—v" < f(t,v), t €la,b]
v(a) <0
v(b) <0.

A function w € C?2([a, b)) is a supersolution of (13.9) if

—w” > f(t,w), t €la,b]
w(a) >0
w(b) > 0.

Example 13.3.2. A negative constant —c is a subsolution provided f(¢,—c) > 0.
Similarly, a positive constant ¢ is a supersolution provided f(¢,c) < 0. m

The following Lemma is a sort of a “maximum principle”. Since its interest goes
beyond the topics discussed in this chapter, we prefer to consider a general differen-
tial operator L[x] = (p(¢)x’) —r(t)x, where p(¢) > 0is continuously differentiable
and r(¢) > 0 is continuous, even if we use the simpler operator x” — mx, m > 0, a
constant.

Lemma 13.3.3. If w is such that —L{w] > 0, w(a) > 0, w(b) > 0, then w(t) > 0
forallt € [a,b].

Proof. Let A; be the first eigenvalue of L[x] + Ax = 0, x(a) = x(b) = 0 and
let ¢1 be an associated eigenfunction, that can be taken strictly positive in (a, b). Set
We = W + €¢y. Since € > 0 and ¢; > 0 in [a, b], then

—L[we] = —L[w] — €L[¢1] = —L[w] + €A1¢1 >0, Vit e (a,b). (13.10)
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Moreover
we(a) = w(a) =0, we(b) = w(b) = 0.

Let z¢ be the point where we(¢) achieves its minimum in [a, b]. If, by contradiction,
w(te) < 0, thena <t < b and thus w’(f¢) = 0. Furthermore, since w.(tc) = 0 we
find

—L[we(te)] = — (pl(te)w;(te) + p(te)wg(te)) + r(te)we(te)
= _P(le)wé/(te) + r(te)we(te).
From (13.10), it follows
_p(te)wg(te) F+r(tawe(te) >0 = p(te)wg(te) < r(te)we(te).

Since p(te) > 0,r(te) = 0, we(te) < 0, it follows that w/ (#c) < 0. This is a contra-
diction to the fact that 7, is a minimum point of w,, proving the theorem. L]

The next Theorem is a rather general existence result in the presence of ordered
sub- and supersolutions.

Theorem 13.3.4. Suppose that f is continuous on [a, b] x R and

dAm > 0, such that the function mx + f(t, x) is increasing *)
forallt € [a,b].

If (13.9) has a subsolution v and a supersolution w such that v(t) < w(t) for all
t € [a,b), then (13.9) has a solution x with v(t) < x(¢t) < w(t) forallt € [a, b].

Proof. A solution of x” + f(t,x) = 0, x(a¢) = x(b) = 0 will be found by

. . . . . . d
an iteration procedure that we are going to describe. First of all, setting f, (¢, x) <f

mx + f(t, x), the equation x” 4+ f (¢, x) = Oisequivalentto x” —mx + f,,, (¢, x) = 0.
Let
Lm[x] €l " _mx.

Then the equation can be written in the form
Lm[x] + fu(t,x) =0.

Notice that Theorem 13.2.2 holds for L,,. In particular, a solution of (13.9) can be
found solving the integral equation

b
x = S, S[x](t)déf[ G, ) fin(s, x(5))ds (13.11)

where G,, denotes the Green function of L,,.
Letv; = vand, fork =2,3..., we let v; be the solution of

—Lp[vi] = fn(t,vk—1) = mvg—y + f(t, k1), vi(a) = ve(b) =0,
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which exists and is unique in view of Theorem 13.2.2, with L = L, and h =
Jfm(t, vp—1). Using the notation introduced above we can say that

vk = S[vg—1]-
By induction, one shows that for all k = 1,2... one has
v(t) < v(t) < w(t), VYt é€la,b]. (13.12)

Since v; = v < w, (13.12) holds for k = 1. Suppose that (13.12) holds for k and set
Z = Ug41 — V. Then —L,[z] = —Ly[Vg41] + Lm[v] = mvg + f(t, vx) + Ln[v].
Since —L[v] < f(t,v) we get —L,,[v] < mv + f(¢,v), and hence

—Lmz] Z mvg + f(2,0) —mv = f(1,0) = fm(t. vk) = Jm (2. 0).

By the inductive assumption, vy > v. This and the fact that f,(-, x) is increasing
yield —L,,[z] = 0. Moreover, z(a) = vgy1(a) —v(a) > 0 because vg41(a) = 0
and v(a) < 0. Similarly z(b) > 0. Applying the Maximum Principle, Lemma 13.3.3
(with p = 1 and r = m), it follows that z(¢) > 0, namely vg4(t) > v(¢) in [a, b].
In the same way, using the fact that w is a supersolution, one finds —L[w —vg4+1] = 0
and w(a) — vg41(a) = 0, w(b) — vi4+1(b) > 0 which implies that w(t) > vgy1(2)
in [a, b]. This proves (13.12).

To prove that vg converges, up to a subsequence, uniformly in [a, b] to a contin-
uous function, we use the Ascoli Compactness Theorem which says:

If a sequence of continuous functions fy, defined in an interval [a, b] is bounded
uniformly with respect to k, and is continuous uniformly with respect to k, then
there exists a subsequence converging uniformly in [a, b] to a continuous func-
tion.

We have:
(i) v are bounded, uniformly with respect to k. From (13.12) it follows that

min v(t) < vi(t) < max w(t), Vk.
t€la,b] @) = k()_te[a,b] ®

(ii) vg are continuous uniformly with respect to k. Let us use vy = Svg_; to infer
that

b
Ve (1) — vic ()] 5/ 1Gm(t,5) = G (1", )| - fin (s, vi—1(5))|ds

b
< c/ |G (t,5) — G (t', 5)|ds.

Since Gy, is uniformly continuous in the square Q = [a, b] X [a, b] it follows that
the sequence vy is continuous uniformly with respect to k. In view of these two prop-
erties we can use the Ascoli compactness theorem to infer that, up to a subsequence,
v () converges to a continuous function x (¢), uniformly in [a, b]. This allows us to
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pass to the limit in vy = S[vg—_;], yielding x = S[x], namely

b
x0) = [ 6.5 f6.y6)ds
a
Thus, by Corollary 13.2.3, x(¢) solves (13.9). [

Remark 13.3.5. Examples show that, in general, the condition v < w cannot be elim-
inated. u

The next two theorems are applications of the preceding general result.

Theorem 13.3.6. Let f (¢, x) be continuously differentiable on [a, b] x R. Moreover,
suppose

Ja.pz0: f(t,—e) 20, f(t.B) <0, Vi€ab] (13.13)
Then oo
—x" = rx

{xm)=xw)=o (13.14)

has a solution x (t) such that —a < x(t) < B.

Proof. As mentioned before, v(t) = —a < 0 is a subsolution and w(t) = f > 0 is
a supersolution. To apply Theorem 13.3.4 we should have that f satisfies (*). This
difficulty is overcome by using a truncation, which we are going to discuss. Define a
truncated function f (¢, x) by setting

ft,—a)ifx < —a
fl,x)=1 ft.x) ifa<x=<§p
f@.B) ifx=>p.

f(.,x)
f(.,-)

f(.,B)

Fig. 13.4. Plot of f(z, x)
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Lemma 13.3.7. The function x(t) solves

_x// — f(t,x)
{MM=xw)=o (13.15)

if and only if it solves (13.14).
Proof. Let x be a solution of (13.15) and let 7, 7’ be such that

: !/
x(t) = tg[gg?]x(t), x(t) = tg};l,)z]x(t).
We claim that x(t) > —a. Otherwise, if x(t) < —a < 0,thena < 7 < b
and f(r,x(r)) = f(r.x(r)) = f(r.,—a) > 0, by definition. Thus —x" () =
f(z,x(t)) > 0, which is a contradiction because 7 is the minimum of x. In the same
way one proves that x(z') < B. As a consequence, we have that —o < x(¢) < f and
hence f(¢,x(t)) = f(t,x(2)) so that x solves (13.14). The converse is trivial. =

Proof of Theorem 13.3.6 completed. Since f[(t, x) is bounded in the rectangle [a, b] x
[—a, B], then the function f satisfies (*). Furthermore, since f = f for —a < x <
B, then v = —q, resp. w = B, is a subsolution, resp. a supersolution, not only of

—x" = f(t,x) but also of —x” = f (¢, x). In addition one has that v < w. We can
now apply Theorem 13.3.4 finding a solution x (¢) such that —x < x(¢) < . m

From the preceding Theorem we can deduce:

Theorem 13.3.8. If limy_o f(¢,x) > 0 and limy— 4o f(¢,Xx) < O, uniformly
with respect to t € |a, b], then the problem (13.14) has a solution.

Proof. From the assumptions on the limits, it follows that (13.13) holds. n

Corollary 13.3.9. Let f(t,x) = —x + g(t, x), with g bounded. Then the problem
(13.14) has a solution.

Proof. One has limy_,_, f(¢,x) = 400 and limy_ 4o f(f, x) = —00. [

13.4 A nonlinear eigenvalue problem

Consider the nonlinear eigenvalue problem

—x" = Ax —g(t,x)
{x@):x@)zo (13.16)

where A is a real parameter and g(¢,0) = 0. Problem (13.16) has the trivial solution
x = 0 for all A. The existence of a positive solution is established in the follow-
ing theorem. By a positive solution, resp. sub/supersolution, of (13.16) we mean a
solution, resp. sub/supersolution, x(¢) such that x(¢) > O foralla <t < b.
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Theorem 13.4.1. Let g(t, x) be continuous on [a, b] x R and such that g(¢t,0) = 0
forallt € [a, b]. Furthermore, suppose that

t?
lim g(t.x) =0, uniformlyw.rt.t € [a,b] (gh)
x—0 X
ta
lim g(t.x) = +o00, uniformlyw.rt. t € [a,b]. (g2)

x—>—+00 X

Then (13.16) has a solution x(t) > 0 in (a,b), provided A > Ay = " , where A
is the first eigenvalue of the linear problem x" + Ax = 0, x(a) = x(b) = 0.

Proof. Fix A > ™ . The function f(z, x) def Ax —g(t,x) is such that f(¢,0) =0
and, by (g2), limy_ 4o f (¢, x) = —o0. It follows that there exists M, > 0 such that
f(t. M;) < 0.Clearly wy = M} is a supersolution of (13.16). Actually —w? = 0 >

f@. My) = [t wy).
Finding a positive subsolution is slightly more involved. Let ¢; > 0 be such that
1+ A1¢1 =0, ¢1(a) = ¢1(b) = 0. Taking € > 0, let us show that ve (1) = ey (¢)
is a positive subsolution for € > 0 sufficiently small. To prove this, we evaluate

—v! = —€¢] = er1p1 = Ajve.
From (g1) it follows that

. gt ep(r))
611_r)r(1) (1) =0, Vtéelab]

Then, if A > A1 one infers that there exists €9 > 0 such that

g(t,e1(1)) _
epr(t)

Recalling that ve = e¢y, it follows that

A—A1, VO0<e<eg, Vte]a,b]

g(tvve)f(k_kl)ve» V0<€<€0,Vt€[a,b],
namely Aqve < Ave — g(t, ve). Furthermore,

€p1(t) < e tg}gﬁ]%(f)

and hence, taking € > 0, possibly smaller, one has that v¢(#) < M) in [a, b].
As in the proof of Theorem 13.3.6, we can substitute f with a truncated function
like

B ; h(x) ifx <0
fut,x)= ft,x) =3 flt,x) =Ax—g(t,x) if0<x <M,
f(l,M,l) if x > M),

where /(x) is any smooth function such that 2(0) = 0, /" is bounded and /& (x) > 0
for x < 0. Of course, f satisfies (*). Moreover, from 0 < v, < M, it follows that
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ft.,ve) = f(t.ve). Thus —x” = f(t,x), x(a) = x(b) = 0, possesses a posi-
tive super solution M) and a positive subsolution v, with ve < M),. According to
Theorem 13.3.4, the truncated problem has a solution such that v () < x(¢) < M,

in [a, b]. Then f(¢,x(¢)) = f(z,x(¢)) and hence x(¢) solves (13.16). Finally, from
x(t) > ve(t) it follows that x(¢) > 0in (a, b). m

Remark 13.4.2. As in Proposition 13.1.5 or Example 9.2.7, one can show that if A <
A1 the problem —x” = Ax —x3, x(a) = x(b) = 0 has only the trivial solution. This
shows that, in general, the condition A < A; cannot be removed. u

13.5 Exercises

1. Show that the boundary value problem
x" — X3 =0
{ x(0)=xb)=0
has only the trivial solution x(¢) = 0.
2. Leta < b. Prove that the boundary value problem
X" +4x3=0
x(a) =x(b)=0

has infinitely many solutions.
3. Show that the boundary value problem

x"4+6x>=0
{ x(0)=xb)=0

has infinitely many solutions.
4. Show that for all k£ > 0 the boundary value problem

X"+ Q2p+2)x2Ptl =0
x(0)=x(b)=0

has infinitely many solutions.
5. Show that for A < 7 the boundary value problem

X"+ Ax—x3=0
x(0)=x(1)=0

has only the trivial solution.

6. Show that the following boundary value problems

X" +4x3 =0 x"+4x3 =0
(@) { X0 =0 xpy=1 @ { X'(0) =0, x(b) =0

have a positive solution.

7. Prove that the preceding problems (a) and (b) have infinitely many solutions.
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8.

10.
11.
12.

13.

14.

15.
16.

17.
18.
19.
20.
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Find b > 0 such that the boundary value problem
x" 4+ 4x3 =0
x(0)=0, x(b)=1,x'(b) =1

has positive solutions.

. Find the Green function of L[x] = x” on [0, 1] and solve the boundary value

problem x” =1, x(0) = x(1) = 0.
Find the Green function of L[x] = x” on [-1, 1].
Find the Green function of L[x] = x” — k?x on [0, 1].

Show that —x” = 1 — x — x2, x(a) = x(b) = 0 has a solution x(¢) such that
0<x(t)<l1.

Show that —x” + x = e™*, x(a) = x(b) = 0 has a solution such that 0 <
x(t) < 1.

Let g(x) be continuous and such that g(0) > 0, g(1) < 1. Show that —x" +x =
g(x), x(a) = x(b) = 0 has a solution.

Show that —x” + x = =", x(a) = x(b) = 0 has a positive solution.

Let g(x) be continuous and such that 0 < g(x) < M for all x. Show that
—x" = g(x) — x, x(a) = x(b) = 0 has a positive solution.

Show that —x” = (1 4+ x2)"1/2 — x, x(a) = x(b) = 0, has a positive solution.
Show that —x” + x = min{e*, 1}, x(a) = x(b) = 0, has a positive solution.
Prove that —x” = 2x — x2, x(0) = x () = 0, has a positive solution.

Show that if b > 7, the problem —x” = arctanx, x(0) = x(b) = 0, has a
positive solution.
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Numerical methods

Many differential equations cannot be solved analytically; however, sometimes a nu-

merical approximation to the solution is sufficient to serve one’s need. Here we dis-

cuss some elementary algorithms that may be used to compute such approximations.
Let us consider the problem of approximating a solution to the initial problem

x'= f(t,x), x(to) = xo. (A.1)

The unknown x = x(¢) could be a vector valued function so that (A.1) would be
a system of first order ODE. However, we will restrict ourselves to the scalar case
in this text. With respect to (A.1), we assume that a unique solution exists, but that
analytical attempts to construct it have failed.

In the Figure A.1, the blue curve is the graph of x(¢) and we want to find some
approximation points connecting by red segments.

Xop=—--- ‘

Fig. A.1. Exact solution curve (blue) and its approximation (red)

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT - La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_A, © Springer International Publishing Switzerland 2014
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In this chapter, we will discuss a very elementary method; namely, Euler’s method
and its improved version as well as a bit more advanced method — Runge—Kutta’s
method.

A.1 First order approximation: Euler’s method

The basic idea is as follows: As we know,

x(t+h)—x()
N .

x'(t) = lim
h—0

For sufficiently small h the above suggests that

N x(t+h)—x()

x'(1) N

and we can approximate x (¢ + 1) by x (¢t + h) ~ x(t) + hx'(z). But as x (¢) satisfies
the equation (A.1), x'(¢) = f(t, x(t)), we then have

x(t+h)~x(@)+hf(t,x()).

Now, assume that we are already ‘happy’ with some approximate value X for
x (1), then the above would be a natural (and naive) approximation for x (¢ + h):

X =X +hft.X). (A.2)

Repeating the process, we then come up with the following procedure (Euler’s
method).

a. Set X¢ = x¢ and pick a positive step size h > 0.
b. Foreachintegeri =0,1,2,..., define

Xivi=Xi +hf(ti, Xi), tiqa=t +h. (A.3)

Since a computer cannot calculate indefinitely, we can only approximate the solu-
tion x (¢) of (A.1) in a finite interval [ty, fo + L] of length L > 0, which is determined
by the physics of the phenomenon under consideration. Suppose that we want to have
n approximation points x1, ..., X, then the step size h is given by L/n.

A generic algorithm for the Euler method is given by:

Step 1. Set the number 7 of points we wish to compute.
Step 2. Set the time step size h = L/n.

Step3. Set X = xpandt = ty.

Step4. Setacounter k = 1.

Step5. Compute B = X and C = hf(X,1).

Step 6. Compute xp = B + C.

Step7. SetX =xpandt =1+ h.
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x(t)

Fig. A.2. First approximation point: given a sufficiently small # > 0, we can start with the
initial point Xo = x¢ and #g, dictated by the initial condition in (A.1), to construct the first
approximation value X; = X¢o + hf(f9, Xo) for the true value x(¢9 + h)

Step 8.  Increase the counter k by 1.
Step 9. If k < n then repeat steps 5-8. Otherwise, stop.

The following simple Maple code can be used to realize the above algorithm:

x := x0;¢ := t0; X[0] := Initial value
for i from 1 by 1 to N do Loop to compute x;
x:=x+hx* f(t,x);t :=t + h; Compute the new value and time
X[i] := x : Record the value
end do;

Let us apply the above algorithm to approximate the solution to
x =x24+1% x(0)=1.

If we want to approximate the solution in the interval [0, 0.8] by 8 points, then
the step size 7 = 0.8/8 = 0.1 and the Euler algorithm gives rise to the following
Table A.1.

In Figure A.3 these values are plotted against the graph of the solution. Note that
in all the following figures the scale for the ¢ and x axes is based on a ratio of 1 to 10.

A.1.1 Improved Euler’s method

In the standard Euler method, we advance along the tangent of the solution curve to
obtain the next point, a predicted one. We can possibly improve this by correcting
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Table A.1. Euler method for x’ = x2 +¢2, x(0) = 1. Step size h = 0.1

k i Xk X1 = X + h(XP +12)
0 0 1 1.1
1 0.1 1.1 1.222
2 02 1.222 1.3753284
3 0.3 1.3753284 1573481221
4 04 1573481221 1.837065536
5 0.5 1837065536 2.199546514
6 06  2.199546514 2.719347001
7 0.7  2.719347001 3.507831812
8 0.8  3.507831812 STOP
/
f
|
/
fJI
F
/
/
Jf‘
,-*‘;'-/ ‘
#""'?r/ .
S

i

Fig. A.3. Approximation values against solution

the predicted. To this end, we can first compute the predicted value as before (see
(A.2))
Xpy = Xk +hf (e, xx), (A4)
then correct it by
f(tkvxk)-'_f(tk-i—l’-X* )
Xkp1 = Xk + h ) k17, (A.5)

This simply means that we advance along the line between the tangents at the pre-
vious point (#, xx) and the predicted point by Euler’s method in order to obtain the
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next point. In some cases, this seems to be a better approximation as we will see by
applying this improved version to the previous example.
We apply the formulas (A.4) and (A.5) to obtain the following Table A.2.

Table A.2. Improved Euler method for x’ = x2 + 2, x(0) = 1. Step size i = 0.1. Here,
f(t,x) = x2% + 12

k1 Xk Xipr =Xk +hf (X tg)  Xgr = Xg + hf(Xk’tkaz(XkH’tkH)
0 0 1 1.1 1.111000000

1 0.1 1.111000000 1.235432100 1.251530674

202 1251530674 1412163577 1.436057424

303 1.436057424 1.651283516 1.688007333

4 04 1.688007333 1.988944209 2.048770724

5 05 2.048770724 2.493516872 2.600025118

6 06 2600025118 3.312038179 3.529011494

7 07 3529011494 4.823403706 5.371468766

8 0.8 5371468766 STOP STOP

0.8

Fig. A.4. Plotting these values against the graph of the solution and the previous result obtained
from the Euler method, we can see a great improvement

An important note should be made here before we move on to the next section dis-
cussing more advanced numerical methods. There is no doubt that powerful comput-
ers can assist us to do tedious computation and, in many cases, provide almost what
we practically need in applications. However, computers don’t think! Yet efficiently
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but they simply do whatever we ask them to do. Therefore we cannot completely (and
blindly) trust their output. A qualitative analysis needs to be done first before we can
rely on any numerical method to do the messy and cumbersome job. The following
simple example will be a good warning.

Let us consider the initial value problem

X)) =x*>+1, x(0) =1,
which can be solved easily by separating the variables, and we get
b4
x(7) = tan (l ) .
@ +
Obviously, the solution is only defined on the interval [0, 7 ) as weneed 1+ 7 < 7.
However, computers do not know this if we ask them to perform the discussed Eu-
ler methods on this problem. They would go on and compute ‘values’ of x(¢) for ¢
beyond 7!
Furthermore, the Euler method is often not accurate enough. In more precise terms,
it only has order one. This caused us to look for higher-order methods. One possi-
bility is to use not only the previously computed value xj to determine x4, but to

make the solution depend more on past values. This yields the so-called multistep
methods. We will discuss one such method, the Runge—Kutta, in the next section.

A.2 The Runge-Kutta method

We now study a more advanced and accurate Runge—Kutta method to approximate
a solution to the initial problem (A.1), namely

x'= f(@t,x), x(ty) = xo.

In the Euler method, the next value x4 is computed by the previous x; advanc-
ing along the approximated tangent. The Runge—Kutta method computes the next
value x4+ via multiple stages in order to obtain better approximations. To this end,
Xg+1 Will be xi plus a weighted average of a number s of increments (the number s
is fixed and called the number of stages). Each increment is just a product of the step
size h and an estimated slope of the solution curve specified by the right-hand side
f(¢, y) in the equation (A.1).

For example, let us consider the 2-stage method given by the formula

et = g + (;f@k,xk) 0 S+ Rt hf(rk,xk)))

1 1
= 1 I>. A.6
xk+21+22 (A.6)

One can see that x; is obtained by advancing xj by the average of 2 increments
1 1, I 2.
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1. Iy = hf(t, xx) is the increment based on the slope at the beginning of the inter-
val, using the Euler method.

2. I = hf(ty + h, xg + hf(tx, xx)) is the increment based on the slope at the end
of the interval, using xz + hf(tx, xr).

A keen reader will notice that this method is just the improved Euler method dis-
cussed earlier!
Generalizing (A.6), we can take any number « € (0, 1] and define

1

1
Xk+1 = Xk + 1— I] + 12, (A7)
2a 2«

where:

1. Iy = hf (¢, xx) is the increment based on the slope at the beginning of the inter-
val. This increment is given the weight (1 — 211)

2. I = hf(ty + ah,x; + aly) is the increment based on the slope at the point
tx + ah of the interval, using x; + ol; = xx + ahf(tr, xi).

The reader can easily check that (A.6) is a special case of this generalization when
a = 1. If one takes ¢ = 1/2 then (A.7) results in the so-called midpoint method

1 1
Xk+1 = Xk + hf(tk + zh»xk + th(tlka))v

which looks similar to the formula in Euler’s method but using the slope at midpoint
of the interval.

Let us move on to another member of the family of Runge—Kutta methods which
is so commonly used that it is often referred to as “RK4”, “classical Runge—Kutta
method” or simply as “the Runge—Kutta method”.

The formula is as follows

1 1 1 1
= 1 1 I 14. A.8
Xk+1 Xk+61+32+33+64 (A.3)

Here, there are 4 increments (4 stages) and their weights are given by:

1. Iy = hf(t, xi) is the increment based on the slope at the beginning of the inter-
val. This increment is given the weight é.

2. I, = hf(tg + ;h, Xk + ;I 1) is the increment based on the slope at the midpoint
t + ;h of the interval, using x; + ;11. Its weight is ;

3. Iz =hf(ty + ;h, Xr + ;Iz) is the increment based on the slope at the midpoint
t + ;h of the interval, but now using xj + ;Iz. Its weight is still ;

4. Iy = hfty + h, (xx + I3) is the increment based on the slope at the end of the
interval, using xi + I3. Its weight is (15.
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We now describe the general s-stages method. We fix an integer s > 1 and define

S
Xg4+1 = X + Zwili,

i=1

where w; € [0, 1] are the weights whose sum must be 1. The increments 1, ..., I
are given by

I = hftg, (xg)
I, = hf(ty + coh.xx +az1y)
I3 = hf(ty + c3h, xx +aszi1 11 + as 1)

Iy = hf(tk +csh,xi +aali +asply + -+ as,s—lls—l)~

We can see that, form = 1,...,s, I, is the increment based on the slope at 5 +
¢mh and using x; advancing by a weighted sum of previous increments /1, ..., Iy—1:

I = hf(tk + cmh, X + ap Iy + amady + - + am,m—llm—l)»

which is the approximated slope at the time #; advanced by a multiple ¢, of A. It is
then natural to require that the increments in y satisfy

am1 + am2 + -+ admm—1 = Cm.-

In such a case, we say that the method is consistent.

It is clear that the Runge—Kutta is much more complicated than the primitive Eu-
ler method and it is not practical to perform the calculation on a handheld calculator
without programming ability. If the reader has some knowledge in programming then
the following Maple programming code can be used to generate the approximation
values in the general Runge—Kutta method.

RKgenVal := proc(A4,c, W, f,1t0,x0,h, N, S)
local x,t, X,i, j,k, INC, Inc;
x = x0;t := t0; X[0] := x; Initial value
for i from 1 by 1 to N do Compute the increments
for j from 1 by 1 to S do
INC :=0;
for k from 1 by 1to j — 1 do
INC := INC + A[j, k] * Inc[k]
end do ;
Inc[jl:=hx* f(t +c[l,jl*xh,y + INC)
end do ;
INC :=0;
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for k from 1 by 1 to S do Weighted total increment
INC :=INC + WL, k] x Inclk];
end do;
x:=x+ INC;t =1t + h; X[i] := x;Record the new value
end do;
X;

end proc

The above procedure requires the following inputs:

1. A matrix A holding the weights a;;

0 0 0

a 0 0

4=| a1 a2 O 0 0
0

| da1 ds2 as s—1 0

2. A matrix ¢ holding the time weights c;.
3. A matrix W holding the increment weights w;.

4. The right-hand side f := f(¢, x), the initial time 70, the initial condition x0 =
x(9), the step size i, number of points to compute N and the number of stages
S.

For example, the matrices for a 2-stage method can be

A;:[f 0] c=[0 3] W[}

5 0

W
[E—

While for the classic RK4, we use

0O 0 0 O
1
N R T F I A A N S R
0 5 00
0O 0 1 0

Let us apply the above two methods with such parameters and revisit the example

X =x24+1, x(0)=1.
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We will use the step size & = 0.1 to compute m = 6 approximation points. The
result is recorded in the following table:

k

(o) NV O S R

2-stages

1.221333333
1.502999707
1.881423779
2427681154
3.300240967
4.928987792

Errors

0.001715548
0.005497940
0.014341347
0.037281607
0.107982483
0.402867449

4-stages

1.223048914
1.508496167
1.895754160
2.464899687
3.407820425
5.327896817

Errors

0.0000000330
0.000001480
0.000010966
0.000063074
0.000403025
0.003958424

We can see that the 4-stage method provides much smaller errors. Plotting the
approximation points obtained by the two methods against the true solution x (z) =
tan(¢ + 7 ), we can see that the 4-stage points in Figure A.5b are much closer to the
graph of the true solution.

T
0.4 0.6
1

(a)

T T T
04 0.6 08 1
1

(b)

Fig. A.5. The plots of the solution x(f) = tan(r + 7 ) and approximation points. (a) 2-stages;

(b) 4-stages



Answers to selected exercises

Chapter 1

1. x' =-5x.

3. x(t)=ce ™ + 1.
4. Use the uniqueness property.

6. k=1In2.

7. Find the solution and then use the Intermediate Value Theorem.
8. (a) (—oo,—1) (b) (—7n/2,1).

9. x(t) = §z2+ ; { #0.
1. x = 4e”.
12. x=ce

b 1
13 x()= (r - a) + Cea,

17.

18. (a) k=1/2, (b) No!

19. e*7/2,

22. (a) q(t) =7t +2, (b)q(t) =1+ 3.

26. Recall that solutions of such equations do not change sign.

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.

UNITEXT - La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4, © Springer International Publishing Switzerland 2014
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28. x = 3t.

29. x = at:if a > 0 minima, if ¢ < 0 maxima.

Chapter 2

2. Suppose ||x|? —|y|?| < L|x — y|andlet y = 0.

4. Alla # 0.

5. Check the conditions for existence and uniqueness for x’ = Inx (x > 0).
8. Note that |x|'/* is lipschitzian off x > 0.

11. Verify that f(x) = sin x satisfies the conditions of the Global Existence Theo-
rem.

13. Verify that f(x) = In(1 + x?) satisfies the conditions of the Global Existence
Theorem.

14. The function f(x) = max{l, x} is globally lipschitzian.

16. Use uniqueness to show that if z(t) = —x(—1) , then x(¢) = z(¢).
17. Solutions are either increasing or decreasing.

18. Solutions are increasing.

19. Show that if it changed sign, it would violate uniqueness.

21. Solve y' =1+ 2¢, y(0) = 0 and use the Comparison Theorem.

Chapter 3
L Ifg=1,x(t)=C-erh” " Ifg #£1,x17 = (l—q)( PRLaS +c).
P
3. x(0) =-(B@*+0) .
4 2 t #+2
X = C.
12 -2c’

6 1\'/3
5. x = Lt > — .
213 + 1 2



10.

12.

14.
15.

17.

18.

20.
21.

23.
24.

217.

29.

31.

33.

34.

Chapter 3 289

1 2
= *+1]) .
* (2 +)

L, 1, ?
x(t) = t a and x =
4 4

p+1>0.

The limit is a constant, which depends on the initial conditions.
(@,c=0: (b)—1/2.

2 y©
3 _ _ — .
3x + x ( 6 y) c
x2 4+ 2xy —y%=c.
x3—xy+y* = c. The singular points are (0, 0) and («, 3a?), where 4-27a° = 1.
axPt1 dya+1
+ bxy +
p+1 Y qg+1
q
bd > 0, the point («, —Zoz”) where o > 0 satisfies bao = d (Zap) =0.

= c¢. The singular points are (0, 0) and, if ad > 0,

1
e* +er — 2xy2 =c.

x3 4+ 3x2y — 3xy2 4 y3 = ¢. The singular point is (0, 0).

x3 4+ 3x2y + 6xy? +5y3 = c¢. ais the unique negative solution of 1 + 3a +
6a® + 5a3 = 0.

ay =2,by =2as; x3+3x%y 4+ 3a,xy? + byy3 =c.

A(y) = y? + k, k constant; x2 + kx + xy2 = c.

. y=r"»)
W satisfies w1/ (y) = .
f»)
. . . 1
Show that an integrating factor is u(y) = .
V1+ 2
12 X 1
x:Oor—zx2 +1n‘t)=1n t‘—i—c, t #0.
1
x = .
Vee2? —2

x =z1, withz = e /2 (—/e’z/zdt + c).
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x?=x2+1>-1
36. Solve {2x’ —o0.
37. x=1—(c +1)%.
P
39. x = ct — 2. The singular solution is x = 4

40. x = ct + €€. The singular solution is x = ¢ In(—¢) — ¢, ¢t < 0.

41. x(¢t) = ct —1Inc, ¢ > 0. The singular solutionis x = 1 + In¢, ¢ > 0.
43. o = h(a) and B = g(a).

4. x=t+A+t)(c—Injt+1]), t #-1.

Chapter 4

1. The function x|x| has a Lipschitzian first derivative.

2. The function max{0, x|x|} has a Lipschitzian first derivative.
d 2
4. Show that dt (x*+y%) =0.

dH(x,y) _

6. Show that
ow thal dt

0.

7. x" =x.
11. Setz(t) = x(t + T') and use the uniqueness of the ivp.
12. Set z(¢#) = x(—t) and use uniqueness.

13. x”(t) is increasing.

Chapter 5

A2. b) W(7) = m # 0; c) Use Abel’s Theorem.
A5, W(T)=—"2 0.

A6.  f(t) = (*> + 1)(arctant + 1).

A7 W(zx1,2x2) = 22W(x1, x2).

A10. xp and x; are linearly dependent.



All.

B2.
B3.
BS.
B6.

BS.

BO.

B11.
B15.
B17.
B18.
B19.
B24.

C2.

C4.

Co.

C8.

Co.

C10.

C13.

Cl4.

Chapter 5 291
49

W = .

x =cietsint 4+ cpe ! cos t.
x =cre ™ 4 cpte ™.
X = —el=1 4 202,

x() = j6e_’ sin éﬁt.

—1+\/1+4ﬁ>0

The roots of the characteristic equation are 5

B <O.

Use the uniqueness of the ivp.

a=-]

9
a—b<0.
A=k, k=12,...

a—b=kn,k=12,...

x(t) =a—ae .

() x(t) = cre’ + cre™ + ;82[, (i) x(¢) = cre’ + cre™t + (;t - g) e?!.
x(t) = cle(3+5/13)t + cze(S_i/ls)t —12+5t—17.
1
x(t) = cysint + ¢cpcost + 8 cos 3t.
t

x:clsin\/2l+czcos\/21+ sin +/21.

24/2
X = ¢18in2¢ + ¢3 cos 2t — ‘1‘ t cos2t.

. o .
X =cp8int + ¢y cost +—2tcost + itsmt.

Bk . ak
a—ﬂe +,3—oc

Multiply the equation by x and integrate in [a, b].

k<0, x= A rka=-2—58=-2+4+5.
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2 — 4e? 2e?
Cl5. x = eVt e~V2 _ D¢t
1—e2 + 1—e2
D1. Compare with x” 4+ x = 0.
D2.  The first equation.
D3.  Show that x(0) = x’(0) = 0.
D4. Use the general solution of the nonhomogeneous equation to show that one
can choose the constants to find the desired solution.
D8. (a) evaluate the derivative and use the equations; (b) by contradiction, using
(a).
v(t) /
D9. Set¢ = 0 t € (a,a + €) and show that ¢’ > 0.
U
t
DIl. x = .
t+1
e
D13. x =0and |x(?)| = .
|cos(t + c1)]
D14, (a)x =e'¢; (b)) Inx(r) = 1 4+ 21 —¢'.
D16. Distinguish betweena < lora > 5,1 <a <5anda = 1ora = 5.
_ €2 1,2
D19.x—c1t+t3+5t.
D20. P(t) = —3aszt +ast>.
Chapter 6
2. X =c1 + e’ + c3el.
5. x =cre ! + cpe? + cate?.
6. x(t) = 3—;sin2t—;cos2t.
7. x(@) =e™.
2 1
9. t)y=Let —e* | "sint cost ).
x(t) = ge' —e (5 int + 5 )
10.  The characteristic equation has at least one negative zero.
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11.  Check the max and min of the characteristic equation.
13. x(t) = iet + ie‘t + ;cost.
e at e bt
15. x@) = b a—b where a, b (a # b), are the two positive roots of
m* —4m? +1 = 0.
16.  The characteristic equation has only positive solutions.
18. x =c 4+ cref +c3e”" +cysint + cscost.
20.  The characteristic equation has at least one negative root m = —1.
21.  x =c1 +cat +c3e’ +c4e”t +cs5sint + cgcost.
23, x(t) =ci+cat +eze +ogem 4 el
24.  Using the method of Variation of Parameters one finds x(¢) = c; +c¢5 sin 27 +
c3cos2t + glg In|sec2t + tan2¢| — glg In | cos 2t|sin 2t — 4tcos2t.
26, x(t) =242t —2e" +12.
28.  Find a proper subset of linearly dependent functions.
30.  Show that W(t2, —t?) = 0 and explain why this implies
W(t, t2, 13, sint, cost, t*,e', e7, t* —1?) = 0.
31.  W(6) = 5e'd.
32.  Use Abel’s Theorem.
33, x= Ctl + ¢ sin(Int) 4+ ¢z cos(Int), t > 0.
Chapter 7

x(t) = e? (cicost + cysint), y(t) = e? (—cysint + cycost).
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— 1 —t 0 t
A7. x—(o)e —(l)e.
A8, x = (“C‘.’SZZ).
a sin 2t
A10. x=ced=1t—1  y=cre™ +2t-2.

3 3

All. x=cie! =12 =2t -2, y=ce' —1.

—t
B3. A=1, —1,)2(1):( 2¢z¢ ,).

c1e’ —3cpe”

7 2
BS. x=3ci 4207 + 'y =—crF e’ - et

_ —e! 4 3e¥
B6 X = ( 3€3t ) .
2

2 2
B7. x(t) =cre' +c2e¥ — © — 14+ 12, y(t) = cre¥
x(t) = cre’ + cpe 07" 9 3 y(t) = cze

B8. x(t) =cie™’, y(t) = —cire”! + crel.

1 3 3
_ 3, —2 _ 22 -2
B11. x(t)—4e’+4e ’ y(t)—4e’—4e r
(1) 2 0 0
C2. y@) | =ci| 1 |ef+ca| 1 ]e?+c3|0]e?.
2(7) 4 0 1
et
C4. 0
o4t
1
x(t) 1 1 1 3
C7. yt) |=—_|-1]+ 0 e’+2 1 |e?.
z(t) -1 0 -1
C8. a<O.
Cl10. 0<a<?2.
3 1
D2. x= 2t2 - 3t3 —ciInft| + e,y =12+ cot™ L

D4, x=cit+cat 2,y =c1t? —2ct 1 — 1.

1
D6. x=cit—el,y =t—2clt2+cz.
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Chapter 8
2. a=-7,b=1.
3. a=8.
6. C< ;
8. BZ-9<0.
9.  Solutions satisfy x2 + xy + ;yz = 1 which is an ellipse.
10.  Solutions satisfy x? + xy — 3y? = 1 which is a hyperbola.
13. xe:l:{-e’ yezz;e.
14.  The solutions satisfy H(x,y) = x +2y —Inx —2Iny = k, x, y > 0; then
take k = 4.
16.  The nontrivial equilibrium of the system is x = 5,y = 3.
18.  xo satisfies x;’ = x{, — 3x2x{.
20  Use the phase plane analysis.
21.  x(t) > 0, it is increasing for ¢t > 0, decreasing for ¢ < 0 and lim;_, 4o x(¢)
= +o00.
23.  The solution satisfies y2 — x2 + ;x“ = 1, which is closed.
26.  The solution is y = ++v/a2? — x2 — 2x8.
29.  The solution satisfies y2 — x2 +2x3 = 0.
31.  The solution satisfies yZ — x2 + 2x3 = 1.
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Chapter 9
2.2
2 Akzﬂ';f,kzl,z,....
k2 2
3. 2” < [l +1] < k272,

2 2
T Fid
4. < Ale’] <
4e
5. Use the variational characterization of the first eigenvalue.
amr? Bn?

T M —a2 =M a2

10.  Ax = k2, withk = 0, 1,2... . Notice that the eigenfunctions corresponding to
A = 0 are constants.

12. Multiply the equation by ¢ and integrate.

14, u(t,x) = ae 'sinx.

15, u(t,x) = ZCke_kzczt sin(v/Ag x).

_ K272 k
15.  u(t,x) = ZCke L2 tsin( er x).

Chapter 10

k

t
I. x(t)=a .
/; k!(k —1)!

2. a;=0,a; =0forall k > 3. Hence x(¢t) = ag + a»t>.
t3n

X([) =a0'§ 3n(3n_1)(3n_3)(3n_4)32+

t3n+1
+al,;) Bn 4+ 1)3n(3n —2)(3n —3)---4-3 +
1 £3n+2
+ Z '
2= (Bn+2)Bn+1)GBn—-1)0GBn—-2)---5-4

2n

n !t
4. x(n)=)Y (-1 et

n>0
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5. The roots of the indicial equation are r = £1/2. If r = 1/2, a; = 0, for
all k > 1 and x;(¢) = ctV2 Ifr = —1/2,a; = 0 forall k > 2 and
x(t) = t7Y%(ag + azt).
7. The indicial equation has a double root r = 2 yielding
2 t*
x(t) = apt Z 2.2
8.  x(t)=t""|aop+ aot +ax*+ Z(—l)k at*
' 3.4-2--k-(k—2)
k>3
9. xq(t) =alyt).
11.  x(@) =c1Jm(2).
14.  Differentiating the series term by term, show that aJ| («) = —J; ().
18.  Use the fact that between two consecutive zeros of J; there is a zero of Jg to
2
infer that J; (1) > 0. Moreover, J>(x1) = Ji(q) > 0.
a1
2
20. A, = ( 2") where J1(Br) = 0, B > 0; yu(s) = 2/ AnsJ1 24/ Ans).
2. A =1
Chapter 11
3 2ws w? + 52
L 2-0)? (0¥
1) s—a
4. ) , ) .
(s—a) ' +w?2 (s—a) +w?
1—e=s e—3s _ e—4s
5. +2
s s
1 1
6. . .
s2 s—1
+o00 T
8. Showthat £{f} = ™" [ e f(v)dr.
o 0
_ =S
9. s—e

s(1 —e25)"
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10.

14.
16.
18.
19.
20.
23.
24.
25.

27.

29.

31.

32.

33.

35.

36.

37.

38.

40.

Answers to selected exercises

1 Te™sT
52 s(l—e=sTy’

e~ 'sint, e 'cost.

Use Theorem 11.3.7 with P(s) = s —2 and Q(s) = s3 —s.
§+1+4e.

Show that F’(s) < 0 and F"(s) > 0.

Apply (P4) with g'(1) = f().

Use (P4) to find (1 + s2)X'(s) + s X (s) = 0.

x(t) = sinht¢.
x(t)=t—1.
2ix) = 1 1 1

35 T 6(s—3)  2s—1)

0 ift <a

x(t) = [o e H,(0)dO = {_1 betaifr >

x(t) = (k+a)e'. Remark that this solves x” —x = 0 with the initial condition
x(0) =k +a.

x(t) =sint * g(¢). If g(t) = x[0,11(2),

1 —cost ift € [0, 1]
cos(t — 1) —cost, ift > 1.

x(t) = {

1 if0<t<a
1+t—aift>a.

13 3
t)=6 = 13.
*®) (5! + 3!) 207"

() = 1+ Hy)(t —a) = {

1
vk

x(t) =coskt +

x(1) = - sinh(Vk 1).

sink t
k
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Chapter 12
1.  The eigenvalues of the coefficient matrix are A = —3 £ /8.
3. The eigenvalues of the coefficient matrix are A = =i +/2.
4. Ifa < 0, unstable; if a > 0, asymptotically stable; if a = 0, stable, but not
asymptotically stable.
6.  Unstable.
11. Ifa < 0, the equilibrium is asymptotically stable. If a > 0 the equilibrium is
unstable.
12.  Show that at least one eigenvalue of the coefficient matrix is greater than 1.
13. a<-1.
14.  The coefficient matrix has an eigenvalue 0 < A < 1.
16.  Unstable.
19.  The solutions of A* + 813 + 2312+ 281 + 12 =0are A = —1,—2, -2, 3.
20.  Write the equivalent first order system and show that one eigenvalue of the
coefficients matrix is positive.
22.  x = 0is asymptotically stable for A < 0 and unstable for A > 0.
25.  The stable manifold is x3 = 0O: the unstable manifold is the x3 axis.
26.  The eigenvalues of the linearized system are —1, —2.
27.  V(x,y)>0and V < 0forall (x, y) # (0,0).
29.  Apply the Instability Theorem with W (x,y) = 1 (x? + »?).
30.  The eigenvalues of the coefficient matrix of the linearized system are
Lol «; I —4a
31.  Change variable ¥ = x + a and show that X = 0, y = 0 is unstable for the
corresponding system.
32.  The potential F(x,y) = (x2 + y?)? has a strict minimum at (0, 0).
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1
33.  Show that V(x,y) = 2y2 + fox g(s)ds is a Liapunov function.

35.  x(t) =csin(t + 0) + ¢(t), with lim;—, 1 o ¢ () = 0.

Chapter 13

1. Multiply x” = x3 by x and integrate.

d b
3. Letting ®(c) = ¢~ /3 fol Y , show that the equation ®(c¢) =
V1 —y6 V2k
has infinitely many solutions c.
5. A = 7 is the first eigenvalue of the linearized problem x” + Ax = 0, x(0) =
x(1)=0.

1
6. (a) In the phase plane take the arc A, of equation 5 y2 + x* = ¢ in the first

quadrant between x = 0 and x = 1.
(b) Consider the arc A, in the fourth quadrant.

1 1 dx
b= .
«/Zfo V1= x*
t(1—s), ifte]0,
o G ={{0T0 i T =R

2ek
. | -sinhkt -sinhk(s — 1), if € [0.5),
e J—

11.  G(t,s) =
2¢ek
Ze { -sinhks -sinhk(z — 1), ifz € [s,1].
e J—

12. v = 0is a subsolution and w = 1 is a supersolution.
14. v = 0is a subsolution and w = 1 is a supersolution.

16. v = 0 is a subsolution and w = M is a supersolution. Positiveness follows
by contradiction.

18. 0 < min{e*, 1} < 1.

20.  Write arctan x = x—g(x) with g(x) = x—arctan x and apply Theorem 13.4.1
of Chapter 13 with A = 1.
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