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Preface

One of the authors’ main motivation for writing this book has been to provide stu-
dents and faculty with a more economical option for selecting a textbook on intro-
duction to ODE. This book is a primer for the theory and applications of Ordinary
Differential Equations. It is aimed at students of Mathematics, Physics, Engineer-
ing, Statistics, Information Science, etc. with sufficient knowledge of Calculus and a
minimal knowledge of Linear Algebra.

The first chapter starts with the simplest first order linear differential equations
and builds on it to lead to the more general equations. The concepts of initial values
and existence and uniqueness of solutions are introduced early in this chapter. Am-
ple examples, using simple integration, are given to motivate and demonstrate these
concepts. Almost all of the assertions are proved in elementary and simple terms.

The important concepts of the Cauchy Problem and Existence and Uniqueness
of solutions are introduced in detail and demonstrated by many examples. Proofs are
given in an Appendix. There is also a rigorous treatment of some qualitative behavior
of solutions. This chapter is important from a pedagogical point of view because it in-
troduces students to rigor and understanding of important concepts at an early stage.

There is also a chapter on nonlinear first order equations, where students learn
how to explicitly solve certain types of equations such as separable, homogeneous,
exact, Bernoulli and Clairaut equations.

Further chapters are devoted to linear higher order equations and systems, with
several applications to mechanics and electrical circuit theory. Also included is an
elementary but rigorous introduction to the theory of oscillation.

There is a chapter on phase plane analysis dealing with finding periodic solutions,
solutions of simple boundary value problems, homoclinic and heteroclinic trajecto-
ries. There is also a section discussing a Lotka–Volterra system arising in population
dynamics.

Subsequently, the book deals with the Sturm Liouville eigenvalues, Laplace trans-
form and finding series solutions, including fairly detailed treatment of Bessel func-
tions, which are important in Engineering.

Although this book is mainly addressed at undergraduate students, there are some
more advanced topics such as stability theory and existence of solutions to Boundary
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Value problems, which might be useful for the more motivated undergraduates or
even beginning graduate students.

A chapter on numerical methods is included as an Appendix, where the impor-
tance of computer technology is pointed out. Otherwise, we do not encourage the use
of computer technology at this level. Besides, we believe that, at this stage, students
should practice their previous knowledge of Algebra and Calculus instead of relying
on technology; thus sharpening their mathematical skills in general.

Each chapter ends with a set of exercises, which are meant to test the students’
understanding of the concepts covered.

Solutions to selected exercises are included at the end of the book.
We wish to acknowledge with gratitude the help of Dung Le, Rahbar Maghsoudi,

and Vittorio Coti Zelati, especially with technical issues.

San Antonio and Trieste Shair Ahmad
December 2013 Antonio Ambrosetti



Notation

The following are some notations that are used in the book.

• N denotes the set of natural numbers 0; 1; 2 : : :

• Z denotes the set of integer numbers 0;˙1;˙2 : : :
• R denotes the set of real numbers.

• C denotes the set of complex numbers.

• If a; b 2 R, Œa; b� denotes the closed interval ¹a � t � bº; .a; b/, or �a; bŒ,
denotes the open interval ¹a < t < bº. Moreover .a; b�, or �a; b�, denotes the
interval ¹a < t � bº, while Œa; b/, or Œa; bŒ, denotes the interval ¹a � t < bº.

• If x; y 2 Rn, .x j y/ D P
xiyi denotes the euclidean scalar product of the vec-

tors x; y, with components xi ; yi , i D 1; : : : ; n. In some case we will also use
x � y or .x; y/ instead of .x j y/. The corresponding euclidean norm is denoted

by jxj D p
.x j x/ D

qP
x2

i . If n D 1 then jxj is the usual absolute value.

• dkf

dtk D f .k/ denotes the k-th derivative of f .t/.

• @f
@xi

D @xi
f D fxi

denotes the partial derivative of f .x1; : : : ; xn/ with respect

to xi .

• If� � Rn, C.�;R/, or simply C.�/, is the class of continuous real valued func-
tions f W � 7! R defined on�. C.�;Rm/ is the class of continuous functions f
defined on � with values in Rm.

• If� � Rn is an open set, C k.�;R/, or simply C k.�/, is the class of real valued
functions f W � 7! R which are k times continuously differentiable. C.�;Rm/

is the class of functions f W � 7! Rm, each component of which is k times con-
tinuously differentiable. Functions that are differentiable infinitely many times are
often called regular.

• W.f1; : : : ; fn/.t/ D W.f1.t/; : : : ; fn.t// D W.t/ represents the Wronskian of
the functions f1; : : : ; fn.

• Jm = Bessel function of order m.
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• f � g = convolution of the functions f and g.

• ı.t/ = the Dirac delta function.

• Det(A) = determinant of the matrix A.

• Akl = Minor of the element akl , Ckl = cofactor of the element akl .

• L¹f .t/º.s/ D F.s/ = the Laplace transform of the function f .

• rV.x/ D .Vx1
.x/; : : : ; Vxn

.x//, x 2 Rn, denotes the gradient of the real valued
function V .

• .rV.x/ j f .x// D Pn
1 Vxi

.x/fxi
.x/ = scalar product of rV.x/ and f .x/.
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1

First order linear differential equations

1.1 Introduction

A differential equation is an equation involving an unknown function and its deriva-
tives. By a solution of a differential equation we mean a function that is differentiable
and satisfies the equation on some interval. For example, x0 � x D 0 is a differential
equation involving an unknown function x and its first derivative with respect to an
independent variable that we may call t , s, etc. We notice that .et /0�et D et �et D 0

for all t in the interval I D .�1;1/: Therefore, x.t/ D et is a solution of the dif-
ferential equation on the interval I .

A differential equation involving ordinary derivatives is called an ordinary dif-
ferential equation and one involving partial derivatives is called a partial differential
equation. For example, x00 �t2x0 C2x D 0 is an ordinary differential equation, while
@2u
@x2 C @2u

@y2 D 0 is a partial differential equation. In this book, we deal with ordinary

differential equations.
By the order of a differential equation we mean the order of the highest derivative

appearing in the equation. For example, x000 C 2x00 � 3x0 C 2x D 0 is a third order
differential equation while x00 C x D 0 is second order.

Differential equations play a central and important role not only in mathematics
but also in almost all areas of science and engineering, economics, and social sci-
ences. A differential equation may describe the flow of current in a conductor, or the
motion of a missile, the behavior of a mixture, the spread of diseases, or the growth
rate of the population of some species, etc. Often, we will have x.t/ describing a
physical quantity, depending on time t , whose rate of change x0.t/ is given by the
function f .t; x.t// depending on time t and x.t/.

In the sequel we will discuss differential equations on a broader basis, including
higher order equations and/or systems. In this first chapter, however, we start with
the simplest, but very important, class of differential equations, namely first order
linear equations.

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT – La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_1, © Springer International Publishing Switzerland 2014



2 1 First order linear differential equations

1.2 A simple case

Let us begin with the very specific and simple equation

x0 D kx; k 2 R: (1.1)

We will demonstrate a precise method for solving such equations below. But first
we use our intuition and familiarity with the derivative of the exponential function to
solve the simple equation (1.1).

Let us first take k D 1. We seek a function whose derivative is equal to itself:
x0 D x. One such function is x.t/ � 0. We also know that the exponential function
x D et has this feature. Actually, for every constant c, the function x D cet is a
solution of x0 D x. This leads us to the slightly more general case x0 D kx, which
has x D cekt as a solution, for any constant c. Furthermore, as we will see below,
these are the only types of solutions that this differential equation can have.

We now illustrate a general procedure that will be used later to solve the most
general first order linear differential equations. First suppose that x.t/ satisfies the
equation

x0.t/ D kx.t/:

Multiplying both sides of the equivalent equation x0.t/ � kx.t/ D 0 by e�kt , we
have

x0.t/e�kt � kx.t/e�kt D 0:

We note that the left-hand side is the derivative of .x.t/e�kt /. Hence we have
.x.t/e�kt /0 D 0. Integrating, we obtain x.t/e�kt D c, 8 t 2 R, where c is a con-
stant. Hence x.t/ D cekt .

On the other hand, by substituting any function of the form x.t/ D cekt into the
equation (1.1), we see that x.t/ is a solution of (1.1). Therefore, x.t/ is a solution of
(1.1) if and only if x.t/ D cekt for some constant c. We say that x.t/ D cekt is
the general solution of (1.1), that is, it represents the family of all solutions of this
equation.

Example 1.2.1. Consider the problem of finding x.t/ such that

x0 D 2x; x.0/ D 1: (1.2)

This is called an initial value problem. It is asking for a function x.t/ that satisfies
the differential equation and x.0/ D 1. We have shown above that x.t/ D ce2t is
the general solution. So, the desired solution, if it exists, must be of the form ce2t .
Substituting t D 0 in the equation x.t/ D ce2t , we obtain 1 D ce0 or c D 1. There-
fore, x.t/ D e2t is a solution to the initial value problem (1.2). Since every solution
to the initial value problem (1.2) is of the form x.t/ D ce2t and since by substituting
the initial values in this general solution we obtain only one constant that satisfies the
initial value problem, we conclude that the solution to the initial value problem (1.2)
exists and it is unique.
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1.3 Some examples arising in applications

In spite of its simplicity, equation (1.1) arises in many fields of applied sciences.
Below we discuss a couple of them.

1.3.1 Population dynamics

Let:

• t denote the time;
• x.t/ denote the number of individuals of a population at time t ;
• b denote the birth rate of the population;
• d the death rate of the population.

The simplest model of population growth, due to Malthus1 in the discrete version,
assumes that b and d are constant and that the increment of the population x.n C
1/ � x.n/ between t D n and t D n C 1 is equal to the number of new-born indi-
viduals b � x.n/ minus the number of deaths d � x.n/, namely x.n C 1/ � x.n/ D
bx.n/�dx.n/ D .b�d/x.n/. Introducing the number k D b�d as the unit growth
rate, that is the growth rate per unit time, we find the recursive equation

x.nC 1/ � x.n/ D kx.n/; n D 0; 1; 2; ::: (1.3)

which allows us to find x.n/ for any positive integer n. To pass to continuous time
variables, we take an infinitesimal change of time�t . Then the change of population
x.t C �t/ � x.t/ between t and t C �t is given by the unit growth rate k, times
the population size x.t/, times the interval of time �t . Thus equation (1.3) becomes
x.t C�t/ � x.t/ D kx.t/�t . Dividing by �t we get

x.t C�t/ � x.t/
�t

D kx.t/:

The left-hand side is the incremental ratio of x.t/. Letting �t ! 0, we find

x0.t/ D kx.t/; k D b � d;
a first order linear differential equation like (1.1), whose solutions are x.t/ D cekt .
If x.0/ D x0 > 0, then c D x0 > 0 and x.t/ D x0e

kt . If the birth rate b is equal to
the death rate d , then k D b � d D 0 and x.t/ D x0e

0 D x0 for all t 	 0, as one
would expect. If b > d then k D b � d > 0 and x.t/ D x0e

kt grows exponentially
and approaches C1 as t ! C1. On the other hand, if k < 0 then x.t/ decays
exponentially to 0 as t ! C1 and the population goes to extinction. See Figure 1.1.

This model is rather rough in the sense that it does not take into account the fact
that b; d , and hence the growth rate k, might depend on the population size. In Sec-
tion 3.1.1 of Chapter 3, we will discuss a more realistic model of population growth,

1 Thomas R. Malthus (1766–1834).
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t

x

x

O

0

Fig. 1.1. Solutions of (1.3), with k > 0 (upper curve) and k < 0 (lower curve) and k D 0

(dotted curve)

which gives rise to the so called “logistic equation” having the form x0 D x.˛�ˇx/,
˛; ˇ positive constants.

1.3.2 An RC electric circuit

Let us consider an RC circuit with resistance R and capacity C with no external
current or voltage source.

If we denote by x.t/ the capacitor voltage (x.t/ D V.t/ in Figure 1.2 and by I.t/
the current circulating in the circuit, then, according to the Kirkhoff’s law, we have

R � I.t/C x.t/ D 0:

Moreover, the constitutive law of capacitor yields

I.t/ D C � dx.t/
dt

:

Substituting I.t/ in the first equation, we obtain the first order differential equation

RC � x0.t/C x.t/ D 0;

Fig. 1.2. An RC circuit
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namely

x0.t/C x.t/

RC
D 0;

which is of the form (1.1) with k D �1=RC . Also here we can look for a solution
x.t/ satisfying the initial condition x.0/ D x0, which means that the initial voltage
is x0. The solution is given by

x.t/ D x0e
�t=RC :

We can see that the capacitor voltage x.t/ D V.t/ decays exponentially to 0 as
t ! C1, in accordance with the experience. The number � D RC is usually called
the RC time constant and is the time after which the voltage x.t/ D V.t/ decays to
V.�/ D x0e

�1. Moreover we can say that the bigger � is, the slower the decay. As
for the intensity of current I.t/, one finds

I.t/ D Cx0.t/ D �C � x0

RC
e�t=RC D �x0

R
e�t=RC :

Other equations arising in the electric circuit theory will be discussed in Example
1.4.3 below, in Example 5.5.5 of Chapter 5 and in Section 11.6 of Chapter 11.

1.4 The general case

Now, we solve the general first order linear differential equation

x0 C p.t/x D q.t/ (1.4)

where p.t/; q.t/ are continuous functions on an interval I � R.
If q.t/ � 0 the linear differential equation (1.4) is called homogeneous, otherwise

it is called nonhomogeneous or inhomogeneous.
Motivated by the above discussion, we try to find a differentiable function �.t/,

�.t/ > 0 for t 2 I , such that

�.t/x0.t/C �.t/p.t/x.t/ D .�.t/x.t//0:

Such a function �.t/ is called an integrating factor of the equation (1.4). It has the
property that if we multiply (1.4) by �.t/, it renders the left side of the equation to
be equal to .�.t/x.t//0, which can be easily integrated.

Although based on the discussion in the preceding section, one might guess such
an integrating factor, we prefer giving a precise method for finding it.

Let x.t/ be a solution of (1.4). Multiplying the equation by �.t/ we have

�x0 C �px D �q:

Now we wish to find � such that

�x0 C �px D .�.t/x.t//0:
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Expanding the right-hand side, we have

�.t/x0.t/C �.t/p.t/x.t/ D �.t/x0.t/C �0.t/x.t/:

Canceling �.t/x0.t/ from both sides, we obtain

�.t/p.t/x.t/ D �0.t/x.t/:

Assuming that x.t/ 6D 0 and dividing both sides by x.t/, we find

�.t/p.t/ D d�

dt
:

Since �.t/ > 0 we infer
d�

�.t/
D p.t/dt:

Then, taking the indefinite integrals we obtain
R d�

�.t/
D R

p.t/dt and we find (recall

that �.t/ > 0) that ln.�.t// D R
p.t/dt .

Thus

�.t/ D eP.t/; P.t/ D
Z
p.t/dt:

In order to obtain the general solution of (1.4), we take the indefinite integral of both
sides of

.�.t/x.t//0 D �.t/q.t/ (1.5)

obtaining

�.t/x.t/ D c C
Z
�.t/q.t/dt

where c is a constant. Substituting �.t/ D eP.t/, we have

x.t/ D e�P.t/

�
c C

Z
eP.t/q.t/dt

�
; P.t/ D

Z
p.t/dt: (1.6)

We have seen that if x.t/ solves (1.4), then there exists c 2 R such that x.t/ has the
form (1.6). Moreover, it is easy to check that for all c 2 R, x.t/ given above solves
(1.4). This is why x.t/ in (1.6) is called the general solution of (1.4).

Now, suppose we are interested in solving the initial value problem

x0 C p.t/x D q.t/; x.t0/ D x0:

Then we can substitute t D t0, x D x0 in the general solution and solve for the
constant c. Another way is to take the definite integral of (1.5) from t0 to t instead of
the indefinite integral. Doing so, we have

�.t/x.t/ � �.t0/x.t0/ D
Z t

t0

�.s/q.s/ds:
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We can also choose P.t/ D R t

t0
p.s/ds and then

�.t/ D e
R t

t0
p.s/ds

:

Hence �.t0/ D 1 and

x.t/ D e
� R t

t0
p.s/ds

�
x0 C

Z t

t0

e
R s

t0
p.s/ds

q.s/ds

�
: (1.7)

Remark 1.4.1. We prefer not to have to memorize (1.7) but rather go through this
simple procedure each time, starting with integrating factors.

As a special case of (1.6), when q D 0, the general solution of the homogeneous
equation

x0 C p.t/x D 0 (1.8)

is

x.t/ D c e�P.t/; P.t/ D
Z
p.t/dt; t 2 I:

For c D 0 we obtain the trivial solution x.t/ � 0.
If we are searching for a solution satisfying the initial condition x.t0/ D x0, then

we can solve x0 D x.t0/ D c e�P.t0/. If we take P.t/ D R t

t0
p.s/ds, then P.t0/ D

0 and we find c D x0. Thus

x.t/ D x0 e
� R t

t0
p.s/ds

is the solution of x0 C p.t/x D 0 such that x.t0/ D x0, and it is unique. As a
consequence, if t0 is any number in I and x.t0/ D x0, then

1. x.t/ D 0, 8 t 2 I , if and only if x0 D 0;
2. x.t/ > 0, 8 t 2 I , if and only if x0 > 0;
3. x.t/ < 0, 8 t 2 I , if and only if x0 < 0.

In other words, if x.t/ is a solution of (1.8), then it is either identically zero, or it
is always positive or it is always negative. In particular, if x.t/ vanishes somewhere
in I , then it has to be the trivial solution x.t/ D 0, for all t 2 I .

The above arguments lead to the following existence and uniqueness result for
(1.4), namely for x0 C p.t/x D q.t/.
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Theorem 1.4.2. Let p.t/; q.t/ be continuous in I � R. Then

1. The general solution of (1.4) is given, for all t 2 I , by

x.t/ D e�P.t/

�
c C

Z
eP.t/q.t/dt

�
; P.t/ D

Z
p.t/dt;

c a constant.

2. There is exactly one solution x.t/ satisfying the initial value x.t0/ D x0 for any
numbers t0 2 I and x0 2 R. Precisely,

x.t/ D e
� R t

t0
p.s/ds

�
x0 C

Z t

t0

e
R s

t0
p.s/ds

q.s/ds

�
; t 2 I: (1.9)

This theorem can also be deduced from general existence and uniqueness results
stated in Chapter 2, Section 2.2.2.

We end this section by demonstrating, through examples, how to solve linear equa-
tions.

Example 1.4.3. Find the solution of

x0.t/C kx.t/ D h; x.0/ D x0; (1.10)

where h; k are constant. Equation (1.10) arises in the RC circuit when there is a gen-
erator of constant voltage h D V0, see Figure 1.3.

Here p.t/ � k and hence an integrating factor is ekt . Multiplying the equation
by ekt yields

ektx0 C kektx.t/ D hekt ;

or
d

dt

�
x.t/ekt

�
D hekt :

Integrating, we find

x.t/ekt D h

k
ekt C c

Fig. 1.3. RC circuit with a generator of voltage
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where c is an arbitrary constant. Thus the general solution is

x.t/ D ce�kt C h

k
:

To find a solution that satisfies the initial condition x.0/ D x0 we might simply
substitute t D 0 in the preceding equation, finding

x0 D c C h

k
and hence c D x0 � h

k
:

Hence the unique solution of (1.10) is

x.t/ D
�
x0 � h

k

�
e�kt C h

k
: (1.11)

Alternatively, we can use (1.9) yielding

x.t/ D e�kt

�
x0 C

Z t

0

ekshds

�
D e�kt

�
x0 C h � 1

k
� .ekt � 1/

�
D
�
x0 � h

k

�
e�kt C h

k

as before.
Notice that, as t ! C1, x.t/ ! h

k
, from below if x0 <

h
k

(see Fig. 1.4a) and
from above if x0 >

h
k

(see Fig. 1.4b).
The solution (1.11) implies that in this case the capacitor voltage x.t/ D V.t/ does

not decay to 0 but tends, as t ! C1, to the constant voltage h=k D V0=RC .

Example 1.4.4. Find the general solution of

x0.t/C 4tx.t/ D 8t

and the solution such that x.0/ D 1.

h/k

t

x

O

(a)

h/k

t

x

O

(b)

Fig. 1.4. Solutions of (1.10). (a) x0 <
h
k

; (b) x0 >
h
k
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t
O

x

2

Fig. 1.5. Graphs of x D 2C ce�2t2

(a) Here p.t/ D 4t and hence we can take P.t/ D 2t2. We start by multiplying
the equation by the integrating factor e2t2

, which results in the equation

e2t2

x0 C 4te2t2

x.t/ D 8te2t2

;

which is the same as
d

dt

�
x.t/e2t2

�
D 8te2t2

:

Integrating both sides, we obtain

x.t/e2t2 D 2e2t2 C c

where c is an arbitrary constant. Therefore, the general solution is

x.t/ D 2C c e�2t2

:

(b) If we require that x.0/ D 1, then the constant c is uniquely determined by the
equation 1 D 2C c e�2�0 D 2C c, that is c D �1 and hence

x.t/ D 2 � e�2t2

:

Alternatively, we can use the general formula (1.9) finding

x.t/ D e�4
R t

0 sds

�
1C

Z t

0

e4
R s

0 sds 8 � s ds
�

D e�2t2

�
1C

Z t

0

8 s e2s2

ds

�
D e�2t2

h
1C .2e2t2 � 2/

i
D e�2t2

h
2e2t2 � 1

i
D 2 � e�2t2

:
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We make a couple of interesting observations concerning this equation.

1. We note that for c D 0, we obtain the constant solution x D 2. Furthermore, this
solution divides all the other solutions into two groups: those that approach it from
the top and those that approach it from the bottom, as t ! ˙1. See Figure 1.5.

2. We could have found the constant solution x.t/ D 2 without even solving the
equation, by simply noting that if x.t/ is a constant, then x0.t/ � 0 and therefore
x0.t/C 4tx.t/ � 8t implies x.t/ D 2 for all t .

Example 1.4.5. Find the general solution of

t2x0 C .1C t /x D 1

t
e1=t ; t > 0: (1.12)

The first thing we notice is that the above equation is not in the form of equation (1.4)
for which we found the integrating factor �. To apply our method, we must put it in
the proper form. So, we divide both sides of the equation by t2 6D 0, which yields

x0 C .1C t /

t2
x D 1

t3
� e1=t t > 0: (1.13)

We know that an integrating factor � can be determined as

� D eP.t/; where P 0.t/ D .1C t /

t2
:

To find P.t/ we evaluate the indefinite integralZ
.1C t /

t2
dt D

Z �
1

t2
C 1

t

�
dt D �1

t
C ln t C c; t > 0:

Taking c D 0 we find that an integrating factor is given by

�.t/ D e�1=tCln t D e�1=t : eln t D te�1=t :

Multiplying (1.13) by this integrating factor, we obtain the equation

.t e�1=tx/0 D t e�1=t :
1

t3
e1=t D 1

t2
:

Integrating both sides, we get

te�1=tx.t/ D �1
t

C c:

The general solution is

x.t/ D �e1=t

t2
C ce1=t

t
D e1=t

t

�
c � 1

t

�
; t > 0: (1.14)

It is clear that all the solutions tend to 0 as t tends to C1. On the other hand, it is
easy to verify that for any constant c, x.t/ given by (1.14) satisfies equation (1.13).
This means that x.t/ given by (1.14) is a solution of (1.13), and hence of (1.12), if
and only if x.t/ is of the form (1.14), that is the general solution of (1.12).
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If we want to solve the equation x0 C .1Ct/

t2 x D 1
t3 � e1=t for t 6D 0 we should

distinguish the two cases t > 0 and t < 0 separately. As an exercise, the reader might
repeat the calculations for t < 0.

Example 1.4.6. Solve the following initial value problem and show that the solution
is defined for t > 0 and is unique:

t2x0 C .1C t /x D 1

t
e

1
t ; x.1/ D 0: (1.15)

We have shown that the general solution of (1.12) for t > 0 is x.t/ given by (1.14),
where c is a constant.

Now in order to solve the initial value problem, since all solutions are included
in (1.14), we simply substitute the initial values into the equation (1.14), obtaining
0 D �e C ce, and hence c D 1. Therefore,

x.t/ D �e 1
t

t2
C e

1
t

t
D e

1
t

t

�
1 � 1

t

�
:

The uniqueness follows from the fact that there is only one value of c for which x.t/
obtained from the general solution (1.14) satisfies the initial value x.1/ D 0.

The reader can check, as an exercise, that the same result holds if we use the gen-
eral formula (1.9).

Fig. 1.6. x.t/ D e
1
t

t

�
1 � 1

t

�
, t > 0
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1.5 Exercises

1. Find the equation whose general solution is x D c e�5t .

2. Solve x0 C .ln 3/x D 0.

3. Solve x0 C 4x D 4.

4. Find all the solutions to the initial value problem x0C 2t3Csin tC5
t12C5

x D 0, x.0/ D 0.

5. Solve x0 D �2x C 3 and find the solution satisfying x.1/ D 5.

6. Find k such that there exists a solution of x0 D kx such that x.0/ D 1 and
x.1/ D 2.

7. Explain why the solution to the problem

x0 � 2.cos t /x D cos t; x.0/ D 1

2

must oscillate, i.e. it must have arbitrarily large zeros.

8. In each of the following, find the maximum interval of existence of the solution,
guaranteed by the existence theorem

(a) x0 C 1

t2 � 1x D 0, x.�2/ D 1;

(b) x0 C .sec t / x D 1

t � 1 , x .�
4
/ D 1.

9. Solve tx0 C x D 2t2.

10. Show that there is an infinite family of solutions to the problem

t2x0 � 2tx D t5; x.0/ D 0;

all of which exist everywhere on .�1;1/. Does this violate the uniqueness
property of such equations?

11. Solve x0 D 2tx and find the solution satisfying x.0/ D 4.

12. Solve x0 D �t2x.

13. Solve x0 C ax D bt .

14. Solve: (a) x0 D x C 2t , (b) x0 � 2x D 3t , (c) x0 C 3x D �2t .
15. Find the solution of x0 C ax D bt satisfying x.t0/ D x0.

16. Solve the initial value problems (a) x0 � x D 1
2
t , x.0/ D 1, (b) x0 C x D 4t ,

x.1/ D 0, (c) x0 � 2x D 2t , x.0/ D 3.

17. Given h; k 2 R, k > 0, find the limits as t ! C1 of the solutions of x0 C
kx D h.

18. Consider x0 C kx D 1, where k is a constant.
(a) For what value of k will all solutions tend to 2 as t ! C1?
(b) Is there any value of k for which there exists a non-constant solution x.t/

such that x.t/ ! �3 as t ! C1? Explain.
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19. Find the limits as t ! ˙1 of the solution of x0 D 1
1Ct2 x, x.0/ D 1.

20. Consider x0 C kx D h, with k 6D 0. Find conditions on the constants h; k such
that
(a) all solutions tend to 0 as t tends to + infinity,
(b) it will have only one solution bounded on .0;C1/,
(c) all solutions are asymptotic to the line x D 3.

21. Show that for any differentiable function f .t/, t 2 R, all solutions of x0 C x D
f .t/C f 0.t/ tend to f .t/ as t tends to C1.

22. Find a continuous function q.t/, t 2 R, such that all solutions of x0 C x D q.t/

(a) approach the line x D 7t � 5 as t ! C1,
(b) approach the curve x D t2 � 2t C 5 as t ! C1.

23. Show that if p is differentiable and such that limt!C1 p.t/ D C1, then all the
solutions of x0 C p0.t/x D 0 tend to zero as t ! C1.

24. If k 6D 0, show that the constant solution x.t/ D � 1
k2 is the only solution of

x0 � k2x D 1 such that the limt!C1 x.t/ is finite.

25. Let k ¤ 0 and let q.t/ be continuous and such that limt!C1 q.t/ D 0, andR C1
0

e�k2sq.s/ds D 0. Show that the solution x.t/ of the ivp problem

x0 � k2x D q.t/; x.0/ D x0;

tends to 0 as t ! C1 if and only if x0 D 0.

26. Show that the solution of x0 D k2x, x.t0/ D x0, is increasing if x0 > 0 and
decreasing if x0 < 0.

27. Show that the solution of x0 D kx, x.t0/ D x0 is increasing if kx0 > 0 and
decreasing if kx0 < 0.

28. Find the locus of minima of the solutions of x0 C 2x D 6t .

29. Find the locus of maxima and minima of the solutions of x0 C x D at , a 6D 0.
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Theory of first order differential equations

Before discussing methods of solving more general classes of differential equations,
it is convenient to present a theoretical overview of first order equations and their
solutions, which will set a rigorous layout for the rest of the book.

2.1 Differential equations and their solutions

In Chapter 1 we introduced the notion of a differential equation and the meaning of
the solution of such an equation. This will now be explained in more detail and in
greater generality in the present section.

Consider the first order differential equation

x0 D f .t; x/ (2.1)

where f .t; x/ is continuous, .t; x/ 2 �, � 
 R2.
A solution of (2.1) is a differentiable real valued function x.t/ defined on an in-

terval I � R such that

x0.t/ � f .t; x.t//; for .t; x.t// 2 �: (2.2)

An equation in this form is said to be in normal form, to distinguish it from more
general differential equations that will be introduced later on.

One of the simplest examples of a first order differential equation is x0 D h.t/,
where h is continuous on an interval I � R. If H.t/ is an antiderivative so that
H 0.t/ D h.t/, then all the the solutions are given by x.t/ D H.t/ C c, c a real
constant.

We have seen in Chapter 1 that all solutions of the linear equation x0 C p.t/x D
q.t/ form a family of functions depending on a constant. We will show in the sequel
that this is a general fact: solutions of x0 D f .t; x/ form a one parameter family of

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT – La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_2, © Springer International Publishing Switzerland 2014
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functions, although, as we will see, in the nonlinear case there could be some isolated
cases of solutions that are not included in such a family.

1. The reader should recall that a solution of (2.2) is a function, in contrast to the
algebraic equations, whose solutions are real (or complex) numbers. Moreover,
it is important to note that (2.2) is an identity; it holds for all t in the domain of
x.t/.

2. The domain of definition of a solution of (2.2) is a priori unknown and may depend
on several facts. It could happen that, even if f .t; x/makes sense for all real t; x,
the solutions may be defined only for t in a proper subset of R, see Example 2.2.2
below.

From a geometrical point of view, a solution of (2.1) is a curve x D x.t/, con-
tained in the set �, such that the tangent at each point .t�; x.t�// on the curve has
slope equal to f .t�; x.t�// and hence its equation is

x D f .t�; x.t�//.t � t�/C x.t�/:

For example, consider the curve x D et in the plane .t; x/, which is a solution of
x0 D x. A generic point P � on this curve has co-ordinates P � D .t�; et�

/. The
tangent to x D et at P � has equation

x D et�
.t � t�/C et�

:

Remark 2.1.1. We have used t as the independent variable and x as the dependent
one. But any other choice makes sense. For example, we could just as well name the
dependent variable y and the independent variable x. With this notation, a first order

t

x

O

Fig. 2.1. Tangents to x D et
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differential equation would have the form

y0 D dy

dx
D f .x; y/

a solution of which would be a differentiable function y.x/ such that y0.x/ D
f .x; y.x// for all x where y.x/ is defined. In any case, the equation will make it
clear which one is the independent or dependent variable.

Dealing with a first order equation, one can distinguish between:

• linear and nonlinear equations, according to whether f .t; x/ is linear with respect
to x or not;

• autonomous and non-autonomous equations according to whether f is indepen-
dent of t or not.

For example, x0 D kx C c is linear and autonomous, x0 D x2 C kx C c is nonlin-
ear and autonomous; while x0 D etx C sin t � 4 is linear and non-autonomous, and
x0 D tx2 � tx C 3 is nonlinear and non-autonomous.

Notice that, even if f is independent of t , the domain � has to be considered as
an appropriate subset of R2. For example, in the equation x0 D p

x, f .x/ D p
x

is defined for x 	 0 and hence � D R � ¹x 	 0º. Similarly, in the equation
x0 D p

1 � x2, f .x/ D p
1 � x2 is defined for �1 � x � 1 and hence � is the

horizontal strip R � ¹�1 � x � 1º.

More generally, let F.t; x; p/ be a real function of 3 real variables, defined on a
set R � R3. Consider the first order differential equation

F.t; x; x0/ D 0;

whose solution is a differentiable real valued function x.t/ defined on an interval
I � R such that

F.t; x.t/; x0.t// � 0; 8 t 2 I: (2.3)

If F.t; x; p/ is of the form F.t; x; p/ D p � f .t; x/, we can write the equation
F.t; x; x0/ D 0 in normal form x0 D f .t; x/.

Even more generally, we may consider systems of n first order equa-
tions and n unknowns. We may also consider more general scalar equations
F.t; x; x0; x00; : : : ; x.n// D 0 of order n.

In this chapter we deal with first order equations. Higher order equations and sys-
tems will be discussed starting with Chapter 4.
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2.2 The Cauchy problem: Existence and uniqueness

The problem of solving an equation in normal form x0 D f .t; x/ coupled with the
initial condition x.t0/ D x0, ²

x0 D f .t; x/

x.t0/ D x0

is called a Cauchy1 problem or an initial value problem, ivp in short.
In this section we discuss some theoretical aspects of existence and uniqueness

theorems for the Cauchy problems. The proofs are given in the Appendix 2.5 at the
end of the chapter.

Existence and uniqueness of solutions is important not only from a theoretical
point of view but also in applications. For example, in using a numerical method or
some software such as Math Lab to find a solution, it is important to know whether
or not such a solution exists in the first place. And if it does exist, is there more than
one solution?

2.2.1 Local existence and uniqueness

Theorem 2.2.1 (Local existence and uniqueness). Suppose that f is continuous
in � � R2 and has continuous partial derivative fx with respect to x. Let .t0; x0/

be a given point in the interior of�. Then there exists a closed interval I containing
t0 in its interior such that the Cauchy problem²

x0 D f .t; x/

x.t0/ D x0
(2.4)

has a unique solution, defined in I .

We will see that this is a particular case of a more general result, see Theorem 2.4.4
below.

We are going to outline the proof of the existence part by using a method intro-
duced by Picard,2 which is based on an approximation scheme.

We define a sequence of approximate solutions by setting

x0.t/ D x0; xkC1.t/ D x0 C
Z t

t0

f .s; xk.s//ds; k D 1; 2; : : : :

One shows that, under the given assumptions, there exists ı > 0 such that xk.t/ con-
verges to some function x.t/, uniformly in Œt0 � ı; t0 C ı�. Passing to the limit one
finds that x satisfies

x.t/ D x0 C
Z t

t0

f .s; x.s//ds:

1 Augustin-Louis Cauchy (1789–1857).
2 Charles Emile Picard (1856–1941).
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Then x.t/ is differentiable and, using the Fundamental Theorem of Calculus, we get
x0.t/ D f .t; x.t//, for all t 2 Œt0�ı; t0Cı�. It is also clear that x.t0/ D x0 and hence
x.t/ is a solution of (2.4), defined in Œt0 � ı; t0 C ı�. For details see the Appendix.

Let us show what happens in the particular case f .t; x/ D x, t0 D 0 and x0 D 1.
The sequence is constructed as follows:

x0.t/ D 1;

x1.t/ D 1C
Z t

0

x0.s/ds D 1C
Z t

0

ds D 1C t;

x2.t/ D 1C
Z t

0

x1.s/ds D 1C
Z t

0

.1C s/ds D 1C t C 1

2
t2;

x3.t/ D 1C
Z t

0

x2.s/ds D 1C
Z t

0

.1C s C 1

2
s2/ds D 1C t C 1

2
t2 C 1

3Š
t3;

: : : : : :

xk.t/ D 1C
Z t

0

xk�1.s/ds D 1C t C 1

2
t2 C � � � C 1

kŠ
tk :

The sequence xk.t/ converges uniformly to x.t/ D P
1
kŠ
tk D et , which is the

solution to x0 D x; x.0/ D 1.
It is important to note that Theorem 2.2.1 is local, because it ensures that the so-

lution exists (and is unique) in a suitable interval around t0. The following example
shows that the solution may not be defined on all of R even if the equation makes
sense everywhere.

Example 2.2.2. Consider the ivp²
x0 D x2

x.t0/ D a 6D 0:
(2.5)

Let us first solve the equation x0 D x2. This is a so-called “separable equation”
and will be discussed in Section 3.1 of Chapter 3. Here, instead of using the general
method, we will find the solutions by a direct argument which uses some intuition.

We have to find functions x.t/ whose derivatives are equal to x2.t/. One choice
could be x.t/ D � 1

t
, because x0 D 1

t2 which equals x2 D 1
t2 . More generally,

consider the functions

�.t; c/ D � 1

t � c ; c 2 R:

Since d

dt
�.t; c/ D 1

.t � c/2 D �2.t; c/;

it follows that, for all real constants c, the functions �.t; c/ solve x0 D x2.
To find the solution xa.t/ of the Cauchy problem (2.5) we impose the requirement

that �.t0; c/ D a, that is

a D � 1

t0 � c D 1

c � t0 ” c D t0 C 1

a
:
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t

x

a
a

c cO a a

Fig. 2.2. Solutions of x0 D x2, x.0/ D a > 0

Let ca D t0 C 1
a

. Recall that the solution of a differential equation is differentiable

and hence continuous. Thus we cannot take both branches of the hyperbola � 1
t�ca

.
If the initial value a > 0, then we have to choose

xa.t/ D � 1

t � ca

; t < ca

and if a < 0, then we have to choose

xa.t/ D � 1

t � ca

; t > ca:

Notice that x.t/ � 0 solves the equation but not the initial condition x.t0/ D a 6D 0.

In the preceding example, the function f .x/ D x2 is defined for all x and hence
� D R2, while the solution is defined only in a neighborhood of t0. This is one of
the peculiarities of nonlinearity, compared with linear.

Definition 2.2.3. We say that J 
 R is the maximal interval of definition of the so-
lution x.t/ of the Cauchy problem (2.4) if any interval I where x.t/ is defined is
contained in J , and x.t/ cannot be extended in an interval greater than J .

For example, the maximal interval of definition of the solution of x0 D x2, x.t0/ D
a > 0, discussed in the preceding Example 2.2.2, is .�1; ca/, with ca D t0 C 1

a
.

Lemma 2.2.4. Let x0.t/ be a solution of x0 D f .t; x/. Suppose, for simplicity, that
the set� where f is defined is all of R2. If J , the maximal interval of definition of a
solution x0.t/, is not all of R, then it cannot be closed.
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Proof. By contradiction, let J D Œ˛; ˇ� or J D .�1; ˇ� or J D Œ˛;C1/. We deal
with the first case, the other ones are similar.

Consider the new Cauchy problem

x0 D f .t; x/; x.ˇ/ D x0.ˇ/

in which the initial condition is prescribed at the point ˇ and equals the value that
x0.t/ assumes at such a point. According to the local existence and uniqueness The-
orem 2.2.1, the new ivp has a unique solution x1.t/ defined in an interval Œˇ; ˇ C ı�

for some ı > 0. Consider the function obtained by gluing together x0 and x1, that is

x.t/ D
´
x0.t/ if ˛ � t � ˇ

x1.t/ if ˇ � t � ˇ C ı:

Since x0.ˇ/ D x1.ˇ/, the function x.t/ is continuous. Let us show that it is differ-
entiable. This is clear for all t 6D ˇ. At t D ˇ we consider the left and right limits of
the difference quotients

lim
h!0�

x.ˇ C h/ � x.ˇ/
h

; lim
h!0C

x.ˇ C h/ � x.ˇ/
h

:

For h � 0, we have x.ˇ C h/ D x0.ˇ C h/ and hence

lim
h!0�

x.ˇ C h/ � x.ˇ/
h

D lim
h!0�

x0.ˇ C h/ � x0.ˇ/

h
D x0

0.ˇ/ D f .ˇ; x0.ˇ//:

Similarly, for h 	 0 we find

lim
h!0C

x.ˇ C h/ � x.ˇ/
h

D lim
h!0C

x1.ˇ C h/ � x1.ˇ/

h
D x0

1.ˇ/ D f .ˇ; x1.ˇ//:

t

x

� �+�

x (�)

x (t)

0

1

�

x (t)0

Fig. 2.3. Gluing x0.t/ and x1.t/
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Since x0.ˇ/ D x1.ˇ/, it follows that

lim
h!0�

x.ˇ C h/ � x.ˇ/
h

D lim
h!0C

x.ˇ C h/ � x.ˇ/
h

;

and this means that x.t/ is differentiable at t D ˇ.
We have found a solution of x0 D f .t; x/ defined in Œ˛; ˇ C ı� in contradiction

with the fact that J D Œ˛; ˇ� is the maximal interval. The argument for the left end
point ˛ is the same.

Proposition 2.2.5. Let f .t; x/ satisfy the assumptions of the local existence and
uniqueness theorem, with � D R2. If x.t/ is a solution of x0 D f .t; x/ which is
monotone and bounded, then its maximal interval of definition J is all of R.

Proof. By contradiction, suppose that J is strictly contained in R. For example, let us
assume that J is bounded (the other cases are treated in a similar way). Let us show
that J is closed. Let ˇ < C1 be the right extreme of J . Since x.t/ is monotone
and bounded, the limit limt!ˇ� x.t/ exists and is finite. Thus x.t/ is defined also at
t D ˇ and hence J contains ˇ. Same argument for the left extreme ˛ > �1. We
have shown that J is closed and this is in contradiction with the preceding Lemma.

Concerning the fact that the solution of the ivp (2.4) is unique, we have required
that f be differentiable with respect to x. The following example shows that if this
condition is violated, the solution may not be unique.

Example 2.2.6. Consider the Cauchy problem²
x0 D 2

p
x

x.0/ D 0:
(2.6)

This is also a separable equation discussed in Section 3.1 of Chapter 3. One solution
is given by x.t/ � 0. Another solution is given by

x.t/ D t2 t 	 0;

because d
dt
.t2/ D 2t D 2

p
t2 D 2jt j D 2t for t 	 0. Note that for t < 0 one has

jt j D �t and hence x D t2 is not a solution for t < 0.
We have found two solutions that solve the ivp (2.6). Furthermore, one can verify

that, for any a > 0, all the functions

xa.t/ D
²
0; for 0 � t � a

.x � a/2; for t 	 a

are solutions. So, (2.6) has infinitely many solutions. See Figure 2.4. Notice that
2
pjxj is not differentiable at x D 0.
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t

x

O a a

Fig. 2.4. Solutions of x0 D p
x

On the other hand, the ivp x0 D 2
p
x, x.0/ D a, has a unique solution provided

a > 0. Actually, f .x/ D 2
p
x is differentiable in the open half plane x > 0 and

Theorem 2.2.1 applies. One can check that the function x�.t/ D �
t C p

a
	2

solves
the ivp, is defined for all t and is the unique solution.

Remark 2.2.7. An important consequence of the uniqueness result stated in Theo-
rem 2.2.1 is that two solutions of x0 D f .t; x/ cannot cross each other. In other
words, if v.t/ and z.t/ are two solutions of x0 D f .t; x/ defined on a certain interval
Œa; b� and if there exists t� 2 Œa; b� such that v.t�/ D z.t�/, then v.t/ D z.t/ for all
t 2 Œa; b�. The reason is that both v and z satisfy the same ivp²

x0 D f .t; x/

x.t�/ D v.t�/ D z.t�/:

So, by uniqueness one must have x.t/ D z.t/ on Œa; b�.

We will see later on that we can also use the uniqueness result to deduce geometric
properties of the solution of an ivp. See e.g. Proposition 2.3.3 below.

The following theorem, due to G. Peano3 shows that the existence part (but not
the uniqueness) of Theorem 2.2.1 requires only continuity of the function f . The
proof of this theorem requires some more advanced topics, in particular the Ascoli4

compactness theorem,5 and is omitted.

3 Giuseppe Peano (1858–1932).
4 Guido Ascoli (1887–1957).
5 A statement of the Ascoli Theorem is reported in Chapter 13.
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Theorem 2.2.8 (Local existence). Suppose that f is continuous in � � R2 and let
.t0; x0/ be a point in the interior of �. Then the Cauchy problem²

x0 D f .t; x/

x.t0/ D x0

has at least one solution defined in a neighborhood of t0.

For example, this result applies to the Cauchy problem x0 D 2
p
x; x.0/ D 0,

discussed earlier, and guarantees that it has at least one solution.

Remark 2.2.9. If the equation is F.t; x; x0/ D 0, we first try to put it in normal form
and then use the existence and uniqueness results sated above.

2.2.2 Global existence and uniqueness

As mentioned before, Theorem 2.2.1 is local. The next global result holds, provided
the set � is a strip and fx is bounded w.r.t. x.

Theorem 2.2.10 (Global Existence and Uniqueness). Let � be the strip � D
Œa; b� � R and let .t0; x0/ be a given point in the interior of �. Suppose that f
is continuous in � and has continuous partial derivative with respect to x and that
the partial derivative fx.t; x/ is bounded in the strip. Then the Cauchy problem²

x0 D f .t; x/

x.t0/ D x0

has a unique solution defined for all t 2 Œa; b�.
Corollary 2.2.11. If� D R2,� D Œa;C1/�R, or� D .�1; b��R, and fx.t; x/

is bounded in �, then the solution is defined respectively on all of R, on Œa;C1/,
or on .�1; b�.

Theorem 2.2.10 and Corollary 2.2.11 are particular cases of the more general The-
orem 2.4.5 in the next section.

The new feature of the preceding results is that now the solution is defined on the
whole interval Œa; b�.

Remark 2.2.12. Example 2.2.2 shows that the condition that fx is bounded in the strip
cannot be removed.

Example 2.2.13. Let p; q 2 C.Œa; b�/ and consider the linear equation x0 Cp.t/x D
q.t/ discussed in Chapter 1. In this case, f .t; x/ D �p.t/x C q.t/ and fx.t; x/ D
�p.t/, which is bounded in Œa; b� and hence Theorem 2.2.10 applies. This provides
an alternate proof of the existence and uniqueness result stated in Theorem 1.4.2 in
Chapter 1. Note that the solutions of x0 C p.t/x D q.t/ are defined on the whole
interval Œa; b�. Moreover, Corollary 2.2.11 implies that, if p; q 2 C.R/ the solutions
are defined on all of R.
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2.3 Qualitative properties of solutions

In this section we study some qualitative property of solutions, using the (existence
and) uniqueness result stated before.

In the sequel it is understood that the assumptions of this theorem are satisfied.
We start with simple symmetry results.

Lemma 2.3.1. Let f .x/ be odd and let x.t/ be a solution of x0 D f .x/. Then �x.t/
is also a solution.

Proof. Setting z.t/ D �x.t/ we find z0 D �x0 D �f .x/ D �f .�z/: Since f is
odd then �f .�z/ D f .z/ and z0 D f .z/.

Lemma 2.3.2. Let f .x/ be even and let x0.t/ be a solution of x0 D f .x/ such that
x.0/ D 0. Then x0.t/ is an odd function.

Proof. Setting z.t/ D �x0.�t / we find z0.t/ D x0
0.�t / D f .x0.�t // D f .�z/:

Since f is even then f .�z/ D f .z/ and z0 D f .z/. Moreover, z.0/ D x0.0/ D 0.
Thus, by uniqueness, z.t/ D x0.t/, namely x0.t/ D �x0.�t /.

Proposition 2.3.3. Suppose that f .t; x/ is odd with respect to t , that is f .�t; x/ D
�f .t; x/. Then the solutions of x0 D f .t; x/ are even functions.

Proof. Let x.t/ be any solution of x0 D f .t; x/. Setting z.t/ D x.�t / one has

z0.t/ D �x0.�t / D �f .�t; x.�t // D �f .�t; z.t//:

Since,by assumption, f .�t; z/ D �f .t; z/, we deduce

z0 D f .t; z/:

Thus x.t/ and z.t/ satisfy the same equation. Moreover x; z satisfy the same initial
condition at t D 0 because one has z.0/ D x.0/. Since f is continuously differ-
entiable, the uniqueness statement in Theorem 2.4.4 applies and hence x.t/ D z.t/,
namely x.t/ D x.�t /, proving that x.t/ is an even function, as required.

The next result is a comparison theorem.

Theorem 2.3.4. Let xa.t/; yb.t/ be solutions of the Cauchy problems²
x0 D f .t; x/

x.t0/ D a

²
y0 D g.t; y/

y.t0/ D b

defined in a common interval Œt0; ˇ/. If a < b and f .t; x/ < g.t; x/, then xa.t/ <

yb.t/ for all t 2 Œt0; ˇ/.
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Proof. We argue by contradiction. Suppose that the set

S D ¹t 2 Œt0; ˇ/ W xa.t/ 	 yb.t/º
is not empty. Let � be its infimum, namely its greatest lower bound. Since xa.t0/ D
a < b D yb.t0/, by the Sign Permanence Theorem of continuous functions, there
exists 	 > 0 such that xa.t/ < yb.t/ for all t 2 Œt0; t0 C 	/ and thus � 	 t0 C 	 > t0.
Moreover, since � is the infimum of the set S then there exists a sequence tj > � with
tj ! � and such that xa.tj / 	 yb.tj /. Passing to the limit one finds xa.�/ 	 yb.�/.
But xa.�/ cannot be strictly greater than yb.�/ because, otherwise, using again the
Sign Permanence Theorem, we would have xa.t/ > yb.t/ in a left neighborhood
of � and this is in contradiction with the fact that � D infS .

Recall that xa.�Ch/ < yb.�Ch/ for h < 0 small, because � D infS . Then, tak-
ing into account that xa.�/ D yb.�/ and that h < 0 we deduce that the incremental
ratios satisfy

xa.� C h/ � xa.�/

h
>
yb.� C h/ � yb.�/

h
; 8h < 0; small:

Passing to the limit as h ! 0, h < 0, we infer that x0
a.�/ 	 y0.�/. But this is

impossible, since, by assumption,

x0
a.�/ D f .�; xa.�// < g.�; yb.�// D y0.�/:

We have proved that S is empty and therefore that xa.t/ < yb.t/ for all t 2 Œt0; ˇ/.

The next examples show how we might apply the comparison theorem.

Example 2.3.5. (i) Let xa.t/ be a positive solution of x0 D f .x/ such that x.t0/ D a.
Suppose that f .x/ < �kx for some k > 0, and that xa.t/ is defined on an interval
Œt0 C 1/. Then xa.t/ decays exponentially to 0 as t ! C1. To see this, let yb.t/

be the solution of y0 D �ky, y.t0/ D b > max¹a; 0º, namely yb.t/ D be�k.t�t0/.
Then applying the previous Proposition with g.y/ D �ky, it follows that 0 < x.t/ �
be�k.t�t0/ and the result follows.

(ii) Let yb.t/ be the solution of²
y0 D g.t; y/

y.t0/ D b

and suppose it is defined on Œt0 C 1/. If g.t; y/ > k > 0 and b > 0, then
limt!C1 yb.t/ D C1. Applying the Proposition with f .t; x/ D k and a D 0,
we infer yb.t/ 	 k.t � t0/, from which the claim follows at once.
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2.4 Improving the existence and uniqueness results

The assumptions in the preceding theorems can be weakened, which means that the
results can be extended to include a larger class of functions. We indicate below the
main extension of this kind.

Definition 2.4.1. The function f .t; x/ defined in a set� � R2, is locally lipschitzian6

(or simply lipschitzian) at a point .t0; x0/ 2 � with respect to x, if there exists a
neighborhood U 
 � of .t0; x0/ and a number L > 0 such that

jf .t; x/ � f .t; z/j � Ljx � zj; 8 .t; x/; .t; z/ 2 U:
We say that f is globally lipschitzian on � if there exists L > 0, such that

jf .t; x/ � f .t; z/j � Ljx � zj; 8 .t; x/; .t; z/ 2 �:

From the definition it immediately follows that any locally lipschitzian function
is continuous at .t0; x0/. Moreover, one has:

Lemma 2.4.2. Let f .t; x/ be continuously differentiable with respect to x in �. If
there exists 	 > 0 such that fx.t; x/ is bounded inU D ¹jt�t0j < 	º�¹jx�x0j < 	º,
then f is lipschitzian on U .

Proof. Applying the Mean Value Theorem to the function f .t; x/ we infer that

f .t; x/ � f .t; z/ D fx.t; 
/.x � z/;
where x < 
 < z. Since L D sup¹jfx.t; 
/j W .t; 
/ 2 U º is finite by assumption, it
follows that

jf .t; x/ � f .t; z/j � Ljx � zj; 8 .t; x/; .t; z/ 2 U;
proving the lemma.

Example 2.4.3. (i) The function f .x/ D jxj is globally lipschitzian with constant
L D 1, but is not differentiable at x D 0. Actually, jf .x/ � f .z/j D jjxj � jzjj �
jx � zj for all x; z 2 R. Moreover, since

jxj D
²�x if x < 0

x if x > 0

then the left derivative of f at x D 0 is �1, while the right derivative is C1. Thus f
is not differentiable at t D 0.

(ii) The function f .x/ D x2 is locally lipschitzian at any point but not globally
lipschitzian on R. To prove this claim we first notice that f .x/ is differentiable with

6 from Rudolph Lipschitz (1832–1903).
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derivative f 0.x/ D 2x, which is bounded on every bounded subset of R. Then, ac-
cording to the previous lemma, f is locally lipschitzian at any point. If f were glob-
ally lipschitzian on R, then there would exist L > 0 such that jx2 � z2j � Ljx � zj
for all x; y 2 R. Since jx2 � z2j D jx C zj � jx � zj it follows that jx C zj � L for
all x; z 2 R, which is obviously false.

(iii) The function f .x/ D pjxj is not lipschitzian at x D 0. Otherwise, there

would exist 	 > 0 and L > 0 such that
ˇ̌̌pjxj �pjzj

ˇ̌̌
� Ljx � zj for all x; z 2

.�	; 	/. In particular, taking z D 0, we get
pjxj � Ljxj for all x 2 .�	; 	/, which

is obviously false.

Using the previous definition, one can prove the following local and global exis-
tence result which holds for equations in normal form and extend the existence and
uniqueness Theorems 2.2.1 and 2.2.10 as well as Corollary 2.2.11.

Theorem 2.4.4. Let .t0; x0/ be a given point in the interior of �. If f is locally
lipschitzian with respect to x at .t0; x0/, then the Cauchy problem²

x0 D f .t; x/

x.t0/ D x0

has a unique solution defined in a suitable neighborhood of t0.

In Example 2.2.6 we have shown that the ivp x0 D 2
pjxj, x.0/ D 0, has infinitely

many solutions. Notice that the function f .x/ D 2
pjxj is not lipschitzian at x D 0

(see Example 2.4.3(iii) above). This shows that the preceding result is sharp, in the
sense that we cannot guarantee uniqueness of the Cauchy problem (2.4) if f is not
lipschitzian at .t0; x0/.

Theorem 2.4.5. Suppose that � D Œa; b�� R (resp. � D R � R), and f is globally
lipschitzian in �. Let .t0; x0/ 2 � be given. Then the Cauchy problem²

x0 D f .t; x/

x.t0/ D x0

has a unique solution defined on all of Œa; b� (resp. on all of R).

The proofs are given in the Appendix below.

Example 2.4.6. Since jxj is globally lipschitzian, the Cauchy problem x0 D
jxj; x.0/ D x0 has a unique solution x.t/, defined for t 2 R. Precisely, if x0 D 0

then x.t/ � 0. The other solutions x.t/ never vanish. If x0 > 0, then x.t/ > 0 and
the equation becomes x0 D x, and hence x.t/ D x0e

t . If x0 < 0 then x.t/ < 0,
the equation is x0 D �x and x.t/ D x0e

�t . In any case x.t/ is increasing provided
x0 6D 0.
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2.5 Appendix: Proof of existence and uniqueness theorems

2.5.1 Proof of Theorem 2.4.5

Let us first prove Theorem 2.4.5 dealing with uniqueness and global existence of the
Cauchy problem ²

x0 D f .t; x/

x.t0/ D x0
(2.7)

where f .t; x/ is defined in the strip S D ¹.t; x/ 2 R2 W a � t � bº, .t0; y0/ 2 S

and f is continuous and globally lipschitzian in S . Let us recall that this means that
there exists L > 0 such that

jf .t; x/ � f .t; y/j � Ljx � yj; 8 .t; x/; .t; y/ 2 S: (2.8)

The strategy is to find a sequence of functions that converges to the solution of (2.7).
For this, it is convenient to transform the ivp (2.7) into an equivalent integral equation.

Lemma 2.5.1. x.t/ is a solution of (2.7) if and only if x.t/ satisfies

x.t/ D x0 C
Z t

t0

f .s; x.s//ds; 8 t 2 Œa; b�: (2.9)

Proof. Let x.t/ be a solution of (2.7). This means that x0.t/ � f .t; x.t// and hence
integrating from t0 to t we findZ t

t0

x0.t/dt D
Z t

t0

f .s; x.s//ds; 8 t 2 Œa; b�:

Since x.t0/ D x0 the first integral is equal to x.t/� x.t0/ D x.t/ � x0 and thus,
8 t 2 Œa; b� one has

x.t/ � x0 D
Z t

t0

f .s; x.s//ds H) x.t/ D x0 C
Z t

t0

f .s; x.s//ds;

namely x.t/ satisfies (2.9).
Conversely, let x.t/ satisfy (2.9). If for t 2 Œa; b� we set

�.t/ D
Z t

t0

f .s; x.s//ds

by the fundamental theorem of calculus � is continuous, differentiable and

�0.t/ D f .t; x.t//:

Thus x.t/ D x0 C �.t/ is differentiable in Œa; b� and

x0.t/ D �0.t/ D f .t; x.t//; 8 t 2 Œa; b�:
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Moreover,

x.t0/ D x0 C
Z t0

t0

f .s; x.s//ds D x0

and hence x.t/ satisfies the ivp (2.7), completing the proof of the lemma.

Define by recurrence a sequence of functions such that for all t 2 Œa; b� and all
integers k D 0; 1; 2; : : :

x0.t/ D x0

x1.t/ D x0 C
Z t

t0

f .s; x0/ds

x2.t/ D x0 C
Z t

t0

f .s; x1.s//ds

: : : : : :

xkC1.t/ D x0 C
Z t

t0

f .s; xk.s//ds:

Lemma 2.5.2. The sequence xk.t/ is uniformly convergent in Œa; b�.

Proof. Let us start by showing by induction that for all k D 1; 2; ::

jxk.t/ � xk�1.t/j � M

L
� jt � t0jkLk

kŠ
; 8 t 2 Œa; b� (2.10)

where M D max¹jf .t; x0/j W t 2 Œa; b�º.
For k D 1 we have, using the assumption that f is lipschitzian,

jx2.t/ � x1.t/j D
ˇ̌̌̌Z t

t0

.f .s; x1.s/ � f .s; x0//ds

ˇ̌̌̌
�
Z t

t0

jf .s; x1.s// � f .s; x0/jds

� L

Z t

t0

jx1.s/ � x0jds:

On the other hand,

jx1.s/ � x0j D
ˇ̌̌̌Z s

t0

f .r; x0/dr

ˇ̌̌̌
�
Z s

t0

jf .r; x0/jdr � M � js � t0j

and thus

jx2.t/ � x1.t/j � ML

Z t

t0

js � t0jds D ML

2
jt � t0j2; 8 t 2 Œa; b�;

which proves (2.10) for k D 1.
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By induction, we assume that (2.10) holds for k � 1. Repeating the previous ar-
guments, we find

jxk.t/ � xk�1.t/j �
Z t

t0

jf .s; xk�1.s// � f .s; xk�2.s//jds

� L

Z t

t0

jxk�1.s/ � xk�2.s/jds; 8 t 2 Œa; b�:

Using the induction hypothesis we find

jxkC1.t/ � xk.t/j � L � M
L

� Lk�1

.k � 1/Š
Z t

t0

js � t0jk�1ds

� M

L

Lk

.k � 1/Š
jt � t0jk
k

D M

L

jt � t0jkLk

kŠ
; 8 t 2 Œa; b�:

Therefore (2.10) holds for all natural numbers k.
Since (2.10) holds for all t 2 Œa; b�, then

max
t2Œa;b�

jxkC1.t/ � xk.t/j � M

L

.b � a/kLk

kŠ
: (2.11)

The sequence
.b � a/kLk

kŠ
! 0 .k ! C1/

because the series X ŒL.b � a/�k
kŠ

� tk

is convergent to eL.b�a/t . Thus (2.11) implies that the sequence xk.t/ is uniformly
convergent on Œa; b�, as required.

Proof of Theorem 2.4.5. By Lemma 2.5.2, the sequence xk.t/ ! x.t/, uniformly
in Œa; b�. Then f .s; xk.s// ! f .s; x.s//, uniformly in Œa; b� and we can pass to the
limit under the integral in

xkC1.t/ D x0 C
Z t

t0

f .s; xk.s//ds

yielding

x.t/ D x0 C
Z t

t0

f .s; x.s//ds:

According to Lemma 2.5.1 it follows that x.t/ is a solution of the ivp (2.7).
It remains to prove the uniqueness. We will first consider an interval jt � t0j � ı

where ı is such that Lı < 1 (hereafter it is also understood that t 2 Œa; b�) and show
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that two solutions x.t/; y.t/ of (2.7) coincide therein. One has

x.t/ � y.t/ D
Z t

t0

.f .s; x.s// � f .s; y.s//ds

and hence

jx.t/ � y.t/j �
Z t

t0

jf .s; x.s// � f .s; y.s//jds � L

Z t

t0

jx.s/ � y.s/jds
� Ljt � t0j max

jt�t0j�ı
jx.t/ � y.t/j � Lı max

jt�t0j�ı
jx.t/ � y.t/j:

Taking the maximum of the left-hand side on jt � t0j � ı we find

max
jt�t0j�ı

jx.t/ � y.t/j � ıL max
jt�t0j�ı

jx.t/ � y.t/j:

Letting A D maxjt�t0Š�ı jx.t/ � y.t/j > 0, we divide by A finding 1 � Lı, a
contradiction because we have chosen ı such that Lı < 1. Thus

max
jt�t0j�ı

jx.t/ � y.t/j D 0;

which implies that x.t/ D y.t/ on the interval jt � t0j � ı. In particular, x.t0 ˙ı/ D
y.t0 ˙ ı/. We can now repeat the procedure in the interval Œt0 C ı; t0 C 2ı� and
Œt0 � 2ı; t0 � ı�. Then we find that x.t/ D y.t/ for all t 2 Œt0 � 2ı; t0 C 2ı�. After a
finite number of times we find that x.t/ D y.t/ for all t 2 Œa; b�. This completes the
proof.

2.5.2 Proof of Theorem 2.4.4

Here we will prove Theorem 2.4.4 on the local existence and uniqueness result for
the ivp (2.7), where it is assumed that f .t; x/ is defined in� 
 R2 and is locally lip-
schitzian near .t0; x0/. Let us recall that this means that there exists a neighborhood
U 
 � of .t0; x0/ and a number L > 0 such that

jf .t; x/ � f .t; y/j � Ljx � yj; 8 .t; x/; .t; y/ 2 U: (2.12)

Without loss of generality we can take U D Ur as the (closed) square ¹.t; x/ 2 � W
jt � t0j � r; jx � x0j � rº, for some r > 0. We will deduce Theorem 2.4.4 from
Theorem 2.4.5 proved in the preceding section. To this end, let us consider the strip

Sr WD ¹.t; x/ 2 R2 W jt � t0j � rº
and extend f to the function f � W Sr 7! R defined by setting

f �.t; x/ D
8<:
f .t; x0 � r/ if .t; x/ 2 Sr and x � x0 � r
f .t; x/ if .t; x/ 2 Ur

f .t; x0 C r/ if .t; x/ 2 Sr and x 	 x0 C r:
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It is easy to check that f � is globally lipschitzian on Sr . For example, if x; y are such
that x0 � r < x < x0 C r � y, then f �.t; x/ D f .t; x/, f �.t; y/ D f .t; x0 C r/

and one has

jf �.t; x/ � f �.t; y/j D jf .t; x/ � f .t; x0 C r/j � Ljx � x0 � r j � Ljx � yj:
Since f � is globally lipschitzian on Sr , the global Theorem 2.4.5 yields a solution
x.t/, defined on Œt0 � r; t0 C r�, of the ivp²

x0 D f �.t; x/
x.t0/ D x0:

The range of the function x.t/ could be outside Œx0 � r; x0 C r�, where f � 6D f . To
overcome this problem we use the fact that x.t/ is continuous and x.t0/ D x0. Then
there exists ı > 0 such that

t 2 Œt0 � ı; t0 C ı� H) jx.t/ � x0j � r:

Therefore, for t 2 Œt0 � ı; t0 C ı� one has that f �.t; x.t// D f .t; x.t// and hence
x.t/, restricted to such an interval, solves the ivp (2.7).

2.6 Exercises

1. Check that the local existence and uniqueness theorem applies to the ivp x0 D
t C x2, x.0/ D 0.

2. Show that the function f .x/ D jxjp is not lipschitzian at x D 0 if 0 < p < 1.

3. Find a such that the existence and uniqueness theorem applies to the ivp x0 D
3
2
jxj1=3, x.0/ D a.

4. Check that for all t0; a the existence and uniqueness theorem applies to the ivp
ln x0 D x2; x.t0/ D a.

5. Transform the equation ex0 D x into an equation in normal form and show that it
has a unique solution such that x.t0/ D a, for all t0 and all a > 0.

6. Find an equation whose solution is the catenary x.t/ D cosh t D 1
2
.et C e�t /.

7. Check that the functions x.t/ � 1 and

�.t/ D
²

sin t if ��
2

� t � �
2

1 if t > �
2

are solutions of the ivp x0 D p
1 � x2, x.�

2
/ D 1.

8. Find a 	 0 such that the Cauchy problem x0 D jxj1=4, x.0/ D a has a unique
solution.
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9. Show that if p > 1 the solution of x0 D xp , x.0/ D a > 0, is not defined for all
t 	 0.

10. Show that if 0 < p � 1, the solution of x0 D jxjp , x.0/ D a > 0, is defined for
all t 	 0.

11. Show that the solutions of x0 D sin x are defined on all t 2 R.

12. Show that the solutions of x0 D arctan x are defined on all t 2 R.

13. Show that the solutions of x0 D ln.1C x2/ are defined on all t 2 R.

14. Show that the ivp x0 D max¹1; xº, x.0/ D 1, has a unique solution defined for
all t and find it.

15. Show that the ivp x0 D max¹1;�xº, x.0/ D �1, has a unique solution defined
for all t and find it.

16. Show that the solution of x0 D t2x4 C 1, x.0/ D 0 is odd.

17. Show that, if f .x/ > 0, resp. f .x/ < 0, the solutions of x0 D f .x/ cannot be
even.

18. Show that the solution x.t/ of the Cauchy problem x0 D 2 C sin x, x.0/ D 0,
cannot vanish for t > 0.

19. Let f .x/ be continuously differentiable and such that f .0/ D 0. Show that the
solutions of x0 D f .x/h.t/ cannot change sign.

20. Show that the solutions of x0 D sin.tx/ are even.

21. Show that the solution xa.t/ of x0 D 2t C g.x/, xa.0/ D a > 0 satisfies
xa.t/ 	 t C t2 for t > 0, provided g.x/ 	 1.

22. Let xa.t/ be the solution of x0 D �t C g.x/, xa.0/ D a, with 0 < a < 2. If
xa.t/ is defined for all t > 0 and g.x/ � �x, show that the equation xa.t/ D 0

has at least one positive solution in .0; 2/.
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First order nonlinear differential equations

The main focus of this chapter is on learning how to solve certain classes of nonlinear
differential equations of first order.

3.1 Separable equations

An equation of the form
x0 D h.t/g.x/ (3.1)

is called a separable equation. Let us assume that h.t/ is continuous with h.t/ 6� 0

and g.x/ is continuously differentiable in the domain being considered, so that the
local existence and uniqueness Theorem 2.2.1 of Chapter 2 applies.

If x D k is any zero of g, g.k/ D 0, then x.t/ � k is a constant solution of
(3.1). On the other hand, if x.t/ D k is a constant solution, then we would have
0 D h.t/g.k/; t 2 R; and hence g.k/ D 0 since h.t/ 6� 0. Therefore, x.t/ D k is
a constant solution (or equilibrium solution) if and only if g.k/ D 0. There are no
other constant solutions. All the non-constant solutions are separated by the straight
lines x D k. Hence if x.t/ is a non-constant solution then g.x.t// 6D 0 for any t , and
we can divide

x0 D h.t/g.x/

by g.x/ yielding
x0.t/
g.x.t//

D h.t/:

We integrate both sides with respect to t and obtainZ
x0.t/
g.x.t//

dt D
Z
h.t/dt:

Since x0 D dx
dt

, we have Z
dx

g.x/
D
Z
h.t/dt C c: (3.2)

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT – La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_3, © Springer International Publishing Switzerland 2014
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We wish to point out that while it is very easy to express solutions of a separable
equation implicitly in terms of integrals, it may be difficult or even impossible to per-
form the actual integration in terms of simple and familiar functions. In such cases,
one can carry out a qualitative analysis to get some information about the behavior of
solutions, see for example Section 2.3 in the previous chapter. Otherwise, if needed,
one could use numerical methods or computer software to obtain approximate solu-
tions to a reasonable or needed degree of accuracy.

If we want to solve the initial value problem²
x0 D h.t/g.x/

x.t0/ D x0
(3.3)

we simply substitute the initial value x.t0/ D x0 into (3.2) and solve for c. Note that
this equation has a unique solution, according to Theorem 2.2.1 of Chapter 2.

Essentially, the idea behind solving separable equations is to separate the variables
and then integrate.

Example 3.1.1. (i) Consider the equation x0 D h.t/x. We notice that this is a linear
homogeneous first order equation, and we learned in Chapter 1 how to solve such
equations. But this is also a separable equation and we can solve it by the method
described above. Separating the variables and then integrating, we obtain

R
dx
x

DR
h.t/dtCc, which yields ln jxj D R

h.t/dtCc. Thus, letting c1 D ˙ec , we obtain
the general solution

x.t/ D c1 e
R

h.t/dt

in accordance with the result stated in Theorem 1.4.2 of Chapter 1.

(ii) Solve x0 D t2

1C 3x2
.

There are no constant solutions. Separating the variables and integrating, we haveR
.1C 3x2/dx D R

t2dt C c and hence

x C x3 D t3

3
C c

which defines the solutions implicitly. Moreover, since the function ˆ.x/ D xC x3

is increasing and its image is all of R, it has an (increasing) inverse ' defined on all
of R. Thus ˆ.x/ D t3

3
C c yields x.t/ D '. t3

3
C c/. Note that the solutions are

defined globally on R. The reader might check that this also follows from the Global
Existence Theorem 2.2.10 of Chapter 2.

(iii) Find the solution of the initial value problem x0 D 2tx3, x.0/ D 1.
The only constant solution is x � 0. Therefore if x.t/ is a solution such that x.0/ D
1, then, by uniqueness, x.t/ cannot assume the value 0 anywhere. Since x.0/ D 1 >

0, we infer that the solution is always positive. Using (3.2) we findZ
dx

x3
D
Z
2t dt C c:
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Fig. 3.1. Plot of x D 1p
1�2t2

Carrying out the integration it follows that

� 1

2x2
D t2 C c:

The initial condition x.0/ D 1 yields c D �1
2

and hence

� 1

2x2
D t2 � 1

2
:

Solving for x, and recalling that x > 0, we find

x D 1p
1 � 2t2 :

Notice that in the present case the maximal interval of definition is given by � 1p
2
<

t < 1p
2

.

3.1.1 The logistic equation

As a remarkable example of a separable equation, we consider a model, due to P.F.
Verhulst,1 in which one assumes that the variation x0 of the number of individuals in
a population is proportional to x, but through a factor of .˛ � ˇx/. This leads to the
equation

x0.t/ D x.t/.˛ � ˇx.t//; ˛; ˇ > 0: (3.4)

1 Pierre François Verhulst (1804–1849).



38 3 First order nonlinear differential equations

Contrary to the Malthusian model discussed in the first chapter, here the constant
factor k is substituted by the function ˛ � ˇx. The fact that this function is decreas-
ing with respect to x may be explained by the observation that the bigger x is, the
more difficult it will be for an individual to find resources, such as food, space, etc.,
and hence the more difficult it will be to survive. This equation is called the logistic
equation.

Since in this model, x.t/ represents the population of some species, we are in-
terested in solutions x.t/ such that x.t/ 	 0. It is easy to see that x.t/ � 0 and
x.t/ � ˛

ˇ
are the equilibrium solutions. Such solutions play an important role in an-

alyzing the trajectories of solutions in general. We now study solutions x.t/, where
x.t/ > 0 for all t 	 0.

By uniqueness, the other solutions cannot cross the trajectories (which are lines
in this case) defined by the two equilibrium solutions. Hence for any non-constant
solution x.t/, x.t/ 6D 0 and x.t/ 6D ˛=ˇ for any t . Thus, the two lines x D 0 and
x D ˛

ˇ
divide the trajectories into two regions, those that lie above the line x D ˛

ˇ

and those that lie between the lines x D 0 and x D ˛
ˇ

.
In order to solve the logistic equation, we separate the variables and obtain

dx

x.˛ � ˇx/ D dt

assuming that x ¤ 0 and x ¤ ˛
ˇ

. The left side can be integrated by partial fractions
method. We search for constants A and B such that

1

x.˛ � ˇx D A

x
C B

˛ � ˇx

and find A D 1

˛
and B D ˇA D ˇ

˛
. Therefore, we have

1

˛

Z
dx

x
C ˇ

˛

Z
dx

˛ � ˇx D
Z
dt C c

which yields

1

˛
ln jxj � 1

˛
ln j˛ � ˇxj D 1

˛
ln j x

˛ � ˇx j D t C c

from which we obtain
x

˛ � ˇx D ke˛t

where k D e˛c . Solving for x, we obtain

x.t/ D ˛ke˛t

1C ˇke˛t
:

This shows that all non-constant solutions approach the equilibrium solution x.t/ D
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�/�

t

x

O

Fig. 3.2. Solutions of the logistic equation for x.0/ > ˛=ˇ and x.0/ < ˛=ˇ

˛
ˇ

as t ! 1, some from above the line x D ˛
ˇ

and others from below (see Fig. 3.2).
The reader will notice that the behavior of x.t/ is totally different from the one found
in the Malthusian model.

3.2 Exact equations

Consider the equation

dy

dx
D �M.x; y/

N.x; y/
(3.5)

over a domain � j R2 where N.x; y/ 6D 0. Notice that here we use y as the depen-
dent variable and x as the independent variable.

By an exchange of the variables, we can just as easily write

dx

dy
D �N.x; y/

M.x; y/
; (3.6)

over a domain � j R2 where M.x; y/ 6D 0. Here the roles of x and y are also
exchanged: x is now the dependent variable while y is the independent variable.

Consider the differential form of equation (3.5) stated as

M.x; y/dx CN.x; y/dy D 0: (3.7)

Let us associate with (3.7) the differential form

! D M.x; y/dx CN.x; y/dy:



40 3 First order nonlinear differential equations

We say that (3.7) is an exact equation if ! is the exact differential of a function; that
is, there exists an antiderivative F.x; y/ such that dF D !, which means that²

Fx.x; y/ D M.x; y/

Fy.x; y/ D N.x; y/

and hence

M.x; y/dx CN.x; y/dy D dF.x; y/ D Fx.x; y/dx C Fy.x; y/dy:

Proposition 3.2.1. LetM;N be continuous in� � R2 and suppose that N.x; y/ 6D
0 in �. Suppose that ! D M.x; y/dx CN.x; y/dy is exact and let F.x; y/ denote
an antiderivative of !. If y.x/ is a solution of (3.5) then F.x; y.x// D c, for some
c 2 R. Conversely, if y.x/ is continuously differentiable and satisfies F.x; y.x// D
c, for some c 2 R, then y.x/ satisfies (3.5).

Proof. Let y.x/ be a solution of (3.5) and set '.x/ D F.x; y.x//. The function '
is differentiable and

' 0.x/ D Fx.x; y.x//C Fy.x; y.x//y
0.x/:

By assumptionN 6D 0 in� and y.x/ satisfies (3.5). Hence from the preceding equa-
tion we infer

'0.x/ D Fx.x; y.x// � Fy.x; y.x//
M.x; y.x//

N.x; y.x//
:

Since dF D !, then Fx D M;Fy D N . Substituting into the equation above we
find

'0.x/ D M.x; y.x// �N.x; y.x// M.x; y.x//
N.x; y.x//

D 0; 8 x 2 R:

Thus, '.x/ D F.x; .y.x// D c, c 2 R.
Conversely, let y.x/ be continuously differentiable and satisfy F.x; y.x// D c

for some c 2 R. Differentiating F.x; y.x// D c, we find

d

dx
F.x; y.x// D Fx.x; y.x//C Fy.x; y.x//y

0.x/ D 0:

Since Fx D M and Fy D N we deduce that M.x; y.x//C N.x; y.x//y0.x/ D 0.
Dividing by N.x; y.x// 6D 0 we get

y0.x/ D �M.x; y.x//
N.x; y.x//

and this means that y.x/ is a solution of (3.5).
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Similarly, if M 6D 0 in �, we have

Proposition 3.2.2. LetM;N be continuous in� � R2 and suppose thatM.x; y/ 6D
0 in �. Suppose that ! D M.x; y/dx CN.x; y/dy is exact and let F.x; y/ denote
an antiderivative of !. If x.y/ is a solution of (3.6), then F.x.y/; y/ D c, for some
c 2 R. Conversely, if x.y/ is continuously differentiable and satisfies F.x.y/; y/ D
c, for some c 2 R, then x.y/ satisfies (3.6).

We have seen that the solutions of the exact equation (3.7) are those defined by
F.x; y/ D c, where F is an antiderivative of !. We will say that F.x; y/ D c is the
general solution of (3.7).

The constant c depends on the initial conditions. If F.x; y/ D c is the general
solution of (3.7), the solution curve passing through P0 D .x0; y0/ is given by
F.x; y/ D F.x0; y0/.

The points .x�; y�/ such that M.x�; y�/ D N.x�; y�/ D 0 are called singular
points of Mdx C Ndy D 0. At singular points (3.7) is neither equivalent to (3.5)
nor to (3.6). The set F.x; y/ D F.x�; y�/ can reduce to the singular point .x�; y�/
or might contain other points P 6D .x�; y�/. In such a case Mdx C Ndy D 0

gives rise, in a neighborhood of P , to y D �M=N or to x0 D �N=M , or both,
and F D F.x�; y�/ defines, locally near P , a solution of these equations. See e.g.
Examples 3.2.3–3.2.4 below.

The simplest case of exact equations is whenM D M.x/ and N D N.y/. In this
case, one has My D Nx D 0. Notice that the corresponding equations

dy

dx
D �M.x/

N.y/
( N 6D 0);

dx

dy
D �N.y/

M.x/
( M 6D 0)

are also separable equations. An antiderivative of ! D Mdx CNdy is given by

F.x; y/ D
Z x

0

M.s/ds C
Z y

0

N.s/ds;

since Fx D M.x/; Fy D N.y/ by the Fundamental Theorem of Calculus.
We now discuss some examples of exact equations, starting with the simple case

M D M.x/; N D N.y/.

Example 3.2.3. Consider the equation

.x C 1/dx C .y C 1/dy D 0:

An antiderivative of ! D .x C 1/dx C .y C 1/dy is

F.x; y/ D 1
2
.x C 1/2 C 1

2
.y C 1/2:

Then the general solution is given by

.x C 1/2 C .y C 1/2 D k; k 	 0:
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If k > 0 we can either solve this equation for y or for x. The reader could draw the
graph of these functions, checking the domain of definition, and so on. But it is clear
that if k > 0

.x C 1/2 C .y C 1/2 D k

represents the equation of a family of circles centered at .�1;�1/ with radius
p
k >

0. If k D 0, then .xC 1/2 C .y C 1/2 D k reduces to the point x D y D �1, which
is the singular point of the equation.

Example 3.2.4. Solve
xdx � .y4 � 1/dy D 0:

Here M D x and N D �.y4 � 1/ and hence the equation is exact. There are two
singular points given by .0;˙1/.

An antiderivative of ! D Mdx �Ndy is

F.x; y/ D
Z x

0

sds �
Z y

0

.s4 � 1/ds D 1

2
x2 �

�
1

5
y5 � y

�
:

Thus the general solution is

1

5
y5 � y D 1

2
x2 C c

or, equivalently,
2y5 � 10y D 5x2 C c:

The behavior of the curves defined by this equation depends on the constant c. See
Exercise no. 25.

It is interesting to see what happens if c D F.0;˙1/.
If x D 0; y D 1 we find c D �8. Notice that in any neighborhood of .0; 1/ the

set 2y5 � 10y D 5x2 � 8 cannot be put either in the form y D y.x/ or x D x.y/.
See Figure 3.3a.

If x D 0; y D �1 we find c D 8. From the graph of g.y/ D 2y5 � 10y it follows
that for all x the equation 2y5 � 10y D 5x2 C 8 has a solution y > 1. Thus the set
2y5 � 10y D 5x2 C 8 contains, in addition to the singular point .0;�1/, a branch
with y > 1 which is a solution of

dy

dx
D x

y4 � 1 :

See Figure 3.3b.

We have become familiar with the concept of an exact equation, but now we need
to know (1) how to recognize an exact equation, (2) knowing that it is exact, how do
we solve it? The following theorem and its proof provide the answers.
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Fig. 3.3. (a) Plot of 2y5 � 10y D 5x2 � 8; (b) Plot of 2y5 � 10y D 5x2 C 8, with y > 0

Theorem 3.2.5. Assume that M.x; y/ and N.x; y/ are continuous, with continuous
partial derivatives with respect to x and y, on � D .˛1; ˛2/ � .ˇ1; ˇ2/.

(i) If ! D M.x; y/dx CN.x; y/dy is exact, then My.x; y/ D Nx.x; y/.

(ii) If My.x; y/ D Nx.x; y/ , then ! D M.x; y/dx CN.x; y/dy is exact.

Remark 3.2.6. The reader should be aware that in the previous theorem we assume
that M;N are defined in a rectangular region � only for simplicity. In general, one
could take any domain � 
 R2 with the property that for any closed continuous
curve � contained in�, the set enclosed by � is all contained in�. For example, any
convex domain � satisfies this condition. On the contrary, R2 n ¹0º does not.
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Proof of Theorem 3.2.5. (i) First let us assume that ! is exact. Then there exists a
differentiable function F.x; y/ such that dF D !. This means that²

Fx.x; y/ D M.x; y/;

Fy.x; y/ D N.x; y/:

Therefore, we have ²
Fxy.x; y/ D My.x; y/;

Fyx.x; y/ D Nx.x; y/:

Since the mixed second derivatives of F are equal, that is Fxy.x; y/ D Fyx.x; y/,
we deduce that My.x; y/ D Nx.x; y/.

We provide two methods for proving part .i i/, which can also be used for solving
exact equations in general.

(ii-1) Now, we assume that My.x; y/ D Nx.x; y/ and seek a function F.x; y/
such that Fx.x; y/ D M.x; y/ and Fy.x; y/ D N.x; y/. Let

F.x; y/ D
Z
M.x; y/dx C h.y/

where h.y/ is a differentiable function of y, to be determined. We note that F.x; y/
already satisfies half of the requirement, since Fx.x; y/ D M.x; y/ by the Funda-
mental Theorem of Calculus. We wish to show that there exists a function h.y/ such
that Fy.x; y/ D N.x; y/. But Fy.x; y/ D N.x; y/ if and only if

@

@y
F.x; y/ D @

@y

Z
M.x; y/dx C h0.y/ D N.x; y/ ”

h0.y/ D N.x; y/ � @

@y

Z
M.x; y/dx:

This means that if we choose h.y/ to be any antiderivative of N.x; y/ �
@

@y

R
M.x; y/dx, then F.x; y/ will be the desired antiderivative of ! and we are

done. But we can choose h.y/ in this manner only if we can show that N.x; y/ �
@

@y

R
M.x; y/dx is a function of y only. Otherwise, we would have h0.y/, a func-

tion of y, on the left side and a function of two variables x and y on the right side,
which does not make sense. In order to show the right side is a function of y only,
we will show that its derivative with respect to x is 0. To this end, since the functionR
M.x; y/dx has continuous mixed partial derivatives, we have

@

@x

�
N.x; y/ � @

@y

Z
M.x; y/dx

�
D @

@x
N.x; y/ � @

@x

@

@y

Z
M.x; y/dx

D @

@x
N.x; y/ � @

@y

@

@x

Z
M.x; y/dx D Nx.x; y/ �My.x; y/ D 0:

In the above proof, we could have just as easily chosen

F.x; y/ D
Z
N.x; y/dy C h.x/:

and determined h.x/ as we obtained h.y/ above.
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(x,y)

(x,y  )

x

y

O

00(x  ,y  )0

�=(�  ,�  )×(�  ,�  )

� �

�

�

1 2

1

2
1 2 1 2

Fig. 3.4. The path �

(ii-2) Let .x0; y0/; .x; y/ be two arbitrary points in the rectangle �. Consider the
path � D .Œx0; x� � ¹y0º/[ .¹xº � Œy0; y�/, which is contained in�, see Figure 3.4,
and define F.x; y/ by

F.x; y/ D
Z x

x0

M.s; y0/ds C
Z y

y0

N.x; s/ds; (3.8)

which corresponds to integrating the differential form! along the path� . Let us show
that F is an antiderivative of !, that is, Fx D M; Fy D N . Using the Fundamental
Theorem of Calculus, we find

Fx.x; y/ D M.x; y0/C @

@x

Z y

y0

N.x; s/ds:

We may recall from Calculus, or show independently, by using the definition of the
derivative and the Mean Value Theorem, that

@

@x

Z y

y0

N.x; s/ds D
Z y

y0

@

@x
N.x; s/ds:

Since, by assumption, Nx D My we infer that

Fx.x; y/ D M.x; y0/C
Z y

y0

My.x; s/ds

D M.x; y0/CM.x; y/ �M.x; y0/ D M.x; y/:

To prove that Fy D N , we notice that the first integral is a function of x only. So,

Fy D @

@y

Z y

y0

N.x; s/ds D N.x; y/:
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In the above discussion, we could have also taken the path �1 D .¹x0º � Œy0; y�/ [
.Œx0; x� � ¹yº/ yielding

F.x; y/ D
Z x

x0

M.s; y/ds C
Z y

y0

N.x0; s/ds:

Example 3.2.7. Solve .2x C y/dx C .x C 2y/dy D 0.
The equation is exact because

@.2x C y/

@y
D 1 D @.x C 2y/

@x
:

Using (3.8), with x0 D y0 D 0, we have

F.x; y/ D
Z x

0

2sds C
Z y

0

.x C 2s/ds D x2 C xy C y2:

Therefore the general solution is given by

x2 C xy C y2 D c:

If c > 0, this is a family of ellipses centered at the origin. To see this it is convenient
to make a change of coordinates by setting²

x D uC v

y D u � v:

In the .u; v/ plane, we have .uC v/2 C .u2 � v2/C .u � v/2 D c or equivalently
u2 C v2 C 2uv C u2 � v2 C u2 � 2uv C v2 D c, whence 3u2 C v2 D c. Hence, if
c > 0, x2 C xy C y2 D c is a family of ellipses centered at the origin as claimed,
see Figure 3.5.

Fig. 3.5. x2 C xy C y2 D c > 0
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If c D 0 the ellipse degenerates to the singular point .0; 0/. If c < 0 the equation
x2 C xy C y2 D c has no real solution.

Example 3.2.8. Solve
2xy dx C .x2 C y2/dy D 0:

Here M.x; y/ D 2xy and N.x; y/ D x2 C y2. Since My D 2x D Nx , the equation
is exact. We give four solutions, using the four methods discussed above.

Method 1. Let

F.x; y/ D
Z
2xy dx C h.y/ D x2y C h.y/:

Then clearly, Fx D 2xy D M.x; y/. We wish to determine h.y/ so that Fy D
x2 C y2 D N.x; y/. Since F.x; y/ D x2y C h.y/, this is equivalent to having
x2 Ch0.y/ D x2 Cy2, which yields h0.y/ D y2 and hence h.y/ D 1

3
y3 Ck. There-

fore F.x; y/ D x2y C 1
3
y3 and the solution to the given differential equation is

x2y C 1

3
y3 D c:

Notice that in the equation h.y/ D 1
3
y3 C k, we took k D 0. Otherwise, we would

have F.x; y/ D x2y C 1
3
y3 C k D c and c � k would still be an arbitrary constant

that we could call some thing like l , and then we would have x2yC 1
3
y3 D l , which

only changes the name c to l .

Method 2. Let

F.x; y/ D
Z
.x2 C y2/dy C h.x/ D x2y C 1

3
y3 C h.x/:

It is clear that Fy D x2 C y2 D N.x; y/. We wish to determine h.x/ so that Fx D
2xy D M.x; y/. Since F.x; y/ D x2y C 1

3
y3 C h.x/, this is the same as having

2xy C h0.x/ D 2xy, which gives us h.x/ D k. As explained in Method 1, it is
convenient to take k and hence h.x/ to be 0. Therefore, F.x; y/ D x2y C 1

3
y3 and

the general solution is

x2y C 1

3
y3 D c:

Method 3. We now use the method where F.x; y/ is given by

F.x; y/ D
Z x

x0

M.s; y0/ds C
Z y

y0

N.x; s/ds:

We notice that if we take y0 D 0, thenM.x; y0/ D 0 for all x. Hence F.x; y/would
involve only one integral. Then since the first integral would be 0 anyway, we need
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not worry about x0. So, let y0 D 0. Then

F.x; y/ D
Z y

0

N.x; s/ds D
Z y

0

.x2 C s2/ds D x2y C 1

3
y3

and the solutions of the differential equation are again given implicitly by

x2y C 1

3
y3 D c:

Method 4. Taking the path .¹0º � Œ0; y�/ [ .Œ0; x� � ¹yº/, we have

F.x; y/ D
Z x

0

2syds C
Z y

0

s2ds D x2y C 1

3
y3:

Thus the general solution is given, as before, by x2y C 1
3
y3 D c:

Notice that .0; 0/ is the singular point of the equation. Since x2yC 1
3
y3 D y.x2 C

1
3
y2/ then x2y C 1

3
y3 D 0 yields y D 0. Note also that, for all x, the function

�.y/ D x2y C 1
3
y3 is monotone and its range is R. As a consequence, the equation

x2y C 1
3
y3 D c has a positive solution yc.x/ if c > 0 and a negative solution if

c < 0. Such yc solve
dy

dx
D �2xy=.x2 C y2/

for all c 6D 0.

Example 3.2.9. Find the solution of .x2y C 1/dx C .1
2
y C 1

3
x3/dy D 0 passing

through .˛; 0/.
First of all, let us point out that .˛; 0/ is not a singular point, because M.˛; 0/ D

1 6D 0. Since
@

@y

�
x2y C 1

	 D x2 D @

@x

�
1

2
y C 1

3
x3

�
;

the equation is exact.
Let us use Method 3, with x0 D y0 D 0. Then M.x; 0/ D 1 and

F.x; y/ D
Z x

0

ds C
Z y

0

�
1

2
s C 1

3
x3

�
ds D x C 1

4
y2 C 1

3
x3y

and the general solution is given implicitly by

x C 1

4
y2 C 1

3
x3y D c:

Substituting x D ˛ and y D 0, we obtain c D ˛. Therefore the solution to the initial
value problem is

x C 1

4
y2 C 1

3
x3y D ˛:



3.3 The integrating factor 49

Alternate solution. It may be convenient to take x0 and y0 as described by the initial
values. So, letting x0 D ˛ and y0 D 0, we have

F.x; y/ D
Z x

˛

ds C
Z y

0

�
1

2
s C 1

3
x3

�
ds D x � ˛ C 1

4
y2 C 1

3
x3y D c:

Substituting x D ˛ and y D 0, we get c D 0; so

x � ˛ C 1

4
y2 C 1

3
x3y D 0

as before.

Example 3.2.10. Solve

y2 C 1

x
dx C 2y ln xdy D 0; .x > 0/:

We note that in order to use Method 3 or 4, here we cannot take the fixed point .0; 0/.
So, let us take the point .1; 1/. Then since ln 1 D 0, using Method 3, we easily obtain

F.x; y/ D
Z x

1

y2 C 1

s
ds D .y2 C 1/ ln x; .x > 0/:

Thus the general solution is .y2 C 1/ ln x D c.

3.3 The integrating factor

In this section we learn how to deal with equation

M.x; y/dx CN.x; y/dy D 0 (3.9)

when it is not exact. It is possible that an equation of this type may not be exact but
it becomes exact after it is multiplied by some suitable function. For example, the
equation ydx � xdy D 0; x > 0; y > 0, is not exact. But after multiplying it by the
function 1

y2 , the resulting equation 1
y
dx � x

y2 dy D 0 becomes exact.
A nonzero function �.x; y/ is called an integrating factor of (3.9) if it has the

property that when (3.9) is multiplied by this function, it becomes an exact equation.
Integrating factors exist, in general, but determining them may be quite difficult.

Nevertheless, in some special cases finding an integrating factor can be fairly simple
and it may be worth a try. We also point out that, as the following example shows,
an integrating factor need not be unique.

Example 3.3.1. The reader should verify that for x; y > 0, all of the three functions

1

xy
;

1

x2
;

1

y2
;

are integrating factors of y dx � x dy D 0:
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One of the cases where finding an integrating factor can be quite simple is when
the equation

M.x; y/ dx CN.x; y/ dy D 0

has an integrating factor that is either a function of x only or a function of y only. Let
us assume that it has an integrating factor, which is a function of x only. Multiplying
the equation by �.x/, we obtain

�.x/M.x; y/ dx C �.x/N.x; y/ dy D 0:

In order for this equation to be exact, we must have (notice that @�.x/=
@y D 0)

�.x/My.x; y/ D �0.x/N.x; y/C �.x/Nx.x; y/:

If N.x; y/ 6D 0, then we have

�0.x/ D My.x; y/ �Nx.x; y/

N.x; y/
� �.x/: (3.10)

Let

‰ D My.x; y/ �Nx.x; y/

N.x; y/
:

If ‰ is a function of x only, then integrating �0.x/ D ‰.x/ � �.x/, we obtain

� D e
R

‰.x/dx:

If ‰ is not a function of x only, then we may try to find an integrating factor �.y/
which is a function of y only.

Multiplying the differential equation by �.y/ and following the same procedure,
we obtain the equation

�0.y/ D Nx.x; y/ �My.x; y/

M.x; y/
� �.y/:

Let

‰ D Nx.x; y/ �My.x; y/

M.x; y/
:

If ‰ is a function of y only, then integrating �0.y/ D ‰.y/�, we obtain

� D e
R

‰.y/dy :

Example 3.3.2. Find an integrating factor for the equation

x sin y dx C .x C 1/ cos y dy D 0:

Let us first check to see if we can find an integrating factor �.x/. We can use (3.10)
to determine if such an integrating factor exists, but we recommend that students
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do not memorize this formula and instead go through the process each time. Thus,
multiplying by �.x/, we have

�.x/x sin y dx C �.x/.x C 1/ cos y dy D 0;

�.x/x cos y D Œ�0.x/.x C 1/C �.x/� cos y:

Dividing by cos y (assuming cos y ¤ 0), we have

x�.x/ D .x C 1/�0.x/C �.x/

and hence

�0.x/ D x � 1
x C 1

� �.x/ D
�
1 � 2

x C 1

�
�.x/; .x 6D �1/:

Integrating,

�0.x/ D
�
1 � 2

x C 1

�
�.x/; .x 6D �1/

we obtain

�.x/ D ex

.x C 1/2
; .x 6D �1/:

Multiplying the given equation x sin y dx C .x C 1/ cos y dy D 0 by this �.x/ we
have

exx

.x C 1/2
sin y dx C ex

.x C 1/
cos y dy D 0; .x 6D �1/

which is now exact. Thus, we may use (3.8) either on the half space ¹x > �1º or on

¹x < �1º. Since M.x; y/ D exx

.x C 1/2
sin y, if we take x0 D y0 D 0, we see that

M.x; y0/ D 0 for all x. This implies that
R x

x0
M.s; y0/ds D 0.

Consequently,

F.x; y/ D
Z y

0

ex

.x C 1/
cos s ds D ex

.x C 1/
sin y:

Thus the general solution is

ex

.x C 1/2
sin y D c; .x 6D �1/:

Notice that for c D 0 the solutions are straight lines given by y D k
 , k D
0;˙1;˙2; : : : .

We could have found these constant solutions without solving the equation, sim-
ply by observing that

dy

dx
D � x sin y

.x C 1/ cos y
:
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For example, it is easy to see that y.x/ � 
 is a solution since y0 D 0 and also

� x sin 0

.x C 1/ cos 0
D 0:

Example 3.3.3. The equation

.y C xy C y2/dx C .x C 2y/dy D 0

is not exact becauseMy D 1CxC2y whileNx D 1. Let us try to find an integrating
factor �.x/. We consider �.x/.yCxyCy2/dxC�.x/.xC2y/dy D 0 and equate
the partial derivatives. Then we have

�.x/.1C x C 2y/ D �0.x/.x C 2y/C �.x/

and hence .xC 2y/�.x/ D .xC 2y/�0.x/. Therefore �0.x/ D �.x/ and so we can
take �.x/ D ex . Now ! D ex.yCxyCy2/dxCex.xC2y/dy is exact. Here� D
R2 and we can use Method 3 to find an antiderivative. Since ex.y C xy C y2/ D 0

for y D 0, one has

F.x; y/ D
Z y

0

ex.x C 2s/ds D ex.xy C y2/

and hence the general solution is ex.xy C y2/ D c.

Example 3.3.4. Consider the equation ydx C .2x C 3y/dy D 0. Since My D 1 6D
Nx D 2 the equation is not exact. Here it is convenient to look for an integrating
factor of the type �.y/. The equation �.y/ydx C �.y/.2x C 3y/dy D 0 is exact
provided

y
d�.y/

dy
C �.y/ D 2�.y/ H) y

d�.y/

dy
D �.y/

which yields �.y/ D y. An antiderivative of y2dx C y.2x C 3y/dy D 0 is

F.x; y/ D
Z y

0

s.2x C 3s/ds D xy2 C y3

and hence xy2 C y3 D c is the general solution of our equation. If c D 0 we find
y D 0 and y D �x. If c > 0, then y2.x C y/ D c > 0 implies y > �x, while if
c < 0, then y2.x C y/ D c < 0 implies y < �x.

3.4 Homogeneous equations

The equation
x0 D f .t; x/

is called homogeneous if f .t; x/ can be expressed as a function of the variable x
t

,
t 6D 0: For example,

x0 D x3 C t3

tx2
; t ¤ 0;
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x

y

c>0

c>0c<0

c<0

c=0

Fig. 3.6. Plot of xy2 C y3 D c

is homogeneous because if we divide the numerator and denominator by t3, we obtain

x0 D
�x
t

�3 C 1�x
t

�2

and the right side is a function of the variable
x

t
.

On the other hand,
x0 D x2 sin t

is not homogeneous because it is impossible to express it as a function of
x

t
.

So, a homogeneous equation has the form

x0 D g
�x
t

�
: (3.11)

Equation (3.11) can be transformed into a separable equation by making the substi-
tution x.t/ D tz.t/. This follows since we would have x0 D zC tz0 D g.z/ and the
equation z C tz0 D g.z/ can be written as

z0 D 1

t
.g.z/ � z/

which is separable.

Example 3.4.1. Consider the equation

x0 D t2 C x2

tx
; tx 6D 0:
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If we divide the numerator and denominator by t2 and then let x D tz, we obtain

tz0 C z D 1C z2

z
;

tz0 D 1C z2

z
� z D 1C z2 � z2

z
D 1

z

and hence

zz0 D 1

t

or equivalently

zdz D dt

t
:

Integrating, we get
1
2
z2 D ln jt j C c;

z2 D 2.ln jt j C c/:

Now, what remains is to express the answer in terms of the original variables t and
x. Since x D zt , z D x=t and�x

t

�2 D 2 ln jt j C k k D 2c;

which gives rise, for all c, to a solution of our equation in implicit form. In this case,
if we want to, we can find the solutions explicitly.

Let us now consider the more general equation

x0 D M.t; x/

N.t; x/
(3.12)

whereM;N are homogeneous functions of the same order k. Let us recall thatM D
M.t; x/ is a k-homogeneous function if

M.�t; �x/ D �kM.t; x/ (3.13)

for all � such that M.�t; �x/ makes sense.
If both M and N are k-homogeneous, then we have

M.t; t � x=t/
N.t; t � x=t/ D tkM.1; x=t/

tkN.1; x=t/
D M.1; x=t/

N.1; x=t/
:

If we define

g
�x
t

�
WD M.1; x=t/

N.1; x=t/
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we deduce that

x0 D M.t; x/

N.t; x/
D g

�x
t

�
;

which shows that (3.12) is homogeneous.
It will be helpful to remember that if an equation is a quotient of two polynomials,

then it is homogeneous if and only if the sum of the exponents of the variables in
each term, which we call the total exponent, both in the numerator and denominator,
is the same. For example,

x0 D t3x2 � x5

tx4 C t3x2

has two terms in the numerator and two in the denominator, all of total exponent 5.
Therefore it is homogeneous. On the other hand,

x0 D t3x2 � x5

tx4 C t2x2

is a quotient of two polynomials, but three of the terms have total exponent equal to 5
and one has total exponent equal to 4; therefore it is not homogeneous.

The proof of this rule easily follows from dividing the numerator and denominator
by a certain power of t , as we did in Example 3.4.1.

Example 3.4.2. Solve

x0 D x2 C tx C t2

t2
; t 6D 0:

All the terms in the numerator and the denominator have the same total exponent
equal to 2. Therefore, it is homogenous.

Letting x D tz, one finds

z C tz0 D t2z2 C t2z C t2

t2
D z2 C z C 1;

tz0 D z2 C 1 H) z0

z2 C 1
D 1

t

and integrating, we have

arctan z D ln jt j C c H) z D tan.ln jt j C c/:

In conclusion the solution is

x D tz D t tan.ln jt j C c/;

which is defined for t 6D 0 and ln jt j C c 6D 


2
C k
 , k integer.
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3.5 Bernoulli equations

A generalization of the linear equation is the Bernoulli equation

x0 C p.t/x D q.t/xkC1 (3.14)

where p; q 2 C.Œa; b�/ or p; q 2 C.R/. Let us recall that, in general, kC1 can be any
real number and the right-hand side makes sense for x > 0. Of course this restriction
on x is unnecessary if k C 1 is a positive integer. In any case, we are interested in
finding positive solutions of (3.14).

If k D 0;�1 or if q.t/ � 0 the equation becomes linear. With the exception of
these three cases, the Bernoulli equation is nonlinear. Let us show that the change of
variable z D x�k , x > 0, transforms the Bernoulli equation into a linear equation.

We have z0 D �kx�k�1x0. Since x0 D �p.t/x C q.t/xkC1, we get

z0 D �kx�k�1
�
�p.t/x C q.t/xkC1

�
D kp.t/x�k � kq.t/:

Since z D x�k , we have
z0 � kp.t/z D �kq.t/;

which is a linear equation. If z > 0 is a solution of this equation, then x.t/ D z�1=k.t/

is a (positive) solution of (3.14).

Example 3.5.1. The equation
x0 � x D tx2

is a Bernoulli equation with k D 1, p D �1; q D t . One solution is x � 0. If x 6D
0, we set z D x�1. Then we have

z0 C z D �t
which is linear; and solving it, we have

z.t/ D c e�t C 1 � t; c 2 R

and finally, if c e�t C 1 � t 6D 0,

x.t/ D 1

z.t/
D 1

c e�t C 1 � t ; c 2 R: (3.15)

If we want to solve an initial value problem such as

x0 � x D tx2; x.0/ D 1;

we substitute the initial value into (3.15) and solve for c. One finds

1 D 1

c e0 C 1
D 1

c C 1
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whence c D 0. Thus the solution is x.t/ D 1
1�t

, restricted to t < 1. The more general
case that x.0/ D a > 0 is discussed in Exercise no. 31.

Example 3.5.2. Solve x0 C2x D et
p
x, x.0/ D 1. This is a Bernoulli equation with

p D 2; q D e�t and k C 1 D 1
2

, namely k D � 1
2

. Setting z D p
x, x 	 0, we find

z0 C z D 1

2
et :

Solving this linear equation, we get

z D c e�t C 1

4
et :

Notice that z 	 0 implies c e�t C 1
4
et 	 0, that is

c 	 �1
4
e2t : (3.16)

Substituting z D p
x, namely x D z2, we find

x.t/ D
�
c e�t C 1

4
et

�2

:

Inserting an initial condition such as x.0/ D 1, we find 1 D �
c C 1

4

	2
. Solving, we

have c C 1
4

D ˙1 and hence c D 3
4

or c D � 5
4

. Since (3.16), with t D 0, implies
c 	 � 1

4
, we find that c D 3

4
. Thus

x.t/ D
�
3

4
e�t C 1

4
et

�2

is the solution of our initial value problem.

3.6 Appendix. Singular solutions and Clairaut equations

A solution x D �.t/ of a first order differential equation F.t; x; x0/ D 0 is called a
singular solution if for each .t0; x0/ with �.t0/ D x0, there exists a solution  .t/ 6D
�.t/ of F.t; x; x0/ D 0, passing through .t0; x0/, namely such that  .t0/ D x0. In
particular, �.t/ and  .t/ have the same derivative at t D t0 and thus they are tangent
at .t0; x0/. Since this holds for every point .t0; x0/ this means that x D �.t/ is the
envelope of a family of solutions of F.t; x; x0/ D 0.

Recall that the envelope of a family of curves given implicitly by g.t; x; c/ D 0

is a curve of implicit equation �.t; x/ D 0 that can be found solving the system²
g.t; x; c/ D 0

gc.t; x; c/ D 0:
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When g.t; x; c/ D x � h.t; c/ the system becomes²
x D h.t; c/

hc.t; c/ D 0:

This is an easy example.

Example 3.6.1. Find the envelope of the family of parabolas x D .t � c/2. The
preceding system becomes ²

x D .t � c/2
�2.t � c/ D 0:

The second equation yields c D t and, substituting into the first equation, we find
x D 0, which is the envelope of the parabolas.

Let x D �.t; c/, c 2 R, be a one parameter family of solutions of F.t; x; x0/ D 0.
Differentiating the identity F.t; �.t; c/; � 0.t; c// � 0 with respect to c, we find

Fx.t; �.t; c/; �
0.t; c//@c�.t; c/C Fx0.t; �.t; c/; � 0.t; c//@c�

0.t; c/ � 0:

If Fx.t; �.t; c/; �
0.t; c// 6� 0 and Fx0.t; �.t; c/; � 0.t; c// � 0, we infer that

@c�.t; c/ � 0. Therefore, the singular solution solves the differential system´
F.t; x; x0/ D 0

Fx0.t; x; x0/ D 0

and is such that Fx.t; x; x
0/ 6� 0.

Example 3.6.2. Find the singular solutions of x2.1C x02/ D 1. Here F.t; x; x0/ D
x2.1C x02/ � 1. Then Fx0 D 2x2x0 and the preceding system becomes´

x2.1C x02/ D 1

2x2x0 D 0

whose solutions are x D ˙1. Since for x D ˙1 one has Fx D x D ˙1, thus the
singular solutions are x D ˙1.

Now, by substitution, we find that �.t; c/ D ˙p1 � .t � c/2 is a one parameter
family of solutions of x2.1 C x02/ D 1. They are a family of circles g.t; x; c/ D
.t � c/2 C x2 D 1 centered at .c; 0/ with radius 1. Let us check that x D ˙1 are the
envelope of �.t; c/. We have to solve the system´

x D �.t; c/

�c.t; c/ D 0:

In this case we have �.t; c/ D ˙p1 � .t � c/2 and hence

�c.t; c/ D ˙ t � cp
1 � .t � c/2 :
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t

x

O

Fig. 3.7. Solutions of x2.1C x02/ D 1

So �c.t; c/ D 0 for c D t . Substituting into x D �.t; c/ ˙ p
1 � .t � c/2 we find

x D ˙1, which are exactly the singular solutions found before.

3.6.1 Clairaut equations

A typical equation where singular solutions can arise is the Clairaut equation which
is a differential equation of the form

x D tx0 C g.x0/ (3.17)

where, say, g 2 C.R/. Let us note that (3.17) is not in normal form.
If we let x0 D c, for any c 2 R, we find the family of straight lines

x.t/ D ct C g.c/; c 2 R

which clearly solve (3.17).

Remark 3.6.3. If g is defined in a subset of R, the solutions x D ct C g.c/ make
sense only for c in the domain of g. See, e.g. Exercises nos. 40 and 41 below.

A specific feature of the Clairaut equation is that it might have singular solutions.
According to the preceding discussion, we set F.t; x; x0/ D tx0 C g.x0/ � x and
solve the system´

F.t; x; x0/ D 0

Fx0.t; x; x0/ D 0
H)

´
tx0 C g.x0/ � x D 0

t C g0.x0/ D 0:

Let us suppose that g 2 C 1.R/, and that g0 is invertible. Recall that a function �,
defined on a set R with range in a set S , is invertible if there exists a function  de-
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fined on S with range in R such that �.r/ D s if and only if r D  .s/. The function
 , denoted by ��1, is unique and satisfies ��1.�.r// D r for all r 2 R.

Setting h D .g0/�1, the second equation of the preceding system, that is g0.x0/ D
�t , yields

x0 D h.�t /:
Substituting in the first equation we find

x.t/ D th.�t /C g.h.�t //:
Therefore, this is the singular solution we were looking for.

Example 3.6.4. The equation
x D tx0 C x02 (3.18)

is a Clairaut equation with g.x0/ D x02. The function g0.x0/ D 2x0 is obviously
invertible. Solving 2x0 D �t we find x0 D � 1

2
t . Hence the singular solution is

�.t/ D t �
�

� t
2

�
C g

�
� t
2

�
D � t

2

2
C
�

� t
2

�2

D �1
4
t2

and turns out to be the envelope of the family of straight lines

x.t/ D ct C c2; c 2 R:

Consider now the Cauchy problem

x D tx0 C x02; x.a/ D b: (3.19)

t

x

O

x=ct+c2x=ct+c2 (c>0)(c<0)

Fig. 3.8. Solutions of x D tx0 C x02. The dotted curve is the singular solution x D � 1
4 t

2
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A straight line x D ct C c2 solves (3.19) provided

b D caC c2:

The second order algebraic equation in c, c2 C ac � b D 0, can be solved yielding

c D �a˙ p
a2 C 4b

2

and hence there is a solution whenever

a2 C 4b 	 0; H) b 	 �1
4
a2:

This means that, unlike equations in normal form, (3.19) has a solution if and only if
the initial values belong to the set

¹.t; x/ 2 R2 W x 	 � 1
4
t2º;

above the singular solution �.t/ D �1
4
t2. Precisely, one has:

(i) For all .a; b/ such that b > �1
4
a2, the equation b D caC c2 has two solutions

and hence there are two straight lines of the family x D ct C c2 that satisfy
(3.19).

(ii) If b D � 1
4
a2, the equation b D ca C c2 becomes c2 C ac D � 1

4
a2 and has

only one solution given by c D �1
2
a. Then there is only one solution among the

family �.t; c/ that satisfies (3.19): that is x D � 1
2
at C 1

4
a2. This straight line

is tangent to x D �.t/ at .a; b/ D .a;�1
4
a2/, due to the fact that the singular

solution is the envelope of the solution family x D ct C c2.
(iii) For all .a; b/ such that b < � 1

4
a2, the equation b D caCc2 has no solution and

hence there is no straight line of the family x D ct C c2 that satisfies (3.19).

Remark 3.6.5. If g0 is not invertible, there could be no singular solution. For exam-
ple, the solutions of x D tx0 C x0 are the family of straight lines x D ct C c

passing through .�1; 0/ and the solution of the system F D 0; Fx0 D 0, that is
x D tx0 C x0; 0 D t C 1, reduces to the point .�1; 0/.

Remark 3.6.6. A solution of the family x D ctCg.c/ solves the initial value problem

x D tx0 C g.x0/; x.a/ D b;

whenever b D acC g.c/. If we assume that g is twice differentiable and g00.p/ 6D 0

(notice that this implies that g0 is invertible so that the previous discussion applies),
then g is either concave or convex and the equation g.c/ D b�ac, in the unknown c,
has two, one or no solution, see Figure 3.9, showing that what we saw in the Exam-
ple 3.6.4 is a general fact.
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t

x

O

Fig. 3.9. The equation g.c/ D b � ac with a > 0

Remark 3.6.7. The Clairaut equation is a particular case of the D’Alambert–Lagrange
equation x D tf .x0/C g.x0/, f; g 2 C.I /. See two examples in Exercises nos. 42
and 43 below.

3.7 Exercises

1. Solve x0 D atpxq , p; q 6D 0.

2. Solve x0 D 3t2x, t; x 	 0.

3. Solve x0 D 4t3x4.

4. Solve x0 D �tx2.

5. Solve x0 D �t2x2 such that x.1/ D 2.

6. Solve x0 D 5t
p
x, x 	 0, x.0/ D 1.

7. Solve x0 D 4t3
p
x, x 	 0, x.0/ D 1.

8. Solve and discuss uniqueness for the ivp x0 D 2t
p
x; x.a/ D 0, x 	 0.

9. Find p such that the solutions of x0 D �.p C 1/tpx2 tend to 0 as t ! C1.

10. Find the limit as t ! C1 of the solutions of x0 D �.p C 1/tpx2 when p C
1 � 0.

11. Solve x0 D p
1 � x2 and find the singular solutions. Explain why uniqueness

does not hold.

12. Solve .2x2 C 1/dx D .y5 � 1/dy.
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13. Solve .x C 3y/dx C .3x C y/dy D 0 and sketch a graph of the solutions.

14. Solve .x C y/dx C .x � y/dy D 0 and show that there are some solutions that
pass through the only singular point.

15. Solve .3x2 � y/dx C .4y3 � x/dy D 0 and find the singular points.

16. Solve .y � x1=3/dx C .x C y/dy D 0 and find its singular points.

17. Solve .axp C by/dx C .bx C dyq/dy D 0, p; q > 0 and
find its singular points.

18. Solve .ex � 1
2
y2/dx C .ey � xy/dy D 0.

19. Solve .x C siny/dx C x cos ydy D 0 and find its singular points.

20. Solve .x2 C 2xy � y2/dx C .x � y/2dy D 0.

21. Solve .x2 C 2xyC 2y2/dxC .x2 C 4xyC 5y2/dy D 0. Show that there exists
a such that y D ax is a solution passing through the singular point .0; 0/.

22. Find the number a such that .x2 C y2/dx C .axy C y4/dy D 0 is exact and
then solve it.

23. Find the coefficients ai ; bi such that .x2 C a1xy C a2y
2/dx C .x2 C b1xy C

b2y
2/dy D 0 is exact, and solve it.

24. Find a function A.y/ such that .2xCA.y//dxC 2xydy D 0 is exact and solve
it.

25. Find a function B.x/ such that .x C y2/dx C B.x/ydy D 0 is exact and solve
it.

26. Find the solutions of xdx � .y4 � 1/dy D 0 passing through the points .2; 0/
and .0; 0/.

27. Show that for any f .y/ 6D 0; g.y/, there exists an integrating factor � D �.y/

for the equation f .y/dx C .xy C g.y//dy D 0.

28. Solve y2dx C .xy C 3y3/dy D 0.

29. Solve .1C y2/dx C xydy D 0.

30. Solve x0 D .x C 2t/=t , t 6D 0.

31. Solve x0 D tx=.t2 C x2/.

32. Solve the Cauchy problem x0 � x D tx2, x.0/ D a > 0 and describe the solu-
tions relative to a.

33. Find the nontrivial solutions of x0 C 2tx D �4tx3.

34. Find the nontrivial solutions of x0 � tx D x2.

35. Show that the circle x2 C t2 D 1 is the singular solution of x02 D x2 C t2 � 1.

36. Solve x02 D 4.1 � x/ and show that x D 1 is the singular solution.

37. Find a singular solution of x02 � tx0 C x D 0.
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38. Solve the Clairaut equation x D tx0 � x02 and find the singular solution.

39. Solve the Clairaut equation x D tx0 C ex0
and find the singular solution.

40. Solve the Clairaut equation x D tx0 � ln x0 and find the singular solution.

41. Solve the Clairaut equation x D tx0 C 1
x0 and find the singular solution.

42. Find ˛; ˇ such that x.t/ D ˛t C ˇ solves the D’Alambert–Lagrange equation
x D th.x0/C g.x0/, where h; g 2 C.I /
(a) show that the equation x D t .1C x0/C x0 has no solution of the form x D

˛t C ˇ,
(b) solve the equation by setting x0 D z.
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Existence and uniqueness for systems and higher
order equations

In this chapter we extend (without proof) to systems and higher order equations, the
existence and uniqueness theorems stated in Chapter 2.

4.1 Systems of differential equations

If f1; : : : ; fn are functions of the n C 1 variables .t; x1; : : : ; xn/, we consider the
system of differential equations in normal form8<:

x0
1 D f1.t; x1; : : : ; xn/

: : : D : : :

x0
n D fn.t; x1; : : : ; xn/:

(4.1)

To write this system in a compact form, we introduce

Nx D

0BBB@
x1

x2

:::

xn

1CCCA 2 Rn; Nf .t; Nx/ D

0BBB@
f1.t; x/

f2.t; x/
:::

fn.t; x/

1CCCA 2 Rn:

If .t; Nx/ 2 � � RnC1, then Nf is a function from � to Rn. With this notation, the
preceding system becomes

Nx0 D Nf .t; Nx/
which is formally like the first order equation x0 D f .t; x/.

For example, if n D 2, a 2 � 2 system is²
x0

1 D f1.t; x1; x2/

x0
2 D f2.t; x1; x2/:

If fi , i D 1; 2; : : : ; n, do not depend on t , the system is autonomous. If fi , i D
1; 2; : : : ; n, are linear with respect to x1; : : : ; xn, the system is linear.
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If n D 2 and f1; f2 are linear and depend only on x1; x2,²
x0

1 D a11x1 C a12x2

x0
2 D a21x1 C a22x2

is a 2 � 2 linear, autonomous system. To write this system in the vectorial form, it
suffices to introduce the matrix

A D
�
a11 a12

a21 a22

�
:

With this notation the linear 2 � 2 system becomes

Nx0 D A Nx; Nx D
�
x1

x2

�
2 R2:

In general, a linear autonomous system has the form

Nx0 D A Nx; Nx D

0B@x1

:::

xn

1CA 2 Rn

where A is an n � n matrix.

Example 4.1.1. If Nx D
�

x
y
z

�
2 R3 and

A D
0@ 1 2 3

4 5 6

7 8 9

1A
the system Nx0 D A Nx becomes8<:

x0 D x C 2y C 3z

y0 D 4x C 5y C 6z

z0 D 7x C 8y C 9z:

Let ˛ D .˛1; : : : ; ˛n/ 2 Rn. Given .t0; ˛/ 2 �, an initial value, or a Cauchy,
problem for the system Nx0 D Nf .t; Nx/ is² Nx0 D Nf .t; Nx/

Nx.t0/ D ˛
(4.2)

or, in terms of the components²
x0

i D fi .t; x1; : : : ; xn/

xi .t0/ D ˛i
i D 1; : : : ; n:

In general, one prescribes n initial values for an n � n first order system.
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For example, an initial value problem for a 2 � 2 system is8<:
x0

1 D f1.t; x1; x2/

x0
2 D f2.t; x1; x2/

x1.t0/ D ˛1; x2.t0/ D ˛2:

4.1.1 Existence and uniqueness results for systems

Below we state the existence and uniqueness theorems for systems in normal form.

Theorem 4.1.2. (Local existence) Let � � RnC1, let Nf W � 7! Rn be continuous
and let .t0; ˛/ D .t0; ˛1; : : : ; ˛n/ be a given point in the interior of �. Then the
initial value problem ² Nx0 D Nf .t; Nx/

Nx.t0/ D ˛
(4.2)

has at least one solution defined in a suitable interval jt � t0j < ı.

The function Nf is locally lipschitzian at .t0; ˛/ 2 � with respect to Nx if there
exists a neighborhood U 
 � of .t0; ˛/ and a number L > 0 such that, denoting by
j � j the euclidean norm in Rn, one has

j Nf .t; Nx/ � Nf .t; Nz/j � Lj Nx � Nzj;
for every .t; Nx/; .t; Nz/ 2 U . If the preceding inequalities hold for all .t; Nx/; .t; Nz/ 2 �,
then Nf is said to be globally lipschitzian in �, with respect to Nx.

Theorem 4.1.3 (Uniqueness). If Nf is continuous and locally lipschitzian with re-
spect to Nx, then (4.2) has a unique solution, defined in a suitable neighborhood of t0.

Theorem 4.1.4 (Global existence). If � D Œa; b� � Rn and Nf is continuous and
globally lipschitzian in � with respect to Nx, then the solution of (4.2) is defined on
all Œa; b�.

Proof. (Sketch) As in the proof of the existence and uniqueness theorem for a single
equation, see the Appendix 2.5 in Chapter 2, one checks that (4.2) is equivalent to
the system of integral equations

xi .t/ D xi .0/C
Z t

0

fi .t; x1.t/; : : : ; xn.t//dt; i D 1; 2; : : : ; n

which can be written in compact form as

Nx.t/ D Nx0 C
Z t

0

Nf .t; Nx.t//dt
and is formally like the integral equation (2.9). Repeating the arguments carried in the
aforementioned Appendix, one proves the local and global existence and uniqueness
for (4.2).
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4.2 Higher order equations

If n D 2 and f1.t; x1; x2/ D x2, the system Nx0 D Nf .t; Nx/ becomes²
x0

1 D x2

x0
2 D f2.t; x1; x2/:

Then x00
1 D x0

2 D f2.t; x1; x2/ D f2.t; x1; x
0
1/ or, setting x1 D x and f2 D f ,

x00 D f .t; x; x0/

which is a second order differential equation in normal form.
In general, consider the n � n system8̂̂̂̂

<̂̂
ˆ̂̂̂:

x0
1 D x2

x0
2 D x3

: : : D : : :

x0
n�1 D xn

x0
n D fn.t; x1; : : : ; xn/:

We find x00
1 D x0

2, x000
1 D .x0

2/
0 D x0

3, etc. x.n/
1 D x0

n. Hence, calling x D x1 and
fn D f , we find the n-th order equation in normal form

x.n/ D f .t; x; x0; : : : ; x.n�1//;

 
x.k/ D dkx

dtk

!
: (4.3)

To understand what the natural initial value problem is for an n-th order equation, we
simply go back to its equivalent system. We know that, given .t0; ˛1; : : : ; ˛n/ 2 �

an initial value problem for an n�n system consists of requiring that xi .t0/ D ˛i , for
i D 1; 2 : : : ; n. Since x1 D x, x0 D x2; : : : ; x

.n�1/ D xn, an initial value problem
for the n-th order equation in normal form x.n/ D f .t; x; x0; : : : ; x.n�1// is´

x.n/ D f .t; x; x0; : : : ; x.n�1//

x.t0/ D ˛1; x
0.t0/ D ˛2; : : : ; x

n�1.t0/ D ˛n :
(4.4)

So, we prescribe at a certain t D t0 the value x.t0/, together with its derivatives up to
order n�1, that is x0.t0/; : : : ; x.n�1/.t0/. For example, in an initial value problem for
a second order equation, we prescribe at t D t0 the unknown x.t/ and its derivative
x0.t/, that is 8<:

x00 D f .t; x; x0/
x.t0/ D ˛1

x0.t0/ D ˛2:

Similar to the case for first order equations, one could consider n-th order equations
in the form F.t; x; x0; : : : ; x.n// D 0, which is not the normal form; but for the sake
of simplicity we choose to work with the normal form. Some second order equations
such as F.t; x; x0; x00/ D 0 will be briefly discussed at the end of Chapter 5.
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4.2.1 Existence and uniqueness for n-th order equations

From the local existence result for systems stated before, we can deduce immediately
the following theorems for n-th order equations in normal form.

Theorem 4.2.1 (Local existence). Let f W � 7! R be continuous and let
.t0; ˛1; : : : ; ˛n/ be a given point in the interior of �. Then the initial value prob-
lem ´

x.n/ D f .t; x; x0; : : : ; x.n�1//

x.t0/ D ˛1; x
0.t0/ D ˛2; : : : ; x

.n�1/.t0/ D ˛n

(4.4)

has at least one solution defined in a suitable interval jt � t0j < ı.
Proof. It suffices to remark that if f is continuous, then

Nf .t; Nx/ D

0BBBBB@
x2

x3

:::

xn

f .t; x1; :::; xn/

1CCCCCA
is also continuous.

Theorem 4.2.2 (Uniqueness). If f W � 7! R is continuous and locally lipschitzian
with respect to .x1; : : : ; xn/, then (4.4) has a unique solution, defined in a suitable
neighborhood of t0.

Proof. It is evident that if f is locally lipschitzian with respect to .x1; : : : ; xn/, then
Nf .t; Nx/ is also locally lipschitzian with respect to Nx.

For the same reason, the global existence result for systems implies

Theorem 4.2.3 (Global existence). If � D Œa; b� � Rn and f W � 7! R is contin-
uous and globally lipschitzian in � with respect to .x1; : : : ; xn/ then the solution of
(4.4) is defined on all Œa; b�.

As for first order equations, the uniqueness result can be used to find some prop-
erties of the solutions. We illustrate this with two examples.

Example 4.2.4. Let f .x/ be locally lipschitzian. Show that the solution of x00 D
f .x/, x.0/ D 0, x0.0/ D 0, is even. Setting z.t/ D x.�t / we have z00.t/ D
x00.�t / D f .x.�t // D f .z/. Moreover, z.0/ D x.0/ D 0 and z0.0/ D �x0.0/ D 0.
Then, by uniqueness, x.t/ D z.t/, that is x.t/ D x.�t /.
Example 4.2.5. Let f .x/ be locally lipschitzian and let x.t/ be a solution of x00 D
f .x/, defined for all t 2 R, satisfying x.0/ D x.T /, x0.0/ D x0.T /. Then x.t/ is
periodic with period T . Setting z.t/ D x.t C T / one has z00.t/ D x00.t C T / D
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f .x.t C T // D f .z.t// for all t 2 R. Moreover, z.0/ D x.T / D x.0/ and z0.0/ D
x0.T / D x0.0/. Then, by uniqueness, x.t/ D z.t/, that is x.t/ D x.t C T /, for all
t 2 R, which means that x.t/ is T -periodic.

4.3 Exercises

1. Show that the Cauchy problem x00 D xjxj, x.0/ D a; x0.0/ D b, has a unique
solution, for all a; b 2 R.

2. Show that the Cauchy problem x00 D max¹0; xjxjº, x.0/ D a; x0.0/ D b, has a
unique solution, for all a; b 2 R.

3. Show that for p 	 2 the Cauchy problem x00 D jxjp , x.0/ D a; x0.0/ D b, has
a unique solution, for all a; b 2 R.

4. Let x; y be the unique solution of8<:
x0 D y

y0 D �x
x.0/ D 0; y.0/ D 1:

Show that x; y verify x2 C y2 � 1.

5. Do the same as in Problem 4 when x; y solve8<:
x0 D �y

y0 D ��x
x.0/ D 0; y.0/ D 1:

6. Prove that the solutions x; y of²
x0 D Hy.x; y/

y0 D �Hx.x; y/;

where H W R � R 7! R is smooth, satisfy H.x.t/; y.t// D c.

7. Find the second order equation a solution of which is x.t/ D et C e�t .

8. Same for x D tet .

9. Let x be the solution of x00 C x D 0, x.0/ D 0; x0.0/ D 1. Prove that x D sin t .

10. Let x be the solution of x00 C 4x D 0, x.0/ D 1; x0.0/ D 0. Prove that x D
cos 2t .

11. Let f .t; x/ be T -periodic with respect to t and let x.t/ be a solution of x00 D
f .t; x/, defined for all t 2 R, such that x.0/ D x.T / and x0.0/ D x0.T /. Show
that x.t/ is T -periodic.

12. Let f W R 7! R be smooth and let x W R 7! R satisfy x0000 D f .x/, x0.0/ D
0; x000.0/ D 0. Show that x.t/ is even.

13. Show that if f .x/ > 0 for all x 2 R, then the solutions of x000 D f .x/, x00.0/ D
0, have an inflection point at t D 0.



5

Second order equations

This chapter is devoted to second order equations and is organized as follows. First
we deal with general linear homogeneous equations, including linear independence of
solutions and the reduction of order. Then we discuss general linear nonhomogeneous
equations. Sections 5.5 and 5.6 deal with the constant coefficients case. Section 5.7
is devoted to the study of oscillation theory and the oscillatory behavior of solutions.
Finally, in the last section we deal with some nonlinear equations.

5.1 Linear homogeneous equations

The equation
a0.t/x

00 C a1.t/x
0 C a2.t/x D g.t/

represents the most general second order linear differential equation. When g.t/ � 0

it is called homogeneous; otherwise it is called nonhomogeneous.
For simplicity and convenience, we will assume that a0.t/ ¤ 0, so that we can

divide the equation by a0.t/ and write the equation in the form

x00 C p.t/x0 C q.t/x D f .t/: (5.1)

The values of t where a0.t/ vanishes are called singular points. Notice that we have
used the term “singular point” also in the case of exact equations MdxCNdy D 0,
with a somewhat different meaning. Second order equations with singular points will
be discussed in Chapter 10 in connection with Bessel equations.

Before starting the theoretical study of linear second order equations, we discuss
an example which highlights the importance of these equations.

Example 5.1.1 (The harmonic oscillator). Consider a body P on the x axis at the
free end of an elastic spring which is attached at the origin O .

Assuming that P has unitary mass and that there is neither friction nor external
force acting on the body, Hooke’s law states that the force F acting on the body is
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O x

P

�F = −ω
2
x

Fig. 5.1.

proportional, with a negative proportionality constant �!2 < 0, to the distance x
of the body to O , that is F D �!2x. Notice that the minus sign is due to the fact
that the force is a restoring one, namely it brings back the body to the initial position,
acting oppositely to the motion of P .

Denoting by x.t/ such a distance, dependent on time t , and by x00.t/ its accelera-
tion, Newton’s second law, Force=Mass � Acceleration, yields x00 D �!2x, or

x00 C !2x D 0; .! 6D 0/:

This equation is of the type (5.1) with p D 0, q D !2, f D 0 and is usually referred
to as the equation of the free harmonic oscillator. We will see that the solution is a
superposition of sine and cosine functions and hence the body P at the free end of
the spring oscillates and its motion is periodic, as expected.

We anticipate that a similar equation arises when we study the mathematical pen-
dulum (see Example 5.5.4).

If there is an external force f .t/ acting on the body, the equation becomes

x00 C !2x D f .t/

which is a second order nonhomogeneous equation. In particular, we will study the
case in which f .t/ D sin!1t which yields

x00 C !2x D sin!1t:

The solutions of this equation depend on the relationship between ! and !1 and give
rise to interesting phenomena, like resonance or beats. See Section 5.6.1.

In the presence of friction proportional to the velocity x0 of P , the equation be-
comes

x00.t/C kx0.t/C !2x.t/ D f .t/

which is of the type (5.1) with p D k and q D !2. It is usually referred to as the
equation of the damped harmonic oscillator, the damping term being kx0. Among
other applications, equations of this type arise in the theory RLC electrical circuits
(see Example 5.5.5).

Now we concentrate on the homogeneous case and state the existence and unique-
ness result for such equations. The following theorem follows directly from Theo-
rems 4.2.2 and 4.2.3 of Chapter 4.

Theorem 5.1.2 (Existence and Uniqueness). If p.t/, q.t/ are continuous on an in-
terval I � R, then for any number t0 in I and any numbers ˛ and ˇ, there exists a
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unique solution x.t/ of

x00 C p.t/x0 C q.t/x D 0 (5.2)

satisfying the initial conditions x.t0/ D ˛, x0.t0/ D ˇ. Furthermore, this solution
exists for all t in I .

Recall that a solution of (5.2) is a twice differentiable function x.t/ that satisfies
equation (5.2).

We note that if ˛ and ˇ are both 0 in the above theorem, then the solution x.t/
guaranteed by the theorem must be the trivial solution, that is x.t/ � 0. This follows
from the fact that the zero function is also a solution of (5.2) satisfying the same ini-
tial conditions as x.t/. Since there can be only one such solution, then we must have
x.t/ � 0. We state this fact as

Corollary 5.1.3. If x.t/ is any solution of (5.2) such that x.t0/ D 0 D x0.t0/, then
x.t/ � 0.

Remark 5.1.4. Unlike the solutions of the first order linear homogeneous equations,
here nontrivial solutions may vanish; in fact, they may vanish infinitely many times,
as indicated by the examples below. So, it is no longer true that the solutions are ei-
ther always positive or always negative. However, what is true is that in view of the
above Corollary 5.1.3, the maximum and minimum points of the solutions cannot lie
on the t-axis; so they are either above or below the line t D 0.

Example 5.1.5. The function x D t2et cannot be a solution of the differential equa-
tion (5.2). The reason is that x and its derivative x0 D t2et C 2tet both vanish at
t D 0 and being a solution would contradict Corollary 5.1.3.

We would like to point out that occasionally a second order equation, linear or
nonlinear, may be written as a first order equation, and then one can try and see if the
methods developed for first order equations can be applied to solve it. We illustrate
this in the following example.

Example 5.1.6. Consider the differential equation

x00 C x D 0: (5.3)

This is a special case of the equation on the harmonic oscillator, discussed in Example
5.1.1.

In spite of its appearance, this equation is essentially a first order equation. To see
this, let z D x0 D dx

dt
. Then by using the Chain Rule,

x00 D dx0

dt
D dz

dt
D dz

dx

dx

dt
D z

dz

dx
:
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Now we can write equation (5.3) as

z
dz

dx
C x D 0

which is a first order separable equation and, by using the differential notation, it can
be written as

z dz C x dx D 0:

Integrating, we obtain z2

2
C x2

2
D c, which can be written as z2 C x2 D k1, where

k1 D 2c is a non-negative constant. If k1 > 0, solving for z, we get z D ˙
p
k1 � x2.

Since z D x0, we have x0 D dx
dt

D ˙
p
k1 � x2, where the variables can be sepa-

rated. In order to separate the variable, we assume that �p
k1 < x <

p
k1 so that

k1 � x2 > 0. Then, using the differential notation, we have

˙ dxp
k1 � x2

D dt: (5.4)

We recall from Calculus that the plus sign in the above equation leads to sin�1 xp
k1

D
t C k2, or xp

k1
D sin.t C k2/: If we let k2 D 0 and

p
k1 D c1 we get the family of

solutions

x D c1 sin t:

If in equation (5.4) we choose the negative sign, the same steps carried out above
will lead to cos�1 xp

k2
D t C k3, and if we let k3 D 0 and

p
k2 D cc , we obtain

another family of solutions

x D c2 cos t:

We will see later in Example 5.2.10 that the all the solutions of (5.3) are given by
x D c1 sin t C c2 cos t .

Remark 5.1.7. In the above discussion, in order to separate the variables, we assumed
k1 � x2 ¤ 0, which was necessary so that we would be able to divide both sides byp
k1 � x2, thus obtaining the solution x D p

k1 sin t . But now we see that x Dp
k1 sin t is defined for all real numbers t , including those where k1 � x2 D 0,

which can occur, for example, at t D �
2

. Therefore, x D p
k sin t satisfies the equa-

tion x00 C x D 0 for all t . This phenomenon is not all that uncommon in solving
differential equations, where one makes an assumption in order to carry out a certain
operation but later it turns out that the solution is valid even without the assumed
restriction. So, at the end of solving an equation, it is worthwhile to check to see if
the restrictions assumed to carry on the operations can be lifted.

Theorem 5.1.8. If x1 and x2 are any solutions of (5.2), then for any constants c1

and c2, the linear combination c1x1 C c2x2 is also a solution.
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Proof. Let x D c1x1 Cc2x2. Substituting x0 and x00 in equation (5.2) and regrouping
terms, we have

.c1x1 C c2x2/
00 C p.t/.c1x1 C c2x2/

0 C q.t/.c1x1 C c2x2/ D
Œc1x

00
1 C p.t/c1x

0
1 C c1q.t/x1�C Œc2x

00
2 C p.t/c2x

0
2 C c2q.t/x2� D

c1Œx
00
1 C p.t/x0

1 C q.t/x1�C c2Œx
00
2 C p.t/x0

2 C q.t/x2� D 0

because x1 and x2 are solutions and hence

x00
1 C p.t/x0

1 C q.t/x1 D 0 D x00
2 C p.t/x0

2 C q.t/x2;

proving the theorem.

Remark 5.1.9. The property that linear combinations of solutions is a solution is par-
ticular to linear homogeneous equations. This is an important property of such equa-
tions, often referred to as the Principle of Superposition. In particular, it is not true
for nonhomogeneous equations or nonlinear equations. For example, as can be easily
verified, x1 D 1 and x2 D et C 1 are both solutions of x00 � 3x0 C 2x D 2, but their
sum x1 C x2 D 1C .et C 1/ is not a solution.

5.2 Linear independence and the Wronskian

The goal of this section is to find the general solution of (5.2) which is, by definition,
a family x D �.t; c1; c2/ depending on two real parameters c1; c2 such that:

1. for all c1; c2, the function x D �.t; c1; c2/ is a solution of (5.2);

2. if x.t/ is a solution of (5.2), there exist c1; c2 such that x.t/ D �.t; c1; c2/.

Remark 5.2.1. Similar to the case for linear first order equations, here also the general
solution includes all the solutions of (5.2).

To find the general solution of (5.2) we first introduce the notion of linear inde-
pendence of functions.

Let f .t/ and g.t/ be two functions defined on an interval I . We say that f and g
are linearly independent on I if the only way we can have c1f .t/C c2g.t/ D 0 for
all t is to have c1 and c2 both equal to 0. That is, if c1 and c2 are constants such that
c1f .t/C c2g.t/ D 0 for all t in I , then c1 D 0 D c2. Functions that are not linearly
independent are said to be linearly dependent.

Remark 5.2.2. First we note that if there exist constants c1 and c2 such that c1f .t/C
c2g.t/ D 0 for all t in I , and f and g are not identically zero, then if one of the con-
stants is zero, so is the other. Suppose c1 D 0 and c2 ¤ 0. Then we have c2g.t/ D 0

and this implies that g.t/ D 0 for all t . Similarly, the case c2 D 0 leads to c1 D 0.
Using the contrapositive of the statement defining linear independence, we see

that f and g are linearly dependent if and only if there exist nonzero constants c1
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and c2 such that c1f .t/ C c2g.t/ D 0 for all t in I . Thus, for any two functions,
linear dependence means that one of them is a constant multiple of the other. But
such a simplification is not possible for more than two functions. Therefore, we ad-
vise students to learn how to use the above definition in order to be prepared to deal
with a higher number of functions later.

Example 5.2.3. Let us prove that f .t/ D sin t and g.t/ D cos t are linearly in-
dependent. We start by assuming that c1 and c2 are constants such that c1 sin t C
c2 cos t D 0 for all t . Next, we show that c1 D c2 D 0. There are several ways to
accomplish this. We explain three of them. Sometimes one of the methods is more
convenient than the others, depending on the problem.

First method. We substitute some number t that will make one of the terms c1 sin t
and c1 cos x become 0. Let, for example, t D 0. Then c1 sin 0 C c2 cos 0 D 0 im-
plies that c2 D 0. Next, we let x D �

2
and obtain c1 D 0.

Second method. We notice that if x D c1 sin t C c2 cos t D 0 for all t , then so is
x0 D c1 cos t � c2 sin t D 0 for all t . So, we simply solve the system of equations²

c1 sin t C c2 cos t D 0

c1 cos t � c2 sin t D 0

for c1 and c2, using some method we have learned in Algebra. For example, multi-
plying the first equation by cos t , the second one by � sin t and adding, we obtain
c2.sin2 t C cos2 t / D 0. Since sin2 t C cos2 t D 1, we must have c2 D 0. Now,
returning to the equation c1 sin tCc2 cos t D 0, we are left with c1 sin t D 0, which
implies that c1 D 0 since sin t cannot be 0 for all t . We note that this method is not
applicable if the functions are not differentiable.

Third method. Once we obtained the system²
c1 sin t C c2 cos t D 0

c1 cos t � c2 sin t D 0

above, we need not solve for c1 and c2 but simply determine whether the coefficient
determinant is zero or nonzero. Since the coefficient determinantˇ̌̌̌

sin t cos t
cos t � sin t

ˇ̌̌̌
D � sin2 t � cos2 t D �1

is nonzero, we recall from Algebra or Linear Algebra that this system has a unique
solution in c1 and c2. Since the pair c1 D 0 and c2 D 0 is a solution, then this is the
only solution and there cannot be any nonzero solutions c1 and c2.

Next, we will see that the coefficient determinant mentioned above plays an im-
portant role in the study of linear homogeneous equations.
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5.2.1 Wronskian

The Wronskian of two differentiable functions f .t/ and g.t/ is defined as

W.f; g/.t/ D
ˇ̌̌̌
f .t/ g.t/

f 0.t/ g0.t/

ˇ̌̌̌
D f .t/g0.t/ � f 0.t/g.t/:

Note: Sometimes, instead of W.f; g/.t/, we may interchangeably use the notation
W.f .t/; g.t//; and when there is no confusion about what the functions f and g are,
we may simply use the notationW.t/; in other words,W.f; g/.t/ D W.f .t/; g.t// D
W.t/:

Theorem 5.2.4 (Abel’s Theorem). If x1 and x2 are any solutions of

x00 C p.t/x0 C q.t/x D 0 (5.2)

on a given interval I where p.t/ and q.t/ are continuous, then the Wronskian of x1

and x2 is given by

W.t/ D ce� R
p.t/ dt

where c is a constant.

Proof. Taking the derivative of W.t/ D x1x
0
2 � x0

1x2, we obtain W 0.t/ D x1x
00
2 �

x2x
00
1 . Since x00

1 D �p.t/x0
1�q.t/x1 and x00

2 D �p.t/x0
2�q.t/x2 from equation (5.2),

by substituting, we obtainW 0.t/ D Œ�p.t/x0
2 �q.t/x2�x1 �Œ�p.t/x0

1 �q.t/x1�x2 D
�p.t/Œx1x

0
2 � x0

1x2� D �p.t/W.t/. Solving the first order linear equation W 0.t/ D
�p.t/W.t/ by the method of integrating factor, we obtain W.t/ D ce� R

p.t/ dt .

Note: In the above proof, instead of obtainingW.t/ in terms of the antiderivative, we

could obtain it in terms of the definite integral W.t/ D ce
� R t

t0
p.t/dt , where t0 is any

point in the interior of the interval I . This should be clear, since in solvingW 0.t/ D
�p.t/W.t/, one could multiply both sides of the equation W 0.t/ C p.t/W.t/ D 0

by the integrating factor
R t

t0
p.t/dt instead of

R
p.t/dt:

Corollary 5.2.5. The Wronskian of two solutions is either always zero or never zero.

Proof. Since for any solutions z1 and z2, by Abel’s Theorem, W.z1; z2/.t/ D
ce

R �p.t/ dt and e
R �p.t/ dt is never zero, then the only way that the Wronskian can

be zero at any point is to have c D 0, in which case the Wronskian is equal to zero
for all t .

Example 5.2.6. The functions x1 D et and x2 D sin t cannot be solutions of the
differential equation (5.2) on I D .�
; 
/, given that p.t/ and q.t/ are continuous
on I . To see this, we examine their Wronskian W.sin t; et / D et sin t � et cos t . We
see that W.0/ D �1 and W.�

4
/ D 0, contradicting Corollary 5.2.5.
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Before establishing our next important theorem concerning Wronskian, let us re-
call some algebraic facts. Consider the system of equations´

ax C by D 0

cx C dy D 0:

We can always obtain one solution, called the trivial solution, by letting x D y D 0.
But, does it have any other types of nontrivial solutions? The answer depends on the
determinant of the coefficients; namely the system has a unique solution if and only
if the coefficient determinant is nonzero, that is if and only ifˇ̌̌̌

a b

c d

ˇ̌̌̌
¤ 0:

This means that if the coefficient determinant is nonzero, then x D y D 0 is the only
solution to the system; so it has no nontrivial solutions. Furthermore, since the condi-
tion on the coefficient determinant is both necessary and sufficient, it follows that the
system has a nontrivial solution in x and y if and only if the coefficient determinant
is zero.

The next theorem gives us a convenient criterion for determining if two solutions
are linearly dependent.

Theorem 5.2.7. Two solutions x1 and x2 of (5.2) are linearly dependent if and only
if W.x1; x2/.t/ D 0 for all t in I .

Proof. Two solutions x1 and x2 are linearly dependent if and only if there exist
nonzero constants c1 and c2 such that c1x1.t/C c2x2.t/ D 0 for all t in I . We note
that if such numbers c1 and c2 exist, then we also have c1x

0
1.t/C c2x

0
2.t/ D 0 for all

t in I , since the derivative of the zero function is the zero function. Let t0 be some
number in I and let us look at the system of two algebraic equations´

c1x1.t0/C c2x2.t0/ D 0

c1x
0
1.t0/C c2x

0
2.t0/ D 0 :

As pointed out earlier, such a system will have a nontrivial solution in c1 and c2 if
and only if ˇ̌̌̌

x1.t0/ x2.t0/

x0
1.t0/ x

0
2.t0/

ˇ̌̌̌
D 0:

But this determinant happens to be the Wronskian of x1 and x2 evaluated at t0. There-
fore, we can say that x1 and x2 are linearly dependent if and onlyW.x1; x2/.t0/ D 0.
Finally, since, by Abel’s theorem, the Wronskian of two solutions is either identically
zero or never zero, we can say that x1 and x2 are linearly dependent if and only if
W.x1; x2/.t/ D 0 for all t in I .
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Example 5.2.8. The above theorem is not valid for arbitrary functions that are not
solutions of the linear equation (5.2). Let x1 and x2 be defined as follows:

x1.t/ D
´

�t3 if � 1 < t � 0

t3 if 0 � t < 1

and x2.t/ D t3 for �1 < t < 1. The functions x1 and x2 are linearly independent
on the interval .�1;1/ and yet W.x1; x2/.t/ D 0 for all t . The student should
verify this.

If x1 and x2 are linearly independent solutions of (5.2) then x1 and x2 are said to
form fundamental solutions of (5.2).

Theorem 5.2.9. The general solution of (5.2) is given by c1x1 C c2x2, provided x1

and x2 are fundamental solutions.

Proof. According to Theorem 5.1.8, c1x1 C c2x2 is a solution of (5.2). Next, if x.t/
is any solution of (5.2), we have to show that there exist constants c1 and c2 such that
x.t/ D c1x1.t/C c2x2.t/. Let t0 be any fixed number in I and consider the system´

c1x1.t0/C c2x2.t0/ D x.t0/

c1x
0
1.t0/C c2x

0
2.t0/ D x0.t0/

where c1 and c2 are the unknowns. This system has a unique solution c1, c2 if and
only if the determinant of the coefficients is different from 0. This determinant is pre-
cisely the WronskianW.x1; x2/.t/which is not zero because x1; x2 are fundamental
solutions.

Example 5.2.10. Show that x D c1 sin t C c2 cos t is the general solution of x00 C
x D 0 and find a different fundamental set of solutions that can be used to obtain the
general solution.

As we saw in Example 5.1.6, x1 D sin t and x2 D cos t are solutions. Since
W.sin t; cos t / D .sin t /.� sin t /� .cos t /.cos t / D �.sin2 t C cos2 t / D �1 ¤ 0, it
follows from Theorem 5.2.9 that they form a fundamental set of solutions and hence
x D c1 sin t C c2 cos t is the general solution.

To answer the second part, any pair of solutions whose Wronskian is different
from zero would generate the same general solution. Thus, any pair of solutions that
are not constant multiples of each other would work. For example, if x1 D 2 sin t
and x2 D 3 cos t , then W.2 sin t; 3 cos t / D .2 sin t /.�3 sin t / � .3 cos t /.2 cos t / D
�6.sin2 xCcos2 x/ D �6 and hence they form a fundamental set of solutions. There-
fore, y D c1.2 sin t /C c2.3 cos t / is the general solution. We note that if we replace
the constant 2c1 by another constant k1 and 3c2 by k2, then the general solution
becomes x D k1 sin t C k2 cos t .
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5.3 Reduction of the order

Consider again the general linear homogeneous equation

x00 C p.t/x0 C q.t/x D 0 (5.2)

where p.t/ and q.t/ are continuous in the interval I � R. If x1 is a solution, then
we know that any constant multiple x D cx1 is also a solution. Can c be replaced by
a variable function v.t/ such that x2 D v.t/x1.t/ is also a solution? The answer is
yes. As shown in the theorem below, substituting x2 in the equation (5.2) reduces the
order of the differential equation and is hence called the Reduction of Order Method.

Theorem 5.3.1. If x1.t/ is a solution of .5:2/ in I , x1.t/ 6D 0, then

x2.t/ D x1.t/

Z
e� R

p.t/ dt

x2
1.t/

dt

is another solution. Furthermore, x1.t/ and x2.t/ form a fundamental set of solu-
tions.

Proof. Substituting v.t/x1.x/ in equation (5.2), we have

.v00x1 C v0x0
1 C vx00

1 C v0x0
1/C p.v0x1 C vx0

1/C vqx1 D
x1v

00 C .2x0
1 C px1/v

0 C v.x00
1 C px0

1 C qx1/ D x1v
00 C .2x0

1 C px1/v
0 D 0

since x00
1 C px0

1 C qx1 D 0, as x1 is a solution of (5.2). Now, if we let w D v0,
we obtain the first order differential equation x1w

0 C .2x0
1 C px1/w D 0 or w0 C

.
2x0

1

x1
Cp/w D 0. The integrating factor for this first order equation is e2 ln x1CR p dt D

x1
2e
R

p dt : Therefore, assuming that x1 ¤ 0, we obtain

w D c

x1
2e
R

p dt
D ce� R

p dt

x2
1

:

Recall that v0 D w. Since we only need one function v.t/ so that vx1 is a solution,
we can let c D 1 and hence

w D e� R
p dt

x2
1

; and x2 D x1v D x1

Z
e� R

p dt

x2
1

dt:

To see that x1 and x2 form a fundamental set of solutions, we note that according
to Theorem 5.2.9, x1 and x2 are fundamental solutions if W.x1; x2/ ¤ 0 or equiva-
lently if they are linearly independent (see Theorem 5.2.7 ). Thus it suffices to show
that they are linearly independent; or, equivalently, that one of them is not a con-
stant multiple of the other. To verify the last statement, suppose that x2 D cx1, c a
constant. Then

x1

Z
e� R

p dt

x2
1

dt D cx1
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and hence Z
e� R

p dt

x2
1

dt D c:

Now, taking the derivatives of both sides, we obtain

e� R
p dt

x2
1

D 0

which is a contradiction since e� R
p dt is nonzero.

Example 5.3.2. Knowing that x1 D t is one solution, find the general solution of

x00 � 1

t
x0 C 1

t2
x D 0; t > 0:

To find another linearly independent solution, using Theorem 5.3.1, we obtain

t

Z
e� R � 1

t dt

t2
dt D t ln t:

The general solution is x D c1t C c2t ln t:

Equations like the one in the previous exercise are called Euler equations and will
be discussed in Subsection 5.5.1.

5.4 Linear nonhomogeneous equations

In this section we study the nonhomogeneous equation

x00 C p.t/x0 C q.t/x D f .t/: (5.5)

First we state the existence and uniqueness of solutions, which follow immediately
from Theorems 4.2.2–4.2.3 of Chapter 4.

Theorem 5.4.1 (Existence and Uniqueness). Suppose that p, q, and f are contin-
uous functions on an interval I � R. Equation (5.5) has a unique solution x.t/ such
that x.t0/ D ˛, x0.t0/ D ˇ, where t0 is any number in I and ˛ and ˇ are any real
numbers. Furthermore, this solution is defined for all t , t in I .

Similar to the case for homogeneous equations, the general solution of (5.5) is
defined as the family of all solutions of such an equation.

The next theorem shows that in order to find the general solution of the nonho-
mogeneous equation, all we need is the general equation of the homogeneous equa-
tion and one solution of the nonhomogeneous equation. For the constant coefficient
case, we have already learned how to find the general solution of the homogeneous
equation. In the next section we will learn how to find a particular equation of the
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nonhomogeneous equation and thus get the general solution of the nonhomogeneous
equation.

Lemma 5.4.2. If x1 and x2 are two solutions of the nonhomogeneous equation (5.5),
then x1 � x2 is a solution of the corresponding homogeneous equation

x00 C p.t/x0 C q.t/x D 0: (5.6)

Proof. The proof is straightforward . Since

x00
1 C p.t/x0

1 C q.t/x D f .t/

x00
2 C p.t/x0

2 C q.t/x2 D f .t/;

then by subtracting the second equation from the first, we obtain

.x00
1 � x00

2/C p.t/.x0
1 � x0

2/C q.t/.x1 � x2/ D 0;

which proves the assertion.

Theorem 5.4.3. If x D c1x1 C c2x2 is the general solution of the homogeneous
equation (5.6) and xp is any solution of the nonhomogeneous equation (5.5), then
z D c1x1 C c2x2 C xp , c1; c2 2 R, is the general solution of (5.5).

Proof. Let z be any solution of the nonhomogeneous equation (5.5). We want to
show that there exist constants k1 and k2 such that z D k1x1 Ck2x2 Cxp . But since,
by Lemma 5.4.2, z � xp is a solution of the homogeneous equation (5.2), there exist
constants k1 and k2 such that z � xp D k1x1 C k2x2 because x D c1x1 C c2x2 is
given to be the general solution of the homogeneous equation. Solving for z, we get
the desired result z D k1x1 C k2x2 C xp .

Example 5.4.4. Consider the nonhomogeneous equation

x00 � 1

t
x0 C 1

t2
x D 4t; t > 0:

In Example (5.2), we found the general solution of the corresponding homogeneous
equation to be x D c1t C c2t ln t: We also see that xp D t3 is a particular solution
of the given nonhomogeneous equation. Therefore,

x D c1t C c2t ln t C t3; t > 0

is its general solution.

So, it seems that solving the nonhomogeneous second order linear equation is
quite simple if we can find the general solution of the corresponding homogeneous
equation and a particular solution of the nonhomogeneous equation. But, except
by inspection whenever possible, we have not yet developed a method for finding a



5.4 Linear nonhomogeneous equations 83

particular solution of the nonhomogeneous equation. Next, we discuss a method for
finding a particular solution of the nonhomogeneous equation.

5.4.1 Variation of parameters

As we saw in Section 5.3, given one solution x1, we were able to find a function
v.t/ so that vx1 was also a solution. Here, given a pair of fundamental solutions x1

and x2 of the homogeneous equation (5.2), we try to find functions v1.t/ and v2.t/

such that x D v1x1 C v2x2 is a solution of (5.5). To this end, let z D v1x1 C v2x2.
Calculating z0 and z00, we have z0 D v1x

0
1 C v0

1x1 C v2x
0
2 C v0

2x2: Now, since we
have two unknowns v1 and v2, we would like to also have two equations involving
these unknowns. Furthermore, we realize that substituting z in (5.5) will give us one
equation. So, at this point we make the decision to let one of the equations be

v0
1x1 C v0

2x2 D 0 (5.7)

which will also make it convenient and simpler to calculate z00. We have now reduced
z0 to z0 D v1x

0
1 C v2x

0
2 from which we obtain z00 D v0

1x
0
1 C v1x

00
1 C v0

2x
0
2 C v2x

00
2 .

Substituting z in equation (5.5), we obtain

Œv0
1x

0
1 C v1x

00
1 C v0

2x
0
2 C v2x

00
2 �C p.t/Œv1x

0
1 C v2x

0
2�C q.t/Œv1x1 C v2x2� D f .t/

which, after regrouping terms, can be written as

v1Œx
00
1 C p.t/x0

1 C q.t/x1�C v2Œx
00
2 C p.t/v0

2 C v2x2�C Œv0
1x

0
1 C v0

2x
0
2� D f .t/:

Since x1 and x2 are solutions of the homogeneous equation (5.6) and hence satisfy
the equation, the preceding equation is reduced to

v0
1x

0
1 C v0

2x
0
2 D f .t/: (5.8)

Thus we have reduced the problem of finding v1 and v2 to solving the algebraic sys-
tem of equations (5.7)–(5.8) ´

v0
1x1 C v0

2x2 D 0

v0
1x

0
1 C v0

2x
0
2 D f .t/

for v0
1 and v0

2 and then integrating to obtain v1 and v2. Solving for v0
1 and v0

2, we have

v0
1 D

ˇ̌̌̌
0 x2

f .t/ x0
2

ˇ̌̌̌
W.t/

D �x2.t/f .t/

W.t/
; v0

2 D

ˇ̌̌̌
x1 0

x0
1 f .t/

ˇ̌̌̌
W.t/

D x1f .t/

W.t/

whereW.t/ D W.x1; x2/.t/. Therefore, the particular solution z of (5.5) is given by

z D x1.t/

Z �x2.t/f .t/

W.t/
dt C x2.t/

Z
x1.t/f .t/

W.t/
dt: (5.9)
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We do not advise that one memorize these integrals for v1 and v2 but instead one
should start with the system of equations (5.7) and (5.8) and go through the proce-
dure outlined above.

Example 5.4.5. Consider the equation

x00 � x D f .t/ (5.10)

where f is a continuous function on an interval I .
To find the general solution of the associated homogeneous equation x00 � x D 0,

namely x00 D x, we notice that x1 D et and x2 D e�t solve the equation. Since the
Wronskian of et ; e�t is

W D
ˇ̌̌̌
et e�t

et �e�t

ˇ̌̌̌
D �2

they form a fundamental set of solutions. Thus the general solution of x00 � x D 0 is

x.t/ D c1e
t C c2e

�t :

Finding a specific solution z.t/ of (5.10) in the form z.t/ D v1.t/e
t Cv2.t/e

�t leads
to the system ´

v0
1.t/e

t C v0
2.t/e

�t D 0

v0
1.t/e

t � v0
2.t/e

�t D f .t/

where the determinant of the coefficients is W D �2. Then

v0
1.t/ D �e�tf .t/

�2 D 1
2
e�tf .t/; v0

2.t/ D etf .t/

�2 D �1
2
etf .t/:

Integrating

v1.t/ D 1
2

Z
e�tf .t/; v2.t/ D � 1

2

Z
etf .t/

and hence

z.t/ D 1
2
et

Z
e�tf .t/ � 1

2
e�t

Z
etf .t/:

This formula gives the particular solution in an implicit way and it holds for any
function f .t/.

Example 5.4.6. Find the general solution of

x00 C x D 1

cos t
; �


2
< t <




2
:

We have already seen in Example 5.2.10 that the general solution of the associated
homogeneous equation x00 C x D 0 is x.t/ D c1 sin t C c2 cos t . Moreover, the
Wronskian W.x1; x2/ of x1 D sin t; x2 D cos t is equal to �1. To find a specific
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solution z of x00 C x D 1
cos t

we set z D v1 sin t C v2 cos t and solve the system8<:v
0
1.t/ sin t C v0

2.t/ cos t D 0

v0
1.t/ cos t � v0

2.t/ sin t D 1

cos t

� 


2
< t <




2
;

where the coefficient determinant is just the Wronskian W D �1. Then Cramer’s
rule yields

v0
1.t/ D cos t

1

cos t
D 1; v0

2.t/ D � sin t
1

cos t
D � sin t

cos t
; �


2
< t <




2
:

Integrating, we get

v1.t/ D
Z
dt D t C c1

and

v2.t/ D �
Z

sin t

cos t
dt D

Z
d cos t

cos t
D ln.cos t /C c2; �


2
< t <




2
:

For convenience we can take c1 D c2 D 0 since we need only one function v1 and
one function v2: Thus a specific solution is z.t/ D t sin t C cos t � ln.cos t /. Finally,
the general solution is

x.t/ D c1 sin t C c2 cos t C t sin t C cos t � ln.cos t /; �

2
< t <




2
:

Remark 5.4.7. The method of Variation of Parameters has a drawback and that is that
the integration may be messy or even impossible to carry out in order to find the solu-
tion explicitly. But we can always find the solution implicitly as long as we can find
the general solution of the homogeneous equation.

5.5 Linear homogeneous equations with constant coefficients

A general second order homogeneous equation with constant coefficients has the
form

ax00 C bx0 C cx D 0; (5.11)

where a 6D 0. In searching for a solution, we recall that the exponential functions
have the property that their derivatives involve the same exponential functions. So,
we might try to find solutions of the form x D emt . We also see that if we substitute
this exponential function in the differential equation, every term on the left side will
have a constant times emt and hence we can eliminate it by dividing both sides by it.
Now we end up with an algebraic quadratic equation that we can handle. To this end,
substituting y D emt into the equation, we obtain

am2emt C b memt C c emt D 0:
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Dividing by emt , we obtain the algebraic equation

am2 C b mC c D 0: (5.12)

This shows that if x D emt is a solution of (5.11), then m is a solution of (5.12).
Conversely, ifm is solution of (5.12), then, by reversing the steps, it follows that emt

is a solution of (5.11).
Equation (5.12) is called the characteristic or auxiliary equation corresponding

to equation (5.11). We have now reduced the problem of solving (5.11) to that of
solving the characteristic equation and then analyzing the corresponding solutions.
Solving (5.12), we have

m D �b ˙ p
b2 � 4ac
2a

:

We have to consider three cases: (1) b2 � 4ac > 0, (2) b2 � 4ac D 0 and (3) b2 �
4ac < 0.

(1) The case b2 � 4ac > 0 (real distinct roots). In this case the characteristic
equation has two distinct real roots

m1 D �b C p
b2 � 4ac
2a

; m2 D �b � p
b2 � 4ac
2a

:

The corresponding solutions of (5.11) are given by x1 D em1t and x2 D em2t . We
claim that x1 and x2 are a fundamental set of solutions. To see this, we simply evalu-
ate their Wronskian.W.x1; x2/.t/ D em1tm2e

m2t �m1e
m1tem2t D em1tem2t .m1 �

m2/ ¤ 0 since m1 and m2 are distinct roots. This means that the general solution of
(5.11) is given by

x D c1e
m1t C c2e

m2t :

Example 5.5.1. Solve the initial value problem

2x00 C x0 � x D 0; x.0/ D 1; x0.0/ D 2:

By substituting x D emt , we obtain the characteristic equation

2m2 Cm � 1 D 0:

Solving for m, we set 2m2 C m � 1 D 0 D .2m � 1/.m C 1/ and find the two
roots m1 D �1; m2 D 1

2
. Since the roots of the characteristic equation are real and

distinct, the general solution of the differential equation is x D c1e
�t C c2e

1
2 t . In

order to get the solution to the initial value problem, we set x.0/ D 1; x0.0/ D 2

and solve for c1 and c2. Solving,´
c1 C c2 D 1

�c1 C 1
2
c2 D 2
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we obtain c1 D �1 and c2 D 2. Therefore,

x D �e�t C 2e
1
2 t

is the desired solution.

(2) The case b2 � 4ac D 0 (repeated roots). In this case, m D � b
2a

is a repeated
root of

ax00 C bx0 C cx D 0

and we have only one solution x1 D e� b
2a t . In order to find another linearly inde-

pendent solution, we either use the method of Reduction of Order directly or we use
Theorem 5.3.1. Using the theorem, we let p.t/ D b=a, x1 D e� b

2a t , and obtain
another linearly independent solution

x2 D e� b
2a t

Z
e� b

a t

.e� b
2a t /2

dt D e� b
2a t

Z
e� b

a t

e� b
a t
dt D e� b

2a t

Z
dt D te� b

2a t

taking the constant of integration to be zero. One can easily verify that x1 D te� b
2a t

and x2 D e� b
2a t are linearly independent and hence form a fundamental set of solu-

tions. Therefore x D c1te
� b

2a t C c2e
� b

2a t is the general solution.

Example 5.5.2. Find the general solution of x00 � 6x0 C 9x D 0. The corresponding
characteristic equation ism2�6mC9 D 0. We see thatm2�6mC9 D .m � 3/2 D 0

has a repeated rootm D 3. Therefore, x D e3t and te3t are two independent solutions
and hence the general solution is given by x D c1e

3t C c2te
3t .

(3) The case b2 � 4ac < 0 (complex roots). We first recall a couple of simple facts
about complex numbers.

1. If �C i� is a root of the characteristic equation am2 C bmC c D 0, then so
is its conjugate � � i�.

2. A complex number can be equal to 0 only if its real and imaginary parts are
both 0, that is �C i� D 0 implies � D � D 0.

When the discriminant b2 � 4ac is negative, the characteristic equation has two
complex conjugate roots

m D �b ˙ p
b2 � 4ac
2a

:

But, for a complex number � C i�, what is e.�Ci�/t and how do we extract real
solutions out of this? We proceed as follows.

First, we write, formally, the Taylor expansion for ei�, obtaining

ei� D
1X

nD0

.i�/n

nŠ
D 1C i�C i2�2

2Š
C i3�3

3Š
C i4�4

4Š
C : : :

D 1C i� � �2

2Š
� i�3

3Š
C �4

4Š
C : : : :
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Regrouping the real and imaginary terms in the above series, we obtain

e�i D
1X

nD0

.�1/k �2k

.2k/Š
C i

1X
nD0

.�1/k �.2kC1/

.2k C 1/Š
:

We recognize the first sum to be cos � and the second one to be sin �. Therefore,
it seems reasonable to define e�i as e�i D cos � C i sin �, and consistent with the
exponential laws, e�C�i D e�e�i D e�.cos �C i sin �/.

Next, given a complex valued solution, how do we extract a real solution? To see
this, let �.t/C i�.t/ be a given complex valued solution of

x00 C p.t/x0 C q.t/x D 0:

Then, substituting, we have

.�.t/C i�.t//00 C p.t/.�.t/C i�.t//0 C q.t/.�.t/C i�.t// D 0:

Now grouping the terms involving � and those involving �, we obtain

.�00 C p.t/�0 C q.t/�/C i.�00 C p.t/�0 C q.t/�/ D 0:

This implies that the real and complex parts must be 0, that is�00 Cp.t/�0 Cq.t/� D
0 D �00 C p.t/�0 C q.t/�. Therefore, x1 D �.t/ and x2 D �.t/ are real valued so-
lutions.

Returning to our differential equation ax00 C bx0 C cx D 0, where b2 � 4ac < 0,
we see that if the characteristic equation has two complex valued roots,m D �˙ i�.
Then the corresponding real solutions of the differential equation ax00Cbx0Ccx D 0

will be given by x1 D e�t cos �t and x2 D e�t sin �t . The fact that they are linearly
independent is obvious since they are not constant multiples of each other. Therefore
they form a fundamental set of solutions and the general solution is

x D c1e
�t cos �t C c2e

�t sin �t D e�t .c1 cos �t C c2 sin �t/:

Summarizing, the general solution of ax00 C bx0 C cx D 0 includes three types
of solutions, depending on whether the discriminant of the characteristic equation
am2 C bmC c D 0 is positive, negative or zero.

Example 5.5.3. Solve the initial value problem

x00 C 2x0 C 2x D 0; x.0/ D 3; x0.0/ D 7:

The roots of the characteristic equation m2 C 2mC 2 D 0 are the complex numbers
m D �1 ˙ p�1 D �1 ˙ i . Therefore, x1 D e�t cos t and x2 D e�t sin t are the
corresponding linearly independent solutions and the general solution is

x.t/ D e�t .c1 sin t C c2 cos t /:

We point out that in this example, all solutions approach 0 as t ! 1.
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Calculating the derivative of the general solution, we have

x0.t/ D e�t .c1 cos t � c2 sin t / � e�t .c1 sin t C c2 cos t /:

Now, in order to find the solution satisfying the required initial values, we notice that
if we let t D 0 in the general equation, we obtain x.0/ D c2. Therefore, we have to
find c2 D 3. To find c1, we set t D 0 in the derivative x0 of the general solution and
obtain

x0.0/ D c1 � c2 D 7;

which gives us c1 D 7C c2 D 10. Therefore,

x D e�t .10 sin t C 3 cos t /

is the desired solution.

Example 5.5.4. (The pendulum equation) Consider a point P of mass m suspended
from a pivot by a chord of fixed length L so that P moves along a circle of radius L
in a vertical plane passing through the pivot. On the point P acts the gravity force g
and there is no friction.

Referring to Figure 5.2, the tangential component of the force acting on P is
�mg sin � (the minus sign takes into account that the angle � increases in the coun-
terclockwise sense), while the tangential component of the acceleration isL� 00. Thus
Newton’s law yields mL� 00 D �mg sin � , that is

L � 00 C g sin � D 0:

mg cos �mg sin �

mg

P

L�

�

Fig. 5.2. The pendulum
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Recall that the Taylor expansion of sin � is

sin � D � � 1

3Š
�3 C 1

5Š
�5 C : : : :

Then, for small oscillations, we can approximate sin � by � and the solutions of the
pendulum equation are, up to a small error, those of

L � 00 C g � D 0;

which is the equation of the harmonic oscillator with !2 D g

L
. The characteristic

equation is Lm2 C g D 0, whose roots are ˙ipg=L. Then the solutions are

�.t/ D c1 sin
p
g=L t C c2 cos

p
g=L t;

which are periodic oscillations with period T D 2

p
L=g. Notice that T depends

only on L, not on the initial position of P . This property is the so-called isochronism
of the pendulum. It is worth pointing out that isochronism is valid for the approxi-
mated equation, not for the true pendulum equation.

Example 5.5.5. (An RLC electrical circuit) In an RLC circuit with resistance R, in-
ductance L, capacitance C and with a source with constant voltage V , the intensity
of the circulating current is governed by the second order equation

x00.t/C R

L
x0.t/C 1

LC
x.t/ D 0: (5.13)

Here, to keep notation uniform with that used before, we have denoted by x.t/ the
current intensity usually named I.t/ or i.t/.

The reader will notice that (5.13) is also the equation of a damped harmonic os-
cillator, with k D R=L > 0, ! D 1=

p
LC > 0 and f D 0, see Example 5.1.1,

discussed in the first section. In such a case kx0 represented a friction force.
Equation (5.13) is of the form of the general linear equation with constant coefficients
(5.11), with a D 1, b D k and c D !2. Setting k D 2� , the characteristic equation
associated to (5.13) is

m2 C 2�mC !2 D 0

Fig. 5.3. RLC circuit
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whose roots are
m1;2 D �� ˙

p
�2 � !2:

Recalling that both ! and � are positive, m1;2 are real or complex conjugates de-
pending on whether � 	 ! or � < !.

(1) Overdamped response. If � > ! > 0 , m1; m2 are real, distinct and negative
(because

p
�2 � !2 < � ), then the general solution of (5.13) is

x.t/ D c1e
m1t C c2e

m2t :

Since m1; m2 < 0 these are decaying functions without oscillations, see Figure 5.4,
blue curve. Here and below, the constants c1; c2 can be found if we impose initial
conditions.

(2) Critically damped response. If � D !,m1 D m2 D �� and the general solution
is

x.t/ D c1e
��t C c2te

��t ;

which implies fast decaying solutions without oscillations, see Figure 5.4, red curve.

(3) Underdamped response. If 0 < � < !, the roots of the characteristic equation
are complex conjugates, namely m1;2 D �� ˙ i� , where � D p

!2 � �2. Then the

t

x

O

Fig. 5.4. Overdamped (blue), critically damped (red) and underdamped (black) response
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general solution is
x.t/ D e��t .c1 sin � t C c2 cos � t/ ;

which implies decaying oscillations, see Figure 5.4, black curve.

Remark 5.5.6. .i/ Equation (5.13) is independent of the constant voltage V .
.i i/ The decay is due to the presence of k D R=L > 0. In other words, it is

the presence of the resistor R that, dissipating energy, induces a decay of the current
intensity. If there is no resistance, that is if R D 0, then we have an LC circuit. In
this case we have � D 0 and � D !. The solution becomes x.t/ D c1 sin!t C
c2 cos!t , which means that the current intensity is sinusoidal and oscillates with-
out any decay.

5.5.1 The Euler equation

An equation of the form

at2x00 C btx0 C cx D 0; t > 0;

is called a (homogeneous) Euler equation. Such an equation can be changed to one
with constant coefficients by making the substitution t D es , or equivalently s D ln t ,
as follows.

We note that
ds

dt
D 1

t
D 1

es
. For convenience, we let

dx

ds
D Px to distinguish it

from x0 D dx

dt
. Then, x0 D dx

dt
D dx

ds

ds

dt
D Px 1

es
. Therefore,

tx0 D es Px 1

es
D Px:

Now,

x00 D dx0

dt
D dx0

ds

ds

dt
D d. Px 1

es /

ds

ds

dt
D es Rx � es Px

e2s

1

es
D Rx � Px

e2s
:

Therefore,
t2x00 D Rx � Px:

We see that making the substitutions for x0 and x00 will convert the given differential
equation to the linear equation with constant coefficients

a. Rx � Px/C b Px C cx D 0;

or
a Rx C .b � a/ Px C cx D 0:

Example 5.5.7. Solve

2t2x00 C tx0 � 3x D 0; t > 0:
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Using the substitutions above, we have

2. Rx � Px/C Px � 3x D 2 Rx � Px � 3x D 0:

The corresponding characteristic equation is 2m2 � m � 3 D 0 and the roots are
m D �1; 3

2
. Therefore, the general solution in terms of s is x.s/ D c1e

�s C c2e
3
2 s .

Finally, substituting s D ln t , we have x.t/ D c1:
1
t

C c2t
3
2 :

Example 5.5.8. Solve

t2x00 C tx0 C x D 0; t > 0:

Making the substitution s D ln t , we obtain

Rx C x D 0

whose general solution is x.s/ D c1 sin s C c2 cos s. Since s D ln t we have x.t/ D
c1 sin.ln t /C c2 cos.ln t /.

Nonhomogeneous Euler equations

at2x00 C btx0 C cx D h.t/ t > 0;

can be handled in a similar way and are briefly discussed in Remark 5.6.6 in the next
section.

5.6 Linear nonhomogeneous equations – method of
undetermined coefficients

Consider the equation

ax00.t/C bx0.t/C cx.t/ D f .t/; (5.14)

where the coefficients a; b; c are constants and a 6D 0. Let us consider a specific case
where a particular solution z.t/ of this nonhomogeneous equation can be found by
inspection. This may happen, e.g., if f .t/ is a polynomial of degree n, or an expo-
nential e�t , or a trigonometric function like sin�t , cos�t , or a linear combination of
these. In such cases, one can try to find z, by careful guessing, as a function of the
same type as f .t/. This is known as the method of undetermined coefficients.

Instead of carrying out a general discussion, we prefer to demonstrate this method
by considering appropriate examples.

We first consider the case in which f .t/ D P.t/e�t , whereP is a polynomial. We
can try to find a solution of (5.14) by setting z D Q.t/e�t , where Q is a polynomial
to be determined. Since z0 D Q0e�t C�Qe�t and z00 D Q00e�t C2�Q0e�t C�2Qe�t ,
then z solves (5.14) provided

a.Q00e�t C 2�Q0e�t C �2Qe�t /C b.Q0e�t C �Qe�t /C cQe�t D Pe�t :
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Canceling e�t we find a.Q00 C 2�Q0 C �2Q/C b.Q0 C �Q/C cQ D P or equiv-
alently, rearranging,

a.Q00 C 2�Q0/C bQ0 C .a�2 C b�C c/Q D P:

This makes it clear that if a�2 Cb�Cc D 0, namely if � is a root of the characteristic
equation am2 C bmC c D 0, the degree of Q will be greater than that of P . This is
referred to as the resonant case.

Example 5.6.1. (i) Find a particular solution of 2x00 � x0 C 3x D 2t . In this case
P.t/ D 2t and � D 0. Setting z.t/ D At C B , we determine A;B such that z satis-
fies 2z00 � z0 C 3z D 2t . Since 2z00 � z0 C 3z D �AC 3.At CB/ then z solves the
given equation whenever 3At C 3B � A D 2t , namely 3A D 2 and 3B � A D 0.
Thus we find A D 2

3
and B D 2

9
and hence z D 2

3
t C 2

9
.

(ii) Find a particular solution of x00 C x D 3e2t . Here P D 3 and � D 2. Taking
z D Ae2t and substituting in the equation, we find 4Ae2t CAe2t D 3e2t , and hence
5A D 3, namely A D 3

5
. Thus z D 3

5
e2t .

Example 5.6.2. (i) Find a particular solution of x00 � x0 D t C 4. This is a reso-
nant case, because � D 0 is a root of the characteristic equation m2 � m D 0.
Let us try to find a solution in the form z.t/ D t .At C B/ D At2 C Bt . We find
z00 �z0 D 2A� .2AtCB/. Then z00 �z D tC4, provided �2AtC2A�B D tC4.
Solving, we get �2A D 1 and 2A � B D 4, yielding A D �1

2
, B D 2A � 4 D �5;

and hence z D �1
2
t2 � 5t .

(ii) Find a particular solution of x00 � x0 D .t C 2/et . This is also a resonant
case, because � D 1 is a root of the characteristic equation m2 � m D 0. Setting
z D t .At C B/et D .At2 C Bt/et , we find

z0 D .2At C B/et C .At2 C Bt/et D ŒAt2 C .2AC B/t�et

and

z00 D .2At C 2AC B/et C ŒAt2 C .2AC B/t�et

D ŒAt2 C .4AC B/t C 2AC B�et :

Then z00 � z0 D .t C 2/et yields

ŒAt2 C .4AC B/t C 2AC B� � ŒAt2 C .2AC B/t� D t C 2;

whence
2At C 2AC B D t C 2:

Thus we find A D 1
2

and 2AC B D 2, whence B D 1. In conclusion, z D .1
2
t2 C

t /et .

We now consider the case in which f .t/ D P.t/ sin�t , or f .t/ D P.t/ cos�t ,
where P is a polynomial. We can try to find a particular solution of (5.14) by setting
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z D Q1.t/ sin�tCQ2 cos�t , whereQ1;Q2 are polynomials to be determined. No-
tice that, in general, we cannot merely take z D Q sin�t , or Q cos�t , because the
derivative of sin�t is � cos�t , and hence not a polynomial times sin�t . The same
holds for cos�t .

Example 5.6.3. (i) Find a particular solution of x00 C x0 C x D 3 sin 2t . Setting
z D A sin 2t CB cos 2t we find z0 D 2A cos 2t � 2B sin 2t and z00 D �4A sin 2t �
4B cos 2t . Then z00 C z0 C z D 3 sin 2t yields

�4A sin 2t � 4B cos 2t C 2A cos 2t � 2B sin 2t C A sin 2t C B cos 2t D 3 sin 2t:

Rearranging, we find

.�4A � 2B C A/ sin 2t C .�4B C 2AC B/ cos 2t D 3 sin 2t

which implies ²�3A � 2B D 3;

2A � 3B D 0:

Solving, we find A D � 9
13

and B D � 6
13

. Thus z D � 9
13

sin 2t � 6
13

cos 2t .

(ii) Find a particular solution of x00 � x D t cos t . If we set z D Q1.t/ sin t C
Q2.t/ cos t , with Q1 D A1t C B1 and Q2 D A2t C B2, we find

z0 D Q0
1 sin t CQ1 cos t CQ0

2 cos t �Q2 sin t;

z00 D 2Q0
1 cos t �Q1 sin t � 2Q0

2 sin t �Q2 cos t:

Thus z00 � z D t cos t yields

2Q0
1 cos t �Q1 sin t � 2Q0

2 sin t �Q2 cos t � .Q1 sin t CQ2 cos t / D t cos t:

Rearranging, we find

Œ2Q0
1 � 2Q2� cos t � Œ2Q1 C 2Q0

2� sin t D t cos t:

It follows that Q1;Q2 satisfy the system²
2Q0

1 � 2Q2 D t;

2Q1 C 2Q0
2 D 0:

Recalling that Q1 D A1t C B1, Q2 D A2t C B2, we get²
2A1 � 2.A2t C B2/ D t;

2.A1t C B1/C 2A2 D 0;

namely ²�2A2t C 2A1 � 2B2 D t;

2A1t C 2B1 C 2A2 D 0:
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It follows that A2 D � 1
2

, B1 D �A2 D 1
2

, A1 D B2 D 0. In conclusion, z D
1
2

sin t � 1
2
t cos t .

Next, we consider the resonant case, which arises if i� is a root of the characteris-
tic equation am2 C bm C c D 0. Once more we deal with a specific example. The
student can easily deduce the general procedure.

Example 5.6.4. Find a particular solution of x00Cx D t cos t . This is a resonant case.
Setting z D Q1 sin t CQ2 cos t , with Qi D t .Ai t C Bi / D Ai t

2 C Bi t (i D 1; 2)
and repeating the previous calculations we obtain

z00 C z D Q00
1 sin t C 2Q0

1 cos t CQ00
2 cos t � 2Q0

2 sin t D t cos t

which yields the system ²
Q00

1 � 2Q0
2 D 0;

2Q0
1 CQ00

2 D t:

Since Q00
i D 2A1 and Q0

i D 2Ai t C Bi .i D 1; 2/ we find²
2A1 � 2.2A2t C B2/ D 0;

2.2A1t C B1/C 2A2 D t:

The first equation yieldsA2 D 0 andA1 D B2. The second,A1 D 1
4

andB1 D �A2.
Then A1 D B2 D 1

4
and B1 D A2 D 0. In conclusion, z D 1

4
t2 sin t C 1

4
t cos t .

We finally mention that if f .t/ D e˛t .P1.t/ sinˇt C P2.t/ cosˇt/, a case
that includes all the previous ones, one can find a particular solution by setting
z D e˛t .Q1.t/ sinˇt CQ2.t/ cosˇt/, where Q1;Q2 are polynomials to be deter-
mined. Now the resonant case is when ˛C iˇ is a root of the characteristic equation.
We do not give details because the calculations are pretty much the same as those
carried out in the preceding examples.

Remark 5.6.5. If f .t/ D f1.t/ C f2.t/, a particular solution can be z D z1 C z2,
where zi solve ax00 C bx0 C cx D fi , i D 1; 2.

Remark 5.6.6. (Nonhomogeneous Euler equations) As for the homogeneous Euler
equation, the substitution t D es transforms the nonhomogeneous Euler equation

at2x00 C btx0 C cx D h.t/; t > 0;

into

a
d2x

ds2
C .b � a/ dx

ds
C cx D h.es/;

which is a linear nonhomogeneous equation with constant coefficients and can be
handled either by the method of Variation of Parameters or using the method of Un-
determined Coefficients.
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Example 5.6.7. Find a particular solution z.t/ of t2x00 C tx0 � x D t2 � t , t > 0.
Setting t D es we get

d2x

ds2
� x D e2s � es :

Let us first find a solution of d2x
ds2 � x D e2s . To this end, we let x1 D Ae2s . Substi-

tuting, we obtain 4Ae2s � Ae2s D e2s and hence A � 1
3

, which yields x1 D 1
3
e2s .

Next, we find a solution of d2x
ds2 � x D �es . Now we are in the resonant case.

So, we let x2 D Ases . Substituting, we obtain Ases C 2Aes � Ases D �es , which
implies that A D �1

2
and x2 D � 1

2
ses .

Using Remark 5.6.5, it follows that a particular solution of d2x
ds2 � x D e2s � es is

x1 C x2 D 1
3
e2s � 1

2
ses .

Substituting t D es , namely s D ln t , we find that a particular solution of t2x00 C
tx0 � x D t2 � t , t > 0, is given by z.t/ D 1

3
t2 � 1

2
t ln t .

In the next subsection we discuss a remarkable example arising in applications.

5.6.1 The elastic spring

Let us consider the second order nonhomogeneous equation

x00 C !2x D sin!1t: (5.15)

As we saw in Example 5.1.1, this equation models the motion of a body attached to
a fixed point by an elastic spring, under the assumption that the body is subjected to
a sinusoidal external force f .t/ D sin!1t .

We have already seen that the general solution of the associated homogeneous
equation x00 C !2x D 0 is

x.t/ D c1 sin!t C c2 cos!t:

To find a solution of the nonhomogeneous equation it is convenient to distinguish the
cases whether ! 6D !1 or not.

(1) Case ! 6D !1. Setting z.t/ D ˛ sin!1t , one finds z00 D �˛!2
1 sin!1t . Then

z00 C !2z D sin!1t yields

�˛!2
1 sin!1t C !2˛ sin!1t D sin!1t:

Dividing through by sin!1t , we get .!2 � !2
1/˛ D 1. Since !2

1 6D !2 we find ˛ D
1=.!2 � !2

1/ and hence

z.t/ D 1

!2 � !2
1

sin!1t: (5.16)
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x(t)

Fig. 5.5. Beats: solutions of (5.15) when !1 � !

Thus the general solution of (5.15) is given by

x.t/ D c1 sin!t C c2 cos!t C 1

!2 � !2
1

sin!1t:

The resulting wave is a superposition of two oscillations with frequency !1 and !.
Particularly interesting is the case shown in Figure 5.5 in which the two frequencies
are very close. This phenomenon is called beat.

(2) Case ! D !1. This is the resonant case when the equation becomes

x00 C !2x D sin!t: (5.17)

According to the calculations carried out in Example 5.6.4 (i), let us try to find
a particular solution z of the form z D t .˛ sin!t C ˇ cos!t/. We obtain z0 D
˛ sin!tC˛t! cos!tCˇ cos!t�ˇt! sin!t; and z00 D 2˛! cos!t�˛t!2 sin!t�
2ˇ! sin!t � ˇt!2 cos!t . Then

z00 C !2z D 2˛! cos!t � ˛t!2 sin!t � 2ˇ! sin!t � ˇt!2 cos!t

C !2.˛t sin!t C ˇt cos!t/ D 2˛! cos!t � 2ˇ! sin!t:

From z00 C !2z D sin!t , it follows that

2˛! cos!t � 2ˇ! sin!t D sin!t

which yields ˛ D 0 and �2ˇ! D 1, that is ˇ D �1=2! and thus

z.t/ D � 1

2!
t cos!t (5.18)

is a particular solution of the nonhomogeneous equation.
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Fig. 5.6. Resonance: solution of (5.17) for t > 0

Therefore the general solution of (5.17) is given by

x.t/ D c1 sin!t C c2 cos!t � t

2!
cos!t:

The graph of the solutions is shown in Figure 5.6 and shows that the presence of
t

2!
cos!t has the effect of producing oscillations of increasing amplitude.

Let us check this claim. To simplify the notation, we take c1 D ! D 1 and c2 D 0 so

that x.t/ D sin t � t

2
cos t . The general case is quite similar and is left as an exercise.

If we let sn D 2n
 , we have sin sn D 0 and cos sn D 1 so that x.sn/ D �n

which tends to �1. If we let tn D .2nC1/
 , then sin tn D 0 and cos tn D �1 so that

x.tn/ D n
 C 


2
which tends to C1. This implies that lim inft!C1 x.t/ D �1

and lim supt!C1 x.t/ D C1. Moreover, by the Intermediate Value Theorem, be-
tween sn and tn there are zeros of x.t/.

5.7 Oscillatory behavior of solutions

Consider the second order linear homogeneous equation

x00.t/C p.t/x.t/ D 0: (5.19)

For simplicity, we assume that p.t/ is continuous everywhere. Obviously, we can
restrict it only to the relevant interval, if we wish.

We say that a nontrivial solution x.t/ of (5.19) is oscillatory (or it oscillates) if for
any number T , x.t/ has infinitely many zeros in the interval .T;1/; or equivalently,
for any number � , there exists a number 
 > � such that x.
/ D 0. We also call the
equation (5.19) oscillatory if it has an oscillatory solution.

We will see below that simple observations about the coefficient p.t/ can give
us very interesting and important information about the oscillatory behavior of the
solutions of (5.19).
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First let us consider the special case

x00 C k2x D 0

which is the well-known equation for harmonic oscillator. If k is a nonzero con-
stant, then the roots of the characteristic equation are given by m D ˙k i and hence
x1 D sin k t and x2 D cos k t are two linearly independent oscillatory solutions.

To start with, let us note that for k D 1, x1 D sin t is a solution of x00 C x D 0

and this solution has exactly one zero in the interval .0; 2
/, namely at t D 
 .
For k D 2, x2 D sin 2t is a solution of x00 C 4x D 0 and it has three zeros in the

interval .0; 2
/, one at t D 
=2, one at t D 
 and one at t D 3
=2.
Based on the above observation, one would estimate that the larger the constant

k is, the faster the solutions oscillate. Actually, this happens to be a general fact that
was discovered by Jacques Charles Francois Sturm in 1836, and it has laid the foun-
dation for the theory of oscillation. We now state and prove two beautiful and simple
theorems due to Sturm.1

The first theorem below shows that the zeros of solutions are interlaced, that is,
between any two zeros of a given solution, there is a zero of any other linearly inde-
pendent solution. In the constant coefficient case, we see that this is true, since for
any k ¤ 0, x1 D sin kt and x2 D cos kt have this property; then it can be verified
that all solutions have this property (see Example 5.7.5 below).

Theorem 5.7.1 (Sturm Separation Theorem). Let x1.t/ and x2.t/ be two linearly
independent solutions of (5.19) and suppose a and b are two consecutive zeros of
x1.t/, with a < b; that is x1.a/ D x1.b/ D 0 and x1.t/ ¤ 0 on .a; b/. Then x2.t/

has exactly one zero in the interval .a; b/.

Proof. Notice that x2.a/ ¤ 0 ¤ x2.b/, otherwise x1 and x2 would have a common
zero and hence their Wronskian would be 0 and they could not be linearly indepen-
dent.

Suppose, by way of contradiction, that x2.t/ ¤ 0 on the open interval .a; b/. Then
x2.t/ ¤ 0 on the closed interval Œa; b�. Let

h.t/ D x1.t/

x2.t/
:

Then h is differentiable on Œa; b� and h.a/ D h.b/ D 0. Therefore by Rolle’s lemma,
there exists a number c, a < c < b, such that h0.c/ D 0. But h0.c/ D 0 implies that

x2.c/x
0
1.c/ � x1.c/x

0
2.c/

x2
2.c/

D 0:

This implies that x2.c/x
0
1.c/�x1.c/x

0
2.c/ D 0, which in turn implies that the Wron-

skian of x1.t/ and x2.t/ vanishes at t D c, contradicting their linear independence.

1 Sturm, C.: Mémoire sur les équations différentielles linéaires du second order. J. Math. Pures
Appl. 1, 106–186 (1836).
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Fig. 5.7. The zeros of x1.t/ and x2.t/

This proves that x2.t/ vanishes in the interval .a; b/. What remains to be shown is
that it cannot have more than one zero in this interval.

Suppose that there exist two numbers t1 and t2 in the interval .a; b/ such that
x2.t1/ D x2.t2/ D 0. Then by what we have just proved, there would exist a number
d between t1 and t2 such that x1.d/ D 0, contradicting the fact that a and b are
consecutive zeros of x1.t/.

An immediate consequence of this theorem is

Corollary 5.7.2. If (5.19) has one oscillatory solution, then all of its solutions are
oscillatory.

Theorem 5.7.3 (Sturm Comparison Theorem). Consider the two equations

x00 C p.t/x D 0; (5.20)

y00 C q.t/y D 0: (5.21)

Suppose that x.t/ is a nontrivial solution of (5.20) with consecutive zeros at x D a

and x D b. Assume further that p.t/ and q.t/ are continuous on Œa; b� and p.t/ �
q.t/, with strict inequality holding at least at one point in the interval Œa; b�. If y.t/
is any nontrivial solution of (5.21) such that y.a/ D 0, then there exists a number c,
a < c < b, such that y.c/ D 0.

Proof. Assume that the assertion of the theorem is false. First of all, we can assume,
without any loss of generality, that x.t/ > 0 on the interval .a; b/, otherwise we
can replace x.t/ by �x.t/ which is also a solution of the same equation and has the
same zeros as x.t/. Similarly we can assume that y.t/ > 0 on the interval .a; b/.
Multiplying the first equation by y.t/, the second equation by x.t/ and subtracting
the resulting second equation from the first equation, we obtain

y.t/x00.t/ � x.t/y00.t/C .p.t/ � q.t//x.t/y.t/ D 0:

Since yx00 � xy00 D .yx0 � xy0/
0
, if we integrate the above equation from a to b,
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we obtain

.yx0 � xy0/jba D
Z b

a

.q.t/ � p.t//x.t/y.t/dt:

Since x.a/ D x.b/ D y.a/ D 0, the above equation can be written as

y.b/x0.b/ D
Z b

a

.q.t/ � p.t/x.t/y.t//dt: (5.22)

Since x.t/ > 0 to the left of b and x.b/ D 0, we must have x0.b/ � 0. Furthermore,
since y.t/ is continuous and y.t/ > 0 for t to the left of b, we must have y.b/ 	 0.
Therefore, on the left-hand side of (5.22), we have y.b/x0.b/ � 0.

Since, by assumption, q.Nt /�p.Nt / > 0 for some Nt in the interval Œa; b� and q.t/�
p.t/ is continuous, then it will stay positive on some subinterval of Œa; b� containing
Nt . Since .q.t/ � p.t//x.t/y.t/ 	 0 in Œa; b� and .q.t/ � p.t//x.t/y.t/ > 0 in some
subinterval of Œa; b�, it follows from the definition of the Riemann integral thatZ b

a

.q.t/ � p.t//x.t/y.t//dt > 0:

We have shown that the right-hand side of (5.22) is positive and the left-hand side is
less than or equal to 0. This contradiction proves the theorem.

Corollary 5.7.4. All solutions of (5.21) vanish between a and b.

Proof. Let z.t/ be a given solution of .5:21/. We have shown that x.t/ vanishes at a
and at some number c, a < c < b. By the Sturm Separation Theorem, z.t/ has a zero
between a and c and hence between a and b if z and x are linearly independent. If
they are linearly dependent, then they are constant multiples of each other and have
the same zeros. Since x.t/ has a zero in .a; b/, then so does z.

Example 5.7.5. Show that between any two zeros of cos t there is a zero of 2 sin t �
3 cos t .

We recall that sin t and cos t are two linearly independent solutions of x00Cx D 0.
In view of the Sturm Separation Theorem, it suffices to show that cos t and .2 sin t�
3 cos t / are linearly independent solutions. Evaluating their Wronskian, we have

W.cos t; 2 sin t � 3 cos t / D 2 sin2 t C 2 cos2 t D 2:

Therefore the two functions are linearly independent.

Example 5.7.6. x1 D et and x2 D .t2 � 1/e2t cannot be solutions of (5.19) for any
continuous function p.t/.

This follows from the fact that t D ˙1 are two zeros of x2 but x1 has no zero
between 1 and �1, contradicting the Sturm Separation Theorem.
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Proposition 5.7.7. If limt!C1 p.t/ > 1, then x00 C p.t/x D 0 is an oscillatory
equation.

Proof. Since limt!C1 p.t/ > 1, we can choose a number T such that for t 	 T ,
p.t/ > 1. Comparing the solutions of x00 C p.t/x D 0 with those of x00 C x D 0,
it follows that for t 	 T , every solution of x00 C p.t/x D 0 has a zero between any
two zeros of sin t . The assertion follows from the fact that the zeros of sin t are not
bounded above.

Example 5.7.8. Show that

x00 C 2t6 � 2t4 C 3t � 1
t6 C 3t2 C 1

x D 0 (5.23)

is an oscillatory equation.
Dividing by t6, we see that

lim
t!1

2t6 � 2t4 C 3t � 1
t6 C 3t2 C 1

D 2:

Using the preceding Proposition, we infer that (5.23) is oscillatory.

Theorem 5.7.3 is completed by the following proposition.

Proposition 5.7.9. If p.t/ � 0, p.t/ 6� 0; then no solution of (5.19) can have more
than one zero.

Proof. Suppose that (5.19) has a solution x1.t/ with two zeros t1 and t2. Then con-
sider the equation y00Cq.t/y D 0, where q.t/ � 0, so that y00 D 0. Since q.t/ 	 p.t/

and q.t/ 6� p.t/, by the Sturm Comparison Theorem, every solution of y00 D 0 has
a zero between t1 and t2. Integrating y00 D 0, we see that its solutions are given by
y D atCb, a and b constants. Let y1.t/ be the solution of y00 D 0 satisfying the ini-
tial condition y1.t1/ D x1.t1/ D 0 (this can be done either by invoking the existence
theorem or directly by choosing a and b so that at1 C b D 0 ). Then by the Sturm
Comparison Theorem, y1.t/must have a zero between t1 and t2, which is impossible
since y1.t/ D a1t C b1, for some numbers a1 and b2, and cannot have two zeros.
This contradiction proves the assertion.

A careful examination of the above results shows that there is an obscure assump-
tion that the zeros of solutions of (5.19) are isolated, that is, in any finite interval
Œ˛; ˇ�, there can be only a finite number of them. If this were not the case, then we
would not be able to take two consecutive zeros, just as we cannot take two con-
secutive rational numbers. Recall that t1 and t2 are two consecutive zeros of x.t/ if
x.t1/ D x.t2/ D 0 and x.t/ ¤ 0 in .t1; t2/. How do we know that the interval .t1; t2/
does not contain infinitely many zeros of x1.t/ for any number t2 > t1?

We now give a proof of the fact that zeros of solutions of (5.19) are isolated. The
proof can be easily followed by readers with adequate knowledge of introductory
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level Analysis. Those who do not have the proper background may skip the proof
and simply note and use this property of the zeros of solutions, when needed.

Definition 5.7.10. A number ˛ is a limit point (or accumulation point) of a set S of
real numbers if every open interval containing ˛ contains infinitely many points of
the set S .

The following theorem is a special case of a theorem due to Bernard Bolzano
and Karl Weierstrass, 1817. It can be found in almost all introductory level Analysis
books. We skip the proof of this theorem and ask interested readers to consult an
Analysis book.

Theorem 5.7.11 (Bolzano–Weierstrass). Every infinite bounded set of real numbers
has a limit point.

Theorem 5.7.12. Let y.t/ be a nontrivial solution of (5.19) and let Œa; b� be any
closed interval. Then y.t/ has a finite number of zeros in Œa; b�.

Proof. Suppose that y.t/ has infinitely many zeros in the interval Œa; b�. Let S be
the set of zeros of y.t/ in Œa; b�. Then by the Bolzano–Weierstrass Theorem, S has
a limit point Nt , which, by the definition of limit points, cannot be outside the inter-
val Œa; b�. By the definition of limit points, for every natural number k, the interval
.Nt �1=k; NtC1=k/ contains a point of S distinct from Nt , denoted by tk . It is then clear
that the sequence .tk/ converges to Nt as k ! 1.

By Rolle’s Lemma, in each interval .Nt � 1=k; Nt C 1=k/, there is a number sk such
that y0.sk/ D 0. This follows from the fact that the interval .Nt � 1=k; Nt C 1=k/ con-
tains infinitely many zeros of y; applying Rolle’s lemma to any two zeros of y in
this interval will give us a number sk where y0 vanishes. Again, it is clear that the
sequence .sk/ converges to Nt as k ! 1.

It follows from continuity of y.t/ and y0.t/ that y.tk/ ! y.Nt / and y0.sk/ ! y0.Nt /.
Now, since for each k, y.tk/ D y0.sk/ D 0, it follows that y.Nt / D y0.Nt / D 0.

Since z.t/ � 0 is also a solution of (5.19) satisfying the initial conditions z.Nt / D
z0.Nt / D 0, it follows from the uniqueness of solutions that y.t/ � 0, contradicting
the assumption that y.t/ is nontrivial.

We wish to point out an important fact concerning the results in this section and
that is the fact that studying equations of the form (5.19) instead of

x00 C p.t/x0 C q.t/x D 0 (5.24)

is not a great disadvantage. This is because any equation of the form (5.24) can be
transformed into an equation of the form (5.19) by making the substitution

x.t/ D y.t/e� 1
2

R
p.t/dt
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assuming that p0.t/ and q.t/ are continuous. Notice that x.t/ and y.t/ have the same
set of zeros. The proof is left as an exercise.

5.8 Some nonlinear second order equations

In this section we briefly deal with some special classes of nonlinear second order
equations that can be solved by a reduction of the order.

5.8.1 Equations of the type F.t; x0; x00/ D 0

Consider the equation
F.t; x0; x00/ D 0 (5.25)

where the dependent variable x is missing.
We let z D x0 and get z0 D x00, and we find F.t; z; z0/ D 0 which is a first order

equation. If z.t/ D �.t; c/ is a family of solutions of this equation, then integrating
x0 D z D �.t; c/ we find

x.t/ D
Z
�.t; c/dt C c0

which is a solution of F.t; x0; x00/ D 0, for all c0 2 R.

Example 5.8.1. Solve the initial value problem x00 D 2tx0, x.0/ D 0; x0.0/ D 1.
The equation x00 D 2tx0 is of the form (5.25). Setting z D x0 we reduce the prob-
lem to the first order separable equation z0 D 2tz. Then z.t/ D c et2

. For t D 0

from x0.0/ D z.0/ D 1 it follows that 1 D c. Since x0 D z we find x0.t/ D et2
.

Integrating, we find x.t/ D R t

0
et2
dt which takes into account the initial condition

x.0/ D 0.

5.8.2 Equations of the type F.x; x0; x00/ D 0

Consider the equation
F.x; x0; x00/ D 0 (5.26)

where the independent variable t is missing.
As in Example 5.1.6, we let z D x0. But now we use the Chain Rule, obtaining

x00 D dx0

dt
D dz

dt
D dz

dx

dx

dt
D z

dz

dx
: (5.27)

Substituting in Equation (5.26), we obtain the first order equation

F.x; z; z
dz

dx
/ D 0: (5.28)
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Let z D �.x; c1/ be a family of solutions of (5.28), depending on a constant c1. Then
from z D x0 we infer

dx

dt
D �.x; c1/

which is a separable equation that can be integrated. Assuming that �.x; c1/ never
vanishes we obtain solutions of (5.26) in the formZ

dx

�.x; c1/
D t C c2; c2 2 R:

An important class of equations that can be solved using the preceding method is
x00 D f .x/. In this case we find the separable equation z dz

dx
D f .x/ that can be in-

tegrated. Equations like x00 D f .x/ will be discussed more extensively in Chapter 8.

Example 5.8.2. Solve x00 D 2xx0; x.0/ D 0; x0.0/ D 1. The equation x00 D 2xx0
is of the form (5.26). We let z D x0 and then using the Chain Rule, we have x00 D
dz

dt
D dz

dx

dx

dt
D z

dz

dx
. Now we have reduced the problem to solving the first order

equation

z
dz

dx
D 2xz:

One solution is z � 0, but it does not satisfy the initial condition z.0/ D 1. Dividing
by z, we find dz

dx
D 2x, hence z.x/ D x2 C c1. For x D 0 we have z.0/ D 1 and

hence c1 D 1. The problem becomes x0 D x2 C 1 with x.0/ D 0. Integrating we
find Z

dx

x2 C 1
D t C c2

namely arctan x D t C c2. The initial condition x.0/ D 0 yields c2 D 0. Thus
arctan x D t and finally x.t/ D tan t , jt j < �

2
.

5.8.3 Equations of the form F.t; x; x0; x00/ D 0 with
F homogenous

Consider the equation
F.t; x; x0; x00/ D 0 (5.29)

where F is a homogeneous function of degree k with respect to x; x0; x00, namely
F.t; �x; �x0; �x00/ D �kF.t; x; x0; x00/, for all � 2 R for which �k makes sense.

The homogeneity of F suggests to try to find solutions such that x0 D xz. Setting
x0.t/ D x.t/z.t/we find x00 D zx0Cxz0 D xz2Cxz0 and hence F.t; x; x0; x00/ D 0

yields F.t; x; xz; xz2 C xz0/ D 0. Using the homogeneity of F one finds

F.t; x; xz; xz2 C xz0/ D xkF.t; z; z2 C z0/;

yielding the first order equation

F.t; z; z2 C z0/ D 0:
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For example, if the given equation is x00 D f .t; x; x0/ and f is homogeneous of
degree 1 with respect to x; x0, we find z2 C z0 D f .t; z/.

If �.t; c1/, c1 2 R, is a family of solutions of F.t; z; z2 C z0/ D 0, then x0.t/ D
x.t/�.t; c1/ yields x.t/ D c2 e

�.t;c1/, c2 2 R. To this two parameter family of solu-
tions we have to add the trivial solution x.t/ � 0.

If we want to solve the initial value problem

F.t; x; x0; x00/ D 0; x.t0/ D x0 6D 0; x0.t0/ D x1;

then from x.t/ D x0.t/z.t/ we infer x1 D x0z.t0/ that is z.t0/ D x1=x0. So we
have to solve the ivp F.t; z; z2 C z0/ D 0, z.t0/ D x1=x0.

Example 5.8.3. Solve

xx00 � x02 � 2tx2 D 0; x.0/ D 1; x0.0/ D 0:

Here F.t; x; x0; x00/ D xx00 � x02 � 2tx2 is homogeneous of degree 2. Setting x0 D
xz we find x00 D xz2 C xz0. Hence

x.xz2 C xz0/ � x2z2 � 2tx2 D 0

and canceling x2z2, we get x2z0 � 2tx2 D 0, namely

x2.z0 � 2t/ D 0:

Notice that in the present case, the trivial solution x.t/ � 0 does not satisfy the initial
condition x.0/ D 1. The general integral of the first order equation z0 � 2t D 0 is
z D �.t; c1/ D t2 C c1. For t D 0, one has z.0/ D x0.0/ D 0 and hence c1 D 0.
Then z.t/ D t2 and x0 D xz yields the separable equation

x0 D t2x H) x.t/ D c2 e
1
3 t3

:

Using the initial condition x.0/ D 1, we obtain c2 D 1. Thus

x.t/ D e
1
3 t3

is the solution we were seeking.

For second order equations one can consider problems like

x00 D f .t; x; x0/; x.a/ D ˛; x.b/ D ˇ;

that are called boundary value problems because we require that the solution assumes
some given values for t at the boundary of the interval Œa; b�.

One can also take the interval to be all the real line and seek for solutions that
have a prescribed limit as t ! ˙1. Problems of this kind related to the equation
x00 D f .x/ will be discussed in Chapters 8 and 13.
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5.9 Exercises

A. Linear independence and Wronskian

A1. Show that x1 D t3 � t2 and t3 � 3t are linearly independent.

A2. Consider the functions f .t/ D sin t and g.t/ D t2.
a) Using the definition of linear independence, explain why they are linearly

independent.
b) Using a Wronskian argument, explain why they are linearly independent.
c) Explain why they cannot be solutions of a differential equation x00 C
p.t/x0 C q.t/x D 0, where p and q are continuous functions.

A3. Show that if x1 and x2 are linearly independent, then so are their linear com-
binations z1 D 2x1 C 3x2 and z2 D 2x1 � 3x2.

A4. a) Prove that if the Wronskian of two differentiable functions f .t/ and g.t/,
not necessarily solutions of differential equations, is nonzero at one point
of an interval I , then they are linearly independent.

b) Prove that if they are linearly dependent, then their Wronskian is identi-
cally equal to 0.

A5. Show that x1 D tan t and x2 D sin t are linearly independent on the interval
.0; 
/.

A6. Solve the initial value problem

W.t2 C 1; f .t// D 1; f .0/ D 1:

A7. Show that if x1.t/ and x2.t/ are two linearly independent functions, and z.t/
is a function such that z.t/ > 0 on I , then zx1 and zx2 are also linearly inde-
pendent on I .

A8. Give an example to show that the following statement is false: if two func-
tions f1 and f2 are linearly independent in an interval I , then they are also
independent in any subinterval J of I .

A9. Show that if x1 and x2 are linearly dependent on an interval I , then they are
linearly dependent in any subinterval J of I .

A10. Show that if two solutions of a second order homogeneous differential equa-
tion with continuous coefficients on I have a common zero then all their zeros
are in common.

A11. Let x1 and x2 be two solutions of x00 C x
t

C q.t/x D 0; t > 0, where q.t/ is
a continuous function. Given that W.6/ D 7, find W.7/.

B. Homogeneous equations with constant coefficients

Solve each of the following:

B1. 2x00 C x0 � x D 0.
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B2. x00 C 2x0 C 2x D 0.

B3. x00 C 8x C 16 D 0.

B4. x00 C 2x0 � 15x D 0; x.0/ D 1; x0.0/ D 1.

B5. x00 � 3x0 C 2x D 0; x.1/ D 0; x0.1/ D 1.

B6. 4x0 C 2x00 D �5x; x.0/ D 0; x0.0/ D 1.

B7. x00 � 6x0 C 9x D 0; x.0/ D 0; x0.0/ D 1.

B8. Show that for ˇ 	 0, x00 C x0 � ˇx D 0 will always have some solutions that
do not approach 0 as t ! C1.

B9. For which values of ˇ will all solutions of

x00 C x0 � ˇx D 0

go to 0 as t goes to 1?

B10. Show that all the solutions of x00 C 4x0 C kx D 0 go to 0 as t ! C1 if and
only if k 	 0.

B11. Show that the equation x00 C bx0 C cx D 0; x.0/ D 0, has infinitely many
solutions and none of them, except the trivial solution, can have a maximum
or a minimum point on the t-axis.

B12. Find a second order linear homogeneous equation whose corresponding char-
acteristic equation has m D 3 � 7i as one of its roots.

B13. Show that any solution of x00 C 5x0 C 6x D 0 tends to zero as t ! C1.

B14. Show that if p > 0 then any solution of x00 C px0 D 0 tends to a constant as
t ! C1, while if p < 0 only one solution tends to a constant.

B15. Find a such that the solution of x00 C x0 � 2x D 0, x.0/ D a; x0.0/ D 1 tends
to zero as t ! C1.

B16. Show that all solutions of x00 � 2x0 C 2x D 0 are bounded on .�1; 0�, and
unbounded on as Œ0;1/.

B17. Find conditions on a; b such that the solutions of x00 � 2ax0 C bx D 0 are
oscillating functions.

B18. Find � 6D 0 such that the boundary value problem x00 C �2x D 0, x.0/ D
x.
/ D 0, has nontrivial solutions.

B19. Find a 6D b such that the boundary value problem x00 Cx D 0, x.a/ D x.b/ D
0, has nontrivial solutions.

B20. Show that the boundary value problem x00 � x D 0, x.0/ D x.1/ D 0, has
only the trivial solution.

B21. Show that the problem x00 C x0 � 2x D 0, x.0/ D 0, limt!C1 x.t/ D 0 has
only the trivial solution x.t/ D 0.

B22. Solve x00 � 2x0 C 5x D 0, x.0/ D 1, x.
=4/ D 0.
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B23. Find � such that x00 � 2x0 C 5x D 0, x.0/ D 0, x0.�/ D 0, has only the trivial
solution.

B24. Solve x00 C 2x0 D 0, x.0/ D 0, limt!C1 x.t/ D a.

C. Nonhomogeneous equations with constant coefficients

C1. Solve (i) x00 � 4x D t , and (ii) x00 � 4x D t2et .

C2. Solve (i) x00 � x D e2t and (ii) x00 � x D te2t .

C3. Solve x00 � x0 D t .

C4. Solve x00 � 3x0 � x D t2 C t .

C5. Solve (i) x00 C x D sin 2t and (ii) x00 C x D t sin 2t .

C6. Solve x00 C x D � cos 3t .

C7. Solve x00 C x D sin 2t � cos 3t .

C8. Solve x00 C 2x D cos
p
2 t .

C9. Solve x00 C 4x D sin 2t .

C10. Solve x00 C x D ˛ sin t C ˇ cos t .

C11. Solve x00 C 9x D sin t C sin 3t .

C12. Solve the boundary value problem x00 � x D t , x.0/ D x.1/ D 0.

C13. Find k such that the solution of x00 C 4x0 � x D k, x.0/ D 0; x0.0/ D 0 tends
to �1 as t ! C1.

C14. Show that if � 6D 0 and h.t/ > 0 then any (possible) nontrivial solution of the
boundary value problem x00 � �2x D h.t/, x.a/ D x.b/ D 0, has to change
sign in .a; b/.

C15. Show that for all a 6D 0 the boundary value problem x00 � 2x D 2et , x.0/ D
x.a/ D 0, has a unique solution.

D. Miscellanea

D1. Show that

x00 C t5 C 1

t4 C 5
x D 0

is an oscillatory equation.

D2. Which one of the following two equations has solutions that oscillate more
rapidly?

x00 C
p
t6 C 3t5 C 1 x D 0;

x00 C 2t3x D 0:

D3. Explain why no nontrivial solution of (5.19) can vanish at each of the numbers
0; 1; 1=2; 1=3; : : : 1=n : : :.
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D4. Consider the boundary value problem

x00 � p.t/x D q.t/; x.a/ D x.b/ D 0:

Show that if p.t/ and q.t/ are continuous, with q.t/ > 0, on the interval Œa; b�,
then there is a unique solution of this boundary value problem.

D5. Show that, assuming that p0.t/ and q.t/ are continuous, the substitution

x.t/ D y.t/e� 1
2

R
p.t/dt

transforms the equation

x00 C p.t/x0 C q.t/x D 0

into the form (5.19).

D6. Determine the oscillation of

x00 C x0 C x D 0

in two ways.
(a) by transforming it to the form x00 C p.t/x D 0,
(b) by solving the equation explicitly.

D7. Determine the oscillation of

x00 � 1

4
tx0 C x D 0:

D8. Let u00 C p1.t/u D 0 and v00 C p2.t/v D 0, with v.t/ 6D 0 in Œa; b�.
(a) Prove the Picone Identity�u

v
.u0v � uv0/

�0 D .p2 � p1/u
2 C

�
u0 � v0u

v

�2

:

b) Use this to prove the Sturm comparison theorem.

D9. Let u00 C p1.t/u D 0 and v00 C p2.t/v D 0 with p2.t/ > p1.t/ in .a; b/.
Suppose that u.a/ D v.a/ D 0, u0.a/ D v0.a/ D ˛ > 0. Show that there
exists 	 > 0 such that v.t/ > u.t/ in .a; aC 	/.

D10. Solve the initial value problem x00 D x0

t
, x.1/ D 0, x0.1/ D 1.

D11. Solve x00 D 2x0.x � 1/, x.0/ D 0, x0.0/ D 1.

D12. Solve x00 D 2x03x.

D13. Solve xx00 � 2x02 � x2 D 0.

D14. Solve .a/ xx00 � x02 C etx2 D 0, x.0/ D 1, x0.0/ D �1, and .b/ xx00 � x02 C
etx2 D 0, x.0/ D �1, x0.0/ D �1:

D15. Solve the Euler equation t2x00 � 2x D 0; t > 0.

D16. Solve t2x00 C atx0 C x D 0, t > 0.

D17. Solve t2x00 � tx0 � 3x D 0; x.1/ D 0; x0.1/ D 1, t > 0.
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D18. Solve the nonhomogeneous Euler equation t2x00 C tx0 C x D t; t > 0.

D19. Solve t2x00 C 3tx0 � 3x D t2; t > 0:

D20. Show that a solution of x00 � tx0 C 3x D 0 is a polynomial P of degree 3.
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Higher order linear equations

6.1 Existence and uniqueness

Almost everything we learned in Chapter 5 about second order equations can be eas-
ily seen to be true for the corresponding higher order equations. Therefore, in order
to avoid unnecessary repetition, here, for the most part, we simply state the more
general results and give examples. In a few cases, when the generalizations are not
so obvious, we will provide the explanations and proofs.

First we state the existence and uniqueness theorem, which follows from Theo-
rems 4.2.2 and 4.2.3 in Chapter 4.

Theorem 6.1.1. Consider the equation

p0.t/x
.n/.t/C p1.t/x

.n�1/.t/C : : :C pn.t/x.t/ D f .t/; .6:1/

where the coefficient functions pi .t/, 0 � i � n, and f .t/ are continuous on a given
interval I � R, with p0.t/ ¤ 0. Then for any number t0 in I , there exists a unique
solution x.t/ of .6:1/ satisfying the initial conditions

x.t0/ D ˛1; x
0.t0/ D ˛2; : : : ; x

.n�1/.t0/ D ˛n;

where ˛i ; 1 � i � n are any real numbers. Furthermore, this solution exists for all
t in I .

In equation .6:1/, we normally take the leading coefficient p0.t/ to be equal to
one, which is the same as dividing the equation by p0.t/. The above theorem treats
the most general linear nonhomogeneous equation. If we take f .t/ � 0, we have the
existence and uniqueness theorem for the most general linear homogeneous equation.

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT – La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_6, © Springer International Publishing Switzerland 2014
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6.2 Linear independence and Wronskian

Similar to the case for second order equations, functions f1; f2; : : : ; fn are said to be
linearly independent on an interval I if for any n constants c1; c2; : : : ; cn, c1f1.t/C
c2f2.t/ C : : : C cnfn.t/ � 0, t in I , implies that c1 D c2 D : : : D cn D 0.
Functions that are not linearly independent are said to be linearly dependent, i.e. they
are linearly dependent if there exist constants ci , 1 � i � n, not all 0, such that
c1f1.t/C c2f2.t/C : : :C cnfn.t/ � 0.

We recall that linear dependence had an easy and very useful characterization in
the second order case, that is two functions are linearly dependent if and only if one
of them is a constant multiple of the other. For higher order equations, an analogous
statement would be that n functions are linearly dependent if and only if any one of
them is a linear combination of the others, which is not as useful as in the second
order case. However, it is useful to know that if any subset of two or more of a given
set of n functions are linearly dependent, then all n of them are linearly dependent.
The converse is, of course, false.

Example 6.2.1. The functions f1.t/ D sin t; f2.t/ D cos t; f3.t/ D et ; f4.t/

D p
2 sin t are linearly dependent since f1 and f4 are linearly dependent. We note

that since .�p
2/ � sin tC .1/ �p2 sin t � 0, we can write .�p

2/ � sin tC .0/ �cos tC
.0/ � et C .1/ � p

2 sin t � 0, which satisfies the definition of linear dependence of
f1; f2; f3; f4 with c1 D �p

2; c2 D 0:c3 D 0; c4 D 1.

We now extend the notion of the Wronskian to n functions and write

W.f1; f2; : : : ; fn/.t/ D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
f1.t/ f2.t/ � � � fn.t/

f 0
1.t/ f 0

2.t/ � � � f 0
n.t/

:::

f
.n�1/

1 .t/ f
.n�1/

2 .t/ � � � f
.n�1/

n .t/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ :

Theorem 6.2.2 (Abel’s Theorem). If x1; x2; : : : ; xn are solutions of

x.n/.t/C p1.t/x
.n�1/.t/C : : :C pn.t/x.t/ D 0 .6:2/

on some interval I , where the coefficients pi , 1 � i � n, are continuous, then

W.x1; x2; : : : ; xn/.t/ D c e
R �p1.t/dt :

As a consequence, W.x1; x2; : : : ; xn/.t/ is either identically zero or it never van-
ishes.

We give the proof for n D 3. The proof for higher order equations is identical but
cumbersome.
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Proof. Using the formula for the derivative of a determinant and the fact that x000
i D

�p1x
00
i � p2x

0
i � p3xi , i D 1; 2; 3, we have

W 0.t/ D d

dt

ˇ̌̌̌
ˇ̌x1 x2 x3

x0
1 x0

2 x0
3

x00
1 x00

2 x00
3

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌x

0
1 x0

2 x0
3

x0
1 x0

2 x0
3

x00
1 x00

2 x00
3

ˇ̌̌̌
ˇ̌C

ˇ̌̌̌
ˇ̌x1 x2 x3

x00
1 x00

2 x00
3

x00
1 x00

2 x00
3

ˇ̌̌̌
ˇ̌C

ˇ̌̌̌
ˇ̌x1 x2 x3

x0
1 x0

2 x0
3

x000
1 x000

2 x000
3

ˇ̌̌̌
ˇ̌ D

D
ˇ̌̌̌
ˇ̌ x1 x2 x3

x0
1 x0

2 x0
3

�p1x
00
1 � p2x

0
1 � p3x1 �p1x

00
2 � p2x

0
2 � p3x2 �p1x

00
3 � p2x

0
3 � p3x3

ˇ̌̌̌
ˇ̌ :

Now, if we multiply the first row in the last determinant by p3 and add it to the
third row and then multiply the second row by p2 and add it to the third row, we
obtain

W 0.t/ D
ˇ̌̌̌
ˇ̌ x1 x2 x3

x0
1 x0

2 x0
3�p1x

00
1 �p1x

00
2 �p1x

00
3

ˇ̌̌̌
ˇ̌ D �p1.t/W.t/:

This shows that W 0 C p1.t/W D 0. Solving this linear first order equation for W ,
the assertion of the theorem follows.

We now summarize some obvious generalizations of the second order equations.

1. Any linear combination x.t/ D c1x1.t/C c2x2.t/C : : :C cnxn.t/ of solutions
x1; x2; : : : xn of .6:1/ is also a solution.

2. The Wronskian of solutions of .6:2/ is either always zero or it is never zero in the
interval where the solutions are defined.

3. If the Wronskian of arbitrary functions f1; f2; : : : ; fn is different from zero at one
point of an interval where it is defined, then the functions are linearly independent
on that interval. The contrapositive statement would be that if they are linearly
dependent, then their Wronskian is identically equal to zero.

4. If x1; x2; : : : ; xn are solutions of .6:2/, then they are linearly independent if and
only if their Wronskian is different from zero.

5. If x1; x2; : : : ; xn are solutions of .6:2/, whose Wronskian is different from zero,
then they are a fundamental set of solutions, that is,

x D c1x1 C c2x2 C : : :C cnxn

is the general solution of .6:2/.

6.3 Constant coefficients

Consider
H.x/ D x.n/ C a1x

.n�1/ C : : :C anx .6:3/

where ai , 1 � i � n, are constant real numbers. As in the case of second order
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equations, in order to solve

x.n/ C a1x
.n�1/ C : : :C anx D 0 .6:4/

we substitute x D emt in the equation, which gives rise to the characteristic (or
auxiliary) equation

C.m/ D mn C a1m
n�1 C : : :C an D 0: .6:5/

The biggest difference between the second order equations with constant coefficients
and the more general equations is that for the second order, we could always solve the
characteristic equation by the Quadratic Formula, whereas for the more general case
there is no method by which we can explicitly solve the above characteristic equation.
Nevertheless, reducing the original differential equation to an algebraic equation is
still simpler to deal with and has important theoretical implications.

The following is a summary of the extensions. We give proofs when the extensions
do not follow from arguments similar to those given in the second order case.

Theorem 6.3.1. (i) Let m1; m2; : : : ; mr be the distinct roots of the characteristic
equation corresponding to .6:3/, and let qi represent the multiplicity of mi . Then
tkemi t is a solution for k D 1; : : : ; qi � 1.

(ii) The solutions tkemi t ; k D 0; 1; : : : ; qi � 1I i D 1; 2; : : : ; r are linearly in-
dependent.

We prove this theorem for n D 3.
Suppose that the characteristic equationm3 Ca1m

2 Ca2mCa3 D 0 has distinct
roots m1; m2; m3.

First of all, it is easy to check the fact that em1t ; em2t ; em3t are solutions of
the given differential equation. To show that they are linearly independent, we sup-
pose, by contradiction, that there exist constants c1; c2; c3, not all zero, such that
c1e

m1t C c2e
m2t C c3e

m3t D 0. Suppose, without loss of generality, c3 ¤ 0. Then
multiplying both sides of the equation by e�m1t , we obtain c1 C c2e

.m2�m1/t C
c3e

.m3�m1/t D 0: Taking the derivative of both sides and multiplying by em1t , we
get c2.m2 � m1/e

m2t C c3.m3 � m1/e
m3t D 0. We multiply both sides by e�m2t ,

obtaining c2.m2 �m1/C c3.m3 �m1/e
.m3�m2/t D 0. Taking the derivative again

and multiplying both sides by em2t , we have c3.m3 �m1/.m3 �m2/e
m3t D 0. Since

m1; m2; m3 are all distinct, i.e. not equal to each other, we must have c3 D 0, which
is a contradiction.

An alternate proof of linear independence consists of using Abel’s theorem. Let
W.t/ be the Wronskian of em1t ; em2t ; em3t . One has

W.t/ D
ˇ̌̌̌
ˇ̌ e

m1t em2t em3t

m1e
m1t m2e

m2t m3e
m3t

m2
1e

m1t m2
2e

m2t m2
3e

m3t

ˇ̌̌̌
ˇ̌ :
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For t D 0 one has

W.0/ D
ˇ̌̌̌
ˇ̌ 1 1 1

m1 m2 m3

m2
1 m2

2 m2
3

ˇ̌̌̌
ˇ̌ :

Multiplying the first row by �m1 and adding it to the second row, and multiplying
the first row by �m2

1 and adding it to the third row one obtains W.0/ D .m3 �
m2/.m3 � m1/.m2 � m1/. Since mi 6D mj if i 6D j , then W.0/ 6D 0 proving that
em1t ; em2t ; em3t are linearly independent.

Next, suppose that one of the roots is a simple root and one of them is a double
root. Without loss of generality, assume that m1 is a simple root and m2 is a double
root. To show that the corresponding solutions em1t ; em2t ; tem2t are linearly inde-
pendent, we show that their Wronskian at t D 0 is nonzero.

W.t/ D
ˇ̌̌̌
ˇ̌ e

m1t em2t tem2t

m1e
m1t m2e

m2t em2t C tm2e
m2t

m2
1e

m1t m2
2e

m2t 2m2e
m2t C tm2

2e
m2t

ˇ̌̌̌
ˇ̌

and hence

W.0/ D
ˇ̌̌̌
ˇ̌ 1 1 0

m1 m2 1

m2
1 m2

2 2m2

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
m2 1

m2
2 2m2

ˇ̌̌̌
�
ˇ̌̌̌
m1 1

m2
1 2m2

ˇ̌̌̌

D 2m2
2 �m2

2 � 2m1m2 Cm2
1 D m2

2 � 2m1m2 Cm2
1 D .m2 �m1/

2 6D 0:

Finally, suppose that the characteristic equation has one triple root m1, i.e. .m �
m1/

3 D 0 is the characteristic equation. Again, we show that the Wronskian of the
corresponding solutions emt ; temt t2emt is nonzero at t D 0:

W.t/ D
ˇ̌̌̌
ˇ̌ e

mt temt t2emt

memt emt Cmtemt mt2emt C 2temt

m2emt m2temt C 2memt m2t2emt C 4mtemt C 2emt

ˇ̌̌̌
ˇ̌ ;

W.0/ D
ˇ̌̌̌
ˇ̌ 1 0 0

m 1 0

m2 2m 2

ˇ̌̌̌
ˇ̌ D 2:

Example 6.3.2. Given that 1; 2; 5˙6i; 5˙6i are the roots of the characteristic equa-
tion, the general solution of the corresponding differential equation can be determined
to be x D c1e

t Cc2e
2t Cc3e

5t sin 6tCc4e
5t cos 6tCc5te

5t sin 6tCc6te
5t cos 6t .

Example 6.3.3. Find the general solution of the differential equation

x0000 C 4x D 0

which has application to the vibrating rod problem.
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In order to solve this equation, we need to find all the roots of the characteristic
equation m4 C 4 D 0, which is equivalent to finding the fourth roots of the number
�4. For this we use de Moivre’s formula.

.�4/1=4 D p
2.�1/1=4 D p

2 Œcos.
 C 2n
/C i sin.
 C 2n
/�1=4 D
p
2
h
cos

�

4

C n


2

�
C i sin

�

4

C n


2

�i
:

Letting n D 0; 1; 2; 3, we obtain the roots m D 1 C i; �1 C i; �1 � i; 1 � i .
Therefore, the general solution of the differential equation x0000 C 4x D 0 is x.t/ D
et .c1 sin t C c2 cos t /C e�t .c3 sin t C c4 cos t /:

6.4 Nonhomogeneous equations

The following theorem shows that, as with the second order equations, in order to
find the general solution of the nonhomogeneous equation .6:1/, we need the general
solution of the homogeneous equation .6:2/ and one solution of the nonhomogeneous
equation. The proof is similar to the case for the second order equations.

Theorem 6.4.1. If y D c1x1 C c2x2 C : : :C cnxn is the general solution of the ho-
mogeneous equation .6:2/ and xp is any solution of the nonhomogeneous equation
.6:1/, then x D y C xp is the general solution of .6:1/.

As in the second order case, we may use the method of Variation of Parameters or
Undetermined Coefficients to find a particular solution of the nonhomogeneous equa-
tion. These methods are straightforward generalizations of the second order equa-
tions.

Method of Variation of Parameters. In using the method of Variation of Parame-
ters, given that x1; x2; : : : ; xn are linearly independent solutions of .6:2/, one finds
functions v1; v2; : : : ; vn such that xp D v1x1 C v2x2 C : : :C vnxn is a solution of

.6:1/. This is accomplished by solving the system of equations
PiDn�1

iD1 v0
iy

.i�1/
i D 0

and v0
1x

.n�1/
1 C v0

2x
.n�1/
2 C : : :C v0

nx
.n�1/
n D f .t/.

Now we give an illustrative example of each method.

Example 6.4.2. Use the method of Variation of Parameters to find the general solu-
tion of

x000 � x00 C x0 � x D et :

First we find the general solution of the homogeneous equation

x000 � x00 C x0 � x D 0:

In order to do so, we find the roots of the characteristic equationm3�m2Cm�1 D 0.
This equation can be factored as .m�1/.m2C1/ D 0, yielding the rootsm D 1; i;�i ;
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which in turn gives us the general solution of the homogeneous equation to be y.t/ D
c1e

t C c2 sin t C c3 cos t .
In order to find a particular solution of the nonhomogeneous equation, we set xp D

v1e
t Cv2 sin tCv3 cos t and require that the functions v1, v2, v3 satisfy the following

equations:

et v0
1 C .sin t / v0

2 C .cos t / v0
3 D 0;

et v0
1 C .cos t / v0

2 � .sin t / v0
3 D 0;

et v0
1 � .sin t / v0

2 � .cos t / v0
3 D et :

Solving for v0
1; v

0
2; v

0
3, we obtain v0

1 D 1
2
; v0

2 D � 1
2
.et sin t C et cos t /; v0

3 D
�1

2
.et cos t � et sin t /. Integrating, we have

v1 D 1

2
t; v2 D �1

2

�
1

2
et .sin t � cos t /C 1

2
et .sin t C cos t /

�
D �1

2
et sin t

v3 D �1
2

�
1

2
et .sin t C cos t / � 1

2
et .sin t � cos t /

�
D �1

2
et cos t:

Consequently,

xp D 1

2
tet � 1

2
et sin2 t � 1

2
et cos2 t D 1

2
tet � 1

2
et D 1

2
et .t � 1/:

and the general solution of the given nonhomogeneous equation is x.t/ D c1e
t C

c2 sin t C c3 cos t C 1
2
et .t � 1/:

Method of Undetermined Coefficients. Recall that this method depends on making
a good guess and can be much simpler, when it works.

At first glance, it seems reasonable to try xp D aet and determine a so that xp

satisfies the equation x000 � x00 C x0 � x D et . But when we substitute, we get 0
on the left side. This is because aet is a solution of the corresponding homogeneous
equation. So, we try xp D atet . Then setting x000

p � x00
p C x0

p � xp D et , we obtain
2aet D et , which gives a D 1

2
. Thus xp D 1

2
tet .

Remark 6.4.3. Notice that the answer we got by the second method is not the same as
the one we got by using the first method. This should not be surprising since we were
only asking for solutions without specifying any initial values. There are infinitely
many solutions of the nonhomogeneous equation because each initial value problem
has a unique solution.

Also, if we think about it, the solution we got by using the first method can be
reduced to the one we got by using the second method. This is because 1

2
et .t � 1/ D

1
2
tet � 1

2
et and hence x.t/ D c1e

t C c2 sin t C c3 cos t C 1
2
et .t � 1/ becomes

x.t/ D .c1 � 1
2
/et C c2 sin t C c3 cos t C 1

2
et : Calling c0

1 D c � 1
2

, we find x.t/ D
c0

1e
t C c2 sin t C c3 cos t C 1

2
et .
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Example 6.4.4 (The Euler–Bernoulli beam equation). As an important problem
where higher order equations arise, we discuss the Euler–Bernoulli theory of the
(static) bending of an elastic uniform beam. According to this theory, the cross sec-
tions of the beam under deflection remain plane and normal to the deflected centroid
axis of the beam. Experience shows that this assumption is realistic at least for small
deflections. The internal forces acting on each cross section keep attached the two
parts in which the section divides the beam.

One finds that the deflection of the beam z D z.x/ satisfies the 4th order equation

d2

dx2

�
EI

d2z

dx2

�
D f .x/;

whereE is the elastic Young’s modulus of the beam, I is the second moment of area,
f .x/ is the distributed load. Note that here x is the independent variable and z the
dependent one. If both EI and f .x/ D � are constant, we find

EI
d4z

dx4
D �:

The characteristic equation ism4 D 0whose root ism D 0, with multiplicity 4. Thus
the general solution is z.x/ D c1 C c2xC c3x

2 C c4x
3 C zp where zp.x/ is a partic-

ular solution of the equation. It is easy to check that we can take zp.x/ D �
24EI

x4.
Then

z.x/ D c1 C c2x C c3x
2 C c4x

3 C �

24EI
x4: (6.1)

If we prescribe the deflection of the beam and its slope at the endpoint x D 0 to be
zero, we have to impose the conditions

z.0/ D z0.0/ D 0

0 x

z(x)

Fig. 6.1. The elastic beam
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which yield c1 D c2 D 0 and hence

z.x/ D c3x
2 C c4x

3 C �

24EI
x4:

6.5 Exercises

1. Find the general solution of 2x000 D 0.

2. Find the general solution of x000 � x0 D 0.

3. Find the general solution of x000 C 5x0 � 6x D 0.

4. Find the general solution of x000 � 4x00 C x0 � 4x D 0.

5. Find the general solution of x000 � 3x00 C 4x D 0.

6. Find the solution to the initial value problem x000 C 4x0 D 0; x.0/ D 1; x0.0/ D
�1, x00.0/ D 2.

7. Find the solution of x000 � x0 D 0 satisfying x.0/ D 1 and limt!C1 x.t/ D 0.

8. Find the solution of x000 � 3x0 D 0, x.0/ D 0, x0.0/ D 0, x00.0/ D 1.

9. Solve the initial value problem

x000 C x00 � 2x D 0; x.0/ D 0; x0.0/ D 0; x00.0/ D 1:

10. Show that there exists a solution of x000 C ax00 C bx0 C cx D 0 such that
limt!C1 x.t/ D 0, provided c > 0.

11. Show that for 0 < k < 2 the equation x000 � 3x0 C kx D 0 has a unique solution
such that x.0/ D 1 and limt!C1 x D 0.

12. Find the general solution of x0000 � 6x00 C 5x D 0.

13. Find the solutions of x0000 � x D 0, x.0/ D 1; x0.0/ D x00.0/ D x000.0/ D 0.

14. Find the solutions of x0000 � x00 D 0, x.0/ D 1; x00.0/ D 0.

15. Find the solution x.t/ of x0000 � 4x00 C x D 0 such that limt!C1 x.t/ D 0 and
x.0/ D 0; x0.0/ D 1.

16. Show that the only solution of x0000 � 8x000 C 23x00 � 28x0 C 12x D 0, such that
limt!C1 x.t/ D 0, is the trivial solution x.t/ � 0.

17. Show that x0000 C 2x00 � 4x D 0 has one periodic solution such that x.0/ D
1; x0.0/ D 1.

18. Find the general solution of x.5/ � x0 D 0.

19. Find the general solution of x.5/ C x0000 � x0 � x D 0.

20. Show that x.5/ C x D 0 has at least one solution such that limt!C1 x.t/ D 0.

21. Find the general solution of x.6/ � x00 D 0.
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22. Find the general solution of x.6/ � 64x D 0.

23. Find the general solution of x0000 C 3x000 C 2x00 D et

(a) by the method of Variation of Parameters,
(b) by the method of Undetermined Coefficients.

24. Find the general solution of x000 C 4x0 D sec 2t .

25. Solve x000 � x00 D 1.

26. Solve x000 � x0 D t , x.0/ D x0.0/ D x00.0/ D 0.

27. Solve x0000 C x000 D t , x.0/ D x0.0/ D x00.0/ D 0.

28. Explain whether the functions

5; t; t2; t3; sin t; 3 � t2; cos t; et ; e�t

are linearly dependent or independent.

29. Explain why x.t/ D sin t5 cannot be a solution of a fourth order linear homoge-
neous equation with continuous coefficients.

30. Evaluate W.t; t2; t3; sin t; cos t; t4; et ; e�t ; t4 � t2/.
31. Consider x0000 � 3x000 C 2x0 � 5x D 0. If x1; x2; x3; x4 are solutions and

W.x1; x2; x3; x4/.0/ D 5, find W.x1; x2; x3; x4/.6/.

32. Explain why et ; sin t; t cannot be solutions of a third order homogeneous equa-
tion with continuous coefficients.

33. Solve t3x000 C 4t2x00 C 3tx0 C x D 0; t > 0.

34. Show that if x1.t/ satisfies the equation x000 Cp1.t/x
00 Cp2.t/x

0 Cp3.t/x D 0,
then the substitution x D vx1 reduces the order of the equation from 3 to 2.
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Systems of first order equations

7.1 Preliminaries: A brief review of linear algebra

In this preliminary section we recall some facts from Linear Algebra, mainly con-
cerning matrices and vectors. We limit ourselves to discuss only the topics that will
be used in this book. For more details and further developments we refer to any book
on Linear Algebra, such as the one by H. Anton and C. Rorres (see references).

7.1.1 Basic properties of matrices

A matrix .aij /; 1 � i � n; 1 � j � m, is a rectangular array displayed as0BBB@
a11 a12 � � � a1m

a21 a22 � � � a2m

:::

an1 an2 � � � anm

1CCCA
where the real number aij (we consider here only matrices with real entries) is the
element belonging to the i th row and j th column. Such a matrix is said to be n�m,
where n refers to the number of rows andm refers to the number of columns. An n�1
matrix is called a column vector while a 1�nmatrix is called a row vector . We shall
be mostly interested in n � n matrices, called square matrices, and column vectors,
simply referred to as vectors.

We use capital letters to represent matrices and small letter with bars on top, such
as Nv, to represent vectors. When it is clear from the context, we will simply use 0 to
represent matrices all of whose elements are 0.

Addition and subtraction of square matrices are performed element-wise. For ex-
ample, �

1 2

�3 4

�
C
��5 6

7 8

�
D
��4 8

4 12

�
:

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT – La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_7, © Springer International Publishing Switzerland 2014
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If A D .aij / and B D .bij / are two n � n matrices, then their product is defined as
AB D C , where C D .cij / is the matrix such that

cij D
X

h

aihbhj i:e: cij D ai1b1j C ai2b2j C : : :C ainbnj :

For example 0@ 1 0 1

�2 1 3

1 2 3

1A0@�1 0 1

�2 0 �3
1 �2 0

1A D
0@ 0 �2 1

3 �6 �5
�2 �6 �5

1A :
We note that the product of an n � n matrix and an n-dimensional vector is an n-

dimensional vector. For example0@�1 2 1

0 1 3

�1 0 3

1A0@12
3

1A D
0@ 611
8

1A :
It follows from the definition that multiplication of matrices is associative, that is

A.BC/ D .AB/C:

However, unlike multiplication of numbers, multiplication of matrices is not commu-
tative, that is, AB is not necessarily equal to BA, as shown by the following simple
example.�

1 �2
0 1

��
2 1

�1 3

�
D
�
4 �5

�1 3

�
¤
�
2 1

�1 3

��
1 �2
0 1

�
D
�
2 �3

�1 5

�
:

For any natural number n, the n � n matrix

In D I D

0BBB@
1 0 � � � 0

0 1 � � � 0
:::

0 0 � � � 1

1CCCA ;
whose diagonal elements are 1 and the rest are 0, is called the identity matrix. It can
easily be checked that for any n � n matrix A, AI D IA D A:

7.1.2 Determinants

We define the determinants of square n � n matrices by induction as follows:
If n D 1, that is A D .a/ consists of one element, the determinant is defined as

det A D a.
Assuming to have defined the determinant of an .n�1/�.n�1/matrix, we define

det A of an n � n matrix A as follows:

1. Choose any entry akl ofA and consider the matrix Akl obtained by eliminating
the row and the column to which akl belongs (that is, the k-th row and l-th column).



7.1 Preliminaries: A brief review of linear algebra 125

The determinant of Akl , called the minor of akl , is defined by induction hypothesis
since it is n � 1 � n � 1.

Setting Ckl D .�1/kCldet Akl (Ckl is called the cofactor of akl ), we define

det A D
X

1�l�n

aklCkl :

For example, if we choose the elements akl along the second row, then det A D
a21C21 C a22C22 C a23C23 C : : :C a2nC2n.

Let us indicate the calculation for n D 2; 3. The determinant of a 2 � 2 matrix is

det A D
ˇ̌̌̌
a11 a12

a21 a22

ˇ̌̌̌
D a11a22 � a12a21;

because the cofactor of a11 is det.a22/ and the cofactor of a12 is � det.a21/ D �a21.
The determinant of a 3 � 3 matrix A D .aij /, is

det A D
ˇ̌̌̌
ˇ̌a11 a12 a13

a21 a22 a23

a31 a32 a33

ˇ̌̌̌
ˇ̌ D a11C11 C a12C12 C a13C13

D a11

ˇ̌̌̌
a22 a23

a32 a33

ˇ̌̌̌
� a12

ˇ̌̌̌
a21 a23

a31 a33

ˇ̌̌̌
C a13

ˇ̌̌̌
a21 a22

a31 a32

ˇ̌̌̌
D a11.a22a33 � a23a32/ � a12.a21a33 � a23a31/C a13.a21a32 � a22a31/:

Here we have chosen the first row. If we decide to use, say, the second column, then
det A D a12C12 C a22C22 C a32C32, etc.

We state the following important general rule without proof.

The sum of the products of the elements by their corresponding cofactors along any
row or column is the same.

Example 7.1.1. Let us evaluate the determinantˇ̌̌̌
ˇ̌ 1 0 1

3 1 2

�1 1 2

ˇ̌̌̌
ˇ̌

first along the second row and then along the third column.
Along the second row, we have:ˇ̌̌̌

ˇ̌ 1 0 1

3 1 2

�1 1 2

ˇ̌̌̌
ˇ̌ D �3

ˇ̌̌̌
0 1

1 2

ˇ̌̌̌
C
ˇ̌̌̌
1 1

�1 2

ˇ̌̌̌
� 2

ˇ̌̌̌
1 0

�1 1

ˇ̌̌̌
D 4:
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Along the third column, we have:ˇ̌̌̌
ˇ̌ 1 0 1

3 1 2

�1 1 2

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
3 1

�1 1

ˇ̌̌̌
� 2

ˇ̌̌̌
1 0

�1 1

ˇ̌̌̌
C 2

ˇ̌̌̌
1 0

3 1

ˇ̌̌̌
D 4:

In concrete examples, it is convenient to choose a row or a column involving zero
entries, whenever possible. For example, in order to evaluateˇ̌̌̌

ˇ̌ 1 2 1

3 0 2

�1 1 4

ˇ̌̌̌
ˇ̌

it is convenient to choose either the second row or the second column since that will
involve only two nonzero terms to add, instead of three. Let us evaluate it along the
second column. Thenˇ̌̌̌

ˇ̌ 1 2 1

3 0 2

�1 1 4

ˇ̌̌̌
ˇ̌ D �2

ˇ̌̌̌
3 2

�1 4

ˇ̌̌̌
�
ˇ̌̌̌
1 1

3 2

ˇ̌̌̌
D �2 � .12C 2/ � .2 � 3/ D �27:

For example, if A is a triangular matrix, namely if aij D 0 for all j > i , then choos-
ing the first column we find

det A D

ˇ̌̌̌
ˇ̌̌̌ a11 a12 a13 : : : a1n

0 a22 a23 : : : a2n

:: :: :: :: ::

0 0 0 : : : ann

ˇ̌̌̌
ˇ̌̌̌ D a11

ˇ̌̌̌
ˇ̌̌̌ a22 a23 : : : a2n

0 a33 : : : a3n

:: :: :: ::

0 0 : : : ann

ˇ̌̌̌
ˇ̌̌̌ :

To evaluate the last determinant again we choose its first column, yieldingˇ̌̌̌
ˇ̌̌̌ a22 a23 : : : a2n

0 a33 : : : a3n

:: :: :: ::

0 0 : : : ann

ˇ̌̌̌
ˇ̌̌̌ D a22

ˇ̌̌̌
ˇ̌̌̌a33 a34 : : : a3n

0 a44 : : : a4n

:: :: :: ::

0 0 : : : ann

ˇ̌̌̌
ˇ̌̌̌ :

Repeating the procedure we find

det A D a11a22 : : : ann: (7.1)

We now recall some additional properties of determinants.

1. Multiplying a row or a column of a determinant by a constant k is the same as
multiplying the determinant by k.

2. Exchanging two rows (or columns) of a determinant changes the sign of the de-
terminant.

3. Multiplying a row (or column) by a constant and adding it to another row (or
column) does not change the value of the determinant.

4. det .AB/ D det .A/ � det .B/.
5. If two rows (or columns) of a determinant are constant multiples of each other,

then the value of the determinant is zero.
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6. det A ¤ 0 if and only if the rows (and columns) of A form a set of linearly
independent vectors.

For example, ˇ̌̌̌
ˇ̌ 1 2 3

1=3 2=3 1

5 6 7

ˇ̌̌̌
ˇ̌ D 0

since the first row is 3 times the second row. Since the determinant is 0, item 6 implies
that the rows of the matrix are linearly dependent.

The preceding properties allow us to simplify the calculation in evaluating det A
by making all the elements of A, except one, of a certain row (or column) to be 0.
For example, let us evaluate ˇ̌̌̌

ˇ̌ 1 �2 1

3 1 2

�5 1 �4

ˇ̌̌̌
ˇ̌ :

Suppose we decide to make the second two elements of the first column 0. We can
do this by adding �3 times the first row to the second and 5 times the first row to the
third, obtaining ˇ̌̌̌

ˇ̌1 �2 1

0 7 �1
0 �9 1

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
7 �1

�9 1

ˇ̌̌̌
D 7C 9 D 16:

7.1.3 Inverse of a matrix

We call a matrix B the inverse of a matrix A if AB D BA D I . The inverse, if it
exists, is unique. For AB D BA D I and AC D CA D I , would imply AB D AC

and hence B.AB/ D B.AC/ which can be regrouped as .BA/B D .BA/C . Since
BA D I by assumption, we have B D C .

Not all nonzero matrices have inverses. For example, let A D
�

1 2
1 2

�
. Suppose

C D .cij / is a matrix such that AC D I . Then we would have�
1 2

1 2

��
c11 c12

c21 c22

�
D
�
1 0

0 1

�
:

Multiplying the first row of A by the first column of C , we obtain c11 C 2c21 D 1.
But multiplying the second row ofA by the first column ofC , we get c11 C2c21 D 0,
which is impossible. Therefore, A has no inverse.

When a matrix A has an inverse, it is called nonsingular, otherwise it is called
singular. The reader familiar with Linear Algebra my recall that

“A is singular if and only is its determinant is 0.”

The next question is: when a matrix does have an inverse, how do we find it? There
are several ways and short cuts to find the inverse of a matrix. Here we explain the
method of using cofactors. The inverse of a matrix .aij /, when it exists, is the matrix
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.cij /, where

cij D Cj i

detA
:

For example, let us determine the inverse of

A D
0@2 1 0

0 3 0

1 0 1

1A :
In order to determine the determinant, we choose to use the cofactors along the last
column. Since two of the elements of this column are 0, we can ignore them and see
immediately that ˇ̌̌̌

ˇ̌2 1 0

0 3 0

1 0 1

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
2 1

0 3

ˇ̌̌̌
D 6:

Since the determinant is nonzero, we know that A has an inverse.
We now list the cofactors:

C11 D
ˇ̌̌̌
3 0

0 1

ˇ̌̌̌
D 3; C12 D �

ˇ̌̌̌
0 0

1 1

ˇ̌̌̌
D 0; C13 D

ˇ̌̌̌
0 3

1 0

ˇ̌̌̌
D �3:

Similarly, C21 D �1; C22 D 2; C23 D 1; C31 D 0; C32 D 0; C33 D 6: Now re-
calling that the ij -th element of A�1 is Cj i divided by the value of the determinant,
which is 6, we have

A�1 D
0@ 1=2 �1=6 0

0 1=3 0

�1=2 1=6 1

1A :
7.1.4 Eigenvalues and eigenvectors

If a real or complex number � and a nonzero vector Nv satisfy the equation

A Nv D � Nv;
then � is called an eigenvalue of the n � n matrix A D .aij /, aij 2 R, and Nv 6D N0 is
called an eigenvector associated with � (or the corresponding eigenvector). We note
that the above equation can be written in the equivalent form

.A � �I / Nv D 0:

To find the eigenvalues ofAwe have to solve the equation det.A��I / D 0. If this
equation has no solution, then Kramer’s rule implies that the equation .A� �/ Nv D 0

has only the trivial solution Nv D 0. The determinant of A � �I is a polynomial of
degree n in �, called the characteristic polynomial and the equation det.A��I / D 0

is called the characteristic equation or the auxiliary equation of A.
For example, if A is a triangular matrix, then (7.1) yields

det.A � �I / D .a11 � �/.a22 � �/ � � � .ann � �/:
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Hence the eigenvalues of A are �i D ai i , i D 1; 2; : : : ; n.
An eigenvector associated with the eigenvalue �j is found by solving the system

.A� �j I /v D N0. This system has nontrivial solutions if �j is a solution of det.A�
�I / D 0.

Of course, if Nv is an eigenvector of A, then so is ˛ Nv for all ˛ 2 R, ˛ 6D 0. The
space E�j

D ¹x 2 Rn W Ax D �jxº is called the eigenspace corresponding to �j .
If x; y 2 E�j

then ˛x C ˇy 2 E�j
for all ˛; ˇ 2 R, because

A.˛x C ˇy/ D ˛Ax C ˇAy D ˛�jx C ˇ�jy D �j .˛x C ˇy/:

Thus E�j
is a closed subspace of Rn. If �j is a real number and k

defD dim.E�j
/

> 1 it means that there are k linearly independent real eigenvectors corresponding
to �j . The dim.E�j

/ is called the geometric multiplicity of �j . The algebraic mul-
tiplicity of �j is defined as the multiplicity of the root � D �j of the characteristic
polynomial. For example, the characteristic polynomial of the matrix

A D
0@2 1 0

0 2 0

0 0 3

1A
is .� � 2/2.� � 3/ and hence 2 is an eigenvalue of algebraic multiplicity 2, while 3
is an eigenvalue of algebraic multiplicity 1. To evaluate their geometric multiplicity,
we have to solve the system .A � �/ Nv D 0 namely8<:

.2 � �/v1 C v2 D 0

.2 � �/v2 D 0

.3 � �/v3 D 0.

If � D 2 we find v2 D v3 D 0, while if � D 3 we find v1 D v2 D 0. Thus the
corresponding eigenspaces are spanned by .1; 0; 0/ and .0; 0; 1/ respectively. As a
consequence, the geometric multiplicity of both the eigenvalues is 1. On the other
hand, if we consider the matrix

B D
0@2 0 0

0 2 0

0 0 3

1A
the characteristic polynomial is still .��2/2.��3/ and hence, as before, the algebraic
multiplicity of 2; 3 is 2 and 1, respectively. To evaluate their geometric multiplicity
we solve the system 8<:

.2 � �/v1 D 0

.2 � �/v2 D 0

.3 � �/v3 D 0.

It follows that the eigenspace E2 is 2-dimensional and spanned by .1; 0; 0/ and
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.0; 1; 0/, while the eigenspace E3 is one-dimensional and spanned by .0; 0; 1/. Thus
the geometric multiplicity of � D 2 is 2 and that of � D 3 is 1.

It can be shown that, in general, the geometric multiplicity is less than or equal to
the algebraic multiplicity.

Let us point out that the eigenvalues of A might be complex numbers. However,
since the coefficients of the characteristic polynomial of A are real, if ˛ C iˇ is an
eigenvalue ofA so is ˛� iˇ. If uC iv, with u; v 2 Rn, is an eigenvector correspond-
ing to ˛C iˇ, then it is easy to check that u� iv is an eigenvector corresponding to
� D ˛ � iˇ.

The following result will be used later.

Theorem 7.1.2. If Nv1; : : : ; Nvj are eigenvectors of A corresponding to distinct real
eigenvalues, �1; : : : ; �j , then they are linearly independent.

Proof. The proof is based on the Induction Principle. For j D 1, it is trivially true.
Suppose it is true for j D k, k 	 1, that is, any k vectors with distinct eigen-
values are linearly independent. We will now show that the statement is also true
for j D k C 1. Suppose not. Then there exist k C 1 linearly dependent eigenvec-
tors v1; : : : ; vkC1, with corresponding distinct eigenvalues �1; : : : ; �kC1. Therefore,
there exist constants c1; : : : ; ckC1, not all zero, such that

c1 Nv1 C c2 Nv2 C : : :C ckC1 NvkC1 D 0: (7.2)

Multiplying this equation by A we obtain

c1A Nv1 C c2A Nv2 C : : :C ckC1A NvkC1 D
c1�1 Nv1 C c2�2 Nv2 C : : :C ckC1�kC1 NvkC1 D 0:

(7.3)

If we multiply equation (7.2) by �1 and subtract it from the second equation in (7.3),
we obtain

c2.�2 � �1/ Nv2 C : : :C ckC1.�kC1 � �1/ NvkC1 D 0:

But this is a linear combination of k eigenvectors Nv2; : : : ; NvkC1 with distinct eigen-
values �2; : : : ; �kC1. Therefore, by induction hypothesis, we must have c2 D : : : D
ckC1 D 0. This changes (7.2) to c1 Nv1 D 0, which implies that c1 D 0 (recall that an
eigenvector is nonzero by definition). This contradiction completes the proof.

7.1.5 The Jordan normal form

If A is a nonsingular matrix, there exist two nonsingular matrices J and B such that
A D B�1JB , or equivalently BA D JB . J is called the Jordan normal form (or
simply Jordan matrix) of A. The Jordan matrix J is triangular (but not necessarily
diagonal).



7.1 Preliminaries: A brief review of linear algebra 131

If �� is a real eigenvalue of A the Jordan block relative to �� is the p � p matrix

J D

0BBBBBBB@

�� 1 0 : : : 0

0
: : :

: : : 0
:::

:::
:::

: : : 1

0 : : : : : : 0 ��

1CCCCCCCA
where all the entries are zero, except the entries am;mC1 above the diagonal am;m

which are 1. Its characteristic polynomial is .����/p and hence J has a unique eigen-
value �� with algebraic multiplicity p. Moreover, solving the system .J ���I / Nv D
0 we find that the corresponding eigenspace is one-dimensional and spanned by
.1; 0; : : : ; 0/ so that the geometric multiplicity of �� (with respect to J ) is 1.

If the eigenvalues of A are real, it is possible to show that the Jordan normal form
associated with A is the n � n matrix

J D

0B@ J1 0
: : :

0 Jh

1CA
where the sub-matrices J1; : : : ; Jh are Jordan blocks relative to the eigenvalues.

As we will see later on, Jordan matrices are useful when we deal with linear sys-
tems x0 D A.x/.

Let us show what happens if n D 2, which is the case we will deal with in the
sequel. Let A be a 2 � 2 matrix with eigenvalues �1; �2. Then the Jordan matrix is
as follows.

1. If �1, �2 are real and distinct, then their algebraic and geometric multiplicity is 1
and hence

J D
�
�1 0

0 �2

�
: (J1)

2. If �1 D �2 is real, then its algebraic multiplicity is 2. Either its geometric multi-
plicity is also 2, a case where

J D
�
�1 0

0 �1

�
; (J2.1)

or its geometric multiplicity is 1, a case where

J D
�
�1 1

0 �1

�
: (J2.2)

Furthermore, if the eigenvalues are complex conjugate, �1;2 D ˛ ˙ iˇ, then one
can show that

J D
�
˛ �ˇ
ˇ ˛

�
: (J3)
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Moreover, let Nv 6D N0 be an eigenvector of A corresponding to the eigenvalue �,
namely such that A Nv D � Nv. Using the Jordan normal form, we find B�1JB Nv D � Nv
whence JB Nv D �B Nv. In other words,

Nv is an eigenvector of A if and only if B Nv is an eigenvector of J .

7.2 First order systems

Consider the system of first order differential equations

x0
i D fi .t; x1; x2; : : : ; xn/; i D 1; 2; : : : ; n: (7.4)

By a solution of such a system we mean n functions y1.t/; y2.t/; : : : ; yn.t/ such that
y0

i .t/ D fi .t; y1.t/; y2.t/; : : : ; yn.t//; i D 1; 2; : : : ; n: The corresponding initial
value problem can be expressed as

x0
i D fi .t; x1; x2; : : : ; xn/; xi .t0/ D xi0; i D 1; 2; : : : ; n:

where t0 is some point in the domain being considered.
Systems of differential equations arise in many areas such as Chemistry, Biology,

Physics and Engineering. Examples arising in Population Dynamics are discussed in
Chapter 8. In what follows we will study some important systems that are significant
both theoretically and practically and we will develop methods of solving certain
types of systems.

However, some systems can be solved by simply rewriting them and then using
known methods to deal with them. We start with a couple of such systems.

Example 7.2.1. Solve the system²
x0 D 3x C y

y0 D �2x:
Taking the derivative of the first equation, we have x00 � 3x0 � y0 D 0 and then
substituting �2x for y0, we obtain

x00 � 3x0 C 2x D 0:

The characteristic equation m2 � 3m C 2 D 0 has roots m D 1; 2 and hence the
general solution for x is x D c1e

t C c2e
2t : Therefore, y D x0 � 3x D c1e

t C
2c2e

2t � 3.c1e
t C c2e

2t / D �2c1e
t C �c2e

2t . Thus x D c1e
t C c2e

2t and y D
�2c1e

t C �c2e
2t solve the given system.

Example 7.2.2. Solve the initial value problem´
x0 D y; x.0/ D 1

y0 D x2; y.0/ D 2:
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We note that x00 D y0 D x2. We recall that we can solve the equation x00 D x2 by
letting v D x0; and using the Chain Rule to get x00 D v dv

dx
, which results is a first

order equation v dv
dx

D x2 . Solving this first order equation for v and then integrating
v, and determining the constants from the initial values, we obtain

x.t/ D
 

�1
2

r
2

3
t C 1

!�2

:

As we have seen in Chapter 4, any system of the form

x D x1; x
0
1 D x2; x

0
2 D x3; : : : ; x

0
n�1 D xn; x

0
n D f .t; x1; x2; : : : ; xn/

can be written as a single equation x.n/ D f .t; x; x0; : : : ; x.n�1//. Conversely, any
equation of the form x.n/ D f .t; x; x0; : : : ; x.n�1// can be written as a system of
first order equations as follows: Let x D x1. Then we can write the system as x0

1 D
x2; x

0
2 D x3; : : : ; x

0
n�1 D xn; x

0
n D f .t; x; x0; : : : ; x.n�1// D f .t; x1; x2; : : : ; xn/:

Example 7.2.3. Write the following initial value problem as a system.

x000 C 2x00 � .x0/3 C x D t2 C 1; x.0/ D 0; x0.0/ D 1; x00.0/ D 1:

Let x D x1; x
0 D x2; x

00 D x3: Then we have the system8̂<̂
:
x0

1 D x2

x0
2 D x3

x0
3 D �2x3 C x3

2 � x1 C t2 C 1

subject to the initial conditions x1.0/ D 0; x2.0/ D 1; x3.0/ D 1.

We have already seen that single higher order equations can be written as first
order systems, also higher order systems generally may be written as first order sys-
tems. But the resulting system is normally more complicated. We demonstrate this
in the following example.

Example 7.2.4. Write the system ²
x000 C x0 D t

y00 � y2 D 1

as a first order system.
Let x D x1 , x0

1 D x2, x0
2 D x3, and y D y1, y0

1 D y2: Then we can write the
system 8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

x0
1 D x2;

x0
2 D x3;

x0
3 C x2 D t

y0
1 D y2;

y0
2 � y2

1 D 1:
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7.3 Linear first order systems

The following is the general form of a first order linear system:8̂̂<̂
:̂
x0

1 D a11.t/x1.t/C a12.t/x2.t/C : : :C a1n.t/xn.t/C f1.t/
:::

x0
n D an1.t/x1.t/C an2.t/x2.t/C : : :C ann.t/xn.t/C fn.t/:

(7.5)

The functions fi .t/; 1 � i � n, are called the forcing functions. When there are
no forcing functions in the system, i.e. fi .t/ � 0, 1 � i � n, the system is called
homogeneous, otherwise it is called nonhomogeneous.

The next theorem and some of the concepts developed here are fairly similar to
the high order linear homogeneous differential equations.

Theorem 7.3.1. Suppose that aij , 1 � i; j � n, and fi ; 1 � i � n; are contin-
uous in an interval I . If t0 2 I , then for any numbers x10; x20; : : : ; xn0, there is
exactly one solution x1; x2; : : : ; xn of (7.4) satisfying the initial condition x1.t0/ D
x10; x2.t0/ D x20; : : : ; xn.t0/ D xn0: Furthermore, this solution is defined every-
where in I .

Proof. It follows immediately from Theorems 4.2.2 and 4.2.3 of Chapter 4.

For convenience and efficiency, we write the system (7.5) in terms of matrices and
vectors. In particular we let

A.t/ D

0BBB@
a11.t/ a12.t/ � � � a1n.t/

a21.t/ a22.t/ � � � a2n.t/
:::

:::
:::

an1.t/ an2.t/ � � � ann.t/

1CCCA; Nx.t/ D

0BBB@
x1.t/

x2.t/
:::

xn.t/

1CCCA; Nf .t/ D

0BBB@
f1.t/

f2.t/
:::

fn.t/

1CCCA :
Then the system (7.5) can be written in the equivalent form

Nx0.t/ D A.t/ Nx.t/C Nf .t/ (7.6)

with the corresponding homogeneous system

Nx0.t/ D A.t/ Nx.t/: (7.7)

Example 7.3.2. The system8<:
x0

1.t/ D 2tx1.t/ � etx2.t/C 2tx3.t/C sin.t/
x0

2.t/ D x1.t/ � 3x2.t/C 5t2x2.t/C cos.t/
x0

3.t/ D 4x1.t/ � 5tx2.t/C 5t3x3.t/C et
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can be written as0@x0
1.t/

x0
2.t/

x0
3.t/

1A D
0@2t �et 2t

1 �3 5t2

4 �5t 5t3

1A0@x1.t/

x2.t/

x3.t/

1AC
0@sin t

cos t
et

1A :
Theorem 7.3.1 of Chapter 4 can be stated in matrix form as:

Theorem 7.3.3. If A.t/ and Nf .t/ are continuous in an interval I , then there exists
exactly one solution Nx.t/ of (7.6) satisfying the initial condition Nx.t0/ D Nx0, where

Nx0 D

0B@x10

:::

xn0

1CA
is any vector with n components, consisting of arbitrary real numbers. Furthermore,
Nx.t/ is defined everywhere in I .

Theorem 7.3.4. If Nx1; Nx2; : : : ; Nxn are solutions of (7.7), then any linear combination
c1 Nx1 C c2 Nx2 C : : :C cn Nxn of these solutions is also a solution of (7.7).

Proof. It suffices to prove it for n D 2; the general case will then easily follow from
the Principle of Mathematical Induction. Let Nx1; Nx2 be two solutions of (7.7). Then
.c1 Nx1 C c2 Nx2/

0 D c1 Nx0
1 C c2 Nx0

2 D c1.A.t/ Nx1/C c2.A.t/ Nx2/ D A.t/.c1 Nx1 C c2 Nx2/:

This shows that c1 Nx1 C c2 Nx2 is a solution of (7.7).

Definition 7.3.5. Vectors Nx1; Nx2; : : : ; Nxn are said to be linearly independent if for any
constants c1; c2; : : : ; cn, c1 Nx1 C c2 Nx2 C : : :C cn Nxn D 0 implies c1 D c2 D : : : D
cn D 0.

If they are not linearly independent, then they are called linearly dependent.

Example 7.3.6. Check the vectors

Nx1 D
0@10
1

1A ; Nx2 D
0@21
1

1A ; Nx3 D
0@41
3

1A
for linear independence.

The idea is similar to what we did in the case of a single higher order equation.
We indicate two ways to solve this problem.

1. c1 Nx1 C c2 Nx2 C c3 Nx2 D N0 is equivalent to the system8<:
c1 C 2c2 C 4c3 D 0

c2 C c3 D 0

c1 C c2 C 3c3 D 0.
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We solve the system for c1; c2; c3 by subtracting the last equation from the first and
obtain c2 C c3 D 0, which is the same as the second equation and has infinitely
many solutions. For each such pair of solutions, we can solve for c1. For example, let
c2 D 1. Then, c3 D �1. Substituting these values of c2 and c3 in the first equation,
we have c1 C 2� 4 D 0, or c1 D 2. Therefore, 2 Nx1 C Nx2 � Nx3 D 0. This shows that
Nx1; Nx2; Nx3 are linearly dependent.

2. Instead of solving for c1; c2; c3 in the above system, we simply evaluate the
determinant of their coefficients ˇ̌̌̌

ˇ̌1 2 4

0 1 1

1 1 3

ˇ̌̌̌
ˇ̌ :

Multiplying the first row by �1 and adding it to the last row we getˇ̌̌̌
ˇ̌1 2 4

0 1 1

0 �1 �1

ˇ̌̌̌
ˇ̌ D �1C 1 D 0:

Therefore the above system has nontrivial solutions in c1; c2; c3, which implies that
the vectors Nx1; Nx2; Nx3 are linearly dependent.

7.3.1 Wronskian and linear independence

Consider the linear homogeneous scalar differential equation

x000.t/C a1.t/x
00.t/C a3x.t/ D 0:

We defined the Wronskian of solutions x; y; z of this equation as

W.x; y; z/ D
ˇ̌̌̌
ˇ̌ x y z

x0 y0 z0
x00 y00 z00

ˇ̌̌̌
ˇ̌ :

We also explained above how we can write the scalar differential equation x000.t/C
a1.t/x

00.t/Ca3x D 0 as the system x1 D x; x0
1 D x2; x

0
2 D x3.y000.t/Ca1.t/y

00.t/C
a3y D 0 can be written as the system y1 D y; y0

1 D y2; y
0
2 D y3. Similarly, if y and

z are solutions, we let y1 D y; y0
1 D y2; y

0
2 D y3 and z1 D z; z0

1 D z2; z
0
2 D z3.

This suggests that the definition of Wronskian may be extended to three vector func-
tions as follows:

W. Nx; Ny; Nz/ D
ˇ̌̌̌
ˇ̌x1 y1 z1

x2 y2 z2

x3 y3 z3

ˇ̌̌̌
ˇ̌

where

Nx D
0@x1

x2

x3

1A ; Ny D
0@y1

y2

y3

1A ; Nz D
0@z1

z2

z3

1A :
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So, we extend the definition of Wronskian to vector functions and define the Wron-
skian of n vector functions

Nx1.t/ D

0BBB@
x11.t/

x21.t/
:::

xn1.t/

1CCCA ; Nx2 D

0BBB@
x12.t/

x22.t/
:::

xn2.t/

1CCCA ; � � � ; Nxn D

0BBB@
x1n.t/

x2n.t/
:::

xnn.t/

1CCCA (7.8)

as

W. Nx1; Nx2; � � � ; Nxn/.t/ D

ˇ̌̌̌
ˇ̌̌̌
ˇ
x11.t/ x12.t/ � � � x1n.t/

x21.t/ x22.t/ � � � x2n.t/
:::

:::
:::

xn1.t/ xn2.t/ � � � xnn.t/

ˇ̌̌̌
ˇ̌̌̌
ˇ (7.9)

in which the i-th column is the vector xi .t/.

Theorem 7.3.7. Vector functions Nx1.t/; Nx2.t/; � � � ; Nxn.t/ are linearly independent if
their Wronskian is nonzero at some point t0.

Proof. Suppose c1 Nx1.t/C c2 Nx2.t/C : : :C cn Nxn.t/ D 0, where Nxi ; 1 � i � n, are
denoted as in (7.8). Then, at t0, this is equivalent to the system8̂̂̂<̂

ˆ̂:
c1x11.t0/C c2x12.t0/C : : :C cnx1n.t0/ D 0

c1x21.t0/C c2x22.t0/C : : :C cnx2n.t0/ D 0
:::

c1xn1.t0/C c2xn2.t0/C : : :C cnxnn.t0/ D 0:

This algebraic system of equations has no nontrivial solution in c1; c2; : : : ; cn if the
coefficient determinant is nonzero. But the coefficient determinant is precisely the
Wronskian of Nx1; Nx2; : : : ; Nxn at t D t0. Therefore, c1 D c2 D : : : D cn D 0 and
the proof is complete.

Theorem 7.3.8. Suppose that Nx1; Nx2; : : : ; Nxn are solutions of

Nx0 D A.t/ Nx
where A.t/ is an n � n matrix, continuous on an interval I . Then their Wronskian
W.t/ is given by

W.t/ D W.t0/e
R t

t0
.a11.s/Ca22.s/C:::Cann.s//ds

where a11; a22; : : : ann are the diagonal elements of A.t/.

Proof. We give the proof for n D 2. The proof for the general case follows exactly
the same way, but the notations become cumbersome. Suppose that

A.t/ D
�
a11 a12

a21 a22

�
; Nx1 D

�
x11

x21

�
; Nx2 D

�
x12

x22

�
:
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The Wronskian of Nx1; Nx2 is given by

W.t/ D
ˇ̌̌̌
x11.t/ x12.t/

x21.t/ x22.t/

ˇ̌̌̌
:

Then

W 0.t/ D
ˇ̌̌̌
x0

11.t/ x0
12.t/

x21.t/ x22.t/

ˇ̌̌̌
C
ˇ̌̌̌
x11.t/ x12.t/

x0
21.t/ x0

22.t/

ˇ̌̌̌
:

Since Nx0
1 D A.t/ Nx, it follows that x0

11 D a11x11 C x21a12; x
0
21 D a21x11 C

a22x21; x
0
12 D a11x12 C a12x22; x

0
22 D a21x12 C a22x22: Making these sub-

stitutions in the above equation for W 0.t/, we obtain

W 0.t/ D
ˇ̌̌̌
a11x11 C a12x21 a11x12 C a12x22

x21 x22

ˇ̌̌̌

C
ˇ̌̌̌

x11 x12

a21x11 C a22x21 a21x12 C a22x22

ˇ̌̌̌
:

Now, we multiply the second row of the first determinant by �a12 and add it to the
first row. We also multiply the first row of the second determinant by �a21 and add
it to the second row. Then we obtain

W 0.t/ D
ˇ̌̌̌
a11x11 a11x12

x21 x22

ˇ̌̌̌
C
ˇ̌̌̌
x11 x12

a22x21 a22x22

ˇ̌̌̌
D a11W C a22W D .a11 C a22/W:

Integrating W 0 D .a11 C a22/W from t0 to t proves the theorem.

Corollary 7.3.9. The Wronskian of n solutions of (7.7) is either always zero or never
zero.

The sum of the diagonal elements of a matrix is called the trace of the matrix and
denoted by t r.A/. With this notation we can write

W.t/ D W.t0/e
R t

t0
t r.A.s//ds

:

Example 7.3.10. Consider the scalar differential equation

x.n/ C a1.t/x
.n�1/ C : : :C an.t/x D 0:

Recall that if x1; x2; : : : ; xn are solutions of this differential equation, then their
Wronskian is given by W.t/ D ce

R �a1.s/ds , or in terms of definite integral, W.t/ D
W.t0/e

R t
t0

�a1.s/ds . As indicated above, we can convert this equation to a system by
letting x1 D x; x0

1 D x2; : : : ; x
0
n�1 D xn; x

0
n D �a1xn � a2xn�1 � : : : � anx1.
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This system can be written in matrix form as0BBB@
x0

1

x0
2
:::

x0
n

1CCCA D

0BBBBB@
0 1 0 0 � � � 0

0 0 1 0 � � � 0
:::

:::
:::

0 0 0 0 � � � 1

�an �an�1 �an�2 an�3 � � � �a1

1CCCCCA
0BBB@
x1

x2

:::

xn

1CCCA :

As we can see, the trace of the matrix is �a1.t/. So, applying Theorem 7.3.8, we
obtain

W.t/ D W.t0/e
R t

t0
�a1.s/ds

which agrees with what we found by the method of scalar equations.

Theorem 7.3.11. Let Nx1; Nx2; : : : ; Nxn be linearly independent solutions of (7.7), on
an interval I where A.t/ is continuous. Then the general solution of (7.7) is given
by Nx.t/ D c1 Nx1 C c2 Nx2 C : : :C cn Nxn, ci 2 R.

Proof. By Theorem 7.3.4 we know that x D P
cixi is a solution of (7.7). We have

to show that given any solution y of (7.7), there then exist constants c1; c2; : : : ; cn

such that Ny D c1x1 C Ě C cnxn. For this, let

Nxi .t/ D

0BBB@
x1i .t/

x2i .t/
:::

xni .t/

1CCCA ; i D 1; 2; : : : ; n; and Ny.t/ D

0BBB@
y1.t/

y2.t/
:::

yn.t/

1CCCA
and let t0 be any number in I . Then c1 Nx1.t0/C c2 Nx2.t0/C : : :C cn Nxn.t0/ D Ny.t0/
is equivalent to the system8̂̂̂<̂

ˆ̂:
c1x11.t0/C c2x12.t0/C : : :C cnx1n.t0/ D y1.t0/

c1x21.t0/C c2x22.t0/C : : :C cnx2n.t0/ D y2.t0/
:::

c1xn1.t0/C c2xn2.t0/C : : :C cnxnn.t0/ D yn.t0/:

This system will have a unique solution in c1; c2; : : : ; cn if the coefficient determinantˇ̌̌̌
ˇ̌̌̌
ˇ
x11.t0/ x12.t0/ � � � x1n.t0/

x21.t0/ x22.t0/ � � � x2n.t0/
:::

:::
:::

xn1.t0/ xn2.t0/ � � � xnn.t0/

ˇ̌̌̌
ˇ̌̌̌
ˇ

is nonzero. But this determinant is precisely the Wronskian of Nx1; Nx2; : : : ; Nxn, which
is nonzero by assumption. Now it follows from the uniqueness theorem that c1 Nx1.t/C
c2 Nx.t/C : : :C cn Nxn.t/ D Ny.t/ for all t in I .
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7.4 Constant systems – eigenvalues and eigenvectors

In this section we consider the homogeneous system

Nx0 D A Nx (7.10)

where A D .aij / is a constant matrix, that is the entries aij , 1 � i; j � n, are
constants, and it is nonsingular. We recall that in the case of homogeneous scalar
equations with constant coefficients, we were able to find the general solution by
substituting emt for the dependent variable. This suggests that we try substituting
Nx D e�t Nv in (7.10). Doing so, we obtain Nx0 D �e�t Nv D Ae�t Nv; which gives rise to
the equation A Nv D � Nv. The last equation may be written as

.A � �I / Nv D N0 (7.11)

where I is the n�n identity matrix and N0 2 Rn is the zero vector. It is now clear that
Nx D e�t Nv will be a solution of (7.10) if � and Nv satisfy equation (7.11). Using the
notation introduced in Section 7.1, this means that � is an eigenvalue of the matrix A
and Nv 6D N0 is an eigenvector associated with �. We have also seen that we must have
that � is a solution of the characteristic polynomial

det.A � �I / D 0: (7.12)

Example 7.4.1. Let

A D
0@1 �3 0

0 2 0

1 1 3

1A :
(a) Find the characteristic equation of A.
(b) Find the eigenvalues and the corresponding eigenvectors of A.
(c) Find the solutions of Nx0 D A Nx corresponding to each eigenvalue.
(d) Show that the solutions in (c) are linearly independent.
(e) Find solution Ny.t/ satisfying the initial condition

Ny.0/ D
0@10
1

1A :
Solution. (a)

det .A � �I / D
ˇ̌̌̌
ˇ̌1 � � �3 0

0 2 � � 0

1 1 3 � �

ˇ̌̌̌
ˇ̌ D .1 � �/.2 � �/.3 � �/:

Therefore, the characteristic equation is .1 � �/.2 � �/.3 � �/ D 0.

(b) The eigenvalues of A are �1 D 1; �2 D 2; �3 D 3. To find an eigenvector Nv1

corresponding to �1 D 1, we substitute �1 D 1 in (7.11) and solve for Nv D Nv1. If the
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components of Nv1 are x; y; z, then

.A � �I / Nv1 D
0@0 �3 0

0 1 0

1 1 2

1A0@xy
z

1A D
0@00
0

1A :
We obtain y D 0 and z D � 1

2
x. Thus,

Nv1 D
0@ x

0

� 1
2
x

1A :
We can take x to be any nonzero number. So, let x D 1. As mentioned before, any
˛ Nv , ˛ 2 R, ˛ 6D 0, is also an eigenvector. Hence, taking ˛ D �2 we have

Nv1 D
0@�2
0

1

1A :
Similarly, substituting � D 2 and � D 3 in (7.11) and solving for Nv2 and Nv3, respec-
tively, we obtain

Nv2 D
0@ 3

�1
�2

1A ; Nv3 D
0@00
1

1A :
Once more, we point out that there are many ways, in fact infinitely many ways, to
choose an eigenvector. We should try to choose options that seem convenient.

(c) The corresponding solutions are

Nx1 D
0@�2
0

1

1A et ; Nx2 D
0@ 3

�1
�2

1A e2t ; Nx3 D
0@00
1

1A e3t :

(d) In order to show that these solutions are linearly independent, we show that
their Wronskian

W.t/ D
ˇ̌̌̌
ˇ̌�2e

t 3e2t 0

0 �e2t 0

et �2e2t e3t

ˇ̌̌̌
ˇ̌

is nonzero. Expanding the determinant above along the third column, we see that
W.t/ D e3t � .2e3t / D 2e6t , which is never zero for any t .

We point out that in general we only need to show that the Wronskian is nonzero
at some convenient point. It will then follow from Corollary 7.3.9 that it is always
nonzero.

(e) By part (d), y.t/ D c1 Nx1.t/Cc2 Nx2.t/Cc3 Nx3.t/ is the general solution. There-
fore, there exist constants c1; c2; c3 such that c1 Nx1.0/C c2 Nx2.0/C c3 Nx3.0/ satisfies
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the given initial condition. We find these constants by solving the system

c1

0@�2
0

1

1AC c2

0@ 3

�1
�2

1AC c3

0@00
1

1A D
0@10
1

1A
which is equivalent to the system8<:

�2c1 C 3c2 D 1

�c2 D 0

c1 � 2c2 C c3 D 1:

We see that c1 D � 1
2
; c2 D 0; c3 D 3

2
. Therefore, the desired solution is

�1
2
et

0@�2
0

1

1AC 3

2
e3t

0@00
1

1A D
0@ et

0

�1
2
et

1AC
0@ 0

0
3
2
e3t

1A D
0@ et

0

�1
2
et C 3

2
e3t

1A :
We first deal with the case that the eigenvalues of A are real and distinct.

Theorem 7.4.2. If Nv1; : : : ; Nvn 2 Rn are n eigenvectors of the n� n matrix A and the
corresponding eigenvalues �1; : : : ; �n are real and distinct, then Nx.t/ D c1 Nv1e

�1t C
: : :C cn Nvne

�nt is the general solution of (7.10).

Proof. To any �i 2 R and vi 2 Rn, i D 1; : : : ; n, we can associate a function
xi .t/ D Nvie

�i t which is a solution of x0 D Ax. According to Theorem 7.3.11, x.t/
is the general solution provided xi are linearly independent. Since xi .0/ D vi , then
their Wronskian at t D 0 is the determinant of the matrix whose columns are the vec-
tors Nv1; : : : ; Nvn. Thus xi are linearly independent if and only if vi are so. On the other
hand, by Theorem 7.1.2 proved in Section 7.1, xi are linearly independent provided
�1; : : : ; �n are distinct. This completes the proof.

Notice that part (d) of Example 7.4.1 is an immediate consequence of this Theo-
rem.

In Theorem 7.4.2 it was shown that if the eigenvalues of A are distinct (hence
simple), then the n corresponding eigenvectors are linearly independent. It follows
from the proof of this theorem that any k distinct eigenvalues, 1 � k � n, give rise
to k linearly independent eigenvectors. The situation for repeated eigenvalues is not
so simple. For example, a double root may or may not yield two linearly independent
eigenvectors. In other words, if A has some repeated roots, it may or may not have n
linearly independent eigenvectors. One class of matrices that have the property that
to each eigenvalue that is repeated k times, there correspond k linearly independent
eigenvectors, is the class of symmetric matrices. We give below some examples that
illustrate both possibilities. The student can easily understand how to handle other
similar cases.
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Example 7.4.3. Find the general solution of x0 D Ax, where

A D
0@1 0 0

0 �1 0

0 0 �1

1A :
The eigenvalues of A are � D 1 and � D �1 (double). Moreover,

v1 D
0@ 10
0

1A ; v2 D
0@01
0

1A ; v3 D
0@ 00
1

1A ;
are 3 linearly independent eigenvectors.

Then x1 D v1e
t , x2 D v2e

�t and x3 D v3e
�t solve x0 D Ax and are linearly

independent because xi .0/ D vi , i D 1; 2; 3, are so. Thus the general solution is
x D c1v1e

t C c2v2e
�t C c3v3e

�t .
As an exercise, the student can find the same result noticing that the components

x1; x2; x3 of x satisfy the uncoupled system8<:
x0

1 D x1;

x0
2 D �x2;

x0
3 D �x3:

Example 7.4.4. Find the general solution of x0 D Ax, where

A D
0@ 3 0 0

0 3 0

1 1 2

1A :
Since

det.A � �I / D
ˇ̌̌̌
ˇ̌ 3 � � 0 0

0 3 � � 0

1 1 2 � �

ˇ̌̌̌
ˇ̌ D .3 � �/2.2 � �/;

the eigenvalues of A are � D 3 (double) and � D 2.
It is easy to check that A has 3 eigenvectors given by

v1 D
0@ 10
1

1A ; v2 D
0@01
1

1A ; v3 D
0@ 00
1

1A ;
which are linearly independent becauseˇ̌̌̌

ˇ̌ 1 0 0

0 1 0

1 1 1

ˇ̌̌̌
ˇ̌ D 1:

Then x1 D v1e
3t , x2 D v2e

3t and x3 D v3e
2t solve x0 D Ax and are linearly

independent because xi .0/ D vi , i D 1; 2; 3, are so.
Thus the general solution is x D c1v1e

3t C c2v2e
3t C c3v3e

2t .
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Example 7.4.5. Find the general solution of x0 D Ax where

A D
�
� a

0 �

�
;

with �; a 6D 0. Now, � is a double eigenvalue but the eigenspace corresponding to �

is one-dimensional and spanned by v1 D
�

1
0

�
, which yields x1 D

�
1
0

�
e�t , but it is

not obvious how to find a second linear independent solution.
Let us take x2 D v1te

�t C Nue�t and determine Nu such that x1; x2 are linearly
independent and x0

2 D Ax2. As before, from x1.0/ D v1; x2.0/ D u, it follows that
for x1; x2 to be linearly independent it suffices that v1; u are so.

On the other hand, the equation x0
2 D Ax2 is equivalent to

�te�tv1 C e�tv1 C �e�t Nu D A.te�tv1 C e�t Nu/ D Av1 te
�t C A Nu e�t :

Since Av1 D �v1, we have

�te�tv1 C e�tv1 C �e�t Nu D �v1 te
�t C A Nu e�t :

Canceling �te�tv1, we obtain e�tv1 C �e�t Nu D A Nu e�t and hence

v1 C � Nu D A Nu:

This can be written as
.A � �I / Nu D v1

namely �
0 a

0 0

��
u1

u2

�
D
�
1

0

�
i:e:

²
au2 D 1;

0 D 0:

Thus u D
�

0
1=a

�
, which is obviously linearly independent from v1. In conclusion

the general solution of x0 D Ax is

x D c1x1 C c2x2 D c1v1e
�t C c2

h
v1te

�t C ue�t
i

D
�
1

0

�h
c1e

�t C c2te
�t
i

C c2

�
0

1=a

�
e�t ;

that is, 8<:x1 D c1e
�t C c2te

�t ;

x2 D c2

a
e�t :

The reader will recognize that the preceding procedure is similar to that carried out
for the scalar second order equation x00 � 2�x0 C �2x D 0 whose characteristic
equation has the double root m D �.
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Our last example deals with the case in which A has complex eigenvalues.

Example 7.4.6. Find the general solution of Nx0 D A Nx, where

A D
�
1 4

�1 1
�
:

The characteristic equation is given by

det.A � �I / D
ˇ̌̌̌
1 � � 4

�1 1 � �
ˇ̌̌̌

D �2 � 2�C 1C 4 D �2 � 2�C 5 D 0:

Solving the quadratic equation �2 � 2� C 5 D 0, we find the eigenvalues to be
�1 D 1C 2i and �2 D 1 � 2i . Let

Nv D
�
x

y

�
:

In order to find the eigenvector Nv corresponding to 1C 2i , we set A Nv D .1C 2i/ Nv,
which is equivalent to the system²

x C 4y D .1C 2i/x;

�x C y D .1C 2i/y:

Simplifying the equations in this system, we obtain 2y D ix and �x D 2iy. We note
that if we multiply the first equation by i , we get the second equation. Therefore, we
actually have only one equation and two unknowns. This means that we can assign
an arbitrary value to one of the unknowns and then solve for the other. To this end,
let x D 2. Then y D i . This means that the solution corresponding to the eigenvalue
1C 2i is

Nx D
�
2

i

�
e.1C2i/t :

Now, using Euler’s formula e.1C2i/t D et cos 2t C iet sin 2t , we extract real solu-
tions:

Nx D e.1C2i/t

�
2

i

�
D
�
2.et cos 2t C iet sin 2t/
i.et cos 2t C iet sin 2t/

�
D
�
2et cos 2t C i.2et sin 2t/
�et sin 2t C i.et cos 2t/

�
D
�
2et cos 2t
�et sin 2t

�
C i

�
2et sin 2t
et cos 2t

�
:

Now we can take the two real solutions to be

Nx1 D
�
2et cos 2t
�et sin 2t

�
; Nx2 D

�
2et sin 2t
et cos 2t

�
:

Evaluating their Wronskian, we see that

W.t/ D
ˇ̌̌̌
2et cos 2t 2et sin 2t
�et sin 2t et cos 2t

ˇ̌̌̌
D 2e2t ¤ 0:

Therefore, Nx1 and Nx2 are linearly independent and Nx D c1 Nx1 C c2 Nx2 is the general
solution.
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7.5 Nonhomogeneous systems

Consider the nonhomogeneous system

Nx0 D A.t/ Nx C Nf .t/ (7.13)

where the coefficient matrix A.t/ and the forcing function Nf .t/ are continuous in
an interval I . Let Nx1; : : : ; Nxn be a fundamental set of solutions of the homogeneous
equation

Nx0 D A.t/ Nx (7.14)

and let Nxp be a particular solution of (7.13). If Ny is any solution of (7.13), then, as in
the scalar case, it is easy to see that Ny� Nxp is a solution of the homogeneous equation
(7.14). Therefore, there exist constants c1; : : : ; cn such that Ny � Nxp D c1 Nx1 C : : :C
cn Nxn; and hence Ny D Nxp C c1 Nx1 C : : :C cn Nxn. We state this as

Theorem 7.5.1. If Nx1; : : : ; Nxn is a fundamental set of solutions of (7.14) and Nxp is
any particular solution of (7.13), then Ny D Nxp C c1 Nx1 C : : : C cn Nxn is the general
solution of (7.13).

Once again it is important to find a particular solution of the nonhomogeneous
equation. This may be accomplished by the Method of Undetermined Coefficients,
which is pretty much a selective guessing scheme.

Method of undetermined coefficients. This method involves making a calculated
guess for each situation. It may be used when the functions involved are familiar func-
tions whose derivatives share some similarity with them. For example, the derivative
of a polynomial is a polynomial with one degree less. Other such functions are sin t ,
cos t , and exponential functions.

Example 7.5.2. Find the general solution of the system

Nx0 D
�
x0
y0
�

D
�
1 1

�3 5

��
x

y

�
C
�
2t � 2
�4t

�
:

Here it seems reasonable to try

Nxp D
�
at C b

ct C d

�
and determine the constants a; b; c; d . Substituting Nxp in the above system, we ob-
tain the algebraic system²

a D .at C b/C .ct C d/C 2t � 2
c D �3.at C b/C 5.ct C d/ � 4t

which reduces to the system²
.aC c C 2/t C .b C d � 2 � a/ D 0

.3a � 5c C 4/t C .c C 3b � 5d/ D 0:
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In each of the above equations, we must have the coefficients of t and the constants
equal to zero. Setting these equal to zero, we obtain the algebraic system8̂̂<̂

:̂
aC c C 2 D 0

3a � 5c C 4 D 0

b C d � 2 � a D 0

c C 3b � 5d D 0.

Solving the first two equations, we find a D � 7
4
; c D �1

4
. Substituting these values

of a and c in the third and fourth equations, we find b D 3
16

and d D 1
16

. Therefore,

Nxp D
 �7

4
t C 3

16

�1
4
t C 1

16

!

is a particular solution of the nonhomogeneous equation.
Now, we need the general solution of the corresponding homogeneous equation

Nx0 D A Nx. We see that � D 2 and � D 4 are the roots of the characteristic polynomialˇ̌̌̌
1 � � 1

�3 5 � �
ˇ̌̌̌

D �2 � 6�C 8 D 0:

The corresponding eigenvectors may be taken as

Nv1 D
�
1

1

�
; Nv2 D

�
1

3

�
:

The general solution of the nonhomogeneous system is then

c1

�
e2t

e2t

�
C c2

�
e4t

3e4t

�
C
 � 7

4
t C 3

16

� 1
4
t C 1

16

!
D
 
c1e

2t C c2e
4t � 7

4
t C 3

16

c1e
2t C 3c2e

4t � 1
4
t C 1

16

!
:

Variation of parameters. First of all, let us note that if Nx1; : : : ; Nxn are vectors that
satisfy the system Nx0 D A.t/ Nx , these equations can be compactly expressed as

X 0 D A.t/X;

where X , resp. X 0, is the matrix whose columns consist of the vectors Nxi , resp. Nx0,
i=1,. . . ,n.

Let A.t/ be a 2 � 2 matrix and let

Nx D
�
x1

x2

�
; Ny D

�
y1

y2

�
be solutions of the system Nx0 D A.t/ Nx. Then

Nx0 D
�
x0

1

x0
2

�
D
�
a11 a12

a21 a22

��
x1

x2

�
; Ny0 D

�
y0

1

y0
2

�
D
�
a11 a12

a21 a22

��
y1

y2

�
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which is equivalent to 8̂̂<̂
:̂
x0

1 D a11x1 C a12x2

x0
2 D a21x1 C a22x2

y0
1 D a11y1 C a12y2

y0
2 D a21y1 C a22y2:

It is easy to see that this system can be expressed in terms of matrices as X 0 D AX ,
that is �

x0
1 y0

1

x0
2 y0

2

�
D
�
a11 a12

a21 a22

��
x1 y1

x2 y2

�
:

Let Nx1; : : : ; Nxn be linearly independent solutions of

Nx0 D A Nx:
We now describe a method for finding a particular solution of the nonhomogeneous
system

Nx0 D A Nx C Nf :
Since for any constants c1; : : : ; cn, Nx D c1 Nx1 C : : : C cn Nxn is a solution of this
system, we are motivated, as in the scalar case, to try to find variable functions
u1.t/; : : : ; un.t/ such that Ny D u1 Nx1 C : : :C un Nxn is a solution of the nonhomoge-
neous system. To this end, we first write

Ny D X Nu
where Nu is the vector whose j -th component is uj ; 1 � j � n, and X is the matrix
described above, that is, its columns consist of the vectors Nxi ; 1 � i � n. Substitut-
ing X Nu in the nonhomogeneous system, we obtain

X Nu0 CX 0 Nu D AX NuC Nf :
Since, as explained above, X 0 D AX , the above equation is reduced to

X Nu0 D Nf : (7.15)

Since the columns ofX are linearly independent, X�1 exists. Multiplying both sides
by X�1, we have

Nu0 D X�1 Nf : (7.16)

Integrating both sides and taking the constant of integration to be zero, we obtain

Nu D
Z
X�1.t/ Nf .t/dt (7.17)

and hence

Ny D X Nu D X

Z
X�1.t/ Nf .t/dt: (7.18)
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Example 7.4.1 revisited. Let us try to solve

Nx0 D
�
x0
y0
�

D
�
1 1

�3 5

��
x

y

�
C
�
2t � 2
�4t

�
by the method of Variation of Parameters. Recall that the general solution of the
corresponding homogeneous system is

c1

�
e2t

e2t

�
C c2

�
e4t

3e4t

�
:

We let

X D
�
e2t e4t

e2t 3e4t

�
:

Then

X�1 D 1

2
e�6t

�
3e4t �e4t

�e2t e2t

�
D
�

3
2
e�2t � 1

2
e�2t

� 1
2
e�4t 1

2
e�4t

�
:

Therefore,

X�1 Nf D
 

3
2
e�2t � 1

2
e�2t

� 1
2
e�4t 1

2
e�4t

! 
2t � 2
�4t

!
D
 
5te�2t � 3e�2t

�3te�4t C e�4t

!
:

Using (7.17),

Nu D
Z  

5te�2t � 3e�2t

�3te�4t C e�4t

!
dt D

 
�5

2
te�2t C 1

4
e�2t

3
4
te�4t � 1

16
e�4t

!
:

Therefore,

Ny D X Nu D
 
e2t e4t

e2t 3e4t

! 
�5

2
te�2t C 1

4
e�2t

3
4
te�4t � 1

16
e�4t

!
D
 

�7
4
t C 3

16

� 1
4
t C 1

16

!
:

Remark 7.5.3. First of all, in order to find Nu it is not necessary to calculate the inverse
of the matrix X . One can simply solve the system (7.10) for Nu0 and then integrate. In
the above example, we would have the system

X Nu0 D
�
e2t e4t

e2t 3e4t

�
Nu0 D Nf

which is equivalent to the system

e2tu0
1 C e4tu0

2 D 2t � 2
e2tu0

1 C 3e4tu0
2 D �4t:

Secondly, finding the inverse of a 2 � 2 matrix, when it exists, is trivial. Here is the
formula: �

a b

c d

��1

D 1

ad � bd
�
d �b
�c a

�
:
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7.6 Exercises

These exercises are divided in 4 parts. The first 3 deal with linear systems with con-
stant coefficients: A) when the matrix A is a 2 � 2 Jordan matrix J ; B) when A is a
general 2 � 2 constant matrix; C) when A is a 3 � 3 constant matrix. The last set of
exercises D) deals with general linear and/or nonlinear first order systems.

A1. Solve x0 D Jx where J D
�
1 0

0 �3
�
:

A2. Solve x0 D Jx where J D
�
a 0

0 a

�
, with a 6D 0.

A3. Solve x0 D Jx where J D
�
a 1

0 a

�
, with a 6D 0.

A4. Solve Nx0 D J Nx; J D
�
3 �1
1 3

�
:

A5. Solve �
x0
y0
�

D J

�
x

y

�
; J D

�
2 1

�1 2

�
:

A6. Solve x0 D Jx, where J D
�

1 3

�3 1

�
.

A7. Solve the Cauchy problem

x0 D
� �1 0

0 1

�
x; x.0/ D

�
1

�1
�
:

A8. Solve the Cauchy problem

x0 D
�

0 2

�2 0

�
x; x.0/ D

�
a

0

�
:

A9. Solve ²
x0 D y; x.0/ D 0

y0 D �x; y.0/ D 1:

A10. Solve ²
x0 D 3x C t

y0 D �y C 2t:

A11. Solve ²
x0 D x C t2

y0 D y C 1:



7.6 Exercises 151

A12. Solve ²
x0 D x C y C 1

y0 D �x C y � 5:

B1. Show that the matrix

A D
�
a b

c d

�
has 0 as an eigenvalue if and only if A is singular.

B2. Show that the symmetric matrix

A D
�
a b

b c

�
has two distinct real eigenvalues if b 6D 0.

B3. Find the eigenvalues and the corresponding eigenvectors of the matrix

A D
��1 0

3 1

�
and write the general solution of the system Nx0 D A Nx.

B4. Find the general solution of the system

x0 D 2x C 6y

y0 D x C 3y:

B5. Find the general solution of

x0 D 2x C 6y C et

y0 D x C 3y � et :

B6. Solve the initial value problem�
x0
y0
�

D
�
1 2

0 3

��
x

y

�
;

�
x.0/

y.0/

�
D
�
2

3

�
:

B7. Solve ²
x0 D x C 2y C 2t

y0 D 3y C t2:

B8. Solve �
x0
y0
�

D A

�
x

y

�
; A D

�
3 �1
0 2

�
:

B9. Solve

�
x0
y0
�

D A

�
x

y

�
where A D

�
1 0

4 �1
�

.

B10. Solve

x0 D Ax; A D
�
1 0

3 1

�
:
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B11. Solve ²
x0 D x C 3y

y0 D x � y:
B12. Solve the Cauchy problem²

x0 D x C y; x.0/ D 1

y0 D x � y; y.0/ D 0:

B13. Solve the Cauchy problem²
x0 D x C y; x.0/ D �1
y0 D �y; y.0/ D 2:

B14. Solve ²
x0 D x C 3y C 2t

y0 D x � y C t2:

B15. Solve ²
x0 D x C 2y C et

y0 D x � 2y � et :

C1. Let A;B be similar n � n matrices. Show that det A D det B and that they
have the same eigenvalues.

C2. Solve 0@ x0
y0
z0

1A D A

0@ x

y

z

1A ; A D
0@ 1 0 0

1 �1 0

�2 0 2

1A :

C3. Solve x0 D Ax, where A D
0@ 1 0 0

0 2 1

1 0 3

1A.

C4. Find x solving the Cauchy problem

x0 D
0@ 1 0 1

0 �1 0

0 0 4

1A x; x.0/ D
0@ 1

0

1

1A :

C5. Solve x0 D Ax, where A D
0@ 1 0 0

0 2 1

1 0 1

1A.

C6. Recall that the characteristic equation of the differential equation

x000 � 2x00 C 3x0 C x D 0

is m3 � 2m2 C 3mC 1 D 0: Change the differential equation to a system and
then show that its characteristic equation as a system remains the same.
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C7. Solve the Cauchy problem8<:
x0 D x C z x.0/ D 0

y0 D �y C z y.0/ D 1

z0 D y � 2z z.0/ D 0:

C8. Find a 2 R such that the system

x0 D Ax; A D
0@ a 0 0

b1 b2 0

b4 b5 b6

1A
has a nontrivial solution x.t/ satisfying jx.t/j ! 0 as t ! C1 for all bi 2 R.

C9. If

A D
0@ 2 0 0

0 2 1

�1 0 �1

1A ;
find a nontrivial solution of x0 D Ax such that limt!C1 jx.t/j D 0.

C10. Find a such that all the solutions of0@ x0
1

x0
2

x0
3

1A D
0@ a � 2 1 0

�1 a � 2 0

0 0 �a

1A0@ x1

x2

x3

1A
satisfy limt!C1 jxi .t/j D 0, i D 1; 2; 3.

D1. Solve ²
x0 C ty D �1;
y0 C x0 D 2:

D2. Solve ²
x0 C y D 3t;

y0 � tx0 D 0:

D3. Solve ²
x0 � ty D 1;

y0 � tx0 D 3:

D4. Solve ²
t2x0 � y D 1;

y0 � 2x D 0:

D5. Solve ²
x0 � y D 3;

y0 � 3xx0 D �2:
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D6. Solve ²
tx0 C y0 D 1;

y0 C x C ex0 D 1:

D7. Solve ²
xx0 C y D 2t;

y0 C 2x2 D 1:



8

Qualitative analysis of 2 � 2 systems and
nonlinear second order equations

In this chapter we study

1. Planar hamiltonian systems;
2. Lotka–Vilterra prey-predator systems;
3. Second order equations of the form x00 D f .x/.

We investigate the existence of periodic solutions, called closed trajectories, and non-
periodic solutions, called open trajectories such as homoclinic and heteroclinic so-
lutions, and so on. Our approach is based on phase plane analysis and geometric
considerations and leads to information about the qualitative behavior of solutions
without explicitly solving the equations. The common feature of the problems we
address is the fact that there exists a quantity that is conserved along the solutions.

First of all let us state an important property of autonomous systems.

Lemma 8.0.1. If x.t/ is a solution of the autonomous system

x0 D f .x/;

then x.t C h/ is also a solution, 8h 2 R.

Proof. Setting xh.t/ WD x.t C h/, one has x0
h.t/ D x0.t C h/ D f .x.t C h// D

f .xh.t//, which means that xh solves x0 D f .x/.

In general, the preceding property does not hold for non-autonomous systems. For
example, in the case of a single equation such as x0 D 2tx, we have that x.t/ D et2

is
a solution, but xh.t/ D x.t C h/ D e.tCh/2

is not a solution for any h 6D 0. Actually
x0

h
.t/ D 2.t C h/e.tCh/2 D 2te.tCh/2 C he.tCh/2 D 2txh.t/C hxh.t/.

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT – La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_8, © Springer International Publishing Switzerland 2014
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8.1 Planar hamiltonian systems

In this section we deal with an important class of autonomous systems²
x0 D Hy.x; y/

y0 D �Hx.x; y/
(HS)

whereH.x; y/ is a twice differentiable function defined at .x; y/ 2 R2. The function
H is called hamiltonian and the system is called a hamiltonian system. Hamiltonian
systems are conservative because there is a quantity that is conserved along its solu-
tions.

In the sequel we will always assume that solutions x.t/; y.t/ of (HS) are defined
for all t 2 R.

Lemma 8.1.1. If x.t/; y.t/ is a solution of (HS), then there exists c 2 R such that
H.x.t/; y.t// D c.

Proof. Taking the derivative one finds

d

dt
H.x.t/; y.t// D Hx.x.t/; y.t//x

0.t/CHy.x.t/; y.t//y
0.t/:

Since x0.t/ D Hx.x.t/; y.t// and y0.t/ D �Hy.x.t/; y.t//, we have

Hx.x.t/; y.t//Hx.x.t/; y.t// �Hy.x.t/; y.t//Hx.x.t/; y.t// D 0:

Therefore H.x.t/; y.t// is constant.

Consider the set in the plane defined by

ƒc D ¹.x; y/ 2 R2 W H.x; y/ D cº:
From the preceding Lemma it follows that any solution x.t/; y.t/ of (HS) satisfies
H.x.t/; y.t// D c for some constant c and thus .x.t/; y.t// 2 ƒc for all t . Let
x.t/; y.t/ be the (unique) solution of (HS) satisfying the initial condition x.t0/ D
x0; y.t0/ D y0. If .x0; y0/ belongs to ƒc for some c, then c D c0 D H.x0; y0/

and .x.t/; y.t// belongs to ƒc0
for all t . Recall that, since the system (HS) is au-

tonomous, if x.t/; y.t/ is a solution, then so is x.t C h/; y.t C h/, for all h 2 R.
Therefore, given .x0; y0/ 2 ƒc0

we can shift the time t and assume without loss
of generality that t0 D 0, namely that x.0/ D x0; y.0/ D y0. In other words,
any (nonempty) curve ƒc singles out a unique solution of (HS), the one such that
x.0/ D x0; y.0/ D y0, with .x0; y0/ 2 ƒc .

Remark 8.1.2. If Hx.x; y/ and Hy.x; y/ do not vanish simultaneously for .x; y/ 2
ƒc then H.x; y/ D c is a regular curve. A proof of this claim is carried out in a par-
ticular case in Lemma 8.3.3 in Section 8.3. Notice that the points .x�; y�/ 2 R2 such
that Hx.x

�; y�/ D Hy.x
�; y�/ D 0 are precisely the equilibria of the hamiltonian

system (HS).
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Example 8.1.3. If H.x; y/ D Ax2 C Bxy C Cy2, the only equilibrium is .0; 0/. If
c 6D 0, the curve ƒc is a conic. Precisely:

1. If B2 � 4AC < 0 and c > 0, then ƒc is an ellipse;
2. If B D 0, A D C and c > 0, then ƒc is a circle;
3. If B2 � 4AC > 0 (and c 6D 0), then ƒc is a hyperbola.

In any caseƒc is a regular curve. If c D 0 or B2 D 4AC the conic is degenerate and
can be a pair of straight lines or it reduces to a point.

Let xc.t/; yc.t/ be the solution of (HS) such thatH.x.t/; y.t// D c. SetPc.t/ �
.xc.t/; yc.t//.

In the sequel we are interested on the existence of periodic solutions of (HS).

Lemma 8.1.4. If there exists T > 0 such that Pc.T / D Pc.0/, then xc.t/; yc.t/ is a
T -periodic solution,

Proof. By assumption, there exists T > 0 such that Pc.T / D Pc.0/, namely
xc.T / D xc.0/ and yc.T / D yc.0/. We now argue as in Example 4.2.5 in Chapter 4.
Setting Qxc.t/ D xc.t C T /; Qyc.t/ D yc.t C T / we see that´

Qx0
c.t/ D x0

c.t C T / D Hy.xc.t C T /; yc.t C T // D Hy. Qxc.t/; Qyc.t//;

Qy0
c.t/ D y0

c.t C T / D �Hx.xc.t C T /; yc.t C T // D �Hx. Qxc.t/; Qyc.t//:

Moreover, Qxc.0/ D xc.T / D x.c0/ and Qyc.0/ D yc.T / D yc.0/. By uniqueness,
it follows that Qxc.t/ D xc.t/ and Qyc.t/ D yc.t/ for all t , that is xc.t C T / D
xc.t/; yc.t CT / D yc.t/. This means that .xc.t/; yc.t// is a T -periodic solution.

We conclude this section stating, without proof, the following result.

Theorem 8.1.5. Suppose that ƒc 6D ; is a compact curve that does not contain
equilibria of (HS). Then .xc.t/; yc.t// is a periodic solution of (HS).

Example 8.1.6. Show that the solution of the ivp²
x0 D 2x C 3y; x.0/ D 0

y0 D �3x � 2y; y.0/ D 1

is periodic.
Here Hy D 2x C 3y and Hx D 3x C 2y. We note that Hy D 2x C 3y implies

thatH D 2xyC 3
2
y2 Ch.x/, where we take h.x/ as the constant of integration with

respect to y. Therefore, Hx D 2y C h0.x/ D 3x C 2y yielding h D 3
2
x2 and hence

H.x; y/ D 2xy C 3
2
y2 C 3

2
x2.

The curve ƒc has equation 3
2
x2 C 2xy C 3

2
y2 D c. Using the initial values, we

find c D 3
2

. The curve defined by 3
2
x2 C 2xy C 3

2
y2 D 3

2
, or 3y2 C 4xy C 3x2 D

3, is an ellipse that does not contain the equilibrium .0; 0/, see Figure 8.1. Hence the
solution of the ivp is periodic.
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x

y

y=xy=-x

Fig. 8.1. 3y2 C 4xy C 3x2 D 3

Remark 8.1.7. The next examples show that the assumptions thatƒc is compact and
does not contains equilibria cannot be eliminated.

(i) Ifƒc is unbounded the solution .xc.t/; yc.t// cannot be periodic because xc.t/

and/or yc.t/ are unbounded.
(ii) Consider H.x; y/ D 1

2
y2 � 1

2
x2 C 1

4
x4, which corresponds to the system²

x0 D y;

y0 D x � x3:

For c D 0, the curveƒ0 D ¹H.x; y/ D 0º is compact but contains the singular point
.0; 0/. In Subsection 8.4.1 we will see that the corresponding solution x0.t/; y0.t/

satisfies limt!˙1 x0.t/ D 0 and hence is not periodic.

8.2 A prey-predator system

In this section we will study a system arising in population dynamics in the presence
of prey (e.g. sheep) and predators (e.g. wolves).

Let x.t/ > 0 denote the number of prey at time t and y.t/ > 0 the number of
predators at time t . It is assumed that prey has an unlimited food supply (e.g. grass)
while wolves may feed on sheep, for example. The change of the number of prey and
predators is modeled by the so called Lotka–Volterra1 system²

x0 D ax � bxy
y0 D �cy C dxy

(LV )

where a; b; c; d are strictly positive constants which depend on the skills of the prey

1 Alfred J. Lotka (1880–1949); Vito Volterra (1860–1940).
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and predators, the environment and the challenges for predators to kill their prey, and
so on. The meaning of this model is, roughly, the following. In the absence of preda-
tors, the prey is assumed to follow the Malthusian model x0 D ax with a > 0 and
hence it grows exponentially (recall that we are supposing that prey has an unlimited
food supply). The presence of predators reduces the increasing rate of prey by a fac-
tor of �bxy (say, the number of encounters between the sheep and the wolves). In
other words, the larger the population of the predators, the smaller the growth rate of
the prey.

The second equation models the growth rate of the predators. In the absence of
prey, the predators also follow a Malthusian model y0 D �cy, but with a negative
coefficient and they will eventually go to extinction due to lack of sufficient food
supply. The presence of prey modifies the growth rate of the predators by a factor
of dxy: the larger the number of prey, the greater the food supply for predators and
hence the bigger their growth rate.

Heuristically we can guess that the number of predators and prey oscillate. Nei-
ther of the two can increase beyond a certain threshold. For example, wolves cannot
increase after a threshold because when they become too many, they have to compete
harder for their food supply. But the sheep population cannot decrease too much, be-
cause the smaller their population, the smaller the survival rate of the wolf population;
and consequently the prey can prosper.

We want to prove this claim rigorously, by studying the behavior over time of the
number of prey and predators. Roughly, we try to find a constant of motion and use
it to deduce the properties of the solutions of (LV ).

First of all let us find the equilibria of the system. Putting x0 D y0 D 0 it follows
that ²

ax � bxy D 0

�cy C dxy D 0:

Solving this system, we see that the solutions are either the trivial solution x D y D
0 or x D c=d; y D a=b.

These equilibria correspond to two constant solutions: x.t/ � y.t/ � 0 and
x.t/ � c

d
; y.t/ � a

b
(recall that a; b; c; d are strictly positive). In other words, if the

initial number of prey is x.0/ D c
d

and the initial number of predators is y.0/ D a
b

,
then their numbers remain the same for all t > 0.

Next, let us show that .LV / possesses a one parameter family of positive periodic
solutions. Following what we did earlier, it would be useful to find the counterpart
of the energy constant, looking for a function H.x; y/ such that H.x.t/; y.t// D k,
for some k 2 R.

Let us check that such a function is given by

H.x; y/ D dx C by � c ln x � a lny; x > 0; y > 0:

To this end, take the derivative of H.x.t/; y.t// (for brevity we understand the de-
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pendence on t without indicating it each time)

d

dt
H.x; y/ D Hxx

0 CHyy
0 D

�
d � c

x

�
x0 C

�
b � a

y

�
y0:

Substituting x0 D ax � bxy; y0 D �cy C dxy, we deduce

d

dt
H.x; y/ D

�
d � c

x

�
.ax � bxy/C

�
b � a

y

�
.�cy C dxy/

D .ad x � ac � bd xy C bc y/C .�bc y C ac C bd xy � ad x/ D 0;

proving that H.x; y/ D k, for some k 2 R, along the solutions of (LV ).
As before, the solutions of (LV ) are defined implicitly by

H.x; y/ D dx C by � c ln x � a ln y D k; x > 0; y > 0;

provided, of course, that the set ¹H.x; y/ D kº is not empty. Set

� D H
� c
d
;
a

b

�
D c C a � c ln

� c
d

�
� a ln

�a
b

�
:

It is possible to show that the set ¹H.x; y/ D kº is not empty and defines a compact
curve, surrounding the equilibrium .c=d; a=b/ if and only if k > �.

To give a sketch of the proof of this claim, we need the theory of functions of two
variables. The reader who is not interested in the proof, or does not have sufficient
background to understand it, may skip the details given in small letters below.

Let us study the surface z D H.x; y/, x > 0; y > 0. The stationary points are the solutions
of Hx D 0;Hy D 0. Since

Hx.x; y/ D d � c

x
; Hy.x; y/ D b � a

y

we find

d � c

x
D 0; b � a

y
D 0:

Then the only stationary point is the equilibrium
�

c
d
; a

b

	
. The Hessian matrixH 00 ofH is given

by

H 00 D
�
Hxx Hxy

Hyx Hyy

�
D
�
cx�2 0

0 ay�2

�
:

Then, for all x > 0; y > 0, the eigenvalues ofH 00.x; y/ are both positive and this implies that
z D H.x; y/ is a strictly convex surface. In particular,

�
c
d
; a

b

	
is the unique global minimum

of H . Letting

� D H
� c
d
;
a

b

�
D c C a � c ln

� c
d

�
� a ln

�a
b

�
it follows that: .i/ for k < � the set ¹H.x; y/ D kº is empty; .i i/ for k D � the set ¹H.x; y/ D
kº reduces to the equilibrium point; .i i i/ for all k > � the equation H.x; y/ D k is a level
curve of the surface z D H.x; y/ and hence it defines a compact curve. This latter statement
is also a consequence of the fact that H.x; y/ ! C1 as x ! 0C or y ! 0C as well as
x ! C1 as y ! C1.
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x

y

Fig. 8.2. The curves H.x; y/ D k, k > �

Since, for all k > �, the curve ¹H.x; y/ D kº is compact and does not contain the
equilibria of (LV ), one shows as in Theorem 8.1.5 that it carries a periodic solution
of (LV ).

If x.t/; y.t/ is a T -periodic solution of (LV ), an important quantity is their mean
value

x WD 1

T

Z T

0

x.t/dt; y WD 1

T

Z T

0

y.t/dt:

The following result shows that, in the mean, the number of prey and predators equal
the equilibria.

Theorem 8.2.1. One has
x D c

d
; y D a

b
: (8.1)

Proof. From the first equation we infer (recall that x.t/ > 0)Z T

0

x0.t/dt
x.t/

D
Z T

0

.a � by.t//dt:

Since x.T / D x.0/, thenZ T

0

x0.t/dt
x.t/

D ln x.T / � ln x.0/ D 0:

It follows

aT � b
Z T

0

y.t/dt D 0 H)
Z T

0

y.t/dt D aT

b

whence y D a
b

. In a similar way, using the second equation one proves that x D c
d

.
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Let us consider the specific case in which a D 2; b D 1; c D 3; d D 1. The
equilibrium is the point P D .3; 2/ and the system becomes²

x0 D 2x � xy
y0 D �3y C xy:

Moreover
H.x; y/ D x C y � 3 ln x � 2 ln y;

and � D 5 � 3 ln 3 � 2 ln 2 D 5 � ln 9=4 > 0.
From the preceding equations it follows that we can distinguish 4 regions, see

Figure 8.3.

SC� D ¹x < 3; y < 2º where x0 > 0; y0 < 0;
SCC D ¹x > 3; y < 2º where x0 > 0; y0 > 0;
S�C D ¹x > 3; y > 2º where x0 < 0; y0 > 0;
S�� D ¹x < 3; y > 2º where x0 < 0; y0 < 0.

Let us take the initial values to be Q D .2; 1/. Letting k� D H.2; 1/ D 3 � 3 ln 2,
the equation H.x; y/ D k� defines a closed curve �� which carries a solution
x�.t/; y�.t/ of the system, such that x�.0/ D 2; y�.0/ D 1.

Referring to Figure 8.3, we fix the points A;B;C;D on ��. Let xm; xM be such
thatB D .xM ; 2/;D D .xm; 2/ 2 �� and let ym; yM be such thatA D .3; ym/; C D
.3; yM / 2 ��. To find xm; xM it suffices to solve the equation H.x; 2/ D 3� 3 ln 2,
that is

x C 2 � 3 ln x � 2 ln 2 D 3 � 3 ln 2 H) x � 3 ln x D 1 � ln 2:

P=(3,2)

Q=(2,1)
A

B

C

D S+- S++

S-+S--

x

y

Fig. 8.3. The curve ��
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Similarly, ym; yM are the solutions of H.3; y/ D 3 � 3 ln 2, namely

3C y � 3 ln 3 � 2 ln y D 3 � 3 ln 2 H) y � 2 ln y D 3 ln 3 � 3 ln 2:

The curve �� is contained in the rectangle Œxm; xM ��Œym; yM � (the dotted box in Fig-
ure 8.3) and x�.t/; y�.t/ are oscillating functions with minimal amplitudes xm; ym,
respectively, and maximal amplitudes xM ; yM , respectively. Notice that xm > 0 as
well as ym > 0.

In our model, the initial value Q D .2; 1/ belongs to SC� where x�.t/ increases
while y�.t/ decreases. The point .x�.t/; y�.t// “moves” on �� and at a certain time
t1 it reachesA, where one has x�.t1/ D 3 and y�.t1/ D ym. At this time, the number
of prey is enough to let the predators increase. Actually, for t > t1 one enters into the
region SCC where both x�.t/ and y�.t/ increase, even if with different slopes. At
some t D t2 the point on �� reaches B: the number of prey achieves its maximum
xM while y�.t2/ D 2. Now the number of wolves is sufficiently large to cause the
sheep population to decrease: for t > t2, x�.t/ decreases while y�.t/ increases until
the point on �� reaches C at a time t3 such that x�.t3/ D 3 and y�.t3/ D yM . But
the number of predators cannot increase without any limit because their big numbers
would reduce the population of the prey and thus cause a shortage of food supply.
As a consequence, the number of predators decays. For a while, prey still decreases,
but at a lower rate. At t D t4 where x�.t4/ D xm; y

�.t4/ D 2, the point on �� is
D D .xm; 2/ and the wolves are so few that the sheep population starts increasing
until .x�.t/; y�.t// once again reaches the starting initial value Q D .2; 1/.

8.2.1 The case of fishing

The original research of Volterra was carried out in order to understand why, after
the end of the first world war, in the Adriatic sea the number of small fish, like sar-
dines (the prey) increased while the number of big fish (the predators) decreased. The
explanation was that the phenomenon was due to the fact that after the war there was
increased fishing activity. Roughly, fishing kills some prey and some predators and
this modifies the model as follows²

x0 D ax � bxy � 	x D .a � 	/x � bxy
y 0 D �cy C dxy � 	y D �.c C 	/y C dxy:

The new equilibrium is

x� D c C 	

d
>
c

d
; y� D a � 	

b
<
a

b

and, according to (8.1), the number of sardines and predators are, in the mean,

x� > x D c

d
; y� < y D a

b
:

So, according to the Lotka–Volterra model, a small increment of fishing causes, in
the mean, a growth of the sardines and a smaller number of predators.



164 8 Qualitative analysis of 2 � 2 systems and nonlinear second order equations

8.3 Phase plane analysis

In this section we study the nonlinear system²
x0 D y

y0 D f .x/
(8.2)

where f 2 C1.R/. In the sequel it will be always understood that the solutions of
(8.2) are defined for all t 2 R.

The plane .x; y/ is called phase plane and the study of the system (8.2) is called
phase plane analysis.

System (8.2) is a hamiltonian system with hamiltonian (called here E) given by

E.x; y/ D 1

2
y2 � F.x/;

where F is such that F 0.x/ D f .x/. Actually, Ey D y andEx D �f .x/. Note that,
in this case, the equilibria of the hamiltonian system are the points .x0; 0/ 2 R2 such
that f .x0/ D 0, that correspond to the constant solutions x.t/ D x0, y.t/ D 0 of
(8.2).

The hamiltonian E is the sum of the kinetic energy 1
2
y2 D 1

2
x02 and the potential

energy �F.x/ and is therefore the total energy of the system.
From Lemma 8.1.1 proved in Section 8.1 it follows:

Lemma 8.3.1. If .x.t/; y.y// is a solution of (8.2), then E.x.t/; y.t// is constant.

For c 2 R, let

ƒc WD ¹.x; y/ 2 R2 W E.x; y/ D cº D ¹.x; y/ 2 R2 W 1
2
y2 � F.x/ D cº:

Remark 8.3.2. The following properties hold:

(i) ƒc is symmetric with respect to y: .x; y/ 2 ƒc if and only if .x;�y/ 2 ƒc .
(ii) A point .x; 0/ belongs to ƒc if and only if F.x/ D �c.
(iii) A point .0; y/ belongs toƒc if and only if c 	 0. In this case one has y D p

2c.
(iv) If a point .x0; y0/ 2 ƒc , then c D 1

2
y2

0 � F.x0/.

The proof is left to the reader as an easy exercise.

Lemma 8.3.3. If ƒc does not contain any equilibria of (8.2), then it is a regular
curve in the phase plane, in the sense that in a neighborhood of each point .x0; y0/ 2
ƒc , ƒc is either a differentiable curve of equation y D �.x/ or x D  .y/.

Proof. (Sketch) One has c D c0 D 1
2
y2

0 � F.x0/ and hence E.x; y/ D c0 yields
y2 D 2F.x/ C 2c0. Since .x0; y0/ is not singular, then either y0 6D 0 or y0 D 0

and f .x0/ 6D 0. In the former case there exists a neighborhood U of x0 such that
2F.x/C 2c0 > 0 for all x 2 U and thus y D ˙p2F.x/C 2c0; x 2 U , where the
sign ˙ is the same as the sign of y0. This shows that in U the set ƒc is a curve of
equation y D �.x/.
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If y0 D 0, then y2 D 2.F.x/ � F.x0//, namely F.x/ D 1
2
y2 C F.x0/ Since

.x0; 0/ is not singular, then F 0.x0/ D f .x0/ 6D 0. By continuity we infer that
F 0.x/ 6D 0 in a neighborhood V of x0. Then F is invertible in V with inverseˆ, and
this yields x D ˆ.1

2
y2 CF.x0//. Hence in V ƒc is a curve of equation x D  .y/.

If E.x; y/ D x2 � y2 and c D 0, ƒ0 D ¹x2 � y2 D 0º is the pair of straight
lines x C y D 0 and x � y D 0 and cannot be represented by any cartesian curve
in any neighborhood of .0; 0/, which is the equilibrium of the corresponding system
x0 D �2y; y0 D �2x. This shows that the preceding Lemma can be false if ƒc

contains an equilibrium.

8.4 On the equation x00 D f .x/

In this section we deal with the second order equations of the form x00 D f .x/. The
importance of this class of differential equations is linked e.g. to the Newton Law.
Actually, x00.t/ is the acceleration of a body with unit mass of position x.t/ at time
t and f .x/ is the force acting on the body, depending on its position.

Here we focus on periodic, homoclinic and heteroclinic solutions, see definitions
later on. Boundary value problems such as x00 D f .x/; x.a/ D x.b/ D 0; will be
discussed in Section 13.1 of Chapter 13.

Let us start by proving

Lemma 8.4.1. The second order equation

x00 D f .x/ (8.3)

is equivalent to the system ²
x0 D y

y0 D f .x/:
(8.4)

Moreover, the initial conditions x.0/ D x0; y.0/ D y0 for (8.4) correspond to the
initial conditions x.0/ D x0; x

0.0/ D y0 for (8.3).

Proof. Suppose that x, y is a solution of (8.4), with x.0/ D x0, y.0/ D y0. Then
x0 D y implies x00 D y0 D f .x/ and x.0/ D x0, y.0/ D y0 imply x.0/ D x0,
x0.0/ D y.0/ D y0. This shows that (8.4) implies (8.3).

Now, suppose that x00 D f .x/. Then if we let x0 D y, we obtain y0 D x00 D f .x/

and hence the system (8.4). Furthermore, the initial conditions x.0/ D x0, x0.0/ D
y0 imply x.0/ D x0, y.0/ D x0.0/ D y0.

As a consequence of the preceding Lemma we can apply to x00 D f .x/ all the
results of the preceding section. In particular:

1. The total energy

E.x; y/ D 1

2
y2 � F.x/; y D x0
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x

y

1-1

c>0
c=0

-1<c<0

Fig. 8.4. 2y2 � 2x2 C x4 D c

is constant along the solutions of x00 D f .x/. We let xc.t/ denote the solution of
x00 D f .x/ with energy c, carried by E D c.

2. If E D c is a closed curve which does not contain any zero of f , then it carries
a periodic solution of x00 D f .x/. Notice that the zeros of f are the equilibria of
the system (8.4).

In the sequel we will discuss two specific examples that show the typical features
of the arguments.

8.4.1 A first example: The equation x00 D x � x3

Consider the equation
x00 D x � x3: (8.5)

Here f .x/ D x�x3 and hence there are 3 equilibria: 0;˙1. The conservation of the
energy becomes

E.x; y/ D 2y2 � 2x2 C x4 D c; y D x0: (8.6)

Notice that E.x; y/ D c is symmetric with respect to x and y. Writing (8.6) as

y D ˙
r
c C 2x2 � x4

2

it follows that (see Fig. 8.4):

(i) E.0; y/ D 2y2 D c yields y D ˙pc=2. Hence c 	 0. Moreover, if c D 0,
then y D 0.
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(ii) If y D 0, then E.x; 0/ D c becomes x4 � 2x2 D c. Plotting the graph of the
function 2x2 � x4 we see that 2x2 � x4 � 1 and 2x2 � x4 D 1 for x D ˙1.
Then it follows that c 	 x4 � 2x2 	 �1. Moreover, for c D �1, E.x; 0/ D 1

provided x D ˙1.

(iii) For all c > 0,E.x; y/ D c is a closed curve that crosses both x D 0 and y D 0.

(iv) For all �1 < c < 0, E.x; y/ D c is the union of two closed curves that do not
cross x D 0.

(1) Periodic solutions. If c > �1, c 6D 0, then according to (iii–iv) the curve
E.x; y/ D c is closed and then xc.t/ is periodic. We have proved

Theorem 8.4.2. If c > �1, c 6D 0, the equation x00 D x�x3 has a periodic solution
xc.t/ such that E.xc.t/; x

0
c.t// D c.

(2) Homoclinic solutions.

Definition 8.4.3. We say x.t/ is a homoclinic to x0 (relative to the equation x00 D
f .x/), if x.t/ is a solution such that limt!˙1 x.t/ D x0.

We are going to show that x00 D x � x3 has homoclinics to 0.
Let c D 0 and let xC

0 .t/ > 0 be the solution of (8.5) carried by the branch of

E.x; y/ D 2y2 � 2x2 C x4 D 0; y D x0

contained in the half plane x 	 0. This curve crosses the x axis at x D p
2 and,

without loss of generality, we can assume that xC
0 .0/ D p

2 (and .xC
0 /

0.0/ D 0.).
Recall that x00 D x � x3 is equivalent to the system

²
x0 D y

y0 D x � x3

whose solution is denoted by xC
0 .t/; y

C
0 .t/ and satisfies E.xC

0 .t/; y
C
0 .t// D 0. For

all t < 0, the point .xC
0 .t/; y

C
0 .t// remains in the first quadrant. Then yC

0 .t/ > 0 for
t < 0 and hence d

dt
xC

0 .t/ D yC
0 .t/ > 0. Similarly, d

dt
xC

0 .t/ D yC
0 .t/ < 0 for t > 0.

As a consequence, xC
0 .t/ is decreasing for t > 0 and hence converges to a limit

L as t ! C1 and L < xC
0 .0/ D p

2. Moreover, yC
0 .t/ D d

dt
xC

0 .t/ ! 0. From the
conservation of energy we deduce

E.xC
0 .t/; y

C
0 .t// D 2.yC

0 .t//
2 � 2.xC

0 .t//
2 C .xC

0 .t//
4 D 0:
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Passing to the limit as t ! C1 we infer that 0� 2L2 CL4 D 0, that is L4 D 2L2.
Since L <

p
2, it follows that L D 0, namely

lim
t!C1 xC

0 .t/ D 0:

Similarly, as t ! �1, one has

lim
t!�1 xC

0 .t/ D 0:

Moreover, E.x; y/ D 0 is symmetric with respect to x and y and hence x�
0 .t/ D

�xC
0 .t/ is the solution carried by the branch contained in the half plane x � 0. We

have proved:

Theorem 8.4.4. Equation x00 D x � x3 possesses one positive and one negative
symmetric homoclinic to 0.

Notice that x0̇ .tCh/ are also homoclinics to 0, for all h 2 R. Actually, according to
Lemma 8.0.1, x0̇ .t Ch/ is a solution of x00 D x�x3 and limt!˙1 x0̇ .t Ch/ D 0.

Remark 8.4.5. In general, if x00 D f .x/ has a homoclinic to x0, then x0 is an equi-
librium.

8.4.2 A second example: The equation x00 D �x C x3

Consider the equation
x00 D �x C x3: (8.7)

t

x

O

Fig. 8.5. Homoclinic solutions of x00 D x � x3



8.4 On the equation x00 D f .x/ 169

As before, there are 3 equilibria 0;˙1. The equation E.x; y/ D c becomes

2y2 C 2x2 � x4 D c; y D x0:

The corresponding curves, which are symmetric with respect to x and y, are plotted
in Figure 8.6. If 0 < c < 1, then E.x; y/ D c is a closed curve surrounding the
origin and hence the corresponding solution is periodic.

The curve E.x; y/ D c passes through .˙1; 0/ provided c D 1. This gives rise
to a new type of solutions, as we are going to see. Let eƒ 
 ¹E.x; y/ D 1º be the
arc contained in the upper half plane y > 0, joining the points .�1; 0/ and .1; 0/.
The corresponding solutionex.t/ is strictly increasing, because y > 0. Repeating the
arguments carried out in the homoclinic case, one shows that

lim
t!�1ex.t/ D �1; lim

t!C1ex.t/ D 1:

Of course, for all h 2 R, any ex.t C h/ as well as �ex.t C h/ is also a solution of
x00 D �x C x3 with the property that they tend to different limits as t ! �1 and
t ! C1. These solutions that join two different equilibria are called heteroclinics.

We can state

Theorem 8.4.6. The equation x00 D �xCx3 possesses infinitely many heteroclinics.

x

y

1-1

Fig. 8.6. 2y2 C 2x2 � x4 D c: c D 1 (red); 0 < c < 1 (black); c > 1 (blue)
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t

x

1

-1

Fig. 8.7. Symmetric heteroclinics of x00 D �x C x3

8.5 Exercises

1. Find the equilibrium of ²
x0 D x C 1

y0 D x C 3y � 1:
2. Find a; b such that the equilibrium of²

x0 D x C 3y C a

y0 D x � y C b

is .1; 2/:

3. Find ˛; ˇ such that ²
x0 D ˛x C y

y0 D �2x C ˇy

is hamiltonian.

4. Discuss the family of conics x2 C Bxy C y2 D c in dependence on B; c.

5. Discuss the family of conics Ax2 � xy C y2 D c in dependence on A; c.

6. Find C such that the system ²
x0 D x C y

y0 D �2Cx � y
has no periodic solution but the equilibrium x.t/ D y.t/ � 0.

7. Show that if AC < 0 then all the solutions of the system²
x0 D Bx C Cy

y0 D �Ax � By
are not periodic.



8.5 Exercises 171

8. Find B such that the system ²
x0 D Bx C 3y

y0 D �3x � By
has periodic solutions.

9. Show that the solution of the system8̂̂<̂
:̂

x0 D x C y

y0 D �x � y
x.0/ D 1

y.0/ D 0

is periodic.

10. Show that the solution of the system8̂̂<̂
:̂

x0 D x � 6y
y0 D �2x � y
x.0/ D 1

y.0/ D 0

is unbounded.

11. Draw the phase plane portrait of the pendulum equation

Lx00 C g sin x D 0

and discuss the behavior of the solutions.

12. Find the equilibria of the Lotka–Volterra system²
x0 D x � xy
y0 D �y C xy:

13. Find the nontrivial equilibrium .x�; y�/ of²
x0 D 2x � 7xy � 	x
y0 D �y C 4xy � 	y:

14. Prove that there exists a periodic solution of the system²
x0 D 2x � 2xy
y0 D �y C xy

such that x C 2y � 4 D ln.xy2/.

15. Prove that there exists a periodic solution of the system²
x0 D x � 4xy
y0 D �2y C xy

such that x C 4y � 4 D ln.x2y/.

16. Let x.t/; y.t/ be a T-periodic solution of the Lotka–Volterra system²
x0 D x.3 � y/
y0 D y.x � 5/:

Show that 1
T

R T

0 x.t/dt D 5 and 1
T

R T

0 y.t/dt D 3.
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17. Show that U.t/ D p
2= cosh t is a homoclinic of the equation x00 D x � x3.

18. Let x0.t/ be a homoclinic of x00 D x � x3. Show that x000
0 .t/ ! 0 as t ! ˙1.

Extend the result to any derivative of x0.t/.

19. Prove the preceding result for the heteroclinics of x00 D �x C x3.

20. Show that the solution of x00 D �x C x3, x.0/ D 0; x0.0/ D 1
2

is periodic.

21. Discuss the behavior of the solution of x00 D �x C x3 such that x.0/ D
1; x0.0/ D 0.

22. Discuss the behavior of the solutions x00 D �x C x3 such that x.0/ D
0; x0.0/ D 1.

23. Show that the solution of x00 D x�x3 such that x.0/ D 1; x0.0/ D 1 is periodic.

24. Show that the solution of x00 D x�x3 such that x.0/ D 2; x0.0/ D 0 is periodic.

25. Show that the solution of x00 D x � x3 such that x.0/ D 1=
p
2; x0.0/ D 0 is

periodic.

26. Show that for all a 6D 0 the solution of x00 C xC 8x7 D 0, x.0/ D 0, x0.0/ D a

is periodic.

27. Discuss the behavior of the solution of x00 CxC 1
3
x2 D 0, x.0/ D 1, x0.0/ D 0.

28. Show that the solution of x00 �xC 3x2 D 0, x.0/ D 1
2

, x0.0/ D 0 is homoclinic
to x D 0.

29. Show that the solution of x00 � x C 3x2 D 0, x.0/ D 1
4

, x0.0/ D 0 is periodic.

30. Discuss the behavior of the solution of x00 � xC 3x2 D 0, x.0/ D 0, x0.0/ D 1.
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Sturm Liouville eigenvalue theory

In this chapter we deal with Dirichlet boundary value problems as8<:
x00.t/C A.t/x0.t/C B.t/x.t/C �C.t/x.t/ D 0

x.a/ D 0

x.b/ D 0

where a < b, � is a real parameter and A;B;C are continuous functions in Œa; b�.

Multiplying the equation by the integrating factor p.t/ D e
R t

0 A.s/ds one finds

p.t/x00.t/C p.t/A.t/x0.t/C p.t/B.t/x.t/C �p.t/C.t/x.t/ D 0:

Since p0 D Ap, then

Œpx0�0 D Apx0 C px00 D Apx0 C p.�Ax0 � Bx � �Cx/ D �pBx � �pCx:

Hence, setting

r.t/ D p.t/B.t/; q.t/ D p.t/C.t/;

the equation becomes

d

dt

�
p.t/

dx

dt

�
C r.t/x.t/C �q.t/x.t/ D 0:

From now on we will consider this equation where p.t/ > 0 and it is continuously
differentiable. We will also assume that q.t/ 6� 0. Moreover, in the above equation,
there are two terms involving x. We simplify the equation by letting r.t/ � 0. This
is equivalent to letting B.t/ � 0.

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT – La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_9, © Springer International Publishing Switzerland 2014
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9.1 Eigenvalues and eigenfunctions

One of the solutions of ²
.px0/0 C �qx D 0 in Œa; b�;
x.a/ D x.b/ D 0

(9.1)

is obviously the trivial solution x.t/ � 0.

Definition 9.1.1. We say that � is an eigenvalue of the system (9.1) if it has a non-
trivial solution, called an eigenfunction, corresponding to �.

Remark 9.1.2. If '.t/ is an eigenfunction corresponding to an eigenvalue �, so is
c'.t/ for all c 6D 0.

Theorem 9.1.3. If q.t/ > 0, then the eigenvalues of (9.1) are strictly positive.

Proof. Let � be an eigenvalue of (9.1). Multiplying the equation by x.t/ and inte-
grating on Œa; b� we findZ b

a

.p.t/x.t/0/0x.t/dt C �

Z b

a

q.t/x2.t/dt D 0: (9.2)

Integrating by parts, the first integral becomesZ b

a

.p.t/x0.t//0x.t/dt D .p.b/x0.b//x.b/ � .p.a/x0.a//x.a/ �
Z b

a

p.t/x0.t/x0.t/dt:

Since x.a/ D x.b/ D 0 we inferZ b

a

.p.t/x.t/0/0x.t/dt D �
Z b

a

p.t/x.t/02dt:

Since p.t/ > 0 and x.t/ 6� 0, this integral is strictly negative. From (9.2) it follows
that �

R b

a
q.t/x2.t/dt > 0. Taking again into account that q.t/ > 0 and x.t/ 6� 0 it

follows that � > 0.

Theorem 9.1.4. Let �1 6D �2 be two different eigenvalues of (9.1) and denote by
'1.t/; '2.t/ their corresponding eigenfunctions. ThenZ b

a

q.t/'1.t/'2.t/dt D 0:

Proof. Multiplying .p'0
1/

0 C �1q'1 D 0 by '2 and integrating by parts from a to
b, we obtain Z b

a

p'0
1'

0
2dt D

Z b

a

�1'1.t/'2.t/q.t/dt:
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Similarly, multiplying .p'0
2/

0 C�2q'2 D 0 by '1 and integrating by parts from a to
b, we obtain Z b

a

p'0
1'

0
2dt D

Z b

a

�2'1.t/'2.t/q.t/dt:

Therefore, Z b

a

�1'1.t/'2.t/q.t/dt D
Z b

a

�2'1.t/'2.t/q.t/dt

which implies Z b

a

'1.t/'2.t/q.t/dt D 0

if we assume that �1 ¤ �2.

Corollary 9.1.5. Eigenfunctions corresponding to different eigenvalues are linearly
independent.

Proof. If '2 D ˛'1 for some real number ˛ 6D 0 we would haveZ b

a

q.t/'1.t/'2.t/dt D ˛

Z b

a

q.t/'2
1.t/dt D 0;

a contradiction.

9.2 Existence and properties of eigenvalues

Consider the case in which p D q D 1. The equation becomes x00 C �x D 0,
whose general solution is x.t/ D c1 sin

p
� t C c2 cos

p
� t . Imposing the boundary

condition x.a/ D x.b/ D 0 we find the algebraic system in the unknowns c1; c2²
c1 sin

p
�aC c2 cos

p
�a D 0

c1 sin
p
� b C c2 cos

p
� b D 0:

The system has the trivial solution c1 D c2 D 0. According to Kramer’s rule, the
system has a nontrivial solution if and only if the determinant of the system is zero,
that is ˇ̌̌̌

sin
p
�a cos

p
�a

sin
p
� b cos

p
� b

ˇ̌̌̌
D sin

p
�a cos

p
� b � cos

p
�a sin

p
� b

D sin
p
� .a � b/ D 0

whence
p
� .a � b/ D k
 , k D 1; 2; : : : Then for any �k D

�
k�

b�a

�2

, k D 1; 2; : : : ;

the problem has nontrivial solutions and hence �k are the eigenvalues we were look-
ing for.
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Example 9.2.1. The eigenvalues of²
x00 C �x D 0

x.0/ D x.
/ D 0

are �k D k2, k D 1; 2; � � � . The general solution is xk.t/ D c1 sin kt C c2 cos kt .
The condition xk.0/ D 0 yields c2 D 0 and hence the eigenfunctions are 'k.t/ D
C sin kt , C 6D 0 a constant.

It is possible to extend the previous result to the general equation (9.1) yielding

Theorem 9.2.2. Suppose that q.t/ > 0. Then there exist infinitely many positive
eigenvalues �k of (9.1) such that 0 < �1 < �2 < � � � < �k < �kC1 < � � � . More-
over, �k ! C1.

Proof. (Sketch) We outline the proof in the general case. Let xp;�.t/ be the solution
of the initial value problem8<:

.p.t/x0.t//0 C �q.t/x.t/ D 0

x.a/ D 0

x0.a/ D p:

If p 6D 0, then xp;�.t/ 6� 0. Thus if xp;�.t/ has a zero at t D b, then xp;�.t/ is an
eigenfunction.

Notice that the solution is oscillatory. Denoting by ˛k.p; �/ the k-th zero of xp;�,
let us solve the equation ˛k.p; �/ D b. It is possible to show that, for each fixed p,
the function of � ˛k.p; �/ is continuous and increasing (see the graph plotted in the
next figure). Thus for each k D 1; 2; : : :, the equation ˛k.p; �/ D b has a solution
giving rise to an eigenvalue �k . Moreover, one proves that ˛1.p; �/ > ˛2.p; �/ >

: : : > ˛k.p; �/ > : : : and this implies that �1 < �2 < � � � .

We will always assume that q.t/ > 0 and denote by �kŒq� the eigenvalues of (9.1)
and by 'k.t/ a corresponding eigenfunction.

The smallest eigenvalue �1Œq� (also called the first or the principal eigenvalue)
has a “variational characterization” that we are going to outline.

Multiplying .p'0
1/

0 C �1Œq�q'1 D 0 by '1 and integrating by parts, one finds

�
Z b

a

p.t/'02
1 .t/dt C �1Œq�

Z b

a

q.t/'2
1.t/dt D 0:

It follows (recall that we are assuming q.t/ > 0)

�1Œq� D
R b

a
p.t/'02

1 .t/dtR b

a
q.t/'2

1.t/dt
:

Let C denote the class of functions � 2 C 1.a; b/ such that �.a/ D �.b/ D 0.
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b

�

a

� � �

� (.,�)� (.,�)� (.,�)1 2 k

k21 ....

Fig. 9.1. Plot of ˛k.p; �/ with p > 0

Theorem 9.2.3. One has

�1Œq� �
R b

a p.t/�
02.t/dtR b

a
q.t/�2.t/dt

; 8� 2 C : (9.3)

Moreover,

�1Œq� D min

"R b

a p.t/�
02.t/dtR b

a
q.t/�2.t/dt

W � 2 C

#
:

The proof requires advanced topics and is omitted.
The inequality in the preceding Theorem is known as the Poincar Ke inequality. The
quotient

R.�/ D
R b

a p.t/�
02.t/dtR b

a
q.t/�2.t/dt

on the right-hand side is usually called the Rayleigh Quotient.

Example 9.2.4. If p D q D 1, a D 0; b D 
 , the problem becomes x00 C �x D 0,
x.0/ D x.
/ D 0whose eigenvalues are �k D k2, k D 1; 2; : : : ; see Example 9.2.1.
Thus one has Z �

0

�2.t/dt �
Z �

0

�02.t/dt; 8� 2 C :

Theorem 9.2.5. Let �kŒqi �, i D 1; 2, be the eigenvalues of .p.t/x0/0 C�qi .t/x D 0,
x.a/ D x.b/ D 0. If q1.t/ � q2.t/ for all t 2 Œa:b�, then �kŒq1� 	 �kŒq2� for all
k D 1; 2; : : : .
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Proof. We prove the result for k D 1, using its variational characterization stated in
the preceding theorem. Since 0 < q1.t/ � q2.t/ on Œa; b�, then for all � 2 C one has

R1.�/ D
R b

a
p.t/�02.t/dtR b

a
q1.t/�2.t/dt

	
R b

a
p.t/�02.t/dtR b

a
q2.t/�2.t/dt

D R2.�/:

Since this inequality holds for all � 2 C , the same holds for the minima of both sides,
minima that are achieved, according to Theorem 9.2.3. Then we get

�1Œq1� D min
�2C

R1.�/ 	 min
�2C

R2.�/ D �1Œq2�;

completing the proof.

Corollary 9.2.6. If 0 < m � q.t/ � M on Œa; b�, then


2

M.b � a/2 � �1Œq� � 
2

m.b � a/2 :

Proof. One has �1ŒM � � �1Œq� � �1Œm�. Since �1Œm� D 
2

m.b � a/2 and �1ŒM � D

2

M.b � a/2 , the result follows.

Example 9.2.7. Let us show that the boundary value problem²
x00 C �.x � x3/ D 0

x.0/ D x.
/ D 0

has only the trivial solution if 0 � � � 1. Multiplying the equation by x.t/, we get
xx00 D ��.x2 � x4/ and henceZ �

0

xx00dt D ��
Z �

0

.x2 � x4/dt:

Integrating by parts the left integral and taking into account the boundary conditions
x.0/ D x.
/ D 0 we inferZ �

0

x.t/x00.t/dt D �
Z �

0

x02.t/dt

and thus Z �

0

x02.t/dt D �

Z �

0

.x2.t/ � x4.t//dt � �

Z �

0

x2.t/dt:

If, by contradiction, there is �, with 0 < � < 1, such that the boundary value problem
has a solution x.t/ 6� 0, thenZ �

0

x02.t/dt <
Z �

0

x2.t/dt:
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But the Poincar Ke inequality, in particular Example 9.2.4, yields
R �

0
x2.t/dt �R �

0
x02.t/dt , a contradiction.

Finally, we state, without proof, a property concerning the zeros of eigenvalues,
that can be proved as an exercise in the specific case when p D q D 1.

Theorem 9.2.8. Any eigenfunction 'k.t/ of (9.1) has exactly k� 1 zeros in the open
interval .a; b/. In particular, '1 does not change sign in .a; b/.

Remark 9.2.9. In this chapter we have considered only the Dirichlet boundary con-
ditions x.a/ D x.b/ D 0. It is worth mentioning that one could also consider the
Neumann boundary conditions x0.a/ D x0.b/ D 0, or else general mixed boundary
conditions ²

˛1x.a/C ˇ1x
0.a/ D 0

˛2x.b/C ˇ2x
0.b/ D 0

where the matrix �
˛1 ˇ1

˛2 ˇ2

�
is nonsingular, namely its determinant is different from zero. These cases require
some changes. Some of them are proposed as exercises.

9.3 An application to the heat equation

The heat equation
@u

@t
D @2u

@x2
(9.4)

is a partial differential equation that describes the variation of the temperature u.t; x/
at time t 	 0 and at a given point x of a rod of length ` D 
 , that is for x 2 Œ0; 
�.
Notice that here x is an independent variable, in contrast with the notation used be-
fore.

Given

f .x/ D
1X

kD1

fk sin kx;

we look for u satisfying the initial condition

u.0; x/ D f .x/; x 2 Œ0; 
�; (9.5)

that prescribes the temperature at t D 0. Moreover, we require that the temperature
is zero at the extrema of the rod, that is

u.t; 0/ D u.t; 
/ D 0; 8 t 	 0: (9.6)

Let us point out that u is not identically zero provided f is not, which we assume
throughout in the sequel.
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Let us look for a solution of (9.4) by separation of the variables, namely seek-
ing u.t; x/ as a product of a function of t and a function of x, that is in the form
u.t; x/ D �.t/ .x/. Since

@u

@t
D �0.t/ .x/;

@2u

@x2
D �.t/ 00.x/

one finds
�0.t/ .x/ D �.t/ 00.x/: (9.7)

This equation holds for every t 	 0 and all x 2 Œ0; 
�. If x0 is such that  .x0/ 6D 0

then, setting

� D � 
0.x0/

 .x0/
;

we find
�0.t/C ��.t/ D 0; 8 t 	 0: (9.8)

Similarly, if t0 is such that �.t0/ 6D 0, then from (9.8) it follows that

� D ��
0.t0/
�.t0/

and hence (9.7) implies

 00.x/C � .x/ D 0; 8 x 2 Œ0; 
�: (9.9)

Conversely, if �.t/;  .x/ satisfy (9.8) and (9.9) for the same constant �, then
�.t/ .x/ verifies (9.7) (recall that u.t; x/ D �.t/ .x/ is not identically constant).
Moreover, u.t; x/ is not identically zero whenever both �.t/ 6� 0 and  .x/ 6� 0.

Next, the boundary condition (9.6) yields  .0/ D  .
/ D 0. To have a nontriv-
ial solution of (9.9) with these boundary conditions, � has to be an eigenvalue of the
problem  00 C � D 0,  .0/ D  .
/ D 0, namely �k D k2, with k D 1; 2; : : :.
Thus nontrivial solutions  have the form  k.x/ D Ak sin.kx/, Ak constants and k
any positive integer.

For � D k2 > 0 the equation �0Ck2� D 0 yields �.t/ D Bke
�k2t ,Bk constants,

and thus, setting Ck D AkBk , we find that any

uk.t; x/ D Cke
�k2t sin.kx/; k D 1; 2; : : :

is a solution of the heat equation (9.4) satisfying the boundary conditions (9.6). Of
course, any sum of these uk is a solution and so is also the infinite series

u.t; x/ D
1X

kD1

Cke
��k t sin.

p
�kx/ D

1X
kD1

Cke
�k2t sin.kx/;

provided the series is uniformly convergent, so that it can be derived term by term.
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Finally, we can find the constants Ck , using the initial condition u.0; x/ D f .x/,
that is 1X

kD1

Ck sin.kx/ D f .x/ D
1X

kD1

fk sin.kx/

which implies that Ck D fk .
In conclusion, a solution of (9.4) satisfying (9.5) and (9.6) is given by

u.t; x/ D
1X

kD1

fk e
�k2t sin.kx/:

Example 9.3.1. If f .x/ D sin x C sin 2x, one has that f1 D f2 D 1; fi D 0 for all
i 6D 1; 2 and hence the series reduces to a finite sum, namely

u.t; x/ D e�t sin x C e�4t sin 2x:

We complete this section by proving the following uniqueness result.

Theorem 9.3.2. The solution of (9.4) is uniquely determined by the boundary con-
ditions (9.5) and the initial condition (9.6).

Proof. If u; v are two solutions of the preceding problem, then z D u � v satisfies
the heat equation

@z

@t
D @2z

@x2

and the conditions ²
z.0; x/ D 0; 8 x 2 Œ0; 
�
z.t; 0/ D z.t; 
/ D 0; 8 t 	 0:

The theorem follows if we show that z.t; x/ � 0. Let us set

I.t/ D
Z �

0

z2.t; x/dx:

We have

I 0.t/ D 2

Z �

0

z.t; x/zt .t; x/dx D 2

Z �

0

z.t; x/zxx.t; x/dx:

Integrating by parts and taking into account the boundary conditions z.t; 0/ D
z.t; 
/ D 0, we find

I 0.t/ D �2
Z �

0

z2
x.t; x/dx:

If, by contradiction, z 6� 0 we have I.t/ > 0 and I 0.t/ < 0 which implies
0 < I.t/ < I.0/. Since z.0; x/ D 0 for all x 2 Œ0; 
�, then

I.0/ D
Z �

0

z2.0; x/dx D 0

and we get a contradiction.
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9.4 Exercises

1. If ˛ > 0, find the eigenvalues of x00 C �˛x D 0, x.0/ D x.b/ D 0.

2. If ˇ > 0, find the eigenvalues of ˇx00 C �x D 0, x.0/ D x.b/ D 0.

3. Estimate the eigenvalues of x00 C �.1C t /x D 0, x.0/ D x.1/ D 0.

4. Estimate the first eigenvalue of x00 C �etx D 0, x.0/ D x.2/ D 0.

5. Show that the first eigenvalue �1 of .t2x0/0 C �x D 0, x.0/ D x.
/ D 0 is
smaller or equal to 
2.

6. If 0 < ˛ � p.t/ � ˇ in Œa; b�, estimate the first eigenvalue �1 of .p.t/x0/0 C
�x D 0, x.a/ D x.b/ D 0.

7. Estimate the first eigenvalue �1 of .p.t/x0/0 C �q.t/x D 0, x.a/ D x.b/ D 0,
under the assumption that 0 < ˛ � p.t/ � ˇ and 0 < m � q.t/ � M in Œa; b�.

8. Let �1Œq�, resp.e�1Œq�, be the first eigenvalue of .p.t/x0/0 C �q.t/x D 0, resp.
.ep.t/x0/0 C �q.t/x D 0, with the boundary conditions x.a/ D x.b/ D 0. If
p.t/ � ep.t/ for all t 2 Œa; b�, show that �1Œq� �e�1Œq�.

9. Show that the eigenvalues of x00 C�x D 0, x0.a/ D x0.b/ D 0 cannot be strictly
negative.

10. Find the eigenvalues of x00 C �x D 0, x0.0/ D x0.
/ D 0.

11. Find the eigenvalues of x00 C �x D 0, x.0/ D x0.
/ D 0.

12. Let x.t/ be a solution of the nonhomogeneous problem x00 C �kq.t/x D h.t/,
x.a/ D x.b/ D 0, where �k D �kŒq� is the n-th eigenvalue with corresponding
eigenfunction 'k . Prove that

R b

a
h.t/'k.t/dt D 0.

13. Setting L.u/ D .p.t/u0/0 C r.t/u, show that L.u/v � L.v/u D .p.uv0 �
vu0//0. Deduce that if u.a/ D v.a/ D u.b/ D v.b/ D 0, then

R b

a
L.u/vdt DR b

a
L.v/udt .

14. Solve ut D uxx , u.0; x/ D ˛ sin x, u.t; 0/ D u.t; 
/ D 0.

15. Solve ut D c2uxx with the boundary condition u.t; 0/ D u.t; 
/ D 0.

16. Solve ut D uxx , with the boundary condition u.t; 0/ D u.t; L/ D 0.
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Solutions by infinite series and Bessel functions

10.1 Solving second order equations by series

It should be clear by now that the methods for solving differential equations thus far
have been limited and applicable only to certain types of equations.

In this chapter we discuss methods of finding solutions of linear differential equa-
tions by using power series. The basic idea is to substitute, formally, an infinite power
series x.t/ D P

akt
k into the equation and use the fact that

P
bkt

k D P
ckt

k if
and only if bk D ck for all k 2 N. In this way, one tries to find a recursive formula
that allows us to determine the coefficients of the desired series. One assumes that
the series is absolutely convergent, that is analytic, in some interval I so that it can
be differentiated term by term. After determining the coefficients of the power series,
one tries to find its radius of convergence by some method such as the ratio test.

10.2 Brief review of power series

Recall the following properties of power series.

1. Shifting indices: one can easily verify that

nX
3

akt
k D

nC1X
4

ak�1t
k�1 D

n�2X
1

akC2t
kC2:

Such shifting of indices is important in calculating series solutions. It is easy to
remember that in order to increase (or decrease) the indices in the summation by
m, we must decrease (or increase) the limits of summation by m.

2. With each power series 1X
kD0

ak.t � t0/k (10.1)

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT – La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_10, © Springer International Publishing Switzerland 2014



184 10 Solutions by infinite series and Bessel functions

is associated a radius of convergence R, R 	 0, with the following properties:

(a) R > 0 and the power series (10.1) is absolutely convergent if jt � t0j < R

and it is divergent if jt � t0j > R. For jt � t0j D R, it can go either way
depending on the particular power series. In this case we say that the interval
of convergence is jt � t0j < R.

(b) R D 0 and the power series converges only for t D t0.

(c) R D 1 and the power series converges for all t , with the interval of conver-
gence .�1;1/.

3. If a power series is absolutely convergent, then it is convergent. The converse is
false.

4. When a function f .t/ has a power series representation at t D t0, with a posi-
tive radius of convergence, then f .t/ is said to be analytic at t D t0. In such a
case, the series can be differentiated term by term infinitely many times, with the
derivatives having the same radius of convergence.

5. An analytic function has a unique power series representation, within its radius of
convergence, which is given by the Taylor series

f .t/ D
1X

kD0

f .k/.t0/

kŠ
.t � t0/k :

For example, in order to show that

1

1 � t D
1X
0

tk D 1C t C t2 C : : :C tk C : : :

is valid for �1 < t < 1, instead of using the Taylor expansion, we simply use long
division and, dividing 1 by 1 � t , obtain

1

1 � t D
1X

kD0

tk :

In order to find its interval of convergence, we use the ratio test. Thus we have

lim
k!1

ˇ̌̌̌
ˇ tkC1

tk

ˇ̌̌̌
ˇ D jt j:

This shows that the radius of convergence is R D 1 and hence

1

1 � t D
1X
0

tk

for �1 < t < 1. Furthermore, this representation, in terms of powers of t , is unique.
So, if we use the Taylor expansion for f .t/ D 1=.1 � t / around t D 0, we will get
the same series. Lastly, we note that for t > 1, the above series representation does
not hold. But we can find its Taylor expansion around t D 3, for example.
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10.3 Series solutions around ordinary points

Consider the differential equation

a0.t/x
.n/ C a1.t/x

.n�1/ C : : :C an.t/x.t/ D 0

where the functions ai .t/, i D 1; : : : ; n, are analytic at t D t0, with convergent
power series in an interval R � t0 < t < t0 C R. If a.t0/ ¤ 0, then t0 is called an
ordinary point. If a.t0/ D 0, then it is called a singular point. At an ordinary point
t D t0, the above differential equation has a unique power series solution at t D t0,
for any initial value problem x.t0/ D ˛0; : : : ; x

.n�1/.t0/ D ˛n�1. The radius of
convergence of the solution is the smallest of the radii of convergence of the power
series of the coefficients ai , 0 � i � n.

Singular points are more of a problem. At such points there may not exist analytic
solutions. Special cases of such points will be discussed later.

The examples below demonstrate the general procedure for determining series
solutions at ordinary points.

Example 10.3.1. We know that the general solution of x0 D x is x.t/ D cet . Let us
find this by using infinite power series. Setting

x.t/ D
X
k�0

akt
k D a0 C a1t C a2t

2 C : : :C akt
k C : : :

we find

x0.t/ D
X
k�1

kakt
k�1 D a1 C 2a2t C : : :C kakt

k�1 C : : : :

The equation x0 � x D 0 yieldsX
k�1

kakt
k�1 �

X
k�0

akt
k D 0:

Our goal now is to make the powers of t the same in both summations so that we can
factor it out and set the coefficients equal to 0. We can accomplish this in more than
one way. But let us increase the power of t in the first sum by 1, which means that
we have to shift down the starting point by 1. Then we obtainX

k�0

.k C 1/akC1t
k �

X
k�0

akt
k D

X
k�0

Œ.k C 1/akC1 � ak�t
k D 0:

Now setting the coefficients equal to 0, we have .kC 1/akC1 � ak D 0, which gives
us the recursive formula

akC1 D 1

k C 1
ak; k D 0; 1; : : : :
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Thus

a1 D a0; a2 D 1

2
a1 D 1

2
a0;

a3 D 1

3
a2 D 1

3

1

2
a0 D 1

3Š
a0; a4 D 1

4
a3 D 1

4Š
a0; : : : :

It is now clear that in general we have

ak D ak�1

k
D ak�2

k.k � 1/ D � � � D a0

k.k � 1/ � � � 2 D a0

kŠ
:

Therefore the general solution to the given differential equation is

x.t/ D a0

1X
kD0

1

kŠ
tk :

We note that the above sum is the Taylor expansion for et ; therefore the general
solution is x.t/ D a0e

t , where a0 is an arbitrary constant.

Example 10.3.2. Let us use power series to solve the initial value problem

x00 D x; x.0/ D 0; x0.0/ D c:

We set x D P
k�0 akt

k D a0 C a1t C a2t
2 C : : :C akt

k C : : : . The condition
x.0/ D 0 implies that a0 D 0.

We may use a slightly different procedure to find the recursive formula, as follows.
We find

x0 D
X
k�1

kakt
k�1 D a1 C 2a2t C 3a3t

2 C : : :C kakt
k�1 C : : :

x00 D
X
k�2

k.k � 1/akt
k�2

D 2a2 C 2 � 3 a3t C 3 � 4 a4t
2 C : : :C k.k � 1/akt

k�2 C : : : :

Then x00 D x, x.0/ D 0, yields a0 D 0 andX
k�2

k.k � 1/akt
k�2 D

X
k�1

akt
k ;

that is

2a2 C 2 � 3 a3t C 3 � 4 a4t
2 C : : :C k.k � 1/akt

k�2 C : : :

D a1t C a2t
2 C a3t

2 C : : :C akt
k C : : : :

This equality implies

2a2 D 0; 2 � 3 a3 D a1; 3 � 4 a4 D a2; : : : ; k.k � 1/ak D ak�2
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that is

a2 D 0; a3 D a1

2 � 3 D a1

3Š
; a4 D a2

3 � 4 D 0; a5 D a1

5Š
; a6 D 0; : : : :

In general, ak D 0 if k is even, while if k is odd

ak D ak�2

k.k � 1/ D ak�4

k.k � 1/.k � 2/.k � 3/ D � � � D a1

kŠ
:

Thus, setting c D a1, we find

x.t/ D c

�
1C t C t3

3Š
C t5

5Š
C : : :

�
:

The series is absolutely convergent on all R. This can be verified by using the ratio
test since

lim
n!1

tnC1

.nC 1/Š
� nŠ
tn

D 0:

It is easy to check that

1C t C t3

3Š
C t5

5Š
C : : : D 1C sinh t:

In other words, x.t/ D c .1C sinh t /, which can also be found by using the methods
discussed in Chapter 5.

Example 10.3.3. Find x.t/ D P1
kD0 akt

k that solves x00 D t2x. Since x00.t/ DP1
kD2 k.k � 1/akt

k�2, the equation x00 � t2x D 0 yields

1X
kD2

k.k � 1/akt
k�2 �

1X
kD0

akt
kC2 D 0:

Once gain, our goal is to combine the two series into one series, factor out the powers
of t , and then set the coefficients equal to zero, which will give us the desired recur-
sive formula. To this end, let us increase the power of t in the first sum by 2, which
requires that we decrease the lower limit by 2, and also shift down the power of t in
the second series by 2, obtaining

1X
kD0

.k C 2/.k C 1/akC2t
k �

1X
kD2

ak�2t
k D 0:

Now, everything is fine except that one of the sums starts at k D 0 and the other at
k D 2, which means we still cannot combine the two sums. But this problem is easy
to resolve by simply writing the first two terms of the first series separately. Thus we
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have

2 � 1 � a2 C 3 � 2 � a3 t C
1X

kD2

.k C 2/.k C 1/akC2t
k �

1X
kD2

ak�2t
k D

2a2 C 6a3 t C
1X

kD2

Œ.k C 2/.k C 1/akC2 � ak�2� t
k :

Now we set the coefficients equal to 0, obtaining a2 D a3 D 0 and
.k C 2/.k C 1/akC2 � ak�2 D 0, which gives us the recursive formula

akC2 D ak�2

.k C 2/.k C 1/
; k D 2; 3; : : :

which can also be written as

akC4 D ak

.k C 4/.k C 3/
; k 	 0:

Now we can compute as many terms of the series solution as we wish, which with
the aid of computer technology, gives us the approximate solution to any initial value
problem to a desired degree of accuracy. So, our big task in solving differential equa-
tions by series is finding the recursive formula. However, it is instructive to continue
analyzing and simplifying this problem further.

Recall from above that our recursive formula is complemented by a2 D a3 D 0,
while a0; a1 remain undetermined. Notice that if k D 0; 1; 2; 3, we find

a4 D a0

4.4 � 1/ D a0

4 � 3
a5 D a1

5.5 � 1/ D a1

5 � 4
a6 D a2

6.6 � 1/ D 0

a7 D a3

7.7 � 1/ D 0:

This suggests to distinguish four cases:

1. If k D 4n, then

a4nC4 D a4.nC1/ D a4n

.4nC 4/ � .4nC 4 � 1/
D a4.n�1/

4.nC 1/ � Œ4.nC 1/ � 1� � 4n � .4n � 1/
D � � �
D a0

4.nC 1/ � Œ4.nC 1/ � 1� � � � 4 � 3 :
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2. If k D 4nC 1, then

a4.nC1/C1 D a4nC1

Œ4.nC 1/C 1� � 4.nC 1/

D a4.n�1/C1

Œ4.nC 1/C 1� � 4.nC 1/ � 4.n � 1/ � Œ4.n � 1/ � 1�
D � � �
D a1

Œ4.nC 1/C 1� � 4.nC 1/ � � � 5 � 4 :

3. If k D 4nC 2, then

a4.nC1/C2 D a4nC2

Œ4.nC 1/C 2� � Œ4.nC 1/C 1�

D � � �
D a2

Œ4.nC 1/C 2� � Œ4.nC 1/C 1� � � � D 0:

4. If k D 4nC 3, then

a4.nC1/C3 D a4nC3

Œ4.nC 1/C 3� � Œ4.nC 1/C 2�

D � � �
D a3

Œ4.nC 1/C 3� � Œ4.nC 1/C 2� � � � D 0:

In conclusion, the solution depends on the two constants a0; a1 and has the form

x.t/ D a0

X
n�0

t4n

4.nC 1/ � Œ4.nC 1/ � 1� � � � 4 � 3

C a1

X
n�0

t4nC1

Œ4.nC 1/C 1� � 4.nC 1/ � � � 5 � 4

D a0

�
1C t4

4 � 3 C t8

8 � 7 � 4 � 3 C ::

�
C a1

�
t C t5

5 � 4 C t9

9 � 8 � 5 � 4 C ::

�

which is the general solution of x00 D t2x. If we were interested, for example, in a
solution x.t/ satisfying the initial conditions x.0/ D 1; x0.0/ D 0, then in the last
equation we would simply let a1 D 0 and a0 D 1.

In general, one has to be careful not to generalize too quickly based only on a few
terms. In the preceding example if one evaluates only the first 3 terms, one might be
tempted to think that all the coefficients a2; a3; etc. are zero, which, of course, would
be false.
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10.4 The Frobenius method

In this and the next section we deal with the second order differential equation

p0.t/x
00 C p1.t/x

0 C p2.t/x D 0

when t D 0 is a singular point, i.e. p0.0/ D 0, such that

t
p1.t/

p0.t/
; t2

p2.t/

p0.t/

are analytic at t D 0. In such a case t D 0 is called a regular singular point.
We will shortly discuss a general method, due to F.G. Frobenius,1 to solve by se-

ries these classes of second order equations. Precisely, we are going to show that one
can find a solution by substituting

t r
1X

kD0

akt
k D

1X
kD0

akt
kCr

for some number r .
To be specific, let us consider the equation

t2x00 C tP.t/x0 CQ.t/x D 0 (10.2)

under the assumption that P;Q are polynomial. Clearly t D 0 is a regular singular
point. If we look for solutions of the form x.t/ D t r

P
k�0 akt

k D P
k�0 akt

kCr ,
with r > 0, we have:

tx0 D t
X
k�0

.k C r/akt
kCr�1 D

X
k�0

.k C r/akt
kCr

t2x00 D t2
X
k�0

.k C r/.k C r � 1/akt
kCr�2 D

X
k�0

.k C r/.k C r � 1/akt
kCr :

Thus, the equation becomesX
k�0

.k C r/.k C r � 1/akt
kCr C P.t/

X
k�0

.k C r/akt
kCr CQ.t/

X
k�0

akt
kCr D 0;

whenceX
k�0



.k C r/.k C r � 1/akt

kCr C P.t/.k C r/akt
kCr CQ.t/akt

kCr
� D 0:

or X
k�0

Œ.k C r/.k C r � 1/C P.t/.k C r/CQ.t/� akt
kCr D 0;

1 Ferdinand Georg Frobenius (1849–1917).
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namely

Œr.r � 1/C P.t/r CQ.t/� a0t
r

C
X
k�1

Œ.k C r/.k C r � 1/C P.t/.k C r/CQ.t/� akt
kCr D 0:

To simplify calculations, let us consider the more specific case in which P.t/ D p0

and Q.t/ D q0 C q1t . It follows

Œr.r � 1/C p0r C .q0 C q1t /� a0t
r C

C
X
k�1

Œ.k C r/.k C r � 1/C p0.k C r/C .q0 C q1t /� akt
kCr

D Œr.r � 1/C p0r C q0� a0t
r C q1a0t

rC1 C
C
X
k�1

Œ.k C r/.k C r � 1/C p0.k C r/C q0� akt
kCr C q1akt

kCrC1 D 0:

If we introduce the second order polynomial

F.r/ D r.r � 1/C rp0 C q0;

the preceding equation can be written as

F.r/a0t
r C q1a0t

rC1 C F.r C 1/a1t
rC1 C q1a1t

rC2

CF.r C 2/a2t
rC2 C q1a2t

rC3 C : : : D 0:

All the coefficients of the power t rCk have to be zero and hence we deduce

F.r/a0 D 0

F.r C 1/a1 C q1a0 D 0

F.r C 2/a2 C q1a1 D 0

: : : : : :

and, in general,

F.r/a0 D 0; F.r C k/ak C q1ak�1 D 0; k D 1; 2; : : : :

If F.r/ 6D 0 we find that a0 D 0. Moreover, if F.r C 1/ 6D 0 then F.r C 1/a1 D 0

yields a1 D 0 and so on: if F.r C k/ 6D 0 for all k 	 0 then all the ak are 0 and the
procedure gives the trivial solution.

The equation F.r/ D 0 is called the indicial equation and is a second order alge-
braic equation. Its roots are called the characteristic exponents of (10.2).
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Let r1 be a root of F.r/ D 0. Now, if we put r D r1 in the preceding recursive
formulae, a0 remains undetermined, while

a1 F.r1 C 1/ D �q1a0

a2 F.r1 C 2/ D �q1a1

: : : : : : ::

ak F.r1 C k/ D �q1ak�1:

Then for all k 	 1 such that F.r1 C k/ 6D 0, these equations allow us to find ak

while if F.r1 C k/ D 0 for some k, the corresponding ak remains undetermined. It
can be shown that the corresponding series converges uniformly on R. So, the formal
procedure is consistent and

x.t/ D t r1

X
k�0

akt
k

is a solution of (10.2). For example, if F.r1 C k/ 6D 0 for all k 	 1, one finds

a1 D �q1

a0

F.r1 C 1/

a2 D �q1

a1

F.r1 C 2/
D q2

1

a0

F.r1 C 1/F.r1 C 2/

a3 D �q1

a2

F.r1 C 3/
D �q3

1

a0

F.r1 C 1/F.r1 C 2/F.r1 C 3/
: : : : : : : :

ak D .�1/kqk
1

a0

F.r1 C 1/F.r1 C 2/ � � �F.r1 C k/

and the solution x.t/ will depend on the constant a0.
Finding a second solution y.t/, linearly independent of the preceding one, requires

some caution. Referring e.g. to the book by E.L. Ince (see Bibliography) for a com-
plete discussion, we limit ourselves to simply stating that if r1; r2 are the roots of the
indicial equation, one should distinguish among 3 cases:

1. If r1 6D r2 and they do not differ by an integer, then y.t/ D t r2
P

k�0 bkt
k , where

bk satisfies the recursive formula bkF.r2 C k/ D �q1bk�1.

2. If r1 6D r2 and they differ by an integer, then y.t/ D cx.t/ ln t C t r2
P

k�0 bkt
k ,

where the constant c can be zero.

3. If r1 D r2, then y.t/ D x.t/ ln t C t r1
P

k�0 akt
k .

Example 10.4.1. Consider the equation t2x00 C 2tx0 � `.` C 1/x D 0 with ` > 0,
that arises in solving the 3D Laplace equation in spherical coordinates. This is a Euler
equation. Here we use the Frobenius method to find solutions. The given equation is
of the form (10.2) with p0 D 2, q0 D �`.`C 1/ and q1 D 0. Then we have

ak F.r1 C k/ D 0; k D 1; 2; : : : :
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The indicial equation isF.r/ D r.r�1/C2r�`.`C1/ D 0, that is r2Cr�`.`C1/ D
0, whose roots are r1 D `; r2 D �.`C 1/. Taking r D ` one finds

F.`C k/ D .`C k/.`C k � 1/C 2.`C k/ � `.`C 1/

D k.4`C 3k C 1/ > 0; 8 k D 1; 2; : : : :

Thus ak D 0 for all k 	 1. Taking for example a0 D 1, a solution is given by
x.t/ D t`. Even if the two roots may differ by an integer, in this specific case a
second linearly independent solution can be found in the form y.t/ D t�.`C1/. It is
easy to check that the two functions t` and t�.`C1/ are linearly independent and so
the general solution is x.t/ D c1t

` C c2t
�.`C1/.

Example 10.4.2. Find a solution of t2x00 C tx0 C .t � 1/x D 0. Here p0 D 1, q0 D
�1 and q1 D 1. Thus the indicial equation is

F.r/ D r.r � 1/C r � 1 D r2 � 1
whose roots are ˙1. Taking r D 1 we find F.k C 1/ D .k C 1/2 � 1 D k.k C 2/

which vanishes if and only if k D 0. Thus for k D 1; 2 : : : we find

ak D .�1/k a0

3 � 8 � � � k.k C 2/
:

Hence a solution is

x.t/ D a0t �
X
k�1

.�1/k tk

3 � 8 � � � k.k C 2/
;

which depends upon a constant a0.

10.5 The Bessel equations

In this Section we consider the Bessel2 equations, namely

t2x00 C tx0 C .t2 �m2/x D 0: (10.3)

The number m is called the order of the Bessel equation and could be an integer or a
rational number.

Bessel equations arise in applications when solving the Laplace equation or the
wave equation, in 3-dimensional space, using the method of separation of variables.
For completeness, we briefly outline how it works in the case of the Laplace equation.

The 3-D Laplace equation uxx C uyy C uzz D 0 in cylindrical coordinates x D r sin�; y D
r cos�; z can be written as

1

r
.rur /r C 1

r2
u�� C uzz D 0:

2 Friedrich Wilhelm Bessel (1784–1846).
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Looking for solutions in the form u.r; �; z/ D R.r/ˆ.�/Z.z/ one checks that the equation
becomes

1

rR
.rRr /r C 1

r2ˆ
ˆ�� C 1

Z
Zzz D 0:

The only term containing z is 1
Z
Zzz , which therefore has to be constant, say k2. Then 1

Z
Zzz D

k2, namely Zzz D k2Z, which yields

1

rR
.rRr /r C 1

r2ˆ
ˆ�� C k2 D 0

and, multiplying by r2, we obtain

r

R
.rRr /r C 1

ˆ
ˆ�� C k2r2 D 0:

The only term containing � is 1
ˆ
ˆ�� and hence it has to be constant, say 1

ˆ
ˆ�� D A, namely

ˆ�� D Aˆ. Since we expect that ˆ is periodic with respect to �, we take A D �m2 so that
we getˆ�� Cm2ˆ D 0, the equation of a harmonic oscillator. Then we can write the equation
for R.r/ as

r.rRr /r C .k2r2 �m2/R D 0

that is

r2Rrr C rRr C .k2r2 �m2/R D 0:

Finally, setting t D kr and x.t/ D R.r=k/, we find x0.t/ D k�1Rr , x00.t/ D k�2Rrr . Thus
rRr D krx0 D tx0, r2Rrr D r2k2x00 D t2x00 whence

t2x00.t/C tx0.t/C .t2 �m2/x.t/ D 0;

which is the Bessel equation of order m.

Now, let us solve the Bessel equations. Even if t D 0 is a regular singular point,
we do not follow the general Frobenius method, but we prefer to handle (10.3) in a
simpler way by using the series

P1
kD0 akt

k . Though in general this method gives rise
to the trivial solution (i.e. ak D 0 for all k), it works in the case of Bessel equations.

Setting x D P
akt

k , we find

tx0 D
X
k�1

kakt
k D a1t C 2a2t

2 C 3a3t
3 C : : :C kakt

k C : : :

t2x00 D
X
k�2

k.k � 1/akt
k

D 2a2t
2 C 3 � 2a3t

3 C 4 � 3t4 C : : :C k.k � 1/akt
k C : : : :

Then x solves the Bessel equation (10.3) providedX
k�2

k.k � 1/akt
k C

X
k�1

kakt
k C .t2 �m2/

X
k�0

akt
k D 0:
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We can write this equality in the formX
k�2

k.k � 1/akt
k C

X
k�1

kakt
k �m2

X
k�0

akt
k C

X
k�0

akt
kC2 D 0: (10.4)

In the sequel we will carry out a detailed discussion in the cases m D 0; 1. The
other cases will be sketched only.

10.5.1 The Bessel equation of order 0

When m D 0 we have
t2x00 C tx0 C t2x D 0 (10.5)

which is the Bessel equation of order 0. If m D 0 the preceding equality (10.4) be-
comes X

k�2

k.k � 1/akt
k C

X
k�1

kakt
k C

X
k�0

akt
kC2 D 0:

Since X
k�1

kakt
k D a1t C

X
k�2

kakt
k

and X
k�0

akt
kC2 D

X
k�2

ak�2t
k;

we infer X
k�2

k.k � 1/akt
k C

X
k�2

kakt
k C

X
k�2

ak�2t
k C a1t D 0:

Simplifying, we have X
k�2

k2akt
k C

X
k�2

ak�2t
k C a1t D 0:

Then a1 D 0 and, for k 	 2,

k2ak C ak�2 D 0 H) ak D � ak�2

k2
:

In other words,
ak D 0 if k is odd;

while, for k even, we find

a2 D � a0

22
; a4 D a2

42
D a0

22 � 42
; : : : :

In general we have, for k even,

ak D .�1/k=2 a0

22 � 42 � � � k2
:
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Then a first family of solutions of the Bessel equation with m D 0 is given by

x.t/ D a0

�
1 � t2

22
C t4

22 � 42
� t6

22 � 42 � 62
C � � �

�
;

where the series turns out to be uniformly convergent on all R.
If we set

J0.t/ D 1 � t2

22
C t4

22 � 42
� t6

22 � 42 � 62
C � � �

D 1 � 1

2

�
t

2

�2

C 1

22

�
t

2

�4

� 1

.2 � 3/2
�
t

2

�6

C � � �

D
X
k�0

.�1/k
.kŠ/2

�
t

2

�2k

we have that all the functions x.t/ D cJ0.t/ solve the Bessel equation of order 0.
The function J0 is analytic, even and J0.0/ D 1. Moreover, it is possible to show

that J0 has the following properties (as for the first two, see also Theorem 10.5.4):

1. it has infinitely many zeros;

2. it decays to zero at infinity;

3. it is integrable on all RC and
R C1

0
J0.t/dt D 1.

The graph of J0.t/ is shown in Figure 10.1. The function J0 is called the Bessel func-
tion of order 0, of first type, to distinguish it from another solution that we are going
to find.

To find a second solution Y0.t/ of (10.3) linearly independent of J0 we can use
the method of reduction of order discussed in Chapter 5, Section 5.3. We let Y0.t/ D
v.t/J0.t/. Then Y 0

0 D v0J0 C vJ 0
0 and Y 00

0 D v00J0 C 2v0J 0
0 C vJ 00

0 . Substituting into

t

x

Fig. 10.1. Graph of J0.t/
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(10.3) we find

t2.v00J0 C 2v0J0 C vJ 00
0 /C t .v0J0 C vJ 0

0/C t2vJ0 D 0:

Rearranging,
v.t2J 00

0 C tJ 0
0 C t2J0/C tJ0.tv

00 C v0/ D 0:

Since J0 solves (10.3) it follows that

tJ0.tv
00 C v0/ D 0:

Solving tv00 C v0 D 0 we find either v D const: or, setting z D v0, tz0 D �z which
is separable. Integrating we find z D 1

t
and hence v D ln t , t > 0. Then we have

found
Y0.t/ D ln t � J0.t/; t > 0:

Similar to J0, Y0 also has infinitely many zeros (the same as J0), but unlike J0, Y0

has a singularity at t D 0. It is named a Bessel function of order 0 of the second kind.
The graph of Y0 is shown below in Figure 10.2.

Since J0 and Y0 are linearly independent, the general solution of the Bessel equa-
tion of order 0 is given by

x.t/ D c1J0.t/C c2Y0.t/ D c1J0.t/C c2 ln t � J0.t/:

Example 10.5.1. Find a solution of t2x00 C tx0 C t2x D 0 such that x.0/ D 2.
In the preceding formula of the general solution of the Bessel equation of order

0, the function Y0.t/ ! �1 as t ! 0C. Then the condition x.0/ D 2 implies that
c2 D 0. Moreover, since J0.0/ D 1, then c1 D 2. Thus x.t/ D 2J0.t/.

Fig. 10.2. Graph of Y0.t/



198 10 Solutions by infinite series and Bessel functions

10.5.2 The Bessel equation of order 1

When m D 1 we have the Bessel equation of order 1, namely

t2x00 C tx0 C .t2 � 1/x D 0: (10.6)

As before, we first look for solutions of the form x.t/ D P
akt

k . Now the general
equality (10.4) becomesX

k�2

k.k � 1/akt
k C

X
k�1

kakt
k �

X
k�0

akt
k C

X
k�0

akt
kC2 D 0:

If in all the infinite sums we take k 	 2 we findX
k�2

h
k.k � 1/akt

k C kakt
k � akt

k C ak�2t
k
i

C a1t � a0 � a1t D 0:

Simplifying, we have X
k�2



k2ak � ak C ak�2

�
tk � a0 D 0:

Then a0 D 0 and ak satisfy the recurrence formula

k2ak � ak C ak�2 D 0 H) ak D � ak�2

k2 � 1 ; k 	 2:

Thus if k is even we find

a2 D �a0

3
D 0; a4 D � a2

3 � 5 D 0; : : : ak D 0:

If k is odd, the coefficients can be found in terms of a1. Actually one has

a3 D �a1

8
; a5 D a3

24
D a1

8 � 24 D a1

3 � 82
; : : : :

In general, for k 	 3 odd we find

ak D .�1/ k�1
2

a1

3 � 82 � � � 8k�3
:

The constant a1 is equal to x0.0/. In conclusion,

x.t/ D a1

�
t � t3

8
C t4

3 � 82
� t5

3 � 82 � 83
C : : :

�
;

the series being uniformly convergent on all R.
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If we set

J1.t/ D t

2
� 1

2

�
t

2

�3

C 1

2Š3Š

�
t

2

�5

C : : :

D
X
k�0

.�1/k
kŠ.k C 1/Š

�
t

2

�2kC1

and c D 2a1, we can say that x.t/ D cJ1.t/ solve (10.5). Notice that J1 is an odd
function with J1.0/ D 0, J 0

1.0/ D 1. It has infinitely many zeros and decays to zero
at infinity, like J0. It is named Bessel function of order 1, of the first kind. The graph
of J1 is reported in Figure 10.3.

An interesting fact is that between two consecutive zeros of J0 there is a zero of
J1, see Figure 10.4.

t

x

J  (t)1

Fig. 10.3. Plot of J1

O t

x

Fig. 10.4. J0 (red) vs. J1 (black)
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Fig. 10.5. Graph of Y1.t/

This property and the oscillatory character of J0; J1 hold in general for all Jm and
will be proved in the next section, see Theorems 10.5.3 and 10.5.4.

As before, a solution of the Bessel equation of order 1, linearly independent of J1,
is given by

Y1.t/ D ln t � J1.t/; t > 0;

which is called Bessel function of order 1, of the second kind, see Figure 10.5.
As Y0, also Y1 has infinitely many zeros and possesses a singularity at t D 0.
It follows that the general solution is

c1J1.t/C c2Y1.t/:

Example 10.5.2. Find a solution of t2x00 C tx0 C .t2 � 1/x D 0 such that x.0/ D 0,
x0.0/ D 2. Since x.0/ D 0, then c2 D 0 because Y1.t/ ! �1 as t ! 0C. Thus
x.t/ D c1J1.t/. From x0.0/ D c1J

0.0/, and J 0
1.0/ D 1, it follows that c1 D 2 and

the solution of the initial value problem is x.t/ D 2J1.t/.

10.5.3 Bessel equations of order m

If m is an integer, the Bessel functions of order m, of first kind can be defined as

Jm.t/ D
X .�1/k

kŠ.k Cm/Š

�
t

2

�2kCm

:

The functions Jm are solutions of the Bessel equation of order m. If m is an even
integer, then Jm.t/ is an even function, while if m is odd, then Jm.t/ is an odd func-
tion.

Although for negative m the Bessel equation remains unaffected, it is customary
to set

J�m.t/ D .�1/mJm.t/:
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O

x

Fig. 10.6. Plots of J0 (black), J1 (blue), J2 (red) and J3 (green)

It would be possible to define Bessel functions for any real numberm. The expression
of Jm.t/ is formally equal to the preceding one, giving an appropriate definition of
.mC k/Š, which can be done by means of the Gamma function � . But this is beyond
the scope of this book.

10.5.4 Some properties of the Bessel functions

One can check that the following recurrence formula holds

JmC1.t/ D 2m

t
Jm.t/ � Jm�1.t/:

For example,

J2.t/ D 2

t
J1.t/ � J0.t/:

The function Jm.t/ is analytic and has infinitely many zeros. Furthermore, Jm.0/ D
0 for all m 6D 0 and J 0

m.0/ D 0 for all m 6D 1.
Moreover, the following identity holds

d

dt
.tmJm.t// D tmJm�1.t/: (10.7)

As an exercise, let us prove (10.7) for m D 1. We know that

J1.t/ D
X
k�0

.�1/k
kŠ.k C 1/Š

�
�
t

2

�2kC1



202 10 Solutions by infinite series and Bessel functions

so that

tJ1.t/ D
X
k�0

.�1/k
kŠ.k C 1/Š

2 �
�
t

2

�2kC2

:

Recall that the above series is uniformly convergent and hence the derivative of tJ1.t/

equals the series obtained differentiating each term. Thus, taking the derivative one
finds

.tJ1.t//
0 D

X
k�0

.�1/k
kŠ.k C 1/Š

2 � d
dt

�
t

2

�2kC2

D
X
k�0

.�1/k
kŠ.k C 1/Š

.2k C 2/ �
�
t

2

�2kC1

D
X
k�0

.�1/k
kŠ.k C 1/Š

2.k C 1/ �
�
t

2

�2kC1

D
X
k�0

.�1/k
kŠ kŠ

2 �
�
t

2

�2kC1

:

Since

tJ0.t/ D
X
k�0

.�1/k
.kŠ/2

2 �
�
t

2

�2kC1

the conclusion follows.

Another useful relationship is

d

dt

�
Jm.t/

tm

�
D �JmC1.t/

tm
: (10.8)

One can use (10.7) and (10.8) to prove

Theorem 10.5.3. Between two consecutive, positive (or negative), zeros of Jm.t/

there is one and only one zero of JmC1.t/. (see Fig. 10.6).

Proof. Let ˛1 < ˛2 be two consecutive, positive, zeros of Jm. Clearly, they are

also consecutive zeros of Jm.t/
tm . The Rolle theorem applied to Jm.t/

tm on the interval

Œ˛1; ˛2� implies that there exists ˇ 2�˛1; ˛2Œ such that the function
�

Jm.t/
tm

�0
vanishes

at ˇ. By (10.8), ˇ is a zero of JmC1.
Similarly, let ˇ1 < ˇ2 be two consecutive, positive, zeros of JmC1. Applying the

Rolle theorem to tmC1JmC1.t/ on the interval Œˇ1; ˇ2�, we find ˛ 2 .ˇ1; ˇ2/ such
that .tmC1JmC1.t//

0 vanishes at ˛. Using (10.7) we deduce that ˛mC1Jm.˛/ D 0,
namely that ˛ is a zero of Jm.
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Fig. 10.7. Plots of Y0 (black), Y1 (blue), Y2 (red) and Y3 (green)

Similar results can be given for the Bessel functions of second kind. For example,
one has

YmC1.t/ D 2m

t
Ym.t/ � Ym�1.t/; Y�m.t/ D .�1/mYm.t/;

d

dt
.tmYm.t// D tmYm�1.t/;

d

dt

�
Ym.t/

tm

�
D �YmC1.t/

tm
:

Each Ym.t/ is singular at t D 0 and has infinitely many zeros that alternate between
each other. See Figure 10.7.

As a further application, let us look for � > 0 such that the problem

s Ry.s/C �y.s/ D 0; y.0/ D 0; Py.1/ D 0 (10.9)

has a nontrivial solution. Here Py D d

ds
and Ry D d2y

ds2
.

First of all, let us show that the change of variable t D 2
p
�s and y.s/ D tx.t/

transforms the equation into a Bessel equation of order 1. Actually, one has

Py D dy

ds
D d.tx.t//

dt

dt

ds
D �

x.t/C tx0.t/
	r�

s

D 2�

t

�
x.t/C tx0.t/

	 D 2�

�
x.t/

t
C x0.t/

�
and

Ry.s/ D 4�2

t

�
x00.t/C x0.t/

t
� x.t/

t2

�
:
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Recalling that 4�s D t2, we find

s Ry.s/ D t2

4�

4�2

t

�
x00.t/C x0.t/

t
� x.t/

t2

�
D �t

�
x00.t/C x0.t/

t
� x.t/

t2

�
:

Thus s Ry.s/C �y.s/ D 0 becomes

�t

�
x00.t/C x0.t/

t
� x.t/

t2

�
C �tx.t/ D 0:

Dividing by � > 0 we get

tx00.t/C x0.t/ � x.t/

t
C tx.t/ D 0

or
t2x00.t/C tx0.t/C .t2 � 1/x.t/ D 0

which is the Bessel equation of order 1. A family of solutions is x.t/ D cJ1.t/, c a
constant, whence

y.s/ D 2c
p
�s J1.2

p
�s/:

For s D 0 we have y.0/ D 0. Moreover

Py.s/ D c

 p
�

2
p
s
J1.2

p
�s/C � J 0

1.2
p
�s/

!
:

Recall that by (10.7), one has J 0
1.t/ D J0.t/ � 1

t
J1.t/ and hence for t D 2

p
�s

p
�

2
p
s
J1.2

p
�s/C � J 0

1.2
p
�s/ D J0.2

p
�s/:

Then Py.s/ D c� J0.2
p
�s/ and the condition Py.1/ D 0 yields J0.2

p
�/ D 0.

In conclusion, if 0 < ˛1 < ˛2 < � � �˛n < � � � denote the zeros of J0, then for
each �n D �

˛n

2

	2
, the problem (10.9) has nontrivial solutions given by yn.s/ D

2c
p
�nsJ1.2

p
�ns/.

In Chapter 12, Section 12.6, we will prove that Jm has the flowing asymptotic
behavior

Jm.t/ D cm

1p
t

sin.t C #m/C 1p
t
�m.t/;

where cm; #m are constants, t > 0 and limt!C1 �m.t/ D 0. It follows:

Theorem 10.5.4. Jm decays to zero at infinity, changing sign infinitely many times.
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10.6 Exercises

1. Find x.t/ D P
akt

k such that tx00 D x.

2. Find x.t/ D P
k�0 akt

k such that tx00 D x0.

3. Find x.t/ D P
k�0 akt

k such that x00 D tx C 1 and x.0/ D 0; x0.0/ D 1.

4. Solve x00 C tx0 C x D 0, x.0/ D 1; x0.0/ D 0.

5. Using the Frobenius method, solve 4t2x00 C 4tx0 � x D 0, t > 0.

6. Using the Frobenius method, solve t2x00 C 3tx0 D 0, t > 0.

7. Using the Frobenius method, solve t2x00 � 3tx0 C .4 � t /x D 0.

8. Using the Frobenius method, solve t2x00 C tx0 C .t � 1/x D 0.

9. Find the solution xa of the Bessel equation t2x00 C tx0 C t2x D 0 such that
xa.0/ D a.

10. Find the solution xa of the Bessel equation t2x00 C tx0 C .t2 �1/x D 0 such that
x0

a.0/ D a.

11. Find the positive integersm such that t2x00Ctx0C.t2�m2/x D 0 has a nontrivial
solution such that x.0/ D 0.

12. Prove that .t2J2.t//
0 D t2J1.t/.

13. Show that t D 0 is a maximum of J0.t/.

14. Let ˛ be a positive zero of J0.t/. Show that if J1.˛/ > 0 then J 0
0.˛/ < 0.

15. Setting Z.t/ D J0.t/ � tJ1.t/, show that if ˛ is a zero of J0.t/ then Z0.˛/ D
J 0

0.˛/.

16. Using the power expansions of J0; J1; J2, prove that J2.t/ D 2

t
J1.t/ � J0.t/.

17. Prove that J 0
m.t/ D Jm�1.t/ � m

t
Jm.t/, m an integer.

18. Prove if ˛1 is the first positive zero of J0.t/, then J1.˛1/ > 0 and J2.˛1/ > 0.

19. Let ˛1 denote the first positive zero of J0. Show that the only solution of t2x00 C
tx0 C .t2 � 1/x D 0 such that x.0/ D x.˛1/ D 0 is x.t/ � 0.

20. Find � > 0 such that the problem

s
d2y

ds2
C �y.s/ D 0; y.0/ D 0; y.1/ D 0;

has a nontrivial solution.

21. Find the positive integer � such that t2x00 C tx0 C t2x D �x has a nontrivial
solution satisfying x.0/ D 0, x0.0/ D 1.
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Laplace transform

In this chapter we will discuss the Laplace transform (L-transform, in short) which
is very useful in solving linear differential equations by converting them into alge-
braic problems. The Laplace transform has applications in many areas of science
and engineering. We will keep the exposition at a level as elementary as possible. In
particular, we will provide proofs only for the simpler cases.

11.1 Definition and preliminary examples

Given a real valued function f .t/ defined on Œ0;C1/, the L-transform of f , denoted
by L¹f .t/º.s/, or F.s/, is the function of s defined by

L¹f .t/º.s/ D
Z C1

0

e�stf .t/dt;

provided the integral makes sense, that is

lim
r!C1

Z r

0

e�stf .t/dt

exists and is finite. The set of s 2 R where this is true is called the region (or domain)
of convergence of L¹f .t/º.s/. Often we will write L¹f .t/º or simply L¹f º instead
of L¹f .t/º.s/.

We notice that one could define the L-transform of a complex valued function of
the complex variable s D � C i!. But for our purposes it is sufficient to limit our
study to the real case.

The L-transform is well defined for a broad class of functions. Recall that f has
a jump discontinuity at t D a if both one-sided limits

lim
t!aC

f .t/; lim
t!a� f .t/

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
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exist but are not equal to each other. For example, the function

f .t/ D
²
0; if t < 0
t C 1; if t 	 0

has a jump discontinuity at t D 0 because limt!0� f .t/ D 0 while limt!0C f .t/ D
limt!0C.t C 1/ D 1. On the other hand, the function

g.t/ D
²
0; if t � 0
1
t
; if t > 0

has a discontinuity at t D 0 which is not a jump discontinuity.
We say that f is piecewise continuous on its domainD if there exists a numerable

set S such that f is continuous on D n S and has a jump discontinuity at each point
of S . If S is empty, then f is just continuous. For example, the preceding function
f is piecewise continuous, while g is not.

A function f .t/ is said to be of exponential order if there exist constants M and ˛
such that

jf .t/j � Me˛t : (11.1)

For example, any bounded piecewise continuous function, any polynomial P.t/ D
a0 Ca1tC : : :Cant

n, in general any function such that f .t/ D O.tn/ as jt j ! C1
(i.e. for some numberA, jf .t/j � Atn for t large enough), all satisfy (11.1) for s > 0
(hence L¹f º.s/ exists for s > 0). However, f .t/ D et2

does not satisfy (11.1): since
et2
e�˛t � M , is obviously false.

Theorem 11.1.1. Suppose that f is piecewise continuous on RC and satisfies (11.1).
Then L¹f º.s/ exists for s > ˛.

Proof. One has ˇ̌
e�stf .t/

ˇ̌
dt � e�stMe˛t D Me.˛�s/t :

We recall from Calculus that if
R1

0
jf .t/jdt exists, then

R1
0
f .t/dt also exists.

Therefore e�stf .t/ is integrable on RC. MoreoverZ C1

0

e�stf .t/dt

exists and is finite, provided s > ˛, which means that L¹f º.s/ exists for all s > ˛.

In the sequel, even if not explicitly stated, it will be assumed that the functions we
treat satisfy (11.1).

Next we consider some examples of L-transform.

Example 11.1.2. Consider f .t/ D e˛t which obviously satisfies (11.1) . Moreover
one has Z r

0

e�ste˛tdt D
Z r

0

e.˛�s/tdt D e.˛�s/r

˛ � s � 1

˛ � s :
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For s > ˛ one has that e.˛�s/r ! 0 as r ! C1 and hence

L¹e˛t º D lim
r!C1

Z r

0

e.˛�s/tdt D 1

s � ˛ ; s > ˛: (11.2)

In particular, if ˛ D 0 then f .t/ D e0 D 1 and

L¹1º D 1

s
; s > 0: (11.3)

Example 11.1.3. Consider the Heaviside function (or step function)

H.t/ D
²
0; if t < 0
1; if t 	 0

and let, for a 	 0,

Ha.t/ WD H.t � a/ D
²
0; if t < a
1; if t 	 a:

Notice that Ha is bounded and piecewise continuous, with S D ¹aº and hence The-
orem 11.1.1 applies with ˛ D 0. Taking into account the definition ofHa, we get for
s > 0 Z r

0

e�stHa.t/dt D
Z r

a

e�stdt D �e
�sr

s
C e�as

s
:

Thus Z C1

a

e�stdt D lim
r!C1

�
�e

�sr

s
C e�as

s

�
D e�as

s
:

Hence

L¹Haº D e�as

s
; s > 0: (11.4)

Of course, if a D 0 thenH.t/ D 1 for all t 	 0 and we find that L¹H º.s/ D L¹1º D
1=s, in agreement with (11.3).

Example 11.1.4. Consider the characteristic function

�Œa;b�.t/ D
8<:
0; if t < a
1; if a � t � b

0; if t > b

over Œa; b�, 0 � a < b. We note that �Œa;b� is bounded and piecewise continuous, with
S D ¹a; bº and hence it possesses the L-transform defined for all s > 0. Performing
calculations as in the previous example, we find that, for r > b,Z r

0

e�st�Œa;b�.t/dt D
Z b

a

e�stdt D �e
�bs

s
C e�as

s
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and hence

L¹�Œa;b�º D e�as � e�bs

s
; s > 0: (11.5)

In particular, if a D 0 we find

L¹�Œ0;b�º D 1 � e�bs

s
; s > 0:

It is worth pointing out that from the definition it immediately follows that if f; g
are piecewise continuous, satisfy (11.1) and differ on a numerable set, then

L¹f º.s/ D L¹gº.s/ (11.6)

for all s on their common region of convergence.

11.2 Properties of the Laplace transform

The following Proposition shows that the Laplace transform is a linear operator.

Proposition 11.2.1. L is linear, that is

L¹af .t/C bg.t/º.s/ D aL¹f º.s/C bL¹gº.s/;
for each s such that the right-hand side makes sense.

Proof. It follows immediately from the linearity of the integrals that:

L¹af .t/C bg.t/º D
Z C1

0

e�st Œaf .t/C bg.t/�dt

D a

Z C1

0

e�stf .t/dt C b

Z C1

0

e�stg.t/dt

D aL¹f º C bL¹gº:
For example,

L¹kº D L¹k � 1º D kL¹1º D k � 1
s

D k

s
; s > 0:

As another example, let us note that �Œa:b�.t/ D Ha.t/ �Hb.t/. Thus, using (11.4),

L¹�Œa:b�º D L¹Haº � L¹Hbº D e�as

s
� e�bs

s
D e�as � e�bs

s

according to (11.5).

The L-transform has a smoothing effect.
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Theorem 11.2.2. Suppose that f satisfies (11.1). In its region of convergence,
F.s/ D L¹f º is differentiable infinitely many times at each point. Precisely, one
has

F .n/.s/ D .�1/nL¹tnf .t/º.s/

for any n D 1; 2; : : : .

The following result is important for applications in differential equations.

Theorem 11.2.3. Suppose that f is differentiable for t 	 0 and satisfies (11.1). If
L¹f 0º exists then

L¹f 0º.s/ D sL¹f º.s/ � f .0/:

Proof. By definition

L¹f 0º D
Z C1

0

e�stf 0.t/dt:

Integrating by parts we findZ r

0

e�stf 0.t/dt D e�srf .r/ � f .0/C s

Z r

0

e�stf .t/dt:

If we pass to the limit as r ! C1, (11.1) implies that e�srf .r/ ! 0. Then it
follows that L¹f 0º is equal to sL¹f º � f .0/.

Now, it follows that

L¹f 00º D sL¹f 0º � f 0.0/
D sŒsL¹f º � f .0/� � f 0.0/
D s2L¹f º � sf .0/ � f 0.0/;

provided L¹f 0º and L¹f 00º exist.
By using Mathematical Induction one can find the L-transform of f .n/, see (P4)

below.
Below we collect some properties of the L-transform. The domains of convergence

can be determined in each case:

.P1/ L¹e˛tf .t/º D L¹f º.s � ˛/I

.P 2/ L¹e�ˇ t � e�˛t º D ˛ � ˇ
.s C ˛/.s C ˇ/

I

.P 3/ L

²Z t

0

f .�/d�

³
D L¹f º

s
I

.P 4/ L¹f .n/º D snL¹f º � sn�1f .0/ � sn�2f 0.0/ � : : : � f .n�1/.0/I

.P 5/ L¹tnf .t/º D .�1/n d
n

dsn
L¹f º (see Theorem 11.2.2):
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Properties .P1 � 5/ can be used to find other L-transforms. For example if
f .t/ D 1, .P 5/ yields

L¹tnº D .�1/n d
n

dsn
L¹1º D .�1/n d

n

dsn

�
1

s

�
D nŠ

snC1
: (11.7)

Let us use .P 4/ to find F.s/ D L¹sin!tº. Recall that since f .t/ WD sin!t is
smooth and bounded, then F.s/ exists for all s > 0. One has that f 0.t/ D �! cos t
and f 00.t/ D �!2 sin t , that is f 00 D �!2f . Moreover, f .0/ D sin 0 D 0 and
f 0.0/ D ! cos 0 D !. Now we take the L-transform yielding

L¹f 00.t/º D �!2L¹f º D �!2F.s/:

Property .P 4/ implies

L¹f 00.t/º D s2F.s/ � sf .0/ � f 0.0/ D s2F.s/ � !:
Then it follows that

s2F.s/ � ! D �!2F.s/ H) .s2 C !2/F.s/ D !:

Hence, F.s/ D !=.s2 C !2/, that is

L¹sin!tº D !

s2 C !2
: (11.8)

For the reader’s convenience, let us find the L-transform of sin!t directly, using
the definition. First, integrating by parts, we evaluateZ r

0

e�st sin!t dt D �cos!r

!
e�sr C 1

!
� s

!

Z r

0

e�st cos!t dt:

Another integration by parts yieldsZ r

0

e�st cos!t dt D sin!r

!
e�sr C s

!

Z r

0

e�st sin!t dt:

Passing to the limit as r ! C1 in the previous two equations we findZ C1

0

e�st sin!t dt D 1

!
� s

!

Z C1

0

e�st cos!t dt (11.9)

and Z C1

0

e�st cos!t dt D s

!

Z C1

0

e�st sin!t dt:

Substituting the latter integral in (11.9) we getZ C1

0

e�st sin!t dt D 1

!
� s2

!2

Z C1

0

e�st sin!t dt:

Thus �
1C s2

!2

�Z C1

0

e�st sin!t dt D 1

!
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that is
!2 C s2

!2

Z C1

0

e�st sin!t dt D 1

!

and finally

L¹sin!tº D
Z C1

0

e�st sin!t dt D 1

!
� !2

!2 C s2
D !

!2 C s2

according to (11.8).

Similarly, with minor changes one finds

L¹cos!tº D s

!2 C s2
: (11.10)

As a further application, let us consider the Bessel function of order 0, J0.t/, which
satisfies

tJ 00
0 .t/C J 0

0.t/C tJ0.t/ D 0; J0.0/ D 1; J 0.0/ D 0: (11.11)

For the properties of J0.t/ we refer to Section 10.5.1 of the previous chapter. In par-
ticular, J0.t/ is smooth and bounded and hence its L-transformX.s/ WD L¹J0.t/º.s/
exists for all s > 0. Moreover, since J0.t/ is integrable on Œ0;C1/ andZ C1

0

J0.t/dt D J0.0/ D 1;

then

X.s/ D
Z C1

0

e�stJ0.t/dt;

which is a priori defined for s > 0, can be extended to s D 0 and one has

X.0/ D
Z C1

0

J0.t/dt D 1:

We want to show that

L¹J0.t/º D 1p
1C s2

: (11.12)

We start taking the L-transform of (11.11):

L¹tJ 00
0 .t/C J 0

0.t/C tJ0.t/º D 0:

Using the linearity of L we infer

L¹tJ 00
0 .t/º C L¹J 0

0.t/º C L¹tJ0º D 0: (11.13)
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Then .P 4/ � .P 5/ yield

L¹tJ 00
0 .t/º D �.s2X.s/ � J0.0/s � J 0

0.0//
0

D �.s2X.s/ � s/0 D �2sX.s/ � s2X 0.s/C 1;

L¹J 0
0.t/º D sX.s/ � J0.0/ D sX.s/ � 1;

L¹tJ0º D �X 0.s/:

Substituting into (11.13) we find

�2sX.s/ � s2X 0.s/C 1C sX.s/ � 1 �X 0.s/ D 0;

or
.1C s2/X 0.s/C sX.s/ D 0:

This is a separable equation. One finds

X 0.s/
X.s/

D � s

1C s2
:

Integrating we have

ln
jX.s/j
jX.0/j D � 1

2
ln.1C s2/:

Taking into account that X.0/ D 1 we get

ln jX.s/j D ln.1C s2/� 1
2

whence

X.s/ D .1C s2/�
1
2 D 1p

1C s2

proving (11.12). Notice that in this case it would be more complicated to evaluate
L¹J0º directly.

The following table summarizes the L-transforms for some of the functions that
we have discussed. The domain of convergence can be determined in each case.

f .t/ F.s/ D L¹f º f .t/ F.s/ D L¹f º

1
1

s
t

1

s2

tn
nŠ

snC1
eat

1

s � a
sin!t

!

s2 C !2
cos!t

s

s2 C !2

sinh!t
!

s2 � !2
cosh!t

s

s2 � !2
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f .t/ F.s/ D L¹f º f .t/ F.s/ D L¹f º

e�at sin!t
!

.s C a/2 C !2
e�at cos!t

s C a

.s C a/2 C !2

Ha.t/
e�as

s
�Œa;b�.t/

e�as � e�bs

sZ t

0

f .�/d� F .s/
s

J0.t/
1p
1C s2

11.3 Inverse Laplace transform

We start with an example dealing with the RC circuits discussed in Section 1.3.2.

Example 11.3.1. We have seen that an RC electric circuit gives rise to a first order
differential equation as RCx0 C x D 0, x.0/ D x0. We will use this example to
motivate the introduction of the inverse L-transform.

To keep the notation consistent with that used in this chapter, here we write the
ivp as

x0.t/C x.t/ D 0; x.0/ D x0;

where we take RC D 1 in order to simplify notation. Let us assume for the moment
that x.t/ satisfies (11.1). We will see later that this is indeed the case. Taking the L-
transform of both sides, and recalling the linearity of L, we find

L¹x0 C xº D L¹x0º C L¹xº D 0:

Using property .P 5/, and recalling that x.0/ D x0, we infer

sX.s/ � x0 CX.s/ D 0; X.s/ WD L¹xº:
Then

X.s/ D x0

1C s

and x.t/ is the function such that its L-transform isX.s/. We will say that x.t/ is the
inverse L-transform of X.s/. In this specific case, it is easy to find x.t/. Actually, in
Example 11.1.2 we have shown that L¹e˛t º D 1=.s�˛/. If we take ˛ D �1we find

L¹x0e
�t º D x0L¹e�t º D x0

s C 1

and hence x.t/ D x0e
�t , in accordance with what we have found in Section 1.3.2.

Notice that, a posteriori, x.t/ satisfies (11.1) and hence the preceding procedure is
correct.
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In the rest of this section we will discuss the inverse L-transform. Let us begin by
stating a preliminary result on the injectivity of the L-transform, which is nothing but
the converse of (11.6).

Proposition 11.3.2. Let f; g be piecewise continuous on Œ0;C1/ and satisfy (11.1).
If L¹f º D L¹gº on their common region of convergence, then f .t/ D g.t/, for all
t 	 0, up to a numerable set of points. If f; g are continuous, then f .t/ D g.t/ for
all t 	 0.

Definition 11.3.3. LetF.s/ be given. If there exists a functionf .t/ such that L¹f º.s/
exists and L¹f º.s/ D F.s/, we say thatF has an inverse L-transform given by f .t/.
In this case we write f .t/ D L�1¹F.s/º.t/.

In other words, the idea of the inverse of L-transform is nothing new:
L¹f .t/º.s/ D F.s/ if and only if f .t/ D L�1¹F º.s/ (assuming that the in-
verse exists). For example, for f .t/ D t , L¹tº D 1

s2 implies the equivalent rela-

tion t D L�1¹ 1
s2 º. Often we will write L�1¹F.s/º or simply L�1¹F º instead of

L�1¹F.s/º.t/:
Proposition 11.3.2 shows that if f .t/ is piecewise continuous on t 	 0 and sat-

isfies (11.1), then it is uniquely determined by F.s/, up to the numerable set S , and
hence the preceding definition makes sense.

For example, (11.4) yields L¹Haº D e�as=s and hence

L�1

²
e�as

s

³
D Ha.t/: (11.14)

The following proposition says that L�1 is linear like L.

Proposition 11.3.4. Suppose that F.s/;G.s/ have inverse L-transforms. Then for all
a; b 2 R, aF.s/C bG.s/ has inverse L-transform and

L�1¹aF.s/C bG.s/º D aL�1¹F.s/º C bL�1¹G.s/º:

Proof. Let f .t/ D L�1¹F.s/º and g.t/ D L�1¹G.s/º. Then F.s/ D L¹f .t/º and
G.s/ D L¹g.t/º. Moreover, using the linearity of L, it follows that

L¹af .t/C bg.t/º D aL¹f .t/º C bL¹g.t/º D aF.s/C bG.s/:

Taking the inverse L-transform of both sides we infer that

L�1¹aF.s/C bG.s/º D af .t/C bg.t/ D aL�1¹F.s/º C bL�1¹G.s/º;

as required.
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Example 11.3.5. Using the linearity property and our familiarity with the Laplace
transforms of sin t and cos t , we have

L�1

²
2s � 7
s2 C 3

³
D 2L�1

´
s

s2 C .
p
3/

2

μ
� 7p

3
L�1

´ p
3

s2 C .
p
3/

2

μ

D 2 cos
p
3 t � 7p

3
sin

p
3 t:

Example 11.3.6. Using partial fractions, we see that

L�1

²
1

.s C 1/.2s C 3/

³
D L�1

²
1

s C 1
� 2

2s C 3

³
D

L�1

²
1

s C 1

³
� L�1

²
1

s C 3=2

³
D e�t � e.�3=2/ t :

In general, if

R.s/ D
mX
1

ki

s � �i

then

L�1 ¹R.s/º D
mX
1

kie
�i t : (11.15)

For example, if

R.s/ D 1

.s � ˛/.s � ˇ/ D 1

˛ � ˇ
�

1

s � ˛ � 1

s � ˇ
�

we have k1 D 1

˛ � ˇ , k2 D � 1

˛ � ˇ , �1 D ˛ and �2 D ˇ. Thus we find

L�1

²
1

.s � ˛/.s � ˇ/
³

D e˛t

˛ � ˇ � eˇ t

˛ � ˇ D eˇ t � e˛t

ˇ � ˛ : (11.16)

Similarly, if

R.s/ D s

.s � ˛/.s � ˇ/ D 1

˛ � ˇ
�

˛

s � ˛ � ˇ

s � ˇ
�

we have k1 D ˛

˛ � ˇ , k2 D � ˇ

˛ � ˇ , �1 D ˛ and �2 D ˇ and we find

L�1

²
s

.s � ˛/.s � ˇ/
³

D ˛

˛ � ˇ e
˛t � ˇ

˛ � ˇ e
ˇ t D ˇeˇ t � ˛e˛t

ˇ � ˛ : (11.17)
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Now, let us state without proof a result on the inverse L-transform of rational
functions.

Theorem 11.3.7. Let P.s/;Q.s/ be two polynomials with degree n < m, respec-
tively. If Q has m simple roots �1; : : : ; �m, then

L�1

²
P.s/

Q.s/

³
D

mX
1

P.�i /

Q0.�i /
e�i t : (11.18)

As a simple exercise, the student can establish (11.16) and (11.17) using the preced-
ing theorem.

The counterpart of properties .P1/ and .P 3/ can be found immediately. Below
we set F.s/ D L¹f º.

From .P1/ and .P 3/ it follows that

.P10/ L�1¹F.s � ˛/º D e˛tf .t/; s > ˛I

.P 30/ L�1

²
F.s/

s

³
D
Z t

0

f .�/d�:

One can also show that

.P100/ L�1¹e�˛sF.s/º D H˛.t/f .t � ˛/:
The following list of inverse L-transforms can be deduced from the table of L-

transforms.

F.s/ L�1¹F º F.s/ L�1¹F º
1

s
1

1

s2
t

nŠ

snC1
tn

1

s � a eat

!

s2 C !2
sin!t

s

s2 C !2
cos!t

!

s2 � !2
sinh!t

s

s2 � !2
cosh!t

!

.s C a/2 C !2
e�at sin!t

s C a

.s C a/2 C !2
e�at cos!t

e�as

s
Ha.t/

e�as � e�bs

s
�Œa;b�.t/

F.s/

s

R t

0
f .�/d�

1p
1C s2

J0.t/
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11.3.1 Convolution

Let f .t/; g.t/ be two piecewise continuous functions on t 	 0.

Definition 11.3.8. The convolution of f .t/ and g.t/, denoted by f �g, is the function
defined by setting

.f � g/.t/ D
Z t

0

f .t � �/g.�/d�:

The reader should exercise caution when dealing with convolution. For example, in
general, 1�g 6D g. This is the case for g.t/ D sin t , because 1�sin t D R t

0
sin �d� D

1 � cos t .
The following proposition is important in the sequel because it allows us to eval-

uate the inverse L-transform of a product.

Proposition 11.3.9. Let f; g be piecewise continuous of exponential order, which
means that they satisfy (11.1). Setting F.s/ D L¹f º and G.s/ D L¹gº, one has

L¹f � gº D F.s/ �G.s/ (11.19)

and hence
L�1¹F.s/G.s/º D .f � g/.t/: (11.20)

As an application let us evaluate the inverse L-transform of

�.s/ D e�as � e�bs

s.s C 1/
:

Using (11.20) with F.s/ D 1=.s C 1/ and G.s/ D .e�as � e�bs/=s, one finds

L�1¹�.s/º D .f � g/.t/
where (see (11.2))

f .t/ D L�1

²
1

s C 1

³
D e�t

and (see (11.5))

g.t/ D L�1

´
e�as � e�bs

s

μ
D �Œa;b�.t/

and hence

L�1

´
e�as � e�bs

s.s C 1/

μ
D e�t � �Œa;b�.t/: (11.21)

Proposition 11.3.9 can also be used to solve integral equations as

x.t/ D k.t/C
Z t

0

f .t � �/x.�/d� D k.t/C .f � x/.t/: (11.22)
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It suffices to take the L-transform yielding (with obvious meaning of notation)X.s/ D
L¹kº.s/C L¹f � xº.s/ D K.s/C F.s/ �X.s/. If we know K and F , solving with
respect to X we find x.t/ D L�1¹Xº.

Example 11.3.10. Solve

x.t/ D et C
Z t

0

et�	x.�/d� D et C et � x.t/:

One has X D 1
s�1

C 1
s�1

�X and hence .1� 1
s�1

/X D 1
s�1

, namely X D 1
s�2

. Then

x D L�1¹ 1
s�2

º D e2t .

11.4 Laplace transform and differential equations

The Laplace transform is useful in solving linear differential equations. Let us start
with a general linear second order equation with constant coefficients

x00.t/C ax0.t/C bx.t/ D g.t/; x.0/ D x0; x0.0/ D x1:

Let us assume that the L-transform of G.s/ D L¹g.t/º.s/ exists for s > 0.
If we take the L-transform of both sides and use .P 4/ we find

s2X.s/ � sx0 � x1 C a.sX.s/ � x0/C bX.s/ D G.s/

whereX.s/ D L¹x.t/º.s/. As forX.s/, we proceed formally, assuming that it makes
sense for s > 0. At the end we shall verify that this is indeed the case.

Solving for X.s/, we get

X.s/ D sx0 C x1 C ax0 CG.s/

s2 C as C b
:

Notice that x.t/ D L�1¹Xº. Thus, taking the inverse L-transform, we find

x.t/ D L�1

²
sx0 C x1 C ax0 CG.s/

s2 C as C b

³
which can be found explicitly using the properties of the inverse L-transform.

Let us illustrate the procedure with an example.

Example 11.4.1. Consider the problem

x00.t/C x.t/ D g.t/; x.0/ D 0; x0.0/ D k

and assume that the inverse L-transform G.s/ of g.t/ exists for s > 0. Then

X.s/ D k CG.s/

s2 C 1
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so that X.s/ has an inverse L-transform and

x.t/ D L�1

²
k

s2 C 1

³
C L�1

²
G.s/

s2 C 1

³
:

Using (11.8)

x.t/ D k sin t C L�1

²
G.s/

s2 C 1

³
:

From (11.20), with F.s/ D 1=.s2 C 1/, we deduce

x.t/ D k sin t C sin t � g.t/ D k sin t C
Z t

0

sin.t � �/g.�/d�;

which is the solution of our ivp for any L-transformable g.t/.

The preceding discussion highlights the procedure one follows in the general case
of

x.n/ C a1x
.n�1/ C : : :C an�1x

0 C anx D g.t/

together with initial conditions

x.0/ D x0; x
0.0/ D x1; : : : ; x

.n�1/.0/ D xn�1:

One takes the L-transform of the equation and uses .P 4/ yielding

snX.s/ � sn�1x0 � sn�2x1 � : : : � xn�1 C : : :C anX.s/ D G.s/:

This allows us to find
P.s/X.s/ �Q.s/ D G.s/

where
P.s/ D sn C a1s

n�1 C : : :C an�2s
2 C an�1s C an

and
Q.s/ D sn�1x0 C sn�2x1 C : : :C an�2.sx0 C x1/C an�1x0:

ThenX.s/ D .G.s/CQ.s//=P.s/ has an inverse L-transform x.t/which solves the
ivp.

Other equations that can be solved by means of the L-transform are linear equa-
tions with coefficients depending on time. Once again, we discuss some specific ex-
amples.

Consider the ivp

x00 C tx D 0; x.0/ D 0; x0.0/ D b:

Taking the L-transform and using .P 4/ we get

s2X.s/ � b C L¹tx.t/º D 0:
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From .P 5/ we infer that L¹tx.t/º D �X 0.s/ and hence we deduce s2X.s/ � b �
X 0.s/ D 0 that is

X 0.s/ � s2X.s/ D �b:
This is a linear first order equation that can be solved by the integrating factor method.
Once X.s/ is found, the solution we are looking for is given by x.t/ D L�1¹X.s/º.

As a further example let us consider the system²
x0 D x C y

y0 D x � y
with the initial conditions x.0/ D 1 and y.0/ D 0. Taking the L-transform and
setting X.s/ D L¹xº; Y.s/ D L¹yº we deduce²

L¹x0º D sX.s/ � 1 D X.s/C Y.s/

L¹y0º D sY.s/ D X.s/ � Y.s/
whence ²

.s � 1/X.s/ � Y.s/ D 1

�X.s/C .s C 1/Y.s/ D 0:

Finding X.s/ D .s C 1/Y.s/ from the second equation and substituting into the first
one we find

.s � 1/.s C 1/Y.s/ � Y.s/ D 1

and hence

Y.s/ D 1

s2 � 2 :

Taking the inverse L-transform, see the table, we find

y.t/ D L�1

²
1

s2 � 2
³

D 1p
2

sinh
p
2 t :

Moreover,

X.s/ D .s C 1/Y.s/ D s C 1

s2 � 2 D s

s2 � 2 C 1

s2 � 2
and thus we get

x.t/ D cosh
p
2 t C 1p

2
sinh

p
2 t :

11.5 Generalized solutions

The L-transform allows us to handle linear differential equations with a forcing term
which may be discontinuous.

As an example, let us consider the first order equation

x0.t/C x.t/ D �Œ0;b�.t/; x.0/ D 0; .b > 0/; (11.23)
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where �Œ0;b� is the step function introduced in Example 11.1.4. This problem models
the voltage of an RC circuit when an initial step impulse is given at the capacitor.

Taking the L-transform of both sides, we find

L¹x0º C L¹xº D L¹�Œ0;b�º D 1 � e�bs

s
:

Using property .P 4/ with n D 1 and setting X.s/ D L¹xº we infer

sX.s/CX.s/ D 1 � e�bs

s
:

Solving for X.s/, we get

X.s/ D 1 � e�bs

s.s C 1/
:

Let us evaluate the inverse L-transform on the right-hand side. We use (11.21)
with a D 0, obtaining

L�1

´
1 � e�bs

s.s C 1/

μ
D e�t � �Œ0;b�.t/ D

Z t

0

e�tC	�Œ0;b�.�/d�:

To evaluate the integral, we distinguish between 0 � t � b and t > b. In the former
case, 0 � � � t � b and we findZ t

0

e�tC	�Œ0;b�.�/d� D
Z t

0

e�tC	d� D 1 � e�t .0 � t � b/:

For t > b we haveZ t

0

e�tC	�Œ0;b�.�/d� D
Z b

0

e�tC	�Œ0;b�.�/d� C
Z t

b

e�tC	�Œ0;b�.�/d�

D
Z b

0

e�tC	d� D e�tCb � e�t :

We have shown that

L�1

´
1 � e�bs

s.s C 1/

μ
D
´
1 � e�t ; if 0 � t < b

e�tCb � e�t ; if t 	 b:

Therefore, x.t/ D L�1¹X.s/º exists and is given by

x.t/ D
´
1 � e�t ; if 0 � t � b

e�tCb � e�t ; if t 	 b:

Let us check this result working directly on the equation. For 0 � t � b one has
�Œ0;b�.t/ D 1 and the ivp becomes x0 C x D 1; x.0/ D 0. Solving this, we find
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x.t/ D 1 � e�t , 0 � t � b and x.b/ D 1 � e�b . For t 	 b one has �Œ0;b�.t/ D 0

and hence we are lead to solve the ivp

x0 C x D 0; x.b/ D 1 � e�b; .t 	 b/

which can be solved easily: the general solution of x0 C x D 0 is x.t/ D ce�t . To
find c we impose the initial condition x.b/ D 1� e�b yielding ce�b D 1� e�b and
thus c D .1 � e�b/=e�b D eb � 1. In conclusion,

x.t/ D
´
1 � e�t ; if 0 � t < b

e�t .eb � 1/; if t 	 b

as before.
The solution is increasing for 0 < t � b and then decays to 0 for t > b. See

Figure 11.1. It is worth pointing out that x.t/ here is continuous (it suffices to check
this at t D b) but is not differentiable at t D b because the left derivative at t D b

is e�b while the right derivative at the same point is e�b � 1. In this case x.t/ is
a “generalized” solution of our equation, in the sense that it solves the differential
equation for all t 	 0, except at t D b. This could have been expected because the
right-hand side of the equation has a discontinuity at t D b.

More generally, consider the differential equation

x.n/ C a1x
.n�1/ C : : :C an�1x

0 C anx D g.t/

where g is continuous with possibly the exception of a finite number of points S D
¹a1; : : : ; anº. We say that a continuous x.t/ is a generalized solution of the equation
if it is continuously differentiable on RnS and satisfies the equation for all t 2 RnS .
We could consider more general classes of generalized solutions, but this is out of
the scope of this book.

Fig. 11.1. Graph of x.t/ D e�t � �Œ0;b�.t/
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11.6 Appendix: The Dirac delta

A rigorous testament of the Dirac1 delta would require more advanced topics such as
the Theory of Distribution and cannot be carried out here. However, its importance
in applications makes it worthwhile to give at least a heuristic sketch of this topic.
The reader should be aware that the exposition below is only an outline, not a very
rigorous and complete, treatment of the Dirac delta.

Let us define a sequence of functions fn W R 7! R by setting

fn.t/ D

8̂̂̂<̂
ˆ̂:
n; if jt j � 1

2n

0; if jt j > 1

2n
:

For every fixed t 6D 0 we have that fn.t/ ! 0 as n ! C1. Of course, this is not
true for t D 0. Indeed, since fn.0/ D nwe have that fn.0/ ! C1 as n ! C1. So,
if we denote by ı.t/ the pointwise limit of fn.t/, this ı.t/, called the Dirac delta or
ı-function, is not a function as we are used to dealing with, but rather a “generalized”
function or distribution.

Notice that Z C1

�1
fn.t/dt D

Z 1
2n

� 1
2n

ndt D 1; 8n 2 N:

If we “pass to the limit” under the integral, in an appropriate “generalized” sense, we
find Z C1

�1
ı.t/dt D 1: (11.24)

Another important characteristic property of ı is thatZ C1

�1
ı.t/�.t/dt D �.0/ (11.25)

for any smooth function � W R 7! R.
In order to show that ı has the L-transform and to find it, we evaluateZ C1

0

e�stı.t/dt:

Since ı.t/ D 0 for all t < 0, and using (11.25) with �.t/ D e�st , we inferZ C1

0

e�stı.t/dt D
Z C1

�1
ı.t/e�stdt D e0 D 1:

1 Paul Dirac (1902–1984).
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Hence we can say that ı has an L-transform given by

L¹ı.t/º D 1: (11.26)

More generally, we can consider a shifted delta function by considering ı.t � a/

which has the following properties

ı.t � a/ D 0 8 t 6D a (11.27)Z C1

�1
ı.t � a/dt D 1 (11.28)

Z C1

�1
ı.t � a/�.t/dt D �.a/ (11.29)

for all smooth functions �.
It is interesting to evaluate the convolution of ı.t�a/with a piecewise continuous

function g.t/. One has

ı.t � a/ � g.t/ D
Z t

0

ı.� � a/g.t � �/d�:

Let a 	 0. Since ı.� � a/ D 0 for � � t < a, we getZ t

0

ı.� � a/g.t � �/d� D 0:

On the other hand, for t 	 a we can use (11.29) to inferZ t

0

ı.� � a/g.t � �/d� D
Z C1

�1
ı.� � a/g.t � �/d� D g.t � a/:

In conclusion, we can say thatZ t

0

ı.� � a/g.t � �/d� D
²
0 if 0 � t < a

g.t � a/ if t 	 a

that is
ı.t � a/ � g.t/ D Ha.t/g.t � a/: (11.30)

Next let us find the L-transform of ı.t � a/, a 	 0. We argue as before and use
(11.29) to yieldZ C1

0

e�stı.t � a/dt D
Z C1

�1
ı.t � a/e�stdt D e�as

hence we can say that
L¹ı.t � a/º D e�as : (11.31)

We now want to show that the shifted Heaviside function Ha.t/ has the “derivative
in a generalized sense” given by ı.t � a/. To have a heuristic idea of this fact, one
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first observes that Z t

0

ı.t � a/dt D 0; 8 t < a;

while for t 	 a, (11.28) yieldsZ t

0

ı.t � a/dt D
Z C1

�1
ı.t � a/dt D 1; 8 t 	 a:

In other words, Z t

0

ı.t � a/dt D
²
0 if t < a
1 if t 	 a

D Ha.t/:

SoHa.t/ is a kind of antiderivative of ı.t �a/ and this gives rise, in a “generalized”
sense, to H 0

a.t/ D ı.t � a/.
It is worth pointing out that this agrees with the result we find by taking the L-

transform. Actually, we know that

L¹Ha.t/º D e�as

s
:

Then
L¹H 0

a.t/º D sL¹Ha.t/º D e�as

which is exactly the L-transform of ı.t � a/.
As for the inverse L-transforms, (11.31) implies

L�1¹e�asº D ı.t � a/:
In Physics, kı.t � a/ corresponds to a sudden force impulse of intensity k acting

at the unique instant t D a. To illustrate its applications to differential equations, we
will solve a couple of problems.

Example 11.6.1. For a 	 0 solve the problem (arising in an RC circuit)

x0 C x D kı.t � a/; x.0/ D 0; t 	 0:

Taking the L-transform we find

sX.s/CX.s/ D ke�as :

Hence

X.s/ D ke�as

s C 1
:

Then, using the convolution property (11.20) of the inverse L-transform, we infer

x.t/ D L�1¹X.s/º D kL�1¹e�sº � L�1

²
1

s C 1

³
D kı.t � a/ � e�t :
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Then, by (11.30),

x.t/ D kHa.t/e
�.t�a/ D

8<:
0 if 0 � t < a

ke�.t�a/ if t 	 a.

This function solves our problem in a “generalized” sense (slightly different from the
one introduced before). It has a jump discontinuity at t D a. Moreover, for 0 � t < a,
x.t/ � 0 and hence it solves x0 C x D 0, x.0/ D 0, while for t 	 a, x.t/ solves
x0 C x D 0 with initial condition x.a/ D k, see Figure 11.2a. If a D 0 we find
x.t/ D ke�t which solves x0 C x D 0 with initial condition x.0/ D k, see Fig-
ure 11.2b.

(a,k)

t

x

a

(a)

tO

k

(b)

Fig. 11.2. (a) Solution of x0 C x D kı.t � a/, x.0/ D 0, k > 0, a > 0; (b) Solution of x0 C
x D kı.t/, x.0/ D 0, k > 0
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In applications to an RC circuit, there is no circulating current in the circuit for t �
a because the capacitor is decharged, corresponding to the initial condition x.0/ D 0.
For t > a, the sudden instantaneous impulse of intensity k generates a current as if
the initial capacitor voltage is k. For t > a the RC circuit works as usual and the
voltage decays exponentially to zero as t ! C1.

Example 11.6.2. For a 	 0 let us consider the problem

x00.t/C x.t/ D kı.t � a/; x.0/ D 0; x0.0/ D 0; t 	 0

which models a harmonic oscillator with the forcing term kı.t � a/.
As before, we take the L-transform and find

s2X.s/CX.s/ D ke�as:

Then

X.s/ D ke�as

s2 C 1

and hence (11.20) yields

x D L�1¹Xº D kL�1¹e�sº � L�1

²
1

s2 C 1

³
D kı.t � a/ � sin t

D kHa.t/ sin.t � a/ D
²
0 if 0 � t < a

k sin.t � a/ if t 	 a.

In other words, if a > 0 the solution is 0 until t D a. After this time the impulse
kı.t�a/ yields the (nontrivial) solution of the equation x00Cx D 0 satisfying the ini-
tial conditions x.a/ D 0; x0.a/ D k. Moreover, notice that x.t/ D kHa.t/ sin.t�a/

t

x

O a

Fig. 11.3. Graph of x.t/ D kHa.t/ sin.t � a/ with a > 0
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is not differentiable at t D a and hence the name “solution” has once again to be un-
derstood in a “generalized” sense. If a D 0 we find merely x.t/ D k sin t , t 	 0,
which solves x00 C x D 0 with the new initial conditions x.0/ D 0; x0.0/ D k.

11.7 Exercises

1. Find the L-transform of sinh!t D 1
2
.e!t �e�!t / and cosh!t D 1

2
.e!t Ce�!t /.

2. Find the L-transform of t sin!t and t cos!t .

3. Find the L-transform of t sinh!t and t cosh!t .

4. Find the L-transform of e˛t sin!t and e˛t cos!t .

5. Find L¹f º where f .t/ D 1, if 0 � t � 1, f .t/ D 2, if 3 � t � 4 and f .t/ D 0

otherwise.

6. Find the L-transform of t � et .

7. Find the L-transform of t2 � eat .

8. Let f be a piecewise continuous T -periodic function. Show that L¹f º exists
and

F.s/ D L¹f º D 1

1 � e�sT
�
Z T

0

e�stf .t/dt:

9. Find the L-transform of the 2-periodic square wave function

f .t/ D 1; if 0 � t < 1; f .t/ D 0; if 1 � t < 2;

and f .t C 2/ D f .t/ for all t 	 2.

10. Find the L-transform of the saw-tooth T-periodic function

f .t/ D t; if 0 � t < T ; f .t C T / D f .t/; 8 t 	 T:

11. Let F.s/ D L¹f º.s/ be defined for s > 0. Suppose that jf .t/j � C for all t 	
0. Show that lims!C1 F.s/ D 0.

12. Let F.s/ D L¹f º.s/ be defined for s > 0. Suppose that f .t/ 	 C > 0 for all
t 	 0. Show that lims!0C F.s/ D C1.

13. Find the inverse L-transform of 2
s2�4

and s
s2�4

.

14. Find the inverse L-transform of 1
s2�2sC2

and s�1
s2�2sC2

.

15. Find L�1
°

1
s2�3sC2

±
.

16. Find L�1
°

s�2
s3�s

±
.
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17. Find L�1
°

1
s4�1

±
.

18. Find L�1
°

s2C3sC1
s2Cs

±
.

19. Let F.s/ D L¹f º. Show that if f .t/ > 0 then F is decreasing and concave
upward.

20. Prove property .P 3/ of the L-transform: if g.t/ D R t

0
f .�/d� then L¹gº.s/ D

L¹f º.t/
s

.

21. Use .P 3/ to show that L¹tº D s�2.

22. Use .P 4/ to find the L-transform of e˛t .

23. Let J0.t/ be the Bessel function of order 0 satisfying tx00 C x0 C tx D 0, such
that J0.0/ D 1. Find X.s/ D L¹J0º such that X.0/ D 1.

24. Solve x0 C x D et ; x.0/ D 0 using the L-transform.

25. Solve x0 C x D t; x.0/ D �1 using the L-transform.

26. Solve x00 � 2x0 C x D 0; x.0/ D x0.0/ D 1 using the L-transform.

27. Solve x00 � 4x0 C 3x D 1; x.0/ D x0.0/ D 0 using the L-transform.

28. Solve x0000 C x00 D 0; x.0/ D 0; x0.0/ D 1; x00.0/ D x000.0/ D 0 using the
L-transform.

29. Find the “generalized solution” of x0 � x D Ha.t/; x.0/ D 0.

30. Find the “generalized solution” of x0 C x D Ha.t/; x.0/ D 0.

31. Find the “generalized solution” of x0 � x D kı; x.0/ D a, t 	 0:

32. Find the “generalized solution” of x00 C x D g.t/ ; x.0/ D x0.0/ D 0, where g
is any piecewise continuous function with L-transform G.s/ defined for s > 0.
In particular, solve in the case that g.t/ D �Œ0;1�.t/.

33. Find the “generalized solution” of x00 D ı.t � a/, x.0/ D 1; x0.0/ D 0, where
a > 0.

34. Solve x.t/ D 1C e2t � x.t/.
35. Solve x.t/ D t3 C sin t � x.

36. Solve x0 � k � x D 1, x.0/ D 0, k > 0 a constant.

37. Solve x0 C .k2/ � x D 1, x.0/ D 1, k 6D 0.

38. Solve the system ²
x0 D 2x C y; x.0/ D 0

y0 D �x � 4y; y.0/ D 1.



232 11 Laplace transform

39. Solve the system ²
x0 D �x C y; x.0/ D 1

y0 D x C y; y.0/ D 0.

40. Solve the system ²
x0 D x C y; x.0/ D 0

y0 D �y C ı; y.0/ D 0.
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Stability theory

In this chapter we present an introduction to the theory of stability. Since this is a very
broad area which includes not only many topics but also various notions of stability,
we mainly focus on Liapunov stability of equilibrium points and leave out topics
such as the Poincaré–Bendixon theory, stability of periodic solutions, limit cycles,
etc. Some of the proofs are omitted or carried out in special simple cases. For a more
complete treatment the reader may consult sources such as the books by J. La Salle &
S. Lefschetz, or by H. Amann, see Bibliography.

12.1 Definition of stability

Given x D .x1:x2; : : : ; xn/ 2 Rn; f D .f1; : : : ; fn/ 2 C 1.Rn;Rn/ and p D
.p1; : : : ; pn/ 2 Rn (in this chapter we display the components of vectors horizon-
tally instead of vertically, as was done earlier), let x.t; p/ be the (unique) solution of
the system

x0 D f . Nx/; x.0/ D p (12.1)

or equivalently ²
x0

i D fi .x1; � � � ; xn/

xi .0/ D pi :
.i D 1; 2; : : : ; n/:

We will suppose that the solution x.t; p/ is defined for all t 	 0 and for all p 2 Rn.
It is possible to show that the solution x.t; p/ depends continuously on the initial

condition p:

Theorem 12.1.1. Suppose that f is continuously differentiable on Rn. Given p 2
Rn, for each 	 > 0 and T > 0 there exists r > 0 such that jx.t; p/ � x.t; q/j < 	,
for all t 2 Œ0; T � and all jp � qj < r .

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT – La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_12, © Springer International Publishing Switzerland 2014
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In other words, for q close to p, x.t; q/ remains close to x.t; p/ in any finite in-
terval, that is, solutions that are close to each other initially remain close to each
other for some finite time. However, stability deals with the behavior of x.t; p/ for
all t 	 0, that is, if they are initially close to each other then they remain close to
each other for all time t 	 0.

Notation. Tr .y/ D ¹x 2 Rn W jx�yj < rº denotes the ball of radius r > 0 centered
at y 2 Rn. Recall that jxj is the euclidean norm in Rn, namely jxj2 D .x j x/ DP
x2

i .

Definition 12.1.2. Let x� 2 Rn be such that f .x�/ D 0 so that x� is an equilibrium
point of (12.1):

1. x� is stable if for every r > 0 there exists a neighborhood U of x� such that p 2
U H) x.t; p/ 2 Tr .x

�/ for all t 	 0.

2. x� is asymptotically stable if there is a neighborhood U 0 of x� such that
limt!C1 x.t; p/ D x� for all p 2 U 0.

3. x� is unstable if it is not stable.

Of course, asymptotic stability implies stability. But there could be stable equilib-
ria which are not asymptotically stable such as a Poincaré “center” – an equilibrium
point surrounded by circular trajectories.

12.2 Liapunov direct method

At the beginning of the 1900’s, the Russian mathematician Aleksandr Liapunov de-
veloped what is called the Liapunov Direct Method for determining the stability of
an equilibrium point. We will describe this method and illustrate its applications.

Definition 12.2.1. Let x� 2 Rn be an equilibrium point of (12.1). Let� � Rn be an
open set containing x�. A real valued function V 2 C 1.�;R/ is called a Liapunov
function for (12.1) if

.V 1/ V .x/ > V.x�/ for all x 2 �, x 6D x�.

.V 2/ PV .x/ defD .rV.x/ j f .x// � 0, for all x 2 �.

Recall that .x j Ny/ denotes the euclidean scalar product of the vectors x; Ny, see Nota-
tions. Moreover, rV D .Vx1

; � � � ; Vxn
/ denotes the gradient of V and the subscripts

denote partial derivatives.
Note that, since x0.t/ D f .x.t//; we have that

PV .x.t// D Vx1
. Nx.t//f1. Nx.t//C Vx2

. Nx.t//f2. Nx.t// : : :C Vxn
. Nx.t//fn. Nx.t//

D Vx1
. Nx.t//x0

1.t/C Vx2
. Nx.t//x0

2.t/C : : :C Vxn
. Nx.t//x0

n.t/

D .rV. Nx.t// j x0.t// D d

dt
ŒV .x.t//�:
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In other words, PV .x.t// D dV.x.t//
dt

is nothing but the derivative of V along the
trajectories x.t/. Therefore (V2) implies that V. Nx.t// is non-increasing along the
trajectories Nx.t/.

Theorem 12.2.2 (Liapunov stabilty theorem).

(i) If (12.1) has a Liapunov function, then x� is stable.
(ii) If in .V 2/ one has that PV .x/ < 0, for all x 6D 0, then x� is asymptotically stable.

Proof. We will prove only the statement .i/. By the change of variable y D x�x�,
the autonomous system x0 D f .x/ becomes y0 D f .y C x�/ which has y D 0 as
equilibrium. Thus, without loss of generality, we can assume that x� D 0. Moreover,
still up to a translation, we can assume without loss of generality that V.x�/ D 0.
Finally, for simplicity, we will assume that � D Rn. The general case requires only
minor changes. Set

'p.t/ D V.x.t; p//:

The function 'p.t/ is defined for all t 	 0 and all p 2 Rn. Moreover 'p.t/ is differ-
entiable and one has

'0
p.t/ D Vx1

x0
1 C � � � C Vxn

x0
n D .rV.x.t; p/ j x0.t; p// D PV .x.t; p//:

By .V 2/ it follows that '0
p.t/ � 0 for all t 	 0. Hence 'p.t/ is non-increasing and

thus
0 � V.x.t; p// � V.x.0; p// D V.p/; 8 t 	 0: (12.2)

Given any ball Tr centered at x D 0 with radius r > 0, let Sr denote its boundary.
From .V 1/ it follows that

m D m.r/ D min¹V.x/ W y 2 Srº > 0:

Let U D ¹p 2 Tr ; V .p/ < mº. From .V 1/ one has that U is a neighborhood of
x D 0. Moreover, by (12.2) it follows that V.x.t; p// < m for all t 	 0 and all
p 2 U . Sincem is the minimum of V in Sr , the solution x.t; p/ has to remain in Tr ,
provided p 2 U , namely p 2 U H) x.t; p/ 2 Tr and this proves that x D 0 is
stable.

Roughly, the Liapunov function V is a kind of potential well with the property
that the solution with initial value p in the well remain confined therein for all t 	 0.

Remark 12.2.3. If PV D 0 for all t 	 0, then V.x.t; p// is constant, namely
V.x.t; p// D V.x.0; p// D V.p/ for all t 	 0. Then x.t; p/ cannot tend to x�
as t ! C1. As a consequence, x� is stable but not asymptotically stable.
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Example 12.2.4. As a first application we want to study the stability of the nontrivial
equilibrium x� D c

d
; y� D a

b
of the Lotka–Volterra system²
x0 D ax � bxy
y0 D �cy C dxy:

Recall (see Section 8.2) that lettingH.x; y/ D dxCby�c ln x�a ln y, x > 0; y >
0, one has that H is constant along the solutions of the system. Let us take V D H .
Then PV D PH D 0 and hence .V 2/ holds with equality. Moreover we know that H
has a strict local minimum at .x�; y�/ and thus .V 1/ is satisfied. It follows thatH is
a Liapunov function and one deduces that .x�; y�/ is stable (but not asymptotically
stable, see Remark 12.2.3). We will see later on that the trivial equilibrium .0; 0/ is
unstable.

Theorem 12.2.2 is countered with the following instability result

Theorem 12.2.5. Suppose that there exists a scalar function W 2 C 1.�;R/ such
that W.x�/ D 0 and that PW .x/ WD .rW.x/ j f .x// is either positive or negative
for all x 6D x�. Moreover, we assume that there exists a sequence xk 2 �, with
xk ! x� such that W.xk/ PW .xk/ > 0. Then x� is unstable.

12.3 Stability of linear systems and n-th order linear equations

In this section we will apply the previous theorems to study the stability of the linear
system

x0 D Ax; x D .x1; : : : ; xn/ 2 Rn:

We start with linear 2 � 2 autonomous systems. Recall that these systems have been
discussed in Chapter 7, but here they are studied from the point of view of stability.

12.3.1 Stability of 2 � 2 systems

Changing notation, we call .x; y/ 2 R2 the variable and write the system in the form²
x0 D a11x C a12y

y0 D a21x C a22y
(12.3)

where the coefficients aij are real numbers. Letting u D .x; y/ and

A D
�
a11 a12

a21 a22

�
the system can be written as u0 D Au. If A is nonsingular, which we always assume,
the only equilibrium is .x; y/ D .0; 0/. We are going to study the qualitative proper-
ties of the solutions of (12.3), in particular their asymptotic behavior, as t ! C1.
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Referring to Chapter 7 for some more details, let us recall that the Jordan normal
form of a nonsingular matrix A is a nonsingular matrix J with the property that there
exists an invertible matrix B such that BA D JB . The Jordan matrix J exists and
has the same eigenvalues �1; �2 as A. Moreover, if �1; �2 are real numbers, then

�1 6D �2 H) J D
�
�1 0

0 �2

�
: (J1)

If �1 D �2 then either

J D
�
�1 0

0 �1

�
(J2.1)

or

J D
�
�1 1

0 �1

�
: (J2.2)

If the eigenvalues are complex, � D ˛ ˙ iˇ, then

J D
�
˛ �ˇ
ˇ ˛

�
: (J3)

Lemma 12.3.1. The change of variable z D B�1u transforms the solutions u.t/ of
u0 D Au into the solutions z.t/ of z0 D Jz. Therefore, .0; 0/ is stable or unstable
relative to u0 D Au if and only if it is the same relative to y0 D Jz.

Proof. The first part of the lemma has been proved in Chapter 7 (with slightly dif-
ferent notation): from z0 D B�1u0 D B�1Au D JBu it follows that z0 D Jz. If
we set z D .z1; z2/ this shows that the change of variable B�1 transforms a solu-
tion curve u.t/ D .x.t/; y.t// of u0 D Au in the plane .x; y/ into a solution curve
z.t/ D .z1.t/; z2.t// of z0 D Jz in the plane .z1; z2/. Thus the qualitative properties
of .x.t/; y.t// are the same as those of .z1.t/; z2.t//. In particular, .x.t/; y.t// !
.0; 0/ as t ! ˙1 if and only if .z1.t/; z2.t// does the same, and hence the point
.0; 0/ is stable or unstable relative to u0 D Au if and only if it is the same relative
toz0 D Jz.

By the lemma, it suffices to study the system

u0 D Ju:

Consider first the case when the eigenvalues are real and distinct. According to (J1)
the system u0 D Ju becomes ²

x0 D �1x

y0 D �2y

which is decoupled. Its solutions are given by x.t/ D c1e
�1t and y.t/ D c2e

�2t ,
where c1 D x.0/; c2 D y.0/ 2 R. If �1 < 0, resp. �2 < 0, then x.t/ ! 0, resp.
y.t/ ! 0, as t ! C1. Therefore,
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if both the eigenvalues are real and negative, the equilibrium .0; 0/ is asymp-
totically stable, whilst if one of the eigenvalues is positive, .0; 0/ is unstable.

We can write the solutions in the form y D y.x/. Precisely, if c1 D 0 then x.t/ � 0.
If c1 6D 0 we solve x.t/ D c1e

�1t for t , obtaining

t D 1

�1

ln

ˇ̌̌̌
x

c1

ˇ̌̌̌
D ln

ˇ̌̌̌
x

c1

ˇ̌̌̌ 1
�1

:

Substituting into y.t/ we get

y.t/ D c2e
�2t D c2 exp

"
�2 ln

ˇ̌̌̌
x

c1

ˇ̌̌̌ 1
�1

#
D c2 exp

24ln

ˇ̌̌̌
x

c1

ˇ̌̌̌�2
�1

35 D c2

c0
1

x
�2
�1

where c0
1 D c

�2
�1

1 . The behavior of these functions depends on the sign of the eigen-
values and on their ratio. If �1 < �2 < 0, then the exponent of x is positive and
greater that 1, see Figure 12.1a. If �2 < �1 < 0, then the exponent of x is posi-
tive and smaller than 1. In any case the origin is asymptotically stable and is called a
stable node, see Figure 12.1b.

If �1 ��2 > 0, we have an unstable node. The graphs are plotted in Figures 12.2a–
12.2b.

If �1 � �2 < 0, the functions y.x/ are hyperbolas. The origin is unstable and is
called a saddle, see Figure 12.3

We now consider the case when �1 D �2 WD � and is real. If .J 2:1/ holds, then
the system becomes ²

x0 D �x

y0 D �y:

Thus x.t/ D c1e
�t ; y.t/ D c2e

�t and .0; 0/ is asymptotically stable provided � < 0,
otherwise .0; 0/ is unstable. It is still called a stable or unstable node. Here y.x/ D
cx, with c D c2=c1, see Figures 12.4a–12.4b.

(a) (b)

Fig. 12.1. Stable node. (a) �1 < �2 < 0; (b) �2 < �1 < 0
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Fig. 12.2. Unstable node. (a) 0 < �1 < �2; (b) 0 < �2 < �1

Fig. 12.3. Saddle, with �1 < 0 < �2

Fig. 12.4. Case .J 2:1/. (a) Stable node, with �1 D �2 < 0; (b) unstable node, with
�1 D �2 > 0
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If .J 2:2/ holds, then the system becomes²
x0 D �x C y

y0 D �y:

The solution of the second equation is y.t/ D c2e
�t . Substituting into the first one,

we find x0 D �xC c2e
�t which is a linear first order non-autonomous equation. The

solution is x.t/ D .c1 C c2t /e
�t . Once again, if � < 0 we have asymptotic stability.

Otherwise, if � > 0 we have instability. The origin is still a node.
If c2 D 0 we find y.t/ � 0. If c2 6D 0, we have

e�t D y

c2

H) t D 1

�
ln

�
y

c2

�
:

Thus from x D .c1 C c2t /e
�t we infer

x D
�
c1 C c2

1

�
ln

�
y

c2

��
y

c2

; .c2 6D 0/:

The graphs are shown in Figures 12.5a–12.5b.
We finally consider the case in which the eigenvalues are complex. From .J 3/ it

follows that the system becomes²
x0 D ˛x � ˇy
y0 D ˇx C ˛y:

Using polar coordinates, x.t/ D r.t/ sin �.t/; y.t/ D r.t/ cos �.t/, we find

x0 D r 0 sin � C r� 0 cos �; y0 D r 0 cos � � r� 0 sin �

whence ²
r 0 sin � C r� 0 cos � D ˛.r sin �/ � ˇ.r cos �/
r 0 cos � � r� 0 sin � D ˇ.r sin �/C ˛.r cos �/:

Fig. 12.5. Case .J 2:2/. (a) Stable node, with �1 D �2 < 0; (b) unstable node, with
�1 D �2 > 0
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Fig. 12.6. Case .J 3/, with ˛ 6D 0. (a) ˛ < 0: stable focus; (b) ˛ > 0: unstable focus

Adding the first equation multiplied by sin � to the second equation multiplied by
cos � we get r 0 D ˛r . Similarly, subtracting the first equation multiplied by cos �
from the second equation multiplied by sin � we get � 0 D �ˇ. In other words, the
system in the unknowns r; � is simply²

r 0 D ˛r

� 0 D �ˇ
whose solutions are r.t/ D c1e

˛t ; �.t/ D �ˇt C c2. Thus

x.t/ D c1e
˛t sin.�ˇt C c2/; y.t/ D c1e

˛t .cos.�ˇt C c2//:

Thus stability depends only on ˛. Precisely, one has:

if �1;2 D ˛ ˙ iˇ and ˛ < 0, then the origin is asymptotically stable, whilst if
˛ > 0, the origin is unstable.

If ˛ 6D 0, the equilibrium is called a focus, see Figures 12.6a–12.6b. The curves are
spirals.

If �1;2 D ˛ ˙ iˇ and ˛ D 0 we find that r.t/ is a constant. Thus the solution
curves are circles r D c > 0, namely x2 C y2 D c, centered at the origin, see
Figure 12.7. Hence

if �1;2 D ˛˙ iˇ and ˛ D 0, the origin is stable, but not asymptotically stable.

The equilibrium is called a center.

Remark 12.3.2. To complete the discussion, consider the case in which one eigen-
value of A is zero. If A D

�
� 0
0 0

�
the system is²

x0 D �x

y0 D 0

whose solutions are x.t/ D c1e
�t , y.t/ � c2 which, in the plane .x; y/; are straight

lines parallel to the x axis. If AD
�

0 0
0 �

�
, we find x.t/ � c1, y.t/ � c2e

�t , namely a
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O x

y

x +y =c>02 2

Fig. 12.7. Center: case (J3) with ˛ D 0

family of straight lines parallel to the y axis. Finally, if A D
�

0 b
0 0

�
the system is²

x0 D by

y0 D 0

whence y.t/ � c2 and x.t/ D c1 C c2bt which are still a family of straight lines
parallel to the x axis. In any case, we have instability.

The following table summarizes the nature of the equilibrium .0; 0/ when A is
nonsingular.

Eigenvalues Equilibrium

�1;2 2 R; �1; �2 < 0 asymptotically stable node
�1;2 2 R; �1; �2 > 0 unstable node
�1;2 2 R; �1 � �2 < 0 unstable saddle
�1;2 D ˛ ˙ iˇ; ˛ < 0 asymptotically stable focus
�1;2 D ˛ ˙ iˇ; ˛ > 0 unstable focus

�1;2 D ˙iˇ; stable center

12.3.2 Stability of n � n linear systems

Extending the previous results, we state the following theorem dealing with the linear
autonomous n � n system x0 D Ax, where x D .x1; : : : ; xn/ 2 Rn.
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Theorem 12.3.3. Suppose that A is a constant n � n nonsingular matrix.

(i) If all the eigenvalues of A have negative real part, then x� D 0 is asymptotically
stable. More precisely, for all p 2 Rn one has that x.t; p/ ! 0 as t ! C1.

(ii) If one eigenvalue of A has positive real part, then x� D 0 is unstable.

In the above statement, if an eigenvalue is real, its real part is the eigenvalue itself.
In the case that

A D

0BBBB@
�1 0 � � � 0

0 �2

: : :
:::

:::
: : :

: : : 0

0 � � � 0 �n

1CCCCA
where the eigenvalues �i are real (notice that we do not require that �i 6D �j for
i 6D j ), the systems x0 D Ax splits into n independent equations x0

i D �1xi . These
equations yield xi .t/ D cie

�i t . This immediately implies the asymptotic stability of
N0 provided all �i < 0. Moreover, if one of the �i is positive, then xi .t/ D cie

�1t

does not tend to 0 as t ! C1 and we have instability.
If A is not diagonal, the proof of .i/ is based on finding a Liapunov function for

x0 D Ax and on applying the Liapunov Stability Theorem 12.2.2. To avoid cum-
bersome calculations, we carry out the details in two specific examples in 3D. The
general case follows from similar arguments.

Let x D .x; y; z/ 2 R3, and consider the following two cases:

1. A D
0@ � 1 0

0 � 0

0 0 �

1A I

2. A D
0@ ˛ ˇ 0

�ˇ ˛ 0

0 0 �

1A :
We claim that V.x/ D 1

2
.x2 C y2 C z2/ is a Liapunov function.

Clearly, V.x/ > 0 for all x 6D .0; 0; 0/ and hence .V 1/ holds. As for .V 2/, we
consider separately the two cases.

1. Since Ax D .�x C y; �y; �z/ one infers

PV D .rV j Ax/ D �Œx2 C xy C y2�C �z2:

Notice that

x2 CxyCy2 D x2

4
CxyCy2 C 3x2

4
D
�x
2

C y
�2 C 3x2

4
> 0; 8.x; y/ 6D .0; 0/:

Thus, if �; � < 0 it follows that PV < 0 for all .x; y; z/ 6D .0; 0; 0/ and hence .V 2/
holds (with strict inequality).
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2. Here the eigenvalues of A are ˛ ˙ iˇ and � 2 R. We have that Ax D .˛x C
ˇy;�ˇx C ˛y; �z/ and hence

PV D .rV j Ax/ D ˛Œx2 C y2�C �z2:

Thus .V 2/ holds (with strict inequality) provided ˛ and � are both negative.
In each of the above cases, we can apply .i i/ of the Liapunov Stability Theo-

rem 12.2.2 to infer that x� D .0; 0; 0/ is asymptotically stable provided all the eigen-
values of A have negative real parts.

12.3.3 Stability of n-th order linear equations

Recall that the linear n-th order equation in the real variable x

dnx

dtn
C an�1

dn�1x

dtn�1
C � � � C a1

dx

dt
C a0x D 0 (12.4)

is equivalent to the system8̂̂<̂
:̂
x0

1 D x2

x0
2 D x3

� � � � � �
x0

n D �an�1xn � � � � � a1x2 C a0x1:

(12.5)

The stability of the trivial solution of (12.4) is the same as the stability of the point
with coordinates x1 D x2 D � � � D xn D 0 for the equivalent system (12.5). In
particular, the asymptotic stability of x D 0means that for all p 2 R near x D 0 one
has

lim
t!C1 x.t; p/ D lim

t!C1
dx.t; p/

dt
D � � � D lim

t!C1
dn�1x.t; p/

dtn�1
D 0:

One can check that the roots of the characteristic equation

�n C an�1�
n�1 C � � � C a1�C a0 D 0

of (12.4) coincide with the eigenvalues of the system (12.5). Let us show this claim
in the case of the second order equation x00 Cax0 Cbx D 0, equivalent to the system²

x0
1 D x2

x0
2 D �ax2 � bx1:

The eigenvalues are the solutions ofˇ̌̌̌ �� 1

�b �a � �
ˇ̌̌̌

D �2 C a�C b D 0;

which is the same as the characteristic equation of x00 C ax0 C bx D 0.
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Using the preceding remark about the roots of the characteristic equation, we can
use Theorem 12.3.3 to infer

Theorem 12.3.4. The trivial solution x D 0 is asymptotically stable if all the roots
of the characteristic equation have negative real parts, while it is unstable if at least
one root of the characteristic equation a has positive real part.

On the other hand, we might also work directly on the equation. Actually, the gen-
eral solution of (12.4) is the superposition of terms tme�t or tme˛t .sinˇt C cosˇt/,
where � or ˛˙ iˇ are roots of the characteristic equation. These terms, together with
their derivatives, tend to zero as t ! C1 if and only if � < 0, or ˛ < 0.

12.4 Hamiltonian systems

Let H W Rn � Rn 7! R be continuously differentiable and consider the hamiltonian
system ²

x0
i D �Hyi

.x1; : : : ; xn; y1; : : : ; yn/

y0
i D Hxi

.x1; : : : ; xn; y1; : : : ; yn/
i D 1; 2; � � � n;

or, in a compact form ²
x0 D �ryH.x; y/

y0 D rxH.x; y/
(HS)

where rxH D .Hx1
; � � � ;Hxn

/ and ryH D .Hy1
; � � � ;Hyn

/.
Planar hamiltonian systems have been discussed in Section 1 of Chapter 8. The

following Lemma is the counterpart of Lemma 8.1.1 therein.

Lemma 12.4.1. If .x.t/; y.t// is a solution of .HS/, thenH.x.t/; y.t// is constant.

Proof. One has

d

dt
H.x.t/; y.t// D .rxH.�/ j x0/C .ryH.�/ j y0/

where .�/ D .x.t/; y.t//. Since .x.t/; y.t// satisfies .HS/ it follows

d

dt
H.�/ D �.rxH.�/ j ryH.�//C .ryH.�/ j rxH.�// D 0

and thus H.x.t/; y.t// is constant.

Theorem 12.4.2. Let H.0; 0/ D 0 and suppose that .0; 0/ is a local strict minimum
of H , namely that there exists a neighborhood � 
 Rn � Rn of .0; 0/ such that
H.x; y/ > 0 for all .x; y/ 2 �, .x; y/ 6D .0; 0/. Then .0; 0/ is stable (but not
asymptotically stable).

Proof. We claim that the restriction ofH to� is a Liapunov function for .HS/. First
of all, by assumption, .V 1/ holds. Moreover, Lemma 12.4.1 implies that PH D 0 and
hence .V 2/ holds. From Theorem 12.2.2 it follows that .0; 0/ is stable. More pre-
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Fig. 12.8. Typical phase plane portrait of a hamiltonian system in 2D

cisely, since PH D 0 then, according to Remark 12.2.3, .0; 0/ is stable but not asymp-
totically stable. If n D 1 the equilibrium is like a stable center for linear systems.
See Figure 12.8.

Remark 12.4.3. To show the stability of the nontrivial equilibrium of the Lotka–
Volterra system (see Example 12.2.4), we could also use the preceding theorem.

If

H.x; y/ D 1

2
jyj2 C F.x/; F 2 C 1.Rn;R/

the hamiltonian system .HS/ becomes²
x0

i D �yi

y0
i D Fxi

.x/
(12.6)

which is equivalent to the second order gradient system

x00 C rF.x/ D 0; (12.7)

namely
x00

i C Fxi
.x1; : : : ; xn/ D 0; i D 1; : : : ; n:

Let us point out that an equilibrium x� of a system such as (12.7) corresponds to
the equilibrium .x�; 0/ of the equivalent first order system (12.6). Stability of x� for
(12.7) has to be understood as the stability of .x�; 0/ for (12.6). For example, the
asymptotic stability of x� means that x.t; p/ ! x� and x0.t; p/ ! 0 as t ! C1,
for all p close to x�.
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The following theorem is known as the Dirichlet–Lagrange stability criterion.

Theorem 12.4.4. Let F.x�/ D 0 and suppose that x� is a local strict minimum of
F . Then the equilibrium x� is stable with respect to (12.7).

Proof. It suffices to remark thatH.x; y/ D 1
2
jyj2CF.x/ has a strict local minimum

at .x�; 0/ and apply Theorem 12.4.2.

12.5 Stability of equilibria via linearization

Given a system x0 D f .x/ with equilibrium x� D 0, its linearization at x� D 0 is
the linear system x0 D Ax, where A D rf .0/.

Developing f in Taylor’s expansion we find f .x/ D Ax C o.jxj/. Then the lin-
earized system is x0 D Ax. We have seen that a sufficient condition for the asymp-
totic stability of x D 0 for x0 D Ax is that all the real parts of the eigenvalues of A
be negative, whilst if at least one eigenvalue is positive, or has positive real part, then
x� D 0 is unstable. This result is extended to the nonlinear case in the next theorem,
whose proof is omitted.

Theorem 12.5.1. Suppose that all the eigenvalues of rf .0/ have negative real parts.
Then the equilibrium x� D 0 is asymptotically stable with respect to the system
x0 D rf .0/x C o.jxj/.

If at least one eigenvalue of rf .0/ has positive real part, then the equilibrium
x� D 0 is unstable.

Example 12.5.2. Consider the Van der Pol system²
x0 D �y
y0 D x � 2�.x2 � 1/y

with j�j < 1. Here the eigenvalues of

A D rf .0; 0/ D
�
0 �1
1 2�

�
are �1 D � C p

�2 � 1, �2 D � � p
�2 � 1. If 0 < � < 1, both the eigenvalues

have positive real part and the equilibrium .0; 0/ is unstable. On the other hand, if
�1 < � < 0, both the eigenvalues have negative real part and the equilibrium .0; 0/

is asymptotically stable.

Example 12.5.3. We have seen in Example 12.2.4 that the nontrivial equilibrium of
a Lotka–Volterra system ²

x0 D ax � bxy
y0 D �cy C dxy
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is stable. On the contrary, let us show that .0; 0/ is unstable. Here

f .x; y/ D
�
f1.x; y/

f2.x; y/

�
D
�
ax � bxy

�cy C dxy

�
:

Thus

rf .x; y/ D
�
a � by �bx
dy �c C dx

�
and hence

A D rf .0; 0/ D
�
a 0

0 �c
�

whose eigenvalues are a > 0;�c < 0. It follows that .0; 0/ is unstable.

Consider the one-dimensional case of a single equation x0 D f .x/, where f is
continuously differentiable and f .0/ D 0. The linearized equation is x0 D f 0.0/x
for which the stability of x D 0 is determined by the sign of f 0.0/. Then the previous
theorem yields that the equilibrium x D 0 is asymptotically stable if f 0.0/ < 0 and
unstable if f 0.0/ > 0.

Example 12.5.4. If f .x/ D �x � x3, x D 0 is an equilibrium of x0 D f .x/. Since
f 0.0/ D �, it is asymptotically stable if � < 0 and unstable if � > 0. When � be-
comes positive there is a change of stability and a pair of nontrivial equilibria branch
off from � D 0. These new equilibria are ˙x� D ˙p

�. Since f 0.x�/ D ��3x2
�

D
�2� < 0 for � > 0, it follows that x� are asymptotically stable. This phenomenon is
called a pitchfork bifurcation. See Figure 12.9.

The same bifurcation arises in the case of x0 D �xCx3. Here the nontrivial equi-
libria ˙x� D ˙p.��/, � < 0, are unstable and the branch is downward directed.

Fig. 12.9. Pitchfork bifurcation for x0 D �x � x3
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The following example shows that if the matrix rf .0/ has a pair of conjugate
eigenvalues with zero real parts, the stability of x� D 0 cannot be deduced by the
previous theorems, but depends on the higher order term in the Taylor’s expansion
of f .x/.

Example 12.5.5. Consider the system²
x0 D y C 	x.x2 C y2/

y0 D �x C 	y.x2 C y2/
(12.8)

whose linear part has eigenvalues ˙i . Letting V.x; y/ D x2 C y2, let us evaluate

PV D 2.xx0 C yy0/:

Multiplying the first equation by x and the second by y and summing up, we get

xx0 C yy0 D 	.x2 C y2/2:

Therefore
PV D 2	.x2 C y2/2;

whose sign depends on 	. The equilibrium .0; 0/ is asymptotically stable if 	 < 0,
whilst it is unstable if 	 > 0. If 	 D 0, then PV D 0 and hence we have stability. As
an exercise, the reader can transform (12.8) using polar coordinates x D � sin �; y D
� cos � , and show that for 	 6D 0 the trajectories are spirals, with a behavior like the
one plotted in Figures 12.6a–12.6b.

12.5.1 Stable and unstable manifolds

The results below describe the behavior of the solutions near an unstable equilibrium
in more detail.

Consider the linear system x0 D Ax. The equilibrium x� D 0 is called hyperbolic
if the matrix A has no eigenvalues with zero real part.

Theorem 12.5.6. Suppose that x� D 0 is a hyperbolic equilibrium: A has k eigen-
values �1; : : : ; �k with negative real parts and n� k eigenvalues �kC1; : : : ; �n with
positive real parts. Let ei , i D 1; � � � ; n, denote an orthogonal system of eigenvalues
corresponding to �i and let

Ls D Ls
k D span¹e1; � � � ; ekº; Lu D Lu

n�k D span¹ekC1; � � � ; enº:
Then:

(i) Ls and Lu are invariant, that is if p 2 Ls , resp. p 2 Lu, then x.t; p/ 2 Ls ,
resp. x.t; p/ 2 Lu, for all t .

(ii) p 2 Ls if and only if limt!C1 x.t; p/ D 0.
(iii) p 2 Lu if and only if limt!�1 x.t; p/ D 0.
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Fig. 12.10. Phase plane portrait of x0 D Ax, x D .x; y/, with A D diag¹�1; �2º, �1<0<�2

Proof. We prove the theorem in the simple case in which A D diag¹�1; � � � ; �nº,
where �1 � � � � � �k < 0 < �kC1 � � � � � �n. The system x0 D Ax is
decoupled into n independent equations x0

i D �ixi . If p D .p1; � � � ; pn/, one
finds that x.t; p/ D .p1e

�1t ; � � � ; pne
�nt /. Then limt!C1 x.t; p/ D 0 if and

only if pkC1 D � � � D pn D 0. This implies that Ls D span¹e1; � � � ; ekº. Sim-
ilarly, limt!�1 x.t; p/ D 0 if and only if p1 D � � � D pk D 0 and hence
Lu D span¹ekC1; � � � ; enº.

If n D 2 and A D diag¹�1; �2º we find the saddle plotted in Figure 12.10
The previous result can be extended to the nonlinear system x0 D rf .0/x C

o.jxj/.

Theorem 12.5.7. Let f be smooth and suppose that the matrix A D rf .0/ has k
eigenvalues with negative and n� k eigenvalues with positive real parts. Then there
are smooth surfaces M s D M s

k
and M u D M u

n�k
, of dimension k and n � k re-

spectively, with M s [M u D ¹0º, defined in a neighborhood of x� D 0, which are
tangent to Ls , resp. Lu, such that:

(i) M s and M u are invariant, that is, if p 2 M s , resp. p 2 Mu, then x.t; p/ 2
M s , resp. x.t; p/ 2 M u, for all t .

(ii) p 2 M s if and only if limt!C1 x.t; p/ D 0.
(iii) p 2 M u if and only if limt!�1 x.t; p/ D 0.

The surface M s is called the stable manifold of the system, whilst M u is called the
unstable manifold, see Figure 12.11. If f .x/ D Ax the stable and unstable manifolds
are the linear spaces Ls; Lu. If all the eigenvalues have negative, resp. positive, real
parts then M u D ;, resp. M s D ;.
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Fig. 12.11. Stable and unstable manifolds

Remark 12.5.8. If M s;M u are defined globally on Rn, it is possible to prove that if
p 2 Rn nM s , then x.t; p/ approaches Mu asymptotically as t ! C1.

12.6 An asymptotic result

Consider the second order linear non-autonomous equation

x00 C .1CQ.t// x D 0: (12.9)

If Q D 0 the solutions are periodic and given by x.t/ D c sin.t C #/. We want
to study the “stability” of these periodic solutions, looking for conditions onQ such
that they will make the solutions of (12.9) tend asymptotically to x.t/ D c sin.tC#/.
Theorem 12.6.1. Suppose thatZ C1

a

jQ.t/jdt < C1; (12.10)

for some a 2 R. Then there exist constants c > 0 and # such that any solution of
(12.9) has the form

x.t/ D c sin.t C #/C �.t/

with limt!C1 �.t/ D 0.

Proof. The equation x00 C .1CQ.t//x D 0 is equivalent to the first order system

x0 D y; y0 D �.1CQ.t//x: (12.11)
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Let us use polar coordinates, namely x.t/ D r.t/ sin �.t/, y.t/ D r.t/ cos �.t/,
r 	 0. Notice that if r.�/ D 0 for some � , then one has x.�/ D 0 and y.�/ D 0. By
uniqueness, x.t/ D y.t/ D 0 for all t , for which the theorem is obviously true. Thus
in the sequel we can assume that r.t/ > 0 for all t .
One has

x0 D r 0 sin � C r� 0 cos �; y0 D r 0 cos � � r� 0 sin �:

Then (12.11) is transformed into

r 0 sin � C r� 0 cos � D r cos �; r 0 cos � � r� 0 sin � D �.1CQ/r sin �:

Multiplying the first equation by sin � and the second one by cos � and summing up,
we find

r 0 D r sin � cos � � .1CQ/r sin � cos � D �Qr sin � cos �:

Multiplying the first equation by cos � and the second one by sin � and subtracting,
we find

r� 0 D r cos2 � C .1CQ/r sin2 � D .1CQ sin2 �/r:

Thus (12.11) becomes

r 0 D �Qr sin � cos �; (12.12)

� 0 D 1CQ sin2 �: (12.13)

Equation (12.13) is independent of r and can be integrated, yielding

�.t/ � �.a/ D t � aCG.t/; where G.t/ D
Z t

a

Q.s/ sin2 �.s/ds:

Next, let us set

F.t/ D �1
2

Z t

a

Q.s/ sin 2�.s/ds:

From (12.12) it follows (recall that r.t/ > 0 for all t )

ln
r.t/

r.a/
D �1

2

Z t

a

Q.s/ sin 2�.s/ds D F.t/:

Then we find

r.t/ D r.a/eF .t/; �.t/ D �.a/C t � aCG.t/:

Finally, setting g.t/ D �.a/ � a CG.t/ we find �.t/ D t C g.t/. In conclusion we
have

x.t/ D r.t/ sin.t C g.t//:

Using the assumption (12.10) on Q it follows that F and G converge as t !
C1. Thus r.t/; g.t/ have finite limits. Let c D limt!C1 r.t/ > 0 and # D
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limt!C1 g.t/. If we write the solution x.t/ as

x.t/ D c sin.t C #/C r.t/ sin.t C g.t// � c sin.t C #/

and set �.t/ D r.t/ sin.t C g.t// � c sin.t C #/, we infer that x D c sin.t C #/C
�.t/. Since r.t/ ! c and g.t/ ! # as t ! C1, it is easy to check that �.t/ ! 0

as t ! C1. The proof is completed.

In the .x; y/ plane the solutions are trajectories that tend asymptotically to a “limit
cycle”, a circle of radius r D c.

Example 12.6.2. LetQ.t/ � t�˛ as t ! C1. If ˛ > 1 thenQ satisfies (12.10) and
Theorem 12.6.1 applies.

We will use Theorem 12.6.1 to establish the asymptotic behavior of the Bessel func-
tion Jm.t/, as anticipated in Chapter 10.

Theorem 12.6.3. There exist constants cm; #m such that

Jm.t/ D cm

1p
t

sin.t C #m/C 1p
t
�m.t/;

where t > 0 and limt!C1 �mt / D 0.

Proof. Setting y D t1=2x, t > 0, one finds y00 D � 1
4
t�3=2x C t�1=2x0 C t1=2x00.

Hence y00 D t�3=2

� 1

4
x C tx0 C t2x00�. If x is a solution of the Bessel equation

t2x00 C tx0 C .t2 �m2/x D 0 it follows that

y00 D t�3=2x

�
�1
4

� t2 Cm2

�
D y

t2

�
�1
4

� t2 Cm2

�
D �Qm.t/y � y

where

Qm.t/ D
1
4

�m2

t2
:

In other words, the Bessel equation is transformed into y00 C .1 C Qm.t//y D 0.
Since Qm.t/ � t�2 as t ! C1, then the summability assumption (12.10) is sat-
isfied. From Theorem 12.6.1 one infers that y D cm sin.t C #m/ C �m.t/, with
limt!C1 �m.t/ D 0. Since x D t�1=2y, the result follows.
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12.7 Exercises

1. Show that .0; 0/ is asymptotically stable for the linear system²
x0 D �2x C y

y0 D 7x � 4y:
2. Show that .0; 0/ is asymptotically stable for the linear system²

x0 D �x � y
y0 D 4x � y:

3. Show that .0; 0/ is stable for the linear system²
x0 D x � y
y0 D 3x � y:

4. Study the stability of .0; 0/ for the system²
x0 D �2ax � y
y0 D .9C a2/x

depending on the parameter a.

5. Show that .0; 0/ is unstable for the system²
x0 D �x C 4y

y0 D x � 5y
and find the stable and unstable manifold.

6. Study the stability of the trivial solution of the equation x00 C 2x0 � x D 0.

7. Study the stability of the trivial solution of the equation x00 C 2x0 C x D 0.

8. Study the stability of the trivial solution of the equation x00 C 2hx0 C k2x D 0,
h; k 6D 0.

9. Show that the equilibrium of the system8<:
x0

1 D �2x1 C x2 C x3

x0
2 D �2x2 C x3

x0
3 D x2 � 2x3

is asymptotically stable.

10. Study the stability of the equilibrium of the system8<:
x0

1 D ax1 C 5x3

x0
2 D �x2 � 2x3

x0
3 D �3x3

depending on a 6D 0.
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11. Show that the equilibrium of the system8<:
x0

1 D x1 C x2 C x3

x0
2 D x1 � 2x2 � x3

x0
3 D x2 � x3

is unstable.

12. Find a such that the equilibrium of the system8<:
x0

1 D ax1

x0
2 D ax2 C x3

x0
3 D x2 C ax3

is asymptotically stable.

13. Study the stability of the equilibrium of the system8̂̂<̂
:̂
x0

1 D x2 C x4

x0
2 D x1 � x2 C x3

x0
3 D x2 C x3

x0
4 D x1 � x4:

14. Consider the third order equation x000 C ax00 C bx0 C cx D 0 and prove that the
roots of the characteristic equation �3 C a�2 C b� C c D 0 coincide with the
eigenvalues of the equivalent first order system8<:

x0
1 D x2

x0
2 D x3

x0
3 D �ax3 � bx2 � cx1:

15. Study the stability of the trivial solution x D 0 for the equations x000 C x D 0

and x000 � x D 0.

16. Study the stability of the trivial solution of x000 C 5x00 C 9x0 C 5x D 0.

17. Prove that the trivial solution of x0000 C x000 � x0 � x D 0 is unstable.

18. Prove that x D 0 is stable for x0000 C 8x000 C 23x00 C 28x0 C 12 D 0.

19. Prove that the equilibrium of the system²
x00 D x0 � 2y
y00 D 3x0 C 2y0

is unstable.

20. Show that the equilibrium of the system²
x00 � 2y0 D x C ax C 3y

y00 C 2x0 D y C 3x C ay

is unstable provided a < 3.

21. Show that x0 D �x � x5 has a pitchfork bifurcation.
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22. Show that x0 D �x � x3 � x5 has a pitchfork bifurcation.

23. Show that x0 D �x�x3 �x2kC1 has a pitchfork bifurcation provided that k > 1.

24. Show that .0; 0; 0/ is unstable for the linear system8<:
x0

1 D �x1

x0
2 D �2x2

x0
3 D x3

and find the stable and unstable manifold.

25. Determine the stability of .0; 0/ of²
x0 D �x C y C y2

y0 D �2y � x2:

26. Show that V.x; y/ D 1
4
.x4 C y4/ is a Liapunov function for the system,²

x0 D �x3

y0 D �y3

and deduce the stability of .0; 0/.

27. Show that V.x; y/ D 1
2
.x2 C y2/ is a Liapunov function for the system,²

x0 D �y � x3

y0 D �x � y3

and deduce the stability of .0; 0/.

28. Show that .0; 0/ is unstable for²
x0 D �y C x3

y0 D �x C y3:

29. Consider the system ²
x0 D y

y0 D �x.x C a/ � y
where a > 0. Show that .0; 0/ is asymptotically stable.

30. For the same system, show that .�a; 0/ is unstable.

31. Study the stability of the equilibrium of gradient system²
x00 C 4x.x2 C y2/ D 0

y00 C 4y.x2 C y2/ D 0.

32. Study the stability of the equilibrium of the equation x00 C f .x0/ C g.x/ D 0

under the assumption that f .0/ D g.0/ D 0 and yf .y/ 	 0 and xg.x/ > 0 for
all x 6D 0.
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33. Study the stability of the equilibrium of gradient system²
x00 C 2.x � 1/C 2xy2 D 0

y00 C 2x2y D 0.

34. Dexcribe the asymptotic behaviior, as, t ! C1, of the solutions of x00 C x C
x
t2 D 0.

35. Show that there exist solutions x.t/ of x00 C x C e�tx D 0 such that
limt!C1 x.t/ D 0.
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Boundary value problems

In this chapter we discuss boundary value problems for second order nonlinear equa-
tions. The linear case has been discussed in Chapter 9.

We first deal with autonomous and then with the non-autonomous equations.

13.1 Boundary value problems for autonomous equations

In this first section we consider the autonomous nonlinear boundary value problem²
x00 D f .x/

x.0/ D x.b/ D 0
(13.1)

by using the phase plane analysis. We assume the student is familiar with this topic
discussed in Section 8.3 of Chapter 8.

Consider the phase plane .x; y/, y D x0, and the curveƒc of the equation 1
2
y2 �

F.x/ D c, where F.x/ D R x

0 f .s/ds. We will assume that ƒc 6D ; and does
not contain any singular points. Thus ƒc is a regular curve that carries a solution of
x00 D f .x/with energy c. Furthermore, suppose thatƒc is a closed curve and letƒc

be the arc ofƒc , contained in the half plane x 	 0, with endpoints .0; Yc/; .0;�Yc/,
for some Yc > 0 (recall that ƒc is symmetric with respect to y), see Figure13.1a.
Without loss of generality, we can assume that the solution xc.t/, with energy c, is
such that xc.0/ D 0 and yc.0/ D Yc .

Let x D Xc > 0 be such that .Xc ; 0/ is the point where ƒc crosses the x axis
and let tc > 0 be such that xc.tc/ D Xc and yc.tc/ D 0, see Figure 13.1a. To eval-
uate tc we use the energy relationship 1

2
y2 � F.x/ D c which yields F.x/ 	 c

and y D y.x/ D ˙p2F.x/C 2c. Since y.x/ > 0 for 0 < x < Xc , we get
y D Cp2F.x/C 2c.
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DOI 10.1007/978-3-319-02129-4_13, © Springer International Publishing Switzerland 2014
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(a)

a 2t

x (t)c

ct c
t

x

O

(b)

Fig. 13.1. (a) The arc ƒc ; (b) the solution xc.t/, 0 � t � 2tc

From x0 D y it follows that dt D dx

x0 D dx

y
. Moreover, as t ranges from 0 to tc ,

x ranges from 0 to Xc . Therefore,

tc D
Z tc

0

dt D
Z Xc

0

dx

y
D

D
Z Xc

0

dxp
2F.x/C 2c

D 1p
2

Z Xc

0

dxp
F.x/C c

: (13.2)

Lemma 13.1.1. If Xc is not a singular point, then tc < C1.

Proof. Since F.Xc/C c D 0, its Taylor expansion is

F.x/C c D F 0.Xc/.x �Xc/C o.jx �Xc j/ D f .Xc/.x �Xc/C o.jx �Xc j/:
Thus p

F.x/C c D p
f .Xc/ �

p
x �Xc C o.jx �Xc j1=2/:

By assumption,Xc is not a singular point and hence f .Xc/ 6D 0. Therefore, .F.x/C
c/�1=2 is integrable in the interval Œ0; Xc �, namely

R Xc

0 .F.x/C c/�1=2dx is finite.

The reader should notice the difference with the homoclinic and heteroclinic case,
discussed in Chapter 8, where we have shown that if Xc is a singular point, then
tc D C1.

Let �c be the time needed by the point .xc.t/; yc.t// 2 ƒc to go from .Xc ; 0/ to
.0;�Yc/. By symmetry, one has that �c D tc . Let us check this fact. As before,
�c D R 
c

0 dt . But now y D �p2F.x/C 2c. Moreover, as t ranges from 0 to �c , x
ranges downwards from Xc to 0. Therefore,

�c D
Z 
c

0

dt D
Z 0

Xc

dx

y
D 1p

2

Z 0

Xc

dx

�pF.x/C 2
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D 1p
2

Z Xc

0

dxp
F.x/C c

D tc :

The function xc.t/ has the following properties:

1. xc.0/ D 0; x0
c.0/ D Yc > 0;

2. xc.tc/ D Xc ; x
0
c.tc/ D 0;

3. xc.2tc/ D 0; x0
c.2tc/ D �Yc < 0.

It follows that if c is such that 2tc D b, the corresponding xc.t/ solves the boundary
value problem (13.1), is positive and its maximum is Xc , achieved at t D tc D b

2
.

See Figure 13.1b.

Theorem 13.1.2. Let c be such that ƒc 6D ; is a closed curve that does not contain
any singular points. If c satisfies

b D p
2

Z Xc

0

dxp
F.x/C c

; (13.3)

then the function xc.t/ is a solution of the boundary value problem (13.1) such that
xc.t/ > 0 for all a < t < b.

Proof. We have seen that a solution xc.t/ corresponds to a c such that b D 2tc .
Since tc is given by (13.2), we obtain (13.3), proving the theorem.

Remark 13.1.3. (i) More generally, if the equation b D 2ktc has a solution c D ck ,
k D 1; 2; : : : ;we find a solution xck

.t/ that changes sign k�1 times. Note that, in any
case, x0

ck
.0/.D Yck

/ > 0. For example, if k D 2, the solution xc2
.t/, corresponding

Fig. 13.2. Solutions of ˆ.c/ D b

k
p

2



262 13 Boundary value problems

to the closed curve ƒc2
, is positive for 0 < t < 2tc2

, negative for 2tc2
< t < 4tc2

and such that x0
c2
.0/ > 0.

(ii) By a similar argument, one can show that the boundary value problem²
x00 D f .x/

x.a/ D x.b/ D 0

has a solution that changes sign k � 1 times in .a; b/ provided the equation

b � a D p
2 k

Z Xc

0

dxp
F.x/C c

has a solution c D ck .

13.1.1 Examples

Below we demonstrate a couple specific examples that show how to solve equation
(13.3) in order to find solutions of the boundary value problems.

Proposition 13.1.4. The problem²
x00 C 4x3 D 0

x.0/ D x.b/ D 0
(13.4)

has infinitely many solutions.

Proof. In this caseƒc has equation 1
2
y2Cx4 D c. For all c > 0,ƒc is nonempty and

is a closed curve that does not contain the (unique) singular point .0; 0/. By Theorem
13.1.2 and Remark 13.1.3, if the equation

b D p
2 k

Z Xc

0

dxp
c � x4

; k D 1; 2; : : : ;

has a solution c D ck , then (13.4) has a solution that changes sign k � 1 times in
.a; b/. Setting

ˆ.c/ D
Z Xc

0

dxp
c � x4

the preceding equation becomes ˆ.c/ D bp
2 k

. Notice that in this case Xc is the

positive solution of x4 D c, that is Xc D c1=4. Thus

ˆ.c/ D
Z c1=4

0

dxp
c � x4

:

Notice that c � x4 	 0 for 0 � x � Xc D c1=4. Moreover, according to (13.2) and
Lemma 13.1.1, the integral is finite. Let us study the function ˆ.c/.
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The change of variable x D c1=4z yields dx D c1=4dz and hence, for c > 0 one
finds

ˆ.c/ D
Z 1

0

c1=4dzp
c � cz4

D c�1=4

Z 1

0

dxp
1 � z4

:

Thus ˆ.c/ is positive, decreasing and satisfies limc!0C ˆ.c/ D C1 and
limc!C1ˆ.c/ D 0. It follows that for every k D 1; 2; : : :, the equationˆ.c/ D b

k
p

2

has a solution ck > 0 that gives rise to a solution of (13.4).

Proposition 13.1.5. If k is an integer such that 1 < k2 < � < .k C 1/2, then the
problem ²

x00 C �.x � x3/ D 0

x.0/ D x.
/ D 0
(13.5)

has k pairs of nontrivial solutions ˙xj .t/, 1 � j � k, with j � 1 zeros in the open
interval .0; 
/. If � � 1, there is only the trivial solution.

Proof. Here the curve ƒc is defined by the equation 1
2
y2 C �.1

2
x2 � 1

4
x4/ D c,

that is y2 C �.x2 � 1
2
x4/ D 2c. For 0 < 2c < � the curve ƒc is not empty, closed,

symmetric with respect to x and y, and does not contain the singular points .0; 0/
and .˙1; 0/. According to Theorem 13.1.2, setting Xc D 
 > 0, we have to solve
the equation


 D 2k

Z �

0

dxq
2c � �.x2 � 1

2
x4/

:

The change of variable x D 
z yields


 D 2k

Z 1

0


dzq
2c � �.
2z2 � 1

2

4z4/

:

Since 
 satisfies 2c D �.
2 � 1
2

4/, we have


 D 2k

Z 1

0


dzq
�.
2 � 1

2

4/ � �.
2z2 � 1

2

4z4/

and, factoring 
 > 0 in the denominator and then canceling it, we obtain


 D 2kp
�

Z 1

0

dzq
1 � 1

2

2 � z2 C 1

2

2z4

:

Let us study the behavior of the function ‰.
/, defined for 
 	 0, by setting

‰.
/
defD 2p

�

Z 1

0

dzq
1 � 1

2

2 � z2 C 1

2

2z4

: (13.6)
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If 
 D 0, one has

‰.0/ D 2p
�

Z 1

0

dzp
1 � z2

D 
p
�
:

Since

@

@


1q
1 � 1

2

2 � z2 C 1

2

2z4

D �1
2

�
 C 
z4

.1 � 1
2

2 � z2 C 1

2

2z4/3=2

D

D 1

2


.1 � z4/

.1 � 1
2

2 � z2 C 1

2

2z4/3=2

;

then differentiating the quantity under the integral (13.6), we obtain

‰0.
/ D 1p
�

Z 1

0


.1 � z4/dz

.1 � 1
2

2 � z2 C 1

2

2z4/3=2

> 0:

Moreover,

lim�!1�

0B@ 1q
1 � 1

2

2 � z2 C 1

2

2z4

1CA D 1q
1
2

� z2 C 1
2
z4

D

D p
2

1p
1 � 2z2 C z4

D
p
2p

.1 � z2/2
D

p
2

1 � z2
:

Fig. 13.3. Solutions of ‰.
/ D �
k

, with 1 < k2 < � < .k C 1/2
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Thus

lim�!1�‰.
/ D 2
p
2p
�

Z 1

0

dz

1 � z2
D C1:

The graph of ‰.
/ is shown in Figure 13.3.
Recall that we have to solve 
 D k‰.
/, namely ‰.
/ D �

k
. From the graph of

‰.
/ it follows that the equation ‰.
/ D �
k

has a solution if and only if �
k
> �p

�
,

namely whenever � > k2. Precisely, if 1 � k2 < � < .k C 1/2 the equation
‰.
/ D �

k
has k solutions 
1; � � � 
k and hence (13.5) has k nontrivial solutions xj .t/,

1 � j � k. Notice that Theorem 13.1.2, resp. Remark 13.1.3, imply that x1.t/ > 0 in
.a; b/, resp. xj has j �1 zeros in .0; 
/ and x0

j .0/ > 0. Notice also that the solutions
of (13.5) arise in pairs because if x.t/ is a solution, so is �x.t/. Finally, if � < 1

then �
k
< �

�
for all k D 1; 2 : : : and hence the equation ‰.
/ D �

k
has no solution.

Thus, in this case, problem (13.5) has only the trivial solution.

Remark 13.1.6. The fact that (13.5) has only the trivial solution for � < 1 could also
be proved using the Poincaré inequality as in Example 9.2.7. The reader could carry
out the details as an exercise.

13.2 The Green function

To solve boundary value problems with a time dependent nonlinearity, it is useful to
introduce the Green function. This is what we are going to do in this section.

Let p; q be functions satisfying:

1. p.t/ > 0 and is continuously differentiable on the interval Œa; b�;
2. r.t/ 	 0 and is continuous on the interval Œa; b�.

These assumptions will be assumed throughout the rest of this chapter.
Define the differential operator L by setting

LŒx�
defD d

dt

�
p.t/

dx

dt

�
� r.t/x:

The operator L is linear, that is

LŒc1x C c2y� D c1LŒx�C c2LŒy�:

The reader will notice thatL is the differential operator used in Chapter 9 with q D 1

and �rx instead of rx (the choice of �r is made for convenience, only: recall that
no assumption on the sign of r was made there). In particular, from Theorem 9.2.2
of Chapter 9 (with q.t/ D 1) it follows that the eigenvalue problem²

LŒx�C �x D 0; t 2 Œa; b�
x.a/ D x.b/ D 0

has a sequence �i , with 0 < �1 < �2 < : : : ; of eigenvalues.



266 13 Boundary value problems

Let '; be the solutions of the Cauchy problems²
LŒ'� D 0; t 2 Œa; b�
'.a/ D 0; '0.a/ D ˛ 6D 0

²
LŒ � D 0; t 2 Œa; b�
 .b/ D 0;  0.b/ D ˇ 6D 0:

Notice that  .a/ 6D 0, otherwise  would satisfy LŒ � D 0 and  .a/ D  .b/ D 0

and this means that  is an eigenfunction of L with eigenvalue � D 0, which is
not possible. Of course, for the same reason we also have '.b/ 6D 0. Consider their
Wronskian W.t/ D '.t/ 0.t/ � '0.t/ .t/ and recall that, by the Abel theorem,
W.t/ � const , say W.t/ D �C .

From the definition of '; it follows that

�C D W.a/ D �'0.a/ .a/ D W.b/ D '.b/ 0.b/ 6D 0:

In other words, ' and  are linearly independent.
The Green function of L (with boundary conditions x.a/ D x.b/ D 0) is the

function G.t; s/ defined on the square Q D Œa; b� � Œa; b� by setting

G.t; s/ D

8̂̂̂<̂
ˆ̂:

1

p.t/C
'.t/ .s/; if t 2 Œa; s�

1

p.t/C
'.s/ .t/; if t 2 Œs; b�:

The function G is continuous on Q and

G.a; s/ D '.a/ .s/

p.a/C
D 0; G.b; s/ D '.s/ .b/

p.b/C
D 0: (13.7)

Moreover, G is differentiable at .t; s/ 2 Q, s 6D t . In addition, for each s, setting
Gt .s

�; t / D limt!s� d
dt
G.t; s/ and Gt .s

C; t / D limt!sC d
dt
G.t; s/, it is easy to

check that Gt .s
�; t / �Gt .s

C; t / D Cp.s/.

Example 13.2.1. Let us calculate the Green function of LŒx� D x00 � x in the inter-
val Œ0; 1�. Here p D r D 1 and Œa; b� D Œ0; 1�. The general solution of x00 � x D 0

is x D c1e
t C c2e

�t . If x.0/ D c1 C c2 D 0 and x0.0/ D c1 � c2 D 1, we find
c1 D 1

2
; c2 D � 1

2
and we can take ' D 1

2
.et �e�t / D sinh t . If x.1/ D c1eC c2

e
D 0

and x0.1/ D c1e � c2

e
D �1, we find c1 D � 1

2e
; c2 D e

2
and we can take  D

� 
 1
2e
et � e

2
e�t

� D � 1
2



et

e
�ee�t

� D � 1
2



et�1 � e�.t�1/

� D � sinh.t�1/. Clearly
'; are linearly independent and

C D  .0/ D 1

2e
� e

2
D 1 � e2

2e
< 0
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and hence

G.t; s/ D

8̂̂<̂
:̂

2e

e2 � 1 � sinh t � sinh.s � 1/; if t 2 Œ0; s�
2e

e2 � 1 � sinh s � sinh.t � 1/; if t 2 Œs; 1�

is the Green function we are looking for.

The Green function of L can be used to transform a boundary value problem into an
integral equation.

Theorem 13.2.2. For any continuous function h.t/, the nonhomogeneous problem²
LŒx�C h.t/ D 0; t 2 Œa; b�
x.a/ D x.b/ D 0

(13.8)

has a unique solution given by the function

x.t/ D
Z b

a

G.t; s/h.s/ds:

Proof. To simplify the notation, we take p � 1. Using (13.7), we find x.a/ DR b

a
G.a; s/h.s/ds D 0 and x.b/ D R b

a
G.b; s/h.s/ds D 0, so that x satisfies the

desired boundary conditions. Furthermore, splitting the integral
R b

a
ds into

R t

a
ds CR b

t ds, one has

x.t/ D
Z t

a

G.t; s/h.s/ds C
Z b

t

G.t; s/h.s/ds:

Since for a � s � t one has that G.t; s/ D 1
C
.'.s/ .t//, while for t � s � b one

has that G.t; s/ D 1
C
.'.t/ .s//, it follows that

x.t/ D  .t/

Z t

a

'.s/h.s/

C
ds C '.t/

Z b

t

 .s/h.s/

C
ds:

Then x.t/ is differentiable and, using the fundamental theorem of Calculus, we get

x0.t/ D  0.t/
Z t

a

'.s/h.s/

C
ds C 1

C
'.t/ .t/h.t/

C '0.t/
Z b

t

 .s/h.s/

C
ds � 1

C
 .t/'.t/h.t/

D  0.t/
Z t

a

'.s/h.s/

C
ds C '0.t/

Z b

t

 .s/h.s/

C
ds:
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Therefore x0 is also differentiable and one has

x00.t/ D  00.t/
Z t

a

'.s/h.s/

C
ds C 1

C
 0.t/'.t/h.t/

C '00.t/
Z b

t

 .s/h.s/

C
ds � 1

C
'0.t/ .t/h.t/

D  00.t/
Z t

a

'.s/h.s/

C
ds C '00.t/

Z b

t

 .s/h.s/

C
ds

C 1

C

�
 0.t/'.t/ � '0.t/ .t/

	
h.t/:

Notice that '0.t/ .t/ �  0.t/'.t/ D W.t/ D �C . Thus

LŒx� D x00.t/� rx D  00.t/
Z t

a

'.s/h.s/

C
dsC '00.t/

Z b

t

 .s/h.s/

C
ds � h.t/� rx:

Since LŒ'� D '00 � r' D 0 and LŒ � D  00 � r D 0, we find

LŒx� D r .t/

Z t

a

'.s/h.s/

C
ds C r'.t/

Z b

t

 .s/h.s/

C
ds � h � rx

D r

"
 .t/

Z t

a

'.s/h.s/

C
ds C '.t/

Z b

t

 .s/h.s/

C
ds

#
� h � rx

D r

"Z t

a

'.s/ .t/h.s/

C
ds C

Z b

t

'.t/ .s/h.s/

C
ds

#
� h � rx

D r

Z b

a

G.t; s/h.s/ds � h � rx D rx � h � rx D �h:

This proves the existence of a solution of (13.8). To prove the uniqueness, let x1; x2

be two solutions of (13.8). Then, setting z D x1�x2, one hasLŒz� D LŒx1��LŒx2� D
0 and z.a/ D z.b/ D 0. Since � D 0 is not an eigenvalue of L with zero boundary
conditions, it follows that z.t/ � 0, that is x1.t/ D x2.t/ for all t 2 Œa; b�.

Corollary 13.2.3. If f .t; x/ is continuous, then

x.t/ D
Z b

a

G.t; s/f .s; x.s//ds

is a solution of LŒx�C f .t; x/ D 0, x.a/ D x.b/ D 0.
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13.3 Sub- and supersolutions

In this section we study the nonlinear boundary value problem² �x00 D f .t; x/; t 2 Œa; b�
x.a/ D x.b/ D 0

(13.9)

where f .t; x/ is a continuous real valued function defined on Œa; b�� R. Notice that
the equation can also be written as x00 Cf .t; x/ D 0, in which the differential opera-
tor x00 has the formLŒx� introduced in the previous section, with p D 1 and r D 0. In
particular, according to Corollary 13.2.3, to find a solution of the preceding problem
it suffices to find x.t/ solving the integral equation

x.t/ D
Z b

a

G.t; s/f .s; x.s//ds

where G is the Green function of x00 with boundary conditions x.a/ D x.b/ D 0.

Definition 13.3.1. A function v 2 C 2.Œa; b�/ is a subsolution of (13.9) if8<:
�v00 � f .t; v/; t 2 Œa; b�
v.a/ � 0

v.b/ � 0:

A function w 2 C 2.Œa; b�/ is a supersolution of (13.9) if8<:
�w00 	 f .t; w/; t 2 Œa; b�
w.a/ 	 0

w.b/ 	 0:

Example 13.3.2. A negative constant �c is a subsolution provided f .t;�c/ 	 0.
Similarly, a positive constant c is a supersolution provided f .t; c/ � 0.

The following Lemma is a sort of a “maximum principle”. Since its interest goes
beyond the topics discussed in this chapter, we prefer to consider a general differen-
tial operatorLŒx� D .p.t/x0/0 �r.t/x, where p.t/ > 0 is continuously differentiable
and r.t/ 	 0 is continuous, even if we use the simpler operator x00 �mx, m 	 0, a
constant.

Lemma 13.3.3. If w is such that �LŒw� 	 0, w.a/ 	 0;w.b/ 	 0, then w.t/ 	 0

for all t 2 Œa; b�.
Proof. Let �1 be the first eigenvalue of LŒx� C �x D 0, x.a/ D x.b/ D 0 and
let �1 be an associated eigenfunction, that can be taken strictly positive in .a; b/. Set
w� D w C 	�1. Since 	 > 0 and �1 > 0 in Œa; b�, then

�LŒwe� D �LŒw� � 	LŒ�1� D �LŒw�C 	�1�1 > 0; 8 t 2 .a; b/ : (13.10)
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Moreover
w�.a/ D w.a/ 	 0; w�.b/ D w.b/ 	 0:

Let t� be the point where w�.t/ achieves its minimum in Œa; b�. If, by contradiction,
w.t�/ < 0, then a < t� < b and thus w0.t�/ D 0. Furthermore, since w0

�.t�/ D 0 we
find

�LŒw�.t�/� D � �p0.t�/w0
�.t�/C p.t�/w

00
� .t�/

	C r.t�/w�.t�/

D �p.t�/w00
� .t�/C r.t�/w�.t�/:

From (13.10), it follows

�p.t�/w00
� .t�/C r.t�/w�.t�/ > 0 H) p.t�/w

00
� .t�/ < r.t�/w�.t�/:

Since p.t�/ > 0; r.t�/ 	 0;w�.t�/ < 0, it follows that w00
� .t�/ < 0. This is a contra-

diction to the fact that t� is a minimum point of w� , proving the theorem.

The next Theorem is a rather general existence result in the presence of ordered
sub- and supersolutions.

Theorem 13.3.4. Suppose that f is continuous on Œa; b� � R and

9m > 0; such that the function mx C f .t; x/ is increasing
for all t 2 Œa; b�. (*)

If (13.9) has a subsolution v and a supersolution w such that v.t/ � w.t/ for all
t 2 Œa; b�, then (13.9) has a solution x with v.t/ � x.t/ � w.t/ for all t 2 Œa; b�.
Proof. A solution of x00 C f .t; x/ D 0; x.a/ D x.b/ D 0 will be found by

an iteration procedure that we are going to describe. First of all, setting fm.t; x/
defD

mxCf .t; x/, the equation x00Cf .t; x/ D 0 is equivalent to x00�mxCfm.t; x/ D 0.
Let

LmŒx�
defD x00 �mx:

Then the equation can be written in the form

LmŒx�C fm.t; x/ D 0:

Notice that Theorem 13.2.2 holds for Lm. In particular, a solution of (13.9) can be
found solving the integral equation

x D SŒx�; SŒx�.t/
defD

Z b

a

Gm.t; s/fm.s; x.s//ds (13.11)

where Gm denotes the Green function of Lm.
Let v1 D v and, for k D 2; 3 : : : ; we let vk be the solution of

�LmŒvk � D fm.t; vk�1/ D mvk�1 C f .t; vk�1/; vk.a/ D vk.b/ D 0;
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which exists and is unique in view of Theorem 13.2.2, with L D Lm and h D
fm.t; vk�1/. Using the notation introduced above we can say that

vk D SŒvk�1�:

By induction, one shows that for all k D 1; 2 : : : one has

v.t/ � vk.t/ � w.t/; 8 t 2 Œa; b�: (13.12)

Since v1 D v � w, (13.12) holds for k D 1. Suppose that (13.12) holds for k and set
z D vkC1 � v. Then �LmŒz� D �LmŒvkC1�C LmŒv� D mvk C f .t; vk/C LmŒv�.
Since �LŒv� � f .t; v/ we get �LmŒv� � mv C f .t; v/, and hence

�LmŒz� 	 mvk C f .t; vk/ �mv � f .t; v/ D fm.t; vk/ � fm.t; v/:

By the inductive assumption, vk 	 v. This and the fact that fm.�; x/ is increasing
yield �LmŒz� 	 0. Moreover, z.a/ D vkC1.a/ � v.a/ 	 0 because vkC1.a/ D 0

and v.a/ � 0. Similarly z.b/ 	 0. Applying the Maximum Principle, Lemma 13.3.3
(with p � 1 and r � m), it follows that z.t/ 	 0, namely vkC1.t/ 	 v.t/ in Œa; b�.
In the same way, using the fact thatw is a supersolution, one finds �LŒw�vkC1� 	 0

and w.a/ � vkC1.a/ 	 0, w.b/ � vkC1.b/ 	 0 which implies that w.t/ 	 vkC1.t/

in Œa; b�. This proves (13.12).
To prove that vk converges, up to a subsequence, uniformly in Œa; b� to a contin-

uous function, we use the Ascoli Compactness Theorem which says:

If a sequence of continuous functions fk defined in an interval Œa; b� is bounded
uniformly with respect to k, and is continuous uniformly with respect to k, then
there exists a subsequence converging uniformly in Œa; b� to a continuous func-
tion.

We have:

.i/ vk are bounded, uniformly with respect to k. From (13.12) it follows that

min
t2Œa;b�

v.t/ � vk.t/ � max
t2Œa;b�

w.t/; 8 k:

.ii/ vk are continuous uniformly with respect to k. Let us use vk D Svk�1 to infer
that

jvk.t/ � vk.t
0/j �

Z b

a

jGm.t; s/ �Gm.t
0; s/j � jfm.s; vk�1.s//jds

� c

Z b

a

jGm.t; s/ �Gm.t
0; s/jds:

SinceGm is uniformly continuous in the squareQ D Œa; b�� Œa; b� it follows that
the sequence vk is continuous uniformly with respect to k. In view of these two prop-
erties we can use the Ascoli compactness theorem to infer that, up to a subsequence,
vk.t/ converges to a continuous function x.t/, uniformly in Œa; b�. This allows us to
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pass to the limit in vk D SŒvk�1�, yielding x D SŒx�, namely

x.t/ D
Z b

a

G.t; s/f .s; y.s//ds:

Thus, by Corollary 13.2.3, x.t/ solves (13.9).

Remark 13.3.5. Examples show that, in general, the condition v � w cannot be elim-
inated.

The next two theorems are applications of the preceding general result.

Theorem 13.3.6. Let f .t; x/ be continuously differentiable on Œa; b�� R. Moreover,
suppose

9˛; ˇ 	 0 W f .t;�˛/ 	 0; f .t; ˇ/ � 0; 8 t 2 Œa; b�: (13.13)

Then ² �x00 D f .t; x/

x.a/ D x.b/ D 0
(13.14)

has a solution x.t/ such that �˛ � x.t/ � ˇ .

Proof. As mentioned before, v.t/ � �˛ < 0 is a subsolution and w.t/ � ˇ > 0 is
a supersolution. To apply Theorem 13.3.4 we should have that f satisfies .�/. This
difficulty is overcome by using a truncation, which we are going to discuss. Define a
truncated function Qf .t; x/ by setting

Qf .t; x/ D
8<:
f .t;�˛/ if x � �˛
f .t; x/ if a � x � ˇ

f .t; ˇ/ if x 	 ˇ:

x�
-�

f(.,-�)

f(.,�)
O

f(.,x)

Fig. 13.4. Plot of Qf .t; x/
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Lemma 13.3.7. The function x.t/ solves² �x00 D Qf .t; x/
x.a/ D x.b/ D 0

(13.15)

if and only if it solves (13.14).

Proof. Let x be a solution of (13.15) and let �; � 0 be such that

x.�/ D min
t2Œa;b�

x.t/; x.� 0/ D max
t2Œa;b�

x.t/:

We claim that x.�/ 	 �˛. Otherwise, if x.�/ < �˛ � 0, then a < � < b

and Qf .�; x.�// D f .�; x.�// D f .�;�˛/ > 0, by definition. Thus �x00.�/ D
Qf .�; x.�// > 0, which is a contradiction because � is the minimum of x. In the same

way one proves that x.� 0/ � ˇ. As a consequence, we have that �˛ � x.t/ � ˇ and
hence Qf .t; x.t// D f .t; x.t// so that x solves (13.14). The converse is trivial.

Proof of Theorem 13.3.6 completed. Since f 0
x.t; x/ is bounded in the rectangle Œa; b��

Œ�˛; ˇ�, then the function Qf satisfies .�/. Furthermore, since f D Qf for �˛ � x �
ˇ, then v D �˛, resp. w D ˇ, is a subsolution, resp. a supersolution, not only of
�x00 D f .t; x/ but also of �x00 D Qf .t; x/. In addition one has that v � w. We can
now apply Theorem 13.3.4 finding a solution x.t/ such that �˛ � x.t/ � ˇ.

From the preceding Theorem we can deduce:

Theorem 13.3.8. If limx!�1 f .t; x/ > 0 and limx!C1 f .t; x/ < 0, uniformly
with respect to t 2 Œa; b�, then the problem (13.14) has a solution.

Proof. From the assumptions on the limits, it follows that (13.13) holds.

Corollary 13.3.9. Let f .t; x/ D �x C g.t; x/, with g bounded. Then the problem
(13.14) has a solution.

Proof. One has limx!�1 f .t; x/ D C1 and limx!C1 f .t; x/ D �1.

13.4 A nonlinear eigenvalue problem

Consider the nonlinear eigenvalue problem² �x00 D �x � g.t; x/
x.a/ D x.b/ D 0

(13.16)

where � is a real parameter and g.t; 0/ � 0. Problem (13.16) has the trivial solution
x � 0 for all �. The existence of a positive solution is established in the follow-
ing theorem. By a positive solution, resp. sub/supersolution, of (13.16) we mean a
solution, resp. sub/supersolution, x.t/ such that x.t/ > 0 for all a < t < b.
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Theorem 13.4.1. Let g.t; x/ be continuous on Œa; b� � R and such that g.t; 0/ D 0

for all t 2 Œa; b�. Furthermore, suppose that

lim
x!0

g.t; x/

x
D 0; uniformly w.r.t. t 2 Œa; b� (g1)

lim
x!C1

g.t; x/

x
D C1; uniformly w.r.t. t 2 Œa; b�: (g2)

Then (13.16) has a solution x.t/ > 0 in .a; b/, provided � > �1 D �
b�a

, where �1

is the first eigenvalue of the linear problem x00 C �x D 0, x.a/ D x.b/ D 0.

Proof. Fix � > �
b�a

. The function f .t; x/
defD �x � g.t; x/ is such that f .t; 0/ D 0

and, by (g2), limx!C1 f .t; x/ D �1. It follows that there existsM� > 0 such that
f .t;M�/ < 0. Clearlyw� D M� is a supersolution of (13.16). Actually �w00

�
D 0 >

f .t;M�/ D f .t; w�/.
Finding a positive subsolution is slightly more involved. Let �1 > 0 be such that

�00
1 C�1�1 D 0, �1.a/ D �1.b/ D 0. Taking 	 > 0, let us show that v�.t/ D 	�1.t/

is a positive subsolution for 	 > 0 sufficiently small. To prove this, we evaluate

�v00
� D �	�00

1 D 	�1�1 D �1v� :

From .g1/ it follows that

lim
�!0

g.t; 	�1.t//

	�1.t/
D 0; 8 t 2 Œa; b�:

Then, if � > �1 one infers that there exists 	0 > 0 such that

g.t; 	�1.t//

	�1.t/
� � � �1; 8 0 < 	 < 	0; 8 t 2 Œa; b�:

Recalling that v� D 	�1, it follows that

g.t; v�/ � .� � �1/v�; 8 0 < 	 < 	0; 8 t 2 Œa; b�;
namely �1v� � �v� � g.t; v�/. Furthermore,

	�1.t/ � 	 max
t2Œa;b�

�1.t/

and hence, taking 	 > 0, possibly smaller, one has that v�.t/ � M� in Œa; b�.
As in the proof of Theorem 13.3.6, we can substitute f with a truncated function

like

Qf�.t; x/ D Qf .t; x/ D
8<:
h.x/ if x � 0

f .t; x/ D �x � g.t; x/ if 0 � x � M�

f .t;M�/ if x 	 M�

where h.x/ is any smooth function such that h.0/ D 0, h0 is bounded and h.x/ > 0

for x < 0. Of course, Qf satisfies .�/. Moreover, from 0 � v� � M� it follows that
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Qf .t; v�/ D f .t; v�/. Thus �x00 D Qf .t; x/; x.a/ D x.b/ D 0, possesses a posi-
tive super solution M� and a positive subsolution v� , with v� � M�. According to
Theorem 13.3.4, the truncated problem has a solution such that v�.t/ � x.t/ � M�

in Œa; b�. Then f .t; x.t// D Qf .t; x.t// and hence x.t/ solves (13.16). Finally, from
x.t/ 	 v�.t/ it follows that x.t/ > 0 in .a; b/.

Remark 13.4.2. As in Proposition 13.1.5 or Example 9.2.7, one can show that if � <
�1 the problem �x00 D �x�x3, x.a/ D x.b/ D 0 has only the trivial solution. This
shows that, in general, the condition � < �1 cannot be removed.

13.5 Exercises

1. Show that the boundary value problem²
x00 � x3 D 0

x.0/ D x.b/ D 0

has only the trivial solution x.t/ � 0.

2. Let a < b. Prove that the boundary value problem²
x00 C 4x3 D 0

x.a/ D x.b/ D 0

has infinitely many solutions.

3. Show that the boundary value problem²
x00 C 6x5 D 0

x.0/ D x.b/ D 0

has infinitely many solutions.

4. Show that for all k 	 0 the boundary value problem²
x00 C .2p C 2/x2pC1 D 0

x.0/ D x.b/ D 0

has infinitely many solutions.

5. Show that for � < 
 the boundary value problem²
x00 C �x � x3 D 0

x.0/ D x.1/ D 0

has only the trivial solution.

6. Show that the following boundary value problems

.a/

²
x00 C 4x3 D 0

x.0/ D 0; x.b/ D 1
.b/

²
x00 C 4x3 D 0

x0.0/ D 0; x.b/ D 0

have a positive solution.

7. Prove that the preceding problems (a) and (b) have infinitely many solutions.
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8. Find b > 0 such that the boundary value problem²
x00 C 4x3 D 0

x.0/ D 0; x.b/ D 1; x0.b/ D 1

has positive solutions.

9. Find the Green function of LŒx� D x00 on Œ0; 1� and solve the boundary value
problem x00 D 1; x.0/ D x.1/ D 0:

10. Find the Green function of LŒx� D x00 on Œ�1; 1�.
11. Find the Green function of LŒx� D x00 � k2x on Œ0; 1�.

12. Show that �x00 D 1 � x � x2; x.a/ D x.b/ D 0 has a solution x.t/ such that
0 � x.t/ � 1.

13. Show that �x00 C x D e�x ; x.a/ D x.b/ D 0 has a solution such that 0 �
x.t/ � 1.

14. Let g.x/ be continuous and such that g.0/ > 0, g.1/ < 1. Show that �x00 Cx D
g.x/; x.a/ D x.b/ D 0 has a solution.

15. Show that �x00 C x D e�x2
; x.a/ D x.b/ D 0 has a positive solution.

16. Let g.x/ be continuous and such that 0 < g.x/ � M for all x. Show that
�x00 D g.x/ � x; x.a/ D x.b/ D 0 has a positive solution.

17. Show that �x00 D .1C x2/�1=2 � x; x.a/ D x.b/ D 0; has a positive solution.

18. Show that �x00 C x D min¹ex ; 1º; x.a/ D x.b/ D 0; has a positive solution.

19. Prove that �x00 D 2x � x2; x.0/ D x.
/ D 0; has a positive solution.

20. Show that if b > 
 , the problem �x00 D arctan x; x.0/ D x.b/ D 0; has a
positive solution.



Appendix A

Numerical methods

Many differential equations cannot be solved analytically; however, sometimes a nu-
merical approximation to the solution is sufficient to serve one’s need. Here we dis-
cuss some elementary algorithms that may be used to compute such approximations.

Let us consider the problem of approximating a solution to the initial problem

x0 D f .t; x/; x.t0/ D x0: (A.1)

The unknown x D x.t/ could be a vector valued function so that (A.1) would be
a system of first order ODE. However, we will restrict ourselves to the scalar case
in this text. With respect to (A.1), we assume that a unique solution exists, but that
analytical attempts to construct it have failed.

In the Figure A.1, the blue curve is the graph of x.t/ and we want to find some
approximation points connecting by red segments.

t

x

x

t

0

0

Fig. A.1. Exact solution curve (blue) and its approximation (red)

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT – La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4_A, © Springer International Publishing Switzerland 2014
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In this chapter, we will discuss a very elementary method; namely, Euler’s method
and its improved version as well as a bit more advanced method – Runge–Kutta’s
method.

A.1 First order approximation: Euler’s method

The basic idea is as follows: As we know,

x0.t/ D lim
h!0

x.t C h/ � x.t/
h

:

For sufficiently small h the above suggests that

x0.t/ � x.t C h/ � x.t/
h

;

and we can approximate x.t C h/ by x.t C h/ � x.t/C hx0.t/. But as x.t/ satisfies
the equation (A.1), x0.t/ D f .t; x.t//, we then have

x.t C h/ � x.t/C hf .t; x.t//:

Now, assume that we are already ‘happy’ with some approximate value X for
x.t/, then the above would be a natural (and naive) approximation for x.t C h/:

NX D X C hf .t; X/: (A.2)

Repeating the process, we then come up with the following procedure (Euler’s
method).

a. Set X0 D x0 and pick a positive step size h > 0.
b. For each integer i D 0; 1; 2; : : :, define

XiC1 D Xi C hf .ti ; Xi /; tiC1 D ti C h: (A.3)

Since a computer cannot calculate indefinitely, we can only approximate the solu-
tion x.t/ of (A.1) in a finite interval Œt0; t0 CL� of lengthL > 0, which is determined
by the physics of the phenomenon under consideration. Suppose that we want to have
n approximation points x1; : : : ; xn, then the step size h is given by L=n.

A generic algorithm for the Euler method is given by:

Step 1. Set the number n of points we wish to compute.
Step 2. Set the time step size h D L=n.
Step 3. Set X D x0 and t D t0.
Step 4. Set a counter k D 1.
Step 5. Compute B D X and C D hf .X; t/.
Step 6. Compute xk D B C C .
Step 7. Set X D xk and t D t C h.
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Fig. A.2. First approximation point: given a sufficiently small h > 0, we can start with the
initial point X0 D x0 and t0, dictated by the initial condition in (A.1), to construct the first
approximation value X1 D X0 C hf .t0; X0/ for the true value x.t0 C h/

Step 8. Increase the counter k by 1.
Step 9. If k < n then repeat steps 5–8. Otherwise, stop.

The following simple Maple code can be used to realize the above algorithm:

x WD x0I t WD t0IXŒ0� WD Initial value
for i from 1 by 1 to N do Loop to compute xi

x WD x C h � f .t; x/I t WD t C hI Compute the new value and time
XŒi� WD x W Record the value

end do;

Let us apply the above algorithm to approximate the solution to

x0 D x2 C t2; x.0/ D 1:

If we want to approximate the solution in the interval Œ0; 0:8� by 8 points, then
the step size h D 0:8=8 D 0:1 and the Euler algorithm gives rise to the following
Table A.1.

In Figure A.3 these values are plotted against the graph of the solution. Note that
in all the following figures the scale for the t and x axes is based on a ratio of 1 to 10.

A.1.1 Improved Euler’s method

In the standard Euler method, we advance along the tangent of the solution curve to
obtain the next point, a predicted one. We can possibly improve this by correcting
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Table A.1. Euler method for x0 D x2 C t2; x.0/ D 1. Step size h D 0:1

k tk Xk XkC1 D Xk C h.X2
k

C t2
k
/

0 0 1 1.1

1 0.1 1.1 1.222

2 0.2 1.222 1.3753284

3 0.3 1.3753284 1.573481221

4 0.4 1.573481221 1.837065536

5 0.5 1.837065536 2.199546514

6 0.6 2.199546514 2.719347001

7 0.7 2.719347001 3.507831812

8 0.8 3.507831812 STOP

Fig. A.3. Approximation values against solution

the predicted. To this end, we can first compute the predicted value as before (see
(A.2))

x�
kC1 D xk C hf .tk; xk/; (A.4)

then correct it by

xkC1 D xk C h
f .tk; xk/C f .tkC1; x

�
kC1

/

2
: (A.5)

This simply means that we advance along the line between the tangents at the pre-
vious point .tk; xk/ and the predicted point by Euler’s method in order to obtain the
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next point. In some cases, this seems to be a better approximation as we will see by
applying this improved version to the previous example.

We apply the formulas (A.4) and (A.5) to obtain the following Table A.2.

Table A.2. Improved Euler method for x0 D x2 C t2; x.0/ D 1. Step size h D 0:1. Here,
f .t; x/ D x2 C t2

k tk Xk X�
kC1

D Xk C hf .Xk ; tk/ XkC1 D Xk C h
f .Xk ;tk/Cf .X�

kC1
;tkC1/

2

0 0 1 1.1 1.111000000
1 0.1 1.111000000 1.235432100 1.251530674
2 0.2 1.251530674 1.412163577 1.436057424
3 0.3 1.436057424 1.651283516 1.688007333
4 0.4 1.688007333 1.988944209 2.048770724
5 0.5 2.048770724 2.493516872 2.600025118
6 0.6 2.600025118 3.312038179 3.529011494
7 0.7 3.529011494 4.823403706 5.371468766
8 0.8 5.371468766 STOP STOP

Fig. A.4. Plotting these values against the graph of the solution and the previous result obtained
from the Euler method, we can see a great improvement

An important note should be made here before we move on to the next section dis-
cussing more advanced numerical methods. There is no doubt that powerful comput-
ers can assist us to do tedious computation and, in many cases, provide almost what
we practically need in applications. However, computers don’t think! Yet efficiently
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but they simply do whatever we ask them to do. Therefore we cannot completely (and
blindly) trust their output. A qualitative analysis needs to be done first before we can
rely on any numerical method to do the messy and cumbersome job. The following
simple example will be a good warning.

Let us consider the initial value problem

x0.t/ D x2 C 1; x.0/ D 1;

which can be solved easily by separating the variables, and we get

x.t/ D tan
�
t C 


4

�
:

Obviously, the solution is only defined on the interval Œ0; �
4
/ as we need tC �

4
< �

2
.

However, computers do not know this if we ask them to perform the discussed Eu-
ler methods on this problem. They would go on and compute ‘values’ of x.t/ for t
beyond �

4
!

Furthermore, the Euler method is often not accurate enough. In more precise terms,
it only has order one. This caused us to look for higher-order methods. One possi-
bility is to use not only the previously computed value xk to determine xkC1, but to
make the solution depend more on past values. This yields the so-called multistep
methods. We will discuss one such method, the Runge–Kutta, in the next section.

A.2 The Runge–Kutta method

We now study a more advanced and accurate Runge–Kutta method to approximate
a solution to the initial problem (A.1), namely

x0 D f .t; x/; x.t0/ D x0:

In the Euler method, the next value xkC1 is computed by the previous xk advanc-
ing along the approximated tangent. The Runge–Kutta method computes the next
value xkC1 via multiple stages in order to obtain better approximations. To this end,
xkC1 will be xk plus a weighted average of a number s of increments (the number s
is fixed and called the number of stages). Each increment is just a product of the step
size h and an estimated slope of the solution curve specified by the right-hand side
f .t; y/ in the equation (A.1).

For example, let us consider the 2-stage method given by the formula

xkC1 D xk C h

�
1

2
f .tk ; xk/C 1

2
f .tk C h; xk C hf .tk; xk//

�
D xk C 1

2
I1 C 1

2
I2: (A.6)

One can see that xkC1 is obtained by advancing xk by the average of 2 increments
I1; I2:
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1. I1 D hf .tk; xk/ is the increment based on the slope at the beginning of the inter-
val, using the Euler method.

2. I2 D hf .tk C h; xk C hf .tk; xk// is the increment based on the slope at the end
of the interval, using xk C hf .tk; xk/.

A keen reader will notice that this method is just the improved Euler method dis-
cussed earlier!

Generalizing (A.6), we can take any number ˛ 2 .0; 1� and define

xkC1 D xk C
�
1 � 1

2˛

�
I1 C 1

2˛
I2; (A.7)

where:

1. I1 D hf .tk; xk/ is the increment based on the slope at the beginning of the inter-
val. This increment is given the weight

�
1 � 1

2˛

	
.

2. I2 D hf .tk C ˛h; xk C ˛I1/ is the increment based on the slope at the point
tk C ˛h of the interval, using xk C ˛I1 D xk C ˛hf .tk ; xk/.

The reader can easily check that (A.6) is a special case of this generalization when
˛ D 1. If one takes ˛ D 1=2 then (A.7) results in the so-called midpoint method

xkC1 D xk C hf .tk C 1

2
h; xk C 1

2
hf .tk; xk//;

which looks similar to the formula in Euler’s method but using the slope at midpoint
of the interval.

Let us move on to another member of the family of Runge–Kutta methods which
is so commonly used that it is often referred to as “RK4”, “classical Runge–Kutta
method” or simply as “the Runge–Kutta method”.

The formula is as follows

xkC1 D xk C 1

6
I1 C 1

3
I2 C 1

3
I3 C 1

6
I4: (A.8)

Here, there are 4 increments (4 stages) and their weights are given by:

1. I1 D hf .tk; xk/ is the increment based on the slope at the beginning of the inter-
val. This increment is given the weight 1

6
.

2. I2 D hf .tk C 1
2
h; xk C 1

2
I1/ is the increment based on the slope at the midpoint

tk C 1
2
h of the interval, using xk C 1

2
I1. Its weight is 1

3
.

3. I3 D hf .tk C 1
2
h; xk C 1

2
I2/ is the increment based on the slope at the midpoint

tk C 1
2
h of the interval, but now using xk C 1

2
I2. Its weight is still 1

3
.

4. I4 D hf tk C h; .xk C I3/ is the increment based on the slope at the end of the
interval, using xk C I3. Its weight is 1

6
.
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We now describe the general s-stages method. We fix an integer s 	 1 and define

xkC1 D xk C
sX

iD1

wiIi ;

where wi 2 Œ0; 1� are the weights whose sum must be 1. The increments I1; : : : ; Is

are given by

I1 D hf tk ; .xk/

I2 D hf .tk C c2h:xk C a21I1/

I3 D hf .tk C c3h; xk C a31I1 C a32I2/
:::

Is D hf .tk C csh; xk C as1I1 C as2I2 C � � � C as;s�1Is�1/:

We can see that, for m D 1; : : : ; s, Im is the increment based on the slope at tk C
cmh and using xk advancing by a weighted sum of previous increments I1; : : : ; Im�1:

Im D hf .tk C cmh; xk C am1I1 C am2I2 C � � � C am;m�1Im�1/;

which is the approximated slope at the time tk advanced by a multiple cm of h. It is
then natural to require that the increments in y satisfy

am1 C am2 C � � � C am;m�1 D cm:

In such a case, we say that the method is consistent.
It is clear that the Runge–Kutta is much more complicated than the primitive Eu-

ler method and it is not practical to perform the calculation on a handheld calculator
without programming ability. If the reader has some knowledge in programming then
the following Maple programming code can be used to generate the approximation
values in the general Runge–Kutta method.

RKgenVal WD proc.A; c;W; f; t0; x0; h;N; S/

local x; t; X; i; j; k; INC; IncI
x WD x0I t WD t0IXŒ0� WD xI Initial value

for i from 1 by 1 to N do Compute the increments

for j from 1 by 1 to S do

INC WD 0I
for k from 1 by 1 to j � 1 do

INC WD INC C AŒj; k� � IncŒk�
end do I
IncŒj � WD h � f .t C cŒ1; j � � h; y C INC/

end do I
INC WD 0I
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for k from 1 by 1 to S do Weighted total increment

INC WD INC CW Œ1; k� � IncŒk�I
end do;

x WD x C INC I t WD t C hIXŒi� WD xI Record the new value

end do;

X I
end proc

The above procedure requires the following inputs:

1. A matrix A holding the weights aij

A D

26666666664

0 0 � � � 0

a21 0 � � � 0

a31 a32 0 0 0

:::
:::

:::
: : : 0

aa1 as2 � � � as;s�1 0

37777777775
:

2. A matrix c holding the time weights ci .

3. A matrix W holding the increment weights wi .

4. The right-hand side f WD f .t; x/, the initial time t0, the initial condition x0 D
x.t0/, the step size h, number of points to compute N and the number of stages
S .

For example, the matrices for a 2-stage method can be

A WD
"
0 0

2
3

0

#
; c WD 


0 2
3

�
; W WD 


1
4

3
4

�
:

While for the classic RK4, we use

A WD

2666664
0 0 0 0

1
2

0 0 0

0 1
2

0 0

0 0 1 0

3777775 ; c WD 

0 1

2
1
2

1
�
; W WD 


1
6

1
3

1
3

1
6

�
:

Let us apply the above two methods with such parameters and revisit the example

x0 D x2 C 1; x.0/ D 1:
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We will use the step size h D 0:1 to compute m D 6 approximation points. The
result is recorded in the following table:

k 2-stages Errors 4-stages Errors

1 1.221333333 0.001715548 1.223048914 0.0000000330
2 1.502999707 0.005497940 1.508496167 0.000001480
3 1.881423779 0.014341347 1.895754160 0.000010966
4 2.427681154 0.037281607 2.464899687 0.000063074
5 3.300240967 0.107982483 3.407820425 0.000403025
6 4.928987792 0.402867449 5.327896817 0.003958424

We can see that the 4-stage method provides much smaller errors. Plotting the
approximation points obtained by the two methods against the true solution x.t/ D
tan.t C �

4
/, we can see that the 4-stage points in Figure A.5b are much closer to the

graph of the true solution.

(a) (b)

Fig. A.5. The plots of the solution x.t/ D tan.t C �
4 / and approximation points. (a) 2-stages;

(b) 4-stages



Answers to selected exercises

Chapter 1

1. x0 D �5x.

3. x.t/ D c e�4t C 1:

4. Use the uniqueness property.

6. k D ln 2.

7. Find the solution and then use the Intermediate Value Theorem.

8. (a) .�1;�1/ (b) .�
=2; 1/.

9. x.t/ D 2

3
t2 C c

t
; t ¤ 0.

11. x D 4et2
.

12. x D c e�t3=3.

13. x.t/ D b

a

�
t � 1

a

�
C Ce�at .

17.
h

k
.

18. (a) k=1/2, (b) No!

19. e˙�=2.

22. (a) q.t/ D 7t C 2, (b) q.t/ D t2 C 3.

26. Recall that solutions of such equations do not change sign.

S. Ahmad, A. Ambrosetti: A Textbook on Ordinary Differential Equations.
UNITEXT – La Matematica per il 3+2 73
DOI 10.1007/978-3-319-02129-4, © Springer International Publishing Switzerland 2014
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28. x D 3t .

29. x D at : if a > 0 minima, if a < 0 maxima.

Chapter 2

2. Suppose jjxjp � jyjpj � Ljx � yj and let y D 0.

4. All a ¤ 0.

5. Check the conditions for existence and uniqueness for x0 D ln x (x > 0).

8. Note that jxj1=4 is lipschitzian off x > 0.

11. Verify that f .x/ D sin x satisfies the conditions of the Global Existence Theo-
rem.

13. Verify that f .x/ D ln.1C x2/ satisfies the conditions of the Global Existence
Theorem.

14. The function f .x/ D max¹1; xº is globally lipschitzian.

16. Use uniqueness to show that if z.t/ D �x.�t / , then x.t/ D z.t/.

17. Solutions are either increasing or decreasing.

18. Solutions are increasing.

19. Show that if it changed sign, it would violate uniqueness.

21. Solve y0 D 1C 2t , y.0/ D 0 and use the Comparison Theorem.

Chapter 3

1. If q D 1, x.t/ D C � e a
pC1 tpC1

: If q 6D 1, x1�q D .1�q/
�

a

p C 1
tpC1 C c

�
:

3. x.t/ D � �3.t4 C c/
	�1=3

:

4. x D 2

t2 � 2c ; t 6D ˙p
2c:

5. x D 6

2t3 C 1
; t > �

�
1

2

�1=3

:
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7. x D
�
1

2
t4 C 1

�2

:

8. x.t/ D
�
1

4
t2 � 1

4
a2

�2

and x D 0.

9. p C 1 > 0.

10. The limit is a constant, which depends on the initial conditions.
(a), c D 0: (b) �1=2.

12.
2

3
x3 C x �

�
y6

6
� y

�
D c:

14. x2 C 2xy � y2 D c:

15. x3�xyCy4 D c. The singular points are .0; 0/ and .˛; 3˛2/, where 4�27˛5 D 1.

17.
axpC1

p C 1
C bxy C dyqC1

q C 1
D c: The singular points are .0; 0/ and, if ad > 0,

bd > 0, the point .˛;�a
b
˛p/ where ˛ > 0 satisfies b˛ D d

�a
b
˛p
�q D 0.

18. ex C ey � 1

2
xy2 D c.

20. x3 C 3x2y � 3xy2 C y3 D c: The singular point is .0; 0/.

21. x3 C 3x2y C 6xy2 C 5y3 D c: a is the unique negative solution of 1C 3aC
6a2 C 5a3 D 0.

23. a1 D 2, b1 D 2a2; x3 C 3x2y C 3a2xy
2 C b2y

3 D c.

24. A.y/ D y2 C �, � constant; x2 C �x C xy2 D c:

27. � satisfies �0.y/ D y � f 0.y/
f .y/

:

29. Show that an integrating factor is �.y/ D 1p
1C y2

:

31. x D 0 or � t2

2x2
C ln

ˇ̌̌x
t

ˇ̌̌
D ln

ˇ̌̌̌
1

t

ˇ̌̌̌
C c; t 6D 0:

33. x D 1p
ce2t2 � 2

:

34. x D z�1, with z D e�t2=2

�
�
Z
et2=2dt C c

�
.
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36. Solve

²
x02 D x2 C t2 � 1
2x0 D 0:

37. x D 1 � .c ˙ t /2.

39. x D ct � c2. The singular solution is x D t2

4
:

40. x D ct C ec . The singular solution is x D t ln.�t / � t; t < 0:
41. x.t/ D ct � ln c, c > 0: The singular solution is x D 1C ln t; t > 0:

43. ˛ D h.˛/ and ˇ D g.˛/.

44. x D t C .1C t / .c � ln jt C 1j/ ; t 6D �1:

Chapter 4

1. The function xjxj has a Lipschitzian first derivative.

2. The function max¹0; xjxjº has a Lipschitzian first derivative.

4. Show that
d

dt
.x2 C y2/ D 0:

6. Show that
dH.x; y/

dt
D 0.

7. x00 D x.

11. Set z.t/ D x.t C T / and use the uniqueness of the ivp.

12. Set z.t/ D x.�t / and use uniqueness.

13. x00.t/ is increasing.

Chapter 5

A2. b) W.�
2
/ D 
 ¤ 0; c) Use Abel’s Theorem.

A5. W.�
4
/ D �

p
2

2
¤ 0:

A6. f .t/ D .t2 C 1/.arctan t C 1/:

A7 W.zx1; zx2/ D z2W.x1; x2/:

A10. x1 and x2 are linearly dependent.
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A11. W.7/ D 49

6
:

B2. x D c1e
�t sin t C c2e

�t cos t .

B3. x D c1e
�4t C c2te

�4t .

B5. x D �et�1 C e2t�2.

B6. x.t/ D 2p
6
e�t sin

p
6

2
t .

B8. The roots of the characteristic equation are
�1Cp

1C 4ˇ

2
	 0.

B9. ˇ < 0.

B11. Use the uniqueness of the ivp.

B15. a D �1
2

.

B17. a � b < 0.

B18. � D k, k D 1; 2; ::: .

B19. a � b D k
 , k D 1; 2; ::: .

B24. x.t/ D a � ae�2t .

C2. (i) x.t/ D c1e
t C c2e

�t C 1
3
e2t , (ii) x.t/ D c1e

t C c2e
�t C �

1
3
t � 4

9

	
e2t .

C4. x.t/ D c1e
. 3C

p
13

2 /t C c2e
. 3�

p
13

2 /t � t2 C 5t � 17:

C6. x.t/ D c1 sin t C c2 cos t C 1

8
cos 3t:

C8. x D c1 sin
p
2 t C c2 cos

p
2 t C t

2
p
2

sin
p
2 t .

C9. x D c1 sin 2t C c2 cos 2t � 1
4
t cos 2t:

C10. x D c1 sin t C c2 cos t C �˛
2
t cos t C ˇ

2
t sin t:

C13. k < 0, x D ˇk

˛ � ˇ e
˛t C ˛k

ˇ � ˛ e
ˇ t C k, ˛ D �2 � p

5; ˇ D �2C p
5.

C14. Multiply the equation by x and integrate in Œa; b�.
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C15. x D 2 � 4e2

1 � e2
e

p
2t C 2e2

1 � e2
e�p

2t � 2et :

D1. Compare with x00 C x D 0.

D2. The first equation.

D3. Show that x.0/ D x0.0/ D 0.

D4. Use the general solution of the nonhomogeneous equation to show that one
can choose the constants to find the desired solution.

D8. .a/ evaluate the derivative and use the equations; .b/ by contradiction, using
(a).

D9. Set � D v.t/

u.t/
; t 2 .a; aC 	/ and show that �0 > 0.

D11. x D t

t C 1
:

D13. x D 0 and jx.t/j D ec2

j cos.t C c1/j :

D14. .a/ x D e1�et
; .b/ ln x.t/ D 1C 2t � et .

D16. Distinguish between a < 1 or a > 5, 1 < a < 5 and a D 1 or a D 5.

D19. x D c1t C c2

t3
C 1

5
t2 :

D20. P.t/ D �3a3 t C a3 t
3.

Chapter 6

2. x D c1 C c2e
�t C c3e

t .

5. x D c1e
�t C c2e

2t C c3te
2t .

6. x.t/ D 3
2

� 1
2

sin 2t � 1
2

cos 2t:

7. x.t/ D e�t .

9. x.t/ D 1
5
et � e�t

�
2

5
sin t C 1

5
cos t

�
:

10. The characteristic equation has at least one negative zero.
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11. Check the max and min of the characteristic equation.

13. x.t/ D 1

4
et C 1

4
e�t C 1

2
cos t:

15. x.t/ D e�at

a � b � e�bt

a � b , where a; b .a 6D b/, are the two positive roots of

m4 � 4m2 C 1 D 0.

16. The characteristic equation has only positive solutions.

18. x D c1 C c2e
t C c3e

�t C c4 sin t C c5 cos t .

20. The characteristic equation has at least one negative root m D �1.

21. x D c1 C c2t C c3e
t C c4e

�t C c5 sin t C c6 cos t .

23. x.t/ D c1 C c2t C c3e
�t C c4e

�2t C 1
6
et .

24. Using the method of Variation of Parameters one finds x.t/ D c1Cc2 sin 2tC
c3 cos 2t C 1

8
ln j sec 2t C tan 2t j � 1

8
ln j cos 2t j sin 2t � 1

4
t cos 2t :

26. x.t/ D 2C 2t � 2et C t2.

28. Find a proper subset of linearly dependent functions.

30. Show that W.t2;�t2/ D 0 and explain why this implies

W.t; t2; t3; sin t; cos t; t4; et ; e�t ; t4 � t2/ D 0:

31. W.6/ D 5e18.

32. Use Abel’s Theorem.

33. x D c1

t
C c2 sin.ln t /C c3 cos.ln t /; t > 0:

Chapter 7

A1.

�
x

y

�
D
�
c1e

t

c2e
�3t

�
.

A3. x D
�
c1e

at C c2te
at

c2e
at

�
:

A5. x.t/ D e2t .c1 cos t C c2 sin t /; y.t/ D e2t .�c1 sin t C c2 cos t /:
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A7. x D
�
1

0

�
e�t �

�
0

1

�
et :

A8. x D
�
a cos 2t
a sin 2t

�
:

A10. x D c1e
3t � 1

3
t � 1

3
; y D c2e

�t C 2t � 2:
A11. x D c1e

t � t2 � 2t � 2; y D c2e
t � 1.

B3. � D 1; �1, Nx.t/ D
�

2c2e
�t

c1e
t � 3c2e

�t

�
:

B5. x D 3c1 C 2c2e
5t C 7

3
et ; y D �c1 C c2e

5t � 2

3
et :

B6. Nx D
��et C 3e3t

3e3t

�
:

B7. x.t/ D c1e
t C c2e

3t � 2

27
� 2

9
t C 2

3
t2; y.t/ D c2e

3t � 2

27
� 2

9
t � 1

3
t2:

B8. x.t/ D c1e
�t ; y.t/ D �c1e

�t C c2e
t :

B11. x.t/ D 3
4
e2t C 1

4
e�2t ; y.t/ D 3

4
e2t � 3

4
e�2t :

C2.

0@x.t/y.t/

z.t/

1A D c1

0@ 21
4

1A et C c2

0@01
0

1A e�t C c3

0@ 00
1

1A e2t :

C4.

0@ et

0

e4t

1A.

C7.

0@x.t/y.t/

z.t/

1A D �1
2

0@ 1

�1
�1

1AC 5

6

0@ 10
0

1A et C 1

2

0B@
1
3

1

�1

1CA e�2t .

C8. a < 0.

C10. 0 < a < 2.

D2. x D 3

2
t2 � 1

3
t3 � c1 ln jt j C c2, y D t2 C c2t

�1.

D4. x D c1t C c2t
�2, y D c1t

2 � 2c2t
�1 � 1.

D6. x D c1t � ec1 , y D t � 1

2
c1t

2 C c2.
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Chapter 8

2. a D �7; b D 1.

3. ˛ D ˇ.

6. C <
1

2
.

8. B2 � 9 < 0.

9. Solutions satisfy x2 C xy C 1
2
y2 D 1 which is an ellipse.

10. Solutions satisfy x2 C xy � 3y2 D 1 which is a hyperbola.

13. x� D 1C 	

4
; y� D 2 � 	

7
:

14. The solutions satisfy H.x; y/ D x C 2y � ln x � 2 ln y D k, x; y > 0; then
take k D 4.

16. The nontrivial equilibrium of the system is x D 5; y D 3.

18. x0 satisfies x000
0 D x0

0 � 3x2
0x

0
0.

20 Use the phase plane analysis.

21. x.t/ > 0, it is increasing for t > 0, decreasing for t < 0 and limt!˙1 x.t/

D C1:

23. The solution satisfies y2 � x2 C 1
2
x4 D 1, which is closed.

26. The solution is y D ˙p
a2 � x2 � 2x8:

29. The solution satisfies y2 � x2 C 2x3 D 0 .

31. The solution satisfies y2 � x2 C 2x3 D 1.
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Chapter 9

2. �k D ˇ k2
2

b2
, k D 1; 2; : : : .

3.
k2
2

2
� �kŒ1C t � � k2
2:

4.

2

4e
� �kŒe

t � � 
2

4
:

5. Use the variational characterization of the first eigenvalue.

7.
˛
2

M.b � a/2 � �1 � ˇ
2

m.b � a/2 :

10. �k D k2, with k D 0; 1; 2::: . Notice that the eigenfunctions corresponding to
� D 0 are constants.

12. Multiply the equation by 'k and integrate.

14. u.t; x/ D ˛e�t sin x.

15. u.t; x/ D
X

Cke
�k2c2t sin.

p
�k x/:

15. u.t; x/ D
X

Cke
� k2�2

L2 t sin

�
k


L
x

�
:

Chapter 10

1. x.t/ D a1

X
k�1

tk

kŠ.k � 1/Š :

2. a1 D 0, ak D 0 for all k 	 3. Hence x.t/ D a0 C a2t
2.

3. x.t/ D a0

X
n�0

t3n

3n.3n � 1/.3n � 3/.3n � 4/ � � � 3 � 2C

C a1

X
n�0

t3nC1

.3nC 1/3n.3n � 2/.3n � 3/ � � � 4 � 3 C

C 1

2

X
n�0

t3nC2

.3nC 2/.3nC 1/.3n � 1/.3n � 2/ � � � 5 � 4 :

4. x.t/ D
X
n�0

.�1/n t2n

.2n/ŠŠ
.
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5. The roots of the indicial equation are r D ˙1=2. If r D 1=2, ak D 0, for
all k 	 1 and x1.t/ D ct1=2. If r D �1=2, ak D 0 for all k 	 2 and
x.t/ D t�1=2.a0 C a1t /.

7. The indicial equation has a double root r D 2 yielding

x.t/ D a0t
2
X tk

22 � � � k2
:

8. x.t/ D t�1

0@a0 C a0t C a2t
2 C

X
k�3

.�1/k a2t
k

3 � 4 � 2 � � � k � .k � 2/

1A.

9. xa.t/ D aJ0.t/.

11. x.t/ D c1Jm.t/.

14. Differentiating the series term by term, show that ˛J 0
1.˛/ D �J1.˛/.

18. Use the fact that between two consecutive zeros of J1 there is a zero of J0 to

infer that J1.˛1/ > 0. Moreover, J2.˛1/ D 2

˛ 1
J1.˛1/ > 0.

20. �n D
�
ˇn

2

�2

where J1.ˇn/ D 0, ˇn > 0; yn.s/ D 2c
p
�nsJ1.2

p
�ns/.

21. � D 1.

Chapter 11

3.
2!s

.s2 � !2/
2

,
!2 C s2

.s2 � !2/
2

.

4.
!

.s � ˛/2 C !2
,

s � ˛
.s � ˛/2 C !2

.

5.
1 � e�s

s
C 2

e�3s � e�4s

s
.

6.
1

s2
� 1

s � 1 :

8. Show that L¹f º D
C1X

0

e�nT s �
Z T

0

e�s
f .�/d�:

9.
s � e�s

s.1 � e�2s/
.
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10.
1

s2
� Te�sT

s.1 � e�sT /
:

14. e�t sin t; e�t cos t .

16. Use Theorem 11.3.7 with P.s/ D s � 2 and Q.s/ D s3 � s.
18. ı C 1C e�t :

19. Show that F 0.s/ < 0 and F 00.s/ > 0.

20. Apply .P 4/ with g0.t/ D f .t/.

23. Use .P 4/ to find .1C s2/X0.s/C sX.s/ D 0:

24. x.t/ D sinh t .

25. x.t/ D t � 1.

27. L¹xº D 1

3s
C 1

6.s � 3/ � 1

2.s � 1/ .

29. x.t/ D R t

0
et�	Ha.�/d� D

²
0 if t < a
�1C et�a if t 	 a

.

31. x.t/ D .kCa/et . Remark that this solves x00�x D 0with the initial condition
x.0/ D k C a.

32. x.t/ D sin t � g.t/: If g.t/ D �Œ0;1�.t/,

x.t/ D
²
1 � cos t if t 2 Œ0; 1�
cos.t � 1/ � cos t; if t > 1:

33. x.t/ D 1CHa.t/.t � a/ D
²
1 if 0 � t < a

1C t � a if t 	 a:

35. x.t/ D 6

�
t5

5Š
C t3

3Š

�
D t5

20
C t3:

36. x.t/ D 1p
k

� sinh.
p
k t/:

37. x.t/ D cos k t C sin k t

k
:

38. x D 15

8

�
e7t � e�t

	
, y D 1

8

�
3e�t C 5e7t

	
:

40. x D 1

2
.et � e�t /; y D e�t :
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Chapter 12

1. The eigenvalues of the coefficient matrix are � D �3˙ p
8.

3. The eigenvalues of the coefficient matrix are � D ˙ip2.

4. If a < 0, unstable; if a > 0, asymptotically stable; if a D 0, stable, but not
asymptotically stable.

6. Unstable.

11. If a < 0, the equilibrium is asymptotically stable. If a > 0 the equilibrium is
unstable.

12. Show that at least one eigenvalue of the coefficient matrix is greater than 1.

13. a < �1.

14. The coefficient matrix has an eigenvalue 0 < � < 1.

16. Unstable.

19. The solutions of �4 C 8�3 C 23�2 C 28�C 12 D 0 are � D �1;�2;�2;�3.

20. Write the equivalent first order system and show that one eigenvalue of the
coefficients matrix is positive.

22. x D 0 is asymptotically stable for � < 0 and unstable for � > 0.

25. The stable manifold is x3 D 0: the unstable manifold is the x3 axis.

26. The eigenvalues of the linearized system are �1;�2.

27. V.x; y/ > 0 and PV < 0 for all .x; y/ 6D .0; 0/.

29. Apply the Instability Theorem with W.x; y/ D 1
2
.x2 C y2/.

30. The eigenvalues of the coefficient matrix of the linearized system are

� D �1˙ p
1 � 4a
2

:

31. Change variableex D x C a and show thatex D 0; y D 0 is unstable for the
corresponding system.

32. The potential F.x; y/ D .x2 C y2/2 has a strict minimum at .0; 0/.
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33. Show that V.x; y/ D 1

2
y2 C R x

0
g.s/ds is a Liapunov function.

35. x.t/ D c sin.t C #/C �.t/, with limt!C1 �.t/ D 0.

Chapter 13

1. Multiply x00 D x3 by x and integrate.

3. Letting ˆ.c/ D c�1=3
R 1

0

dyp
1 � y6

, show that the equation ˆ.c/ D bp
2 k

has infinitely many solutions ck .

5. � D 
 is the first eigenvalue of the linearized problem x00 C �x D 0; x.0/ D
x.1/ D 0.

6. (a) In the phase plane take the arc ƒc of equation
1

2
y2 C x4 D c in the first

quadrant between x D 0 and x D 1.
(b) Consider the arc bƒc in the fourth quadrant.

8. b D 1p
2

R 1

0

dxp
1 � x4

.

9. G.t; s/ D
²
t .1 � s/; if t 2 Œ0; s�
s.1 � t /; if t 2 Œs; 1� ; x.t/ D 1

2
t2 � 1

2
t .

11. G.t; s/ D

8̂̂̂<̂
ˆ̂:

2ek

e2 � 1 � sinh kt � sinh k.s � 1/; if t 2 Œ0; s�,

2ek

e2 � 1 � sinh ks � sinh k.t � 1/; if t 2 Œs; 1�.

12. v � 0 is a subsolution and w � 1 is a supersolution.

14. v � 0 is a subsolution and w � 1 is a supersolution.

16. v D 0 is a subsolution and w D M is a supersolution. Positiveness follows
by contradiction.

18. 0 < min¹ex ; 1º � 1.

20. Write arctan x D x�g.x/with g.x/ D x�arctan x and apply Theorem 13.4.1
of Chapter 13 with � D 1.
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